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Abstract

The stochastic process is an essential part of modern probability theory; it has been widely
used in fields such as physics, biology, chemistry, computer science, communication engineering.
management engineering and other scientific engineering fields. It has played a pivotal role in
describing random phenomena widely used in various scientific and engineering fields. Among
those stochastic processes, the Levy process has been widely and rapidly employed in recent
years, which has various mathematical properties, such as independent stationary increments,
stochastic continuity, and the ability to fit the characteristics of leptokurtic and fat-tailed
distributions. These properties enable to characterize fluctuations in asset prices. Therefore,
the Levy process has attracted special attention in the field of asset pricing. Furthermore, as an
important part of asset pricing, option pricing is a core issue in asset pricing research. The Levy
process includes both a finite jump process and an infinite pure-jump process. However, the
finite jump process consider only the finite big jumps in modelling the asset price fluctuations,
and it cannot characterize small, high-frequency jumps well. Therefore, a more general jump
process has been developed as an infinite pure-jump process. The infinite pure-jump process
can be considered a substitute for the finite jump process, as it can better characterize the big
jumps and high frequency small jumps simultaneously in the asset price fluctuations, such as
bigger jumps that represent market shocks and high-frequency smaller jumps that represent
real-time transactions. Since then, the infinite pure-jump process has been the latest research

focus and has been widely used in option pricing.

Options are generally used as financial derivatives based on stocks, and play an important
part of financial assets. Options give their holders the right to buy or sell underlying assets
at an agreed-upon price (i.e., the exercise price). They also provide good risk management
and create value in investment transactions. However, after several major financial crises,
establishing a more reasonable option pricing model has become an issue of concern for both

financial institutions and regulators.

It is worth mentioning that the real financial market environment is full of uncertainties
that are not as ideal as the assumptions in a theoretical model. On the one hand, underlying
asset yields are not normally distributed but rather exhibit skewed and leptokurtic fat-tailed
characteristics in addition to a significant jump phenomenon in asset price fluctuations. These

issues are widely recognized in academia. On the other hand, the parameters in the model



are taken as crisp values, but due to many subjective and objective uncertainty factors, such
as information asymmetric, individual judgements, different risk preferences, and incomplete
information in the real-life financial market, these parameters are often vague and cannot be
expressed using crisp values (i.e., co-exist uncertainty of randomness and fuzziness simultane-
ously). Due to the non-normality of random variables and the jump phenomenon, the infinite
pure-jump Levy process can better capture the leptokurtosis and fat-tailed characteristics of
the asset yield and the big jumps and high-frequency small jumps in asset price fluctuations.
At the same time, the fuzzy set theory is a powerful tool to address uncertainty, and vagueness
of social environments; thus, by applying it to option pricing models with an infinite pure-jump
Levy process, it can be a useful supplement to option pricing theory. Therefore, to price options
more rationally, this thesis introduces the fuzzy set theory and infinite pure-jump Levy process
into the option pricing model on the basis of previous studies to further enhance and enrich
option pricing theory. In addition, this thesis also discusses the theoretical and practical value
of the proposed models through numerical simulations and empirical analyses. The options
have mainly two styles to exercise: European options (to be exercised only at the expiration
date) and American options (to be exercised before or at the expiration date). Thus, the main
contributions of this thesis, which are shown in Chapter 4 and Chapter 5, are summarized

based on these two aspects. This thesis consists of 6 chapters.

Chapter 1 introduces the research background, motivation, objective, research position,

and structure of this thesis.

Chapter 2 thoroughly reviews the available literature to establish the positioning of our
study, examines research on the Levy process and fuzzy set theory for option pricing and
combines the Levy process and fuzzy set theory. We summarize and discuss these streams of

literature from the two perspectives of European options and American options.

Chapter 3 provides necessary preliminary definitions for this thesis, including the infinite
pure-jump Levy process, the Black-Scholes (BS) model, common fuzzy variables, fuzzy random

variable, the extension principle and credibility measures.

In Chapter 4, for the European option pricing problem, on the basis of the Black-Scholes
(BS) model, we make use of the fuzzy set theory to construct a European option pricing model
based on the VG (variance gamma) process (which is one of widely used infinite pure-jump Levy

processes) in a fuzzy environment, with drift, diffusion, and jump parameters as the trapezoidal
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fuzzy random variables.

Next, a Monte Carlo simulation algorithm is used to conduct numerical simulations, in which
the instrumental variable method is employed to improve the convergence speed of the Monte
Carlo algorithm. The numerical simulation experiments, and the empirical analysis which uses
Tencent Holding (HK.0700) and its stock options data, are used to compare the pricing results
of the Black-Scholes (BS) model in a crisp environment, the variance gamma (VG) process
option pricing model in a crisp environment, and the variance gamma (VG) process option

pricing model in a fuzzy environment.

The results indicate that the fuzzy VG process option pricing model is more reasonable; the
fuzzy interval can cover the market prices of options and the prices that obtained by the crisp
VG process option pricing model, moreover, the expectations using fuzzy pricing are closer to
the market prices of options than the pricing results obtained by the crisp BS model, the results

are more consistent with the real-life market.

According to the evaluation based on the mean absolute percentage error (MAPE), the fuzzy
VG process option pricing model achieved 96.68% accuracy rate which is an improvement of
1.33% over the crisp BS model. Furthermore, the variance of the accuracy rate of the proposed
fuzzy model is 56.77% of that of the crisp BS model, it is less than the crisp BS model; this
shows that the proposed fuzzy model is more stable than the crisp BS model in terms of pricing
accuracy rate. The results indicate that the fuzzy VG process option pricing model is feasible
and its pricing results are more accurate and stable even when many reality uncertainty factors

are included.

In addition, the convergence efficiency of Monte Carlo algorithm can be improved by 50%

via the instrumental variable method.

In Chapter 5, we further extend our research on the American option pricing problem.
Compared with the European option, the American option allows early exercise, which creates

an optimal stopping problem; thus, the issue becomes much more complicated.

Taking into account the time-varying, jump and leverage effect (i.e. asymmetric volatility)
characteristics of asset price fluctuations, we first obtain the asset return rate model through the
GJR-GARCH model (Glosten, Jagannathan and Rundle-generalized autoregressive conditional

heteroskedasticity model) and introduce the infinite pure-jump Levy process into the asset
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return rate model to improve the model’s accuracy.

Then, to be more consistent with reality and include more uncertainty factors, we integrate
the more generalized parabolic fuzzy variable (which can cover the triangle and trapezoid
fuzzy variable) to represent asset price volatility; meanwhile, according to the American option
pricing theory, we derive the optimal exercise boundary, the continuation holding region and
the stopping holding region for the fuzzy American options. The optimal exercise boundary

can provide reasonable investment decision making for the risk managers or investors.

Next, considering more general situations with fuzzy variables with mixed distributions,
we apply fuzzy simulation technology to the widely used numerical algorithms (the binomial
tree algorithm and the least squares Monte Carlo algorithm) to create fuzzy pricing numerical
algorithms, such as the fuzzy binomial tree algorithm and the fuzzy least squares Monte Carlo
algorithm. In particular, we apply quasi-random numbers that are produced by the Sobol
sequence, and Brownian bridge method, to improve the convergence speed of the least squares

Monte Carlo algorithm.

Finally, by using American options data from the Standard & Poor’s 100 index, we em-
pirically test our fuzzy pricing model and comparatively analyse the pricing effect of different
widely used infinite pure-jump Levy processes (the VG (variance gamma process), NIG (normal
inverse Gaussian process) and CGMY (Carr-Geman-Madan-Yor process) under fuzzy and crisp

environments with different fuzzy numerical algorithms that are proposed in this chapter.

The main findings are as follows: under a fuzzy environment, the results of the option
pricing are more accurate than the results under a crisp environment; the fuzzy least squares
Monte Carlo algorithm yields more accurate pricing than the fuzzy binomial tree algorithm,
and the pricing effects via different infinite pure-jump Levy processes indicate that the NIG

and CGMY models are superior to the VG model.

The fuzzy least squares Monte Carlo-NIG-GJR-GARCH model has the best performance;
According to the MAPE evaluation, the model achieved 88.39% accuracy rate which is better
improvement by 10.34% than the crisp least squares Monte Carlo-NIG-GJR-GARCH model.
Furthermore, the variance of the accuracy rate of the fuzzy least squares Monte Carlo-NIG-
GJR-GARCH model is 22.91% of that of the crisp least squares Monte Carlo-NIG-GJR-GARCH

model, it is less than the crisp model; this shows that the proposed fuzzy model is more stable
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than the crisp model in terms of pricing accuracy rate. The results indicate that the proposed
fuzzy model is effective and its pricing results are more accurate and stable even with many

reality uncertainty factors included.

In addition, the convergence efliciency of the least squares Monte Carlo algorithim can be

improved by 60% via the Sobol sequence and Brownian bridge method.

Finally, Chapter 6 summarizes the thesis and describes future works.
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Chapter 1

Introduction

1.1 Background

The stochastic process is an essential part of modern probability theory. It is used as a theo-
retical tool for studying the stochastic evolution process in the world, which has been widely
used in fields such as physics, biology, chemistry, computer science, communication engineering,
dynamic reliability, economics, social sciences, management engineering, financial engineering
and other scientific engineering fields. In the past three decades, it has pla 1 role in
describing random phenomena widely used in various scientific and engineering ficlds, and its
importance has continuously increased with the rapid development of science and technology.
Among those stochastic processes, the Levy process has been widely and rapidly employed in

recent years.

Levy process is named after Paul Levy (1886-1971), who was one of the founding fathers
of the theory of stochastic processes. As the earliest scholar worked in this field, he and other
important scholars, Alexsander Yakovlevich Khintchine (1894-1959), and Kiyoshi Ito (1915-
2008), made a massive contribution in the development of stochastic process theory. The
Levy process has various mathematical properties, such as independent stationary increments,
stochastic continuity, and the ability to fit the characteristics of leptokurtic and fat-tailed

distributions. These properties are enable to characterize fluctuations in asset prices. Therefore.



Chapter 1. Introduction

the Levy process has attracted more special attention in the field of asset pricing. Furthermore,

as an important part of asset pricing, option pricing is a core issue in asset pricing research.

The Levy process includes both of a finite jump process and an infinite pure jump process.
For finite jump process, the earliest research on finite jump process was proposed by Merton
in 1976, who introduced Levy process into the option pricing and established a jump-diffusion
model, where an analytical solution was given to the European option pricing model. The
subsequent models, such as the double exponential jump diffusion model proposed by Kou
(2004) [1], the hybrid exponential jump model [2] by Ning Cai et al., the exponential jump
diffusion process to American option price problem by Levendorskii (2004) [3], are all belong to
the finite jumps type. However, finite jump processes consider only the finte big jumps in the
asset price fluctuations, they cannot characterize small, high-frequency jumps well. Therefore.
the follwing scholars have developed a more general jump process, that is infinite pure jump
process, it can better characterize the big jumps and high frequency small jumps simultaneously
in the asset price fluctuations. F . (1990) [4] used the Gamma variable
to describe the Levy process with a VG (Variance gamma) distribution; although only one
parameter was added, the model fits high-order moment characteristics of asset prices well.
The NIG (Normal inverse Gaussian) process proposed by Barndorft Nielsen (1997) [5] is one
of the most commonly used Levy processes, and this process offers high operating efficiency
and the ability to provide accurate characterisation of the tail behaviour of asset prices. The
variance gamma model (VG model) [4] proposed by Madan et al. (1990), the hyperbolic model
proposed by Prause (1999) [6], the NIG model proposed by Barndorff Niclsen (1997) [5] and
the CGMY (Carr-Geman-Madan-Yor process) model [7] proposed by Carr Peter et al. (2002)
are belong to the infinite pure jumps type. The scholars consider that the infinite pure jump
process can be a substitute for the finite jump process, such as Carr et al. (2002) [7] and Daal
et al. (2005) [8]. Since then, the infinitely jump process has been the latest research focus and

has been widely used in the option pricing.

Options are generally used as a financial derivative based on stocks, and play an important
part of financial assets. Options give their holders the right to buy or sell underlying assets

at an agreed-upon price (i.e., the exercise price). They also provide good risk management

2
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and create value in investment transactions. Options trading does not only occur in stock ex-
changes; rather, financial institutions also engage in a large number of over-the-counter options
transactions. Therefore, option pricing has always been the core of asset pricing research. How-
ever, after several major financial crises, establishing a more reasonable option pricing model
has become an issue of concern for both financial institutions and regulators. With continuous

development of the options market, the theory of options pricing is also improving.

It is worth mentioning that the real financial market environment is full of uncertainties that
are not as ideal as the assumptions in a theoretical model. On the one hand, the underlying
asset yield is not normally distributed but rather exhibits skewed and leptokurtic fat-tailed
characteristics in addition to a significant jump phenomenon in the asset price fluctuation.
These issues are widely recognized in academia. On the other hand, the parameters in the model
are taken as crisp values, but due to many subjective and objective uncertainty factors and
incomplete information in the real-life financial market, these parameters are often vague and
cannot be expressed using crisp values (i.e., co-exist uncertainty of randomness and fuzziness

simultaneously in the real-life financial market).

The concept of fuzzy sets was first proposed by Zadeh in 1965 [9]. Subsequently, S.Nahmias [10]
deveploped fuzzy variable, D.Dubois et.al [11] developed possbility theory, and Liu et al. estab-
lished a credibility theory with an axiomatic basising in 2002 [12] and 2004 [13]. Based on many
scholars’ contribution, fuzzy set theory gradually becomes a strong tool to handle incomplete
and uncertain situation, which also revealed a new direction for asset pricing theories. Many
scholars, including Muzzioli et al. (2001) [14], Carlsson et al. (2003) [15], Wu (2004) [16],
Thiagarajah et al. (2007) [17], Nowak et al. (2010) [18], Frank et al. (2013) [19], Liu et al.
(2005) [13] and Wang et al. (2014) [20] have successfully applied this theory to option pricing

problem.

Owing to the non-normality of random variables and the jump phenomenon of the asset
price fluctuation, the infinite pure jump Levy process can better capture the leptokurtosis and
fat-tailed characteristics of the assets yield and the big jumps and high-frequency small jumps

existing simultaneously in the asset price fluctuation of the real market situation. At the same
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time, fuzzy set theory is a powerful tool employed to address the uncertainty, and vagueness
of the social environment, thus applying it to options pricing models with infinite pure jump
Levy process, it can be a useful supplement to the option pricing method and can provide a

new theoretical basis for the pricing of options.

1.2 Motivation and Objectives

As the statement above, in asset pricing field, especially in option pricing problem, Levy pro-
cesses are becoming extremely important tools because they can more accurate to describe the
observed reality of financial markets than the models based on Brownian motion. In the “real”
market, the asset price fluctuation have jumps or spikes (see Figure 1.1), moreover, the asset
yield not a normal distribution but rather exhibits leptokertic and fat tails (see Figure 1.2),
these widely recognized issues have to be taken into consideration by the risk managers or
investors. Due to the finite jump Levy processes only consider the finite big jumps in the
fluctuation of the asset price, ignoring the high-frequency small jumps which is also existing
in the fluctuation of asset price, compared with finite jump Levy process, the infinite pure
jump Levy processes are more general jump processes which can better capture the big jumps
and high frequency small jumps simultaneously in the real market situation, such as bigger
jumps that represent market shocks and high-frequency smaller jumps that represent real-time
transactions. And in the real financial market, owing to the existence of factors such as infor-
mation asymmetry, individual judgement, and different risk preferences, the financial market is
an incomplete market whose incompleteness is not only randomness but also fuzziness. Thus,
introducing the fuzzy set theory can effectively combine randommness and fuzziness to more
closer the real market and can provide more reasonable investment decision making for the risk

managers or investors. (See Figure 1.3).

Therefore, to price options more rationally, in this thesis, we introduce fuzzy set theory and
the infinite pure jump Levy process into the options pricing model on the basis of previous

studies to further enhance and enrich option pricing theories. In addition, this thesis also
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discusses the theoretical and practical values of the options pricing model in a fuzzy environment
through numerical simulation and empirical analysis. The style of options mainly includes two
types: European options (to be exercised only at the expiration date) and American options (to
be exercised before or at the expiration date). Thus, this thesis will study from the following

two aspects in options pricing problem (See Figure 1.4, 1.5),

1. For European option pricing problem, on the basis of the Black-Scholes (BS) model,
we will first base on the VG (variance gamma) process (which is one of widely used infinite
pure-jump Levy processes) to construct European option pricing model, then, to be more
closer with the real financial market, we will integrate trapezoidal fuzzy random variables

to represent drift, diffusion, and jump parameters of VG process.

Upon obtaining the fuzzy VG process European option pricing model which is pro-
posed in this thesis, the Monte Carlo simulation algorithm is used to conduct numerical
simulations, in which the instrumental variable method is employed to improve the con-

vergence speed of the Monte Carlo algorithm.

The numerical simulation experiments, and the empirical analysis which uses Tencent
Holding (HK.0700) and its stock options data, are used to compare the pricing result of
the Black-Scholes (BS) model in a crisp environment, the variance gamma (VG) process
options pricing model in a crisp environment, and the variance gamma (VG) process

options pricing model in a fuzzy environment.

The result of the analysis indicates that the fuzzy VG options pricing model is more
reasonable, the fuzzy interval can cover the market prices of options and the prices that
obtained by the crisp VG process option pricing model, and the fuzzy interval narrowing
as the option exercise price increases, it is consistent with the real-life market. On the
other hand, the fuzzy interval widens as the time to expiration increases. Because the
introduction of more uncertainties, the option price obtained under the proposed model is
higher than those of other models, it is also consistent with the real-life financial market.
The option price under the model is also more sensitive to changes in the jump parameter.

As the jump parameter increases, the fuzzy interval narrows. The expectation using fuzzy
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pricing is closer to the market prices of options than the pricing results obtained by the
crisp BS model, the results are more consistent with the real-life market. In addition, the
results demonstrate that the instrumental variable method can effectively improve the

convergence speed of Monte Carlo algorithm.

. For American option pricing problem. Unlike the European option, American option
allow early exercise, there is an optimal stopping problem, thus the issue is much more

complicated.

Therefore, taking into account the characteristics of asset price fluctuation, such as
time-varying, jump and leverage effect (i.e. asymmetric volaatility), first we obtain the
asset return rate model through GJR-GARCH model (Glosten, Jagannathan and Rundle—
Generalized autoregressive conditional heteroskedasticity model), and introduce infinite
pure jump Levy process into the asset return rate model for improving the model’s accu-

racy.

Then, to be more consistent with reality and include more uncertainty factors, we
integrate the more generalized parabolic fuzzy variable (which can cover the triangle and
trapezoid fuzzy variable) to represent the asset price volatility, meanwhile according to the
American option pricing theory, we derive the optimal exercise boundary, the continuation
holding region and the stopping holding region for the fuzzy American options. The
optimal exercise boundary can provide reasonable investment decision making for the

risk managers or investors.

Upon obtaining the fuzzy Levy-GJR-GARCH American option pricing model which
is proposed in this thesis, considering more general situations with the fuzzy variables
with mixed distributions, we then apply fuzzy simulation technology to the widely used
numerical algorithms (the binomial tree algorithm and the least squares Monte Carlo
algorithm) to create fuzzy pricing numerical algorithms, such as fuzzy binomial tree algo-
rithm, fuzzy least squares Monte Carlo algorithm, and we especially apply quasi-random
numbers that are produced by Sobol sequence, and Brownian Bridge method, to improve

the convergence speed of the least squares Monte Carlo algorithm.
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At last, an empirical study will be performed on our fuzzy pricing model using Amer-
ican options data from the Standard & Poor’s 100 index, and we comparatively analysed
the pricing effect of different widely used infinite purc-jump Levy processes (the VG
(variance gamma process), NIG (normal inverse Gaussian process) and CGMY (Carr-
Geman-Madan-Yor process)) under fuzzy and crisp environments with different fuzzy

numerical algorithms that are proposed in this thesis.

The findings are as follows: under a fuzzy environment, the result of the option pricing
is more accurate than the result under a crisp environment; the pricing results of short-
term options have higher accuracy than those for medium- and long-term options; the
fuzzy least squares Monte Carlo algorithm yields more accurate pricing than the fuzzy
binomial tree algorithm, and the pricing effects via different infinite pure-jump Levy
processes indicate that the NIG and CGMY models are superior to the VG model. The
fuzzy least squares Monte Carlo-NIG-GJR-GARCH model has the best performance.
Moreover, the option price increases as the time to expiration of options is extended
and the exercise price increases, the membership function curve is asymmetric with an
inclined left tendency, and the fuzzy interval narrows as the level set o and the exponent
of membership function n increase. In addition, the results demonstrate that the Sobol
sequence and Brownian Bridge method can effectively improve the convergence speed of

the least squares Monte Carlo algorithm.

1.3 Position of this study

Owing to the style of options mainly includes two types: European option and American option.
Thus, the main works of this thesis are summarized based on these two aspects. We show our

research position and main works in Fig. 1.6, 1.7.
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1.4 Structure of This Thesis

The rest of this thesis is organized as follows:

In Chapter 2 thoroughly reviews the available literature to establish the positioning of
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our study, examines research on the Levy process and fuzzy set theory for option pricing and
combines the Levy process and fuzzy set theory. We summarize and discuss these streams of

literature from the two perspectives of European options and American options.

In Chapter 3 provides necessary preliminary definitions for this thesis, including the infinite
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pure-jump Levy process, the Black-Scholes (BS) model, common fuzzy variables, fuzzy random

variables, the extension principle and credibility measures.

From Chapter 4 to Chapter 5, we describe the main achievements and contributions of

10
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this thesis, specifically as follows,

In Chapter 4, for the European option pricing problem, on the basis of the Black-Scholes
(BS) model, we make use of the fuzzy set theory to construct a European option pricing model
based on the VG (variance gamma) process (which is one of widely used infinite pure-jump Levy
processes) in a fuzzy environment, with drift, diffusion, and jump parameters as the trapezoidal

fuzzy random variables.

Following this, the Monte Carlo simulation algorithm is used to conduct numerical simula-
tions, in which the instrumental variable method is employed to improve the convergence speed

of the Monte Carlo algorithm.

The numerical simulation experiments, and the empirical analysis which uses Tencent Hold-
ing (HK.0700) and its stock options data, are used to compare the pricing results of the Black-
Scholes (BS) model in a crisp environment, the variance gamma (VG) option pricing model in a

crisp environment, and the variance gamma (VG) option pricing model in a fuzzy environment.

The results indicate that the fuzzy VG option pricing model is more reasonable; the fuzzy

11
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interval can cover the market prices of options and the prices that obtained by the crisp VG
process option pricing model, moreover, the expectations using fuzzy pricing are closer to the
market prices of options than the pricing results obtained by the crisp BS (Black-Scholes)
model, the results are more consistent with the real-life market. In addition, the instrumental

variable method can effectively improve the convergence speed of Monte Carlo algorithm.

In Chapter 5, we further extend our research on the American option pricing problem.
Due to the American option allow early exercise, which creates an optimal stopping problem;

thus, the issue becomes much more complicated.

Taking into account the time-varying, jump and leverage effect (i.e. asymmetric volatility)
characteristics of the assct price fluctuation, we first obtain the asset return rate model through
the GJR-GARCH model (Glosten, Jagannathan and Rundle-generalized autoregressive condi-
tional heteroskedasticity model) and introduce the infinite pure-jump Levy process into the

asset return rate model to improve the model’s accuracy.

Then, to be more consistent with reality and include more uncertainty factors, we integrate
the more generalized parabolic fuzzy variable (which can cover the triangle and trapezoid fuzzy
variable) to represent the asset price volatility; meanwhile, according to the American option
pricing theory, we derive the optimal exercise boundary, the continuation holding region and
the stopping holding region for the fuzzy American options. The optimal exercise boundary

can provide reasonable investment decision making for the risk managers or investors.

Following this, considering more general situations with the fuzzy variables with mixed
distributions, we apply fuzzy simulation technology to the widely used numerical algorithms
(the binomial tree algorithm and the least squares Monte Carlo algorithm) to create fuzzy
pricing numerical algorithms, such as the fuzzy binomial tree algorithm and fuzzy least squares
Monte Carlo algorithm, and we particularly applied quasi-random numbers that are produced
by the Sobol sequence, and Brownian bridge method, to improve the convergence speed of the

least squares Monte Carlo algorithm.

Finally, by using American options data from the Standard & Poors 100 index, we em-

12
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pirically test our fuzzy pricing model and comparatively analyse the pricing effect of different
widely used infinite pure-jump Levy processes (the VG (variance gamma process), NIG (nor-
mal inverse Gaussian process) and CGMY (Carr-Geman-Madan-Yor process)) under fuzzy and

crisp environments with different fuzzy numerical algorithms that are proposed in this chapter.

The findings are as follows: under a fuzzy environment, the results of the option pricing
are more accurate than the results under a crisp environment; the pricing results for short-
term options have higher accuracy than those for medium- and long-term options; the fuzzy
least squares Monte Carlo algorithm yields more accurate pricing than the fuzzy binomial tree
algorithm, and the pricing effects via different infinite pure-jump Levy processes indicate that
the NIG and CGMY models are superior to the VG model. The fuzzy least squares Monte
Carlo-NIG-GJR-GARCH model has the best performance. In addition, the Sobol sequence and
Brownian Bridge method can effectively improve the convergence speed of the least squares

Monte Carlo algorithm.

Finally, Chapter 6 draws conclusions and describes future work based on this thesis.

13



Chapter 2

Current Research State

In this chapter, we will thoroughly review the available literature to establish the positioning
of our studies, examines research on Levy process and fuzzy set theory for option pricing and
combines the Levy process and fuzzy set theory. We will summarize and discuss these streams

of literature from the two perspectives of European option and American option.

2.1 Literature Review and Remark of European option

price model

The Levy process is a stochastic process with good mathematical properties, such as inde-
pendent stationary increments, stochastic continuity. These properties mean that the process
can have plenty of applications. Coupled with its ability to fit leptokurtosis and fat-tailed
characteristics, this makes the process play a pivotal role in options pricing models. As early
as 1976, Merton introduced the Levy process into options pricing and established the jump-
diffusion model, which provides analytic solutions for the European options pricing model [21].
Following this, research works based on the stochastic process with jump can be further di-
vided into two main types: a series of models that measure finite jumps and the other that

measures infinite pure jumps. The finite jump series of models include the double exponential

14
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jump diffusion model proposed by Kou (2004) [1] and the hybrid exponential jump model [2]
by NingCai et al., whereas the infinite pure jump series of models include the variance gamma
model (VG model) [4] proposed by Madan et al. (1990), the hyperbolic model proposed by
Prause (1999) [6], and the CGMY model [7] proposed by Carr Peter et al. (2002). In recent
years, options pricing based on jump-type Levy processes has also garnered much attention.
For example, Song et al. (2011) proposed a non-linear regression method to approximate the
options pricing problem of pure jump Levy processes [22]. On the other hand, Bollerslev et al.
(2013) analysed the heterogeneity of stock volatility and found the moment characteristic of
the data to be non-normal and that a significant jump tail phenomenon exists. This demon-
strated that the usage of normal models to characterise real data is subject to rather significant
limitations [23]. Yuji Umezawa et al. (2015) assumed that the underlying asset price obeys a
time-varying Levy process and studied the pricing of path-dependent discrete derivatives. As a
result, they obtained a multivariate characteristic function with a backward recursive relation
and semi-analytical pricing formula for discrete options such as the lookback option, the barrier

option, and the geometric asian option. [24].

The above-mentioned studies are based on the framework of stochastic processes with jump
that reveal the leptokurtosis and fat-tailed characteristics of the underlying asset. Since Zadeh
has developed fuzzy set theory, it has been widely used in the field of financial research. Muzzioli
et al. (2001) introduced fuzzy numbers into the conventional binomial options pricing model and
deduced the fuzzy binomial options pricing formula [14]; Carlsson et al. (2003) demonstrated
how to price real options in a fuzzy environment and developed a new fuzzy real options pricing
model [15]. Wu (2004) designated the parameters of stock price, risk-free rate and volatility in
the European options pricing model as fuzzy numbers and applyed sensitivity analysis to find
the fuzzy interval of options price in a fuzzy environment to obtain the membership degree of
the fuzzy option [16]; Thiagarajah et al. (2007) treated the parameters in the options pricing
model as adaptive fuzzy numbers and performed numerical experiments using the model [17].
With the continuous development of the measurement model, options pricing models on the
basis of fuzzy set therory have also been developed. For example, Nowak et al. (2010) used

the minimal entropy martingale measure to calculate the fuzzy pricing formula of European

15
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call options in a fuzzy environment and used Monte Carlo simulations to conduct numerical
experiments [18]; Thavaneswaran et al. (2013) f lue of the stock price
before multiplying by the original payoff function to obtain the binary option payoff function
before incorporating the binary options pricing formula in a fuzzy environment [19]. Liu et al.
(2005) systematically studied the theory of credibility and fuzzy simulation technology. This
provided a good foundation for the application of fuzzy set theory in financial markets [13].
Wang et al. (2014) considered both the risk and fuzziness of financial markets before setting
the interest rate and volatility as fuzzy numbers to conduct a pricing analysis on the Geske
compound option to obtain the fuzzy mean of the option price. Following this, numerical

analysis was performed on the fuzzy pricing [20].

Because the Levy process can capture the jump characteristics of the underlying assets well
and the pricing model assumptions in a fuzzy environment are more aligned with reality, some
scholars have applied both the Levy process and fuzzy set theory to options pricing models. One
of the earliest studies performed was by Xu et al. in 2009. In the study, fuzzy set theory was
applied to the jump diffusion model, and the validity of the model was demonstrated through
numerical experiments [25]. Romaniuk et al. (2010) proposed the application of stochastic
analysis and fuzzy set theory on the basis of options pricing methods. Numerical experiments
were performed by means of the Monte Carlo simulation method, and the pricing formula of
European call options was analysed in detail [26]. Zhang et al. (2012) treated parameters
such as the risk-free interest rate, drift rate and jump intensity as fuzzy numbers and studied
the double exponential jump diffusion model pricing formula of European options in a fuzzy
environment, explaining the rationality of this method [27]. Nowak et al. (2014) introduced
fuzzy set theory and the geometric Levy process into the European options pricing model
and performed numerical experiments [28]. Feng et al. (2015) studied the problem of pricing
European call options using a time-varying Levy process in a fuzzy environment. Through an
empirical study of data from the S&P 500 index, they found the model to be a better fit than
using a time-varying Levy process and the B-S model [29]. Table 2.1 and 2.2 summarize the
research progress of the European options pricing model based on the Levy process and fuzzy

parameters.
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2.1.1 Remark of European option price model

In summary, even though scholars have applied fuzzy set theory and the Levy process to
perform plenty of theoretical and empirical research about options pricing, these studies mostly
focus only on one aspect, whereas studies that consider both aspects of fuzzy set theory and
Levy process tend to use finite jump process conditions. Compared with the the finite jump
process, the infinite pure jump Levy process can better describe the characteristics of the market
such as bigger jumps to represent market shocks, whereas smaller jumps represent real-time
transactions. Therefore, to address the shortcomings of existing research, this thesis considers
both fuzzy set theory and an infinite pure jump condition and establishes an infinite pure jump

European options pricing model in a fuzzy environment.

2.2 Literature Review and Remark of American option

price model

Jin-Chuan Duan (1995) [30] was the first to apply the GARCH model (Generalized autoregres-
sive conditional heteroskedasticity model) in European option pricing theory. He also performed
a comparative analysis of pricing results obtained using the B-S model under risk conditions.
His findings demonstrated that the GARCH model is effective in reducing the systematic error
in pricing. Saez Marc (1997) [31] studied the effect of stochastic volatility on option pricing
using symmetric and asymmetric GARCH models of Spanish options. He discovered that the
IEGARCH (1,2)-M-S model is the most effective model for capturing the stochastic volatility
of the return rate of IBEX-35 stocks. Lars Stentoft (2012) [32] applied a GARCH model to the
pricing of American options; he used a Monte Carlo approach to form simulation analysis. The
results indicate that asset prices with GARCH effect can better reflect the actual conditions.
Therefore, we can conclude that by incorporating a GARCH model in an option pricing model,
we can improve the pricing accuracy. In addition, many researchers have incorporated Levy
processes in option pricing model and studied the non-normality and jumping characteristics

of the underlying asset. Levy processes include finite jumps and infinite pure jumps, the ear-
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Table 2.1: Research progress of European options pricing model based on the Levy process and

fuzzy parameters (1)

Usage method

Formula

Objective

Jump Diffusion Model [21]

AP/ P* = (o — Akb)dL + dgp

Allows jump process in the rate of return, a
more general option pricing model that does
not depend on investor preferences to be de-
duced.

Double Exponential Jump
Diffusion Model [1]

NT(1)

= =X)L+ odW (1) +d ( Z V-1
=1

Uses the jump model in place of the BS
model and applied to American options and
path-dependent options pricing to obtain the
analytical solution of options pricing.

Hybrid Double Exponential
Jump Diffusion Model [2]

m n

Jy(y) = Z piie " lymop + Z a0;¢ " ycop

i=1 j=1

A flexible, hyper-exponential juap diffusion
model based on Laplace transform is pro-
posed, and the non-singularity of the corre-
lated high-dimensional matrices is proved.

Variance Gamma Model

(VG Model) [4]

f(z) = /;O [0”2/(2”2”)/(0 2mw)] g(v)dv

Assumed that the variance of the yield fol-
lows the gamma distribution to establish an
option pricing model for the pure jump pro-
cess.

Hyperbolic model [6]

AP = exp(d X, — tlog M (9))d P’

Makes use of the hyperbolic Levy process
and the inverse Gaussian process to set up
an option pricing model with practical appli-
cations.

varying Levy Process [24]

exp(—Glr]) o
C LY for - < 0 Includes both finite and infinite jutups to
CGMY model [7] koauy (v) = exp(—M|z|) for more vividly describe financial assets price
FW ora >0 changes.

. . N? An option pricing method based on the non-
Non-linear regression 56 g S linear regression asymptotic of the pure jum
asymptotic pure jump Levy log 57 = log 5 + Z Gy & yIop pute jurip

rocess [22] Py Levy process that targets the complexity of
p h option pricing model under the Levy process.
A in-fill asymptotics tntn Made use of the in-ill asymptotics method to
method to estimate the eyl = Z | A:L])(j>|21(| Ampl)| < ”'Ej)"fw) analyse the dependencies of the jump tail de-
jump tail parameters of the it 1 cay parameters and jump parameters in the
Levy process [23] pricing model of assets with jumps.

. o . Obtained the multivariate characteristic
Discrete Derivative Pricing v 5t ; e function of intertemporal joint distribution
Model Based on the Time- Gri=Inz = (r—ql+oy(=)n+ X . D Jou L

20 and obtained the semi-analytical pricing for-

mula of discrete options.

Fuzzy Binomial Option

Pricing Model [14]

O
By =

az(l —a) — K 4 asw

PE(L+7) — a1 — a(as — m)

(1 - e)(as — ay) (1+7r)

The binomial option pricing model is com-
bined with fuzzy numbers. It has certain ad-
vantages and can provide different degrees of
information to the market.

Fuzzy Real Option Pricing
Model [15]

FROV = Soe ' N(dy) — Xe TN (dy)

The possibilistic mean and variance are set
as fuzzy numbers to establish the fuzzy real
option pricing model to help determine the
best investment opportunity.
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Table 2.2: Research progress of European options pricing model based on the Levy process and

fuzzy parameters (2)

BS Model in a Fuzzy Envi-
ronment [16]

= @EaN@) - (uoe ™09 N(d)

The interest rate, volatility and stock price
are set to fuzzy numbers, and the assump-
tions on the parameters in the BS model are
relaxed.

BS Model Based on
Quadratic Adaptive Fuzzy
Numbers [17]

FOOV = Soe ™" N(dy) - Xe ™™ N(dy)

Quadratic adaptive fuzzy numbers are ap-
plied to the BS model for options pricing.

Pricing European Call Op-
tion Based on Fuzzy The-
ory and Stochastic Analysis
(18]

Co= ’”TZ
Cy=

() -

(;,v (ug —-r)
n'

e T RD(d" ))

Considering the jump of the underlying as-
sets and the vagueness of the parameters, an
option pricing method based on fuzzy theory
and stochastic analysis is established.

Binary  Option  Pricing
Model in a Fuzzy Environ-
ment [19]

pla.l) =

"TOR] [ (we™) Halo) < Sp < b(w)}]

By considering the uncertainty in the matu-
rity value of the underlying asset, the binary
option pricing model based on fuzzy matu-
rity value is established.

Credibility ~Theory and
Fuzzy Simulation Technol-
ogy [13]

L ={&(0) |0 € ©, Pos{0} > o}

Systematically explains the uncertainty the-
ory and its simulation method.

Geske Compound Option
Pricing Model in a Fuzzy
Environment [20]

C = SNy(dy, dy, p) — Kae "2 No(ds, dy, p) — K

e "N (ds)

The Geske compound option pricing model
in a fuzzy environment is established by con-
sidering the risk and vagueness in the finan-
cial environment.

A Jump Diffusion Model

;\z

t
t

A jump diffusion model based on fuzzy vari-
ables is established, and the weighted possi-

; 1) — () s :

Based on Fuzzy Vari- S(t) = S(0)ct 27T i o o A

ables [25] i1 bilistic mean jump diffusion model in a crisp
environment is obtained.

Fuzzy  Option  Pricing Based on fuzzy numbers and stochastic anal-

Model under the Levy Cy=exp(—r(T — 1) EQ(f(S) t)) ysis theory, the fuzzy option pricing formula

Process [26]

is established after considering various uncer-
tainties.

Double Exponential Jump
Diffusion Model in a Fuazzy
Environment [27]

It is assumed that the interest rate, drift,
volatility and jump parameters are fuzzy
numbers, and the double exponential jump
diffusion model in a fuzzy environment is es-
tablished.

European Option Pricing
Formula Based on the Mar-
tingale Method and Fuzzy
Theory [28]

HE
rt

WEI(T—1) ey -
— e ls —t) | i T — )™
‘ Z H m;! ( )

m=(my,ma,.. ,mD)END i=1

Applying of fuzzy algorithm and incorporat-
ing expert advice or imprecise estimates to
establish a European options pricing formula
in a fuzzy environment.

Pricing of European Call
Options with the Time-
changed Levy Process in a
Fuzzy Environment [29]

8, = B9 {cxp(f [—iu(r—q) + (1) + i’u,/?;(l)})’[}}

This paper studies the high frequency jump,
stochastic volatility and stochastic jump in
financial markets, and establishes option
pricing under the fuzzy time-changed Levy
Process.

VG Option Pricing Model
in a Fuzzy Environment
(Our model)

Iy

1 -c t
(2 r1+s d 7>

- K (=rt) l ;
Cexp(~r ((\/ 11— o

The VG options pricing model in a fuzzy en-
vironment is established to provide a better
fit. for real-life problems.
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liest reaserch on finite jumps was proposed by Merton in 1976, subsequently various scholars
proposed the single exponential and the double exponential jump diffusion models for option
pring, for example, Levendorskii (2004) [3] introduced the exponential jump diffusion process
to American option price problem and provided an effective pricing solution; Based on multi-
nomial approximation and exponential jump diffusion process, Maller et al. (2006) [33] studied
American option pricing problem, they consider that this scheme is relatively applicable to
path-dependent options pricing problem. However, finite jump process can not better charac-
terize high-frequency small jumps, thus Madan et al. (1990) [4] used the Gamma variable to
describe the Levy process with a VG (Variance gamma) distribution; although only one param-
eter was added, the model fits high-order moment characteristics of asset prices well. The NIG
(Normal inverse Gaussian) process proposed by Barndorff Nielsen (1997) [5] is one of the most
commonly used Levy processes, and this process offers high operating efficiency and the ability
to provide accurate characterisation of the tail behaviour of asset prices. And some scholars
consider that infinite pure jump process can substitute jump diffusion process, such as Carr et
al. (2002) [7] and Daal et al. (2005) [8]. Thus infinite pure jumps offering wider application
scope in option pricing, for example, Avramidis et al. (2006) [34] based on VG model studied
the Monte-Carlo algorithm for path-dependedent options. Song et al. (2011) [35] based on
asymptotic expansion and nonlinear regression method to obtain the approximate option price
for the infinite pure jump levy process option pricing problem. As theoretical research advances,
Peter Christoffersen et al. (2010) [36] have combined a GARCH model and Levy processes,
resulting in the GARCH-Levy option pricing model, which better suits the financial environ-
ment. Byun et al. (2013) [37] studied the dynamic volatility and non-normality of underlying
asset using the Levy-GARCH model, and based on an empirical analysis of the S&P500, they

demonstrated that their model has higher precision in option pricing than previous models.

Regarding the application of fuzzy set theory in option pricing, Cheng-Few Lee et al.
(2005) [38] were among the first to incorporate fuzzy decision space in investor decision making,
deriving a B-S model under a fuzzy environment. Their research demonstrates that models that
fail to incorporate fuzzy numbers tend to underestimate the values of call options. However,

empirical research indicates that volatility in asset prices is often time-varying and non nor-
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mality; consequently, under the framework of a fuzzy system, Leandro Maciel et al. (2015) [39]
took into account the time-varying volatility, clustering of volatility and other factors. Us-
ing empirical testing, they showed that under a fuzzy environment, the GJR-GARCH model
(Glosten, Jagannathan and Rundle-GARCH model) provides better prediction than the tradi-
tional GARCH model. Liu Wen-Qiong et al. (2013) [40] used fuzzy set theory to study the
European option pricing problem under the condition of jump-diffusion. They treated the in-
terest rate and jump frequency as triangular fuzzy numbers and obtained the option fuzzy price
range through empirical analysis. Feng Zhi-Yuan et al. (2015) [41] applied a time-varying Levy
process with high-frequency jumps and stochastic volatility for fuzzy pricing of European call
option; using option data for the S&P500 Index, they demonstrated that their model better fits
the data than state-of-the-art models. Therefore, only by simultaneously studying the fuzzi-
ness, time-varying volatility and jump characteristic of the asset prices can we obtain option

pricing that fits the actual conditions.

Regarding research works about American options based on numerical approaches, Richard
Breen (1991) [42] and Mark Broadie et al. (1994) [43] have each applied the convergence ac-
celeration methodologies and extrapolation methods in the binomial tree option pricing model,
which in turn improves the model’s convergence speed. Clement et al. (2002) [44] verified the
convergence of the least squares Monte Carlo approach; they demonstrated that the asymptotic
error obeys a asymptotic Gaussian distribution. Lars Stentoft (2004) [45] demonstrated that
among the high-dimensional calculation methods, the least squares Monte Carlo approach is
clearly superior to the binomial tree method and finite difference algorithm; the least squares
Monte Carlo approach can easily perform ten-dimensional mathematical operation, whereas
the finite difference method is no longer valid for calculations with more than five dimensions.
Afterwards, in 2008, Lars Stentoft [46] compared the least squares Monte Carlo approach with
the American option pricing method proposed by Carriere in 1996, and he found that the least
squares Monte Carlo approach provides better results. From financial model research, Jorg
Kienitz et al. (2012) [47] performed key analysis regarding how the quasi-random number and
Brownian Bridge approach can be used to improve Monte Carlo method, and they applied

the improved calculation method in option pricing. However, there are relatively few studies
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regarding American option pricing theory under a fuzzy environment based on numerical ap-
proaches, for example, Yoshida et al. (2006) [48] based on Black-Scholes model constructed an
American option pricing model which set the underlying price as fuzzy variable and through
numerical simulation to verify the proposed model effectiveness. Rather, most of existing lit-
erature provides analysis based on the binomial tree method, such as Silvia Muzzioli et al.
(2008) [49] treat the volatility as a fuzzy number and used the multiple-period binomial tree
method to obtain risk-neutral valuations of American options. Table 2.3 and 2.4 summarized
the research progress of American options pricing model based on the Levy process and fuzzy

parameters.

2.2.1 Remark of American option price model

Through review in the existing literature, we observe that there are abundant studies regarding
European option, but studies about American option pricing are still limited. Furthermore, the
existing studies mainly focus on numerical algorithm improvements, and there is insufficient
research intended to improve the theoretical model. Therefore, we have constructed the fuzzy
Levy-GJR-GARCH American option pricing model which considered both fuzzy set theory and

an infinite pure jump condition, it is more consistent with reality.

2.3 Summary and Remark

This chapter aimed to set up the positioning of our studies through review of the existing
literature. Here, we summarized and discussed the development of research in Levy process,
fuzzy set theory in option pricing, and a research in combining the Levy process and fuzzy
set theory, we concluded them from European option and American option two aspects, for
being theoretical supports and explanation better of our research meaning on theoretical and

practical values.
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Table 2.3: Developments in research regarding American option pricing models based on Levy
process, GARCH models and fuzzy parameters (1)

Usage method

Formula

Objective

Symmetric and asymmetric
GARCH-type model [31]

P q
= ¢o+ Z Qir—i + Z 0;2
=1 =1

Study the cffect of stochastic volatility and
stochastic interest rate on option pricing.

American option pricing
model based on the
GARCH model [32]

Sy = Syexp{ma(;0n) - 6 4+ Vhiei}

Analyse and discuss current American
option pricing simulation methods, develop
an empirical financial research handbook.

Variance gamma model
(VG model) [4]

HOES /Oo [e””z/@”z”)/(a 27v)] g(v)dv

0

Establish an pure jump process option
pricing model by presuming that the rate of
return conforms to gamma distribution.

Normal inverse Gaussian
model (NIG model) [5]

9(8) = —pS(B+ B){(a — 8 — B)/(a+ 8+ B)}/2

Use an NIG model to perform theoretical
analysis and maximum likelihood
estimation.

CGMY model [7]

-Gz
Cw for x < 0
- x
kCGMY(I) - exp(—[‘ﬂ.’};")
W for x >0

Tuclndes both finite and infinite junps to
more vividly describe financial assets price
changes.

Foreign currency option
pricing model based on VG
process

S(t) = S(0) exp[(p 4+ w)t + X (t;04. 1. 0)]

Verify that option pricing model based on
Infinite jump process is superior than based
ot BS model or finite jump process.

Path-dependent pricing
model based on VG process

S(t)=S0)exp{(w+r—qgt+ X (1)}

Verify that combine the gamma bridge
sampling with randomized quasiMonte
Carlo to reduce the variance can further
improve the efficiency of option pricing.

Non-linear regression
asymptotic pure jump Levy
process [22]

NE
log §} =log Sy + > G

i=1

An option pricing method based on the
non-linear regression asymptotic of the pure
jump Levy process that targets the
complexity of option pricing model under
the Levy process.

Discrete time stochastic
volatility model
(GARCH-levy model) [36]

d(In(Sy)) = (r — 1/2 % a¥)dt + adz(t)

Study the cffect of stochastic volatility and
jump characteristics on option pricing under
a risk-neutral condition.

Modified option pricing
model based on GARCH
and the Levy process [37]

In(S,/S; 1) =u+ego2=w+ B0l +az2_, +8, 12

Study the cffect of asset price dynamic
volatility and non-normality on option
pricing.

Fuzzy GARCH-type
model [39]

q P
2 _ 2 2
Tip = Wi + § Cin?y T § Bindiy,
n=1 n=1

Study the time-varying characteristics,
clustering and other characteristics of
underlying asset volatility under a fuzzy
environment.
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Table 2.4: Developments in research regarding American option pricing models based on Levy
process, GARCH models and fuzzy parameters (2)

Accelerated binomial tree
option pricing model [42]

e A PO + (1 - p)Crin)

Apply convergence acceleration technology
on the binomial tree option pricing model;
improve the precision of pricing and
convergence speed.

American option pricing
simulation based on the

binomial tree calculation
method [43]

A A A
CH(S) = M Cy(S) , CE(St) = X Cl(Sy) + (1 = X)L (S)

Study the price ceiling and price floor of the
dividend-paying American call option and
put option.

American option pricing
simulation based on the
least squares Monte Carlo
approach [44]

Zle; + E zilp,. B, s T 2LlB;. B,
i=j+1

Study the convergence of the least squares
Monte Carlo approach proposed by
Longstaff and Schwartz.

American option pricing
simulation based on the
least squares Monte Carlo
approach [45]

Vi(te) = max(Z(te). B[V (tp11)| X (t0)])

Comparative analysis of subtle differences
between different numeric methods of
American option pricing; evaluation of the
effectiveness of different methods.

Quasi-Monte Carlo and
Brownian Bridge
approach [47]

f(2)

Tmprove the convergence efficiency of the
least squares Monte Carlo approach using a
quasi-random number and Brownian Bridge
approach.

Fuzzy binomial tree
American option pricing
model [49]

1
U, () = max{K — s, 1

(Puns1(18) + Pavnsa(ds))}

Study fuzzy binomial tree American option
pricing problems when volatility is set as a
fuzzy number.

Fuzzy Levy-GJR-GARCH
American option pricing
model (Our model)

=[ min_V(S.1)
2 SSES,

w S.<S<5.,

max V(S,1)]

Establish the Levy-GJR-GARCH American
option pricing model under a fuzzy
environment; improve option pricing results
to better match the real-life situation.
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Chapter 3

Preliminaries

In this chapter, we provide some necessary basic knowledge used in the studies of this thesis,
which including infinite pure jump Levy process, the Black-Scholes (BS) model, common fuzzy

variables, fuzzy random variable, the extension principle and credibility measure.

3.1 Infinite Pure Jump Levy processes

A Levy process is a self-adapting process with independent and stable random increments.
Its characteristic function is ®,, = (u|F}) = F {exp(iux;)} = exp(o(u)), where ¢(u) is the

characteristic exponent of the characteristic function. ¢(u) is formulated as follows:

+oo

o(u) = ibu — %O‘ZUQ + / (e™* — 1 — iuxljy<i)v(de) (3.1)

o0

The whole expression consists of drift, diffusion and jump elements; # and o represent the
measure of drift and the measure of diffusion, whereas v is the measure of jump. Hence, (8, 0, v)

represent all information in the Levy process, and it is also known as the three elements of Levy.

Levy processes include two major types of processes: jump-diffusion processes and infinite
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pure jump processes. The jump-diffusion processes include the Merton model, and double
exponential jump model, for example, whereas examples of pure jump processes include the VG
(Variance gamma process) model, NIG (Normal inverse Gaussian process) model, and CGMY
(Carr-Geman-Madan-Yor process) model. Compared with jump-diffusion processes, there are
fewer parameters in the pure jump process, it contains more high-order moment characteristics
and offers simpler calculations, and it has broader applications in current research; therefore.

our study chose to use a pure jump process for our model analysis.

Our study used more mature Levy processes VG, NIG and CGMY simulation technology
to analyse the option pricing and performed comparative analysis of the simulation effect of

these three jump processes.

The VG process is a random process driven by Gamma process; it has good mathematical
properties and is considered to be a finite variation process. Moreover, the incremental part of
the VG process exhibits leptokurtic and fat-tailed characteristics, which can resolve the issue

of the “volatility smile”.

The NIG process is a random process formed when the IG (Inverse Gaussian) process
performs time-varying on Wiener process; this process can provide excellent description of fat-
tailed data, and it also possess other good properties, such as the additive property, which
makes formula deduction and application easier. Simultaneously, it is easier to achieve measure

conversion for this process, which increases its application in option pricing.

The CGMY process is a tempered stable random process based on the VG process with
the addition of the Y parameter. The existence of the Y parameter increases the structural
complexity of the model, but it also enriches the model’s data presentation capability and allows
better description of financial data characteristics, such as infinite jumps. The characteristic

function of these three Levy processes are expressed as follows:
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(1) VG process:

B(e"™) = p(u; 0,v,0)

1
= (1 — iuvh + éozwz)_% 32
of which,
1
C==->0
v
1 1 1
Z\/[ g ( 1021}2 _I_ §O_2U _I_ 500)—1 > 0
1 1 1
G= (g0 + 5ot —guf) >0

where C represent a measure of the overall level of activity, G and M are measure the

jump intensity in negative and jump intensity in positive respectively.

(2) NIG process:

E(e™*) = o(u; A\, k)

= exp(nV/ A2 — P—r\/ A2 — (1 + iu)?) (3.3)

of which, A > 0, Kk > 0, —\ <1 < A, X controls the kurtosis, 1 controls the skewness,

is the scale parameter.

(3) CGMY process:

E(e™*) = o(u; C,G, M,Y)
= exp(Cg(—Y)(M —iu)¥

+ (G +in)Y —MY —-GY) (3.4)

of which, C' >0, G >0, M > 0, Y < 2, g represents gamma function, C,G,M parameters
are the same meaning with VG process, Y describes the statistical characteristics of

financial data.
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3.2 Black Scholes model

In 1973, Black and Scholes established the famous Black-Scholes (BS) pricing model for Eu-
ropean call options, it was certainly a remarkable achievement in options pricing theory, the

specific form as follows,

Cy = N(dy)Sy — N(dp)Ke (3.5)

of which,

1 S() 02
dy = U—\/%[ln(?) + (r + 7)15]

dgzdl—U\/E

where N (o) represents the cumulative distribution function, ¢ represents the time to expiration,
Sp is the underlying asset price at initial time, K is the exercise price, r is the risk-free rate, o

represents the underlying asset price volatility.

3.3 Common Fuzzy Variables

The concept of fuzzy sets was first proposed by Zadeh in 1965 [9]. It gradually developed into

a more complete fuzzy theory, which revealed a new direction for asset pricing theories.

Let A be a mapping of the domain X to [0, 1], that is, A: X — [0,1], z — A(z) is called a
fuzzy set on X. A(x) is called the membership function of the fuzzy set A, and the set of all
fuzzy sets on X is denoted as F(X). If o € [0,1], A, = {z € X | A(z) > a}, then A, is called
the a-level set of fuzzy set A. If @ is a regular convex fuzzy set with a upper semi-continuous

membership function a(x) and the level set a,, is bounded, i.e., a € [0, 1], then a is called a fuzzy
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number. Common fuzzy numbers include triangular fuzzy numbers, trapezoidal fuzzy numbers,
parabolic fuzzy numbers and normal fuzzy numbers. The membership function graphs of the
respective fuzzy numbers are shown in Figure 3.1. The most commonly used fuzzy numbers
are triangular fuzzy numbers and trapezoidal fuzzy numbers, and their respective definitions

are as follows:

If the membership function of the fuzzy number A is:

Tr —
, ap <x < ag
Qg — a1
r—a
i) = < 3 as < x < ag (3.6)

a9 — A3

0, others

\

then A is a triangular fuzzy number and is expressed as A= (a1, as, as).

If the membership function of the fuzzy number A is:

(1 — aq
, oar <z <as
o — 41
1, ay < x < as
fi(x) = S (3.7)
T — Gy
IR <z< Qa4
ag — @4
0, others

\

then A is a trapezoidal fuzzy number and is expressed as A= (a1, a9,as,aq). If ay = asz, then
the abovementioned fuzzy number becomes a triangular fuzzy number; thus, triangular fuzzy

numbers are a special case of trapezoidal fuzzy numbers.
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If the membership function form of fuzzy number A is:

(

r —ay "
a1 <1< a

g —

17 Qa2 S xr S as

pix) = n (3.8)

T — (4

< ) yoa3 << ay
a3z — Q4

0, others

where A is a parabolic fuzzy number called A= (a1,a9,as3,a4),. If n = 1, the above is a
trapezoidal fuzzy number; if n = 1 and ay = a3, the above is a triangular fuzzy number. There-
fore, triangular fuzzy numbers and trapezoidal fuzzy numbers are special cases of parabolic
fuzzy numbers (See Figure 3.2). At this point, the « level set of A can be expressed as
~ ~L U ~ L

Ay =[Aa ,Aq | =[a1 + Valag — a1), a4 — Ja(ay — ag)], where A, is the o pessimistic value
U

of fuzzy variable A and A, is the o optimistic value of A.

If the membership function form of fuzzy number A is:
'—>7 r,a€ R, o0>0 (3.9)

where A is a normal fuzzy number called A = (@, o). The membership function of the normal

fuzzy number is shown in Figure 3.1.

3.4 Fuzzy Random Variable

The fuzzy random variable X is a mapping from a probability measure space (Q F,P) to a
fuzzy class of sets F., where the mapping X obeys measurability conditions, that is, Vo € 0, 1],

Xo(w) = [XE(w), XY (w)], and w € Q is a random interval, and therefore, X*(w) and XY (w)

are the usual random variables.

Let f: R — R be a measurable function. If X, X,,...X,, are fuzzy random variables de-

fined in the same probability measure space (€;, F;, P;), then X (w) = f(X1(w), Xo(w), ... X, (w))
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T T T 1 1 T T
Triangular Trapezoidal fuzzy Parabolic fuzzy number Normal fuzzy number
fuzzy number number A=(8.5,9.5,10.5,11.5), A=(14,0.5)
A=(1,2.5,3.5) A=(4.4,5,6.2,7.8)
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Numerical Value
Note: Triangular fuzzy number A = (1,2.5,3.5), trapezoidal fuzzy number A =
(4.4,5,6.2,7.8), parabolic fuzzy number A = (8.5,9.5,10.5, 11.5),, normal fuzzy num-
ber A = (14,0.5).

Figure 3.1: Membership Function Graph of Common Fuzzy Numbers
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Figure 3.2: Plot of membership function of a parabolic fuzzy number

is the same fuzzy random variable and is defined as

X(w) = f(Xq(w), Xao(w),...X,(w)),

of which, w € Q (3.10)
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If X1, X, ... X, are fuzzy random variables not defined in the same probability measure space
(Q, Fi, P) (1 =1,2...n), then X (w) = f(X1(w), Xa(w),...X,(w)) is a fuzzy random variable in
the product probability measure space (€7 X Qo X .80, FI X Fo X . X Fy, PL X Py x ... X By)

and is defined as

X (w) = F(X1 (w), Xa(w), ... Xn (w)).

of which, w € Oy x Q3 x ..Q0, (3.11)

3.5 Extension Principle

There is necessary to introduce the extension principle, which is one of most basic concepts
that can be used to generalize crisp mathematical concepts to fuzzy sets. Following Zadeh [9],

Dubois and Prade [50] and Zimmermann [51], the extension principle defined as follows:

Let X be a Cartesian product of universes, X = X; x ... X X,, and Al ey A, ber fuzzy
sets in X7, ..., X,, respectively. f is a mapping from X to a universe Y, y = f(zy,...,z,). Then

the extension principle allows us to define a fuzzy set B in Y by

B=A(y,p3(y) |y = flx1,..¥p), (x1, ..., ;) € X} (3.12)

where,

sup  min{pg @), ., p5l@)}, () #0
pg(y) = { @rael 1) (3.13)

0, others

where f~! is the inverse of f
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For » = 1, the extension principle reduces to

B = f(A) ={(y,nz) |y = f(z),x € X} (3.14)

where

pply) = €W | (3.15)

3.6 Credibility Measure

Assuming that ¢ is a fuzzy variable, of which lit us define ;z a membership function and ¢ a

real number respectively, event ¢ < g has the credibility in the following:

Cr{€ <g} = %[NGC{E < g} + Pos{¢ < g}] (3.16)

where let us define Nec{.} and Pos{.} [11] necessity and probability respectively in the follow-

ing.

Nec{¢ < g} =1 —suppe(n) (3.17)
n>g
Pos{¢ < g} = sup pig(n) (3.18)
n<g

A credibility measure have the property of self-duality, thus Cr{¢ < g} =1 — Cr{¢ > g},
and that represents the credibility event of the fuzzy variable. Assuming the fuzzy income of
a security is denoted by &, then Cr{¢ > 4} = 0.7 is the credibility of this security with future

earnings over 4 of 0.7.
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According to formulas (3.17) and (3.18), the following can be obtained.

Cr{e < g} = %[sup 1e(n) + 1 = sup ()] (3.19)

n<g n>g
similarly, this is written as follows.

Cr{e> g} = %[sup 1e(n) + 1 — sup pe()] (3.20)

nzg n<g

with respect to n fuzzy vectors & = &1, o, ..., &, &, is the fuzzy variable, z = 1,2,....,n and

the membership function of £ takes the minimum value of individual coordinates, i.e.,

pig(n) = min{pee, (m), prg, (n2), -+ g, (0n) } (3.21)

where n = (91,12, .., ).

And the expected value of € can be written as follows [54]:

‘+OO

Bl = [ Crigzglar- [ orfg<gar (3.22)

70

More information on fuzzy variables and credibility theory are shown in References [52, 53,

12, 10]

3.7 Summary and Remark

This chapter mainly introduced the theoretical tools which we will handle the uncertainty from

the real-life financial market, i.e., randomness and fuzziness co-exist at the same time. The
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asset yield is not a normal distribution but rather exhibits skewed and leptokurtic fat-tail
characteristics, in addition to a significant jump phenomenon in the asset price fluctuation.
Levy process has the ability to fit characteristics of the leptokurtic and fat-tailed distribution
of the asset yield as well as describe the jump phenomenon of the asset price fluctuation. Levy
process includes both of finite jump process and infinite pure jump process, however, finite
jumps process only consider the finite big jumps, ignoring the high-frequency small jumps
which is also existing in the fluctuation of asset price, compared with finite jump Levy process,
infinite pure jump Levy process can capture the big jumps and high frequency small jumps
simultaneously in the real market situation. Therefore, for the non-normality phenomenon
of the underlying asset yield, and the asset price fluctuation including big jumps and high
frequency small jumps simultaneously in the real market situation, the infinite pure jump Levy
process will be adopted to better characterize them. Meanwhile, fuzzy set theory as a powerful

tool employed to address the uncertainty, vagueness from the social environment.
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Fuzzy European Option Pricing Model

with Infinite Pure Jump Levy Process

4.1 Introduction

In 1900, Louis Bachelier, a famous French mathematician, first proposed an options pricing
model in his doctoral thesis. He also proposed a stock price stochastic model that was based
on the random walk hypothesis. This was recognised as a milestone in financial mathematics.
However, the model assumes that the stock price is subject to the arithmetic Brownian motion,
which may cause the underlying stock price to be negative and is hence not realistic. In 1965,
Paul Samuelson, a Nobel laureate in economics, assumed that stock prices obey geometric
Brownian motion and established a pricing formula for European call options using partial
differential equations. Subsequently, in 1973, Black and Scholes established the famous Black-
Scholes (BS) pricing formula [55] for European call options. This formula is independent of
investors personal preferences and can be used to provide analytical solutions for options price
risk parameters and leverage effects, for example. It was certainly a remarkable achievement
in options pricing theory. In the same year, Merton extended the model to include other
types of financial transactions. From then on, the BS model has often been referred to as the

Black-Scholes-Merton (BSM) model, and it won M. Scholes and R. Merton the Nobel Prize in
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1997.

It is worth mentioning that the above theoretical models were established under ideal as-
sumptions, whereas the real financial market environment is full of uncertainties and not as
perfect as the assumptions of the theoretical model. Consequently, the drawbacks and short-
comings of the options market based on the BSM pricing system are increasingly obvious. On
one hand, the underlying asset yield is not a normal distribution but rather exhibits skewed
and leptokurtic fat-tail characteristics in addition to a significant jump phenomenon in the
asset price fluctuation. These issues are widely recognised in academia. On the other hand, the
parameters in the BSM model are taken as crisp value, but because of the uncertainties and
incomplete information in the financial market, these parameters are often vague and cannot
be expressed using crisp value (i.e., randomness and fuzziness co-exist simultaneously in the
real-life financial market). Owing to the non-normality of random variables, the jump measure
of the Levy process can better capture the leptokurtosis and fat-tailed characteristics of the
underlying assets and has relatively more applications in options pricing models. At the same
time, fuzzy set theory is a powerful tool employed to address the uncertainty, vagueness of the
social environment; thus, by applying it to option pricing models with an infinite pure-jump
Levy process, it can be a useful supplement to the traditional pricing method and can provide a
new theoretical basis for the pricing of options. Therefore, to price options more rationally, this
chapter introduces fuzzy set theory and the infinite pure jump Levy process into an European
options pricing model on the basis of previous studies to further enhance and enrich options
pricing theories. In addition, this chapter also discusses the theoretical and practical values of
the options pricing model in a fuzzy environment through numerical simulation and empirical

analysis.

In summary, even though scholars have applied fuzzy set theory and the Levy process
to perform plenty of theoretical and empirical research about options pricing, these studies
mostly focus only on one aspect, whereas studies that consider both aspects of fuzzy theory
and Levy process tend to use finite jump process conditions. Compared with the finite jump
process, the infinite pure jump Levy process can better describe the characteristics of the market

such as bigger jumps representing market shocks, whereas smaller jumps representing real-time
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transactions. Therefore, to address the shortcomings of existing research, this paper considers
both fuzzy set theory and an infinite pure jump condition and establishes an infinite pure
jump European option pricing model in a fuzzy environment. The main research contributions
include the following: First, theoretically establishing an European option pricing model based
on the infinite pure jump Levy process and treating the drift, diffusion and jump terms as
the trapezoidal fuzzy random variables. The model assumptions are relaxed to those in a
fuzzy environment to better describe real-life problems. Second, Monte Carlo simulations and
empirical tests were used to accurately verify the feasibility of the model. Third, a instrumental
variable method was applied to improve the Monte Carlo simulation algorithm to achieve better
convergence. The structure of the remainder of this chapter is as follows: Section 4.2 is an in-
depth theoretical introduction of the European option pricing model that is in accordance with
the VG process in a fuzzy environment; Section 4.3 verifies the pricing model by applying
the Monte Carlo simulation method to European call options and analyses the sensitivity of
the pricing model to the jump parameters, meanwhile the instrumental variable method was
chosen to improve the convergence speed of the Monte Carlo algorithm; Section 4.4 presents
an empirical test of the pricing model using Tencent Holdings (HK.0700) and its stock options

data; Section 4.5 is the summary. Our conceptual framework is illustrated in Figure 4.1.

4.2 Options Pricing Model under the Levy Process in a

Fuzzy Environment

We first introduce the notation that is used in the remainder of this chapter:

4.2.1 Pricing Model under the Infinite Pure Jump Levy Process

In the probability space (€2, F, P) , the adaptation process X = {X; : ¢ > 0} is a Levy process.
If Xg =0 and X; has an independent, stationary random increments, that is AX;, = Xy A — X,

is independent of any time for ¢ > 0 and has the same distribution. The characteristic function
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Variable Description

{X:} Levy process

0 Drift rate

o Volatility

v Jump rate

o A random variable that obeys gamma distribution
W (t) Brownian motion

Sy The general underlying price at time ¢

T Time to expiration

K Exercise price

T Risk-free interest rate

C'(So; K, t) Option price at time ¢

A Fuzzy set

Ay a-level set of fuzzy set A

i) The membership function of the fuzzy set A
C(So; K, t) Fuzzy option price at time ¢

of the Levy process process is &y, = (u | Fy) = E{exp(iuX;)} = exp(tp(u)), of which ¢(u) is

the characteristic exponent of the characteristic function and has the following structure:

+oo
d(u) = ibu — Lo*u® + / (6™ — 1 — iuxljy<;)v(dr) (4.1)

e0]

The entire expression consists of the drift, diffusion and jump. € and ¢ are the measures of
the drift and diffusion, respectively, whereas v is the measure of the jump; (6,0, v) represent
all information in the Levy process and are knowns as the three elements in a Levy process,
v(dzx) represents the arrival rate of a certain jump per unit time, and v(R) represents the sum
of probabilities of all jumps. If v(R) = [, v(dz) = oo, this means that the stochastic process
is an infinite activity rate process, and infinite multiple jumps may occur at any time interval.
However, If v(R) = A < oo, then the stochastic process is a finite jump process. The infinite
jump process is more general than the finite jump process, and Daal et al. (2005) [56]showed
that the diffusion part is not necessary and that the underlying asset price can be replaced by
pure jump. Consequently, this study is based on the infinite pure jump Levy process. The
VG process is a typical infinite pure jump process and is currently the most widely used Levy
process. It has very good mathematical properties, belongs to the finite variation process, and

has an incremental distribution that exhibits leptokurtosis and fat-tailed characteristics. In
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Figure 4.1: Conceptual Framework

addition, an options pricing model based on the VG process can solve the “volatility smile”
predicament. Therefore, the infinite pure jump Levy process studied in this paper is analysed

using the VG process as an example.

The VG process is formed by changing the variance in the normal distribution into a random
variance, that is, assuming that the yield of the underlying asset obeys a normal distribution
with a mean of u and variance of ¢2¢, of which ¢ is a random variable that obeys the gamma
distribution. The gamma process is a subordinate process of the VG process, and its density
function is

b
fGamma (9) = F(g) ga 71(3 —bg (42)
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where I'( - ) is the gamma function with the boundary conditions ¢ > 0, @ > 0, b > 0. The
gamma distribution is a very extensively used two-parameter stochastic process, in which a is
the shape parameter used to control the shape of the random distribution and b is the scale
parameter used to describe its scale. The characteristic function of Gamma distribution is

(I)Gamma(u; a, b) - E(ezux) = (]- - %) (43)

The VG process is driven by the gamma process. The time randomness of the process is
determined by the gamma distribution of g(¢;1,v), that is, X (¢;0,v,0) = B(g(¢;1,v);0,v,6),

of which B(t;0,0) represents the drift rate, a Gaussian process with 6 of o.

The density function of the VG process is as follows:

fuu(2) /Oo AL S il ) (4.4)
() = - Xp| ——————— .
Jo UEF(%) oV 2mg P 202g g

The equation above illustrates the complexity of the VG processs density function. This
complexity makes it difficult to estimate the parameters. Therefore, the characteristic func-
tion of the pure jump process and the three Levy elements become more important. Their

characteristic function is

E(e™) = ¢(u;0,0.0) = (1 — iuwvb + Lo*vu?) % (4.5)

4.2.2 Risk-neutral Model Settings

If the expected return on a particular portfolio in a financial market is greater than the risk-free
income, there will be arbitrage space, and this will induce investors to trade to obtain excess
returns. If such a portfolio does not exist in the market, the market is said to be arbitrage-free.
The no-arbitrage hypothesis lies at the core and is the basis of current asset pricing theories.
Therefore, only by converting model parameters under an reality measure into a risk-neutral

measure will the pricing of derivatives conform to the no-arbitrage assumption. Generally, the
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risk-neutral measure conversion is performed in the form of equivalence martingale transfor-
mations, which are a form of probability density, or equivalence martingale transformations for
characteristic functions. Because the probability density function of the VG model is too com-
plex, the transformation of the model is performed using the equivalence martingale measure

conversion method for characteristic functions.

The equivalence martingale measure conversion is performed mainly to convert the assets
stochastic process S; under measure P into the stochastic process §t under the risk-neutral
measure ). This can be derived through the characteristic function by introducing the risk-
free rate of return r to correct the drift. The requirements of the equivalence martingale measure

in a risk-neutral environment are

EP[S, | Fi] = S = Syexp(—rt) (4.6)

The above equation coincides with the form of the characteristic function expression @ x (1) =
Elexp(iuX;)] of the VG process. Therefore, we revised the risky assets return rate sequence S,

under the P measure to the risk-neutral risky assets return rate §t :

Si=(r— (=)t +S, (4.7)

E(S) = rt — E(p(—=i)t) + E(S,) = rt (4.8)

Asset pricing theories normally refer to r —¢(—i) as the risk neutral drift rate of S, and it is
usually denoted by u*. We introduce the VG process characteristic function into the r — p(—1i)

equation to obtain the risk-neutral drift rate for the VG process:

ln(l — vl — %)

* — -
Uyg =T+ "

42



Chapter 4. Fuzzy European Option Pricing Model with Infinite Pure Jump Levy Process

The asset pricing model under the VG process then becomes

Sy = So * expluyq * t + Xvg]
ln(l — vl — ﬁ)

2

= Sy * exp [rt + * 1+ XVG:|

ln(l — vl — "—;”)

= Sp * exp |:Tt + xt 4 0% g, + UI/V(gt)] (4.10)

v
where g, ~ gamma(a, b), W (g;) represents time-changed Brownian motion.

According to the no-arbitrage pricing method, the price of European call options can be

expressed as

C(S(0); K,t) = e " E max(S(t) — K,0)] (4.11)

Under the measure (), and according to the properties of conditional expectation, we obtain
C(So; K, t) = E[e""tE[max(S(t) ~K.0)| ¢ = gH (4.12)

such that ¢(g) = e " E[max(S(t) — K,0) | g: = g]. Madan et al. (1991) [57] have proved that:

c(g) = So (1 B U(QTJFS)?)t

*exp<%> *N(%st)@)

~ K exp(—rt) (1 - %) ' exp(a%g> x N(% + oz\/§> (4.13)

|+

where

o v(o+ ) _wa?

2,
1+ (4)

d:llnS—(,)—l—rt—l—zln l-a .
s K v 1— ¢
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Consequently, C'(Sy; K,t) = Elc(g) | g« = ¢g], that is,

“00 t_ 1 9
v

C(So; K, ) = / o(g)L

€
—d 4.14

such that y = g
v

t
, v = —. This yields,
v

C(So; K., 1)

d/+/ Yle—y
K1 — ey) et % N(/Tﬁ + aﬁﬂ) Y iy (4.15)
y

Let

wY e

['(v)

U(a,b,vy) = / N(% + bﬁ) du
0

Vi

We obtain the pricing model under a risk-neutral measure as

0(507 [{7 t)

1-c¢ /
:So\If(d vpl’(()é+z9) 1_71(1, >
— Kexp(—rt)U| dy/ 1-c (a+s) v ! (4.16)
v 1—cy v

S| o

4.2.3 Pricing Model with Fuzzy Random Variables

The financial system addresses the issues of asset pricing and market efficiency under risk
conditions (mainly) based on microeconomics. Owing to the existence of factors such as infor-
mation asymmetry, individual judgement, and different risk preferences, the financial market

is an incomplete market whose incompleteness is not only random but also fuzzy. Introducing
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the concept of fuzzy random variables to effectively combine randomness and fuzziness can
provide more effective investment decision-making. To establish an options pricing model in a
fuzzy environment, consider using the fuzzy yield rate, fuzzy volatility and fuzzy jump arrival
rate in place of the yield, volatility and jump arrival rate, that is, these three fuzzy random
variables are used instead of the corresponding random variables. The remaining variables are
kept fixed, and the final obtained option price is also a fuzzy number. In accordance with the

above method, the pricing formula for European call options is as follows:

C(So; K. 1)

= C(Sp; K, 1,0,5,7)

:So\lf(d 1051 (a+s\/:U>
- Kexp(—rt)‘lf(a?\/li (a+ 3) \/7 ) (4.17)

of which,

a (o 5)? e}

AN 2~
L+(3) 3

IS+t+l l-a
nK r n1—52 .

According to the extension principle, the membership function of @(SO; K.t,6.5, D) is

(VAR
I

AR}
|

2
UJ1|H

,u@t(c) = sup min{ug(ﬁ), ps(0), M@(U)} (4.18)
{(8.0,v):c=C(So;K,t,0,0.v)}

For the fuzzy price of C of C(So; K,t,é,&,ﬁ) at t, the membership A is required. If the
financial analyst is willing to accept the option price C with said membership, it is possible
to set the option price at time ¢ as C because he/she is satisfied with the membership. The

membership function of C can also be written as 1ic,(¢) = supg<r<i A - 1g,), (¢) where (Cp)a

is the A-level set of C;. As the A-level sets of 6, & and @ are 6, = [0%,0Y], 65 = [6F,5Y] and
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oy, = [0F, #Y], respectively, the A-level set of C; can be expressed as

(ét))\ = [(ét)fa (ét)g]

= min C(So; K, t,0,0,v),

oL <0<V sL<o<s{ oL <oty

max C(So; K, t,0,0,v) (4.19)

oL <o<o¥ 5L <o<s{ oL <o<t¥

Different investors use different measures to determine the vagueness of the parameters used
in pricing options. Therefore, even for the same A-level, different investors may obtain different
price ranges. This is not conducive to unified pricing, so it is necessary to convert the number
of intervals into an exact number. The conversion process is called ”de-fuzzification”. In this
study, we chose the general de-f ller and Majlender [58],
and obtains a fuzzy expectation with upper and lower weights of the A-level set of C; with the

following formula:

M(E) + M)’

2
o FVCEAN+ [ FNCYdN
a 2

- /1 @(@L +CY)dx (4.20)

M(C) =

4.3 Monte Carlo Numerical Simulation

In this chapter, we utilise numerical simulations and empirical tests to illustrate the applications
of the VG model under a fuzzy environment. To highlight the proposed models superiority,
the pricing results were compared to those obtained under the BS options pricing model and
VG model under a crisp environment, respectively. All experiments were performed on a Dell
VOSTRO personal computer which installed MATLAB2015b on Windows 10 and its configu-
ration is i7-2600 CPU 3.40GHz with 16GB RAM. In terms of the pricing method, this paper

uses the Monte Carlo simulation method through Matlab programming language to achieve,
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especially for fuzzy option pricing, the options price interval was divided into 15000 divisions,
and then the membership degree of each sample point was obtained to produce the membership
function of fuzzy options price. The Monte Carlo simulation method is based on the law of
large numbers and is used to calculate the average return of the option by simulating the price
paths of the underlying asset to obtain an estimated value of the option. The advantage of this
method is that it is still applicable even when the function of the underlying asset is relatively
complicated, and the simulation time required increases linearly rather than geometrically with

the number of variables.

European call options are the object of study in this chapter. Two simulation experiments
were set up. In the first experiment, the time to expiration of the options was kept unchanged
while the exercise price was gradually increased. The VG model in a fuzzy environment was
studied, in addition to how the options price varies in a crisp environment both under the VG
model and the BS model. The sensitivity of options price to changes in the jump parameter, v,
was also analysed. In the second experiment, the exercise price was kept unchanged while the
time to expiration of options was gradually increased. The VG model in a fuzzy environment
was studied, in addition to how the options price varies in a crisp environment both under
the VG model and the BS model. At the same time, this study analysed how to improve the

convergence rate of the Monte Carlo simulations.

4.3.1 Pricing of European Options with Exercise Price Variations

Before applying the BS and VG methods to the pricing of the options, the initial value of the
underlying asset and the model parameters need to be set. In the following numerical analysis,
it is assumed that the initial price of the underlying asset is Sy = 100, the annual risk free
rate is r = 0.02, the exercise price at expiration is K = 95 , and the time to expiration is
half a year, i.e., T = 0.5 year. Regarding the BS model parameters, the yield volatility o
is set to 0.2. Regarding the parameters of the VG model in a crisp environment, the drift #
is set to 0.05, the diffusion ¢ is set to 0.2, and the jump parameter v is 1.5. Regarding the

VG model parameters under a fuzzy environment, this paper utilises the most commonly used
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trapezoidal function as the membership function of the fuzzy random variables 0, & and @
such that 6 = [0.035.0.04,0.05,0.055], & = [0.14,0.19,0.25,0.28], & = [1.25,1.5,1.75,2] and the
confidence level A = 0.8. Similar analysis can also be performed on other types of membership
functions. For the Monte Carlo simulation, the time period is divided into M intervals with a

total simulation N times, where M = 10, and N = 100000.

The pricing of options with different exercise prices under the BS and VG models in a crisp
environment and VG model in a fuzzy environment is shown in Table 4.1 and Figure 4.2. To
unify the pricing, we calculate the expected price of the fuzzy option by using equation (4.20)
with f(A) = 2X. It can be observed that the higher the exercise price, the lower the option
price, which is consistent with the actual situation, because the option price is bullish for
European call option. As such, the higher the exercise price, the lower the return and thus
the lower the price. The simulation results by VG model in a fuzzy environment are higher
than that by VG model in a crisp environment at the exercise prices which except for 82, 83,
88 and 89; The simulation results by VG model in crisp environment are higher than those by
BS model in a crisp environment at different exercise prices. To easier observe the simulation
results corresponding to the different exercise prices, we shown the part of simulation results
by enlarge way in a rectangular frame at exercise price from 89 to 95 in Figure 4.2. This is
also consistent with our hypothesis because the BS model is based on Brownian motion and
the normal distribution and does not take into account large scale fluctuations in asset prices,
whereas the options pricing model under a fuzzy environment takes into account the most
random factors and uncertainties. The fuzzy range basically covers all the option prices of the
VG model in a crisp environment but not those under the BS model. This result demonstrates

that pricing under the BS model pricing is rather different from the actual situation.

Table 4.2 analyses the sensitivity of the jump parameter v under the VG model in both
crisp and fuzzy environments. With the exercise price set to K = 95, under the VG model in
a crisp environment, when the value of v was gradually increased from 1 to 4, the option price
dropped from 11.361 to 6.437. For the VG model in fuzzy environment, as the interval of the
trapezoidal membership parameter v was increased, the fuzzy interval of the option gradually

narrowed, and the fuzzy expectation gradually decreased. The reason for this behaviour is that

48



Chapter 4. Fuzzy European Option Pricing Model with Infinite Pure Jump Levy Process

Table 4.1: Variation of Option Price with Exercise Price

Sequence Exercise BS Crisp Fuzzy Fuzzy Interval
Price VG Model Expectation

1 81 19.925 20.625 20.804 [20.561,21.047]
2 82  19.139 19.800 19.650 [19.427,19.873]
3 83 17977 18.957 18.826 [18.583,19.069]
4 84  17.325 18.006 18.393 [18.081,18.704]
5 85  16.337 16.967 17.209 [16.921,17.496]
6 86  15.532 16.109 16.172 [15.890,16.454]
7 87  14.693 15.335 15.809 [15.449,16.168]
8 88  13.713 14.480 14.035 [13.772,14.298]
9 89  13.097 13.607 13.490 [13.173,13.807]
10 90 12.165 12.728 12.883 [12.518,13.247]
11 91 11.432  11.965 12.248 [11.839,12.656]
12 92 10.656 11.179 11.505 [11.065,11.944]
13 93  10.136 10.544 11.226 [10.697,11.754]
14 94  8.973  9.709 9.945 [9.453,10.437]
15 95 8.725  9.261 9.512 [8.950,10.073]
16 96 8.036  8.333 8.748 [8.157,9.338]
17 97  7.260  7.650 8.674 [7.967,9.380]
18 98 6.913  7.181 7.825 [7.201,8.449]
19 99 6.278  6.596 7.185 [6.616,7.754]
20 100 5.702  5.962 6.381 [5.888,6.873]
21 101 5420  5.590 6.153 [5.562,6.743)]
22 102 4.776  4.848 5.316 [4.549,6.083]
23 103 4.614  4.762 4.906 [4.449,5.363]
24 104 4.202  4.593 4.792 [4.222,5.362]
25 105 3.751  4.034 4.382 [3.607,5.156]
26 106 3.262  3.688 4.287 [3.525,5.049]
27 107 3.097  3.564 3.952 [2.973,4.931]
28 108  2.723  3.479 3.818 [2.890,4.746]
29 109 2348  3.215 3.434 [2.392,4.476]
30 110 2.289  2.891 3.161 [2.155,4.166]

Note: “Sequence” obtained by sort ascending on the exercise price from 81 to 100, 1-30
represent the sequence number.

in the event of large jumps in market prices, investors in European call options investors will
consider the increase in investment risk factors; consequently, their valuation of the options

would decrease correspondingly.

With the exercise price fixed to K = 95, the Matlab programming language was used to
plot the graph of the membership function for options price obtained using the VG model

under a fuzzy environment. Firstly, the options price interval was divided into 15000 divisions,
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Table 4.2: Option Price under Various Jump Intensities

Crris Jump v value  1.000  1.250 1.500 1.750 2.000  2.250  2.500
VGp Option price  11.361  9.939 9.028 8544 7.999  7.809  7.527

Model Jump v value 2.750 3.000 3.250 3.500 3.750 4.000
Option price 7184  6.956 6.959 6.717 6.640 6.437

Fuzzy Jump v interval [1.2,1.45,1.7,1.95] [1.25,1.5,1.75,2] [1.3,1.55,1.8,2.05]
VG  Fuzzy expectation 9.999 9.986 9.976
Model  Fuzzy interval — [9.303,10.694] [9.364,10.608] [9.478,10.474]

and then the membership degree of each sample point was obtained to produce the graph
that is shown in Figure 4.3. It can be observed from the figure, which is increasing on the
left-hand side and decreasing on the right-hand side. The increasing portion shows the sellers
satisfaction increasing as the price rises, whereas the decreasing portion on the right shows the
buyers satisfaction decreasing as the price rises. The ranges of values for options at different
levels of confidence A are presented in Table 4.3. When A = 0.9, the corresponding option
price is in the closed interval [9.440,10.517], thus indicating that if the investor is satisfied
with the confidence level of 0.9, then he/she can choose any number from the closed interval
[9.440,10.517] as the options price. It can be observed more clearly from Figure 4.4, with
an increase in the confidence level \that the fuzzy interval narrows as the confidence level
increases, but the fuzzy expectation basically remains unchanged, thus indicating that the

membership function of the option price is a symmetrical one.

4.3.2 How European Options Price Varies with Time to Expiration

Changes

Table 4.4 and Figure 4.5. below show the options pricing result under the BS model, VG model
in a crisp environment. and VG model in a fuzzy environment for different time to expiration.
From the figure, it can be clearly observed that as the time to expiration increases, the option
price becomes higher because a longer period means more uncertainties, and the option price
will increase as a result. At the same time, the difference between the VG model and BS model

increases as the time to expiration increases. The longer the time to expiration, the higher
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Table 4.3: Option Price at Various Confidence Levels A

A Fuzzy expectation Fuzzy Interval

0.7 9.992 [9.284,10.699)]
0.75 9.989 [9.322,10.656]
0.8 9.986 [9.364,10.608]
0.85 9.979 [9.397,10.560]
0.9 9.979 [9.440,10.517]
0.95 9.976 [0.478,10.474]

the probability of jump(s) and thus the greater the error between the BS model calculation
and the true value. Comparatively, the VG model calculation is more accurate. The option
prices under the BS model basically fall outside the fuzzy interval, whereas those under the VG
model in a crisp environment lie within the fuzzy interval. This further illustrates that there is

a relatively large difference between the BS options pricing model and the real situation.
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4.3.3 The Improvement of Convergence speed for the Monte Carlo

Algorithm

The Monte Carlo simulation method is based on the law of large numbers and can be used to es-
timate the true value by using the sample mean of sufficient random simulations; the estimation
error will gradually converge as the number of simulations increases. However, the convergence
speed is inversely proportional to the variance between the samples. If the variance between
the simulated values can be reduced, for the same simulation time, the Monte Carlo estimation
results will be more accurate. At present, the instrumental variable method, antithetic vari-
able method and importance sampling are the most widely used variance reduction techniques.
The antithetic variable method mainly reduces the variance by using random numbers that
are negatively correlated with the mean. However, the property of gamma random numbers
means that negatively correlated random numbers do not exist; consequently, the instrumental

variable method was chosen to reduce the variance.

In the method chosen, a instrumental variate Y that is related to the variable X is chosen
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to construct the synthetic variable. Variance between the simulated samples is reduced while
ensuring that the mean value remains unchanged. When using the Monte Carlo algorithm
for options pricing, the price of the underlying asset is usually selected as the instrumental
variate for analysis. According to the European call options pricing formula in this paper, C =
e (max((Sy — K),0)), e ™ISy is chosen as the instrumental variate, and the corresponding

instrumental variate estimate is

| X
C_’ = — (Cz — ai(e—rtsé - S())),
N3
in which, a; = cov(C;, S;)/ var(S;) (4.21)

Figure 5.9 shows the pricing results obtained by combining Monte Carlo simulations with
the instrumental variable method under the VG model in a crisp environment. It shows the
rate of convergence against the number of simulations. In the case of an ordinary Monte
Carlo simulation, at least 6000 simulations are needed before the simulation outcome converges
sufficiently accurately to the mean. After using the variance reduction method, the simulation
outcome has been controlled within a reliable range with less than 3000 simulations. This shows
that in options pricing, the instrumental variable method chosen can effectively reduce the
variance and reduce the number of simulations required, thus improving the pricing efficiency.

The convergence efficiency improved by 50% via the improved Monte Carlo algorithm.

4.4 Empirical Studies

To test the efficacy of fuzzy options pricing, this chapter chose Tencent Holdings (HK.0700) as
the underlying asset to study a set of its European call options traded on the Hong Kong Stock

Exchange.
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Figure 4.4: Option Price at Various Confidence Levels A

4.4.1 The Statistical Characteristics of the Rate of Return

The price of Tencent Holdings (HK.0700) at the close of trading (data were obtained from the
wind information database) for the period from 15 May 2014 to 4 Nov 2016, a total of 591
trading days, was used as the raw data. From this data, 590 daily logarithmic returns were
obtained. Figure 4.7 shows that rate of return is volatile. Descriptive statistics regarding the
data are presented in Table 4.5. The skewness of the samples is 0.4579 > 0; this indicates that
the samples are skewed to the right. The kurtosis is 5.7828 > 3; this indicates that the samples

exhibit leptokurtic fat-tailed characteristics.

The probability density distribution of the samples shows that the distribution of daily
returns has a higher kurtosis and thicker tail than the normal distribution. At the same time,
the Q-Q (Quantile-Quantile) figure shows multiple sample points deviating from the straight
line, with the deviation most significant for extreme values. This shows that the daily returns

are not normally distributed (as shown in Figure 4.8, 4.9).
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Table 4.4: Variation of Option Price with Time to Expiration
Sequence Time to BS Crisp Fuzzy Fuzzy interval
expiration(year) VG model expectation
1 0.1 6.436  6.894 6.915 [6.641,7.188]
2 0.2 6.599  7.100 7.040 [6.761,7.319]
3 0.3 7.223  7.894 7.704 [7.471,7.936]
4 0.4 7.885  8.222 8.337 [8.005,8.668]
5 0.5 8.454  9.039 9.077 [8.582,9.572]
6 0.6 8.933  9.465 9.440 [9.004,9.876]
7 0.7 9.383  9.925 10.102 [9.743,10.461]
8 0.8 9.700  10.249 10.363 [9.964,10.762]
9 0.9 10.173  11.066 11.074 [10.525,11.623]
10 1 10.571 11.883 11.986 [11.228,12.743]

Note: “Sequence” obtained by sort ascending on the time to expiration from 0.1 to 1 year,
1-10 represent the sequence number.

Table 4.5: Descriptive Statistics regarding the Daily Logarithmic Returns of Tencent Holdings
(HK.0700)

Sample Mean Maximum Minimum Standard Skewness Kurtosis
size value value value deviation

990 0.0045 0.0410 -0.0308 0.0780 0.4579 5.7828
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Figure 4.6: Convergence process of Using Instrumental Variable Method in the Monte Carlo

Simulation

4.4.2 Parameter Estimation

Before analysing the model, the model parameters 8, ¢ and v need to be estimated. Under the
VG model in a crisp environment, the parameters 6, ¢ and v were estimated using the moment
estimation method on the historical rates of return from the 590 trading days prior to 4 Nov
2016. Because the three parameters, 8, & and @ are trapezoidal fuzzy numbers, four parameter
values are required for the parameter range of each fuzzy number. The difference between
the sample interval and the number of samples will result in different estimation results, thus
reflecting different market information. To include more market information, we select the
historical rates of return for 120, 240, 360 and 590 trading days before 4 Nov 2016 as the
observation samples and obtain the parameter values needed by the trapezoidal fuzzy numbers
using the moment estimation method. The parameters estimation results are presented in

Table 4.6. The result of the parameters estimation shows that the parameters 8, ¢ and v are

significantly not 0 at the 1% level of significance.
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Table 4.6: Model parameters

Parameter 0 o v
Crisp model 0.05(2.3380)*** 0.40(7.4339)*** 1.74(7.0915)***
Tranezoidal a 0.01(3.6094 )*** 0.38(7.0550)*** 1.74(7.0915)***
bi’uzz Qs 0.02(3.2116)*** 0.40(7.4339)*** 3.20(6.5430)***
Numb}ér as 0.03(2.7671)*** 0.41(11.4326)***  5.64(13.8195)***
ay 0.05(2.3380)*** 0.53(9.8515)*** 7.03(11.0294)***

Note: Bracketed number is the ¢ statistic of the parameter, *, **, and *** represent
significance at the 10%, 5%, and 1% level of significance, respectively.

4.4.3 Empirical Analysis

From the derivatives database of the Hong Kong Stock Exchange’s official website, the price
at the end of the trading day for 20 stock call options of Tencent Holdings (HK.0700) as of
4 Nov 2016 were downloaded. The closing price of said stock was 200 HKD, and the options
exercise date was May 2017. Thus, Sy = 200 HKD, the time to expiration 7" = 0.417 year.
A one-year-fixed deposit rate was r = 1.7% was chosen as the risk-free rate. The detailed
options pricing results are presented in Table 4.7 and Figure 4.10. The simulation results
show that when the options exercise price is less than 170, the model is more consistent with
the market price. Specifically, the simulation results of the BS model are all less than the
market price, whereas the simulation results of the VG model in a crisp environment and the
fuzzy expectation of the VG model in a fuzzy environment are both greater than the market
price. The fuzzy expectation is slightly greater than the prices under the VG model in a crisp
environment. Nine of the market price (data points) are in the fuzzy interval, with another 2
outside. This indicates that the market price of the option is better covered by the fuzzy price
range. At part of different exercise prices, the comparison of the market price and simulated
price can be more clearly observed by the enlarge rectangular frame in Figure 4.10. When the
exercise price is greater than 170, the simulated price under the model gradually departs from
the market price, with the deviation increasing as the exercise price increases. This behaviour
means that the volatility information contained in the model does not fully explain fluctuations
in the option price, or that in the eyes of the investor, the volatility of the stock price is

more than the jump and vagueness of the parameters; rather, it is more greatly influenced by
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Figure 4.7: Daily Logarithmic Returns of Tencent Holdings (HK.0700).

macroeconomic conditions and the company’s health, for example. However, when A increases,
the fuzzy price interval narrows, and more of the market price data points fall outside the price
interval. In using the options pricing model in a fuzzy environment, the investor is free to
choose an acceptable level set A to obtain a fuzzy price interval. This can be used to predict
the future option price and guide the investor. If the actual price is greater than the upper
bound, this means that the options are overvalued, and investors should sell the options; if
the actual price is below the lower bound, this means that the options are undervalued, and

investors should buy them.

To compare the pricing result of the BS model in a crisp environment, the VG model in a
crisp environment, and the VG model in a fuzzy environment. Two statistical indicators, the
root mean square error (RMSE) and the average absolute error (AAE), were used to compare
the pricing result of the models, and the results are presented in Table 4.8. These two indicators

are used to measure the difference between the pricing result and the market price. The smaller
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the value is, the higher the pricing accuracy. The two indicators are calculated as follows:

N 2
(Ci]Wodel _ Cj]\/[arket)

RMSE = | ) v (4.22)
=1
N Model __ (1Market
AAE = 2z |G ¢ | (4.23)

N
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Figure 4.10: Option Pricing Results for May 2017 expiry (Hong Kong Dollar)

It can be observed from Table 4.8 that both indicators indicate that the pricing result of
the BS model has the greater error compared with the actual data, whereas the VG model in a
fuzzy environment has the smallest error. Regarding the fuzzy expectation, the error is lower
than the pricing result of the VG model in a crisp environment. Furthermore, we calculate
the accuracy rate by mean absolute percentage error (MAPE) to test our model efficacy, data
for exercise price less than 190 (including 190) were chosen, and the results are presented in
Table 4.9. It can be observed from Table 4.9 that the fuzzy VG process option pricing model
achieved 96.68% accuracy rate which is an improvement of 1.33% over the crisp BS model. The
variance of the accuracy rate of the proposed fuzzy model is 56.77% of that of the crisp BS
model, it is less than the crisp BS model; this shows that the proposed fuzzy model is more
stable than the crisp BS model in terms of pricing accuracy rate. The results indicate that the
fuzzy VG process option pricing model is feasible and its pricing results are more accurate and
stable even when many reality uncertainty factors are included. From this, it can be observed
that the use of the fuzzy VG model for options pricing has better accuracy and stable than the

BS model. The accuracy rate and MAPE evaluation are calculated as follows,
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Table 4.7: Option Pricing Results (Hong Kong Dollar)

Sequence Exercise Market BS Crisp Fuzzy Fuzzy interval
price  price VG model expectation

1 120 80.21 80.15 80.60 80.74 [80.05,81.43]*
2 125 7523 75.14  75.70 75.74 [75.06,76.41]*
3 130  70.26 69.79  70.26 69.99 [69.72,70.66]*
4 135  65.31 65.13 65.73 65.80 [65.26,66.34]*
5 140  60.39 60.21  60.74 60.81 [60.35,61.27]*
6 145  55.53 55.28 55.84 55.80 [55.11,56.49]*
7 150  50.74 50.28  50.88 50.92 [50.27,51.57]*
8 155  46.05 45.82  46.48 46.54 [46.15,46.93]
9 160  41.50 41.13 41.48 41.35 [40.88,41.82]*
10 165  37.11 36.19 37.01 37.19 [36.86,37.52]*
11 170 33.81 32.19 33.07 33.09 [32.43,33.75]
12 175 28.98 27.27 27.61 27.71 [27.03,28.39]
13 180  25.29 23.32  24.20 24.27 [23.85,24.69]
14 185  21.88 18.32 19.27 19.34 [19.06,19.62]
15 190 18.77 13.45 14.44 14.65 [13.92,15.38]
16 195 16.17 7.68 8.44 8.52 [7.83,9.21]
17 200 13.81 3.76 4.44 4.61 [4.04,5.18]
18 205 11.60 1.67 2.55 2.68 [2.17,3.19]
19 210 9.63 0.95 1.79 1.83 [1.40,2.26]
20 215 7.92 0.46 1.40 1.57 [1.31,1.83]

Note: “Sequence” obtained by sort ascending on the exercise price from 120 to 215 Hong
Kong Dollars, 1-20 represent the sequence number; * shows that the market price is within
the fuzzy interval.

Table 4.8: Comparison of the Pricing Result of the Different Models

Fuzzy Expectation
(our model)

RMSE  4.7679  4.2641 4.1946
AAE 3.0996  2.6645 2.6488

Indicator ~ BS Crisp VG

Accuracy rate = (1 — MAPE) x 100%

N
1 CYModel CMarket

(4.24)

C’Market
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Table 4.9: Comparison of the accuracy rate of the different models

Indicator Accuracy rate Sample Variance
BS 95.35% 62.32
Fuzzy Expectation(our model) 96.68% 35.38
Compare to BS 1.33%(Improved) 56.77%

4.5 Conclusions

In this chapter, on the basis of conventional Black Scholes (BS) model, we incorporates fuzzy
set theory to construct an European option pricing model with VG (variance gamma) process
(which is one of widely used infinite pure-jumnp Levy processes) in a fuzzy environment. The

drift, diffusion, and jump are treated as the trapezoidal fuzzy random variables in the model.

The Monte Carlo simulation algorithm was then used to provide simulation estimates for
the model, and an empirical analysis was performed using Tencent Holdings (HK.0700) and its
stock options data. A comparison of the option price under the VG (variance gamma) process
model in a fuzzy environment, BS (Black Scholes) model in a crisp environment, and the VG

(variance gamma) process model in a crisp environment yielded the following:

1. An analysis of the Monte Carlo numerical simulations and the empirical analysis which
uses Tencent Holding (HK.0700) and its stock options data show that treating the drift, diffusion
and jump as fuzzy random variables to obtain the options pricing model is more reasonable,
the fuzzy interval can cover the market prices of options and the prices that obtained by the
crisp VG process option pricing model, moreover, the expectations using fuzzy pricing are
closer to the market prices of options than the pricing results obtained by the crisp BS (Black-
Scholes) model. According to the evaluation based on the mean absolute percentage error
(MAPE), the fuzzy VG process option pricing model achieved 96.68% accuracy rate which is
an improvement of 1.33% over the crisp BS model. Furthermore, the variance of the accuracy
rate of the proposed fuzzy model is 56.77% of that of the crisp BS model, it is less than the crisp
BS model; this shows that the proposed fuzzy model is more stable than the crisp BS model in
terms of pricing accuracy rate. The results indicate that the fuzzy VG process option pricing

model is feasible and its pricing results are more accurate and stable even when many reality
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uncertainty factors are included. The results are more consistent with the real-life market and

can provide investors with better investment advice.

2. The results show that expectation obtained through the fuzzy VG model is mostly
greater than the pricing results obtained under the crisp VG model and that obtained using
the crisp BS model. At the same time, at a confidence level of 0.8, the fuzzy interval basically
encompasses the outcomes of the crisp VG model. On the other hand, the option price of
the crisp BS model tends to be less than the fuzzy interval. This shows that the greater the
number of random factors and uncertainties included in the model, the higher the option price,

the results are consistent with the real-life market.

3. Both the VG model under a crisp environment and that under a fuzzy environment are
sensitive to variations in the jump parameter. As the jump parameter increases, the option
price decreases. At the same time, an increase in the confidence level also causes the fuzzy

interval for the pricing model in a fuzzy environment to narrow.

4. The empirical analysis shows that the instrumental variable method can improve the
convergence speed faster than the Monte Carlo simulation alone, the convergence efficiency of

Monte Carlo algorithm can be improved by 50% via the instrumental variable method.

The object of study in this chapter was the relatively simple European call option, and
the pricing of more complex financial asset was not considered. The form of the membership
function chosen for the fuzzy random variables was trapezoidal, and other more complicated
and reasonable membership function forms were not examined. Consequently, in next chapter,
Chapter 4, we further extend our study into the pricing of the complicated options—American

options.
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Chapter 5

Fuzzy Levy-GJR-GARCH American

Option Pricing Model

5.1 Introduction

An option is a kind of fundamental financial derivative, it represents a contract which offer
a right to the buyer who can buy (call) or sell (put) a security or other financial assets at
a agreed-upon price (the exercise price) without the obligation during a fixed period or on a
specific date (exercise date). The buyer should pay the fee for the seller to obtain this right,
this fee is called option price. An option includes call option and put option, call option offer a
right to the buyer who can buy the underlying asset at a fixed price before or on a specific date,
put option offer a right to the buyer who can sell the underlying asset at a fixed price before
or on a specific date. In 1973, E. Black and M. Scholes wrote “The Pricing of Options and
Corporate Liabilities” and proposed a comprehensive option pricing model that resolves the
challenges in option pricing, which has contributed tremendously to the study of option pricing
theory. However, the said pricing model primarily addresses pricing problems in European
options; hence, it is unsuitable for the pricing of American options, which allow early exercise.
Compared with European options, the pricing problems of American options are far more

complicated because the holder of an option determines the best time to exercise the option by
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comparing the value of continuously holding the option at various points of time with the value
of immediate option exercise. When the value of immediate option exercise is greater than the
value of continuously holding the option, the option holder will choose to exercise the option
immediately because that time is the best exercise time; this choice influences the pricing of the
American option. A rational investor will choose the best time to exercise the option, which is
known as the optimal stopping time problem in mathematics. From the perspective of partial
differential equations, the problem is also considered a free-boundary problem. Therefore, the
key challenge in the pricing of American options is to determine the best time for investor to
exercise an option. This is one of the reasons why American option pricing theory has become

a frontier and very active topic in the field of financial research (See Figure 5.1).

The pricing problem of American options is usually solved with either analytical or numeri-
cal methods. Earlier studies mainly used analytical methods to determine the price of American
options: Johnson (1983) [59] used approximate analysis to determine the value of an American
option under the assumption of no dividend; Geske et al. (1984) [60] constructed a model to
analyse an American option with a dividend pay-out, but no closed-form solution was obtained.
Therefore, numerical methods began discussed to solve American option pricing; these include
commonly used binomial tree, finite difference, and least square Monte Carlo methods, among
others. Cox et al. (1979) [61] proposed the binomial tree method, which offers simple and
effective solutions, and it provides an accurate numerical solution by continuously shrinking
the time step; therefore, it is often used as a reference to evaluate the accuracy of other numer-
ical approaches. However, when the model includes multiple random influencing factors, the
number of values increases exponentially to calculate in the binomial tree method, which often
leads to the curse of dimensionality. The finite difference method mainly converts the asset
pricing differential equation into a difference equation, and by obtaining solutions through an
iterative method, it mitigates the difficulty in directly solving the differential equation. In 1978,
Brennan et al. [62] applied this calculation method in the pricing of American options, but the
curse of dimensionality persists when this method is used to solve high-dimensional problems.
The Monte Carlo method has the characteristic of forward simulation, so it cannot be applied

directly for the pricing of American options, which have a backward iterative search character-
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istic. Longstaff et al. (2001) [34] modified the Monte Carlo method by using the least squares
approach and proposed the least squares Monte Carlo algorithm, which solves the application
difficulty of the said method in the pricing of American options; they also provided empirical
evidence of the method effectiveness. This method uses the least squares approach to estimate
the expected value of continuous holding for each path. By comparing the values to the value
associated with immediate exercise, the exercise point of each path is determined. Finally, the
value of the American option is obtained by computing the discounted average value of each

path’s exercise point.

The above calculation methods are effective in pricing American options; however, these
studies use the Black-Scholes (B-S) model as their theoretical basis, in which the asset price
random process is treated as a geometric Brownian motion, which is unfit for real-life financial
markets. Empirical studies have demonstrated that fluctuations in asset price and rate of re-
turn are often characterized by non-continuity, clustering and leverage effects (i.e., asymmetric
volatility); consequently, we need to construct a more flexible asset pricing model to accurately
reflect how asset prices change in reality. Asset price usually jumps in movements, and by adding
a Levy process in the pricing model, we can construct a jump model with random jumps of dif-
ferent strengths. Moreover, generalized autoregressive conditional heteroskedasticity (GARCH)
models are most frequently used to express the volatility in asset price fluctuations and leverage
effects, and such models are highly expandable and more capable of providing accurate descrip-
tions of volatility; therefore, by combining the two models to form the Levy-GARCH model,
we can better capture the characteristics of the volatility of the underlying asset. The Levy-
GARCH model is widely used in the pricing of European options, but due to the complexity
of American options, the model is less frequently applied as a theoretical model for American
options. Based on the background described above, jump measure, time-varying volatility and
leverage effects are incorporated in this study to construct the Levy-GARCH pricing model for
American options proposed by Glosten, Jagannathan and Rundle (Levy-GJR-GARCH) on the
basis of an infinite pure jump Levy process and an asymmetric GARCH model. In addition, in
real-life financial markets, many subjective and objective uncertainty factors lead to random-

ness and fuzziness in the price of the option. Therefore, it is necessary to incorporate fuzzy set
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theory in the pricing model to improve the classic pricing theory. Hence, this study analysed
the American option pricing model under a fuzzy environment, incorporated fuzzy simulation
technology, and used the least squares Monte Carlo algorithm with highor operational efficiency
to analyse the model and compare the operating results with the results computed using the
binomial tree algorithm. Lastly, through empirical analysis, we compared the option pricing
simulation results of the three infinite pure jump Levy processes (variance gamma (VG), normal
inverse Gaussian (NIG), Carr-Geman-Madan-Yor (CGMY)) combined with the GJR-GARCH
model, and we verified the convergence cfficiency of the modified least squares Monte Carlo

algorithm using the quasi-random numbers and Brownian Bridge method.

Through the review of the existing literature, we found abundant studies regarding Euro-
pean option, but studies about American option pricing are still limited. Furthermore, the
existing studies mainly focus on numerical algorithm improvements, and insufficient research
was pursued to improve the theoretical model. Therefore, we constructed the fuzzy Levy-GJR-
GARCH American option pricing model, which is more consistent with reality, and evaluate the
model’s simulation accuracy by using empirical analysis. The rest of this chapter is structured
as follows: Section 5.2 deduces the Levy-GJR-GARCH American option pricing model under
a fuzzy environment; Section 5.3 provides a brief introduction of fuzzy simulation technology,
then based on it design the algorithms for fuzzy American option pricing model, such as fuzzy
binomial tree algorithm, fuzzy least squares Monte Carlo algorithm and especially using quasi-
random numbers and Brownian Bridge method to improve the convergence speed of the least
squares Monte Carlo algorithm. Section 5.4 combines the Standard & Poor’s 100 index (S&P
100 Index) American put option prices to perform empirical testing, followed by a comparative
analysis of the fitting precision of different models under fuzzy environments and crisp envi-
ronments and an examination of the convergence efficiency of least squares Monte Carlo which
improved by the quasi-random numbers and Brown Bridge method. Section 5.5 summaries the

findings of this study. The theoretical framework is illustrated in Fig. 5.2 below.
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Figure 5.1: American option pricing

5.2 Fuzzy Levy-GJR-GARCH American Option Pricing

Model

As the notations used in the remainder of this paper are listed as follows:

Acronyms Description

VG Variance gamma process

NIG Normal inverse Gaussian process

CGMY Carr-Geman-Madan-Yor process

GARCH Generalized autoregressive conditional heteroskedastic-
ity model

EGARCH Exponential GARCH model

TGARCH Threshold GARCH model

GJR-GARCH Glosten, Jagannathan and Rundle-GARCH model

5.2.1 The process of the underlying asset price

In this chapter, we assumed the fluctuation of the underlying asset price has the characteristics
of time-varying, jump and leverage effect (i.e. asymmetric volatility), thus the sequence of

the rate of return of the underlying asset is described using an asymmetric conditional het-
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Figure 5.2: Framework Diagram

eroskedasticity model. Among GARCH-type models, models that can express the conditional
heteroskedasticity “leverage effect” include the exponential GARCH (EGARCH), threshold
GARCH (TGARCH) and GJR(Glosten, Jagannathan and Rundle)-GARCH models, of which
the TGARCH and GJR-GARCH models have similar structures and pricing effects. Compared
with the EGARCH model, the GJR-GARCH model has better simulation accuracy; therefore,
we chose to use GJR-GARCH model proposed by Glosen et al. (1993) [63] as the specific form

of the asset return rate model, specifically as follows:
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In the asset return rate model (5.1), R, is asset’s logarithmic return rate, u, is the expected

rate of return under the condition of information set F;_;, +; is the mean correction factor,

and o7 is the time-varying variance sequence, I; represents the indicator function. w represents
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intercept, « is the influence coefficient of the variance of previous period to the variance of
current period, £ is the influence coefficient of the residual of previous period to the residual
of current period, ¢ represents asymmetric cffect cocfficient.  z; represents the innovation of
the mean equation, and it follows distribution D(e) with mean value of 0, variance of 1, and
parameter 6p, for which this study will establish several different infinite pure jump Levy

processes, such as VG, NIG and CMGY process, which were introduced at chapter 3.

Compared with a standard normal distribution, an infinite pure jump Levy process can
describe better high-order moment characteristic of financial data, such as skewness or fat
tails. Therefore, it is necessary to incorporate an infinite pure jump Levy process in the GARCH
model because the normal random number replaced by the Levy process random number will

improve the model’s pricing accuracy.

5.2.2 The risk-neutral conversion of the underlying asset pricing

In theory, there should be no arbitrage in the option value; therefore, the asset return rate model
(see equation (5.1)) requires risk-neutral conversion to ensure the validity of the no-arbitrage
assumption. Under risk-neutral measure @), EQ(St\St_l) = S;_1€", where r; represents the

risk-free rate of return. Here, the risk-neutral model is,

Sy = 8§y _yenellotons? (5.2)

Q, . : : : : :
Above, ©2(a;) = EQ(e?*%) is the mean correction factor, where <2 is white noise with

mean of 0 and variance of 1. Using the Christofersen et al. (2010) [64] method to construct
the pricing kernel {s;}, we establish a Radon-Nikodym derivative sequence that can materialise

real measurement of risk-neutral measure conversion:
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o~

d
T 1Fr s = exp(— Y (5003 +6(s) (5.3)
=1

Under a non-normal environment, the kernel sequence {¢} is not the only one that fulfils

the following formula:

Pl — 1) —(se) +ug —re — 5 =0 (5.4)

Here, ¢/(®) represents the exponential part of the moment-generating function. Based on the
characteristics of the moment-generating function ¢/,(0) = E;_1[c;z], v, (0) = Var,_1]ovz) =

o7, we obtain the following analytical expression for the kernel sequence {s;}:

1 U — T — Ve — ¢;(0> 1 Uy — Tt — Ve
~ — — =4 - = 5.5
gt w7 (0) 2 o2 (5:5)

After obtaining the kernel sequence {¢;}, we can perform risk-neutral adjustment on the

stochastic item £, = 0,z and obtain the following formula:

ef =& — B2 ] = e — ¥y () (5.6)

Therefore, under the risk-neutral measure, the mean equation can be expressed as follows:

RtQ =7, — d)gQ(l) + 5? =1 — l/ziQ(atQ) + (rthtQ (5.7)
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The conditional variance formula for the risk-neutral asset return rate model can be ex-

pressed as

(07)9 = w? + a%(071)? + B2y + 4 (40) (5.8)

+ 0901 (2 + ¢ (-1))?

At this point, we can see that there is some discrepancy between the risk-neutral measure
and the real measure of sequence EtQ and (02)¥; therefore, it is necessary to perform parameter

adjustment using kernel sequence {¢}.

5.2.3 American option pricing under a fuzzy environment

Although we can obtain the logarithmic return rate through a heteroskedastic model and obtain
the asset price, this method does not provide complete control over future uncertainty factors;
therefore, in this study, we assume the asset price volatility ¢ is a more generalized parabolic
fuzzy variable (can cover the triangle and trapezoid fuzzy variable) and analyse the American

option pricing model under random and fuzzy environments.

Unlike European options, American options allow early exercise; therefore, American option
pricing is a free-boundary problem, in which there is an optimal exercise boundary, and the
region {0 < Sy < 00,0 < ¢t < T} can be segregated into two parts: a region corresponding
to continuation option holding and a region corresponding to stopping holding. For a non-
dividend-paying American put option, in the continuation holding region >, V(S t) > (K —
Si)T; in the stopping holding region >,, V(S;,t) = (K — S;)"; K represents exercise price;
the optimal exercise boundary I' : S; = B(t) is located between the two regions. In the above
equations, V' (.S;,t) and S; each represents the option value and asset price at time ¢. Therefore,

the following relationship can be obtained:
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={(S1)|B(t) < Sp<o0,0 <t < T} (5.9)
2

={(5,1)[0 <5 < B(t),0<t<T} (5.10)
2,

The relationship for the optimal exercise boundary, ') is

V(B(1),1) = K — B(1) (5.11)
v
Fg(B0).1) = -1 (5.12)

Subsequently, when S; — oo, V(S;,t) — 0, and when ¢t = T, V(S;,T) = (K — Sr)™.
Because B(t) is a free boundary, the problem of pricing American put options can be viewed

as a parabolic free-boundary problem.

Because the asset price S, at time ¢ is a function of ¢, when o is a fuzzy number o, S, is
also a fuzzy number S;. Similarly, because the option value V' (S;,t) is a function of S;, when
S; is fuzzy number Sy, V(S t) is also a fuzzy number VN(St, t). At this point, the a level set of

LA’J(St, t) can be expressed as

== _min UV(Stﬁt), max UV(St,t)] (5.13)

Therefore, based on credibility theory, the expected value F (&(Swt,t)) of 17(81,1‘) can be

expressed as
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BOGE. )= [ (G0 >

_! / (V)E + (V)Y )da (5.14)

At this point, the optimal exercise boundary for fuzzy American options, the continuation

holding region and the stopping holding region under fuzzy environment are expressed as follows

(1) Optimal exercise boundary: V(B(t),t) = K — B(¢),T': B(t) = E(SNt)
(2) Continuation holding region: », = {( SNt, 0)|B(t) < E(Swt) <00,0 <t <T}.

(3) Stopping holding region: >, = {(SNt )0 < E(Smt) < B(t),0<t<T}

5.3 The Algorithms Design for Fuzzy American Option

Pricing Model

Upon obtaining the Levy-GARCH model for an American option under a fuzzy environment,
considering more general situations where the fuzzy variables with mixed distributions, we
combine fuzzy simulation technology [13] and calculation methods frequently used for American

options to create a fuzzy pricing method for American options.

5.3.1 Fuzzy simulation technology

Fuzzy simulation technology is used for sampling test of fuzzy models based on probability
distributions. This technology only provides a statistical estimate of the model, not the precise
result, but it is the only effective method for complex problems for which analytical results are

unattainable.
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If ¢ is a fuzzy variable with probability space (O, P(0), Pos), the function f(£) is also a
fuzzy variable; at the same time, the membership function of f(£) can be obtained using the

following simulation method:

Step 1. Randomly and evenly extract a number & (k=1, 2...N) from the level set of fuzzy

variable &, calculate &, membership from the membership function of £, and denote it as vy.
Step 2. Based on the formula for function f(&), calculate the function valuef(&).
Step 3. Repeat Steps 1 through 2 N times.

Step 4. Calculate the expected value E(f(£)) = %f(f’k) of function f(£) and draw the

membership function of f(§) based on (f(&x), vk).

5.3.2 Fuzzy binomial tree algorithm

The binomial tree algorithm assumes that asset prices obey a dispersed time process, where
the time [0, 7] is divided into n equivalent time steps At = t; = T'/n, where i = 1,2...n. There
can only be two changes in the asset price S; at time t;, whereby the price either increases
to u times its original price with probability p or decreases to d times its original price with
probability (1 — p), such that 0 < d < 1 < u, ud = 1; therefore, the asset price at t;;; can only
be uS; or dS;. When the initial asset price is Sy, there is ¢ + 1 probability for asset price 5; at

t;1 Sou?d* 7, where j = 0,1,2...4. The exact binomial tree is shown in Fig.5.3.

When using a binomial tree to obtain the price of an American option at each node, pricing
is mainly performed using the backward inference method from back to front. Generally, u and
d are set as functions of the volatility . When o is a fuzzy number, u and d are also fuzzy
numbers; consequently, the asset price S; at time t; is also a fuzzy variable. At this point, when
the exercise price is K and the time to expiration is 7', the value of the American put option is
expressed as V,(S,, ;) = max{K — E(S,),0}, where j =0, 1,2..n. Using backward inference,

we can obtain the option value at time t;:
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Figure 5.3: Multiple-period binomial tree

‘/Z(Sz,]> :maX{K — E(S@j), exp(—rAt) (pL"HLj(uSZ-,j)

+ (1 = p)Vir1,;(dSi )} (5.15)

The a level set of V;(S; ;) can be expressed as

~

~ ~L
Via(Si;) =[max{K -5, ;(a), exp(—rAt)(pV 1y ;(uSi;)
~L
+(1 _p)‘/ri+17j (dSi,j))}7
~L ~U
max{ K — Si; (a), exp(~rAt) (pvi—i-l,j (uSi ;)

~U

+(1_P)Vi+17j(d5i,j))}] (5.16)

Therefore, the calculation of option price using fuzzy binomial tree is as follows:

Step 1. Randomly and evenly extract a number o4 (k=1,2...N) from the « level set of fuzzy

variable o, calculate o), membership from the ¢ membership function, and denote it as vy.
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Step 2. Presume that the asset price upward factor u, downward factor d and probability
p are e"km, e VAL and %, respectively; based on these, calculate the asset price Sﬁj at

each node of the price tree.

Step 3. Based on option calculation formula, calculate the option value up to the expiry

date VE(S%) and use backward inference to obtain the option value at each node V;*(SF).
Step 4. Repeat Steps 1 through 3 N times.

Step 5. Calculate the expected value of the option price E(Vj) = %Vok and draw the

membership function diagram of the fuzzy option price according to (Vi¥,uy).

5.3.3 Fuzzy least squares Monte Carlo algorithm

The least squares Monte Carlo algorithm mainly compares the exercise value of immediate
option exercise and the conditional expected value of continuous option holding to determine
the optimal exercise time of an American option. When the value of immediate exercise is
greater than or equal to the value of continuous holding, the investor will choose to exercise

the option immediately.

Presuming that the number of Monte Carlo algorithm-simulated paths is N and that the
time to expiration T is divided into M periods, at time t;, the exercise value of path-j is
I; ;(S; ;) = max(K — S, ;,0), where K is the exercise price and S, ; is the asset price on path j
during t;. The conditional expected value of continuous option holding can only obtained using
backward inference E; ;(S;;) = Elexp(—rAt)Vii1,;(Sit1,5)]9:]. Therefore, the conventional
Monte Carlo method is not suitable for numerical simulation of the American option pricing
model. The least squares Monte Carlo approach regards the discounted value of the option
value at time t; 41, exp(—rA¢) V4 j(Sit14), as the Y variable and S; ; and Sfj as X variable,
constructing a least squares regression model for Y as a function of X and obtaining regression
coeficients ay, ay and as. The following formula can yield an approximation for E; ;(.5; ;) (See

Figure 5.4):
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E;j(Si;) = a1 + asS;; + azS}; (5.17)

Based on the above method, compare the value of continuation holding and the value of
exercise at each node of N paths, thereby obtaining the optimal exercise strategy for each
path. Discount the option value of each path to the present period and obtain the average of
each path’s discounted option value; this said average value is the acquired option price (See

Figure 5.5).

If the asset price volatility o is a fuzzy number, the asset price .S; ; is also a fuzzy number,
whereas the exercise value I; ;(.S; ;) and value of continuous holding E; ;(S; ;) are both functions
of S;;; therefore, I, ;(S;;) and E;;(S;;) are also fuzzy numbers. Their o level set can be

expressed as follows:

~ O ~ U ~ L
[i,j (SZ,]) = [maX{K — Si,j (OL’)}+7 maX{[{ — Si,j (Q)}+] (518)
ENZ] (Sij) = lan + a2S7; + agSsz7 a1 + azS;; + agSijU] (5.19)

Because the asset price and option value are fuzzy variables, when comparing and solving the
least squares regression equation, the expected value of fuzzy variable is used in the calculation.

The calculation of the option price using the least squares Monte Carlo algorithm is as follows:

Step 1. Randomly and evenly extract a number op(k = 1,2...N) from the « level set of
the fuzzy variable o, calculate the membership degree of o, from the membership function of

o, and denote it as v.

Step 2. Based on the asset price formula, calculate the asset price Sy ;j(j = 1,2...M) at
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Figure 5.4: The least squares Monte Carlo algorithm (1)

each node of path j.

Step 3. Find the option exercise value Iy ;(Sk ;) at each node of path j, and calculate the

value of continuous option holding Ej ;(Sk ;) at each node using the least squares method.
Step 4. Repeat Steps 1 through 3 N times.

Step 5. Calculate the expected option value E(Vy) = Vi o/N, and based on (Vj 0,vx), draw

the fuzzy option value membership function diagram.

5.3.4 The improvement for Monte Carlo algorithm

There are two key factors that affect the simulation effect of the Monte Carlo algorithm: first.
the sampling characteristic of the random sampling determines the skewness of the sample
distribution; second, the manner in which the randomly simulated paths are constructed deter-
mines whether the simulated paths resemble real paths. Most studies regarding the simulation

effectiveness of Monte Carlo method mainly focus on these two factors.

The random numbers generated from Monte Carlo method are pseudo-random numbers.
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Figure 5.5: The least squares Monte Carlo algorithm (flow chart)(2)

These random points often present clustering or gap problems, causing relatively large devia-
tions in the random number sequence. On the other hand, the quasi-random numbers generated
from the quasi-Monte Carlo method incorporate the randomness and the evenness of the se-
quence distribution in random sequence; hence, using this method reduces the deviation in the
random sequence. The Halton, Sobol and Faure sequences are the most common quasi-random
sequences; since the Sobol sequence has better evenness and is less time-consuming to generate,

this study chose to use Sobol sequence to obtain the quasi-random numbers.

The Sobol sequence [65] is constructed based on a series of “direction numbers” v;. When

g; is a positive odd number less than 2¢,
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v = = (5.20)

The v; and ¢; are obtained by a polynomial with coefficient is 0 or 1, and the form of the

polynomial is as follows:

fR) =+ + . +a, 12 +a, (5.21)

When i > p, the recursion formulas for v; and ¢; are

U = Q1 Vi—1 D aU;_o D ... B ApUi—p 5 LUZ;p/2pJ (522)

Q; = 2a1Q; 14 22a2q2-,2 .. B 2,0 D qip (5.23)

where & indicates the binary bitwise exclusive-OR.

The Brownian Bridge method [28] is a method for constructing a Monte Carlo simulation
path. If X(¢) is a random process, let ¢; < t and the density function of » ~ Fx(,) and
y ~ Fx,) be f;, and f;, respectively, where f,, indicates the combined density function of =
and y. When the density function of z = z+y is f,, the density function of z|z can be obtained

using the following formula:

T G )
Jolz = W (5.24)
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For Brownian motion W (t), presuming ¢; < t; < t; and that W(¢;) and W (t;) are given,

the average value and variance at time ¢; satisfy the following Brown Bridge characteristic:

ty —t; ti —t;
W () + (]

E[W(t
W) = — gy

YW (1) (5.25)

(

VIW ()] = (t; — )t — 1)

5.26
te —t; (5.26)

Therefore, the following formula can be used to obtain the sample value of time sequence

{to,t1, ..., tn}, subsequently obtaining the diffused sample path:

t—t;
_ 1 1 o te — tiz 2
o) = yUEnire exp( 1 Yo ? (5.27)
2m
tr — t; bt — &

The Brownian Bridge method mainly increases the low-order coordinate component in the
random sequence and reduces the actual dimension of simulation problem to better illustrate

the distribution characteristic of quasi-random numbers, hence improving its estimation effect.

5.4 Empirical Analysis

5.4.1 Source of data and descriptive statistics

This study used the S&P 100 Index and American put options acquired from S&P 100 Index
as the data for empirical analysis. The S&P 100 Index prices were selected from the closing

prices of data of 1526 days dating from March 22, 2011 to March 23, 2017 (data source:
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Table 5.1: Descriptive statistics of the data

Indicator Sample size Maximum value Minimum value Average value Standard deviation Skewness Kurtosis
Rate of return 1525 0.0188 -0.028 0.0002 0.004 -0.4512 7.6373
Option time to expiration 70 0.75 0.0833 0.231 0.184 1.7002 5.1386
Option exercise price 70 1095 990 1041.6 31.2 0.0000 1.8
Option price 70 65.8 0.6 23.4336 17.0523 0.4781 2.1542

Yahoo!Finance), and the American S&P 100 Index put option prices were selected to be the
average prices of the final transacted prices for different expiry dates and different exercise prices
for put options on March 23, 2017 (data source: Chicago Board of Options Exchange). The
data used in this research excluded options with same month expiry, and we categorized options
with durations of 1-3 months as short-term options, 4-6 months as medium-term options, and
more than 6 months as long-term options. We only took into account American options with
exercise prices within the range of 95%-105% of the index prices and eliminated contracts with
option values close to 0. Consequently, we obtained 70 data points, of which 22 expire in April,
22 expire in May, 11 expire in June, 5 expire in July, 5 expire in September and 5 expire in

December.

Fig.5.6 shows the logarithmic return rate data calculated from S&P 100 Index prices of
1,525 days; it reveals tremendous volatility in the rate of return. Descriptive statistics of the
data are listed in Table 5.1. The sampling skewness of the rate of return is —0.4512 < 0, which
indicates that the sample is skewed to the left. The kurtosis is 7.6373 > 3, which indicates
that the sample is leptokurtic and fat-tailed. Skewness represents the deviation degree of
the sample data distribution relative to the symmetrical distribution, when skewness= 0, it
represents the sample data distribution is symmetrical, when skewness < 0, it represents the
sample data is left-skewed distribution, when skewness > 0, it represents the sample data is
right-skewed distribution. Kurtosis represents the degree of the sample data distribution more
or less peaked than a normal distribution, when kurtosis = 3, it represents the sample data
is a normal distribution, when kurtosis > 3, it represents the sample data is relatively peaked
distribution (leptokertic) and its tail is longer and fatter than a normal distribution, when
kurtosis < 3, it represents the sample data is flat-topped distribution (platykurtic) and its tail

is shorter and thinner than a normal distribution.
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Figure 5.6: Daily logarithmic return rate of the S&P 100 Index

5.4.2 Parameter estimation

Compared with a Gaussian distribution, a Levy process can better characterize the jump be-
haviour of innovations; however, the form of the Levy process distribution function is com-
plicated. After combining the Levy process distribution function with GJR-GARCH model,
there are many parameters to be estimated. If estimation is performed using the maximum
likelihood method, the calculation efficiency will be very low. Nevertheless, the form of the
Levy process moment condition obtained from the characteristic function is relatively simple,
and the parameters of a Levy process can be estimated using the generalised method of mo-
ments. Therefore, to reduce the complexity of parameter estimation, this study used a two-step
method to estimate the parameters of GJR-GARCH model and Levy process: in step 1, set
innovations as Gaussian distribution and use maximum likelihood estimation to estimate the
parameters of the GJR-GARCH model; in step 2, based on the innovations data obtained in
step 1, use the generalised method of moments to estimate the parameters of the VG, NIG
and CGMY models. The results of the parameters estimation are presented in Table 5.2, from
which we can see that the “leverage effect” parameter § of GJR-GARCH model is greater than
0. At the 1% significance level, the significance is not 0, indicating that the changes in volatility

are clearly asymmetric, with downward fluctuations stronger than upward fluctuations.
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Table 5.2: Estimated results for the Levy-GJR-GARCH model parameters

GJR-GARCH model parameters VG process parameters

w v I} ) 0 o v -
0.0001%%* 0.0050 0.7364*** 0.4746***| -0.2131 1.0676*** 0.3740**
(2.9711) (0.4902) (40.3428) (9.9941) | (-1.2262) (6.1442) (2.1527)

NIG process parameters CGMY process parameters
A n K - C G M Y
1.7806*%%* -0.2396 (.8883*** i 6.6594*** 3.1636%** 2.7937*FF*F 1.6961***
(5.1771) (-0.6968) (2.5827) (76.5830) (36.3812) (32.1268) (19.5048)

Remark: the numerical values in parentheses correspond to the t-statistics of the paramecter values, * indicates significant at the 10%
significance level, ** indicates significant at the 5% significance level, and *** indicates significant. at the 1% significance level.

Table 5.3: Descriptive statistics regarding volatility and innovations

Indicator Sample size Maximum value Minimum value Average value Standard deviation Skewness Kurtosis
Time-varying volatility 1525 0.0005 0.0000 0.0000 0.0000 7.7168  88.3883
Innovation 1525 3.4999 -6.6548 0.0753 1.0338 -0.4951 4.9872

Fig. 5.7 and 5.8 show the time-varying volatility sequence and the innovations sequence,
and Table 5.3 presents the descriptive statistics of innovations. From the characteristics of
time-varying volatility, we can observe the following phenomena: the volatility has a relatively
strong clustering characteristic, i.e., major volatility is followed by major volatility, and minor
volatility is followed by minor volatility. Therefore, using a skewed GARCH model to describe
the volatility data is more consistent with reality. From the characteristics of the innovation
data, we can see that volatility in innovations is not white noise; the skewness and kurtosis
are —0.4951 < 0 and 4.9872 > 3, respectively, indicating a leptokurtic, fat-tailed distribution.

Therefore, a Levy process can provide higher accuracy than a Gaussian distribution.

5.4.3 Empirical result analysis

We downloaded the data for option prices for 70 American options transacted on the S&P

100 Index from the official website of the Chicago Board Options Exchange and performed a
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Figure 5.7: Time-varying volatility
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Figure 5.8: Innovations sequence diagram

comparative analysis of different exercise prices and different time to expiration. The multiplier

of S&P 100 Index options is 100 USD (i.e. each point represents 100 USD). The closing price of
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S&P 100 Index on March 23, 2017 was 1,040, i.e. S5q = 1,040. We used the 10-year T-bond yield
as of March 23, 2017 as the risk-free interest rate, r = 2.4% (data source: official website of US
Treasury Department). To examine the pricing effect of the Levy-GIR-GARCH model under a
fuzzy environment, we compared the pricing result with that of the Levy-GJR-GARCH model
under a crisp environment. Under fuzzy theory, the volatility ¢ of an asset price is set as a
fuzzy variable, whereas in the GARCH model, the volatility o is set as a time-varying variable.
To reduce the complexity of the fuzzy calculation, the membership function of the time-varying
volatility {c;t} was set as an equal form of parabolic membership function. Because estimation
of four parameter values was required for parameter interval of parabolic fuzzy numbers, the
historical rates of return of 1525, 1200, 800 and 400 trading days before March 23, 2017 were
selected as observation samples based on different market information reflected by different
sampling intervals. The parameter values required for parabolic fuzzy numbers and the results

of option pricing are listed in Table 5.4.

The expected values under a fuzzy environment presented in Table 5.4 were obtained from
the upper and lower weights of the v = 0.95 level set of fuzzy number V,, and the exact formula

is as follows:

~ TVE - MY
M) M(V) +2 M(V)
NU

N NIOLA da+f0 V, da

/fo‘ (Vo +VU)da (5.28)

Based on the simulation results presented in Table 5.4, the option prices corresponding
to different time to expirations and different exercise prices are shown in Fig. 5.9 and 5.10.
From Fig. 5.9, we can see that as the time to expiration of option lengthens, the option price
increases gradually; this increase in option price is because the uncertainty increases as time
increases. We can see that when the time to expiration is shorter, the model’s simulation results

are clustered around the market price, whereas the simulation results are more dispersed when

88



Chapter 5. Fuzzy Levy-GJR-GARCH American Option Pricing Model

Table 5.4: Option pricing results (Unit: 100 dollars)

Time to . Least squares Monte Carlo algorithm Binomial tree algorithm
.. Exercise Market - : - -
expiration . rice Fuzzy environment Crisp Fuzzy environment Crisp
(year) P P (expected value) environment (expected value) environment

VG NIG CGMY| VG NIG CGMY| VG NIG CGMY| VG NIG CGMY

0.083 1000 278 1419 287 321 | 198 1.75 359 |350 1.87 289 |281 1.08 2.72
0.083 1020 5.06 | 681 491 6.26 |3.68 301 788 |7.05 373 365 |694 375 3.02
0.083 1040 10.14 10.83 11.63 11.75 |10.33 10.69 13.38 |15.90 10.87 12.77 |14.79 9.92 13.32
0.083 1060 21.24 |18.73 25.69 20.17 [20.63 25.11 22.86 [26.29 23.61 28.40 |21.30 25.36 23.55
0.083 1080 39.00 |32.26 45.85 32.59 [26.65 44.81 30.63 |50.63 41.21 45.16 |40.41 44.10 43.74
0.167 1000 7.50 | 456 3.02 432 |533 262 7.03 |932 252 6.18 |584 155 546
0.167 1020 11.10 | 7.59 5.59 834 |14.04 727 9.04 |16.88 6.66 10.17 |12.78 6.20 7.32
0.167 1040 17.55 |10.45 14.65 13.62 |21.79 17.16 16.64 |26.10 14.35 17.70 |18.48 15.59 15.64
0.167 1060 27.60 |18.46 26.63 24.59 [26.06 32.83 23.49 |37.04 26.30 33.17 |22.45 29.08 30.11
0.167 1080 42.50 |26.76 46.60 39.76 |30.47 51.52 39.68 |53.62 42.47 49.47 |41.41 45.60 46.10
0.250 1000 1145 | 7.67 6.10 6.84 |19.33 413 999 |16.14 4.62 10.13 | 9.84 5.36 15.98
0.250 1020 16.50 [11.33 15.59 14.62 |21.91 10.52 15.76 |24.15 9.59 16.84 |17.03 14.95 16.31
0.250 1040 22.80 |15.44 25.90 18.31 [24.28 21.73 17.78 |33.54 17.57 21.52 |24.50 26.62 26.63
0.250 1060 32.60 |23.76 44.85 28.44 |28.24 37.05 26.60 |44.37 29.00 36.93 |27.05 35.07 38.92
0.250 1080 45.70 |32.37 54.81 43.22 |33.05 55.54 41.52 |56.54 43.94 53.01 [43.05 55.01 55.06
0.333 1000 16.55 [12.81 14.51 9.38 |20.42 6.86 15.98 |22.19 6.06 14.58 |11.56 8.44 20.98
0.333 1020 21.75 |16.20 24.40 18.23 [23.03 13.93 18.67 |30.51 11.41 23.54 |19.18 21.32 24.86
0.333 1040 28.60 |24.39 34.73 22.59 [25.74 25.76 22.68 |35.03 19.48 26.26 |25.82 31.26 32.96
0.333 1060 37.70 129.02 43.68 30.67 [28.35 41.78 28.24 [46.79 30.62 39.63 |32.48 43.12 45.45
0.333 1080 49.90 |36.02 56.62 44.32 |32.73 60.30 43.72 |62.73 45.07 55.60 |53.03 56.93 63.08
0.500 1000 24.40 |15.22 27.14 1397 |25.17 10.69 16.56 |30.69 9.53 20.52 |17.97 10.92 22.31
0.500 1020 30.10 |18.35 37.05 23.26 |27.30 19.24 20.68 |39.26 15.63 26.81 |21.42 24.40 32.63
0.500 1040 37.40 |27.26 4531 28.81 [29.73 31.88 26.95 |48.84 24.05 29.61 |30.67 32.48 35.95
0.500 1060 46.20 |33.21 56.29 35.44 |32.86 47.85 33.48 |54.46 35.07 44.91 |41.64 47.62 54.65
0.500 1080 57.40 139.85 68.19 48.93 [36.78 66.00 49.31 |71.08 48.84 60.72 |54.31 62.99 65.80
0.750 1000 35.30 |18.24 35.61 17.98 [22.86 12.54 19.32 |33.78 13.82 26.20 |21.29 17.62 27.13
0.750 1020 41.60 |24.30 45.46 25.75 |24.14 22.35 24.79 |42.71 20.51 35.63 |28.88 27.24 38.93
0.750 1040 49.20 130.79 53.72 31.66 |27.33 35.29 30.99 |62.43 29.15 45.47 |33.88 38.86 47.85
0.750 1060 57.80 |35.77 70.61 41.52 |30.41 51.38 35.39 |73.03 39.95 60.76 |50.33 52.16 59.81
0.750 1080 68.30 |41.26 84.45 53.12 [33.29 69.45 51.87 |84.37 52.94 66.43 |61.33 66.83 68.05

the time to expiration is longer. This result indicates that the model has higher simulation
accuracy for short-term options than for long-term options. From Fig. 5.10, we can see that
the higher the exercise price, the higher the option price, which is consistent with the actual
situation. Because for American put options, the option price is bearish, higher exercise prices
correspond to higher option profit and thus higher option prices. Moreover, we can clearly
observe that the model simulation results for shorter period cluster around the market price,

and as the time frame lengthens, the simulated curve becomes more dispersed.

From the above analysis, we know that the theoretical model has greater simulation accuracy
for short-term options compared with long-term options; therefore, we selected 22 short-term

option pricing results with expiry in April 2017 (sce Table 5.5) to further analyse the differences
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Figure 5.9: Comparison of option prices with different time to expiration

Remark: "Fuzzy” denotes simulation under a fuzzy environment, ” Crisp” denotes simulation under a crisp envi-
ronment,”lsm” denotes the least squares Monte Carlo algorithm, and ”bt” denotes the binomial tree algorithm.
VG, NIG and CGMY are Levy processes. The red broken line with arrow is the trend line, the blue line is the
market price.

in option pricing under fuzzy and crisp environments. The result is shown in Figure 5.11. From
the simulation result, we can see that all market prices fall within the fuzzy interval of the
VG, NIG and CGMY models under a fuzzy environment, which shows that the market prices

of options are better covered when a fuzzy price interval is used. In contrast with the smaller

fuzzy interval of the VG model and the greater fuzzy interval of the NIG model, the fuzzy
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Figure 5.10: Comparison of option prices with different exercise prices

interval of the CGMY model offers better simulation results. Simultaneously, we observe that
under a crisp environment, the simulation results of the VG and CGMY models are greater
than the market price when the exercise price is lower and less than the market price when the
exercise price is higher, whereas the simulation result of the NIG model is less than the market
price when the exercise price is lower and greater than the market price when the exercise price

is higher.

For exercise price K = 1,050, Table 5.6 provides the option pricing result using the NIG-
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Figure 5.11: Option pricing results for April 2017 expiry

GJR-GARCH model under a fuzzy environment, in addition to the relationship between its
membership function and level set. When the exponent of membership function n remains
unchanged, the fuzzy interval narrows as the level set « increases while the fuzzy expectation
lowers; when the level set o remains unchanged, the fuzzy interval narrows as the membership
function exponent n increases, and the fuzzy expectation also decreases. The membership func-
tion diagram for different exponent n is shown in Fig. 5.12, from which we can see that when the
rate of return of the membership function is parabolic, the option price membership function
is also parabolic, and when n = 1, the parabolic membership function becomes the trape-
zoidal membership function. The left half interval of the function is monotonically increasing,
whereas the right half interval is monotonically decreasing. The monotonically increasing part
reflects that the seller’s satisfaction increases as the price increases, whereas the monotonically
decreasing part reflects that the buyer’s satisfaction reduces as the price falls. Fig. 5.13 shows

the relationship between the option price and the level set, and combined with the membership
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Table 5.5: Option pricing results for April 2017 expiry (Unit: 100 dollars)

Time to Exercise  Market Least squares Monte Carlo approach
Sequence  expiration i . Fuzzy environment Crisp
price price .
(year) (expected value) environment

VG NIG CGMY | VG NIG CGMY
1 0.083 990 2.09 2,717 2.21 2.06 3.38  0.72 2.61
2 0.083 995 2.50 3.78  2.64 2.46 4.06  1.02 2.83
3 0.083 1000 2.78 4.19 287 3.21 4.76  1.25 3.98
4 0.083 1005 3.34 4.70  3.27 4.37 529 1.73 4.93
5 0.083 1010 3.76 543  4.10 5.10 597  2.57 5.48
6 0.083 1015 4.50 591  4.47 5.80 6.72 3.21 6.32
7 0.083 1020 5.05 6.81 491 6.26 725 411 7.03
8 0.083 1025 6.03 7.71  5.90 6.91 8.01 574 7.70
9 0.083 1030 7.20 8.55  7.06 7.34 9.0 6.88 8.63
10 0.083 1035 8.48 9.94 874 9.45 | 10.39 8.89 9.69
11 0.083 1040 10.14 | 10.83 11.63 11.75 | 11.36 10.94 12.55
12 0.083 1045 1244 | 1248 15.16 14.52 | 13.15 13.54 14.54
13 0.083 1050 14.85 | 14.28 19.31 16.96 | 14.79 16.76 16.29
14 0.083 1055 17.90 | 16.76 22.74 19.31 | 17.95 20.65 20.93
15 0.083 1060 21.24 | 18.73 25.69 20.17 | 20.63 25.11 22.86
16 0.083 1065 25.43 | 21.09 28.76 23.31 | 22.02 29.87 23.96
17 0.083 1070 29.68 | 23.55 32.02 26.10 | 24.81 34.96 25.58
18 0.083 1075 34.25 | 27.84 4094 2846 | 26.50 39.07 26.78
19 0.083 1080 39.00 | 32.26 4585 32.59 | 31.27 44.72  28.15
20 0.083 1085 43.88 | 35.61 51.32 35.92 | 34.12 49.53 32.95
21 0.083 1090 48.87 | 41.75 56.41 41.32 | 40.26 54.38  36.01
22 0.083 1095 53.80 | 48.28 61.08 46.90 | 46.35 59.30 43.01

Table 5.6: The relationship between option pricing results and membership function/level set

Level n=1 n=2 n=23

set, o Fuzzy interval  Fuzzy expectation | Fuzzy interval — Fuzzy expectation | Fuzzy interval — Fuzzy expectation
0.95 [8.71,24.8] 16.76 [8.81,23.91] 16.36 [8.84,23.61] 16.23

0.90 [8.51,26.6] 17.56 [8.7,24.85] 16.78 [8.77,24.24] 16.51

0.85 [8.31,28.39] 18.35 [8.6,25.81] 17.21 [8.7,24.9] 16.80

0.80 [8.09,30.18] 19.14 [8.48,26.8] 17.64 [8.63,25.58] 17.11

0.75 [7.89,31.97] 19.93 [8.37,27.82] 18.10 [8.54,26.29] 17.42

f

ly shows the changes in the option price interval under different level

sets. The fuzzy expectation lowers as the level set increases, which shows that the member-

ship function diagram of option prices is asymmetric with an inclined left tendency, which is

consistent with the result shown in Fig. 5.12, where n represents the exponent of the parabolic

fuzzy variable, when value of n varies, the shape of the membership function of the parabolic

fuzzy variable will change accordingly; when n = 1, the parabolic fuzzy variable converts to a

trapezoidal fuzzy variable; when n = 2, it represents the classical parabolic fuzzy variable.
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Figure 5.13: Relational chart between option price and level set

Fig. 5.14 shows the optimal option exercise boundaries when the time to expiration 7" = 0.5

year, exercise price K = 1,060, and the exponent of membership function n takes on different

94



Chapter 5. Fuzzy Levy-GJR-GARCH American Option Pricing Model

55

50

N w w B A
(¢} o (3] o [$)]

Excercise boundary (Unit: 100 dollars)

N
o

15

10 I 1 I 1 I 1 I 1 I
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Time (year)

Figure 5.14: The optimal exercise boundary

values. The optimal option exercise boundary shifts higher as time goes. When n = 1, the
position of the exercise boundary is at its highest, and when n = 3, the position of the exercise
boundary is at its lowest. Since the price at the optimal exercise boundary satisfies V(t) =
K — S(t), as time progresses, S(t) will decrease gradually. At the same time, we can see that
as the expiry date approaches, the optimal exercise boundary tends to even out. At this point,

if there is any sharp decrease in the option price, it may trigger early option exercise.

For the purpose of a comprehensive comparison of the accuracy of various option pricing
models, we used two types of statistical methods — RMSE (root mean square error) and AAE
(average absolute error) — to perform an error comparison of the pricing results obtained from
different models; the results are presented in Table 5.8. These two indicators quantify the
deviation between the pricing result and the market price; the lower the value obtained, the

higher the pricing accuracy. The calculation formulas for these indicators are as follows:

95



Chapter 5. Fuzzy Levy-GJR-GARCH American Option Pricing Model

N M odel Market\2
(Ciode — Cferret)
N

RMSE = (5.29)

i=1

N
Zi:l ‘Ci]\/[odel - Cj]\/[arket‘

N

AAE = (5.30)

The results in Table 5.8 indicate that the least squares Monte Carlo algorithm has a better
pricing accuracy than the binomial tree algorithm regardless of whether pricing occurs in a
fuzzy or crisp environment. The simulation results of the least squares Monte Carlo algorithm
under a fuzzy environment are better than the results under a crisp environment, and among
the different models of the least squares Monte Carlo algorithm, the NIG model achieves the
most prominent enhancing effect. Comparing the pricing effects of the VG, NIG and CGMY
models, the NIG model in the least squares Monte Carlo algorithm has the best effect, followed
by the CGMY model, with the VG model exhibiting the poorest effect; in the binomial tree
algorithm, the CGMY model has the best effect, followed by the VG and NIG models. The fuzzy
least squares Monte Carlo-NIG-GJR-GARCH model has the best performance. Furthermore,
we calculate the accuracy rate by mean absolute percentage error (MAPE) to test the efficacy
of the fuzzy least squares Monte Carlo-NIG-GJR-GARCH model, data from Table 5.5 were
chosen, and the results are presented in Table 5.7. It can be observed from Table 5.7 that
the fuzzy least squares Monte Carlo-NIG-GJR-GARCH model achieved 88.39% accuracy rate
which is better improvement by 10.34% than the crisp least squares Monte Carlo-NIG-GJR-
GARCH model. The variance of the accuracy rate of the proposed fuzzy model is 22.91% of
that of the crisp least squares Monte Carlo-NIG-GJR-GARCH model, it is less than the crisp
model; this shows that the proposed fuzzy model is more stable than the crisp model in terms
of pricing accuracy rate. The results indicate that the proposed fuzzy model is effective and
its pricing results are more accurate and stable even with many reality uncertainty factors

included. The above outcomes show that fuzzy environment has great significance in the study
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of option pricing theory. The accuracy rate and MAPE evaluation are calculated as follows,

Accuracy rate = (1 — MAPE) x 100%

N
1 Clj\/lodel o Ci]Warket
MAPE = 3 STt (5.31)
i=1 i
Table 5.7: Comparison of the accuracy rate of the different models
Indicator Accuracy rate | Sample Variance
Crisp 1sm-NIG-GJR-GARCH 78.05% 338.91
Fuzzy lsm—NIG—.GJR-GARCH 88397, 77 63
(Fuzzy expectation,our model)
Compare to crisp lsm-NIG-GJR-GARCH 10.34%(Improved) 22.91%

5.4.4 Improvement of the least squares Monte Carlo algorithm

In the evaluation of the improvement effect of quasi-random numbers and Brownian Bridge
method on the least squares Monte Carlo algorithm, we are mainly concerned with whether
the improved method has increased the convergence speed. Therefore, this section uses the
NIG-GJR-GARCH model as an example in the dynamic analysis of the convergence process of
the pricing result. The results of a comparison of the convergence speeds of different calculation
methods are shown in Fig. 5.15. It appears that under the least squares Monte Carlo simulation,
it takes at least 5,000 simulations before the option pricing result can converge accurately to
the average value. On the other hand, using the improved method, even within only 2,000
simulations, the pricing result can be kept within the reliable range. This result indicates
that for option pricing, the improved method can effectively increase the convergence speed.
reduce the number of simulations required, and increase the pricing efficiency. The convergence
efficiency of the least squares Monte Carlo algorithm can be improved by 60% via the Sobol

sequence and Brownian bridge method.
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Table 5.8: Pricing error of the models

Model RMSE AAE

Fuzzy lsm-VG 9.622701  7.231907
Fuzzy lsm-NIG 5.876694  4.453933
Fuzzy 1sm-CGMY  7.072131  5.227281
Crisp lsm-VG 10.257905  7.839648
Crisp Ism-NIG 7177533 5.297496
Crisp Ism-CGMY  8.001463  5.800416
Fuzzy bt-VG 9.817527  8.210713
Fuzzy bt-NIG 10.408733  8.196607
Fuzzy bt-CGMY  7.276172  4.463557
Crisp bt-VG 10.974434 8.509217
Crisp bt-NIG 7.715236  8.244162
Crisp bt-CGMY  9.041845 4.018898
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Figure 5.15: Convergence process of the least squares Monte Carlo algorithm and the improved
calculation method

5.5 Conclusions

The decision of the optimal stopping time makes American option pricing problems more com-
plicated than the European option pricing problem, and the traditional BS (Black Schloes)

model is not capable of deciding American option pricing.
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Taking into account the time-varying, jump and leverage effect (i.e. asymmetric volatility)
characteristics of the asset price fluctuation, this study built a Levy-GJR-GARCH American

option pricing model based on an infinite pure jump process.

Meanwhile we incorporated fuzzy set theory and set the underlying asset price volatility as
the more generalized parabolic fuzzy variable (which can cover the triangle and trapezoid fuzzy
variable), according to the American option pricing theory we derived the optimal exercise
boundary, the continuation holding region and the stopping holding region for fuzzy American
options, and considering more general situations with the fuzzy variables with mixed distri-
butions, based on fuzzy simulation technology established fuzzy binomial tree and fuzzy least
squares Monte Carlo numerical algorithms for the proposed model, and we particularly applied
quasi-random numbers that are produced by the Sobol sequence, and Brownian bridge method,

to improve the convergence speed of the least squares Monte Carlo algorithm.

Lastly, using the S&P 100 Index and data for the corresponding American put options,
we empirically tested our fuzzy pricing model; comparatively analysed the pricing effect of
different widely used infinite pure-jump Levy processes (the VG (variance gamma process).
NIG (normal inverse Gaussian process) and CGMY (Carr-Geman-Madan-Yor process)) under
fuzzy and crisp environments with different fuzzy numerical algorithms that are proposed in

this chapter.
The main conclusions are as follows:

1. There is significant volatility clustering and strong leverage effects and stochastic jump

characteristics in the S&P 100 Index.

2. The option price increases as the length of the time to expiration of options increases and
as the exercise price increases; in addition, the pricing accuracy for short-term option prices is

greater than for medium- and long-term options.

3. Under a fuzzy environment, the market price of short-term options can be better covered
by the fuzzy interval of the VG, NIG and CGMY models, and the membership function curve

of the option price is asymmetric with an inclined left tendency, whereas the fuzzy interval
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narrows as the level set o and the exponent of membership function n increase.

4. The results of the option pricing are more accurate under a fuzzy environment than
the results under a crisp environment; the least squares Monte Carlo algorithm yields more
accurate pricing than the binomial tree algorithm, whereas among different infinite pure jump
Levy processes, the NIG (normal inverse Gaussian process) and CGMY (Carr-Geman-Madan-
Yor process) models yield better simulation results than the VG (variance gamma process)

model.

5. The fuzzy least squares Monte Carlo-NIG-GJR-GARCH model has the best performance;
According to the MAPE evaluation, the model achieved 88.39% accuracy rate which is better
improvement by 10.34% than the crisp least squares Monte Carlo-NIG-GJR-GARCH model.
Furthermore, the variance of the accuracy rate of the fuzzy least squares Monte Carlo-NIG-
GJR-GARCH model is 22.91% of that of the crisp least squares Monte Carlo-NIG-GJR-GARCH
model, it is less than the crisp model; this shows that the proposed fuzzy model is more stable
than the crisp model in terms of pricing accuracy rate. The results indicate that the proposed
fuzzy model is cffective and its pricing results are more accurate and stable even with many
reality uncertainty factors included. The convergence efficiency is significantly improved by
using the Sobol sequence and Brownian Bridge method to improve the least squares Monte
Carlo algorithm, the convergence efficiency of the least squares Monte Carlo algorithm can be

improved by 60% via the Sobol sequence and Brownian bridge method.
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Conclusion

6.1 Summary of Thesis Achievements

As widely recognised in academia and practical, the real financial market exists complicated
uncertainties and it is not as ideal as the assumptions of the theoretical model. One side, the
fluctuation of asset price have significant jump phenomenon which including finite big jumps
and high frequency small jumps simultaneously, and the asset yield is not a normal distribution
but rather exhibits skewed and leptokurtic and fat-tailed characteristics. Another side, because
of many subjective and objective uncertain factors and the incomplete information in the real-
life financial market, the parameters in the theoretical model are often vagueness and cannot be
expressed using crisp values, i.e., randomness and fuzziness co-exist at the same time. Therefore

the theoretical asset pricing model should be improve further.

The Levy process is a stochastic process with good mathematical properties, such as inde-
pendent stationary increments, stochastic continuity. These properties mean that the process
can have plenty of applications. Coupled with its ability to fit leptokurtosis and fat-tailed
characteristics, this makes the process pla I role in asset pricing field. Furthermore,

as an important part of asset pricing, option pricing is a core issue in asset pricing research.

Levy process includes both of finite jump process and infinite pure jump process, however,
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finite jump process only consider the finite big jumps in the asset price fluctuations, ignoring the
high-frequency small jumps which is also existing in the fluctuation of asset price, compared
with finite jump Levy process, infinite pure jump Levy process can capture the big jumps
and high frequency small jumps simultaneously in the real market situation, such as bigger
jumps to represent market shocks, whereas smaller jumps to represent real-time transactions.
Therefore, owing to the non-normality phenomenon of the underlying asset yield, and the
asset price fluctuation including big jumps and high frequency small jumps simultaneously in
the real market situation, the infinite pure juimnp Levy process was adopted to capture these
characteristics of the asset price. At the same time, fuzzy set theory as a powerful tool to
address the uncertainty, vagueness of the social environment, thus integrating fuzzy set theory
to option pricing models with infinite pure jump Levy process, it can be a useful supplement

to the option pricing method and can provide a new theoretical basis for the pricing of options.

To price options more rationally, in this thesis, we introduce the fuzzy set theory and the
infinite pure jump Levy process into an options pricing model on the basis of previous studies
to further enhance and enrich options pricing theories. In addition, this thesis also discussed
the theoretical and practical values of the options pricing model in a fuzzy environment through
numerical simulation and empirical analysis. Owing to the style of options mainly includes two
types: European options (to be exercised only at the expiration date) and American options
(to be exercised before or at the expiration date). Thus, the main contributions of this thesis

are summarised from these two aspects, specifically as follows,

In Chapter 4, we incorporate fuzzy set theory to construct a European options pricing
model based on VG (variance gamma) process (which is one of widely used infinite pure-jump
Levy processes) in a fuzzy environment on the basis of Black Schloes (BS) model. The drift,
diffusion, and jump parameters are treated as the trapezoidal fuzzy random variables in the

model.

The Monte Carlo simulation algorithm was then used to provide simulation estimates for the
model, meanwhile the instrumental variable method was introduced to improve the convergence

speed of the Monte Carlo algorithm.

102



Chapter 6. Conclusion

At last, the numerical simulation experiments, and an empirical analysis which using Ten-

cent Holdings (HK.0700) and its stock options data, are performed verify the efficiency and

accuracy of the proposed model. The following are yielded by the comparison of the option

price under the VG model in a fuzzy environment, BS model in a crisp environment, and the

VG model in a crisp environment:

1)

An analysis of the Monte Carlo numerical simulations and the empirical analysis which
uses Tencent Holding (HK.0700) and its stock options data show that treating the drift,
diffusion and jump as fuzzy random variables to obtain the options pricing model is
more reasonable, the fuzzy interval can cover the market prices of options and the prices
obtained by the VG process option pricing model in a crisp environment, and the ex-
pectations using fuzzy pricing are closer to the market prices of options than the pricing
results obtained by the BS (Black-Scholes) model in a crisp environment. According
to the evaluation based on the mean absolute percentage error (MAPE), the fuzzy VG
process option pricing model achieved 96.68% accuracy rate which is an improvement of
1.33% over the crisp BS model. Furthermore, the variance of the accuracy rate of the
proposed fuzzy model is 56.77% of that of the crisp BS model, it is less than the crisp BS
model; this shows that the proposed fuzzy model is more stable than the crisp BS model
in terms of pricing accuracy rate. The results indicate that the fuzzy VG process option
pricing model is feasible and its pricing results are more accurate and stable even when
many reality uncertainty factors are included. The results are more consistent with the

real-life market and can provide investors with better investment advice.

The results show that expectation obtained through the VG model in a fuzzy environ-
ment is mostly greater than the pricing results obtained under the VG model in a crisp
environment and that obtained using the BS model in a crisp environment. At the same
time, at a confidence level of 0.8, the fuzzy interval basically encompasses the outcomes
of the VG model in a crisp environment. On the other hand, the option price of the BS
model in a crisp environment tends to be less than the fuzzy interval. This shows that

the greater the number of random factors and uncertainties included in the model, the
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higher the option price, the results are consistent with the real-life market.

3) Both the VG model under a crisp environment and that under a fuzzy environment are
sensitive to variations in the jump parameter. As the jump parameter increases, the
option price decreases. At the same time, an increase in the confidence level also causes

the fuzzy interval for the pricing model in a fuzzy environment to narrow.

4) The empirical analysis shows that the instrumental variable method can improve the con-
vergence speed faster than the Monte Carlo simulation alone, the convergence efficiency

of Monte Carlo algorithm can be improved by 50% via the instrumental variable method.

In Chapter 5, we further extended our research in American option pricing problem, due
to the existence of the problem of the optimal stopping time, studies regarding American option
pricing problems are much more complicated than European option pricing problems, and the

traditional BS (Black Schloes) model is not suitable for American option pricing,.

Taking into account the time-varying, jump and leverage effect (i.e. asymmetric volatility)
characteristics of the asset price fluctuation, this study constructed a fuzzy Levy-GJR-GARCH
American option pricing model based on an infinite pure jump process with incorporated fuzzy
set theory and set the underlying asset price volatility as the more generalized parabolic fuzzy

variable (which can cover the triangle and trapezoid fuzzy variable).

Meanwhile, according to the American option pricing model theory we derived the optimal
exercise boundary, the continuation holding region and the stopping holding region for the
fuzzy American options, and considering more general situations with the fuzzy variables with
mixed distributions, we then applied fuzzy simulation technology to the widely used numerical
algorithms (the binomial tree algorithm and the least squares Monte Carlo algorithm) to create
fuzzy pricing numerical algorithms for the proposed model, such as fuzzy binomial tree algo-
rithm, fuzzy least squares Monte Carlo algorithm, and we particularly applied quasi-random
numbers that are produced by Sobol sequence, and Brownian Bridge method, to improve the

convergence speed of the least squares Monte Carlo algorithm.

Finally, by using American option data from the Standard & Poors 100 index, we empir-
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ically test our fuzzy pricing model and comparatively analyse the pricing effect of different

widely used infinite pure-jump Levy processes (the VG (variance gamma process), NIG (nor-

mal inverse Gaussian process) and CGMY (Carr-Geman-Madan-Yor process)) under fuzzy and

crisp environments with different fuzzy numerical algorithms that are proposed in this chapter.

The main conclusions are as follows:

1)

There is significant volatility clustering and strong leverage effects and stochastic jump

characteristics in the S&P 100 Index.

The option price increases as the length of the time to expiration of options increases
and as the exercise price increases; in addition, the pricing accuracy for short-term option

prices is greater than for medium- and long-term options.

Under a fuzzy environment, the market price of short-term options can be better covered
by the fuzzy interval of the VG, NIG and CGMY models, and the membership function
curve of the option price is asymmetric with an inclined left tendency, whereas the fuzzy

interval narrows as the level set o and the exponent of membership function n increase.

The results of the option pricing are more accurate under a fuzzy environment than
the results under a crisp environment; the least squares Monte Carlo algorithm yields
more accurate pricing than the binomial tree algorithm, whereas among different infinite
pure jump Levy processes, the NIG (normal inverse Gaussian process) and CGMY (Carr-
Geman-Madan-Yor process) models yield better simulation results than the VG (variance

gamma process) model.

The fuzzy least squares Monte Carlo-NIG-GJR-GARCH model has the best performance;
According to the MAPE evaluation, the model achieved 88.39% accuracy rate which
is better improvement by 10.34% than the crisp least squares Monte Carlo-NIG-GJR-
GARCH model. Furthermore, the variance of the accuracy rate of the fuzzy least squares
Monte Carlo-NIG-GJR-GARCH model is 22.91% of that of the crisp least squares Monte
Carlo-NIG-GJR-GARCH model, it is less than the crisp model; this shows that the

proposed fuzzy model is more stable than the crisp model in terms of pricing accuracy
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rate. The results indicate that the proposed fuzzy model is effective and its pricing
results are more accurate and stable even with many reality uncertainty factors included.
In addition, the Sobol sequence and Brownian bridge method can effectively improve the
convergence speed of the least squares Monte Carlo algorithm, the convergence efficiency
of the least squares Monte Carlo algorithm can be improved by 60% via the Sobol sequence

and Brownian bridge method.

6.2 Future Work

This thesis incorporated fuzzy set theory and the infinite pure jump Levy process into the
options pricing models on the basis of previous studies as a useful supplement to the option
pricing theories from European option and American options two aspects. It can provide a new
theoretical basis for the pricing of options. However, still room remains to perform in future

work.

6.2.1 Future work from option pricing model perspective

The subject of this thesis was relatively straightforward European call options and American
put options, without taking into account the pricing of more complex financial derivatives.
Therefore, future research may focus on incorporating fuzzy set theory and the infinite pure

jump Levy process in the analysis of the pricing of other derivative products.

6.2.2 Future work from fuzzy set theory perspective

In this thesis, the membership functions of fuzzy variables were assumed to have fixed forms,
without considering the more complex situation in which the membership degree is also a fuzzy
variable. To handle this uncertain situation, Type-2 fuzzy variable plays a key role, it has been
widely used as the latest research focus. Therefore, future research may focus on finding a more

reasonable calculation method for Type-2 fuzzy variable and other related problems.
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