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1.1 Objectives of the research 

Providing comfort and a healthy environment for occupants with minimum use of 

energy is the ultimate purpose of heating, ventilating, and air conditioning (HVAC) 

systems. Building ventilation directly affects the indoor air quality, and influences the 

health and productivity of the building’s occupants. Among various types of ventilation, 

the best-known and most frequently used ventilation method is mixing ventilation. 

Mixing ventilation aims to dilute polluted and warmed/cooled room air with a cleaner and 

cooler/warmer supply of air to lower the contaminant concentration and provide an 

optimal temperature and indoor air quality. Mixing ventilation has been applied to a large 

variety of room types using different air diffusers and exhaust types with various HVAC 

systems; such as a variable air flow volume (VAV) system with constant supply 

temperature and constant air volume system with variable supply air temperature. One of 

the major challenges of mixing ventilation is its low effectiveness with regards to the 

exchange of air, which may occur owing to temperature stratification with all-air heating 

because the same mixing ventilation diffusers often provide both space cooling and 

heating. 

In terms of thermal comfort, the impact of draft and temperature uniformity are 

measured based on the air distribution performance index (ADPI) (Miller et al. 1971). It 

is a widely accepted index that shows the performance of diffusers and is used for diffuser 

selection. The ADPI is defined as the percentage of an occupied zone falling into the 

acceptable velocity and temperature range. The region is determined by the local effective 

draft temperature (EDT), which combines the air temperature difference of the local and 

spacious average temperatures, and air speed. ADPI incorporates with the throw of 

selected terminal velocity and the characteristic length that describes a room geometry, 
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and it provides design variables for selecting diffusers. The ADPI method is only valid 

for overhead air distribution systems under cooling operation (Krati et al 2008). However, 

in practice, the same mixing ventilation diffusers often provide space heating and cooling 

(Platt et al. 2010, Vakiloraya et al. 2014, Liu et al. 2015). This causes many issues during 

the heating period. Liu et al. (2016) recently expanded the ADPI concept in the heating 

mode and obtained ADPI values with recommended design criteria for various types of 

diffusers. They also updated the ADPI data with diffusers commonly available on the 

market nowadays under the cooling mode.  

Current practice related to the air distribution design and diffuser selection relies 

on only the ADPI, which considers only temperature uniformity and draft. The impact of 

stratification and low ventilation effectiveness on all-air heating systems is taken into 

account by a correction factor in the American Society of Heating, Refrigerating, and Air-

Conditioning Engineers (ASHRAE) Standard 62.1 (2010). This does not always result in 

proper diffuser selection. For example, when the throw is too short, the jet may detach 

from the ceiling, increasing the draft risk under the cooling regime. Moreover, a short 

throw length may cause inadequate mixing that results in a high temperature gradient and 

low air quality under the heating regime. It is necessary to have some momentum flow to 

obtain adequate mixing in the occupied zone. However, a very large supply jet momentum 

may generate a draft when the flow rate in the occupied zone is above a certain level. The 

temperature difference between the supply and return jets should also be restricted as a 

high-temperature difference may cause a draft and a very large temperature gradient may 

result in inefficient energy use. Few studies focused on ventilation effectiveness with 

mixing diffusers used for space heating have been conducted, although all-air-heating 

ventilation is widely used. A comprehensive design process for diffuser selection and 
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positioning that considers both thermal comfort and ventilation effectiveness at the same 

time is needed.  

In contrast, the ASHRAE Standard 62.1 (2010) specifies the minimum ventilation 

rate in different types of buildings. This required ventilation rate is adjusted by taking 

into account the impact of ventilation effectiveness. The ASHRAE Standard 129 (2002) 

specifies the standard procedure for measuring air change effectiveness and how the 

minimum ventilation rate in Standard 62.1 (2010) can be modified by air change 

effectiveness. However, this standard may not be practical for field measurements as it 

demands extensive measuring equipment or repetitive measurement. Specifically, the 

standard requires to measure air change effectiveness 25% of workstation or at least 10 

locations in the test space. This results in low application of the ASHRAE standard 129, 

and the air change effectiveness is rarely measured in the field. Other standards, such as 

ISO 16000-8 and the standard developed by the Society of Heating, Air-Conditioning, 

and Sanitary Engineers of Japan also address such procedures. As the ventilation 

effectiveness may have a significant effect on both indoor air quality and building energy 

performance, it is important to know how to measure it both properly and effectively.  

Thus, the three primary objectives of this study are summarized as follows: 

(1) Define the operation range of commonly used diffusers 

Define the operation range for selecting diffusers with an acceptable ADPI, air 

change effectiveness, and temperature effectiveness. Provide selection data for air 

distribution system design for the most common types of celling diffuserslinear slot 

diffuser, round ceiling diffuser, louvered face diffuser with no lip and perforated diffuser 

directional pattern (4 way)in both cooling and heating regimes.  
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(2) Evaluate a method for improving ventilation effectiveness in the heating mode 

Provide simple strategies to improve ventilation effectiveness in the heating 

regime while maintaining acceptable ADPI values. Evaluate the improvements and 

operation ranges of diffuser deflector adjustments, room-supply air temperature 

differences, and exhaust locations.  

 

(3) Assess a procedure for evaluating air change effectiveness 

Assess a procedure for evaluating the air change effectiveness of mixing 

ventilation by analyzing variances in local air change effectiveness. Examine the 

correlation of temperature effectiveness and air change effectiveness to suggest a 

simplified strategy for evaluating air change effectiveness that may be applied in actual 

buildings.  

The author performed experimental measurements in a full-scale test room. 

Carbon dioxide (CO2) tracer gas decay tests were conducted to measure the age of the air 

at multiple locations in the test room simultaneously with various types of ceiling 

diffusers/pattern adjustments at different airflow rates and internal loads. The presented 

study expands recent research on ADPI with various types of diffusers by Liu et al. 

(2016).  The author also performed ADPI evaluations under conditions not considered in 

Liu’s study.  
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1.2 Background  

This section explains the theoretical and conceptual background of this research. 

The first section introduces ventilation types commonly utilized in the industry. The next 

sections explain indices used to evaluate ventilation. Among several indices, T0.25/L and 

ADPI, air change effectiveness, and temperature effectiveness are utilized to evaluate the 

performance of the diffusers with regards to thermal comfort, ventilation effectiveness, 

and heat removal efficiency, respectively. The chosen indices have been studied 

extensively by many researchers and are widely used in the industry. Detail explanations 

of T0.25/L and ADPI, air change effectiveness, and temperature effectiveness are provided 

in sections 1.2.2.3, 1.2.3 and 1.2.4, respectively. In addition, current practices of diffuser 

selection are introduced. 

 

1.2.1 Ventilation methods 

According to the Federation of European Heating, Ventilation and Air 

Conditioning Associations (REHVA) Guidebook No.2 (Muller et al. 2013), ventilation 

methods are categorized into three groups based on their air distribution patterns. The 

first ventilation method introduced in this section is mixing ventilation. Mixing 

ventilation refers to an air distribution pattern, rather than a ventilation system. It can also 

be called an air distribution pattern with a mixing effect or mixing air distribution. The 

purpose of mixing ventilation is to dilute polluted and warm/cool room air with cleaner 

and cooler/warmer supply air.  

The second ventilation classification in REHVA is displacement ventilation. It 

can be called an air distribution pattern with a displacement effect or displacement air 

distribution. This ventilation pattern aims to replace but not mix polluted room air with 
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clean air. The last method is unidirectional (piston) ventilation. Piston flow will take place 

when air distribution is controlled by the momentum flow. A very high flow rate is 

required to obtain such flow, and the air change rate can typically be 50 to 100 h-1. 

On the other hand, Cao et al. (2013) conducted a comprehensive review of 

scientific literature on air distribution systems and classified different ventilation systems 

according to specific requirements and assessment procedures. The ventilation methods 

were categorized into eight groups, i.e., mixing ventilation, displacement ventilation, 

personalized ventilation, hybrid air distribution, stratum ventilation, protected occupied 

zone ventilation, local exhaust ventilation and piston ventilation. In addition, five indices 

were introduced to assess the ventilation performance, including ventilation 

effectiveness, in terms of air exchange, pollutant removal, heat removal, exposure and air 

distribution. The study found that the assessment of ventilation effectiveness or efficiency 

should depend on the purpose of the ventilation system, and provided the basic framework 

regarding application of airflow distribution. 

 

1.2.1.1 Mixing ventilation 

Mixing ventilation is the most known and used ventilation method among the 

various types of strategies (Cao et al. 2013). In the design of an air distribution system, 

various types of supply air diffusers and return air inlets (exhaust) can be applied to create 

mixing in different space types (Muller et al. 2013) and can be applied to a large variety 

of room types. According to the ASHRAE Handbook-Fundamentals (2009), supply air 

diffusers (also called outlets) are categorized into five groups. Table 1-1 shows the 

classification of outlet types and examples of diffusers. Group A outlets are defined as 

outlets that are mounted in or near the ceiling that discharge air horizontally, and Group 
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E outlets are outlets that are mounted in or near the ceiling that project primary air 

vertically to the outlets utilized in mixing ventilation.  

 

Table 1-1 Classification of outlet types and example of diffusers 

 
Definition Outlet Examples 

Group A 
Outlets mounted in or near the ceiling 

that discharge air horizontally 

high side wall grilles, side wall 

diffusers, ceiling diffusers, and 

linear ceiling diffusers 

Group B 

Outlets mounted in or near the floor 

that discharge air vertically in a 

nonspreading jet 

floor registers, baseboard units, low 

sidewall units, and linear-type 

grilles in the floor or window sills 

Group C 

Outlets mounted in or near the floor 

that discharge air vertically in a 

spreading jet 

floor diffusers, sidewall diffusers, 

linear type diffusers and other 

outlets installed in the floor or 

window 

Group D 
Outlets mounted in or near the floor 

that discharge air horizontally 

baseboard and low sidewall 

registers 

Group E 
Outlets mounted in or near the ceiling 

that project primary air vertically 

ceiling diffusers, linear grilles, 

sidewall diffusers and grilles 

 

One of the most comprehensive mixing ventilation guides for mixing ventilation 

was published by REHVA; REHVA Guidebook No.19 “Guide on mixing air distribution 

design” (Muller et al. 2013). The guidebook gives an overview of the theory of mixing 

ventilation, design methods, and several case studies. Greater detail will be provided in 

the following sections.  
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1.2.1.2 Displacement ventilation 

Displacement ventilation (DV) is one of the concepts utilized in the supply of 

conditioned air to and ventilation of buildings. Floor terminals or other lower mounted 

diffusers introduce air into a room at a low velocity. Figure 1-1 shows the concept of DV 

(Chen et al. 2003). As shown in the figure, as the air is heated by heat sources in the room, 

it rises, passes through the occupied zone, and is then exhausted at a high level. Cho et al. 

(2005) comprehensively reviewed research on displacement ventilation and categorized 

DV into three groups: 1) traditional displacement ventilation, 2) displacement ventilation 

with a chilled ceiling panel, and 3) displacement ventilation with a raised floor. The 

review was focused on temperature airflow and contaminant distribution, indoor air 

quality and comfort, and energy and cost. According to their review, the energy 

consumption of DV is similar to that of a mixing system, though it can sometimes be 

smaller or larger, depending on the control strategies. On the other hand, DV can achieve 

higher IAQ and comfort. According to ASHRAE Standard 62 (2016), the air change 

effectiveness of DV under the cooling mode is 1.2. However, the air change effectiveness 

under the heating mode is 0.7.  

REHVA published the first version of its DV guide, which introduces the design 

guidance including diffuser selection with case studies.  (Skistad et al. 2002). Recently, a 

revised guidebook, which simplifies and improves the practical design procedure, was 

published (Kosonen et al. 2017). In general, DV is suitable in tall rooms and where the 

supply air is cooler than ambient air. Furthermore, DV is not suitable for heating as warm 

supply air will rise due to buoyancy and will be extracted when it reaches the ceiling. 
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Figure 1-1 Sketch showing displacement ventilation. (Chen et al. 2003) (Prepared by 

author referring the reference) 

 

1.2.2 Ventilation effectiveness 

Four different standards/guidebooks on ventilation effectiveness are reviewed in 

this section. The publications include ASHRAE Standard 129 (2002) “Measuring Air-

Change Effectiveness,” REHVA Guidebook No.2 (Muller et al. 2013) “Ventilation 

Effectiveness,” International Organization for Standardization (ISO) 16000-8 Part 8 

(2007) “Determination of local mean age of air in buildings for characterizing ventilation 

conditions,” the Society of Heating, Air-Conditioning and Sanitary Engineers of Japan 

(SHASE) Standard 115 (2010) “Field Measurement Methods for Ventilation 

Effectiveness in Rooms,” and SHASE Standard 116 (2011) “Ventilation Rate 

Measurement of a Single Room Using Tracer Gas Technique.”  

All organization introduce the age of air concept based on tracer gas 

measurements. The age of air is measured by measuring the tracer gas concentration, 

whereby the tracer gas labels the indoor air with an inert or nonreactive gas (Dietz et al. 

1986, Fisk et al. 1989, Fortmann et al. 1990; Harrje et al. 1990, Lagus and Persily 1985, 

Persily and Axley 1990, Sherman 1989, 1990, Sherman et al. 1980). Figure 1-2 shows 

the age of air concept. The age of air is defined as the average time that has elapsed since 



Chapter 1 Introduction 

1-12 
 

molecules of air in a given volume of air entered the building from the outside. In other 

words, according to the ISO, it describes the length of time the air at a specific location 

has on average spent within building.  

 

 

Figure 1-2 Definition of the age of air. (Muller et al. 2013)  

(Prepared by author referring the reference) 

 

The air at point P is a mixture of different air molecules that have spent different 

times in the room. The local mean age of air (��̀) measures the quality of air at a given 

point. In the exhaust air stream, the local mean age of air is equal to the nominal time 

constant (τn). 

 

            �� �� �
�	�         (1-1) 

 

where V is the room air volume and qv is the ventilation flow rate. When there is more 

than one exhaust outlet, the nominal time constant is also defined as the weighted average 

of the local mean age of air in the exhaust air stream 



Chapter 1 Introduction 

1-13 
 

�� � Ȃ (�
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Ȃ �
�,��           (1-2) 

 

where m is an identification number unique for each exhaust air stream, Qex,m is the airflow 

rate in the exhaust airstream, and �̀��,� is the age of air in the exhaust airstream. The room 

mean age of air (̂�̀̂) is equal to the spatial average of the local mean ages of air (̂�̀�̂). 
Figure 1-3 shows ̂�̀̂ and τn for four different types of airflow. Following the 

REVHA definition, ̂ �̀̂ is τn/2 in an ideal piston flow, and �̂�̀̂ is equal to τn in fully mixed 

airflow. If there is short-circuit flow from the supply to the exhaust, the local mean age 

of air will be low in the short-circuited zone and high in the stagnant zone. The air change 

time for all the air in the room (�̀�) is equal to twice ̂�̀̂.  
 

 

Figure 1-3. Room mean age of air and nominal time constant for different types of 

airflow. (Muller et al. 2013) (Prepared by author referring the reference) 
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As mentioned, the age of air is measured by measuring tracer gas concentration. 

The tracer step-down (decay) method and tracer step-up method are the common 

techniques for evaluating the age of air. In a decay test, the concentration of tracer gas at 

the start of the measurement is assumed to be uniform. The tracer gas concentration in 

the space then decreases at a rate that depends on the air-change rate. According to the 

ISO, the decay method can be used without problems up to an air change rate n of 10 [h-

1] in general. Following REHVA terms, from the decay test, the age of air at a point p in 

a space (�̀�) is given by  

 

�̀� �� �
�� � ��( )! ∞

" �          (1-3) 

 

where C0 is the concentration of the tracer gas at a time t = 0, and C(t) is the 

concentration decay recorded at each point.  

In a tracer step-up measurement, the tracer gas concentration is also assumed to 

be uniform at the beginning of the measurement. The tracer gas is injected into the 

outdoor air being delivered to the space at a constant rate. Tracer gas concentration 

increases to an equilibrium value C at a rate that depends on the air-change rate. The 

local age of air at a point p in the space (�̀�) is given by the following equation: 

 

 �̀� � � #1 − �&(')
�
∞

(')(∞

" �          (1-4) 

 

The ISO guidebook also introduces two homogeneous emission methods: 1) the 

active homogeneous method and 2) the passive homogenous method. In the active 
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homogeneous method, the tracer gas is fed at measured constant rates into zones by a 

suitable adjustable injection device and the local mean age of air is obtained from the 

quotient of the steady state concentration and injection rate per volume. On the other 

hand, in the passive homogeneous method, the tracer gas is emitted at a known constant 

rate into zones using diffusion sources. The local mean age of air is obtained from the 

quotient of the steady state concentration and the emission rate per unit volume. In the 

homogeneous emission method, �̀� is calculated from the equation 

 

�̀� � )
(�*/�)�         (1-5) 

 

where φ is the measured trace gas concentration at steady state, qV/V is the constant in 

the injection rate of a pure tracer gas in space, qV is the injection rate of pure tracer gas, 

and V is the volume of the space. qV is determined from 

 

,� � -� �× /          (1-6) 

 

where kV is a constant that can be estimated by the product of the anticipated air change 

rate and the desired tracer gas concentration at steady sate.  

Although the same age of air concept is implemented in different publications, 

ventilation effectiveness indices are slightly different. In addition, the ISO only provides 

the evaluation method based on the age of air. Regarding the ventilation effectiveness 

indices, the ASHRAE standard defines the air change effectiveness (E). From the local 

mean age of air ��̀, the air change effectiveness of the test space E, is defined as 
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0 � � �1
̂��	̂          (1-7) 

 

where ̂�̀2̂ is the arithmetic average of the age of air measured at breathing level within 

a test space. Among other indices, this research consistently utilizes E by ASHRAE as 

the ventilation effectiveness index. A detailed explanation of this index is given in section 

1.2.2.3. Similar to the ASHRAE standard (2002), the SHASE standard defines the 

standardized occupied zone concentration. The standardized occupied zone concentration 

(Cn) is defined as the inverse of E in the ASHRAE standard.  

 

�� � ̂�	̂
�1 �� �34�567

�&4�567          (1-8) 

 

where ̂�2̂ is the average age of air in the occupied zone, and τn is the nominal time 

constant on left side equation. Ca is the average occupied zone pollutant concentration 

under actual mixing conditions, Cp is the supplied air pollutant concentration, and Cout is 

pollutant concentration assuming perfect mixing on the right side equation. 

In the REHVA guidebook, the air change efficiency (εa) is implemented. εa is 

defined as the ratio between the shortest possible air change time for the air in the room 

τn and τr. εa can also be described as the ratio between the lowest possible mean age of 

air τn /2 and ̂�̀̂. 
 

 89 � �1
��: × 100 � � �1

<̂��̂ × 100��[%}          (1-9) 
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The upper limit for this efficiency is 100 %, which occurs for ideal piston flow. It 

is worth noting that E and Cn are defined within air at breathing level (occupied zone) 

while Ɛa is defined with the entire room average including occupied zone. The REHVA 

guidebook also specifies the index that shows the conditions at a particular point. The 

local air change index is defined as the ratio between τn and �̀�. The local air change index 

( 8�9), is described as 

 

8�9 � �1
��& × 100���[%}           (1-10) 

 

Besides air change efficiency, REVHA defines contaminant removal 

effectiveness. The contaminant removal effectiveness (εc) is focused on the transport of 

pollution. It is a measure of how quickly an airborne contaminant is removed from the 

room and is defined as 

 

8@ �� @

@�
31���          (1-11) 

 

where ce is the contaminant concentration in the exhaust and cmean is the mean 

concentration of the contaminant in the room. The indices assume that the supplied air is 

not contaminated. 

 

1.2.2.1 Perfect mixing 

Figure 1-4 shows the definition of flow types based on εa and εc according to 

REHVA (Muller et al. 2013). εa evaluates how effective the supplied clean air replaces 
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the room air. The piston flow whereby mixing does not occur between the supplied clean 

air and the room air is the most effective flow. This flow type has an εa value of 100%. 

Perfect mixing leads to an εa value of 50% and εc value of 1. Short circuit flow occurs 

when the εa value is lower than 50%. 

 

 

Figure 1-4 Definition of flow types based on air change efficiency and contaminant 

removal effectiveness. (Muller et al. 2013). (Prepared by author referring the reference) 

 

On the other hand, according to ASHRAE Standard 129 (2002), perfect mixing is 

defined as a theoretical airflow distribution in which the concentration of all constituents 

in the air, and the age of air, are spatially uniform. Lastly, SHASE Standard 115 (2010) 

defines perfect mixing as simultaneous and equal distribution of supplied air. In other 

words, perfect mixing is a state in which a pollutant simultaneously spreads all over the 

space equally.  

In this research, perfect mixing is assumed to occur when the air change 

effectiveness at all measured points is 1.0 ± 0.08. The value ±0.08 is based on the 
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uncertainty in the tracer gas measurement assumed in ASHRAE Standard 129 (2002). It 

is assumed that perfect mixing can be achieved by using adequate mixing fans in the test 

space. It was confirmed that perfect mixing could be achieved by using three mixing fans 

as all the measured local air change effectiveness values in the perfect mixing test were 

in the defined range. More details about the procedure are given in Chapter 2.  

On the contrary, short circuit flow is another important term in this research. Short 

circuit flow refers to entrainment flow with very poor mixing in the room as much of the 

supply air leaves the room without mixing with the room air. The ASHRAE Handbook 

(2009) mentions that poorly designed, installed, or operated mixing ventilation systems 

exhibit substantial short circuiting, especially ceiling-based systems in the heating mode 

(Offermann et al. 1989). 

 

1.2.2.2 Measuring procedures 

Table 1-2 summarizes the ventilation effectiveness indices, methods and 

required sampling points when evaluating space ventilation effectiveness in the 

ASHRAE, REHVA, ISO, and SHASE standards/guidebooks. The recommended 

measurement methods and sampling points are slightly different. The ASHRAE 

standard only recommends the use of the tracer gas step down and step-down method as 

the tracer gas measurement techniques, while the REHVA guidebook and SHASE 

standard introduce a pulse method. The ASHRAE standard introduces other tracer gas 

techniques, such as the constant concentration / injection method (Fortmann et al. 1990, 

Walker and Forest 1995, Walker and Wilson 1998) in its handbook (2009). On the other 

hand, the ISO mentions the homogeneous emission method, in addition to the tracer gas 

decay method. The tracer gas decay test is the most reliable tracer gas measurement 
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technique as all standards/guideline recommend it.  In terms of the sampling points, the 

ASHRAE standard stipulates that the local age of air of 25% of the workstations but not 

less than ten workstations and not less than the total work stations should be evaluated 

as a sampling point. On the other hand, the SHASE standard requires a minimum of 

three points or three repetitive measurement at one point in the target space. The 

measuring point should be near the center of the span (between columns) by the span or 

10 m by 10 m. The ISO requires a minimum of three measurement points in order to 

gain information on variations that should not be close to the tracer gas sources 

(minimum 1 m distance) or close to an air supply terminal. Finally, REHVA only 

mentions that one or more places in the room or exhaust air may be evaluated, 

depending on the type of measurement. The sampling point requirements are diverse. 

However, the ASHRAE has the most stringent sampling point requirements as it 

requires 10 points at a minimum.  
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Table 1-2 Summary of ventilation effectiveness indices, tracer gas method, and 

sampling point specified in different standards/guidebooks. 

 

ASHRAE REHVA ISO  SHASE 

Standard 129 Guidebook No.2 16000-8 Standard 115 

Indices 

-Air change 

effectiveness 

-Air change 

efficiency 

-Local air change 

index 

-Contaminant 

removal 

effectiveness 

-Local air quality 

index 

N/a -Standardized 

occupied zone 

concentration 

Tracer gas 

Methods 

-Tracer gas step-

up 

-Tracer gas step-

down  

-Tracer gas step-up 

-Tracer gas step-

down 

-Pulse 

-Homogeneous 

constant emission 

method 

- Tracer gas decay 

- Homogeneous 

emission method  

-Tracer gas 

step-up 

-Tracer gas 

step-down 

-Pulse 

Sampling 

points 

-Twenty-five 

percent of  the 

workstations but 

not less than ten 

workstations and 

not less than the 

total work stations 

if the test space 

contains fewer 

than ten 

-One or more places 

in the room or in 

exhaust air 

- A minimum of 

three 

measurement 

points in order to 

gain information 

on variations. 

- The points 

should not be 

close to the tracer 

gas sources 

(minimum 1 m 

distance) or close 

to an air supply 

terminal 

-Near the 

center of the 

span (between 

columns) by 

the span or 10 

m by 10 m; a 

minimum of 

three points in 

the target 

space 
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1.2.2.3 Air change effectiveness 

As explained in section 1.2.2, several indices for ventilation effectiveness have 

been proposed by different organizations and researchers. Among them, the age of air 

method for determining the air change effectiveness defined in ASHRAE Standard 129 

is implemented in this research. The age of air is the average amount of time that has 

elapsed since the air molecules at the location and can be caluclated from Equations 1-3, 

1-4 and 1-5. In the ASHRAE standard, the age of air at a point i in a space is defined as 

Ai, while REHVA defines it as the age of air at a point p in a space �̀�. This research will 

use the nomenclature favored by the ASHRAE. Following the steps illustrated in 

Appendix C of ASHRAE Standard 129, which focuses on the decay test, the corrected 

age of air (Ai,corr) is calculated by 

 

AB,@C�� � �D,3	EF'G75&4'G73:7H
�D('G73:7) + �DF'G75&H

J�D('G73:7)          (1-12) 

 

where tstop is the time of the final tracer gas measurement, tstart is the time when the 

tracer injection is stopped at the beginning of tracer gas decay, Ci,avg is the time-

averaged tracer gas concentration at location i between time tstart and tstop, and L is the 

negative of the slope of the natural logarithm of concentration as a function of time 

calculated at the end of the tracer gas concentration decay. In this study, Ai,corr is 

considered as Ai. Furthermore, tstart is determined as the time the mixing fans are 

stopped and tstop as three times the nominal time constant. From Ai, the local air change 

effectiveness (Ei) is defined as  
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0B � �1
KD ��[−]          (1-13) 

 

where τn is the nominal time constant. From the definition, τn is the weighted average of 

the age of air in the exhaust air stream (AE). As the experiments in this research utilize a 

single exhaust, τn is equal to AE. In addition, the arithmetic mean of Ei in the low 

measuring plane, high measuring plane, and overall test space are referred as Elow, Ehigh, 

and E, respectively, and will be described in detail in Chapters 2, 3, and 4. The AE of 

each case is computed from the correlation between the exhaust air volume in the 

HVAC control system and the computed actual age of air in exhaust air stream, which is 

obtained from perfect mix tests. 

 

1.2.3 Temperature effectiveness 

 Introducing warm air into a test space may result in thermal stratification under 

the ceiling due to a short circuit above the occupied zone caused by buoyancy effects. 

Liu’s study (2015) suggests that the warm air from diffusers with small T0.25/L causes 

greater temperature gradients in the upper region of the occupied zone. Ventilation 

effectiveness might be low with such high thermal stratification, although the calculated 

ADPI is quite high. Temperature effectiveness (Etheridge et al. 1996), also defined as 

ventilation effectiveness for heat removal (Awbi et al. 1993) is implemented to evaluate 

the temperature gradient in the test space. Similar to the concept of the air change 

effectiveness, the temperature effectiveness (ƐT) is defined as  

 

8M � MN4MO
MN4̂M̂� ����[−]         (1-14) 



Chapter 1 Introduction 

1-24 
 

where TS is the supply air temperature, TE is the exhaust air temperature, and <T>0 is the 

average temperature in the occupied space (average of T0.1, T0.6, T1.1, T1.4, and T1.8 is used, 

where the index indicates the vertical distance of the sensor from the floor in meters). In 

this research occupied space or zone is defined between floor and 1.8 m above floor as 

specified in ASHRAE Standard 55 (2013). 

 

1.2.4 T0.25/L and ADPI 

The ADPI is defined as the percentage of the occupied zone that maintains an 

acceptable velocity and temperature. The region with an acceptable velocity and 

temperature is determined by the local effective draft temperature (EDT) that combines 

air temperature difference and air speed (Rydberg et al. 1949, Straub et al. 1956). The 

EDT for the cooling condition is defined as 

 

 EDT � �SB − S9 − 8.0(/B − 0.15)�������[°�]          (1-15) 

 

where Ti is the temperature at the test point i, Ta is the spacious average temperature 

[°C], and Vi is the local air speed [m/s]. The EDT for the heating condition is defined as 

(Liu et al. 2015)  

 

EDT�(X) � SB − S9 − 9.1(/B − 0.15)�����[°�]          (1-16) 

 

In addition, the ADPI incorporates the throw and the characteristic length, and it 

provides design variables for selecting diffusers. The throw (T) is defined as the 

distance from a diffuser to a point where the maximum velocity in the stream cross 
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section has been reduced to a selected terminal velocity (ASHRAE Standard-70. 2006). 

The dominant diffuser property for air distribution is the supply jet throw length at 

which the jet velocity decreases to a selected terminal value of 0.25 m/s (T0.25). The 

characteristic length (L) describes the room geometry using the distance at which the air 

jet travels. The ratio T0.25/L is a dimensionless number that characterizes a supply 

diffuser momentum (including capacity of a diffuser to mix/entrain surrounding air) for 

a given flow rate. T0.25/L has the largest impact on ADPI, and together, T0.25/L and ADPI 

are used in the diffuser selection guidelines that appear in the ASHRAE Handbook 

(2009). The handbook lists the relationships between the ADPI and dimensionless ratio 

of T0.25/L for various diffuser types at different thermal loads. One is able to design an 

HVAC terminal system, including selecting the diffuser and determining its layout, by 

ensuring the T0.25/L of the system gives an ADPI that is greater than 80%, which is the 

threshold of air distribution system designs.  

As T0.25/L is a critical parameter determining air distribution, this research 

utilizes it to assess the performance of air distribution. T0.25 is defined for different air 

flow rates in isothermal conditions from a manufacturer’s catalogue data for several 

diffuser types including adjustable blade diffusers (ASHRAE. 2009). However, T0.25/L 

for a vertical flow is not defined in the literature. The throw of a warm vertical jet may 

significantly travel less than an isothermal jet as it is strongly influenced by the 

buoyancy force. The T0.25 in a manufacturer’s catalogue for vertical flow (isothermal 

flow) is modified by utilizing the empirical chart in the ASHRAE Handbook (2009) 

with measured supply air temperature and room air temperature. From this chart, the 

throw correction factor for vertical flow with regard to room supply air temperature 
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differences is determined. In addition, the ceiling height is defined as L for vertical 

flow.  

1.2.5 Diffuser selection methods 

In mixing ventilation, diffuser selection, location, supply air volume, discharge 

velocity, and air temperature different result in air motion in the occupied zone. This 

section introduces diffuser selection methods recommended by the ASHRAE, REHVA 

and SHASE.  

First of all, the ASHRAE recommends three methods that can be used to select 

diffusers: 1) appearance, flow rate, and sound data, 2) isovels (lines of constant velocity) 

and mapping, and 3) comfort criteria (ASHRAE Handbook 2009). It recommends the use 

of at least two methods when selecting diffusers. The last method, comfort criteria, 

introduces the ADPI diffuser selection method. Utilizing T0.25/L from manufactures’ 

isothermal catalogue throw data at terminal velocity of 0.25 m/s T0.25 and the dimensions 

available for the throw L on the diffusers, designers maximize space cooling comfort. 

ADPI method is most usable in space with ceiling heights between 2.4 m and 3 m 

(ASHRAE Handbook 2009). However, the ADPI diffuser selection method introduced in 

the ASHRAE Handbook is only valid for overhead air distribution systems under cooling 

operation (ASHRAE Standard 113. 2009). Liu et al. (2015) expanded the ADPI concept 

to the heating regime and obtained ADPI values with recommended design criteria for 

various types of diffusers under both the cooling and heating modes. Liu’s study is 

reviewed in greater detail in section 1.3.2.2.  

REHVA recommends the air distribution method. Figure 1-5 describes the design 

chart for air distribution in rooms (Nielsen 2007). The chart is based on the minimum and 

maximum allowable flow rates (qo) of air supplied to the room, and the maximum 
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temperature difference between return air and supply air (ΔTo). The figure indicates that 

a flow rate is necessary to achieve a given air quality. The supply of flow with a 

momentum generates mixing in the occupied zone, and it characterize an air distribution. 

The drawback is that this flow may generate a draft when the flow rate is above a certain 

level. The temperature difference between return and supply air is also restricted as a too 

high temperature difference may either cause a draft in the occupied zone or create a too 

large temperature gradient in the room. The optimal air distribution system design is one 

that will give a sufficient supply of fresh air and a draft free air movement in the occupied 

zone.  

 

 

Figure 1-5 Design chart that indicates the restrictions on the flow rate and on the return 

and supply temperature difference. (Neilsen 2007)  

(Prepared by author referring the reference) 

 

REHVA also points out some aspects should be considered when selecting and 

locating diffusers: 1) equal air distribution in the room space without a draft, 2) throw 

length in the cooling mode condition by using the manufacture’s product data, 3) short 
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circuit prevention, especially in the heating mode, 4) the presence of obstacles that might 

obstruct supplied air flow, and 5) the noise level, which should be according to the 

standards. In practice, air distribution in a room is often designed by product-related 

software or product-related design graphs. Figure 1-6 shows a typical design graph. The 

total pressure difference over the diffuser (Δpt) is given as a function of the diffuser size 

(ao) and volume flow (qo). The sound pressure level (Lp) and the throw length (l02) curves 

shown in the graph together with qo and Δpt are used to select the diffuser. 

 

 

Figure 1-6 Graph for selecting a diffuser for a room. (Muller et al. 2013) 

 (Prepared by author referring the reference) 

 

Finally, the SHASE Handbook (2010) introduces flow patterns in mixing 

ventilation, and provides diffuser selection guides including the ADPI method introduced 

by the ASHRAE. The SHASE suggests equations for determining the diameters and 

number of nozzle diffusers in a space based on the diffusion range of a free air jet 

(Nomura, 1960, Hirayama et al. 1961,). This method suggests that the air jet should reach 

the floor under the heating mode. It also introduces the selection guide for high side wall 
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jet diffusers under the cooling mode (Kubota 1977). This method could be used to 

determine the height of diffusers in rooms with high side walls.  

 

1.3. Literature review of related studies 

This section reviews previous studies in the relevant literature. The section is 

divided into two subsections. Section 1.3.1 reviews studies related to the ventilation 

effectiveness of mixing ventilation. Section 1.3.2 then introduces previous studies on the 

ADPI. The most recent ADPI studies by Liu et al. are reviewed in section 3.2.2  

 

1.3.1 Ventilation effectiveness in mixing ventilation 

 This section reviews previous studies related to ventilation effectiveness. Section 

1.3.1.1 introduces studies related to the influence of inlet/outlet locations. Section 1.3.1.2 

reviews the influence of internal objects and section 1.3.1.3 reviews ventilation 

effectiveness under the heating mode.  

 

1.3.1.1 Influences of inlet/outlet locations  

The impact of supply air diffuser (inlet) and exhaust (outlet) locations on air 

distribution and their ventilation effectiveness in a space have been investigated by many 

researchers (Shinha et al. 2000, Lee et al. 2007, Khan et al. 2006). Cao et al. (2013) 

summarized the numerous studies on mixing ventilation that considered locations of air 

flow inlets and outlets. Figure 1-7 shows their summary of mixing ventilation studies that 

considered inlet and outlet configurations (Boyle Son 1899, Clements 1975, Sandberg et al. 

1986, Nielsen 1991, Sandberg et al. 1992, Awbi et al. 1993, Lee et al. 2004, Cao et al. 2010, 

Krajecik et al. 2012) 
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In addition, Sinha et al. (2000) compared the impact of different inlet and outlet 

locations by modelling their use using computational fluid dynamics. The study found 

that the most effective combination of inlet and outlet positioning is with the inlet near 

the floor and exhaust near the ceiling because the buoyancy force increases the intensity 

of recirculation in such a combination. When considering the position of air suppliers in 

the upper part of the room, Lee et al. (2007) experimentally compared high wall jet inlets 

and grill diffusers with typical ceiling diffusers. Their results show that the air inlet 

position and type are important determinants in the distribution of airborne contaminant 

concentrations. The ceiling diffuser overall produced more efficient ventilation than the 

wall jet air inlet. Overall, the ceiling diffuser produced more efficient ventilation than the 

wall jet air inlet. Unlike the air supply location, the air exhaust location has a small impact 

on the structure of room air flow in most room applications (Muller et al. 2013). This is 

because there is a rapid decay of velocity with increasing distance from the exhaust 

opening. However, the exhaust location may influence air change effectiveness and 

contaminant removal effectiveness. In Khan’s study (2006), the arrangements of wall 

inlets and outlets greatly influenced contaminant concentration. However, the influence 

of the outlet location was minimal with a ceiling diffuser inlet. As the air near the exhaust 

is not driven by jet momentum but by negative pressure in the air, the velocities near the 

exhausts are relatively small. Therefore, the effects of the exhaust location on room 

airflow pattern are relatively small in most applications. 
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Figure 1-7 Summary of mixing ventilation studies regarding inlet and outlet 

configurations. (Cao et al. 2013) (Prepared by author referring the references) 
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1.3.1.2 Influences of internal objects 

Space partitioning such as cubicles and internal objects such as furniture or even 

occupants may also affect effectives of air distribution (Shaw et al. 1993, Lee et al. 2004, 

Wu et al. 2015). Shaw et al. (1993) showed the presence of cubicles (with partition height 

of 1.9 m in a space with total height of 2.9 m) had no significant effect on the air 

distribution patterns. They also found that the effect of the layout of a cubicle on the 

ventilation effectiveness is very small. A study on the impact of cubicle height by Lee 

(2004) shows that internal partition up to 60% of the room height has a very small impact 

on the air distribution. Partitions up of 80% of the room height have a significant impact 

on the room flow. When considering occupants, Wu et al. (2015) conducted a test with 

real walking occupants in a test chamber and analyzed their impact on CO2 concentration 

and temperatures distribution in the space with three different ventilation methods 

(stratum, displacement, and mixing ventilation). The study found that short term-walking 

did not change the temperature or CO2 concentration profiles. However, mixing occurred 

when occupants walked for longer periods of time.  

 

1.3.1.3 Ventilation effectiveness under the heating mode 

The studies mentioned in section 1.3.1.1 and 1.3.1.2 showed that many factors 

may influence the supply air distribution in mixing ventilation with an emphasis on 

cooling. In mixing ventilation, the overall effectiveness of air distribution is slightly better 

or worse than that with perfect mixing. Fewer studies have focused on the ventilation 

effectiveness of mixing diffusers used for space heating. Air distribution with all-air-

heating presents major challenges for mixing air distribution. Researchers found low 

ventilation effectiveness under heating condition (Fisk et al. 1997, Offermann et al. 1989, 
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Krajcik et al. 2012, Tomasi et al. 2013, Novoselac et al. 2003). Fisk et al. (1997) 

conducted experiments that used overhead all-air-heating systems with minimum supply 

air flow rates of typical VAV systems. The air change effectiveness was significantly 

lower than 1.0 in each experiment. The measured air change effectiveness was in range 

of 0.69–0.91 with a mean value of 0.81. Offermann et al. (1989) measured ventilation 

effectiveness and ADPI under heating conditions with recommended minimum 

ventilation rates while considering different supply and return air positions. For the 

ceiling supply/return configuration, ventilation effectiveness was 0.73 when the 

temperature difference of supply air temperature and room average temperature was 8 °C. 

It was even lower, 0.66, when the difference was 13 °C. Short-circuit flow from the supply 

to exhaust was apparent in each configuration. Krajcik et al. (2012) and Tomsai et al. 

(2013) measured air change efficiency and temperature effectiveness in a test chamber 

with various combinations of radiant floor heating and mixing ventilation. All-air heating 

systems often produce stagnant air in the occupied space of the room with relatively 

uniform low temperature in this stagnant zone. It was found that with stagnant cold air in 

occupied zone, the fresh hot supply air short circuit in the upper part of the room causes 

very poor ventilation effectiveness in the occupied space. The aforementioned low 

ventilation effectiveness under heating conditions is considered into outdoor intake 

volume required by building standard. ASHRAE Standard 62.1 (2010) states that a zone 

air distribution effectiveness of 1.0 can be achieved when the ceiling supply of warm air 

is less than 8 °C above the space temperature and the supply air jet throw with a velocity 

of 0.8 m/s (T0.8) reaches the lower part of the room (that is 1.4 m above the floor level). 

When this 0.8 m/s jet throw does not reach the lower part of the room or when the supply-
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room temperature difference is larger than 8 °C, the nominal ventilation effectiveness is 

0.8.  

 

1.3.2 ADPI 

The following subsections review two categories of ADPI studies. Those related 

to legacy applications of the ADPI to the cooling mode, which are reviewed in section 

1.3.2.1. Section 1.3.2.1 reviews recent studies on the ADPI that re-construct the ADPI 

based on commonly used diffusers and its application under the heating mode. 

 

1.3.2.1 Legacy ADPI  

The legacy ADPI method first applied to the cooling mode was developed by 

Miller and Nash (1971). They derived it from a subjective response to the air temperature 

difference and velocity draft proposed by Houghten et al. (1938). As introduced in section 

1.2.4, the ADPI is determined by the maximum air speed and EDT. The ADPI is the 

percentage of testing points falling into the range of the EDT at an acceptable air speed. 

The EDT is calculated from Equation 1-14, which was first introduced by Rydberg et al. 

(1949) then modified by Straub (1956) in a discussion of the paper by Koestel et al. 

(1955). The acceptable range of the EDT under the cooling mode is between -1.7 °C and 

1.1 °C with an air speed less than or equal to 0.35 m/s. The lower boundary of the EDT, 

-1.7 °C, has a good agreement with Houghten's data for 80% of the occupants reporting 

comfort (Nevins et al. 1972). On other hand, the upper limit of EDT, 1.1 °C is satisfactory, 

as indicated by Koestel et al. (1955). Furthermore, a maximum acceptable velocity of 

0.35 m/s was recommended by Nevins and Miller (1972).  
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The ADPI diffuser/ grille selection guidance is broadly applied with the 

characteristic length introduced in section 1.2.4 and internal thermal load (Miller et al. 

1969, Miller et al. 1970; Miller 1971 Miller et al. 1971; Miller et al. 1972; Miller 1979). 

The ADPI of each diffuser/ grille type is described as a function of the ratio of jet throw 

length Tv to room characteristic length L, Tv/L, and room load (ASHRAE - HVAC 

Application 2007; ASHRAE-Fundamentals 2009). As shown in Figure 1-8, most studies 

conducted under the cooling condition found that the ADPI has a concave-like shape via 

the T0.25/L. The figure illustrates that ADPI is low when T0.25/L is small and large, and 

there is a point where a maximum ADPI is achieved (Miller et al. 1969, Miller et al. 1970; 

Miller 1971 Miller et al. 1971; Miller et al. 1972; Miller 1979). 

 

 

Figure 1-8 General ADPI profiles vs. T0.25/L under the cooling mode. (Miller et al. 

1971) (Prepared by author referring the reference) 

 

As an indicator of occupant comfort (John 2012), the ADPI method has been used 

to evaluate thermal comfort along with the predicted mean vote (PMV) and predicted 

percentage of dissatisfied (PPD) that involve four additional factors: (1) the mean radiant 
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temperature, (2) the relative humidity, (3) the metabolic rate, and (4) clothing insulation. 

Chung and Lee (1996) reported an evaluation of thermal comfort under three ventilation 

patterns in terms of PPD and ADPI. The results revealed that ADPI may not be an 

adequate representation of draft risk. Other studies investigated experimentally the jet-

flow characteristics from a high sidewall grille and a linear diffuser (Chow et al. 1994, 

Chow et al. 1996). The ADPI was found to be linearly related to PPD for the high sidewall 

grill. Several studies have attempted to correlate ADPI with other parameters, such as 

Archimede's number, jet momentum, and supply air temperature (Chow et al. 1996; 

Rutman et al. 2005; Ng et al. 2008; Corgnati et al. 2009; Gao and Lee 2009). The ADPI 

method has also been employed to optimize the design of a floor-based air-conditioner 

(Corgnati et al. 2009).  

 

1.3.2.2 Updated ADPI and ADPI applications under the heating mode 

The aforementioned legacy ADPI diffuser selection guide was mainly developed 

in the 1970s, when HVAC systems that deliver warm air in the heating mode were not 

common. However, the all-air heating HVAC systems are much more common these 

days, and the systems have to meet both heating and cooling requirements. (Krarti 2008; 

Platt et al. 2010; Vakiloroaya et al. 2014). Even though ASHRAE Standard-113 (2009) 

states that “the ADPI method for mixing systems should be applied to traditional overhead 

air distribution systems under cooling operation only,” the same diffusers are used for 

heating in the winter. The lack of an ADPI method for the heating mode often causes 

underperformance of all-air delivery systems when they are used for heating. Moreover, 

in the ASHRAE Handbook (2009), only seven diffuses are available. Since the 1970s, 



Chapter 1 Introduction 

1-37 
 

more diffusers have become available, and it has become more popular to utilize various 

diffusers depending on the situation. 

Against this background, Liu et al. (2016) developed an ADPI method for the 

heating mode by deriving an EDT formula for the heating mode. Then, they conducted 

extensive experiments under both cooling and heating modes in terms of ADPI to update 

the database. The experiments were conducted with 16 of the most current diffuser types, 

applications that included both heating and cooling operations, and building loads that 

are typical for modern buildings. Figure 1-9 illustrates examples of the 16 types of 

diffusers. The figure shows some manufactures’ models. However, the intention of this 

figure is to provide an idea of diffuser types and thus it is not exhaustive.  

To develop an ADPI for the heating mode, they first predicted the ADPI curves 

via T0.25/L for the heating mode as shown in Figure 1-10. When T0.25/L is small, two 

phenomena, “stagnant flow” and “thermal stratification,” may be observed when warm 

air is introduced into the space. “Stagnant flow,” which is also refereed to as “short 

circuit” flow, is a phenomenon whereby the supply air short circuits above the occupied 

zone, and “thermal stratification” is whereby the supply air reaches the occupied zone but 

creates a great vertical temperature difference in the space.  “Stagnant flow” still creates 

a high ADPI because the warm air stagnates above the occupied zone, and as the occupied 

zone is less affected by the supply air, the stagnated air has a relatively uniform velocity 

and temperature. When T0.25/L increases, a large amount of air leads to an unacceptable 

air speed or “no impact of high speed.” Then, they derived an EDT under the heating 

mode (Equation 1-16) by plotting the thermal acceptance range of the PMV (Fanger, 

1970) for the cooling mode and heating mode with a metabolic rate of 1.15 Met., clothing 

insulation of 0.5 Clo., and relative humidity of 50%. In addition, they set the following 
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three criteria for the ADPI for the heating mode; 1) an EDT ranging from -2.2 °C to 2 °C, 

2) a local air speed less than or equal to 0.35 m/s, and 3) an overall vertical temperature 

gradient lower than 3 °C/m, and a local maximum temperature difference between 0.1 m 

to 1.1 m is less than 3 °C. 

As stated in ASHRAE Standard 55 (2010), the air speed criterion is less than or 

equal to 0.35 m/s for warm air. Occupants generally accept an air speed greater than 0.2 

m/s. Other important criteria are the vertical air temperature difference and thermal 

stratification. ASHRAE Standard 55 (2010) allows a maximum vertical air temperature 

of 3°C between 1.1 m and 0.1 m. 

  



Chapter 1 Introduction 

1-39 
 

 

Figure 1-9 Sample pictures of diffuser types   
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Figure 1-9 Sample pictures of diffuser types (continued) 
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Figure 1-10 General ADPI profiles as functions of T0.25/L for the heating mode. (Liu et 

al. 2016)  (Prepared by author referring the reference) 

 

Table 1-3 show the findings of Liu’s research (2016). The table shows the 

acceptable air distribution (ADPI > 80%) at certain ranges of T0.25/L with 15 commercially 

available types of diffusers under the cooling mode with two different loads of 25 and 50 

W/m2 and heating mode at a load of 35–40W/m2. The large acceptable ranges of T0.25/L 

for several of the 15 types of diffusers implies that those diffusers have more flexibility 

in HVAC design than others. It turns out that linear bar grilles and linear slot ceiling 

diffusers have the largest range for the heating condition. HVAC design should take into 

consideration the operation of the HVAC system under both cooling and heating 

conditions. Therefore, this investigation compares the effects of blade angle and deflector 

adjustment on ADPI values. The findings would guide manufacturers in improving the 

design of their products to generate a more satisfactory air distribution. 
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Table 1-3 Ranges of T0.25/L for various diffuser types when the ADPI is higher than 

80% under the cooling and heating conditions. (Liu et al. 2016) 

 (Prepared by author referring the reference) 

Diffuser type Mode 
Loads 
[W/m2] 

Range of 
T0.25/L 

T0.25/L for 
maximum 

ADPI 

Adjustable blade grilles - 45° up 
Cooling 

25 0.5-1.1 0.8  

50 0.6-1.1 0.9  

Heating 35-40 0.6-1.0 1.0  

Adjustable blade grilles - 0° 
Cooling 

25 1.2-2.2 1.8  

50 1.7-2.2 2.0  

Heating 35-40 1.1-2.2 1.8  

Adjustable blade grilles - 45° down 
Cooling 

25 - 0.9  

50 - 1.0  

Heating 35-40 0.6-0.8 0.7  

Fixed blade grills - 15° up 
Cooling 

25 1.1-2.2 1.1  

50 1.2-2.2 1.9  

Heating 35-40 1.2-2.2 2.2  

Fixed blade grills - 15° down 
Cooling 

25 1.6-2.2 1.9  

50 1.9-2.2 1.9  

Heating 35-40 1.2-2.2 1.3  

Linear bar grilles - high sidewall 
Cooling 

25 0.8-1.5 1.3  

50 1.0-1.5 1.0  

Heating 35-40 0.7-1.5 1.3  

Linear bar grilles - sill 
Cooling 

25 0.8-2.1 2.1  

50 1.3-2.1 1.8  

Heating 35-40 0.6-2.1 1.8  

Nozzles - high sidewall 
Cooling 

25 0.9-2.2 0.9  

50 0.9-2.2 0.9  

Heating 35-40 1.2-1.9 1.5  

Round ceiling diffuser 
Cooling 

25 0.5-2.3 1.8  

50 0.7-2.3 2.2  

Heating 35-40 1.4-2.1 2.1  
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Table 1-3 Ranges of T0.25/L for various diffuser types when the ADPI is higher than 

80% under the cooling and heating conditions. (Liu et al. 2016) (continued) 

 (Prepared by author referring the reference) 

Diffuser type Mode Loads 
Range of 

T0.25/L 

T0.25/L for 
maximum 

ADPI 

Square ceiling diffuser 
Cooling 

25 1.0-2.6 2.1  

50 1.0-2.6 2.6  

Heating 35-40 2.1-2.5 2.5  

Perforated diffusers - round pattern 
Cooling 

25 0.6-2.4 1.9  

50 0.8-2.4 1.9  

Heating 35-40 2.0-2.5 2.5  

Perforated diffusers - directional 
pattern 

Cooling 
25 0.7-3.0 3.0  

50 0.7-3.0 3.0  

Heating 35-40 2.4-2.9 2.4  

Louvered face diffusers - with lips 
Cooling 

25 1.4-4.7 3.0  

50 1.4-4.7 1.5  

Heating 35-40 2.6-3.3 3.0  

Louvered face diffusers - without lips 
Cooling 

25 1.0-3.3 3.3  

50 1.0-3.3 1.0  

Heating 35-40 2.4-3.3 3.3  

Plaque face diffusers 
Cooling 

25 1.0-2.2 2.2  

50 1.0-2.2 1.3  

Heating 35-40 2.1-2.6 2.3  

Linear slot diffusers 
Cooling 

25 1.1-3.4 2.8  

50 1.1-3.5 2.5  

Heating 35-40 2.1-3.4 2.9  

T-bar slot diffusers 
Cooling 

25 1.2-2.2 1.2  

50 1.2-1.8 1.5  

Heating 35-40 1.8-2.1 2.1  

Swirl diffusers 
Cooling 

25 0.4-1.7 1.7  

50 0.4-1.7 1.7  

Heating 35-40 1.4-1.7 1.7  

N-slot diffusers 
Cooling 

25 1.4-2.4 1.8  

50 1.4-2.4 1.8  

Heating 35-40 1.5-2.4 2.1  
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1.4 Structure of the present thesis 

The contents and structure of the present thesis are shown in Figure 1-11. This 

thesis consists of the following five chapters: 

In Chapter 1, “Introduction,” the objectives of this research are formulated with a 

background description and review of relevant literature. This chapter introduces current 

ventilation methods, indices related to ventilation effectiveness, and diffuser selection 

methods. A review of previous studies on ventilation effectiveness in terms of mixing 

ventilation and ADPI is also provided.  

In Chapter 2, “Experimental Study on Air Change Effectiveness in Mixing 

Ventilation,” experimental measurements in a full-scale test room with various types of 

diffusers, air flow rates and internal loads to evaluate the air change effectiveness and 

the temperature effectiveness are described. These experiments were conducted for both 

heating and cooling cycles, though there was an emphasis on the heating mode. All 

diffusers tested showed similar results, although each diffuser had a unique shape. The 

ranges of air change effectiveness and temperature effectiveness were examined within 

the recommended range of T0.25/L regarding ADPI. The studies provided fundamental 

diffuser performance data that considers both thermal comfort and ventilation 

effectiveness.  

In Chapter 3, “Improving Ventilation Effectiveness under the Heating Mode,” 

experimental measurements of the ADPI, air change effectiveness, and temperature 

effectiveness in a same full-scale test room are described. The experiments examine 

simple strategies for overcoming the challenges of poor ventilation under heating 

conditions while maintaining an acceptable ADPI. The strategies include the use of 

diffuser deflector adjustment with linear slot diffusers and adjustable blades grills, room-
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supply air temperature difference with vertical flow of linear slot diffusers, and exhaust 

locations with adjustable blade grills. In addition, it provides new diffuser selection data 

in the form of ADPI values for diffusers with a vertical jet projection (vertical flow).  

In Chapter 4, “Assessing Measuring Procedure for Ventilation Effectiveness,” 

extensive experiments on mixing ventilation that were conducted in the same test 

chamber are described. The experiments examined the vertical, horizontal and overall 

variance of local air change effectiveness to evaluate whether a more practical evaluation 

of ventilation effectiveness would be possible if fewer measuring points were used. 

Furthermore, they analyzed the correlation of thermal effectiveness and air change 

effectiveness as an alternative method for interpreting air change efficiency.  

In Chapter 5, “Conclusive summary,” the results described in each chapter are 

summarized.  
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Figure 1-11 Structure of the research  

Chapter 1 
 Introduction 

Chapter 2 
 Experimental Study on Air Change Effectiveness 

Chapter 3 
 Improving Ventilation Effectiveness under the Heating Mode 

Chapter 4 
 Assessment of a Ventilation Effectiveness Procedure 

Chapter 5 
 Conclusive Summary 

Assessing a procedure for evaluating air change effectiveness. 
- Variances in air change effectiveness 
- Correlation of air change effectiveness and 
temperature effectiveness 

Evaluation of air change effectiveness and temperature 
effectiveness of the most common types diffusers under both 
cooling and heating regimes. 

- Range of ventilation effectiveness  
 - Range of temperature effectiveness 

Evaluation of strategies for improving air change effectiveness 
and temperature effectiveness under the heating regime. 

- ADPI evaluation with vertical flow 
- Diffuser adjustment 
- Room supply temperature difference 
- Return air inlet locations 

Current diffuser selection 
methods do not consider 
ventilation effectiveness 

Various procedures for 
measuring ventilation 
effectiveness  
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Nomenclature 

Ai  Age of air at a location i (ASHRAE) 

Ai,corr   Corrected age of air  

AE   Age of air in exhaust air stream (ASHRAE) 

ADPI  Air diffusion performance index 

Ca   Average occupied zone pollutant concentration  

Ce   Contaminant concentration in the exhaust 

Ci,avg  Time-averaged tracer gas concentration at location i between tstart and tstop 

Cn.   Standardized occupied zone concentration (SHASE) 

Cmean   Mean concentration of contaminant in the room 

Cout   Pollutant concentration assuming perfect mixing  

Cp   Supplied air pollutant concentration 

C(t)  Decayed concentration measured at time t 

C0  Initial concentration of tracer gas at the time t = 0 

DV   Displacement ventilation 

EDT  Effective draft temperature 

E  Air change effectiveness, arithmetic mean of Ei in occupied zone 

Ei   Local air change effectiveness 

Elow  Air Change effectiveness, arithmetic mean in low plane 

Ehigh  Air change effectiveness, arithmetic mean in high plane 

L  Characteristic length 

Lp   Sound pressure level  

PMV  Predicted mean vote 

PPD  Predicted percentage of dissatisfied 
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Qex,m   Airflow rate in exhaust airstream  

qo   Minimum and maximum allowable flow rate  

qv   Ventilation flow rate 

Ta   Spacious average temperature (EDT) 

TEA   Exhaust air temperature 

Ti  Temperature at a location i 

TSA   Supply air temperature 

T0.25  Terminal velocity value of 0.25 m/s 

<T>0   Average temperature in occupied space 

tstop   Time of the final tracer gas measurement 

tstart   Tracer injection is stopped at the beginning of tracer gas decay 

V  Room air volume  

Vi   Local air speed (EDT) 

̂�̀̂  Room mean age of air 

τn  Nominal time constant 

��̀  Local mean age of air at location p (REHVA) 

̂�̀�̂  Spatial average of the local mean ages of air 

τr   Actual air change time. 

̂�̀2̂   Arithmetic average of the age of air measured at breathing level 

Ɛa   Air change efficiency  

Ɛc   Contaminant removal effectiveness  

8�9  Local air change index  

ƐT  Temperature effectiveness 
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Φ  Measured trace gas concentration at steady state 

Δpt   Total pressure difference over the diffuser  

ΔTo   Maximum temperature difference between return air and supply air 

ΔT  Exhaust air and supply air difference, TEA-TSA 
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2.1 Introduction 

The use of the ADPI as diffuser selection method has been updated and 

expanded to heating by Liu et al. recently. However, this new updated cooling and 

heating ADPI concept considers only temperature uniformity and drafts caused by high 

velocity. The ADPI does not take into account the impact of thermal stratification and 

low ventilation effectiveness in all-air heating systems. This may be taken into account 

by just a single correction factor in ASHRAE Standard 62.1 (2010). Combining the 

ADPI with this correction factor does not always result in the optimal diffuser selection 

that considers both thermal comfort and ventilation effectiveness. For example, when 

the throw is too short, the jet may detach from the ceiling and increase draft risk under 

cooling conditions. Furthermore, a short throw length may cause inadequate mixing, 

resulting in a high temperature gradient and low air quality under heating conditions. It 

is necessary to have some momentum of flow to obtain adequate mixing in the occupied 

zone. However, a very large supply jet momentum may generate a draft when the flow 

rate is above a certain level. The temperature difference between return and supply jets 

should also be restricted, as a high-temperature difference may cause either a draft 

and/or a large vertical temperature stratification that results in inefficient energy use. 

Few studies have focused on ventilation effectiveness with mixing diffusers used for 

space heating, although all-air-heating ventilation is widely used (Muller et al. 2013). A 

comprehensive design process for diffuser selection and positioning that considers both 

thermal comfort and ventilation effectiveness at the same time is needed. 

Therefore, the objective of this chapter is to provide data for guiding the design 

of air distribution systems for several of the most common types of ceiling diffusers 

when used for both the (1) cooling and (2) heating regimes. The studied diffuser types 
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are as follows: linear slot diffuser, round ceiling diffuser, louvered face diffuser with no 

lip and perforated diffuser directional pattern (4-way). The study defines the operation 

range for diffuser selection when considering a high ADPI, ventilation effectiveness, 

and temperature effectiveness.  

 

2.2 Methodology 

 The study utilized an experimental test room with various diffusers. Section 

2.2.1 introduces the test chamber and diffusers used in the experiments described in this 

chapter. Section 2.2.2 explains the tracer gas decay test methodology. Then, the 

calibration of experiments, including the uncertainty in experiments, is examined in 

2.2.3. Finally, Section 2.2.4 shows the experimental matrix. 

 

2.2.1 Test chamber and tested diffusers 

The study used experimental measurements taken in a full-scale test room with 

dimensions of 5.5 m × 4.5 m × 2.7 m and a sophisticated HVAC control system (Figure 

2-1) at the University of Texas at Austin, USA. Detailed technical specifications for this 

indoor environment related research facility can be found in a previous publication (Liu 

et al. 2014). Figure 2-2 shows the chamber geometry and sensor positions. The 

experimental setup allowed different diffuser mounting positions: round ceiling, louvered 

face and perforated diffusers, and linear slot diffusers. Cooled panels with a total area of 

10.8 m2 covered one of the room walls, simulating a cold window surface in winter. The 

panels were connected to the dedicated chiller system, and the temperature of the panels 

was adjusted to simulate various heating loads. To simulate cooling loads, when the 

diffuser supplied cooled air, adjustable electric heaters were installed throughout the test 
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room to mimic the cooling load of the room occupants, computers, lighting fixtures and 

floor heat patches due to transmitted solar radiation. The electric heaters were controlled 

to achieve the target supply and exhaust air temperature difference (ΔT = TSA – TEA). The 

electric heaters were turned off under heating conditions, and the cooled panels were 

turned off under cooling conditions.  

Figure 2-3 shows the four different tested diffusers, i.e., the linear slot diffuser 

(Price: model SDS75), round ceiling diffuser (Metalaire: model 3000-1), louvered face 

diffuser with no lip (Metalaire: model 5000-1), and perforated diffuser directional pattern 

(4-way) (Titus: model PCS). Linear slot diffusers and perforated diffuser directional 

pattern (4-way) can be made to provide various airflow patterns by adjusting their 

deflectors. The deflectors were adjusted to blowout horizontally for this experiment. For 

the linear slot diffusers, by-pass leakage was sealed (Figure 2a-2) to prevent air bypass, 

which is typical for slot diffuser (Liu et al. 2015), and achieve an ideal flow pattern. 

 

 

Figure 2-1 HVAC system for environmental control 
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Figure 2-2 Experimental setup of the test room: the chamber geometry, diffuser 

locations, and sensor positions 

 

 

Figure 2-3 Tested diffuser types and flow adjustments 

  

Cooled Panels 
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2.2.2 Tracer gas decay test 

The tracer gas decay test using CO2 as tracer gas was conducted to measure air 

change effectiveness. The decay of the CO2 concentration was measured by in-situ 

sensors (TELAIR model 7001, range 0 to 4000ppm voltage output, Accuracy: ± 50 ppm 

or 5 %) at 18 locations simultaneously. The sensors were positioned across the room at 

two different horizontal planes, 0.9 m (low measuring plane) and 1.5 m (high measuring 

plane), above the floor (Figure 2-2 provides the exact sensor locations). The tracer gas 

was injected into the supply air duct and the gas spread though the target space. Three 

powerful mixing fans (Lasko Box Fan, Model # B20200, 55 cm × 11 cm × 57 cm) ensured 

the tracer gas mixed throughout the space while as it was released into the space. Tracer 

gas injection was stopped after the concentration of the gas in the space increased to 

around 2000 ppm. The mixing fans were stopped a little after the termination of tracer 

gas injection to make sure the remaining gas in the supply air duct flowed to the target 

space. The concentrations of the tracer gas at the measuring points were monitored during 

the experiment to confirm that the tracer gas was equally distributed and that all injected 

gas was supplied to the space before stopping the mixing fan. In addition, vertical 

temperature distributions at 0.1 m, 0.6 m, 1.1 m, 1.4 m, and 1.8 m (T0.1, T0.6, T1.1, T1.4 and 

T1.8), and the supply and exhaust temperatures were measured. The vertical temperature 

distribution was simultaneously measured at one location. The Air change effectiveness 

and temperature effectiveness were utilized as indices of experiments described in this 

chapter. Refer to Chapter 1 section 1.2.2.3 and section 1.2.3 for more details about the 

indices.  
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2.2.3 Pre-tests – calibration and experimental set-up checks  

Before conducting the set of full-scale experiments, the validity of the 

experimental procedure and the set-up for local age of air measurements were 

determined through a group of perfect mix tests and several repetitive experiments. In 

the perfect mixing test, the air change effectiveness and variances in the local air change 

effectiveness were analyzed. In addition, the uncertainty in the set of experiments was 

evaluated through the results of repetitive experiments and an uncertainty analysis. 

  

2.2.3.1 Perfect mix tests 

The perfect mix tests were conducted as control tests to provide reference 

results. A perfect mix was achieved by placing three additional mixing fans (Lasko Box 

Fan, Model# B20200, 55 cm × 11 cm × 57 cm) in the room, which ensured that air 

mixing would occur throughout the space (Figure 2-2), and the mixing fans were 

operated throughout the experiments. A total of eight cases with different air flow rates 

were studied. Table 2-1 shows the air change effectiveness (E), standard deviation 

(STDV) of local air change effectiveness (Ei), and temperature effectiveness (ƐT) in 

each experiment. V in the table indicates the air flow rate of exhaust calculated from the 

measured age of exhaust air for each experiment. The E value was close to 1.00 with a 

minimal standard deviation in all cases. ƐT was also close to 1.0 for all experiments. 

These results reveal that the experiments were well controlled, and the local CO2 decay 

measurement (needed for local age of air calculation) was valid. 
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Table 2-1 Results of the perfect mix test 

Case V [m3/h] E [-] STDV of Ei [-]  ƐT [-] 

P-1 69 0.98 0.01 1.02 

P-2 152 0.98 0.02 1.02 

P-3 221 1.00 0.02 1.02 

P-4 301 0.98 0.02 1.02 

P-5 381 1.01 0.02 1.00 

P-6 390 0.98 0.03 1.01 

P-7 474 1.00 0.04 1.02 

P-8 566 0.97 0.04 1.00 

 

2.2.3.2 Uncertainties in the measurements 

The uncertainty in measurements of ventilation effectiveness depends on several 

factors such as an accuracy of the instruments used, air flow adjustment, pressure 

balancing, etc. In general, ASHRAE Standard 129 (2002) discusses various factors that 

cause significant measurement errors. The total uncertainty in the measured values of E 

was assumed to be approximately ±16%, and it mentioned that this can be considered as 

maximum uncertainty in the measured value. Cui et al. (2015) showed the uncertainty of 

the CO2 tracer gas decay method for measuring air change was rate related to sensors 

and the calculation method. The uncertainties related to various in-situ CO2 sensors 

were 5% for most of them, 5% for multi-points calculations, and 12% for two-point 

calculations. The total uncertainty also included the contribution of the experimental 

procedure and overall experimental set-up. The accuracy can be assessed by comparing 

repeated experiments. Table 2-2 shows the uncertainty in air change effectiveness 

calculations from seven sets of repeated experiments. The local air change effectiveness 
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(Ei), air change effectiveness at the low measuring plane (Elow), air change effectiveness 

at the high measuring plane (Ehigh), and the overall air change effectiveness (E) were 

compared. Differences between repeated experiments were computed as a percentage. 

All difference values in percentage per Ei, Elow, Ehigh and E were rearranged in 

ascending order, respectively. The minimum, 5th, 25th, 50th, 75th, and 95th percentile, 

maximum, and average values are shown in the table. The uncertainty of Ei was 6% on 

average and 14% in 95th percentile. Overall, the uncertainty of E was 6% on average 

and at most 11%. Elow and Ehigh had similar averages and maxima. 

 

Table 2-2  Uncertainty in air change effectiveness 

 Min. 5th 25th 50th 75th 95th Max. Ave. 

Ei   (N = 122) 0 1 3 5 9 14 19 6 

Elow   (N = 7) 0 - - 7 - - 12 6 

Ehigh   (N = 7) 1 - - 4 - - 11 5 

E      (N = 7) 0 - - 4 - - 11 6 

* N = Number of the data compared 

** # th in percentile 

 

2.2.4 Experimental matrix 

Table 2-3 shows the experimental conditions. The experiments were conducted 

under both heating and cooling conditions with four different diffusers, T0.25/L, and 

internal loads. Each set of experiments had subsets of various T0.25/L values. For 

example, cases 1-9 had subsets of T0.25/L as 1.2 (case 1), 1.6 (case 2), and 1.8 (case 3). 
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The air change rates are also shown in parenthesis for reference. Overall, 85 

experiments were conducted: 59 cases for heating and 26 cases for cooling. The internal 

loads (ΔT) indicate differences between supply air temperature (TSA) and exhaust air 

temperature (TEA). The cooled panel temperature mimicked a cooled window in the 

experiment where the diffuser operated in the heating mode (Figure 2-2). Furthermore, 

electric heaters associated with devices that mimicked internal heat gains (indoor 

occupants by cylinder heaters, computers by box heaters, lamps by ceiling heaters, and 

floor heat by floor heater respectively) were controlled to achieve the target ΔT. The 

electric heaters were turned off in heating conditions, and the cooled panels were turned 

off in cooling conditions. Mixing fans were used as CO2 was injected into the test space, 

and they were stopped after sufficient CO2 had been injected as described in section 

2.2.2. 
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Table 2-3 Experimental conditions 

Case # Diffusers 
T0.25/L [-] 

(Air change rate [h-1]) 

Internal load 
(ΔT=TEA-TSA) 

[°C] 

Heating Conditions 

1–9 
Linear slot diffusers 
(2 slots) 

1.2 (1.1), 1.6 (2.1), 1.8 (3.0), 1.9 
(3.3), 2.3 (4.5), 2.6 (5.8), 2.9 
(6.9), 2.9 (7.2), 3.2 (8.6) 

-5 

10–17 
Linear slot diffusers 
(4 slots) 

0.9 (2.1), 1.1 (2.7), 1.4 (3.2), 1.9 
(4.5), 2.2 (5.8), 2.5 (6.9), 2.5 
(7.2), 2.7 (8.7) 

-5 

18–23 
Linear slot diffusers 
(2 slots) 

1.6 (2.1), 2.0 (3.3), 2.6 (5.7), 2.6 
(5.8), 2.9 (7.2), 3.2 (8.6) 

-2 

24–29 
Linear slot diffusers 
(4 slots) 

0.9 (2.1), 1.4 (3.3), 1.9 (4.5), 2.2 
(5.8), 2.5 (7.2), 2.7 (8.6) 

-2 

30–35 
Round ceiling 
diffusers 

0.7 (2.1), 1.0 (3.3), 1.2 (4.5), 1.4 
(5.8), 1.7 (7.2), 2.0 (8.6) 

-8 

36–41 
Round ceiling 
diffusers 

0.7 (2.1), 1.0 (3.8), 1.2 (4.6), 1.4 
(5.8), 1.7 (7.2), 2.0 (8.6) 

-5 

42–48 
Round ceiling 
diffusers 

0.7 (2.1), 0.7 (2.2), 0.9 (3.3), 1.2 
(4.4), 1.4 (5.7), 1.7 (7.2), 2.0 (8.6) 

-2 

49–53 
Louvered face 
diffusers without lip 

1.8 (3.0), 2.0 (3.9), 2.1 (4.2), 2.6 
(6.3), 3.5 (9.4) 

-5 

54–59 
Perforated diffusers 
directional pattern 
(4-way) 

0.8 (2.1), 1.4 (3.3), 1.8 (4.5), 2.2 
(5.8), 2.4 (7.2), 2.7 (8.6) 

-2 

Cooling Conditions 

60–64 
Linear slot diffusers 
(2 slots) 

1.6 (2.1), 1.9 (3.3), 2.3 (4.5), 2.6 
(5.8), 3.2 (8.6) 

8 

65–69 
Linear slot diffusers 
(4 slots) 

0.9 (2.1), 1.4 (3.3), 1.9 (4.5), 2.2 
(5.8), 2.7 (8.6) 

8 

70–75 
Round ceiling 
diffusers 

0.8 (2.3), 1.0 (3.3), 1.1 (4.4), 1.4 
(5.5), 1.9(8.3), 2.0 (8.6) 

8 

76–80 
Louvered face 
diffusers without lip 

1.7 (2.2), 1.9 (3.3), 2.1 (4.4), 2.5 
(5.8), 3.3 (8.6) 

8 

81–85 
Perforated diffusers 
directional pattern 
(4-way) 

0.8 (2.1), 1.4 (3.3), 1.8 (4.5), 2.2 
(5.8), 2.7 (8.6) 

8 
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2.3. Results 

 This section examines the results of experiments in terms of the performance 

indices explained in section 2.2.2. The results are summarized for diffusers operating 

under (1) heating conditions and (2) cooling conditions.  

 

2.3.1 Heating experiments 

This section shows the results related to the E and ƐT under heating conditions as 

well as the influences of different internal loads on each diffuser. 

 
2.3.1.1 Air change effectiveness and temperature effectiveness under heating 

conditions 

Figure 2-4 shows the results of E under heating conditions with an internal load 

(room- supply temperature difference) of ΔT = -5 °C . Besides E, Figure 2-4 shows the 

ADPI value from the Liu and Novoselac study (2016) on the right side of the y-axis for 

reference. For the ADPI value, the unfilled marks indicate high thermal stratification, 

with a vertical temperature gradient higher than 3 °C per meter. As analyzed in Liu’s 

study (2016), the highest ADPI was found for lower and higher T0.25/L values. The 

recommended range of T0.25/L with regards to the ADPI (ADPI higher than 80%, herein 

after the recommended range) under the heating mode excluded the high temperature 

gradient. A thorough detailed analysis and discussion of the results of the ADPI can be 

found in Liu’s study (2015, 2016). The recommended range is also indicated in the 

graph. For the E value, the solid marks indicate that the TSA values were at most 8 °C 

higher than the average occupied space temperature (<T>0). The unfilled marks indicate 

that TSA was at least 8 °C above <T>0.  
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The results reveal that the value of E within the recommended range was from 

0.56 to 0.87. A similar tendency was found among all diffusers that E significantly 

decreased when T0.25/L was smaller than the recommended range. At the same time, 

thermal stratification was also high in most cases as TSA was 8 °C or higher than <T>0. 

The smallest E was approximately 0.42 among all tested diffusers. Linear slot diffusers 

and perforated diffusers directional pattern (4way) had the lower E values at the 

minimum T0.25/L within the recommended range. Linear slot diffusers had the highest E 

at the maximum T0.25/L within recommended range. E sharply increased as T0.25/L 

increased. To maintain E around 0.8 as noted in ASHRAE Standard 62.1, T0.25/L should 

remain higher than 2.7 for linear slot diffusers, 1.7 for round ceiling diffusers, and 3.2 

for louvered face diffuser without lips. Perforated diffusers directional pattern (4way) 

did not achieve E of 0.8, and the maximum air change effectiveness found was 0.72. 
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Figure 2-4 T0.25/L vs. air change effectiveness (left side y-axis) and ADPI from Liu’s 

(2016) experiments (right side y-axis) under heating conditions with ΔT = -5 °C. a) 

Linear slot diffusers: cases 1–17; b) round ceiling diffusers: cases 36–41, c) louvered 

face diffusers without lip: cases 49–53, d) perforated diffusers directional pattern (4-

way): cases 54–59  

 

 

 

 

 



Chapter 2 Experimental Study on Air Change Effectiveness 

 

2-16 
 

Figure 2-5 shows the results of ƐT under heating conditions with ΔT = -5 °C. 

Overall, the value of ƐT within the recommended range was from 0.56 to 0.75. The 

range of ƐT was very similar between the linear slot, round ceiling, and louvered face 

diffusers. ƐT for the perforated diffuser was slightly smaller than those of three diffusers. 

Similar to the E, ƐT increased as T0.25/L increased within the recommended rage. 

However, ƐT slightly increased as T0.25/L decreased below the recommended value. The 

results indicate that when T0.25/L became smaller than the recommended range, the 

dominant factor that characterized the mixture of the space gradually changed from the 

supply jet from the diffuser to the down draft caused by the cold wall surface. This 

down draft caused high thermal stratification in the space. However, ΔT also slightly 

increased as T0.25/L decreased. As ƐT shows the ratio of TSA - TEA and TSA - <T>0, the 

different ratio of the gradual increase of TSA - TEA and TSA - <T>0 caused a slight 

increase in ƐT.  
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Figure 2-5  T0.25/L vs. Temperature effectiveness under heating conditions with ΔT = -

5 °C. a) Linear slot diffusers: cases 1–17; b) round ceiling diffusers: cases 36–41; c) 

louvered face diffusers without lip: cases 49–53; d)perforated diffusers directional 

pattern (4-way): cases 54–59  
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2.3.1.2 Effect of internal load on air change effectiveness and temperature 

effectiveness  

Figure 2-6 shows E and ƐT of linear slot diffusers under the heating conditions 

with low and medium internal load that required room-supply temperature differences 

of-2 and -5 °C, respectively. For the same T0.25/L, both E and ƐT were higher under low 

load than under medium load. The largest values of the E were 0.87 and 1, and they 

achieved under the medium load and low load conditions. For the low load conditions, 

E was in the 0.65 to 1.00 range and ƐT varied from 0.77 to 0.95 within the recommended 

range. The differences between the low and medium load conditions were minimal 

when T0.25/L was less than 1.5. A possible explanation for this is that, for cases where 

T0.25/L was less than 1.5, down draft from the cold wall surface became the dominant 

force, which did not make significant changes to E of the space. When T0.25/L was 

greater than 2.5, E was close to 1. However, ƐT was approximately 0.8 when T0.25/L was 

2.5 and it increased as T0.25/L exceeded 2.5. An increase in ƐT was also observed in the 

low load condition when T0.25/L was between 1.5 to 2.5; the increase in ƐT with higher 

T0.25/L for low load condition than in the medium load condition may be due to a 

smaller buoyancy effect that caused better mixing under the low load condition. 
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Figure 2-6 T0.25/L vs. air change effectiveness and temperature effectiveness of linear 

slot diffusers under heating conditions with different ΔT (cases 1–17 and cases 18–29). 

a) T0.25/L vs. air change effectiveness (left side y-axis) and ADPI (right side y-axis), b) 

T0.25/L vs. temperature effectiveness 

 

Figure 2-7 shows E and ƐT for round ceiling diffusers under heating conditions 

with low, medium, and high internal loads at room temperature differences of ΔT = -2, -

5 and -8 °C, respectively. Both E and ƐT were higher under low load conditions than 

under medium load conditions and higher under medium load condition than under high 

load conditions for the same T0.25/L within the recommended range. The largest values 

of E were 0.95, 0.85 and 0.73 under low, medium, and high load conditions, 

respectively. Under low load conditions, E was near 1, which is within the 

recommended range. E sharply decreased when T0.25/L decreased such that it was 

outside the recommended range. ƐT slightly increased (from 0.80 to 0.86 within the 

recommended range) while E stayed close to 1. The lowest E was about 0.35 at a T0.25/L 

value of 0.6 under high load conditions. The difference between various ΔT values was 
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minimal around a T0.25/L value of 0.6. It was interpreted as the transition point. ƐT of the 

medium and high load conditions were almost same as when T0.25/L was smaller than 

the recommended range. 

 

 

Figure 2-7 T0.25/L vs. Air change effectiveness and temperature effectiveness of round 

ceiling diffusers under heating conditions with different ΔT (cases 30–35, cases 36–41, 

and cases 42–48). a) T0.25/L vs. air change effectiveness (left side y-axis) and ADPI 

(right side y-axis), b) T0.25/L vs. temperature effectiveness 
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2.3.2 Air change effectiveness and temperature effectiveness under cooling 

conditions 

Figure 2-8 shows the results of E under cooling conditions with internal loads of 

ΔT = 8 °C. The right side of the y axis with the triangle plots show ADPI values from 

Liu’s study (2016) for reference. The recommended range is also indicated on the 

graph. The results revealed that E was in the range of 0.98 to 1.16 within the 

recommended range. E was greater than or equal to 1 under all cooling conditions. E 

was slightly larger when T0.25/L decreased. This might be because the jet from the 

diffuser detaches from the ceiling and dives into the occupant zone when T0.25/L is 

small. As Ei was measured in an occupant zone, this jet detachment affect produced 

slightly higher E values. However, it should be noted that a short throw length tends to 

decrease ADPI by increasing draft risk. 
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Figure 2-8  T0.25/L vs. air change effectiveness (left side y-axis) and ADPI from Liu’s 

(2016) experiments (right side y-axis) under cooling conditions with ΔT = 8 °C. a) 

Linear slot diffusers: cases 60–69, b) round ceiling diffusers: cases 70–75, c) louvered 

face diffusers without lip: cases 76–80, d) perforated diffusers directional pattern (4-

way): cases 81–85  

 

Figure 2-9 displays the results of ƐT under cooling conditions with an internal 

load of ΔT = 8 °C. Overall, ƐT was in the range of 0.92 to 1.11 within the recommended 

range. Similar to  E, ƐT was slightly higher when T0.25/L was small, and it decreased as 
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T0.25/L increased. The results for round ceiling diffusers show the smallest slope among 

the four tested diffusers. ƐT was close to 1 for every measured T0.25/L. 

 

 

Figure 2-9 T0.25/L vs temperature effectiveness under cooling conditions with ΔT = 8 °C. 

a) Linear slot diffusers: cases 60–69, b) round ceiling diffusers: cases 70–75, c) 

louvered face diffusers without a lip: cases 76–80, d) perforated diffusers directional 

pattern (4-way): Cases 81–85  
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2.4 Discussion  

Tables 2-4 and 2-5 provide the ranges of E and ƐT within the recommended 

range of T0.25/L in terms of ADPI for the heating mode and cooling mode. The tables are 

intended to to provide HVAC designers with guidance for selecting diffusers and air 

flow rates for air systems that provide both heating and cooling. The data shown for 

heating in the table are from the cases in which the typical internal load is ΔT = -5 °C 

(medium loads condition). The range of loads [W/m2] for E and ƐT within the 

recommended range of T0.25/L were calculated from ΔT and the air flow rate of the 

exhaust air stream. The experiments in this study used a slightly different range of 

internal loads than the previous experiments for the ADPI study (Liu et al. 2016). This 

is because the experiments aimed to control room supply temperature difference (ΔT) to 

examine effects of thermal stratification on the E. This target ΔT produced slightly 

lower loads than those used in the previous ADPI study. However, the results between 

ADPI, E, and ƐT in Table 2-4 are still comparable, because the recommended range of 

ADPI is valid for smaller loads (smaller that 30–40 W/m2, indicated in Table 2-4) as the 

ADPI only increases with a decrease in the thermal loads.  

The results in Tables 2-4 and 2-5 reveal that all analyzed diffusers have similar 

performance when considering loads and T0.25/L. Both E and ƐT increased as T0.25/L 

increased under heating conditions and slightly decreased as T0.25/L increased under 

cooling conditions. The results also revealed that it is possible for E to decreases to less 

than 0.8, as mentioned in SHRAE Standard 62.1 (2010), even when TSA is at most 8 °C 

higher than <T>0. A wider range of T0.25/L was allowed under cooling conditions than 

heating conditions, meaning that a smaller range of T0.25/L value is accepted under 

heating conditions than would be accepted under cooling conditions. However, the air 
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change effectiveness may significantly decrease when T0.25/L is small under heating 

conditions. The perforated diffuser directional pattern (4-way) showed slightly lower E 

and ƐT under heating conditions. The linear slot diffusers had a greater range for air 

change effectiveness under heating conditions. For cooling condition, E and ƐT were 

close to or higher than 1 (within recommended range) regardless of the diffuser type. 

Mixing ventilation systems are utilized in various HVAC systems such as a 

valuable air volume (VAV) system with constant supply temperature or constant air 

volume (CAV) system with variable supply air temperature. In most buildings, the same 

all-air system is used for both heating and cooling, and the cooling load is the dominant 

factor for sizing the coils, fans, ducts and diffusers; consequently, the diffusers are 

usually selected with consideration of only the cooling mode. However, the range 

capable of achieving good mixing under the heating condition is not as wide as that in 

the cooling mode.  This chapter provides fundamental data on diffuser performance 

under both heating and cooling conditions. HVAC system designers should carefully 

select not only the diffusers but also an air flow rate, a supply air temperature, and a 

control sequence that can achieve better air change effectiveness and thermal comfort 

with optimal use of energy under both the cooling and heating modes. 
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Table 2-4 Ranges of air change effectiveness and temperature effectiveness within the 

range of recommended T0.25/L in terms of ADPI (Heating) 

Diffuser type 

Recommended range 
of T0.25/L regarding 

ADPI 

Range of E and ƐT within 
recommended T0.25/L regarding ADPI 

T0.25 / L 
[-] 

Loads 
[W/m2] 

E  
[-] 

ƐT  
[-] 

Loads 
[W/m2] 

Linear slot diffusers 2.1–3.4 30–40 0.57–0.87 0.65–0.75 20–31 

Round ceiling 
diffusers 

1.4–2.1 30–40 0.68–0.85 0.66–0.72 24-30 

Louvered face 
diffusers without lip 

2.4–3.3 30–40 0.66–0.81 0.65–0.74 26–33 

Perforated diffusers 
directional pattern 
(4-way) 

2.4–2.9 30–40 0.56–0.72 0.58–0.65 27–30 

 

 

Table 2-5 Ranges of air change effectiveness and temperature effectiveness within the 

range of recommended T0.25/L in terms of ADPI (Cooling) 

Diffuser type 

Recommended range 
of T0.25/L regarding 

ADPI 

Range of E and ƐT within 
recommended T0.25/L regarding ADPI 

T0.25 / L 
[-] 

Loads 
[W/m2] 

E  
[-] 

ƐT  
[-] 

Loads 
[W/m2] 

Linear slot diffusers 1.1–3.5 25–50 1.12–1.05 1.11–0.98 14–69 

Round ceiling 
diffusers 

0.5–2.3 25–50 1.08–1.03 1.03–0.97 17–66 

Louvered face 
diffuser with no lip 

1.0–3.3 25–50 1.05–0.98 1.03–0.92 17–62 

Perforated diffuser 
directional pattern 
(4way) 

0.7–3.0 25–50 1.16–0.98 1.07–0.98 17–63 
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2.5. Conclusion 

 Experimental measurements in a full-scale test room were conducted with 

various types of diffusers, air flow rates, and internal loads to evaluate the air change 

effectiveness and the temperature effectiveness. These experiments were conducted on 

both heating and cooling cycles, though there was an emphasis on the heating mode. All 

diffusers tested showed similar results, although each diffuser had a unique shape. 

Under the heating mode, the ranges of air change effectiveness E and temperature 

effectiveness ƐT were 0.56 to 0.87 and 0.58 to 0.75, respectively, falling within the 

recommended range of T0.25/L with regard to the ADPI. A significant decrease in E was 

found to occur when T0.25/L was small. Both E and ƐT increased as ΔT became close to 

isothermal flow. Under the cooling mode, the ranges of E and ƐT were 0.98 to 1.12 and 

0.92 to 1.11, respectively, falling within the recommended range. Relatively good 

mixing was found under cooling conditions. 

The studies provided fundamental diffuser performance data that considers both 

thermal comfort and ventilation effectiveness. The range capable of achieving good 

mixing under the heating condition was significantly smaller than the range for the 

cooling mode. Not just diffusers, but also factors such as air flow rate and supply air 

temperature should be carefully designed in all-air heating and cooling systems in order 

to achieve good mixing and thermal comfort. 
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Nomenclature 

ADPI  Air Diffusion Performance Index 

T0.25  Terminal Velocity Value of 0.25 m/s 

L  Characteristic Length 

E  Air Change Effectiveness, Arithmetic Mean of Ei in Occupied Zone 

Ei   Local Air Change Effectiveness 

Elow  Air Change Effectiveness, Arithmetic Mean in low plane 

Ehigh  Air Change Effectiveness, Arithmetic Mean in high plane 

ƐT  Temperature Effectiveness 

TSA   Supply Air Temperature 

TEA   Exhaust Air Temperature 

Ti  Temperature at a Location i 

<T>0   Average Temperature in Occupied Space 

ΔT  Exhaust Air and Supply Air Difference, TEA-TSA 

STDV  Standard deviation 

VAV  Valuable Air Volume 

CAV  Constant Air Volume 
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3.1 Introduction 

 In Chapter 2, extensive experiments on air change effectiveness (E) in mixing 

ventilation were conducted. These data combined with the results from the recent ADPI 

study (Liu et al., 2016) provided comprehensive data set on diffuser performance 

considering both the uniformity of the temperature field and range of E in the both the 

cooling and heating applications. E and temperature effectiveness (ƐT) were slightly 

higher than 1.0 in the cooling applications. However, in the heating application, E 

significantly decreased at small T0.25/L even though ADPI was within the acceptable range 

(ADPI higher than 80%); this low E value is due to the short circuit of the supply air. E 

within the acceptable ADPI range of T0.25/L (recommended range) was 0.56 to 0.87. This 

short circuiting of hot air puts the performances of many diffusers in a range that is lower 

than the specified value in ASHRAE standard 62.1, E > 0.8. 

To overcome the challenges of poor ventilation under heating conditions, this 

chapter examines simple strategies that may improve E and ƐT under heating conditions, 

while maintaining an acceptable ADPI; specifically, it evaluates the impacts of diffuser 

deflector adjustment in linear slot diffusers and adjustable blades grills, room-supply air 

temperature difference of linear slot diffusers with vertical flow, and exhaust locations of 

adjustable blade grills. In addition, it provides new diffuser selection data in the form of 

the ADPI for diffusers with a vertical jet projection (vertical flow) categorized as Group 

E in the ASHRAE Handbook (2013). 

 

3.2 Methodologies 

 The first part of the methodology section describes the diffusers tested in this 

chapter. The second part explains the two series of experiments that were conducted: (1) 
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experiments related to ADPI and (2) experiments related to E and ƐT. These two series 

of experiments were conducted in the test room described in Chapter 2. The testing 

methodology for the ADPI experiments followed the procedure in Liu’s study and the 

Chapter 2 procedure for E and ƐT experiments. The testing methodologies followed 

previous study procedures described in greater detail in (Liu et al, 2015, 2016, 2017) 

and Chapter 2.  

 

3.2.1 Tested diffusers 

Figure 3-1a shows the linear slot diffusers (Model SDS75, frame size 190 

mm×1,200 mm, Price Industries, Inc.) with vertical flow used in the experiments. The 

diffusers provide various airflow patterns when their deflectors are adjusted. The same 

diffuser used in Chapter 2 was utilized; however the deflector positions were different. 

The performance of linear slot diffusers with horizontal projection can be found in 

Chpater 2. The vertical flow allows supply of primary air directly to the occupied space 

and may increase E and ƐT. However, a higher air velocity in the occupied space may 

compromise the ADPI.  

Figure 3-1b shows the adjustable blade diffusers (Model 51DV, frame size: 150 

mm × 600 mm, Nailor HVAC, Inc.) used as high side wall diffusers. This specific model 

is a good representative of all high side wall adjustable blade diffusers (Liu et al., 2016). 

By adjusting their blade angles, the diffusers can permit different airflow directions. To 

evaluate the impact of adjustments on E and ƐT, blades angle were set as follows: 0° 

horizontal, 45° upward, and 45° downward. The ADPI with each adjustments was 

determined from previous studies (Liu et al., 2016). In previous studies, the 45°upward 

projection allowed supply air to easily attch to the ceiling and slide along the ceiling 
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owing to the Coanda effect, resulting in a better ADPI under cooling conditions (Liu et 

al., 2016). However, it may cause higher thermal stratifications and lower E under heating 

conditions. The 45° downward projection directly supplies air to the occupied zone, 

which may increase E. However, it may also cause a lower ADPI because of higher 

velocity in the occupied space. The 0° horizontal blade position was considered as the 

nominal setting, and different exhaust locations were tested with the nominal setting.  

 

 

Figure 3-1 Diffusers used in this study: a) Linear slot diffuser with vertical flow, b) 

Adjustable blade grill with 0° horizontal, 45° upward, and 45° downward adjustment 

 

3.2.2 ADPI measurements 

The ADPI measurements were conducted in a test chamber located at the Center 

for Energy and Environmental Resources at the University of Texas at Austin, USA 

with the size of 5.5 m × 4.5 m × 2.7 m; it was the same test chamber described in 

Chapter 2. Figure 3-2 illustrates experimental setups of the test room for ADPI 

measurements. ADPI measurements were conducted under the same chamber and 

setups as our previous studies (Liu et al., 2015, 2016, 2017). The heating load was 

simulated by adjusting the temperature of the cooled wall connected to a dedicated 

chiller, which together mimicked an exterior wall or window in winter conditions. 
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Although particle image velocimetry (PIV) measurements (Cao et al., 2014) can be used 

to better visualize the airflow fields, velocity and temperature at 60 locations in the 

occupied zone at four different heights above the floor (0.1 m, 0.6 m, 1.1 m, and 1.7 m) 

were measured with twelve hot-sphere anemometers (HT-400, SENSOR, Poland, 

accuracy: ±0.03 m/s+-3 %, temperature: ±0.2 °C). The measurements were repeated 

five times for each experiment to obtain 60 locations with the twelve available sensors. 

At the same time, the vertical temperature (0.1 m, 0.6 m, 1.1 m, 1.4 m, 1.8 m, 2.2 m) 

was measured at five different locations by thermistors (Model 44033, OMEGA, 

Accuracy: ±0.1 °C). Furthermore, supply and exhaust air temperatures were monitored 

during the experiments to ensure the stability of the chamber conditions.  

The uncertainty of an ADPI measurement depends on the accuracy of the 

instruments used and several factors related to the experimental setup; the detailed 

procedure for calculating this uncertainty is described in our previous study (Liu et al., 

205). Owing to the high accuracy of the velocity and temperature sensors in the studies, 

the uncertainty was ±2.7 % for the absolute value of the ADPI.  

 



Chapter 3 Improving Ventilation Effectiveness under the Heating Mode 

 

3-7 
 

 

Figure 3-2 Experimental setup of a test room for ADPI measurements. (Chamber 

geometry, temperature, and velocity measurement locations) 

 

3.2.2.1 Experimental matrix for ADPI measurements 

Table 3-1 shows the experimental conditions for the ADPI measurements. 

Linear slot diffusers with two and four slots with vertical flow were tested. Each setup 

consisted of several cases with various T0.25/L (related to air change rate). For instance, 

cases (A.1–6) had the same experimental setup but different T0.25/L values, such as 0.5 

in case A.1 and 0.8 in case A.2. The T0.25 value was derived as described in Chapter 1 

section 1.2.4. All experiments were conducted under heating conditions. 
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Table 3-1 Experimental conditions for the ADPI measurements 

Case # 
Supply diffusers T0.25/L [-]  

(Air change rate [h-

1]) 

Temperature 
difference between 
supply and exhaust 
ΔT = TEA – TSA 

[°C] 

Return air 
inlet 

location  
Type Adjustment 

A.1–6 
Linear slot 
diffuser (2 slots) 

Vertical 

0.5 (2.1), 0.8 (3.3), 
1.1 (4.5), 1.4 (5.8), 
1.7 (7.2), 2.0 (8.6) 

-5 

EX Cn 

A.7–12 
Linear slot 
diffuser (4 slots) 

0.4 (2.1), 0.7 (3.3), 
0.9 (4.5), 1.2 (5.8), 
1.4 (7.2), 1.8 (8.6) 

-5 

A.13–18 
Linear slot 
diffuser (2 slots) 

0.6 (2.1), 1.0 (3.3), 
1.3 (4.5), 1.6 (5.8), 
1.9 (7.2), 2.2 (8.6) 

-2 

A.19–24 
Linear slot 
diffuser (4 slots) 

0.5 (2.1), 0.8(3.3), 
1.1 (4.5), 1.4 (5.8), 
1.7 (7.2), 1.9 (8.6) 

-2 

 

 

3.2.3 Air change and temperature effectiveness measurements 

Figure 3-3 illustrates the experimental setup for the E and ƐT measurements. The 

experimental setup included adjustable blade diffusers with high side wall positions and 

2-slot and 4-slot linear slot diffusers with vertical flow. The dimensions of the plenum 

box for an adjustable blade diffuser are also described in Figure 3-3. Furthermore, Figure 

3-3 shows the five specific exhaust locations used to evaluate the impact of the exhaust 

locations. There were three locations for ceiling mounted positions, EX Cd, EX Cn, and 

EX Cw, and two locations near floor, EX Fd and EX Fw.  

The tracer gas decay test using CO2 as the tracer gas was conducted to measure 

Ei and calculate E. The measuring point and procedure described in Chapter 2 was utilized. 

The CO2 concentration was measured at 18 locations simultaneously and vertical 

temperature distributions and supply and exhaust temperatures were measured. The 

uncertainty in the measurements of E has also been discussed in Chapter 2. From 
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repetitive experiments, the uncertainty in the local Ei was 6% on average with a maximum 

of 14% and that in the E measurement was 6% on average with a maximum of 11 %. 

 

 

Figure 3-3 Experimental setup of a test room for Air change effectiveness and 

Temperature effectiveness measurements (Chamber, adjustable blade grille box and 

exhaust box geometry, temperature and CO2 concentration measurement locations) 
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3.2.3.1 Experimental matrix for air change and temperature effectiveness 

measurements 

Table 3-2 shows the experimental conditions for the E and ƐT measurements. 

The experiments were conducted with 2-slot and 4-slot linear slot diffusers with vertical 

flow for low and medium internal loads (room-supply temperature difference of ΔT = -

2 °C and ΔT = -5 °C, respectively), and adjustable blade diffusers with three different 

adjustments under heating conditions. In addition, five different exhaust locations with 

nominal settings (0° Horizontal) of adjustable blade diffusers were tested.  
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Table 3-2 Experimental conditions for air change effectiveness and temperature 

effectiveness measurements 

Case # 
Supply Diffusers 

T0.25/L [-]  
(Air change rate [h-1]) 

Temperature 
difference 

between supply 
and exhaust 

(ΔT=TEA-TSA) 
[°C] 

Return air 
Inlet 

Location  
Type Adjustment 

B.1–8 
Linear slot 
diffuser (2 
slots) 

Vertical 
0.5 (2.1), 0.7 (3.0), 0.8 (3.3), 
1.1 (4.4), 1.5 (5.8), 1.7 (6.9), 
1.7 (7.2), 2.0 (8.6) 

-5 EX Cn 

B.9–17 
Linear slot 
diffuser (4 
slots) 

Vertical 
0.4 (2.1), 0.6 (3.0), 0.7 (3.3), 
0.9 (4.4), 0.9 (4.5), 1.2 (5.8), 
1.4 (6.9), 1.5 (7.2), 1.8 (8.6) 

-5 EX Cn 

B.18–23 
Linear slot 
diffuser (2 
slots) 

Vertical 
0.6 (2.1), 1.0 (3.3), 1.3 (4.5), 
1.6 (5.8), 1.9 (7.2), 2.2 (8.6) 

-2 EX Cn 

B.24–29 
Linear slot 
diffuser (4 
slots) 

Vertical 
0.5 (2.1), 0.8(3.3), 1.1 (4.5), 
1.4 (5.8), 1.7 (7.2), 2.0 (8.6) 

-2 EX Cn 

B.30–36 
Adjustable 
Blade Grill 

0° 
Horizontal 

0.8 (1.6), 0.9(2.1), 1.2 (3.3), 
1.4 (4.5), 1.6 (5.8), 1.9 (7.2), 
2.1 (8.6) 

-5 EX Cn 

B.37–43 
Adjustable 
blade grill 

45° upward 
0.3 (1.6), 0.4(2.1), 0.5 (3.3), 
0.7 (4.5), 0.8 (5.8), 0.8 (7.2), 
0.9 (8.6) 

-5 EX Cn 

B.44–50 
Adjustable 
blade grill 

45° 
downward 

0.3 (1.6), 0.4(2.1), 0.5 (3.3), 
0.7 (4.5), 0.8 (5.8), 0.8 (7.2), 
0.9 (8.6) 

-5 EX Cn 

B.51–57 
Adjustable 
blade grill 

0° horizontal 
0.8 (1.6), 0.9(2.1), 1.2 (3.3), 
1.4 (4.5), 1.6 (5.8), 1.9 (7.2), 
2.1 (8.6) 

-5 EX Cw 

B.58–63 
Adjustable 
blade grill 

0° horizontal 
0.8 (1.6), 0.9(2.1), 1.2 (3.3), 
1.4 (4.5), 1.6 (5.8), 1.9 (7.2), 
2.1 (8.6) 

-5 EX Cd 

B.64–71 
Adjustable 
blade grill 

0° horizontal 
0.8 (1.6), 0.9(2.1), 1.2 (3.3), 
1.4 (4.5), 1.6 (5.8), 1.9 (7.2), 
2.1 (8.6) 

-5 EX Fw 

B.72–78 
Adjustable 
blade grill 

0° horizontal 
0.8 (1.6), 0.9(2.1), 1.2 (3.3), 
1.4 (4.5), 1.6 (5.8), 1.9 (7.2), 
2.1 (8.6) 

-5 EX Fd 
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3.3. Results 

 This section is divided presents the results from two series of experiments: 1) 

experiments with linear slot diffusers with vertical flow and 2) experiments with 

adjustable blade diffusers with different deflector angles and exhaust locations. 

 

3.3.1 Vertical flow with linear slot diffusers 

 The first part examines the range of T0.25/L that can achieve an ADPI higher than 

80% and the associated E and ƐT. Then, the ADPI, E and ƐT results with a lower ΔT are 

discussed. Finally, the section examines some results of velocity and temperature 

measurements from the ADPI experiments. 

 

3.3.1.1 ADPI, air change effectiveness and temperature effectiveness 

Figure 3-4 shows the results of ADPI, E, and ƐT with ΔT = -5 °C. Figure 3-4 

displays the results of 2-slots diffusers (Figure 3-4a and 3-4b) and 4-slots diffusers 

(Figure 3-4c and 3-4d). The solid marks indicate that the supply air temperature (TSA) 

was less than 8 °C higher than the average occupied space temperature (<T>0). The 

dashed marks indicate that the TSA value was 8 °C or higher than <T>0. 

With 2-slots linear slot diffusers (Figure 3-4a), a higher ADPI was found for 

lower and higher T0.25/L values. Although the ADPI was high for lower T0.25/L values, E 

and ƐT were low. The range of T0.25/L that can achieve an ADPI higher than 80 % with a 

TSA less than 8 °C above <T>0 (herein after recommended range) was 1.6–2.1. E and ƐT 

were approximately 0.9 within the recommended range. The small momentum of supply 

air at low T0.25/L values could not provide enough mixing in the space and resulted in 

high thermal stratification and a low ADPI. Conversely, a strong vertical momentum 
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increased the overall mixing performance of the space, resulting in higher ADPI, E and 

ƐT  values. However, the excessive air speed may result in discomfort that is asociated 

with a draft in the area below the diffuser. 

 Different from the results for 2-slot diffusers, the ADPI was decreased as T0.25/L 

increased with 4-slot diffusers (Figure 3-4c). An ADPI higher than 80 % was found 

only for lower T0.25/L values at which high thermal stratification resulted in lower E and 

ƐT values. On the contrary, higher T0.25/L improved both E and ƐT owing to an increased 

mixing effect. The 4-slot diffusers performed quite differently from 2-slot diffusers with 

regards to the ADPI. This will be further discussed in the later results section with 

descriptions of room air velocity and temperature fileds. 

Figure 4-5 shows the results of ADPI, E, and ƐT measurements with ΔT = -2. 

The ADPI was higher than 80 % for both 2-slot and 4-slot diffusers within the tested 

ranges of T0.25/L, implying that a small ΔT enhanced ADPI significantly. The highest E 

was greater with 2-slot diffusers than with 4-slot diffusers: E was 1.1 with 2-slot 

diffusers and 0.8 with 4-slots diffusers. The highest ƐT was also greater with 2-slot 

diffusers than with 4-slot diffusers: 1.05 with 2-slot diffusers and 0.9 with 4-slot 

diffusers. 
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Figure 3-4 Linear slot diffusers with vertical flow under ΔT = -5 °C. a) T0.25/L vs. air 

change effectiveness (left side y-axis) and ADPI (right side y-axis) with 2-slot diffusers: 

cases a.1–6 and cases B.1–8, b) T0.25/L vs. temperature effectiveness with 2-slot 

diffusers: cases a.1–6 and cases B.1–8, c) T0.25/L vs. air change effectiveness (left side 

y-axis) and ADPI (right side y-axis) with 4-slot diffusers: Cases A.7–12 and cases B.9–

17, d) T0.25/L vs. temperature effectiveness with 4-slot diffusers: cases a.7–12 and cases 

b.9–17 

  

* mark with fill: TST higher than 8 °C above <T>0 , mark without fill: TST higher than 8 °C or larger above <T>0 

** T0.25/L is based on corrected T0.25 from <T>0 and TST. 
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Figure 3-5  Linear slot diffusers with vertical flow under ΔT = -2 °C. a) T0.25/L vs. air 

change effectiveness (left side y-axis) and ADPI (right side y-axis) with 2-slot diffusers: 

Cases A.13–18 and cases B.18–23, b) T0.25/L vs. temperature effectiveness with 2-slot 

diffusers: Cases A.13–18 and cases B.18–23, c) T0.25/L vs. air change effectiveness (left 

side y-axis) and ADPI (right side y-axis) with 4-slot diffusers: Cases A.24–29 and cases 

B.24–29, d) T0.25/L vs. temperature effectiveness with 4-slot diffusers: Cases A.24–29 

and cases B.24–29 

 

 

 

* T0.25/L is based on corrected T0.25 from <T>0 and TST. 
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3.3.1.2 Room air velocity and temperature 

Figure 3-6 shows the results of velocity and temperature fields with ADPI 

measurements (cases A.1, A.3, A.5, and A.12). The temperature fields are shown with 

temperature differences between supply air and point of measurements i (ΔTSA-i = TSA-

Ti). For case A.1 (2 slots, T0.25/L: 0.5 (2.1 h-1)), the air velocity below 1.7 m was less 

than 0.25 m/s. The temperature stratification (maximum temperature difference within 

occupied space) was less than 2 °C. For case A.3 (2 slots, T0.25/L: 1.1 (4.5 h-1)), the jet 

from the diffuser (velocity higher than 0.25 m/s) reached 1.7 m. The temperature 

stratification was 4 °C between 0.1 m and 1.7 m. Because of the bouyancy effect and 

the weak jet from diffuser, the jet from the diffuser could not reach the bottom end in 

the higher thermal stratification. It was considered that the thermal stratification in the 

occupied zone led to a low ADPI. In case A.5 (2 slots, T0.25/L: 1.7 (7.2 h-1)), the jet from 

the diffuser reached 0.6 m, and the temperature stratification was the lowest among the 

shown results. Finally, with case A.12 (4 slots, T0.25/L: 1.8 (8.6 h-1)), the jet from 

diffuser reached 1.1 m. The temperature stratification was high and the difference was 

about 3.5 °C. Although case 12 had almost the same T0.25/L as case A.5 calculated by 

the method in Chapter 1, the velocity and tempereture field results were different. The 

calculated correction factor did not accurately normalize the throw of the 2-slot and 4-

slot diffusers  as the emprical table in ASHRAE handbook (2013) used a supply 

opening aspect ratio of 1.0 and assumed air flow along with the perimeter wall. It was 

also considered that the different diffusers’ widths affected the obtained temperature 

fields.  
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Figure 3-6 Velocity and temperature fields in the ADPI measurements (cases A.1, A.3, 

A.5, and A.12) 
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3.3.2 Adjustable blade diffusers with high side wall supply 

This section examines the results of adjustable blade diffusers. The first 

paragraph examines different blade angles. The results are combined with ADPI 

measurements from a previous study (Liu et al., 2016). The next paragraph discusses the 

results of different exhaust locations with nominal adjustment.  

 

3.3.2.1 ADPI, air change effectiveness and temperature effectiveness 

Figure 3-7 shows the results of ADPI, E ,and ƐT measurements with different 

blade angles: 0° horizontal, 45° downward, and 45°upward. The ADPI values shown in 

Figures 3-7a, 3-7c, and 3-7e on the right side of the y-axis were extracted from a 

previous study (Liu et al., 2016). The solid marks indicate that TSA, is at most 8 °C 

higher than <T>0. The unfilled marks indicate that TSA is 8 °C or higher than <T>0. 

With the 0° horizontal adjustment in Figures 3-7a and 3-7b, the ranges of E and 

ƐT within the recommended ranges were 0.65-0.98, and 0.71-0.95, respectively. E was 

significantly decreased when T0.25/L was small. Even within recommended range, E and 

ƐT were approximately 0.6 and 0.7, respecitvely. The thermal stratification for such 

conditions was quite high as TSA was 8 °C or higher than <T>0. With the 45° downward 

adjustments in Figure 3-7c and 3-7d, the ranges of E and ƐT within the recommended 

ranges were 0.92–0.97 and 0.81–0.90, respectively. The ADPI changed inversely with E 

and ƐT when T0.25/L increased, as downward jets from the  diffuser with  higher speed 

increased draft discomfort in the occupied zone while the jets improved the mixing 

effect that improves ventilation effectiveness. With the 45° upward adjustments in 

Figure 3-7e and 3-7f, the ranges of E and ƐT within the recommended ranges were 

similar to those of the 0° horizontal adjustment: 0.68–0.97 and 0.70–0.90, respectively. 
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E significantly decreased when T0.25/L was smaller than the recommended range as the 

low momentum of the diffuser jet could not support the mixing of the supplied air in the 

occupied space.  

 

3.3.2.2 Impact of exhaust locations with nominal adjustment 

Figure 3-8 shows the results of E and ƐT with different exhaust locations with the 

0° horizontal adjustment. Figure 3-8a shows E, and Figure3-8b shows ƐT. The vertical 

dashed lines display the recommended range with EX Cn.  

The results reveal that E and ƐT were almost equivalent to those for EX Cd. The 

EX Cw location yielded lower E and ƐT than the EX Cn location. The maximum E and 

ƐT were 0.7 because short circuits occurred when the exhaust was located at the opposite 

side of the diffuser. With near floor exhaust (EX Fw and EX Fd), E and ƐT were 

significantly higher than for the ceiling mounted exhaust, especially at low T0.25/L. With 

EX Fw, E and ƐT were greater than 1.0 when T0.25/L was lower than 1.7. E and ƐT 

slightly decreased as T0.25/L increased. As the exhaust was located on the opposite side 

of the diffuser, short circuit flow may have increased once the jet from the diffuser 

reached the opposite side of the wall. With Ex Fd, E and ƐT were higher than 1.0 and 

were not sensitive to T0.25/L. The results suggest that a near floor exhaust significantly 

improves ventilation effectiveness and air distribution performance compared to a 

ceiling mounted exhaust. A higher supply airflow rate (higher T/L0.25) may not be 

helpful for effective air distribution for the floor mounted exhaust. 
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Figure 3-7 Adjustable blade grill with different blade angles (cases B.30–36, cases 

B.37–43 and cases B.44–50, and ADPI from a previous study (Liu et al., 2016). a), c) 

and e): T0.25/L vs. air change effectiveness (left side y-axis) and ADPI (right side y-

axis), b), d) and f): T0.25/L vs. temperature effectiveness 
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Figure 3-8 Adjustable blade grill (0° horizontal adjustment) with different exhaust 

locations (cases B.30–36, cases B.51–57, cases B.58–63, cases B.64–71, and cases 

B.72–78). a) T0.25/L vs. air change effectiveness, b) T0.25/L vs. temperature effectiveness 

 

3.3 Discussion 

This section discusses the results of the experiments and the improvements in E 

and ƐT. The fist section summarizes the ranges of E and ƐT within recommended ranges 

for tested diffusers. The next section discusses the possible measures to improve E and 

ƐT while maintaining an acceptable ADPI.  

 

3.3.1 Range of air change effectiveness and temperature effectiveness  

Table 3-3 provides a summary of E and ƐT within the recommended range. This 

table intends to update the design guideline in Chapter 2. The data shown in the table 

are from the experiments with ΔT = -5 °C. The ranges of heating loads were calculated 

from ΔT and air flow rates of the exhaust air streams. The 4-slot linear slot diffusers 
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with a vertical flow are not covered as the recommended range is determined in this 

study. 

E and ƐT were higher than 0.8 for 2-slot linear slot diffusers with vertical flow. 

With adjustable blade diffusers, both E and ƐT increased with an increase in T0.25/L. The 

results also reveal that E can be less than 0.8 under 0° horizontal and 45° upward 

conditions. E and ƐT were higher than 0.8 under 45° downward conditions, and the 

recommended range was shorter in 45° downward than in 45° upward conditions.  

 

Table 3-3 Ranges of air change effectiveness and temperature effectiveness within 

recommended range of T0.25/L in terms of ADPI 

Diffuser type 

Recommended range 
of T0.25/L with 

regards to ADPI 

Range of E and ƐT within 
recommended T0.25/L with regards 

to ADPI 

T0.25 / L Loads E  ƐT  Loads 

[-] [W/m2] [-] [-] [W/m 2] 

Linear slot 
diffusers 

Vertical 
2 slots 

1.4–2.1 12–31 0.87–0.95 0.84–0.95 10–27 

Adjustable 
blade grill 

0° 
horizontal 

1.1–2.2* 35–40* 0.65–0.98 0.71–0.95 9–36 

45° 
downward 

0.6–0.8* 35–40* 0.92–0.97 0.81–0.90 9–33 

45° 
upward  

0.6–1.0* 35–40* 0.68–0.97 0.70–0.90 9–35 

* Results extracted from previous studies (Liu et al., 2016) 

 

3.3.2 Improvement of air change effectiveness and temperature effectiveness  

 This section discusses improvements in E and ƐT due to the use of different 

supply diffuser adjustments, supply and exhaust air temperature differences, and 

exhaust locations. 
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3.3.2.1 Diffuser adjustments 

Figure 3-9 compares vertical and horizontal flow adjustments of linear slot 

diffusers under ΔT = -5 °C. E and ƐT results with the horizontal flow adjustments are 

extracted from Chapter 2. Figure 3-9 also shows the recommended ranges with dashed 

lines. The ranges indicate the air change rate that was converted from different T0.25/L. 

With 2-slot diffusers in Figure 3-2a and 3-2b, the recommended range was 

smaller with vertical flow than with horizontal flow. The maximum values of E and ƐT 

were about 25 % and 30 % with the vertical flow, respectively. Adjusting air flow 

directions under the heating mode may increase both E and ƐT. However, careful 

considerations must be made as directing air flow to occupied spaces may also decrease 

the ADPI. Proper adjustment of diffusers and control of air flow rate under heating 

conditions are necessary to improve E and ƐT. 
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Figure 3-9 Linear slot diffusers with vertical and horizontal flow. a) T0.25/L vs. air 

change effectiveness with 2 slots: cases B.1–8 and from Chapter 2, b) T0.25/L vs. 

temperature effectiveness with 2 slots: cases B.1–8 and from Chapter 2, c) T0.25/L vs. air 

change effectiveness with 4 slots: cases B.9–17 and from Chapter 2, d) T0.25/L vs. 

temperature effectiveness with 4 slots: cases B.9–17 and from Chapter 2 
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Figure 3-10 compares E and ƐT of different angle adjustments for adjustable 

blade diffusers under Δ T =-5 °C. The dashed lines display the recommended ranges 

with air flow rates. The recommended range was smaller with 45° downward than with 

0° horizontal and 45° upward. The 45° downward adjustment was able to increase E 

and ƐT about 30% and 15% (maximum values) compared with the 0° horizontal 

condition. Similar to the adjustment of the linear slot diffuser, downward blades can 

direct air flow to the occupied space to improve E and ƐT under heating conditions. 

However, air flow rate needs to be properly controlled to avoid significant decreases in 

the ADPI.  

 

 

Figure 3-10 Adjustable blade grills with different deflector adjustments (cases B.30–36, 

cases B.37–43, and cases B.44–50). a) Air change rate vs. air change effectiveness, b) 

air change rate rate vs. temperature effectiveness  
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3.3.2.2 Room supply air temperature differences 

Figure 3-11 compares ΔT = -2 °C and ΔT = -5 °C under the same heating load 

for linear slot diffusers with vertical flow. The figure examines how ΔT effects 

ventilation performance. A lower ΔT may significantly increase E and ƐT. Compared to 

the cases with ΔT = -5 °C, cases with ΔT = -2 °C  exhibited an increase in E of about 

75 % on average (100 % at the maximum) and also an increase in ƐT of about 45 % on 

average (65 % at the maximum), respectively. This analysis provides data that HVAC 

designers can use to determine the optimal design ΔT. A lower ΔT may require less 

supply air (ventilation rate) to satisfy the required ventilation rate in the occupied zone 

and less heating energy as it improves both E and ƐT. On the other hand, a lower ΔT 

requires a higher air flow rate to remove the same heating load, which requires more fan 

energy. For example, 2.5 times more air is required with ΔT = -5 °C to remove the same 

heating load than with ΔT = -2 °C, if the distributed air is perfectly mixed. The 

improvements in E and ƐT with lower ΔT need to considered with this trade-off before 

designers decide  on a room supply air difference.  
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Figure 3-11 Linear slot diffusers with vertical flow under the same heating load (ΔT = -

5 °C and ΔT = -2 °C). a) air change effectiveness; b) temperature effectiveness 

 

3.3.2.3 Return air inlet (exhaust) locations 

As shown in Figure3-8, an appropriate exhaust location may significantly 

increase E and ƐT. Locating the exhaust near the floor significantly increases E and ƐT 

by at most 70% with both EX Fw and EX Fd than with EX Cn. However, locating the 

exhaust near the floor may require more duct work or room space for the HVAC system 

as a typical HVAC system is installed in the ceiling plenum space. In addition, the 

results show that an inappropriate exhaust location may decrease E and ƐT. With Ex Cw, 

E and ƐT decrease by at most about 30 % than with the EX Cn location. A designer also 

needs to consider proper exhaust locations, especially when the high side wall supply 

strategy is utilized.  

 

ΔT=-5°C ΔT=-2°C
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3.4 Conclusions 

 Experimental measurements of ADPI, E, and ƐT in a full-scale test room were 

described in this chapter. Combined with previous studies (Liu et al, 2015, 2016, 2017, 

Amai et al, 2016), the results provide supportive data for optimal diffuser selection in 

mixing ventilation, with an emphasis on the improvement of E and ƐT in heating 

applications. Proper application of each tested strategy, diffuser adjustment, lower ΔT, 

and exhaust location may significantly improve E and ƐT. This study shows that proper 

adjustment of the diffuser,  a lower ΔT, and a different exhaust location may result in 

minimum, average, and maximum improvements in E of about 25–30 %, 75%, and 

70%, respectively. However, the designer should consider other aspects of those 

strategies, such as a narrower range of the recommended T0.25/L with vertical flow and 

trade offs of fan power with lower ΔT. 
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Nomenclature 

ADPI  Air Diffusion Performance Index 

EDT  Effective Draft Temperature 

T0.25  Terminal Velocity Value of 0.25 m/s 

L  Characteristic Length 

E  Air Change Effectiveness, Arithmetic Mean of Ei in Occupied Zone 

Ei   Local Air Change Effectiveness 

Ai  Age of Air at a Location i 

C0  Initial Concentration of Tracer Gas at the time t = 0 

C(t)  Decayed Concentration Measured at Time t 

τn  Nominal Time Constant 

ƐT  Temperature Effectiveness 

TSA   Supply Air Temperature 

TEA   Exhaust Air Temperature 

Ti  Temperature at a Location i 

<T>0   Average Temperature in Occupied Space 

ΔT  Exhaust Air and Supply Air Difference, TEA-TSA 
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4.1 Introduction 

 American Society of Heating, Refrigerating and Air-Conditioning Engineers 

(ASHRAE) Standard 62.1 (2010) specifies the minimum ventilation rates in buildings 

with different purposes. This ventilation rate is increased or decreased to take into account 

the impact of ventilation effectiveness. ASHRAE Standard 129 (2002) specifies how to 

modify the minimum ventilation rate by ventilation effectiveness. On the other hand, 

Society of Heating, Air-Conditioning and Sanitary Engineers of Japan (SHASE) Standard 

-102 (2011) specifies the methods that should be used to calculate the required ventilation 

rate when ventilation effectiveness is considered. SHASE also specifies the method that 

should be used to measure ventilation effectiveness in Standards 115 (2010) and 116 

(2011). However, the Japanese building code only regulates the minimum ventilation rate 

per occupants. Ventilation effectiveness does not take into account the building code. 

Both ASHRAE and SHASE introduce ventilation effectiveness indices based on the age 

of air concept based on tracer gas measurements. The air change effectiveness is defined 

in the ASHRAE standard 129. The air change effectiveness is 1.0 when the air from the 

diffuser is perfectly mixed in the space. SHASE standards (2010, 2011) mention the 

standardized concentration in the occupied zone, which is inverse of the air change 

effectiveness. Furthermore, standard procedure for measuring air change effectiveness is 

defined in ASHRAE Standard 129 (2002). The standard requires air change effectiveness 

measurements to be conducted at 25% of the workstations or at least 10 locations in the 

test space. On the other hand, the SHASE standard 115 (2010) requires measurement at 

a minimum of three points or three repetitive measurements with one point in the target 

space. The measuring point should be near the center of each span (between columns) or 

each 10 m by 10 m grid. The ASHRAE Standard 129 (2002) requirement is more stringent 
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than the one in SHASE standard 115(2010) as it requires measurements to be conducted 

at ten locations at least while SHASE requires only three measurements. Measuring 

ventilation effectiveness in the field while meeting the requirements of ASHRAE 

Standard 129 (2002) demands extensive measuring equipment or repetitive 

measurements. As a consequence, air change effectiveness is rarely measured in the field. 

As ventilation effectiveness may have significant impact on both indoor air quality and 

building energy performance, it is important to know how to properly measure it. 

Furthermore, practitioners would benefit if there were alternate methods for predicting 

ventilation effectiveness in the field. Therefore, the objective of this chapter is to assess 

a procedure of evaluating air change effectiveness of mixing ventilation with various 

conditions through intensive laboratory experiments. Variances of the local air change 

effectiveness in an occupied space and the correlation of temperature distribution in the 

space and the ventilation effectiveness were analyzed.   

 

4.2 Methodology 

In this chapter, the same experiments described in Chapters 2 and 3 were used. 

The results were anlysed in terms of the variance and coorelaiton of air change and 

temperature effectiveness. Figure 4-1 shows the chamber geometry and sensor 

positions, and Figure 4-2 shows the five different tested diffusers; linear slot diffuser 

(Price: model SDS75), round ceiling diffuser (Metalaire: model 3000-1), louvered face 

diffuser with no lip (Metalaire: model 5000-1), perforated diffuser directional pattern 

(4way) (Titus: model PCS) and adjustable blade diffusers (Model 51DV, frame size: 

150 mm × 600 mm, Nailor HVAC, Inc.). Please refer to Chapters 2 and 3 for more 

details. The experiments utilzed CO2 in the tracer gas decay test. The vertical 
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temperature distribution was simultaneously measured at one location. Detailed 

horizontal temperature distributions were measured in some cases and the results are 

given in Chapter 3. The results revealed that horizontal temperature variance was 

minimal in the measured cases. 
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Figure 4-1 Experimental setup of a test room 
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Figure 4-2 Tested diffusers 

 

Table 4-1 and Table 4-2 shows the experimental conditions. As explained in 

previous sections, the experiments are the same as those in Chapters 2 and 3. However, 

case numbers were reoorganized to make the analysis more comprehensive. The 

experiments were conducted for heating, cooling, and perfect mix conditions with five 

different diffusers, diffuser adjustments, exhaust locations, air flow rates, and internal 

loads. Overall, 179 experiments were conducted: 143 cases for heating, 26 cases for 

cooling, 10 cases for perfect mixing. A total of 7 sets of experiments were repeated 
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twice to evaluate the uncertainty in the experiments. For the perfect mix test (cases 170-

179), the mixing fans were operated during the decay measurement. Under heating 

cases, the cooled panels mimicked the heating load, and the supply air temperature was 

set to achieve the target ΔT (-2°C, -5°C and -8°C). In addition, the cooled panels were 

controlled to maintain a surface temperature of 32 °C for cases with ΔT = -2 °C, 18.5 °C 

for cases with ΔT = -5 °C, 15.5 °C for cases with ΔT = -2 °C. The temperature of 

cooling panels was designed to prevent condensation during experiments. In cooling 

cases, electric heaters mimicked the cooling load and the output of the heater was 

determined from the air change rate of experimental conditions and the target ΔT (8 °C). 

Then, supply air temperature was adjusted to ensure ΔT (8 °C) was achieved. The 

measured supply/exhaust air temperature of heating cases were 38 °C/36 °C max. and 

36 °C/33 °C min. for cases with ΔT = -2 °C, 38 °C/34 °C max. and 30 °C/25 °C min. for 

cases with ΔT = -5 °C, and 41 °C /35 °C max. and 39 °C/29 °C min. for cases with ΔT = 

-8 °C, respectively. The measured supply/exhaust temperature of the cooling cases were 

14 °C/22 °C max. and 12 °C /20 °C min. 

According to ASHRAE Standard 129 (2002), perfect mixing is defined as a 

theoretical airflow distribution in which the concentration of all constituents in the air, 

and the age of air, are spatially uniform. In this study, perfect mixing was assumed to 

occur when the air change effectiveness at all measured point was 1.0 ± 0.08 based of 

the uncertainty assumed in the ASHRAE Standard 129 (2002). It was confirmed that 

perfect mixing was achieved by using the three mixing fans as all the measured Ei of 

cases 170–179 were in the defined range. 
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Table  4-1 Experimental matrix (heating) 

Case # 
Supply Diffusers 

Air change rate [h-1] 
ΔT**  
[°C] 

Exhaust 
(EX) 

Location Type* Adjustment 

1–9 
LS  
(2 slots) Horizontal 

1.1, 2.1, 3.0, 3.3, 4.5, 
5.8, 6.9, 7.2, 8.6 

-5 EX Cn 

10–15 
LS 
 (2 slots) Horizontal 

2.1, 3.3, 5.7, 5.8, 7.2, 
8.6 

-2 EX Cn 

16–24 
LS  
(4 slots) Horizontal 

2.1, 2.1, 2.7, 3.2, 4.5, 
5.8, 6.9, 7.2, 8.7 

-5 EX Cn 

25–30 
LS  
(4 slots) Horizontal 

2.1, 3.3, 4.5, 5.8, 7.2, 
8.6 

-2 EX Cn 

31–37 RC 
  

2.1, 3.3, 4.5, 5.8, 7.2, 
8.6, 8.6 

-8 EX Cn 

38–43 RC 
  

2.1, 3.8, 4.6, 5.8, 7.2, 
8.6 

-5 EX Cn 

44–50 RC 
  

2.1, 2.2, 3.3, 4.4, 5.7, 
7.2, 8.6 

-2 EX Cn 

51–56 LF/no lip 
  

3,0, 3.9, 4.2, 6.3, 6.3, 
9.4 

-5 EX Cn 

57–62 
PF  
(4-way)    

2.1, 3.3, 4.5, 5.8, 7.2, 
8.6 

-5 EX Cn 

63–72 
LS  
(2 slots) 

Vertical 
2.1, 2.1, 3.0, 3.3, 4.4, 
4.4, 5.8, 6.9 ,7.2, 8.6 -5 EX Cn 

73–78 
LS 
 (2 slots) 

Vertical 
2.1, 3.3, 4.5, 5.8, 7.2, 
8.6 

-2 EX Cn 

79–88 
LS 
 (4 slots)  

Vertical 
2.1, 2.1, 3.0, 3.3, 4.4, 
4.5, 5.8, 6.9, 7.2, 8.6 -5 EX Cn 

89-94 
LS  
(4 slots)  

Vertical 
2.1, 3.3, 4.5, 5.8, 7.2, 
8.6 

-2 EX Cn 

95–101 ABG  0° Horizontal 
1.6, 2.1, 3.3, 4.5, 5.8, 
7.2, 8.6 

-5 EX Cn 

102–108 ABG 0° Horizontal 
1.6, 2.1, 3.3, 4.5, 5.8, 
7.2, 8.6 

-5 EX Cw 

109–115 ABG 0° Horizontal 
1.6, 2.1, 3.3, 4.5, 5.8, 
7.2, 8.6 

-5 EX Cd 

116–122 ABG 0° Horizontal 
1.6, 2.1, 3.3, 4.5, 5.8, 
7.2, 8.6 

-5 EX Fw 

123–129 ABG 0° Horizontal 
1.6, 2.1, 3.3, 4.5, 5.8, 
7.2, 8.6 

-5 EX Fd 

130–136 ABG 45° Upward 
1.6, 2.1, 3.3, 4.5, 5.8, 
7.2, 8.6 

-5 EX Cn 

137–143 ABG 
45° 
Downward 

1.6, 2.1, 3.3, 4.5, 5.8, 
7.2, 8.6 

-5 EX Cn 

*LS: Linear slot, RS: Round ceiling, LF: Louvered face, PD: Perforated diffusers, 
ABG: Adjustable blade grill 
**  ΔT: Exhaust and supply air temperature difference 
*** Underlined cases: repeated experiments 
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Table 4-2  Experimental matrix (cooling and perfect mix) 

Case # 
Supply Diffusers 

Air change rate [h-1] 
ΔT**  
[°C] 

Exhaust 
(EX) 

Location Type* Adjustment 

Cooling 

144–148 
LS  
(2 slots) Horizontal 

2.1, 3.3, 4.5, 5.8, 8.6 8 EX Cn 

149–153 
LS  
(4 slots) Horizontal 

2.1, 3.3, 4.5, 5.8, 8.6 8 EX Cn 

154–159 RC 
  

2.3, 3.3, 4.4, 5.5, 8.3, 
8.6 

8 EX Cn 

160–164 LF/no lip   2.2, 3.3, 4.4, 5.8, 8.6 8 EX Cn 

165–169 
PD  
(4-way)   

2.1, 3.8, 4.6, 5.8, 8.6 8 EX Cn 

Perfect Mix 

170–179 RC  
  

1.1, 2.3, 3.3, 3.3, 4.5, 
5.7, 5.8, 7.2, 7.2, 8.6 

-5 EX Cn 

*LS: Linear slot, RS: Round ceiling, LF: Louvered face, PD: Perforated 
diffusers, ABG: Adjustable blade grill 
**  ΔT: Exhaust and supply air temperature difference 
*** Underlines cases: repeated experiments 
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4.3 Results 

This section examines the vertical, horizontal and overall variances of air change 

effectiveness in the test space according to the experimental settings. Section 4.3.2 

analyses vertical variance and section 4.3.3 analyses horizontal variance. In addition, 

the correlation between the air change effectiveness and the temperature effectiveness is 

introduced in section 4.3.4.  

 

4.3.1 Vertical variances in the test space 

  To evaluate the vertical variances of the air change effectiveness, differences in 

air change effectiveness between the high measuring plane and low measuring plane 

(Figure 4-1) were examined. The vertical variance of the air change effectiveness as a 

percentage at the point i, Bi, is defined as 
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where Ei,high and Ei,low are the local air change effectiveness values of the high 

measuring plane and low measuring plane at the same horizontal measuring point, 

respectively. Figure 4-3 shows the vertical variances of local ventilation effectiveness as 

percentiles. All Bi according to the experimental settings were rearranged in ascending 

order. The 5th, 25th, 50th, 75th and 95th percentile values are shown in the figure. The 75th 

percentile values for all cases were less than 16 %. The vertical variances for cases 10–

15 and cases 25–30 (2-slot and 4-slot linear slot diffusers with a horizontal flow under 

ΔT = -2°C) were slightly higher than those of the other conditions with regards to the 
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median, 75th, and 95th percentile values. Overall, all the heating conditions (cases 1–

143), cooling conditions (cases144–169), and experiments (cases 1–179) had similar 

variances in each percentile. For all experiments (cases1-179), the variances were 19% 

in the 95th percentile, 8.5% in the 75th percentile, 4.5% in the median percentile, and 

2.5% in the 25th percentile. Most of the variances observed this study were close to or 

less than the uncertainty in the measurement discussed in the previous section. 

 

 

Figure 4-3.  Vertical variances in percentile 

 

4.3.2 Horizontal and overall variances in the test space 

Figures 4-4,4-5, and 4-6 show the local air change effectiveness distribution in 

typical cases. Figure 4-4 shows the distribution in case 38 and case 42, figure 4-5 shows 

the distribution in case 95 and case 99, and figure 4-6 shows the distribution in case 154 

and case 157.  The left side graphs show the distribution in the low plane and the right 

side graphs show that in the high plane. For both cases, the difference between the 
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maximum and minimum local air change effectiveness within measurement plane was 

quite small. For example, for case 38, the minimum local air change effectiveness 

within the low plane was 0.41, the maximum was 0.44, and the average was 0.42. For 

case 101, the minimum local air change effectiveness within the low plane was 0.9, the 

maximum was 1.09, and the average was 0.97. The variances need to be evaluated by 

indices that relatively show the distribution of different average air change effectiveness 

values.  

 

 

Figure 4-4 Local air change effectiveness distribution (cases 38 and 42) 

 

Case 38 (Heating) RC, ACH: 2.1, ΔT:-5,  EX Location: EX Cn 

Case 42 (Heating) RC, ACH: 7.2, ΔT:-5,  EX Location: EX Cn 
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Figure 4-5 Local air change effectiveness distribution (cases 95 and 99) 

 

  

Figure 4-6 Local air change effectiveness distribution (cases 154 and 157) 

 

Case 95 (Heating) RC, ACH: 1.6, ΔT:-5,  EX Location: EX Cn 

Case 99 (Heating) RC, ACH: 5.8, ΔT:-5,  EX Location: EX Cn 

Case 154 (Cooling) RC, ACH: 2.3, ΔT:8,  EX Location: EX Cn 

Case 157 (Cooling) RC, ACH: 5.5, ΔT:8,  EX Location: EX Cn 
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To evaluate the horizontal and overall variance of air change effectiveness under 

different experimental conditions, the standard deviation σj was converted to a 

percentage by the equation that follows. The standard deviation of air change 

effectiveness expressed as a percentage for the low measuring plane, high measuring 

plane, or overall test space, Cj, is defined as 
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where σj is the standard deviation of air change effectiveness for the high measuring 

plane, low measuring plane, and overall test space, and Ej is Elow, Ehigh, or E. Figure 4-4 

shows horizontal and overall standard deviations of air change effectiveness as 

percentages. Cases 10–15 and cases 25–30 (2 slot and 4 slot linear slot diffuser with 

horizontal flow under ΔT = -2 °C) had slightly higher Cj,Max in both low and high 

horizontal planes and overall. Cases170–179 (perfect mix) had the lowest variances. 

The variances in cases170–179 were less than 3% on average. The difference between 

variances in the high measuring plane and in the low measuring plane was small. Cases 

1–143 (Overall heating conditions) had slightly higher overall maximum and average 

variances than cases144–169 (overall cooling conditions). The average variances of 

cases 1–179 (all experiments) were 4% in the low plane 5% in the high plane and 

overall test space. Similar to the vertical variances, most of the variances were close to 

or less than the uncertainty in the measurement. 
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Figure 4-7 Horizontal and overall standard deviations in percentage 

 

4.3.3 Correlation of air change effectiveness and temperature effectiveness 

Temperature effectiveness (Etheridge et al., 1996), also defined as ventilation 

effectiveness for heat removal (Awbi et al., 1993), was implemented to evaluate the 

temperature gradient in the test space. Temperature effectiveness (ƐT) represents the 

effectiveness of energy utilization supplied into the occupied zone (Etheridge et al., 

1996) whereas the air change effectiveness represents the effectiveness of contaminant 

removal from the occupied zone. This index was introduced detail in Chapter 1. 

Figure 4-5 shows the correlation of ƐT and E. The plot shows the temperature 

effectiveness along the x-axis and the overall air change effectiveness for each case. 

Plots with dark orange indicate the heating regime with vertical flow, light orange 
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indicate heating with vertical flow, light blue indicate cooling with horizontal flow, and 

light green show perfect mix results. Second order polynomial curve fitting was applied 

to generate the profile of ƐT and E for all the cases. As mentioned in previous chapters, 

ƐT and E are around 1.0 for perfect mix cases and around 1.0 or above for cooling cases. 

Similar distribution were observed between heating with horizontal flow and vertical 

flow. From the definition, ƐT  is a dimensionless number that evaluates the temperature 

gradient in the test space whether it is under cooling or heating regimes. Both the 

denominator and numerator of  ƐT are negative under cooling and positive under 

heating. E can be also utilized to both heating and cooling. Thus, the correlation of ƐT 

and E can be observed through analyzing the plots of both cooling and heating. 

  E was close to1.0 when ƐT was also nearly 1.0, and E decreased as ƐT 

decreased. ƐT is slightly higher than E. As the regression curve shows, E was about 0.5 

when ƐT was 0.6. The R2 value was 0.8. It was considered that E is correlated to 

temperature stratification of the test space, and ƐT may be an appropriate index for 

showing this correlation. In addition, significantly low E was found with low ƐT. 

Detailed results and analyses of this low E and supply air diffusers return inlet locations 

can be found in Chapters 2 and 3.  

 



Chapter 4 Assessing the Measuring Procedure for Ventilation Effectiveness 

4-18 
 

 

Figure 4-8  Correlation of temperature and air change effectiveness 

 

4.4 Discussion 

This section discusses the results of the experiments. The first section discusses 

the results of local air change effectiveness variances and measurement procedures in 

utilized standards. The second section discusses correlations of air change effectiveness 

and temperature effectiveness. 

 

4.4.1 Variances in local air change effectiveness in the test space 

ASHRAE Standard 129 (2002) stipulates that Ei should be measured at a 

minimum of 10 work stations. However, as the results revealed, the variances in Ei were 
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minimal in mixing ventilation. Most of the differences found in the test space were 

close to the expected uncertainty of the experiment. In addition, previous research 

revealed the location of the workstation (partition height; 1.9 m, ceiling height; 2.9 m) 

had no significant effects on the air distribution patterns and the influences of 

workstation layout on the ventilation efficiency were minimal (Shaw et al. 1993). Lee’s 

study (2004) found that the effects of internal partition were low when the partition 

height was 60% of the ceiling height and was significantly high when the partition 

height was 80% of the ceiling height. It is implied that a more conventional evaluation 

will be possible with a reduced number of measuring points with mixing ventilation 

when partitions in the space are low enough not to obstruct the air flow pattern in the 

targeted space. 

 

4.4.2 Correlation between air change effectiveness and temperature effectiveness 

A considerable amount of effort is required to conduct tracer gas tests in the 

field. Taking temperature measurements requires much less effort than conducting 

tracer gas tests, and many of the building control/monitor systems already measure 

temperature. The correlation found in this research may aid in the interpretation of the 

overall air change effectiveness of a space for which conducting the tracer gas test is not 

practical. However, careful considerations must be made with HVAC systems, 

especially with regards to the source of heating/cooling in the space. Krajcik et al. 

(2012) measured air change efficiency and temperature effectiveness in a test chamber 

with various combinations of radiant floor heating and mixing ventilation with ACH 

values of 0.5 and 1.0. A correlation between temperature effectiveness and air change 
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efficiency was not observed as an internal heating source might affect the temperature 

of the occupied zone. 

 

4.5 Conclusions 

Extensive experiments of mixing ventilation were conducted in a test chamber to 

evaluate whether more practical evaluation of ventilation effectiveness would be 

possible by using fewer measuring points. The results revealed that the vertical, 

horizontal and overall variances of the local air change effectiveness were minimal. The 

overall variance of air change effectiveness in the occupied space of a room with ceiling 

diffusers was less than 16% in most of the cases, which is slightly larger than the 

experiments' uncertainty. Furthermore, the newly developed correlation of thermal 

effectiveness and air change effectiveness is considered to be useful as an alternative 

method to interpret air change efficiency. 
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Nomenclature 

ABG  Adjustable blade grill 

ACH  Air change rate per hour  

Bi   Vertical variances of air change effectiveness 

Cj  The standard deviation of air change effectiveness in percentage 

E  Air change effectiveness, arithmetic mean of Ei in occupied zone 

Ei   Local air change effectiveness 

Ei,high , Ei,low Local air change effectiveness of the high measuring plane and low 

measuring plane at the same horizontal measuring point 

Elow  Air change effectiveness, arithmetic mean in low plane 

Ehigh  Air change effectiveness, arithmetic mean in high plane 

EX  Exhaust 

LS   Linear slot diffusers 

LF  Louvered face diffusers 

PD  Perforated diffusers 

RS  Round ceiling diffusers 

TSA   Supply air temperature 

TEA   Exhaust air temperature 

Ti  Temperature at a location i 

<T>0   Average temperature in occupied space 

ΔT  Exhaust air and supply air difference, TEA-TSA 

ƐT  Temperature effectiveness 

σj  Standard deviation of air change effectiveness 
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Among various types of ventilation, the most known and used ventilation method 

is mixing ventilation. Current practice related to the air distribution design and diffuser 

selection is relaying on only ADPI which considers only temperature uniformity and 

draft, and this does not always result with the proper diffuser selection. The more 

comprehensive design process for diffuser selection and positioning that considers both 

thermal comfort and ventilation effectiveness at the same time is needed. On the other 

hand, although ventilation effectiveness has significant impacts on both indoor air quality 

and building energy performance, different standard specifies different procedure of 

measuring ventilation effectiveness. Some standard specifies very stringent procedure, it 

is important to know how to properly measure it. 

The objectives of this research are as follows: 1) Define the operation range for 

selecting diffusers with an acceptable ADPI and air change/temperature effectiveness. 2) 

Provide design/operation options that improve the ventilation effectiveness under the 

heating regime. 3) Assess a procedure for evaluating E in mixing ventilation by analyzing 

the variances in local E. The authors performed experimental measurements in a full-

scale test room. Carbon dioxide (CO2) tracer gas decay tests were conducted to measure 

the age of the air at multiple locations in the test room simultaneously with various types 

of ceiling diffusers/pattern adjustments at different airflow rates and internal loads. 

In Chapter 1, “Introduction” the objectives of the research were formulated with 

description of background and review of relevant research. The chapter first introduces 

current ventilation methods, indices regarding ventilation effectiveness and diffuser 

selection methods. Then, it reviews previous research on ventilation effectiveness in 

mixing ventilation and ADPI.  
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Chapter 2: “Experimental Study on Air Change Effectiveness in Mixing 

Ventilation” – This chapter describes the CO2 tracer gas decay tests conducted in a full-

scale test room with various types of diffusers at different airflow rates and internal loads 

to evaluate E and temperature effectiveness (ƐT). These experiments were conducted in 

both heating and cooling regimes. Although each diffuser had a unique shape, all diffusers 

tested showed similar results. The ranges of E and ƐT were examined within the 

recommended range of T0.25/L related to the ADPI; T0.25/L achieved an ADPI of more than 

80%. Under the heating regime, the ranges of E and ƐT were from 0.56 to 0.87 and from 

0.58 to 0.75, respectively, which were within the recommended ranges. A significant 

decrease in E was found when T0.25/L was small. Both E and ƐT increased as the supply 

and exhaust air temperature difference (ΔT) reached close to an isothermal flow. Under 

the cooling regime, the ranges of E and ƐT were from 0.98 to 1.12 and from 0.92 to 1.11, 

respectively, which were within the recommended ranges. Relatively good mixing 

occurred under the cooling regime. The range of T0.25/L capable of achieving good mixing 

under heating conditions was significantly smaller than that under cooling conditions. 

Thus, along with diffuser selection, the airflow rate and supplied air temperature should 

be carefully decided for all-air heating and cooling to achieve good mixing and thermal 

comfort. 

Chapter 3: “Improving Ventilation Effectiveness under Heating Mode” – This 

chapter describes experimental measurements of the ADPI, E, and ƐT conducted in the 

same full-scale test room as described in Chapter 2. The experiments examined simple 

strategies to overcome the challenges of poor ventilation effectiveness under the heating 

regime while maintaining an acceptable ADPI. The strategies were focused on a 

deflector adjustment, lower supply and exhaust air temperature difference (ΔT), and 
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exhaust locations. In addition, the experiments corrected data in the form of ADPI for 

diffusers with a vertical flow. Results show that a proper application of each tested 

strategy significantly improved E and ƐT. The proper adjustment of the deflector may 

improve E by a maximum of 30%. A lower ΔT (ΔT+3 °C) and a different valid exhaust 

location may improve E by approximately 70% on average. These results also show that 

an improper exhaust location may decrease E and ƐT. Moreover, design engineers also 

need to examine diverse strategies such as a smaller range of the recommended T0.25/L 

with a vertical flow and an increase in fan power to remove heating load with a lower 

ΔT. 

Chapter 4: “Assessing Measuring Procedure for Ventilation Effectiveness” – This 

chapter examines vertical, horizontal, and overall variances in the value of local E to 

determine whether a more practical evaluation of the ventilation effectiveness is possible 

using fewer measuring points than those addressed in the standards. This chapter also 

analyzes the correlation between E and ƐT as an alternative method to interpret the E. 

Results show that the vertical, horizontal, and overall variances in the value of local E are 

minimal. The overall variance in the value of local E in an occupied space was found to 

be less than 16% in most cases, which is slightly larger than the uncertainty of the 

experiment. Furthermore, the newly developed correlation between E and ƐT is considered 

to be useful as an alternative method for interpreting E. 

The presented research provides comprehensive diffuser selection and simple 

evaluation methods from planning to operation. A proper operation range for the selection 

of diffusers in mixing ventilation with a good ADPI, E, and ƐT for both cooling and 

heating regimes is provided. Simple strategies to overcome common challenges under the 

heating regime are shown with their operation ranges. The provided data and strategies 
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will be valuable for engineers/designers to plan optimized HVAC systems. This research 

also assessed a simple evaluation method of E that would help to evaluate whether the 

planned design was properly achieved. 

 

Limitations / Applications 

 This research focuses on mixed ventilation, the most commonly used ventilation 

method. Other ventilation methods such as displacement ventilation and piston 

ventilation are not covered in this research. The experiments were conducted with 

Group A and Group E diffusers, following ASHRAE Handbook - Fundamental (2009) 

classification. In other words, the diffusers in Groups B, C, and D were not evaluated in 

this research. As illustrated in Table-1-1 in Chapter 1, Group A and Group E diffusers, 

which are mounted in or near the ceiling, discharge air horizontally or vertically. Group 

B, C, and D diffusers are mounted in or near the floor. To create displacement flow or 

remove perimeter load, diffusers in Groups B, C, and D may be installed on window 

sills. 

As experiments were conducted in an experimental chamber, the geometry of 

the tested space was limited. Diffusers were tested with smooth and flat ceilings with a 

fixed ceiling height of 2.4 m. In addition, the experiments were not conducted with 

ceilings with complicated shapes, such as soffit ceiling or other decollated ceilings. The 

application of diffusers to different ceiling heights was not verified in this research. 

Same as ADPI, the data obtained from this research may most usable with ceiling height 

between 2.4m and 3m. Further analysis with different room dimensions utilizing CFD 

or field measurement may help to validate this suggestion. Furthermore, the suggestion 

may be applicable to air change effectiveness from 0.5 to 1.2 as the measurements were 
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done with that range. It is also worth noting that designers need to consider the load 

characteristics of the heating load as the experiments mimicked only loads due to a cold 

window surface. If the space is expected to have larger loads due to heat transfer from 

the floor, wall, or ceiling, which may cause temperature gradients and variations in the 

occupied space, several considerations should be made.  

With the aforementioned limitations, this research still covers the majority of 

applications of mixing ventilation with Group A and Group E diffusers, which are most 

commonly applied in HVAC systems. The findings of this research may be applied to 

offices, guest rooms in hotel, patients room healthcare facilities, and so on. One may 

properly select and locate the diffusers and verify their application with data provided 

by this research. In addition to properly select and locate diffusers, the findings of this 

research can be used to examine the optimization of an entire HVAC system.  

For example, assume an office building with an area of 500 m2 uses mixed 

ventilation due to linier slot diffusers with horizontal flow. Furthermore, assume 

diffusers are selected and located at T0.25 /L = 0.25, which is in the recommended range 

of both cooling and heating regimes. Then, the HVAC design engineer needs to 

examine the supply air temperature difference during heating. If the number of 

occupants is 0.2 person/m2 and the required outside air is 25 m3/h/person, the total 

outside air volume is 2,500 m3/h. When the system is designed with ΔT = -2 °C, from 

the results of this study, E is 0.9 and the actual outside air volume intake is 2800 m3/h. 

When the system is designed with ΔT = -5 °C, the actual outside air volume intake is 

3,600 m3/h and E is 0.7. If it is assumed that the outside air temperature is 2 °C and the 

design set temperature is 22 °C, the heating capacity required to process the outside air 

is 18.3 kW and 23.6 kW, respectively.  
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Secondly, assume that the heating load for the building is 30 W/ m2 and the 

heating load of the target room is 20 kW. When this load is processed with ΔT = -2 °C, 

as ƐT is 0.85 from this research, the actual load is 23.6 kW with an airflow rate 35,700 

m3/ h. When processed with ΔT = -5 °C, as ƐT is 0.65, the actual load is 30.8 kW with an 

airflow rate 18,700 m3/h. Therefore, the total required air volume and treated heat 

quantity are 38,500 m3/h · 41.9 kW with ΔT = -2 °C and 22,300 m3/h · 54.5 kW with ΔT 

= -5 °C. An HVAC designer is able to evaluate energy consumption of ΔT = -2 °C and 

ΔT = -5 °C by taking into consideration the fan efficiency and the efficiency of the heat 

source system. In the general, the amount of outside air volume and heat load are often 

calculated by assuming the presence of perfect mixing. It is possible to design and 

examine more aspects of the system according to the actual situation based on the 

findings of this research. 

 

References 

ASHRAE: ASHRAE. Handbook of Fundamentals, Chapter 57, Room Air 

Distribution. American Society of Heating, Refrigerating and Air- Conditioning 

Engineers, Inc.; Atlanta, GA. 2009 

ASHRAE: ASHRAE. Handbook of Fundamentals, Chapter 20, Space Air 

Diffusion. American Society of Heating, Refrigerating and Air- Conditioning Engineers, 

Inc.; Atlanta, GA. 2009 

 



Appendix 

A-1 
 

 

 

 

 

 

 

 

 

 

Appendix 

 

 

 

 

 

 

 

 

 

  



Appendix 

A-2 
 

  



Appendix 

A-3 
 

List of Tables 

Table 1-1: Classification of outlet types and example of diffusers 

Table 1-2: Summary of ventilation effectiveness indices, tracer gas method, and 

sampling point specified in different standards/guidebooks 

Table 1-3: Ranges of T0.25/L for various diffuser types when the ADPI is higher than 

80% under the cooling and heating conditions. (Liu et al. 2016) 

(Prepared by author referring the reference) 

Table 2-1: Results of the perfect mix test 

Table 2-2: Uncertainty in air change effectiveness 

Table 2-3: Experimental conditions 

Table 2-4: Ranges of air change effectiveness and temperature effectiveness within 

the range of recommended T0.25/L in terms of ADPI (Heating) 

Table 2-5: Ranges of air change effectiveness and temperature effectiveness within 

the range of recommended T0.25/L in terms of ADPI (Cooling) 

Table 3-1: Experimental conditions for the ADPI measurements 

Table 3-2: Experimental conditions for air change effectiveness and temperature 

effectiveness measurements 

Table 3-3: Ranges of air change effectiveness and temperature effectiveness within 

recommended range of T0.25/L in terms of ADPI 

Table 4-1: Experimental matrix (heating) 

Table 4-2: Experimental matrix (cooling and perfect mix) 

 

 



Appendix 

A-4 
 

List of Figures 

Figure 1-1: Sketch showing displacement ventilation. (Chen et al. 2003) (Prepared 

by author referring the reference) 

Figure 1-2: Definition of the age of air. (Muller et al. 2013) (Prepared by author 

referring the reference) 

Figure 1-3: Room mean age of air and nominal time constant for different types of 

airflow. (Muller et al. 2013) (Prepared by author referring the reference) 

Figure 1-4: Definition of flow types based on air change efficiency and contaminant 

removal effectiveness. (Muller et al. 2013) (Prepared by author referring 

the reference) 

Figure 1-5: Design chart that indicates the restrictions on the flow rate and on the 

return and supply temperature difference. (Neilsen 2007) (Prepared by 

author referring the reference) 

Figure 1-6: Graph for selecting a diffuser for a room. (Muller et al. 2013) (Prepared 

by author referring the reference) 

Figure 1-7: Summary of mixing ventilation studies regarding inlet and outlet 

configurations. (Cao et al. 2013) (Prepared by author referring the 

references) 

Figure 1-8: General ADPI profiles vs. T0.25/L under the cooling mode. (Miller et al. 

1971) (Prepared by author referring the reference) 

Figure 1-9: Sample pictures of diffuser types 

Figure 1-10: General ADPI profiles as functions of T0.25/L for the heating mode. (Liu 

et al. 2016) (Prepared by author referring the reference) 



Appendix 

A-5 
 

Figure 1-11: Structure of the research 

Figure 2-1: HVAC system for environmental control 

Figure 2-2: Experimental setup of the test room: the chamber geometry, diffuser 

locations, and sensor positions 

Figure 2-3: Tested diffuser types and flow adjustments 

Figure 2-4: T0.25/L vs. air change effectiveness (left side y-axis) and ADPI from Liu’s 

(2016) experiments (right side y-axis) under heating conditions with ΔT 

= -5 °C. a) Linear slot diffusers: cases 1–17; b) round ceiling diffusers: 

cases 36–41, c) louvered face diffusers without lip: cases 49–53, d) 

perforated diffusers directional pattern (4-way): cases 54–59 

Figure 2-5: T0.25/L vs. Temperature effectiveness under heating conditions with ΔT = 

-5 °C. a) Linear slot diffusers: cases 1–17; b) round ceiling diffusers: 

cases 36–41; c) louvered face diffusers without lip: cases 49–53; d) 

perforated diffusers directional pattern (4-way): cases 54–59 

Figure 2-6: T0.25/L vs. air change effectiveness and temperature effectiveness of 

linear slot diffusers under heating conditions with different ΔT (cases 1–

17 and cases 18–29). a) T0.25/L vs. air change effectiveness (left side y-

axis) and ADPI (right side y-axis), b) T0.25/L vs. temperature 

effectiveness 

Figure 2-7: T0.25/L vs. Air change effectiveness and temperature effectiveness of 

round ceiling diffusers under heating conditions with different ΔT (cases 

30–35, cases 36–41, and cases 42–48). a) T0.25/L vs. air change 

effectiveness (left side y-axis) and ADPI (right side y-axis), b) T0.25/L vs. 

temperature effectiveness 



Appendix 

A-6 
 

Figure 2-8: T0.25/L vs. air change effectiveness (left side y-axis) and ADPI from 

Liu’s (2016) experiments (right side y-axis) under cooling conditions 

with ΔT = 8 °C. a) Linear slot diffusers: cases 60–69, b) round ceiling 

diffusers: cases 70–75, c) louvered face diffusers without lip: cases 76–

80, d) perforated diffusers directional pattern (4-way): cases 81–85 

Figure 2-9: T0.25/L vs temperature effectiveness under cooling conditions with ΔT = 

8 °C. a) Linear slot diffusers: cases 60–69, b) round ceiling diffusers: 

cases 70–75, c) louvered face diffusers without a lip: cases 76–80, d) 

perforated diffusers directional pattern (4-way): Cases 81–85 

Figure 3-1: Diffusers used in this study: a) Linear slot diffuser with vertical flow, b) 

Adjustable blade grill with 0° horizontal, 45° upward, and 45° downward 

adjustment 

Figure 3-2: Experimental setup of a test room for ADPI measurements. (Chamber 

geometry, temperature, and velocity measurement locations) 

Figure 3-3: Experimental setup of a test room for Air change effectiveness and 

Temperature effectiveness measurements (Chamber, adjustable blade 

grille box and exhaust box geometry, temperature and CO2 concentration 

measurement locations) 

Figure 3-4: Linear slot diffusers with vertical flow under ΔT = -5 °C. a) T0.25/L vs. air 

change effectiveness (left side y-axis) and ADPI (right side y-axis) with 

2-slot diffusers: cases a.1–6 and cases B.1–8, b) T0.25/L vs. temperature 

effectiveness with 2-slot diffusers: cases a.1–6 and cases B.1–8, c) T0.25/L 

vs. air change effectiveness (left side y-axis) and ADPI (right side y-axis) 

with 4-slot diffusers: Cases A.7–12 and cases B.9–17, d) T0.25/L vs. 



Appendix 

A-7 
 

temperature effectiveness with 4-slot diffusers: cases a.7–12 and cases 

b.9–17 

Figure 3-5: Linear slot diffusers with vertical flow under ΔT = -2 °C. a) T0.25/L vs. air 

change effectiveness (left side y-axis) and ADPI (right side y-axis) with 

2-slot diffusers: Cases A.13–18 and cases B.18–23, b) T0.25/L vs. 

temperature effectiveness with 2-slot diffusers: Cases A.13–18 and cases 

B.18–23, c) T0.25/L vs. air change effectiveness (left side y-axis) and 

ADPI (right side y-axis) with 4-slot diffusers: Cases A.24–29 and cases 

B.24–29, d) T0.25/L vs. temperature effectiveness with 4-slot diffusers: 

Cases A.24–29 and cases B.24–29 

Figure 3-6: Velocity and temperature fields in the ADPI measurements (cases A.1, 

A.3, A.5, and A.12) 

Figure 3-7: Adjustable blade grill with different blade angles (cases B.30–36, cases 

B.37–43 and cases B.44–50, and ADPI from a previous study (Liu et al., 

2016). a), c) and e): T0.25/L vs. air change effectiveness (left side y-axis) 

and ADPI (right side y-axis), b), d) and f): T0.25/L vs. temperature 

effectiveness 

Figure 3-8: Adjustable blade grill (0° horizontal adjustment) with different exhaust 

locations (cases B.30–36, cases B.51–57, cases B.58–63, cases B.64–71, 

and cases B.72–78). a) T0.25/L vs. air change effectiveness, b) T0.25/L vs. 

temperature effectiveness 

Figure 3-9: Linear slot diffusers with vertical and horizontal flow. a) T0.25/L vs. air 

change effectiveness with 2 slots: cases B.1–8 and from Chapter 2, b) 

T0.25/L vs. temperature effectiveness with 2 slots: cases B.1–8 and from 



Appendix 

A-8 
 

Chapter 2, c) T0.25/L vs. air change effectiveness with 4 slots: cases B.9–

17 and from Chapter 2, d) T0.25/L vs. temperature effectiveness with 4 

slots: cases B.9–17 and from Chapter 2. 

Figure 3-10: Adjustable blade grills with different deflector adjustments (cases B.30–

36, cases B.37–43, and cases B.44–50). a) Air change rate vs. air change 

effectiveness, b) air change rate rate vs. temperature effectiveness 

Figure 3-11: Linear slot diffusers with vertical flow under the same heating load (ΔT = 

-5 °C and ΔT = -2 °C). a) air change effectiveness; b) temperature 

effectiveness 

Figure 4-1: Experimental setup of a test room 

Figure 4-2: Tested diffusers 

Figure 4-3: Vertical variances in percentile 

Figure 4-4: Local air change effectiveness distribution (cases 38 and 42) 

Figure 4-5: Local air change effectiveness distribution (cases 95 and 99) 

Figure 4-6: Local air change effectiveness distribution (cases 154 and 157) 

Figure 4-7: Horizontal and overall standard deviations in percentage 

Figure 4-8: Correlation of temperature and air change effectiveness 
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