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Chapter 1

Introduction

1.1 Background

In this thesis we study the following equation
(1.1.1) 10 + 02 + 0, ([Y*v) = 0, (t,7) € R x R,

which is known as a derivative nonlinear Schrédinger equation. This equation appears
in plasma physics as a model for the propagation of Alfvén waves in magnetized plasma
(see [48, 49]) and it is known to be completely integrable (see [40]). The equation (1.1.1)
is L2-critical in the sense that the equation and L?-norm are invariant under the scaling
transformation

Uyt ) = y2 (2t yx), 7 >0,

There is a large literature on the Cauchy problem for the equation (1.1.1). Tsutsumi
and Fukuda [68, 69] studied the well-posedness in H*(R) for s > 3/2 by classical en-
ergy method which depends on parabolic regularization. The well-posedness in the
energy space H'(R) was first proved by Hayashi [31]. He introduced gauge transforma-
tion (see e.g. (1.1.2) or (1.1.13) below) to overcome the derivative loss, and combining
with the Strichartz estimate, the well-posedness in H'(R) was proved. In a later work,
Hayashi and Ozawa [32] proved the H'(R)-solution is global if the initial data ), sat-
isfies [|¢o]|3, < 2m. Recently, Wu [73] improved this global result, more specifically, he
proved that the solution is global if the initial data satisfies ||[¢]|7. < 4w. We will discuss
connection between these global results and solitons later.

For the Cauchy problem for (1.1.1) in H*(R) with s < 1, there are also many works.
Takaoka [66] proved that (1.1.1) is locally well-posed in H*(R) when s > 1/2 by the
Fourier restriction norm method. Biagioni and Linares [9] proved that the solution map
from H*(R) to C([-1,T] : H*(R)) is not locally uniformly continuous when s < 1/2.
Colliander, Keel, Staffilani, Takaoka, and Tao [19] proved by the so-called I-method
that when s > 1/2 the H*(R)-solution is global if the initial data satisfying |42, < 27
(see also [18]). Guo and Wu [28] improved their result, that is, they proved that the
H'2(R)-solution is global if ||1o[|2, < 4.



There are several forms of (1.1.1) that are equivalent under gauge transformation.
By using the following gauge transformation to the solution of (1.1.1)

(1.1.2) uwwzwﬁﬂwp@/PW@wWM»
then u satisfies the following equation:
(DNLS) i0u + 02u + ilul?0,u = 0, (t,7) € R x R,

This equation has the following conserved quantities:

1 1
(Energy) E(u) := —/ ]@Cu!zd:v——Re/i]u\zﬁxuﬂdx,
2 Jr 4 Jr
(Mass) M(u) = / luf2dz,
R
(Momentum) P(u) := Re/ 10 uudz.
R

We note that the equation (DNLS) can be rewritten as
(1.1.3) i0u = E'(u).

The Hamiltonian form (1.1.3) is useful when one considers problems of orbital stabil-
ity /instability of solitons. It is known that (DNLS) has a two-parameter family of solitons
(see [40, 17])

(1.1.4) Uy o(t, ) = e“' e, o(x — ct),
where (w, ¢) satisfies —2/w < ¢ < 24/w, and

?

(1.1.5) mgmzéw@mm(ﬁx——/réw@f@),

2" T4 )
o if w>c?/4
Vw (cosh(\/4w —c%r) — 5 ) ’
(1.1.6) 2 (z) = e
4c .
\ m ife= 2\/0_0

We note that @, is the positive radial (even) solution of
(1.1.7) —o" + w—c—2 ®+E|<I>|2<I>—i|<1>y4c1>:0
4 2 16 ’

and the complex-valued function ¢, . is the solution of

(1.1.8) —¢" + we +iced —i|p]P¢ = 0.



The equation (1.1.8) can be rewritten as

Si:,c(qb) =0,

where the functional S, .(¢) is defined by

Sucl6) = E(6) + SM(@) + 5P(9).

The condition of two parameters (w, ¢)

(1.1.9) —Ww < e < 2/w

is a necessary and sufficient condition for the existence of non-trivial solutions of (1.1.7)
vanishing at infinity (see [8]). As can be seen in the explicit formulae of the solitons,
(DNLS) has two types of solitons; one has exponential decay and the other has algebraic
decay. The latter corresponds to the soliton for the massless case.

Guo and Wu [27] proved that the soliton u,, is orbitally stable when w > ¢*/4 and
¢ < 0 by applying the abstract theory of Grillakis, Shatah, and Strauss [24, 25]. Colin
and Ohta [17] proved that the soliton w,, . is orbitally stable when w > ¢*/4 by applying
variational characterization of solitons as in Shatah [64]. The case of ¢ = 2y/w (massless
case) is treated! by Kwon and Wu [41], while the orbital stability or instability for the
massless case is still an open problem.

From the explicit formulae (1.1.5) and (1.1.6) of solitons, we have

(1.1.10) M(bo.) = M(Dy,) = Stan-1 | 2Y2EC

2\/w—c’
where (w, ¢) satisfies (1.1.9) (see [17, Lemma 5] or Section 4.2). If we consider the curve
(1.1.11) c=2syw

for w > 0 and s € (—1, 1], we have

B,y 50 5(2) = WID2, (Vo).

This means that the curve (1.1.11) corresponds to the scaling which is invariant of the
mass of the soliton. We note that the function

1+s

(1.1.12) s M(P,, 5, /5) = 8tan™ .
— S

is a strictly increasing function from (—1,1] to (0, 4n]. Especially, the threshold value
47 corresponds to the mass of the algebraic soliton.

!The “orbital stability” discussed in [41] is different from usual definition. Their result does not
contradict that finite time blow-up occurs to the initial data near the soliton for the massless case.



Here, let us review the global results in the energy space H'(R). We consider another
gauge equivalent form of (1.1.1). By using the following gauge transformation to the
solution of (DNLS)

(1.1.13) o(t,2) = u(t, z) exp (i / ]u(t,x)\zdx) ,

then v satisfies the following equation:
. . 3
(1.1.14) i + 8% + %ym?axv - %"028@ +—lol'v =0, (t2) eRxR.

Conserved quantities of (DNLS) are transformed as follows;

(1.1.15) E(v) == % : 0,0 dx — 3% : lv|°dz,
(1.1.16) M) = [ |v]*dx,
R
(1.1.17) P(v) := Re/i@mv@d:c—i-l/ lv|*dz.
R 4 Jr

The gauge transformation (1.1.13) was first derived in [32] to cancel out the interaction
term with derivative in the energy functional. Hayashi and Ozawa [32] used the following
sharp Gagliardo—Nirenberg inequality

4
(1.1.18) 1Flze < I F11z=010:£12

in order to obtain a priori estimate in H*(R) by using conservation laws of the mass and
the energy. They proved the H'(R)-solution of (1.1.14) is global if the initial data wug
satisfies

(1.1.19) M(ug) < M(Q) = 2r,

where () is defined by @) := ®; 5. We note that () is an optimal function for the inequality
(1.1.18). This result is closely related to the earlier work by Weinstein [71] for focusing
L2-critical nonlinear Schrodinger equations. Consider the following quintic nonlinear
Schrodinger equation:

3
(1.1.20) i0pu + O2u + 1—6]u\4u =0, (t,7) e R xR.

The equation (1.1.20) has the same energy £(u) of (1.1.15) and the same standing wave
€@ as the equation (1.1.14). Furthermore, (1.1.14) and (1.1.20) are L*-critical in the
sense that the equation and L?-norm are invariant under the scaling transformation

(1.1.21) uy(t, ) = yu(y’tyx), 5> 0.



Weinstein [71] proved that if the initial data of (1.1.20) satisfies the mass condition
(1.1.19), then the H'(R)-solution is global. In the case of (1.1.20), it is known that this
mass condition is sharp, in the sense that for any p > 27, there exists ug € H'(R) such
that M(up) = p and such that corresponding solution u to (1.1.20) blows up in finite
time. From this analogy, Hayashi and Ozawa [32] conjectured that the mass condition
(1.1.19) is also sharp for the equation (1.1.14) (equivalently (1.1.1) or (DNLS)).

A similar analogy can be seen for the quintic generalized Korteweg-de Vries equation:

(1.1.22) Oyu + Ou + %aw(uf?) =0, (t,7) ER xR,

This equation is also the L?-critical equation which has the same energy &(u) as (1.1.14)
and the traveling wave solution Q(x — t). Hence, if the initial data of (1.1.22) satisfies
the mass condition (1.1.19), then the H'!(R)-solution is global. It is also known that the
mass condition for (1.1.22) is sharp; more precisely, the H!(R)-solution of (1.1.22) blows
up in finite time to the initial data satisfying

E(ug) <0, M(Q) < M(ug) < M(Q) +¢

for small £ > 0 and some decay condition; see [47, 46].

However, the mass condition (1.1.19) is not sharp to the equation (1.1.14) (equiva-
lently (1.1.1) or (DNLS)). Wu [72, 73] took advantage of conservation law of the mo-
mentum as well as conservation laws of the mass and the energy. He used the following
sharp Gagliardo—Nirenberg inequality

(1.1.23) 1£118s < 3(2m) 75| £l 2al| O f1I 2

in his argument to connect the estimates obtained from the energy (1.1.15) and the
momentum (1.1.17) (see also [28]). Then, he proved that the H'(R)-solution of (1.1.14)
is global if the initial data wug satisfies

(1.1.24) M(ug) < M(W) = 4,

where W is defined by W := ®;5. We note that I is an optimal function for the
inequality (1.1.23).

One of the main reason why the difference of global results as described above occurs
is due to that the equation (1.1.14) has a two-parameter family of solitons. The algebraic
soliton corresponds to the threshold for the existence of solitons, and the value 47 cor-
responds to the mass of the algebraic soliton. Hence, it is reasonable to conjecture that
47 is an optimal upper bound of the mass for the global existence of H!(R)-solutions
by the analogy with (1.1.20) and (1.1.22) as L*-critical equations. However, existence of
blow-up solutions for the derivative nonlinear Schrodinger equation is a large open prob-
lem. It is known that finite time blow-up occurs for the equation (1.1.1) on a bounded
interval or on the half line, with Dirichlet boundary condition (see [67, 72]), but unfor-
tunately one can not apply these proofs to the whole line case. We also refer to [44, 15]
for numerical approaches to this problem.



Recently, in [37] it was proved by inverse scattering approach (see also [61, 62] for
related works) that the equation (DNLS) is globally well-posed for any initial data be-
longing to weighted Sobolev space H*?(R), where

H**(R) = {uec H*R); (Yuel*R)}.

This is the strong result for the global well-posedness to (DNLS), however, the dynamics
in the energy space H'(R) (especially above the mass threshold 47) is still unclear. We
note that the algebraic solitons do not contain in H*?(R), but they contain in H'(R).
Therefore, the difference of functional spaces is quite important for (DNLS) from the
viewpoint of solitons. We also note that the results in [37] do not imply the nonexistence
of blow-up solutions for (DNLS) in the energy space H!(R); see blow-up criteria in [41].

Our main aim of this thesis is to investigate the structure of the equation (DNLS)
from the viewpoints of the solitons. One of the main theorem in this thesis is to estab-
lish a sufficient condition for global existence of the solutions to (DNLS) by variational
approach. Our variational approach recovers Wu’s global results and clarifies the connec-
tion between the 47m-mass condition and potential well generated by the ground states.
Moreover we establish the new global result; if the initial data uqg € H*(R) of (DNLS)
satisfies

M (ug) = 47 and P(ug) < 0,

then the corresponding H'(R)-solution exists in globally in time. This gives the first
progress to investigate the dynamics around the algebraic soliton. Furthermore, we
establish the global result for oscillating data which contains the initial data with arbi-
trarily large mass. We note that the proofs for these theorems are done by essentially
using the properties of two-parameter of the solitons, and especially the algebraic soliton
plays an important role in the proof.

One of the significant advantage of our variational approach is that we do not need any
structure of integrability. This means that our arguments are applicable to more general
equations. In this thesis we also study naturally generalized equations of (DNLS); see
the next section for more details. The deep understanding of these generalized equations
is expected to be useful for further progress to the study on (DNLS).

1.2 Organization of the thesis

We briefly state the organization of this thesis. In Chapter 2 we study the generalized
derivative nonlinear Schrodinger equation:

(gDNLS) 10+ 02u +ilu[*0,u =0, (t,z) ERxR, o >0,

which was introduced by Liu, Simpson, and Sulem [45] to understand the structural
properties of (DNLS). The equation (gDNLS) is invariant under the scaling transforma-
tion

uy(t, x) = v u(y’t, yr), >0,



which implies that the critical Sobolev exponent is s. = % — % We note that the case
0 < 0 < 1 corresponds to L?-subcritical case and the case ¢ > 1 corresponds to L?-
supercritical case. In [45] they studied the orbital stability/instability of the solitary
waves for (gDNLS), however the well-posedness in the energy space H'(R) was assumed.
Before our work well-posedness results for (gDNLS) were partially known (see Chapter 2
for the details), but the well-posedness in the energy space was unsolved. In Chapter 2 we
study the Cauchy problem for the equation (gDNLS) with a focus on the well-posedness
in the energy space. In the L2-supercritical case, we construct the solutions by proving
that approximate solutions form a Cauchy sequence in appropriate Banach spaces, which
gives a more constructive proof compared to the one by compactness arguments. We
also study global existence for (gDNLS) in the energy space in the L?-subcritical case.

In Chapter 3 we study global existence of solutions for (DNLS) and (gDNLS) in
the L2-supercritical setting. Based on the local well-posedness results in Chapter 2,
we establish a sufficient condition for global existence of the solutions by variational
approach. First we give a variational characterization of two types of the solitons. Then,
combined with potential well theory, we give a sufficient condition for global existence in
the energy space. The key step is to examine the invariant sets represented by potential
well. Especially, in the case of (DNLS) we clarify the connection between the 4r-mass
condition and potential well generated by the ground states, and reprove Wu'’s global
results. Moreover, we prove that the H'(R)-solution to (DNLS) is global if the initial
data ug satisfies that M (ug) = 47 and the momentum P(ug) is negative. We also see
that global results for arbitrarily large mass are obtained by variational approach.

In Chapter 4 we consider the nonlinear Schrodinger equation of derivative type:

(DNLSDb) 10w + 02u + ilu?0pu + blu|*u =0, (t,2) ER xR, beR.

If b = 0, or course, this equation is nothing but the equation (DNLS). The equation
(DNLSb) can be considered as a generalized equation of (DNLS) while preserving both
L?-criticality and Hamiltonian structure. The main aim of this chapter is to investigate
global well-posedness in the energy space H'(R) for the equation (DNLSb) from the
viewpoints of the solitons. We extend the global results for (DNLS) to the equation
(DNLSb) by variational approach developed in the Chapter 3. Interestingly, if b < 0,
4m-mass condition for (DNLS) is improved due to the defocusing effect from the quintic
term. The orbital stability of the solitons is also studied. The stability of the solitons
is closely related to the mass condition for global existence in the energy space. We
see that the effect of the momentum plays an important role in the arguments on both
global existence and stability of the solitons.

In Chapter 5 we study the periodic traveling wave solutions of (DNLS). To investigate
further properties of the solitons, we construct exact periodic traveling wave solutions
which yield the solitons on the whole line including the massless case in the long-period
limit. Moreover, we study the regularity of the convergence of these exact solutions
in the long-period limit. Throughout the chapter, the theory of elliptic functions and
elliptic integrals is used in the calculation.






Chapter 2

The Cauchy problem for generalized
derivative NLS equations

2.1 Introduction

We consider the Cauchy problem for the following generalized derivative nonlinear
Schrodinger equation (gDNLS) with the Dirichlet boundary condition

10+ 0?u+ilu/*d,u=0 in RxQ,
(2.1.1) u=0 on R x 09,
u(0) = ug on £

where u is a complex valued function of (t,2) € R x , ¢ > 0 and 2 C R is an open
interval. With ¢ = 1, (2.1.1) has appeared as a model for ultrashort optical pulses
[50]. For simplicity we consider the case 2 = R here, but we note that our approach is
applicable to (2.1.1) with a general open interval €2 in the mostly same way. So we study
the Cauchy problem for the following equation:

(gDNLS) 10+ 0%u + ilu/*0,u =0, (t,r) ER xR, o> 0.

The solution of (gDNLS) obeys formally the following energy, mass and momentum
conservation laws:

. 1 2 o 1 . 20 — o
(Energy) E(u) := 2/R|é?gcu| dx 2O+2Re/Rz|u| Oyuudr = E(uy),
(Mass) M (u) :z/\uPda:,
R
(Momentum) P(u) := Re/ i0,utdx.
R

There are only a few results for the equation (gDNLS) with general exponents o > 0,
as compared with ¢ = 1. Hao [30] proved local well-posedness in H'/?(R) intersected
with an appropriate Strichartz space for o > 5/2 by using the gauge transformation and

9
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the Littlewood-Paley decomposition. Liu, Simpson and Sulem [45] studied the orbital
stability /instability of solitary waves for (gDNLS); see Chapter 3 for more details. We
should note that in [45] they assumed the well-posedness in the energy space H'(R) for
general o > 0. Ambrose and Simpson [1] proved the existence and uniqueness of solutions
u € C([0,T], H*(T)) and the existence of solution u € L>((0,T), H'(T)) for o > 1. The
construction of solutions is done by a compactness argument and the uniqueness of
H'(T)-solutions is unsolved. Recently, Santos [63] proved the existence and uniqueness
of solutions u € L>((0,T), H¥?(R)N(x)~" H/(R)) for sufficient small initial data in the
case of 1/2 < o < 1. The proof of [63] is based on parabolic regularization and smoothing
properties associated with the Schrodinger group, where the weighted Sobolev space is
essential to control the mixed norm LPL{. He also proved the existence and uniqueness
of solutions u € C([0, T], H/?(R)) for sufficient small initial data in the case of o > 1.

The main aim of this chapter is to prove the well-posedness for (gDNLS) in H'(R)
and H*(R) when o > 1/2. In the case of 1/2 < ¢ < 1, the nonlinear term |u|?* is not
even C?, and therefore a delicate argument is necessary. Our first result is the local
well-posedness in H?(R) when o > 1/2.

Theorem 2.1.1. Let 0 > 1/2. For any ug € H*(R), there exist T > 0 and a unique
solution u € C([-T,T], H*(R)) of (¢DNLS). Moreover, the solution u depends contin-
uously on ug in the following sense: If ug, — ug in H*(R) as n — oo and if u, is the
corresponding solution of (gDNLS), then u, is defined on the same interval [=T,T) for
n large enough and u, — u in C([=T,T|, H*(R)) as n — oo for all 0 < s < 2.

Remark 2.1.2. When ¢ = 1/2, the nonlinear term i|u|0,u is quadratic. Christ [16]

considered the following Cauchy problem:

(2.12) i0pu + O*u + iud,u =0, t >0,z € R,
u(0,2) = up(z), z € R,

and it was proved that the flow map of (2.1.2) is not continuous in H*(R) for any s € R.
Theorem 2.1.1 tells us that the behavior of the solution of (gDNLS) is very different from
that of the solution of (2.1.2) even though both equations have the quadratic nonlinear
term with derivative.

The proof of Theorem 2.1.1 proceeds by four steps. We first employ a Yosida-type
regularization and construct approximate solutions. Next, we follow an argument in [1]
and obtain the uniform estimate on the approximate solutions in H'(R) by using the
conservation laws. Under the uniform bound in H'(R), we obtain uniform estimates
in H*(R) by estimating time derivative of approximate solutions. More precisely, we
differentiate the equation once in time instead of differentiating twice the equation in
space in order to obtain H?*(R)-estimates. This enables us to relax the smoothness
condition of the nonlinear term. This idea comes from Kato [39]. Finally, we prove the
sequence of approximate solutions forms a Cauchy sequence in L*(R) and construct the
solution of (gDNLS) by the completeness of Banach space directly. We remark that our
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construction of solutions does not need any compactness theorem, for example, Ascoli-
Arzela’s theorem, Rellich-Kondrachov’s theorem, Banach-Alaoglu’s theorem, etc.

Santos [63] proved the uniqueness in L>((0,7), H*?(R) N (z)~" HY?(R)) for 1/2 <
o < 1. We see that it is not necessary to use the weighted Sobolev space for the
uniqueness as follows.

Theorem 2.1.3. Let ¢ > 1/2. Let ug € H**R) and T > 0. If u and v are two
solutions of (gDNLS) in L=((=T,T), H**(R)) with the same initial data, then u = v.

Our proof of Theorem 2.1.3 is based on Yudovich type argument [38]. Related proofs
for nonlinear Schrodinger equations with pure power nonlinearities are given in [70], [55],
[56].

The main result in this chapter is the local well-posedness in the energy space H'(R)
for o > 1.

Theorem 2.1.4. Let 0 > 1. Let ug € H'(R). Then there exist 0 < Tin, Tmax < 00 and
a unique mazimal solution u € C((—Tin, Timax), H'(R)) N LY ((— Tinins Tinax); W2 (R))
of (gDNLS). Moreover, the following properties hold:

(1) If Toax < 00 (1esp., if Tmin < 00), then [[Oyu(t)||r2 — 00 as t T Tmax (resp., as
14 \L _Tmin)-

(ii) w € LL . ((—Twin, Tmax), WH"(R)) for every admissible pair (q,r), i.e., (q,7) satisfy-

ing 0<2/qg=1/2—1/r <1/2.

(i) E(u(t)) = E(ug), M(u(t)) = M(up), and P(u(t)) = P(ug) for allt € (—Timin, Tmax)-

(iv) Continuous dependence is satisfied in the following sense; if ug, — ug in H'(R)
and if I C (—Twin(uo), Tmax(to)) is a closed interval, then the mazimal solution
u, of (gDNLS) with u,(0) = wg, is defined on I for n large enough and satisfies
u, — u in C(I, H'(R)).

The proof of Theorem 2.1.4 depends on the gauge transformation and the Strichartz
estimate. We employ H?(R)-solutions constructed in Theorem 2.1.1 as approximate
solutions. First, we derive the differential equation by using the gauge transformation
that the spatial derivative of approximate solutions should satisfy. Next, we obtain the
uniform estimate on approximate solutions in L{W" for any admissible pair (¢,r) by
using the Strichartz estimate. Finally, we prove the sequence of approximate solutions
forms a Cauchy sequence in L?(R) and construct the H'!(R)-solution of (gDNLS). The
last step is similar to that of the proof of Theorem 2.1.1. This method is required that
the nonlinear term belongs to C?%, so we need to assume o > 1. We note that our
approach gives alternative proof even for the case of ¢ = 1 since we do not covert the
equation into some system of equations as can be seen in [31, 33, 34].

From the conservation of mass and energy, one can prove the global well-posedness
for small initial data in H'(R).
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Theorem 2.1.5. Let 0 > 1. Then there exists ey > 0 such that if ug € H'(R) satisfies
|uo|| 1 < €0, then there exists a unique solution u € C(R, H'(R)) N L (R, IWH=(R)) of
(eDNLS). Moreover, the following properties hold:

(i) v e LL (R,WL(R)) for every admissible pair (q,r).

(il) E(u(t)) = E(ug), M(u(t)) = M(uy), and P(u(t)) = P(ug) for allt € R.

(iii) Continuous dependence is satisfied in the following sense; if ug, — ug in H'(R) as
n — oo and if u, is the global H'(R)-solution of (sDNLS) with u,(0) = ug,, then
u, — uwin C([-T,T], H'(R)) for all T > 0.

For the case of o < 1, we have the following result.

Theorem 2.1.6. Let 0 < o < 1. Let ug € H'(R). Then there exists a solution
u € (Cp N L*®)(R, HY(R)) of (g<DNLS). Moreover, we have

E(u(t)) < E(uo), M(u(t)) = M(uo) and P(u(t)) = P(uo)
for all t € R.

When 0 < ¢ < 1, we do not need to assume the smallness of the initial data for
the global existence of the solution. This is not surprising since the case 0 < o < 1
corresponds to L2-subcritical setting. The solution in Theorem 2.1.6 is constructed by
a compactness argument, and we do not know whether the solution is unique or not.
If uniqueness holds in L>(R, H*(R)), one can prove easily that F(u(t)) = E(uy) for all
t € R and that u € C(R, H'(R)).

The rest of this chapter is organized as follows. Section 2.2 is concerned with local
well-posedness in H*(R) and Theorem 2.1.1 is proved there. In Section 2.3 we prove
Theorem 2.1.3. In Section 2.4 we study the well-posedness in the energy space H'(R)
and prove Theorem 2.1.4 and Theorem 2.1.5. Finally we prove Theorem 2.1.6 in Section
2.5.

2.2 Local well-posedness in H*(R)

2.2.1 Approximate solutions
Let g(u) and G(u) be defined by
g(u) = i|u*0,u,

1
Glu) =515

Re/ i|u|* O, utidx
R
for o > 0. We consider L?(R) as a real Hilbert space with the scalar product

(u,v) = Re/}Ru(x)@dx for u,v € L*(R).
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Then we have
G e CYH'(R),R), G’ =g,
with the following identification
H'(R) c L*(R) ~ L*(R)* ¢ H '(R).

For any m € N, we consider the following approximate problem:

(2.2.1) 10t + 02Uy, + Jing(Jintt) = 0,
um(0) = uy,
where J,,, is Yosida type approximation defined by
1 -1
(2.2.2) I = (I - —ag) :
m

We recall the following basic properties of J,,. For the proof we refer to [13].

Proposition 2.2.1. Let X be any of the spaces H*(R), H'(R), H '(R), and LP(R)
with 1 < p < 0o and let X* be its dual space. Then the following properties hold:

() Sk D xx- = (s Jm@)x x- Vf € X Vg € X*.
(ii) Jm € L(L*(R), H*(R)).
(1) [Tl < 1.
(iv) Jpu —uin X (m — o0) Yu € X.
(V) supen |[umllx <00 = Jptm — Uy — 0in X as m — oc.

Let ¢ > 1/2. Given uy € H*(R). By Proposition 2.2.1 and the Banach fixed-point
theorem, for each m € N there exists T,,, > 0 and u,, € C([~T,, T,,], H*(R)) which is a
solution of the initial value problem (2.2.1).

Next, we establish the uniform bounds on the solutions in H*(R) with respect to m.
This will allow us to construct a solution of (gDNLS) in the limit as m — co. We define
the functions g,, and G,, by

gm(u) = Jn(9(Jnu)) and  Gp(u) = G(Juu).
Then we see that
Gm € C*(H'(R),R), G = g
The energy of the equation (2.2.1) is given by the following:

(2.2.3) EMm:%A@M%m%%w)

A standard calculation shows that conservation laws of energy, mass and momentum
hold for the approximate problem.
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Lemma 2.2.2. For each m € N, the H*(R)-solution u,, of (2.2.1) satisfies
B (um(t)) = En(uo), M(um(t)) = M(uo) and P(un(t)) = P(uo)
forallt € [T, Ty).
We need the following lemma to obtain the uniform H*(R)-estimate of {u,,}.

Lemma 2.2.3. For any r > 1 there exists C' > 0 such that
d 2r 2 \rto
— [ up|de < C(1+ |lunll7n)
dt Jr

where the positive constant C' is independent of m.

Proof. By the equation (2.2.1) and Holder’s inequality, we have

d
%/ |um|2rdx:/2r|um|2(r_1)Re(8tumm)
R R

= / 2r|um|2(rl)lm((—3§u —gm(um))um>
R

_ / 2r1m(amumam<|um|2r V=) — |um|2<r—l>gm<um>—um)
R

1
C (lumll 2 10umllF2 + [l |75 Dt 2 1t 22)

r+o
(1+ ||um||H1) .
This completes the proof. O

We derive the uniform bound in H'(R) for {u,,} by Lemma 2.2.2 and Lemma 2.2.3.
We note that

tumllFn = ltm 172 + 100tm]|72
= “umH%2 + 2 (En(tm) + G (um)) -

By Cauchy-Schwarz’s inequality and Young’s inequality, we obtain that
26 (tm) < —10smlsa w25 < 510wt + 5 5%
T o+1 L -2 2 L
This yields that
2 1 40+2 1 2
[l < M(um) + 2Em (un) + ) |t dx + §||0xum”L2'
R

Hence, we have

(2.2.4) |t |50 < 2M () + 4By, () + /R |t [* 2 .
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We introduce the following energy:
En(u) = 2M (u) + 4By (u) + / |47 +2d.

R

By using Lemma 2.2.2, Lemma 2.2.3 and (2.2.4), we conclude that

d o
- Em(tm) < C(1+ Em(um) ™.
The estimates (2.2.4) and (2.2.5) imply that there exists Ty > 0 such that for all m € N

such that u,, exists on the time interval [T, Tp] and

(2.2.5)

(2.2.6) Mo := sup [t ey 71,1y < 00
me

We note that Tj depends on |ugl| g1-

Next, we establish the uniform H?(R)-estimate of {u,,}.

Lemma 2.2.4. There exists T = T(||uol|gz) > 0 which is independent of m such that
Uy, € C([-T,T), H*(R)) for allm € N and

(2.2.7) M := sup |[tm|lo(-r.11,52) < 00

meN

Proof. We estimate L?*(R)-norm of the time derivative of u,, as

d
EHatUmH%z = 2 (Q?um, 8tum>

= -2 (at(|um|2"8mum), 8tum)
- _2 (at(|um|2a)axuma 8tum) - 2 (|um|2aaacatuma atum)

< CllumI75 1 Owttn || o0 | Oettm |72

where in the last inequality we used integration by parts. By Sobolev’s embedding and
(2.2.6), we obtain that

d
(2.2.8) ZN0umllze < CMT M Outumal o 1Ot |22
From the equation (2.2.1), we obtain that

(2:2.9) 1020l 22 < 10kl £z + | Jm o (Tmtin) || 2
< |1Bstugl| 2 + CMZTH,
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By Sobolev’s embedding and the conservation of mass,

[0zum | Lo < Clltm]| p2
< C([[umllz2 + [|05um] 12)
S C(HUQHLQ -+ HﬁtumHLz -+ CM020+1).

Applying this estimate to (2.2.8), we deduce that
d
0 lze < C(Mo) (1 + |9t 2) 1Ot IZ2
< C(Mo) (1 + [[ Oyt 32)

This inequality implies that there exists 7" > 0 which is independent of m € N such that
T <Tj and

(2.2.10) SU_pN HatumHC([_T’TL[;) < OQ.
me
From (2.2.10) and (2.2.9), we obtain the uniform H?(R)-estimate (2.2.7). O

2.2.2 Convergence of the approximating sequence

In this subsection we prove that {u,,} is a Cauchy sequence in C([-T,T], L*(R))
under the uniform H?(R)-estimate (2.2.7). We set [ = [T, T]. Before proceeding to
the proof, we prepare the following lemma.

Lemma 2.2.5. Let m,n € N. Let ¢, ¢ € C>X(R). Then the following properties hold:

. 1 1
) 1 — Jugllie < (— T —) 1021122
m n

1 1
1i — < | — — 2 2.
@) 1 = I DI < (o + %) Woaslizlonel

Proof. Let v, = J,p, v, = Jop. From the definition of .J,,, we have

1
Uy — —aivm ©,
m
1
Uy — —szn =
Therefore, we have
1 1
Uy — Up = — Oy, — — 020y,
m
1
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Without loss of generality, we may assume that m > n. From Proposition 2.2.1, we have

2 1
[om — vnllz < 211020l 22 + (— - —) 10212
m

1
_ (— ; —) 102611
m n

This completes the proof of (i). The proof of (ii) is done similarly. O

Now we estimate L?(R)-norm of the difference u,, — u,. By a straightforward calcu-
lation we have

4
dt

[t — U |72 = 2(Dpthy — O, Uy — Uy,
= 2(0 g (Jntim) — iJng(Jntin), Uy — uy)
=2 [(z’ng(Jmum) — 010G (T, Uy — Uy)
— (Imten 2 = [Tt 2 oDt Tty — 1) )
(7 = 1Tt 27) Tt Tt = 1) )
(]J U |*7 (T Optin — Ot ), T (e, —un)>

- <|Jnun‘2a(t]naxum - Jnaxun)a Jn(um - un)>‘|
:Il+12+13+[4+15.

We are going to estimate each of terms Iy, I, I3, I4 and I5. By Lemma 2.2.5, [y is
estimated as

1 1
<2 () 10t 20— )

gcm@(i+1>.

m n
By using an elementary inequality
[Jul*” = o7 < C(lu"~" + [P fu—v|
and Lemma 2.2.5, I, is estimated as

I < C<M)(||Jmum”20 L+ ||Jn mH% 1)Hjmum - Jnum||L2
1
<0 (4 1) 1280l
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A similar calculation yields that

I3 < 2||<]mamum“L°°|HJnum|2o - |Jnum|20HL2HJn(um - un)HLZ
< C(M)|[ttry = tn |72

By Lemma 2.2.5, I, is estimated as

14 S 2 |(Jmaa:um - Jnaa:uma |Jnun|20<]n(um - un))|

1 1
<2 (2t ) 120 ()
1 1
< C(M) (— + —) :
m n
Finally, by integration by parts, I is estimated as
Is = =2 (| Joun[*7 (0p Jntty — Oy, Tty — Jnti,)
= (0:(|Tnunl®), | Jntt — Jntin|?)
< C(M) [t = unl|Z2-

Gathering these estimates, we obtain that

d 1 1
(2.2.11) Euum — uy|[72 < C(M) (E + 5) + C(M) || ttry, — |2
Applying the Gronwall inequality, we deduce that
1 1
(2.2.12) SUp ||um (t) — u, (t)||7: < C(M)T (— + —) :
tel m n

Therefore, there exists u € C(I, L*(R)) such that u,, — v in C(I, L*(R)). By using the
elementary interpolation estimate

/]

and the uniform H?(R)-estimate (2.2.7), we obtain v € C'(I, H*(R)) with 0 < s < 2 such
that u,, — w in C(I, H*(R)). From this convergence and Lemma 2.2.2 we deduce that

(2.2.13) E(u(t)) = E(uo), M(u(t)) = M(uo) and P(u(t)) = P(up)

we < I FIL P FIISE for 0 < s < 2

for ¢t € I.

2.2.3 Proof of Theorem 2.1.1

We shall prove that the function u actually satisfies (¢DNLS) and lies in C(I, H*(R)).
We note that u,, is a solution of the integral equation

(2.2.14) Um(t) = U(t)ug + 1 /Ot Ut — ) Jmg (Tt (s))ds.
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By Proposition 2.2.1 and u,,(s) — u(s) in H'(R), we have

Ing(Jmtim(s)) = g(u(s)) = Jm [9(Jmtim(s)) = g(Jmu(s))]
+ I [9(Jmuls)) = g(u(s))] + Jmg(u(s)) = g(u(s))
— 0 in L*(R) as m — oo

for all s € I. Taking the limit in the integral equation (2.2.14) as m — oo, we conclude
that

(2.2.15) u(t) =U(t)ug +1i /Ot Ut — s)g(u(s))ds.
We set
o(t) = i/ot Ut — 5)g(u(s))ds.
Since g(u) € C'(I, L*(R)), it follows that v € C'(I, L*(R)). Since v satisfies the equation

(2.2.16) 10y + 020 + g(u) = 0,

it follows that 9?v € C(I, L*(R)). Therefore, u € C(I, H*(R)) follows from the integral
equation (2.2.15). The uniqueness and continuous dependence are verified by the same
argument as in [1]. We omit the detail.

2.3 Proof of Theorem 2.1.3

For the proof of Theorem 2.1.3, the following lemma is essential.

Lemma 2.3.1 ([56]). Let p € [2,00). For any u € HY/*(R), we have

(2.3.1) [ullr < CV/Plullm2,

where C' is independent of p.
We set

M = max{||w|| poo ()12, 10| oo (— 1.7y, 1372) }-
By using integration by parts and Holder’s inequality, we obtain that
d

—|lu — |32 = 2(0u — O, u — v)
= —2((|u!2“ — [v|*7) 0y, u — v) — 2<]v|2"(8$u — 0y0),u — v)
< c(m) /(|8$u| 18,0 |u — vds

R

< CM)([10zullze + 1100l zo) |1 = V72
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for any p € (2,00). By Holder’s inequality, we have
= vl o < [l =l | = w1277
By Sobolev’s embedding and Lemma 2.3.1, we obtain that
d 2(1—-1
(23.2) Zllu—vllzz < CONVE(lull gz + [0l o) llu — vll 72~
< C(M)pllu o] 7577,

where C'(M) is still independent of p. Applying the Gronwall type inequality to (2.3.2),
we have

By integration in time, we deduce that

(2.3.3) lu(t) — w2 < (C(M)T)p

VP

for all t € (—=7,T). Since the RHS of (2.3.3) goes to 0 as p — oo, we deduce that u = v.

2.4 Well-posedness in the energy space H'(R)
In this section, we prove the local and global well-posedness of (gDNLS) in the energy
space H'(R).

2.4.1 The gauge transformation

Assume that ¢ > 1. Let u is a solution of (gDNLS). We formally derive a differential
equation of d,u. To this end, we follow an idea in [59]. We define the differential operator
by
A direct calculation shows that
(2.4.1) e" M L(ed,u) = Ldyu + (—(afo + z’LA) Oy + 2i0, A,

where A is a real-valued function determined later. We note that

(2.4.2) Loyu = 0, Lu = —i|ul*? 0%u — 0, (|u*)0,u.
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To absorb the worst term —i|u|?*?0%u by means of —29,A0?u on the RHS of (2.4.1), we
define A by

1 €T
(2.4.3) A= 5/ lu(t,y) | dy.

By using the equation of (gDNLS), we compute 9;A as

1 €T
O\ = 5/ 20 |u|*" "V Re(Tdu)dy

—00

= 0/ |2V Im(a(—0%u — i|ul*? 0u))dy

—00

= —oTm(|u)* "~ Yad,u) + oIm {/ 8z(|u|2("_1)ﬂ)8$udy}

—0/ lu[*?7 =Y Re(ud,u)dy

—00
x

= —oIm(|u)* " Yad,u) + oIm {/

—00

1
8x(|u\2("_1)ﬂ)8xudy} - Z\u!‘*".
Therefore, we have
—(0,A)? 4+ LA = olm(|u[**Vud,u) — oIm [/ 8$(|u|2(”_1)ﬂ)8xudy] + %3$(|u|2").

Collecting these calculations, we obtain that
(2.4.4) e M L(e™0u) = Q1 (u) + Qa(u),
where

O1(u) = —%&E(!u\z")@zu + oTm(|u2eT0,u)d,u,
Q2(u) = —a/ Im <8x(|u|2"_2ﬂ)0xu) dyO,u.

We note that Qs(u) is well-defined if and only if o > 1. To prove Theorem 2.1.4, we
approximate the initial data ug € H'(R) by a sequence {¢, } such that ¢, € H*(R) and
©n — ug in H'(R). By Theorem 2.1.1, (gDNLS) has a unique solution

up € C(|=T,, T, H*(R))

with u,(0) = ¢,. We set I,, = [-T,,T,]. Since the formal calculation above is justified
with u replaced by wu,,, we obtain that
(2.4.5) U (t) = U(t)on +iG(g(un(t))),

(24.6) MO u,(t) = UM (e 00,p,) + z’G(e“‘"(t) (@1 (un(t)) + QQ(un(t))))
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for all t € I,,, where

1 x
An - 5/ |un(t7y)|20dyv

U(t) = "% Gv)(t) = /0 Ut — s)v(s)ds.

2.4.2 The uniform estimate in H'(R)

To derive the uniform estimate in H'(R) of approximate solutions, we use the fol-
lowing Strichartz estimate. The proofs can be found in [13].
Proposition 2.4.1. Let U(t) = €% Then, the following properties hold:
(i) For any (q,r) with0<2/qg=1/2—1/r <1/2,
1Tl Lo, Lr @y < Cllellz@)-

(i) For any (g¢;,r;) with0<2/q; =1/2—1/r; <1/2, j =1,2 for any interval I C R

with 0 € I,
1G ()| Lo (1,2r1) < Clo|

L%(I,L2)
where the constant C' is independent of I.

Before proceeding the proof, we introduce function spaces. For a time interval I, we
define the function spaces Xy(7) and X (1) by

Xo(I) = N LY(I, L"(R)),
0<2/q=1/2—1/r<1/2
X(I) = N LI, WY (R)),

0<2/q=1/2—1/r<1/2

with norms

||U||Xo(1) = sup ||u||Lq(I,LT)7
0<2/q=1/2—1/r<1/2

Null vy = llullxocr) + 11 0eull o)

Applying Proposition 2.4.1 to (2.4.5) and (2.4.6), and by Sobolev’s embedding and
Holder’s inequality, we obtain that

[wnll o) < Clignllze + Clllual* a1, 2)
< Clleallzz + CTullual X0,

HaxunHXo(In) = Hemnaxun”é\fo(ln)
< Ol 00,0, 12 + C (1™ Qulunll gy o+ 163 Qalitn)lrc i)

3
< Cl0upullz + C(Ta + T lual %5,



23

where the constant C' is independent of n. Hence we deduce that

3
(2.4.7) [nll 1) < CM + C(T, + T [JunlI35),

where M is given by
M :=sup || el m-
neN
From (2.4.7) we have the following uniform estimate of {u,}.

Lemma 2.4.2. There exists T = T(M) > 0 such that for all m € N such that the

H?(R)-solution u,, exists on the time interval I := [T, T] and
(2.4.8) su;g{ ||| 21y < 2CM,
me

where C'is a constant in the inequality (2.4.7).

Proof. We define T'(M) > 0 by
C(T(M) +T(M)3) (2CM)** = CM.
We also define T by
Ty = {T> 0 lunllxg ppy <20M, 0<T < Ty}
If Ty < T(M), from (2.4.7) we have

a2y < COM + C(Ty: + T 1)(2C M)+
< CM + C(T(M) +T(M)?) (2CM)**
=20 M.

This yields that T* = T;,. Especially we have

(2.4.9) max {||Un||Loo([n7H1), ||un||L4(ImW1,oo)} < 20M.

Under the estimate (2.4.9), in the same way of the derivation of (2.2.8), we have
d
EH@tUNH%Q < C’(M)Hf)wum||];oo||8tum||%2 vVt € In

Applying the Gronwall inequality, for 0 < ¢ < T,, (similarly for —7,, <t < 0) we have
t
Jorun 0 < 1000 O exp (C01) [ 10, (5) 1)
0

3
< Clllpnll) exp (CONT uall i, 1))

< Clllpulli) exp (CONT)
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Hence we obtain that

(2.4.10) |l Loz, m2) < Cllnllm2, M).

By the estimate (2.4.10) we can extend the H?(R)-solution w, on the interval [T, —
e, T, +¢] for some € > 0. By iterating the argument above, one can extend the existence
interval of u, at least to [T (M), T(M)], i.e., T(M) < T,. Hence we deduce that
T (M) <Tr. Indeed, if T < T'(M), from the argument above we have T,, = T}¢, but this
contradicts T'(M) < T,,. Therefore, from the definition of 7, we deduce that

[ | 2= Ty < 2CM
for any m € N. This completes the proof. O

We note that the existence time 7' = T'(M) only depends on ||ugl| g1

2.4.3 Proof of Theorem 2.1.4

Firstly, we prove that {u,,} forms a Cauchy sequence in C'(I, L?*(R)) under the uni-
form estimate (2.4.8). A straightforward calculation shows that

d

Eﬂun — umH%z = 2(0pty, — Oy, Uy, — Upy)
= —2(|Un P Optty, — |t |* O, Uy — Uy )
- —2((|un|2" Nty |27) Dt e — um>
- 2(\um\2"(8xun — Opllyn), Uy, — um)
< C(Jlunll22 + fuml 3 ) (100t + 10uttmll oo )t = 32
< OO (19stall = + 9t 1= ) s = 2.
Applying the Gronwall inequality, we obtain that

1
sup [tn(t) — um()]72 < |lon — Omll72exp(C(M)T7).
S

This implies that there exists u € C'(I, L?(R)) such that
(2.4.11) Uy, — u in C(I, L*(R)).
By the interpolation inequality, we have

(2.4.12) u, —u in C(I,L"(R))
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for any r € [2,00). Since W' (R) is reflexive if (¢, r) satisfies 0 < 2/q =1/2—1/r < 1/2,
we obtain from (2.4.8) and (2.4.12) that

(2413) HUHLq(Lwl,r) S hél"_l)golf ”unHLq(I,Wl”") S QCM

for any r € [2,00). Since the constant on the RHS of (2.4.13) is independent of (q,r),
taking the limit as » — oo, we conclude that

1wl a(r w0y < 2CM.

Therefore, u € X(I). We see that u is a solution of (gDNLS) in the distribution sense.
We note that the approximate solution wu,, of (gDNLS) conserves energy, mass and
momentum (see (2.2.13)). By (2.4.11), we obtain M (u(t)) = M (up) and P(u(t)) = P(uo)
for all t € I. To prove the conservation of energy, we need the following lemma.

Lemma 2.4.3. Let 0 > 0. For every M > 0, there ezists C(M) > 0, we have
(2.4.14) |G(u) — G(v)| < C(M)||u— |2
for all u,v € HY(R) such that ||ul|m, ||v]m < M.

Proof. Since G'(u) = g(u), we have

G(u) — G(v) = /0 %G(su + (1 —s)v)ds

= /0 (g(su+ (1 —s)v),u—wv)ds.

From this identity and Sobolev’s embedding, the inequality (2.4.14) follows. O

By (2.4.8) and (2.4.11), we note that u,,(t) — u(t) in H'(R) for any t € I. By the
weak lower semicontinuity of the norm, (2.4.11) and Lemma 2.4.3, we obtain that

(2.4.15) B(u(t)) < limiuf <%H8zum(t)|\%g - G(um(t)))
= liminf E(u, (1)) = E(p)
forall t € I.

Next, we prove that u is the unique solution of (gDNLS). Suppose that
ve LI, HY(R)) N LY(I, W' (R))
is also a solution of (gDNLS). We set

M = max{||u||Loo(1’H1) + ||u||L4(I’W1,oo), ||’U||LOO(I7H1) + ||/U||L4(I7W1,oo)}.
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By the same calculation as before, we obtain that
d
(2.4.16) =il < OO (I2sule + 901 ) = w3

Applying the Gronwall inequality to (2.4.16), we conclude that w = v on I. By uniqueness
and (2.4.15), it is easily verified that

(2.4.17) E(u(t)) = E(p)

for all t € I, and which yields that u € C'(I, H*(R)).

We recall that the existence time T only depends on the H'(R)-norm of the initial
data. Hence the property (i) (blowup alternative) is proved by a standard method; see
e.g. the proof of Theorem 3.3.9 in [13].

Finally, we prove the continuous dependence. Let Iy := (—Timin(%0), Timax (o)) be
a maximal interval of the solution u. Let I C I,., be a closed interval. Suppose that
Ugn — up in H'(R) and let u, be a solution of (gDNLS) with u,(0) = ug,. We note that
u, is defined on I for n large enough. In the same way as the first calculation in this
subsection, we deduce that

(2.4.18) u, — u in C(I, L*(R)).
By the conservation of mass and energy and Lemma 2.4.3, we obtain that
(2.4.19) [ ()| = () ]|

uniformly on I. Therefore, we conclude that u,, — u in C(I, H'(R)).

2.4.4 Proof of Theorem 2.1.5

Let 0 > 1. We assume that © € C((—Tin, Tmax); H'(R)) is a maximal solution of
(eDNLS). We set Iax := (—Tmin, Tmax)- By the conservation of energy and Sobolev’s
embedding, we obtain that

1
Sll0sulze = E(u) + G(u)

< Bluo) + 5 2L 1 duud]
c
< E 2042
< E(ug) + % + 2““‘ H1
By the conservation of mass, we obtain that
c
(2.4.20) Follullin) =l — ——[lul[2:*? < M (up) + 2B (up).

o+1
We note that f, has an unique local maximum at § > 0, where § is given by 6% = ¢7L.

If ug € H'(R) satisfies that
M (ug) + 2E(up) < f,(5) and ||ug||z: <9,
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then, by (2.4.20) we have
(2.4.21) fo(lu@®[ ) < M(uo) + E(uo) < fo(9)
for all t € Iax. From ||ug||gr < 0 and the continuity ¢ +— ||u(t)|| g1, we deduce that

(2.4.22) sup ||w(t)||gr < 0.

eImax

From the a priori estimate (2.4.22) and Theorem 2.1.4, the claim of Theorem 2.1.5
follows.

2.5 Proof of Theorem 2.1.6

Let up € H'(R) be given. We recall the following approximate problem in Section
2.2:

(25.1) {i@tum + 02Uy + T g(Jntl) = 0,

Um (0) = up.

For each m € N it is easily verified that there exist 7,,, > 0, and a sequence {u,,} of
C((=Ty,, T,,), HY(R)) such that satisfies (2.5.1) and

(2.5.2) Ep(um(t)) = En(ug), M(um(t)) = M(ug) and P(un,(t)) = P(ug)

for all t € (=T, T),), where E,, is defined by (2.2.3). We use the conservation laws
(2.5.2) in order to obtain uniform H'(R)-estimates of {u,,}. We have

HaﬂcumH%? = 2(En(uo) — Gu(um))
1
< 2B, (uo) + O—H||Jmum|’%jlj+12||ameUmHL2-

By using Gagliardo-Nirenberg’s inequality

I£1755 < CIAINTE 10 £1172

and Proposition 2.2.1, we obtain that

C
(2.5.3) 100t |72 < 2B (uo) + [ |73 | Ot ]| 73
oc+1
C o+1 o+1
= 2By (u0) + — luoll 7 N um 55,

where in the last equality we used the conservation of mass. Since o + 1 < 2, applying
Young’s inequality to (2.5.3), we have the following estimate

105w ()22 < C(lluolla1)
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for all t € (=T}, T,,). This implies that T,, = oo for every m € N and

(2.5.4) M = Su% |t || o, 1y < 00.
me
By the equation (2.5.1) and the estimate || g, (um(t))|| 2 < C(M) for all t € R, we obtain
(2.5.5) su;liI Ot || o1y < C(M).
me

By (2.5.4), (2.5.5) and the abstract version of Ascoli-Arzela’s theorem, we deduce that
u € L®R, H'(R)) N Wh=(R, H ' (R)),

and that there exists a subsequence, which we still denote by {uw,,}, such that

(2.5.6) U () — u(t) in H'(R)

for all t € R. To prove that u is a weak solution of (gDNLS), we need the following
lemma.

Lemma 2.5.1. For allt € R, g, (un(t)) = g(u(t)) in L*(R).
Proof. Let ¢ € C2°(R) and let B = supp ¢. We write

(gm(um) - 9(%),1/1) = (ng(Jmum) = 9(mtim), ¢>
+ <i|Jum|2"8$Jmum . i|um|2”3zjmum,1/1>
o (it DTt — il O Tt )
+ (@'|u|2"8ﬂ3Jmum — i[u[* Dyt @b)
+ <i|u|2"8xum - z‘|u|2"axu,¢>

= Ki + Ky + K3 + Ky + K.

Since g(Jmty,) is bounded in L*(R) due to (2.5.4), K7 — 0 by Proposition 2.2.1 (v). In
the case of 1/2 < ¢ < 1, we estimate K5 as
| o] < oo (10 Jontt || 2| | Tonttn|*7 = [t |*7 || 28
Since u,, is bounded in H(R), it follows J,,ty, —t,, — 0in H*(R), hence J,,uy, —ty,, — 0
in L?(B) by Rellich-Kondrachov’s theorem. Therefore, Ky — 0. In the case of 0 < ¢ <
1/2, we estimate K, as
| K| < C(M)|| [Tt |7 — |um|20||L2(B)
< C(M)|[Jntim — um”%ZG(B)

20

< C(M)|B = ||t — uml|755)

— 0 as m — oo.
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Here, we used an elementary inequality
[Jul*” = o]*] < Ju—vf*

in the second inequality. Similarly, we can show that K3, K; — 0. Since 0,u,, — 0,u
in L?(R), we deduce that K5 — 0. This completes the proof. [

It follows from (2.5.6) and Lemma 2.5.1 that u is a solution of (gDNLS) in the
distribution sense. Taking the H~'-H' duality product of the equation (gDNLS), we
deduce that

d

(2.5.7) Zlu@)llz: =0
for all t € R, and so
(2.5.8) M(u(t)) = M(ug).

By (2.5.2), (2.5.8) and (2.5.6), we deduce that

(2.5.9) Uy, — u in Cioe(R, L*(R)).

It follows from (2.5.2), (2.5.6), (2.5.9) and Lemma 2.4.3 that
(2.5.10) E(u(t)) < E(up)

for all t € R. The conservation of the momentum easily follows from (2.5.2) and (2.5.9).
This completes the proof.






Chapter 3

Global existence for the derivative
NLS equation

3.1 Introduction

3.1.1 Background

In this chapter we study global existence for the derivative nonlinear Schrodinger
equation

(DNLS) 10 + 02u + ilul?0,u = 0, (t,r) € R x R,
and the generalized derivative nonlinear Schrédinger equation
(gDNLS) 10w+ 02u + ilul*0,u =0, (t,7) € R X R,

for o > 1 (L2-supercritical case). First we review solitary waves of (gDNLS). It is known
that (gDNLS) has a two-parameter family of solitary waves

Uy o(t, z) = e"”tgzﬁwﬁ(:c —ct),

where (w, ¢) satisfies —21/w < ¢ < 24/w,

_ E o 4 ¢ 20
(3.1.1) buwe(r) = Py () exp (zzar o 12 /_Oo Dy, () dy) ,
(0 +1)(4w —c?) - 2
, ifw > /4,

2y/w cosh(ov4w — 2z) — ¢ itw>cf

(3.1.2) 27 (x) =
2(c + 1)c ,
—_— fe=2vw.
o%(cx)?+ 1’ ife=2vl

We note that @, . is the positive even solution of

20+ 1

————— PP =0 R

2
(3.1.3) — 4 (w - %) o+ g|c1>\20c1> -

31
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and the complex-valued function ¢, . satisfies
—¢" + wo +icy —ilg|* ¢’ =0, x€R.

In [45], it was proved that the solitary waves u, . are orbitally stable if —2,/w < ¢ <
229y/w, and orbitally unstable if 229/w < ¢ < 2y/w when 1 < o < 2, where the constant
29 = zp(0) € (—1,1) is the solution of

Fo(2) = (0 — 1)? {/Ooo(coshy _ z)—idy}2

— {/ (coshy — z)_é_l(z coshy — 1)dy} = 0.
0

Moreover, it was proved that solitary waves for all w > ¢?/4 are orbitally unstable when
o > 2 and orbitally stable when 0 < ¢ < 1. Recently, Fukaya [20] proved that the
solitary waves are orbitally unstable if ¢ = 22¢\/w when 1 < o < 2.

In Chapter 2 we proved local well-posedness in H'(R) when o > 1, and that the
following quantities are conserved

1 2 1 Q208 —
E E = = 2 7 o 5
(Energy) (u) 5 || Opul|7 P QRe/Rz\u] Oyuudx
(Mass) M (u) = ||Jul|32,
(Momentum) P(u) := Re/ i0,uudzx.
R

Moreover, we proved global well-posedness for small initial data in H'(R); see Theorem
2.1.5. In the case 0 < o < 1 (L*-subcritical case) we constructed global solutions for any
initial data in H*(R); see Theorem 2.1.6.

In this chapter we study the case o > 1 (L2-critical or supercritical case), and im-
prove the global existence results in the energy space H'(R) in previous works. The
main methodology in this chapter is variational method. First we give a variational
characterization of two types of solitary waves including the massless case. Then, by
applying the variational characterization, we establish a sufficient condition for global
existence by using potential well theory inspired from the classical work by Payne and
Sattinger [60]. Potential well generated by two-parameter family of solitary waves has
a rich structure. Our main contribution here is to clarify the connection between the
potential well and 47-mass condition for (DNLS). Especially, our variational approach
gives another simple proof of the global result by Wu [73]. Moreover, we prove that the
solution of (DNLS) is global if the initial data u, satisfies M (ug) = 47 and P(ug) < 0.
This is the first global result in the mass threshold case.

Here we review the global result for (DNLS) in the energy space H'(R). By using
the following gauge transformation to the solution of (DNLS)

(3.1.4) w(t, ) = ult, ) exp (i / ’ |u(t,x)]2da:> |

—0o0
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then w satisfies the following equation:
. . 3
(3.1.5) 10w + 02w + %|w|20xw - %w%?xw + 1—6|w|4w =0, (t,xr) eRxR.

The conserved quantities are transformed as follows:

1 , 1

E(w) = 5 Il -

6
lwllze ,

1
P(w) = Re/ i0,;wwdx + 1 |wl|3a -
R
Hayashi and Ozawa [32] used the following sharp Gagliardo—Nirenberg inequality

4
(3.1.6) 1 llze < 511122 110: 1172

in order to obtain a priori estimate in H'(R). We note that an optimizer for the inequality
(3.1.6) is given by @ := ®, o and @ satisfies the following elliptic equation:

3
_Q//+Q_1_6Q5 = 0.

In [32], it was proved that the H'(R)-solution of (DNLS) is global if the initial data ug
satisfies

M (ug) = M(wo) < M(Q) = 2m;

see also Weinstein [71] for related works. Wu [73] took advantage of conservation law of
the momentum as well as conservation laws of the energy and the mass. He used the
following sharp Gagliardo—Nirenberg inequality

(3.1.7) 1£18s < 3(2m) 75| £ 2|0 f1I 2

instead of using (3.1.6). Then, it was proved that the H'(R)-solution of (DNLS) is global
if the initial data ug satisfies

M (ug) = M(wp) < M(W) = 4,

where W := ®; 5. We note that an optimizer for the inequality (3.1.7) is given by W
and W satisfies the following elliptic equation:
1 3
W WP — — WP =0,
2 16
Wu'’s proof depends on contradiction argument as follows. Suppose that there exists
a time sequence {t,} with ¢, — Tiax, or —Tin such that |[O,w(t,)]|;2 — o0 as n —
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00, where (—Tin, Tmax) is the maximal time interval. He mainly proved that X =
w34 / lw(t,)]|Se satisfies

X% — M(wo) X2 + 16{3(2r) 3} M(wp) < 0,

but this does not hold when M (wy) < 47. This argument is more or less complicated
and hard to see the naturality of 47 as a mass condition and the connection of the
solitons, although there is a fact that the main part of the soliton gives an optimizer for
the inequality (3.1.7). In our approach we give a close relation between global existence
theory and solitons, and derive the 47-mass condition more naturally and directly.

3.1.2 Setting

To state our main results, we introduce some notations. Let (w, ¢) satisfy

(3.1.8) —2V/w < ¢ < 2v/w.

For (w, ) satisfying (3.1.8), we define
Suel$) = E(p) + gM(@ + gP(w),
d(w, ¢) = Suc(Pu,c)-
We denote the nonlinear term in the energy functional by
N(g) = Re [ ilefoupad.
We define the functional gwyc(@b) by
(3.1.9) Swe(¥) 1= Sue(e" T 1)),
By using the following identities
(3.1.10) P(g) =~ 10:els - Sl + |on (e F ).
(3.1.11) N(p) = =5 llplli2 + N(e ),

gw,c(w) has the following explicit formula

_ 1 ) 1 c? 9 c 25+2 1
Sw,C(w) T 2 Ha"EwHIP + 2 (w 4) H'wHL2 + 2(20'+ 2) ’|w||L2°+2 29 4 2N(w>

We also introduce the following functionals

Kw,c(gp) = a)\Sw,C()\,lvb)))\zl
= 10a0l13> + w [l @l 72 + cP(e) — N(¢),

Ko o(®) = aAS’w,c(w))

A=1

02 C
= 109172 + (@ = — ) 1972 + 5011755 — N(@).
4 2
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By using (3.1.10) and (3.1.11), we have the following relation

s e

(3.1.12) Ko o(¥) = Koele29).

This is of course corresponding to the relation (3.1.9).
We define the following functional space

HY(R), if w> c?/4,
ch = .
HY(R)N L¥*2(R), if c = 2\/w.

We consider the following minimization problem:

w, c) == inf{S, c(¢p) : e_i%@ € Zue \ {0}, Ky e(p) = 0}
= inf{Suc(¥)) 1 ¥ € Zuye \ {0}, Kuo()) = 0}

We note that if w > ¢?/4, u(w, ¢) is also rewritten as
pw, ) = inf{Suc(p) : ¢ € H'(R) \ {0}, Ky o) = 0},

since p € H'(R) if and only if e*% ¢ € H'(R). We introduce the sets 4, . and ., .
defined by

gw,c = {SD : e_i%QO € Zw,c \ {0}7 SL,c(SO) 0}7
Mye =020 € Zy \ {0}, Suclp) = pw,c), K,.lp) =0}

The element of ¥, . is called a ground state. We note that .Z, . is the set of minimizers
of S, on the Nehari manifold.

Remark 3.1.1. The function space Z. /. comes from the functional gcz /a,c- We note
that when o > 2 the solitary waves ¢.2 /4 . do not belong to L*(R), but belong to L**2(RR).

The two functionals §cz /a,c and K2y . are useful to obtain the variational characterization
of the solitary waves for the massless case.

Remark 3.1.2. The functional Sc2/4 . seems meaningless at first glance on the function
space

}/;2/4,0 = {<)0 : eii%gp € ZCQ/4,C}7
since Sez2/4, contains L*-norm. However, since S.2 Ja,c i defined on HY(R) N L**+2(R),

Se2 /4, is well-defined on the function space Y2/, . through the relation (3.1.9). Similarly,
K4, is well-defined on Y2, . by the relation (3.1.12).
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3.1.3 Main results

First, we begin with the result about the variational characterization of the solitary
waves.

Proposition 3.1.3. Let 0 > 1 and (w, ¢) satisfy (3.1.8). Then, we have
(3.1.13) Go= Moy ={P¢, (- —x0) : 0y €]0,27), 20 € R},
and d(w, c) = p(w,c).

Our main contribution here is to give the variational characterization of the solitary
waves for the massless case.

We apply Proposition 3.1.3 to establish a sufficient condition for global existence in
the energy space. We define the subsets of the energy space by

Hpe ={p € HY(R) : S,y o(0) < fhuer Ko o(ip) > 0},

H = U Ky

—2\/w<c<2\/w
w>0

By applying the variational characterization and potential well theory, we have the fol-
lowing global result.

Proposition 3.1.4. Let 0 > 1 and (w, ¢) satisfy (3.1.8). If the initial data uy belongs to
Ky e, then the H'(R)-solution u of (gDNLS) with u(0) = uq exists globally in time, and
we have

2

1 c
(31.14) 00l sy <4 (14 7 ) Sualuo) + M)

Especially, if ug € K, the H'(R)-solution u of (gDNLS) with u(0) = uq ezists globally
in time.
We show that Theorem 3.1.4 gives us some interesting corollaries for (DNLS). Our

variational approach covers Wu’s global result.

Theorem 3.1.5. If the initial data ug € H*(R) satisfies M (ug) < 4w, or M(ug) = 4w
and P(ug) < 0, then the H'(R)-solution of (DNLS) with u(0) = wug exists globally in
time.

Remark 3.1.6. The existence of blow-up solutions in finite time is still an open problem.
It might be a very interesting problem whether finite time blow-up occurs when the initial
data ug satisfies M (ug) = 4m and P(ug) > 0.

Remark 3.1.7. When ¢ = 1, by applying variational characterization of solitons, we
have

{ug € H'(R) : M(ug) = 4m, E(uo) = P(ug) = 0}
= {ei90¢w72\/5(_ - 1:0) : 607'1:0 € R? w > 0} )
see Remark 3.3.2 for the details.
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We note that the proof of Theorem 3.1.5 gives the simple alternative proof of Wu’s
result. The global result for M (ug) = 47 and P(ug) < 0 gives the global result for the
threshold case. This is the first progress to investigate the dynamics around the algebraic
solitons.

The global results in Proposition 3.1.4 contains the large data. Indeed, we have the
following theorem.

Theorem 3.1.8. Let 0 > 1. Given 1) € H'(R), and set the initial data as ug. = €= 1.
Then, there exists co = co(v)) > 0 such that if ¢ > co, then the corresponding solution u.
of (gDNLS) exists globally in time.

Theorem 3.1.8 means that if we consider sufficiently oscillating data, there exist global
solutions with any large mass. We note that the oscillating term e’% gives the change
of the momentum. The results for Theorem 3.1.8 gives the important difference to the
dynamics to nonlinear Schrodinger equations with pure power nonlinearities; see also the
comments below Theorem 4.1.11.

3.2 Variational Characterization

We introduce the following sets

G = {0 € Z,\ {0} 1 S, .(¥) = 0},
Mo = {0 € Zy\{0} : Suo(¥) = plw, ¢), Kuo(v)) =0}

In this section, we prove the following proposition.

Proposition 3.2.1. Let (w,c) satisfy (3.1.8). Then, we have

Goo = //A/;,C = {5 g (- —y): 0 €[0,27),y € R}.
Moreover, we have d(w, c) = p(w, c).

s cxT

By using the relation gjj,c(eﬂ?(p) = e_i%Sb’uﬂc(gp), we have

pEY, e tTpe %ﬁ’,

(3.2.1)
0 E My 2P E My

From Proposition 3.2.1 and (3.2.1), we deduce that the claim of Proposition 3.1.3 follows..
To prove Proposition 3.2.1, we prepare some basic lemmas.

Lemma 3.2.2. Let p > 1. Then we have

(3.2.2) £ < 2p I F 11702 1051l 2
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Proof. By Cauchy-Schwarz’s inequality, we have
Tod
2p 2p d
f@F = [ W)

_ / "l )P Re(F ) (0, f) (1)) dy

—0o0

< 1] 2 1002
=20 | 1705 10l -
This completes the proof. H
By a direct calculation we have the following relation:

~ 1 ~ o -~

(3.2.3) Suel®) = 5oy Rarelh) + 52 L),

where the functional Zw,c is defined by

~ 2
Luct) =001 + (4= 5 ) Wl

Hereafter we only prove the claims in the massless case ¢ = 2\/w. The case w > ¢*/4 is
proved in the similar way. Actually the proof is easier since we can use the boundedness
in L?(R); see the arguments in Colin and Ohta [17] for more details.

Lemma 3.2.3. Let (w,c) satisfy (3.1.8). Then, we have
f%w = {ewoe_gmqﬁw,c(- — 1) : 0 € [0,27), 29 € R}.

Proof. Since e_i%gbw’c satisfies §L’C(e_i%gbw76) = B_i%SL70(¢w,c) = 0, we have
g:,,c > {e®e™2%¢, (- — x0) : Oy € [0,27), 20 € R}.

Conversely, let ¢ € S%M. By using the following transformation

(3:2.4) o) = vla)esp 55 [ ).

or equivalently,

(3.25) vla) = aa)esp (-5 [ owRdn).

then it is easily verified that ® is a solution of

20+ 1

3.2.6 _9" 4+ Sl - 2T
(326) + 5o — |

D7D 4 %@F"*Zhn(@fb’)@ ~ 0.
(o
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If we put f:= Re®, and g := Im®, from (3.2.6) we obtain that
"= A(®)f and g" = A(®)g,
where the function A(®) is defined by

c 20+ 1 o _
A(D) = = |D]*7 — —— D] + —— | D> 2 Im(PD).
We note that
(fgd' —gf) =19"—gf" = fA(®)g — gA(®)f = 0.

Since f,g € H'(R) N L***2(R), we obtain that fg' — gf’ = 0 for any € R. On the
other hand, we have

fd — gf = Re®Im® — ImPRed’ = Im(PP’).
Thus, Im(®®’) = 0 for any x € R. Therefore, ® satisfies

20 +1 to

From the uniqueness of the equation (3.2.7), there exist 6, € (0,27] and zy € R such
that ® = e®®,, .(- — z0). Thus we see that ® € L?*(R). We modify the gauge of ¢ as

o) = oo (—5- s [ i) ew (5 [ ewiea)
— oo (-5 [ o) e,

2042 J_

(3.2.7) —0 4 g|q>|20q> -

where 6, is defined by

1 0 1 o
0, = D, (y — 2 dy = P, (y)|*7dy.
vim g [ ey — )y = 5 [

Hence, from the explicit formula (3.1.1), we have

(x) = 't D, (r — x0) exp (— ! / | Dy, c(y — :170)|2”dy>

20+2 )
. T—x0
— 01 d o o ? d 20d
o —aen (<5 [ Bty

4

— e 5, (a — o)
= eiee_i%m¢w,0<m - ZE()),
where 6, is defined by

C
9 = 01 + 5130.

we deduce that 1(x) = e?e™"2 ¢, .(x — x0) for some § € R (see also Remark 3.2.4). This
completes the proof. O
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Remark 3.2.4. At that moment taking ¢ € E%J,c, we do not know ¢ € L?*(R). Hence
we applied the gauge transformation (3.2.4) instead of the following transformation

() = v@)exp (—— [ [w)Fdy).
(ars ] wwran)

2042 J_
Lemma 3.2.5. Assume that .//Z;C # (). Then, we have ,/Z/;C C gz,c.

Proof. Let ¢ € /Z/;c. Since 1 is a minimizer, there exists a Lagrange multiplier n € R
such that S, .(¢¥) = nK], .(¢). Then, we have

0= Roe(w) = (8, o(0),0) = n (KL (1), %)

By K, .(¢) =0, we have

(Ko@), 0) = 2Lue(¥) = (0 + Dell255% - (20 + 2)N(®)

= 2L o() — (20 + 2) Lo, ()
= —QUzw,cOﬁ) <0.

Therefore, we deduce that n = 0. This implies that §L’uc(¢) = 0 and hence ¢ € {4;0, O

—~

Lemma 3.2.6. Assume that //Z,C # (). Then, we have gzw = M. Moreover, we have
d(w, ) = p(w,c).

Proof. Let 1 € Q%),C. By Lemma 3.2.3, there exist 6y € [0,27) and xy € R such that
P = e % @, (- — ).

Since ej/:,c # (), we can take ¢ € ,/Z/:,C. By Lemmas 3.2.3 and 3.2.5, there exist #; €
[0,27) and z; € R such that ¢ = e¢?1e™% ¢, (- — x1). Thus,

[«

(3.2.8) Sunc(®) = Sucle T due) = Sucle T ) = p(w,c).

Since l?w,c(@b) = <§£J7C(¢),¢> =0, we deduce that ¢ € /Z/:,c. We note that

Swﬁ(e_"

cr

2z¢w,c) - Sw,c(¢w,c) = d(w, C).
Combined with (3.2.8), we deduce that d(w, ¢) = p(w, c). =

To complete the proof of Proposition 3.2.1, we need to prove that //Z;c # (). The
assertion ./, . # () actually follows from the following proposition.
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Proposition 3.2.7. Let {¢,} C Z, . satisfy
§w,c(1/1n) — p(w, ) and ch(wn) — 0.

Then, there ezist {y,} C R and ¢ € //ZJ7C such that {¢n (- —yn)} has a subsequence which
converges to v strongly in Z, .

At first, we note the following lemma.
Lemma 3.2.8. Let (w,c) satisfy (3.1.8). Then, we have pu(w,c) > 0.

Proof. We recall that pu(w,¢) = inf{S, () : ¥ € Zy \ {0}, Koo(¢)) = 0}. By (3.2.3),
it is trivial that p(w,c) > 0. We prove p(w,c) > 0 by contradiction. We assume that
p(w, ¢) = 0. Taking the minimizing sequence {¢,,} C Z, . as

§w,c(¢n) — p(w,c) =0 and [N(wc(¢n) =0,

then we have [|0,4, |7 — 0 by (3.2.3). From Ko.o(1hy) = 0 and 10:1n]|72 — 0, we have

(3:29) Snllzzes = N(&n) = 0.
Applying Gagliardo—Nirenberg’s inequality and Young’s inequality, we have
[N ()] < 108l L2 9001 7705
S N0etonll 50 1 nll 3505
< Sl + Clomnl 5,
where 6 € (0,1) in the second inequality. Combining this with (3.2.9), we deduce that

|1¥n|| L2042 — 0. By using (3.2.2) as p = (0 + 2)/2, we obtain that |[¢,|/; — 0. From
the following relation

1 . i e I
(32.10) =N () = —10ul172 — 7 1155 + |00 + S0
L2
we obtain that
o~ C o
K (1) = [[0thnll72 + B [t | 75022 = N ()
c 1 1 2
=35 HQ/}n“ig:E? Rl ||wn|’iij+22 + aan + _i|wn|20wn
2 4 2 12

c 1
25 [N 1 9| i

c 1 20 2042
(5 - 10l ) Il

> 0,

v

for large n € N since ¢~ — 0. However, this contradicts Koo(thy) = 0 for all
n € N. O
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For the proof of Proposition 3.2.7 we apply the concentration compactness argument.
Here we recall Lieb’s compactness lemma. See [43] for p = 2 and [7, Lemma 2.1] for
more general setting.

Lemma 3.2.9. Let p > 2. Let {f,} be a bounded sequence in H'(R) N LP(R). Assume
that there exists q € (p, 00) such that limsup,,_, || full« > 0. Then, there exist {y,} and
f e HY(R) N LP(R) \ {0} such that {f,(- — yn)} has a subsequence that converges to f
weakly in H'(R) N LP(R).

We also recall the Brezis-Lieb lemma (see [11]).

Lemma 3.2.10. Let 1 < p < oco. Let {f,} be a bounded sequence in LP(R) and f, — f
a.e. in R. Then we have

(3.2.11) 1fallze = 1fn = fIIZo — 117 — 0

Remark 3.2.11. When p = 2, if {f,,} is a bounded sequence in L*(R) and f,, converges
to f weakly in L*(R), then (3.2.11) still holds.

Proof of Proposition 3.2.7. We consider {1,} C Z,. such that S, .(¢,) — p(w,c) and

Koo(tn) — 0.
Step 1. By (3.2.3) we obtain that [|9,1,]|7. is bounded. We recall that K, . has a
following explicit formula

(3.2.12) Ko@) = 001172 + (w - —) 11z + —||¢||i‘§a+fz — N ().
As seen in the proof of Lemma 3.2.8, N(v,) is estimated as
c
IN(n)l < ZIenll755 + Cllosyal 7372

Combined with K, .(¢,) — 0 and boundedness of [|9,1,[|2,, we deduce that [|1),[|?5:2,
is bounded. Hence, {1} is a bounded sequence in Z, .

Step 2. limsup,_, ||tn||;40+2 > 0. Suppose that limsup,,_, ||¢n| 102 = 0. We note
that

IN(n)] < 1000l [nl 75552 — 0.

From (3.2.12) we obtain that [|0;¢[[7. — 0 and [[¢y] 29r2, — 0. By (3.2.3), we deduce
that S, .(¢,,) — 0. This contradicts p(w,c) > 0.

Step 3. Since {1, } is bounded in Z,,, = H (R)NL***(R) and lim sup,_, . ||¢n || sor> >
0, by applying Lemma 3.2.9 as f,, = 1, and p = 20+2, there exist {y,} and v € Z, .\ {0}
such that {1, (-—y,)} (we denote this by v,,) has a subsequence that converges to v weakly
in Z, .. Next we show that

(3.2.13) Kovo(vy) = Ky o(v = 0,) — Ky o(v) — 0 as n — oo,
L.

(3.2.14) Lo o(0n) = Ly o(v — vy) — Ly, o(v) = 0 as n — oo,
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The relation (3.2.14) follows from v, — v in Z, . easily. As for (3.2.13), first we note
that (3.2.12) is rewritten as

2
L2

~ c - 1 - 7 -
3215 Ruulw) = SI0IEEE - TIVIEEE + o0 + Fluiow

for any ¢ € Z, .. Since v, converges to v weakly in Z, ., we have v,, = v a.e. in R.
Therefore, by Lemma 3.2.10, we have

lonllze = llvn = vllze = llollz, =0

for 20 + 2 < p < 0. Moreover, if we set
i 20 i 20
Wy, = 8Ivn+§\vn\ Uy, andwzﬁxv+§|vl v,

it is easily verified that w, converges to w weakly in L?*(R). Therefore, by (3.2.15), we
deduce that (3.2.13).

Step 4. We prove that K, (1)) < 0 = (20 + 2)u(w,¢) < Ly(1). By (3.2.3) and the
definition of u(w,c), we have

(3.2.16) pw,c) = inf{ Ly, o(¥) 1 ¥ € Zue \ {0}, Kovo(t) = 0}.

20 42
If ¢ € Z,, satisfies K,,.(¢)) < 0, then there exists Ag € (0,1) such that K, () = 0
since K, (A1) > 0 for small A € (0,1). Therefore, we deduce that

(20 4 2)1u(w, ¢) < Liye(Aoth) < Loy o(1)).

Step 5. K,,.(v) < 0. Suppose that K,,.(v) > 0. Since K, (v,) — 0 and (3.2.13) holds,

we have

Koo(v—v,) = —K,o(v) < 0.

This implies that I?w’c(v —v,) < 0 for large n € N. By Step 4, this implies that

(20 4+ 2)p(w, ¢) < Ly (v —vy)

for large n € N. Combined with (3.2.14), we have

Ly o(v) = 1im (Ly.o(vy) — Lo o(v — 1))

n—o0

< lim Ly o(vn) — (20 + 2)p(w, ¢) = 0

n—o0

where we have used that Zwyc(vn) — (20 4+ 2)p(w, ¢). Since v # 0, Zwyc(v) > (0. This
gives a contradiction.
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Step 6. We prove that v € ./Z;C. By (3.2.16) and the weakly lower semicontinuity of
L, we obtain that

(20 + 2)u(w, ¢) < Ly o(v) < liminf Ly, o(v,) = (20 4 2)p(w, ¢).

n—oo

Thus, Ly, .(v) = (20+2)u(w, ¢) and this implies that v, converges to v strongly in H'(R).
By Step 4 and Step 5, we deduce that ch( ) = 0. Combined with (3.2.13), we have

Ke.o(v, —v) = 0. Since N (v, —v) — 0 from the convergence in H*(R), by (3.2.12) we
deduce that ||v,, — v||p20+2 — 0. Hence we deduce that v,, converges to v strongly inZ,..

Combined with S, (vn) = p(w,c) and Ko.o(v,) = 0, we deduce that S, .(v) = p(w, )
and Kw c(v)=0,ie,ve Mw,c This completes the proof. ]

3.3 Global existence

In this section we prove the main theorems in Chapter 3. First we show Proposition
3.14.

Proof of Proposition 3.1.4. Let ug € . and u € C((—Tipin, Tmax), H'(R)) be a maxi-
mal solution of (gDNLS) with u(0) = ug. First, we consider the case that K, .(ug) = 0.
Since S, (o) < Sy.e(duw.e), by Proposition 3.1.3, we have ug = 0 or ug = €@, .(- — x0).
By the uniqueness of solution to (gDNLS), we have u(t) = 0 or u(t) = e®e™'¢,, (x —
ct — xp), respectively. This implies that K, .(u(t)) = 0 for all ¢ € R. Next, we con-
sider the case that K, .(up) > 0. We suppose that there exists some time ¢, such that
K, c(u(tg)) < 0. Then, there exists some ¢, such that K, .(u(t.)) = 0 by the continuity
of the flow ¢ — w(t) in H'(R). By the above argument, K, .(u(t)) = 0 for all ¢t € R.
This gives a contradiction. Thus, K, .(u(t)) > 0 for all £ € (=T yin, Timax). Therefore, we
deduce that K, . is an invariant set under the flow.
Next, we prove that the solution is global if ug € 4, .. From (3.2.3) we have

(3.3.1) (20 +2)Suo(9) = Kuo(p) + 0 ‘

c. |2 c? 9
Orp — §ZSOHL2 +o (W - Z) el -
Since u(t) € K, ., we have

(20 +2)S, (uy) = (20 +2) S, (u(t))
= Kuelu(t)) + |0,

0‘ . (t)—giu(t)’

for all ¢t € (—Tin, Tmax). This implies that Ty = Thmax = 00. Moreover, we have the

- g}, +o (0= ) ol

2

LQ
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following estimate:

2
2 |
o losu(t)[3 < (| o+ )

Opu(t) — gzu(t)’

2
< 4(0 + 1)Syo(uo) + %M(uo).

This completes the proof. O]

When o = 1, we can calculate the conserved quantities of the solitons explicitly. See
[17] or Chapter 4 for the detail.

Lemma 3.3.1. Let 0 =1 and (w, ¢) satisfy (3.1.8). Then, we have

_ -1 /2\/(;‘1‘0
M(¢w,c) = 8tan m,

P(¢pyc) =2V4w — 2,
Eldu.) = —g\/% — .

In particular, we have

2
d(w,c) = Sy e(pue) = dwtan™! \/ % + g\/ dw — 2.

Remark 3.3.2. When o = 1, we have M (¢c2/4,.) = 47, P(¢e2/4.) = 0, and E(¢e2/4.) = 0
for all ¢ > 0 by Lemma 3.3.1. On the other hand, if M (¢) = 4w, P(¢) = 0, and E(¢) < 0,
then ¢(z) = eieoqbcg/&co(x—xo) for some 6y € R, xy € R, and ¢g > 0. Indeed, M(¢) = 4,
P(¢) =0, and E(¢) < 0 imply that

C2

Ketpe(6) < — 10,018 +
where we have used the relation —N(¢) = —2|0,0||7, + 4E(¢). Since K.2/4.(¢) < 0 for
small ¢ > 0 and K2 /4.(¢) — +00 as ¢ — oo, there exists ¢g > 0 such that K4 ., (¢) = 0.
Therefore, Theorem 3.1.3 implies that ¢(z) = ei00¢c(2) /4,00 (T —10) for some Oy € R, 29 € R.
Note that this means that there is no function satisfying M(¢) = 4w, P(¢) = 0, and
E(¢) < 0.

AT,

Now we give the proofs of Theorem 3.1.5 and Theorem 3.1.8.

Proof of Theorem 3.1.5. The statement is trivial if uyg = 0. We assume that ug # 0. We
consider the curve for massless case. We note that

2
C
KC2/4’C(UO) = ||8$u0||%2 + ZHUO”%Q + CP(UO) — N(U()) — 0
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as ¢ — 00. By Lemma 3.3.1, we have

Sc2/4,c(u0> < 502/4,c(¢02/4,c) = d<02/47 C)
c? c c?
< E(up) + §M(Uo) + §P(Uo) <3 dm

= Bup) + gP(uo) < %(47r — M(up)).

The last inequality holds if M (ug) < 4w, or M(ug) = 47 and P(uy) < 0, if we take
sufficiently large ¢ > 0. Hence, we deduce that uy € 24, for large ¢ > 0 under the
assumption of Theorem 3.1.5. By Proposition 3.1.4, the H'(R)-solution u with u(0) = g
is global. This completes the proof. O

Proof of Theorem 3.1.8. Let 0 > 1. We consider the curve for massless case again. We
note that the curve ¢ — (c?/4,¢) corresponds to the scaling for the solitons. Since
Do y(z) = cs Dy /4,1 (cx), we have
1
||aw¢)02/4,c||%2 = Cl+0 ||8$q)1/471||%27
1 1
12 acllinaze = e 1®1/an 7502, |1Pe2saclliints = ' Ho | @rjan [l 750

From this relation, it is easily verified that

Sc2/4,c(¢c2,4) = CH% S1/4,1(¢1/4,1)-

. - cx
Since ug, = e'2 1), we have

Sc2/4,c(u0,c) - 502/4,c<¢>
C

1 1
= 10,035 + =———||%[|}4 — ——

1
< Se2pae(Pe2jae) = Cl+"51/4,1(¢1/471)7

Kc2/4,c<u0,c) - K02/4,c(¢)
C
= 81172 + §H1/1Hi4 — N(¥)
Z 07

N ()

for sufficiently large ¢ > 0. Thus, ug. € 2/, for large ¢ > 0. Hence, the claim follows
from Proposition 3.1.4. O]

As can be seen in our proof, we do not use a contradiction argument, the gauge
transformation as (3.1.4), and any sharp Gagliardo-Nirenberg inequality.



Chapter 4

Variational approach to NLS
equations of derivative type

4.1 Introduction

In this chapter, we consider the following nonlinear Schrodinger equation of derivative
type:

(DNLSb) 10w + 0%u + ilul?0,u + blu|*u =0, (t,2) ER xR, beR.

(DNLSD) is L*-critical in the sense that the equation and L*norm are invariant under
the scaling transformation

(4.1.1) up(t, z) = )\%u()\Qt,)\x), A > 0.

This equation has the following conserved quantities:

1 I b
(Bnerey) B(w) = L |osulls — & (iluo,.u) — ¥ ulf.
(Mass) M (u) = ||ul|3e,
(Momentum) P(u) := (i0,u,u),

where (-, -) is an inner product defined by
(v,w) == Re/ v(x)w(x)dr for v,w € L*(R).
R
When b = 0, the equation

(DNLS) i0u + 02u + ilul?0,u =0, (t,7) ERxR

is well-known as a standard derivative nonlinear Schrodinger equation. The equation
(DNLSD) can be considered as a generalized equation of (DNLS) while preserving both

47
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L2-criticality and Hamiltonian structure. The aim of this chapter is to investigate the
structure of (DNLSb) from the viewpoint of solitons.
First we note that (DNLSb) can be rewritten as

(4.1.2) i0u = E'(u).

The Hamiltonian form (4.1.2) is useful when one discusses problems of orbital stability
and instability of solitons. It is well-known that (DNLS) has a two-parameter family
of solitons (see [40, 17]). Here we formulate the solitons of (DNLSb) following [57].
Consider solutions of (DNLSb) of the form

(4.1.3) Uy o(t, ) = e“' e, (x — ct),

where (w,c) € R?, and assume that @, . € H'(R). It is clear that ¢, . must satisfy the
following equation:

(4.1.4) —¢" + wp +icd —i|p]Pd —blo[*d =0, xR,

We note that the equation (4.1.4) can be rewritten as S, .(¢) = 0, where

(4.1.5) Suel®) i= E() + TM() + 5P(9).

Applying the following gauge transformation to ¢, .

(4.1.6) Guwe(r) = @y () exp (zgx - %/_oo Dy, 0(1)]” dy) :

it is easily verified (see [17, Lemma 2| for details) that @, . satisfies the following equation:

2 c 3 16
4.1. —P” —— ) D+ = |DPD — —~|D|*D = =1+ —b.
(@17) # (-G ) o Slope— alopo—o 5 =14

The positive radial (even) solution of (4.1.7) is explicitly obtained as follows; if v > 0 or
equivalently b > —3/16,

2(4w—c?) if 2/ <c<2v@
if —2v/w<e w,
V A+ (dw—c?)cosh(vViw —c?z) —c
(41.8) @ () =
4c
- if c=2
(cx)?+7 =20,
if v < 0 or equivalently b < —3/16,
2(4w—c?)

if —2vw<e<—2s,1/w,

(4.1.9) @ (x) = V7 (dw—2)cosh(viw—c2x) —c
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3 )
Case b > -3 Case b < —3

0
c=—-2yw c=-2yw
Figure 4.1: Existence region of solitons.
where s, = s.(vy) = /—7/(1 —~). From (4.1.3), (4.1.6), (4.1.8) and (4.1.9), we obtain

the explicit formulae of solitons of (DNLSb).
We note that the condition of two parameters v and (w, ¢)

if v>0&b>-3/16, —2yw < c<2vyw,

(4.1.10)
ify<0&b<-3/16, —2yw <c< —2s,/w

is a necessary and sufficient condition for the existence of non-trivial solutions of (4.1.7)
vanishing at infinity; see [8]. We note that the value b = —3/16 gives the turning point
where the structure of the solitons of (DNLSb) changes. Especially algebraic solitons
exist only for the case b > —3/16. In the case b < —3/16 the solitons still exist, but their
velocity must be negative. We note that 0 < s, <1 and s, 71 as b —oo. This means
that as the defocusing effect is stronger, the existence region of solitons is narrower; see
Figure 4.1.

When b = 0, Colin and Ohta [17] proved that the soliton u, . is orbitally stable when
w > ¢?/4 by variational arguments, which are closely related to the work of Shatah [64].
See also [27] for partial results before [17]. The case ¢ = 2y/w was treated! by Kwon and
Wu [41], while the orbital stability or instability for this case is still an open problem.

When b > 0, the situation becomes different due to the focusing effect from the quintic
term. Ohta [57] proved that for each b > 0 there exists a unique s* = s*(b) € (0, 1) such
that the soliton u, . is orbitally stable if —2\/w < ¢ < 2s*/w, and orbitally unstable if
25*\/w < ¢ < 2y/w. In [54] it was proved that the algebraic soliton u,, 4 4 is orbitally
unstable when b > 0 is sufficiently small. If we observe the momentum of the solitons,

!The “orbital stability” discussed in [41] is different from usual definition as in Definition 4.1.12. Their
result does not contradict that finite time blow-up occurs to the initial data near algebraic solitons.
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stable P(¢w,c) >0

c=—2yw

Figure 4.2: The stable/unstable region of solitons in the case b > 0.

the momentum is positive in the stable region, and negative in the unstable region; see
Figure 4.2. This indicates that the momentum of the solitons has an important effect on
the stability. In the borderline case ¢ = 2s*y/w, the momentum of the solitons is zero,
and the orbital stability or instability in this case remains an open problem.

The solitons in the defocusing case b < 0 are less well studied. In this chapter we
study the properties of solitons of (DNLSb) including defocusing case. Our first theorem
gives the connection between two types of solitons. To state the result, we introduce the
set ) defined by

Q= {(w,0) e R*: —2y/w < ¢ < 2w} .
Then we have the following result.

Theorem 4.1.1. Let b > —3/16. Suppose that (wo, co) satisfies cog = 2/wy. Then, we
have

lim ) “¢w,c - ¢w0,co‘ H™(R) — 0

(w,¢)—(wo,co
(w,c)eQ

for any m € Zx.

Remark 4.1.2. By Theorem 4.1.1 and Sobolev’s embedding theorem, we obtain that

llm w.e Wo.C m,00 — 0
(@,6)— (w0.c0) ”¢ , ¢ 0, 0||W (R)
(w,c)EN

for any m € Z>.
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Theorem 4.1.1 shows that two types of solitons are connected in strong topology
although each of the solitons has quite different decay. This relation is expected to be
useful for further study on algebraic solitons. The key step for the proof is to prove
the pointwise convergence. Since this limit corresponds to indeterminate forms, we
need to calculate carefully so as to cancel out the singularity. Combining the pointwise
convergence with the mass convergence

lim M(gbw,c) - M(¢wo,co)v

(w,c)—(wo,c0)
(w,c)EN

which is proved in Section 4.2.1, we obtain L?-convergence. The regularity of the con-
vergence is proved by using the equation (4.1.4) and a bootstrap argument.

Next we establish global existence for (DNLSb) in the energy space. The well-
posedness in the energy space was studied in [33, 58]. In [58] it was proved that if
the initial data ug € H'(R) satisfies

. 2m
(4111) if b > 0, M(Uo) < ﬁ,
ifb<0, M(up) < 2m,

then the corresponding H'(R)-solution is global. This result is considered as an extension
of that in [32]. The proof is done by gauge transformation, and by applying mass and
energy conservation laws; see also Section 4.4 for details.

We note that the value \2/—’% corresponds to the mass of the soliton ¢, . If we take
into account the effect of momentum, we can expect that the mass condition (4.1.11) is

improved as in the case of (DNLS). Our main result in this chapter is the following.
Theorem 4.1.3. Let ug € HY(R) satisfy each of the following two cases:

(1) If b >0, M(ug) < M(¢12s), or M(ug) = M(p12s+) and P(ug) < 0.

(i) If —=3/16 < b <0, M(up) < 743%, or M(up) = =% and P(ug) < 0.

1372

Then the H'(R)-solution u of (DNLSb) with w(0) = ug exists globally in time. Moreover
we have

sup [lu(t)[[m < C([luo|mr) < oo,
teR

Remark 4.1.4. One can establish explicit upper bound of H'(R)-norm of the solution
which is represented by the conserved quantities; see Lemma 4.6.1.

Remark 4.1.5. When b > 0, by applying variational characterization of solitons, we
have

{uo € H'(R) : M(ug) = M(¢12s), E(ug) = P(up) = 0}
- {6i00¢w,25*\/5(' - mO) : 00,.130 & R, w > O} .
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For the case of (DNLS), this relation corresponds to
{ug € H'(R) : M(ug) = 4m, E(uo) = P(ug) =0}
= {6i00¢w,2\/c;(' - IE()) : 00,1‘0 S R? w > 0} )
see Remark 3.1.7.

Remark 4.1.6. As seen in Section 4.2.1, when v > 0 the function

(=1,1] 3 5 = M (¢195) € (O, %]

is strictly increasing and surjective. Especially, when b > 0, we have

Remark 4.1.7. When b < —3/16, by applying the suitable gauge transformation, one
can easily prove that the H'(R)-solution is global for any initial data uy € H'(R); see
Proposition 4.4.3. Especially the global result in the case b = —3/16 is compatible with
Theorem 4.1.3, since % 1 oo as bl —3/16.

In the focusing case we recall that the soliton ¢; 25+ corresponds to borderline case in
the stable/unstable region of solitons as in Figure 4.2. In this sense the mass condition
in Theorem 4.1.3 seems to be quite natural. We also note that

M(¢195) = 4w as b — 0,

which is proved in Section 4.2.3. This means that global results in Theorem 4.1.3 are
compatible with the ones of (DNLS).

The global results in defocusing case are more interesting. When —3/16 < b < 0,
since 0 < v < 1 in this case, the value % is greater than 47. This means that 47-mass

condition in (DNLS) is improved due to the defocusing effect from the quintic term.
More surprisingly, the value fﬁ,—’}z is even greater than the mass of algebraic solitons.

Indeed, we have the following relation:

Mi612) = % < g = M(612) + Plorz).
which indicates that positive momentum of algebraic solitons improves the mass condi-
tion.

The proof of Theorem 4.1.3 is done by applying variational arguments developed in
Chapter 3. First we give a variational characterization of the solitons in a unified way
including the defocusing case. We note that in the case b < 0 the quintic term b|u|*u
becomes an obstacle to characterize the solitons on the Nehari manifold with respect
to the action functional S, .. To overcome that, we apply the suitable gauge transfor-
mation and consider the minimization problems on the Nehari manifold with respect
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to the transformed action functional. This approach enables us to give a variational
characterization of the transformed solitons in the case b > —3/16.

Next, by applying the variational characterization and potential well theory, we give
a sufficient condition for global existence in the energy space; see Lemma 4.6.1. This
argument is closely related to the classical work of Payne and Sattinger [60]. The key step
in the proof of Theorem 4.1.3 is to establish the connection between mass condition and
a sufficient condition represented by potential well. To this end we prove the existence
of the pair (w, ¢) satisfying —2\/w < ¢ < 2y/w such that

(4112) Sw,c(UO) S Sw,c((bw,c)a

under the assumption of Theorem 4.1.3. In this step we use the idea of taking the curve
¢ = 2sy/w for s € (—1,1] and large parameter w > 0, which was introduced for the case
of (DNLS) in Chapter 3. Compared with (DNLS), we need to examine the effect of the
momentum more carefully in our setting.

The condition (4.1.12) means that the initial data ug is below the ground state in the
sense of action. We note that the mass condition in Theorem 4.1.3 is derived from the
condition which expresses the initial data below the ground state.? The threshold value in
the mass condition is optimal in the sense that if b > 0 (resp., if —3/16 < b < 0) for any
p > M(p1os) (vesp., p > 743%) there exists ug € H'(R) such that M(ug) = p and such
that the condition (4.1.12) does not hold for any (w,¢) satisfying —2y/w < ¢ < 2y/w,
which means that wu, is above the ground state.®* Therefore, taking into account the
L2-critical structure of the equation, we conjecture the following:

Conjecture 4.1.8. The mass condition in Theorem 4.1.3 is sharp for global existence
of H'(R)-solutions to (DNLSb).

Remark 4.1.9. Related to the conjecture, it is an interesting problem whether the
blow-up occurs in finite or infinite time for the initial data uy € H'(R) satisfying that
M(ug) = M(¢12s+) (vesp., M(ug) = 7‘;’;2) and P(up) > 0 when b > 0 (resp., when
—3/16 < b <0).

Remark 4.1.10. Recently, in [37] it was proved by inverse scattering approach that
(DNLS) is globally well-posed in weighted Sobolev space H*?(R), where

2 R) = {ue H*R); ()?ue L*(R)}.

We note that algebraic solitons of (DNLS) do not contain in H**(R). We remark that
our global results in this chapter treat the initial data in H'(R) which contain algebraic
solitons. This difference of topology is quite important for (DNLS) from the viewpoint
of solitons. We note that the results in [37] do not imply that Conjecture 4.1.8 is false
in the case b = 0. We also note that inverse scattering approach works only for the case
b=0.

2See Proposition 4.6.4 for the case b = —3/16.
3As an example one can take a real-valued function uy € H'(R) satisfying M (ug) = p; see also the
proof of Theorem 4.1.3.
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If we consider sufficiently oscillating data, we obtain the global result for arbitrarily
large mass:

Theorem 4.1.11. Let b > —3/16. Given v € H'(R), and set the initial data as
Up. = €21). Then, there exists co = co(v0) > 0 such that if ¢ > co, then the H'(R)-
solution u. of (DNLSb) with u.(0) = ug . ezists globally in time. Moreover we have

sup [[ue(t)l|m < C(lluocllm) < oo
te

This global result was proved in Chapter 3 for the case b = 0. For the proof of
Theorem 4.1.11 we apply variational characterization for algebraic solitons.

Cazenave and Weissler [14] established global existence for the quadratic oscillating
data on nonlinear Schrodinger equations with a pure power nonlinearity. One main dif-
ference with this result is that the oscillating term in Theorem 4.1.11 gives the change
of the momentum. We note that (DNLSb) is not invariant under the Galilean transfor-
mation. Hence it is reasonable to consider that the momentum of initial data essentially
influences global properties of the solutions to (DNLSD).

Finally, we study the orbital stability of the solitons as another application of varia-
tional arguments. First we give the precise definition of orbital stability.

Definition 4.1.12. Let u,, . be a soliton of (DNLSb) defined by (4.1.3). The soliton u,, .
is said to be orbitally stable in H'(R) if for any € > 0 there exists § > 0 such that if
ug € H'(R) satisfies ||ug — uy o(0)||g1 < 0, then the mazimal solution u(t) of (DNLSb)
with w(0) = ug exists globally in time and satisfies

sup inf [|u(t) — euy o (t, - — < e.
wp infJu(t) et =)

Otherwise, the soliton is said to be orbitally unstable.

We have the following theorem about the orbital stability of the solitons in the
defocusing case.

Theorem 4.1.13. Let —3/16 < b < 0. Assume that (wy, co) satisfies (4.1.10). Then the
soliton Uy, ., of (DNLSb) is orbitally stable.

We note that Theorem 4.1.13 claims that algebraic solitons are orbitally stable in the
case —3/16 < b < 0. This result gives the counterpart of the focusing case b > 0. For the
proof of Theorem 4.1.13 we use variational argument inspired from the work developed
in [64, 17, 57]. New perspective in our proof is to use the scaling curve ¢ = 2s/w
effectively. To clarify our approach we first revisit the stability theory in the case b > 0.
Our variational arguments along the scaling curve provide a simpler alternative proof in
previous works. In our approach the positivity of the momentum of the soliton is used
more directly to prove the stability. This is useful to tackle the stability in the defocusing
case and enables us to prove the stability for two types of the solitons in a unified way.
Unfortunately, our variational arguments do not cover the case b < —3/16 to prove the



25

stability. However, if one takes spectral approach depending on the abstract theory of
Grillakis, Shatah and Strauss [24, 25], one can recover the remaining cases; see the end
of Section 4.7 for more details.

The rest of this chapter is organized as follows. In Section 4.2 we calculate the
conserved quantities of the solitons. By using the explicit formulae of solitons, conserved
quantities of solitons are also calculated explicitly. In Section 4.3 we study the connection
of two types of solitons and give a proof of Theorem 4.1.1. In Section 4.4 we introduce the
gauge transformation to (DNLSb). The local well-posedness theory in the energy space
is also reviewed there. In Section 4.5 we study variational characterization of solitons.
We give a unified proof for two types of solitons by applying concentration compactness
arguments developed in [17]. In Section 4.6 we establish global existence in the energy
space by applying variational characterization of the solitons. We show that a sufficient
condition represented by potential well yields Theorem 4.1.3 and Theorem 4.1.11. In
Section 4.7 we study orbital stability of the solitons and prove Theorem 4.1.13.

4.2 Conserved quantities of the solitons

4.2.1 Mass of the solitons

In this subsection we calculate the mass of the solitons. First we prepare the following
elementary integration formulae.

Lemma 4.2.1. Let —1 < «. Then we have

4 tan-1 1 -« i 1
N “ T an T7a if Jo| <1,
4.2.1 —_— = i =
( ) /OO coshy +a 22 if a=1,
\/?llog(a—l—\/az—l) lf Oé>1
a2 —
Proof. See the formula 3.513, 2 in [23]. O

By using Lemma 4.2.1, we have the following proposition.
Proposition 4.2.2. Let vy and (w, ¢) satisfy (4.1.10). Then the following properties hold:
(i) When v >0, we have

8 1B
2 1+0 4
(4.2.2) M (6y) = Aoy b se<avl
% if ¢=2yw,
where (3 is defined by
(423) ﬁ — 6((«‘)7 C) .

C
Ve -
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Moreover, the function

(—1,1] 5 s M (¢125) € (0, 4—\/;]

1S continuous, strictly increasing and surjective.
(ii) When v =0, we have

Wiw— 2
(4.2.4) M(¢o) = 22— if —2/w<c<O,

Moreover, the function
(—1,0) > s — M (¢1,25) € (0,00)
1S continuous, strictly increasing and surjective.

(iii) When v <0, we have

(425) M (¢u.) = log (a +Var = 1) if — 2V < ¢ < —25,\/w,

4
V=
where a 1s defined by

—C

(4.2.6) a=aw,c):= Ve @)

Moreover, the function
(—1,—5.) 2 s+ M (¢125) € (0,00)
18 continuous, strictly increasing and surjective.

Proof. Let v and (w,c) satisfy (4.1.10). When w > ¢?/4, from the explicit formulae of
the solitons, we have
e 2(4w — *)dx
4.2.7 M (¢y,.) = M (P, :/
( ) (B () —oo v/ + (4w — ) cosh(Vdw — 2z) — ¢
2V 4w — 2 /°° dy
)

- VAE+ 7w —2) s coshy +a’

where « is defined by (4.2.6). We divide three cases to do calculations.
Case 1-1: 7 > 0 and —2/w < ¢ < 2y/w. In this case we note that |a| < 1 and

c? o Y(dw =)
2+ y(dw—c2) 2+ y(dw —c?)’

(4.2.8) l—a*=1-



Applying Lemma 4.2.1 to (4.2.7), we have
2V 4w — 2 4 - -«
. an
Ve +ydw—c2) V1—a? I+«
8 . |1+ 8

= —tan~ —_—

it

(4.2.9) M (o) =

where [ is defined by

c
B Ve + (4w — )

(4.2.10) B = -«

57

We note that the function f is constant on each curve ¢ = 2sy/w for s € [—1,1]. Then

we have
s
s) = Bw,2sv/w) =
B6) = Bl 25) = ot
sgn s
147 (S% — 1)
This shows that the function
(4.2.11) [—1,1] 2 s — B(s) € [-1,1]
is continuous, strictly increasing and surjective. The function
1
(~1,1) 3 f % € (0,00)

also has the same property. Therefore, by (4.2.9) we obtain that the function

(=1,1) 5 5 5 M (r20) € (0, %)

is continuous, strictly increasing and surjective. We also note that

s—1—0 ﬁ

Case 1-2: v > 0 and ¢ = 2y/w. From the explicit formulae of algebraic solitons, we

have
o 4c
(4213) M (¢cz/4,c) =M (q)02/470) = /oo 22 _"_f}/dx
* Adx
- /_oo x4y

_47T

Nek
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From (4.2.12) and (4.2.13), we obtain
(4.2.14) limOM (126) = M (1),

s—1—

which completes the proof of the case v > 0.
Case 2: 7 = 0 and —2y/w < ¢ < 0. In this case we note that & = 1. From (4.2.7)
and Lemma 4.2.1, we have

2V 4w — 2 [ dy
4.2.1 M (@) =
( 2 (Yu.c) —c /OO coshy +1
A -
_C ’

For s € (—1,0), we have

44/1 — s?
M (¢w,25\/5) =M <¢1,2s) = ——s
1
This yields that the function
(4.2.16) (—1,0) 3 s = M (¢125) € (0,00)

is continuous, strictly increasing and surjective.
Case 3: 7 < 0 and —2y/w < ¢ < —2s,y/w. In this case we note that « > 1. From
Lemma 4.2.1, (4.2.7) and (4.2.8), we have

2V 4w — 2 /°° dy

VA +v(4w — ) J_s coshy + a

2/ 4w — c? 2 5
—\/CQ+7(4W_C2>-\/a2_110g<a+\/o¢—1)

= \/Zi_vlog (a—l—\/ﬁ)

In the same way as (3, the function « is constant on each curve ¢ = 2sy/w for s € [—1,1].
We note that

(4.2.18) a(s) == a(w,2syw) =

(4.2.17) M (¢,.0) =

—S
(1=7)s* 4+~
1

V1= 4752

This yields that the function

(—1,—84) 2 s a(s) € (1,00)
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is continuous, strictly increasing and surjective. From the formula (4.2.17), we deduce
that the function

(4219) (—1, —S*> Ss— M (gbms) € (0, OO)

has the same property. This completes the proof. O]

4.2.2 Momentum of the solitons

In this subsection we calculate the momentum of the solitons. From the formula
(4.1.6) of the solitons, we have

(4.2.20) P(¢u.) = Re / 00, P cda
R

w1 S
=R [ D O, . = — -2 d,.d
oo (5 )

1
M((I)w,C) + ZH(I)UJ,CHZE‘*

c
2
To calculate the L*-norm, we prepare the following elementary integration formulae.

Lemma 4.2.3. Let —1 < «. Then we have

(2 4o - l—a v 1
1—a? (1—a?)3/2 an I+« i Jal<t,
* dy 2
4.2.21 — = - if a=
( ) /_Oo (coshy + «)? < 3 it a=1,
2 2a 3 .
\ —&2_1+<a2_1)3/210g(04+\/a —1) it a>1.

Proof. Change variables t = ¢¥ and apply the formula 3.252, 4 in [23]. O
By using Lemma 4.2.3, we have the following proposition.

Proposition 4.2.4. The momentum of the solitons is represented as follows; if v > 0
and —2v/w < ¢ < 2y/w or if v < 0 and —2y/w < ¢ < —28,\/w, we have

(12.22) Pl =5 (14 1) Mlou) + 2viv—a

If v =0 and —2y/w < ¢ < 0, we have

2w + 2

(4.2.23) P($ue) = ——5—M(buc).

Remark 4.2.5. The momentum is represented by the same formula in the cases v > 0
and v < 0 although each mass is represented by the different functions in these cases.
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Proof. Let v and (w, ¢) satisfy (4.1.10). By Theorem 4.1.1, the momentum in the case
¢ = 2y/w is obtained* by taking the limit

lim P(6,20y5) = Pdusym)-

s—1—

Hence we may consider the only case w > ¢*/4. We note that @7, () is rewritten as

2 () = 2(4w — ?) 1
wet VA + (4w — ) cosh(Vdw — x) + o

where « is defined by (4.2.6). Then we have

4(4w — )32 [ dy
4.2.24 Dycllpe = '
( ) [[Pes,cll s 2+ (4w — 2) /_OO (coshy + a)?

We divide three cases in the same way as the proof of Proposition 4.2.2.
Case 1: 7 > 0 and —2/w < ¢ < 2y/w. In this case we note that |a| < 1. By Lemma
4.2.3, (4.2.8) and (4.2.2), we obtain that

4(4w — )32 2 dov l—a
4.2.25 Dy ell7s = : — tan ™'
( ) [Pes,el s 2w —@) |T-a? (1—a2pr an 1+ a
8 16 1
:—\/4w—62+3—/2tan_1 1+5
v g 1—p
8 2c
= —m+ _M((Dw,(:)'
v v
From (4.2.20) and (4.2.25), we have
c 1 4
P(¢w,c) = _§M((I)w,0) + Z”CDUJ,CHM
1 2
= g (—1 + —) M(®, )+ —Viw — 2
v v

Case 2: 7 < 0 and —2y/w < ¢ < 0. In this case we note that o = 1. By Lemma 4.2.3
and (4.2.4), we obtain that

44w — 2)32 [ d
(4.2.26) Dy ofs = (4w — ) / y

2

c « (coshy + 1)2
84w — c?)3/2
B 3c?
_ 2
_ 204w —c )M<®wc)-
3c ’

4The proof of Theorem 4.1.1 is proved in Section 4.3, which is independent of the proof of Proposition
4.2.4. One can also calculate the momentum in the case ¢ = 2y/w directly.
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From (4.2.20) and (4.2.26), we have

c 1
P(gue) = —SM(@u) + 1Bl

2 2
_ ().
3c

Case 3: v > 0 and —2y/w < ¢ < —2s,y/w. In this case we note that @ > 1. By
Lemma 4.2.3, (4.2.8) and (4.2.5), we obtain that

4+ (4w — 2 a?—1  (a2—1)32

= §\/4w—02—ilog (a+Va2—1)

44w — 2)3/2 2 2
(4.227) || Puellie = (4w — ) % {_ + “ log (a+ va? — 1)}

7 )"
3 2c

= —Viw -2 — —M(D,.)
gl -

This is exactly the same as the formula (4.2.25). Hence the momentum has the same
formula as the Case 1. U

By the Pohozaev identity, the energy of the solitons is represented by the momentum.

Proposition 4.2.6. Let v and (w, ¢) satisfy (4.1.10). Then we have
c

(4.2.28) E(¢ue) = =7 P(due)-

Proof. For A > 0, let u*(z) = A\Y?u(\x). It is easily verified that

w C
(42.29) Suel0h) = B(@,) + SM(0h0) + SP(),)

= /\QE(¢UJ,C) + gM(gbw,C) +A- gp(gbw,c)‘

Since S, .(¢w,c) = 0, we have

d 1
_Sw c A = S/ w,c)y o Pw,c ' =0.
d\ ) ( w,c) 1 < w,c(¢ ) ) Q(b ) + x¢w,c>
From (4.2.29) we deduce that
0= 2 8uuldd)| = 2B(6u0) + SP(6)
- d\ w,e\Pw.c — — w,c 9 w,c)

Hence the result follows. ]
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Cascf%<b<0 Case b >0
12 T T — 4 T — T
[T
L ~_
9 L 4
8 ,
O\
P(¢1,25) P(¢1,25) N\
0
1 : \
[ =0.5 — =11
— i { =i
=08 y=17
0 | L =09 | | y=19

Figure 4.3: The function s — P(¢ ) for several values of b > —3/16.

4.2.3 Positivity of the momentum

The effect of the momentum plays an essential role in the arguments on both global
existence and orbital stability of the solitons. In this subsection we study the sign of the

momentum of the soliton. Let w > 0 and let s satisfy
ifvy>0&b>-3/16, —1<s<1,
(4.2.30)
ify<0&b< -3/16, —1<s< —s,.

Since P(¢y 955) = VWP($1,25) from Proposition 4.2.4, it is enough to check the sign of
P((bl,Zs)-

Proposition 4.2.7. Let s satisfy (4.2.30). Then the following properties hold:
(i) If b <0, P(¢125) > 0 for any s satisfying (4.2.30).
(i) Ifb=10, P(¢125) > 0 for s € (—1,1) and P(¢12) = 0.
(iii) If b > 0, there exists a unique s*=s*(b)€(0,1) such that P(¢; 5 )=0. Moreover,
we have P(¢125) > 0 for s € (—=1,5") and P(¢125) <0 for s € (s*,1].

Remark 4.2.8. As in Figure 4.3, the zero point of the function s — P(¢; 25) moves to
the right and converges to 1 as b | 0. This remark is rigorously proved below.

Proof. First we note that ¢ o is the zero solution of the equation (4.1.4) and

(4231) lim P(¢1,28) = P(Qsl,_g) == O,

s——1+0

which follows from Proposition 4.2.4.

(i) If b = —3/16, the positivity of the momentum is obvious from the formula (4.2.23).
Let us consider the case —3/16 < b < 0. First we note that the formula (4.2.22) is
rewritten as

(4.2.32) P(¢12s) = 8 (—1 - %) M (p125) + %\/1 — 82,
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Since —1 + % > 0, P(¢12s) > 0 for s € [0,1] follows from (4.2.32). It is easily verified
that the function (—1,0) 3 s — P(¢1.2s) is continuous and strictly increasing. Therefore,
from (4.2.31) we have

0= P(¢1,-2) < P(d125)

for s € (—1,0). The proof in the case b < —3/16 is done similarly.

(i) This is obvious from the formula (4.2.32).

(iii) Since —1 4+ % < 0 in this case, P(¢125) > 0 for s € (—1,0] follows from (4.2.32).
We note that

4
P(¢10) = = >0,
Y

1 4 —1
P(¢12) = (—1 + ;) M (1) = —% < 0,

and the function [0,1] 5 s + P(¢12) is continuous and strictly decreasing. Therefore
there exists s* € (0, 1) such that P(¢y25) =0, P(¢125) > 0 for s € (0,s*) and P(¢;95) <
0 for s € (s*,1]. This completes the proof. [

4.3 Connection between two types of the solitons

In this section we prove Theorem 4.1.1. It is enough to discuss the convergence of
®12s as s — 1. First we prove the pointwise convergence.

Proposition 4.3.1. Let b > —3/16. For any = € R we have

(4.3.1) lim @1 25(2) = d12(2).

s—1-0

Proof. Fix any = € R. First we discuss the convergence of ® 9s(x). From the explicit
formula (4.1.8), we have

4(1 — s?)
V82 +7(1 — s?) cosh (2v1 — s%z) — s

for s € (—1,1). By the Taylor expansion of cosh, the denominator is rewritten as

(4.3.2) D7 o (x) =

(4.3.3) 2+ 91— s2) (14201 = s*)2”+0 ((1 - 5°)7)) —s.

By the Taylor expansion of the function h — /s> + h, we have

v

(4.3.3) = g(l — 7)) +2(1 = s*)/s2+ (1= 2)2* + O ((1 — 5%)?)

=(1-5% (% +2y/s2+ (1 —s2)2” + O (1 —32)> .
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We note that the numerator and denominator share a common factor 1 — s?. Hence we
deduce that

(D%,Qs(x) =
L 2+ 91 —s2)a2+0(1—s?)

- 0 @ @ @ == 2
3120 v+ 4x2 12(2).

From this and the formula (4.1.6), the result follows. O

To complete the proof of Theorem 4.1.1, we effectively use the Brézis—Lieb lemma
(see Lemma 3.2.10). For convenience we write the statement again.

Lemma 4.3.2 ([11]). Let 1 < p < oo. Let {fn} be a bounded sequence in LP(R) and
fon— fae iR asn — oo. Then we have

1 fnllze = 1o = fIIZe = Il — 0
as n — oo.

Proof of Theorem 4.1.1. From Proposition 4.2.2 and Proposition 4.3.1, we have
SEEO ¢1,25(x) = ¢172(£C) for all x € R,
Jim f12:l72 = lldrall7 -

Applying Lemma 4.3.2, we have

(434) sE{EO HQZ51,25 - §Z§1,2l|%2 = 0.

In the same way, we also have

. . 2 _
(4.3.5) Jim [ @105 = Prof[ze = 0.
Here we recall that @, o4 is the solution of the equation
3
(4.3.6) —®" + (1 = 53D + 5|P|*D — E7|<1>|4<1> = 0.
We note that

1@ 1,24[|7 = @7 5,(0)
4(1 — s?)
VsE+y(l—s2)—s

( 32—|—7(1—32)—|—s>‘

2
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This yields that the function (—1,1) 3 s+ || Py 2| is strictly increasing and

8

lim D157 = 5 |®1,2][700-

Especially we have

(4.3.7) max ||y o5 r = || P12l

se(—1,1]
By Proposition 4.2.2, (4.3.7) and (4.3.5), we obtain

[sDF g — BT 52 < (1= 8)[|®F ol 2 + [|[DF 55 — DT 5|12
< (1= 8)||P1ll7oe P12l z2 + 3] P12l Foe | P125 — P12

=

s—1-0
Similarly, we have

193 50 — P7 ollr2 < 4| P10l 100 [ P12 — Dol 2

— 0.
s—1—0

Hence, by using the equation (4.3.6), we deduce that
1D o5 — PYollzz < (1= 8) [ P17z + [[5DT o5 — PP ollre
3
+ 1_67”(1)?’28 - (I)?,2||L2

— 0.
s—1-0

From this and (4.3.5) we have

lim ||(I)1’25 — (13172”]{2 = 0.
s—1-0

From the formula (4.1.6), this yields that

lim ||¢12s — ¢12]|m2 = 0.
s—1—-0

The rest of the proof is done by using the equation (4.1.4) and a standard bootstrap
argument. ]
4.4 Gauge transformation

The equation (DNLSb) has various equivalent forms under gauge transformation. In
this section we discuss the gauge transformations and their application. First we recall
the result of local well-posedness for (DNLSb) in the energy space.
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Theorem 4.4.1 ([58]). For every uy € H'(R), there exist 0 < Thin, Tmax < 00 and a
unique, mazimal solution u € C((—Tin, Timax), H*(R)) N L*((—=Tiins Tinax); W (R)) of
(DNLSb) with u(0) = wug. Furthermore, the following properties hold:

(1) If Twax < o0 (resp., if Tim < 00), then ||Oyu(t)||rz — 00 as t T Tmax (7esp., as
t i _Tmin>-

(ii) There is conservation of energy, mass and momentum; i.e., E(u(t)) = E(ug),
M (u(t)) = M(ug) and P(u(t)) = P(ug) for all t € (—Tiin, Timax)-

(iii) Continuous dependence is satisfied in the following sense; if ug, — uy in H'(R)
and if I C (—Tmin(w0), Tmax(wo)) s a closed interval, then the mazimal solution

u, of (DNLSb) with u,(0) = wug, is defined on I for n large enough and satisfies
u, — u in C(I, H'(R)).

In [58] the proof of Theorem 4.4.1 is done by transforming the equation (DNLSb)
into a new system of equations as follows; see also [31, 32, 33]. For the solution u of
(DNLSb) we set

o) =exp (5 [ lutenPay ) ute.o),

o(ta) =exp (5 / : ult. )y ) dutt. ),

then new functions ¢ and v formally satisfy

i0pp + 02 = ip*) + f(i),
O + 02 = =i’ B+ O, f ()¢ + 05 f (),

where f(p) = —b|o|*¢. Since the system (4.4.1) has no loss of derivatives unlike the
original equation (DNLSb), one can solve the Cauchy problem by the fixed point argu-
ment. Note that in order to construct the solution of (DNLSb) through the system, we
need to solve the equation (4.4.1) under the constraint condition

(4.4.1)

i
w:aw—yw%,

which needs more or less complex calculation; see [33] for details. In Chapter 2 we
took a more direct approach without using a system of equations. This approach is also
applicable to the equation (DNLSD).

We note that the gauge transformation plays a key role when one transforms the
equation (DNLSb) into a system of equations (4.4.1). Here we consider more general
gauge transformations as seen in [72]. For a € R we define G, : H'(R) — H*(R) by

—0o0

(4.4.2) Go(u)(t, ) = exp (m / ' |u(t,y>|2dy) u(t, ).

A direct computation shows the following.
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Proposition 4.4.2. Let a € R, and let u € C((—Tin, Tax), H'(R)) be a mazimal
solution of (DNLSDb). Then v = G,(u) € C((—Twmin, Tmax), H'(R)), and v satisfies the

equation
(4.4.3) 10w + 00 + (—2a + 1)i|v|*0,v — 2aiv?0,0 + <a2 + g + b) lv[*v = 0.

Moreover, the equation (4.4.3) has the following conserved quantities:

1 1\ . a> a b
Eo(v) = 510:v]72 + (a - 1) (i[v[*,0,0) + (3 - g) [llze.
M,(v) = [[v]lZ,
P,(v) = (i0,v,v) + a||v]|14.

It is important to choose the suitable parameter a € R depending on the situation.
If we set a = 1/2, the term i|v|?0v is removed in (4.4.3) and it is useful when one treats
the Fourier restriction norm (see [66, 18, 19]).

When a = 1/4 the interaction term with derivative in the energy is canceled out,
which yields the advantage of giving a sufficient condition for global existence of solutions
in the energy space (see [32, 72, 73]). In this chapter we apply the gauge transformation
in the case a = 1/4 for giving the variational characterization of the solitons including
the case b < 0. By Proposition 4.4.2, v = Gy /4(u) satisfies the equation

(DNLSDH) 10w + O2v + %|v|28xv - %Uan@ + 1%7|v|4v =0,

where v = 1+ 16b/3. The conserved quantities of (DNLSD') are as follows:
(Enerey) £(w) = Bra(e) = 3100l — 5ol
(Mass) M(v) == Myja(v) = ||v]l2,

(Momentum) P(v) := Pija(v) = (i0,0,v) + %HUH%/;

We note that the energy functional £(v) is nonnegative if v < 0. Hence one can easily
prove the following.

Proposition 4.4.3. Let b < —3/16. For every ug € H*(R), the maximal H'(R)-solution
u of (DNLSb) given by Proposition 4.4.2 is global and

(4.4.4) sup lu(®)|| g < C(JJugl| 1) < oo.
te

Proof. Set vy = G1/4(up) and v = Gy4(u). From Proposition 4.4.2, we have
18z0(t)l|72 < 26 (v(t)) = 2&(vo) = 2B (u)
for all ¢ € (—Tnin, Trmax). This gives that Ty, = Thax = 00 and
Sup lo)llFn < 2E(uo) + M (uo).

Since u = G_1/4(v), we deduce that (4.4.4). O
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When b > —3/16, if we apply the following sharp Gagliardo—Nirenberg inequality
(see [T1])

4
(4.4.5) 1 lzs < 11220100 f 1122,

we deduce that if the initial data uy € H'(R) satisfying [luol|7. < \2/—7%, then the cor-

responding H'(R)-solution u of (DNLSb) is global. A similar approach was originally
taken in [32, 33, 58].

Finally, we discuss the solitons of (DNLSP’). Let (w,c) satisfy (4.1.10). (DNLSD’)
has a two-parameter family of solitons

(4.4.6) Vo e(t, ) = Grja(uge)(t, ) = €“ o (v — ct),
where ¢, . is defined by
Do) = 2 Dy, o(2).
We note that ¢, . satisfies the equation
(147) ~¢f +wp+ics + 5ol = malello =0,

which can be written as S, .(¢) = 0, where

Since
E(G1a(u) = E(u), M(Gi/a(u)) = M(u), P(Gia(u)) = P(u),

we note that

(448) Sw,c(‘ﬁw,c) = Sw7c(gl/4(¢w,c)) = Sw,c<¢w,c) = d(w’ C)'

4.5 Variational characterization

In this section we give a variational characterization of the soliton v, . defined by
(4.4.6). Here we assume that v and (w, ¢) satisfy
( ) ify>0&0b0>-3/16, —2yw < c<2V/w,
4.5.1

ify=0«b=-3/16, —2yw <c<0.
We prepare some notations. First we define the functional spaces by
ve HY(R if w> c?/4,

(4.5.2) pe X, = ( ).1 . ' /

e'zpe H(R)NLYR) if c = 2v/w,

H‘PHXC2/4,C = Heii%@HHlmL‘l'
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Note that H*(R) C X.2/4.. We define the functional K, . by

c 3
(4.5.3) Koe() = 102022 + wliellze + ¢ (@, 0) + 5l = 767 lels:
Note that Ku.(¢) = & Suc(Au)|,_;. We consider the following minimization problem:

pw,c) == inf {S,(¢) 1 p € Xy \ {0}, Ku () = 0}
We introduce the sets ¢, . and .#,, . defined by
gqw,c = {90 € Xw,c \ {O} : S:J,C(SO) = O} )
Mo ={p € Xue \ {0} : Suclp) = p(w, ), Kue() = 0}

The element of ¢, . is called a ground state. .#, . is the set of minimizers of S, . on the
Nehari manifold. The main result in this section is the following.

Proposition 4.5.1. Let v and (w, ¢) satisfy (4.5.1). Then we have
(4.5.4) Ge = My = {ew"(pw,c( — 1) : 0y € [0,27), 20 € ]R} ,
and d(w, ¢) = p(w, c).

Our proof of Proposition 4.5.1 depends on the argument in [17]; see also Chapter 3
for the case ¢ = 24/w. For convenience of notation, we define

Loo(#) = 10:0ll72 + wliellzz + ¢ (a0, 0)
1 1 v 6
T o(p) = - — - T 1o]l6s.
we(P) = Suelp) 4’Cw,0(90) 4£w78(90) + 64 el zo
First we prove the following lemma.
Lemma 4.5.2. Let v and (w, ¢) satisfy (4.5.1). Then the following properties hold:
(i) If w > ¢*/4, there exists Cy = Cy(w, c) such that

Loo(0) = Cillellip for ¢ € H'(R).

(ii) p(w,c) > 0.
(iii) If p € Xy satisfies Ky (¢) < 0, then p(w,c) < L, ().

Proof. (i) See Lemma 7 (1) in [17].
(ii) Case 1: w > ¢?/4. Let ¢ € H'(R) \ {0} satisfy K, .(¢) = 0. By (i), (4.5.3) and
the Sobolev inequality, there exists C'y > 0 such that

C

3
Cillell3n < Loolp) = —§H¢H‘i4 + 1—67H¢H6L6

|| 3
< 5HsoHL2HsoHie + 1—67H90H§6

Cy
< gl + Callel
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This yields that [|¢[|} > 54 . Hence we have

p(w,0) = inf {T.o(9) 5 ¢ € H'(R)\ {0}, Kul) = 0}
> Tt {£a(9) 0 € H(R)\ {0}, Koel) = 0
> SYASS > 0.
— 4V 20,

Case 2: ¢ = 2y/w. In this case we have

2

a:c@ - ECQD

(4.5.5) Ly(p) = 5

¢’ 2 -\
(=G ) Il =l (F ) >0
L

for p € X, .\ {0}. This yields that p(w,c) > 0. We prove u(w,c) > 0 by contradiction.
Assume that p(w, c¢) = 0. Then we can take the minimizing sequence {¢,} C X, .\ {0}
such that

(4.5.6) Suclpn) — 0 and K, .(p,) =0 for all n € N.

n—oo
Since S, . is rewritten as
1
4
from (4.5.5) and (4.5.6), we obtain that

1
(45.7) Suel) = {Kuelp) + 1Lucl@) + Ll
Haac (e_i%gpn) HL2 ’ ||<JDTL||L6 T;)O 0.

By using an elementary interpolation inequality

£z < AN F 16110z ] 22,

we have [|@,||L~ — 0 as n — oco. Hence we have

c 3
0= Kw,c(%%) = Ew,C(SOn) + 5”@71“%4 - E’YHQOnHGLﬁ

c 3
> (5= Folonlie ) ol >

for large n € N, which contradicts (4.5.6).
(iii) Let ¢ € X, \ {0} satisty K, .(¢) < 0. Then there exists a unique Ay € (0,1)
such that ICy, .(Aop) = 0. From the definition of p(w,c), we have

/\% /\SV 6
pw,e) < Iw,C()‘OQO) = Zﬁw,0(¢> + 6_4HSOHL6 < Iw70<90)-

This completes the proof. O
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By the standard ODE arguments, we have the following lemma.
Lemma 4.5.3. Let v and (w, ¢) satisfy (4.1.10). Then we have
G = {ewogpw,c( — 1) : 0y € [0,27), 20 € R} )
Next we prove the following result.

Lemma 4.5.4. Let v and (w,c) satisfy (4.5.1). Assume that A, . # 0. Then we have
G e = My Moreover we have d(w, c) = u(w, c).

Proof. First we prove A4, . C 9, .. Let ¢ € 4, .. Since ¢ is a minimizer on the Nehari
manifold, there exists a Lagrange multiplier € R such that S/, .(¢) = 7K/, .(¢). Thus
we have

0= Kuco(0) = (SLe(0). ) = n (KL (0) 0) -
By K,.c(p) =0 and ¢ # 0, we have

9
(KL (), ) = 2L () + 2|l 74 — §7||90H‘26

3
= —2L,,.(p) — §v||¢llia <0.

This yields that n = 0 and ¢ € ¥, ., which implies .Z, . C ¥, .. Conversely, let p € &, .
By Lemma 4.5.3, there exist 6y € [0,27) and x5 € R such that p = ¢, (- — ). Since
My # 0, we can take some ¢ € A, .. By Lemma 4.5.3 again, there exist 6, € [0, 2m)
and z; € R such that ¢ = €1, .(- — ;). Thus we have

Sue(0) = Sue(Pue) = Suc(¥) = p(w, ).
Since Ky (@) = (S, (), ), we deduce that ¢ € .4, .. This completes the proof. [

To complete the proof of Proposition 4.5.1, we need to prove that ., . # 0. To this
end we use Lieb’s concentration compactness (see Lemma 3.2.9). For convenience we
write the statement again.

Lemma 4.5.5 ([43, 7). Let p > 2. Let {f,} be a bounded sequence in H'(R) N LP(R).
Assume that there exists g € (p,00) such that limsup,,_, || fnll« > 0. Then, there exist
{yn} C R and f € H(R) N LP(R) \ {0} such that {f.(- — yn)} has a subsequence that
converges to f weakly in H'(R) N LP(R).

The assertion ., . # () follows from the following proposition.
Proposition 4.5.6. Let v and (w, ¢) satisfy (4.5.1). If a sequence {p,} C X, . satisfies
(4.5.8) Su.c(on) = p(w, c) and Ky, (¢n) = 0 as n — oo,

then there exist a sequence {y,} C R and v € A, . such that {©,(- — yn)} has a subse-
quence that converges to v strongly in X, ..
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Remark 4.5.7. If we only prove that .#, . # 0, we may assume that C, .(¢,) = 0
for all n € N. However, when one proves orbital stability of the solitons by variational
arguments, it is essentially necessary to consider the minimizing sequence {p,} satisfying

Ko c(¢n) # 0; see Section 4.7.

Proof. Step 1. {®,} is bounded in X, .. If w > ¢*/4, this follows from (4.5.7) and
Lemma 4.5.2 (). If ¢ = 24/w, from (4.5.5) and (4.5.7) we obtain that

sup HSOnHGLGa sup [|0; (6_’%%) ”%2 < o0.

neN neN
Since we have

¢ 4 3 6

(4.5.9) Koe(pn) = Loc(pn) + §||90n||L4 - E'V”SOnHLG?
we deduce that {¢,} is also bounded in L*(R).
Step 2. limsup,,_, . ||¢nllzs > 0. Suppose that lim,, . ||¢n|lzs = 0. If w > ¢?/4, by the
boundedness of {¢,} in L*(R) we have

leallzs < lenllzzllenllzs — 0.

From (4.5.9) we deduce that L, .(¢,) — 0. By (4.5.7), we have S, .(¢,) — 0, but this
gives a contradiction with p(w,c) > 0. If ¢ = 2y/w, from (4.5.9) we obtain that

Loclon): llonllis — 0.

which yields S, .(¢n) — 0 again and gives a contradiction.

Step 3. By Step 1, Step 2 and Lemma 4.5.5, there exist {y,} C R and v € X,, .\ {0}
such that a subsequence of {¢(- — y,)} (we denote it by {v,}) converges to v weakly in
X, Taking a subsequence if necessary, we have v,, — v a.e. in R. By applying Lemma
4.3.2, we have

(4510) K:w,c(vn) - ]Cw,c(vn - U) - ,Cw,c(v> - 07
(4511) Iw,c(vn) - Iw,c(vn - U) - IU-%C(,U) - 0
as n — oQ.

Step 4. K, .(v) < 0. Suppose that IC,.(v) > 0. By K, (v,,) — 0 and (4.5.10), we have
Ko e(vn, —v) = Ky o(v) <O.

This implies that Ky, (v, —v) < 0 for large n € N. Applying Lemma 4.5.2 (iii), we have
p(w, c) <L, (v, —v) for large n € N. By (4.5.8) and

1
Sw,t:(‘:p) = Z’Cw,C(SO) + Iw,c(@)a
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we have Z,, .(v,) = p(w, ¢). Combined with (4.5.11), we have

Zpe(v) = lim {Z, (v,) — Zpc(vn —0)} < pw, ) — p(w, c) =0,

n—o0

which yields that v = 0. This is a contradiction.
Step 5. By Step 4, Lemma 4.5.2 (iii), and the weakly lower semicontinuity of Z, ., we
have

p(w,c) <I,.(v) <liminf7Z, .(v,) = p(w, c).

n—oo

Thus we have Z,, .(v) = pu(w, ¢). By Step 4 and Lemma 4.5.2 (iii), we have K, .(v) = 0.
Therefore v € A, .. By (4.5.11) and 7, .(v) = p(w, ¢), we have Z,, .(v,, — v) — 0, which
yields that v,, — v strongly in X, .. This completes the proof. O]

4.6 Global existence

In this section we prove Theorem 4.1.3 and Theorem 4.1.11. To this end, we apply
the potential theory inspired from the arguments by Payne and Sattinger [60]. Consider
the following subset of the energy space:

Woe ={p € H(R) : Suc(p) < d(w,c), Ky elvg) >0}

By using the variational characterization of the solitons in Section 4.5, we have the
following lemma.

Lemma 4.6.1. Let v and (w,c) satisfy (4.5.1). If vg € #,,., then the H'(R)-solution
v of (DNLSD) with v(0) = vy ewists globally in time and v(t) € #,. for all t € R.
Moreover we have

2
c
(4.6.1) ||8xv||%oo(R’L2) < 8S8,.c(vo) + EM(UO)'

Remark 4.6.2. This lemma yields the following global result;

ifb>-3/16, we |J S

—2/w<e<2/w
4.6.2 o
(4.6:2) itb=-3/16, we |J o

—2y/w<e<0
w>0

then H'(R)-solution v of (DNLSbH) with v(0) = v, exists globally in time.

Proof. Let v € C((—Thin, Tmax), H'(R)) be a maximal solution of (DNLSH’) with v(0) =
vo. If Ky o(vo) = 0, by Proposition 4.5.1, we have vy = 0 or vy = e, (- — x¢) for
some 0y, 79 € R. By uniqueness we have v(t) = 0 or v(t) = e“le®p, (- — ct — x¢)
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for all t € R, respectively. This implies that v(t) € #,,. for all t € R. Consider the
case Ky c(vg) > 0. If there exists t. € (—Tmin, Tmax) such that I, .(v(t.)) = 0, the
above argument gives that K, .(v(0)) = 0, which is a contradiction. Since the function
t = Ku(v(t)) is continuous, we deduce that Ky .(v(t)) > 0 for all t € (—Tin, Tmax)-
This implies that v(t) € #,. for all t € (—Tinin, Timax)-

Next we prove the solution v exists globally in time. By (4.5.7) and v(t) € #,, ., we
obtain that

I
2
o
—

4
—~~

~
N~—
N—

Sw,c(”O)

A
€

(00 + L w0) + (0

v

IV
e i e

for all t € (—Tmin, Tmax). This implies that Ty, = Tiax = 00. More precisely we have

D,0(t) — giv(t)‘

2
C
lonute)ls: < (| PRESECIR

cx

<20, (e7" 2 w(t)) HQLQ + %M(vo)
< 8S,.c(v0) + %QM(UO)

for all £ € R. This completes the proof. n

Next we examine the set #,, . to investigate the initial data satisfying the condition
(4.6.2). To this end, we need to calculate the value of d(w, ¢). Here we consider the curve
¢ = 2sy/w, where s satisfies that

ify>0<b>-3/16, —1<s<1,
(4.6.3)

ify=0&b=-3/16, —1<s<0.
We note that d(w, 2s/w) = wd(1,2s).
Lemma 4.6.3. Let v > 0. Then the following properties hold:

(i) If v > 1, the function (—1,1] 3 s+ d(1,2s) is strictly increasing on (—1,s*) and
strictly decreasing on (s*,1].

(i) If 0 <~ <1, the function (—1,1] 3 s — d(1,2s) is strictly increasing.

(iii) If v =0, the function (—1,0) 3 s +— d(1,2s) is strictly increasing.
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Proof. From the definition we have

d(1,2s) = S125(¢1,25) = E(d1.25) + %M(Qbms) + sP(¢1.25).

Since S7 5,(¢1,25) = 0, we have

disd(]_, 28) = P(gbLQS).

Hence the result follows from Proposition 4.2.7. O
We are now in a position to complete the proof of Theorem 4.1.3.

Proof of Theorem 4.1.3. Fix the parameter s of the curve ¢ = 2sy/w which will be de-
termined later. Let ug € H'(R), and let v € C((—Twin, Tmax), H'(R)) be the maximal
solution of (DNLSb) with w(0) = ug. Set vo = Gy/4(uo) and v = Gy 4(u). By Proposition
4.4.2, v € C((—Thnin, Tmax), H'(R)), and v satisfies (DNLSH’). We note that

M (ug) = M(vg) and P(ug) = P(vp).
For any vy € H'(R) we have
(464) ]Cw,ZsW(UO) = HaxUOH%Q + WHU()H%2

. 3
+ sy/w (2 (104v0, Vo) + ||U0||i4) - 1_67||UO||(26 >0

for large w > 0, where w depends on s and vy.
Case 1: b > 0. In this case we note that

max d(1,2s) =d(1,2s")

se(—1,1]

from Lemma 4.6.3. Hence we set s = s*. By P(¢12:-) = 0 and Proposition 4.2.6, we
have

Sw,Zs*\/a(UO) < d(w7 28*\/5)
< E(wy) + g/\/l(vo) + s*VwP(vg) < gM(qZh,zs*)

= E(v) + 5 VP() < 5 (M(pras) = M(wo)).
The last inequality holds for large w > 0 when
M(Uo) < M((,Ol’gs*), or M(UQ) = M(QOLQS*) and P(Uo) < 0.

Combined with (4.6.4), we deduce that vy € #, o, for large w > 0 under the assump-
tion of Theorem 4.1.3. Therefore it follows from Lemma 4.6.1 that Ty, = Tinax = 00.



76

Case 2: —3/16 < b < 0. In this case we note that

max _d(1,2s) =d(1,2)

se(—1,1]
from Lemma 4.6.3. Hence we set s = 1. By Proposition 4.2.6, Proposition 4.2.4 and
M(¢p19) = f‘/—’%, we have
Sw,%/@(v(]) < d(wa 2\/(’_‘))

= E(v0) + M(w0) + VP (v0) < 5 [M(12) + P(é12)]

()

4
or M(vgp) = 73—7;2 and P(vy) < 0.

< wIE

47

w
— E(vo) + VwP(vg) < 5 (73/2 _
The last inequality holds for large w > 0 when

Mvp) < -7

~3/2’

Combined with (4.6.4), we deduce that vy € #,, , ; for large w > 0 under the assumption
of Theorem 4.1.3. Therefore it follows from Lemma 4.6.1 that 11, = Tiax = 00. This
completes the proof of Theorem 4.1.3. O

We apply the similar strategy to the proof of Theorem 4.1.11.

Proof of Theorem 4.1.11. We consider the curve ¢ = 2y/w. Let u, be the maximal
H'(R)-solution of (DNLSb) with u.(0) = ug.. Set vg. = Gi/4(ug.) and v. = Gyj4(u).
By Lemma 4.6.1 it is enough to prove that vy, € #.2/4. for large ¢ > 0. First we note
that

Vo,c = gl/4(u0,c) = €i%g1/4(1/1) = ei%@
From the definition of S, ., we have
1 c
302/4,C(UO,C> - §£62/4,C<UO,C) + gHUO,c“%/l - ;_QH/UO,CH%G
1 c ol
= 2l0uplZs + Shellts — Ll
Since d(c?/4,c) = (¢*/4)d(1,2) and d(1,2) > 0, we deduce that
Se21.0(Vo,c) < d(c?/4, c)
for large ¢ > 0. Similarly we have
¢ 4 3 6
K02/4,c(1)0,c) = 502/4,6(2)0,0) + §||U070”L4 - E7||U0,C||L6

c 3
= [|0:0]72 + 5H<ﬂH‘i4 - 1—67H¢Hi6 >0

for large ¢ > 0. This completes the proof. O
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In the case of b = —3/16 we have the following Proposition 4.6.4. This gives the
new perspective to the global result of Proposition 4.4.3 from the viewpoint of potential
theory.

Proposition 4.6.4. Let b = —3/16. Then we have

HR = |J e
—2y/w<e<0
w>0

Proof. From Proposition 4.2.4 and Proposition 4.2.6 we have

1 — 52

d(1,2s) = M (¢125)

for s € (—1,0). It follows from Proposition 4.2.2 that d(1,2s) — oo as s — 0—. For
vy € H'(R) we can take sg € (—1,0) such that

(465) 2d(1, 280) — M(’l)o) > 0.
We note that

Sw,Qso\/u?('UO) < d(wa 250\/5)
= E(vo) + sov/@P(vo) < g (2d(1,2s0) — M(wp)) -

From (4.6.5) the last inequality holds for large w > 0. Combined with (4.6.4), we deduce
that vy € #, 5, for large w > 0. Hence the result follows. O

4.7 Orbital stability

In this section we study the stability of the solitons. We apply take variational
approach for the proof.

4.7.1 The case b >0

In this subsection we revisit the stability theory of the solitons in the case b > 0.
First we prepare some notations. We define the functional K, . by

d
Kye(u) := =S4\
)= S|
=[|0sullZ> + wllullZz + ¢ (Opu, u) = N(u) — blull7s.
where N(u) is defined by

N(u) = (i|ul*Opu, u) .
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We note that

1 1 b 1
_Kw,C(u) + —N(u) + g!luHie = _Kw,C(U) + J(u).

(4.7.1) Swe(u) = 5 1 5

We define the subsets of the energy space by

At ={ue H'(R)\ {0} : Sue(u) < d(w,c), Ky o(u) >0},
B ={ue H(R)\ {0} : Sy(u) < d(w,c), J(u) < d(w,c)},
o, ={ue H(R)\ {0} : Syc(u) < d(w,c), Kyo(u) <0},
B, . ={ue H(R)\ {0} : S,c(u) < dw,c), J(u) > d(w,c)}.

In the same way as the proof of Proposition 4.5.6, we have the following.

Proposition 4.7.1. Let b > 0 and (w,c) satisfy —2y/w < ¢ < 2y/w. Let X, . be defined
by (4.5.2). If a sequence {u,} C X, . satisfies

Sw.e(tn) = d(w, ) and K, (u,) — 0 as n — 00,

then there exists a sequence {y,} C R and 6y,y9 € R such that {u,(- — y,)} has a
subsequence that converges to ¢ ¢, (- — yo) strongly in X, ..

Applying the variational characterization of the soliton ¢, ., we have the following;
see [17, Lemma 11] for details.

Proposition 4.7.2. Let b > 0 and (w,¢) satisfy —2/w < ¢ < 2y/w. Then </}, and
A, are invariant under the flow of (DNLSb), i.e., if ug belongs to o, (resp. <),

then the mazimal solution u(t) of (DNLSD) with u(0) = ug belongs to <}, (resp. < ,).
Moreover, we have %3, = B,

Here we review the stability theory in the papers [17] and [57]. Let (wp,co) satisfy
wo > /4. In [17] it was proved that if there exists £ € R? such that

(472) <d,(w07 CO)? §> 7£ O) <d”<w07 CO>§7 §> > 07
then the soliton u,, ., of (DNLSb) is orbitally stable. When ¢y < 0, since we have

—400
(wo,c0) V 4wy — c% {Cg + ’7(4(")0 - 03)}

(4.7.2) is satisfied by taking & = (1,0). However, in the case ¢q > 0, we have

1
aid(wv C)|(wo,00) = §8UJM(¢UJ7C) > 0,

1
2d(w, c))| ooy = 50uM (D) <0,
(wo,c0) 2 (w0.c0)
1
0z (@, 0)] (.00 = 506 P () — <0.
wo,€0
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This means that the calculation as a one-parameter w — ¢, . or ¢ — @, . is not enough
to prove the stability of the solitons in the case ¢y > 0. Instead of that, by computing
d"(w, c) we have the following (see Lemma 1 in [57]):

(4.7.3) det[d” (wo, co)] = —2P(Pun.co)

- Vwy — {3+ (4w — )}

As we have seen in Proposition 4.2.7, P(¢y,.¢,) is positive when (wp, ¢y) satisfies that

ifb>0, —2/wy<cy <25 \/wy,
if b= O, —2+/wo < ¢g < 2+/wp.

Therefore we deduce that d”(wp,cp) < 0 under the condition (4.7.4). This yields the
existence of £ € R? satisfying (4.7.2) since d”(wo, ¢p) has one positive eigenvalue.

Our first aim in this section is to provide a simpler approach in the case ¢y > 0. Let
co = 250y/wp where —1 < 59 < 1. Set py = /wp. If we consider the stability problem
along the scaling curve 7 — ((1o + 7)?, 2s0(pt0 + 7)), we have the following claim.

(4.7.4)

Proposition 4.7.3. Let b > 0 and (wy, ¢o) satisfy —2/wog < co < 24/wg. Suppose that
coP(¢uwpeo) > 0. Then, there exists ¢g > 0, for any ¢ € (0,¢¢) there exists 6 > 0 such
that if ug € H'(R) satisfies |[uo — Gugeollmrw) < 0, then the mazimal solution u(t) of
(DNLSb) with u(0) = ug satisfies

(475) d((,uo — 8)2, 280(,&0 — 6)) < J(U(t)) < d((,uo + 6)2, 280(#0 + 8))

for allt € (—Thnin, Tinax)-

Proof. We define the function g : (—&g,£9) — R by

(4.7.6) g(1) = d((po + 7)%,2s0(pto + 7)) for 7 € (—e0,£9),

where gy > 0 is sufficiently small. Let the function g defined by (4.7.6). We note that

g(1) = (o + 7)%d(1,2s¢) for T € (—¢o, ),
g'(0) = 2ued(1,2s0), ¢"(0) = 2d(1,2sp).

By Proposition 4.2.6 we have
2d(1,2s0) = M (¢1,240) + 50P(¢1,25)-

Let € € (0,e0). Assume that ug € H'(R) satisfies |[ug — Gug.collmr < 9, where § > 0 is
determined later. By Proposition 4.7.2 it is enough to prove that

Jr —
(477) Up € ‘%(uoﬁ-a)Q,Zso(uoﬂ-a) a %(MO—E)QQSO(MO—E)'
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By direct calculations we have

S(uoie)Q,Qso(uoie) (uO) - S(uois)Q,Qso(uois) (¢u3,230u0> + O(5>
(ko £¢)?
= E(¢Mg,250HO) + TM(QSM(%,QSOM())
+ 50 (MO + g)P(gbu%,Qsouo) + 0(5)

= /,Lgd(l, 280) + Elo (M(¢1’230) + SOP(¢1,230))
2

+ S M(B120) + O(9)
2

= 9(0) £ 29'(0) + 5 M(d125,) + O(6).

By using the Taylor expansion®, there exists 7, = 7(¢) € (—¢&¢,&o) such that

2

g(:xe) = 9(0) 29 (0) + g (7).

Since we have
g"(m1) = 2d(1,2s0) = M(¢12,) + 0P (¢1,260)

and soP(¢1.25,) > 0 from the assumption, by taking small 6 > 0 we obtain that
(4.7.8) S (pote)? 250 (uote) (U0) < g(Fe).
On the other hand, by (4.7.1) and K. ¢, (Puwp.co) = 0, we have

9(0) = J(Dy2 26000) = J(u0) + O(5).
Since ¢ is strictly increasing, by taking smaller 6 > 0 if necessary, we obtain that

9(=¢) < J(uog) < g(e).

Combined with (4.7.8), we deduce that (4.7.7) holds. O

We note that the assumption of Theorem 4.7.3 is satisfied when (wy,cy) satisfies
(4.7.4) and ¢y > 0. Hence, as a consequence of Theorem 4.7.3, we have the following
result.

Corollary 4.7.4. Let b > 0. Suppose that (wy, co) satisfies (4.7.4) and ¢y > 0. Then the
soliton uy, ., of (DNLSD) is orbitally stable.

5Actually we do not need to use the Taylor expansion since the function g is the quadratic function
with respect to 7.
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Proof. For completeness we give the proof. The result is proved by contradiction. As-
sume that there exist £; > 0, a sequence of the maximal solutions {u,} to (DNLSb) and
a sequence {t,} C R such that

(479) Hun(o) - ¢UJ07COHH1 n—>—o)o O’
4.7.10 inf ntn — e wo,co\" T L2 :
w0 B 100 = =) 22

Since Sy (Un(t)) is a conserved quantity, by (4.7.9) we have
(4.7.11) Stoseo (Un(tn)) = Sug,co(n(0)) QO Seoseo (Pun,eo) = d(wo, co).-
By (4.7.9) and Theorem 4.7.3, we obtain that

J(un(tn)) — d(wo, o).

n—oo

Combined with (4.7.1), we have

(4.7.12) Koo .co(Un(tn)) — 0.
n—r0o0
Hence, by (4.7.11), (4.7.12) and Proposition 4.7.1, there exist a sequence {y, } and 6y, yo €

R such that {u,(t,, - —y,)} has a subsequence, which we still denote by the same letter,
that converges to € ¢, (- — yo) in H'(R). Therefore we deduce that

. 10
(9,111)15]1%2 “u”(tn) —¢€ (bWO’CO(. o y)“Hl 730 0

which contradicts (4.7.10). This completes the proof. O

Our approach offers new perspectives to the stability theory of a two-parameter family
of solitons. First we note that the estimate (4.7.5) is derived without any calculation of
the Hessian matrix d”(w,c¢). The calculation along the scaling curve ¢ = 2sy/w is much
simpler. This indicates that the curve gives not only the scaling but also “good” measure
of stability of the solitons. It is also worthwhile to note that positivity of the momentum
of the soliton is more directly used in our proof of the stability.

In the end of this subsection we discuss the case ¢y = 0. In this case we have

1

ac%d(w7c>‘(wo,0) = anM(¢w,c) (0.0) = O?
wo,

1

ac2d<('u7c)|(wo,0) - iacp(qbw,c) 00) <0,
wo,
1 1

8wacd(wac)’(wo,0) = acawd(w>c>’(wo,0) = §acM(¢w,c) = > 0.
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If we set £ = (1,¢), we have

2 g2
a aCP w,c 9
”)/\/W_O + 2 ((b , )’(Q)O’O)

which is positive for small € > 0. Hence the condition (4.7.2) is satisfied for the vector
€ = (1,¢) for small € > 0, which yields that the soliton w,, ¢ is orbitally stable. We note
that & = (1,¢) can be considered as a tangent vector of the curve ¢ = 2ey/w at the point
(1,2¢).

(d"(wo,0)¢, &) =

4.7.2 The defocusing case

In this subsection we study orbital stability of the solitons in the case b < 0 by
variational approach. To this end we study the stability of the solitons v, . defined by
(4.4.6) for (DNLSDP’). We note that the functional S, . is rewritten as

1 c ol 1
4.7.1 = — - = 44 - 66::_ w,c c .
(4.713) Suel®) = Ko@) = ol + ol = 5Keel) + (o)

In a similar way as before, we define the subsets of the energy space by

¢ . ={ve H(R)\ {0} : S,.(v) < d(w,c),Kye(v) >0},
D5, ={ve H'(R)\ {0} : Suc(v) < d(w,c), Te(v) < d(w,c)},
.. ={ve H(R)\ {0} : S,.(v) < d(w,c),Kye(v) <0},
Dy ={ve H(R)\ {0} : S, c(v) < d(w,c), Te(v) > d(w,c)}

From Proposition 4.5.1 we obtain the following result. The proof is done in the similar
way as the one of Proposition 4.7.2.

Proposition 4.7.5. Let —3/16 < b < 0 and let (w,c) satisfy (4.5.1). Then €, and
%, are invariant under the flow of (DNLSY). Moreover, we have 6, = 25

w,c

Proof. For convenience we give the proof. In the same way as the proof of Lemma 4.6.1
one can prove that €, is an invariant set. We only prove that €, = Z .
If ve €, we have

w,e?

1
d(w,c) > Sy e(v) = EICUJ,C(U) + Je(v) > Te(v),
which implies v € & .. Conversely, let v € 2 .. Assume that K, .(v) < 0. By Lemma

4.5.2 (iii), we have d(a;, c) = p(w,c) <7Z,.(v). From the definition, we have the following
relation:

(1714 Tlo) = = osel®) + Lug(0),
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which implies that J.(v) > d(w,c). But, this contradicts J.(v) < d(w,c). Hence,
Ku.e(v) > 0, which shows v € C .. This completes the proof of €}, = Z] .

Next, we prove that 4. = 7 .. If v € €, by (4.7.14) and Lemma 4.5.2 (iii), we
have

Tu) =~ 1Kaselv) + L) > Tu(v) > die o),

which yields v € & .. Conversely, if v € 7

w,c?

by (4.7.13) we have

S Kaelv) = Suelv) = Tu(v) < d(w, ) — d(,¢) = 0

which yields v € €, .. This completes the proof of the claim. O

Let b > —3/16. First we consider the case —2,/wy < ¢g < 0. By following the
approach in [17], we prove the following proposition.

Proposition 4.7.6. Let —3/16 < b < 0 and let (wo, co) satisfy —2/wy < co < 0. Then,
there exists g > 0, for any e € (0,&q) there exists & > 0 such that if vy € H'(R) satisfies
|10 — Pugeoll 1Ry < 6, then the mazimal solution v(t) of (DNLSb') with v(0) = wg
satisfies

(4.7.15) d(wo — €,¢0) < Tep (0(t)) < d(wo + €, co)

for all t € (—Tmin, Tonax)-

Proof. We define the function h : (—g¢,£9) — R by

(4.7.16) h(r) =d(wo+T,c0) for T € (—&o,e0),

where g9 > 0 is sufficiently small. We note that

(4.7.17) H(0) = S M), H/(0) = S0.M () o
w0,Co

Assume that vy € H*(R) satisfies ||vg — Qug.eollr < 0, where § > 0 is determined later.
By Proposition 4.7.2 it is enough to prove that

(4.7.18) vy € 2 na,

wo+E,¢o wo—¢&,c0 "

By direct calculations we have

Suote,co (UO) = Suoteco (@wo,m) + 0(5)

== &
= E(Puoen) T 5 M(Puneo) + 5 P(Puoa) + O(0)

= d(wo,c0) £ 5 M(Puy) +O0)
= h(0) + el (0) + O(5).
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By using the Taylor expansion, there exists 7 = 71(g) € (—&¢,€0) such that

2

h(%e) = h(0) + k' (0) + %h"(m.

Since ¢y < 0 by the assumption, we have

1

h”(Tl) - §awM(¢w,c)
(wo+71,c0)
—460

T VAot 1) - @R+ (w0 + 1) — B)}

Hence, by taking small § > 0, we obtain that

> 0.

(4.7.19) Suote.co (Vo) < h(Ee).
On the other hand, by (4.7.13) and Ky, ¢ (Puws.co) = 0, we have
h(0) = Teo(Punco) = Teo(v0) + O(9).
Since h is strictly increasing, by taking smaller ¢ > 0 if necessary, we obtain that
h(—¢) < Jeo(v0) < h(e).
Combined with (4.7.19), we deduce that (4.7.18) holds. O

In the similar way to the proof of Corollary 4.7.4, we obtain the following result from
Proposition 4.5.6 and Proposition 4.7.6.

Corollary 4.7.7. Let —3/16 < b < 0 and let (wo, co) satisfy —2,/wg < co < 0. Then the
soliton vy, o, of (DNLSDH) is orbitally stable.

We recall that (DNLSb) and (DNLSD’) are equivalent under the gauge transformation
u = Grya(u). Since vy,cp = G174ty o) and the gauge transformation is locally Lipschitz
continuous on H'(R), we have the following result.

Theorem 4.7.8. Let —3/16 < b < 0 and let (wo, co) satisfy —2,/wg < co < 0. Then the
soliton Uy, o, of (DNLSb) is orbitally stable.

Next we study the remaining case 0 < ¢q < 2,/wy when —3/16 < b < 0. In this
case we need to do calculations more carefully. The main difficulty comes from the lack
of the “good” Hamiltonian structure of (DNLSbH’). The analysis along the scaling curve
provides the following claim.

Proposition 4.7.9. Let —3/16 < b < 0 and (wo, co) satisfy 0 < co < 2\/wy. Then, for
any € € (0,&0) there exists & > 0 such that if vo € H'(R) satisfies ||[vo — Pup.eollmr < 0,
then the maximal solution v(t) of (DNLSV') with v(0) = vy satisfies that if co = 0,

(4.7.20) d(wo, —¢) — §||v(t)||‘i4 < Jo(v(t)) < d(wo, ) + §||v(t)||‘i4
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for allt € (—Thnin, Timax), and if 0 < co < 2,/wo,

(720 (o — 2% 2500 — 2)) — X u(t) 3
< Tea0(8)) < (110 + )2, 2010 + ©)) + [0 (D)1

for all t € (—Thin, Tmax), where co = 2809,/wo and g = \/wp.

Remark 4.7.10. Compared with Proposition 4.7.3 and Proposition 4.7.6, the L*-norm
appears in (4.7.20) or (4.7.21), which comes from the transformed momentum P.

Proof. We only prove the case 0 < ¢y < 2,/wg. Let the function g defined by (4.7.6) as

9(1) = d((po +7)*,250(pt0 + 7)) for T € (—&0, €0),

where ¢y > 0 is sufficiently small. We note that

(1) = (o + T)Qd(l, 2s9) for T € (—&g,ep),
g'(0) = 2upd(1,25s0), ¢"(0) = 2d(1,2s0).

By Proposition 4.2.6 and the gauge transformation (see Section 4.4), we have

2d(1, 280) = M(@1,250> + SO,P(QOLZS())'

Let € € (0,g0). Assume that vy € H'(R) satisfies ||[vg — Pug.collz1 < d, where & > 0 is
determined later. First we prove that

(4.7.22) w € 9, na;

po+e)?,2s0(no+e) (no—e)2,2s0(o—e)"

The calculation is done in the similar way as in the proof of Proposition 4.7.3. By direct
calculations we have

S(,ug:l:e:)2,230(,u0:|:e) (UO) - 8(#0:&6)2,280(#0:&6)(SO/.L(%QSQ[L()) + 0(5)

(ko £ €)?
= 8(80/148,250/1,0) + T'M (SOMS,QS(),U{J)

+ SO(/*LO + E)P<90ug,2souo) + 0(5)

= p5d(1,2s0) £ epo (M(1,25) + S0P (1,25))
2

+ S M(p124) + 00)
= 0(0) £ 24(0) + 5 M(p12,) + O0)

By using the Taylor expansion, we have

(<) = 9(0) £ 2/ (0) + S4"(0).



86

Since we have

g"(0) = 2d(1,2s0) = M(p1,25,) + S0P (¢1,250)

and soP(p1.2s,) > 0 from Proposition 4.2.7, by taking small ¢ > 0 we obtain that

(4.7.23) S(uois)Q,Zso(uois) (vo) < g(=e).
On the other hand, by (4.7.13) and Ky, ¢ (Puwp.co) = 0, we have

co + 2805 Yy
k700+280€((:0w0700) = _Tugpwo,coui‘l + 1_6||Q0w0700|’6L6

< Jep($Puniee) = 9(0) < g(e).

By taking smaller § > 0 if necessary, we obtain that 7., 12s,-(v0o) < g(g). Similarly, we
have g(—¢) < Jey—259e(v0). Combined with (4.7.23), we deduce that (4.7.22) holds. By
Proposition 4.7.5 we have

J’_ —
(4.7.24) v(t) € 9(uo+a)2,280(uo+a) N 9(%_5)2,280(“0_5)

for all ¢ € (=T inin, Timax)- Hence we deduce that

9(8) > Tegrs0e (v(1))

e 100 Y P
= Tay (0(8) = == [0(®)[1:.
Similarly, we have
9(=2) < T (0(8)) + =o)L
This completes the proof. n

At last, combined with Proposition 4.5.6, one can prove the following theorem.

Theorem 4.7.11. Let —3/16 < b < 0 and let (wo, co) satisfy 0 < ¢y < 24/wy. Then the
soliton vy, o, of (DNLSDH) is orbitally stable.

Proof. The result is proved by contradiction. Assume that there exist £; > 0, a sequence
of the maximal solutions {v, } to (DNLSb’) and a sequence {t,} C R such that

(4.7.25) [[v(0) — QOwO,COHHl n_>—o>o 0,
(4.7.26) inf (v, (tn) — € 0o (- — Y)|la1 > €1

(0,y)ER?
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Since S,y (Vn(tn)) is a conserved quantity, by (4.7.25) we have
(4.7.27) S0 (Un(tn)) = Sug 0 (Un(0)) e S0 (Pwn,eo) = d(wo, co).

By the continuity ¢ — v(t) € H*(R), one can pick up ¢, € (—Tiin, Tmax) (still denoted
by the same letter) such that

4.7.28 inf  |Jon(tn) — €%0u o (- — L= e,
( ) ot [on(tn) = € Pupeo (- = Yl = €1
This equality yields the boundedness® of {v,(t,)} in H'(R), i.e.,
(4.7.29) sup ||vn (L) < C,

neN

where C' only depends on |[¢u,.¢llgt and €. From Proposition 4.7.9 and (4.7.29) we
obtain that
Teo (Un(t)) —> d(wo, co).

n—o0

Combined with (4.7.13), we have
(4.7.30) Keo.co(Vn(tn)) — 0.

n—oo

Hence, by (4.7.27), (4.7.30) and Proposition 4.5.6, there exist a sequence {y, } and 6y, yo €
R such that {v,(t,, - — y,)} has a subsequence, which we still denote by the same letter,
that converges to €%, (- — yo) in Xy.eo- When wy > c2/4, this yields that

(4731) inf an(tn) - eiegpwo,co(' - y)HHl — 0’
(e,y)ERQ n—oQ

which contradicts (4.7.28). When ¢q = 2,/wp, we need to modify the argument slightly.
From the definition of X 2/, ,, we have
- COT

(4.7.32) e 2 v, (th, s — Yn) — 6_i¥€i90@wO760<- — 1Y) in HI(R).

n—o0

By using this convergence one can easily prove that

(4.7.33) e F vy (tny - — Yn) —_ e’i%ewogowwo(- — 10) weakly in L*(R).

From (4.7.25) and mass conservation we obtain that

(4.7.34) M(v,(tn)) = M(v,(0)) — M (Pug.co)-

Hence, it follows from (4.7.33) and (4.7.34) that

(4.7.35) e_i%vn(tn, C—=Yn) —_ e_"%ewo(p%co(- — 1) in L*(R).

From (4.7.32) and (4.7.35) we deduce that (4.7.31) holds, which contradicts (4.7.28).
This completes the proof. O]

6T did not realize this boundedness first. I thank Noriyoshi Fukaya for pointing out the fact and
giving me helpful comments.
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By Theorem 4.7.11, ¥y ¢ = G1/4(Uuy,¢,) and locally Lipschitz continuity of the gauge
transformation, we have the following result.

Theorem 4.7.12. Let —3/16 < b < 0 and let (wo, co) satisfy 0 < ¢ < 2y/wqy. Then the
soliton Uy, ., of (DNLSb) is orbitally stable.

The claims of Theorem 4.7.8 and Theorem 4.7.12 are nothing other than Theorem
4.1.13. This completes the proof. of Theorem 4.1.13.

Finally, we give a few remarks about the case b < —3/16. If (wp, co) satisfies (4.1.10)
and wg > c¢2/4, by Proposition 4.2.2 and direct computations, the formula (4.7.3) still
holds including the case b < —3/16, i.e., we have

_2P(¢w0700)

 VAwo — R {E+ y(dwy — B)}

By Proposition 4.2.7, the momentum P(¢,, ,) is always positive when b < 0, which
yields that d”(wo,co) has one positive eigenvalue. Combined with the calculation of
linearized operators” (see [45]), by applying the abstract theory of Grillakis, Shatah and
Strauss [24, 25], one can prove that the soliton uy, ., of (DNLSb) is orbitally stable. This
argument gives the unified proof for the stability for the solitons in the defocusing case,
but it works well in the only case wj > ¢§/4. We note that the case ¢y = 2,/wy brings
essential difficulties to the proof of the stability by spectral approach due to lack of the
coercivity. We will study these problems in more details in our forthcoming paper.

Spectral analysis is a powerful tool to tackle the stability problems and it also works
in the case b > 0, however we need to examine the spectrum of linearized operators.
Since the nonlinearity contains the derivative, the calculation of linearized operators for
(DNLSD) is complex as can be seen in [45]. We note that our variational approach as
in the proofs of Corollary 4.7.4, Theorem 4.7.8 and Theorem 4.7.12 does not need any
calculation of linearized operators.

(4.7.36) det[d" (wo, co)]

"To be specific, we need to examine the spectrum of the operator S .c(Pw.c)-



Chapter 5

Long-period limit of periodic
traveling wave solutions

5.1 Introduction

5.1.1 Background

The equation (1.1.1) in the periodic setting is also an important problem:
(5.1.1) i0pp 4 0% + 10, (|¢)*Y) =0, (t,2) e R x T,

where T := R/27Z. Tsutsumi and Fukuda [68] proved well-posedness in H*(T) for
s > 3/2 in the same way as the whole line case. To prove well-posedness in H'(T) one can
not directly apply the proof in [31] to the periodic setting since the L*-Strichartz estimate
on a torus holds with a loss of € > 0 derivatives (see [10]). Herr [35] proved local well-
posedness in H*(T) for s > 1/2 by using periodic gauge transformation and multilinear
estimates in Fourier restriction norm spaces (see also [26]). In [52], by adapting Wu’s
proof to the periodic setting, it was proved that the H'(T)-solution of (5.1.1) is global
if the mass is less than 47. For global results in H*(T) with s < 1, we refer to [51] and
references therein.

In this chapter we study the periodic traveling waves. We consider the equation
(DNLS) in the periodic setting:

(DNLS) 10w + 02u + ilul?0,u =0, (t,r) € R x T.

The periodic traveling waves of (DNLS) have only been partially studied. As a first
mathematical work of this problem, Imamura [36] studied semi-trivial solutions:

of(x — ct) = Ve — et (e 7\ {0}, ¢> ¢,

which are 27-periodic traveling wave solutions of (DNLS). In [36], it was proved that
orbital stability of semi-trivial solutions by applying the abstract theory of Grillakis,
Shatah, and Strauss [24, 25]. Murai, Sakamoto and Yotsutani [53] discussed the explicit
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formulae of periodic traveling waves of (DNLS) which are not semi-trivial. If we put the
form

v(t,z) = e“'U(x — ct)
into (DNLS), then U satisfies the equation
(5.1.2) ~U" +wU +icU' —i|UPU’ =0,

with periodic boundary conditions. By using polar coordinates U(z) = r(z)e?®, a
direct calculation shows that the functions r(x) and (z) satisfy

A b c g, 3 5
(5.1.3) —r"+(w—z+§)r+§r—ﬁr +ﬁ:O’
c 1 [* T ody
5.1.4 0(x :—a:——/ry2dy+b/ —
(514 0= o—1 [ rrao [

where b is some constant which comes from integration. If we consider solutions vanishing
at infinity, we can take b = 0. In this case (5.1.3) corresponds to the equation (1.1.7),
and (5.1.4) corresponds to the gauge transformation (1.1.5). However, in general b is a
non-zero constant in the periodic setting. In [53], they first obtain explicit formulae of
all the 27-periodic solutions of (5.1.3), and then try to find the solutions from among
them which satisfy periodic conditions of 6:

6(0) =0, 0(2m) = 2x¢,

which is equivalent

1 2m ) 2m dx
(5.1.5) 2l = cm — Z/o r(z) dx+b/0 RESER

where ¢ € Z\ {0} is a winding number. Since general solutions of (5.1.3) are complicate
as can be seen in [53], it is a quite delicate problem to find the solutions which satisfy
the condition (5.1.5). In [53], partial numerical computations are done to confirm the
existence of solutions which satisfy special periodic boundary conditions above.

The main difficulty to obtain exact periodic traveling wave solutions of (DNLS) is
that the nonlocal problem as (5.1.5) appears. Here, to avoid complex calculation in
nonlocal issues, we consider the equation (1.1.14) in the periodic setting; i.e.,

: : 5
(5.1.6) iOpu + OFu + %|u!28mu — %uQ(?zﬂ + 1—6|u|4u =0, (t,x) e Rx Ty,

where Ty, = R/2L ~ [—L, L] is the torus of size 2L. The energy, mass and momentum
of (5.1.6) are given by the followings respectively:

1 1
E(u :—/ Opul?dr — — uldx,
)= [ ol [

M = [ P
Tar
P(u) :Re/ z'axuﬂd:c—l—l/ u|*dz.
Tor, 4 Tor
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Our aim of this chapter is to find exact periodic traveling wave solutions which yield
the solitons on the whole line including the massless case in the long-period limit, not
to determine the complete structure of periodic traveling wave solutions. Moreover, we
study the regularity of the convergence of exact periodic traveling wave solutions in the
long-period limit.

In the end of this subsection, we discuss the relation between the equations (5.1.1),
(DNLS) and (5.1.6) on Tyy,. Let us recall the periodic gauge transformation introduced
by Herr [35]. For a € R, let 4, : L*(Ty) — L?*(Tyz) be defined by

(5.1.7) Go(f)(w) = 7D f(z),
where J(f) is defined by

IO =57 [ [ (P = ulf) dyas

and
1 2
p=plf] = ﬁHfHLQ(TzL)'

We note that J(f) is the 2L-periodic primitive of |f|> — u(f) with mean zero. For the
solution v of (DNLS) on Ty, we define the gauge transformed solution by

u(t, ) =9, (v)(t,x + 2aut).

A straightforward calculation shows that u satisfies

(5.1.8) 0w+ O2u+ (1 — 2a)i|u|*O,u — 2iau®d, 7 + a (a + %) lu|*u + ep,(u) = 0,
where

(5.1.9) er(u) = Y(u)u — aplul*u,

(5.1.10) P(u) = % /02L (21H1(E(9mu)(t,9) + <% — 2a) \u|4(t,6)) di + a®u®.

We note that when a = —1/2 [resp. a = 1/4] the equation (5.1.8) represents (5.1.1)
[resp. (1.1.14)] on Ty, with some error term ey (u). Therefore, three equations (5.1.1),
(DNLS) and (5.1.6) on Ty, can be considered to be almost equivalent under the suitable
periodic gauge transformation. Since e formally goes to 0 as L — oo, it is reasonable to
consider that these three equations on Ty, do not have essentially different structure at
least when L is sufficiently large. This is compatible with that these three equations on
the whole line are gauge equivalent. As can be seen in the proof in [35], the error term
er(u) does not give any difficulty to prove well-posedness. However, it gives a delicate
problem when one tries to obtain exact periodic traveling wave solutions, since the error
term e (u) is nonlocal. Hence, we consider the equation (5.1.6) as a basic equation.
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5.1.2 Main results

We assume that (w, ¢) satisfies

(5.1.11) —2Vw < ¢ < 2y/w.

First, we note that
(5.1.12) Uy, o(t, 7) = e, (1 — ct),

is a two-parameter family of solitons of the equation (1.1.14) on the whole line, where

- C

(5.1.13) Pue(x) = €270 (),

and ®,, . is defined by (1.1.6). For convenience we write the explicit formulae again;

( 2

4o — ¢

if w> c?/4,
Vw (cosh(\/élw — %x) — 3¢ )
(5.1.14) 2 (z) = e
4c .
\ m if c = 2\/5

Note that ¢, . satisfies the following equation
" - c 2 3 4
(5.1.15) —" + we +icp +§|g0| @—EM ©=0.
We consider the elliptic equation (1.1.7) on a torus:
" 62 c 2 3 4

To find exact solutions which yield the solitons in the long-period limit, we need to find
positive single-bump solutions of (5.1.16). We have the following theorem.

Theorem 5.1.1. Let (w,c) € R? satisfy (5.1.11). Assume that L > 0 satisfies

(5.1.17) Ly = Lo(w,c) < L < o0,

where Lo(w,c) is a positive constant determined by (w,c) (see Remark 5.1.3 below).
Then, there exists the positive single-bump solution ®L  of (5.1.16) on Tyy such that

DL (x) = Py c(x) for any x € R as L — oo. Furthermore, DL is explicitly represented
as

) dn? (% k:)
(5.1.18) (@5 .(2)" =ns , w€[-L,L]

L sn (£:k)

with parameters ns, g, k, B depending on (L,w,c).
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Remark 5.1.2. The value 73 corresponds to the maximal value of (®£7C)2. We note
that n3 satisfies

o <13 < (I)i,c(o)a

where o is defined by

1
= 3 <4c+ V48w +402) .

It is shown that ag is a positive constant when (w, ¢) satisfies (5.1.11) (see Lemma 5.3.1).

Remark 5.1.3. L is explicitly represented as

LO = L()(W,C) t=a—————

where A(x) is defined by
A(z) == —32% + 8cz + 64w.

We note that A(ag) is a positive constant when (w,c) satisfies (5.1.11) (see Remark
5.3.3). The condition (5.1.17) is optimal in the sense that when L = Ly, the constant
Vg is a solution of (5.1.16) and ®f (x) — (/ag for any = € [—Lo, Lo] as L | Ly. In
short, the condition (5.1.17) is optimal in order that ®} . has a single bump.

The functions dn (dnoidal) and cn (cnoidal) in Theorem 5.1.1 are usual Jacobi’s
elliptic functions; see Section 5.2 for a precise definition. We note that if we take ¢, €
Q%Z, exact periodic traveling waves defined by

(5.1.19) ub . (tx) = ei“t”%(”‘“’%t@i% (x —cpt) = el . (z —cpt)
satisfy the equation (5.1.6) on Tyr. If for each L > Ly we take ¢, € 2%Z such that
cp, — ¢ as L — oo, we have

(5.1.20) Soﬁ,cL () = Pue(T)

for any x € R as L — oo. This gives the pointwise convergence of periodic traveling
waves in the long-period limit.

In the one-parameter case (w > 0 and ¢ = 0), exact solutions defined by (5.1.18)
correspond to periodic traveling wave solutions to (1.1.20) and (1.1.22) which are stud-
ied in [6]. Construction of solutions in Theorem 5.1.1 is done by a simple quadrature
method in the similar way as the one-parameter case. However, derivation of the detailed
properties of exact solutions in the two-parameter case is far from being obvious from
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the result of one-parameter case. For instance, we can show that the modulus of elliptic
functions in (5.1.18) has the following long-period limit:

1 ifw>c?/4,

(5.1.21) k — 1 .
— if ¢ = 2y/w,
V2 Ve

as L — oo (see Lemma 5.3.7). The difference of long-period limit of modulus is essential
in order that exact periodic solutions yield two types' of the solitons on the whole line.

To compute the long-period limit, it is often useful to use the maximum value /73 of
(I)LLU,C as a parameter instead of the length of torus L. This idea can be seen in [4, 2, 3, 6].
To apply this idea to our setting, we need to prove

(5.1.22) Vi3 = 9,.(0) <= L — 0.

The relation (5.1.22) follows from the monotonicity of the functions 73 — k and 73 +—
Tor, (see Proposition 5.3.6 and Proposition 5.3.8), where T. s, is the fundamental period
of (13576. We note that the proofs of these monotonicity are much more delicate compared
with one-parameter case discussed in previous works. Interestingly, the scaling curve
¢ = 2sy/w to the solitons is useful even in the periodic setting to derive the detailed
properties including the monotonicity.

Next, we study the regularity of the convergence of exact periodic traveling wave
solutions in the long-period limit. We can improve the pointwise convergence in Theorem
5.1.1 as follows.

Theorem 5.1.4. Let (w,c) € R? satisfy (5.1.11). If for (w,c) € R?* we take sufficiently
large L such that Ly < L, then ®L _ is well-defined by (5.1.18). Then, we have

w,c

. L . _
(5123> gg{}o”@w,c (I)MCHH ([-L,L)) O

for any m € Zxy.

Theorem 5.1.5. Let (w,¢) € R? and @5, in the same assumption as Theorem 5.1.4.
Then, we have

(5.1.24) 195 — Pucllem-roy =0

lim
L—oo
for any m € Z>,.

Remark 5.1.6. We note that Theorem 5.1.5 is not proved directly from Theorem 5.1.4
by using the Sobolev embedding H™([—L, L]) € C*([—L, L]) (k < m), because constants
in the Sobolev inequality depend on size of the interval 2L.

From the explicit formulae (5.1.14), the soliton in the case w > ¢?/4 has exponential decay and the
soliton in the massless case has algebraic decay. However, exact periodic solutions are represented by
the same formula as (5.1.18) in both two cases.
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Remark 5.1.7. We can replace ®f, [resp. @, ] by @5, [resp. ¢,.| in both (5.1.23)
and (5.1.24) if we take ¢, € 2£7Z such that ¢, — ¢ as L — co. Especially, we obtain the
uniform bound of periodic traveling wave solutions as

(5.1.25) sUp [ ¢, Il oo (g, (ra) < 00
Lo<L<oo
for any m € Zsg, where u} . is defined by (5.1.19).

To the best of our knowledge, the regularity results in Theorem 5.1.4 and Theorem
5.1.5 are new even if we restrict the one-parameter case (w > 0 and ¢ = 0). For the
proof of Theorem 5.1.4 and Theorem 5.1.5, the L?-convergence in the long-period limit
is the key step. First, we show that the mass of exact periodic solutions is exactly same
as the mass of the solitons in the long-period limit (see Theorem 5.4.1). Here again, the
difference between the case w > ¢?/4 and the massless case appears. We need to do a
delicate calculation of elliptic integrals in this step. Next, by combining with pointwise
convergence in Theorem 5.1.1 and the Brézis-Lieb lemma, we obtain L?-convergence.
Since (IJULJ’C and @, . satisfy the same elliptic equation, we can obtain H?-convergence
from L2-convergence and the equation. Especially, we obtain L>-convergence from H*-
convergence. The proof of L*>-convergence here is related to the proof of the Sobolev
inequality, but we need to calculate the dependence of the size L more carefully. The
rest of the proof is done by a standard bootstrap argument. We note that the detailed
properties of exact periodic solutions are used throughout the proof.

We remark that one can our approach to periodic traveling wave solutions of other
type of dispersive equations such that KdV, mKdV and cubic NLS discussed in previous
works (see [3] and references therein).

Remark 5.1.8. If we consider the periodic gauge transformed solution

(5.1.26) vk, = g_%(uﬁy%)(t, r — %,ut),
then vicL satisfies the following equation:

100 + 0%v + i|v[* 0,0 + ep(v) = 0,
where

er(v) :=(v)v + i,u|v|27j,

1 [ 1 1

= —— 2Im(v0,v)(t,0) + =|v|*(t,0) | d6 + —p°
o= —gp [ (o) e.0) + glote.0)) o+ S
and p = ﬁHUH%Q(TQL)' From the uniform bound (5.1.25) and formula of the error term,
we deduce that

(5.1.27) llez (v o)l oo (r21,) — O

as L — oo for any m € Zso. This means that the solution v}, gives the main part
of 2L-periodic traveling wave solutions of (DNLS) which yield the solitons in the long-
period limit, at least when L is sufficiently large. One can apply a similar discussion to
the equation (5.1.1) on Tyy.
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5.1.3 Related problems and remarks

Compared with the solitons on the whole line, it is natural to consider that the
periodic traveling waves defined by (5.1.19) belong to the ground states, but the rigorous
proof has not been obtained yet. Variational characterizations on a torus have different
difficulties from the whole line case. Since a torus is compact, the existence of a minimizer
for the problems is easily obtained. However, the identification of this minimizer is
a delicate problem since the elliptic equation (5.1.16) has rich structure of solutions
compared with the one on the whole line. This problem is also related to uniqueness of
ground states. Recently, variational characterizations of periodic waves for cubic NLS
were obtained in [29], but the problems in our setting are more delicate.

The stability /instability of the periodic traveling waves is a natural problem as a next
step. First, we note that @ﬁ’CL satisfies the equation (5.1.15) on Ty, which is equivalent
that
(5.1.28) S, (0h.,) =0,

w,cr,

where

Suel#) = E(9) + S M(@) + 5P(0).

The relation (5.1.28) is important when one considers the problems of both variational
characterization and stability. There are several difficulties when one considers the sta-
bility /instability problem in our setting. We note that the equation (5.1.6) can not be
rewritten as the Hamiltonian form by using the energy functional as (1.1.3). The lack
of Hamiltonian structure causes the delicate problems when one considers the stabil-
ity /instability problem; see [27] for partial results on the stability.? To prove stability or
instability of solitons, it is important to calculate second derivatives. However, since we
only take ¢y, € %’rZ as a discrete value, this gives the difficulty of differential calculation
of S, (¢l ). We recall that Colin and Ohta [17] proved orbital stability of solitons
(1.1.4) by showing that the matrix d”(w, ¢) has one positive eigenvalue, where d(w, ¢) is
defined by

(5.1.29) d(w, c) = Sy.c(Pu.c)-

We note that when w > ¢?/4 and ¢ > 0 we have

(5.1.30) Pd(w, ¢) = ~0,M(6us) = —— <0,
2 ’ wV 4w — 2
1 c

5.1.31 9%d = —0.P(p,.) = ———— < 0.

If one considers the solitons as a one-parameter w +— ¢, or ¢ — @, ., (5.1.30) and
(5.1.31) seem to indicate that the solitons are unstable, but actually they are stable.

2In [27] they consider the stability problem on the whole line in the setting which can not be rewritten
as the Hamiltonian form as (1.1.3).
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This means that the calculation as a one-parameter is not enough to fix the stability
problems, and shows one of the deep structure of a two-parameter family of solitons.

Although there are several difficulties on the stability /instability problems as above,
it is important to study these problems in understanding further properties of exact
periodic traveling wave solutions and related dynamics. We refer to [2, 3, 4, 5, 6, 21, 22,
29] for the studies on the stability/instability of the periodic profiles. The author hopes
that our results in this chapter would provide further insight on the dynamics for the
derivative nonlinear Schrodinger equation.

5.1.4 Organization of the chapter

The rest of this chapter is organized as follows. In Section 5.2 we recall the definition
and basic properties of elliptic functions and elliptic integrals. In Section 5.3 we discuss
construction and fundamental properties of exact periodic traveling wave solutions, and
give a proof of Theorem 5.1.1. In Section 5.4, we discuss the regularity of the convergence
in the long-period limit and prove Theorem 5.1.4 and Theorem 5.1.5.

5.2 Preliminaries

Here, we recall the definitions and some basic properties of elliptic functions and
elliptic integrals. We refer the reader to [12, 42] for more details. Given k € (0, 1), the
incomplete elliptic integral of the first kind is defined by

® do
u:F(cp,k:)::/ —
0 1 — k2sin“ 0

The Jacobi elliptic functions are defined through the inverse function of F(-, k) by

sn(u; k) = sing, cn(u;k) := cos, dn(u; k) := /1 — k2sn2(u; k).
The complete elliptic integral of the first kind is defined by
K=Kk =F (gk> .

The functions sn, cn and dn have a real fundamental period, namely, 4K, 4K, and 2K,
respectively. We note that

5 ask—0,
oo as k — 1.

(5.2.1) K (k) — {

More specifically, when & — 1, the function K (k) has the following asymptotic behavior:

k—1

(5.2.2) lim (K(k;) ~log l;i) 0,
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where the complementary modulus %" is defined by
E=v1-—k2
Elliptic functions have the following extremal formulae:

(5.2.3) sn(u;0) = sinwu, cn(u;0) = cosu, dn(u;0) =1,
o sn(u; 1) = tanhu, en(u;1) = dn(u; 1) = sechu.

This shows that elliptic functions bridge the gap between trigonometric and hyperbolic
functions.

The incomplete elliptic integral of the second kind is defined by
©
E(p,k) = / V1 — k2 sin? 0d6.
0

The complete elliptic integral of the second kind is defined by

E=EBEk):=E (g@ .

We define by

K = K'(k) == K(K),
E = E'(k) = E(K).

Then, we have the following Legendre relation

(5.2.4) EK'+E'K — KK' = g for all k € (0,1).

5.3 Existence of exact periodic traveling waves

5.3.1 Construction of exact solutions

We consider the elliptic equation (5.1.16) on Tyz. Set ¢p = ®2. By multiplying the

equation (5.1.16) by ®" and integrating, v satisfies the following equation
"2 L4 3 A\
(5.3.1) [V = _Z¢ +c” +4 Y Y 4+ 8Cy,

where (), is a constant of integration. The formula (5.3.1) can be rewritten as

(5.3.2) W' = iPM),



where the polynomial P, is defined by

2
Py(t) = —t* + 4ct® + 16 (w - %) t? + 320yt

=t(t —m)(t —m)(ns — 1)
Here, 11,72 and 73 are roots of the polynomial Py satisfying

m + 2 + 13 = 4c,
(5.3.3) M273 + 173 4 mie = —16 (W - %) >
mnans = 32CY.
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Since we are interested in the positive solution, we may set 0 < 1y < n3. We note
that 73 [resp. 7] is the maximum [resp. minimum] value of ¥ by (5.3.2). By (5.3.3)
and (5.1.11), 7, must be negative. By invariance of translations, we may assume that
¥(0) = n3 and ¢/(0) = 0. From uniqueness of the ordinary differential equation and the
equation (5.1.16), v is even. Since we want to construct single-bump solutions, we may
assume that (L) = ny. Therefore, it is enough to consider the equation (5.3.2) on [0, L].
Since 9'(z) < 0 when 0 < z < L, integrating both sides of (5.3.2) over [0, z] yields that

1

oV Pu(i(y)) 2
Changing variables t = v)(x) in the integral implies that

3 dt 1
3.4 2"
(5.3.4) /W) Vi — Ot —m)(t—m) 2

Applying the formula 257.00 in [12], we conclude that

VRS

13(n2 — m) + (3 — m2)msn® ( 553 k‘)

(5.3.5) U(z) 7
(2 —m) + (93 — n2)sn? (%; k)
where
2 _ _771(7]3 )
<5.3.6) "= 773(772 - 771) ’
(5.3.7) 2

I i —m)

We note that 0 < k? < 1 from the inequality 7; < 0 < 1, < 13. Using the expression of

k, the formula (5.3.5) can be rewritten as

dn? (%; k:>

(5.3.8) U(z) = ns
L Psn? (£:k)

Y
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with 3% = —n3k?/n; > 0. From the fundamental periods of sn and dn, the fundamental
period Ty, of 9 is given by
8
(5.3.9) Ty = 49K (k) = ———=K (k).
n3(n2 — 1)

Since we assume that 1 is the single-bump solution, we obtain

8

(5.3.10) oL =Ty = ——o K (k).
13(n2 = 1)
Substituting the first equation in (5.3.3)
(5.3.11) m=4c—mn2—n3
into the second equation in (5.3.3), we obtain
2
(5.3.12) n5 + 05 + mams — de(na +n3) — 16 <w — Z) = 0.

From (5.3.11) and (5.3.12), n; and 7, have expressions as functions of 73, w and c as

(5.3.13) mz_%+f_¢?
(5.3.14) m:_%+§+¢?
where A is defined by

(5.3.15) A = A(n3) == 64w — 312 + Scns.

The following two extreme cases can be considered;

(i) N2 = N3 = Qg.

The case (i) corresponds to the constant solution of (5.1.16). The case (ii) corresponds to
the long-period limit as discussed in detail later. From the equation (5.3.12), we obtain
that

1
ap =3 (40—1— V48w + 402> ,

a; = 4w + 2c.

It is worthwhile to note that a; = ®Z .(0), where ®,, . is defined by (5.1.14).
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5.3.2 Fundamental properties of exact solutions

In this subsection, we investigate detailed relation between parameters defined in
Section 5.3.1. For the convenience of calculation, we introduce the following notations.
When (w, ¢) satisfies (5.1.11), we can write

c=2syw

for w > 0 and some s € (—1,1]. The case s = 1 corresponds to massless case. By using
this notation, oy and a; are rewritten as

a0:§<2s+\/m> Vw,
ap = 4(1 + s)yw.

Set [y = 41(1705 and 3 = 40\‘/1;. We have

(5.3.16) Bo = Bo(s)
(5.3.17) B = Bi(s)

for —1 < s < 1. We begin with the following lemma.

=Wl =

(23—1—@),
+ s

Lemma 5.3.1. Let (w,c) satisfy (5.1.11). Then, we have 0 < ap < a;.

Proof. From the definition, we note that
O0<ap<a; <= 0< fy<pfr.

First, we prove y > 0. This is trivial from the definition (5.3.16) when 0 < s < 1. When
s < 0, we have

Bo >0 <= —25 < V3+ s2
— 45 <3+ ¢?
— 0<3(1-35%.

The last inequality holds when —1 < s < 0.
Next, we prove fy < f1. When —1 < s < 1, we have
1
Bo < f1 = §<28+\/3+82> <l+s
— V3+s2<3+s

— 3+s5°<(3+5s)?
< 0<6(s+1).

The last inequality holds when —1 < s < 1. This completes the proof. O
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Figure 5.1: The ellipse (5.3.19) for several values of s. Note that the ellipse moves toward
upper right when one changes the parameter s from —1 to 1.

We recall that (1, 73) satisfies the constraint condition (5.3.12). Set

(5.3.18) 5:437 n=4$j

Substituting (5.3.18) and ¢ = 2sy/w into (5.3.12), the equation (5.3.12) is equivalent that
(5.3.19) (E=s)+(m—s)+&n=1+5"

where —1 < s < 1. The equation (5.3.19) represents the ellipse as in Figure 5.1. Note
that (Bo, Bo) corresponds to a intersection point between line n = £ and ellipse (5.3.19),
and that (0, 51) corresponds to a intersection point between line £ = 0 and ellipse (5.3.19).
Since we assumed that 0 < 7, < 13 in Section 5.3.1, it follows that

(5320) oy < 13 < O,

or equivalently

(5.3.21) fo <n < fh.
We can prove positivity of A defined by (5.3.15) under the condition (5.3.20).

Lemma 5.3.2. Let (w,c) satisfy (5.1.11) and let ns satisfy (5.3.20). Then, we have
A= A(ng) > 0.

Proof. By using ¢ = 2sy/w and 13 = 4,/wn, we can rewrite A as

A = 64w — 313 + 8cns
= 16w(—3n> + 4sn + 4).
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We set
(5.3.22) fo(n) := —3n* +4sn + 4
for —1 < s < 1. A positive zero of fs(n) is given by
2
(5.3.23) B=3 <s TVt 3) .

We obtain g; < 8 for —1 < s < 1. Indeed, we have

2
B < B — 1+8§§<s—|—\/32+3>
— s+3<2Vs?2+3
— (s+3)2<4(s*+3)
— 0<3(s—1)%
The last inequality means that §; = g when s = 1 and 3; < [ otherwise. Since

fs(0) =4 > 0and 0 < [y < [y, this implies that fs(n) > 0 for —1 < s < 1 and
Bo < n < 1. This completes the proof. m

Remark 5.3.3. From the proof of Lemma 5.3.2 above, we also deduce that A(«ap) is a
positive constant depending on (w, ¢).

From Figure 5.1, one can observe that ny decreases from oy to 0 when one changes
13 from gy to a;. We can prove this claim rigorously.

Lemma 5.3.4. Let (w,c) satisfy (5.1.11). Then, the function (cg, 1) D n3 — ny €
(0, g) is a strictly decreasing function.

Proof. Tt is enough to prove that the function (5o, 51) 2 n — £ € (0,5y) is a strictly
decreasing function. From (5.3.14) and (5.3.22), we have

52%(_774’23‘1‘\/%)-

For —1 < s <1 and 5y < n < 1, we have

g 1 1 dfs(n)
dn 2 4y/f(n) dn
1 1
-~ (6n—4s)

2 4y/fs(n)

1 1 9 1
<————(3-—S—2s>:——<0,
2 2y/fs(n) 3 2

where we used the following inequality:

25 25+ /3 + s2
ED I

This completes the proof. O
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Next, we discuss the change of the parameters when take the limit 73 — «; (or
equivalently n — (1). We begin with the following lemma.

Lemma 5.3.5. Let (w,c) satisfy (5.1.11). Then, we have

1 Viw—¢&
(5.3.24) m =~ 26 1m0, oo %
g
as nz — aq.

Proof. We note that

A(ay) = 64w — 3ay + 8cay
= (4v/w — 2¢)*.

From the expressions (5.3.13) and (5.3.14), we have

, —ay +4c — v/ A(ay)
lim n =
n3—ran 2

_ o2 (V-2 e

2
—ay +4c+ /A()
2

4w+ 2c+ (4w — 2¢) _ 0
- ; =0.

lim 7y =
n3—a1

Note that the limit of 7, compatible with the definition of ;. From the expression
(5.3.7) and the limits of 7o and 73, we have

1 _
lim — — lim n3(12 — M)
n3—a1 4G n3—an 4
CV@EVw+20) (4w —2¢)  Viw— 3
B 4 2
This completes the proof. H

It is more delicate to calculate the limit of modulus k of elliptic functions as 13 — «;.
First, we rewrite k% defined by (5.3.6) as a function of . From (5.3.13) and (5.3.14), we
have

n3(n2 — m) = 4v/wn - VA = 16wny/ fo(n).

Since

37’]3—40—\/Z
2 Y

N3 — 12 =
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we have

4 (_771<773 - 772)) = (37]3 —4c — \/Z)(TB —4c + \/Z)
= 302 — 16¢13 + 205V A + 1662 — A,

—32w(377+ (VFs(0) — 65)7 + 2(s —1))

Hence, we have the expression of k% as

2 _ =M =)
(5.3.25) "= 773(772 —771)
_ 3+ (Vs(n) = 6s)n+2(s* — 1)
fs(n)

for 5o <n < fy and —1 < s < 1. By using the expression of (5.3.25), we can prove the
monotonicity of modulus £ of elliptic functions.

Proposition 5.3.6. Let (w, c¢) satisfy (5.1.11). Then, the function (5o, 51) > n+— k(n) €
(0,1) is a strictly increasing function.

Proof. We define the function b by
(5.3.26) b= bs(n) := 1 fs(n) = =3n" + 4sn” + 4.

Note that by Lemma 5.3.2 b = by(n) is positive for —1 < s < 1 and fy < n < ;. We
differentiate k? with respect to 1 as

diz_ 1 <6n—6s+M>\/E—<3n + Vb — 6sn + 2(s —1)> d‘/_]

dn  2b dn dn
1 | d\/_
— — |6(n - - 2(s? — 1
o 6(n—s)Vb — (30" — 6sn+2(s* — 1)) — i

A direct computation shows that

dk” L\/_(Gsngs(n) +4(1 - 5%),

5.3.27 —
( ) dn  b/b

where the function g; is defined by

gs(n) === (s=1))(n—(s+1)).

We note that a positive zero of g,(n) is given by 3; = s+ 1. Since g,(0) = 1 —s? > 0 for
—1 < s <1, we have gs(n) > 0 for fy < n < f;. Therefore, if 0 < s < 1, by (5.3.27) we
obtain

dk? _ Gsngs(n)
dy = b/h

> 0.
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If s =0, by (5.3.27) we obtain

k2 4
& oy,
dn  bW/b

Finally, we consider the case —1 < s < 0. We note that [, gives a positive maximal
point of n — ngs(n). Therefore, if —1 < s < 0, we have

(5.3.28) 6519s(n) + 4(1 — 5%) > 65809:(B0) + 4(1 — s%) =: h(s).

From the definitions of 3y and g,, h(s) is rewritten as

(5.3.29) h(s) = g (=s*+ (3+ %)% +9).

We note that h(0) = 4, h(—1) = 0, and s +— h(s) is strictly increasing on the interval
[—1,0]. Hence, from (5.3.27) and (5.3.28), we deduce that

dk? n
—— = —(6sngs(n) + 4(1 — s*
o = o B +401 - )
Ui 1
> ——=-h(s) > —=-Nh(—1) =0.
i (s) i (1)
This completes the proof of Proposition 5.3.6. O]

The limits of k& and 32 are given by the following lemma.

Lemma 5.3.7. Let (w,c) satisfy (5.1.11). Then, we have

1 if w > c?/4,

. . k 1
(5.3.30) S B if w=c?/4 and ¢ > 0,
V2
2w +c 2
movar | if w=c*/4 and c > 0.

Proof. Case 1: w > ¢*/4. By Lemma 5.3.5 we note that
m— —4vw+2c<0, 17y —0

as 13 — «;. From the definitions of k% and 3, we obtain

lim K2 = lim —AB ")
73 —a1 73 —a1 773(772 — 7]1>
(4y/w —2¢) - oy

= :1

a1 (44/w — 2¢) ’
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and

Case 2: ¢ = 2y/w. Since in this case
m — —4y/w +2c =0, 7o — 0
as 13 — a; = 4c, the above calculation does not work. In this case A(73) is rewritten as
(5.3.32) A(ns) = 16¢* — 302 + 8cns = (3ns + 4c) (4c — ns3).
By using this identity, 7, is rewritten as

_ st 4c — /A(n3)
2

_ VAc—p <\/4c—773 - \/3173+4c).

2

(5.3.33) m

Hence, we have

L2 — —m (13 — 12)
n3(12 — 1)
_ M= T
3 A(ns)
_ M= V313 + de — /A — 13

73 2¢/3n3 + 4c
1

_> —
2

as 13 — 4c. For the limit of 52, since 1, — 0, we have

lim % = lim ——— = co.
N3—an n3—ai m
This completes the proof. m
The fundamental period T}, defined by (5.3.9) is rewritten as

Ty ) = —— K (k1))

n3v/ A(n3)

for ap < 3 < a1. Combining with Proposition 5.3.6, we can prove the monotonicity of
the fundamental period T5.
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Proposition 5.3.8. Let (w,c) satisfy (5.1.11). Then, the function (ag, 1) 2 13 +—
Ty(n3) € (0,00) is a strictly increasing function.

Proof. We recall that the fundamental period T is defined by
8
Ty = ———=K(k).
3(12 — m)

We note that

n3(ne —m) = 16wn/ fs(n) = 16w+/bs(n),

where by(n) is defined by (5.3.26). Hence, T, is rewritten as
2

Vwbs(m)'/*

where —1 < s <1 and fy < n < ;. We differentiate T, with respect to n as

Ve dly, _dEdk 1 (1 db,
2 dn dk dn b1/4 4p2/* ) dn

(5.3.34) Ty = —=——: K (k(n)),

(5.3.35)

= 51/4 (%% by — Knas(n)) ,
where the function a, is defined by
(5.3.36) as(n) == —3n° + 3sn + 2.
We note that
35 4+ 952 + 24

(5.3.37) v=7(s) = G

gives a positive zero of as(n). Since as(0) = 2, we have ag(n) > 0 for 0 < n < . When
—1 < s <1, we have

v7< B =

35+ V952 + 24
s+ 63+ <1+

1
< —g < s.
On the other hand, we have

Bo <7y = §(23+VT>

= s5<Vs?+3.

<= (35 + Vo7 5 21)

Since the last inequality holds for any s € R, we have 5y < v for —1 < s < 1. Hence,
the following three cases can be considered.
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1
(a) —§<3§1,’y§n<ﬁ1.
1
(b) _§<3§1,5O<77<’Y-
1
(c) _1<3§—§7 Bo <n < Bi(< 7).

dK dk
Since — > 0, and — > 0, we note that the first term on the RHS of (5.3.35) is positive.

dk dn

In the case (a), since a(n) < 0, by (5.3.35) we deduce that
dT,

5.3.38 — > 0.

(5.3.39) i

In the latter two cases, since as(n) > 0, we need to calculate a little more carefully. But,
by using the formula

dK 1

— = E - k*K

dk kk’2< )
and (5.3.27), one can prove that (5.3.38) holds in these cases. We omit the detail and
refer to [2, 6] as similar arguments. O

From the definition (5.3.6) of k, we have
k?2 (773) — 0

as 73 — ap. Since K (k) — 7 as k — 0, we have

(5.3.39) Ty(ns) — oA =: To(w, ¢)

(%)) A(Oég)

as m3 — «p. Note that A(ap) is a positive constant as described in Remark 5.3.3. On
the other hand, we have

(5.3.40) Ty(ns) — o0

as 3 — ;. Indeed, when w > ¢?/4, we have k — 1 as 73 — «a; by Lemma 5.3.7. Since
K(k) — oo as k — 1, (5.3.40) holds. When ¢ = 24/w, we have ny,1, — 0 as n3 — a1 by
Lemma 5.3.5, and hence (5.3.40) holds from the definition (5.3.9) of T;,. Therefore, by
(5.3.39), (5.3.40) and Proposition 5.3.8 we deduce that

(5.3.41) ap <13 < a; <= Ty(w,c) < Ty(ns) < oo,
and
(5.3.42) ng — g <= Ty(ns) = To(w,c),

(5343) N3 — p < Tw(?’]g) — Q.
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The relation (5.3.43) means that the limit 3 — «; is equivalent to the long-period limit.
Since 2L = Ty, L has the following constraint condition:

(5.3.44) Ly(w,c) < L < o0,
where Ly(w, ¢) is defined by

To(w,c) 2

(5.3.45) Ly = Lo(w, c) := 5

Since by (5.3.43) we have
N3 — oy <= L — 00,

we can take the limit 73 — oy instead of the limit L — oo.
To clarify the dependence of parameters, we denote the function v by wic. Let
cr € —Z It is easily verified that the traveling wave

Uy, = HFEAOGL )30 — cpt)

is a solution of the equation (5.1.6).

5.3.3 Pointwise convergence in the long-period limit

We complete the proof of Theorem 5.1.1. Fix any x € R and consider a large L > 0
such that = € [—L, L]. We need to divide two cases to do calculations in the long-period
limit.
Case 1: w > ¢*/4. By Lemma 5.3.5, Lemma 5.3.7 and extremal formulae (5.2.3) of
elliptic functions, we have

an? (£ k)
lim ¢ (z) = lim 73

SeCh2 (\/4w c?

1_i_2\f+ct nh2<

= (4v/w + 2¢)

=)

2(4w — ?)
(2\/c_u — ¢) cosh? (@ ) + (2y/w + ¢) sinh? (@w)
2(4w — *) _ 92 (a).

N 2/w cosh?(V4w — c%z) — ¢
Case 2: ¢ = 2y/w. Since in this case 8 — oo, % — 0 as 13 — a1, we need to calculate
more carefully. We use the following relations
(5.3.46) dn(u; k) = 1+ O(u?),
(5.3.47) sn(u; k) = u+ O(u?)
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as u — 0 (see, e.g., [42] for the details). From (5.3.46), we have

T
5.3.48 lim dn( —:%k ) =
(5.348) i do (29’ )
We note that
L m3(me—m)
3.4 = B\R
(5.3.49) 1 16
_ UE A(Us)
16
_

=16 -/ (4c — 13)(3ns + 4c),

where in the last equality we used the identity (5.3.32). From (5.3.33), (5.3.49) and
(5.3.30), we deduce that

32 ns K
_ 213 e e R
V3n3 +4c —+/dc—n3 16
(40 1 2
8 2

as 13 — a1 = 4c. Hence, by (5.3.47) and (5.3.50), we obtain that

2 N 2 (L7 _
i (55 dn (4 )

where we have used the relation

F0 (4= m) =~ 0 (de=m) = O (Vie=m) .

1

Combined with (5.3.48), we deduce that

Lo C/4¢ mde ] 4 32602 (296 ; /f)
4y/w + 2¢
1+ (cx)?
4c
= m = 02/4,0(33)

This completes the proof of Theorem 5.1.1. U
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5.4 Long-period limit procedure

5.4.1 L?-convergence

First, we discuss the convergence of the mass ||®f |72, in the long-period limit.
We recall that the mass of the soliton on the whole line is given by

[2¢/w + ¢
2 - —1
(5.4.1) ||(I)w,<:||L2(]R) = 8tan 2\/(; —c

Our main purpose in this subsection is to prove the following theorem.

Theorem 5.4.1. Let (w,c) satisfy (5.1.11). Then, we have
(5.4.2) Jim (105 Ze(rsy) = | Puell 2z

Proof. We calculate the mass of traveling waves on Ty as

L dn? (i‘ k)
2q°7
||(I)£,c||%2(T2L) = 2/ UE ! d
0 1 + [2sn? <%; k:>

K& dn®(x; k)
=4 ’ d
97]3/0 1+ p%sn?(z; k) o

T

where we used L = 2gK (k) in the last equality. Applying formula 410.04 in [12], we
have

k? +62
(5.4.3) 195 c172(r,,) = 49ms WG(% k),
where
(5.4.4) G, k) = K(k)E(u, k') — K(k)F(u, k') + E(k)F(p, k'),

R
(5.4.5) p = sin s

We note that u is regarded as a function of 73 and that 0 < u < 7 when ap < 73 < ay.
We set

2
L T 5}
(5.4.6) fy = nl}l_lgl = nil—%l sin e
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Case 1: w > ¢?/4. By Lemma 5.3.5 and Lemma 5.3.7, we have
: k2+pr 4gns

5.4.7 lim 4 lin

BAT T e =i 8

_ 8(2y/w + ¢) 2w — ¢
V2vw + )2y —¢) | 2Vw +c

=38.
By the Taylor expansion, we have
1 = (2n — 1!
5.4.8 =1 S
(548) T2 +; e ©
= 1 (2n-1)

5.4.9 Vi-z=1- : "
(5:4.9) ’ ;Qn—l @n) "

for all |z| < 1. Let 7 € (0,75). Applying (5.4.8) and (5.4.9), we have

(5.4.10) E(r, k) = / V1 — k?sin” §df
0

. 1 (2n ) 2n /T :.2n
=7 2271—1 @) k i sin“" 0d0,

n=1

(5.4.11)

df
F(r, K :/
( ) 0 V1—Kk?sin%6

o0

(2n ) /2 / 2
—k: " " 0do.
+Z (2n) ; sin

n=1

By (5.4.10) and (5.4.11), we have

= (2n — 1N
412 E(r, ¥ <z R
B4l o [BLK) - <3 i
< Ck”,
where C'is independent of £’. By (5.2.2) and (5.4.12), we deduce that
k/
(5.4.13) sup |K(k)(E(r,K) — F(r,k))| < Ck” (—log Z) —0
0<7<Z

as k' — 0. Especially, we deduce that

(5.4.14) lim K(k)(E(u, k) — F(u, k) = 0.

n3—Q1
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By (5.4.6) and Lemma 5.3.7, we have

2 2
sinp; = lim Zﬁ s = \/_w——l—c
n—on \| B2+ k 4\/(,_0

Since
2 2 —
sin? iy = —\/5—1— C, cos? f1; = —\/C_d ¢
4y/w 4y/w
and p; € [0, 5], we deduce that
2y/w + ¢
5.4.15 =tan 'y [~ ——0.
(54.15) R VN

By (5.4.3), (5.4.7), (5.4.14) and (5.4.15), we obtain that

(5.4.16) i 95,y = T dgnyy |20 G k)
4. et w,cllL2(Tar) — n3—a 9" (1 + 52)52 .
= 8E(1)F(111,0)

= 8“1

4 [2y/w+c
= 8tan~! m = ||@W,C||%2(R)'

k2 — i k%L
(5.4.17) 2 .
m — O, Ny — 0

Case 2: ¢ = 2y/w. Since

B — oo,

as m3 — «1 in this case, we need to modify the previous calculation. By (5.4.17), we
have

K+ 52

as 13 — «1. By using the definition of k, g and 3, we have
4 8 — _
(5.4.19) 98 _ g Cfmm ] (e —m)
B n3(m2 — m) 3 —m(n3 — 12)
13

=8,/ .
N3 — 12
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By (5.4.18) and (5.4.19), we obtain that

. | k2 + (2 . 4gns
5.4.20 lim 4 —_— =] —_
( ) 7731—{%1 g (1+ p%)p? nsgrclu 15}

= lim & fis
nN3— a1 ’]73 _ 772

=&

By (5.4.17), we note that

2
(5.4.21) g1 = lim sin™! o sin~!'1 =

m3—a1 52 + k2

Do X

Hence, we obtain that

(5.4.22) lim G(p, k) = G(p, %)

n3—aq

—~

KE — KK'+ EK')(1)

V3

[

9

N DN

where we used the Legendre relation (5.
(5.4.22), we obtain that

4) in the last equality. By (5.4.3), (5.4.20) and

5.4.23 lim ||®%, | = lim 4 Ll i Gu, k
(5.4.23) LI_I&H c2/4,cHL2(’]I‘2L)_n31_I>%1 gns W (1, k)

- SG(Mla %)

=dn = H(I)02/4,CH%2(R)'
This completes the proof. n
Next, we prove the following theorem. This is the partial statement of Theorem 5.1.4.
Theorem 5.4.2. Let (w,c) satisfy (5.1.11). Then, we have
(5.4.24) Jim (|05, = @y e[z, = 0
for allm=0,1,2.

To prove Theorem 5.4.2, we recall the Brézis—Lieb lemma.

Lemma 5.4.3 ([11]). Let 1 < p < oco. Let {fL} be a bounded sequence in LP(R) and
fo = f ae inR as L — oo. Then we have

Ifellze = Ife = e = [If1Ze —= 0

as L — oo.
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Proof of Theorem 5.4.2. We consider <I>£7C as the function defined on R. More precisely,
we extend the function @7, as

. L () if x € [-L, L],
(5.4.25) . (z) = 7 .

’ d, (v —2Lk) ifxe[2k—-1)L,(2k+1)L], k € Z\ {0}.
We set f = X[—L,L]Cbﬁ,c and f = @, .. By Theorem 5.1.1 and Theorem 5.4.1, we have

fr(x) — f(z) for all x € R,
”fLH%Q(]R) - ||f||%2(R)
as L — co. Applying Lemma 5.4.3, we obtain
(5.4.26) Jim || fr — fllZ2m) =0
Since f € L*(R), we have
(5.4.27) Lh_{glo Hf“%%mzm = Lh_{folo |"I’w,c”%2(\x|2L) = 0.
By (5.4.26) and (5.4.27), we deduce that

(5.4.28) 195 e = Puellzaqor.oy = Jim [[fz = fll2gei<r) = 0.

lim
L—oo
Next we prove

(5.4.29) Jim |0*®L , — 8* Py el 2117 = O
—00 ’
We note that @, and @, satisfy the same equation (5.1.16). For each L > 0, we have

(5.4.30) O (z) < s for all v € [-L, L],

since /73 is maximum value of CIDULJ,C. By the explicit formula (5.1.14) of the soliton, we
have

(5.4.31) 1170y = ©2(0) = 4v/w + 2¢ = ay.
By (5.4.30), (5.4.31) and (5.4.28), we deduce that
12 = Plleeq-ry < CULlZeoqor + 11 Zeoqr o) e = Fll2 -z,

< Cns +a)llfr = fllez-r.n
< 20| fe = fllezqropy 72 0

Similarly, we have

12 = FPlleeqer,my < CU Ll oo ry + 1N 2o o)L — Fll2 -z,
<20ailf1 = fllzarmy 52,0
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Hence, by using the equation (5.1.16), we deduce that
24 L 2 c?
1070, . = O Puscllra(-r,1)) < (w - Z) I/ = fllzzq-r.m)

c . . ) 3
+ §Hff — Pl + Eﬂff — P2

— 0.
L—oo

Finally, by integration by parts, we obtain that

L
109, — 0Pur |2 papy = — / (P@L, — 0°Py.) (PL, — Do) da
—L

< |0*®5, — P el 2 op 195 . — Pusellr2(—r.1))

— 0.
L—oo

This completes the proof. O

To prove the estimate (5.4.24) for m > 3 by using the equation (5.1.16), we need to
control L>-norm of lower derivative 9*®L where k = 1,2,--- ,m — 1. To achieve this,

T T w,C

we discuss L>®-convergence of @ in next subsection.
w,c

5.4.2 L°°-convergence
In this subsection, we mainly prove the following proposition.

Proposition 5.4.4. Let (w,c) satisfy (5.1.11). Then, we have
. L . _
(5.4.32) ngrolo ||(I)w7c CI)%CHL ([-L,L) 0.
Proof. Since <I>ULJ,C and @, . are even functions, it is enough to consider the interval [0, L].

We use the same notation in the proof of Theorem 5.4.2. By fundamental theorem of
calculus, we have

20\ _ 2 xi 2()d
@) = 0P + [ i,
20\ _ 2 td o d
Pa) = 10P + [ P,
for all z € [0, L]. Since fr(0)? =3 and f(0)? = a;, we have
(5.4.33) f2(@) — f@)? =g — o +2 /O (Juft — F1)dy

for all z € [0, L]. By Theorem 5.4.1, we note that

(5.4.34) sup || frllz2(o.p) < € = C([| fllz2w))-

Lo<L<oo
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Applying Cauchy-Schwarz’s inequality and (5.4.34), we deduce that

L
/ \fofr = [ 1dy < W felleeqo.plfz — fllezqo.zy + 11 2qo.n L f = fllz2qo,n
0

< Clfe = flla o,
Combining with (5.4.33), it follows from Theorem 5.4.2 that

L
(5.4.35) 12 = Fllcoy < Ins — an| +2 / Fufh — £ \dy
0
< |ns—ai|+Clfr — fHHl([O,L])
— 0.
L—o0

By using the elementary inequality

WVz =yl < ]z —y| forall 2,y >0
and (5.4.35), we deduce that

(5.4.36) fr — fHLoo([o,L]) < \/Hff - f2HL°°([0,L])
— 0.
L—oo
This completes the proof. m

Remark 5.4.5. We can also prove Proposition 5.4.4 directly without using the result
of Theorem 5.4.2. Given a € > 0. By the decay of ®, . and the pointwise convergence
in Theorem 5.1.1, there exists Ly > 0 such that

(5.4.37) [Pue(Lo)| < &, |95 (Lo)| < 2¢

for large L > Lo > 0. Both ®% . and ®,, . are radial and decreasing functions, we deduce
that

(5438) H@w,CHLOO(LoSkB\SL) <g, H(I)o[.;,cHLOO(LOS‘xlSL) <2

for large L > 0. On the other hand, by reviewing the proof of Theorem 5.1.1, it is easily
verified that

(5.4.39) nggo ||(I)£,c = Pusell oo (- Lo,Lo)) = 0.

By (5.4.38) and (5.4.39), we obtain
hm sup ||(I)£7c — q)w,c”Loo([—L,L}) S 28.

L—oo

This gives an alternative proof of Proposition 5.4.4.

The following proposition follows from Proposition 5.4.4 and similar discussion on
the proof of Theorem 5.4.2.

Proposition 5.4.6. Let (w,c) satisfy (5.1.11). Then, we have

. L . _
(5.4.40) Jim ([0 = o cllom(-r.z) =0
for allm =20,1,2.
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5.4.3 Proof of Theorem 5.1.4 and Theorem 5.1.5

Proof of Theorem 5.1.5. Tt is proved by differentiating the equation (5.1.16) and by ap-
plying Proposition 5.4.6 and the induction. We omit the detail. O]

Proof of Theorem 5.1.4. It is proved similarly as Theorem 5.1.5 by using the induction.
We prove only case m = 3. By differentiating the equation (5.1.16), we have

2 3 15
5.4.41 — @ — S )0 + 22D — — e = 0.
(5.4.41) * (w 4> e 16
By Proposition 5.4.6, we note that
(5.4.42) sup || frllwree-roy < C = C[|fllwrem))-

Lo<L<oco

By (5.4.42) and Theorem 5.4.2, we have

1f2fL = 12 ezernny < W folleeqerpllf = Flzer.n)
+ 12 oo (=L, 17 — 2
<C\fr = fllarq-r.n) P 0.

Similarly, we have
. 401 rd gl —
Jimn (£ f = 14 F ey = 0.
By using the equation (5.4.41), we deduce that
: 3L 3 2 _
Jim [|0°0, = 0" Dol 2,07 = 0.

This completes the proof. n
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