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Abstract

Various cross-linguistic differences exist between different languages. Such vari-
ations are called translation divergences. They may lie in the way words may be
decomposed (lexical, word segmentation), in the way words correspond (phrasal,
alignment), and in the way words are ordered in sentences (structural, syntax). The
existence of translation divergences makes the straightforward transfer from source
sentences into target sentences impractical.

Previous research has shown that modeling translation using latent variables,
i.e., variables which are not directly observable, but for which models can be built,
benefits the learning process of machine translation. Translation divergences are ex-
plicitly handled in these latent variable models. However, most of these models are
asymmetric models, i.e., mono-directional (from source to target, or from target to
source) or monolingual. They only partially capture some aspects of translation phe-
nomena, leading to different performance on different language pairs. Typically, the
translation of distant language pairs, like English—Japanese or Chinese—Japanese,
receives lower translation scores. Apart from that, these models ignore the cross-
linguistic equivalents between the source and target languages, e.g., strong correla-
tions of some word pairs (1-1 alignments), similar underlying syntactic structures
and shareable lexicons or sub-words. It is natural to exploit the bidirectional models
that can make use of such equivalents.

In this dissertation, we propose a complete bidirectional latent variable frame-

work to model translation divergences. The impact of the use of bidirectional latent



variable models is investigated through three important tasks in machine translation,

namely: word segmentation, phrasal alignment, and syntactic reordering.

The methods proposed in this dissertation not only yield state-of-the-art perfor-
mance but also are consistently more efficient in terms of learning time and model
size. Translation experiments on distant language pairs demonstrate the efficiency

of these bidirectional latent variable models.

Phrasal alignment is a fundamental latent variable in modeling phrase-based
statistical machine translation (SMT). Phrase-based SMT often relies on asymmetric
word alignments to extract phrasal alignments. Those asymmetric word alignments
are output by some unsupervised word aligners. The accuracy of word aligners
heavily affects the quality and size of phrase pairs. Given IBM models of lower
complexity somehow are not reliable, word aligners have to rely on IBM models
of higher complexity with long training time to obtain better alignments. These
kinds of methods require an additional process of symmetrization. Therefore, we
are interested in developing a phrasal alignment method that can directly output
symmetric word /phrasal alignments. To deal with phrasal translation divergences,
we propose a novel bidirectional phrasal alignment method for building phrase-based
SMT models. This method is simple, fast and delivers small phrase tables, which
takes advantages of both the strengths of IBM models and hierarchical sub-sentential
alignment (HSSA). Moreover, thanks to the use of beam search, our implementation
is more efficient which allows obtaining more accurate phrasal alignments.

The underlying syntactic structure is another essential latent variables. Phrase-
based SMT cannot handle well the long-distance reordering problem. Recent progress
in syntax-based SMT has shown that the underlying syntactic structures, like parse
trees of synchronous context-free grammars (SCFGs), may benefit the learning of
long-distance reorderings in the translation of distant language pairs. Although
these methods commonly make use of syntactic trees to perform the translation,
this does not apply to words where no syntax parser exist. Other methods using
a simplified SCFGs named hierarchical phrase-based model dispense with parsers,
but require large reordering rule tables. To investigate structural translation di-

vergences, this dissertation employs the latent variable of bilingual syntactic repre-



sentation of bracketing transduction grammars (BTG). BTGs is the minimal case
of SCFGs which constitutes a simple bilingual parsing model to answer this prob-
lem. It has many advantages to use BTG like its simplicity, and more important,
BTG is insensitive to long-distance reorderings. Considering BTG as an effective
way to represent bilingual syntactic structures, we explore the possibility of using
the latent BTG derivations to control the reordering of the source or target words,
either before the standard phrase-based SMT pipeline (source, preordering), or dur-
ing translation (target, decoding). Our contribution consists in improved training
algorithms for the top-down BTG preordering method using bootstrap aggregating
with several learning techniques (mini-batch, distributed, iterative distributed and

k-best list) and a latent-BTG-based decoding method.

For East Asian languages without word separators (Chinese or Japanese), word
segmentation is considered an essential pre-processing step in many natural lan-
guage processing tasks, including machine translation. We find that segmentation
consistency and granularity of “words” influences the quality of the final trans-
lations. Different word segmentation criteria output different numbers of unique
words, and consequently, having different translation scores. The underlying vocab-
ulary, which is a crucial latent variable, controls the generating of the sequences
of “words”. Conventional word segmenters, e.g., Juman or Stanford Segmenter,
massively produce rare words which SMT or NMT systems cannot translate. This
results in lower translation scores of SMT and NMT. Researchers have recently dis-
covered that decomposing rare words into sub-words may benefit the translation of
rare words. Some words at least some sequences of characters (called sub-words)
in Chinese/Japanese are equivalent. This dissertation investigates a bilingual word
segmentation method with the aim of efficiently learning of translation models. The
bilingual word segmentation method is based on the principle of Minimum Descrip-
tion Length (MDL) with two additional restrictions: finite vocabulary and minimal
frequency. This constitutes a better bilingual word segmentation method for ma-

chine translation which reduces lexical divergences.

This dissertation provides a systematic solution to translation divergences ex-

isting in machine translation. Experimental results show that bidirectional latent



variable models presented in this dissertation not only yield state-of-the-art per-
formance but also effectively reducing the problems caused by asymmetric models.
This leads to more efficient learning processes in word segmentation, phrasal align-
ment, and reordering, while requiring shorter training times and/or having smaller

model sizes.
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Chapter 1

Introduction

This chapter introduces the background of the research. We describe the literature
on machine translation, basic notions of translation divergence, and the way of using
latent variables in machine translation. We also present an analysis of the existing
problems in the translation of distant language pairs and discuss our proposal to
deal with these problems.

The structure of this chapter is as follows.

e Section 1.1 introduces previous methods to machine translation and the main

aspects of statistical and neural machine translation.

e In Section 1.2, we give the definition of translation divergences and classifica-

tion of different types of translation divergences.

e In Section 1.3 and Section 1.4, we discuss the problem in current latent variable

models and the motivation of this research.

e Section 1.5 presents our proposal, called bidirectional latent variable models.

The advantages of using these bidirectional models are also discussed.

e Section 1.6 describes the structure of the thesis and highlights our contribu-

tions.



A Study of Efficient Bidirectional Latent Variable Models in MT H. Wang

1.1 History of Machine Translation

Human languages are diverse with about 7000 languages spoken [Tyers et al., 2010].
Since the unstoppable globalization, the need for seamless communication and un-
derstanding across languages has become more and more crucial. The majority of
human beings have been multilingual (< bilingual). Therefore, one primary object
of inquiry in computational linguistics is to understand various human languages

using the machine, i.e., machine translation (MT).

Interlingua

transfer

Semantic

Syntactic

Direct

source target

Figure 1.1: The machine translation pyramid (Vauquois’ triangle).

In this dissertation, here and after, we set those problems of machine translation
that we will discuss: the conversion of electronic texts from one natural language
into another. Since translation divergences exist, translation is more difficult than
it seems. Vauquois’ triangle (see Figure 1.1) was commonly used in the linguistic
rule-based machine translation community to describe the complexity of machine
translation. The bottom approach consisted of a direct lexical conversion (dictio-
nary) between a source language and a target language. Later efforts moved up the
pyramid to become more and more complicated. Outside of the pyramid are pre-
processing that analyze the source language and post-processing that generates in
the target language. Each step up the triangle required more significant effort in the
analysis of the source language and generation of the target language but reduced

the effort involved in the transfer phase across languages. The ideal scenario was

2



Chapter 1. Introduction

a complete analysis of each sentence into a language-independent form, which can
represent any meaning in any style, thus called “interlingua”.

The first exploration in translation using the machine is the 701 trauslator [Sheri-
dan, 1955] developed at Georgetown and IBM in the 1950s. From that time, machine
translation became a sub-field research in computational linguistics. Since its in-
ception, different paradigms for MT came and gone through many periods of great
development. From different points of view including linguistics and machine learn-
ing, state-of-the-art approach mainly falls into two categories: example/rule-based
methods and statistical /neural-based methods. There are two main differences be-

tween them:

e The former relies on manually encoded knowledge, i.e., grammar rules, or

translation knowledge base.

e The latter performs translation based on statistical models in contrast to the
former. It treats the translation of natural language as a machine learning

problem.

Statistical machine translation (SMT) [Brown et al., 1990, Och, 2003, Koehn
et al., 2003, Chiang, 2005] had dominated academic MT research over the last fifteen
years. The common and general setting of SMT is to learn how to translate from a
large parallel corpus, which relies on statistical models learned from parallel corpora.
Generally, this is typically a machine learning framework: we have an input F (the
source sentence, e.g., Japanese), an output E (the target sentence, e.g., English),
and a probability model P trying to produce the correct output E for each given
input.

E = P(F) (1.1.1)

Note that the process of segmentation is not modeled explicitly.

Progress within the SMT approach, however, has been less dramatic compared
to the recent development of neural machine translation. Neural machine transla-
tion (NMT) [Bahdanau et al., 2014, Sutskever et al., 2014a] is a recently proposed
approach to machine translation. Unlike the traditional SMT, instead of integration

of multiple different models, NMT aims at building a single neural network that the

3
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1 1
Rule/example- ! Statistical MT ! Neural MT
based MT 1 |
: Hiero/ : Attention CNN Transformer
. Syntax-ba:sedIS s
MT ! \Seq2seq | |
. Georgetown . Phrase-based .
Quality | gigm Word-based

Sheridan, Brown, Och et. al, Chiang, Sutskever, Bahdanau, Gehring et Vaswani et times
1955 1993 Koehnet. al, 2007 Cho etal. Luongetal.al., 2017 al., 2017
2003 2014 2014

Figure 1.2: History of machine translation.

language model and the translation model can be jointly trained. NMT methods
promise better sharing of statistical evidence between similar words and inclusion
of rich context. In both of the statistical and neural MT approaches, the decoder is
an essential component that employs statistical /neural models to translate from the
source language into the target language automatically. Theoretically, we separate
SMT with NMT as two different paradigms given the architectures are different, but
the idea of learning the translation probability model with the machine is the same.

The description of the machine translation pyramid also suits for recent SMT
and NMT, where NMT locates near the semantic floor, and SMT locates between
the direct floor to the semantic floor. Figure 1.2 shows the progress since the birth

of MT until now. It shows how MT has changed over the years.

1.2 Translation Divergences

English is distant to East Asian languages(such as Chinese and Japanese) than it
is to Western European languages (such as French and German). For example, an
English sentence significantly differs with the corresponding Japanese sentence from
aspects of written forms and similarities of syntax. In linguistics, such a language
pair is usually called “distant language pair” given that these languages belong to
distinct language families.

For current machine translation approaches, learning the translation of such a

distant language pair is challenging and problematic. The translation quality as
4
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Lexical divergences Phrasal divergences Structural divergences
VP VP

SR c dar /N /\
/\ M VBD VBN PP Rp VB

Kyoto station was renamed as i i | | !
was renamed IN (2 gy

{

as

Q) 2 3)

Figure 1.3: Classification of translation divergences.

measured by translation accuracy metrics is not yet satisfying. The straightforward
transfer from source sentences into target sentences is impractical, because of the
existence of translation divergences, i.e., cross-linguistic differences. Such differences
may lie in the way words may be decomposed (word segmentation), word order
(syntax), and consequently the way words correspond (phrasal alignment).

We limit the scope of translation divergences which we will focus on to the
lexical-semantic divergences defined in [Dorr, 1994]. We first classify translation

divergences into three types, as shown in Figure 1.3.

e Lexical divergences

The first divergence type is lexical: in Figure 1.3 (1), English words are writ-
ten in Latin script (English alphabet), while sharply differs from Japanese,
which uses “Kanji” script. They use different alphabets. Multiple possible

translations may exist for one source word.

e Phrasal divergences

The second divergence type, phrasal, exploiting outside of the unit of “word”,
where the way words are ordered and the way of word decomposition, as
Figure 1.3 (2) shows. For instance, we frequently find that expressing source

word meaning in a single target word is difficult.

e Structural divergences

The last divergence type, structural, mainly involves the structural differences

in grammar or syntax as in Figure 1.3 (3).
5
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Although the divergences were named differently in the literature on MT, a

number of researchers have been working on this issue seeking a systemic solution.

1.3 Latent Variable Models

Observable predict
Variables

X)

Predictions

)

Figure 1.4: Direct learning.

Current machine translation approaches commonly treat machine translation as
a machine learning problem based on conditional probabilistic models. The gen-
eral translation model defines a conditional probability distribution over the target
translations of a given source sentence. It describes the mapping between the source
sentence and target sentences in a direct way (see Figure 1.4). These models are
typically trained using large parallel corpora which contain observable examples of
source sentences aligned with their translations (target sentences). Often we can see
and measure the observed variables, i.e., F and E, but we cannot directly observe
or measure the constructs of F — E themselves. A natural question raises:

Are there any unobservable or “latent” variables as Figure 1.5, which control the
constructs to correct?

Here, latent! refers to variables that are not directly observed but are rather
inferred (through a statistical or neural model) from other observed variables. In-
trinsically, we assume the existence of useful latent structures and classes which
handle such cross-linguistic differences.

Previous research has shown that modeling the translation problem using the
latent variables, i.e., variables which are not directly observable, but for which mod-
els can be built, benefits the learning process in machine translation. The reason

is that the latent variables may capture the underlying cross-linguistic phenomena

rom Latin: present participle of lateo (“lie hidden”), where hidden = latent = unobserved.

6
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Latent

Variables

(2)

Observable predict
Variables

X)

Predictions

()

Figure 1.5: Indirect learning.

where translation models being constructed. These latent variable models mainly
involve three intermediate processes, namely, segmentation, alignment, and syntax

transformation.

1.4 Drawbacks of Asymmetric Models

The majority of latent variable models are asymmetric models, i.e., mono-directional
(from source to target, or from target to source), or monolingual. These model might
only partially capture some aspects of translation, leading to different performance
on different language pairs. Typically, the translation of distant language pairs, like
English—Japanese or Chinese—Japanese, exhibits lower translation scores compared
with English—French. In other words, current latent variable models cannot deal
very well with the translation of distant language pairs.

For example, in phrasal alignment, previous methods extract phrase pairs in a
two-step process. In a first step, they rely on word alignment models, i.e., IBM
models (from 1 to 5) and HMM models to obtain initial asymmetric hard word
alignments. This requires a bi-directional training procedure in a second step and
an additional process of symmetrization, resulting in long training times and large
translation tables.

In syntax-based reordering, problems caused by asymmetric models occur when
transferring from source structures into target structures. Two syntactic parse trees
may be quite distinct for corresponding sentences. Such syntax-based models require
a large number of phrase-structure rules to represent various reorderings.

Lexical divergences may also exist in word segmentation due to the use of dif-
7
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Word Segmentation

AR A& | BEE |
SUHRER A L BRI e i - A /

/ / \\ Kyoto  station 2?2 as was
! : m
SR % i b Large number of OOV words

Phrasal Alignment YR was renamed as 0.5
1 e . e was renamed 0.5

= Bk Asymmetric :> WA FE was renamed 0.3

Models Wt wasrenamedas 0.6

iz as 0.6

was renamed as
Large phrase table!!!
Syntax Transformation

VP VP VP — VBDVBNPP / RP VB
/\ PP —IIN /¢
VBD VBN PP RpP VB N VBD= was | ¢
{ | | | | VBN ™ rename /&
was renamed IN 2 R '

VB — I e
{Long Training Time) £ ek
as ... Large rule table!!!

Figure 1.6: Existing problems in current approaches based on asymmetric models.

ferent segmentation standards. Different segmenters for different languages may
produce words in different quantity which MT systems cannot align or translate.
This results in different translation scores in SMT or NMT.

In addition to the above problems, mono-directional models such models might
be not optimal for the final task of machine translation because they may neglect
to use equivalents across languages. These equivalents can appear at word level
and above word level, when translating from one language into another. It sounds
natural to design bidirectional models which would exploit these equivalents with

symmetry in mind.

1.5 A Systematic Solution: Efficient Bidirectional
Latent Variable Models

In this dissertation, we propose to model translation divergences using bidirectional
latent variable models. “Bidirectional” means that these latent variables should con-
vey mostly the same information for both the source and the target sides, if and only
if these conversions are bidirectional procedures. Bidirectional latent variable mod-

els are a complete framework which aims at reducing bilingual language divergences
8
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Figure 1.7: Efficiency of bidirectional latent variable models.

systematically. This dissertation investigates the impact of the use of bidirectional
latent variable models in three important tasks for machine translation, namely:
phrasal alignment, syntactic reordering and word segmentation. The efficiency of
the bidirectional latent variable models proposed in this dissertation not only yield
state-of-the-art performance but they are also consistently more cffective for the

translation of distant language pairs, like English—Japanese or Chinese-Japanese.

Figure 1.8 illustrates four main challenges within the Japanese-English transla-
tion task: segmentation, alignment, reordering. For example, in languages that use
word separators, like English, words can be easily recognized by splitting a sentence
using these separators. However, languages like Chinese or Japanese do not make
use of any explicit word delimiter. Identifying word boundaries is more laborious. To
learn a phrase-based translation model for SMT, we need to know word alignments
in a source-target sentence pair. Different word orders is another problem need to
solve. Generally, word order in languages differs variously. For example, the order
of subject (S), verb (V) and object (O) in a Japanese or Korean sentence, in which
we called SOV languages, is different from English. Therefore, we can decompose
the translation model as a chain of latent variable sub-models. Let Z denotes the

latent variables hidden in Equation 1.1.1,
9
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AR A L ARBUZ .

/ /7 AN\ Segm"'@"*“”m (Chapter 5)

OB & g BRI ddf .

l l Alignment & Translation (Chapter 3)

Kyoto station Shichijo station as was renamed . @

>< Reordering (Chapter 4)

K . S

Figure 1.8: Example of phrase-based translation from the source (Japanese) sentence

into a target (English) sentence.

P(E|F) = P(E,Z|F)
E, {Zseg> Zreorda Zalign}‘F)

(
(
(E|Zseg, F) P(Zicey | F)
(
(

—_
ot
w

—_
o
o

P
P
P E|Z[seg,reord]7 F)P<Z[seg,reord}‘zsegu F)P(Zseg‘F)
P

E|Z[seg,reord,align}a F) X P(Z[seg,reord,alz’gn} |Z[seg,reord]> F)
X P(Zisegreord)| Lisegs F) X P(Zigeq|F) (1.5.6)

where Z can be any latent variable, e.g., segmentation Z.,, reordering Z,corq Or
alignment Zg;g,. 2 bridges the gap between the source language and the target
language, thus it is a bilingual latent variable model.

This bilingual latent variable model is capable of modeling these translation
divergences that do not decompose into word-for-word translation. The sharp dif-
ference between our proposal and the previous methods is that they are asymmetric
models while our models are bidirectional. The advantages of the proposed models
are illustrated in the Figure 1.7. The efficiency of these methods are independently

evaluated given the following aspects:

(a) the translation accuracy of the end-to-end translation systems;

(b) the training time required for these processes, such as phrasal alignment, sen-
10
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tence reordering and word segmentation;

(¢) the amount of memory needed to hold the program and the produced models.

1.6 Overview of the Dissertation

The rest of this dissertation is organized as follows. Figure 1 illustrates the structure
of the dissertation.

In Chapter 2, we introduce the context and background of machine translation
and two dominant paradigms: SMT and NMT. We give a brief overview of the
architectures in standard phrase-based SMT, syntax-based SMT and sequence-to-
sequence NMT. The following chapters present our proposal for handling various
translation divergences by using bidirectional latent variable models.

Chapter 3 presents a novel symmetric phrasal alignment method. It incorpo-
rates IBM models with hierarchical sub-sentential alignment method for symmetric
phrasal alignment. Thus, this method enables automatically generating symmet-
ric alignment directly from a parallel corpus. We evaluate the proposed method
in various language pairs. Machine translation experiments for distant language
pairs like English-Japanese as well as other similar language pairs like English—
French, Spanish-Portuguese are performed. We evaluate the efficiency of the pro-
posed method in terms of alignment error rate, training time and translation quality.

In Chapter 4, we investigate Bracketing Transduction Grammars, as a bidirec-
tional latent variable model for syntax-based SMT. We start our work with a state-
of-the-art method, called the top-down BTG-based preordering method, then boost
the accuracy of structure predictions by reducing the insensitivity of initial align-
ment noise. We first investigate how latent derivations in response to reordering,
then adopt various multi-processing techniques, so that the latent BTG parse trees
predicted are more accurate. We conduct experiments on preordering for phrase-
based SMT to test the effectiveness from the aspects of the quality of reorderings
and translations. Experiments on extending syntax-based SMT systems with these
reordering models also show promising results in the English-Japanese task.

Chapter 5 describes a bilingual word segmentation method using the principle of
11



A Study of Efficient Bidirectional Latent Variable Models in MT H. Wang

Minimum Description Length (MDL). The vocabulary of behind the segmentation
is a crucial latent variable for both SMT and NMT. We propose to impose two ad-
ditional restrictions: minimum frequency and limited vocabulary, into MDL during
inference of vocabulary. Our proposal yields a compressed dictionary of words for
both the source and target languages. This allows sharing vocabulary and word em-
bedding across languages in an encoder-decoder architecture. To prove the efficiency
of our proposal, we compare with baseline systems using some pre-trained super-
vised word segmenters for both Chinese-Japanese and English—Japanese translation
tasks. Such a method also benefits the translation model learning in seq2seq NMT.

Chapter 6 summarizes and concludes this dissertation. The main contribution
of this dissertation are the proposed method involving several bidirectional latent
variable models. This dissertation provides a systematic solution to translation

divergences. Finally, the possible directions for future work are discussed.

12
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Background

For a better understanding of the following chapters, this chapter reviews the basic

notions of SMT and NMT.

e Section 2.1 introduces the standard structure of the phrase-based statistical

machine translation system.

e In Section 2.2, we go through the basics of formal language theory, and its

application in SMT, called syntax-based SMT.

e Section 2.3 describes the recent developments in NMT, typically sequence-to-

sequence NMT| one of the recent very popular NMT models.

13
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2.1 Phrase-based Statistical Model

Statistical machine translation is one of the approaches to machine translation. It
considers translation as a machine learning problem based on conditional probabilis-
tic models. Different methods have been proposed, including word-based [Brown
et al., 1988], phrase-based [Koehn et al., 2003], hierarchical-phrase-based [Chiang,
2007], tree-to-string-based [Liu et al., 2006] and tree-to-tree-based [Zhang et al.,
2007].

Among these methods, phrase-based SMT is the most widely used and easily
built one, which translate with continuous fragments, i.e. phrases, as the basic
units processed at each time step. The basic process of translation in SMT is called
decoding. According to the noisy channel formulation, it consists in a searching
process, where the most probable target (or English) sentence E is selected from all

candidates E given a source (or foreign) sentence F:

E= argmax P(E|F) (2.1.1)
EcE
= argmax%gp(m (2.1.2)
EcE
= argmax P(F|E)P(E) (2.1.3)
E<E

where P(E, F) estimates conditional probability of any E given F. Current phrase-
based SMT models decomposes P(E|F) into a combination of sub-models P;(E|F)

within a log-linear framework as:

P(E[F) = [[\P/(E.F) (2.1.4)

7

= /\TMPTM(F,E) X )\RMPRM(FyE) X )\LMPLM(E) (215)

This formula consists of three sub-models: a phrase-pair-based translation model
Pry(F,E), a language model Ppy(F) and a reordering model Pgry/(F,E). The
X's are the model weights of each sub-model. P(F,E) is decomposed further into
Pry(F,E) and Pry(F,E).

State-of-the-art SMT methods [Chiang et al., 2009] has been further improved

with the recent developments in machine learning. These methods employ large
14
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statistical models developed using highly sophisticated linguistic knowledge. For
instance, instead of using a single conditional probability of Pry,(F|E), current SMT
methods allow the use of multiple translation models, various kinds of reordering
models, even any number of other models. MT researchers are not satisfied with
the traditional way of translation probability estimation using naive Bayes with the

EM algorithm anymore.

2.1.1 Language Model

The language model (LM) is the essential component of any SMT systems, which
helps an SMT system to find the right word order. For example, the incremental
statistical language models provide the the probability that a given the word will

occur next, based on the preceding words:
Py ps(renamed as | kyoto station was) > Ppp( as renamed | kyoto station was )

The LM literature includes count-based language models and continuous-space lan-
guage models. Count-based language models are based on Markov chains, where
the number of previous states (words) is the order of the model. Since zero proba-
bility occurs when the query n-gram has not appeared in the corpus, some smooth-
ing [Chen and Goodman, 1996] and back-off [Kneser and Ney, 1995] techniques are
used. A major problem of Markovian LM is that any dependency beyond the win-
dow is ignored. This reason leads to the idea of applying Neural Networks to the
problem of LM. [Mikolov et al., 2010] proposed continuous-space language models

later. Training language model needs large amounts of text in the target language.

2.1.2 Translation Model

The type of the translation models may range largely for different SMT frameworks:
word pair [Brown et al., 1988], phrase pair [Koehn et al., 2003, hierarchical phrase-
based pair [Chiang, 2007], tree-to-string templates [Liu et al., 2006] and tree-to-tree
templates [Zhang et al., 2007]. However, all these translation models require word-
aligned parallel texts. In particular, phrase-based SMT requires a phrase translation

table to map the source phrases into the target phrases. At the beginning of the
15



A Study of Efficient Bidirectional Latent Variable Models in MT H. Wang

Trainin,
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Symmetrization >  Reordering model |f\> DATERS Al If\> Decoder

{grow-diag-final-and)

Translation model

Training tuning decoding

Figure 2.1: Standard architecture of a phrase-based statistical machine translation

system.

training process, word alignment is typically not available. By treating it as a hidden
variable, [Och and Ney, 2003] showed how to the expectation maximization (EM)
algorithm to iteratively learn word alignment and translation model parameters from
a parallel corpus aligned only at the sentence level. They then extract phrase pairs
which are consistent with the learned word alignments. Probabilities (e.g., phrase
translation probability, lexical weighting) for each phrase pair can be estimated
given that alignment. Since the translation model is represented as a phrase table,
the quality of word alignments has a great influence on the quality of translations.
Hence, it is an important issue to improve word alignment for SMT. We will address

this issue in Chapter 3.

2.1.3 Reordering Model

Initially, long distance word reordering was not explicitly modeled by phrase-based
translation models. To overcome this limitation, a phrase distortion model d is
incorporated into the phrase-based model. This model assigns a probability under
each condition of permutation: monotonic, reverse and jumping. Since we will

discuss these problems in Chapter 4, we skip the details for now.
16
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2.1.4 Training, Tuning, Testing

The main steps in the development of an SMT system are training, tuning and
decoding. Figure 2.1 illustrates how phrase-based SMT models are developed. As
shown in Figure 2.1, a log-linear model is employed. The overall translation prob-
ability of a candidate sentence relies on the scores obtained from each sub-model.
Therefore, building an SMT is, in fact, a machine learning problem. Traditionally,
optimization is done on n-best lists of multiple decoder runs. The popular minimum
error rate training (MERT) method was proposed by [Och, 2003]. One problem
with MERT is that it is difficult to tune a large number of features. Other meth-
ods like the Margin Infused Relaxed Algorithm (MIRA) [Chiang et al., 2009] or
k-best MIRA [Cherry and Foster, 2012] support more features. With careful tuning,
PB-SMT can achieve acceptable performance.

With the trained model, an SMT system translates using a translation engine,
called “decoder”. It consists of two processes: retrieving the translation fragments
(phrase pair) and generating the optimal target sentence satisfying Equation 2.1.3.

The target sentence is always built left-to-right, while the input sentence posi-
tions can be covered in different orders.  Because scarching over the space of all
possible translations would be NP-hard, SMT decoders employ heuristic search al-
gorithms to only explore a promising subset of the search space. In particular,
state-of-the-art PBSMT systems rely on the beam-search algorithm [Tillmann and
Ney, 2003] with the limitation of the reordering constraints to reduce the decoding
complexity. Besides, in hierarchical phrase-based (Hiero/syntax-based) SMT, cube
pruning [Chiang, 2005] is widely used in hierarchical phrase-based decoders to re-
duce the decoding complexity, performing the decoding using the CYK algorithm

from bottom to up. We will address this issue in Chapter 4.

2.2 Syntax-based Model

Noam Chomsky said:

“Language is a process of free creation; its laws and principles are fived, but the

manner in which the principles of generation are used 1s free and infinitely varied.”

17
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To understand the above sentence, we start with some basic notions in formal lan-

guage theory.

CFG parse tree S

NN NN
| l
kyoto i
y station NN NN
VBD VBN PP | !
L Y Shichijo  station
was renamed IN
|
as

Figure 2.2: CFG parse tree for an English sentence.

Definition. 1 Context Free Grammar (in Chomsky Normal Form) A
context-free grammar (CFG) G = (V, X, R, 5) is a 4-tuple (see Figure 2.2), where
V is a finite set; R is a finite relation; X is a finite sct of terminals, disjoint from V.
S is the start symbol. In Chomsky Normal Form, if each rule & — 3 in R takes one

of the two following forms:
o X — X1X2 where X € V,Xl i~ V,XQ eV
e X - Y, where X € V)Y € X

Hence each rule in the grammar either consists of a non-terminal X rewritten
as exactly two non-terminal symbols, Y;Y5; or a non-terminal X is rewritten as
exactly one terminal symbol Y. A CFG provides a simple and mathematically
precise mechanism for describing the methods by which phrases in some natural
language are built from smaller blocks, capturing the “block structure” of sentences
in a natural way.

Let us move to the bilingual case, see Figure 2.3, in which the English parse tree

is linked with the corresponding Japanese parse tree. Each link in the figure stands

18



Chapter 2. Background

S
English
NN NN
| }
kyoto station NN NN
B Id
CFG parse trees B +  VBD VBN \ ¢ |
| | shichijo  station
was renamed | .
Japanese

Figure 2.3: Linked CFG parse trees. top: English; bottom: Japanese.

for a word-to-word correspondence. These two trees have the similar underlying

structure, but the order of constituents differs in the two languages.

Definition. 2 Synchronous Context-free Grammar (SCFG) An SCFG
is defined as a 5 tuple (see Figure 2.4): G = (V,W;, Wh, R, S), where W is a finite
set, the set of terminal words in the source language and W, is a finite set, the set
of terminal words of the target language. The difference between SCFG and CFG

is that the rewriting rules R are bilingual.

Definition. 3 Hiero Grammars [Chiang, 2005 propose a simplified version
of SCFG, named Hiero Grammars, in which all non-terminal symbols are represented
with a single symbol X but noted in serial, i.e., V = {X}. Figure 2.4 shows the
parse tree using the following rule:

X — X was renamed as Xo/X; % X, 1 PR

Definition. 4 Bracketing Transduction Grammars (BTG) (or Inver-
sion Transduction Grammar (ITG)) [Wu, 1997 is defined by the 5-tuple: G =

(V, Wi, Ws, R, S). Similarly to SCFG, V is a finite set of non-terminal symbols
19
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SCFG Hiero Grammars

S S

was renamed as
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!

kyoto station kyoto station shichijo  station
& NN NN el
SR Ea BES

VBD VBN PP I FUER R e AR

Voo | Shichijo station
was/€ renamed IN =% N
T
as/kZ

Figure 2.4: An example of parse trees for SCFGs and Hiero Grammars.

shared by the two languages which only contains two non-terminal symbols X5, X,
ie,V={X;, Xy}, and a single terminal symbol Y.

BTG can describe a structurally correlated pair of languages. In contrast, to
address the linguistic divergences in each language, BTG try to model two different
languages with the same inherent grammar. Similar to non-deterministic push-
down transducers described in [Savitch, 1982], BTG have an additional inverted
orientation, which allows the production of right-hand side in the right-to-left di-
rection. The simplest formulation of BTG contains three simple generation rules R:

straight—S, inverted—I/ and terminal—71" as follows:

S:X o [X1Xs] (2.2.6)

T:X = Y.V, (228)

straight inverted terminal

X1, X5 and X are non-terminal symbols, Yy and Y, are terminal strings, and [ |
denotes the same order for the two non-terminals in two languages, () denotes the

inversion case!. BTGs implement a crossing constraint inherently. At each level,

"Where v € R and we compress the terminal rules (L; singleton v — e/¢ and Lo singleton

v — ¢/ f) into the default terminal rule T.
20
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Binarized SCFG BTG parse tree
S

NN

b0 Nll\l r\ip VP kyoto/T#AR >
AR station  el% NlN I\lIN station/§R &% shichijor ;% - station/ &%
ER PF; shichijo station as/lZ
VITD V]i,N H\i L& iR was/e  renamed/CFR

was/e renamed as/iZ

i

Figure 2.5: An example of a parse tree for binarized SCFGs and its corresponding

BTG parse tree.

subtrees are permitted to cross in exact tnverted order or straight order. This restric-
tion greatly reduces matching flexibility during parsing. However, BTG formalism
somehow limits the permutation of constituents, [Wu, 1997] shows that BTGs can-
not generate 2 out of 24 permutations. One of them is By D4A;C3 to A1 BsC3D,
(2413 pattern). There also may exist more than one BTG tree to represent the same
word reordering. E.g., the word reordering C3 B A1 to A BoC'5 has two possible BTG

trees:
1. X953 — <X1203>§X12 — <A1B2>
2. Xio3 — <A1X23>;X23 — <Bzc'3>

Therefore, BTG is a simplified well-formed SCFG. It meets Chomsky Normal
Form. Table 2.1 shows the mapping from binarized SCFG rules to BTG rules. We
draw Figure 2.5 to make the connection between BT Gs and SCFGs. The parse trees
in Figure 2.5 are generated simultaneously.

Figure 2.5 allows visualizing the structure commodities of two sentences more
clearly. BTG offers a compact representation with the bracketing notation:

[ [kyoto/ 7 #F station/BR] ( ( [was/c renamed /5 kf] as/IZ) [shichijo/t
2 station/Hf] ) |

Definition. 5 Probabilistic Context-free Grammar (PCFG) [Eddy and
21
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Table 2.1: Binarized SCFG rules and their corresponding BTG rules.

Binarized SCFG rules N BTG rules

S — NP VP | NP VP X = [X1Xy]
NP — NN NP | NN NP X = [X1X5]
NP — NN ADP | NN ADP X — [XiX5]
VP — VP NP | NP VP X — (X1Xy)
VP — VP PP | PP VP X = {(XiXy)
VP — VBD VBN | VBD VBN X — [X1X5]
PP — IN|IN X =Y

Durbin, 1994, Charniak, 1997, Smith and Johnson, 2007] A PCFG includes a context-
free grammar G = (V, X, R, S) and a parameter q(ow — 3) for each rule &« — 3 € R.
In the left-most derivation, the parameter q(v — /) stanfs for the conditional
probability of choosing the rule, i.e., @« — 3, given which the non-terminal being

expanded, i.e., «. For any X € V, we have the constraint

Y qa—p =1 (2.2.9)
a—peRa=X
In addition, q(ov — 8) > 0 for any « — 3 € R.

These definitions are also appropriate for the bilingual case, e.g., stochastic BTG
(SBTG) [Wu, 1997] and SCFG, in which a probability is associated with each bilin-
gual rule.

Given a sentence pairs, the corresponding bilingual parse tree T € T that
consists of SCFG rules oy = f1, as — [o, . . . , a, = B,, the probability of T
under PCFG is just the product of the probabilities of the rules used to produce the

parse tree:

n

P(T) = [ alci = ) (2.2.10)

i=1
Parsing a source sentence F and a target sentence E with a PCFG consists in

finding the find the highest scoring parse tree T that produce the sentence pair
22
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(F,E).

T = argmax P(T) T — (F,E) (2.2.11)

TeTq

The goal of syntax-based machine translation techniques is to incorporate an
explicit representation of syntax into the statistical systems to obtain the best trans-

lation while not requiring intensive human efforts.

2.3 Neural Network Model

In this section, we give a brief introduction to NMT and a classification of NMT

models.

2.3.1 Sequence-to-Sequence Model

Recently, sequence-to-sequence (seq2seq) neural machine translation systems have
achieved great performances in large-scale translation tasks [Sutskever et al., 2014b,
Bahdanau et al., 2015, Cho et al., 2014, Luong et al., 2015a]. Unlike traditional
phrase-based statistical machine translation (SMT) [Koehn et al., 2003] that per-
form translation by breaking up source sentences into multiple chunks and makes
use of phrase pairs for translation, neural machine translation treats words as atomic
units for processing. It employs a single neural network to train the joint (trans-
lation/reordering/language) model, instead of using the plain sentence. This kind
of neural networks requires word embedding vectors [Mikolov et al., 2013] to give
better semantic representations for the input. Nowadays, NMT has dominated as
a powerful alternative to conventional SMT models given its outperformance over
other translation models in many cases [Bentivogli et al., 2016].

In general, seq2seq NMT is an end-to-end approach to machine translation. The
most successful approach illustrated by [Sutskever et al., 2014b, Bahdanau et al.,
2015, Cho et al., 2014, Luong et al., 2015a] share the similar sequence-to-sequence
transduction model. In these models, the source sentence is encoded into a variable-
length representation with a bi/mono-directional recurrent neural network (RNN)
[Sutskever et al., 2014b]. The translation is then generated with another RNN from

left to right. Sometimes, it is equipped with a soft-attention mechanism [Bahdanau
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et al., 2015, Luong et al., 2015a]. Recurrent networks are typically parameterized
as long short-term memory networks (LSTM) [Hochreiter and Schmidhuber, 1997,
Pham et al., 2013] or gated recurrent units (GRU) [Cho et al., 2014]. Since residual
connections or skip connections between layers encourage gradient flow, such RNNs
are commonly a stack of several layers [Wu et al., 2016, Zhou et al., 2016].

Seq2seq NMT models commonly make use of ‘words’ as atomic units in con-
sideration of computational complexity. They train a joint reordering and transla-
tion (alignment) model for performing translation. Given a source sentence F =
(fi,---, fm), assuming E = (ey,...,e,) is the corresponding target sentence, the
translation probability of a target sentence E is parameterized by a neural network

model using the chain rule:

—=

P(E‘F) = p(ej\fo,el,...,ej_l;fl,...,fm) (2312)
j=1

=[] p(esle<;. F) (2.3.13)
j=1

with j being the time step during decoding. The decoder predicts each new target
word e; given the source sentence encoding and the decoded target sequence so far.

At time 7, it computes the probability of the next state through a softmax layer
with weights W, and the attentional hidden state ﬁj output by the attention layer

as:

plejle<;, F) = softmax(Wrh;) (2.3.14)

Considering the structure on the encoder side, in the framework of bidirectional
LSTM, forward states and backward states may benefit the representation using
RNN. To this end, the encoder concatenates both the forward/backward hidden

states h; and h; so as to obtain a complete source hidden state h;.
— =
h; = concat(h;; h;) (2.3.15)

=

Here, h;or h;are the RNN hidden units (i.e., an LSTM network) in each direction.
— —

For example, h; is abstractly computed based on the previous state h;_; as:

h = f(B i1, F) (2.3.16)
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Figure 2.6: Bidirectional LSTM encoder-decoder architecture with attention mecha-
nism for NMT. Given the Japanese input, the NMT system output the corresponding

English translation.

On the decoder side, the RNN is slightly different. There are two layers in a decoder.
The first la la lobal
alignment information for the whole source sentence from the attention mechanism.
In the attention mechanism of [Luong et al., 2015a], an additional attention layer
is incorporated. Let h; stand for the attentional hidden state and A, represent the

target hidden state produced at time j. Given the source-side context vector c;, h;

is computed using the following formula:
h; = tanh(W,[c;; h}]) (2.3.17)

c; is the weighted average that depends on alignment score a;(i) that weights the

source word F; with the target word E; in a soft alignment matrix:

¢; = Z a;(i)h; (2.3.18)

In this model, the length of a; is variable. It is equal to the number of time steps
on the source side. It can be computed using a simple dot-product function [Luong

et al., 2015a]:

. exp (h;'Thz‘)

a;(i) = T
>y exp (hy " hy)

Training this kind of model is effective. because both source and target words

(2.3.19)

are known. The training objective function aims at minimizing the negative log-
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likelihood of the translation probability, which is defined as:

J, = Z(EE)&C —log P(E|F) (2.3.20)

with C being our parallel training corpus. However, when decoding a new sentence,
the summation operation will iterate over all target words in the vocabulary. This
procedure is much time-consuming. The time complexity increases in proportion to
the size of the target vocabulary. Thus it is worth noticing that it is necessary to
limit the vocabulary size on a large corpus. It will be the goal of Chapter 5.

In our experiments, we utilise the NMT system that follows the encoder-decoder
architecture with the attention mechanism [Luong et al., 2015a]. The encoder
is a bidirectional RNN with LSTM, and the decoder are two-layer stacked RNN
[Sutskever et al., 2014a] with LSTM. Figure 2.6 illustrates the architecture of the

used model in details.

2.3.2 Other Models

Other successful neural models proposed after that such as the convolutional neural
network (CNN) encoder model [Gehring et al., 2017] and self-attention (transformer)
model [Vaswani et al., 2017] are competitive with recurrent network alternatives.
These models also still follow the encoder-decoder architecture, but mainly differ in
the structure of the encoder or decoder. Our proposal should be well suited these

models as well.
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Chapter 3

Exploiting Bidirectional Latent
Variable Models in Phrase-based
SMT: Phrasal Alignment

This chapter focuses on the study of phrasal alignment for distant language pairs.

We present a novel symmetric phrasal alignment method, taking the advantages of

both IBM model 2 and the hierarchical sub-sentential alignment method. The main

content of this chapter is on the basis of the following papers:

e Wang, H. and Lepage, Y. (2016b). Yet another symmetrical and real-time word

alignment method: Hierarchical sub-sentential alignment using F-measure. In
Proceedings of the 30th Pacific Asia Conference on Language, Information and

Computation (PACLIC 30), pages 143-152. (Best Paper Award)

e Wang, H. and Lepage, Y. (2016a). Combining fast_align with hierarchical
sub-sentential alignment for better word alignments. In Proceedings of the
6th Workshop on Hybrid Approaches to Translation (Hytra 6), the 26th In-
ternational Conference on Computational Linguistics (COLING 2016), pages
1-7

Wang, H. and Lepage, Y. (2017b). Hierarchical sub-sentential alignment with
IBM models for statistical phrase-based machine translation. H A 5 38 ULEY
(Journal of Natural Language Processing), 24(4):619-646
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Phrasal alignment is a fundamental latent variable in phrase-based SMT from
which translation models are built. Conventional methods rely on asymmetric mod-
els of high complexity, resulting in long training times and large model sizes. Hence,
a fast aligner which directly outputs symmetrical alignments is very attractive. This
chapter describes a novel symmetric phrasal alignment method based on a bidirec-
tional latent variable model meeting the demand for the fast symmetric phrasal
aligner. Compared to other state-of-the-art methods, our contributions are located

in:
1. Parameter Initialization

We propose a novel fast approximate estimation method for IBM model 2
based on Variational Bayes [Riley and Gildea, 2012] which less sensitive to
noise caused by function words. This leads to (b) faster training and (a)

better estimation of initial word-to-word translation probabilities.

2. Hierarchical Phrasal Alignment

The main shortcoming of the original HSSA implementation is that it may
yield locally optimal solutions due to the greedy heuristic used. We promote
alignment accuracy by replacing the greedy search with beam search. This
helps to deal with undetermined alignments and to find the best global align-

ments. This strategy (a) significantly reduces alignment errors.

3. Symmetric Phrasal Extraction

Our proposal is intrinsically bidirectional, dispensing with additional processes
of symmetrization. During the alignment process, it forces the final alignments
under the symmetric constraints. This leads to (a) more accurate alignments

and (c) smaller phrase tables.
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This chapter is organized as follows.

e Section 3.1 briefly introduces the background of phrasal alignment and state-

of-the-art alignment methods. We also point out the existing problems.

e Section 3.2 reviews related works on word alignment. The traditional methods

of Viterbi alignment and phrase extraction heuristics are introduced.

e Section 3.3 presents our proposed method. The symmetric phrasal alignments
are jointly extracted using a hybrid method. We justify the proposed method

with mathematical principles.

e In Section 3.4, we give the details of the experimental settings and experimen-
tal results on word alignment and machine translation. The evaluation results
show that the proposal, i.e., the latent bidirectional phrasal alignment model
has shorter training times and smaller translation tables, which is beneficial

to phrase-based SMT.

e In Section 3.5, we summarize our work on this research and highlight our

contributions.
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3.1 Background

Phrasal alignment is a fundamental pre-processing step in phrase-based SMT. The
traditional way to extracting phrasal alignments constitutes in a three-step process:
word alignment (asymmetric), symmetrization and phrase extraction. Since the
quality of phrase alignment depends on the quality of word alignment, high accuracy
word aligners are essential.

To obtain high-accuracy word alignments, most of the previous methods are
based on generative models, like the IBM models of [Brown et al., 1993] or the
HMM-based model of [Vogel et al., 1996]. These unsupervised methods commonly
estimate model parameters using the EM algorithm [Dempster et al., 1977|. [Liang

et al., 2006] classified them into two groups:

e sequence-based models (IBM model 1, 2 and HMM model)

e fertility-based models (IBM model 3, 4 and 5)

F  lity-based (high-level) models are more difficult to implement than simpler
sequence-based models and often become intractable. Although only using sequence-
based models can produce word alignments, one of the major problems is discon-
tiguous alignment. To explain this new term, we use an example in Figure 3.1,
under the definition of IBM models for alignment, we can map multi-indices of the
source side to the same index of the target side, and it is possible that some indices
on the target side are not being mapped. Phrase-based SMT requires that trans-
lation fragments, i.e. phrase pairs, are contiguous when building the translation
hypothesis, it relies more on alignments of multi-word units (many-to-many). The
existence of discontiguous alignments prevents the sequence-based models being di-
rectly used to phrase extraction. This weakness will have a significant influence on
the quality of the final translation. [Liang et al., 2006, Wang et al., 2016] point out
discontiguous alignments produced by sequence-based models increase the difficulty
and complexity in the decoding step.

Given the drawback of discontiguity in sequence-based models, high-level fertility-
based models were developed. Sequence-based models often serve as the sub-components

for parameter initialization in the fertility-based models. The fertility-based models
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F—E: 00, 1-1, 2-¢, 3-5, 4-6, 5-¢, 6-2 grow-diag-final
_— F < E

E > F: 00,11, 2-6, 3-6, 4-¢, 5-3, 6-4
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Figure 3.1: Example of bidirectional word-to-word alignments between a source

(Japanese) sentence and a target (English) sentence.

are expected to generate more word alignments to fill the empty cells that are close
the cells with the high probability being aligned in alignment matrices. These mod-
els have shown state-of-the-art results, but we cannot ignore the fact that high-level
IBM model 3 and the aboves are often criticized for their complexity, which has

been reflected in the time needed for training.

Aiming at simple and effective models that scale well, [Dyer et al., 2013] develop
a variation of IBM model 2 (i.e., a sequence-based model) to output word alignment.
This dispenses the use of high complicated fertility-based models. Their implementa-
tion, called (fast_align') is faster to train than the traditional methods, and that
it produces alignments that lead to comparable translation quality. Their model
reparameterizes IBM Model 2 with a log-linear framework combining both position
distribution and alignment distribution. This model favours alignment points close
to the diagonal in an alignment matrix. This assumption is flawless. However,
such a position-featured method does not suit the alignment of distant language
pairs. [Ding et al., 2015] demonstrate that fast_align does not surpass GIZA++ on
Japanese—English and English—-German experiments, because word orders in both

language pairs are distinct.

Phrase-based SMT relies on asymmetric (mono-directional) word alignment meth-

Thttps://github.com/clab/fast_align
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ods. This may be not suitable for a bilingual task like machine translation. To
obtain symmetric alignments, [Och and Ney, 2003] propose several strategies train-
ing models in both forward and reverse directions, whereafter merging the outcome
of monodirectional alignments with some symmetrization heuristics. Among these
heuristics, the grow-diag-final-and heuristic (GDFA) has been shown to be most
effective for phrase extraction for PB-SMT [Wu and Wang, 2007]. Other methods,
contrary to heuristics, train the alignment model to maximize the agreement be-
tween two directional word alignments as the work of [Liang et al., 2006]. Some
researchers also work on symmetric word alignment, using Bayesian techniques such
as Gibbs sampling [Mermer and Saraclar, 2011]. Such work is beyond the scope of
this dissertation because our goal is to train phrasal alignments using the minimal
time cost. Therefore, it is natural to look for the methods which directly outputs
symmetric phrasal alignments.

Another challenge in phrasal alignment, especially for distant languages, is mod-
eling different word permutations in the source and target sentences. Since the
diversity of natural languages, e.g., English and Japanese, the word orders of the
source and target sentences may be entirely different. There is no substantial re-
lationship between the next alignment and the previous alignments in a sequence.

This contradicts the position assumption in the HMM model and IBM model 2.

3.2 Related Works

3.2.1 Viterbi Alignment

State-of-the-art word alignment models apply statistical estimation to obtain the
most possible/Viterbi alignments, which have massive parameters (e.g., word trans-
lation probabilities) including the desired hidden alignment variables. In these mod-
els, word alignment is treated as a hidden variable [Och and Ney, 2003]. The problem

of translation is defined as:

Pr(E|F) = p(E,a|F) (3.2.1)

= aple alf) (3.2.2)
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where a is the latent alignment that stands for the mapping from a source position
i to a target position a; (asymmetric or mono-directional). The symbol p(-) denotes
general probability distributions. m,n are the lengths of the source and target
sentences respectively. For example, in IBM model 2, to find the best alignment, we

train the model towards maximizing the likelihood on a parallel corpus as:

p(E,alF) =[] 0(e;lfa,)0(a; = ilj,m,n) (3.2.3)
J=1 =0
where F = fi,..., f,, represents the source sentence and E = ey, ..., e, represents

the target sentence. The translation scores 0(e;|f,,) are parameterized by an appro-
priate local conditional probability distribution?.

D 1=20
daj; =i|j,m,n) = ’ (3.2.4)

(1 =po) x h(a; =ilj,m,n) i#0

For the distortion function d(a; = i|j, m,n), [Liang et al., 2006] summarize the most

popular IBM models as follows:

1 IBM 1
h(aj =ilj,m,n a1 =) o< § (L, 1) IBM 2 (3.2.5)
o(i,)  HMM

(
In the above formula, i’ denotes the last alignment point (i, 7 — 1) at the end of the
current alignment sequence. Typically, IBM model 1 assumes a uniform distribution
for p(a), which actually means that the word order of the sentences are considered
irrelevant. This is clearly not true in real translated sentences for most language
pairs. However, a; and a;_; tend to be strongly correlated. It is reasonable for the
case in English-French, but not for English-Japanese. To capture the dependency
between a; and a;_1, most research on word alignment has assumed some version of
a word order model. For example, [Dyer et al., 2013] use a variation of IBM model

2 where the observation is made that

i/m=j/n (3.2.6)

2pg is a null alignment probability.
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This is a very rough but efficient approximation. Another kind of models is HMM

[Vogel et al., 1996] which directly models the relationship as:
P(a; — a;—1 = x|m) (3.2.7)

This describes the length z of “jump” in the source sentence when moving one
word forward in the target sentence, conditioned on the source sentence length n.

However, sentences in Japanese and English tend to have the different word orders.

3.2.2 Symmetrization

Based on the above model, a Viterbi alignment model returns mono-directional

alignments (F — E or vice-versa) which maximizes the following formula:

a=al = argmax Zp(ej, a; =1i|f;) (3.2.8)
a;efall alignmentsy j=1

The reason of discontinuity in word alignments is simple, because conflicts exist in
two mono-directional Viterbi alignments. Although the influence of discontinuity
can be reduced by combining two sets of alignments a = a} (F — E) and b = lA)’ln
(E — F) into one alignment matrix using the grow-diag-final-and algorithm, there
may still exist some unaligned target words. Given the merged alignment, we can
easily factor the lexical translation probabilities. Obviously, the existence of un-
aligned target words makes the process of phrase extraction to produce more trans-
lation fragments, and it is reasonable to allow null-to-1 alignments when iterating
over all possible boundaries in target side. This strategy largely increases the size of
the extracted phrase table. To alleviate this problem, we force to align each source
word with at least one target word and vice versa. This forbids the appearance of
any unaligned source/target words. In our experiments, we found that this strategy

is effective and that it reduces the size of the phrase tables produced.

3.2.3 BTG-based Word Alignment

There has been some interest in using BTGs for the purpose of alignment [Zhang

and Gildea, 2005, Wang et al., 2007, Xiong et al., 2010, Neubig et al., 2012b]. Ini-
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tially, the BTG formalism [Wu, 1995] offers a simplified case of synchronous context-
free grammars, which are efficient for synchronous parsing. [Cherry and Lin, 2007]
demonstrated that using BTGs improves word alignment.

The biggest barrier for applying BTG with Viterbi alignment is the time com-
plexity of CYK parsing (O(n®), for the bilingual case). It is hard to deal with long
sentences or large grammars in practice because the complexity of word alignment
grows exponentially with the length of the source and the target sentences. Pre-
vious research attempts to reduce the computational complexity of BTG parsing
with some pruning methods. [Zhang and Gildea, 2005] propose as so-called tic-tac-
toe pruning method in which they extend BTGs with additional lexical information
based on IBM model 1 Viterbi probability. [Haghighi et al., 2009] investigate pruning
based on the posterior predictions from two joint estimated models. [Li et al., 2012]
present a simple beam search algorithm for searching Viterbi BTG alignments.

Phrase extraction using discontiguous word-to-word alignments pivotally may
have problems, because it is incapable of dealing with certain translation phenom-
ena. The constraint of BT Gs provides a natural, alternative way to reduce the search
space for phrase extraction. By estimating the joint phrase alignment relation di-
rectly, it eliminates the need for any of the conventional heuristics (see Section 3.2.2)
to generate contiguous word alignments. Following this idea, [Neubig et al., 2011b]

propose a model-based heuristic for phrase extraction under the constraint of BT Gs.

3.2.4 Hierarchical Sub-sentential Alignment

Hierarchical sub-sentential alignment (HSSA) [Lardilleux et al., 2012] was first in-
troduced as a compliment for Anymalign®. Given the soft alignment matrix built
using the parameters Anymalign output, HSSA takes all cells in the soft alignment
matrix into consideration. This relies on a precise criterion to determine a good
partition similarly as image segmentation.

HSSA makes use of an unsupervised clustering criterion called normalized cuts

[Shi and Malik, 2000, Zha et al., 2001], or Ncut for short, to recursively segment

3https://anymalign.limsi.fr/
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Figure 3.2: Bipartitioning example for hierarchical sub-sentential alignment method.

the matrix into two parts. During the segmentation processing, HSSA is supervised
by the BTG constraint to select the search scope of next level on the diagonal
(rep: anti-diagonal) corresponding exactly to the case of straight (rep: inverted.)
HSSA terminates when all words in the source and target sentences are aligned and
generate symmetric alignments at the same time.

Consider a source phrase A : X X and a target phrase B : Y Y (see Figure 3.2),
which can be split at source index ¢ and target index j in a dichotomic way. The
sub-spans X, X in source side are corresponding to Y, Y or Y, Y. According
to the definition of [Shi and Malik, 2000], assuming the segmentation option as
~ € {0,1,2} (diagonal, anti-diagonal and terminal), the association within groups
asso(A, B) and the risk of cutting cut at point (7,j) is defined by the following

formula:

asso(A, B) = Z Z w(f,e) (3.2.9)

feAecB

where w( f, e) stands for the weighted score that f is aligned with e.

cut(i, j|y = 0) = asso( X, Y)+asso( X, Y), straight (3.2.10)
left right
cut(i,jly = 1) = asso( X, Y)+asso( X, Y), inverted (3.2.11)

left right

The optimal bi-partitioning of such a matrix is the one that minimizes this cut value.
However, the minimum cut criterion favors cutting small sets of isolated nodes in

the graph, which is counterintuitive, so [Shi and Malik, 2000] propose Ncut as a
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measure for total normalized association within groups for a given partition. In our

case, Ncut can be defined as:

cut(i, 1) N cutli. )

Ncut(t,5)y) =
( 7]‘7) cut(l,j|”/) + 2 x CUtleft(iaj|:/) CUt(’L,]"T’) +2x CUtright(i>j|:l/)

Each possible splitting point (7, j) in the matrix divides the parent matrix into
4 sub-matrices (XY, XY, XY, XY). Either the two sub-matrices on the
diagonal ( X Y, X Y) or the two sub-matrices on the anti-diagonal ( X Y, X Y)
will be explored recursively on the next layer, referring to v equal to 0 or 1. Recursive
segmentation consists in determining these indices (7, j) which minimize Ncut(i, j|7)
or Ncut(i, j|7y) over all possible indices.

HSSA seeks a criterion, called Ncut, in a recursive partition algorithm, minimiz-
ing the disassociation between the blocks unaligned while maximizing the associa-
tions within the blocks aligned. It is faster than the original BTG method O(nf).
The worst case time complexity of top-down HSSA is cubic O(m x n x min(m,n))
and the best case is O(m x n x logmin(m,n)) in the length of the input sentence

pair.

3.3 Proposal: Hierarchical Symmetric Phrasal Align-
ment

Recent work has shown that bidirecitonal latent variable models, such as phrasal
alignment based on Bracket Transduction Grammars (BTG) [Wu, 1995], effectively
constrains the search space of distortion in word alignment [Zens et al., 2004, Zhang
and Gildea, 2005, Haghighi et al., 2009, Riesa and Marcu, 2010].

In this chapter, aiming at the high quality of symmetric phrasal alignments,
we propose a novel yet simple symmetric BTG-based phrasal alignment method
to solve the discontiguous word-to-word alignment problem. This model does not
require training two mono-directional word alignment. Thus it is a bidirectional
model. The proposed method also delivers smaller phrase tables compared with

other state-of-the-art methods.
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We consider that an efficient phrasal alignment method should address both
the problems of discontiguous alignment in word alignment and unbalanced phrase
pair in phrase extraction. In this chapter, we present a joint (word alignment +
extraction) method for phrasal alignment.

We concentrate our attention on hierarchical phrasal alignment with additional
BTG constraint. Instead of using synchronous parsing to search for Viterbi BTG
alignments as in [Li et al., 2012], we employ HSSA [Lardilleux et al., 2012] to
generate symmetric BTG blocks. The combination of HSSA and lower-level IBM
models enables a joint training of the phrasal model for phrase-based SMT. This
model allows to directly extract symmetric word alignments with the restriction
that phrasal alignments must be constructed under the BTG constraints. Compared
with previous BTG-based unsupervised /supervised methods for word alignment, our

proposal takes a distinct two-phase process:

1. This symmetric method starts with adjacency matrices initialized using lexical
translation probabilities. These probabilities are obtained via a fast approxi-

mate estimation, which relies on a variation of IBM model 2;

2. Then we apply an improved beam search version of the bi-partitioning algo-

rithm used in [Lardilleux et al., 2012].

Thus, our approach performs word alignment and symmetrization jointly. It can
be regarded as hybridization of BTG parsing and IBM models, which indeed is a
bidirectional model. Figure 3.3 characterizes the differences between our proposal

and the standard approach.

3.3.1 Building Soft Alignment Matrices Using Lower IBM

Models
Given a source sentence F' = f[" = f1,..., fi,..., fin and a target sentence E = e} =
€1,...,€5,...,6,, the alignment associations between F and E can be regarded as a

contingency matrix [Matusov et al., 2004, Moore, 2005, Liu et al., 2009], noted M. m

is the length of the source sentence in words and n the length on the target side. [Liu
38



Chapter 3: Phrasal Alignment in Phrase-based SMT
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Figure 3.3: Comparison of standard bidirectional word alignment pipeline and our

proposal.

et al., 2009] employ a weighted matrix that consists of the cells that correspond to
an arbitrary word pair to extract phrase pairs. In such a matrix, each cell has been
assigned with a probability score, which measures the confidence that two words
are aligned. Following this definition, we define a function w which measures the
probability of the alignment between any word pair (f;, e;). A weighted cell (¢, 7) in
the alignment matrix presents the symmetric alignment between word f; and e;.
Let M be a soft bidirectional alignment matrix, i.e., a weighted adjacency matrix,
which represents the graph of the sentence pair. Each pair of words in such a graph
is connected with weighted edges between the nodes. Formally, we define a soft link
I = (f,e) to exist if f and e are probable translations. There are many ways to
define the weights. Perhaps, the most simple way that can be imaged is using the
posterior probabilities of IBM model 1. Given the existence of the data sparsity for
counting, we apply Laplace smoothing to handle the unseen alignments. We also
assign a smoothing parameter py = 10~* in place of small values to force I(f,€) > po.

P if | =null
I(f.e) = ’ (3.3.12)

VI(fle) x l(e]f)  otherwise
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After having computed the posterior probabilities using the EM algorithm, we
obtain symmetrical scores, i.e. I(f,e), by taking the geometric mean of the lexical
translation probabilities in both directions: [(fle) and I(e|f). Approximately, we
use [(f, ) instead of w(f;, e;). Since we also aim at saving time, a faster and efficient
training is essential. [Haghighi et al., 2009, Liu et al., 2010] propose different ways to
perform word alignment with supervised BTG models. While they achieved promis-
ing results, such methods rely on a great number of features. On the contrary, our
joint model is purely unsupervised. Other works like training with agreement [Liang
et al., 2006] either requires more time or results in a computationally expensive pro-
cess.

[Moore, 2005] points out that the simple lower-level IBM models have many
disadvantages: it is sensitive to rare words and over-weighs high-frequency words,
e.g., function words. For this reason, it is necessary to incorporate Variational Bayes
(VB) [Riley and Gildea, 2012] into our model. We assume the distribution of the
target vocabulary to be a Dirichlet distribution and apply VB with a symmetric
Dirichlet prior as « to infer the translation probabilities in the M step of EM algo-
rithm?.

l(e|f) ~ Dirichlet(a) (3.3.13)

As an alternative, other probability models for estimation are also available, for ex-
ample, [Zhang and Gildea, 2005] change the original IBM model with the max op-
erator. Given asymmetrical alignments in both directions, reestimating the Viterbi
probabilities is very fast. We found that such a process significantly reduces the size
of the models learned. Furthermore, symmetrization heuristics, like grow-diag-final-
and, can also be applied before re-estimating. In our experiments, we found that
this process benefits in the alignment quality.

For a word pair (f;,e;), the position information (¢, j) is a very important term
in IBM model 2 or HMM model. We design our model as a log-linear framework
to take the position information as a complementary component. It is expected

to work under the condition that the sentence pair contains multiple possible word

4 [Dyer et al., 2013] show that the prior & = 0.01 is a proper value.
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Figure 3.4: Grey-scale map of soft alignment matrices. top: three sub-matrices
without the spatial proximity term; bottom: three sub-matrices with the spatial

proximity term.

translation pairs for an identical (f,e). In other words, the case when (f;,e;) =
(fir,ejr). An effective way to define the alignment score w(f;,e;) is to take the
product of a feature translation term (translation probability) and spatial proximity

term (relative position similarity) as in [Shi and Malik, 2000]:

8(fi.¢4) Do if h(i,j,m,n) >r
w(fises) =e w0 X9 o (3.3.14)
e 9 otherwise

where w measures the strength of the translation link between a source word and a
target word (f;, e;).

0(fi, e5) = log(I(i, j)) (3.3.15)

d(i,3,m,n) =log(1 — h(i,j,m,n)) (3.3.16)

9(fi,e;) is a translation model and §(,7, m,n) is a distortion model. r is a thresh-
old in the range [0.5,0.9], which depends on the language. o4 and o4 are hyper-

parameters. To compute the value of h(i, j, m,n), we assume h(i, j,m,n) = |i/m —
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Figure 3.5: Determining the proper # and 9 value according to F1 score and AER on
the KFTT corpus. When 6 is equal to 3 and ¢ is equal to 5, it achieves the highest

accuracy of word alignments.

j/n|. Figure 3.4 shows how soft alignment change when changing these hyper-

parameters.

Although this is not necessary, we adjust values to a specified range w(j,1) €
[po?,1). Since Ncut is already a normalized score, it does not require any nor-
malization. The hyper-parameters oy and o5 are fixed at the beginning of experi-
mentation by maximizing the Recall in the preliminary experiments. Tuning such
hyper-parameters for each language pairs would be expensive, but in practice, it is
possible to obtain reasonable results without careful tuning. Figure 3.5 shows how

these hyper-parameters affect the quality of bidirectional word alignments.
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3.3.2 [Efficient Hierarchical Phrasal Alignment with Beam

Search

[Lardilleux et al., 2012] employ greedy (best-1) parsing to find the optimal Necut at
each layer. Experimentally, we found that the strategy of greedy parsing used in the
original HSSA probably miss the best global derivation. To find the best derivation

D, we first define a score function Score() aiming at the minimal value:

D = argmin Score(Dye|F, E) = argmin Score(D yeu| M) (3.3.17)

D D
D e stands for the parser derivation obtained according to Ncut. It can be shown
that Ncut indeed is a function of the arithmetic mean of two F-measures, notes
Fovg [Wang and Lepage, 2016¢| (see Appendix A.1). In fact, the derivation either

Dr,,, or Dyey for two sub-matrices (X,Y’) and (X,Y) is the same:

Neut(i, jly) 1 - XY (X Y gy p (3.3.18)
The Fj score is computed as:

F(X.Y)=1— asso( X, Y)+ as50( X Y) _ 31
1(X.Y) 2% asso( X, Y+ asso( X, Y+ asso( X, Y) (3.3.19)

With this interpretation, minimizing Ncut is equivalent to maximizing Fy,, . In-
tuitively, it suffices to replace Ncut with Fi,, to derive the following formula.
The probability of a parsing tree or the probability of a sequence of derivations
D = {dy,...,dg} for the best word alignment & based on the derivation D can be

defined as:

K
D = argmax Score(Dg,,,|M) = argmax HFavg(dk) (3.3.20)
D deD
a = Proj(D) (3.3.21)

Proj() is a projection function which produces the final word-to-word alignments
from the leaves of the BTG parser tree. Let d; denote the operation of derivation
at step k, in which dy is defined as a triple < 4, j.y >. 4 stands for the index of the
splitting point on the source side and j stands for the index of the splitting point
on the target side. Figure 3.6 shows the top-down parsing with beam search. The

incremental parsing algorithm used is presented in Algorithm 1 (see Appendix B).
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Figure 3.6: Hierarchical sub-sentential alignment with beam search as Top-down

BTG forest parsing.

The parser works in the following way. Consider that the incremental parser has

a parser hypothesis at each step. We define the hypothesis as a four-tuple (P, Q, v, ¢).

e P is a stack of the unsolved blocks.
e () is a list of the previous derivations {dy, ..., dx_1}.
e v records the current score.

e ¢ is true when terminated (stack P is empty).

A block ([ig, 1), [jo, j1)) covers the source words from f;, to f;, 1 and the target
words from ej, to ej, ;. In the beginning, the initial hypothesis contains only a
symmetric block which covers all the words in the source and target sentences. Then,
we split the block in each step, and decide the node type (straight or inverted) when
the splitting point is determined according to the defined score function. topy(.S)
returns the first k-th hypotheses from stack S in terms of their scores.

The computational complexity of the top-down parsing algorithm is O(n x m x

k x log min(m, n)) for sentence lengths of m, n and beam size of k. Thus, the parsing
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depth is less than log min(m,n). At each iteration, each hypothesis in the history
is used to generate new hypotheses. Algorithm 2 gives the details of how the parser
works.

To reduce the time complexity in the calculation of asso(A, B), we make use of
a specialized data structure for efficient computation. For each built soft alignment
matrix, a summed area table (SAT) is created for fast calculating the summation
of cells in the corresponding soft alignment matrix M (m,n). This pre-processing
step is to build a new (m + 1,n 4+ 1) matrix M’, where each entry is the sum of
the sub-matrix to the upper-left of that entry. Any arbitrary sub-matrix sum can
be calculated by looking up and combining only 4 entries in the SAT. For instance,

assume that A, B extends from point (ig, jo) to point (i, ;). We have,

asso(A, B) Z Z M (iy, j1) — M (io, j1) — M (i1, jo) + M (i, jo)
1=ig+1 =jo+1
(3.3.22)

Where the summation of all cells in the block of (A, B) if using of SAT greatly

reduces the time complexity from O(m x n) to O(1).

3.4 Experiments

3.4.1 Data
Word Alignment Datasets

The data sets for word alignment and translation tasks are from two different cor-

pora. For word alignment sub-task, we use:

e Hansard Corpus® for English-French from the NAACL-2003 shared task [Mi-
halcea and Pedersen, 2003]

e KFTT Corpus® for English-Japanese.

Table 3.1 shows statistics on these datasets. The training set includes the test set.

Shttp://web.eecs.umich.edu/ mihalcea/wpt/index.html#resources
Shttp://www.phontron.com /kftt /
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Table 3.1: Statistics of Hansard Corpus and KFTT Corpus for alignment evaluation

in our experiment (M: million, K: thousand).

# of Hansard Corpus (en-fr) KFTT Corpus (en-ja)

lines 1,130,551 331,100
Train tokens 20.02 M/23.61 M 5.97 M/6.12 M
types 68.0 K/86.6 K 138 K/114 K

lines 447 1,235

Test  tokens 7,020/7,761 30,822/34,366
types 1,732/1,943 4,990/4,908

Translation Datasets

For the translation task, we conduct experiments in several language pairs:

e WMT 2008 Shared Task”’

— English-French (en—fr)

— English-German (en—de)

e KFTT corpus
— English-Japanese (en—ja)
— Japanese-English (ja—en)
e Europarl Corpus®

— English-French (en—fr)

— Spanish-Portuguese (es—pt)

The training, development, test sets in translation evaluation experiments are cre-

ated separately. Table 3.2 gives statistics on the training, development and test

sets.

Thttp://www.statmt.org/wmt08 /shared-task.html
8http://www.statmt.org/europarl/
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Table 3.2: Statistics of data from WMTO08 Shared tasks, KFTT Corpus and Europarl

Corpus v7 for translation evaluation used in our experiments.

WMT 08 KFTT Europarl v7
# of en-fr en-de en-ja es-pt en-fr
. lines 1.28 M 1.26 M 330 K 183.3 K 183.3 K
Train tokens 32.2 M/33.5 M 29.3M/31.6 M 591 M/6.09 M 5.27 M/5.02 M 4.95 M/5.23 M
lines 2,000 2,000 1,166 1,000 1,000
Dev tokens 53.1 K/55.1 K 531 K/488 K 24.3K/268 K 364 K/345K 35.3K/36.3K
lines 2,000 2,000 1,160 2,000 2,000
Test

tokens 543 K/56.2 K 267 K/285 K 543 K/5.02K 59.6 K/588 K 57.6 K/61.8 K

3.4.2 Experiment Settings

We first lowercase all data sets. In the case of GIZA++, we train word alignments in
both directions with the default settings of the standard bootstrap for IBM model

4 alignment as:
e 5 iterations for IBM model 1
e 5 iterations for HMM model
e 3 iterations for IBM model 3
e 3 iterations for IBM model 4

For fast_align, we run 5 iterations. Word alignments are symmetrized using grow-
diag-final-and. Finally, we evaluate with these symmertic alignments.

For our implementation Hieralign?, we run 5 iterations of parameter updates to
limit the run-time to that of fast_align. Since re-estimating the Viterbi probability
is very fast when an initial word alignment is given for reference, we also employ

various methods to compute I(f,¢€). e.g.:
e IBMI1

e IBM1 using Variational Bayes (VBIBM1I)

https://github.com/wang-h/Hieralign
A7
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IBM1 Viterbi with heuristic (IBM1+VBH)

IBM1 using Variational Bayes Viterbi with heuristic (VBIBM1+VBH)

IBM2 Viterbi with heuristic (IBM2+VBH)!°

IBM4 Viterbi with heuristic (IBM4+VBH)

To confirm the advantage of our proposal, some comparison with other BTG
alignment methods is necessary. For this consideration, we use another open-sourced
BTG-based word aligner, pialign [Neubig et al., 2011b] '!. pialign contains a hi-
erarchical BTG models (hier) which allows to output symmetric phrasal alignment
directly. For pialign, we run it with 8 threads and train the model with batch size
40 and only taking 1 sample during parameter inference. We extract phrases directly
from the word-to-word alignment (1-to-many, many-to-1 and many-to-many) with
traditional heuristic [Koehn et al., 2003] for translation. Our BTG-style parsing
is on the basic of top-down bi-partitioning. This is different from previous CKY-
based models [Xiong et al., 2010, Neubig et al., 2011b]. In the work [Neubig et al.,
2011b], they employed another heuristic in phrase extraction rather the standard
one [Koehn et al., 2003]. To make our work traceable, we compare the phrase-table
size extracted with the simple heuristic-based phrase extraction [Koehn et al., 2005]
with the model-based phrase extraction approach in [Neubig et al., 2011b]. For
scoring phrases, four features are used in each phrase table for all experiments: the
conditional phrase probabilities in both directions, p(f|e) and p(e|f), lexical weight-
ing probabilities in both directions, pj..(f|e) and pi.(e|f) [Koehn et al., 2003]*2.

For translation evaluation in all experiments, the phrase-based SMT systems are

standard statistical machine translation systems built by using the Moses!® toolkit

10We use the variation of IBM model 2 [Dyer et al., 2013], which is a fast and relatively simple

model.
Uhttp: //www.phontron.com /pialign /
12T the experiment reported in [Neubig et al., 2011b], three additional features are employed

(the joint probability of the phrase, the average posterior probability of a span and the uniform

phrase penalty)
Bhttp: //www.statmt.org/moses/
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[Koehn et al., 2007] with Minimum Error Rate Training [Och, 2003] and a 5-gram
language model learnt using KenLM [Heafield, 2011]. We use the training set for
training translation, lexical reordering, and target language models, the development
set for tuning the parameters of the log-linear model in decoding and the test set
for evaluation. For phrase extraction, we employ the traditional heuristic [Koehn
et al., 2003] for all methods used in experiment. In our experiment, the maximum
length of phrases entered into phrase table is limited to 7. Before that, grow-diag-
final-and was used for GIZA++, fast_align. Specially for pialign, we make use
of pialign:itgstats.pl !* to extract the final word alignments used for phrase
extraction. The baselines are the PB-SMT systems with the default distortion limit
set to 6. We also filter the data to remove the long sentences (more than 100 words)
from the training set. We do the same pre-processing (lower-casing and tokenization)
using the scripts provided in Moses '® and baseline processing as WAT'6 for English-
Japanese and Japanese-English. Finally, we conduct translation experiments and

compare Hieralign, fast_align, pialign and GIZA++ for performance and time.

3.4.3 Alignment Evaluation
Word Alignment

Figure 3.7 plots different word alignments output by different methods. We found
that pialign outputs asymmetric word alignments (1-to-m) while Hieralign out-
puts block alignments which is symmetrical (1-to-m/m-to-1).

To evaluate the performance of our proposed method, we evaluate the perfor-
mance of various alignment methods in terms of precision, recall and alignment
error rate (AER) as defined in [Och and Ney, 2003]. The quality of an alignment
A = {(j,a;)|la; > 0} is then computed by appropriately redefined precision and

recall measures:
AN S|
S|

recall = (3.4.23)

Yhttps://github.com/neubig/pialign/tree /master /script
Bhttps://github.com/moses-smt /mosesdecoder /tree/master /scripts/tokenizer
Y http: //lotus.kuee.kyoto-u.ac.jp/ WAT /WAT2015/baseline/tools.html
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Figure 3.7: Example of alignment matrices output by GIZA++ (+GDFA), fast_align
(+GDFA) | pialign and Hieralign (our implementation).

precision = lAnp| (3.4.24)
|A]
|ANS|+|ANP|
AER=1- (3.4.25)
Al + (5]

where S T P; S is sure /unambiguous alignment; P is possible /ambiguous alignment.
The P label is used especially for free translations and missing function words.

“Test” means the total count of word-to-word alignments in the file output by
each method (| A|). “Matches” means the count of “true positives” alignment found
in the output of each method (|A N PJ).

Table 3.3 shows the performance of various alignment profiles using the human
annotated alignment data provided by the KFTT Corpus and Hansard Corpus.
The first and second lines show the alignment difference using GIZA++ + grow-diag-
final-and and fast_align + grow-diag-final-and. From the table, we found both
GIZA++ and fast_align output less alignments than Hieralign. Hieralign tends
to output more matches than fast_align but not as much as GIZA++ from the

point view of matching alignments and recall against the reference, which we can
50



Chapter 3: Phrasal Alignment in Phrase-based SMT

Table 3.3: Evaluation of alignment results on Hansard Corpus and KFTT Corpus
using various configuration of GIZA++ (+GDFA), Fast_align (+GDFA), pialign

and Hieralign.

Hansard (French-English) KFTT (Japanese-English)
Test  Prec Rec AER Matches Test  Prec Rec AER Matches
asymmetric
fast_align 7,845 80.66 92.62 15.27 6,328 | 25,368 55.49 42.17 52.08 14,076
GIZA++ 7,709 8799 96.14  9.21 6,783 | 31,342 59.48 55.85 42.39 18,641
pialign
1-to-1 4,341 95.51 80.01 11.96 4,146 | 16,705 74.93 37.50 50.01 12,517
1-to-many 6,648 84.42 85.14 15.31 5,612 | 30,386 55.36 50.40 47.24 16,821
symmetric
pialign

many-to-many | 16,295 51.14 94.28 40.29 8,334 | 57,053 33.99 58.11 57.11 19,394

Hieralign: 1-to-many/many-to-1 (gy = 1)

IBM1 8,979 6585 87.10 27.56 5913 | 42,317  33.46 4242 62.59 14,160
VBIBM1 9,016 68.23 88.86 25.39 6,152 | 42,465 34.39 43.76 61.49 14,605
IBM1+VBH 9,037 68.58 87.74 25.50 6,198 | 43,150 37.15 48.03 58.11 16,030
VBIBM1+VBH | 9,012 6836 88.81 25.31 6,161 | 42,974 37.20 4790 58.12 15,986
IBM2+VBH 9,008 70.32 89.57 23.72 6,334 | 44,123  36.01 47.60 59.00 15,887
IBM4+4-VBH 8,958 72.91 89.97 21.79 6,531 | 43,257 35.16 45.57 60.31 15,209

Hieralign: 1-to-many/many-to-1 (gy=3.05=2>5)

IBM1 8,542 70.52 8791 23.90 6,024 | 39,896 36.66 43.82 60.08 14,626
VBIBM1 8,540 71.02 87.72 23.62 6,008 | 39,107 37.22 43.82 59.75 14,627
IBM1+VBH 8,634 7356 89.87 21.24 6,351 | 40,260 42.43 51.18 53.60 17,082
VBIBM1+VBH | 8,638 74.09 90.56 20.66 6,400 | 40,214  42.10 50.72  53.99 16,929
IBM2+VBH 8,667 74.93 90.81 20.02 6,494 | 40,043 40.69 48.82 55.61 16,295
IBM4+4-VBH 8,668 77.77 91.75 17.79 6,757 | 40,543 40.31 48.96 55.78 16,343

explain the reason may be: although Hieralign cannot explore some alignments
because of the limitation of BTG constraints, our force-align strategy improve the
discontiguity problem caused in other asymmetric word alignment methods. Each
source and target word are forced to align, it is prone to group the neighboring
alignments aggressively into the same block. This strategy makes it to output more

alignments. AER and precision are behind fast_align, even more than GIZA++.

When sampling the alignment results, we found that the output of the proposed
method usually generates more alignments against the reference. From this table, we

can also conclude that adding the distortion feature improves the alignment results.
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Time

Table 3.4 shows the wall-clock time (minutes: seconds) required to obtain the sym-
metric alignments. Note that the total time also includes the time for symmetrizing
asymmetric alignments for GIZA++ and fast_align with the standard symmetriza-
tion heuristic: grow-diag-final-and. “online” means that Hieralign can run in the
“online” mode (a trained model is given). This way of using provides an “online”
service: when new sentences are input, it directly runs the second step to output

word alignments.

Table 3.4: Wall-clock time (minutes:seconds) required to obtain the symmetric align-

ments.

Hansard Corpus KFTT Corpus
pialign + pialign:itgstats.pl >240:00 199:46
GIZA++ + Moses:train-model.perl-3 228:36 51:38
fast_align + fast_align:atools 6:58 1:40
Hieralign (beamsize=1) 6:43 1:33
Hieralign (beamsize=10) 8:36 2:03
Hieralign (online, beamsize=1) 1:36 0:22
Hieralign (online, beamsize=10) 3:21 1:13

Beam Size

Figure 3.8 shows that bigger beam size reduces AER until 20. Larger sizes are not
helpful. In a real situation, a beam size of 10 should give a reasonable trade-off
between time and accuracy (achieved comparable running time and accuracy with

fast_align) as Table 3.5 and Figure 3.8 show.

3.4.4 Translation Evaluation

Recent research [Fraser and Marcu, 2007, Ganchev et al., 2008] questions the link
between the word alignment quality metrics and translation results. Phrase-based

SMT systems are built based on phrase pairs, not those word alignment directly.
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Figure 3.8: Determining the proper value for beam size according to AER on
the KFTT corpus. Larger beam sizes have lower AER. The default beam size in

Hieralign is setted as 10 given the trade-off between accuracy and speed.

There is no proof that improvements in alignment quality metrics lead to improve-
ments in phrase-based machine translation performance. In other words, a lower
AER does not imply a better translation accuracy, and we will discuss this conclu-

sion in the following paragraphs.

Phrase Tables

For Hieralign, different initialization methods lead to the phrase tables with differ-
ent sizes. Figure 3.9 gives the sizes of obtained models using different initialization
methods. Figure 3.10 shows the comparison of phrase tables compared with other
methods. Since we propose to solve the problem of discontiguity in phrase extrac-
tion, we force the word alignment at least 1-1, which should generate fewer entries
in the translation tables. From Figure 3.10, we found that pialign (MOD) can
significantly reduce the phrase table sizes while the traditional heuristic phrase ex-
traction methods were not able to be observed. For our method Hieralign, we use
(IBM 1+ VBH) to represent the remains, because tables obtained using Hieralign

with differently initialized parameters have approximately the same size.

The findings are not unexpected but are relevant, the size of the phrase ta-
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Table 3.5: Effect of beam size on alignment quality on Japanese-English data in

terms of match number, precision, recall, AER and running time of HSSA.

Test Matches Prec Rec AER CPU time (sent./sec.)

Ref 33,377

Best-1 43,017 15,879 36.91 47.57 58.43 3,389
Best-5 43,052 15,969 37.00 47.84 5821 1,602
Best-10 43,150 16,030 37.15 48.03 58.11 993
Best-20 43,137 16,036  37.17 48.05 58.08 662
Best-40 43,137 16,007 3711 47.96 58.16 336

IBM1+VBH with beam search (o9 = 1).
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Figure 3.9: Comparison of model sizes (# of entries) with different initialization

methods.

ble obtained from the alignments produced by Hieralign is smaller by a third
in comparison to those of the baseline in (en—fr, en—de, es—pt) (see Figure 3.10,
right). For pialign, we also give the size of the table using model-based extraction
(MOD) [Neubig et al., 2011b]. In en—ja and ja—en, that is reduced by even two thirds
(see Figure 3.10, left). Compare two symmetric methods Hieralign and pialign,
we find that pialign achieves a higher reduction ratio using model-based phrase
extraction approach (MOD) but remember the training time for pialign is much

more than 4 hours while Hieralign is 2 minutes and no statistically significant

o4
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Figure 3.10: Phrase-table sizes (# of entries) using GIZA++ (+GDFA), fast_align
(+GDFA), pialign and Hieralign with heuristic of phrase extraction (Koehn et
al. 2003).

difference in the translation quality.

Translation Results

We evaluate the final end-to-end translations produced by our symmetric method to
those produced by Viterbi-based aligner GIZA++ (+GDFA), fast_align (+GDFA)
and BTG-based aligner pialign given the BLEU and RIBES scores.

For the evaluation of machine translation accuracy, some standard automatic
evaluation metrics have been used: BLEU [Papineni et al., 2002] and RIBES [Isozaki
et al., 2010]. To compare the performance between MT systems, we carry out

the statistical significance testing. We apply the bootstrap re-sampling method as

described in [Koehn, 2004].

Table 3.6 shows that the final translation scores are approximately the same.
There is no significant difference on the final results of machine translation when
using the alignments output by the proposed method and those output by GIZA++ or
fast_align. It can be seen GIZA++ and fast_align have comparable BLEU score
but pialign (MOD) and our methods slightly behind the baseline on a very large

size corpus.
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Table 3.6: BLEU and RIBES scores in translation experiments, { means signifi-
cantly different with the fast_align baseline according to statistical significance

tests (p<0.05).

WMTO08 KFTT Europarl v7

en-fr en-de en-ja ja-en en-fr es-pt

BLEU RIBES BLEU RIBES BLEU RIBES BLEU RIBES BLEU RIBES BLEU RIBES

asymmetric
fast_align 26.59 76.65 19.61 70.02 21.32 68.10 17.67  65.71 54.10  91.14 49.50  90.79
GIZA++ 26.79 7717 19.82 70.48 22.57f  68.79 18.20  65.25 54.40  91.22 49.34  90.62
pialign
1-to-1 26.39  76.79 19.10%  70.25 21.92 68.61 18.06 66.03 54.71  91.29 49.51 89.51
1-to-many 26.57  76.95 19.45 69.98 22.07  68.68 18.40  65.55 53.79  91.13 49.48  89.49
symmetric
pialign
many-to-many  26.67 77.13 19.82 69.99 21.69 69.07 18.19 65.90 54.61 91.28 49.23 90.53
MOD 26.35 77.02 19.31 70.23 21.11 68.17 18.13  65.99 54.35 91.17 49.40 90.57
Hieralign: 1-to-many/many-to-1 (¢ =1)
IBM1 26.051  76.47 19.24  69.68 21.68  67.93 1743 65.04 54.15 91.24 49.30  90.67
VBIBM1 26.23  76.71 19.58 70.12 22.10 68.36 17.42 64.67 54.24  91.25 49.59 90.79

IBM1+VBH 26.22 76.61 19.39 69.92 22.40t  68.56 17.70 64.93 53.83 91.14 49.15 90.65
VBIBM1+VBH  26.30 76.59 19.33 69.62 22.69t 67.94 17.60 66.06 53.86 91.26 49.35 91.21
IBM2+VBH 26.23 76.59 19.30 69.59 22.32t  68.11 17.44 66.17 53.52 91.06 49.54 90.76
IBM4+VBH 26.25 76.71 19.30 69.91 21.76 68.09 17.47 65.34 53.72 91.21 49.41 90.71

Hieralign: 1-to-many/many-to-1 (ds =3.0s=25)

IBM1 26.13  76.70 19.18%  69.62 21.87  67.52 17.88  65.14 53.77  91.04 49.59  90.74
VBIBM1 26.30  76.97 19.43  69.92 21.31  67.35 17.58  64.83 54.32 9124 49.61  90.75
IBM1+VBH 26.37  76.75 19.32 69.97 2225  67.79 17.73  65.02 5391 9118 49.50  90.65
VBIBM1+VBH 26.55  76.86 19.55  69.90 22,571 68.35 17.80  65.50 5435 91.31  49.17  90.68
IBM2+VBH 26.25  76.54 19.56  70.00 2244t 68.62 17.69  65.37 53.40  91.05 49.80 90.80
IBM4+VBH 26.22  76.58 19.65  70.03 22.34t  68.35 1740 65.10 5391  91.28 49.51  90.63

3.5 Summary of the Chapter

In this chapter, we investigate the bidirectional latent variable model of phrasal
alignment, i.e., multiple word alignment, a fundamental parameter in SM'T models,
estimated from word alignments. Previous methods output bidirectional phrasal
alignments based on asymmetric word alignments output by GIZA++ [Och and Ney,
2003] which relies on the EM algorithm. The computation of IBM models [Brown
et al., 1993] of higher complexity is necessary to obtain accurate alignments. This
results in large phrase tables and long training times. [Lardilleux et al., 2012] propose
an alternative method, hierarchical sub-sentential alignment (HSSA), which outputs

symmetric phrasal alignments in shorter times. However, it is sensitive to initial
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word translation probabilities.

The chapter proposed a novel phrasal alignment method based on HSSA. Firstly,
Variational Bayes [Riley and Gildea, 2012] is adopted into the EM algorithm for bet-
ter estimation of initial translation probabilities. Then, it makes approximations of
IBM models of lower complexity so that it is faster and does not need the com-
putation of IBM models of higher complexity. Finally, it utilizes a beam search to
control the searching choices in the HSSA method so as to increase the quality of
the final phrasal alignments.

Our proposal has proven efficient in building phrase-based models for SMT.
Those systems built using our methods achieved comparable results in common lan-
guage pairs, like European languages, and even better results on distant language
pairs, like English-Japanese. Compared to other methods, our proposed method is
simple, fast and delivers small phrase tables. For instance, compared to state-of-the-
art technique (GIZA++ with IBM models), this novel phrasal alignment method (a)
keeps the translation accuracy in various language pairs: English-Japanese, English-
German, English-French and Spanish-Portuguese. But it is much more efficient
because it outputs (c) much smaller translation tables (50% in average) (b) very
fast (only 4% of the training time of the state-of-the-art method). Compared to
fast_align [Dyer et al., 2013], another fast word aligner, it (a) significantly sur-
passes it (+1.37 BLEU points, p-value < 0.01) in English-Japanese and (c) delivers
smaller translation tables (50% reduction) while (b) requiring the same training

time.
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Chapter 4

Exploiting Bidirectional Latent
Variable Models in Syntax-based

SMT: Syntactic Representation

In this chapter, we detail how to impose bilingual syntactic restrictions into sta-

tistical machine translation. We concentrate on bidirectional syntax representation

for distant language pairs. A novel syntax-based SMT method using bidirectional

latent BTG derivations is presented. The main content of this chapter is on the

basis of the following papers:

e Wang, H. and Lepage, Y. (2018a). Improved BTG-based preordering for SM'T

via parallel parameter averaging: An empirical study. HIAZ iGN (Journal

of Natural Language Processing), 25(5):487-510

e Wang, H. and Lepage, Y. (2017a). BTG-based machine translation with

simple reordering model using structured perceptron. In Proceedings of the

31th Pacific Asia Conference on Language, Information and Computation

(PACLIC 31), pages 114-123

e Zhang, Y., Wang, H., and Lepage, Y. (2016b). HSSA tree structures for BTG-

based preordering in machine translation. In Proceedings of the 30th Pacific

Asia Conference on Language, Information and Computation (PACLIC 30),

pages 123-132
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In this chapter, we present from phrase-based models (the previous chapter)
how SMT has been enriched with syntactical theory. Generally, phrase-based SMT
suffers from the long-distance reordering problem. Recent rescarch has shown that
imposing some grammatical constraints improves the translation quality. Syntax-
based machine translation differs from the phrase-based SMT model in that the
translation model has access to the syntax of the sentences, i.e., parse trees, which
provides an efficient way to handle long-distance reorderings. Therefore, the syn-

tactic parse tree is an important latent variable in syntax-based translation models.

Most of the syntax-based approaches employ indenpendent syntactic parsers to
obtain asymmetric syntactic parse trees. However, in some languages, there may
not exist any asyntactic parser that is publicly available. Other methods, such as
hierarchical phrase-based SMT [Chiang, 2005], rely on more complicated rule tables

to reconstruct parse trees, thus dispensing with parsers.

The Bracketing Transduction Grammar (BTG) formalism [Wu, 1997] consti-
tutes a simple bilingual parsing model to answer this problem. It is built upon the
minimum case of synchronous context-free grammars. It avoids extracting a large
number of rarely used translation rules. BTG parse trees allows that the source
and target sentences share the same structure while having different word orders.
Hence, it is a bidirectional model. It is insensitive to long-distance reordering. BTG
parse trees can be used to reorder the words in sentences, either before the stan-
dard phrase-based SMT pipeline (preordering), or during translation (decoding).
Consequently, we utilize the BTGs to develop our syntax-based SMT systems.

At first, we improve the top-down BTG-based preordering method [Nakagawa,
2015] with parallelization, then apply it to BTG-based decoding. When training
on automatically aligned data sets, the top-down BTG-based preordering method
is very sensitive to alignment errors in the training examples. For this reason, we
modify the training algorithm using bootstrap aggregating with parameter mixing
techniques. This allows training the reordering model via parallelization, so that
the time of training is dramatically reduced. Then, the reordering models learned
from the previous step are incorporated with other models, e.g., language models,

phrasal translation models, to build the syntax-based SMT. In decoding, translation
60



Chapter 4: Syntactic Representation in Syntaz-based SMT

hypotheses are extended under the constraint of BT Gs, i.e., latent BTG parse trees.

1. Reordering Model Training

Instead of the online passive-aggressive algorithm [Nakagawa, 2015], we adopt
several techniques for parallel training (mini-batch, distributed, iterative dis-
tributed and k-best list), so that it is more insensitive to alignment errors in
the training examples, i.e., the learning of reordering models becomes more
efficient. As a result, (a) the latent BTG parse trees are more accurate ac-
cording to the evaluations on reordering metrics, and more practical, (b) it is

faster in training.

2. Latent BT G-based Decoding

The traditional template-based approaches store reordering models as in-compressible
rule tables. In our proposal, the reordering model is stored in a more efficient
way, in which features are generated using a special hashing trick and the re-
ordering scores arc computed on-the-fly. This makes the reality of (¢) lesser

memory cost for the decoder initialization.

61



A Study of Efficient Bidirectional Latent Variable Models in MT H. Wang

The structure of this chapter is as follows.

e Section 4.1 introduces the background of BT G-based preordering for phrase-
based SMT and BTG-based decoding for syntax-based SMT.

e Section 4.2 reviews related works on syntax-based preordering in phrase-based

SMT and syntax-based decoding in syntax-based SMT.

e Section 4.3 details our work on latent BTG-based reordering, including latent
BTG-based preordering and latent BT G-based decoding. We first presents our
solution to the problem of training data noise existing in the top-down BTG-
based preordering method. Then, we show our work on BTG-based decoding

using such a latent BT G-based reordering model.

e Section 4.4 deals with the experiments. We conduct two experiments: phrase-
based SMT with preordering and BTG-based SMT using the improved BTG-

based reordering method presented in this chapter.

e Finally, we summarize this chapter in Section 4.5.
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Standard SMT pipeline SMT pipeline with preordering
(direct) (indirect)

A B & Lk BRI W . R OB & E& BRI Wk .

@ (D Translation @ @) Preordering
Kyoto station shichijo station as was renamed . ER OB A& 12 W % B

. . decoding . .

@ (2 Reordering @ (2 Translation & Reordering

Kyoto station was renamed as shichijo station. ) Kyoto station was renamed as shichijo station.

Figure 4.1: An example of the standard SMT pipeline w/o preordering.

4.1 Background

Structural divergence arises from machine translation for distant language pairs.
For example, when translating from an SVO (Subject-Verb-Object) language, e.g.
English, to an SOV language, e.g. Japanese, a verb often moves to the end of the
target sentence/clause [Sudoh et al., 2010].

Although it has a long history since SMT researchers [Tillmann, 2004, Koehn
et al., 2005, Galley and Manning, 2008] addressed the reordering problem, the re-
ordering models used in phrase-based SMT systems are relatively weak. Phrase-
based SMT systems usually exhibit lower BLEU scores on such a language pair,
because the default lexical reordering model [Koehn et al., 2003] used is incapable
of performing accurate long-distance reorderings.

To cope with the long-distance reordering problem, researchers have investigated
syntax-based approaches to machine translation from two perspectives: indirect and

direct. Figure 4.1 illustrates these two ways to syntax-based SMT.

4.1.1 Preordering in Phrase-based SMT (Indirect)

The indirect methods try to solve the reordering problem in the pre-processing phase
of SMT, called preordering. The main method of preordering [Xia and McCord, 2004,
Collins et al., 2005, Neubig et al., 2012a, Lerner and Petrov, 2013, Goto et al., 2015,

Nakagawa, 2015] consists in introducing a reordering step on source sentences before
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the standard PB-SMT pipeline [Koehn et al., 2003]. Source words are permuted
according to word order of the target languages during preordering. By opposition
to the standard view of SM'T where a sentence F is translated into a target sentence

E in one step, noted F — E, preordering involves a two-phase translation:
F->F - E (4.1.1)

1. the source sentence F is converted into F’ by arranging the source words in

the order of the target language, i.e., F — F’, where F’ is a latent variable.;

2. the reordered sentence F’ is then translated into the target sentence E through

the use of machine translation systems, i.e., F' — E.

Directly mapping from F — F' is impractical. Recently, preordering has been
proven effective to improve the translation for language pairs with different word
orders. The majority of those works tend to employ a source language syntactic
parser directly, while other methods learn a syntactic parser with the extension of
reordering rules from the word-aligned parallel text.

There exists a considerable body of literature on making use of the underlying
syntactic structures to improve phrase-based SMT. [DeNero and Uszkoreit, 2011]
firstly show that it is possible to learn some reordering rules only based on source
sentences, afterward [Neubig et al., 2012a] propose to learn a discriminative parser
for preordering (also called preorderer) directly by treating the hidden synchronous

parse trees as latent variables.

4.1.2 Decoding in Syntax-based SMT (Direct)

Phrase-based models can robustly perform translations because they are good for
learning local word reorderings. The widely-used lexical reordering model [Koehn
et al., 2003] can somehow handle swaps between adjacent phrases. However, it
remains weak in capturing word order changes.

Previous works on syntax-based SMT mainly have involved the use of syntactic
structures to handle long-distance reorderings during decoding, like syntax-based

model [Yamada and Knight, 2001}, syntax-augmented model [Galley et al., 2004]
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and hierarchical phrase-based model [Chiang, 2007]. In these works [Yamada and
Knight, 2001, Galley et al., 2004, Genzel, 2010], word reordering is implicitly ad-
dressed by translation rules extracted using either syntactic parsers or annotated
treebanks. The performance of syntax-based SMT systems is subject to the errors
in translation rules. Thus, training of a syntax-based reordering model is more
difficult compared to the phrase-based model [Koehn et al., 2003].

Chiang’s hierarchical phrase-based model [Chiang, 2007] arises from the phrase-
based approach, called Hiero grammars. It is a non-labelled syntax-based model,
which is much simpler than the previous syntax-based models. During decoding,
it employs a rule table to score the probability of translation rules. Apparently,
a definite weakness of Hiero grammars is that it may extract a large number of
rarely used translation rules, resulting in more search errors in decoding. To reduce
the mistakes, [Wang et al., 2007] apply the synchronous binarization technique to
compress the rules extracted. This shows improvements over the baseline (Hiero
grammars) systems. Since the binarized Hiero grammar indeed resembles the BTG
framework, it is natural to exploit BTG-based translation model for syntax-based
SMT.

BTG-based SMT [Xiong et al., 2008 has many advantages:

e [t is capable of long-distance and hierarchical reordering.
e [t relies on the minimum case of synchronous context-free grammars.

e [t provides a simple binary way to construct hierarchical bidirectional struc-

tures during translation.

4.2 Related work

4.2.1 Top-down BTG-based Preordering

BTG is a special case of synchronous context-free grammars. According to the def-
inition of BTG, both the source and target sentences should share same underlying
structures (i.e. BTG parse trees), while the order of constituents may be different

(bidirecitioanl, but not symmetric). BTG provides a simple and effective way to
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represent permutations and perform word reordering!. For example, the source and

target sentences in Figure 4.1 can be represented as a BTG parse tree in Figure 4.22.

Following [DeNero and Uszkoreit, 2011], [Neubig et al., 2012a] propose to learn
a discriminative parser for preordering based on the framework of Bracketing Trans-
duction Grammar (BTG, [Wu, 1997]). However, if the training data contains too
many long sentences, the training time of the parser substantially increases due to
the high complexity of the bottom-up CYK algorithm (O(n®)) used in parsing. For
efficiency, [Nakagawa, 2015] adopts a top-down parsing algorithm. The time com-
plexity for parsing a sentence is significantly reduced to O(kn?) (for a beam width
of k£ and sentence length n), but training such a preorderer on large data sets is still

time-consuming.

Consider the case of preordering, whereas the BTG parse tree becomes incom-
plete, lacking in target terminals. However, such a partial BTG parse tree is suffi-
cient to accurate reorderings, which is interchangeable with the corresponding parser
derivation in left-to-right top-down parsing. Let D denotes the parser derivation.
In BTG-based preordering framework [Neubig et al., 2012a, Nakagawa, 2015], the

inference procedure is defined as:

F' = argmax P(F'|F) (4.2.2)
F/eF
= argmax P(F'|D,F)P(D|F) (4.2.3)
DeD

where F stand for all possible permutations and F is the best one given the target
word order. For a unique BTG tree, there exists only one deterministic deriva-
tion. Thus we can eliminate the first part in Formula 4.2.3. Therefore, the task of
preordering can be solved as monolingual parsing with the extension of reordering
operations. For a source sentence F, finding the best reordering is equivalent to

finding an underlying parser derivation D licensed by BTG. To assign a score for a

IThere exist some permutations that BTG cannot represent, e.g. XoX4X1 X5 to X1 X2X3Xy,

see [Wu, 1997]. Multiple BTG parse trees may generate same word orders.
2In Figure 4.2, we omitted the non-terminal before each terminal for simplicity.
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Figure 4.2: Example of BTG parsing and two parser derivations: D’: system deriva-
tion with the highest model score; D*: oracle derivation with the highest model score

from the valid subset.

particular derivation, [Nakagawa, 2015] defines the score function in a lincar form:

P(D|F,w) = Score(D|F) (4.2.4)
= w' - -®D,F) (4.2.5)
= Y w' ®(d,F) (4.2.6)

where @ is the feature function, and w is the weight vector. The parser (i.e.,
preorderer) makes greedy selections at each parsing step, so that D is a sequence of
the atomic derivations. Each atomic derivation d is a triple (F, 4,7, 0), where Fp, ;)
is a parse span, e.g. Fj7), denoted by [p, q) covers the source words F, ..., Fy_y;
r is the splitting point; o is the type of non-terminal nodes (straight or inverted).
To represent the atomic derivation, [Neubig et al., 2012a] factors d as a set of local
features (e.g. POS tags/word classes of the first/last words in the former/latter
parse spans) intersected with the node type label S or I. The score for d is the sum
of the feature weights. The top-down parser starts with the whole source sentence
(Fjo,7), i.e., the initial span), then splits the span dichotomously and recursively until

it terminates. Finally, the derivation with the highest score is picked up to perform
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word alignments: a: {0-0, 1-null, 2-5, 3-6, 4-4, 5-3, 6-1}
FAZ I R A f7E 20 | mapping
0 1 2 3 4 5 6 y: {yo,y1,-.-,Ys}
/ = {0,-1,5,6,4,3,1}
| % ‘ validation
0 1 234 5 6 A(y,d{F[0,7)7T:27o:S}) =true

I want to go to Kyoto station Ay, dyp 2.0—1y) =false
) [0,7),"=2,0=

Figure 4.3: An example of derivation validation.

reordering.

4.2.2 Online Passive-Aggressive Algorithm

We briefly introduce the online learning algorithm (passive-aggressive-I algorithm,
called PA-I [Crammer et al., 2006]) used in [Nakagawa, 2015] as shown in Algo-

rithm 3 (see Appendix B). Given an example (E,a), the trainer runs as follows:

1. produce k-best parser derivations using beam search;

2. select a pair of derivations (D', D*): one derivation with the highest model
score from all candidates (called system derivation, noted D’) and another

with the highest model score from the valid subset; (called oracle derivation,

noted D*)

3. if these two derivations diverge or the valid derivation falls off the beam, update

weights.

The above procedure allows the oracle derivation to vary from one example to
another during training. Syntactic parsers are usually trained on tree-annotated
datasets, while there are no BTG-tree-annotated datasets available. Fortunately,
the BT'G-based preordering method offers a substantial advantage over the conven-
tional methods is that it only needs word alignments to train the model. [Nakagawa,
2015] extend the atomic derivation d to the four tuple (E}, 4,7, 0,v), in which the

extra v €{true, false}, records the validity of the current atomic derivation. A(-)
68



Chapter 4: Syntactic Representation in Syntaz-based SMT

(see Figure 4.3) is the validation function, which returns true if and only if the

following property holds:

max({yili € [p,7),y; # —1}) < min({y;|j € [r,q),y; # —1})
if o= straight (4.2.7)
max({yj\j € [Tv Q>7yj 7& —1}> < mln({yz\z < [p, T),yz’ ;é —1})

if o= inverted (4.2.8)

where y = {yo,...,¥yz—1/} is the reordered ranks converted from a. The above for-
mula checks the crossings of the word alignment. In the beginning, the parser starts
with an empty derivation D (valid), and during parsing, the following condition is

checked for validation:
Vd € D, Ay, d) = true (4.2.9)

Let zj = {z1,...,z,} = (D', D*)j denote the training examples. The trainer up-

dates the feature weights w towards the solution to the following projection problem:
1 9
W, 1 = arg min §HW —wy||” st l(w;z) =0 (4.2.10)
wER”?

where /(-) is a structured hinge-loss function, which separates D’ from D* by a
margin being proportional to the square root of the errors. w;/w,,; are the previous
and new weight vectors respectively. According to the different case of passive or

aggressive, the following update rules are derived for the optimization problem?:

w if l(w;z) =0, assive
Wi = ' (wiz) P (4.2.11)
w+ - P(z) if lUw;z) #0, aggressive

Namely, ¢(-) is the errors, £ is the error cost and «y is the margin:

(w;z) = ! it £(z) =0 (4.2.12)
E(z) —vy(w;z)  otherwise

£(z) = |[D* — D'[|2 (4.2.13)

3For details, see the mathematical proof with the Lagrange multipliers in [Crammer et al., 2006]

69



A Study of Efficient Bidirectional Latent Variable Models in MT H. Wang

y(wi;z) =w'-®(D*) —w' -d(D) (4.2.14)

During training, 7, is the aggressiveness parameter controlled with an upper bound
O, which changes with epochs and examples*.

v —min {0 LV
v {0 gt 21

4.2.3 Top-Down BTG Parser with Online Learning

Usually, we train syntactic parsers with tree-annotated datasets, while there do
not exist annotated BTG trees for training the BTG parsers. Inspired by latent
perceptron [Sun et al., 2009], [Nakagawa, 2015] trained the top-down BTG-based
preorderer using the online passive-aggressive-I (PA-I) algorithm [Crammer et al.,
2006] by regarding the parser derivations that license word reorderings as latent
variables.

In [Nakagawa, 2015], a training example is a tuple (F, a) which contains a source
sentence F' and the corresponding word alignments a. Given an example (F,a), the

learning process runs as follows:

1. produces k-best parser derivations using beam search;

2. selects a single latent-BTG-tree (D', system) with the highest model score and

another (D*, oracle) with the highest model score from the valid subset;

3. if these two derivations diverge or the valid derivation falls off the beam,

updates different features.

This strategy allows the oracle derivation for each sentence to vary during training.
F lidation, [Nakagawa, 2015] extended the atomic derivation d to the
four tuple (Fy, ), 7,0,v), in which the extra v €{true, false} records the validity of
the atomic derivations. The initial derivations are set true. A(-) (see Figure 4.4)

is the function which returns the validity of atomic derivation. The return value is

4C equals 1.
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word alignments: a: {0-0, 1-null, 2-5, 3-6, 4-4, 5-3, 6-1}
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Figure 4.4: Validation of parser derivations.

true if and only if the following condition holds:

max({y;|i € [p,7),y; # —1}) <min({y;|5 € [r,q),y; # —1}) if o= 54.2.16)

max({y;lj € [r,q),y; # —1}) < min({y;li € [p,r),yi # —1}) if o= 1(4.2.17)

where y = {%o,...,¥jz-1/} is the reordered ranks converted from a. Figure 4.4
shows the examples of validation of atomic derivations. For a global parser derivation

D, its validity is computed using the following property:
Vd : {d € D}, A(y, d) = true. (4.2.18)

D is always true at the beginning of the parsing. During parsing, only the parser

derivations licensed by y are labeled as true.

4.2.4 BTG-Based Decoding

In general, there are two kinds of reordering models in the Phrase-based SMT model:
distortion model and lexical reordering model. The distortion model [Koehn et al.,
2003, Zens et al., 2004] penalizes translations with long-distance jumps. It does not
consider the context and even prevents long distance or clause-level reorderings.
The lexical reordering model is simply learned from training data with maximum
likelihood estimation (MLE), which is incapable of long-distance reordering.
Previous works focus on imposing BTG formalism into the decoding procedure,
ranging from simple flat reordering model [Wu, 1997], maximum-entropy (MaxEnt)
based model [Xiong et al., 2008] to tree kernel-based SVM model [Zhang and Li,

2009]. Those models commonly suffer from high computational complexity and
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use bilingual features. Other approaches [Zens and Ney, 2006, Genzel, 2010, Lerner
and Petrov, 2013| learn reordering rules from the source side but require annotated
treebanks or syntactic parsers. Since the top-down BTG-based preordering method
relies only on the features extracted from source sentences, a reordering model built
using such a technique removes the restriction of target sentences. Given the truth
that only source sentences are available, such a model is more suitable for decoding.

In the BTG formalism [Wu, 1995, Wu, 1997|, a derivation D is defined as a
sequence of independent operations dy, ..., dg, which apply a bracketing rules X —
v at each stage. The parser splits a source-target sentence pair < F,E > on both
sides dichotomously. In top-down left-right parsing, BTG trees are unique to each
derivation. [Wu, 1997] treats BTG-based translation as two dependent monolingual
parsing tasks. Similar to PSCFG, the probability of a BTG derivation (parse tree)

is computed as:

PD)=[]Pd: X —=~) (4.2.19)
deD
where d : X — 7 stands for the derivation that applys a billingual BTG rule. [Wu,

1997] also present a CYK-like parsing algorithm using a dynamic programming

scheme with a time complexity O(n® x m3 x |R|).

4.3 Proposal: Latent BT G-based Reordering Model

Most of the previous research on syntax-based reordering has concentrated on pre-
ordering, but less attention has been paid to syntax-based decoding. In this chapter,
we improve SMT from both the preordering (indirect, for phrase-based SMT) and
decoding (direct, for syntax-based SMT) perspectives based on the top-down BTG-

based preordering method.

4.3.1 Latent BTG-based Preordering

In top-down BTG-based preordering, the accuracy of parsers heavily relies on the
accuracy of word aligners. Hence, it is necessary to find a proper method that can
deal with alignment errors. Previous works [Breiman, 1996, Freund and Schapire,

1999, Dzeroski and Zenko, 2004, Rokach, 2010, Li et al., 2014] on batch learning and
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ensemble learning have proven helpful for many NLP tasks. These works mainly fall
into two categories: inner methods and outer methods. The inner methods perform
parameter mixing in small batches [Freund and Schapire, 1999, Li et al., 2014]. This
is called mini-batch in machine learning. The outer methods often appear as the
framework of distributed training [McDonald et al., 2010] in machine learning, or
ensemble learning [Naftaly et al., 1997, Dietterich, 2000] in neural network research.
Those methods have shown their capability of dealing with the noise in the training
examples, which may benefit the top-down BTG-based preordering.

We propose to improve the top-down BTG-based preordering method via par-
allelization using the methods of either inner averaging or outer averaging. For the
inner methods, we apply parameter averaging in each mini-batch. For the outer
methods, we investigate two distributed averaging techniques, which do not need
to change or modify the internal structure of the top-down BTG-based method:
distributed averaging and iterative distributed averaging. We empirically compare

these methods with the original online method of [Nakagawa, 2015].

Existing Problem: Gradient Noise

In [Nakagawa, 2015], pairwise parameter updating is performed if two parses (one:
system derivation; another: oracle derivation) diverge. The performance of pre-
ordering models substantially relies on the quality of word alignments. [Nakagawa,
2015] suggest to use the symmetrized bidirectional word alignments with the IN-
TERSECTION?® heuristic using GIZA++. Another problem which deserves attention
is the quality of the training data. The top-down preordering method [Neubig et al.,
2012a] learns reordering models using the general framework of large-margin online
structured prediction [Crammer et al., 2006, Watanabe et al., 2007]. To obtain
accurate reordering models, the high quality of word alignments is essential. In
a production environment, since the expensive cost for manual annotation, we of-
ten use some unsupervised word aligners to produce word alignments. Preorderers

trained on those noisy alignments suffer from small mistakes in training examples.

50Other heuristics: union, grow-diag-final, and grow-diag-final-and.
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Thus, preorders trained on large automatically aligned data sets usually exhibit
lower accuracy than the one trained on small manual data sets.

The online pairwise updating strategy used in the top-down BTG-based pre-
ordering method is not suitable when training on automatically aligned datasets,
given its inability to deal with the noise (i.e., a large number of alignment errors)
into consideration. Therefore, it is necessary to find a robust method that can deal
with the noise. A large body of research on batch learning and ensemble learn-
ing [Breiman, 1996, Freund and Schapire, 1999, DZeroski and Zenko, 2004, Rokach,
2010, Li et al., 2014] has been empirically observed to be helpful for in many NLP
tasks, which is robust and efficiency against noise. These methods mainly fall into
two categories: inner averaging and outer averaging. The inner averaging methods
perform parameter mixing in small batches [Freund and Schapire, 1999, Li et al.,
2014], called mini-batch in machine learning. The outer averaging methods appear
in the framework of distributed training [McDonald et al., 2010] in machine learn-
ing, or ensemble learning [Naftaly et al., 1997, Dietterich, 2000] in neural network
research. Such methods may improve the accuracy of the top-down BTG-based
preorderers. Though these methods are capable of dealing with the noise in the
training examples, there are few research studies online to parallel conversions.

However, using the intersected word alignment has two problems:

1. Alignment errors exist in word alignments obtained from GIZA++, which will

heavily affect the performance of MT systems.

2. The intersected word alignment contains less alignment points, resulting in

less constraint on determining the oracle derivation.
Both of the above problems lead to gradient noise.

e Alignment Errors

The first one is easy to understand. For example, Figure 4.3 shows a mistake
in the training example (the alignment point with underline). When using
the online algorithm, frequent incorrect updates will cause a higher variance

[Klasner and Simon, 1995], making the preorderer less accurate. A noisy
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Figure 4.5: A particular case that two derivations tend to be valid, resulting from
the weak constraint with fewer alignments. However, pairwise updating strategy

considers only one derivation as the oracle.

gradient signal will be easily observed®. For this reason, we propose to adopt

the parallel training approach to reduce gradient noise.

e Missing Alignment

Figure 4.5 illustrates the second case. On the one hand, if we remove the
underlined alignment point from the example, both derivations have a chance
to be the oracle derivation. Thus an oracle derivation is probably not the best
one for reordering. On the other hand, micro-reordering (colored in Figure 5.3)
is meaningless for phrase-based SMT (see Figure 5.1). As a consequence, in
the experiments of [Nakagawa, 2015], preorderers trained on the automatically
aligned dataset underperform the one trained on the small manual datasets.
To reduce such noise, we propose to use the derivations in the parser k-best

list instead of training towards a single derivation.

6Tt does not mean that online PA-I algorithm is not good, on the contrary, it works very well

on manual data sets.
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Figure 4.6: Characterization of three parallel averaging methods.

Parallel Averaging Strategies

The main focus of this section is parallel training algorithms for top-down BTG-
based preordering. Previous works [Breiman, 1996, Freund and Schapire, 1999,
Dzeroski and Zenko, 2004, Rokach, 2010, McDonald et al., 2010, Broderick et al.,
2013, Li et al., 2014] have shown that parameter averaging in model learning can
dramatically reduce errors. The first idea is using the distributed training meth-
ods [McDonald et al., 2010, Broderick et al., 2013], in which parameter mixing is
performed outside the course of data processing. These methods do not change the
inside learning algorithm. We adopted two distributed parameter mixing strate-
gies: distributed averaging and iterative distributed averaging. The second idea is to
modify the inside algorithm to apply parameter averaging on mini-batches, called
mini-batch averaging. Though these methods fall into different categories of the
learning frameworks, the idea behind is same that computing the margins from the
different levels or using the different sizes of the training examples to reduce the
variance of the learned models. We use Figure 4.7 to give a visual comparison. We
expect that the preorderer using parallel training algorithms to be more stable and

robust against errors when trained on automatically-aligned data sets.

Distributed Averaging Distributed averaging may be the most straightforward
one to apply, which performs a parameter mixing after training finished. It divides

the training examples 7 into several disjoint shards as {7i,...,7,} then trains
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on each shard 7; in parallel as distributed systems’. [McDonald et al., 2010] show
that the distributed perceptron algorithms with averaging parameter mixing return
comparable or even better performance in the tasks of named entity recognization
(NER) and dependency parsing compared to standard online perceptron®. Since
weights are updated without commutations among the child processes during the
whole period of training, [McDonald et al., 2010] points out that such a distributed
strategy is also capable of other online algorithms. The final feature weights are cal-
culated by taking the average of all sub-models. The distributed training algorithm
used is presented in Algorithm 4 (see Appendix B).

Iterative Distributed Averaging Iterative distributed averaging also divides
the data into several shards as distributed averaging. Differing from distributed av-
eraging trains the model to convergence separately, iterative distributed averaging
combines the weights of submodels after each epoch, i.e. ‘iterative’, then, resent
the averaged weights to child processes and update the weights of sub-models. An
obvious shortcoming of iterative distributed averaging is the extra memory cost to
cached the sub-model weights and the extra computational cost for parameter mix-
ing. [McDonald et al., 2010] showed that iterative distributed averaging outperforms
distributed averaging and standard online method in the task of dependency parsing.
Algorithm 5 shows the iterative distributed training algorithm used (see Appendix
B).

Mini-batch Averaging Consider the online PA-I algorithm, in which some pa-
rameters are not linearly separable. For example, 7 is a parameter that requires to
be computed dynamically during training. Hence, simple batch processing becomes
impractical. Fortunately, [Crammer et al., 2006] points out that the PA online al-
gorithm can also adapt batch learning. Theoretically, it is possible to estimate n

approximately using a mini-batch instead of computing it example by example.

"Here, bootstrap aggregating or boosting may also be suitable, we only test the most straight-

forward way.
8The proof of the convergence can be found in [McDonald et al., 2010].
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Figure 4.7: Characterization of the proposed method using k-best list.

Concretely, let § € R be a small positive number; z = {z1, ..., 2, } be a fixed
training set (i.e. one mini-batch); w;_; denotes the initial weights before the current
mini-batch; w; denotes the weights after training. If we iterate over all examples
in Z and updates weights using the one which ¢(wy;z) > 3, as a result, the loss for
any z € Z at time ¢ will be less than £, i.e., {(w;z) < (5. Hence, the decrease in the
loss function guarantees its convergence. PA-I algorithm is compatible with batch
learning?. In our implementation, we collect all errors AE(Z) in a mini-batch, then
compute the aggressiveness parameter An, using the following formula:

7, = min z:'llg(wt;zi)
= {O’ [0 (z)]2 } (4.3.20)

The variance of gradient for the mini-batch is reduced by a factor of m (i.e. batch
size) compared to the original online PA-T algorithm. Algorithm 6 presents the batch
training algorithm used (see Appendix B).

Using k-best List Weight updating can also be carried out on multiple deriva-
tions (so-called k-best-based). For example, in SMT, batch MIRA tuning [Cherry
and Foster, 2012] generates multiply translation hypotheses at a time. The decoder
is tuned using two lists of k-best hypotheses (one: hope, another: fear) in parallel.
Inspired by this idea, in this section, we propose to minimize the sum of hinge-

losses for all derivations in the k-best list. Rather than pairwise updating used in

9The proof of the convergence can be found in [Crammer et al., 2006], p.6.
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online-PA-I, we build two list using the top-k derivations.

Diope = {D|D € Diopi A Vd € D, A(d) = true} (4.3.21)

Dfear = {D|D S ]jtop-k AN D ¢ ]jhope} (4322)

The difference between pairwise updating and k-best—based updating is that the

pairwise updating is replaced with the updating using two lists, where:

5<Z> = H]jhope - ]jfearH% (4323)

y(w;z) =w' - ®(Dyope) = W' - B(Diear) (4.3.24)

The advantage of using k-best is more effective and stable when training on large
datasets. We observed that it is more fast to convergence compared to pairwise
updating (also called greedy updating). The k-best-based training algorithm used
is shown in Algorithm 7 (see Appendix B).

4.3.2 Latent BTG-Based Decoding

Furthermore, recent progress on BTG-based preordering [Nakagawa, 2015] also
shows that obtaining the structure across language is not so difficult as before. An
important by-production of BTG-based preordering is the BTG tree. In top-down
BTG-based preordering, the parsing model is trained to maximize the conditional
likelihood of BTG trees that license the reorderings implied by observed word align-

ments in a parallel corpus.

Since decoding in the opposite direction as parsing, we propose bottom-up BTG-
based decoding, which incorporates the BT G-based reordering model into the decod-
ing step of SMT directly. We apply the parser to obtain the bilingual hierarchical
syntactic structures, which reduce the search space during decoding. We present
experiments on two tasks, i.e., preordering and SMT translation, to highlight the

efficiency of our proposed method.
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Assuming D is a latent variable, to find the best translation E, we have:

E= argmax P(E[F) (4.3.25)
= arggnaXE;EJE\D,F)P(D\F) (4.3.26)
= argmaxP(D|a,F,E) x P(a|]F,E) x P(E) (4.3.27)
= argéxlaXP(D\a, F) x P(a|F,E) x P(E) (4.3.28)

Differing from [Xiong et al., 2008] in involving the use of both source and target
sentences (see Formula 4.3.27), our reordering model only considers the source side
(see Formula 4.3.28). This advantage greatly reduces the costs during decoding.

In Formula 4.3.28, there are three sub-models in Formula 4.3.28

e the language model P(E)
e alignment model P(a|F,E)

e reordering model P(DJa, F)

The generative story of Formula 4.3.28 is understood as follows: Once we found
the hidden word alignment a with an alignment model P(a|F,E) and the hidden
derivation D using BT G-based reordering model P(D|a, F, E), we can translate the
input source sentence F with the target translation E. For the alignment model,
we can easily obtain the intermediate variable a using unsupervised aligners that

publicly available. The most difficult part is the reordering model.

Training

[Nakagawa, 2015] has shown that it is possible to obtain latent BTG parse trees
(or parser derivations) for preordering. In this section, we shift our goal to reorder-
ing. Learning such a reordering model is relatively straightforward. As what we
did in preordering, we maximize the conditional likelihood of trees that license the
reorderings implied from observed word alignments in a parallel corpus. With the
assumption that there exists an underlying derivation D that produced E, where E
is the target word orders under the constraints of BTGs. Translation is processed

as follows:

reordering with D

F

E (4.3.29)

mapping via a
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where the derivations D is a latent variable. Since we have obtained the align-
ment model a, given (F,D) — E, thus the objective function in our work can be

represented as:

E = argmax P(E|F)
E
= argmax P(E|D,F)P(D|F) (4.3.30)
E

The task to translate an input source sentence can be solved by finding the latent
derivation D, which determines a target translation E with the maximal score in
the above Equation.

It is reasonable to apply the score function Score(D|F) in BTG-based preorder-
ing to replace P(D|F). Following [Neubig et al., 2012a, Nakagawa, 2015], we assume
that Score(D|F) is a linear combination of feature functions [Collins, 2002, Collins
and Roark, 2004] defined over D and F. We adopt BT G-based reordering model into
SMT, which works as an inherent model in the decoder. In other words, the natural
difference between their works and our work is the way of using the BTG-based

reordering model, for preordering or decoding.
BTG-based Decoding

In our method, we train and use a BTG-based reordering model in three steps.

1. Training the BTG-based reordering model on the source side with shallow
annotations. i.e., word alignments, POS-tags and word classes [Brown et al.,

1992] on a bilingual corpus.

2. Estimating reordering scores use a large number of features, e.g., unigrams,

bigrams and trigrams which can represent the current parser statel®.

3. During decoding, the reordering score works as an additional heuristic score

which guides the decoder to pick out the best candidates among all hypotheses.

Assuming that the parser has the independent state for each step, we define the

state at current state as a triple (X, r, d), where X is an unparsed span. For example,

10We make use of the same feature set described in [Nakagawa, 2015].
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following the deductive proof system representations [Shieber et al., 1995, Goodman,
1999], [X,p,q| covers f,, ..., f,. d = (r,X — ) is the derivation at current state
with r is the splitting position between f. ; and f, and X — ~ is the applied BTG
rule. We employ our modified and boosted implementation of top-down BT G-based

parser to obtain the reordering model'’.

The -LM -RM Decoder The integration of a standard n-gram-based language
model into a CKY-style decoder is more complicated than into the standard phrase-
based decoder [Koehn et al., 2003]. F llowing [Chiang, 2007], we first introduce the
-LM -RM model in which the reordering and language model have been removed
from the decoder:

wD)= [ @D (4.3.31)

i¢{RM,LM}

If using the deductive proof system [Shieber et al., 1995, Goodman, 1999] to describe

our -LM -RM decoder, the inference rules are as follows:

X - Yf/Y;
X =YY, 4.3.32
[X.p,q] s w e
X = (X0, Xo) 1 [Xu,p,r] s wn [Xo,r +1,q] 1wy (4.3.33)
(X, p,q] - wyw, N
X = [X,Xo) 0 [Xy,p, 7‘] twy [Xo,r+1,q] wo (4.3.34)
[Xap7 Q] - W1W2

where X — ~ is the derivation rule, [ X, p, ¢ is the subtree rooted in a non-terminal
X, w is the model score defined in Equation 4.3.31. When all terms on the top line
are true, we derives the item on the bottom line. The final goal of the decoding is
[F, 1,n], where F is the whole source sentence.

During decoding, the -LM -RM decoder flexibly explores the derivation without
taking reordering into account. This strategy is a simple way to build a CYK-style
decoder, but the decoder requires enormous beam size to find the best translation.
Incorporating the LM and RM model directly into the translation construction will

improve efficiency.

1YWe skip the sentences which cannot be parsed under the constraints of BTGs.
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X 2 Yy/Ye
X, p,q] : w[@par(e))orm
X = (X1, Xo):+ [exp P(X = (X, X))o (X p,r] s wy [Xo,r +1,q] : wy
X, 9, q] + wiwsexp @ par(X)] 24 (D (€0 + 1) 0m

(4.3.35)

(4.3.36)
X = [X1, X5] 0 [exp P(X — [ Xy, Xo))]'rar [Xy,p,7] :wy [Xo,7 4 1, ] wo

(X, p,q] - wywslexp CI)RM<X>]/\(I>RM [Pra(er + €2>]A¢LM

(4.3.37)
Xl — fl/el,XQ — f2/62 (4338)

The +LM +RM Decoder The computational complexity of online strategy is
reduced by using dynamic programming and incorporating the language model and
the reordering model into decoding. A similar method has been described in [Chiang,
2007]. The decoder integrated with the n-gram language model is called: “+LM
decoder”. In our case, we also need to integrate the reordering model, so we call
it “+LM +RM decoder”. Given the inference rules described in Equations 4.3.32—
4.3.34, we describe the +LM +RM decoding algorithm using Equations 4.3.35—
4.3.38.

In our case, the reordering model affects computing the language model score if
the derivation requires to swap the target sub-charts. We can calculate ® gy (X) by
just taking the model score as the product of two sub-charts @y (X7) and P gy (Xz)
with current reordering score ® gy (X — ). Since R is a log-linear expression, we
compute the reordering score ® gy (X) for a given span X : [ X p, q] that consists of

Xy 1 [Xq,p,r] and X5 @ [Xo, 7+ 1, ¢] with a grammar rule X — v as:

Pra(X) = ru(Xy) + Prur(X2) + P(X — ) (4.3.39)

When we merge the chart X; : [Xy,p,r] with X5 : [Xy,7 + 1, ¢] using the rule
X — 7, we update the total score for the composition model after applying each rule
dynamically, we call this the +RM strategy. The BTG terminal rule (T': X — f/e)
is used to translate the source phrase f into the target phrase e while the straight and

inverted rules (S : X — [X1Xs] and I : X =< XX, >) are used to concatenate
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two neighboring phrases with a straight or inverted order as following:

e1-69, X — | XX
v =4 ' [XoXe) (4.3.40)
€9 * €q, X — <X1X2>

where - stands for concatenation between strings. After having decided the word or-
der on the target side, we compute the score in the language model, noted @ (+)*2.
The language model score Py (e?) depends on the preceding N — 1 words for any

e¥(lev| > N,1 <z <y <m). It is computed as:

Poa(el) = ] plean-alés. . éapn2) (4.3.41)

z<z<y

The language model score function ®,/(e?) depends on the rule type v as follows:

Pru(ef™), el = lef|
Dra(ey) = 0, le¥| < N (4.3.42)

Pra(el, ), otherwise

To determine whether we have the case |e¥| = |e]*|, we assume that, if the span of
X : [X,p,q] covers the entire source sentence fi* as X : [X,1,n], then the target
translation e should also cover the entire target sentence. On the basis of +RM
decoder, we add the +LM component into the decoder and build a +LM +RM
decoder for CYK-style bottom-up decoding. Cube pruning [Chiang, 2007] is also
applied to speedup the decoder.

We combine these models in a log-linear manner as shown in Equation 2.1. The

feature functions employed are:

e Phrase-based translation models (TM): direct and inverse phrase translation

probabilities, direct and inverse lexical translation probabilities.
e Language model (LM)

e Reordering models (RM): straight and inverted scores combined within the

log-linear framework.

12For the case of start-of-the sentence and end of the sentence, we wrap the target sentence e
(") as & = &7 = ()™ “lep(\s).
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e Penalties (PM): word penalty, phrase penalty, unknown word penalty.

The weights for each feature are tuned and estimated using the minimum error

rate training (MERT) algorithm [Och, 2003].

4.4 Experiments
4.4.1 Preordering Experimental Setup

Table 4.1: Statistics of data used in preordering evaluation experiment and the

training, development and testing sets for SMT experiments.

Sentence Pairs Tokens

English  Japanese

Train (EM-100K) 100k  1.77M 1.82M
Train (EM-10K) 10k 0.18M 0.18M
Preordering
Train (Manual) 653 17.1k 18.7k
Test 582 12.5k 14.4k
Train 330k  6.09M 5.91M
SMT Dev 1,235 34.4k 30.8k
Test 1,160 28.5k 26.7k

Data To evaluate the proposed methods, we conduct experiments on KFTT Cor-
pus'® (English-Japanese). The total training corpus is made of around 330,000 sen-
tences. For preordering experiments, we prepare four training sets. Two small data
sets: one, aligned by human annotators, which is initially provided in KF'T'T corpus,
called Manual-653; another, the same data set aligned using GIZA++', called EM-
653. Two large sets: one contains 10K sentence pairs, and another contains 100K
sentence pairs with the corresponding word alignments obtained by using GIZA++,
called EM-10K and EM-100K. For word alignments used for training the preorder-

ers, we use the standard training regimen up to IBM Model 4, then symmetrized

Bhttp: //www.phontron.com/kftt/index-ja.html
14YWe run GIZA++ on the whole training corpus.
15We randomly select the sentences from the training dataset.
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bidirectional word alignments with the intersection heuristic. An additional test set
with manual annotations is used for evaluation (initially provided in KFTT corpus).

Translation experiments are measurcd on the official training, tuning and test scts.

Features For fair comparisons, the same features have been used as [Nakagawa,
2015], e.g., the head and tail of the current parser span (unigram, bigram, and
trigram), the prefix and suffix of the splitting point, the parent BTG tree type of
the current parser span, etc. Each word is factored as follows: lexical form, part-of-

speech (POS) tag and word class [Brown et al., 1992].

Experiment Settings In our experiments, we compare parallel averaging meth-
ods (w/o the k-best list) with the online training method in [Nakagawa, 2015]. We
use TD-BTG-Preorderer!® for the baseline systems. For parallel implementation, we

7. For SMT experiments, we utilize the Moses toolkit'®. Stan-

use HieraParser
dard phrase-based SMT systems [Koehn et al., 2007] are built with lexical reorder-
ing [Koehn et al., 2005], Minimum Error Rate Training [Och, 2003], and 5-gram
KenLM language model [Heafield, 2011]".

For POS taggers, we made use of Stanford Part-Of-Speech Tagger?® [Toutanova
et al., 2003] for English and KyTea?! [Neubig et al., 2011a] for Japanese. To obtain

word class tags, we used the implementation®? of [Liang, 2005]. We fixed the class

number to 256. We compared results in the both cases:
e 1o basic lexical reordering permitted (distortion limit=0);

e combining the default lexical reordering model with preordering (distortion

limit=6).

https://github.com/google/topdown-btg-preordering
7https://github.com/wang-h/HieraParser
Bhttps://github.com/moses-smt /mosesdecoder

19%h ld.com/code /kenlm/
20https://nlp.stanford.edu/software/tagger.shtml
2http: //www.phontron.com/kytea/index-en.html
22https://github.com/percyliang/brown-cluster
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For all experiments, we train the preorderers for 20 and 40 epochs. For dis-
tributed methods, we divided the training dataset into eight shards linearly. We
run eight threads for multi-threading processing. For both TD-BTG-Preorderer and
HieraParser, we employ the beam of size 20. For the k-best list, we selected the
top 5 derivations. We perform preordering for SMT experiments using the models
trained 20 epochs. The experiments reported in this section are measured on the
same machine with an Intel Core i7-960 3.20GHz CPU (4 cores, eight threads) with
32GB RAM.

4.4.2 Preordering Evaluation
Intrinsic Reordering Evaluation

Intrinsic Metrics To evaluate preordering accuracy, we measure Fuzzy Reorder-
ing Score (FRS), Normalized Kendall’'s 7 (NKT) and Complete Matching Score
(CMS). We evaluate on the manual data set provided in KFTT corpus. Fuzzy Re-
ordering Score [Talbot et al., 2011] is a widely-used evaluation metric which measures
the quality of the reordering. This metric measures the continuity of the output or-
der against the reference. Given the reference permutation E,.f, FRS is calculated

as the precision of word bi-grams:

B<Eref7 E)

FRS(ETef,E) - m

(4.4.43)

where B stands for the number of overlap bigrams appeared both in the reference
source sentence and the reordered source sentence, M stands for the total number
of words in the source sentence.

Kendall’s 7 [Kendall, 1938] is another simple metric:

number of increasing pairs

1 4.4.44
the total number of pairs ( )

Following [Isozaki et al., 2010], we justify this metric with normalization, because

Kendall’s 7 may be a negative value. Normalized Kendall’s 7 is defined as following:

C
NKT =1 - TSP (4.4.45)

where C' is the count of errors that pairs are not increasing.
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Figure 4.8: Best reordering scores changes over the training time (English—

Japanese). Each curve stands for 40 epochs.

Complete Matching Score measures the percentage of the complete matches (the
one that 7 = 1.0 ) against the total number of the testing examples. Assuming the
test set contains IV sentences, complete matching score is computed as:

# of complete matches
N

CMS = (4.4.46)

Reordering Results Reordering scores can be found in Table 4.2. Compared
with the online training method [Nakagawa, 2015], all parallel averaging strategies
for training the preorderer are sufficient to reduce the training time. In addition,
these methods significantly improved the accuracy of reorderings in terms of CMS,
FRS, and NKT when trained on automatically-aligned data sets, while underper-
formed on the small hand-aligned data set. Distributed averaging is not so effective
on the small dataset, but it substantially upgrades with the size of the training

dataset. Iterative distributed averaging and mini-batch averaging had the competi-
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Table 4.2: Reordering scores and training times (in minutes) for English—Japanese.
Bold numbers indicate significantly better than the baseline system (bootstrap re-

sampling p < 0.05).

epoch=20 epoch=40
FRS NKT CMS Times FRS NKT CMS Times

Manual-653
online [Nakagawa, 2015] 75.54 87.57 35.19 2.30 75.86 87.83 35.77 5.25
distributed 68.96 83.13 26.73 0.70 70.19 8218 31.15 1.97
greedy iterative distributed 74.38 87.47 34.23 0.73 75.24 87.72 3519 1.87
mini-batch 74.38 88.04 34.23 0.86 75.39 88.30 34.81 2.03
distributed 68.78 83.31 28.08 0.74 69.41 8244 28.08 1.71
k-best iterative distributed 74.13 88.47 33.65 0.77 75.03 88.50 3587 1.97
mini-batch 74.77 8781 35.19 0.83 76.08 88.43 35.19 1.96
EM-653
online [Nakagawa, 2015] 69.67 8520 32.12 3.77 69.62 8532 30.57 8.39
distributed 64.10 80.85 25.19 1.07 66.76  82.00 27.12 2.55
greedy iterative distributed 68.94 84.57 30.00 1.41 69.52 84.93 30.38 3.47
mini-batch 69.36  85.47 29.42 1.52 70.02 85.74 30.38 3.79
distributed 6142 79.16 23.65 0.98 62.46 79.73 2481 2.34
k-best iterative distributed 67.87 85.17 29.62 1.25 68.74 85.54 30.77 3.16
mini-batch 67.83 84.32 30.00 1.62 68.53 84.83 30.19 3.83
EM-10K
online [Nakagawa, 2015] 73.16 87.05 35.00 3644 7426 87.63 3596 76.72
distributed 7349 86.74 33.38 1354 7386 87.21 34.04 32.34
greedy iterative distributed 74.52 87.38 36.15 14.45 75.22 87.78 36.54 33.23
mini-batch 74.89 8732 36.54 19.05 7505 87.39 36.92 38.33
distributed 73.30 86.58 33.84 12.77 7338 86.70 34.46 30.54
k-best iterative distributed 75.15 87.45 36.15 11.34 75.25 88.01 36.35 25.33
mini-batch 74.83 87.31 35.87 17.85 75.35 87.35 36.15 38.08
EM-100K
online [Nakagawa, 2015] 74.66 87.58 36.35 39423 76.62 88.63 37.68 811.17
distributed 75.73 8748 3577 129.34 7580 87.72 36.15 266.21
greedy iterative distributed 75.53 87.68 36.15 151.25 77.29 88.40 37.97 334.26
mini-batch 75.14 88.02 36.97 215.55 76.99 88.40 38.45 454.26
distributed 76.13 87.74 36.15 18492 76.33 87.93 36.35 406.75
k-best iterative distributed 76.31 87.79 37.12 154.11 77.17 88.45 38.07 353.05
mini-batch 76.66 87.75 38.07 231.26 77.27 88.25 38.65 476.05
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tive performance. Using the k-best list improves the results on EM-100K while no
significant difference in EM-10K, resulting in slight changes in training time. K-best
mini-batch averaging showed an outstanding cffect on the small dataset (Manual-
653). The results also exhibit that increasing the training data improves the overall

reordering performance.

Extrinsic Reordering Evaluation

Extrinsic Metrics For translation evaluation, standard automatic evaluation
metrics were used in all experiments, e.g. BLEU [Papineni et al., 2002] and RIBES
[Isozaki et al., 2010]. We list BLEU because it is the most widely used metric. How-
ever, BLEU is insensitive to word order, especially for distant language pairs such
as English—Japanese. Thus, we are also interested in RIBES, which is an automatic
evaluation metric based on word order correlation coefficients between reference

sentences and MT output.

Translation Evaluation Table 4.3 shows the translation scores. We observed
that all parallel averaging methods had comparable performances in the SMT ex-
periments either using EM-10K or EM-100K. It is worth noting that the automat-
ically word-aligned datasets contain noise (alignment errors). Compared with the
online training method [Nakagawa, 2015], our parallel averaging methods achieved
comparable results on the larger automatically word-aligned data sets (EM-10K
and EM-100K). In other words, training using parallel averaging methods are more
stable near the convergence, and online training may not be necessary for good per-
formance. Among these methods, though distributed averaging yielded significantly
worse results on Manual-653 due to the unbalanced aggregation of sub-models, when
using the larger training data set (EM-100k), it worked as well as other methods.
K-best mini-batch averaging shows the best performance among all methods. Com-
paring Table 4.2 and Table 4.3, we found that the better quality of preordering does
not necessarily lead to the better translation quality. There are some reasons can
explain this phenomenon. On the one hand, for phrase-based SMT, it is well known

that the performance of SMT systems is not strongly correlated with the quality
90



Chapter 4: Syntactic Representation in Syntaz-based SMT

Table 4.3: Translation scores for each system. Bold numbers indicate no statistically
significant difference with the best system. T/7: significantly better than the baseline

system (p < 0.05/p < 0.01).

en-ja ja-en
DL=0 DL=6 DL=0 DL=6
BLEU RIBES BLEU RIBES BLEU RIBES BLEU RIBES

No pre-reordering 19.79 65.91 21.24 68.01 16.21 65.29 18.45 65.66

Manual-653
baseline 22.19 70.42 23.17 71.42 18.13 66.24 18.80  66.80
greedy
distributed 19.47  66.92 19.83 67.00 17.74 67.18" 19.19  67.44!
iterative distributed 20.76  68.31 21.72  69.36 17.35  66.06 18.50  65.66
mini-batch 22.04  69.57 22.84  70.61 1712 66.35 18.48  66.77
k-best
distributed 20.78  67.79 21.73  69.27 1721 67.16" 18.66  67.58!
iterative distributed 21.00  69.34 22.24  70.21 17.52  66.68 1848  67.24
mini-batch 21.05  68.99 21.88  69.76 17.38  66.57 19.04 67.37

EM-10k
baseline 22.77 71.37 2318  71.81 18.53 67.55 19.16 68.07
greedy
distributed 2217  70.07 2261 7115 18.16 67.60 18.98  (7.74
iterative distributed 22.56  70.97 23.19  TL.76 18.63 67.99 19.36  68.15
mini-batch 22.99 71.45 23.60° 72.09 18.46 67.85 19.02 68.00
k-best
distributed 22.06  70.12 22.83  T71.27 17.95  66.91 19.28 6728
iterative distributed 22.83 71.61 23.34 72.23 18.28 67.25 19.26 67.43
mini-batch 22.85 71.15  23.64" 71.94 18.43  66.43 19.25  68.18

EM-100k
baseline 23.15  71.99 2357  72.08 18.81  67.73 19.47  68.08
greedy
distributed 23.28 71.55 23.98' 72.48 1861  67.91 19.28  67.81
iterative distributed 23.24  71.63  23.81  72.56! 18.40 68.54"  19.40 68.751
mini-batch 23.58" 72.05  24.03"" 72.68" 19.48" 68.837 19.83 68.78'
k-best
distributed 22.92  71.76  23.65 72.12 1884  67.73 19.55  68.83!
iterative distributed 23.01 71.93 2354 72.34  18.78 68.507  19.37 68.657
mini-batch 23.51" 71.89 23.811 72.23 19.60° 68.87" 20.16'" 68.51'

of the latent variables, e.g., word alignment. For example, a lower alignment error

rate (AER) does not necessarily entail better translation scores. On the other hand,
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micro-reorderings between two leaves in a parse tree often lead to a higher reorder-
ing score. However, if the correspondences between the source and target words are

captured in the phrase table, the translation accuracy may not changes much.

4.4.3 Decoding Experimental Setup

To evaluate our BTG-based SMT system, we conducted translation experiments
on the KFTT Corpus (English-Japanese) and compared our system with baseline
phrase-based (PB) and hierarchical phrase-based (HPB) SMT decoders provided
in Moses?® [Koehn et al., 2007]. For each language, the training corpus is around
330,000 sentences. The development set contains nearly 1,235 sentences. Nearly
1,160 sentences are used for testing. All models, e.g., translation models, target
language models, and also traditional lexical [Koehn et al., 2005] reordering models
or BTG-based reordering models are trained on the default training set. We use the
default tuning set for tuning the parameters and the default test set for evaluation.

For word alignment, we first run GIZA++ to obtain word alignments in both
directions with the default settings, i.e., the standard bootstrap for IBM model 4
alignment in GIZA++ (1°H°3343). Then, we symmetrize the word alignments using
grow-diag-final-and (+gdfa) and the standard phrase extraction heuristic [Koehn
et al., 2003] for all systems. For tuning, the optimal weights for each feature are
estimated using the minimum error rate training (MERT') algorithm [Och, 2003] and
parameter optimization with ZMERT?** [Zaidan, 2009]. Other experiment settings

are same to the previous section.

4.4.4 Decoding Evaluation
Experiment Results

For evaluation of machine translation quality, standard automatic evaluation metrics
are used, like BLEU [Papineni et al., 2002] and RIBES [Isozaki et al., 2010] in all

experiments. BLEU is used as the default standard metric, RIBES considers more

Bhttp: //www.statmt.org/moses/
2nttp: //www.cs.jhu.edu/ ozaidan/zmert/
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Table 4.4: Results of phrase-based baseline system, hierarchical phrase-based sys-
tem and our BTG-based systems. Bold scores indicate no statistically significant

difference at p < 0.05 from the best system [Koehn, 2004].

BLEU Model Size (GB)

Moses (PB-SMT) 20.81 > 2.0
Moses (HPB-SMT, beam=100 for rule, beam=30 for cell) 21.67 > 5.0
BTG-based SMT (beam=40) 21.15

BTG-based SMT (beam=100) 21.24 03

word order. Table 4.4 shows the performance of MT systems on the KFTT test
data, which are (1) Moses, trained using the phrase-based model (PB-SMT). (2)
Moses, trained using the hierarchical phrase-based model (HPB-SMT) and last one
(3) trained using the BTG-based model (BTG-SMT).

Analysis

Compared with the PB-SMT, BTG-based SMT makes use of weak linguistic an-
notations on the source side which provides additional information for reordering.
We found that this strategy does help bilingual parse tree structure construction
and finding final translations. However, our BTG-based method underperformed

the HPB-SMT method. Increasing the beam size gains an improvement slightly.

There are two explanations for the result:

1. Final machine translation performance is also related to the used tools, which
is sensitive to parse errors, alignment errors or annotation errors. Inaccurate

labels harm the performance.

2. The constraints of BTGs may be too strict. This makes the decoder difficult

to find some discontinuous phrases (translations).
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4.5 Summary of the Chapter

This chapter provides an alternative to building syntax-based machine translation
systems. We investigate the bidirectional latent variable of correspondence of syn-
tactic structures across two languages. Syntactic representations are not directly
observable for languages where no parser exists. Syntax-based SMT systems, such as
hierarchical SMT [Chiang, 2005], allow to dispense with parsers, but they have more
complex translation models. These methods heavily suffer from the long-distance
reordering problem, typical of English-Japanese. The bracketing transduction gram-
mar formalism (BTG) [Wu, 1997] provides a simple bidirectional syntactic model to
answers this problem. The bilingual parse tree, i.e., BTG parse tree can be used to
reorder words in the source or target sentences, either before the standard phrase-
based SMT pipeline (preordering, for source), or during translation (decoding, for
the target).

A method for latent BTG-based decoding is proposed in this chapter. We first
improve the top-down BTG preordering method [Nakagawa, 2015], a state-of-the-
art method, making less sensitive to errors in word alignments for initialization.
Essentially, the training algorithm used bootstrap aggregating with several learning
techniques (mini-batch, distributed, iterative distributed and k-best list) so as to
select better reordering structures. As for the efficiency of preordering, intrinsic
evaluation shows (a) a significant improvement of 2.00 FRS, 0.42 NKT and 1.65 CMS
in reordering scores (b) 4 times faster in training time. When used for preordering
in phrase-based SMT, the extrinsic evaluation shows that this method leads to (a)
statistically significant gains in English—Japanese and Japanese-English translation
accuracy (+0.5 and +0.8 BLEU point respectively, p-value < 0.01) (c¢) without
substantial changes in the reordering model sizes. As for the efficiency of BTG-
based decoding, the use of the reordering model learned in the previous step leads
to (a) a statistically significant improvement (+0.43 BLEU point, p-value < 0.05)
in English-Japanese translation accuracy over the standard Moses decoder (c) while
reducing the reordering model size (20% of the state-of-the-art model size) in (b) a

similar decoding time.
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Chapter 5

Exploiting Bidirectional Latent
Variable Models in Seq2seq NMT:

Sub-word Segmentation

This chapter presents a bilingual word segmentation method for both SMT and
NMT. We investigate the latent variable of vocabulary, which controls word seg-
mentation. The quality of word segmentation affects the final translation quality.
We propose to infer a limited size vocabulary using MDL and apply it to word
segmentation. The main content of this chapter is on the basis of the following

papers:

e Wang, H. and Lepage, Y. (2018b). Unsupervised word segmentation using
minimum description length for neural machine translation. In Proceedings of

the 24th annual meetings of the Association for Natural Language Processing,

Japan (5 FEILEESE2 240 ROK2y Fedam U5 ), pages 10801083

e Shan, B., Wang, H., and Lepage, Y. (2017). Unsupervised bilingual segmen-
tation using MDL for machine translation. In Proceedings of the 31th Pacific
Asia Conference on Language, Information and Computation (PACLIC 31),
pages 89-96
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In this chapter, we draw our attention to word segmentation. We address the
problem of word segmentation for East Asian Languages, e.g., Chinese or Japanese,
which is a fundamental pre-processing step for MT as well as many other natural
language processing tasks. This chapter includes our exploration of a bidirectional
latent variable model, that is the vocabulary for word segmentation. Conventional
supervised word segmenters, e.g., Juman and Stanford Segmenter, massively pro-
duce out-of-vocabulary (OOV) words that SMT cannot translate. This results in
lower translation scores. Recent research has shown that making use of sub-strings,
rather than words, is more efficient for SMT, because SMT somehow can solve data
sparsity through learning the translation of OOV words via using such sub-word

units.

The issue of OOV word is more critical for recent NMT. Compared to SMT, NMT
is more conceptually straightforward in structure, where a single neural model is em-
ployed which is desired to capture all structural or phrasal phenomena. However,
NMT cannot translate OOV words, neither make use of rare words. The reason is
that NMT forces to use only a limited number of vocabularies to save the memory
and keep the decoding efficient. This ignores the fact that translation is an open-
vocabulary problem. For some languages, like Japanese and Chinese, they share
some common lexicons, even subwords in their vocabularies. This chapter investi-
gates how to a shared vocabulary for word segmentation for such a language pair.
One of the many advantages of a bilingual word segmentation for NMT is that it
allows sharing the word embedding layer for the encoder and the decoder. In NMT,
the word embedding layer generally maps the words in a language to their semantic
meanings using vector representations. A shared bilingual vocabulary makes the re-
ality of more efficient NMT models by sharing a single word embedding layer. Recent
research also shows that, for domain-specific translation tasks, machine translation
systems prefer having longer common “words” in the vocabulary, e.g., entity names
or terminologies. Only subword-based methods as byte pair encoding [Sennrich
et al., 2016] decompose rare words into sub-words to deal with the OOV problem,

which cannot satisfy this need.

Based on these considerations, we look for a more suitable solution to word
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segmentation for both SMT and NMT. We propose a novel unsupervised method
for bilingual word segmentation using the principle of minimum description length
(MDL). Our contribution consists in imposing two additional restrictions: finite
vocabulary (i.e., F) and minimum frequency (i.e., M) into the original MDL prin-
ciple. This segmentation method based on a bidirectional latent variable model is

advanced in the following aspects:

1. Less Rare Words

This bilingual segmentation model tackles OOV words in the pre-processing
step of machine translation. i.e., word segmentation. It eliminates the need
for additional processes of word splitting during decoding. This is achieved
by checking whether the frequency of new generated word is higher than the
minimum frequency during the bottom-up lexicon inference, i.e., (a) less rare

words. Such a bottom-up procedure also makes the vocabulary (b) train fast.

2. Finite Vocabulary

A finite vocabulary of variable-length character sequences is sufficient to repre-
sent the current data, making it a very suitable word segmentation strategy for
sequence-to-sequence neural network models, while (b) requiring little training

time.

3. Shared Vocabulary and Embedding

It exploits the overlap between source language lexicons and target language
lexicons, bridging the encoder and the decoder via a shared embedding layer.

This leads to (¢) a dramatic reduction in memory cost.

97



A Study of Efficient Bidirectional Latent Variable Models in MT H. Wang

The structure of this chapter is as follows.

e Section 5.1 introduces the background of word segmentation and the issue of
the out-of-vocabulary word. We briefly discuss our motivation of bilingual

word segmentation using MDL.

e Section 5.2 compares with related works in SMT and NMT. Substitution-based

methods and sub-word—based methods are presented.

e We present our method, i.e., MDL-based bilingual word segmentation with

finite vocabulary in Section 5.3.

e Section 5.4 deals with the experiments of SMT and NMT. The experimental
results demonstrate the efficiency of the proposed bidirectional model in word

segmentation for machine translation.

e Finally, we summarize this chapter in Section 5.5
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5.1 Background

There are no distinct delimiters for the language which word boundary depends on
context, like Chinese, Japanese and Korean (East Asian languages). For these lan-
guages, word segmentation is an essential pre-processing step in the standard MT
pipelines. We show an example of the fact that may reflect how Japanese segmenta-
tion results vary over the Japanese segmentation tool used using Figure 5.1. Three
segmenters: Mecab, Juman and Kytea, output quite different word segmentation

results. The comparison actually discloses that difference in segmentation criteria

Segmenter gu/li/i/n/pu/lo/da/ku/to/ma/i/ku
Juman V)= Tu/ RN =D
Mecab 'V —v7uaX s /v—2
Kytea 2y —>/Fags/v—2

Figure 5.1: An example of Japanese segmentation results.

leads to different segments. This brings up the question: whether the change of
segmentation tool will make an influence on MT? (sce Figure 5.2)

For SMT, it has been proven that the final end-to-end translation qualities vary
with the segmenter used. Different segmenters produce different word segments
as well as different numbers of OOV words, and consequently, leading to different
translations. The quality of the MT system heavily relies on these segments. [Chang
et al., 2008] show that segmentation consistency and granularity will affect the final
SMT results. [Li et al., 2011,Zhao et al., 2013] suggest that different natural language
processing tasks may have quite different requirements for the scgmentation task,
which is often beyond the issue of segmentation performance or standard. Similar
conclusion for NMT also can be drawn from the results of the recent Workshop on
Asian Translation (WAT) [Nakazawa et al., 2016a]

Compared to SMT, NMT expects not only less OOV words but also less rare
words (low-frequency words), to ensure the translation quality, just because it cannot
learn correct translations of the rare words. Since there is also an account for memory
cost, NMT restricts vocabulary size to a limited number around 50k~80k and only

keeps the most frequent words to reduce the computational complexity. NMT simply
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FABER & £ BRI TR,

Segmentationﬂ

icti FARER &2 BRI oo X
Dictionary OB & LAW 1 R . X
B Tokyo  HUER: Kyoto SURRER &2 £ BRI o X
+:4%: Shichijo  PU%:: Shijo X OR 2 & R i ¥ . v/
—Z4%:Nijo ¥R: station
Z:was Z:as
2 B rename Translation ﬂ
s lo K

Figure 5.2: An example of how segmentation affects machine translation.

handles these out-of-vocabulary (OOV) words by converting these words into a single
unk symbol. Rare words are probably removed during pre-processing.

A natural question arises:

e Can we develop a word segmenter for East Asian Languages, which is capable

of reducing the number of OOV words in SMT or rare words in NMT?

5.2 Related Works

5.2.1 Translation through Substrings in SMT

There is a rich literature in the field of MT try to make use of substrings. Many
recent works address the challenge of OOV word in SMT to improve translation
quality. [Vilar et al.; 2007] first examine the possibility of character-based translation
method. [Neubig et al., 2012b] propose to build MT systems using character strings,
i.e., substring has shown promising results in some European languages, e.g., English
and Finish. This character-based translation method achieves comparable results
as word-based systems while effectively translating unknown and uncommon words.
Other works using substrings like [Noeman, 2009, Cherry and Suzuki, 2009] are
related to transliteration, which deals with named entities such as person names,
organization names and location names, given these names are crucial for machine

translation.
100



Chapter 5: Sub-word Segmentation in Seq2seq NM'T

5.2.2 Addressing Rare Words in NMT

Compared to SMT, not only OOV words, even rare words become more critical for
NMT. NMT often operate with fixed word vocabularies, and the target word infer-
ence heavily depends on the vocabulary size. Hence, all out-of-vocabulary (OOV)
words are converted to a single unk symbol during pre-processing. A significant
weakness in conventional NMT systems is their inability to translate very rare words
correctly. Many researchers [Sutskever et al., 2014a, Bahdanau et al., 2015] have ob-
served that rare words harm the translation quality. Most of the recent works are
focusing on effective techniques to address the rare word problem in NMT. To cat-

egorize, we classify these works into two classes:

Substitution-based Methods

[Luong et al., 2015b] describe a replacement approach that adding a post-processing
step to translate the OOV word using a dictionary. During the post-processing, for
each target OOV word in the output, they perform a word dictionary lookup to
replace the OOV word (unk) by the corresponding translation on the basis of the
extracted dictionary using an unsupervised aligner.

Another kind of methods use the indirect translation model, [Li et al., 2016]
propose a substitution-translation-restoration method. In the substitution step,
based on a word-similarity model, rare words are replaced with their most similar
in-vocabulary words. In restoration steps, the translation of those rare words is

substituted back using word alignments and an n-gram-based language model.

Subword-based Methods

The most recent works in improving translation quality by addressing the OOV
problem for NMT are subwords-based models. These works are on the basis of a
strong assumption that the segmentation of rare words into appropriate subword
units is sufficient to allow for the neural translation network to learn transparent
translations.

For example, to compress the data, [Chitnis and DeNero, 2015] propose to replace

the rare words with two pseudo-word symbols using the Huffman encoding scheme.
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Other methods attempt the encoding way using a finite vocabulary without adding
any new symbols into the vocabulary, e.g., [Sennrich et al., 2016] propose the Byte
Pair Encoding (BPE) scheme for NMT by split the low-frequency words into the
higher-frequency subwords. [Wu et al., 2016] employ the wordpieces model [Schuster
and Nakajima, 2012] to build the Google’s NMT systems.

A common characteristic of all these methods is that to reduce OOV words, all
these methods encode the plaintext to the sub-word sequences before training the
NMT models. The sub-word—based model provides a good balance between the
flexibility of single characters and the efficiency of full words, they have exhibited

impressive results in morphologically rich languages.

5.2.3 Unsupervised Word Segmentation Using MDL

Unsupervised word segmentation (UWS) can provide domain-adaptive segmentation
for statistical machine translation (SMT). Recent UWS works mainly fall into the
use of minimum description length. The minimum description length principle [Ris-
sanen, 1986, Griinwald, 1995, Barron et al., 1998] is an information theory criterion
that provides a versatile solution for the selection of models. The philosophy of the
MDL principle assumes that the selected model with a shorter code length should be
able to describe the observed data better. Thus the principle of MDL is theoretically
fit to the tasks like data compression and model inference. As a result, MDL has
been widely used in various NLP tasks, for example, grammar induction [Griinwald,
1995, Jonyer et al., 2004, Saers and Wu, 2013|, morphology analysis [Argamon et al.,
2004], word segmentation [Zhikov et al., 2013, Magistry and Sagot, 2013] and trans-
lation model compression [Gonzalez-Rubio and Casacuberta, 2014].

In general, the MDL principle attempts to find the minimal code or least compli-
cated model that can describe the data observed. [Rissanen, 1986] devise the formula
of MDL based on two-part codes, which includes the code! for encoding a model

(noted ®) over data (noted D) and the code for the data using the model ®. For

!The development of MDL borrowed heavily from Shannon’s work on coding theory, hence we

use the terms “code length” and “description length” interchangeably.

102



Chapter 5: Sub-word Segmentation in Seq2seq NM'T

a given set of training data, following [Barron et al., 1998], the MDL inference is
formalized as an objective function of two components: the model description length

DL(®) and data description length DL(D|®):

A

® = argmin DL(D, @) (5.2.1)
®

= arg min DL(D|®) + DL(®) (5.2.2)
I

The code length and the optional model in MDL are respectively similar to prior
probability and marginal likelihood in the Bayesian framework. [Zhikov et al., 2013]
conclude that, because of the close ties, the scheme of using MDL is equivalent
to Bayesian inference. [Hansen and Yu, 2001] challenge this view that and give
an alternative explanation. The MDL paradigm serves as an objective platform
for distinguishing Bayesian procedures from non-Bayesian procedures. Only some
forms of MDL would coincide with Bayesian schemes. However, this discussion is
beyond the scope of this chapter. Throughout this chapter, we consider that the
commonly used two-stage coding scheme in MDL is the same as the maximum a
posteriori (MAP) problem in Bayesian analysis.

Many previous works are focusing on using MDL for prefix-based segmentation
for either morphological analysis or word segmentation. [Griinwald, 1995] has shown
that, although fewer symbols are used, it is possible to describe the whole data.
[Argamon et al., 2004] propose to greedily construct a morph dictionary using MDL
by re-segmenting affixes from the corpus. According to a given codebook ®, we thus
segment the text by looking up the codebook as a dictionary. Different strategies
[Argamon et al., 2004, Hewlett and Cohen, 2011, Zhikov et al., 2013] have been
proposed in the literature to compute description lengths for word segmentation. We
follow [Argamon et al.; 2004], defining the model description length as the product
of the total length in characters:

DL(®) =b) _ len(w) (5.2.3)

wed

where b is the number of bits needed to encode a character, and len(w) is the
length of word w in characters. In the case of NMT, each word vector in the word

embedding layer has the same code length. For the sake of simplicity, we assume
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that b equals log |®.|. |®.| represents the initial character code book size. The total

data description length is calculated as:

L(D|®) = ZC’ x log P(w) (5.2.4)
e (logC' w) — 1ogN) (5.2.5)

where C'(w) is the count number of word w (code book entry), N represents the
count number of all tokens, and P(w) stands for the probability of word w in the
corpus.

In the framework of word segmentation, which is comparable to that of data
compression, we minimize the description length DL(D, ®) to find the minimal model
®. Given that D is an unsegmented training corpus, in this case, word segmentation
via MDL is an unsupervised learning task. The system is expected to learn a
segmentation model from the raw data. The inferred model should be able to give
a minimal code length both for the model itself and the corpus. Based solely on
compression, MDL provides a robust foundation for refining the vocabulary into a
more compact representation while identifying the ‘words’ in the text.

Previous MDL-based word segmentation methods for NMT lack a clear goal.
Most previous methods treat MDL as a word segmentation approach that attempts
to produce good ‘words’ in comparison either with human-annotated data or with
other conventional segmenters trained in a supervised manner. However, [Li et al.,
2011] and [Zhao et al., 2013] suggest that segmentation tasks should not be separated
from their applications. Therefore, in this chapter, we investigate the application
of MDL-based segmentation for bilingual tasks like SM'T and NMT taking only the

final end-to-end translation scores to measure the segmentation quality.

5.3 Proposal: Bilingual FM-MDL—-based Word Seg-

mentation

Conventional monolingual supervised segmenters often massively produce rare words

that MT systems cannot make use of, which directly harms the final translation
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results. And they produce segments in each language separately. Hence, it is natural
to find a proper segmentation standard that can reduce the rare words.

We find that the key to the OOV word issue, in fact, is the vocabulary behind
the process of segmentation. To exploit the role of the vocabulary in word seg-
mentation, we investigate different scales of sizes in the experiments. We assume
that a well-learned? finite vocabulary is sufficient to perform rough segmentation.
This should also benefit the learning of translation models. This assumption has
two restrictions: first, a productive vocabulary can be obtained by restricting the
minimum frequency of each word, and second, a finite and compressed vocabulary
is capable of representing the original vocabulary.

The above discussion also suits the bilingual case where lexicon inference is
performed for both the source and target languages. We propose a novel FM—
MDL-based segmentation method based on the principle of minimum description

length [Rissanen, 1978, Griinwald, 2007] imposing two additional restrictions :
e minimal frequency
e finite vocabulary

Though the finite vocabulary inferred cannot completely solve the OOV problem,
neither cover all possible plain words in each language, the inference starting from
the smallest writing units (i.c., CJK characters) should achieve the best trade-off
between representation effectiveness and word productivity. Our bilingual word

segmentation method is a two-phase process:

e Firstly, starting with character vocabulary and a parallel corpus, we attempt
to infer a codebook with a limited number of entries. Based on the principle of
MDL, the number of entries in codebook will continue to grow in an iterative

procedure.

e Secondly, the inferred codebook allows reusing for word segmentation. Our

goal is to tackle the OOV problem during the process of word segmentation

Z‘Well-learned’ means that the vocabulary of words learned can describe most words in a lan-

guage, though it is much smaller than the vocabulary of all existing words.
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for these languages.

5.3.1 Minimum Frequency and Finite Vocabulary Restric-

tions

Since NMT cannot make use of OOV words, it is reasonable to only focus on high-
frequency words rather than low-frequency words. The minimum frequency restric-
tion requires entries in the vocabulary have higher frequencies than the minimum
frequency. Preliminary experiments [Sennrich et al., 2016] show that such a filtering
strategy contributes to NMT in learning the translation of OOV words through high-
frequency morphemes or phonemes. Another restriction is fixing the vocabulary to
a limited size. [Wu et al., 2016] obverse that a fine-tuned number of vocabularies
lead to a drastic reduction in both estimation time and the number of OOV words.

Our situation also differs from the standard MDL in that the vocabulary size
is fixed and the minimum frequency of word need to be restricted. [Hansen and
Yu, 2001] has shown that the MDL paradigm is also suitable for the problem of
finitely coding. The assumption is that the learned finite vocabulary is sufficient to
perform rough prefix-based segmentation, and further, it will benefit the NMT to
learn transparent translations.

Following [Sennrich et al., 2016] and [Wu et al., 2016], we only consider two

variations of MDL to word segmentation for NMT:
e one with the minimum frequency restriction only (i.e., M), called M-MDL.

e another with the minimum frequency restriction (i.e., M) and the additional

restriction on vocabulary size (i.e., F), to distinguish, we call it FM-MDL3.

5.3.2 Inference Procedure

We now describe how to perform the maximization in Eq. 5.2.2. [Schuster and Naka-
jima, 2012] indicate that, for CJK languages, in general, the size of the common

characters is further smaller than the fixed vocabulary size desired in NM'T. Con-

3F stands for “finite vocabulary”, and "M” stands for “minimum frequency restriction”.
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Before:
codebook: ® data: D English Translation
{®R, N, 3 &, RO E & European Union
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Figure 5.3: A Japanese example of bottom-up code book inference using MDL.
The greedy heuristic yields a candidate with the minimal ADL for updating at each
time. This method is also suitable for bilingual segmentation, though we only show

a monolingual examples here.

sider the unsegmented case (see Figure 5.3), in the initial code book, each character
is an entry in the code book. To reduce the description length, given two adjacent
characters wy, w9, we try to insert a new entry into code book which is a bigram
wiwy by merging w; with wy. A greedy method of minimizing DL is: each time
finding a new longer entry to insert that has the minimal ADL and updating the
code book recursively. Assume ® and D are the new model and the new data after
insertion of a new entry, the total change in coding cost for the code book and data

encoding is:

ADL =DL(D, ®) - DL(D, ®) (5.3.6)
— A DL(®, ®) + ADL(D, D) (5.3.7)

To reduce the description length, taking two adjacent characters wy, wo and given
the previous and next characters, we try to insert the pair wyws as a new entry into
the code book by merging w, with wy. Each update of the code book, i.e. inserting a
longer entry or deleting shorter unused entries should reduce the description length.

For each pair candidate, to estimate the variation in data description length,
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we compute the change of data description length (ADL) before and after inserting
this entry into the code book iteratively. The length difference between the old code
book @ and the new code book @ is trivial. Given the deletions /insertion in code
book, we compute the model description length difference ADL(CT), ) according to

® and @ by classifying them into four cases:

(
len(wyws) Aw,we} C @

ADL(.4) b x len(wyws) — len(wy) — len(ws) , {wy, wy} ¢ @ (5:3.8)

len(wywsy) — len(w) Jwy & D

\len(wlwg) — len(w,) Jwy & D

Algorithm 8 and Algorithm 9 (see Appendix B) indicate the details of M-MDL
and FM-MDL. The key component in both Algorithm 8 and Algorithm 9 is the
function ADL. However, we cannot afford to perform segmentation for each can-
didate, which is an extremely expensive process. In our proposal, we first collect
the potential combinations of the current entries, then we sort the candidates with
their approximate value of ADL. Finally, we commit to the best candidate with
the minimal ADL in queue recursively. Specifically, we apply the codebook only if
there are no valid candidates in the queue. After several iterations, it may collect
enough entries for a fixed number.

Note that the variation in data length exists after inserting a new entry w;ws.
The data change contains both the decreases in coding length of w; and ws and the
increases in coding length of wyws. Besides, there are changes in the coding cost for
the remaining entries in the corpus (i.e, other tokens in the corpus), which affects

the frequency of those entries in code book. We use O(1) to represent the bias:

ADL(D, D) = ADL(w;) + ADL(ws) + DL(D|w,w,) + O(1) (5.3.9)

The estimation of the cost for wy is analogous to wy. Thus, from N to N, the term

of ADL(w;) in Eq. 5.3.9 can be rewritten as:
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. C’(wl) C(wl) — C(wlwg)

ADL(wp) = C(wq) x log ( N ) — (C(wl)—C’(wlwg)) x log ( I )
(5.3.10)

where N is the new data length, equals to N — C(wyw,). The bias O(1) is computed

as following:

|D| |3

|
O(1) = %:C(w) x log (%) — %:C(w) x log (%) (5.3.11)
- |§:C(w) X (1ogN ~log N) (5.3.12)
- (N ~Clun) - C(w2)> x log (%@““’2)) (5.3.13)

[Zhikov et al., 2013] point out that the operation of replacing on the entire
corpus is prohibitive and retrieval of indices is a challenging task. [Argamon et al.,
2004] employ the main suffix trie structure for fast retrieval. In our proposal, we use
a suffir array [Karkkdinen and Sanders, 2003] to remember the indices for updating

the pair statistic on-the-fly. Algorithm 10 shows how to update the statistics.

5.3.3 Prefix-based Segmentation

There is a sizable literature on word segmentation: recent reviews include [Sproat
and Emerson, 2003] and [Huang and Zhao, 2007]. Previous works, which attempt
to extract features to identify word boundaries from annotated training datasets,
are mainly based on supervised learning. These methods are divided into two major
categories, namely lexical rule-based approaches [Sproat et al., 1996], and tagging-
based approaches [Xue et al., 2003].

A few studies [Mochihashi et al., 2009, Hewlett and Cohen, 2011, Zhikov et al.,
2013] also focus on unsupervised learning approach, which reports that it is possible
for an unsupervised learning approach with a well-defined model to outperform the
widely-used supervised approach.

In this paper, we apply the forward maximum matching (FMM) algorithm for de-

terministic segmentation. During segmenting, the segmenter looks up each possible
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candidate as a sequence in the codebook, and only outputs the longest one. Al-
though FMM is the simplest method, it can output reasonably good word segments
for SMT and NMT on account of the number of OOV words and the translation

scores.

5.4 Experiments

5.4.1 Datasets

We evaluate our method on the Asian Scientific Paper Excerpt Corpus (ASPEC)
[Nakazawa et al., 2016b].

For Chinese-Japanese and Japanese—Chinese translation tasks, we use the de-
fault training, development, and test sets to measure the performance of our MDL-
based segmenters. The final training corpus contains 672,315 sentence pairs. We
follow the official development /test split of ASPEC-JC in WAT*: 2,090 sentence

pairs for development, and 2,017 sentence pairs for testing.

For English-Japanese translation tasks, we use the top 1.5M sentence pairs in
the training set of ASPEC Corpus (ASPEC-JE), because this corpus contains some
unreliable sentence pairs (their translation probabilities rank sentence pairs). We
use the official development /test split: 1,790 sentence pairs for development, and
1,812 sentence pairs for testing. We also filter out the sentences longer than 50

words.

5.4.2 Experiment Settings

For all experiments, we followed the basic parameter setting of the baseline system

in WAT translation task®. We describe the details as follows.

4http://lotus.kuee.kyoto-u.ac. jp/ASPEC/
> http://lotus.kuee.kyoto-u.ac.jp/WAT/WAT2017/baseline/baselineSystems.html
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Tokenizers/Segmenters

For English, we used the Moses script® as the default tokenizer. For Chinese and

8

Japanese word segmentation, Stanford Segmenter” and Juman® were used.

SMT Settings

For the SMT experiments, we utilize the Moses toolkit? to build a standard phrase-
based SMT system for translation experiments. The systems [Koehn et al., 2007]
are built with Moses with lexical reordering [Koehn et al., 2005], Minimum Error
Rate Training [Och, 2003], and the 5-gram KenLM!" language model [Heafield, 2011].
We set the distortion limit as 20. For bilingual setup, we learn a joint vocabulary

for both the source and target languages.

NMT Settings

We utilize an NMT system that follows an encoder-decoder architecture with at-
tention mechanism [Luong et al., 2015a] as our baseline system, which has been
shown in Figure 2.6. All NMT systems are built with an open-sourced NMT imple-
mentation: Open-NMT." We use a minibatch stochastic gradient descent (SGD)
method to train NMT models with the following arguments: 2 hidden layers for
both encoder and decoder, word embedding of size 500, mini-batch size 64, hidden
la .3 for all inter-layers to prevent over-fitting, 13
epochs for training, single model (no ensemble), and decoder beam with a size of
5. The vocabulary size of input and output are set to 50K. Training sentences are
randomly selected. For bilingual setup, we share the word embedding layer between

the encoder and decoder.

Shttps://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer/

tokenizer.perl
"https://nlp.stanford.edu/software/segmenter.shtml
8http://nlp.ist.i.kyoto-u.ac.jp/index.php?JUMAN
‘https://github.com/moses-smt/mosesdecoder
Ohttps://kheafield.com/code/kenlm/
Uhttps://github. com/0penNMT/OpenNMT-py
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Subwords Models

To measure the performance of our FM-MDL segmenter, we compare our pro-
posal with other state-of-the-art subword methods. We choose SentencePiece!?
(model_type=bpe) for BPE without pre-segmentation as our baseline systems, notes
BPE w/o pre-seg'®. To apply BPE after segmentation, notes BPE w pre-seg, we
first segment the raw texts using Stanford Segmenter/Juman, then apply the im-

t!4. We also show the result of recent sentence piece

plementation of subword-nm
model SentencePiece use (model_type=unigram) which allow to perform sub-word
segmentation without using any pre-tokenizer/segmenter.

To compare the effectiveness of the additional restrictions, we consider two vari-
ations of MDL: M-MDL (without the limitation of vocabulary size) and FM-MDL.
M-MDL serves to prove the importance of vocabulary size restriction. We set the
minimum frequency of subword-nmt, M-MDL or FM-MDL to 5. We limit BPE,
SPM, and FM-MDL to a limited vocabulary size as 50K to ensure that the gen-
erated vocabulary can be used by all NMT systems having built. In particular,
we process the English sentences using Moses tokenizer with subword-nmt for all

experiments involving English.

We evaluate two methods of applying MDL:

1. learning two independent vocabularies, one for the source, one for the target,

which we call monolingual MDL;

2. or learning a shared vocabulary on the union of the two vocabularies, which

we call bilingual MDL.

Evaluation Metrics

To evaluate the translation quality, we use BLEU [Papineni et al., 2002] and RIBES
[Isozaki et al., 2010] as the evaluation metrics. BLEU is the usual standard metric

for MT. RIBES assesses word order as well as N-gram—based matches in BLEU. It

2https://github. com/google/sentencepiece
13The original implementation of [Sennrich et al., 2016] does not support unsegmented text.
“https://github. com/rsennrich/subword-nmt
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penalizes word order mistakes. We also separately study the numbers of unknown

words in the development /test set.

5.4.3 Experimental Results

Chinese (zh) Japanese (ja)
50 4 50 4
—8— Stanford —8— Juman
BPE w/o pre-seg BPE w/o pre-seg
__ 40 1 —4— Stanford+BPE _ 401 —A— Juman +PBE
B —& SPM £ —¢ SPM
2 30 —— M-MDL & 30 - —— M-MDL
= —8— FM-MDL g —8— FM-MDL
& &
220 220
= =
& &
10 1 104
04 04
1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9

Figure 5.4: Statistics for word lengths in CJK characters (from 1 to 9) using various

segmentation tools for monolingual setups.

Segmentation Results

Our major objective is to tackle the OOV problem in segmentation for NMT. At
first, we exploit the distribution of the subword length in terms of the subword
frequency for each language independently. Figure 5.4 gives the statistics on the
training set. Stanford and Juman are baseline systems in Chinese and Japanese
respectively. We analyze these two graphs separately. In the first graph (Chinese),
the length of most words is less than 5. However, as shown in the second graph,
there exist more longer words in Japanese. [t reflects the great differences that
exist between Chinese and Japanese. As shown in Figure 5.4, in both languages,
high-frequency words are centered on the single-character and two-character word.
As the comparison, WPM produces more words that are longer than others, on
the contrary, FM-MDL is prone to generate somewhat shorter sub-words but there
still exist more longer words than other methods. According to this figure, M-MDL
always generates the least number of single-character words. It is apparent from the

graphs by comparison across languages that the average length of Chinese words
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Table 5.1: Corpus statistics for Chinese with different word segmentation techniques,
e.g., byte pair encoding (BPE), SentencePiece, MDL with minimum frequency re-
striction (M-MDL) and MDL with minimum frequency and finite vocabulary re-
strictions (FM-MDL).

#tokens #types avg lentstd. #unk tokens #unk types
train 1821 m 307,139 27.08+14.62
Stanford dev 59,279 7,915 28.36+15.58 650 541

test 58,318 7,724 27.68+14.13 588 505

train 19.71 m 53,076 29.32£17.38

Stanford4-BPE dev 63,178 7,825 30.23£17.08 9 8
test 62,115 7,636 29.48+16.05 1 1
train 15.40 52594 22.90£13.20

BPE dev 63430 7045 30.354+16.79 5 5
test 48334 12486 22.94+12.28 1 1

train ~ 15.68 m 52,672 23.33+13.33
SentencePiece dev 49,955 12,069 23.90+£13.50 5 5
test 49,249 12,028 23.37+12.40 1 1

train 17.07 m 72,714 25.39+14.30
M-MDL dev 55,338 9,757 26.48+14.65 3 3
test 54,589 9,584 25.91+13.68 0 0

train 18.16 m 35,839 27.01£15.33
FM-MDL dev 58,542 8,059 28.01+15.58 3 3
test 57,648 8,017 27.36+14.49 0 0

is longer than the Japanese. This phenomenon may be explained by the fact that
MDL considers the coding cost in the model, while WPM not.

For more details, Table 5.1 and Table 5.2 show the number of OOV word in the
training, development and test sets. Different methods output the different amounts
of tokens. The sub-word models significantly reduce OOV words. The numbers of
types decrease by up to 80% for Chinese and 50% for Japanese. For the training sets
of both languages, FM-MDL produces the minimal identical word types, followed
by SPM or BPE. For the test and development set, by contrast, WPM has the most
types. Although FM-MDL generates the smallest number of types among all these
methods against the training set, BPE has the minimum tokens in the development

and test sets. WPM has almost over four-fifth average length as the baselines, which

114



Chapter 5: Sub-word Segmentation in Seq2seq NM'T

T le 5.2: Corpus statistics for Japanese with different word segmentation tech-

niques.

#tokens #types avg lentstd. #unk tokens Funk types

train 2221 m 150,779 33.04£17.57
Juman dev 70,035 7,057  33.51+17.94 291 214
test 69,015 7,036 32.76+16.67 261 217

train  22.92 m 48,088 34.09+£18.66
Juman 4+ BPE dev 72463 7,047 34.67+£18.81 0 0
test 71716 7,027 34.04%£17.61 0 0

train 23.28 22800 34.62+18.69
BPE dev 73320 6835 35.08+£18.87 1 1
test 72548 6854 34.43+17.54 1 1

train 16.00 m 52,022 23.80£13.65
SentencePiece  dev 49,867 13,358 23.86+£13.52 0 0
test 49,715 13,237 23.60+12.50 0 0

train  20.13 m 59,130 29.94+16.54
M-MDL dev 64,072 9,345 30.66+£16.82 0 0
test 64,354 9,190 30.54+15.91 0 0

train 20.71 m 33,848 30.80+17.07
FM-MDL dev 65,391 8,383 31.29+17.26 0 0

test 65,614 8,318 31.14+16.19 0 0

is the shortest one at the same time. We also investigate the number of OOV word
in the training, development and test sets. SentencePiece (WPM) shows slightly
better text compression ratio than other methods, but no significant differences in

BLEU score.

The more direct-viewing results, i.e., some segmentation results, can be found
in Figure 5.5. For Japanese, different methods output significantly different seg-
mentation. The Japanese segmentation results that how this method deals with
the problem of Japanese Katagana transliteration using the first example. FM-
MDL broke the high-frequency Japanese word (blue, “conbiniensu”) into pieces as
same as SPM, but produce a different segmented sequence. For the low-frequency
Japanese word (red, “i-rudo”), BPE splits it into single characters. SPM and FM-

MDL output different solutions. F Ity exists in Chinese word

segmentation is that to handle the segmentation disambiguation problem. For ex-
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sampling, of, ‘CONg Veuly ens 6| Y7 s clo dho con bini en su|i - rudoo chishutsu shi
Juman QL= T Re [ A r—glg Fyg / &/ T, /L, TV =T VAT = kA L
Rl 2 aE e A {1/ n/o/ Fuo / %/ it /L, Cong veniy ens ceg
SPM A g E=y [T A [ A 7—s/ Ny Fro/ &/ Sl /L Katagana
FM-MDL| | 2V /€= [T VR [ A of— g B / %/ M /L Transliteration con |binilen su
al 1/ 526/ 1 7/—slbg Fio / %/ flit, /L, S P P

it is; essentialy fory the, aetivations of; regionaly economyg Dul yi di g jing ji de hud xing hua lai shuo shi bi yao de
Stanford | ¥ Ty /MK 7 /455 s /6 / 0TS s |/ Aeiia /02 /LB, /)2 WNTHEK SEME M bk H OEXLEMD
+BPE | & Ty /M 7/ 455 o / 106/ iilths fls |/ Heidla /21 03 /s Chinese Segmentations | English
SPM s Xy s/ e s s / ik /R DB, Y,
FM-MDL | % F 5 /Hu[X /4335 o/ 116 / TG fg / Heibtgil, / LT, /11,

should; require;

is1 essentialy

Figure 5.5: Samples of segmentation results (top: a Japanese transliteration exam-

ple, bottom: a Chinese word segmentation disambiguation example).

ample, “shi bl yao” is ambiguous in Chinese, which has two segmentation ways. shibi
yao means “should require” while shi biyao means “is essential”. The segmentation
results indicate that all these methods can deal with the segmentation ambiguity
somehow, but vary with the segmentation schemata. FM-MDL concatenated shi to

the previous word. WPM glued characters into one word shibiyao.

Translation Results

Table 5.3, Table 5.4 and Table 5.5 show the automatic evaluation results on ASPEC
tasks. NMT systems achieved better results than SMT systems (4.61 BLEU points
for zh—ja and 4.22 BLEU points for zh—ja ). With the restriction of limited vocab-
ulary improved the translation quality significantly by up to (0.5~0.9) BLEU point
relatively. All these models (BPE, WPM, M-MDL, and FM-MDL) surpassed the
baseline system with a significant difference in both BLEU and RIBES. However, the
values of perplexity and accuracy vary with the different methods. WPM outper-
formed word-based methods BPE on the Chinese-Japanese direction but worked not
robust on the Japanese-Chinese direction. Pre-tokenization can slightly improve the
BLEU scores in English to Japanese. In Japanese to English translation, the conclu-
sion that BPE might not be effective for NMT can be drawn from the final results.
We observed that the proposed M-MDL and FM-MDL methods could significantly
improve translation quality, but FM-MDL is more strong and robust than M-MDL.

We also did the experiments of shared vocabulary and shared embedding, and we
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Figure 5.6: Samples of segmentation and translation results.

Source (Chinese) Target (Japanese)

Stanford/Juman BRI AR & 2 B % - (JECFAL) ERIEMIEAZE A (<unk >)
+ BPE B %ﬂufu JREFAR(JECFA) AR N psEg £8 2. (LJLE.CLF.AL)
BPE w/o seg B RINFEE A R4l (UJEC.FAL) BN A GERE ZE . (LIJLECLF AL
SentencePiece ELEVN j]l])*'LHf% Zhi#. (J.EC.FA.) SRRy AR EES, (LILECLFAL)
FM-MDL BRI & 225 %L (LJEC_FAL) it AR EREsl ((JECFAD
English The Joint Committee on Food Additives (JECFA)
Chinese e e Ba g (JECFA)
Japanese A £8 = AR (JECTA)
Source (Chinese) Target (Japanese)
Stanford/Juman (BRI LM T KR IS <unk > kAWM KL A5
+ BPE fEFH A2 AR b T KRR R AF G L AN IR KD A EUZ BT B LR
BPE w/o seg LRI e T I R RS AX ARl LB ST M CF KB LD T
SentencePlece i AL AR 5L TR LBEAIBET S S IR AR L 0 e e g
FM-MDL L AR IR i M T K LB 5T R A HL T AR EHLL
English rescarch on water purification using the charcoal of cedar
Chinese B WK #iL A w KR
Japanese prie Hi R 7 i, AHwiz % AF
Source (Chinese) Target (Japanese)
Stanford/Juman  HM JHN S R FHHCAPF. R <unk > AN S L HH PR F
+ BPE WMI_Be JH N S R TRy b, R RO CHN S i B (AR Rk

BPE w/o seg .S JHON S R S TR b R Mo X0 LHUN S i i Bk AEE R

SentencePiece WK JHON S RT3 R RO LN S e Fl T B LB R 1l
FM-MDL . JHUN S R T L R LB Z 0 LN S RSB U R
English Oil and HNS  leak prevention and treatment technology

Chinese W HNS iR TR g A

Japanese  JH RO IINS il T8 frg LT

found our methods have no statistically significant difference with the monolingual
case.

Table 5.6 gives the training time. Although all these methods are capable of
multi-threading in a production environment, to provide a fair comparison, we ran
within a single threaded mode when computing training times. The CPU time was
measured on an Intel Core i7-960 3.20GHz with 32GB RAM. Compared to BPE
and SPM, FM-MDL significantly reduced training times'®

5.4.4 Comparison

In this section, we characterize our proposed model by comparing with other subword-

based models (e.g. BPE [Sennrich et al., 2016], WPM [Schuster and Nakajima, 2012]

15The segmentation time may be ignored.
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Table 5.3: English-Japanese NMT experiment results on ASPCE-JE Corpus (50K).

en - ja ja = en
BLEU RIBES BLEU RIBES

SMT [Koehn et al., 2003] 27.50  68.41 19.52  64.31
NMT

Juman + Stanford [Luong et al., 2015a] 34.24  81.45 2645 7161

BPE w/o pre-seg (baseline) [Sennrich et al., 2016] 34.56  82.15 2713 7171

BPE w pre-seg [Sennrich et al., 2016] 34.78  81.79 28.03 71.62

SPM [Wu et al., 2016] 35.57  82.40 27.12 7117
Proposed

M-MDL 35.01 82.03 27.22 71.31

FM-MDL 35.35! 82.431 28.15" 72.01

Table 5.4: Chinese—Japanese NMT experiment results on ASPCE-JC Corpus (50K).

zh — ja

BLEU RIBES

ja — zh

BLEU RIBES

SMT [Koehn et al., 2003]
Juman + Stanford 35.00 78.65 26.90 79.36
FM-MDL 36.12 81.69 28.46 81.67
FM-MDL (shared vocab, shared embed) 36.22  82.05 28.56  81.99
NMT
Juman + Stanford [Luong et al., 2015a] 39.61  86.34 31.12 8351
BPE w/o pre-seg (baseline) [Sennrich et al., 2016] 41.14  86.57 32.14  83.99
BPE w pre-seg [Sennrich et al., 2016] 41.62 86.70  32.60 84.33
SPM [Wu et al., 2016] 41.87 86.84 32.28 84.28
Proposed
M-MDL 41.17 86.38 32.21 84.31
FM-MDL 42.027 86.88" 32.84' 84.75!
FM-MDL (shared vocab, shared embed) 41.527 86.64" 32.48" 84.55!

and SPM [Wu et al., 2016]) using Table 5.7. All of these models belong to the un-
supervised method. They all train a segmentation/tokenization model. However,

there are sharp differences between these methods.

All of the above methods treat the NMT system as a ‘black box’ with the ex-
tension of direct training from raw sentences. Hence these methods fit all kinds of
state-of-the-art NMT models. A common feature for BPE, WPM, and FM-MDL
is that the size of the vocabulary is always predetermined, i.e., they all use a finite
vocabulary. For East Asian languages, in fact, BPE is a simplified version of MDL
without careful computation of the coding cost. WPM differs from MDL methods,

and BPE in that WPM is unable to guarantee that a new generated word has a
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Table 5.5: Chinese-Japanese NMT experiment results using bilingual segmentation

on ASPEC-JC Corpus (20K).

zh—ja ja — zh Time-zh Time-ja

BLEU RIBES BLEU RIBES  (min) (min)

Juman/Stanford 39.54 8591 31.09  83.76

Monolingual

BPE w/o pre-seg (baseline)  40.48  86.12 31.63  83.37 17.70 17.33

BPE w pre-seg 40.63 86.24 32.24 84.13 - -
SPM 41.21 86.66 32.23  83.51 5.61 6.91
FM-MDL 40.93 86.32 32.14 84.24 1.78 2.10

Bilingual (shared vocab and shared embed)

BPE w/o pre-seg (baseline)  40.59  86.27 31.86  83.50 31.86
BPE w pre-seg 40.53 86.26 31.97 83.94 -

SPM 41.01 86.35 32.01 83.61 11.42
FM-MDL 40.76  86.25 32.30 84.37 4.62

Table 5.6: Training times on ASPEC-JC Corpus.

Time (mins) zh ja

BPE w/o 39.96 41.95
SPM 13.51 19.47
FM-MDL 456  6.54

higher frequency than required. In fact, WPM is quite similar to FM-MDL, but it
does not take the coding cost of the codebook (model) into consideration (see Col-
umn 3). SPM and WPM use the same objective function, but training/segmentation
procedures are different. Both WPM and SPM aim to maximize the language model
likelihood, which is the same as DL(D|®), while M-MDL and FM-MDL pursue the
minimum DL(D|®) on account of the coding cost. In addition, BPE updates the
codebook only according to sorted pair frequencies. BPE w/o pre-segmentation and
FM-MDL start with the characters in the vocabulary, while SPM!® uses Unicode

lattice to find the most common pieces in a top-down way.

16SPM treats white space as an essential symbol.
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Table 5.7: Comparison of segment methods for subword-based NMT.

Training Segmentation | Objective function
BPE Greedy Binary Merge |D|
WPM Greedy Binary Merge DL(D|®)
SPM Top-down EM Viterbi DL(D|®)
FM-MDL | Bottom-up EM FMM DL(D|®) + DL(®)

5.5 Summary of the Chapter

This chapter investigates the bidirectional latent variable of vocabulary for word
segmentation. Word segmentation is used for the computation of the vocabulary of
East Asian languages without word separators (Chinese or Japanese). Conventional
supervised word segmenters massively produce rare words which MT systems can-
not translate in different quantity for different segmenters. This results in lower and
different translation scores in SMT or NMT. To tackle the OOV /rare word problemn
in European languages, it has been proposed to go beyond words and decompose
into sub-words. To translate rare words in East Asian languages and reduce sensi-
tivity to segmentation, this chapter offers a novel bilingual unsupervised sub-word
segmentation method based on the principle of minimum description length (MDL).
Both the vocabulary and the word embedding layer are shared between the encoder
and decoder. Essentially, the contribution consists in the resulting bilingual seg-
menter. It learns a finite vocabulary of words common to the two languages, each

with a minimum frequency.

To tackle the rare word problem in East Asian languages and reduce sensitivity
to segmentation, this dissertation proposes a novel bilingual unsupervised sub-word
segmentation method based on the principle of minimum description length (MDL).
This method learns a single (F) finite-size vocabulary, where sub-words are common
to the two languages, each with (M) minimal frequency. Besides, this enables to

share word embedding layer between the encoder and the decoder in seq2seq NMT.

When compared with state-of-the-art word segmenters, Juman for Japanese and
Stanford Segmenter for Chinese, the proposed method (a) leads to statistically sig-

nificant improvements in translation accuracy (4+1.0 BLEU, p-value < 0.01) (b)
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Times cannot be compared as Juman and Stanford Segmenter are frozen models,
but (c¢) the vocabulary size is largely reduced (20 times smaller) as well as the size of
the word embedding layer (50% smaller than in a monolingual setting) in both SM'T
and NMT experiments in Japanese-Chinese and Chinese-Japanese. When compar-
ing with two other sub-word models for NMT sentence piece model [Wu et al., 2016]
and byte pair encoding [Sennrich et al., 2016], the proposed method (a) leads to
comparable or above translation accuracy in both monolingual and bilingual cases

while (b) being 3 to 8 times as fast, (c¢) for the same vocabulary sizes.
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Chapter 6

Contributions and Conclusions

The following key ideas are essential in the thesis:
1. Translation divergences should be given more attention.

2. Sharing cross-linguistic equivalents is an efficient way to accelerate the

search for accurate translations while reducing memory cost.

3. Bidirectional latent variable models are naturally suitable for modeling

machine translation.

This final chapter reviews the accomplishments of the dissertation. As discussed
in Chapter 1, directly modeling translation in statistical or neural models is imprac-
tical due to the existence of translation divergences. To deal with these translation
divergences, we enhanced the model architecture with bidirectional latent variables.
Several crucial problems in machine translation such as discontiguity of word align-
ments, long-distance reordering and out-of-vocabulary words have been investigated
by using these bidirectional latent variable models. Specifically, these models ex-
plicitly solve translation divergences at different levels, while utilizing shareable
vocabulary, shareable word co-occurrences, or shareable syntactic structures. We
evaluated our bidirectional models only considering the final machine translation
quality. Experimental results demonstrate that bidirectional latent variables are
of great benefit to the learning step in machine translation while being capable of

reducing the model size. Bidirectional models not only yield state-of-the-art perfor-
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mance but also are consistently more efficient for the translation of distant language

pairs, like English—Japanese or Chinese-Japanese.

For the reader to have a general idea of machine translation, Chapter 1 walked
the reader through the literature in machine translation and provided an overlook
of latent variables in machine translation. We highlighted the drawbacks of the
existing approaches for distant language pairs. The background of the research,
e.g., basic notions and concepts in statistical machine translation and neural machine
translation together with the details of some advanced MT systems, e.g., phrase-

based SMT, syntax-based SMT and seq2seq NMT, were given in Chapter 2.

Our work focused on improving current MT approaches. They were presented
in the following chapters. We investigated the use of bidirectional latent variables:
symmetric phrasal alignments, BTG derivations which are bilingual by construction,

and shared vocabulary in word segmentation sequentially.

In Chapter 3, we explained why phrasal alignment should be a bidirectional latent
variable in phrase-based SMT. Our approach differs from conventional approaches
relying on higher IBM models (3~5). Those methods capture different types of
alignments either using higher IBM models (IBM 3~5), like GIZA++ [Och and Ney,
2003] which are difficult to compute and require long training times, or lower IBM
models (IBM 1~2), like fast_align [Dyer et al., 2013] which are insufficient for
long-distance alignments of distant language pairs. Our contributions constitute
better estimation of translation probabilities using Variational Bayes [Riley and
Gildea, 2012] for hierarchical sub-sentential alignment (HSSA) and improved HSSA
using beam search, and consequently more accurate word alignments. The resulting
aligner enabled us to create symmetrized alignments and to produce contiguous word
alignments directly. In the future, better ways to build soft matrices using neural-
based attention models may be explored. The possibility of using unsupervised
bilingual word embedding to initialize those soft matrices is also a possible future

research path.

In Chapter 4, we utilized BTG parse trees, another bidirectional latent vari-
able, to build syntax-based SMT systems. The proposed method allows dispensing

with parsers, resulting in a method which is insensitive to long-distance reorderings.
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BTG parse trees can be used to reorder words in sentences, either before the stan-
dard phrase-based SMT pipeline (preordering for phrase-based SMT) [Neubig et al.,
2012a, Nakagawa, 2015], or during translation (BTG-based decoding) [Xiong et al.,
2008]. We improved the training algorithm of [Nakagawa, 2015] using bootstrap
aggregating with several learning techniques (mini-batch, distributed, iterative dis-
tributed and k-best list). Our parallel training methods are capable of dealing with
alignment errors that exist in the training examples. The conducted experiments
demonstrated that our proposal is more effective and efficient when trained on au-
tomatically aligned data sets. To our best knowledge, this is the first research on
parameter mixing techniques for latent structured inference. We also presented a
latent BT G-based SM'T method. This shows the possibility of reordering dispensing
the target features. The main contribution in the chapter results in more efficient

BTG-based SMT methods.

Chapter 5 presented the exploration of bidirectional latent variable of the vo-
cabulary in word segmentation. Word segmentation is a necessary pre-processing
step for many tasks of NLP for East Asian languages. For both SMT and NMT
models, the quality of translations heavily relies on the quality of segments. This
dissertation tackled the rare word problem in conventional approaches by proposing
a novel unsupervised bilingual segmentation method based on the principle of MDL.
It allows that not only the vocabulary is shared in SMT translation models but also
the word embedding layer is shared between the encoder and decoder in NMT. Es-
sentially, the contribution consists in better domain-adaptable word segmentation
for machine translation. The resulting segmenter learns a finite vocabulary (F)
of sub-words, common to the two languages, each with a minimal frequency (M).
The use of the FM-MDL segmenter leads to statistically significant improvements
on Chinese-Japanese when compared with Juman and Stanford Segmenter in both
SMT and NMT experiments. Thus, this method is more efficient on account of
time and memory cost. As for future work, we expect more experiments on other
languages that use the Latin alphabet besides East Asian languages to verify the
impact of MDL-based segmentation. We will also explore the performance of sub-

word models using other NMT models, e.g. the CNN [Gehring et al., 2017] and
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Transformer [Vaswani et al., 2017] models.

The work reported here is an important step towards more advanced machine
translation systems. It constitutes a complete framework of bidirectional latent
variables for machine translation. The dissertation presents a systematic solution to
the translation divergence problem. More future work on recurrent latent variable
model [Zhang et al., 2016a,Su et al., 2018] for NMT are expected. The joint learning
of syntactic structures and translations using multi-task learning techniques are also

attractive and desirable.
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