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Chapter 1

Introduction

1.1 Background

In this thesis we study the following equation

(1.1.1) i∂tψ + ∂2
xψ + i∂x(|ψ|2ψ) = 0, (t, x) ∈ R× R,

which is known as a derivative nonlinear Schrödinger equation. This equation appears
in plasma physics as a model for the propagation of Alfvén waves in magnetized plasma
(see [48, 49]) and it is known to be completely integrable (see [40]). The equation (1.1.1)
is L2-critical in the sense that the equation and L2-norm are invariant under the scaling
transformation

ψγ(t, x) := γ
1
2ψ(γ2t, γx), γ > 0.

There is a large literature on the Cauchy problem for the equation (1.1.1). Tsutsumi
and Fukuda [68, 69] studied the well-posedness in Hs(R) for s > 3/2 by classical en-
ergy method which depends on parabolic regularization. The well-posedness in the
energy space H1(R) was first proved by Hayashi [31]. He introduced gauge transforma-
tion (see e.g. (1.1.2) or (1.1.13) below) to overcome the derivative loss, and combining
with the Strichartz estimate, the well-posedness in H1(R) was proved. In a later work,
Hayashi and Ozawa [32] proved the H1(R)-solution is global if the initial data ψ0 sat-
isfies ‖ψ0‖2L2 < 2π. Recently, Wu [73] improved this global result, more specifically, he
proved that the solution is global if the initial data satisfies ‖ψ0‖2L2 < 4π. We will discuss
connection between these global results and solitons later.

For the Cauchy problem for (1.1.1) in Hs(R) with s < 1, there are also many works.
Takaoka [66] proved that (1.1.1) is locally well-posed in Hs(R) when s ≥ 1/2 by the
Fourier restriction norm method. Biagioni and Linares [9] proved that the solution map
from Hs(R) to C([−T, T ] : Hs(R)) is not locally uniformly continuous when s < 1/2.
Colliander, Keel, Staffilani, Takaoka, and Tao [19] proved by the so-called I-method
that when s > 1/2 the Hs(R)-solution is global if the initial data satisfying ‖ψ0‖2L2 < 2π
(see also [18]). Guo and Wu [28] improved their result, that is, they proved that the
H1/2(R)-solution is global if ‖ψ0‖2L2 < 4π.
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There are several forms of (1.1.1) that are equivalent under gauge transformation.
By using the following gauge transformation to the solution of (1.1.1)

u(t, x) = ψ(t, x) exp

(
i

2

∫ x

−∞
|ψ(t, x)|2dx

)
,(1.1.2)

then u satisfies the following equation:

i∂tu+ ∂2
xu+ i|u|2∂xu = 0, (t, x) ∈ R× R.(DNLS)

This equation has the following conserved quantities:

E(u) :=
1

2

∫
R

|∂xu|2 dx− 1

4
Re

∫
R

i|u|2∂xuudx,(Energy)

M(u) :=

∫
R

|u|2dx,(Mass)

P (u) := Re

∫
R

i∂xuudx.(Momentum)

We note that the equation (DNLS) can be rewritten as

i∂tu = E ′(u).(1.1.3)

The Hamiltonian form (1.1.3) is useful when one considers problems of orbital stabil-
ity/instability of solitons. It is known that (DNLS) has a two-parameter family of solitons
(see [40, 17])

uω,c(t, x) = eiωtφω,c(x− ct),(1.1.4)

where (ω, c) satisfies −2
√
ω < c ≤ 2

√
ω, and

φω,c(x) = Φω,c(x) exp

(
i
c

2
x− i

4

∫ x

−∞
Φω,c(y)

2dy

)
,(1.1.5)

Φ2
ω,c(x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

4ω − c2

√
ω
(
cosh(

√
4ω − c2x)− c

2
√
ω

) if ω > c2/4,

4c

(cx)2 + 1
if c = 2

√
ω.

(1.1.6)

We note that Φω,c is the positive radial (even) solution of

−Φ′′ +
(
ω − c2

4

)
Φ +

c

2
|Φ|2Φ− 3

16
|Φ|4Φ = 0,(1.1.7)

and the complex-valued function φω,c is the solution of

−φ′′ + ωφ+ icφ′ − i|φ|2φ′ = 0.(1.1.8)
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The equation (1.1.8) can be rewritten as

S ′
ω,c(φ) = 0,

where the functional Sω,c(φ) is defined by

Sω,c(φ) := E(φ) +
ω

2
M(φ) +

c

2
P (φ).

The condition of two parameters (ω, c)

(1.1.9) −2
√
ω < c ≤ 2

√
ω

is a necessary and sufficient condition for the existence of non-trivial solutions of (1.1.7)
vanishing at infinity (see [8]). As can be seen in the explicit formulae of the solitons,
(DNLS) has two types of solitons; one has exponential decay and the other has algebraic
decay. The latter corresponds to the soliton for the massless case.

Guo and Wu [27] proved that the soliton uω,c is orbitally stable when ω > c2/4 and
c < 0 by applying the abstract theory of Grillakis, Shatah, and Strauss [24, 25]. Colin
and Ohta [17] proved that the soliton uω,c is orbitally stable when ω > c2/4 by applying
variational characterization of solitons as in Shatah [64]. The case of c = 2

√
ω (massless

case) is treated1 by Kwon and Wu [41], while the orbital stability or instability for the
massless case is still an open problem.

From the explicit formulae (1.1.5) and (1.1.6) of solitons, we have

M(φω,c) = M(Φω,c) = 8 tan−1

√
2
√
ω + c

2
√
ω − c

,(1.1.10)

where (ω, c) satisfies (1.1.9) (see [17, Lemma 5] or Section 4.2). If we consider the curve

c = 2s
√
ω(1.1.11)

for ω > 0 and s ∈ (−1, 1], we have

Φω,2s
√
ω(x) = ω

1
4Φ2

1,2s(
√
ωx).

This means that the curve (1.1.11) corresponds to the scaling which is invariant of the
mass of the soliton. We note that the function

s �→ M(Φω,2s
√
ω) = 8 tan−1

√
1 + s

1− s
(1.1.12)

is a strictly increasing function from (−1, 1] to (0, 4π]. Especially, the threshold value
4π corresponds to the mass of the algebraic soliton.

1The “orbital stability” discussed in [41] is different from usual definition. Their result does not
contradict that finite time blow-up occurs to the initial data near the soliton for the massless case.
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Here, let us review the global results in the energy space H1(R). We consider another
gauge equivalent form of (1.1.1). By using the following gauge transformation to the
solution of (DNLS)

v(t, x) = u(t, x) exp

(
i

4

∫ x

−∞
|u(t, x)|2dx

)
,(1.1.13)

then v satisfies the following equation:

i∂tv + ∂2
xv +

i

2
|v|2∂xv − i

2
v2∂xv +

3

16
|v|4v = 0, (t, x) ∈ R× R.(1.1.14)

Conserved quantities of (DNLS) are transformed as follows;

E(v) := 1

2

∫
R

|∂xv|2dx− 1

32

∫
R

|v|6dx,(1.1.15)

M(v) :=

∫
R

|v|2dx,(1.1.16)

P(v) := Re

∫
R

i∂xvvdx+
1

4

∫
R

|v|4dx.(1.1.17)

The gauge transformation (1.1.13) was first derived in [32] to cancel out the interaction
term with derivative in the energy functional. Hayashi and Ozawa [32] used the following
sharp Gagliardo–Nirenberg inequality

‖f‖6L6 ≤ 4

π2
‖f‖4L2‖∂xf‖2L2(1.1.18)

in order to obtain a priori estimate in Ḣ1(R) by using conservation laws of the mass and
the energy. They proved the H1(R)-solution of (1.1.14) is global if the initial data u0

satisfies

M(u0) < M(Q) = 2π,(1.1.19)

where Q is defined by Q := Φ1,0. We note that Q is an optimal function for the inequality
(1.1.18). This result is closely related to the earlier work by Weinstein [71] for focusing
L2-critical nonlinear Schrödinger equations. Consider the following quintic nonlinear
Schrödinger equation:

(1.1.20) i∂tu+ ∂2
xu+

3

16
|u|4u = 0, (t, x) ∈ R× R.

The equation (1.1.20) has the same energy E(u) of (1.1.15) and the same standing wave
eitQ as the equation (1.1.14). Furthermore, (1.1.14) and (1.1.20) are L2-critical in the
sense that the equation and L2-norm are invariant under the scaling transformation

uγ(t, x) := γ
1
2u(γ2t, γx), γ > 0.(1.1.21)
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Weinstein [71] proved that if the initial data of (1.1.20) satisfies the mass condition
(1.1.19), then the H1(R)-solution is global. In the case of (1.1.20), it is known that this
mass condition is sharp, in the sense that for any ρ ≥ 2π, there exists u0 ∈ H1(R) such
that M(u0) = ρ and such that corresponding solution u to (1.1.20) blows up in finite
time. From this analogy, Hayashi and Ozawa [32] conjectured that the mass condition
(1.1.19) is also sharp for the equation (1.1.14) (equivalently (1.1.1) or (DNLS)).

A similar analogy can be seen for the quintic generalized Korteweg-de Vries equation:

∂tu+ ∂3
xu+

3

16
∂x(u

5) = 0, (t, x) ∈ R× R.(1.1.22)

This equation is also the L2-critical equation which has the same energy E(u) as (1.1.14)
and the traveling wave solution Q(x − t). Hence, if the initial data of (1.1.22) satisfies
the mass condition (1.1.19), then the H1(R)-solution is global. It is also known that the
mass condition for (1.1.22) is sharp; more precisely, the H1(R)-solution of (1.1.22) blows
up in finite time to the initial data satisfying

E(u0) < 0, M(Q) < M(u0) < M(Q) + ε

for small ε > 0 and some decay condition; see [47, 46].
However, the mass condition (1.1.19) is not sharp to the equation (1.1.14) (equiva-

lently (1.1.1) or (DNLS)). Wu [72, 73] took advantage of conservation law of the mo-
mentum as well as conservation laws of the mass and the energy. He used the following
sharp Gagliardo–Nirenberg inequality

‖f‖6L6 ≤ 3(2π)−
2
3‖f‖

16
3

L4‖∂xf‖
2
3

L2(1.1.23)

in his argument to connect the estimates obtained from the energy (1.1.15) and the
momentum (1.1.17) (see also [28]). Then, he proved that the H1(R)-solution of (1.1.14)
is global if the initial data u0 satisfies

M(u0) < M(W ) = 4π,(1.1.24)

where W is defined by W := Φ1,2. We note that W is an optimal function for the
inequality (1.1.23).

One of the main reason why the difference of global results as described above occurs
is due to that the equation (1.1.14) has a two-parameter family of solitons. The algebraic
soliton corresponds to the threshold for the existence of solitons, and the value 4π cor-
responds to the mass of the algebraic soliton. Hence, it is reasonable to conjecture that
4π is an optimal upper bound of the mass for the global existence of H1(R)-solutions
by the analogy with (1.1.20) and (1.1.22) as L2-critical equations. However, existence of
blow-up solutions for the derivative nonlinear Schrödinger equation is a large open prob-
lem. It is known that finite time blow-up occurs for the equation (1.1.1) on a bounded
interval or on the half line, with Dirichlet boundary condition (see [67, 72]), but unfor-
tunately one can not apply these proofs to the whole line case. We also refer to [44, 15]
for numerical approaches to this problem.
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Recently, in [37] it was proved by inverse scattering approach (see also [61, 62] for
related works) that the equation (DNLS) is globally well-posed for any initial data be-
longing to weighted Sobolev space H2,2(R), where

H2,2(R) :=
{
u ∈ H2(R) ; 〈·〉2 u ∈ L2(R)

}
.

This is the strong result for the global well-posedness to (DNLS), however, the dynamics
in the energy space H1(R) (especially above the mass threshold 4π) is still unclear. We
note that the algebraic solitons do not contain in H2,2(R), but they contain in H1(R).
Therefore, the difference of functional spaces is quite important for (DNLS) from the
viewpoint of solitons. We also note that the results in [37] do not imply the nonexistence
of blow-up solutions for (DNLS) in the energy space H1(R); see blow-up criteria in [41].

Our main aim of this thesis is to investigate the structure of the equation (DNLS)
from the viewpoints of the solitons. One of the main theorem in this thesis is to estab-
lish a sufficient condition for global existence of the solutions to (DNLS) by variational
approach. Our variational approach recovers Wu’s global results and clarifies the connec-
tion between the 4π-mass condition and potential well generated by the ground states.
Moreover we establish the new global result; if the initial data u0 ∈ H1(R) of (DNLS)
satisfies

M(u0) = 4π and P (u0) < 0,

then the corresponding H1(R)-solution exists in globally in time. This gives the first
progress to investigate the dynamics around the algebraic soliton. Furthermore, we
establish the global result for oscillating data which contains the initial data with arbi-
trarily large mass. We note that the proofs for these theorems are done by essentially
using the properties of two-parameter of the solitons, and especially the algebraic soliton
plays an important role in the proof.

One of the significant advantage of our variational approach is that we do not need any
structure of integrability. This means that our arguments are applicable to more general
equations. In this thesis we also study naturally generalized equations of (DNLS); see
the next section for more details. The deep understanding of these generalized equations
is expected to be useful for further progress to the study on (DNLS).

1.2 Organization of the thesis

We briefly state the organization of this thesis. In Chapter 2 we study the generalized
derivative nonlinear Schrödinger equation:

i∂tu+ ∂2
xu+ i|u|2σ∂xu = 0, (t, x) ∈ R× R, σ > 0,(gDNLS)

which was introduced by Liu, Simpson, and Sulem [45] to understand the structural
properties of (DNLS). The equation (gDNLS) is invariant under the scaling transforma-
tion

uγ(t, x) := γ
1
2σu(γ2t, γx), γ > 0,
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which implies that the critical Sobolev exponent is sc =
1
2
− 1

2σ
. We note that the case

0 < σ < 1 corresponds to L2-subcritical case and the case σ > 1 corresponds to L2-
supercritical case. In [45] they studied the orbital stability/instability of the solitary
waves for (gDNLS), however the well-posedness in the energy space H1(R) was assumed.
Before our work well-posedness results for (gDNLS) were partially known (see Chapter 2
for the details), but the well-posedness in the energy space was unsolved. In Chapter 2 we
study the Cauchy problem for the equation (gDNLS) with a focus on the well-posedness
in the energy space. In the L2-supercritical case, we construct the solutions by proving
that approximate solutions form a Cauchy sequence in appropriate Banach spaces, which
gives a more constructive proof compared to the one by compactness arguments. We
also study global existence for (gDNLS) in the energy space in the L2-subcritical case.

In Chapter 3 we study global existence of solutions for (DNLS) and (gDNLS) in
the L2-supercritical setting. Based on the local well-posedness results in Chapter 2,
we establish a sufficient condition for global existence of the solutions by variational
approach. First we give a variational characterization of two types of the solitons. Then,
combined with potential well theory, we give a sufficient condition for global existence in
the energy space. The key step is to examine the invariant sets represented by potential
well. Especially, in the case of (DNLS) we clarify the connection between the 4π-mass
condition and potential well generated by the ground states, and reprove Wu’s global
results. Moreover, we prove that the H1(R)-solution to (DNLS) is global if the initial
data u0 satisfies that M(u0) = 4π and the momentum P (u0) is negative. We also see
that global results for arbitrarily large mass are obtained by variational approach.

In Chapter 4 we consider the nonlinear Schrödinger equation of derivative type:

i∂tu+ ∂2
xu+ i|u|2∂xu+ b|u|4u = 0, (t, x) ∈ R× R, b ∈ R.(DNLSb)

If b = 0, or course, this equation is nothing but the equation (DNLS). The equation
(DNLSb) can be considered as a generalized equation of (DNLS) while preserving both
L2-criticality and Hamiltonian structure. The main aim of this chapter is to investigate
global well-posedness in the energy space H1(R) for the equation (DNLSb) from the
viewpoints of the solitons. We extend the global results for (DNLS) to the equation
(DNLSb) by variational approach developed in the Chapter 3. Interestingly, if b < 0,
4π-mass condition for (DNLS) is improved due to the defocusing effect from the quintic
term. The orbital stability of the solitons is also studied. The stability of the solitons
is closely related to the mass condition for global existence in the energy space. We
see that the effect of the momentum plays an important role in the arguments on both
global existence and stability of the solitons.

In Chapter 5 we study the periodic traveling wave solutions of (DNLS). To investigate
further properties of the solitons, we construct exact periodic traveling wave solutions
which yield the solitons on the whole line including the massless case in the long-period
limit. Moreover, we study the regularity of the convergence of these exact solutions
in the long-period limit. Throughout the chapter, the theory of elliptic functions and
elliptic integrals is used in the calculation.





Chapter 2

The Cauchy problem for generalized
derivative NLS equations

2.1 Introduction

We consider the Cauchy problem for the following generalized derivative nonlinear
Schrödinger equation (gDNLS) with the Dirichlet boundary condition⎧⎨⎩

i∂tu+ ∂2
xu+ i|u|2σ∂xu = 0 in R× Ω,

u = 0 on R× ∂Ω,
u(0) = u0 on Ω,

(2.1.1)

where u is a complex valued function of (t, x) ∈ R × Ω, σ > 0 and Ω ⊂ R is an open
interval. With σ = 1, (2.1.1) has appeared as a model for ultrashort optical pulses
[50]. For simplicity we consider the case Ω = R here, but we note that our approach is
applicable to (2.1.1) with a general open interval Ω in the mostly same way. So we study
the Cauchy problem for the following equation:

i∂tu+ ∂2
xu+ i|u|2σ∂xu = 0, (t, x) ∈ R× R, σ > 0.(gDNLS)

The solution of (gDNLS) obeys formally the following energy, mass and momentum
conservation laws:

E(u) :=
1

2

∫
R

|∂xu|2dx− 1

2σ + 2
Re

∫
R

i|u|2σ∂xuudx = E(u0),(Energy)

M(u) :=

∫
R

|u|2dx,(Mass)

P (u) := Re

∫
R

i∂xuudx.(Momentum)

There are only a few results for the equation (gDNLS) with general exponents σ > 0,
as compared with σ = 1. Hao [30] proved local well-posedness in H1/2(R) intersected
with an appropriate Strichartz space for σ ≥ 5/2 by using the gauge transformation and

9
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the Littlewood-Paley decomposition. Liu, Simpson and Sulem [45] studied the orbital
stability/instability of solitary waves for (gDNLS); see Chapter 3 for more details. We
should note that in [45] they assumed the well-posedness in the energy space H1(R) for
general σ > 0. Ambrose and Simpson [1] proved the existence and uniqueness of solutions
u ∈ C([0, T ], H2(T)) and the existence of solution u ∈ L∞((0, T ), H1(T)) for σ ≥ 1. The
construction of solutions is done by a compactness argument and the uniqueness of
H1(T)-solutions is unsolved. Recently, Santos [63] proved the existence and uniqueness
of solutions u ∈ L∞((0, T ), H3/2(R)∩〈x〉−1 H1/2(R)) for sufficient small initial data in the
case of 1/2 < σ < 1. The proof of [63] is based on parabolic regularization and smoothing
properties associated with the Schrödinger group, where the weighted Sobolev space is
essential to control the mixed norm LpxL

q
t . He also proved the existence and uniqueness

of solutions u ∈ C([0, T ], H1/2(R)) for sufficient small initial data in the case of σ > 1.
The main aim of this chapter is to prove the well-posedness for (gDNLS) in H1(R)

and H2(R) when σ ≥ 1/2. In the case of 1/2 ≤ σ < 1, the nonlinear term |u|2σ is not
even C2, and therefore a delicate argument is necessary. Our first result is the local
well-posedness in H2(R) when σ ≥ 1/2.

Theorem 2.1.1. Let σ ≥ 1/2. For any u0 ∈ H2(R), there exist T > 0 and a unique
solution u ∈ C([−T, T ], H2(R)) of (gDNLS). Moreover, the solution u depends contin-
uously on u0 in the following sense: If u0n → u0 in H2(R) as n → ∞ and if un is the
corresponding solution of (gDNLS), then un is defined on the same interval [−T, T ] for
n large enough and un → u in C([−T, T ], Hs(R)) as n → ∞ for all 0 ≤ s < 2.

Remark 2.1.2. When σ = 1/2, the nonlinear term i|u|∂xu is quadratic. Christ [16]
considered the following Cauchy problem:{

i∂tu+ ∂2
xu+ iu∂xu = 0, t > 0, x ∈ R,

u(0, x) = u0(x), x ∈ R,
(2.1.2)

and it was proved that the flow map of (2.1.2) is not continuous in Hs(R) for any s ∈ R.
Theorem 2.1.1 tells us that the behavior of the solution of (gDNLS) is very different from
that of the solution of (2.1.2) even though both equations have the quadratic nonlinear
term with derivative.

The proof of Theorem 2.1.1 proceeds by four steps. We first employ a Yosida-type
regularization and construct approximate solutions. Next, we follow an argument in [1]
and obtain the uniform estimate on the approximate solutions in H1(R) by using the
conservation laws. Under the uniform bound in H1(R), we obtain uniform estimates
in H2(R) by estimating time derivative of approximate solutions. More precisely, we
differentiate the equation once in time instead of differentiating twice the equation in
space in order to obtain H2(R)-estimates. This enables us to relax the smoothness
condition of the nonlinear term. This idea comes from Kato [39]. Finally, we prove the
sequence of approximate solutions forms a Cauchy sequence in L2(R) and construct the
solution of (gDNLS) by the completeness of Banach space directly. We remark that our
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construction of solutions does not need any compactness theorem, for example, Ascoli-
Arzelà’s theorem, Rellich-Kondrachov’s theorem, Banach-Alaoglu’s theorem, etc.

Santos [63] proved the uniqueness in L∞((0, T ), H3/2(R) ∩ 〈x〉−1 H1/2(R)) for 1/2 <
σ < 1. We see that it is not necessary to use the weighted Sobolev space for the
uniqueness as follows.

Theorem 2.1.3. Let σ ≥ 1/2. Let u0 ∈ H3/2(R) and T > 0. If u and v are two
solutions of (gDNLS) in L∞((−T, T ), H3/2(R)) with the same initial data, then u = v.

Our proof of Theorem 2.1.3 is based on Yudovich type argument [38]. Related proofs
for nonlinear Schrödinger equations with pure power nonlinearities are given in [70], [55],
[56].

The main result in this chapter is the local well-posedness in the energy space H1(R)
for σ ≥ 1.

Theorem 2.1.4. Let σ ≥ 1. Let u0 ∈ H1(R). Then there exist 0 < Tmin, Tmax ≤ ∞ and
a unique maximal solution u ∈ C((−Tmin, Tmax), H

1(R)) ∩ L4
loc((−Tmin, Tmax),W

1,∞(R))
of (gDNLS). Moreover, the following properties hold:

(i) If Tmax < ∞ (resp., if Tmin < ∞), then ‖∂xu(t)‖L2 → ∞ as t ↑ Tmax (resp., as
t ↓ −Tmin).

(ii) u ∈ Lqloc((−Tmin, Tmax),W
1,r(R)) for every admissible pair (q, r), i.e., (q, r) satisfy-

ing 0 ≤ 2/q = 1/2− 1/r ≤ 1/2.

(iii) E(u(t)) = E(u0), M(u(t)) = M(u0), and P (u(t)) = P (u0) for all t ∈ (−Tmin, Tmax).

(iv) Continuous dependence is satisfied in the following sense; if u0n → u0 in H1(R)
and if I ⊂ (−Tmin(u0), Tmax(u0)) is a closed interval, then the maximal solution
un of (gDNLS) with un(0) = u0n is defined on I for n large enough and satisfies
un → u in C(I,H1(R)).

The proof of Theorem 2.1.4 depends on the gauge transformation and the Strichartz
estimate. We employ H2(R)-solutions constructed in Theorem 2.1.1 as approximate
solutions. First, we derive the differential equation by using the gauge transformation
that the spatial derivative of approximate solutions should satisfy. Next, we obtain the
uniform estimate on approximate solutions in LqtW

1,r
x for any admissible pair (q, r) by

using the Strichartz estimate. Finally, we prove the sequence of approximate solutions
forms a Cauchy sequence in L2(R) and construct the H1(R)-solution of (gDNLS). The
last step is similar to that of the proof of Theorem 2.1.1. This method is required that
the nonlinear term belongs to C2, so we need to assume σ ≥ 1. We note that our
approach gives alternative proof even for the case of σ = 1 since we do not covert the
equation into some system of equations as can be seen in [31, 33, 34].

From the conservation of mass and energy, one can prove the global well-posedness
for small initial data in H1(R).
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Theorem 2.1.5. Let σ > 1. Then there exists ε0 > 0 such that if u0 ∈ H1(R) satisfies
‖u0‖H1 ≤ ε0, then there exists a unique solution u ∈ C(R, H1(R))∩L4

loc(R,W
1,∞(R)) of

(gDNLS). Moreover, the following properties hold:

(i) u ∈ Lqloc(R,W
1,r(R)) for every admissible pair (q, r).

(ii) E(u(t)) = E(u0), M(u(t)) = M(u0), and P (u(t)) = P (u0) for all t ∈ R.

(iii) Continuous dependence is satisfied in the following sense; if u0n → u0 in H1(R) as
n → ∞ and if un is the global H1(R)-solution of (gDNLS) with un(0) = u0n, then
un → u in C([−T, T ], H1(R)) for all T > 0.

For the case of σ < 1, we have the following result.

Theorem 2.1.6. Let 0 < σ < 1. Let u0 ∈ H1(R). Then there exists a solution
u ∈ (Cw ∩ L∞)(R, H1(R)) of (gDNLS). Moreover, we have

E(u(t)) ≤ E(u0), M(u(t)) = M(u0) and P (u(t)) = P (u0)

for all t ∈ R.

When 0 < σ < 1, we do not need to assume the smallness of the initial data for
the global existence of the solution. This is not surprising since the case 0 < σ < 1
corresponds to L2-subcritical setting. The solution in Theorem 2.1.6 is constructed by
a compactness argument, and we do not know whether the solution is unique or not.
If uniqueness holds in L∞(R, H1(R)), one can prove easily that E(u(t)) = E(u0) for all
t ∈ R and that u ∈ C(R, H1(R)).

The rest of this chapter is organized as follows. Section 2.2 is concerned with local
well-posedness in H2(R) and Theorem 2.1.1 is proved there. In Section 2.3 we prove
Theorem 2.1.3. In Section 2.4 we study the well-posedness in the energy space H1(R)
and prove Theorem 2.1.4 and Theorem 2.1.5. Finally we prove Theorem 2.1.6 in Section
2.5.

2.2 Local well-posedness in H2(R)

2.2.1 Approximate solutions

Let g(u) and G(u) be defined by

g(u) = i|u|2σ∂xu,
G(u) =

1

2σ + 2
Re

∫
R

i|u|2σ∂xuudx

for σ > 0. We consider L2(R) as a real Hilbert space with the scalar product

(u, v) = Re

∫
R

u(x)v(x)dx for u, v ∈ L2(R).
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Then we have

G ∈ C1(H1(R),R), G′ = g,

with the following identification

H1(R) ⊂ L2(R) � L2(R)∗ ⊂ H−1(R).

For any m ∈ N, we consider the following approximate problem:{
i∂tum + ∂2

xum + Jmg(Jmum) = 0,

um(0) = u0,
(2.2.1)

where Jm is Yosida type approximation defined by

Jm =

(
I − 1

m
∂2
x

)−1

.(2.2.2)

We recall the following basic properties of Jm. For the proof we refer to [13].

Proposition 2.2.1. Let X be any of the spaces H2(R), H1(R), H−1(R), and Lp(R)
with 1 < p < ∞ and let X∗ be its dual space. Then the following properties hold:

(i) 〈Jmf, g〉X,X∗ = 〈f, Jmg〉X,X∗ ∀f ∈ X ∀g ∈ X∗.

(ii) Jm ∈ L(L2(R), H2(R)).

(iii) ‖Jm‖L(X,X) ≤ 1.

(iv) Jmu → u in X (m → ∞) ∀u ∈ X.

(v) supm∈N ‖um‖X < ∞ ⇒ Jmum − um ⇀ 0 in X as m → ∞.

Let σ ≥ 1/2. Given u0 ∈ H2(R). By Proposition 2.2.1 and the Banach fixed-point
theorem, for each m ∈ N there exists Tm > 0 and um ∈ C([−Tm, Tm], H

2(R)) which is a
solution of the initial value problem (2.2.1).

Next, we establish the uniform bounds on the solutions in H2(R) with respect to m.
This will allow us to construct a solution of (gDNLS) in the limit as m → ∞. We define
the functions gm and Gm by

gm(u) = Jm(g(Jmu)) and Gm(u) = G(Jmu).

Then we see that

Gm ∈ C1(H1(R),R), G′
m = gm.

The energy of the equation (2.2.1) is given by the following:

Em(u) =
1

2

∫
R

|∂xu|2dx−Gm(u).(2.2.3)

A standard calculation shows that conservation laws of energy, mass and momentum
hold for the approximate problem.
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Lemma 2.2.2. For each m ∈ N, the H2(R)-solution um of (2.2.1) satisfies

Em(um(t)) = Em(u0),M(um(t)) = M(u0) and P (um(t)) = P (u0)

for all t ∈ [−Tm, Tm].

We need the following lemma to obtain the uniform H1(R)-estimate of {um}.
Lemma 2.2.3. For any r ≥ 1 there exists C > 0 such that

d

dt

∫
R

|um|2rdx ≤ C
(
1 + ‖um‖2H1

)r+σ
,

where the positive constant C is independent of m.

Proof. By the equation (2.2.1) and Hölder’s inequality, we have

d

dt

∫
R

|um|2rdx =

∫
R

2r|um|2(r−1)Re(∂tumum)

=

∫
R

2r|um|2(r−1)Im

(
(−∂2

xu− gm(um))um

)
=

∫
R

2rIm

(
∂xum∂x(|um|2(r−1)um)− |um|2(r−1)gm(um)um

)
≤ C
(‖um‖2(r−1)

L∞ ‖∂xum‖2L2 + ‖um‖2(r+σ−1)
L∞ ‖∂xum‖L2‖um‖L2

)
≤ C
(
1 + ‖um‖2H1

)r+σ
.

This completes the proof.

We derive the uniform bound in H1(R) for {um} by Lemma 2.2.2 and Lemma 2.2.3.
We note that

‖um‖2H1 = ‖um‖2L2 + ‖∂xum‖2L2

= ‖um‖2L2 + 2 (Em(um) +Gm(um)) .

By Cauchy-Schwarz’s inequality and Young’s inequality, we obtain that

2Gm(um) ≤ 1

σ + 1
‖∂xum‖L2‖um‖2σ+1

L4σ+2 ≤ 1

2
‖∂xum‖2L2 +

1

2
‖um‖4σ+2

L4σ+2 .

This yields that

‖um‖2H1 ≤ M(um) + 2Em(um) +
1

2

∫
R

|um|4σ+2dx+
1

2
‖∂xum‖2L2 .

Hence, we have

‖um‖2H1 ≤ 2M(um) + 4Em(um) +

∫
R

|um|4σ+2dx.(2.2.4)
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We introduce the following energy:

Em(u) = 2M(u) + 4Em(u) +

∫
R

|u|4σ+2dx.

By using Lemma 2.2.2, Lemma 2.2.3 and (2.2.4), we conclude that

d

dt
Em(um) ≤ C

(
1 + Em(um)

)3σ+1
.(2.2.5)

The estimates (2.2.4) and (2.2.5) imply that there exists T0 > 0 such that for all m ∈ N

such that um exists on the time interval [−T0, T0] and

M0 := sup
m∈N

‖um‖C([−T0,T0],H1) < ∞.(2.2.6)

We note that T0 depends on ‖u0‖H1 .

Next, we establish the uniform H2(R)-estimate of {um}.
Lemma 2.2.4. There exists T = T (‖u0‖H2) > 0 which is independent of m such that
um ∈ C([−T, T ], H2(R)) for all m ∈ N and

M := sup
m∈N

‖um‖C([−T,T ],H2) < ∞.(2.2.7)

Proof. We estimate L2(R)-norm of the time derivative of um as

d

dt
‖∂tum‖2L2 = 2

(
∂2
t um, ∂tum

)
= −2

(
∂t(|um|2σ∂xum), ∂tum

)
= −2

(
∂t(|um|2σ)∂xum, ∂tum

)
− 2

(
|um|2σ∂x∂tum, ∂tum

)
≤ C‖um‖2σ−1

L∞ ‖∂xum‖L∞‖∂tum‖2L2 ,

where in the last inequality we used integration by parts. By Sobolev’s embedding and
(2.2.6), we obtain that

d

dt
‖∂tum‖2L2 ≤ CM2σ−1

0 ‖∂xum‖L∞‖∂tum‖2L2 .(2.2.8)

From the equation (2.2.1), we obtain that

‖∂2
xum‖L2 ≤ ‖∂tum‖L2 + ‖Jmgm(Jmum)‖L2(2.2.9)

≤ ‖∂tum‖L2 + CM2σ+1
0 .
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By Sobolev’s embedding and the conservation of mass,

‖∂xum‖L∞ ≤ C‖um‖H2

≤ C(‖um‖L2 + ‖∂2
xum‖L2)

≤ C(‖u0‖L2 + ‖∂tum‖L2 + CM2σ+1
0 ).

Applying this estimate to (2.2.8), we deduce that

d

dt
‖∂tum‖2L2 ≤ C(M0)

(
1 + ‖∂tum‖L2

)‖∂tum‖2L2

≤ C(M0)
(
1 + ‖∂tum‖3L2

)
.

This inequality implies that there exists T > 0 which is independent of m ∈ N such that
T ≤ T0 and

sup
m∈N

‖∂tum‖C([−T,T ],L2) < ∞.(2.2.10)

From (2.2.10) and (2.2.9), we obtain the uniform H2(R)-estimate (2.2.7).

2.2.2 Convergence of the approximating sequence

In this subsection we prove that {um} is a Cauchy sequence in C([−T, T ], L2(R))
under the uniform H2(R)-estimate (2.2.7). We set I = [−T, T ]. Before proceeding to
the proof, we prepare the following lemma.

Lemma 2.2.5. Let m,n ∈ N. Let ϕ, ψ ∈ C∞
c (R). Then the following properties hold:

(i) ‖Jmϕ− Jnϕ‖L2 ≤
(

1

m
+

1

n

)
‖∂2

xϕ‖L2.

(ii) |(Jmϕ− Jnϕ, ψ)| ≤
(

1

m
+

1

n

)
‖∂xϕ‖L2‖∂xψ‖L2.

Proof. Let vm = Jmϕ, vn = Jnϕ. From the definition of Jm, we have

vm − 1

m
∂2
xvm = ϕ,

vn − 1

n
∂2
xvn = ϕ.

Therefore, we have

vm − vn =
1

m
∂2
xvm − 1

n
∂2
xvn

=
1

m
∂2
x(vm − vn) + ∂2

xvn

(
1

m
− 1

n

)
.
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Without loss of generality, we may assume that m ≥ n. From Proposition 2.2.1, we have

‖vm − vn‖L2 ≤ 2

m
‖∂2

xϕ‖L2 +

(
1

n
− 1

m

)
‖∂2

xϕ‖L2

=

(
1

m
+

1

n

)
‖∂2

xϕ‖L2 .

This completes the proof of (i). The proof of (ii) is done similarly.

Now we estimate L2(R)-norm of the difference um − un. By a straightforward calcu-
lation we have

d

dt
‖um − un‖2L2 = 2(∂tum − ∂tun, um − un)

= 2(iJmg(Jmum)− iJng(Jnun), um − un)

= 2

[
(iJmg(Jmum)− iJng(Jmum), um − un)

−
(
(|Jmum|2σ − |Jnum|2σ)Jm∂xum, Jn(um − un)

)
−
(
(|Jnum|2σ − |Jnun|2σ)Jm∂xum, Jn(um − un)

)
−
(
|Jnun|2σ(Jm∂xum − Jn∂xum), Jn(um − un)

)
−
(
|Jnun|2σ(Jn∂xum − Jn∂xun), Jn(um − un)

)]
= I1 + I2 + I3 + I4 + I5.

We are going to estimate each of terms I1, I2, I3, I4 and I5. By Lemma 2.2.5, I1 is
estimated as

I1 ≤ 2

(
1

m
+

1

n

)
‖∂xg(Jmum)‖L2‖∂x(um − un)‖L2

≤ C(M)

(
1

m
+

1

n

)
.

By using an elementary inequality

||u|2σ − |v|2σ| ≤ C(|u|2σ−1 + |v|2σ−1) |u− v|
and Lemma 2.2.5, I2 is estimated as

I2 ≤ C(M)(‖Jmum‖2σ−1
L∞ + ‖Jnum‖2σ−1

L∞ )‖Jmum − Jnum‖L2

≤ C(M)

(
1

m
+

1

n

)
‖∂2

xum‖L2

≤ C(M)

(
1

m
+

1

n

)
.



18

A similar calculation yields that

I3 ≤ 2‖Jm∂xum‖L∞‖|Jnum|2σ − |Jnum|2σ‖L2‖Jn(um − un)‖L2

≤ C(M)‖um − un‖2L2 .

By Lemma 2.2.5, I4 is estimated as

I4 ≤ 2 |(Jm∂xum − Jn∂xum, |Jnun|2σJn(um − un))|
≤ 2

(
1

m
+

1

n

)
‖∂2

xum‖L2‖∂x
(|Jnun|2σJn(um − un)

)‖L2

≤ C(M)

(
1

m
+

1

n

)
.

Finally, by integration by parts, I5 is estimated as

I5 = −2
(|Jnun|2σ(∂xJnum − ∂xJnun), Jnum − Jnun

)
=
(
∂x(|Jnun|2σ), |Jnum − Jnun|2

)
≤ C(M)‖um − un‖2L2 .

Gathering these estimates, we obtain that

d

dt
‖um − un‖2L2 ≤ C(M)

(
1

m
+

1

n

)
+ C(M)‖um − un‖2L2 .(2.2.11)

Applying the Gronwall inequality, we deduce that

sup
t∈I

‖um(t)− un(t)‖2L2 ≤ C(M)T

(
1

m
+

1

n

)
.(2.2.12)

Therefore, there exists u ∈ C(I, L2(R)) such that um → u in C(I, L2(R)). By using the
elementary interpolation estimate

‖f‖Hs ≤ c‖f‖1−s/2L2 ‖f‖s/2H2 for 0 < s < 2

and the uniform H2(R)-estimate (2.2.7), we obtain u ∈ C(I,Hs(R)) with 0 ≤ s < 2 such
that um → u in C(I,Hs(R)). From this convergence and Lemma 2.2.2 we deduce that

E(u(t)) = E(u0),M(u(t)) = M(u0) and P (u(t)) = P (u0)(2.2.13)

for t ∈ I.

2.2.3 Proof of Theorem 2.1.1

We shall prove that the function u actually satisfies (gDNLS) and lies in C(I,H2(R)).
We note that um is a solution of the integral equation

um(t) = U(t)u0 + i

∫ t

0

U(t− s)Jmg(Jmum(s))ds.(2.2.14)



19

By Proposition 2.2.1 and um(s) → u(s) in H1(R), we have

Jmg(Jmum(s))− g(u(s)) = Jm [g(Jmum(s))− g(Jmu(s))]

+ Jm [g(Jmu(s))− g(u(s))] + Jmg(u(s))− g(u(s))

−→ 0 in L2(R) as m → ∞
for all s ∈ I. Taking the limit in the integral equation (2.2.14) as m → ∞, we conclude
that

u(t) = U(t)u0 + i

∫ t

0

U(t− s)g(u(s))ds.(2.2.15)

We set

v(t) = i

∫ t

0

U(t− s)g(u(s))ds.

Since g(u) ∈ C(I, L2(R)), it follows that v ∈ C1(I, L2(R)). Since v satisfies the equation

i∂tv + ∂2
xv + g(u) = 0,(2.2.16)

it follows that ∂2
xv ∈ C(I, L2(R)). Therefore, u ∈ C(I,H2(R)) follows from the integral

equation (2.2.15). The uniqueness and continuous dependence are verified by the same
argument as in [1]. We omit the detail.

2.3 Proof of Theorem 2.1.3

For the proof of Theorem 2.1.3, the following lemma is essential.

Lemma 2.3.1 ([56]). Let p ∈ [2,∞). For any u ∈ H1/2(R), we have

‖u‖Lp ≤ C
√
p‖u‖H1/2 ,(2.3.1)

where C is independent of p.

We set

M = max{‖u‖L∞((−T,T ),H3/2), ‖v‖L∞((−T,T ),H3/2)}.
By using integration by parts and Hölder’s inequality, we obtain that

d

dt
‖u− v‖2L2 = 2(∂tu− ∂tv, u− v)

= −2
(
(|u|2σ − |v|2σ)∂xu, u− v

)
− 2
(
|v|2σ(∂xu− ∂xv), u− v

)
≤ C(M)

∫
R

(|∂xu|+ |∂xv|)|u− v|2dx

≤ C(M)(‖∂xu‖Lp + ‖∂xv‖Lp)‖u− v‖2
L2p′
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for any p ∈ (2,∞). By Hölder’s inequality, we have

‖u− v‖L2p′ ≤ ‖u− v‖1/p′L2 ‖u− v‖1−1/p′
L∞ ,

By Sobolev’s embedding and Lemma 2.3.1, we obtain that

d

dt
‖u− v‖2L2 ≤ C(M)

√
p(‖u‖H3/2 + ‖v‖H3/2)‖u− v‖2(1−1/p)

L2(2.3.2)

≤ C(M)
√
p‖u− v‖2(1−1/p)

L2 ,

where C(M) is still independent of p. Applying the Gronwall type inequality to (2.3.2),
we have

d

dt
‖u− v‖2/pL2 ≤ C(M)√

p
.

By integration in time, we deduce that

‖u(t)− v(t)‖2L2 ≤
(
C(M)T√

p

)p
(2.3.3)

for all t ∈ (−T, T ). Since the RHS of (2.3.3) goes to 0 as p → ∞, we deduce that u = v.

2.4 Well-posedness in the energy space H1(R)

In this section, we prove the local and global well-posedness of (gDNLS) in the energy
space H1(R).

2.4.1 The gauge transformation

Assume that σ ≥ 1. Let u is a solution of (gDNLS). We formally derive a differential
equation of ∂xu. To this end, we follow an idea in [59]. We define the differential operator
by

L = i∂t + ∂2
x.

A direct calculation shows that

e−iΛL(eiΛ∂xu) = L∂xu+
(
−(∂xΛ)

2 + iLΛ
)
∂xu+ 2i∂xΛ∂

2
xu,(2.4.1)

where Λ is a real-valued function determined later. We note that

L∂xu = ∂xLu = −i|u|2σ∂2
xu− i∂x(|u|2σ)∂xu.(2.4.2)
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To absorb the worst term −i|u|2σ∂2
xu by means of −2∂xΛ∂

2
xu on the RHS of (2.4.1), we

define Λ by

Λ =
1

2

∫ x

−∞
|u(t, y)|2σdy.(2.4.3)

By using the equation of (gDNLS), we compute ∂tΛ as

∂tΛ =
1

2

∫ x

−∞
2σ|u|2(σ−1)Re(u∂tu)dy

= σ

∫ x

−∞
|u|2(σ−1)Im(u(−∂2

xu− i|u|2σ∂xu))dy

= −σIm(|u|2(σ−1)u∂xu) + σIm

[∫ x

−∞
∂x(|u|2(σ−1)u)∂xudy

]
− σ

∫ x

−∞
|u|2(2σ−1)Re(u∂xu)dy

= −σIm(|u|2(σ−1)u∂xu) + σIm

[∫ x

−∞
∂x(|u|2(σ−1)u)∂xudy

]
− 1

4
|u|4σ.

Therefore, we have

−(∂xΛ)
2 + iLΛ = σIm(|u|2(σ−1)u∂xu)− σIm

[∫ x

−∞
∂x(|u|2(σ−1)u)∂xudy

]
+

i

2
∂x(|u|2σ).

Collecting these calculations, we obtain that

e−iΛL(eiΛ∂xu) = Q1(u) +Q2(u),(2.4.4)

where

Q1(u) = − i

2
∂x(|u|2σ)∂xu+ σIm(|u|2(σ−1)u∂xu)∂xu,

Q2(u) = −σ

∫ x

−∞
Im
(
∂x(|u|2σ−2u)∂xu

)
dy∂xu.

We note that Q2(u) is well-defined if and only if σ ≥ 1. To prove Theorem 2.1.4, we
approximate the initial data u0 ∈ H1(R) by a sequence {ϕn} such that ϕn ∈ H2(R) and
ϕn → u0 in H1(R). By Theorem 2.1.1, (gDNLS) has a unique solution

un ∈ C([−Tn, Tn], H
2(R))

with un(0) = ϕn. We set In = [−Tn, Tn]. Since the formal calculation above is justified
with u replaced by un, we obtain that

un(t) = U(t)ϕn + iG(g(un(t))),(2.4.5)

eiΛn(t)∂xun(t) = U(t)(eiΛn(0)∂xϕn) + iG
(
eiΛn(t)

(
Q1(un(t)) +Q2(un(t))

))
(2.4.6)
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for all t ∈ In, where

Λn =
1

2

∫ x

−∞
|un(t, y)|2σdy,

U(t) = eit∂
2
x , G(v)(t) =

∫ t

0

U(t− s)v(s)ds.

2.4.2 The uniform estimate in H1(R)

To derive the uniform estimate in H1(R) of approximate solutions, we use the fol-
lowing Strichartz estimate. The proofs can be found in [13].

Proposition 2.4.1. Let U(t) = eit∂
2
x. Then, the following properties hold:

(i) For any (q, r) with 0 ≤ 2/q = 1/2− 1/r ≤ 1/2,

‖U(·)ϕ‖Lq(R,Lr(R)) ≤ C‖ϕ‖L2(R).

(ii) For any (qj, rj) with 0 ≤ 2/qj = 1/2− 1/rj ≤ 1/2, j = 1, 2 for any interval I ⊂ R

with 0 ∈ I

‖G(v)‖Lq1 (I,Lr1 ) ≤ C‖v‖
Lq′2 (I,Lr′2 ),

where the constant C is independent of I.

Before proceeding the proof, we introduce function spaces. For a time interval I, we
define the function spaces X0(I) and X (I) by

X0(I) =
⋂

0≤2/q=1/2−1/r≤1/2

Lq(I, Lr(R)),

X (I) =
⋂

0≤2/q=1/2−1/r≤1/2

Lq(I,W 1,r(R)),

with norms

‖u‖X0(I) = sup
0≤2/q=1/2−1/r≤1/2

‖u‖Lq(I,Lr),

‖u‖X (I) = ‖u‖X0(I) + ‖∂xu‖X0(I).

Applying Proposition 2.4.1 to (2.4.5) and (2.4.6), and by Sobolev’s embedding and
Hölder’s inequality, we obtain that

‖un‖X0(In) ≤ C‖ϕn‖L2 + C‖|un|2σ∂xun‖L1(In,L2)

≤ C‖ϕn‖L2 + CTn‖un‖2σ+1
X (In)

,

‖∂xun‖X0(In) = ‖eiΛn∂xun‖X0(In)

≤ C‖eiΛn(0)∂xϕn‖L2 + C
(
‖eiΛnQ1(un)‖L 3

4 (In,L1)
+ ‖eiΛnQ2(un)‖L1(In,L2)

)
≤ C‖∂xϕn‖L2 + C(T

3
4
n + Tn)‖un‖2σ+1

X (In)
,
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where the constant C is independent of n. Hence we deduce that

‖un‖X (In) ≤ CM + C(Tn + T
3
4
n )‖un‖2σ+1

X (In)
,(2.4.7)

where M is given by

M := sup
n∈N

‖ϕn‖H1 .

From (2.4.7) we have the following uniform estimate of {un}.
Lemma 2.4.2. There exists T = T (M) > 0 such that for all m ∈ N such that the
H2(R)-solution um exists on the time interval I := [−T, T ] and

sup
m∈N

‖um‖X (I) ≤ 2CM,(2.4.8)

where C is a constant in the inequality (2.4.7).

Proof. We define T (M) > 0 by

C(T (M) + T (M)
3
4 ) (2CM)2σ+1 = CM.

We also define T ∗
n by

T ∗
n =
{
T > 0 : ‖un‖X([−T,T ])

≤ 2CM, 0 < T ≤ Tn

}
.

If T ∗
n < T (M), from (2.4.7) we have

‖un‖X ([−T ∗
n ,T

∗
n ]) ≤ CM + C(T ∗

n + T ∗
n

3
4 )(2CM)2σ+1

< CM + C(T (M) + T (M)
3
4 ) (2CM)2σ+1

= 2CM.

This yields that T ∗
n = Tn. Especially we have

max
{‖un‖L∞(In,H1), ‖un‖L4(In,W 1,∞)

}
< 2CM.(2.4.9)

Under the estimate (2.4.9), in the same way of the derivation of (2.2.8), we have

d

dt
‖∂tun‖2L2 ≤ C(M)‖∂xum‖L∞‖∂tum‖2L2 ∀t ∈ In.

Applying the Gronwall inequality, for 0 < t ≤ Tn (similarly for −Tn ≤ t < 0) we have

‖∂tun(t)‖2L2 ≤ ‖∂tun(0)‖2L2 exp

(
C(M)

∫ t

0

‖∂xum(s)‖L∞ds

)
≤ C(‖ϕn‖H2) exp

(
C(M)T

3
4
n ‖un‖L4(In,W 1,∞)

)
≤ C(‖ϕn‖H2) exp

(
C(M)T

3
4
n

)
.
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Hence we obtain that

‖un‖L∞(In,H2) ≤ C(‖ϕn‖H2 ,M).(2.4.10)

By the estimate (2.4.10) we can extend the H2(R)-solution un on the interval [−Tn −
ε, Tn+ ε] for some ε > 0. By iterating the argument above, one can extend the existence
interval of un at least to [−T (M), T (M)], i.e., T (M) ≤ Tn. Hence we deduce that
T (M) ≤ T ∗

n . Indeed, if T
∗
n < T (M), from the argument above we have Tn = T ∗

n , but this
contradicts T (M) ≤ Tn. Therefore, from the definition of T ∗

n we deduce that

‖um‖X ([−T (M),T (M)]) ≤ 2CM

for any m ∈ N. This completes the proof.

We note that the existence time T = T (M) only depends on ‖u0‖H1 .

2.4.3 Proof of Theorem 2.1.4

Firstly, we prove that {um} forms a Cauchy sequence in C(I, L2(R)) under the uni-
form estimate (2.4.8). A straightforward calculation shows that

d

dt
‖un − um‖2L2 = 2(∂tun − ∂tum, un − um)

= −2(|un|2σ∂xun − |um|2σ∂xum, un − um)

= −2
(
(|un|2σ − |um|2σ)∂xun, un − um

)
− 2
(
|um|2σ(∂xun − ∂xum), un − um

)
≤ C
(
‖un‖2σ−1

L∞ + ‖um‖2σ−1
L∞

)(
‖∂xun‖L∞ + ‖∂xum‖L∞

)
‖un − um‖2L2

≤ C(M)
(
‖∂xun‖L∞ + ‖∂xum‖L∞

)
‖un − um‖2L2 .

Applying the Gronwall inequality, we obtain that

sup
t∈I

‖un(t)− um(t)‖2L2 ≤ ‖ϕn − ϕm‖2L2exp(C(M)T
1
4 ).

This implies that there exists u ∈ C(I, L2(R)) such that

um → u in C(I, L2(R)).(2.4.11)

By the interpolation inequality, we have

un → u in C(I, Lr(R))(2.4.12)
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for any r ∈ [2,∞). Since W 1,r(R) is reflexive if (q, r) satisfies 0 ≤ 2/q = 1/2−1/r < 1/2,
we obtain from (2.4.8) and (2.4.12) that

‖u‖Lq(I,W 1,r) ≤ lim inf
n→∞

‖un‖Lq(I,W 1,r) ≤ 2CM(2.4.13)

for any r ∈ [2,∞). Since the constant on the RHS of (2.4.13) is independent of (q, r),
taking the limit as r → ∞, we conclude that

‖u‖L4(I,W 1,∞) ≤ 2CM.

Therefore, u ∈ X (I). We see that u is a solution of (gDNLS) in the distribution sense.
We note that the approximate solution um of (gDNLS) conserves energy, mass and
momentum (see (2.2.13)). By (2.4.11), we obtain M(u(t)) = M(u0) and P (u(t)) = P (u0)
for all t ∈ I. To prove the conservation of energy, we need the following lemma.

Lemma 2.4.3. Let σ > 0. For every M > 0, there exists C(M) > 0, we have

|G(u)−G(v)| ≤ C(M)‖u− v‖L2(2.4.14)

for all u, v ∈ H1(R) such that ‖u‖H1 , ‖v‖H1 ≤ M .

Proof. Since G′(u) = g(u), we have

G(u)−G(v) =

∫ 1

0

d

ds
G(su+ (1− s)v)ds

=

∫ 1

0

(
g(su+ (1− s)v), u− v

)
ds.

From this identity and Sobolev’s embedding, the inequality (2.4.14) follows.

By (2.4.8) and (2.4.11), we note that um(t) ⇀ u(t) in H1(R) for any t ∈ I. By the
weak lower semicontinuity of the norm, (2.4.11) and Lemma 2.4.3, we obtain that

E(u(t)) ≤ lim inf
m→∞

(
1

2
‖∂xum(t)‖2L2 −G(um(t))

)
(2.4.15)

= lim inf
m→∞

E(um(t)) = E(ϕ)

for all t ∈ I.
Next, we prove that u is the unique solution of (gDNLS). Suppose that

v ∈ L∞(I,H1(R)) ∩ L4(I,W 1,∞(R))

is also a solution of (gDNLS). We set

M = max{‖u‖L∞(I,H1) + ‖u‖L4(I,W 1,∞), ‖v‖L∞(I,H1) + ‖v‖L4(I,W 1,∞)}.
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By the same calculation as before, we obtain that

d

dt
‖u− v‖2L2 ≤ C(M)

(
‖∂xu‖L∞ + ‖∂xv‖L∞

)
‖u− v‖2L2 .(2.4.16)

Applying the Gronwall inequality to (2.4.16), we conclude that u = v on I. By uniqueness
and (2.4.15), it is easily verified that

E(u(t)) = E(ϕ)(2.4.17)

for all t ∈ I, and which yields that u ∈ C(I,H1(R)).
We recall that the existence time T only depends on the H1(R)-norm of the initial

data. Hence the property (i) (blowup alternative) is proved by a standard method; see
e.g. the proof of Theorem 3.3.9 in [13].

Finally, we prove the continuous dependence. Let Imax := (−Tmin(u0), Tmax(u0)) be
a maximal interval of the solution u. Let I ⊂ Imax be a closed interval. Suppose that
u0n → u0 in H1(R) and let un be a solution of (gDNLS) with un(0) = u0n. We note that
un is defined on I for n large enough. In the same way as the first calculation in this
subsection, we deduce that

un → u in C(I, L2(R)).(2.4.18)

By the conservation of mass and energy and Lemma 2.4.3, we obtain that

‖un(t)‖H1 → ‖u(t)‖H1(2.4.19)

uniformly on I. Therefore, we conclude that un → u in C(I,H1(R)).

2.4.4 Proof of Theorem 2.1.5

Let σ > 1. We assume that u ∈ C((−Tmin, Tmax), H
1(R)) is a maximal solution of

(gDNLS). We set Imax := (−Tmin, Tmax). By the conservation of energy and Sobolev’s
embedding, we obtain that

1

2
‖∂xu‖2L2 = E(u) +G(u)

≤ E(u0) +
1

2σ + 2
‖u‖2σ+1

L4σ+2‖∂xu‖L2

≤ E(u0) +
c

2σ + 2
‖u‖2σ+2

H1 .

By the conservation of mass, we obtain that

fσ(‖u‖H1) := ‖u‖2H1 − c

σ + 1
‖u‖2σ+2

H1 ≤ M(u0) + 2E(u0).(2.4.20)

We note that fσ has an unique local maximum at δ > 0, where δ is given by δ2σ = c−1.
If u0 ∈ H1(R) satisfies that

M(u0) + 2E(u0) < fσ(δ) and ‖u0‖H1 < δ,
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then, by (2.4.20) we have

fσ(‖u(t)‖H1) ≤ M(u0) + E(u0) < fσ(δ)(2.4.21)

for all t ∈ Imax. From ‖u0‖H1 < δ and the continuity t �→ ‖u(t)‖H1 , we deduce that

sup
t∈Imax

‖u(t)‖H1 < δ.(2.4.22)

From the a priori estimate (2.4.22) and Theorem 2.1.4, the claim of Theorem 2.1.5
follows.

2.5 Proof of Theorem 2.1.6

Let u0 ∈ H1(R) be given. We recall the following approximate problem in Section
2.2: {

i∂tum + ∂2
xum + Jmg(Jmum) = 0,

um(0) = u0.
(2.5.1)

For each m ∈ N it is easily verified that there exist Tm > 0, and a sequence {um} of
C((−Tm, Tm), H

1(R)) such that satisfies (2.5.1) and

Em(um(t)) = Em(u0),M(um(t)) = M(u0) and P (um(t)) = P (u0)(2.5.2)

for all t ∈ (−Tm, Tm), where Em is defined by (2.2.3). We use the conservation laws
(2.5.2) in order to obtain uniform H1(R)-estimates of {um}. We have

‖∂xum‖2L2 = 2 (Em(u0)−Gm(um))

≤ 2Em(u0) +
1

σ + 1
‖Jmum‖2σ+1

L4σ+2‖∂xJmum‖L2 .

By using Gagliardo-Nirenberg’s inequality

‖f‖2σ+1
L4σ+2 ≤ C‖f‖σ+1

L2 ‖∂xf‖σL2

and Proposition 2.2.1, we obtain that

‖∂xum‖2L2 ≤ 2Em(u0) +
C

σ + 1
‖um‖σ+1

L2 ‖∂xum‖σ+1
L2(2.5.3)

= 2Em(u0) +
C

σ + 1
‖u0‖σ+1

L2 ‖∂xum‖σ+1
L2 ,

where in the last equality we used the conservation of mass. Since σ + 1 < 2, applying
Young’s inequality to (2.5.3), we have the following estimate

‖∂xum(t)‖2L2 ≤ C(‖u0‖H1)
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for all t ∈ (−Tm, Tm). This implies that Tm = ∞ for every m ∈ N and

M := sup
m∈N

‖um‖C(R,H1) < ∞.(2.5.4)

By the equation (2.5.1) and the estimate ‖gm(um(t))‖L2 ≤ C(M) for all t ∈ R, we obtain

sup
m∈N

‖∂tum‖C(R,H−1) ≤ C(M).(2.5.5)

By (2.5.4), (2.5.5) and the abstract version of Ascoli-Arzelà’s theorem, we deduce that

u ∈ L∞(R, H1(R)) ∩W 1,∞(R, H−1(R)),

and that there exists a subsequence, which we still denote by {um}, such that

um(t) ⇀ u(t) in H1(R)(2.5.6)

for all t ∈ R. To prove that u is a weak solution of (gDNLS), we need the following
lemma.

Lemma 2.5.1. For all t ∈ R, gm(um(t)) ⇀ g(u(t)) in L2(R).

Proof. Let ψ ∈ C∞
c (R) and let B = supp ψ. We write(

gm(um)− g(u), ψ
)
=
(
Jmg(Jmum)− g(Jmum), ψ

)
+
(
i|Jum|2σ∂xJmum − i|um|2σ∂xJmum, ψ

)
+
(
i|um|2σ∂xJmum − i|u|2σ∂xJmum, ψ

)
+
(
i|u|2σ∂xJmum − i|u|2σ∂xum, ψ

)
+
(
i|u|2σ∂xum − i|u|2σ∂xu, ψ

)
= K1 +K2 +K3 +K4 +K5.

Since g(Jmum) is bounded in L2(R) due to (2.5.4), K1 → 0 by Proposition 2.2.1 (v). In
the case of 1/2 ≤ σ < 1, we estimate K2 as

|K2| ≤ ‖ψ‖L∞‖∂xJmum‖L2‖ |Jmum|2σ − |um|2σ‖L2(B)

≤ C(M)‖Jmum − um‖L2(B).

Since um is bounded inH1(R), it follows Jmum−um ⇀ 0 inH1(R), hence Jmum−um → 0
in L2(B) by Rellich-Kondrachov’s theorem. Therefore, K2 → 0. In the case of 0 < σ <
1/2, we estimate K2 as

|K2| ≤ C(M)‖ |Jmum|2σ − |um|2σ‖L2(B)

≤ C(M)‖Jmum − um‖2σL4σ(B)

≤ C(M)|B| 1−2σ
2 ‖Jmum − um‖2σL2(B)

−→ 0 as m → ∞.
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Here, we used an elementary inequality

||u|2σ − |v|2σ| ≤ |u− v|2σ

in the second inequality. Similarly, we can show that K3, K4 → 0. Since ∂xum ⇀ ∂xu
in L2(R), we deduce that K5 → 0. This completes the proof.

It follows from (2.5.6) and Lemma 2.5.1 that u is a solution of (gDNLS) in the
distribution sense. Taking the H−1-H1 duality product of the equation (gDNLS), we
deduce that

d

dt
‖u(t)‖2L2 = 0(2.5.7)

for all t ∈ R, and so

M(u(t)) = M(u0).(2.5.8)

By (2.5.2), (2.5.8) and (2.5.6), we deduce that

um → u in Cloc(R, L
2(R)).(2.5.9)

It follows from (2.5.2), (2.5.6), (2.5.9) and Lemma 2.4.3 that

E(u(t)) ≤ E(u0)(2.5.10)

for all t ∈ R. The conservation of the momentum easily follows from (2.5.2) and (2.5.9).
This completes the proof.





Chapter 3

Global existence for the derivative
NLS equation

3.1 Introduction

3.1.1 Background

In this chapter we study global existence for the derivative nonlinear Schrödinger
equation

(DNLS) i∂tu+ ∂2
xu+ i|u|2∂xu = 0, (t, x) ∈ R× R,

and the generalized derivative nonlinear Schrödinger equation

(gDNLS) i∂tu+ ∂2
xu+ i|u|2σ∂xu = 0, (t, x) ∈ R× R,

for σ > 1 (L2-supercritical case). First we review solitary waves of (gDNLS). It is known
that (gDNLS) has a two-parameter family of solitary waves

uω,c(t, x) = eiωtφω,c(x− ct),

where (ω, c) satisfies −2
√
ω < c ≤ 2

√
ω,

φω,c(x) = Φω,c(x) exp

(
i
c

2
x− i

2σ + 2

∫ x

−∞
Φω,c(y)

2σdy

)
,(3.1.1)

Φ2σ
ω,c(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(σ + 1)(4ω − c2)

2
√
ω cosh(σ

√
4ω − c2x)− c

, if ω > c2/4,

2(σ + 1)c

σ2(cx)2 + 1
, if c = 2

√
ω.

(3.1.2)

We note that Φω,c is the positive even solution of

−Φ′′ +
(
ω − c2

4

)
Φ +

c

2
|Φ|2σΦ− 2σ + 1

(2σ + 2)2
|Φ|4σΦ = 0, x ∈ R,(3.1.3)

31
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and the complex-valued function φω,c satisfies

−φ′′ + ωφ+ icφ′ − i|φ|2σφ′ = 0, x ∈ R.

In [45], it was proved that the solitary waves uω,c are orbitally stable if −2
√
ω < c <

2z0
√
ω, and orbitally unstable if 2z0

√
ω < c < 2

√
ω when 1 < σ < 2, where the constant

z0 = z0(σ) ∈ (−1, 1) is the solution of

Fσ(z) := (σ − 1)2
{∫ ∞

0

(cosh y − z)−
1
σ dy

}2

−
{∫ ∞

0

(cosh y − z)−
1
σ
−1(z cosh y − 1)dy

}2

= 0.

Moreover, it was proved that solitary waves for all ω > c2/4 are orbitally unstable when
σ ≥ 2 and orbitally stable when 0 < σ < 1. Recently, Fukaya [20] proved that the
solitary waves are orbitally unstable if c = 2z0

√
ω when 1 < σ < 2.

In Chapter 2 we proved local well-posedness in H1(R) when σ ≥ 1, and that the
following quantities are conserved

E(u) :=
1

2
‖∂xu‖2L2 − 1

2σ + 2
Re

∫
R

i|u|2σ∂xuudx,(Energy)

M(u) := ‖u‖2L2 ,(Mass)

P (u) := Re

∫
R

i∂xuudx.(Momentum)

Moreover, we proved global well-posedness for small initial data in H1(R); see Theorem
2.1.5. In the case 0 < σ < 1 (L2-subcritical case) we constructed global solutions for any
initial data in H1(R); see Theorem 2.1.6.

In this chapter we study the case σ ≥ 1 (L2-critical or supercritical case), and im-
prove the global existence results in the energy space H1(R) in previous works. The
main methodology in this chapter is variational method. First we give a variational
characterization of two types of solitary waves including the massless case. Then, by
applying the variational characterization, we establish a sufficient condition for global
existence by using potential well theory inspired from the classical work by Payne and
Sattinger [60]. Potential well generated by two-parameter family of solitary waves has
a rich structure. Our main contribution here is to clarify the connection between the
potential well and 4π-mass condition for (DNLS). Especially, our variational approach
gives another simple proof of the global result by Wu [73]. Moreover, we prove that the
solution of (DNLS) is global if the initial data u0 satisfies M(u0) = 4π and P (u0) < 0.
This is the first global result in the mass threshold case.

Here we review the global result for (DNLS) in the energy space H1(R). By using
the following gauge transformation to the solution of (DNLS)

w(t, x) = u(t, x) exp

(
i

4

∫ x

−∞
|u(t, x)|2dx

)
,(3.1.4)
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then w satisfies the following equation:

i∂tw + ∂2
xw +

i

2
|w|2∂xw − i

2
w2∂xw +

3

16
|w|4w = 0, (t, x) ∈ R× R.(3.1.5)

The conserved quantities are transformed as follows:

E(w) = 1

2
‖∂xw‖2L2 − 1

32
‖w‖6L6 ,

M(w) = ‖w‖2L2 ,

P(w) = Re

∫
R

i∂xwwdx+
1

4
‖w‖4L4 .

Hayashi and Ozawa [32] used the following sharp Gagliardo–Nirenberg inequality

‖f‖6L6 ≤ 4

π2
‖f‖4L2‖∂xf‖2L2(3.1.6)

in order to obtain a priori estimate in Ḣ1(R). We note that an optimizer for the inequality
(3.1.6) is given by Q := Φ1,0 and Q satisfies the following elliptic equation:

−Q′′ +Q− 3

16
Q5 = 0.

In [32], it was proved that the H1(R)-solution of (DNLS) is global if the initial data u0

satisfies

M(u0) = M(w0) < M(Q) = 2π;

see also Weinstein [71] for related works. Wu [73] took advantage of conservation law of
the momentum as well as conservation laws of the energy and the mass. He used the
following sharp Gagliardo–Nirenberg inequality

‖f‖6L6 ≤ 3(2π)−
2
3‖f‖

16
3

L4‖∂xf‖
2
3

L2(3.1.7)

instead of using (3.1.6). Then, it was proved that the H1(R)-solution of (DNLS) is global
if the initial data u0 satisfies

M(u0) = M(w0) < M(W ) = 4π,

where W := Φ1,2. We note that an optimizer for the inequality (3.1.7) is given by W
and W satisfies the following elliptic equation:

−W ′′ +
1

2
W 3 − 3

16
W 5 = 0.

Wu’s proof depends on contradiction argument as follows. Suppose that there exists
a time sequence {tn} with tn → Tmax, or −Tmin such that ‖∂xw(tn)‖L2 → ∞ as n →
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∞, where (−Tmin, Tmax) is the maximal time interval. He mainly proved that X =
‖w(tn)‖8L4 / ‖w(tn)‖6L6 satisfies

X3 −M(w0)X
2 + 16{3(2π)− 2

3}−3M(w0) < 0,

but this does not hold when M(w0) < 4π. This argument is more or less complicated
and hard to see the naturality of 4π as a mass condition and the connection of the
solitons, although there is a fact that the main part of the soliton gives an optimizer for
the inequality (3.1.7). In our approach we give a close relation between global existence
theory and solitons, and derive the 4π-mass condition more naturally and directly.

3.1.2 Setting

To state our main results, we introduce some notations. Let (ω, c) satisfy

(3.1.8) −2
√
ω < c ≤ 2

√
ω.

For (ω, c) satisfying (3.1.8), we define

Sω,c(ϕ) := E(ϕ) +
ω

2
M(ϕ) +

c

2
P (ϕ),

d(ω, c) := Sω,c(φω,c).

We denote the nonlinear term in the energy functional by

N(ϕ) := Re

∫
R

i|ϕ|2σ∂xϕϕdx.

We define the functional S̃ω,c(ψ) by

S̃ω,c(ψ) := Sω,c(e
i cx

2 ψ).(3.1.9)

By using the following identities

cP (ϕ) = −‖∂xϕ‖2L2 − c2

4
‖ϕ‖2L2 +

∥∥∂x(e−i cx2 ϕ)∥∥2L2 ,(3.1.10)

N(ϕ) = − c

2
‖ϕ‖2σ+2

L2σ+2 +N(e−i
cx
2 ϕ),(3.1.11)

S̃ω,c(ψ) has the following explicit formula

S̃ω,c(ψ) :=
1

2
‖∂xψ‖2L2 +

1

2

(
ω − c2

4

)
‖ψ‖2L2 +

c

2(2σ + 2)
‖ψ‖2σ+2

L2σ+2 − 1

2σ + 2
N(ψ).

We also introduce the following functionals

Kω,c(ϕ) := ∂λSω,c(λψ)
∣∣∣
λ=1

= ‖∂xϕ‖2L2 + ω ‖ϕ‖2L2 + cP (ϕ)−N(ϕ),

K̃ω,c(ψ) := ∂λS̃ω,c(λψ)
∣∣∣
λ=1

= ‖∂xψ‖2L2 +

(
ω − c2

4

)
‖ψ‖2L2 +

c

2
‖ψ‖2σ+2

L2σ+2 −N(ψ).
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By using (3.1.10) and (3.1.11), we have the following relation

K̃ω,c(ψ) = Kω,c(e
i cx

2 ψ).(3.1.12)

This is of course corresponding to the relation (3.1.9).

We define the following functional space

Zω,c :=

{
H1(R), if ω > c2/4,

Ḣ1(R) ∩ L2σ+2(R), if c = 2
√
ω.

We consider the following minimization problem:

μ(ω, c) := inf{Sω,c(ϕ) : e−i cx2 ϕ ∈ Zω,c \ {0}, Kω,c(ϕ) = 0}
= inf{S̃ω,c(ψ) : ψ ∈ Zω,c \ {0}, K̃ω,c(ψ) = 0}.

We note that if ω > c2/4, μ(ω, c) is also rewritten as

μ(ω, c) = inf{Sω,c(ϕ) : ϕ ∈ H1(R) \ {0}, Kω,c(ϕ) = 0},

since ϕ ∈ H1(R) if and only if e−i
cx
2 ϕ ∈ H1(R). We introduce the sets Gω,c and Mω,c

defined by

Gω,c := {ϕ : e−i
cx
2 ϕ ∈ Zω,c \ {0}, S ′

ω,c(ϕ) = 0},
Mω,c := {ϕ : e−i

cx
2 ϕ ∈ Zω,c \ {0}, Sω,c(ϕ) = μ(ω, c), Kω,c(ϕ) = 0}.

The element of Gω,c is called a ground state. We note that Mω,c is the set of minimizers
of Sω,c on the Nehari manifold.

Remark 3.1.1. The function space Zc2/4,c comes from the functional S̃c2/4,c. We note
that when σ ≥ 2 the solitary waves φc2/4,c do not belong to L

2(R), but belong to L2σ+2(R).

The two functionals S̃c2/4,c and K̃c2/4,c are useful to obtain the variational characterization
of the solitary waves for the massless case.

Remark 3.1.2. The functional Sc2/4,c seems meaningless at first glance on the function
space

Yc2/4,c := {ϕ : e−i
cx
2 ϕ ∈ Zc2/4,c},

since Sc2/4,c contains L2-norm. However, since S̃c2/4,c is defined on Ḣ1(R) ∩ L2σ+2(R),
Sc2/4,c is well-defined on the function space Yc2/4,c through the relation (3.1.9). Similarly,
Kc2/4,c is well-defined on Yc2/4,c by the relation (3.1.12).
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3.1.3 Main results

First, we begin with the result about the variational characterization of the solitary
waves.

Proposition 3.1.3. Let σ ≥ 1 and (ω, c) satisfy (3.1.8). Then, we have

Gω,c = Mω,c = {eiθ0φω,c(· − x0) : θ0 ∈ [0, 2π), x0 ∈ R},(3.1.13)

and d(ω, c) = μ(ω, c).

Our main contribution here is to give the variational characterization of the solitary
waves for the massless case.

We apply Proposition 3.1.3 to establish a sufficient condition for global existence in
the energy space. We define the subsets of the energy space by

Kω,c := {ϕ ∈ H1(R) : Sω,c(ϕ) ≤ μω,c, Kω,c(ϕ) ≥ 0},
K :=

⋃
−2

√
ω<c≤2

√
ω

ω>0

Kω,c.

By applying the variational characterization and potential well theory, we have the fol-
lowing global result.

Proposition 3.1.4. Let σ ≥ 1 and (ω, c) satisfy (3.1.8). If the initial data u0 belongs to
Kω,c, then the H1(R)-solution u of (gDNLS) with u(0) = u0 exists globally in time, and
we have

‖∂xu‖2L∞(R:L2(R)) ≤ 4

(
1 +

1

σ

)
Sω,c(u0) +

c2

2σ
M(u0).(3.1.14)

Especially, if u0 ∈ K , the H1(R)-solution u of (gDNLS) with u(0) = u0 exists globally
in time.

We show that Theorem 3.1.4 gives us some interesting corollaries for (DNLS). Our
variational approach covers Wu’s global result.

Theorem 3.1.5. If the initial data u0 ∈ H1(R) satisfies M(u0) < 4π, or M(u0) = 4π
and P (u0) < 0, then the H1(R)-solution of (DNLS) with u(0) = u0 exists globally in
time.

Remark 3.1.6. The existence of blow-up solutions in finite time is still an open problem.
It might be a very interesting problem whether finite time blow-up occurs when the initial
data u0 satisfies M(u0) = 4π and P (u0) > 0.

Remark 3.1.7. When σ = 1, by applying variational characterization of solitons, we
have {

u0 ∈ H1(R) : M(u0) = 4π,E(u0) = P (u0) = 0
}

=
{
eiθ0φω,2√ω(· − x0) : θ0, x0 ∈ R, ω > 0

}
,

see Remark 3.3.2 for the details.
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We note that the proof of Theorem 3.1.5 gives the simple alternative proof of Wu’s
result. The global result for M(u0) = 4π and P (u0) < 0 gives the global result for the
threshold case. This is the first progress to investigate the dynamics around the algebraic
solitons.

The global results in Proposition 3.1.4 contains the large data. Indeed, we have the
following theorem.

Theorem 3.1.8. Let σ ≥ 1. Given ψ ∈ H1(R), and set the initial data as u0,c = ei
cx
2 ψ.

Then, there exists c0 = c0(ψ) > 0 such that if c ≥ c0, then the corresponding solution uc
of (gDNLS) exists globally in time.

Theorem 3.1.8 means that if we consider sufficiently oscillating data, there exist global
solutions with any large mass. We note that the oscillating term ei

cx
2 gives the change

of the momentum. The results for Theorem 3.1.8 gives the important difference to the
dynamics to nonlinear Schrödinger equations with pure power nonlinearities; see also the
comments below Theorem 4.1.11.

3.2 Variational Characterization

We introduce the following sets

G̃ω,c := {ψ ∈ Zω,c \ {0} : S̃ ′
ω,c(ψ) = 0},

M̃ω,c := {ψ ∈ Zω,c \ {0} : S̃ω,c(ψ) = μ(ω, c), K̃ω,c(ψ) = 0}.

In this section, we prove the following proposition.

Proposition 3.2.1. Let (ω, c) satisfy (3.1.8). Then, we have

G̃ω,c = M̃ω,c = {eiθe−i cx2 φω,c(· − y) : θ ∈ [0, 2π), y ∈ R}.

Moreover, we have d(ω, c) = μ(ω, c).

By using the relation S̃ ′
ω,c(e

−i cx
2 ϕ) = e−i

cx
2 S ′

ω,c(ϕ), we have

ϕ ∈ Gω,c ⇔ e−i
cx
2 ϕ ∈ G̃ω,c,

ϕ ∈ Mω,c ⇔ e−i
cx
2 ϕ ∈ M̃ω,c.

(3.2.1)

From Proposition 3.2.1 and (3.2.1), we deduce that the claim of Proposition 3.1.3 follows..
To prove Proposition 3.2.1, we prepare some basic lemmas.

Lemma 3.2.2. Let p ≥ 1. Then we have

‖f‖2pL∞ ≤ 2p ‖f‖2p−1
L4p−2 ‖∂xf‖L2 .(3.2.2)
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Proof. By Cauchy-Schwarz’s inequality, we have

|f(x)|2p =
∫ x

−∞

d

dx
(|f(y)|2p)dy

=

∫ x

−∞
2p|f(y)|2p−2Re(f(y)(∂xf)(y))dy

≤ 2p
∥∥|f |2p−1

∥∥
L2 ‖∂xf‖L2

= 2p ‖f‖2p−1
L4p−2 ‖∂xf‖L2 .

This completes the proof.

By a direct calculation we have the following relation:

S̃ω,c(ψ) =
1

2σ + 2
K̃ω,c(ψ) +

σ

2σ + 2
L̃ω,c(ψ),(3.2.3)

where the functional L̃ω,c is defined by

L̃ω,c(ψ) := ‖∂xψ‖2L2 +

(
ω − c2

4

)
‖ψ‖2L2 .

Hereafter we only prove the claims in the massless case c = 2
√
ω. The case ω > c2/4 is

proved in the similar way. Actually the proof is easier since we can use the boundedness
in L2(R); see the arguments in Colin and Ohta [17] for more details.

Lemma 3.2.3. Let (ω, c) satisfy (3.1.8). Then, we have

G̃ω,c = {eiθ0e− c
2
ixφω,c(· − x0) : θ0 ∈ [0, 2π), x0 ∈ R}.

Proof. Since e−i
cx
2 φω,c satisfies S̃

′
ω,c(e

−i cx
2 φω,c) = e−i

cx
2 S ′

ω,c(φω,c) = 0, we have

G̃ω,c ⊃ {eiθ0e− c
2
ixφω,c(· − x0) : θ0 ∈ [0, 2π), x0 ∈ R}.

Conversely, let ψ ∈ G̃ω,c. By using the following transformation

Φ(x) = ψ(x) exp

(
i

2σ + 2

∫ x

0

|ψ(y)|2σdy
)
,(3.2.4)

or equivalently,

ψ(x) = Φ(x) exp

(
− i

2σ + 2

∫ x

0

|Φ(y)|2σdy
)
,(3.2.5)

then it is easily verified that Φ is a solution of

−Φ′′ +
c

2
|Φ|2σΦ− 2σ + 1

(2σ + 2)2
|Φ|4σΦ +

σ

σ + 1
|Φ|2σ−2Im(ΦΦ′)Φ = 0.(3.2.6)
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If we put f := ReΦ, and g := ImΦ, from (3.2.6) we obtain that

f ′′ = A(Φ)f and g′′ = A(Φ)g,

where the function A(Φ) is defined by

A(Φ) :=
c

2
|Φ|2σ − 2σ + 1

(2σ + 2)2
|Φ|4σ + σ

σ + 1
|Φ|2σ−2Im(ΦΦ′).

We note that

(fg′ − gf ′)′ = fg′′ − gf ′′ = fA(Φ)g − gA(Φ)f = 0.

Since f, g ∈ Ḣ1(R) ∩ L2σ+2(R), we obtain that fg′ − gf ′ = 0 for any x ∈ R. On the
other hand, we have

fg′ − gf ′ = ReΦImΦ′ − ImΦReΦ′ = Im(ΦΦ′).

Thus, Im(ΦΦ′) = 0 for any x ∈ R. Therefore, Φ satisfies

(3.2.7) −Φ′′ +
c

2
|Φ|2σΦ− 2σ + 1

(2σ + 2)2
|Φ|4σΦ = 0.

From the uniqueness of the equation (3.2.7), there exist θ0 ∈ (0, 2π] and x0 ∈ R such
that Φ = eiθ0Φω,c(· − x0). Thus we see that Φ ∈ L2σ(R). We modify the gauge of ψ as

ψ(x) = Φ(x) exp

(
− i

2σ + 2

∫ x

−∞
|Φ(y)|2σdy

)
exp

(
i

2σ + 2

∫ 0

−∞
|Φ(y)|2σdy

)
= Φ(x) exp

(
− i

2σ + 2

∫ x

−∞
|Φ(y)|2σdy

)
· eiθ1 ,

where θ1 is defined by

θ1 :=
1

2σ + 2

∫ 0

−∞
|Φω,c(y − x0)|2σdy =

1

2σ + 2

∫ −x0

−∞
|Φω,c(y)|2σdy.

Hence, from the explicit formula (3.1.1), we have

ψ(x) = eiθ1Φω,c(x− x0) exp

(
− i

2σ + 2

∫ x

−∞
|Φω,c(y − x0)|2σdy

)
= eiθ1Φω,c(x− x0) exp

(
− i

2σ + 2

∫ x−x0

−∞
|Φω,c(y)|2σdy

)
= eiθ1e−i

c
2
(x−x0)φω,c(x− x0)

= eiθe−i
c
2
xφω,c(x− x0),

where θ1 is defined by

θ := θ1 +
c

2
x0.

we deduce that ψ(x) = eiθe−i
cx
2 φω,c(x−x0) for some θ ∈ R (see also Remark 3.2.4). This

completes the proof.
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Remark 3.2.4. At that moment taking ψ ∈ G̃ω,c, we do not know ψ ∈ L2σ(R). Hence
we applied the gauge transformation (3.2.4) instead of the following transformation

Φ(x) = ψ(x) exp

(
i

2σ + 2

∫ x

−∞
|ψ(y)|2σdy

)
.

Lemma 3.2.5. Assume that M̃ω,c �= ∅. Then, we have M̃ω,c ⊂ G̃ω,c.

Proof. Let ψ ∈ M̃ω,c. Since ψ is a minimizer, there exists a Lagrange multiplier η ∈ R

such that S̃′
ω,c(ψ) = ηK̃ ′

ω,c(ψ). Then, we have

0 = K̃ω,c(ψ) =
〈
S̃ ′
ω,c(ψ), ψ

〉
= η
〈
K̃ ′
ω,c(ψ), ψ

〉
.

By K̃ω,c(ψ) = 0, we have〈
K̃ ′
ω,c(ψ), ψ

〉
= 2L̃ω,c(ψ)− (σ + 1)c‖ψ‖2σ+2

L2σ+2 − (2σ + 2)N(ψ)

= 2L̃ω,c(ψ)− (2σ + 2)L̃ω,c(ψ)

= −2σL̃ω,c(ψ) < 0.

Therefore, we deduce that η = 0. This implies that S̃ ′
ω,c(ψ) = 0 and hence ψ ∈ G̃ω,c.

Lemma 3.2.6. Assume that M̃ω,c �= ∅. Then, we have G̃ω,c = M̃ω,c. Moreover, we have
d(ω, c) = μ(ω, c).

Proof. Let ψ ∈ G̃ω,c. By Lemma 3.2.3, there exist θ0 ∈ [0, 2π) and x0 ∈ R such that

ψ = eiθ0e−i
cx
2 φω,c(· − x0).

Since M̃ω,c �= ∅, we can take ϕ ∈ M̃ω,c. By Lemmas 3.2.3 and 3.2.5, there exist θ1 ∈
[0, 2π) and x1 ∈ R such that ϕ = eiθ1e−i

cx
2 φω,c(· − x1). Thus,

S̃ω,c(ψ) = S̃ω,c(e
−i cx

2 φω,c) = S̃ω,c(e
−i cx

2 ϕ) = μ(ω, c).(3.2.8)

Since K̃ω,c(ψ) =
〈
S̃ ′
ω,c(ψ), ψ

〉
= 0, we deduce that ψ ∈ M̃ω,c. We note that

S̃ω,c(e
−i cx

2 φω,c) = Sω,c(φω,c) = d(ω, c).

Combined with (3.2.8), we deduce that d(ω, c) = μ(ω, c).

To complete the proof of Proposition 3.2.1, we need to prove that M̃ω,c �= ∅. The

assertion M̃ω,c �= ∅ actually follows from the following proposition.
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Proposition 3.2.7. Let {ψn} ⊂ Zω,c satisfy

S̃ω,c(ψn) → μ(ω, c) and K̃ω,c(ψn) → 0.

Then, there exist {yn} ⊂ R and ψ ∈ M̃ω,c such that {ψn(·−yn)} has a subsequence which
converges to ψ strongly in Zω,c.

At first, we note the following lemma.

Lemma 3.2.8. Let (ω, c) satisfy (3.1.8). Then, we have μ(ω, c) > 0.

Proof. We recall that μ(ω, c) = inf{S̃ω,c(ψ) : ψ ∈ Zω,c \ {0}, K̃ω,c(ψ) = 0}. By (3.2.3),
it is trivial that μ(ω, c) ≥ 0. We prove μ(ω, c) > 0 by contradiction. We assume that
μ(ω, c) = 0. Taking the minimizing sequence {ψn} ⊂ Zω,c as

S̃ω,c(ψn) → μ(ω, c) = 0 and K̃ω,c(ψn) = 0,

then we have ‖∂xψn‖2L2 → 0 by (3.2.3). From K̃ω,c(ψn) = 0 and ‖∂xψn‖2L2 → 0, we have

c

2
‖ψn‖L2σ+2 −N(ψn) → 0.(3.2.9)

Applying Gagliardo–Nirenberg’s inequality and Young’s inequality, we have

|N(ψn)| ≤ ‖∂xψn‖L2‖ψn‖2σ+1
L4σ+2

� ‖∂xψn‖1+θL2 ‖ψn‖2σ+1−θ
L2σ+2

≤ c

4
‖ψn‖2σ+2

L2σ+2 + C‖∂xψn‖2σ+2
L2 ,

where θ ∈ (0, 1) in the second inequality. Combining this with (3.2.9), we deduce that
‖ψn‖L2σ+2 → 0. By using (3.2.2) as p = (σ + 2)/2, we obtain that ‖ψn‖L∞ → 0. From
the following relation

−N(ψ) = −‖∂xψ‖2L2 − 1

4
‖ψ‖4σ+2

L4σ+2 +

∥∥∥∥∂xψ +
i

2
|ψ|2σψ

∥∥∥∥2
L2

,(3.2.10)

we obtain that

K̃(ψn) = ‖∂xψn‖2L2 +
c

2
‖ψn‖2σ+2

L2σ+2 −N(ψn)

=
c

2
‖ψn‖2σ+2

L2σ+2 − 1

4
‖ψn‖4σ+2

L4σ+2 +

∥∥∥∥∂xψn + 1

2
i|ψn|2σψn

∥∥∥∥2
L2

≥ c

2
‖ψn‖2σ+2

L2σ+2 − 1

4
‖ψn‖4σ+2

L4σ+2

≥
(
c

2
− 1

4
‖ψn‖2σL∞

)
‖ψn‖2σ+2

L2σ+2

> 0,

for large n ∈ N since ‖ψn‖L∞ → 0. However, this contradicts K̃ω,c(ψn) = 0 for all
n ∈ N.
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For the proof of Proposition 3.2.7 we apply the concentration compactness argument.
Here we recall Lieb’s compactness lemma. See [43] for p = 2 and [7, Lemma 2.1] for
more general setting.

Lemma 3.2.9. Let p ≥ 2. Let {fn} be a bounded sequence in Ḣ1(R) ∩ Lp(R). Assume
that there exists q ∈ (p,∞) such that lim supn→∞ ‖fn‖Lq > 0. Then, there exist {yn} and
f ∈ Ḣ1(R) ∩ Lp(R) \ {0} such that {fn(· − yn)} has a subsequence that converges to f
weakly in Ḣ1(R) ∩ Lp(R).

We also recall the Brezis–Lieb lemma (see [11]).

Lemma 3.2.10. Let 1 ≤ p < ∞. Let {fn} be a bounded sequence in Lp(R) and fn → f
a.e. in R. Then we have

‖fn‖pLp − ‖fn − f‖pLp − ‖f‖pLp → 0.(3.2.11)

Remark 3.2.11. When p = 2, if {fn} is a bounded sequence in L2(R) and fn converges
to f weakly in L2(R), then (3.2.11) still holds.

Proof of Proposition 3.2.7. We consider {ψn} ⊂ Zω,c such that S̃ω,c(ψn) → μ(ω, c) and

K̃ω,c(ψn) → 0.

Step 1. By (3.2.3) we obtain that ‖∂xψn‖2L2 is bounded. We recall that K̃ω,c has a
following explicit formula

K̃ω,c(ψ) = ‖∂xψ‖2L2 +

(
ω − c2

4

)
‖ψ‖2L2 +

c

2
‖ψ‖2σ+2

L2σ+2 −N(ψ).(3.2.12)

As seen in the proof of Lemma 3.2.8, N(ψn) is estimated as

|N(ψn)| ≤ c

4
‖ψn‖2σ+2

L2σ+2 + C‖∂xψn‖2σ+2
L2 .

Combined with K̃ω,c(ψn) → 0 and boundedness of ‖∂xψn‖2L2 , we deduce that ‖ψn‖2σ+2
L2σ+2

is bounded. Hence, {ψn} is a bounded sequence in Zω,c.
Step 2. lim supn→∞ ‖ψn‖L4σ+2 > 0. Suppose that lim supn→∞ ‖ψn‖L4σ+2 = 0. We note
that

|N(ψn)| ≤ ‖∂xψn‖L2‖ψn‖2σ+1
L4σ+2 → 0.

From (3.2.12) we obtain that ‖∂xψn‖2L2 → 0 and ‖ψn‖2σ+2
L2σ+2 → 0. By (3.2.3), we deduce

that S̃ω,c(ψn) → 0. This contradicts μ(ω, c) > 0.
Step 3. Since {ψn} is bounded in Zω,c = Ḣ1(R)∩L2σ+2(R) and lim supn→∞ ‖ψn‖L4σ+2 >
0, by applying Lemma 3.2.9 as fn = ψn and p = 2σ+2, there exist {yn} and v ∈ Zω,c\{0}
such that {ψn(·−yn)} (we denote this by vn) has a subsequence that converges to v weakly
in Zω,c. Next we show that

K̃ω,c(vn)− K̃ω,c(v − vn)− K̃ω,c(v) → 0 as n → ∞,(3.2.13)

L̃ω,c(vn)− L̃ω,c(v − vn)− L̃ω,c(v) → 0 as n → ∞.(3.2.14)
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The relation (3.2.14) follows from vn ⇀ v in Zω,c easily. As for (3.2.13), first we note
that (3.2.12) is rewritten as

K̃ω,c(ψ) =
c

2
‖ψ‖2σ+2

L2σ+2 − 1

4
‖ψ‖4σ+2

L4σ+2 +

∥∥∥∥∂xψ +
i

2
|ψ|2σψ

∥∥∥∥2
L2

(3.2.15)

for any ψ ∈ Zω,c. Since vn converges to v weakly in Zω,c, we have vn → v a.e. in R.
Therefore, by Lemma 3.2.10, we have

‖vn‖pLp − ‖vn − v‖pLp − ‖v‖pLp → 0

for 2σ + 2 ≤ p < ∞. Moreover, if we set

wn := ∂xvn +
i

2
|vn|2σvn and w = ∂xv +

i

2
|v|2σv,

it is easily verified that wn converges to w weakly in L2(R). Therefore, by (3.2.15), we
deduce that (3.2.13).

Step 4. We prove that K̃ω,c(ψ) < 0 ⇒ (2σ + 2)μ(ω, c) < L̃ω,c(ψ). By (3.2.3) and the
definition of μ(ω, c), we have

(3.2.16) μ(ω, c) =
1

2σ + 2
inf{L̃ω,c(ψ) : ψ ∈ Zω,c \ {0}, K̃ω,c(ψ) = 0}.

If ψ ∈ Zω,c satisfies K̃ω,c(ψ) < 0, then there exists λ0 ∈ (0, 1) such that K̃ω,c(λ0ψ) = 0

since K̃ω,c(λψ) > 0 for small λ ∈ (0, 1). Therefore, we deduce that

(2σ + 2)μ(ω, c) ≤ L̃ω,c(λ0ψ) < L̃ω,c(ψ).

Step 5. K̃ω,c(v) ≤ 0. Suppose that K̃ω,c(v) > 0. Since K̃ω,c(vn) → 0 and (3.2.13) holds,
we have

K̃ω,c(v − vn) → −K̃ω,c(v) < 0.

This implies that K̃ω,c(v − vn) < 0 for large n ∈ N. By Step 4, this implies that

(2σ + 2)μ(ω, c) < L̃ω,c(v − vn)

for large n ∈ N. Combined with (3.2.14), we have

L̃ω,c(v) = lim
n→∞

(L̃ω,c(vn)− L̃ω,c(v − vn))

≤ lim
n→∞

L̃ω,c(vn)− (2σ + 2)μ(ω, c) = 0

where we have used that L̃ω,c(vn) → (2σ + 2)μ(ω, c). Since v �= 0, L̃ω,c(v) > 0. This
gives a contradiction.
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Step 6. We prove that v ∈ M̃ω,c. By (3.2.16) and the weakly lower semicontinuity of

L̃ω,c, we obtain that

(2σ + 2)μ(ω, c) ≤ L̃ω,c(v) ≤ lim inf
n→∞

L̃ω,c(vn) = (2σ + 2)μ(ω, c).

Thus, L̃ω,c(v) = (2σ+2)μ(ω, c) and this implies that vn converges to v strongly in Ḣ1(R).

By Step 4 and Step 5, we deduce that K̃ω,c(v) = 0. Combined with (3.2.13), we have

K̃ω,c(vn − v) → 0. Since N(vn − v) → 0 from the convergence in Ḣ1(R), by (3.2.12) we
deduce that ‖vn−v‖L2σ+2 → 0. Hence we deduce that vn converges to v strongly in Zω,c.

Combined with S̃ω,c(vn) → μ(ω, c) and K̃ω,c(vn) → 0, we deduce that S̃ω,c(v) = μ(ω, c)

and K̃ω,c(v) = 0, i.e., v ∈ M̃ω,c. This completes the proof.

3.3 Global existence

In this section we prove the main theorems in Chapter 3. First we show Proposition
3.1.4.

Proof of Proposition 3.1.4. Let u0 ∈ Kω,c and u ∈ C((−Tmin, Tmax), H
1(R)) be a maxi-

mal solution of (gDNLS) with u(0) = u0. First, we consider the case that Kω,c(u0) = 0.
Since Sω,c(u0) ≤ Sω,c(φω,c), by Proposition 3.1.3, we have u0 = 0 or u0 = eiθ0φω,c(· − x0).
By the uniqueness of solution to (gDNLS), we have u(t) = 0 or u(t) = eiθ0eiωtφω,c(x −
ct − x0), respectively. This implies that Kω,c(u(t)) = 0 for all t ∈ R. Next, we con-
sider the case that Kω,c(u0) > 0. We suppose that there exists some time t0 such that
Kω,c(u(t0)) ≤ 0. Then, there exists some t∗ such that Kω,c(u(t∗)) = 0 by the continuity
of the flow t �→ u(t) in H1(R). By the above argument, Kω,c(u(t)) = 0 for all t ∈ R.
This gives a contradiction. Thus, Kω,c(u(t)) > 0 for all t ∈ (−Tmin, Tmax). Therefore, we
deduce that Kω,c is an invariant set under the flow.

Next, we prove that the solution is global if u0 ∈ Kω,c. From (3.2.3) we have

(2σ + 2)Sω,c(ϕ) = Kω,c(ϕ) + σ
∥∥∥∂xϕ− c

2
iϕ
∥∥∥2
L2

+ σ

(
ω − c2

4

)
‖ϕ‖2L2 .(3.3.1)

Since u(t) ∈ Kω,c, we have

(2σ + 2)Sω,c(u0) = (2σ + 2)Sω,c(u(t))

= Kω,c(u(t)) + σ
∥∥∥∂xu(t)− c

2
iu(t)

∥∥∥2
L2

+ σ

(
ω − c2

4

)
‖u(t)‖2L2

≥ σ
∥∥∥∂xu(t)− c

2
iu(t)

∥∥∥2
L2

for all t ∈ (−Tmin, Tmax). This implies that Tmin = Tmax = ∞. Moreover, we have the
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following estimate:

σ ‖∂xu(t)‖2L2 ≤
(∥∥∥∂xu(t)− c

2
iu(t)

∥∥∥
L2

+
|c|
2

‖u(t)‖L2

)2

≤ 4(σ + 1)Sω,c(u0) +
c2

2
M(u0).

This completes the proof.

When σ = 1, we can calculate the conserved quantities of the solitons explicitly. See
[17] or Chapter 4 for the detail.

Lemma 3.3.1. Let σ = 1 and (ω, c) satisfy (3.1.8). Then, we have

M(φω,c) = 8 tan−1

√
2
√
ω + c

2
√
ω − c

,

P (φω,c) = 2
√
4ω − c2,

E(φω,c) = − c

2

√
4ω − c2.

In particular, we have

d(ω, c) = Sω,c(φω,c) = 4ω tan−1

√
2
√
ω + c

2
√
ω − c

+
c

2

√
4ω − c2.

Remark 3.3.2. When σ = 1, we haveM(φc2/4,c) = 4π, P (φc2/4,c) = 0, and E(φc2/4,c) = 0
for all c > 0 by Lemma 3.3.1. On the other hand, ifM(φ) = 4π, P (φ) = 0, and E(φ) ≤ 0,
then φ(x) = eiθ0φc20/4,c0(x−x0) for some θ0 ∈ R, x0 ∈ R, and c0 > 0. Indeed, M(φ) = 4π,
P (φ) = 0, and E(φ) ≤ 0 imply that

Kc2/4,c(φ) ≤ −‖∂xφ‖2L2 +
c2

4
· 4π,

where we have used the relation −N(φ) = −2‖∂xφ‖2L2 + 4E(φ). Since Kc2/4,c(φ) < 0 for
small c > 0 andKc2/4,c(φ) → +∞ as c → ∞, there exists c0 > 0 such thatKc20/4,c0

(φ) = 0.

Therefore, Theorem 3.1.3 implies that φ(x) = eiθ0φc20/4,c0(x−x0) for some θ0 ∈ R, x0 ∈ R.
Note that this means that there is no function satisfying M(φ) = 4π, P (φ) = 0, and
E(φ) < 0.

Now we give the proofs of Theorem 3.1.5 and Theorem 3.1.8.

Proof of Theorem 3.1.5. The statement is trivial if u0 = 0. We assume that u0 �= 0. We
consider the curve for massless case. We note that

Kc2/4,c(u0) = ‖∂xu0‖2L2 +
c2

4
‖u0‖2L2 + cP (u0)−N(u0) → ∞
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as c → ∞. By Lemma 3.3.1, we have

Sc2/4,c(u0) ≤ Sc2/4,c(φc2/4,c) = d(c2/4, c)

⇐⇒ E(u0) +
c2

8
M(u0) +

c

2
P (u0) ≤ c2

8
· 4π

⇐⇒ E(u0) +
c

2
P (u0) ≤ c2

8

(
4π −M(u0)

)
.

The last inequality holds if M(u0) < 4π, or M(u0) = 4π and P (u0) < 0, if we take
sufficiently large c > 0. Hence, we deduce that u0 ∈ Kc2/4,c for large c > 0 under the
assumption of Theorem 3.1.5. By Proposition 3.1.4, the H1(R)-solution u with u(0) = u0

is global. This completes the proof.

Proof of Theorem 3.1.8. Let σ ≥ 1. We consider the curve for massless case again. We
note that the curve c �→ (c2/4, c) corresponds to the scaling for the solitons. Since

Φc2,4(x) = c
1
2σΦ1/4,1(cx), we have

‖∂xΦc2/4,c‖2L2 = c1+
1
σ ‖∂xΦ1/4,1‖2L2 ,

‖Φc2/4,c‖2σ+2
L2σ+2 = c

1
σ ‖Φ1/4,1‖2σ+2

L2σ+2 , ‖Φc2/4,c‖4σ+2
L4σ+2 = c1+

1
σ ‖Φ1/4,1‖4σ+2

L4σ+2 .

From this relation, it is easily verified that

Sc2/4,c(φc2,4) = c1+
1
σS1/4,1(φ1/4,1).

Since u0,c = ei
cx
2 ψ, we have

Sc2/4,c(u0,c) = S̃c2/4,c(ψ)

=
1

2
‖∂xψ‖2L2 +

c

2(2σ + 2)
‖ψ‖4L4 − 1

2σ + 2
N(ψ)

≤ Sc2/4,c(φc2/4,c) = c1+
1
σS1/4,1(φ1/4,1),

Kc2/4,c(u0,c) = K̃c2/4,c(ψ)

= ‖∂xψ‖2L2 +
c

2
‖ψ‖4L4 −N(ψ)

≥ 0,

for sufficiently large c > 0. Thus, u0,c ∈ Kc2/4,c for large c > 0. Hence, the claim follows
from Proposition 3.1.4.

As can be seen in our proof, we do not use a contradiction argument, the gauge
transformation as (3.1.4), and any sharp Gagliardo–Nirenberg inequality.



Chapter 4

Variational approach to NLS
equations of derivative type

4.1 Introduction

In this chapter, we consider the following nonlinear Schrödinger equation of derivative
type:

(DNLSb) i∂tu+ ∂2
xu+ i|u|2∂xu+ b|u|4u = 0, (t, x) ∈ R× R, b ∈ R.

(DNLSb) is L2-critical in the sense that the equation and L2-norm are invariant under
the scaling transformation

uλ(t, x) := λ
1
2u(λ2t, λx), λ > 0.(4.1.1)

This equation has the following conserved quantities:

E(u) :=
1

2
‖∂xu‖2L2 − 1

4

(
i|u|2∂xu, u

)− b

6
‖u‖6L6 ,(Energy)

M(u) := ‖u‖2L2 ,(Mass)

P (u) := (i∂xu, u) ,(Momentum)

where (·, ·) is an inner product defined by

(v, w) := Re

∫
R

v(x)w(x)dx for v, w ∈ L2(R).

When b = 0, the equation

(DNLS) i∂tu+ ∂2
xu+ i|u|2∂xu = 0, (t, x) ∈ R× R

is well-known as a standard derivative nonlinear Schrödinger equation. The equation
(DNLSb) can be considered as a generalized equation of (DNLS) while preserving both

47
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L2-criticality and Hamiltonian structure. The aim of this chapter is to investigate the
structure of (DNLSb) from the viewpoint of solitons.

First we note that (DNLSb) can be rewritten as

i∂tu = E ′(u).(4.1.2)

The Hamiltonian form (4.1.2) is useful when one discusses problems of orbital stability
and instability of solitons. It is well-known that (DNLS) has a two-parameter family
of solitons (see [40, 17]). Here we formulate the solitons of (DNLSb) following [57].
Consider solutions of (DNLSb) of the form

uω,c(t, x) = eiωtφω,c(x− ct),(4.1.3)

where (ω, c) ∈ R
2, and assume that φω,c ∈ H1(R). It is clear that φω,c must satisfy the

following equation:

−φ′′ + ωφ+ icφ′ − i|φ|2φ′ − b|φ|4φ = 0, x ∈ R.(4.1.4)

We note that the equation (4.1.4) can be rewritten as S ′
ω,c(φ) = 0, where

Sω,c(φ) := E(φ) +
ω

2
M(φ) +

c

2
P (φ).(4.1.5)

Applying the following gauge transformation to φω,c

φω,c(x) = Φω,c(x) exp

(
i
c

2
x− i

4

∫ x

−∞
|Φω,c(y)|2 dy

)
,(4.1.6)

it is easily verified (see [17, Lemma 2] for details) that Φω,c satisfies the following equation:

−Φ′′ +
(
ω − c2

4

)
Φ +

c

2
|Φ|2Φ− 3

16
γ|Φ|4Φ = 0, γ := 1 +

16

3
b.(4.1.7)

The positive radial (even) solution of (4.1.7) is explicitly obtained as follows; if γ > 0 or
equivalently b > −3/16,

Φ2
ω,c(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
2(4ω−c2)√

c2+γ(4ω−c2)cosh(
√
4ω−c2x)−c

if − 2
√
ω<c<2

√
ω,

4c

(cx)2+γ
if c=2

√
ω,

(4.1.8)

if γ ≤ 0 or equivalently b ≤ −3/16,

Φ2
ω,c(x) =

2(4ω−c2)√
c2+γ(4ω−c2)cosh(

√
4ω−c2x)−c

if −2
√
ω<c<−2s∗

√
ω,(4.1.9)
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O

c = 2
√
ω

c = −2
√
ω

ω

c

Case b > − 3
16

O

c = 2
√
ω

c = −2
√
ω

c = −2s∗
√
ω

ω

c

s∗ :=
√

−γ
1−γ

Case b ≤ − 3
16

Figure 4.1: Existence region of solitons.

where s∗ = s∗(γ) =
√−γ/(1− γ). From (4.1.3), (4.1.6), (4.1.8) and (4.1.9), we obtain

the explicit formulae of solitons of (DNLSb).
We note that the condition of two parameters γ and (ω, c)

if γ > 0 ⇔ b > −3/16, −2
√
ω < c ≤ 2

√
ω,

if γ ≤ 0 ⇔ b ≤ −3/16, −2
√
ω < c < −2s∗

√
ω

(4.1.10)

is a necessary and sufficient condition for the existence of non-trivial solutions of (4.1.7)
vanishing at infinity; see [8]. We note that the value b = −3/16 gives the turning point
where the structure of the solitons of (DNLSb) changes. Especially algebraic solitons
exist only for the case b > −3/16. In the case b ≤ −3/16 the solitons still exist, but their
velocity must be negative. We note that 0 ≤ s∗ < 1 and s∗ ↑ 1 as b ↓ −∞. This means
that as the defocusing effect is stronger, the existence region of solitons is narrower; see
Figure 4.1.

When b = 0, Colin and Ohta [17] proved that the soliton uω,c is orbitally stable when
ω > c2/4 by variational arguments, which are closely related to the work of Shatah [64].
See also [27] for partial results before [17]. The case c = 2

√
ω was treated1 by Kwon and

Wu [41], while the orbital stability or instability for this case is still an open problem.
When b > 0, the situation becomes different due to the focusing effect from the quintic

term. Ohta [57] proved that for each b > 0 there exists a unique s∗ = s∗(b) ∈ (0, 1) such
that the soliton uω,c is orbitally stable if −2

√
ω < c < 2s∗

√
ω, and orbitally unstable if

2s∗
√
ω < c < 2

√
ω. In [54] it was proved that the algebraic soliton uω,2√ω is orbitally

unstable when b > 0 is sufficiently small. If we observe the momentum of the solitons,

1The “orbital stability” discussed in [41] is different from usual definition as in Definition 4.1.12. Their
result does not contradict that finite time blow-up occurs to the initial data near algebraic solitons.
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O

c = 2
√
ω

c = −2
√
ω

ω

c

c = 2s∗
√
ω

unstable P (φω,c) < 0

stable P (φω,c) > 0

Figure 4.2: The stable/unstable region of solitons in the case b > 0.

the momentum is positive in the stable region, and negative in the unstable region; see
Figure 4.2. This indicates that the momentum of the solitons has an important effect on
the stability. In the borderline case c = 2s∗

√
ω, the momentum of the solitons is zero,

and the orbital stability or instability in this case remains an open problem.
The solitons in the defocusing case b < 0 are less well studied. In this chapter we

study the properties of solitons of (DNLSb) including defocusing case. Our first theorem
gives the connection between two types of solitons. To state the result, we introduce the
set Ω defined by

Ω :=
{
(ω, c) ∈ R

2 : −2
√
ω < c < 2

√
ω
}
.

Then we have the following result.

Theorem 4.1.1. Let b > −3/16. Suppose that (ω0, c0) satisfies c0 = 2
√
ω0. Then, we

have

lim
(ω,c)→(ω0,c0)

(ω,c)∈Ω
‖φω,c − φω0,c0‖Hm(R) = 0

for any m ∈ Z≥0.

Remark 4.1.2. By Theorem 4.1.1 and Sobolev’s embedding theorem, we obtain that

lim
(ω,c)→(ω0,c0)

(ω,c)∈Ω
‖φω,c − φω0,c0‖Wm,∞(R) = 0

for any m ∈ Z≥0.
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Theorem 4.1.1 shows that two types of solitons are connected in strong topology
although each of the solitons has quite different decay. This relation is expected to be
useful for further study on algebraic solitons. The key step for the proof is to prove
the pointwise convergence. Since this limit corresponds to indeterminate forms, we
need to calculate carefully so as to cancel out the singularity. Combining the pointwise
convergence with the mass convergence

lim
(ω,c)→(ω0,c0)

(ω,c)∈Ω
M(φω,c) = M(φω0,c0),

which is proved in Section 4.2.1, we obtain L2-convergence. The regularity of the con-
vergence is proved by using the equation (4.1.4) and a bootstrap argument.

Next we establish global existence for (DNLSb) in the energy space. The well-
posedness in the energy space was studied in [33, 58]. In [58] it was proved that if
the initial data u0 ∈ H1(R) satisfies

if b > 0, M(u0) <
2π√
γ
,

if b ≤ 0, M(u0) < 2π,
(4.1.11)

then the correspondingH1(R)-solution is global. This result is considered as an extension
of that in [32]. The proof is done by gauge transformation, and by applying mass and
energy conservation laws; see also Section 4.4 for details.

We note that the value 2π√
γ
corresponds to the mass of the soliton φω,0. If we take

into account the effect of momentum, we can expect that the mass condition (4.1.11) is
improved as in the case of (DNLS). Our main result in this chapter is the following.

Theorem 4.1.3. Let u0 ∈ H1(R) satisfy each of the following two cases:

(i) If b > 0, M(u0) < M(φ1,2s∗), or M(u0) = M(φ1,2s∗) and P (u0) < 0.

(ii) If −3/16 < b ≤ 0, M(u0) <
4π
γ3/2

, or M(u0) =
4π
γ3/2

and P (u0) < 0.

Then the H1(R)-solution u of (DNLSb) with u(0) = u0 exists globally in time. Moreover
we have

sup
t∈R

‖u(t)‖H1 ≤ C(‖u0‖H1) < ∞.

Remark 4.1.4. One can establish explicit upper bound of H1(R)-norm of the solution
which is represented by the conserved quantities; see Lemma 4.6.1.

Remark 4.1.5. When b > 0, by applying variational characterization of solitons, we
have {

u0 ∈ H1(R) : M(u0) = M(φ1,2s∗), E(u0) = P (u0) = 0
}

=
{
eiθ0φω,2s∗√ω(· − x0) : θ0, x0 ∈ R, ω > 0

}
.
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For the case of (DNLS), this relation corresponds to{
u0 ∈ H1(R) : M(u0) = 4π,E(u0) = P (u0) = 0

}
=
{
eiθ0φω,2√ω(· − x0) : θ0, x0 ∈ R, ω > 0

}
,

see Remark 3.1.7.

Remark 4.1.6. As seen in Section 4.2.1, when γ > 0 the function

(−1, 1] � s �→ M (φ1,2s) ∈
(
0,

4π√
γ

]
is strictly increasing and surjective. Especially, when b > 0, we have

2π√
γ
< M(φ1,2s∗) <

4π√
γ
.

Remark 4.1.7. When b ≤ −3/16, by applying the suitable gauge transformation, one
can easily prove that the H1(R)-solution is global for any initial data u0 ∈ H1(R); see
Proposition 4.4.3. Especially the global result in the case b = −3/16 is compatible with
Theorem 4.1.3, since 4π

γ3/2
↑ ∞ as b ↓ −3/16.

In the focusing case we recall that the soliton φ1,2s∗ corresponds to borderline case in
the stable/unstable region of solitons as in Figure 4.2. In this sense the mass condition
in Theorem 4.1.3 seems to be quite natural. We also note that

M(φ1,2s∗) → 4π as b → 0,

which is proved in Section 4.2.3. This means that global results in Theorem 4.1.3 are
compatible with the ones of (DNLS).

The global results in defocusing case are more interesting. When −3/16 < b < 0,
since 0 < γ < 1 in this case, the value 4π

γ3/2
is greater than 4π. This means that 4π-mass

condition in (DNLS) is improved due to the defocusing effect from the quintic term.
More surprisingly, the value 4π

γ3/2
is even greater than the mass of algebraic solitons.

Indeed, we have the following relation:

M(φ1,2) =
4π√
γ
<

4π

γ3/2
= M(φ1,2) + P (φ1,2),

which indicates that positive momentum of algebraic solitons improves the mass condi-
tion.

The proof of Theorem 4.1.3 is done by applying variational arguments developed in
Chapter 3. First we give a variational characterization of the solitons in a unified way
including the defocusing case. We note that in the case b < 0 the quintic term b|u|4u
becomes an obstacle to characterize the solitons on the Nehari manifold with respect
to the action functional Sω,c. To overcome that, we apply the suitable gauge transfor-
mation and consider the minimization problems on the Nehari manifold with respect
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to the transformed action functional. This approach enables us to give a variational
characterization of the transformed solitons in the case b ≥ −3/16.

Next, by applying the variational characterization and potential well theory, we give
a sufficient condition for global existence in the energy space; see Lemma 4.6.1. This
argument is closely related to the classical work of Payne and Sattinger [60]. The key step
in the proof of Theorem 4.1.3 is to establish the connection between mass condition and
a sufficient condition represented by potential well. To this end we prove the existence
of the pair (ω, c) satisfying −2

√
ω < c ≤ 2

√
ω such that

Sω,c(u0) ≤ Sω,c(φω,c),(4.1.12)

under the assumption of Theorem 4.1.3. In this step we use the idea of taking the curve
c = 2s

√
ω for s ∈ (−1, 1] and large parameter ω > 0, which was introduced for the case

of (DNLS) in Chapter 3. Compared with (DNLS), we need to examine the effect of the
momentum more carefully in our setting.

The condition (4.1.12) means that the initial data u0 is below the ground state in the
sense of action. We note that the mass condition in Theorem 4.1.3 is derived from the
condition which expresses the initial data below the ground state.2 The threshold value in
the mass condition is optimal in the sense that if b > 0 (resp., if −3/16 < b ≤ 0) for any
ρ ≥ M(φ1,2s∗) (resp., ρ ≥ 4π

γ3/2
) there exists u0 ∈ H1(R) such that M(u0) = ρ and such

that the condition (4.1.12) does not hold for any (ω, c) satisfying −2
√
ω < c ≤ 2

√
ω,

which means that u0 is above the ground state.3 Therefore, taking into account the
L2-critical structure of the equation, we conjecture the following:

Conjecture 4.1.8. The mass condition in Theorem 4.1.3 is sharp for global existence
of H1(R)-solutions to (DNLSb).

Remark 4.1.9. Related to the conjecture, it is an interesting problem whether the
blow-up occurs in finite or infinite time for the initial data u0 ∈ H1(R) satisfying that
M(u0) = M(φ1,2s∗) (resp., M(u0) = 4π

γ3/2
) and P (u0) ≥ 0 when b > 0 (resp., when

−3/16 < b ≤ 0).

Remark 4.1.10. Recently, in [37] it was proved by inverse scattering approach that
(DNLS) is globally well-posed in weighted Sobolev space H2,2(R), where

H2,2(R) :=
{
u ∈ H2(R) ; 〈·〉2 u ∈ L2(R)

}
.

We note that algebraic solitons of (DNLS) do not contain in H2,2(R). We remark that
our global results in this chapter treat the initial data in H1(R) which contain algebraic
solitons. This difference of topology is quite important for (DNLS) from the viewpoint
of solitons. We note that the results in [37] do not imply that Conjecture 4.1.8 is false
in the case b = 0. We also note that inverse scattering approach works only for the case
b = 0.

2See Proposition 4.6.4 for the case b = −3/16.
3As an example one can take a real-valued function u0 ∈ H1(R) satisfying M(u0) = ρ; see also the

proof of Theorem 4.1.3.
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If we consider sufficiently oscillating data, we obtain the global result for arbitrarily
large mass:

Theorem 4.1.11. Let b > −3/16. Given ψ ∈ H1(R), and set the initial data as
u0,c = ei

cx
2 ψ. Then, there exists c0 = c0(ψ) > 0 such that if c ≥ c0, then the H1(R)-

solution uc of (DNLSb) with uc(0) = u0,c exists globally in time. Moreover we have

sup
t∈R

‖uc(t)‖H1 ≤ C(‖u0,c‖H1) < ∞.

This global result was proved in Chapter 3 for the case b = 0. For the proof of
Theorem 4.1.11 we apply variational characterization for algebraic solitons.

Cazenave and Weissler [14] established global existence for the quadratic oscillating
data on nonlinear Schrödinger equations with a pure power nonlinearity. One main dif-
ference with this result is that the oscillating term in Theorem 4.1.11 gives the change
of the momentum. We note that (DNLSb) is not invariant under the Galilean transfor-
mation. Hence it is reasonable to consider that the momentum of initial data essentially
influences global properties of the solutions to (DNLSb).

Finally, we study the orbital stability of the solitons as another application of varia-
tional arguments. First we give the precise definition of orbital stability.

Definition 4.1.12. Let uω,c be a soliton of (DNLSb) defined by (4.1.3). The soliton uω,c
is said to be orbitally stable in H1(R) if for any ε > 0 there exists δ > 0 such that if
u0 ∈ H1(R) satisfies ‖u0 − uω,c(0)‖H1 < δ, then the maximal solution u(t) of (DNLSb)
with u(0) = u0 exists globally in time and satisfies

sup
t∈R

inf
(θ,y)∈R2

‖u(t)− eiθuω,c(t, · − y)‖H1 < ε.

Otherwise, the soliton is said to be orbitally unstable.

We have the following theorem about the orbital stability of the solitons in the
defocusing case.

Theorem 4.1.13. Let −3/16 ≤ b < 0. Assume that (ω0, c0) satisfies (4.1.10). Then the
soliton uω0,c0 of (DNLSb) is orbitally stable.

We note that Theorem 4.1.13 claims that algebraic solitons are orbitally stable in the
case −3/16 < b < 0. This result gives the counterpart of the focusing case b > 0. For the
proof of Theorem 4.1.13 we use variational argument inspired from the work developed
in [64, 17, 57]. New perspective in our proof is to use the scaling curve c = 2s

√
ω

effectively. To clarify our approach we first revisit the stability theory in the case b ≥ 0.
Our variational arguments along the scaling curve provide a simpler alternative proof in
previous works. In our approach the positivity of the momentum of the soliton is used
more directly to prove the stability. This is useful to tackle the stability in the defocusing
case and enables us to prove the stability for two types of the solitons in a unified way.
Unfortunately, our variational arguments do not cover the case b < −3/16 to prove the
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stability. However, if one takes spectral approach depending on the abstract theory of
Grillakis, Shatah and Strauss [24, 25], one can recover the remaining cases; see the end
of Section 4.7 for more details.

The rest of this chapter is organized as follows. In Section 4.2 we calculate the
conserved quantities of the solitons. By using the explicit formulae of solitons, conserved
quantities of solitons are also calculated explicitly. In Section 4.3 we study the connection
of two types of solitons and give a proof of Theorem 4.1.1. In Section 4.4 we introduce the
gauge transformation to (DNLSb). The local well-posedness theory in the energy space
is also reviewed there. In Section 4.5 we study variational characterization of solitons.
We give a unified proof for two types of solitons by applying concentration compactness
arguments developed in [17]. In Section 4.6 we establish global existence in the energy
space by applying variational characterization of the solitons. We show that a sufficient
condition represented by potential well yields Theorem 4.1.3 and Theorem 4.1.11. In
Section 4.7 we study orbital stability of the solitons and prove Theorem 4.1.13.

4.2 Conserved quantities of the solitons

4.2.1 Mass of the solitons

In this subsection we calculate the mass of the solitons. First we prepare the following
elementary integration formulae.

Lemma 4.2.1. Let −1 < α. Then we have

∫ ∞

−∞

dy

cosh y + α
=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
4√

1− α2
tan−1

√
1− α

1 + α
if |α| < 1,

2 if α = 1,
2√

α2 − 1
log
(
α +

√
α2 − 1

)
if α > 1.

(4.2.1)

Proof. See the formula 3.513, 2 in [23].

By using Lemma 4.2.1, we have the following proposition.

Proposition 4.2.2. Let γ and (ω, c) satisfy (4.1.10). Then the following properties hold:

(i) When γ > 0, we have

M (φω,c) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
8√
γ
tan−1

√
1 + β

1− β
if −2

√
ω < c < 2

√
ω,

4π√
γ

if c = 2
√
ω,

(4.2.2)

where β is defined by

β = β(ω, c) :=
c√

c2 + γ(4ω − c2)
.(4.2.3)
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Moreover, the function

(−1, 1] � s �→ M (φ1,2s) ∈
(
0,

4π√
γ

]
is continuous, strictly increasing and surjective.

(ii) When γ = 0, we have

M (φω,c) =
4
√
4ω − c2

−c
if − 2

√
ω < c < 0.(4.2.4)

Moreover, the function

(−1, 0) � s �→ M (φ1,2s) ∈ (0,∞)

is continuous, strictly increasing and surjective.

(iii) When γ < 0, we have

M (φω,c) =
4√−γ

log
(
α +

√
α2 − 1

)
if − 2

√
ω < c < −2s∗

√
ω,(4.2.5)

where α is defined by

α = α(ω, c) :=
−c√

c2 + γ(4ω − c2)
.(4.2.6)

Moreover, the function

(−1,−s∗) � s �→ M (φ1,2s) ∈ (0,∞)

is continuous, strictly increasing and surjective.

Proof. Let γ and (ω, c) satisfy (4.1.10). When ω > c2/4, from the explicit formulae of
the solitons, we have

M (φω,c) = M (Φω,c) =

∫ ∞

−∞

2(4ω − c2)dx√
c2 + γ(4ω − c2) cosh(

√
4ω − c2x)− c

(4.2.7)

=
2
√
4ω − c2√

c2 + γ(4ω − c2)

∫ ∞

−∞

dy

cosh y + α
,

where α is defined by (4.2.6). We divide three cases to do calculations.
Case 1-1: γ > 0 and −2

√
ω < c < 2

√
ω. In this case we note that |α| < 1 and

1− α2 = 1− c2

c2 + γ(4ω − c2)
=

γ(4ω − c2)

c2 + γ(4ω − c2)
.(4.2.8)
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Applying Lemma 4.2.1 to (4.2.7), we have

M (φω,c) =
2
√
4ω − c2√

c2 + γ(4ω − c2)
· 4√

1− α2
tan−1

√
1− α

1 + α
(4.2.9)

=
8√
γ
tan−1

√
1 + β

1− β
,

where β is defined by

β := −α =
c√

c2 + γ(4ω − c2)
.(4.2.10)

We note that the function β is constant on each curve c = 2s
√
ω for s ∈ [−1, 1]. Then

we have

β(s) := β(ω, 2s
√
ω) =

s√
s2 + γ(1− s2)

=
sgn s√

1 + γ
(

1
s2
− 1
) .

This shows that the function

[−1, 1] � s �→ β(s) ∈ [−1, 1](4.2.11)

is continuous, strictly increasing and surjective. The function

(−1, 1) � β �→ 1 + β

1− β
∈ (0,∞)

also has the same property. Therefore, by (4.2.9) we obtain that the function

(−1, 1) � s �→ M (φ1,2s) ∈
(
0,

4π√
γ

)
is continuous, strictly increasing and surjective. We also note that

lim
s→1−0

M (φ1,2s) =
4π√
γ
.(4.2.12)

Case 1-2: γ > 0 and c = 2
√
ω. From the explicit formulae of algebraic solitons, we

have

M
(
φc2/4,c

)
= M

(
Φc2/4,c

)
=

∫ ∞

−∞

4c

c2x2 + γ
dx(4.2.13)

=

∫ ∞

−∞

4dx

x2 + γ

=
4π√
γ
.
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From (4.2.12) and (4.2.13), we obtain

lim
s→1−0

M (φ1,2s) = M (φ1,2) ,(4.2.14)

which completes the proof of the case γ > 0.
Case 2: γ = 0 and −2

√
ω < c < 0. In this case we note that α = 1. From (4.2.7)

and Lemma 4.2.1, we have

M (φω,c) =
2
√
4ω − c2

−c

∫ ∞

−∞

dy

cosh y + 1
(4.2.15)

=
4
√
4ω − c2

−c
.

For s ∈ (−1, 0), we have

M
(
φω,2s√ω

)
= M (φ1,2s) =

4
√
1− s2

−s

= 4

√
1

s2
− 1.

This yields that the function

(−1, 0) � s �→ M (φ1,2s) ∈ (0,∞)(4.2.16)

is continuous, strictly increasing and surjective.
Case 3: γ < 0 and −2

√
ω < c < −2s∗

√
ω. In this case we note that α > 1. From

Lemma 4.2.1, (4.2.7) and (4.2.8), we have

M (φω,c) =
2
√
4ω − c2√

c2 + γ(4ω − c2)

∫ ∞

−∞

dy

cosh y + α
(4.2.17)

=
2
√
4ω − c2√

c2 + γ(4ω − c2)
· 2√

α2 − 1
log
(
α +

√
α2 − 1

)
=

4√−γ
log
(
α +

√
α2 − 1

)
In the same way as β, the function α is constant on each curve c = 2s

√
ω for s ∈ [−1, 1].

We note that

α(s) := α(ω, 2s
√
ω) =

−s√
(1− γ)s2 + γ

(4.2.18)

=
1√

1− γ + γs−2
.

This yields that the function

(−1,−s∗) � s �→ α(s) ∈ (1,∞)
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is continuous, strictly increasing and surjective. From the formula (4.2.17), we deduce
that the function

(−1,−s∗) � s �→ M (φ1,2s) ∈ (0,∞)(4.2.19)

has the same property. This completes the proof.

4.2.2 Momentum of the solitons

In this subsection we calculate the momentum of the solitons. From the formula
(4.1.6) of the solitons, we have

P (φω,c) = Re

∫
R

iφ′
ω,cφω,cdx(4.2.20)

= Re

∫
R

i

(
Φ′
ω,c + Φω,c

(
ic

2
− i

4
Φ2
ω,c

))
Φω,cdx

= − c

2
M(Φω,c) +

1

4
‖Φω,c‖4L4

To calculate the L4-norm, we prepare the following elementary integration formulae.

Lemma 4.2.3. Let −1 < α. Then we have

∫ ∞

−∞

dy

(cosh y + α)2
=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

2

1−α2
− 4α

(1−α2)3/2
tan−1

√
1−α

1+α
if |α|<1,

2

3
if α=1,

− 2

α2−1
+

2α

(α2−1)3/2
log
(
α+

√
α2−1

)
if α>1.

(4.2.21)

Proof. Change variables t = ey and apply the formula 3.252, 4 in [23].

By using Lemma 4.2.3, we have the following proposition.

Proposition 4.2.4. The momentum of the solitons is represented as follows; if γ > 0
and −2

√
ω < c ≤ 2

√
ω or if γ < 0 and −2

√
ω < c < −2s∗

√
ω, we have

P (φω,c) =
c

2

(
−1 +

1

γ

)
M(φω,c) +

2

γ

√
4ω − c2.(4.2.22)

If γ = 0 and −2
√
ω < c < 0, we have

P (φω,c) = −2ω + c2

3c
M(φω,c).(4.2.23)

Remark 4.2.5. The momentum is represented by the same formula in the cases γ > 0
and γ < 0 although each mass is represented by the different functions in these cases.
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Proof. Let γ and (ω, c) satisfy (4.1.10). By Theorem 4.1.1, the momentum in the case
c = 2

√
ω is obtained4 by taking the limit

lim
s→1−0

P (φω,2s√ω) = P (φω,2√ω).

Hence we may consider the only case ω > c2/4. We note that Φ2
ω,c(x) is rewritten as

Φ2
ω,c(x) =

2(4ω − c2)√
c2 + γ(4ω − c2)

· 1

cosh(
√
4ω − c2x) + α

,

where α is defined by (4.2.6). Then we have

‖Φω,c‖4L4 =
4(4ω − c2)3/2

c2 + γ(4ω − c2)

∫ ∞

−∞

dy

(cosh y + α)2
.(4.2.24)

We divide three cases in the same way as the proof of Proposition 4.2.2.
Case 1: γ > 0 and −2

√
ω < c < 2

√
ω. In this case we note that |α| < 1. By Lemma

4.2.3, (4.2.8) and (4.2.2), we obtain that

‖Φω,c‖4L4 =
4(4ω − c2)3/2

c2 + γ(4ω − c2)
·
[

2

1− α2
− 4α

(1− α2)3/2
tan−1

√
1− α

1 + α

]
(4.2.25)

=
8

γ

√
4ω − c2 +

16c

γ3/2
tan−1

√
1 + β

1− β

=
8

γ

√
4ω − c2 +

2c

γ
M(Φω,c).

From (4.2.20) and (4.2.25), we have

P (φω,c) = − c

2
M(Φω,c) +

1

4
‖Φω,c‖4L4

=
c

2

(
−1 +

1

γ

)
M(Φω,c) +

2

γ

√
4ω − c2.

Case 2: γ < 0 and −2
√
ω < c < 0. In this case we note that α = 1. By Lemma 4.2.3

and (4.2.4), we obtain that

‖Φω,c‖4L4 =
4(4ω − c2)3/2

c2

∫ ∞

−∞

dy

(cosh y + 1)2
(4.2.26)

=
8(4ω − c2)3/2

3c2

= −2(4ω − c2)

3c
M(Φω,c).

4The proof of Theorem 4.1.1 is proved in Section 4.3, which is independent of the proof of Proposition
4.2.4. One can also calculate the momentum in the case c = 2

√
ω directly.
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From (4.2.20) and (4.2.26), we have

P (φω,c) = − c

2
M(Φω,c) +

1

4
‖Φω,c‖4L4

= −2ω + c2

3c
M(Φω,c).

Case 3: γ > 0 and −2
√
ω < c < −2s∗

√
ω. In this case we note that α > 1. By

Lemma 4.2.3, (4.2.8) and (4.2.5), we obtain that

‖Φω,c‖4L4 =
4(4ω − c2)3/2

c2 + γ(4ω − c2)
·
[
− 2

α2 − 1
+

2α

(α2 − 1)3/2
log
(
α +

√
α2 − 1

)]
(4.2.27)

=
8

γ

√
4ω − c2 − 8c

(−γ)3/2
log
(
α +

√
α2 − 1

)
=

8

γ

√
4ω − c2 − 2c

−γ
M(Φω,c).

This is exactly the same as the formula (4.2.25). Hence the momentum has the same
formula as the Case 1.

By the Pohozaev identity, the energy of the solitons is represented by the momentum.

Proposition 4.2.6. Let γ and (ω, c) satisfy (4.1.10). Then we have

E(φω,c) = − c

4
P (φω,c).(4.2.28)

Proof. For λ > 0, let uλ(x) = λ1/2u(λx). It is easily verified that

Sω,c(φ
λ
ω,c) = E(φλω,c) +

ω

2
M(φλω,c) +

c

2
P (φλω,c)(4.2.29)

= λ2E(φω,c) +
ω

2
M(φω,c) + λ · c

2
P (φω,c).

Since S ′
ω,c(φω,c) = 0, we have

d

dλ
Sω,c(φ

λ
ω,c)

∣∣∣∣
λ=1

=

〈
S ′
ω,c(φω,c),

1

2
φω,c + xφ′

ω,c

〉
= 0.

From (4.2.29) we deduce that

0 =
d

dλ
Sω,c(φ

λ
ω,c)

∣∣∣∣
λ=1

= 2E(φω,c) +
c

2
P (φω,c).

Hence the result follows.
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Figure 4.3: The function s �→ P (φ1,2s) for several values of b > −3/16.

4.2.3 Positivity of the momentum

The effect of the momentum plays an essential role in the arguments on both global
existence and orbital stability of the solitons. In this subsection we study the sign of the
momentum of the soliton. Let ω > 0 and let s satisfy

if γ > 0 ⇔ b > −3/16, −1 < s ≤ 1,

if γ ≤ 0 ⇔ b ≤ −3/16, −1 < s < −s∗.
(4.2.30)

Since P (φω,2s√ω) =
√
ωP (φ1,2s) from Proposition 4.2.4, it is enough to check the sign of

P (φ1,2s).

Proposition 4.2.7. Let s satisfy (4.2.30). Then the following properties hold:

(i) If b < 0, P (φ1,2s) > 0 for any s satisfying (4.2.30).

(ii) If b = 0, P (φ1,2s) > 0 for s ∈ (−1, 1) and P (φ1,2) = 0.

(iii) If b > 0, there exists a unique s∗=s∗(b)∈(0, 1) such that P (φ1,2s∗)=0. Moreover,
we have P (φ1,2s) > 0 for s ∈ (−1, s∗) and P (φ1,2s) < 0 for s ∈ (s∗, 1].

Remark 4.2.8. As in Figure 4.3, the zero point of the function s �→ P (φ1,2s) moves to
the right and converges to 1 as b ↓ 0. This remark is rigorously proved below.

Proof. First we note that φ1,−2 is the zero solution of the equation (4.1.4) and

lim
s→−1+0

P (φ1,2s) = P (φ1,−2) = 0,(4.2.31)

which follows from Proposition 4.2.4.
(i) If b = −3/16, the positivity of the momentum is obvious from the formula (4.2.23).

Let us consider the case −3/16 < b < 0. First we note that the formula (4.2.22) is
rewritten as

P (φ1,2s) = s

(
−1 +

1

γ

)
M(φ1,2s) +

4

γ

√
1− s2.(4.2.32)
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Since −1 + 1
γ
> 0, P (φ1,2s) > 0 for s ∈ [0, 1] follows from (4.2.32). It is easily verified

that the function (−1, 0) � s �→ P (φ1,2s) is continuous and strictly increasing. Therefore,
from (4.2.31) we have

0 = P (φ1,−2) < P (φ1,2s)

for s ∈ (−1, 0). The proof in the case b < −3/16 is done similarly.
(ii) This is obvious from the formula (4.2.32).
(iii) Since −1 + 1

γ
< 0 in this case, P (φ1,2s) > 0 for s ∈ (−1, 0] follows from (4.2.32).

We note that

P (φ1,0) =
4

γ
> 0,

P (φ1,2) =

(
−1 +

1

γ

)
M(φ1,2) = −4π (γ − 1)

γ3/2
< 0,

and the function [0, 1] � s �→ P (φ1,2s) is continuous and strictly decreasing. Therefore
there exists s∗ ∈ (0, 1) such that P (φ1,2s∗) = 0, P (φ1,2s) > 0 for s ∈ (0, s∗) and P (φ1,2s) <
0 for s ∈ (s∗, 1]. This completes the proof.

4.3 Connection between two types of the solitons

In this section we prove Theorem 4.1.1. It is enough to discuss the convergence of
φ1,2s as s → 1. First we prove the pointwise convergence.

Proposition 4.3.1. Let b > −3/16. For any x ∈ R we have

lim
s→1−0

φ1,2s(x) = φ1,2(x).(4.3.1)

Proof. Fix any x ∈ R. First we discuss the convergence of Φ1,2s(x). From the explicit
formula (4.1.8), we have

Φ2
1,2s(x) =

4(1− s2)√
s2 + γ(1− s2) cosh

(
2
√
1− s2x

)− s
(4.3.2)

for s ∈ (−1, 1). By the Taylor expansion of cosh, the denominator is rewritten as√
s2 + γ(1− s2)

(
1 + 2(1− s2)x2 +O

(
(1− s2)2

))− s.(4.3.3)

By the Taylor expansion of the function h �→ √
s2 + h, we have

(4.3.3) =
γ

2s
(1− s2) + 2(1− s2)

√
s2 + γ(1− s2)x2 +O

(
(1− s2)2

)
= (1− s2)

( γ

2s
+ 2
√

s2 + γ(1− s2)x2 +O
(
1− s2

))
.
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We note that the numerator and denominator share a common factor 1− s2. Hence we
deduce that

Φ2
1,2s(x) =

4
γ
2s

+ 2
√

s2 + γ(1− s2)x2 +O (1− s2)

−→
s→1−0

8

γ + 4x2
= Φ2

1,2(x).

From this and the formula (4.1.6), the result follows.

To complete the proof of Theorem 4.1.1, we effectively use the Brézis–Lieb lemma
(see Lemma 3.2.10). For convenience we write the statement again.

Lemma 4.3.2 ([11]). Let 1 ≤ p < ∞. Let {fn} be a bounded sequence in Lp(R) and
fn → f a.e. in R as n → ∞. Then we have

‖fn‖pLp − ‖fn − f‖pLp − ‖f‖pLp → 0

as n → ∞.

Proof of Theorem 4.1.1. From Proposition 4.2.2 and Proposition 4.3.1, we have

lim
s→1−0

φ1,2s(x) = φ1,2(x) for all x ∈ R,

lim
s→1−0

‖φ1,2s‖2L2 = ‖φ1,2‖2L2 .

Applying Lemma 4.3.2, we have

lim
s→1−0

‖φ1,2s − φ1,2‖2L2 = 0.(4.3.4)

In the same way, we also have

lim
s→1−0

‖Φ1,2s − Φ1,2‖2L2 = 0.(4.3.5)

Here we recall that Φ1,2s is the solution of the equation

−Φ′′ + (1− s2)Φ + s|Φ|2Φ− 3

16
γ|Φ|4Φ = 0.(4.3.6)

We note that

‖Φ1,2s‖2L∞ = Φ2
1,2s(0)

=
4(1− s2)√

s2 + γ(1− s2)− s

=
4

γ

(√
s2 + γ(1− s2) + s

)
.
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This yields that the function (−1, 1) � s �→ ‖Φ1,2s‖L∞ is strictly increasing and

lim
s→1−0

‖Φ1,2s‖2L∞ =
8

γ
= ‖Φ1,2‖2L∞ .

Especially we have

max
s∈(−1,1]

‖Φ1,2s‖L∞ = ‖Φ1,2‖L∞ .(4.3.7)

By Proposition 4.2.2, (4.3.7) and (4.3.5), we obtain

‖sΦ3
1,2s − Φ3

1,2‖L2 ≤ (1− s)‖Φ3
1,2s‖L2 + ‖Φ3

1,2s − Φ3
1,2‖L2

≤ (1− s)‖Φ1,2‖2L∞‖Φ1,2‖L2 + 3‖Φ1,2‖2L∞‖Φ1,2s − Φ1,2‖L2

−→
s→1−0

0.

Similarly, we have

‖Φ5
1,2s − Φ5

1,2‖L2 ≤ 4‖Φ1,2‖4L∞‖Φ1,2s − Φ1,2‖L2

−→
s→1−0

0.

Hence, by using the equation (4.3.6), we deduce that

‖Φ′′
1,2s − Φ′′

1,2‖L2 ≤ (1− s2)‖Φ1,2s‖2L2 + ‖sΦ3
1,2s − Φ3

1,2‖L2

+
3

16
γ‖Φ5

1,2s − Φ5
1,2‖L2

−→
s→1−0

0.

From this and (4.3.5) we have

lim
s→1−0

‖Φ1,2s − Φ1,2‖H2 = 0.

From the formula (4.1.6), this yields that

lim
s→1−0

‖φ1,2s − φ1,2‖H2 = 0.

The rest of the proof is done by using the equation (4.1.4) and a standard bootstrap
argument.

4.4 Gauge transformation

The equation (DNLSb) has various equivalent forms under gauge transformation. In
this section we discuss the gauge transformations and their application. First we recall
the result of local well-posedness for (DNLSb) in the energy space.
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Theorem 4.4.1 ([58]). For every u0 ∈ H1(R), there exist 0 < Tmin, Tmax ≤ ∞ and a
unique, maximal solution u ∈ C((−Tmin, Tmax), H

1(R)) ∩ L4((−Tmin, Tmax),W
1,∞(R)) of

(DNLSb) with u(0) = u0. Furthermore, the following properties hold:

(i) If Tmax < ∞ (resp., if Tmin < ∞), then ‖∂xu(t)‖L2 → ∞ as t ↑ Tmax (resp., as
t ↓ −Tmin).

(ii) There is conservation of energy, mass and momentum; i.e., E(u(t)) = E(u0),
M(u(t)) = M(u0) and P (u(t)) = P (u0) for all t ∈ (−Tmin, Tmax).

(iii) Continuous dependence is satisfied in the following sense; if u0n → u0 in H1(R)
and if I ⊂ (−Tmin(u0), Tmax(u0)) is a closed interval, then the maximal solution
un of (DNLSb) with un(0) = u0n is defined on I for n large enough and satisfies
un → u in C(I,H1(R)).

In [58] the proof of Theorem 4.4.1 is done by transforming the equation (DNLSb)
into a new system of equations as follows; see also [31, 32, 33]. For the solution u of
(DNLSb) we set

ϕ(t, x) = exp

(
i

2

∫ x

−∞
|u(t, y)|2dy

)
u(t, x),

ψ(t, x) = exp

(
i

2

∫ x

−∞
|u(t, y)|2dy

)
∂u(t, x),

then new functions ϕ and ψ formally satisfy{
i∂tϕ+ ∂2

xϕ = iϕ2ψ + f(ϕ),

i∂tψ + ∂2
xψ = −iψ2ϕ+ ∂ϕf(ϕ)ψ + ∂ϕf(ϕ)ψ,

(4.4.1)

where f(ϕ) = −b|ϕ|4ϕ. Since the system (4.4.1) has no loss of derivatives unlike the
original equation (DNLSb), one can solve the Cauchy problem by the fixed point argu-
ment. Note that in order to construct the solution of (DNLSb) through the system, we
need to solve the equation (4.4.1) under the constraint condition

ψ = ∂ϕ− i

2
|ϕ|2ϕ,

which needs more or less complex calculation; see [33] for details. In Chapter 2 we
took a more direct approach without using a system of equations. This approach is also
applicable to the equation (DNLSb).

We note that the gauge transformation plays a key role when one transforms the
equation (DNLSb) into a system of equations (4.4.1). Here we consider more general
gauge transformations as seen in [72]. For a ∈ R we define Ga : H1(R) → H1(R) by

Ga(u)(t, x) = exp

(
ia

∫ x

−∞
|u(t, y)|2dy

)
u(t, x).(4.4.2)

A direct computation shows the following.
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Proposition 4.4.2. Let a ∈ R, and let u ∈ C((−Tmin, Tmax), H
1(R)) be a maximal

solution of (DNLSb). Then v = Ga(u) ∈ C((−Tmin, Tmax), H
1(R)), and v satisfies the

equation

i∂tv + ∂2
xv + (−2a+ 1)i|v|2∂xv − 2aiv2∂xv +

(
a2 +

a

2
+ b
)
|v|4v = 0.(4.4.3)

Moreover, the equation (4.4.3) has the following conserved quantities:

Ea(v) =
1

2
‖∂xv‖2L2 +

(
a− 1

4

)(
i|v|2∂xv, v

)
+

(
a2

2
− a

4
− b

6

)
‖v‖6L6 ,

Ma(v) = ‖v‖2L2 ,

Pa(v) = (i∂xv, v) + a‖v‖4L4 .

It is important to choose the suitable parameter a ∈ R depending on the situation.
If we set a = 1/2, the term i|v|2∂v is removed in (4.4.3) and it is useful when one treats
the Fourier restriction norm (see [66, 18, 19]).

When a = 1/4 the interaction term with derivative in the energy is canceled out,
which yields the advantage of giving a sufficient condition for global existence of solutions
in the energy space (see [32, 72, 73]). In this chapter we apply the gauge transformation
in the case a = 1/4 for giving the variational characterization of the solitons including
the case b < 0. By Proposition 4.4.2, v = G1/4(u) satisfies the equation

i∂tv + ∂2
xv +

i

2
|v|2∂xv − i

2
v2∂xv +

3

16
γ|v|4v = 0,(DNLSb′)

where γ = 1 + 16b/3. The conserved quantities of (DNLSb′) are as follows:

E(v) := E1/4(v) =
1

2
‖∂xv‖2L2 − γ

32
‖v‖6L6 ,(Energy)

M(v) := M1/4(v) = ‖v‖2L2 ,(Mass)

P(v) := P1/4(v) = (i∂xv, v) +
1

4
‖v‖4L4 .(Momentum)

We note that the energy functional E(v) is nonnegative if γ ≤ 0. Hence one can easily
prove the following.

Proposition 4.4.3. Let b ≤ −3/16. For every u0 ∈ H1(R), the maximal H1(R)-solution
u of (DNLSb) given by Proposition 4.4.2 is global and

sup
t∈R

‖u(t)‖H1 ≤ C(‖u0‖H1) < ∞.(4.4.4)

Proof. Set v0 = G1/4(u0) and v = G1/4(u). From Proposition 4.4.2, we have

‖∂xv(t)‖2L2 ≤ 2E(v(t)) = 2E(v0) = 2E(u0)

for all t ∈ (−Tmin, Tmax). This gives that Tmin = Tmax = ∞ and

sup
t∈R

‖v(t)‖2H1 ≤ 2E(u0) +M(u0).

Since u = G−1/4(v), we deduce that (4.4.4).
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When b > −3/16, if we apply the following sharp Gagliardo–Nirenberg inequality
(see [71])

‖f‖6L6 ≤ 4

π2
‖f‖4L2‖∂xf‖2L2 ,(4.4.5)

we deduce that if the initial data u0 ∈ H1(R) satisfying ‖u0‖2L2 < 2π√
γ
, then the cor-

responding H1(R)-solution u of (DNLSb) is global. A similar approach was originally
taken in [32, 33, 58].

Finally, we discuss the solitons of (DNLSb′). Let (ω, c) satisfy (4.1.10). (DNLSb′)
has a two-parameter family of solitons

vω,c(t, x) = G1/4(uω,c)(t, x) = eiωtϕω,c(x− ct),(4.4.6)

where ϕω,c is defined by

ϕω,c(x) = ei
cx
2 Φω,c(x).

We note that ϕω,c satisfies the equation

−ϕ′′ + ωϕ+ icϕ′ +
c

2
|ϕ|2ϕ− 3

16
γ|ϕ|4ϕ = 0,(4.4.7)

which can be written as S ′
ω,c(ϕ) = 0, where

Sω,c(ϕ) = E(ϕ) + ω

2
M(ϕ) +

c

2
P(ϕ).

Since

E(G1/4(u)) = E(u), M(G1/4(u)) = M(u), P(G1/4(u)) = P (u),

we note that

Sω,c(ϕω,c) = Sω,c(G1/4(φω,c)) = Sω,c(φω,c) = d(ω, c).(4.4.8)

4.5 Variational characterization

In this section we give a variational characterization of the soliton vω,c defined by
(4.4.6). Here we assume that γ and (ω, c) satisfy

if γ > 0 ⇔ b > −3/16, −2
√
ω < c ≤ 2

√
ω,

if γ = 0 ⇔ b = −3/16, −2
√
ω < c < 0.

(4.5.1)

We prepare some notations. First we define the functional spaces by

ϕ ∈ Xω,c ⇐⇒
{

ϕ ∈ H1(R) if ω > c2/4,

e−i
cx
2 ϕ ∈ Ḣ1(R) ∩ L4(R) if c = 2

√
ω,

(4.5.2)

‖ϕ‖Xc2/4,c
:= ‖e−i c2 ·ϕ‖Ḣ1∩L4 .
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Note that H1(R) ⊂ Xc2/4,c. We define the functional Kω,c by

Kω,c(ϕ) := ‖∂xϕ‖2L2 + ω‖ϕ‖2L2 + c (∂xϕ, ϕ) +
c

2
‖ϕ‖4L4 − 3

16
γ‖ϕ‖6L6 .(4.5.3)

Note that Kω,c(ϕ) =
d
dλ

Sω,c(λu)|λ=1. We consider the following minimization problem:

μ(ω, c) := inf {Sω,c(ϕ) : ϕ ∈ Xω,c \ {0},Kω,c(ϕ) = 0} .
We introduce the sets Gω,c and Mω,c defined by

Gω,c :=
{
ϕ ∈ Xω,c \ {0} : S ′

ω,c(ϕ) = 0
}
,

Mω,c := {ϕ ∈ Xω,c \ {0} : Sω,c(ϕ) = μ(ω, c),Kω,c(ϕ) = 0} .
The element of Gω,c is called a ground state. Mω,c is the set of minimizers of Sω,c on the
Nehari manifold. The main result in this section is the following.

Proposition 4.5.1. Let γ and (ω, c) satisfy (4.5.1). Then we have

Gω,c = Mω,c =
{
eiθ0ϕω,c(· − x0) : θ0 ∈ [0, 2π), x0 ∈ R

}
,(4.5.4)

and d(ω, c) = μ(ω, c).

Our proof of Proposition 4.5.1 depends on the argument in [17]; see also Chapter 3
for the case c = 2

√
ω. For convenience of notation, we define

Lω,c(ϕ) := ‖∂xϕ‖2L2 + ω‖ϕ‖2L2 + c (∂xϕ, ϕ) ,

Iω,c(ϕ) := Sω,c(ϕ)− 1

4
Kω,c(ϕ) =

1

4
Lω,c(ϕ) + γ

64
‖ϕ‖6L6 .

First we prove the following lemma.

Lemma 4.5.2. Let γ and (ω, c) satisfy (4.5.1). Then the following properties hold:

(i) If ω > c2/4, there exists C1 = C1(ω, c) such that

Lω,c(ϕ) ≥ C1‖ϕ‖2H1 for ϕ ∈ H1(R).

(ii) μ(ω, c) > 0.

(iii) If ϕ ∈ Xω,c satisfies Kω,c(ϕ) < 0, then μ(ω, c) < Iω,c(ϕ).
Proof. (i) See Lemma 7 (1) in [17].

(ii) Case 1: ω > c2/4. Let ϕ ∈ H1(R) \ {0} satisfy Kω,c(ϕ) = 0. By (i), (4.5.3) and
the Sobolev inequality, there exists C2 > 0 such that

C1‖ϕ‖2H1 ≤ Lω,c(ϕ) = − c

2
‖ϕ‖4L4 +

3

16
γ‖ϕ‖6L6

≤ |c|
2
‖ϕ‖L2‖ϕ‖3L6 +

3

16
γ‖ϕ‖6L6

≤ C1

2
‖ϕ‖2H1 + C2‖ϕ‖6H1 .
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This yields that ‖ϕ‖4H1 ≥ C1

2C2
. Hence we have

μ(ω, c) = inf
{Iω,c(ϕ) : ϕ ∈ H1(R) \ {0},Kω,c(ϕ) = 0

}
≥ 1

4
inf
{Lω,c(ϕ) : ϕ ∈ H1(R) \ {0},Kω,c(ϕ) = 0

}
≥ C1

4

√
C1

2C2

> 0.

Case 2: c = 2
√
ω. In this case we have

Lω,c(ϕ) =
∥∥∥∥∂xϕ− i

2
cϕ

∥∥∥∥2
L2

+

(
ω − c2

4

)
‖ϕ‖2L2 =

∥∥∂x (e−i cx2 ϕ)∥∥2L2 > 0(4.5.5)

for ϕ ∈ Xω,c \ {0}. This yields that μ(ω, c) ≥ 0. We prove μ(ω, c) > 0 by contradiction.
Assume that μ(ω, c) = 0. Then we can take the minimizing sequence {ϕn} ⊂ Xω,c \ {0}
such that

Sω,c(ϕn) −→
n→∞

0 and Kω,c(ϕn) = 0 for all n ∈ N.(4.5.6)

Since Sω,c is rewritten as

Sω,c(ϕ) = 1

4
Kω,c(ϕ) +

1

4
Lω,c(ϕ) + γ

64
‖ϕ‖6L6 ,(4.5.7)

from (4.5.5) and (4.5.6), we obtain that∥∥∂x (e−i cx2 ϕn)∥∥L2 , ‖ϕn‖L6 −→
n→∞

0.

By using an elementary interpolation inequality

‖f‖4L∞ ≤ 4‖f‖3L6‖∂xf‖L2 ,

we have ‖ϕn‖L∞ → 0 as n → ∞. Hence we have

0 = Kω,c(ϕn) = Lω,c(ϕn) + c

2
‖ϕn‖4L4 − 3

16
γ‖ϕn‖6L6

≥
(
c

2
− 3

16
γ‖ϕn‖2L∞

)
‖ϕn‖4L4 > 0

for large n ∈ N, which contradicts (4.5.6).
(iii) Let ϕ ∈ Xω,c \ {0} satisfy Kω,c(ϕ) < 0. Then there exists a unique λ0 ∈ (0, 1)

such that Kω,c(λ0ϕ) = 0. From the definition of μ(ω, c), we have

μ(ω, c) ≤ Iω,c(λ0ϕ) =
λ2
0

4
Lω,c(ϕ) + λ6

0γ

64
‖ϕ‖6L6 < Iω,c(ϕ).

This completes the proof.
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By the standard ODE arguments, we have the following lemma.

Lemma 4.5.3. Let γ and (ω, c) satisfy (4.1.10). Then we have

Gω,c =
{
eiθ0ϕω,c(· − x0) : θ0 ∈ [0, 2π), x0 ∈ R

}
.

Next we prove the following result.

Lemma 4.5.4. Let γ and (ω, c) satisfy (4.5.1). Assume that Mω,c �= ∅. Then we have
Gω,c = Mω,c. Moreover we have d(ω, c) = μ(ω, c).

Proof. First we prove Mω,c ⊂ Gω,c. Let ϕ ∈ Mω,c. Since ϕ is a minimizer on the Nehari
manifold, there exists a Lagrange multiplier η ∈ R such that S ′

ω,c(ϕ) = ηK′
ω,c(ϕ). Thus

we have

0 = Kω,c(ϕ) =
〈S ′

ω,c(ϕ), ϕ
〉
= η
〈K′

ω,c(ϕ), ϕ
〉
.

By Kω,c(ϕ) = 0 and ϕ �= 0, we have〈K′
ω,c(ϕ), ϕ

〉
= 2Lω,c(ϕ) + 2c‖ϕ‖4L4 − 9

8
γ‖ϕ‖6L6

= −2Lω,c(ϕ)− 3

8
γ‖ϕ‖6L6 < 0.

This yields that η = 0 and ϕ ∈ Gω,c, which implies Mω,c ⊂ Gω,c. Conversely, let ϕ ∈ Gω,c.
By Lemma 4.5.3, there exist θ0 ∈ [0, 2π) and x0 ∈ R such that ϕ = eiθ0ϕω,c(·−x0). Since
Mω,c �= ∅, we can take some ψ ∈ Mω,c. By Lemma 4.5.3 again, there exist θ1 ∈ [0, 2π)
and x1 ∈ R such that ψ = eiθ1ϕω,c(· − x1). Thus we have

Sω,c(ϕ) = Sω,c(ϕω,c) = Sω,c(ψ) = μ(ω, c).

Since Kω,c(ϕ) =
〈S ′

ω,c(ϕ), ϕ
〉
, we deduce that ϕ ∈ Mω,c. This completes the proof.

To complete the proof of Proposition 4.5.1, we need to prove that Mω,c �= ∅. To this
end we use Lieb’s concentration compactness (see Lemma 3.2.9). For convenience we
write the statement again.

Lemma 4.5.5 ([43, 7]). Let p ≥ 2. Let {fn} be a bounded sequence in Ḣ1(R) ∩ Lp(R).
Assume that there exists q ∈ (p,∞) such that lim supn→∞ ‖fn‖Lq > 0. Then, there exist
{yn} ⊂ R and f ∈ Ḣ1(R) ∩ Lp(R) \ {0} such that {fn(· − yn)} has a subsequence that
converges to f weakly in Ḣ1(R) ∩ Lp(R).

The assertion Mω,c �= ∅ follows from the following proposition.

Proposition 4.5.6. Let γ and (ω, c) satisfy (4.5.1). If a sequence {ϕn}⊂Xω,c satisfies

Sω,c(ϕn) → μ(ω, c) and Kω,c(ϕn) → 0 as n → ∞,(4.5.8)

then there exist a sequence {yn} ⊂ R and v ∈ Mω,c such that {ϕn(· − yn)} has a subse-
quence that converges to v strongly in Xω,c.
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Remark 4.5.7. If we only prove that Mω,c �= ∅, we may assume that Kω,c(ϕn) = 0
for all n ∈ N. However, when one proves orbital stability of the solitons by variational
arguments, it is essentially necessary to consider the minimizing sequence {ϕn} satisfying
Kω,c(ϕn) �= 0; see Section 4.7.

Proof. Step 1. {ϕn} is bounded in Xω,c. If ω > c2/4, this follows from (4.5.7) and
Lemma 4.5.2 (i). If c = 2

√
ω, from (4.5.5) and (4.5.7) we obtain that

sup
n∈N

‖ϕn‖6L6 , sup
n∈N

‖∂x
(
e−i

cx
2 ϕn
) ‖2L2 < ∞.

Since we have

Kω,c(ϕn) = Lω,c(ϕn) + c

2
‖ϕn‖4L4 − 3

16
γ‖ϕn‖6L6 ,(4.5.9)

we deduce that {ϕn} is also bounded in L4(R).
Step 2. lim supn→∞ ‖ϕn‖L6 > 0. Suppose that limn→∞ ‖ϕn‖L6 = 0. If ω > c2/4, by the
boundedness of {ϕn} in L2(R) we have

‖ϕn‖4L4 ≤ ‖ϕn‖L2‖ϕn‖3L6 −→
n→∞

0.

From (4.5.9) we deduce that Lω,c(ϕn) → 0. By (4.5.7), we have Sω,c(ϕn) → 0, but this
gives a contradiction with μ(ω, c) > 0. If c = 2

√
ω, from (4.5.9) we obtain that

Lω,c(ϕn), ‖ϕn‖4L4 −→
n→∞

0,

which yields Sω,c(ϕn) → 0 again and gives a contradiction.
Step 3. By Step 1, Step 2 and Lemma 4.5.5, there exist {yn} ⊂ R and v ∈ Xω,c \ {0}
such that a subsequence of {ϕ(· − yn)} (we denote it by {vn}) converges to v weakly in
Xω,c. Taking a subsequence if necessary, we have vn → v a.e. in R. By applying Lemma
4.3.2, we have

Kω,c(vn)−Kω,c(vn − v)−Kω,c(v) → 0,(4.5.10)

Iω,c(vn)− Iω,c(vn − v)− Iω,c(v) → 0(4.5.11)

as n → ∞.
Step 4. Kω,c(v) ≤ 0. Suppose that Kω,c(v) > 0. By Kω,c(vn) → 0 and (4.5.10), we have

Kω,c(vn − v) → Kω,c(v) < 0.

This implies that Kω,c(vn− v) < 0 for large n ∈ N. Applying Lemma 4.5.2 (iii), we have
μ(ω, c) < Iω,c(vn − v) for large n ∈ N. By (4.5.8) and

Sω,c(ϕ) = 1

4
Kω,c(ϕ) + Iω,c(ϕ),
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we have Iω,c(vn) → μ(ω, c). Combined with (4.5.11), we have

Iω,c(v) = lim
n→∞

{Iω,c(vn)− Iω,c(vn − v)} ≤ μ(ω, c)− μ(ω, c) = 0,

which yields that v = 0. This is a contradiction.
Step 5. By Step 4, Lemma 4.5.2 (iii), and the weakly lower semicontinuity of Iω,c, we
have

μ(ω, c) ≤ Iω,c(v) ≤ lim inf
n→∞

Iω,c(vn) = μ(ω, c).

Thus we have Iω,c(v) = μ(ω, c). By Step 4 and Lemma 4.5.2 (iii), we have Kω,c(v) = 0.
Therefore v ∈ Mω,c. By (4.5.11) and Iω,c(v) = μ(ω, c), we have Iω,c(vn − v) → 0, which
yields that vn → v strongly in Xω,c. This completes the proof.

4.6 Global existence

In this section we prove Theorem 4.1.3 and Theorem 4.1.11. To this end, we apply
the potential theory inspired from the arguments by Payne and Sattinger [60]. Consider
the following subset of the energy space:

Wω,c :=
{
ϕ ∈ H1(R) : Sω,c(ϕ) ≤ d(ω, c),Kω,c(v0) ≥ 0

}
.

By using the variational characterization of the solitons in Section 4.5, we have the
following lemma.

Lemma 4.6.1. Let γ and (ω, c) satisfy (4.5.1). If v0 ∈ Wω,c, then the H1(R)-solution
v of (DNLSb′) with v(0) = v0 exists globally in time and v(t) ∈ Wω,c for all t ∈ R.
Moreover we have

‖∂xv‖2L∞(R,L2) ≤ 8Sω,c(v0) + c2

2
M(v0).(4.6.1)

Remark 4.6.2. This lemma yields the following global result;

if b > −3/16, v0 ∈
⋃

−2
√
ω<c≤2

√
ω

ω>0

Wω,c,

if b = −3/16, v0 ∈
⋃

−2
√
ω<c<0
ω>0

Wω,c,
(4.6.2)

then H1(R)-solution v of (DNLSb′) with v(0) = v0 exists globally in time.

Proof. Let v ∈ C((−Tmin, Tmax), H
1(R)) be a maximal solution of (DNLSb′) with v(0) =

v0. If Kω,c(v0) = 0, by Proposition 4.5.1, we have v0 = 0 or v0 = eiθ0ϕω,c(· − x0) for
some θ0, x0 ∈ R. By uniqueness we have v(t) = 0 or v(t) = eiωteiθ0ϕω,c(· − ct − x0)
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for all t ∈ R, respectively. This implies that v(t) ∈ Wω,c for all t ∈ R. Consider the
case Kω,c(v0) > 0. If there exists t∗ ∈ (−Tmin, Tmax) such that Kω,c(v(t∗)) = 0, the
above argument gives that Kω,c(v(0)) = 0, which is a contradiction. Since the function
t �→ Kω,c(v(t)) is continuous, we deduce that Kω,c(v(t)) > 0 for all t ∈ (−Tmin, Tmax).
This implies that v(t) ∈ Wω,c for all t ∈ (−Tmin, Tmax).

Next we prove the solution v exists globally in time. By (4.5.7) and v(t) ∈ Wω,c, we
obtain that

Sω,c(v0) = Sω,c(v(t))
=

1

4
Kω,c(v(t)) +

1

4
Lω,c(v(t)) + γ

64
‖v(t)‖6L6

≥ 1

4
Lω,c(v(t))

≥ 1

4

∥∥∂x (e−i cx2 v(t))∥∥2L2

for all t ∈ (−Tmin, Tmax). This implies that Tmin = Tmax = ∞. More precisely we have

‖∂xv(t)‖2L2 ≤
(∥∥∥∂xv(t)− c

2
iv(t)
∥∥∥
L2

+
|c|
2
‖v(t)‖L2

)2

≤ 2
∥∥∂x (e−i cx2 v(t))∥∥2L2 +

c2

2
M(v0)

≤ 8Sω,c(v0) + c2

2
M(v0)

for all t ∈ R. This completes the proof.

Next we examine the set Wω,c to investigate the initial data satisfying the condition
(4.6.2). To this end, we need to calculate the value of d(ω, c). Here we consider the curve
c = 2s

√
ω, where s satisfies that

if γ > 0 ⇔ b > −3/16, −1 < s ≤ 1,

if γ = 0 ⇔ b = −3/16, −1 < s < 0.
(4.6.3)

We note that d(ω, 2s
√
ω) = ωd(1, 2s).

Lemma 4.6.3. Let γ ≥ 0. Then the following properties hold:

(i) If γ > 1, the function (−1, 1] � s �→ d(1, 2s) is strictly increasing on (−1, s∗) and
strictly decreasing on (s∗, 1].

(ii) If 0 < γ ≤ 1, the function (−1, 1] � s �→ d(1, 2s) is strictly increasing.

(iii) If γ = 0, the function (−1, 0) � s �→ d(1, 2s) is strictly increasing.
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Proof. From the definition we have

d(1, 2s) = S1,2s(φ1,2s) = E(φ1,2s) +
1

2
M(φ1,2s) + sP (φ1,2s).

Since S ′
1,2s(φ1,2s) = 0, we have

d

ds
d(1, 2s) = P (φ1,2s).

Hence the result follows from Proposition 4.2.7.

We are now in a position to complete the proof of Theorem 4.1.3.

Proof of Theorem 4.1.3. Fix the parameter s of the curve c = 2s
√
ω which will be de-

termined later. Let u0 ∈ H1(R), and let u ∈ C((−Tmin, Tmax), H
1(R)) be the maximal

solution of (DNLSb) with u(0) = u0. Set v0 = G1/4(u0) and v = G1/4(u). By Proposition
4.4.2, v ∈ C((−Tmin, Tmax), H

1(R)), and v satisfies (DNLSb′). We note that

M(u0) = M(v0) and P (u0) = P(v0).

For any v0 ∈ H1(R) we have

Kω,2s
√
ω(v0) = ‖∂xv0‖2L2 + ω‖v0‖2L2(4.6.4)

+ s
√
ω
(
2 (i∂xv0, v0) + ‖v0‖4L4

)− 3

16
γ‖v0‖6L6 ≥ 0

for large ω > 0, where ω depends on s and v0.
Case 1: b > 0. In this case we note that

max
s∈(−1,1]

d(1, 2s) = d(1, 2s∗)

from Lemma 4.6.3. Hence we set s = s∗. By P (φ1,2s∗) = 0 and Proposition 4.2.6, we
have

Sω,2s∗√ω(v0) ≤ d(ω, 2s∗
√
ω)

⇐⇒ E(v0) + ω

2
M(v0) + s∗

√
ωP(v0) ≤ ω

2
M(φ1,2s∗)

⇐⇒ E(v0) + s∗
√
ωP(v0) ≤ ω

2

(M(ϕ1,2s∗)−M(v0)
)
.

The last inequality holds for large ω > 0 when

M(v0) < M(ϕ1,2s∗), or M(v0) = M(ϕ1,2s∗) and P(v0) < 0.

Combined with (4.6.4), we deduce that v0 ∈ Wω,2s∗
√
ω for large ω > 0 under the assump-

tion of Theorem 4.1.3. Therefore it follows from Lemma 4.6.1 that Tmin = Tmax = ∞.
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Case 2: −3/16 < b ≤ 0. In this case we note that

max
s∈(−1,1]

d(1, 2s) = d(1, 2)

from Lemma 4.6.3. Hence we set s = 1. By Proposition 4.2.6, Proposition 4.2.4 and
M(φ1,2) =

4π√
γ
, we have

Sω,2√ω(v0) ≤ d(ω, 2
√
ω)

⇐⇒ E(v0) + ω

2
M(v0) +

√
ωP(v0) ≤ ω

2
[M(φ1,2) + P (φ1,2)]

⇐⇒ E(v0) +
√
ωP(v0) ≤ ω

2

(
4π

γ3/2
−M(v0)

)
.

The last inequality holds for large ω > 0 when

M(v0) <
4π

γ3/2
, or M(v0) =

4π

γ3/2
and P(v0) < 0.

Combined with (4.6.4), we deduce that v0 ∈ Wω,2
√
ω for large ω > 0 under the assumption

of Theorem 4.1.3. Therefore it follows from Lemma 4.6.1 that Tmin = Tmax = ∞. This
completes the proof of Theorem 4.1.3.

We apply the similar strategy to the proof of Theorem 4.1.11.

Proof of Theorem 4.1.11. We consider the curve c = 2
√
ω. Let uc be the maximal

H1(R)-solution of (DNLSb) with uc(0) = u0,c. Set v0,c = G1/4(u0,c) and vc = G1/4(uc).
By Lemma 4.6.1 it is enough to prove that v0,c ∈ Wc2/4,c for large c > 0. First we note
that

v0,c = G1/4(u0,c) = ei
cx
2 G1/4(ψ) =: ei

cx
2 ϕ.

From the definition of Sω,c, we have

Sc2/4,c(v0,c) = 1

2
Lc2/4,c(v0,c) + c

8
‖v0,c‖4L4 − γ

32
‖v0,c‖6L6

=
1

2
‖∂xϕ‖2L2 +

c

8
‖ϕ‖4L4 − γ

32
‖ϕ‖6L6 .

Since d(c2/4, c) = (c2/4)d(1, 2) and d(1, 2) > 0, we deduce that

Sc2/4,c(v0,c) ≤ d(c2/4, c)

for large c > 0. Similarly we have

Kc2/4,c(v0,c) = Lc2/4,c(v0,c) + c

2
‖v0,c‖4L4 − 3

16
γ‖v0,c‖6L6

= ‖∂xϕ‖2L2 +
c

2
‖ϕ‖4L4 − 3

16
γ‖ϕ‖6L6 ≥ 0

for large c > 0. This completes the proof.



77

In the case of b = −3/16 we have the following Proposition 4.6.4. This gives the
new perspective to the global result of Proposition 4.4.3 from the viewpoint of potential
theory.

Proposition 4.6.4. Let b = −3/16. Then we have

H1(R) =
⋃

−2
√
ω<c<0
ω>0

Wω,c.

Proof. From Proposition 4.2.4 and Proposition 4.2.6 we have

d(1, 2s) =
1− s2

3
M(φ1,2s)

for s ∈ (−1, 0). It follows from Proposition 4.2.2 that d(1, 2s) → ∞ as s → 0−. For
v0 ∈ H1(R) we can take s0 ∈ (−1, 0) such that

2 d(1, 2s0)−M(v0) > 0.(4.6.5)

We note that

Sω,2s0√ω(v0) ≤ d(ω, 2s0
√
ω)

⇐⇒ E(v0) + s0
√
ωP(v0) ≤ ω

2
(2 d(1, 2s0)−M(v0)) .

From (4.6.5) the last inequality holds for large ω > 0. Combined with (4.6.4), we deduce
that v0 ∈ Wω,2s0

√
ω for large ω > 0. Hence the result follows.

4.7 Orbital stability

In this section we study the stability of the solitons. We apply take variational
approach for the proof.

4.7.1 The case b ≥ 0

In this subsection we revisit the stability theory of the solitons in the case b ≥ 0.
First we prepare some notations. We define the functional Kω,c by

Kω,c(u) :=
d

dλ
Sω,c(λu)

∣∣∣∣
λ=1

=‖∂xu‖2L2 + ω‖u‖2L2 + c (∂xu, u)−N(u)− b‖u‖6L6 ,

where N(u) is defined by

N(u) :=
(
i|u|2∂xu, u

)
.
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We note that

Sω,c(u) =
1

2
Kω,c(u) +

1

4
N(u) +

b

3
‖u‖6L6 =:

1

2
Kω,c(u) + J(u).(4.7.1)

We define the subsets of the energy space by

A +
ω,c :=

{
u ∈ H1(R) \ {0} : Sω,c(u) < d(ω, c), Kω,c(u) > 0

}
,

B+
ω,c :=

{
u ∈ H1(R) \ {0} : Sω,c(u) < d(ω, c), J(u) < d(ω, c)

}
,

A −
ω,c :=

{
u ∈ H1(R) \ {0} : Sω,c(u) < d(ω, c), Kω,c(u) < 0

}
,

B−
ω,c :=

{
u ∈ H1(R) \ {0} : Sω,c(u) < d(ω, c), J(u) > d(ω, c)

}
.

In the same way as the proof of Proposition 4.5.6, we have the following.

Proposition 4.7.1. Let b ≥ 0 and (ω, c) satisfy −2
√
ω < c ≤ 2

√
ω. Let Xω,c be defined

by (4.5.2). If a sequence {un}⊂Xω,c satisfies

Sω,c(un) → d(ω, c) and Kω,c(un) → 0 as n → ∞,

then there exists a sequence {yn} ⊂ R and θ0, y0 ∈ R such that {un(· − yn)} has a
subsequence that converges to eiθ0φω,c(· − y0) strongly in Xω,c.

Applying the variational characterization of the soliton φω,c, we have the following;
see [17, Lemma 11] for details.

Proposition 4.7.2. Let b ≥ 0 and (ω, c) satisfy −2
√
ω < c ≤ 2

√
ω. Then A +

ω,c and
A −
ω,c are invariant under the flow of (DNLSb), i.e., if u0 belongs to A +

ω,c (resp. A −
ω,c),

then the maximal solution u(t) of (DNLSb) with u(0) = u0 belongs to A +
ω,c (resp. A −

ω,c).
Moreover, we have A ±

ω,c = B±
ω,c.

Here we review the stability theory in the papers [17] and [57]. Let (ω0, c0) satisfy
ω0 > c20/4. In [17] it was proved that if there exists ξ ∈ R

2 such that

〈d′(ω0, c0), ξ〉 �= 0, 〈d′′(ω0, c0)ξ, ξ〉 > 0,(4.7.2)

then the soliton uω0,c0 of (DNLSb) is orbitally stable. When c0 < 0, since we have

∂2
ωd(ω, c)

∣∣
(ω0,c0)

=
1

2
∂ωM(φω,c)

∣∣∣∣
(ω0,c0)

=
−4c0√

4ω0 − c20 {c20 + γ(4ω0 − c20)}
> 0,

(4.7.2) is satisfied by taking ξ = (1, 0). However, in the case c0 ≥ 0, we have

∂2
ωd(ω, c)

∣∣
(ω0,c0)

=
1

2
∂ωM(φω,c)

∣∣∣∣
(ω0,c0)

≤ 0,

∂2
cd(ω, c)

∣∣
(ω0,c0)

=
1

2
∂cP (φω,c)

∣∣∣∣
(ω0,c0)

≤ 0.
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This means that the calculation as a one-parameter ω �→ φω,c or c �→ φω,c is not enough
to prove the stability of the solitons in the case c0 ≥ 0. Instead of that, by computing
d′′(ω, c) we have the following (see Lemma 1 in [57]):

det[d′′(ω0, c0)] =
−2P (φω0,c0)√

4ω0 − c20 {c20 + γ(4ω0 − c20)}
.(4.7.3)

As we have seen in Proposition 4.2.7, P (φω0,c0) is positive when (ω0, c0) satisfies that

if b > 0, −2
√
ω0 < c0 < 2s∗

√
ω0,

if b = 0, −2
√
ω0 < c0 < 2

√
ω0.

(4.7.4)

Therefore we deduce that d′′(ω0, c0) < 0 under the condition (4.7.4). This yields the
existence of ξ ∈ R

2 satisfying (4.7.2) since d′′(ω0, c0) has one positive eigenvalue.
Our first aim in this section is to provide a simpler approach in the case c0 > 0. Let

c0 = 2s0
√
ω0 where −1 < s0 ≤ 1. Set μ0 =

√
ω0. If we consider the stability problem

along the scaling curve τ �→ ((μ0 + τ)2, 2s0(μ0 + τ)
)
, we have the following claim.

Proposition 4.7.3. Let b ≥ 0 and (ω0, c0) satisfy −2
√
ω0 < c0 ≤ 2

√
ω0. Suppose that

c0P (φω0,c0) > 0. Then, there exists ε0 > 0, for any ε ∈ (0, ε0) there exists δ > 0 such
that if u0 ∈ H1(R) satisfies ‖u0 − φω0,c0‖H1(R) < δ, then the maximal solution u(t) of
(DNLSb) with u(0) = u0 satisfies

d
(
(μ0 − ε)2, 2s0(μ0 − ε)

)
< J(u(t)) < d

(
(μ0 + ε)2, 2s0(μ0 + ε)

)
(4.7.5)

for all t ∈ (−Tmin, Tmax).

Proof. We define the function g : (−ε0, ε0) → R by

g(τ) = d
(
(μ0 + τ)2, 2s0(μ0 + τ)

)
for τ ∈ (−ε0, ε0),(4.7.6)

where ε0 > 0 is sufficiently small. Let the function g defined by (4.7.6). We note that

g(τ) = (μ0 + τ)2d(1, 2s0) for τ ∈ (−ε0, ε0),

g′(0) = 2μ0d(1, 2s0), g′′(0) = 2d(1, 2s0).

By Proposition 4.2.6 we have

2d(1, 2s0) = M(φ1,2s0) + s0P (φ1,2s0).

Let ε ∈ (0, ε0). Assume that u0 ∈ H1(R) satisfies ‖u0 − φω0,c0‖H1 < δ, where δ > 0 is
determined later. By Proposition 4.7.2 it is enough to prove that

u0 ∈ B+
(μ0+ε)2,2s0(μ0+ε)

∩ B−
(μ0−ε)2,2s0(μ0−ε).(4.7.7)
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By direct calculations we have

S(μ0±ε)2,2s0(μ0±ε)(u0) = S(μ0±ε)2,2s0(μ0±ε)(φμ20,2s0μ0) +O(δ)

= E(φμ20,2s0μ0) +
(μ0 ± ε)2

2
M(φμ20,2s0μ0)

+ s0(μ0 ± ε)P (φμ20,2s0μ0) +O(δ)

= μ2
0d(1, 2s0)± εμ0 (M(φ1,2s0) + s0P (φ1,2s0))

+
ε2

2
M(φ1,2s0) +O(δ)

= g(0)± εg′(0) +
ε2

2
M(φ1,2s0) +O(δ).

By using the Taylor expansion5, there exists τ1 = τ1(ε) ∈ (−ε0, ε0) such that

g(±ε) = g(0)± εg′(0) +
ε2

2
g′′(τ1).

Since we have

g′′(τ1) = 2d(1, 2s0) = M(φ1,2s0) + s0P (φ1,2s0)

and s0P (φ1,2s0) > 0 from the assumption, by taking small δ > 0 we obtain that

S(μ0±ε)2,2s0(μ0±ε)(u0) < g(±ε).(4.7.8)

On the other hand, by (4.7.1) and Kω0,c0(φω0,c0) = 0, we have

g(0) = J(φμ20,2s0μ0) = J(u0) +O(δ).

Since g is strictly increasing, by taking smaller δ > 0 if necessary, we obtain that

g(−ε) < J(u0) < g(ε).

Combined with (4.7.8), we deduce that (4.7.7) holds.

We note that the assumption of Theorem 4.7.3 is satisfied when (ω0, c0) satisfies
(4.7.4) and c0 > 0. Hence, as a consequence of Theorem 4.7.3, we have the following
result.

Corollary 4.7.4. Let b ≥ 0. Suppose that (ω0, c0) satisfies (4.7.4) and c0 > 0. Then the
soliton uω0,c0 of (DNLSb) is orbitally stable.

5Actually we do not need to use the Taylor expansion since the function g is the quadratic function
with respect to τ .



81

Proof. For completeness we give the proof. The result is proved by contradiction. As-
sume that there exist ε1 > 0, a sequence of the maximal solutions {un} to (DNLSb) and
a sequence {tn} ⊂ R such that

‖un(0)− φω0,c0‖H1 −→
n→∞

0,(4.7.9)

inf
(θ,y)∈R2

‖un(tn)− eiθφω0,c0(· − y)‖H1 ≥ ε1.(4.7.10)

Since Sω0,c0(un(tn)) is a conserved quantity, by (4.7.9) we have

Sω0,c0(un(tn)) = Sω0,c0(un(0)) −→
n→∞

Sω0,c0(φω0,c0) = d(ω0, c0).(4.7.11)

By (4.7.9) and Theorem 4.7.3, we obtain that

J(un(tn)) −→
n→∞

d(ω0, c0).

Combined with (4.7.1), we have

Kω0,c0(un(tn)) −→
n→∞

0.(4.7.12)

Hence, by (4.7.11), (4.7.12) and Proposition 4.7.1, there exist a sequence {yn} and θ0, y0 ∈
R such that {un(tn, · − yn)} has a subsequence, which we still denote by the same letter,
that converges to eiθ0φω0,c0(· − y0) in H1(R). Therefore we deduce that

inf
(θ,y)∈R2

‖un(tn)− eiθφω0,c0(· − y)‖H1 −→
n→∞

0,

which contradicts (4.7.10). This completes the proof.

Our approach offers new perspectives to the stability theory of a two-parameter family
of solitons. First we note that the estimate (4.7.5) is derived without any calculation of
the Hessian matrix d′′(ω, c). The calculation along the scaling curve c = 2s

√
ω is much

simpler. This indicates that the curve gives not only the scaling but also “good” measure
of stability of the solitons. It is also worthwhile to note that positivity of the momentum
of the soliton is more directly used in our proof of the stability.

In the end of this subsection we discuss the case c0 = 0. In this case we have

∂2
ωd(ω, c)

∣∣
(ω0,0)

=
1

2
∂ωM(φω,c)

∣∣∣∣
(ω0,0)

= 0,

∂2
cd(ω, c)

∣∣
(ω0,0)

=
1

2
∂cP (φω,c)

∣∣∣∣
(ω0,0)

≤ 0,

∂ω∂cd(ω, c)|(ω0,0)
= ∂c∂ωd(ω, c)|(ω0,0)

=
1

2
∂cM(φω,c)

∣∣∣∣
(ω0,0)

=
1

γ
√
ω0

> 0.
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If we set ξ = (1, ε), we have

〈d′′(ω0, 0)ξ, ξ〉 = 2ε

γ
√
ω0

+
ε2

2
∂cP (φω,c)|(ω0,0)

,

which is positive for small ε > 0. Hence the condition (4.7.2) is satisfied for the vector
ξ = (1, ε) for small ε > 0, which yields that the soliton uω0,0 is orbitally stable. We note
that ξ = (1, ε) can be considered as a tangent vector of the curve c = 2ε

√
ω at the point

(1, 2ε).

4.7.2 The defocusing case

In this subsection we study orbital stability of the solitons in the case b < 0 by
variational approach. To this end we study the stability of the solitons vω,c defined by
(4.4.6) for (DNLSb′). We note that the functional Sω,c is rewritten as

Sω,c(v) = 1

2
Kω,c(v)− c

8
‖v‖4L4 +

γ

16
‖v‖6L6 =:

1

2
Kω,c(v) + Jc(v).(4.7.13)

In a similar way as before, we define the subsets of the energy space by

C +
ω,c :=

{
v ∈ H1(R) \ {0} : Sω,c(v) < d(ω, c),Kω,c(v) > 0

}
,

D+
ω,c :=

{
v ∈ H1(R) \ {0} : Sω,c(v) < d(ω, c),Jc(v) < d(ω, c)

}
,

C −
ω,c :=

{
v ∈ H1(R) \ {0} : Sω,c(v) < d(ω, c),Kω,c(v) < 0

}
,

D−
ω,c :=

{
v ∈ H1(R) \ {0} : Sω,c(v) < d(ω, c),Jc(v) > d(ω, c)

}
.

From Proposition 4.5.1 we obtain the following result. The proof is done in the similar
way as the one of Proposition 4.7.2.

Proposition 4.7.5. Let −3/16 ≤ b < 0 and let (ω, c) satisfy (4.5.1). Then C +
ω,c and

C −
ω,c are invariant under the flow of (DNLSb′). Moreover, we have C ±

ω,c = D±
ω,c.

Proof. For convenience we give the proof. In the same way as the proof of Lemma 4.6.1
one can prove that C ±

ω,c is an invariant set. We only prove that C ±
ω,c = D±

ω,c.
If v ∈ C +

ω,c, we have

d(ω, c) > Sω,c(v) = 1

2
Kω,c(v) + Jc(v) > Jc(v),

which implies v ∈ D+
ω,c. Conversely, let v ∈ D+

ω,c. Assume that Kω,c(v) ≤ 0. By Lemma
4.5.2 (iii), we have d(ω, c) = μ(ω, c) ≤ Iω,c(v). From the definition, we have the following
relation:

Jc(v) = −1

4
Kω,c(v) + Iω,c(v),(4.7.14)
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which implies that Jc(v) ≥ d(ω, c). But, this contradicts Jc(v) < d(ω, c). Hence,
Kω,c(v) > 0, which shows v ∈ C+

ω,c. This completes the proof of C +
ω,c = D+

ω,c.
Next, we prove that C −

ω,c = D−
ω,c. If v ∈ C −

ω,c, by (4.7.14) and Lemma 4.5.2 (iii), we
have

Jc(v) = −1

4
Kω,c(v) + Iω,c(v) > Iω,c(v) > d(ω, c),

which yields v ∈ D−
ω,c. Conversely, if v ∈ D−

ω,c, by (4.7.13) we have

1

2
Kω,c(v) = Sω,c(v)− Jc(v) < d(ω, c)− d(ω, c) = 0

which yields v ∈ C −
ω,c. This completes the proof of the claim.

Let b ≥ −3/16. First we consider the case −2
√
ω0 < c0 < 0. By following the

approach in [17], we prove the following proposition.

Proposition 4.7.6. Let −3/16 ≤ b < 0 and let (ω0, c0) satisfy −2
√
ω0 < c0 < 0. Then,

there exists ε0 > 0, for any ε ∈ (0, ε0) there exists δ > 0 such that if v0 ∈ H1(R) satisfies
‖u0 − ϕω0,c0‖H1(R) < δ, then the maximal solution v(t) of (DNLSb′) with v(0) = v0
satisfies

d(ω0 − ε, c0) < Jc0(v(t)) < d(ω0 + ε, c0)(4.7.15)

for all t ∈ (−Tmin, Tmax).

Proof. We define the function h : (−ε0, ε0) → R by

h(τ) = d
(
ω0 + τ, c0

)
for τ ∈ (−ε0, ε0),(4.7.16)

where ε0 > 0 is sufficiently small. We note that

h′(0) =
1

2
M(ϕω0,c0), h′′(0) =

1

2
∂ωM(ϕω,c)

∣∣∣∣
(ω0,c0)

.(4.7.17)

Assume that v0 ∈ H1(R) satisfies ‖v0 − ϕω0,c0‖H1 < δ, where δ > 0 is determined later.
By Proposition 4.7.2 it is enough to prove that

v0 ∈ D+
ω0+ε,c0

∩ D−
ω0−ε,c0 .(4.7.18)

By direct calculations we have

Sω0±ε,c0(v0) = Sω0±ε,c0(ϕω0,c0) +O(δ)

= E(ϕω0,c0) +
ω0 ± ε

2
M(ϕω0,c0) +

c0
2
P(ϕω0,c0) +O(δ)

= d(ω0, c0)± ε

2
M(ϕω0,c0) +O(δ)

= h(0)± εh′(0) +O(δ).
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By using the Taylor expansion, there exists τ1 = τ1(ε) ∈ (−ε0, ε0) such that

h(±ε) = h(0)± εh′(0) +
ε2

2
h′′(τ1).

Since c0 < 0 by the assumption, we have

h′′(τ1) =
1

2
∂ωM(φω,c)

∣∣∣∣
(ω0+τ1,c0)

=
−4c0√

4(ω0 + τ1)− c20 {c20 + γ(4(ω0 + τ1)− c20)}
> 0.

Hence, by taking small δ > 0, we obtain that

Sω0±ε,c0(v0) < h(±ε).(4.7.19)

On the other hand, by (4.7.13) and Kω0,c0(ϕω0,c0) = 0, we have

h(0) = Jc0(ϕω0,c0) = Jc0(v0) +O(δ).

Since h is strictly increasing, by taking smaller δ > 0 if necessary, we obtain that

h(−ε) < Jc0(v0) < h(ε).

Combined with (4.7.19), we deduce that (4.7.18) holds.

In the similar way to the proof of Corollary 4.7.4, we obtain the following result from
Proposition 4.5.6 and Proposition 4.7.6.

Corollary 4.7.7. Let −3/16 ≤ b < 0 and let (ω0, c0) satisfy −2
√
ω0 < c0 < 0. Then the

soliton vω0,c0 of (DNLSb′) is orbitally stable.

We recall that (DNLSb) and (DNLSb′) are equivalent under the gauge transformation
u �→ G1/4(u). Since vω0,c0 = G1/4(uω0,c0) and the gauge transformation is locally Lipschitz
continuous on H1(R), we have the following result.

Theorem 4.7.8. Let −3/16 ≤ b < 0 and let (ω0, c0) satisfy −2
√
ω0 < c0 < 0. Then the

soliton uω0,c0 of (DNLSb) is orbitally stable.

Next we study the remaining case 0 ≤ c0 ≤ 2
√
ω0 when −3/16 < b < 0. In this

case we need to do calculations more carefully. The main difficulty comes from the lack
of the “good” Hamiltonian structure of (DNLSb′). The analysis along the scaling curve
provides the following claim.

Proposition 4.7.9. Let −3/16 ≤ b < 0 and (ω0, c0) satisfy 0 ≤ c0 ≤ 2
√
ω0. Then, for

any ε ∈ (0, ε0) there exists δ > 0 such that if v0 ∈ H1(R) satisfies ‖v0 − ϕω0,c0‖H1 < δ,
then the maximal solution v(t) of (DNLSb′) with v(0) = v0 satisfies that if c0 = 0,

d(ω0,−ε)− ε

8
‖v(t)‖4L4 < J0(v(t)) < d(ω0, ε) +

ε

8
‖v(t)‖4L4(4.7.20)
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for all t ∈ (−Tmin, Tmax), and if 0 < c0 ≤ 2
√
ω0,

d
(
(μ0 − ε)2, 2s0(μ0 − ε)

)− s0ε

4
‖v(t)‖4L4(4.7.21)

< Jc0(v(t)) < d
(
(μ0 + ε)2, 2s0(μ0 + ε)

)
+

s0ε

4
‖v(t)‖4L4

for all t ∈ (−Tmin, Tmax), where c0 = 2s0
√
ω0 and μ0 =

√
ω0.

Remark 4.7.10. Compared with Proposition 4.7.3 and Proposition 4.7.6, the L4-norm
appears in (4.7.20) or (4.7.21), which comes from the transformed momentum P .

Proof. We only prove the case 0 < c0 ≤ 2
√
ω0. Let the function g defined by (4.7.6) as

g(τ) = d
(
(μ0 + τ)2, 2s0(μ0 + τ)

)
for τ ∈ (−ε0, ε0),

where ε0 > 0 is sufficiently small. We note that

g(τ) = (μ0 + τ)2d(1, 2s0) for τ ∈ (−ε0, ε0),

g′(0) = 2μ0d(1, 2s0), g′′(0) = 2d(1, 2s0).

By Proposition 4.2.6 and the gauge transformation (see Section 4.4), we have

2d(1, 2s0) = M(ϕ1,2s0) + s0P(ϕ1,2s0).

Let ε ∈ (0, ε0). Assume that v0 ∈ H1(R) satisfies ‖v0 − ϕω0,c0‖H1 < δ, where δ > 0 is
determined later. First we prove that

v0 ∈ D+
(μ0+ε)2,2s0(μ0+ε)

∩ D−
(μ0−ε)2,2s0(μ0−ε).(4.7.22)

The calculation is done in the similar way as in the proof of Proposition 4.7.3. By direct
calculations we have

S(μ0±ε)2,2s0(μ0±ε)(v0) = S(μ0±ε)2,2s0(μ0±ε)(ϕμ20,2s0μ0) +O(δ)

= E(ϕμ20,2s0μ0) +
(μ0 ± ε)2

2
M(ϕμ20,2s0μ0)

+ s0(μ0 ± ε)P(ϕμ20,2s0μ0) +O(δ)

= μ2
0d(1, 2s0)± εμ0 (M(ϕ1,2s0) + s0P(ϕ1,2s0))

+
ε2

2
M(ϕ1,2s0) +O(δ)

= g(0)± εg′(0) +
ε2

2
M(ϕ1,2s0) +O(δ).

By using the Taylor expansion, we have

g(±ε) = g(0)± εg′(0) +
ε2

2
g′′(0).
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Since we have

g′′(0) = 2d(1, 2s0) = M(ϕ1,2s0) + s0P(ϕ1,2s0)

and s0P(ϕ1,2s0) > 0 from Proposition 4.2.7, by taking small δ > 0 we obtain that

S(μ0±ε)2,2s0(μ0±ε)(v0) < g(±ε).(4.7.23)

On the other hand, by (4.7.13) and Kω0,c0(ϕω0,c0) = 0, we have

Jc0+2s0ε(ϕω0,c0) = −c0 + 2s0ε

8
‖ϕω0,c0‖4L4 +

γ

16
‖ϕω0,c0‖6L6

< Jc0(ϕω0,c0) = g(0) < g(ε).

By taking smaller δ > 0 if necessary, we obtain that Jc0+2s0ε(v0) < g(ε). Similarly, we
have g(−ε) < Jc0−2s0ε(v0). Combined with (4.7.23), we deduce that (4.7.22) holds. By
Proposition 4.7.5 we have

v(t) ∈ D+
(μ0+ε)2,2s0(μ0+ε)

∩ D−
(μ0−ε)2,2s0(μ0−ε)(4.7.24)

for all t ∈ (−Tmin, Tmax). Hence we deduce that

g(ε) > Jc0+2s0ε(v(t))

= −c0 + 2s0ε

8
‖v(t)‖4L4 +

γ

16
‖v(t)‖6L6

= Jc0(v(t))−
s0ε

4
‖v(t)‖4L4 .

Similarly, we have

g(−ε) < Jc0(v(t)) +
s0ε

4
‖v(t)‖4L4 .

This completes the proof.

At last, combined with Proposition 4.5.6, one can prove the following theorem.

Theorem 4.7.11. Let −3/16 < b < 0 and let (ω0, c0) satisfy 0 ≤ c0 ≤ 2
√
ω0. Then the

soliton vω0,c0 of (DNLSb′) is orbitally stable.

Proof. The result is proved by contradiction. Assume that there exist ε1 > 0, a sequence
of the maximal solutions {vn} to (DNLSb′) and a sequence {tn} ⊂ R such that

‖vn(0)− ϕω0,c0‖H1 −→
n→∞

0,(4.7.25)

inf
(θ,y)∈R2

‖vn(tn)− eiθϕω0,c0(· − y)‖H1 ≥ ε1.(4.7.26)
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Since Sω0,c0(vn(tn)) is a conserved quantity, by (4.7.25) we have

Sω0,c0(vn(tn)) = Sω0,c0(vn(0)) −→
n→∞

Sω0,c0(ϕω0,c0) = d(ω0, c0).(4.7.27)

By the continuity t �→ v(t) ∈ H1(R), one can pick up tn ∈ (−Tmin, Tmax) (still denoted
by the same letter) such that

inf
(θ,y)∈R2

‖vn(tn)− eiθϕω0,c0(· − y)‖H1 = ε1.(4.7.28)

This equality yields the boundedness6 of {vn(tn)} in H1(R), i.e.,

sup
n∈N

‖vn(tn)‖H1 ≤ C,(4.7.29)

where C only depends on ‖ϕω0,c0‖H1 and ε1. From Proposition 4.7.9 and (4.7.29) we
obtain that

Jc0(vn(tn)) −→
n→∞

d(ω0, c0).

Combined with (4.7.13), we have

Kω0,c0(vn(tn)) −→
n→∞

0.(4.7.30)

Hence, by (4.7.27), (4.7.30) and Proposition 4.5.6, there exist a sequence {yn} and θ0, y0 ∈
R such that {vn(tn, · − yn)} has a subsequence, which we still denote by the same letter,
that converges to eiθ0ϕω0,c0(· − y0) in Xω0,c0 . When ω0 > c20/4, this yields that

inf
(θ,y)∈R2

‖vn(tn)− eiθϕω0,c0(· − y)‖H1 −→
n→∞

0,(4.7.31)

which contradicts (4.7.28). When c0 = 2
√
ω0, we need to modify the argument slightly.

From the definition of Xc20/4,c0
, we have

e−i
c0x
2 vn(tn, · − yn) −→

n→∞
e−i

c0x
2 eiθ0ϕω0,c0(· − y0) in Ḣ1(R).(4.7.32)

By using this convergence one can easily prove that

e−i
c0x
2 vn(tn, · − yn) −→

n→∞
e−i

c0x
2 eiθ0ϕω0,c0(· − y0) weakly in L2(R).(4.7.33)

From (4.7.25) and mass conservation we obtain that

M(vn(tn)) = M(vn(0)) −→
n→∞

M(ϕω0,c0).(4.7.34)

Hence, it follows from (4.7.33) and (4.7.34) that

e−i
c0x
2 vn(tn, · − yn) −→

n→∞
e−i

c0x
2 eiθ0ϕω0,c0(· − y0) in L2(R).(4.7.35)

From (4.7.32) and (4.7.35) we deduce that (4.7.31) holds, which contradicts (4.7.28).
This completes the proof.

6I did not realize this boundedness first. I thank Noriyoshi Fukaya for pointing out the fact and
giving me helpful comments.
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By Theorem 4.7.11, vω0,c0 = G1/4(uω0,c0) and locally Lipschitz continuity of the gauge
transformation, we have the following result.

Theorem 4.7.12. Let −3/16 < b < 0 and let (ω0, c0) satisfy 0 ≤ c0 ≤ 2
√
ω0. Then the

soliton uω0,c0 of (DNLSb) is orbitally stable.

The claims of Theorem 4.7.8 and Theorem 4.7.12 are nothing other than Theorem
4.1.13. This completes the proof. of Theorem 4.1.13.

Finally, we give a few remarks about the case b < −3/16. If (ω0, c0) satisfies (4.1.10)
and ω2

0 > c20/4, by Proposition 4.2.2 and direct computations, the formula (4.7.3) still
holds including the case b < −3/16, i.e., we have

det[d′′(ω0, c0)] =
−2P (φω0,c0)√

4ω0 − c20 {c20 + γ(4ω0 − c20)}
.(4.7.36)

By Proposition 4.2.7, the momentum P (φω0,c0) is always positive when b < 0, which
yields that d′′(ω0, c0) has one positive eigenvalue. Combined with the calculation of
linearized operators7 (see [45]), by applying the abstract theory of Grillakis, Shatah and
Strauss [24, 25], one can prove that the soliton uω0,c0 of (DNLSb) is orbitally stable. This
argument gives the unified proof for the stability for the solitons in the defocusing case,
but it works well in the only case ω2

0 > c20/4. We note that the case c0 = 2
√
ω0 brings

essential difficulties to the proof of the stability by spectral approach due to lack of the
coercivity. We will study these problems in more details in our forthcoming paper.

Spectral analysis is a powerful tool to tackle the stability problems and it also works
in the case b ≥ 0, however we need to examine the spectrum of linearized operators.
Since the nonlinearity contains the derivative, the calculation of linearized operators for
(DNLSb) is complex as can be seen in [45]. We note that our variational approach as
in the proofs of Corollary 4.7.4, Theorem 4.7.8 and Theorem 4.7.12 does not need any
calculation of linearized operators.

7To be specific, we need to examine the spectrum of the operator S′′
ω,c(φω,c).



Chapter 5

Long-period limit of periodic
traveling wave solutions

5.1 Introduction

5.1.1 Background

The equation (1.1.1) in the periodic setting is also an important problem:

i∂tψ + ∂2
xψ + i∂x(|ψ|2ψ) = 0, (t, x) ∈ R× T,(5.1.1)

where T := R/2πZ. Tsutsumi and Fukuda [68] proved well-posedness in Hs(T) for
s > 3/2 in the same way as the whole line case. To prove well-posedness inH1(T) one can
not directly apply the proof in [31] to the periodic setting since the L4-Strichartz estimate
on a torus holds with a loss of ε > 0 derivatives (see [10]). Herr [35] proved local well-
posedness in Hs(T) for s ≥ 1/2 by using periodic gauge transformation and multilinear
estimates in Fourier restriction norm spaces (see also [26]). In [52], by adapting Wu’s
proof to the periodic setting, it was proved that the H1(T)-solution of (5.1.1) is global
if the mass is less than 4π. For global results in Hs(T) with s < 1, we refer to [51] and
references therein.

In this chapter we study the periodic traveling waves. We consider the equation
(DNLS) in the periodic setting:

i∂tu+ ∂2
xu+ i|u|2∂xu = 0, (t, x) ∈ R× T.(DNLS)

The periodic traveling waves of (DNLS) have only been partially studied. As a first
mathematical work of this problem, Imamura [36] studied semi-trivial solutions:

φc�(x− ct) =
√
c− �ei�(x−ct), � ∈ Z \ {0}, c > �,

which are 2π-periodic traveling wave solutions of (DNLS). In [36], it was proved that
orbital stability of semi-trivial solutions by applying the abstract theory of Grillakis,
Shatah, and Strauss [24, 25]. Murai, Sakamoto and Yotsutani [53] discussed the explicit

89
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formulae of periodic traveling waves of (DNLS) which are not semi-trivial. If we put the
form

v(t, x) = eiωtU(x− ct)

into (DNLS), then U satisfies the equation

−U ′′ + ωU + icU ′ − i|U |2U ′ = 0,(5.1.2)

with periodic boundary conditions. By using polar coordinates U(x) = r(x)eiθ(x), a
direct calculation shows that the functions r(x) and θ(x) satisfy

− r′′ +
(
ω − c2

4
+

b

2

)
r +

c

2
r3 − 3

16
r5 +

b2

r3
= 0,(5.1.3)

θ(x) =
c

2
x− 1

4

∫ x

0

r(y)2dy + b

∫ x

0

dy

r(y)2
,(5.1.4)

where b is some constant which comes from integration. If we consider solutions vanishing
at infinity, we can take b = 0. In this case (5.1.3) corresponds to the equation (1.1.7),
and (5.1.4) corresponds to the gauge transformation (1.1.5). However, in general b is a
non-zero constant in the periodic setting. In [53], they first obtain explicit formulae of
all the 2π-periodic solutions of (5.1.3), and then try to find the solutions from among
them which satisfy periodic conditions of θ:

θ(0) = 0, θ(2π) = 2π�,

which is equivalent

2π� = cπ − 1

4

∫ 2π

0

r(x)2dx+ b

∫ 2π

0

dx

r(x)2
,(5.1.5)

where � ∈ Z \ {0} is a winding number. Since general solutions of (5.1.3) are complicate
as can be seen in [53], it is a quite delicate problem to find the solutions which satisfy
the condition (5.1.5). In [53], partial numerical computations are done to confirm the
existence of solutions which satisfy special periodic boundary conditions above.

The main difficulty to obtain exact periodic traveling wave solutions of (DNLS) is
that the nonlocal problem as (5.1.5) appears. Here, to avoid complex calculation in
nonlocal issues, we consider the equation (1.1.14) in the periodic setting; i.e.,

i∂tu+ ∂2
xu+

i

2
|u|2∂xu− i

2
u2∂xu+

3

16
|u|4u = 0, (t, x) ∈ R× T2L,(5.1.6)

where T2L = R/2L � [−L,L] is the torus of size 2L. The energy, mass and momentum
of (5.1.6) are given by the followings respectively:

E(u) = 1

2

∫
T2L

|∂xu|2dx− 1

32

∫
T2L

|u|6dx,

M(u) =

∫
T2L

|u|2,

P(u) = Re

∫
T2L

i∂xuudx+
1

4

∫
T2L

|u|4dx.
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Our aim of this chapter is to find exact periodic traveling wave solutions which yield
the solitons on the whole line including the massless case in the long-period limit, not
to determine the complete structure of periodic traveling wave solutions. Moreover, we
study the regularity of the convergence of exact periodic traveling wave solutions in the
long-period limit.

In the end of this subsection, we discuss the relation between the equations (5.1.1),
(DNLS) and (5.1.6) on T2L. Let us recall the periodic gauge transformation introduced
by Herr [35]. For a ∈ R, let Ga : L2(T2L) → L2(T2L) be defined by

Ga(f)(x) = eiaJ (f)(x)f(x),(5.1.7)

where J (f) is defined by

J (f)(x) :=
1

2L

∫ 2L

0

∫ x

θ

(|f(y)|2 − μ[f ]
)
dydθ

and

μ = μ[f ] :=
1

2L
‖f‖2L2(T2L)

.

We note that J (f) is the 2L-periodic primitive of |f |2 − μ(f) with mean zero. For the
solution v of (DNLS) on T2L, we define the gauge transformed solution by

u(t, x) := Ga(v)(t, x+ 2aμt).

A straightforward calculation shows that u satisfies

i∂tu+ ∂2
xu+ (1− 2a)i|u|2∂xu− 2iau2∂xu+ a

(
a+

1

2

)
|u|4u+ eL(u) = 0,(5.1.8)

where

eL(u) := ψ(u)u− aμ|u|2u,(5.1.9)

ψ(u) :=
a

2L

∫ 2L

0

(
2Im(u∂xu)(t, θ) +

(
1

2
− 2a

)
|u|4(t, θ)

)
dθ + a2μ2.(5.1.10)

We note that when a = −1/2 [resp. a = 1/4] the equation (5.1.8) represents (5.1.1)
[resp. (1.1.14)] on T2L with some error term eL(u). Therefore, three equations (5.1.1),
(DNLS) and (5.1.6) on T2L can be considered to be almost equivalent under the suitable
periodic gauge transformation. Since eL formally goes to 0 as L → ∞, it is reasonable to
consider that these three equations on T2L do not have essentially different structure at
least when L is sufficiently large. This is compatible with that these three equations on
the whole line are gauge equivalent. As can be seen in the proof in [35], the error term
eL(u) does not give any difficulty to prove well-posedness. However, it gives a delicate
problem when one tries to obtain exact periodic traveling wave solutions, since the error
term eL(u) is nonlocal. Hence, we consider the equation (5.1.6) as a basic equation.
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5.1.2 Main results

We assume that (ω, c) satisfies

−2
√
ω < c ≤ 2

√
ω.(5.1.11)

First, we note that

uω,c(t, x) = eiωtϕω,c(x− ct),(5.1.12)

is a two-parameter family of solitons of the equation (1.1.14) on the whole line, where

ϕω,c(x) = ei
c
2
xΦω,c(x),(5.1.13)

and Φω,c is defined by (1.1.6). For convenience we write the explicit formulae again;

Φ2
ω,c(x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

4ω − c2

√
ω
(
cosh(

√
4ω − c2x)− c

2
√
ω

) if ω > c2/4,

4c

(cx)2 + 1
if c = 2

√
ω.

(5.1.14)

Note that ϕω,c satisfies the following equation

−ϕ′′ + ωϕ+ icϕ′ +
c

2
|ϕ|2ϕ− 3

16
|ϕ|4ϕ = 0.(5.1.15)

We consider the elliptic equation (1.1.7) on a torus:

−Φ′′ +
(
ω − c2

4

)
Φ +

c

2
|Φ|2Φ− 3

16
|Φ|4Φ = 0, x ∈ T2L.(5.1.16)

To find exact solutions which yield the solitons in the long-period limit, we need to find
positive single-bump solutions of (5.1.16). We have the following theorem.

Theorem 5.1.1. Let (ω, c) ∈ R
2 satisfy (5.1.11). Assume that L > 0 satisfies

L0 = L0(ω, c) < L < ∞,(5.1.17)

where L0(ω, c) is a positive constant determined by (ω, c) (see Remark 5.1.3 below).
Then, there exists the positive single-bump solution ΦL

ω,c of (5.1.16) on T2L such that
ΦL
ω,c(x) → Φω,c(x) for any x ∈ R as L → ∞. Furthermore, ΦL

ω,c is explicitly represented
as

(
ΦL
ω,c(x)

)2
= η3

dn2
(
x
2g
; k
)

1 + β2sn2
(
x
2g
; k
) , x ∈ [−L,L](5.1.18)

with parameters η3, g, k, β depending on (L, ω, c).
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Remark 5.1.2. The value η3 corresponds to the maximal value of
(
ΦL
ω,c

)2
. We note

that η3 satisfies

α0 < η3 < Φ2
ω,c(0),

where α0 is defined by

α0 :=
1

3

(
4c+

√
48ω + 4c2

)
.

It is shown that α0 is a positive constant when (ω, c) satisfies (5.1.11) (see Lemma 5.3.1).

Remark 5.1.3. L0 is explicitly represented as

L0 = L0(ω, c) :=
2π√

α0

√
A(α0)

,

where A(x) is defined by

A(x) := −3x2 + 8cx+ 64ω.

We note that A(α0) is a positive constant when (ω, c) satisfies (5.1.11) (see Remark
5.3.3). The condition (5.1.17) is optimal in the sense that when L = L0, the constant√
α0 is a solution of (5.1.16) and ΦL

ω,c(x) → √
α0 for any x ∈ [−L0, L0] as L ↓ L0. In

short, the condition (5.1.17) is optimal in order that ΦL
ω,c has a single bump.

The functions dn (dnoidal) and cn (cnoidal) in Theorem 5.1.1 are usual Jacobi’s
elliptic functions; see Section 5.2 for a precise definition. We note that if we take cL ∈
2π
L
Z, exact periodic traveling waves defined by

uLω,cL(t, x) = eiωt+i
cL
2
(x−cLt)ΦL

ω,cL
(x− cLt) =: eiωtϕLω,cL(x− cLt)(5.1.19)

satisfy the equation (5.1.6) on T2L. If for each L > L0 we take cL ∈ 2π
L
Z such that

cL → c as L → ∞, we have

ϕLω,cL(x) → ϕω,c(x)(5.1.20)

for any x ∈ R as L → ∞. This gives the pointwise convergence of periodic traveling
waves in the long-period limit.

In the one-parameter case (ω > 0 and c = 0), exact solutions defined by (5.1.18)
correspond to periodic traveling wave solutions to (1.1.20) and (1.1.22) which are stud-
ied in [6]. Construction of solutions in Theorem 5.1.1 is done by a simple quadrature
method in the similar way as the one-parameter case. However, derivation of the detailed
properties of exact solutions in the two-parameter case is far from being obvious from
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the result of one-parameter case. For instance, we can show that the modulus of elliptic
functions in (5.1.18) has the following long-period limit:

k →
⎧⎨⎩

1 if ω > c2/4,

1√
2

if c = 2
√
ω,

(5.1.21)

as L → ∞ (see Lemma 5.3.7). The difference of long-period limit of modulus is essential
in order that exact periodic solutions yield two types1 of the solitons on the whole line.

To compute the long-period limit, it is often useful to use the maximum value
√
η3 of

ΦL
ω,c as a parameter instead of the length of torus L. This idea can be seen in [4, 2, 3, 6].

To apply this idea to our setting, we need to prove

√
η3 → Φω,c(0) ⇐⇒ L → ∞.(5.1.22)

The relation (5.1.22) follows from the monotonicity of the functions η3 �→ k and η3 �→
TΦL

ω,c
(see Proposition 5.3.6 and Proposition 5.3.8), where TΦL

ω,c
is the fundamental period

of ΦL
ω,c. We note that the proofs of these monotonicity are much more delicate compared

with one-parameter case discussed in previous works. Interestingly, the scaling curve
c = 2s

√
ω to the solitons is useful even in the periodic setting to derive the detailed

properties including the monotonicity.
Next, we study the regularity of the convergence of exact periodic traveling wave

solutions in the long-period limit. We can improve the pointwise convergence in Theorem
5.1.1 as follows.

Theorem 5.1.4. Let (ω, c) ∈ R
2 satisfy (5.1.11). If for (ω, c) ∈ R

2 we take sufficiently
large L such that L0 < L, then ΦL

ω,c is well-defined by (5.1.18). Then, we have

lim
L→∞

‖ΦL
ω,c − Φω,c‖Hm([−L,L]) = 0(5.1.23)

for any m ∈ Z≥0.

Theorem 5.1.5. Let (ω, c) ∈ R
2 and ΦL

ω,c in the same assumption as Theorem 5.1.4.
Then, we have

lim
L→∞

‖ΦL
ω,c − Φω,c‖Cm([−L,L]) = 0(5.1.24)

for any m ∈ Z≥0.

Remark 5.1.6. We note that Theorem 5.1.5 is not proved directly from Theorem 5.1.4
by using the Sobolev embedding Hm([−L,L]) ⊂ Ck([−L,L]) (k < m), because constants
in the Sobolev inequality depend on size of the interval 2L.

1From the explicit formulae (5.1.14), the soliton in the case ω > c2/4 has exponential decay and the
soliton in the massless case has algebraic decay. However, exact periodic solutions are represented by
the same formula as (5.1.18) in both two cases.



95

Remark 5.1.7. We can replace ΦL
ω,c [resp. Φω,c] by ϕLω,cL [resp. ϕω,c] in both (5.1.23)

and (5.1.24) if we take cL ∈ 2π
L
Z such that cL → c as L → ∞. Especially, we obtain the

uniform bound of periodic traveling wave solutions as

sup
L0<L<∞

‖uLω,cL‖L∞(R,Hm(T2L)) < ∞(5.1.25)

for any m ∈ Z≥0, where uLω,cL is defined by (5.1.19).

To the best of our knowledge, the regularity results in Theorem 5.1.4 and Theorem
5.1.5 are new even if we restrict the one-parameter case (ω > 0 and c = 0). For the
proof of Theorem 5.1.4 and Theorem 5.1.5, the L2-convergence in the long-period limit
is the key step. First, we show that the mass of exact periodic solutions is exactly same
as the mass of the solitons in the long-period limit (see Theorem 5.4.1). Here again, the
difference between the case ω > c2/4 and the massless case appears. We need to do a
delicate calculation of elliptic integrals in this step. Next, by combining with pointwise
convergence in Theorem 5.1.1 and the Brézis-Lieb lemma, we obtain L2-convergence.
Since ΦL

ω,c and Φω,c satisfy the same elliptic equation, we can obtain H2-convergence
from L2-convergence and the equation. Especially, we obtain L∞-convergence from H1-
convergence. The proof of L∞-convergence here is related to the proof of the Sobolev
inequality, but we need to calculate the dependence of the size L more carefully. The
rest of the proof is done by a standard bootstrap argument. We note that the detailed
properties of exact periodic solutions are used throughout the proof.

We remark that one can our approach to periodic traveling wave solutions of other
type of dispersive equations such that KdV, mKdV and cubic NLS discussed in previous
works (see [3] and references therein).

Remark 5.1.8. If we consider the periodic gauge transformed solution

vLω,cL := G− 1
4
(uLω,cL)(t, x− 1

2
μt),(5.1.26)

then vLω,cL satisfies the following equation:

i∂tv + ∂2
xv + i|v|2∂xv + eL(v) = 0,

where

eL(v) := ψ(v)v +
1

4
μ|v|2v,

ψ(v) := − 1

8L

∫ 2L

0

(
2Im(v∂xv)(t, θ) +

1

8
|v|4(t, θ)

)
dθ +

1

16
μ2,

and μ = 1
2L
‖v‖2L2(T2L)

. From the uniform bound (5.1.25) and formula of the error term,
we deduce that

‖eL(vLω,c)‖L∞(R,Hm(T2L)) → 0(5.1.27)

as L → ∞ for any m ∈ Z≥0. This means that the solution vLω,cL gives the main part
of 2L-periodic traveling wave solutions of (DNLS) which yield the solitons in the long-
period limit, at least when L is sufficiently large. One can apply a similar discussion to
the equation (5.1.1) on T2L.



96

5.1.3 Related problems and remarks

Compared with the solitons on the whole line, it is natural to consider that the
periodic traveling waves defined by (5.1.19) belong to the ground states, but the rigorous
proof has not been obtained yet. Variational characterizations on a torus have different
difficulties from the whole line case. Since a torus is compact, the existence of a minimizer
for the problems is easily obtained. However, the identification of this minimizer is
a delicate problem since the elliptic equation (5.1.16) has rich structure of solutions
compared with the one on the whole line. This problem is also related to uniqueness of
ground states. Recently, variational characterizations of periodic waves for cubic NLS
were obtained in [29], but the problems in our setting are more delicate.

The stability/instability of the periodic traveling waves is a natural problem as a next
step. First, we note that ϕLω,cL satisfies the equation (5.1.15) on T2L, which is equivalent
that

S ′
ω,cL

(ϕLω,cL) = 0,(5.1.28)

where

Sω,c(ϕ) = E(ϕ) + ω

2
M(ϕ) +

c

2
P(ϕ).

The relation (5.1.28) is important when one considers the problems of both variational
characterization and stability. There are several difficulties when one considers the sta-
bility/instability problem in our setting. We note that the equation (5.1.6) can not be
rewritten as the Hamiltonian form by using the energy functional as (1.1.3). The lack
of Hamiltonian structure causes the delicate problems when one considers the stabil-
ity/instability problem; see [27] for partial results on the stability.2 To prove stability or
instability of solitons, it is important to calculate second derivatives. However, since we
only take cL ∈ 2π

L
Z as a discrete value, this gives the difficulty of differential calculation

of Sω,cL(ϕLω,cL). We recall that Colin and Ohta [17] proved orbital stability of solitons
(1.1.4) by showing that the matrix d′′(ω, c) has one positive eigenvalue, where d(ω, c) is
defined by

d(ω, c) := Sω,c(φω,c).(5.1.29)

We note that when ω > c2/4 and c > 0 we have

∂2
ωd(ω, c) =

1

2
∂ωM(φω,c) = − c

ω
√
4ω − c2

< 0,(5.1.30)

∂2
cd(ω, c) =

1

2
∂cP (φω,c) = − c√

4ω − c2
< 0.(5.1.31)

If one considers the solitons as a one-parameter ω �→ φω,c or c �→ φω,c, (5.1.30) and
(5.1.31) seem to indicate that the solitons are unstable, but actually they are stable.

2In [27] they consider the stability problem on the whole line in the setting which can not be rewritten
as the Hamiltonian form as (1.1.3).
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This means that the calculation as a one-parameter is not enough to fix the stability
problems, and shows one of the deep structure of a two-parameter family of solitons.

Although there are several difficulties on the stability/instability problems as above,
it is important to study these problems in understanding further properties of exact
periodic traveling wave solutions and related dynamics. We refer to [2, 3, 4, 5, 6, 21, 22,
29] for the studies on the stability/instability of the periodic profiles. The author hopes
that our results in this chapter would provide further insight on the dynamics for the
derivative nonlinear Schrödinger equation.

5.1.4 Organization of the chapter

The rest of this chapter is organized as follows. In Section 5.2 we recall the definition
and basic properties of elliptic functions and elliptic integrals. In Section 5.3 we discuss
construction and fundamental properties of exact periodic traveling wave solutions, and
give a proof of Theorem 5.1.1. In Section 5.4, we discuss the regularity of the convergence
in the long-period limit and prove Theorem 5.1.4 and Theorem 5.1.5.

5.2 Preliminaries

Here, we recall the definitions and some basic properties of elliptic functions and
elliptic integrals. We refer the reader to [12, 42] for more details. Given k ∈ (0, 1), the
incomplete elliptic integral of the first kind is defined by

u = F (ϕ, k) :=

∫ ϕ

0

dθ√
1− k2 sin2 θ

.

The Jacobi elliptic functions are defined through the inverse function of F (·, k) by

sn(u; k) := sinϕ, cn(u; k) := cosϕ, dn(u; k) :=
√

1− k2sn2(u; k).

The complete elliptic integral of the first kind is defined by

K = K(k) := F
(π
2
, k
)
.

The functions sn, cn and dn have a real fundamental period, namely, 4K, 4K, and 2K,
respectively. We note that

K(k) →
{

π
2

as k → 0,

∞ as k → 1.
(5.2.1)

More specifically, when k → 1, the function K(k) has the following asymptotic behavior:

lim
k→1

(
K(k)− log

4

k′

)
= 0,(5.2.2)
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where the complementary modulus k′ is defined by

k′ :=
√
1− k2.

Elliptic functions have the following extremal formulae:{
sn(u; 0) = sin u, cn(u; 0) = cosu, dn(u; 0) ≡ 1,

sn(u; 1) = tanhu, cn(u; 1) = dn(u; 1) = sechu.
(5.2.3)

This shows that elliptic functions bridge the gap between trigonometric and hyperbolic
functions.

The incomplete elliptic integral of the second kind is defined by

E(ϕ, k) :=

∫ ϕ

0

√
1− k2 sin2 θdθ.

The complete elliptic integral of the second kind is defined by

E = E(k) := E
(π
2
, k
)
.

We define by

K ′ = K ′(k) := K(k′),

E ′ = E ′(k) := E(k′).

Then, we have the following Legendre relation

EK ′ + E ′K −KK ′ =
π

2
for all k ∈ (0, 1).(5.2.4)

5.3 Existence of exact periodic traveling waves

5.3.1 Construction of exact solutions

We consider the elliptic equation (5.1.16) on T2L. Set ψ = Φ2. By multiplying the
equation (5.1.16) by Φ′ and integrating, ψ satisfies the following equation

[ψ′]2 = −1

4
ψ4 + cψ3 + 4

(
ω − c2

4

)
ψ2 + 8Cψψ,(5.3.1)

where Cψ is a constant of integration. The formula (5.3.1) can be rewritten as

[ψ′]2 =
1

4
Pψ(ψ),(5.3.2)
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where the polynomial Pψ is defined by

Pψ(t) = −t4 + 4ct3 + 16

(
ω − c2

4

)
t2 + 32Cψt

= t(t− η1)(t− η2)(η3 − t).

Here, η1, η2 and η3 are roots of the polynomial Pψ satisfying⎧⎪⎨⎪⎩
η1 + η2 + η3 = 4c,

η2η3 + η1η3 + η1η2 = −16
(
ω − c2

4

)
,

η1η2η3 = 32Cψ.

(5.3.3)

Since we are interested in the positive solution, we may set 0 < η2 < η3. We note
that η3 [resp. η2] is the maximum [resp. minimum] value of ψ by (5.3.2). By (5.3.3)
and (5.1.11), η1 must be negative. By invariance of translations, we may assume that
ψ(0) = η3 and ψ′(0) = 0. From uniqueness of the ordinary differential equation and the
equation (5.1.16), ψ is even. Since we want to construct single-bump solutions, we may
assume that ψ(L) = η2. Therefore, it is enough to consider the equation (5.3.2) on [0, L].
Since ψ′(x) < 0 when 0 < x < L, integrating both sides of (5.3.2) over [0, x] yields that

−
∫ x

0

ψ′(y)√
Pψ(ψ(y))

dy =
1

2
x.

Changing variables t = ψ(x) in the integral implies that∫ η3

ψ(x)

dt√
t(η3 − t)(t− η2)(t− η1)

=
1

2
x.(5.3.4)

Applying the formula 257.00 in [12], we conclude that

ψ(x) =
η3(η2 − η1) + (η3 − η2)η1sn

2
(
x
2g
; k
)

(η2 − η1) + (η3 − η2)sn2
(
x
2g
; k
) ,(5.3.5)

where

k2 =
−η1(η3 − η2)

η3(η2 − η1)
,(5.3.6)

g =
2√

η3(η2 − η1)
.(5.3.7)

We note that 0 < k2 < 1 from the inequality η1 < 0 < η2 < η3. Using the expression of
k, the formula (5.3.5) can be rewritten as

ψ(x) = η3

⎡⎣ dn2
(
x
2g
; k
)

1 + β2sn2
(
x
2g
; k
)
⎤⎦ ,(5.3.8)



100

with β2 = −η3k
2/η1 > 0. From the fundamental periods of sn and dn, the fundamental

period Tψ of ψ is given by

Tψ = 4gK(k) =
8√

η3(η2 − η1)
K(k).(5.3.9)

Since we assume that ψ is the single-bump solution, we obtain

2L = Tψ =
8√

η3(η2 − η1)
K(k).(5.3.10)

Substituting the first equation in (5.3.3)

η1 = 4c− η2 − η3(5.3.11)

into the second equation in (5.3.3), we obtain

η22 + η23 + η2η3 − 4c(η2 + η3)− 16

(
ω − c2

4

)
= 0.(5.3.12)

From (5.3.11) and (5.3.12), η1 and η2 have expressions as functions of η3, ω and c as

η1 =
−η3 + 4c−√

A

2
,(5.3.13)

η2 =
−η3 + 4c+

√
A

2
,(5.3.14)

where A is defined by

A = A(η3) := 64ω − 3η23 + 8cη3.(5.3.15)

The following two extreme cases can be considered;

(i) η2 = η3 =: α0.

(ii) η2 = 0, η3 =: α1.

The case (i) corresponds to the constant solution of (5.1.16). The case (ii) corresponds to
the long-period limit as discussed in detail later. From the equation (5.3.12), we obtain
that

α0 =
1

3

(
4c+

√
48ω + 4c2

)
,

α1 = 4
√
ω + 2c.

It is worthwhile to note that α1 = Φ2
ω,c(0), where Φω,c is defined by (5.1.14).
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5.3.2 Fundamental properties of exact solutions

In this subsection, we investigate detailed relation between parameters defined in
Section 5.3.1. For the convenience of calculation, we introduce the following notations.
When (ω, c) satisfies (5.1.11), we can write

c = 2s
√
ω

for ω > 0 and some s ∈ (−1, 1]. The case s = 1 corresponds to massless case. By using
this notation, α0 and α1 are rewritten as

α0 =
4

3

(
2s+

√
3 + s2

)√
ω,

α1 = 4(1 + s)
√
ω.

Set β0 =
α0

4
√
ω
and β1 =

α1

4
√
ω
. We have

β0 = β0(s) =
1

3

(
2s+

√
3 + s2

)
,(5.3.16)

β1 = β1(s) = 1 + s(5.3.17)

for −1 < s ≤ 1. We begin with the following lemma.

Lemma 5.3.1. Let (ω, c) satisfy (5.1.11). Then, we have 0 < α0 < α1.

Proof. From the definition, we note that

0 < α0 < α1 ⇐⇒ 0 < β0 < β1.

First, we prove β0 > 0. This is trivial from the definition (5.3.16) when 0 ≤ s ≤ 1. When
s < 0, we have

β0 > 0 ⇐⇒ −2s <
√
3 + s2

⇐⇒ 4s2 < 3 + s2

⇐⇒ 0 < 3(1− s2).

The last inequality holds when −1 < s < 0.
Next, we prove β0 < β1. When −1 < s ≤ 1, we have

β0 < β1 ⇐⇒ 1

3

(
2s+

√
3 + s2

)
< 1 + s

⇐⇒
√
3 + s2 < 3 + s

⇐⇒ 3 + s2 < (3 + s)2

⇐⇒ 0 < 6(s+ 1).

The last inequality holds when −1 < s ≤ 1. This completes the proof.
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s = 0.5
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ξ

η

Figure 5.1: The ellipse (5.3.19) for several values of s. Note that the ellipse moves toward
upper right when one changes the parameter s from −1 to 1.

We recall that (η2, η3) satisfies the constraint condition (5.3.12). Set

ξ =
η2

4
√
ω
, η =

η3
4
√
ω
.(5.3.18)

Substituting (5.3.18) and c = 2s
√
ω into (5.3.12), the equation (5.3.12) is equivalent that

(ξ − s)2 + (η − s)2 + ξη = 1 + s2,(5.3.19)

where −1 < s ≤ 1. The equation (5.3.19) represents the ellipse as in Figure 5.1. Note
that (β0, β0) corresponds to a intersection point between line η = ξ and ellipse (5.3.19),
and that (0, β1) corresponds to a intersection point between line ξ = 0 and ellipse (5.3.19).
Since we assumed that 0 < η2 < η3 in Section 5.3.1, it follows that

α0 < η3 < α1,(5.3.20)

or equivalently

β0 < η < β1.(5.3.21)

We can prove positivity of A defined by (5.3.15) under the condition (5.3.20).

Lemma 5.3.2. Let (ω, c) satisfy (5.1.11) and let η3 satisfy (5.3.20). Then, we have
A = A(η3) > 0.

Proof. By using c = 2s
√
ω and η3 = 4

√
ωη, we can rewrite A as

A = 64ω − 3η23 + 8cη3

= 16ω(−3η2 + 4sη + 4).
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We set

fs(η) := −3η2 + 4sη + 4(5.3.22)

for −1 < s ≤ 1. A positive zero of fs(η) is given by

β =
2

3

(
s+

√
s2 + 3

)
.(5.3.23)

We obtain β1 ≤ β for −1 < s ≤ 1. Indeed, we have

β1 ≤ β ⇐⇒ 1 + s ≤ 2

3

(
s+

√
s2 + 3

)
⇐⇒ s+ 3 ≤ 2

√
s2 + 3

⇐⇒ (s+ 3)2 ≤ 4(s2 + 3)

⇐⇒ 0 ≤ 3(s− 1)2.

The last inequality means that β1 = β when s = 1 and β1 < β otherwise. Since
fs(0) = 4 > 0 and 0 < β0 < β1, this implies that fs(η) > 0 for −1 < s ≤ 1 and
β0 < η < β1. This completes the proof.

Remark 5.3.3. From the proof of Lemma 5.3.2 above, we also deduce that A(α0) is a
positive constant depending on (ω, c).

From Figure 5.1, one can observe that η2 decreases from α0 to 0 when one changes
η3 from α0 to α1. We can prove this claim rigorously.

Lemma 5.3.4. Let (ω, c) satisfy (5.1.11). Then, the function (α0, α1) � η3 �→ η2 ∈
(0, α0) is a strictly decreasing function.

Proof. It is enough to prove that the function (β0, β1) � η �→ ξ ∈ (0, β0) is a strictly
decreasing function. From (5.3.14) and (5.3.22), we have

ξ =
1

2

(
−η + 2s+

√
fs(η)

)
.

For −1 < s ≤ 1 and β0 < η < β1, we have

dξ

dη
= −1

2
+

1

4
√
fs(η)

· dfs(η)
dη

= −1

2
− 1

4
√
fs(η)

(6η − 4s)

< −1

2
− 1

2
√
fs(η)

(
3 · 2s

3
− 2s

)
= −1

2
< 0,

where we used the following inequality:

2s

3
<

2s+
√
3 + s2

3
= β0 < η.

This completes the proof.
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Next, we discuss the change of the parameters when take the limit η3 → α1 (or
equivalently η → β1). We begin with the following lemma.

Lemma 5.3.5. Let (ω, c) satisfy (5.1.11). Then, we have

η1 → −4
√
ω + 2c, η2 → 0,

1

2g
→

√
4ω − c2

2
(5.3.24)

as η3 → α1.

Proof. We note that

A(α1) = 64ω − 3α1 + 8cα1

= (4
√
ω − 2c)2.

From the expressions (5.3.13) and (5.3.14), we have

lim
η3→α1

η1 =
−α1 + 4c−√A(α1)

2

=
−4

√
ω + 2c− (4

√
ω − 2c)

2
= −4

√
ω + 2c,

lim
η3→α1

η2 =
−α1 + 4c+

√
A(α1)

2

=
−4

√
ω + 2c+ (4

√
ω − 2c)

2
= 0.

Note that the limit of η2 compatible with the definition of α1. From the expression
(5.3.7) and the limits of η2 and η3, we have

lim
η3→α1

1

2g
= lim

η3→α1

√
η3(η2 − η1)

4

=

√
(4
√
ω + 2c)(4

√
ω − 2c)

4
=

√
4ω − c2

2
.

This completes the proof.

It is more delicate to calculate the limit of modulus k of elliptic functions as η3 → α1.
First, we rewrite k2 defined by (5.3.6) as a function of η. From (5.3.13) and (5.3.14), we
have

η3(η2 − η1) = 4
√
ωη ·

√
A = 16ωη

√
fs(η).

Since

η3 − η2 =
3η3 − 4c−√

A

2
,
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we have

4 (−η1(η3 − η2)) = (3η3 − 4c−
√
A)(η3 − 4c+

√
A)

= 3η23 − 16cη3 + 2η3
√
A+ 16c2 − A,

= 32ω
(
3η2 + (

√
fs(η)− 6s)η + 2(s2 − 1)

)
.

Hence, we have the expression of k2 as

k2 =
−η1(η3 − η2)

η3(η2 − η1)
(5.3.25)

=
3η2 + (

√
fs(η)− 6s)η + 2(s2 − 1)

2η
√
fs(η)

.

for β0 < η < β1 and −1 < s ≤ 1. By using the expression of (5.3.25), we can prove the
monotonicity of modulus k of elliptic functions.

Proposition 5.3.6. Let (ω, c) satisfy (5.1.11). Then, the function (β0, β1) � η �→ k(η) ∈
(0, 1) is a strictly increasing function.

Proof. We define the function b by

b = bs(η) := η2fs(η) = −3η4 + 4sη3 + 4η2.(5.3.26)

Note that by Lemma 5.3.2 b = bs(η) is positive for −1 < s ≤ 1 and β0 < η < β1. We
differentiate k2 with respect to η as

dk2

dη
=

1

2b

[(
6η − 6s+

d
√
b

dη

)√
b−
(
3η2 +

√
b− 6sη + 2(s2 − 1)

) d√b

dη

]

=
1

2b

[
6(η − s)

√
b− (3η2 − 6sη + 2(s2 − 1)

) d√b

dη

]
.

A direct computation shows that

dk2

dη
=

η

b
√
b

(
6sηgs(η) + 4(1− s2)

)
,(5.3.27)

where the function gs is defined by

gs(η) := − (η − (s− 1)) (η − (s+ 1)) .

We note that a positive zero of gs(η) is given by β1 = s+1. Since gs(0) = 1− s2 ≥ 0 for
−1 < s ≤ 1, we have gs(η) > 0 for β0 < η < β1. Therefore, if 0 < s ≤ 1, by (5.3.27) we
obtain

dk2

dη
≥ 6sηgs(η)

b
√
b

> 0.
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If s = 0, by (5.3.27) we obtain

dk2

dη
=

4η

b
√
b
> 0.

Finally, we consider the case −1 < s < 0. We note that β0 gives a positive maximal
point of η �→ ηgs(η). Therefore, if −1 < s < 0, we have

6sηgs(η) + 4(1− s2) > 6sβ0gs(β0) + 4(1− s2) =: h(s).(5.3.28)

From the definitions of β0 and gs, h(s) is rewritten as

h(s) =
4

9

(−s4 + (3 + s2)3/2s+ 9
)
.(5.3.29)

We note that h(0) = 4, h(−1) = 0, and s �→ h(s) is strictly increasing on the interval
[−1, 0]. Hence, from (5.3.27) and (5.3.28), we deduce that

dk2

dη
=

η

b
√
b

(
6sηgs(η) + 4(1− s2)

)
>

η

b
√
b
· h(s) > η

b
√
b
· h(−1) = 0.

This completes the proof of Proposition 5.3.6.

The limits of k and β2 are given by the following lemma.

Lemma 5.3.7. Let (ω, c) satisfy (5.1.11). Then, we have

k −→
η3→α1

⎧⎨⎩
1 if ω > c2/4,

1√
2

if ω = c2/4 and c > 0,
(5.3.30)

β2 −→
η3→α1

⎧⎨⎩
2
√
ω + c

2
√
ω − c

if ω > c2/4,

∞ if ω = c2/4 and c > 0.
(5.3.31)

Proof. Case 1: ω > c2/4. By Lemma 5.3.5 we note that

η1 → −4
√
ω + 2c < 0, η2 → 0

as η3 → α1. From the definitions of k2 and β, we obtain

lim
η3→α1

k2 = lim
η3→α1

−η1(η3 − η2)

η3(η2 − η1)

=
(4
√
ω − 2c) · α1

α1(4
√
ω − 2c)

= 1,
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and

lim
η3→α1

β2 = lim
η3→α1

−η3k
2

η1

=
2
√
ω + c

2
√
ω − c

.

Case 2: c = 2
√
ω. Since in this case

η1 → −4
√
ω + 2c = 0, η2 → 0

as η3 → α1 = 4c, the above calculation does not work. In this case A(η3) is rewritten as

A(η3) = 16c2 − 3η23 + 8cη3 = (3η3 + 4c)(4c− η3).(5.3.32)

By using this identity, η1 is rewritten as

η1 =
−η3 + 4c−√A(η3)

2
(5.3.33)

=

√
4c− η3
2

(√
4c− η3 −

√
3η3 + 4c

)
.

Hence, we have

k2 =
−η1(η3 − η2)

η3(η2 − η1)

=
η3 − η2

η3
· −η1√

A(η3)

=
η3 − η2

η3
·
√
3η3 + 4c−√

4c− η3
2
√
3η3 + 4c

−→ 1

2

as η3 → 4c. For the limit of β2, since η1 → 0, we have

lim
η3→α1

β2 = lim
η3→α1

−η3k
2

η1
= ∞.

This completes the proof.

The fundamental period Tψ defined by (5.3.9) is rewritten as

Tψ(η3) =
8√

η3
√

A(η3)
K(k(η3))

for α0 < η3 < α1. Combining with Proposition 5.3.6, we can prove the monotonicity of
the fundamental period Tψ.
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Proposition 5.3.8. Let (ω, c) satisfy (5.1.11). Then, the function (α0, α1) � η3 �→
Tψ(η3) ∈ (0,∞) is a strictly increasing function.

Proof. We recall that the fundamental period Tψ is defined by

Tψ =
8√

η3(η2 − η1)
K(k).

We note that

η3(η2 − η1) = 16ωη
√
fs(η) = 16ω

√
bs(η),

where bs(η) is defined by (5.3.26). Hence, Tψ is rewritten as

Tψ =
2√

ωbs(η)1/4
K(k(η)),(5.3.34)

where −1 < s ≤ 1 and β0 < η < β1. We differentiate Tψ with respect to η as

√
ω

2
· dTψ
dη

=
dK

dk

dk

dη
· 1

b
1/4
s

+K ·
(
− 1

4b
5/4
s

)
dbs
dη

(5.3.35)

=
1

b
5/4
s

(
dK

dk

dk

dη
· bs −Kηas(η)

)
,

where the function as is defined by

as(η) := −3η2 + 3sη + 2.(5.3.36)

We note that

γ = γ(s) :=
3s+

√
9s2 + 24

6
(5.3.37)

gives a positive zero of as(η). Since as(0) = 2, we have as(η) > 0 for 0 < η < γ. When
−1 < s ≤ 1, we have

γ ≤ β1 ⇐⇒ 3s+
√
9s2 + 24

6
≤ 1 + s

⇐⇒ −1

3
≤ s.

On the other hand, we have

β0 < γ ⇐⇒ 1

3

(
2s+

√
s2 + 3

)
<

1

6

(
3s+

√
9s2 + 24

)
⇐⇒ s <

√
s2 + 3.

Since the last inequality holds for any s ∈ R, we have β0 < γ for −1 < s ≤ 1. Hence,
the following three cases can be considered.
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(a) −1

3
< s ≤ 1, γ ≤ η < β1.

(b) −1

3
< s ≤ 1, β0 < η < γ.

(c) −1 < s ≤ −1

3
, β0 < η < β1(≤ γ).

Since
dK

dk
> 0, and

dk

dη
> 0, we note that the first term on the RHS of (5.3.35) is positive.

In the case (a), since a(η) ≤ 0, by (5.3.35) we deduce that

dTψ
dη

> 0.(5.3.38)

In the latter two cases, since as(η) > 0, we need to calculate a little more carefully. But,
by using the formula

dK

dk
=

1

kk′2 (E − k′2K)

and (5.3.27), one can prove that (5.3.38) holds in these cases. We omit the detail and
refer to [2, 6] as similar arguments.

From the definition (5.3.6) of k, we have

k2(η3) → 0

as η3 → α0. Since K(k) → π
2
as k → 0, we have

Tψ(η3) → 4π√
α0

√
A(α0)

=: T0(ω, c)(5.3.39)

as η3 → α0. Note that A(α0) is a positive constant as described in Remark 5.3.3. On
the other hand, we have

Tψ(η3) → ∞(5.3.40)

as η3 → α1. Indeed, when ω > c2/4, we have k → 1 as η3 → α1 by Lemma 5.3.7. Since
K(k) → ∞ as k → 1, (5.3.40) holds. When c = 2

√
ω, we have η1, η2 → 0 as η3 → α1 by

Lemma 5.3.5, and hence (5.3.40) holds from the definition (5.3.9) of Tψ. Therefore, by
(5.3.39), (5.3.40) and Proposition 5.3.8 we deduce that

α0 < η3 < α1 ⇐⇒ T0(ω, c) < Tψ(η3) < ∞,(5.3.41)

and

η3 → α0 ⇐⇒ Tψ(η3) → T0(ω, c),(5.3.42)

η3 → α1 ⇐⇒ Tψ(η3) → ∞.(5.3.43)
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The relation (5.3.43) means that the limit η3 → α1 is equivalent to the long-period limit.
Since 2L = Tψ, L has the following constraint condition:

L0(ω, c) < L < ∞,(5.3.44)

where L0(ω, c) is defined by

L0 = L0(ω, c) :=
T0(ω, c)

2
=

2π√
α0

√
A(α0)

.(5.3.45)

Since by (5.3.43) we have

η3 → α1 ⇐⇒ L → ∞,

we can take the limit η3 → α1 instead of the limit L → ∞.
To clarify the dependence of parameters, we denote the function ψ by ψLω,c. Let

cL ∈ 2π
L
Z. It is easily verified that the traveling wave

uω,cL = eiωt+i
cL
2
(x−cLt)(ψLω,cL)

1
2 (x− cLt)

is a solution of the equation (5.1.6).

5.3.3 Pointwise convergence in the long-period limit

We complete the proof of Theorem 5.1.1. Fix any x ∈ R and consider a large L > 0
such that x ∈ [−L,L]. We need to divide two cases to do calculations in the long-period
limit.
Case 1: ω > c2/4. By Lemma 5.3.5, Lemma 5.3.7 and extremal formulae (5.2.3) of
elliptic functions, we have

lim
L→∞

ψLω,c(x) = lim
η3→α1

η3

⎡⎣ dn2
(
x
2g
; k
)

1 + β2sn2
(
x
2g
; k
)
⎤⎦

= (4
√
ω + 2c)

⎡⎣ sech2
(√

4ω−c2
2

x
)

1 + 2
√
ω+c

2
√
ω−c tanh

2
(√

4ω−c2
2

x
)
⎤⎦

=
2(4ω − c2)

(2
√
ω − c) cosh2

(√
4ω−c2
2

x
)
+ (2

√
ω + c) sinh2

(√
4ω−c2
2

x
)

=
2(4ω − c2)

2
√
ω cosh2(

√
4ω − c2x)− c

= Φ2
ω,c(x).

Case 2: c = 2
√
ω. Since in this case β → ∞, 1

2g
→ 0 as η3 → α1, we need to calculate

more carefully. We use the following relations

dn(u; k) = 1 +O(u2),(5.3.46)

sn(u; k) = u+O(u3)(5.3.47)
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as u → 0 (see, e.g., [42] for the details). From (5.3.46), we have

lim
η3→α1

dn

(
x

2g
; k

)
= 1.(5.3.48)

We note that

1

4g2
=

η3(η2 − η1)

16
(5.3.49)

=
η3
√
A(η3)

16

=
η3
16

·
√

(4c− η3)(3η3 + 4c),

where in the last equality we used the identity (5.3.32). From (5.3.33), (5.3.49) and
(5.3.30), we deduce that

β2

4g2
= −η3

η1
· k2

4g2
(5.3.50)

=
2η3√

3η3 + 4c−√
4c− η3

· η3
16

√
3η3 + 4c · k2

−→ (4c)2

8
· 1
2
= c2

as η3 → α1 = 4c. Hence, by (5.3.47) and (5.3.50), we obtain that

lim
η3→4c

β2sn2

(
x

2g
; k

)
= lim

η3→4c
β2

(
x2

4g2
+O (4c− η3)

)
= lim

η3→4c

[
β2

4g2
x2 +O

(√
4c− η3

)]
= (cx)2,

where we have used the relation

β2O (4c− η3) =
1

η1
·O (4c− η3) = O

(√
4c− η3

)
.

Combined with (5.3.48), we deduce that

lim
L→∞

ψLc2/4,c(x) = lim
η3→4c

η3

⎡⎣ dn2
(
x
2g
; k
)

1 + β2sn2
(
x
2g
; k
)
⎤⎦

=
4
√
ω + 2c

1 + (cx)2

=
4c

1 + (cx)2
= Φ2

c2/4,c(x).

This completes the proof of Theorem 5.1.1. �
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5.4 Long-period limit procedure

5.4.1 L2-convergence

First, we discuss the convergence of the mass ‖ΦL
ω,c‖2L2(T2L)

in the long-period limit.
We recall that the mass of the soliton on the whole line is given by

‖Φω,c‖2L2(R) = 8 tan−1

√
2
√
ω + c

2
√
ω − c

.(5.4.1)

Our main purpose in this subsection is to prove the following theorem.

Theorem 5.4.1. Let (ω, c) satisfy (5.1.11). Then, we have

lim
L→∞

‖ΦL
ω,c‖2L2(T2L)

= ‖Φω,c‖2L2(R).(5.4.2)

Proof. We calculate the mass of traveling waves on T2L as

‖ΦL
ω,c‖2L2(T2L)

= 2

∫ L

0

η3
dn2
(
x
2g
; k
)

1 + β2sn2
(
x
2g
; k
)dx

= 4gη3

∫ K(k)

0

dn2(x; k)

1 + β2sn2(x; k)
dx,

where we used L = 2gK(k) in the last equality. Applying formula 410.04 in [12], we
have

‖ΦL
ω,c‖2L2(T2L)

= 4gη3

√
k2 + β2

(1 + β2)β2
G(μ, k),(5.4.3)

where

G(μ, k) := K(k)E(μ, k′)−K(k)F (μ, k′) + E(k)F (μ, k′),(5.4.4)

μ := sin−1

√
β2

β2 + k2
.(5.4.5)

We note that μ is regarded as a function of η3 and that 0 < μ < π
2
when α0 < η3 < α1.

We set

μ1 := lim
η3→α1

μ = lim
η3→α1

sin−1

√
β2

β2 + k2
.(5.4.6)
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Case 1: ω > c2/4. By Lemma 5.3.5 and Lemma 5.3.7, we have

lim
η3→α1

4gη3

√
k2 + β2

(1 + β2)β2
= lim

η3→α1

4gη3
β

(5.4.7)

=
8(2

√
ω + c)√

(2
√
ω + c)(2

√
ω − c)

√
2
√
ω − c

2
√
ω + c

= 8.

By the Taylor expansion, we have

1√
1− x

= 1 +
∞∑
n=1

(2n− 1)!!

(2n)!!
xn,(5.4.8)

√
1− x = 1−

∞∑
n=1

1

2n− 1
· (2n− 1)!!

(2n)!!
xn(5.4.9)

for all |x| < 1. Let τ ∈ (0, π
2
). Applying (5.4.8) and (5.4.9), we have

E(τ, k′) =
∫ τ

0

√
1− k′2 sin2 θdθ(5.4.10)

= τ −
∞∑
n=1

1

2n− 1
· (2n− 1)!!

(2n)!!
k′2n
∫ τ

0

sin2n θdθ,

F (τ, k′) =
∫ τ

0

dθ√
1− k′2 sin2 θ

(5.4.11)

= τ +
∞∑
n=1

(2n− 1)!!

(2n)!!
k′2n
∫ τ

0

sin2n θdθ.

By (5.4.10) and (5.4.11), we have

sup
0≤τ≤π

2

|E(τ, k′)− F (τ, k′)| ≤ π

2

∞∑
n=1

2n

2n− 1
· (2n− 1)!!

(2n)!!
k′2n(5.4.12)

≤ Ck′2,

where C is independent of k′. By (5.2.2) and (5.4.12), we deduce that

sup
0≤τ≤π

2

|K(k)(E(τ, k′)− F (τ, k′))| ≤ Ck′2
(
− log

k′

4

)
→ 0(5.4.13)

as k′ → 0. Especially, we deduce that

lim
η3→α1

K(k)(E(μ, k′)− F (μ, k′)) = 0.(5.4.14)



114

By (5.4.6) and Lemma 5.3.7, we have

sinμ1 = lim
η3→α1

√
β2

β2 + k2
=

√
2
√
ω + c

4
√
ω

.

Since

sin2 μ1 =
2
√
ω + c

4
√
ω

, cos2 μ1 =
2
√
ω − c

4
√
ω

and μ1 ∈ [0, π
2
], we deduce that

μ1 = tan−1

√
2
√
ω + c

2
√
ω − c

.(5.4.15)

By (5.4.3), (5.4.7), (5.4.14) and (5.4.15), we obtain that

lim
L→∞

‖ΦL
ω,c‖2L2(T2L)

= lim
η3→α1

4gη3

√
k2 + β2

(1 + β2)β2
G(μ, k)(5.4.16)

= 8E(1)F (μ1, 0)

= 8μ1

= 8 tan−1

√
2
√
ω + c

2
√
ω − c

= ‖Φω,c‖2L2(R).

Case 2: c = 2
√
ω. Since

k2 → 1
2
, k′2 → 1

2
, β → ∞,

η1 → 0, η2 → 0
(5.4.17)

as η3 → α1 in this case, we need to modify the previous calculation. By (5.4.17), we
have

k2 + β2

1 + β2
→ 1(5.4.18)

as η3 → α1. By using the definition of k, g and β, we have

4gη3
β

=
8η3√

η3(η2 − η1)
·
√−η1

η3
·
√

η3(η2 − η1)

−η1(η3 − η2)
(5.4.19)

= 8

√
η3

η3 − η2
.
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By (5.4.18) and (5.4.19), we obtain that

lim
η3→α1

4gη3

√
k2 + β2

(1 + β2)β2
= lim

η3→α1

4gη3
β

(5.4.20)

= lim
η3→α1

8

√
η3

η3 − η2

= 8.

By (5.4.17), we note that

μ1 = lim
η3→α1

sin−1

√
β2

β2 + k2
= sin−1 1 =

π

2
.(5.4.21)

Hence, we obtain that

lim
η3→α1

G(μ, k) = G(μ1, 1√
2
)(5.4.22)

= (KE ′ −KK ′ + EK ′)( 1√
2
)

=
π

2
,

where we used the Legendre relation (5.2.4) in the last equality. By (5.4.3), (5.4.20) and
(5.4.22), we obtain that

lim
L→∞

‖ΦL
c2/4,c‖2L2(T2L)

= lim
η3→α1

4gη3

√
k2 + β2

(1 + β2)β2
G(μ, k)(5.4.23)

= 8G(μ1, 1√
2
)

= 4π = ‖Φc2/4,c‖2L2(R).

This completes the proof.

Next, we prove the following theorem. This is the partial statement of Theorem 5.1.4.

Theorem 5.4.2. Let (ω, c) satisfy (5.1.11). Then, we have

lim
L→∞

‖ΦL
ω,c − Φω,c‖Hm([−L,L]) = 0(5.4.24)

for all m = 0, 1, 2.

To prove Theorem 5.4.2, we recall the Brézis–Lieb lemma.

Lemma 5.4.3 ([11]). Let 1 ≤ p < ∞. Let {fL} be a bounded sequence in Lp(R) and
fL → f a.e. in R as L → ∞. Then we have

‖fL‖pLp − ‖fL − f‖pLp − ‖f‖pLp → 0

as L → ∞.
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Proof of Theorem 5.4.2. We consider ΦL
ω,c as the function defined on R. More precisely,

we extend the function ΦL
ω,c as

ΦL
ω,c(x) =

{
ΦL
ω,c(x) if x ∈ [−L,L],

ΦL
ω,c(x− 2Lk) if x ∈ [(2k − 1)L, (2k + 1)L], k ∈ Z \ {0}.(5.4.25)

We set fL = χ[−L,L]ΦL
ω,c and f = Φω,c. By Theorem 5.1.1 and Theorem 5.4.1, we have

fL(x) → f(x) for all x ∈ R,

‖fL‖2L2(R) → ‖f‖2L2(R)

as L → ∞. Applying Lemma 5.4.3, we obtain

lim
L→∞

‖fL − f‖2L2(R) = 0.(5.4.26)

Since f ∈ L2(R), we have

lim
L→∞

‖f‖2L2(|x|≥L) = lim
L→∞

‖Φω,c‖2L2(|x|≥L) = 0.(5.4.27)

By (5.4.26) and (5.4.27), we deduce that

lim
L→∞

‖ΦL
ω,c − Φω,c‖L2([−L,L]) = lim

L→∞
‖fL − f‖L2(|x|≤L) = 0.(5.4.28)

Next we prove

lim
L→∞

‖∂2ΦL
ω,c − ∂2Φω,c‖L2([−L,L]) = 0.(5.4.29)

We note that ΦL
ω,c and Φω,c satisfy the same equation (5.1.16). For each L > 0, we have

|ΦL
ω,c(x)|2 ≤ η3 for all x ∈ [−L,L],(5.4.30)

since
√
η3 is maximum value of ΦL

ω,c. By the explicit formula (5.1.14) of the soliton, we
have

‖f‖2L∞(R) = Φ2
ω,c(0) = 4

√
ω + 2c = α1.(5.4.31)

By (5.4.30), (5.4.31) and (5.4.28), we deduce that

‖f 3
L − f 3‖L2([−L,L]) ≤ C(‖fL‖2L∞([−L,L]) + ‖f‖2L∞([−L,L]))‖fL − f‖L2([−L,L])

≤ C(η3 + α1)‖fL − f‖L2([−L,L])
≤ 2Cα1‖fL − f‖L2([−L,L]) −→

L→∞
0.

Similarly, we have

‖f5
L − f 5‖L2([−L,L]) ≤ C(‖fL‖4L∞([−L,L]) + ‖f‖4L∞([−L,L]))‖fL − f‖L2([−L,L])

≤ 2Cα2
1‖fL − f‖L2([−L,L]) −→

L→∞
0.
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Hence, by using the equation (5.1.16), we deduce that

‖∂2ΦL
ω,c − ∂2Φω,c‖L2([−L,L]) ≤

(
ω − c2

4

)
‖fL − f‖L2([−L,L])

+
c

2
‖f 3

L − f 3‖L2([−L,L]) +
3

16
‖f 5

L − f 5‖L2([−L,L])

−→
L→∞

0.

Finally, by integration by parts, we obtain that

‖∂ΦL
ω,c − ∂Φω,c‖2L2([−L,L]) = −

∫ L

−L

(
∂2ΦL

ω,c − ∂2Φω,c

) (
ΦL
ω,c − Φω,c

)
dx

≤ ‖∂2ΦL
ω,c − ∂2Φω,c‖L2([−L,L])‖ΦL

ω,c − Φω,c‖L2([−L,L])
−→
L→∞

0.

This completes the proof.

To prove the estimate (5.4.24) for m ≥ 3 by using the equation (5.1.16), we need to
control L∞-norm of lower derivative ∂kxΦ

L
ω,c where k = 1, 2, · · · ,m− 1. To achieve this,

we discuss L∞-convergence of ΦL
ω,c in next subsection.

5.4.2 L∞-convergence

In this subsection, we mainly prove the following proposition.

Proposition 5.4.4. Let (ω, c) satisfy (5.1.11). Then, we have

lim
L→∞

‖ΦL
ω,c − Φω,c‖L∞([−L,L]) = 0.(5.4.32)

Proof. Since ΦL
ω,c and Φω,c are even functions, it is enough to consider the interval [0, L].

We use the same notation in the proof of Theorem 5.4.2. By fundamental theorem of
calculus, we have

f 2
L(x) = fL(0)

2 +

∫ x

0

d

dy
f 2
L(y)dy,

f 2(x) = f(0)2 +

∫ x

0

d

dy
f 2(y)dy,

for all x ∈ [0, L]. Since fL(0)
2 = η3 and f(0)2 = α1, we have

f 2
L(x)− f(x)2 = η3 − α1 + 2

∫ x

0

(fLf
′
L − ff ′)dy(5.4.33)

for all x ∈ [0, L]. By Theorem 5.4.1, we note that

sup
L0<L<∞

‖fL‖L2([0,L]) ≤ C = C(‖f‖L2(R)).(5.4.34)
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Applying Cauchy-Schwarz’s inequality and (5.4.34), we deduce that∫ L

0

|fLf ′
L − ff ′|dy ≤ ‖fL‖L2([0,L])‖f ′

L − f ′‖L2([0,L]) + ‖f ′‖L2([0,L])‖fL − f‖L2([0,L])

≤ C‖fL − f‖H1([0,L]).

Combining with (5.4.33), it follows from Theorem 5.4.2 that

‖f 2
L − f 2‖L∞([0,L]) ≤ |η3 − α1|+ 2

∫ L

0

|fLf ′
L − ff ′|dy(5.4.35)

≤ |η3 − α1|+ C‖fL − f‖H1([0,L])

−→
L→∞

0.

By using the elementary inequality

|√x−√
y| ≤

√
|x− y| for all x, y ≥ 0

and (5.4.35), we deduce that

‖fL − f‖L∞([0,L]) ≤
√
‖f 2

L − f 2‖L∞([0,L])(5.4.36)

−→
L→∞

0.

This completes the proof.

Remark 5.4.5. We can also prove Proposition 5.4.4 directly without using the result
of Theorem 5.4.2. Given a ε > 0. By the decay of Φω,c and the pointwise convergence
in Theorem 5.1.1, there exists L0 > 0 such that

|Φω,c(L0)| < ε, |ΦL
ω,c(L0)| < 2ε(5.4.37)

for large L > L0 > 0. Both ΦL
ω,c and Φω,c are radial and decreasing functions, we deduce

that

‖Φω,c‖L∞(L0≤|x|≤L) < ε, ‖ΦL
ω,c‖L∞(L0≤|x|≤L) < 2ε(5.4.38)

for large L > 0. On the other hand, by reviewing the proof of Theorem 5.1.1, it is easily
verified that

lim
L→∞

‖ΦL
ω,c − Φω,c‖L∞([−L0,L0]) = 0.(5.4.39)

By (5.4.38) and (5.4.39), we obtain

lim sup
L→∞

‖ΦL
ω,c − Φω,c‖L∞([−L,L]) ≤ 2ε.

This gives an alternative proof of Proposition 5.4.4.

The following proposition follows from Proposition 5.4.4 and similar discussion on
the proof of Theorem 5.4.2.

Proposition 5.4.6. Let (ω, c) satisfy (5.1.11). Then, we have

lim
L→∞

‖ΦL
ω,c − Φω,c‖Cm([−L,L]) = 0(5.4.40)

for all m = 0, 1, 2.
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5.4.3 Proof of Theorem 5.1.4 and Theorem 5.1.5

Proof of Theorem 5.1.5. It is proved by differentiating the equation (5.1.16) and by ap-
plying Proposition 5.4.6 and the induction. We omit the detail.

Proof of Theorem 5.1.4. It is proved similarly as Theorem 5.1.5 by using the induction.
We prove only case m = 3. By differentiating the equation (5.1.16), we have

−Φ′′′ +
(
ω − c2

4

)
Φ′ +

3

2
cΦ2Φ′ − 15

16
Φ4Φ′ = 0.(5.4.41)

By Proposition 5.4.6, we note that

sup
L0<L<∞

‖fL‖W 1,∞([−L,L]) ≤ C = C(‖f‖W 1,∞(R)).(5.4.42)

By (5.4.42) and Theorem 5.4.2, we have

‖f 2
Lf

′
L − f 2f ′‖L2([−L,L]) ≤ ‖f ′

L‖L∞([−L,L])‖f 2
L − f 2‖L2([−L,L])

+ ‖f 2‖L∞([−L,L])‖f ′
L − f ′‖L2([−L,L])

≤ C‖fL − f‖H1([−L,L]) −→
L→∞

0.

Similarly, we have

lim
L→∞

‖f 4
Lf

′
L − f 4f ′‖L2([−L,L]) = 0.

By using the equation (5.4.41), we deduce that

lim
L→∞

‖∂3ΦL
ω,c − ∂3Φω,c‖2L2([−L,L]) = 0.

This completes the proof.





Bibliography

[1] D.M. Ambrose, G. Simpson, Local existence theory for derivative nonlinear
Schrödinger equations with non-integer power nonlinearities, SIAM J. Math. Anal.
47 (2015), 2241–2264.

[2] J. Angulo, Nonlinear stability of periodic traveling wave solutions to the Schrödinger
and the modified Korteweg-de Vries equations, J. Differential Equations 235 (2007),
1–30.

[3] J. Angulo, Nonlinear Dispersive Equations: Existence and Stability of Solitary and
Periodic Travelling Wave Solutions, Math. Surveys Monogr. 156, Amer. Math. Soc.,
Providence, 2009.

[4] J. Angulo, J.L. Bona, M. Scialom, Stability of cnoidal waves, Adv. Differential
Equations 11, (2006), 1321–1374.

[5] J. Angulo, F. Natali, Positivity properties of the Fourier transform and the stability
of periodic travelling-wave solutions, SIAM J. Math. Anal. 40 (2008), 1123–1151.

[6] J. Angulo, F. Natali, Stability and instability of periodic travelling wave solutions
for the critical Korteweg-de Vries and nonlinear Schrödinger equations, Phys. D 238
(2009), 603–621.

[7] J. Bellazzini, R.L. Frank, N. Visciglia, Maximizers for Gagliardo–Nirenberg inequal-
ities and related non-local problems, Math. Ann. 360 (2014), 653–673.

[8] H. Berestycki, P.-L. Lions, Nonlinear scalar field equations. I. Existence of a ground
state, Arch. Rational Mech. Anal. 82 (1983), 313–345.

[9] H. Biagioni, F. Linares, Ill-posedness for the derivative Schrödinger and generalized
Benjamin-Ono equations, Trans. Amer. Math. Soc. 353 (2001), 3649–3659.

[10] J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and
application to nonlinear evolution equations. I. Schrödinger equations, Geom. Fund.
Anal. 3 (1993), 107–156.
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