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Arterial wall and blood flow are mutually dependent. That is a fluid–structure interaction (FSI) problem. It has 

been studied that there is a strong correlation with arterial endothelial disease and the wall shear stress (WSS) 
due to the blood flow. Either measuring or calculation can obtain such values from a computed result. The 

accuracy has been improving in both fields. However, the damage itself is a property of the arterial wall itself. It 

is more natural to see the structural properties, such as strain and stress from a computed result. Hence, we focus 
on the structural mechanics part of computational modeling. In the modeling, a challenge associated with a 

patient-specific analysis exists. The set of images does not come from the zero-stress state (ZSS) of the artery. It 

means the geometry is already loaded with blood pressure and hence it is prestressed. Thence of prestress is 
measured, and some researches described the importance of the prestress for structural and FSI computations.  

    Many researchers have been proposing methods to estimate the prestress or ZSS. The approaches can be 

classified into four categories: The first approach is the estimated zero-pressure (EZP) method, which 

compresses the artery to obtain a geometry with zero blood pressure. The second one is the modeled-prestress 
method, which finds prestress tensors when the deformed shape is matched to the target geometry. This assumes 

all of the regions has the uniform stress conditions and different elastic moduli. The third one uses a 

modeled-ZSS, which can be based on anatomical observation or some other consideration. This approach does 
not guarantee the deformed shape to be the target shape, which is from the medical images. The last one is based 

on inverse design analysis. This guarantees the deformed shape to be the target shape. However, anatomical ZSS 

is not considered. Our research team has been introducing a method combining the second and the last 

approaches. It is called the element-based ZSS (EBZSS) with finite element discretization. At first, we split the 
artery into the tube segments and map into a straight tube. Then estimate ZSS based on an anatomical 

observation. Using that ZSS as an initial guess, an iterative method is performed such that the loaded shape 

becomes the target shape. However, there are two challenges here: convergence incompleteness according to the 
geometry complexity, and the converged ZSS without anatomical observation. The first challenge appears from 

the medical-image-based geometry involves convex-concave and branched regions. The second challenge is 

caused by the gap between the initial guess and the converged result. It means the anatomical design might not 

be kept to the converged ZSS. 
    The objective of this thesis is to introduce the medical-image-based aorta modeling with ZSS estimation 

with anatomical observation. For the objective, the following three approaches are set to solve the challenges 

above: apply higher-order shape functions to EBZSS, impose integration-point-based strain, and design a ZSS 
initial guess with analytical solutions of the force equilibrium. 

 

    In Chapter 2, the formulations and boundary conditions for structural mechanics are described, it is based 
on total Lagrangian. The element-based total Lagrangian (EBTL) method is also described. The EBTL is a 

version where the ZSS is split into elements on arbitrary orientation. A hyperelastic Fung’s model is also given. 

In this thesis, the arterial wall is assumed as a single layer and an isotropic material. Here, the extension to 

multiple layers with anisotropic materials is straightforward. 
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    In Chapter 3, the shape functions for discretization are given. They are for B-splines, non-uniform rational 

B-splines (NURBS), and T-splines. A finite element (FE) analysis based on these functions is called isogeometric 
analysis (IGA). We call this representation as isogeometric discretization. All the core functions can be 

represented by Bernstein polynomial functions with linear transformation matrices. Those matrices are constant 

within an element, and they are called Bezier extraction operators. This representation generalizes the 
discretization, and that makes it easier to understand the shape of an element, and it simplifies the implementing 

algorithms.  

 
    In Chapter 4, the objective is to apply higher-order shape functions to the EBZSS estimation method as the 

abovementioned. By using the isogeometric discretization, the process in the previous EBZSS method that is 

mapping between the artery and straight-tube segments is not needed. The higher-order shape functions give a 

direct calculation of curvatures and represent a convex-concave shape within an element. In this extension, the 
shape representation and the iterative method are modified. 2D test computations with straight-tube 

configurations are presented to show how the new EBZSS method works. The computations also aim to decide 

enough resolutions in the circumferential direction and the circumferential residual stretch as the ZSS design 
parameter. A 3D computation with matches the deformed shape to the medical-image-based geometry with the 

resolutions and the design parameters obtained in the 2D computations are also presented and represents how the 

method can be used. 

    From the above results, the following challenges remained. The first challenge is the ZSS initial guess was 
far from the converged ZSS. It means the anatomical ZSS design was not applied well on the converged ZSS. 

The second challenge is that the EBZSS iterative method depends on the control mesh structure. The method 

imposes displacements, calculated from the stretch on the surface, on element-based control points. T-spline is a 
useful representation for more complex geometry, but the control mesh could be unstructured connections. Since 

that connections could set the point far from the physical surface, T-spline representation with the EBZSS has 

convergence difficulty. 

 
    In Chapter 5, with the results obtained in Chapter 4, the EBZSS process imposes modifications on 

element-based control points, and it was succeeded with geometries without branches. For more complex 

geometries, the EBZSS with control mesh complexity has convergence difficulty. The objective of this chapter is 
to impose integration-point-based strain using the components of its metric tensor. The method which is 

introduced in this chapter tries to directly impose the residual strain at each integration point, which is on the 

physical position on the geometry, instead of element-based control points. This is the reason why the new ZSS 
is called IPBZSS. Metric tensors with the natural coordinate system, which are introduced in Chapter 2, are 

effective ways to describe geometrical information without its control mesh. In particular to the ZSS initial guess, 

the ZSS is based on an inner-surface geometry and its design parameters. Therefore, how to extend the 

information to the radial direction is needed. With the method, conversion between T-spline and Bezier 
representations is not needed. To show how the new method for estimating the ZSS performs, a 3D test 
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computation with a Y-shaped tube is first presented. Then, the 3D computation where the target geometry is 

coming from medical images of a human aorta, which includes branches is presented. Two challenges remained. 
First, unphysical stretch values are observed at branched points of the patient-specific aorta geometry. Second, 

the ZSS initial guess was far from the converged ZSS: it means the anatomical ZSS design was not applied well 

on the converged ZSS. Given that these problems might have related each other, more anatomical ZSS initial 
guess modeling could estimate more reasonable results. 

 

    In Chapter 6, the objective is to design ZSS initial guess with analytical solutions of the force equilibrium. 
The force equilibrium in the normal direction is based on Kirchhoff–Love shell theory and the plane-stress 

condition, which gives proper constraints of the ZSS design parameters. Calculating the ZSS initial guess based 

on the analysis solution could improve estimation accuracy, and that makes converged ZSS reaching the ZSS 

target design quite well. In addition, given that a convergence difficulty is observed at the branched point which 
described in Chapter 5, an update of the wall coordinate system, is required. To show how the new ZSS initial 

guess techniques perform, 3D test computations with straight-tube configurations are first presented. The 

computations also aim to observe the effects of the modified wall coordinate system. A Y-shaped tube 
computation is presented to observe the perform at the branched points. Then, a 3D computation where the target 

geometry is coming from medical images of a human aorta is also presented. After how the method works were 

shown, the results are compared to the last results in Chapters 5. 

 
    In conclusion, the objective of this thesis was to introduce medical-image-based aorta modeling with ZSS 

estimation with anatomical observation. For the objective, the following challenges obtained from the existing 

researches were focused: Convergence incompleteness according to the geometry complexity, and the converged 
ZSS without anatomical observation. The following three approaches were set for the challenges: apply 

higher-order shape functions to the EBZSS, impose integration-point-based strain, design a ZSS initial guess 

with analytical solutions of the force equilibrium In Chapters 4 and 5, the ZSS estimation was successfully 

adapted to the geometries which have convex-concave and branched regions. In particular, the IPBZSS 
estimation method described in Chapter 5 was successfully applied to patient-specific aorta geometries which 

have branches with well-converged results. In Chapter 6, the ZSS initial guess was improved with analytical 

solutions of the force equilibrium based on the Kirchhoff– Love shell theory and the plane-stress condition. 
Given that the converged result was very similar to the initial guess, we could conclude that the converged ZSS 

was successfully based on the anatomical observation. From the results in Chapters 4–6, both Challenge 1: 

convergence incompleteness according to the geometry complexity and Challenge 2: the converged ZSS without 
anatomical observation, were solved. Thus, the ZSS modeling with anatomical observation was successfully 

introduced, finally.
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