T形断面または箱形断面を有する

鉄筋コンクリート部材の

せん断耐力評価に関する研究

Shear Strength of RC members with T-shaped or Box-shaped Cross-section

## 2018年10月

早稲田大学大学院 創造理工学研究科

木野 淳一

Junichi KINO

| 第 1 章 序 論                                                                      |    |
|--------------------------------------------------------------------------------|----|
| 1.1 はじめに                                                                       | 1  |
| 1.2 研究の背景・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・                                  | 2  |
| 1.2.1 T 形断面および箱形断面を有する RC 部材の                                                  |    |
| せん 断 耐 力 算 定 方 法 の 現 状 ・・・・・・・・・                                               | 2  |
| 1.2.1.1 RC 部 材 せ ん 断 耐 力 算 定 方 法 の 変 遷 ·································       | 2  |
| 1.2.1.2 T 形 断 面 お よ び 箱 形 断 面 を 有 す る RC 部 材 の                                 |    |
| せん 断 耐 力 お よ び 耐 震 性 能 に 関 す る 既 往 の 研 究 ・・・・・・                                | 2  |
| 1.2.1.3 既往の研究に関するまとめ                                                           | 16 |
| 1.2.2 鉄道 RC 構造物の耐震設計、耐震補強の現状 ······                                            | 16 |
| 1.2.2.1 既存の鉄道構造物に係る耐震補強の緊急措置について                                               | 16 |
| 1.2.2.2 鉄 道 構 造 物 等 設 計 標 準 ( 耐 震 設 計 )                                        | 17 |
| 1.2.2.3 既存鉄道構造物に係る耐震補強の取扱いについて・・・・・・・・・・                                       | 18 |
| 1.2.2.4 主な耐震補強方法と耐震補強設計法 ・・・・・・・・・・・・・・・・                                      | 20 |
| 1.2.3 鉄道 RC 構造物の耐震設計・補強における                                                    |    |
| 現 状 の せ ん 断 耐 力 算 定 方 法 の 問 題 点 ・・・・・・・・・・・                                    | 21 |
| 1.2.3.1 RC ラーメン高架橋改修時のはり部材耐震診断 ··········::                                    | 21 |
| 1.2.3.2 RC 箱 形 断 面 橋 脚 の 耐 震 診 断 、 耐 震 補 強 · · · · · · · · · · · · · · · · · · | 23 |
| 1.3 研究の目的および方法                                                                 | 25 |
| 1.3.1 研究の目的 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・                               | 25 |
| 1.3.2 研究の方法                                                                    | 25 |
|                                                                                |    |
| 第 2 章  T 形 断 面 を 有 す る RC 部 材 の せ ん 断 破 壊 実 験                                  |    |
| 2.1 はじめに                                                                       | 26 |
| 2.2 実験概要                                                                       | 27 |
| 2.2.1   試 験 体 諸 元 · · · · · · · · · · · · · · · · · ·                          | 27 |
| 2.2.2 載 荷 方 法                                                                  | 29 |
| 2.3 実験結果および考察                                                                  | 31 |
| 2.3.1 各試験体の破壊状況                                                                | 31 |
| (1) ウェブにせん断補強鉄筋のない T形断面試験体 ・・・・・・・・・・・・                                        | 31 |
| (2) ウェブにせん断補強鉄筋を配置した T 形断面試験体 ・・・・・・・・・・:                                      | 33 |
| (3)  逆 T 形 断 面 試 験 体 · · · · · · · · · · · · · · · · · ·                       | 37 |
| 2.3.2 各試験体のせん断耐力・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・                           | 39 |
| 2.3.3 フランジの破壊形状 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・                           | 40 |
| (1) 実験で得られたフランジの破壊形状 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・                        | 40 |

|     | (2) | 部: | 分                | 的 | な | 押 | 抜 | き   | 破 | 壊 | 面   | の   | 形 | 成 | ኦ   | ታ     | _ | ズ | ム | •••   |       |   | ••• |       |       | • • |     | <br>• • | • • |         | ••• | 43 |
|-----|-----|----|------------------|---|---|---|---|-----|---|---|-----|-----|---|---|-----|-------|---|---|---|-------|-------|---|-----|-------|-------|-----|-----|---------|-----|---------|-----|----|
| 2.  | 3.4 | 各  | パ                | ラ | ኦ | — | タ | が   | 破 | 壊 | 状   | 況   | • | せ | ю   | 断     | 耐 | 力 | に | 及     | ぼ     | す | 影   | 響     | • •   | • • |     | <br>• • | • • | • • • • | ••• | 44 |
|     | (1) | せん | $\boldsymbol{k}$ | 断 | 補 | 強 | 筋 | の   | 有 | 無 | • • | ••• |   |   | ••• | • • • |   |   |   | • • • | • • • |   | ••• | • • • |       |     | ••• | <br>    | • • | ••••    | ••• | 44 |
|     | (2) | フ  | ラ                | ン | ジ | 内 | の | 鉄   | 筋 | 比 | の   | 影   | 響 |   | ••• | • • • |   |   |   | • • • |       |   |     |       | • • • |     | ••• | <br>    | • • | ••••    | ••• | 45 |
| 2.4 | まる  | とめ |                  |   |   |   |   | ••• |   |   |     |     |   |   | ••• | ••••  |   |   |   |       |       |   |     |       |       |     |     | <br>    |     |         | ••• | 47 |

## 第3章 箱形断面を有する RC 部材のせん断破壊実験

| 3. | 1 |     | は   | じ | හ | に   | •   |   |   |   | •••   |     |   | •••   | • • • | • • |    |    | • • | ••• |   | ••• | • • • |   | •••   | • • |     | • • • |       | <br> | • • | ••• | • • • | <br>48 |
|----|---|-----|-----|---|---|-----|-----|---|---|---|-------|-----|---|-------|-------|-----|----|----|-----|-----|---|-----|-------|---|-------|-----|-----|-------|-------|------|-----|-----|-------|--------|
| 3. | 2 |     | 実   | 験 | 概 | 要   | •   |   |   |   | •••   |     |   | • • • | • • • | • • |    |    | • • | ••• |   |     | • • • |   | • • • | ••• |     | • • • |       | <br> | ••  | ••• | • • • | <br>49 |
|    | 3 | .2  | . 1 |   | 試 | 験   | 体   | 諸 | 元 |   | •••   | ••• |   | •••   |       | • • |    |    | • • | ••• |   |     | • • • |   | •••   | • • |     | • • • |       | <br> | • • | ••• |       | <br>49 |
|    | 3 | . 2 | .2  |   | 載 | 荷   | 方   | 法 |   |   | • • • |     |   | •••   | • • • | • • |    |    | • • | ••• |   |     | • • • |   | •••   | • • | ••• | • • • | • • • | <br> | ••  | ••• | • • • | <br>52 |
| 3. | 3 |     | 実   | 験 | 結 | 果   | お   | よ | び | 考 | 察     | ••  |   | • • • |       | • • |    |    | • • | ••• |   |     | • •   |   | •••   | • • |     | • • • |       | <br> | ••  | ••• |       | <br>53 |
|    | 3 | . 3 | . 1 |   | 各 | 試   | 験   | 体 | の | 破 | 壊     | 状   | 況 | •     |       | • • |    |    | • • | ••• |   |     | • • • |   | • • • | ••• |     | • • • | •••   | <br> | ••  | ••• |       | <br>53 |
|    | 3 | . 3 | .2  |   | 各 | 試   | 験   | 体 | の | せ | ю     | 断   | 耐 | 力     | • •   | • • |    |    | • • | ••• |   | ••• | • • • |   | •••   | • • |     | • • • |       | <br> | • • | ••• | • • • | <br>63 |
|    | 3 | . 3 | . 3 |   | 各 | パ   | ラ   | ኦ | — | タ | が     | 破   | 壊 | 状     | 況     | •   | t  | ±, | 6   | 断   | 耐 | 力   | に     | 及 | ぼ     | す   | 影   | 響     |       | <br> | • • | ••• | • • • | <br>63 |
|    |   | (   | 1)  |   | フ | ラ   | ン   | ジ | の | 幅 | •     | 厚   | さ | • •   |       | • • |    |    | • • | ••• |   | ••• | • • • |   | •••   | • • |     |       |       | <br> | • • | ••• | • • • | <br>63 |
|    |   | (   | 2)  |   | 断 | 面   | 形   | 状 | の | 変 | 化     | • • |   | •••   |       | • • |    |    | • • | ••• |   |     | • • • |   | •••   |     |     | • • • |       | <br> | • • | ••• |       | <br>64 |
|    |   | (   | 3)  |   | フ | ラ   | ン   | ジ | 内 | 鉄 | 筋     | の   | 影 | 響     | • •   | • • |    |    | • • | ••• |   | ••• | • • • |   | •••   | • • |     | • • • |       | <br> | • • | ••• | • • • | <br>65 |
|    |   | (   | 4)  |   | フ | ラ   | ン   | ジ | の | 押 | 抜     | き   | せ | ю     | 断     | 砺   | 安坞 | 喪( | の   | 形   | 状 | • • | • • • |   | •••   | • • |     | • • • |       | <br> | • • | ••• | • • • | <br>66 |
| 3. | 4 |     | ま   | ٤ | හ | • • | ••• |   |   |   | •••   |     |   | • • • | • • • |     |    |    |     | ••• |   |     | • • • |   | • • • | • • |     | • • • |       | <br> | ••  | ••• | • • • | <br>69 |

| 第   | 4   | 章   | - | тŦ | 杉田  | 折百  | 面は | 5. | よて | じそ | <b>復</b> 开 | 杉田 | 沂百 | 面   | をす  | 有了 | する | 5   | RC    | ;音  | 阝材 | の     | せ          | Ь   | 断          | 耐   | 力          | 算     | 定 | 式 | の材   | <b>食</b> 言 | 4  |
|-----|-----|-----|---|----|-----|-----|----|----|----|----|------------|----|----|-----|-----|----|----|-----|-------|-----|----|-------|------------|-----|------------|-----|------------|-------|---|---|------|------------|----|
| 4.1 | 1   | は   | じ | හ  | に   | •   |    |    |    |    | • • •      |    |    | • • |     |    |    | ••• | • • • |     |    | • •   |            |     |            |     |            |       |   |   | •••• |            | 70 |
| 4.2 | 2   | せ   | 6 | 断  | 耐   | 力   | 算  | 定  | 式  | 構  | 築          | に  | あ  | た   | っ   | τ  | の  | 方   | 向     | 性   |    | • • • |            |     |            |     |            |       |   |   | •••• |            | 71 |
| 4.3 | 3   | 本   | 実 | 験  | に   | お   | け  | る  | せ  | Ь  | 断          | 耐  | 力  | 算   | 定   | 式  | の  | 検   | 討     | •   | 提  | 案     |            |     |            |     | • • •      |       |   |   |      |            | 73 |
| 4   | 4.3 | 3.1 |   | フ  | ラ   | ン   | ジ  | の  | 押  | 抜  | き          | せ  | ю  | 断   | 破   | 壊  | 時  | の   | 耐     | 力   | 算习 | 定す    | 式(         | の材  | <b>食</b> 言 | ₫ · |            |       |   |   |      |            | 73 |
| 4   | 4.3 | 3.2 |   | フ  | ラ   | ン   | ジ  | 全  | 幅  | の  | せ          | ю  | 断  | 破   | 壊   | 時  | 耐  | 力   | 算     | 定   | 式( | の材    | <b>食</b> ፤ | 討   |            |     | • • •      |       |   |   |      |            | 77 |
| 4.4 | 1   | 提   | 案 | す  | る   | せ   | Ь  | 断  | 耐  | 力  | 算          | 定  | 式  | の   | 妥   | 当  | 性  | 検   | 証     | • • |    | • •   |            |     |            |     | • • •      | • • • |   |   |      |            | 80 |
| 4   | 4.4 | 4.1 |   | 本  | 実   | 験   | 結  | 果  | に  | お  | け          | る  | 提  | 案   | せ   | ю  | 断  | 耐   | 力     | 算   | 定了 | 式王    | 妥          | 当 1 | 生の         | り枝  | <b>食</b> 訂 | Æ     |   |   |      |            | 80 |
| 4   | 4.4 | 4.2 |   | 既  | 存   | の   | 研  | 究  | 結  | 果  | で          | の  | 検  | 証   | ••• |    |    | ••• | • • • |     |    | •••   |            |     |            | ••• | •••        |       |   |   |      |            | 83 |
| 4.5 | 5   | ま   | ٢ | හ  | • • | ••• |    |    |    |    |            |    |    |     |     |    |    | • • | •••   |     |    | • •   |            |     |            |     | • • •      |       |   |   |      |            | 91 |

第5章 箱形断面を有する RC 部材の正負交番載荷実験

| 5.  | 1  | la  | tΰ | <i>.</i> め | に | • • | •••   | • • • | <br>• • | • • | • • | • • | • • | • • | • • | • • | • • | • • | • •   | • • | • • | • • | • • | • • | • • | • • | • • | • • | ••• | • • | ••  | • • | • • | ••• | ••• | •••   | • • | • • | • • | <br>93 |
|-----|----|-----|----|------------|---|-----|-------|-------|---------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-------|-----|-----|-----|--------|
| 5.2 | 2  | Ę   | ミ験 | 钅概         | 要 |     | • • • |       | <br>    | • • | • • |     |     |     |     | • • |     |     |       |     | • • | • • |     | • • | • • |     |     |     |     | • • | • • |     |     |     |     | • • • |     |     | • • | <br>94 |
|     | 5. | 2.7 | 1  | 試          | 験 | 体   | 諸     | 元     | <br>    |     | • • | • • |     | • • | • • | • • |     | • • |       |     |     | • • | • • |     |     | • • | • • |     |     | • • | • • | • • |     |     |     | • • • |     |     | • • | <br>94 |
|     | 5. | 2.2 | 2  | 載          | 荷 | 方   | 法     | • •   | <br>    |     | • • |     |     |     | • • |     |     | • • | • • • |     |     | • • |     | • • |     |     | • • |     |     | • • | • • |     |     |     |     | • •   |     |     | ••  | <br>95 |

| 5.3                              | 実                                         | 験結果                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | およ                                       | こび                              | 考察                                           | • • • •                                  | • • • •               |                              | • • • • •                                      |                                                                                                                                | • • • •                   |                      | • • • •                           | • • • •                                |                  | • • • •                               | • • • •                               | • • • •                               | • • • • •                             | 97                                            |
|----------------------------------|-------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|---------------------------------|----------------------------------------------|------------------------------------------|-----------------------|------------------------------|------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|---------------------------|----------------------|-----------------------------------|----------------------------------------|------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|-----------------------------------------------|
| 5                                | 5.3.1                                     | 各 試                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 験体                                       | 。<br>の i                        | 破 壊                                          | 状 況                                      |                       |                              |                                                |                                                                                                                                |                           |                      |                                   |                                        |                  |                                       |                                       |                                       | • • • • •                             | 97                                            |
|                                  | (1)                                       | No.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 試馬                                       | 贠体                              |                                              |                                          |                       |                              |                                                |                                                                                                                                |                           |                      |                                   |                                        |                  |                                       |                                       |                                       |                                       | 97                                            |
|                                  | (2)                                       | No.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2 試馬                                     | 贠体                              |                                              |                                          |                       |                              |                                                |                                                                                                                                |                           |                      |                                   |                                        |                  |                                       |                                       |                                       |                                       | 98                                            |
|                                  | (3)                                       | No.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3 試馬                                     | 贠体                              |                                              |                                          |                       |                              |                                                |                                                                                                                                |                           |                      |                                   |                                        |                  |                                       |                                       |                                       |                                       | 99                                            |
|                                  | (4)                                       | No.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ↓試馬                                      | 贠体                              |                                              |                                          |                       |                              |                                                |                                                                                                                                |                           |                      |                                   |                                        |                  |                                       |                                       |                                       |                                       | 101                                           |
| 5                                | 5.3.2                                     | 各試                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 験体                                       | : の ī                           | 耐 震                                          | 性能                                       |                       |                              |                                                |                                                                                                                                |                           |                      |                                   |                                        |                  |                                       |                                       |                                       |                                       | 103                                           |
| 5                                | .3.3                                      | 新し                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | いせ                                       | $\left  \right\rangle$          | 断 耐                                          | 力算                                       | 定                     | 式を                           | 活用                                             | する                                                                                                                             | らこ                        | とに                   | よ                                 | る効                                     | ·果·              |                                       |                                       |                                       |                                       | 105                                           |
|                                  | (1)                                       | 破壊                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 形態                                       | の<br>I                          | 変化                                           |                                          |                       |                              |                                                |                                                                                                                                |                           |                      |                                   |                                        |                  |                                       |                                       |                                       |                                       | 105                                           |
|                                  | (2)                                       | じん                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 性率                                       | の                               | 推定                                           |                                          |                       |                              |                                                |                                                                                                                                |                           |                      |                                   |                                        |                  |                                       |                                       |                                       |                                       | 105                                           |
|                                  | (3)                                       | 本研                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 究の                                       | 活」                              | 用性                                           |                                          |                       |                              |                                                |                                                                                                                                |                           |                      |                                   |                                        |                  |                                       |                                       |                                       |                                       | 106                                           |
| 5.4                              | ま                                         | 20.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                          |                                 |                                              |                                          |                       |                              |                                                |                                                                                                                                |                           |                      |                                   |                                        |                  |                                       |                                       |                                       |                                       | 108                                           |
|                                  | •                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                          |                                 |                                              |                                          |                       |                              |                                                |                                                                                                                                |                           |                      |                                   |                                        |                  |                                       |                                       |                                       |                                       |                                               |
|                                  |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                          |                                 |                                              |                                          |                       |                              |                                                |                                                                                                                                |                           |                      |                                   |                                        |                  |                                       |                                       |                                       |                                       |                                               |
| 第                                | 6 章                                       | 実務                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 設計                                       | ~0                              | 〕谪                                           | 用例                                       |                       |                              |                                                |                                                                                                                                |                           |                      |                                   |                                        |                  |                                       |                                       |                                       |                                       |                                               |
| 第<br>6.1                         | 6 章<br>は                                  | 実務                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 設 計                                      | ~ 0                             | D 適 /                                        | 用 例                                      |                       |                              |                                                |                                                                                                                                |                           |                      |                                   |                                        |                  |                                       |                                       |                                       |                                       | 109                                           |
| 第<br>6.1<br>6.2                  | 6 章<br>は<br>既                             | 実務員じめに設高架                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 設計                                       | へ 0<br>                         | D 適」<br><br>プロ                               | 用 例<br><br>ジェ                            |                       | ·····                        | <br>、の 注                                       | · · · · · ·                                                                                                                    |                           |                      |                                   |                                        |                  |                                       |                                       |                                       |                                       | 109<br>110                                    |
| 第<br>6.1<br>6.2                  | 6 章<br>は<br>既<br>3 2 1                    | 実務<br>じめに<br>設高架<br>プロ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 設計                                       | への<br><br>、良<br>ク               | )適<br><br>プロ<br>トの                           | 用 例<br>ジェ<br>概 要                         | <br>. ク               | ۰۰۰۰<br>۲ <b>۸</b>           | 、<br>、<br>の 活                                  | <br>i 用 ·                                                                                                                      |                           |                      |                                   |                                        |                  |                                       |                                       |                                       |                                       | 109<br>110<br>110                             |
| 第<br>6.1<br>6.2                  | 6章<br>は<br>既<br>5.2.1                     | 実務<br>じめ<br>記<br>の<br>史<br>の<br>に<br>史<br>の<br>に<br>史<br>の<br>に<br>の<br>で<br>史<br>の<br>に<br>の<br>で<br>の<br>に<br>の<br>の<br>で<br>の<br>の<br>の<br>の<br>の<br>の<br>の<br>の<br>の<br>の<br>の                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 設計が後                                     | へ <i>0</i><br><br>、良<br>の<br>耐  | ) 適                                          | 用のジーの概断                                  | ・・・・<br>ク<br>・・・<br>里 | ·····                        | ・・・・<br>、の 活<br>・・・・<br>届 け                    | <br>. 用 ·<br>                                                                                                                  | <br><br>• • • •           | <br>                 | ·····<br>····                     | ·····<br>····                          |                  |                                       |                                       |                                       |                                       | 109<br>110<br>110<br>112                      |
| 第<br>6.1<br>6.2<br>6             | 6章<br>は<br>既<br>5.2.1<br>5.2.2            | 実め高プ増増 ろういちょう おうしょう しんしょう しんしょ しんしょ                | 設橋ジ後後計です。                                | へ…良ク耐                           | )<br>・<br>プト<br>震<br>m<br>の<br>診<br>診        | 用・ジ概断断のいての時代の                            | ク・果甲                  | ·····<br>トへ<br>(上            | 、<br>の<br>活<br>、<br>層<br>は<br>け                | ・・・・・<br>・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・                                                                                       | ·····<br>·····<br>É 来 [   | ·····<br>·····<br>評価 | <br><br>i)                        | ····<br>····                           | ······           | · · · · ·<br>· · · · ·                | · · · · ·<br>· · · · ·                | · · · · · · · · · · · · · · · · · · · |                                       | 109<br>110<br>110<br>112                      |
| 第<br>6.1<br>6.2<br>6<br>6        | 6 章<br>は<br>既<br>5.2.1<br>5.2.2<br>5.2.3  | じ設 と勝いた とうしょう しい しんしょう しんしょ しんしょ | 設橋ジ後後計です。                                | へ 良 7 耐 耐                       | )<br>つ                                       | 用・ジ概断断のいてのである。                           | ク・果果                  | ト~<br>(上<br>(上               | 、<br>の<br>活<br>正<br>居<br>は                     | ・・・<br>用・<br>りり                                                                                                                | ·····<br>・···<br>を来<br>フラ | ·····<br>評価<br>ジ     | <br><br>i)<br>; 効!                |                                        | ······<br>······ | · · · · ·<br>· · · · ·<br>· · · ·     | · · · · · · · · · · · · · · · · · · · | · · · · · · · · · · · · · · · · · · · | · · · · · · · · · · · · · · · · · · · | 109<br>110<br>110<br>112<br>116               |
| 第<br>6.1<br>6.2<br>6<br>6.3      | 6 章<br>は既<br>5.2.1<br>5.2.2<br>5.2.3<br>ま | じ設 と務に架口床床                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 設橋ジ後後計。。                                 | へ…良ク耐耐…                         | D<br>… プト 震 震<br>… この 診 診                    | 用・ジ概断断・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ | ク果果                   | ト~<br>(上<br>(上               | 、<br>の<br>一<br>層<br>層<br>…                     | ・<br>・<br>・<br>・<br>り<br>り<br>・                                                                                                | ·····<br>É 来 i<br>ア ラ     | <br><br><br>ンジ       | ·····<br>· · · ·<br>i)<br>· · · · | ····<br>····<br>果考                     | <br>             | · · · · ·<br>· · · · ·<br>· · · ·     | · · · · · · · · · · · · · · · · · · · | · · · · · · · · · · · · · · · · · · · |                                       | 109<br>110<br>110<br>112<br>116<br>118        |
| 第<br>6.1<br>6.2<br>6<br>6.3      | 6 章<br>は既<br>5.2.1<br>5.2.3 ま<br>う        | じ設 と 結務に架口床床 診                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 設橋ジ後後計改工のの                               | へ<br>、<br>良<br>ク<br>耐<br>前<br>… | ) プト 震 震                                     | 用・ジ概断断・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ | . ク. 果果               | ト~<br>(上<br>(上               | 、<br>の<br><br>層<br>層<br>                       | ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・                                                                                           | ・・・・<br>・・・・<br>と来<br>フラ  | <br><br><br>ンジ       | <br><br>; <b>効</b> !<br>          |                                        | <br><br>· 慮)     | · · · · · · · · · · · · · · · · · · · | · · · · · · · · · · · · · · · · · · · | · · · · · · · · · · · · · · · · · · · | · · · · · · · · · · · · · · · · · · · | 109<br>110<br>110<br>112<br>116<br>118        |
| 第<br>6.1<br>6.2<br>6<br>6.3<br>第 | 6 章<br>は既<br>5.2.1<br>5.2.2 ま<br>7 章      | じ設 とれること とう とう とう とう とう とう とう とう しんしょう たん ふうしょう しょうしょう しょうしょう しょう しょう しょう しょう しょう し                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 設橋ジ後後・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ | へ…良ク耐耐                          | ) ・ プト 震 震 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ | 用・ジ概断断・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ | ク                     | ト~<br>(上<br>(上               | 、<br>の<br>…<br>層<br>層<br>…<br>…                | ・<br>・<br>・<br>・<br>り<br>り<br>・<br>・<br>・<br>・<br>・<br>・<br>・<br>い<br>い<br>い<br>い<br>い<br>い<br>い<br>い<br>い<br>い<br>い<br>い<br>い | ・・・・<br>住来<br>フラ<br>・・・・  | <br>評<br>ンジ          | <br>i)<br>; 効!                    | ····<br>····<br>果考                     | <br><br>· 慮)     | ·····<br>·····                        | · · · · · · · · · · · · · · · · · · · | · · · · ·<br>· · · · ·<br>· · · ·     |                                       | 109<br>110<br>112<br>112<br>116<br>118        |
| 第 6.1<br>6.2<br>6.3<br>第 <u></u> | 6章<br>は既<br>5.2.1<br>5.2.2 ま<br>7章        | じ設 と 結務に架口床床 論                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 設橋ジ後後・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ | へ…良ク耐耐                          | ) ・ プト 震 震 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ | 用・ジ概断断・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ |                       | 、、、、<br>、、、、、<br>(上<br>、、、、、 | ・<br>の<br>…<br>層<br>層<br>…<br>…<br>に<br>は<br>は | ・<br>・<br>・<br>・<br>・<br>・<br>・<br>・<br>・<br>・<br>・<br>・<br>・<br>・                                                             | ・・・・<br>を来て<br>シラ         | ·····<br>評ン<br>····· | <br>i)<br>; 効!                    | · · · ·<br>· · · ·<br>· · · ·<br>· · · | <br>·            | · · · · · · · · · · · · · · · · · · · | · · · · · · · · · · · · · · · · · · · | ·····<br>·····                        |                                       | 109<br>110<br>110<br>112<br>116<br>118<br>119 |

| 謝辞 |  | ••• | • • |  |  |  | • • |  | • • |  |  |  |  |  | • |  | • • |  |  |  |  | • • | • |  | • |  |  | • |  |  |  |  |  |  | • |  | • • | • |  |  | • | • |  |  | • • |  | • • | • • |  | • • | 1 | 12 | 24 | ŀ |
|----|--|-----|-----|--|--|--|-----|--|-----|--|--|--|--|--|---|--|-----|--|--|--|--|-----|---|--|---|--|--|---|--|--|--|--|--|--|---|--|-----|---|--|--|---|---|--|--|-----|--|-----|-----|--|-----|---|----|----|---|
|----|--|-----|-----|--|--|--|-----|--|-----|--|--|--|--|--|---|--|-----|--|--|--|--|-----|---|--|---|--|--|---|--|--|--|--|--|--|---|--|-----|---|--|--|---|---|--|--|-----|--|-----|-----|--|-----|---|----|----|---|

研究業績一覧

#### 第1章 序論

#### 1.1 はじめに

世界有数の地震国である日本において、鉄筋コンクリート(以下、「RC」という)構造物の耐震設計は非常に重要である。昭和 53年の宮城県沖地震において、 当時建設中の東北新幹線構造物、特に RC はりや柱のせん断耐力不足による損傷 やじん性のない鋳鉄支承の損傷が多数発生したことから、「建造物設計標準 鉄筋コンクリート構造物および無筋コンクリート構造物」は宮城県沖地震の地震力 を考慮したじん性設計を採用した内容に改訂された<sup>1)</sup>。

その後平成7年の兵庫県南部地震の発生により、山陽新幹線の高架橋が多数落橋するという大きな被害が生じた。これらは上記の建造物設計標準改訂前に設計 されたものであったとはいえ、本地震の地震力がそれまで想定していた以上であ ったことから、最大地震力をこれまで以上としたうえで、かつ構造物全体を非線 形部材として一体モデル化して解析する手法を取り入れた「鉄道構造物等設計標 準・同解説(耐震設計)」(以下、「耐震標準」という)が刊行された<sup>2)</sup>。その後平 成23年に発生した東北地方太平洋沖地震などを踏まえた若干の改訂はあるが、 基本的にはこの耐震標準の設計方法が踏襲され、新設構造物の設計がなされてい る。

しかし、既設構造物については、兵庫県南部地震での落橋事象から耐震補強の 必要性が重要視されたものの、新たな耐震標準に完全に準拠するように補強する ことは極めて困難である。そのため、国の通達等では「高架橋を支える柱・橋脚 を耐震補強する」ことに力点を置いた耐震補強になっている。しかしながら、そ れでも既設構造物の中には耐震補強が容易でない構造形式が存在する。その一例 が本研究にて焦点をあてている**T**形断面、箱形断面を有する RC 構造物である。

一方、兵庫県南部地震、東北地方太平洋沖地震など、これまでの地震では RC ラーメン高架橋の柱部材やスラブを有しない中層はりは損傷を受けているが、ス ラブを有する上層はりの損傷は発生していない。仮にこれらの構造物を耐震診断 した場合、せん断破壊先行型と判定される可能性が十分あるにもかかわらずこの ような結果になっているのは、T 形断面はりのせん断耐力が過小評価されている ためであると考えられる。

本章は、T 形断面、箱形断面を有する RC 部材のせん断耐力に関する研究の現 状および鉄道 RC 構造物の耐震設計・耐震補強の現状を整理し、研究の必要性お よび検討の方向性を取りまとめたものである。

-1-

#### 1.2 研究の背景

1.2.1 T 形 断 面 お よ び 箱 形 断 面 を 有 す る RC 部 材 の せ ん 断 耐 力 算 定 方 法 の 現 状

#### 1.2.1.1 RC 部材せん断耐力算定方法の変遷

RC 部材のせん断耐力算定方法は、昭和 6 年に制定されたコンクリート標準示 方書 <sup>3)</sup>において、

「桁に於ける剪應力は次式に依りて計算すべし。

$$\tau = \frac{S}{b_0 \, jd} = \frac{S}{b_0 z}$$

茲に S は 桁 斷 面 の 剪 力 、 b<sub>0</sub> は 桁 斷 面 腹 部 の 幅 、 z = jd は 全 壓 應 力 の 作 用 點 よ り 抗 張 鐵 筋 斷 面 の 重 心 迄 の 距 離 と す 。」

と記載されている。日本でコンクリートのせん断耐力算定式が制定された時点から、せん断耐力の算定においては「ウェブの幅」のみを有効とする規定がされていた。

この考え方は現在に至るまで踏襲されており、最近のコンクリート標準示方書 4)においては、「部材の腹部幅のとり方」として、

「円形断面以外で部材高さ方向に腹部の幅が変化している場合は、その有効高さ dの範囲での最小幅を b<sub>w</sub>とする。」

とあり、b<sub>w</sub>の取り方として以下の図が示されている。



図 1-2-1 コンクリート標準示方書における bwの考え方<sup>4)</sup>

図 1-2-1 に示されるように、T 形断面、箱形断面の RC 部材においては、その ウェブの幅(箱形断面の場合は各ウェブの幅の合計)のみをせん断耐力算定時の 幅として考慮することが明記されている。そのため、フランジ部の有無はせん断 耐力に一切影響しない(引張鉄筋のみ考慮)こととなっている。

### 1.2.1.2 T 形断面および箱形断面を有する RC 部材のせん断耐力および耐震性能 に関する既往の研究

T 形断面を有する RC 部材のせん断耐力に関する研究は、床スラブを有するは りが多く用いられる建築部門で主に研究が進められてきた。一方、土木分野では、 兵庫県南部地震以降、既設ラーメン高架橋の耐震診断が進められ、その際にビー ムスラブ式ラーメン高架橋のはり部材のせん断耐力について、本来の性能を明ら かにする必要が生じてきた。それ以降より、建築分野より遅れて研究が進められ てきた。

箱形断面を有する RC 部材については、土木のプレストレストコンクリート(以下、「PC」という)桁において箱形断面が多用されてきたにも関わらず、せん断耐力の研究はそれほど進んでいない。その要因としては、箱形断面 PC 桁においては、ウェブ幅は PC 鋼材の配置により必要幅が決定する場合が多いこと、曲げひび割れを発生させないように PC 鋼材を偏心配置させるため桁高が大きくなり、せん断耐力には余裕があること、その 2 つが考えられる。そのため、フランジ(上スラブ、下スラブ)を考慮したせん断耐力算定の必要性があまりなかったことによるものと考えられる。一方、桁式高架橋で時折用いられる中空式 RC 橋脚については、こちらも兵庫県南部地震以降、耐震診断・せん断補強設計におけるせん断耐力の把握や新設設計における耐震性能評価が必要となり、最近ではいくつかの研究事例が見られるようになった。

以下にこれまでに行われた T 形断面および箱形断面を有する RC 部材のせん断耐力・耐震性能に関する研究事例を示す。

(1) 大久保らの研究<sup>5)</sup>

大久保らは、これまでの T 形断面 RC はりのせん断耐力に関する既往の 研究がフランジ幅の小さいものであったこと、集中荷重の単調載荷で行わ れていたことに着目し、実際の部材・載荷状況に近づけるために、フラン ジ幅を広くとった T 形断面 RC はりについて、逆対称モーメントが発生す る載荷状況で正負交番載荷を行っている。



図 1-2-2 大久保らの研究における試験体形状 <sup>5)</sup>

この実験では、試験体の多くがせん断破壊をしているが、フランジ付近部は軸直交方向のひび割れが発生した程度で、多くはウェブ部もしくは材

端部のコンクリートの圧壊によるせん断破壊となった。また、せん断ひび 割れ発生強度は計算値と同程度となりフランジの効果が表れていないが、 せん断終局強度についてはフランジを無視した場合の計算値より 2 割程度 大きくなっており、T 形断面のフランジの効果が確認されている。一方、正 負交番載荷を行った影響もあり、軸方向鉄筋部の付着割裂ひび割れが発生 した状況であったため、フランジの効果についてはさらなる研究が必要で あると結論付けている。

#### (2) 狩野・水出の研究<sup>6)</sup>

狩野・水出は圧縮側、引張側それぞれのフランジがせん断耐力に及ぼす 影響を確認するため、せん断スパン比を一定とし、フランジ厚・フランジ 幅・フランジの位置(圧縮側、引張側)をパラメータにして単調載荷実験 を行っている。



図 1-2-3 狩野・水出の研究における試験体形状<sup>6)</sup>

実験の結果、フランジ部分は全体的に斜めひび割れが発生して破壊した 形式や、フランジ部に斜めひび割れは観察されなかったが載荷点付近で下 からのひび割れの貫通を示す盛り上がりが観察される破壊形式があったと している。せん断ひび割れ発生荷重は、圧縮フランジの幅はほぼ影響がな いが、厚さはわずかに影響しているとしている。一方引張フランジについ ては、せん断ひび割れ発生荷重が増大したとしている。せん断耐力の増加 については、圧縮側フランジの配置により大幅にせん断耐力が増加するも のの、幅、厚さともわずかの増加によりそのせん断耐力の増分は上限に達 する結果となっている。その結果より、フランジの有効厚さは有効高さ d の 0.15~0.2 倍、有効幅は片側あたりフランジ厚さ t の 1 ~ 1.5 倍かつ有効 高さ d の 0.2~0.25 倍であるとした。一方引張側にフランジを配置した場合 もせん断耐力の増加は見られたが、その効果は少なかったとしている。

#### (3) 狩野・岩崎の研究<sup>7)</sup>

(2)の研究に引き続き、せん断スパン比が T 形断面 RC はりのせん断耐力



図 1-2-4 狩野・岩崎の研究における試験体形状<sup>7)</sup>

に及ぼす影響を検討している。本実験でも、単調載荷で実験を行っている。 実験では、せん断ひび割れ発生荷重については、前報である(2)の研究と 同様に、圧縮フランジについては影響が少ないものの、引張フランジにつ いてはせん断ひび割れ発生荷重の増加がみられている。せん断耐力に関し ては、せん断スペン比の小さい T 形断面 RC はりにおいては矩形断面 RC は りの場合とのせん断耐力の差が大きくはなかったものの、せん断スペン比 が大きくなるに従い T 形断面 RC はりにおいてはその差が大きくなってい る。一方、逆 T 形断面 RC はりにおいては、せん断耐力の増分が、せん断 オペン比が大きくなるに従いむしろ減少する傾向にあった。また、せん断 耐力の算定について、既往の式を用い前述(2)の有効フランジ厚、有効フラ ンジ幅を持つ T 形断面と等断面積となる長方形断面のせん断耐力を算出し て実験値と比較している。その結果、従来の方法より実せん断耐力に近い 値を推定できるものの、全体的にはせん断耐力の実験値を依然として過小 評価する傾向となっており、せん断耐力の正確な把握は課題として残って いる。

(4) 松崎らの研究<sup>8)</sup>

松崎らは、床スラブと一体となった RC 造はりのせん断耐力算定を目的と して、フランジの幅、厚さ、せん断スパン比、ウェブのせん断補強鉄筋量 をパラメータとした実験を行った。載荷は逆対称曲げモーメントを生ずる



図 1-2-5 松崎らの研究における試験体断面図 <sup>8)</sup>

一方向載荷としている。

実験の結果、せん断ひび割れ発生荷重は、フランジの幅や厚さの影響を 受けず、矩形断面と同程度となっている。破壊形態は大きく分けて 5 パタ ーンとなった。①T形断面下の支点付近から発生した斜めひび割れがフラン ジ下に到達した後、ウェブ・フランジ界面を軸方向に進展、②T形断面上の 支点直下のフランジ・ウェブ界面から発生した斜めひび割れが T 形断面下 部に達し、軸方向鉄筋に沿ったひび割れとなって進展、③支点間で斜めひ び割れが発生し、それぞれウェブ・フランジ界面および軸方向鉄筋位置で 軸方向に進展、④上下支点を結ぶ斜めひび割れ発生、⑤T形断面上の支点直 下のフランジ・ウェブ界面から発生した斜めひび割れが下面に抜ける、の 5 パターンである。④の破壊形態はせん断スパン比の小さい試験体のみで見 られ、その他の破壊形態はせん断スパン比が中程度以上の試験体で生じて いる。



図 1-2-6 松崎らの研究におけるひび割れパターン<sup>8)</sup>

一方、せん断耐力については、フランジの効果のばらつきが本実験では 大きく、せん断補強鉄筋が多い試験体ではフランジの効果が小さくなって いく傾向にあった。この結果から、フランジの効果はコンクリートが負担 するせん断耐力に対して作用することが示唆されていると言える。

(5) 田中・大内の研究<sup>9)</sup>

田中・大内は吊り橋や斜張橋などの長大橋りょうの主塔に経済的で有利 な RC 主塔が採用される傾向があり、この場合には中空断面の採用が想定さ れるが、高軸力、軽量コンクリートの採用、高強度鉄筋の使用など、未解 明な部分が多々あるとして、中空断面 RC 部材のせん断実験を行った。

実験の結果、高強度帯鉄筋を用いた場合、あるいは骨材径を小さくした場合にせん断耐力が小さくなる傾向があったが、すべてのケースで土木学

会のせん断耐力算定方法による計算値を実験値は上回ったことから、本実 験でも箱形断面 RC 部材のせん断耐力について適切な算定法が必要である ことが示唆されている。本実験ではフランジの大きさなどをパラメータと した実験は行っていないため、せん断耐力算定法については特に言及され ていない。



図 1-2-7 田中・大内の研究における試験体断面図 <sup>9)</sup>

(6) 岡本らの研究<sup>10)</sup>

岡本らは、ラーメン高架橋の上層はりや T 形 RC 桁のせん断耐力算定に あたり、圧縮フランジ部分の影響を検討するため、T 形断面 RC はりのせん 断試験を行った。パラメータはフランジ幅 b<sub>f</sub>とウェブ幅 b<sub>w</sub>の比 b<sub>f</sub>/b<sub>w</sub>、全断 面積 A と圧縮縁フランジを無視した矩形部分の断面積 A<sub>r</sub>の比 A/A<sub>r</sub>、せん断 スパン比 a/d である。

実験の結果、せん断ひび割れ発生荷重はフランジの幅、全断面積、せん 断スパン比とも影響がみられていない。一方、せん断耐力については、フ ランジ幅や全断面積が大きくなるに従い、せん断耐力の増加がみられてお り、せん断スパン比が 3.25 以上の場合にはその数値は計算値の 20~40%と している。一方、せん断スパン比が小さくなるに従いせん断耐力の計算値 からの増加が顕著となり、せん断スパン比が 2.5 の場合にはせん断耐力は計 算値の 2~3 倍にも達している。そのため、本研究では T 形断面 RC 部材の せん断耐力向上の要因として、圧縮側フランジは擬似的にせん断スパン比 が小さくなるような働きを示し、アーチ作用によるせん断耐力の寄与分を 増大させていると推定している。

(7) 岡本らの研究 <sup>11)</sup>

岡本らは、(6)の研究にて T 形断面 RC 部材のせん断耐力向上の要因として、圧縮フランジ部の存在は疑似的にせん断スパン比が小さくなる働きをし、アーチ作用によりせん断耐力が向上するという推定をしたが、この場

合、せん断補強鉄筋の降伏に至らない可能性があると想定し、T形断面 RC 部材においてトラス理論に基づくせん断補強筋の負担するせん断耐力 V<sub>s</sub>が 適用可能かどうかを検証した。

実験の結果、本実験においても現行のせん断耐力算定式 4)による計算値は 実際のせん断耐力を過小評価する傾向にあった。本実験においてはせん断 補強鉄筋の有無のみをパラメータとした対称試験体についてせん断試験を しており、その結果からコンクリートの負担するせん断耐力 V<sub>e</sub>のみならず、 せん断補強鉄筋の負担するせん断耐力 V<sub>s</sub>もフランジの存在により計算値よ り増加する傾向がみられている。また、せん断耐力算定手法として、フラ ンジの張出し部分の圧縮域コンクリートでの応力伝達により発揮されるせ ん断力を付加する手法を提案している。この手法で比較的実際のせん断耐 力を評価できているものの、フランジ幅の広い試験体についてはせん断耐 力を過大評価する結果となっており、フランジの有効幅についての検討が 課題として残っている。

#### (8) 岡本らの研究<sup>12)</sup>

鉄道構造物には丸鋼を用いた RC 構造物が多数残存しており、そのせん断 耐荷特性を明らかにするため、岡本らは軸方向鉄筋に丸鋼を有する T 形断 面 RC 部材のせん断試験を行っている。実験は、矩形試験体と、T 形断面試 験体としてフランジ幅をウェブ幅の 3 倍としたものと、さらにフランジ幅 がその 2 倍程度のものとし、載荷は地震時を想定し逆対称曲げモーメント を生ずる状況としている。



図 1-2-8 岡本らの研究における試験体断面図 <sup>12)</sup>

実験の結果、矩形およびフランジ幅をウェブ幅の 3 倍とした試験体はぜい性的なせん断破壊を生じたのに対し、フランジ幅を大きくした試験体においては、せん断ひび割れがスラブ側面まで貫通せず、図 1-2-9 に示すように載荷点近傍でスラブを押抜くような形で部分的に貫通し、荷重の低下が緩やかであった。破壊時のせん断耐力は(7)の研究で提案した計算値よりも



図 1-2-9 フランジ幅の広い試験体のフランジ破壊状況 12)

更に大きくなっている。この影響として、(7)の研究では圧縮フランジの効 果を考慮したせん断耐力算定式を提案しているが、(8)の研究が逆対称曲げ モーメントが発生する状況での試験であったため、フランジが引張側に配 置される負曲げ側のせん断耐力に対するフランジの影響を評価できていな いことが要因であると推定している。

#### (9) 黒川らの研究<sup>13)</sup>

黒川らは鉄道構造物で一般的に用いられているビームスラブ式 RC ラー メン高架橋の上層はり、中層はりの地震時せん断耐力を適切に評価するこ とを目的とし、実在する RC ラーメン高架橋の上層はりと中層はりを 1/2 に 縮小した T 形断面試験体を作成し、逆対称モーメントの発生する状況でせ ん断試験を行っている。上層はりと中層はりではフランジの厚さが異なっ ており、これが本試験でのパラメータとなっている。

実験の結果、フランジの効果によりせん断耐力はウェブのみを有効とした計算値より大きくなっている。フランジの厚さの影響については、せん断補強鉄筋比が上層はりを縮小した試験体で 0.11%であったものが中層はりを縮小した試験体では 0.14%に増加し、ウェブのみを有効とした場合にはせん断耐力が増加する結果となるべきところ、中層はりを縮小した試験体の方がせん断耐力の実験値が小さくなる結果となった。これは、上層はりの縮小試験体のフランジ厚さが 140mm で、はり高さの 35%であるのに対し、中層はりの縮小試験体のフランジ厚さが 75mm と、はり高さの 19%と薄くなっていることに起因していると考えられている。

また、逆対称曲げモーメントを負荷して実験をした結果、いずれも圧縮 側にフランジを持つ断面側で破壊している。このことから、引張側にフラ ンジがある場合の方がせん断耐力の向上が大きいと推定されている。

#### (10) 中村らの研究<sup>14)</sup>

中村らは、既往の研究で T 形断面 RC 部材のフランジ部のせん断耐力へ の寄与が斜めひび割れ発生以降のアーチ機構と関係があるとの結果を得た 観点から、アーチ機構が負担するせん断抵抗を求めることを目的として、 せん断スパン比、せん断補強鉄筋比をパラメータとした T 形断面 RC はりの一方向載荷試験によるせん断実験を行った。

この実験では、すべての試験体においてせん断補強鉄筋の降伏が認めら れたことから、すべての試験体はせん断破壊をしたと判断している。破壊 形態はすべてフランジ全幅に渡ってひび割れが貫通する破壊形態となって いる。せん断耐力はフランジを無視した場合の計算値を上回っており、特 にせん断スパン比の小さい領域において顕著になっている。また、本研究 では支点上の軸方向鉄筋ひずみからアーチ機構によるせん断抵抗を算定し、 ビーム機構とアーチ機構のせん断抵抗の分担を検討している。その結果、T 形断面 RC 部材では矩形断面 RC 部材に比べ最大荷重時にアーチ機構が負担 するせん断抵抗が大きくなる傾向がみられ、またせん断スパン比が小さく なる場合にその傾向が顕著になるとしている。

#### (11) Placas・Reganの研究<sup>15)</sup>

Placas・Reganは、RC はりのせん断破壊は最終的には圧縮域コンクリートの強度に部材のせん断破壊モードが支配されるため、十分なせん断補強鉄筋があれば、部材強度は曲げ、せん断、せん断圧縮、ウェブ圧壊のいずれかで破壊モードが決定するとし、63 体の矩形断面、T 形断面、I 形断面 RC はりの破壊実験を行っている。T 形断面はりのせん断耐力算定式を提案 しているが、せん断ひび割れがフランジまで達した時点で応力再配分され るため、コンクリートが負担するせん断耐力はフランジ有効断面とコンク リート強度から定まる式にて求められるとしている。また、フランジの有 効幅の範囲は実験の結果 15.24cm としている。T 形断面はりは 38 体の実験 が行われており、曲げ破壊をした試験体 1 体を除いた 37 体の実験値を提案 式による計算値で除した値の平均値は 0.91、変動係数は 7.7%という結果を 得ている。

#### (12) Pansuk · Satoの研究<sup>16)</sup>

Pansuk・Sato は、T形断面 RC はりの上フランジがせん断抵抗メカニズ ムにどのように寄与するかを明確化するため、矩形および T 形断面 RC は りについて実験および解析を行い、耐荷機構、スターラップやフランジの 応力分布などについて考察を行っている。

スターラップを有する T 形断面 RC はりにおいては、ウェブに発生する 斜めひび割れがフランジ下面に到達、水平ひび割れを形成することで、せ ん断耐荷機構がビーム機構からアーチ機構へ移行することを、解析および 実験から確認している。また、そのような T 形断面 RC はりのせん断耐力 は圧縮ストラットの耐力により定まり、かつフランジの存在によりストラ ット頂部ではフランジの拘束による圧縮強度の増加があるものの、フランジ幅の効果は限定的であることを確認している。また、フランジの応力分 布は図 1-2-10 に示すように一様でなく、フランジ有効幅を考える場合、こ の分布状況を応力分布とともに平均化することを提案している。



図 1-2-10 フランジの応力分布状態 16)

(13) 井上らの研究<sup>17)</sup>

井上らは、中空断面橋脚の耐震性能を明らかにするための基礎的研究と して、中実断面と中空断面の RC 部材の正負交番載荷実験を行い、中空断面 特有の問題を明らかにする研究を行った。パラメータは、上記の断面の相 違とせん断スパン比である。また、比較のために中空断面のみ一方向単調 載荷実験も行っている。

一方向単調載荷実験ではせん断スパン比を変えた試験体すべてで曲げ破壊したにもかかわらず、同一パラメータの試験体で正負交番載荷実験を行った結果は全て曲げ降伏後のせん断破壊となった。また、スターラップのひずみ履歴によると、繰返し載荷履歴と共にスターラップのひずみは増加し、コンクリートの負担するせん断耐力 V<sub>cd</sub>とせん断補強鉄筋の負担するせ



図 1-2-11 井上らの研究における試験体断面図 <sup>17)</sup>

ん断耐力 V<sub>sd</sub>の和に達する以前に、スターラップのひずみが降伏ひずみに達していた。このことより、正負交番載荷によってコンクリートの負担する せん断耐力が低下していることが示されたが、これは中空断面の RC 部材に 限らず、中実断面の RC 部材でも同様の挙動となっていた。よって、この実 験では中空断面 RC 部材の耐震性能が著しく低いというところまでは検証 されていない。

#### (14) 田中らの研究 <sup>18)</sup>

田中らは、中空断面 RC 橋脚の変形性能と耐荷力について検討するため、 せん断補強鉄筋比、せん断スパン比、中間補強筋の有無をパラメータとし た中空断面 RC 部材の正負交番載荷実験を行っている。



図 1-2-12 田中らの研究における試験体断面図 <sup>18)</sup>

本研究では、せん断スパン比の大きい試験体では曲げ破壊をしたのに対 し、せん断スパン比の小さい試験体ではせん断破壊をしている。また、曲 げ破壊をした試験体においても、荷重が脆性的に低下したことから、中空 断面 RC 部材ではウェブ部が薄い部材となっている影響で耐震性能が低下 することを指摘している。このことはひび割れ発生状況に関し、曲げが卓 越する部材であっても薄いウェブ部分にはせん断ひび割れが発生していた という状況より、中空断面 RC 柱の耐震性能が低くなる傾向がみられている と結論付けている。

(15) 湯川らの研究<sup>19)</sup>

湯川らは、実橋で高さ 30~40mの高橋脚が増加し箱形断面橋脚の使用が 増加する中、横拘束筋の配置量およびその加工形状が箱形断面橋脚の耐震 性能に及ぼす影響について、実験的に研究を行っている。帯鉄筋量、中間 帯鉄筋量、中間帯鉄筋の端部形状、せん断スパン比などをパラメータとし、 正負交番載荷実験を行っている。

実験の結果、一般的な箱形断面RC橋脚は優れたじん性を有していること



図 1-2-13 湯川らの研究における試験体断面図 <sup>19)</sup>

が判明している。中間帯鉄筋については、帯鉄筋比を増加させる際には、 帯鉄筋間隔を密にするよりも断面内の中間帯鉄筋間隔を密にする方がじん 性向上に有効であること、中間帯鉄筋の加工形状についてはじん性に大き な影響を及ぼさないことが明らかになっている。一方、耐力比とじん性率 の関係については、中実断面 RC 部材と中空断面 RC 部材で相違が出ており、 同一耐力比の場合で中空断面 RC 部材の方が中実断面 RC 部材よりじん性率 が大きい結果が得られている。すなわち、これは中空断面 RC 部材のせん断 耐力を過小評価している可能性を示唆するものと考えられる。



図 1-2-14 中実断面と中空断面のじん性率と耐力比の関係<sup>19)</sup>

#### (16) ハッ元らの研究<sup>20)</sup>

高橋脚で用いられる中空断面 RC 部材では、壁厚比が小さいものが用いら れる場合もある。この場合、地震時に高軸力下での交番荷重を受けること になるが、これは地震時に塑性ヒンジを考慮する部材として好ましくない 方向である。また、中空断面 RC 部材の地震時損傷特性に関し、外面側と中 空の内面側での比較は行われていなかった。そこで八ツ元らは、壁厚比の 小さい試験体について、軸方向応力度を 2 パターン(低軸力: 1N/mm<sup>2</sup>、高 軸力: 4.4N/mm<sup>2</sup>) に分けた正負交番載荷実験を行い、軸方向応力度の違い が中空断面 RC 橋脚の耐震性能に及ぼす影響を検証した。



図 1-2-15 ハツ元らの研究における試験体断面 20)

実験の結果、中空断面の外面側と内面側では、かぶりコンクリートの剥落は外面側が先行して発生すること、中間帯鉄筋の開きは内面側のみで発生するため、損傷の程度は内面側の方が大きくなる結果となった。これは、 中間帯鉄筋の内面側が直角フック、外面側が鋭角フックと使い分けられていたことに起因する。また、軸方向応力度の相違が中空断面 RC 部材の耐震性能に与える影響としては、本実験では低軸圧縮応力度の試験体がウェブ面のせん断ひび割れに起因する損傷が支配的であったのに対し、高軸圧縮応力度の試験体ではフランジ面でのコンクリートの圧縮破壊が支配的となり、軸圧縮応力度の影響が大きいことが示唆された。

#### (17) 篠原らの研究<sup>21)</sup>

(16)の研究において、壁厚比が小さく軸圧縮応力度の大きい中空断面 RC 部材においては、圧縮側フランジの圧縮破壊により軸耐荷力を失うという 致命的な損傷が生じるという問題が明確となった。そのため、篠原らはこ の問題を解決するため、軸方向鉄筋比を小さくして曲げせん断耐力比を大 きくすること、内面のかぶりコンクリートを増し厚すること、軸圧縮応力 度を低減することにより地震時破壊特性の改善を図ることについて、正負 交番載荷実験により検討を行った。



図 1-2-16 篠原らの研究における試験体断面 21)

実験の結果、軸方向鉄筋比を小さくし、軸方向応力度をやや小さくする ことで、外面のかぶりコンクリートの剥落と同時に内面のかぶりコンクリ ートも剥落することは防止され、これにより変形性能を向上させる可能性 が確認された。一方、内面かぶりコンクリートの増し厚については、変形 性能向上の効果は見られたものの、最終的には外面かぶりコンクリートの 剥落と同時に内面かぶりコンクリートの剥落が生じ、急激な荷重低下が生 じた。このため、内面かぶりコンクリートの増し厚という対策を実施する にあたっては、軸方向鉄筋のはらみ出しによる内面コンクリートの剥落を 抑えるための配筋等の配慮が必要であると結論付けている。

#### 1.2.1.3 既往の研究に関するまとめ

既往の研究から、以下のことが明らかとなった

- T形断面 RC 部材および箱形断面 RC 部材のせん断耐力は、ウェブ部のみを有効幅とする既往のせん断耐力算定方法により算出されるせん断耐力の計算値を上回る。
- 一方、T形断面 RC 部材のせん断ひび割れ発生荷重については、圧縮側にフランジがある場合は矩形断面 RC 部材の実験と比較すると大差がない。一方、引張側にフランジがある場合には、T 形断面 RC 部材のせん断ひび割れ荷重は矩形 RC 部材より大きくなる((1)、(2)、(3)、(4)、(6))。

これは、引張側にフランジがある場合、フランジにも軸方向に鉄筋があり引 張鉄筋比が増加していることが要因と推定される。

- ・耐力比を基準に箱形断面 RC 部材の変形性能を考えると、中実断面 RC 部材より中空断面 RC 部材の方が、じん性率が大きい結果が得られている。((15)) これは、中空断面 RC 部材のせん断耐力の計算値が実際のせん断耐力より小さく、そのためせん断耐力比が過小評価されているためであると推定される。
- T形断面 RC 部材の破壊形態としては、フランジ部全体をひび割れが貫通する 破壊形態が多いが、フランジ幅が広い場合にはフランジを部分的に押抜くよ うな破壊をする形態も存在する。((2)、(8))
- ・T形断面 RC 部材のせん断耐力算定方法がいくつか提案されているが、せん断 スパン比やフランジ幅などの条件により精度が低下するなど、決定的な手法 は現時点で提案されていない。これは、上記の「フランジを部分的に押抜く」 ような破壊形態も存在することが考慮されていないことも一因であると想定 される。

#### 1.2.2 鉄道 RC構造物の耐震設計、耐震補強の現状

#### 1.2.2.1 既存の鉄道構造物に係る耐震補強の緊急措置について

平成7年1月に発生した兵庫県南部地震による被害状況を鑑み、運輸省鉄道局 (当時)は鉄道施設耐震構造検討委員会が策定した「既存の鉄道構造物に係る耐 震補強の緊急措置について」および「鉄道新設構造物の耐震設計の係る当面の措 置について」を各鉄道事業者に通知、兵庫県南部地震で大きく被災した RC 構造 物の緊急耐震補強と新設構造物の当面の耐震設計法について対応を指示した。こ の措置の主旨は以下の通りである。

- ・ 緊急耐震補強の対象とする構造物は、①ラーメン高架橋およびラーメン橋台 (RC 柱)、②開削トンネル(RC 中柱)、③橋りょう、高架橋(落橋防止工) とする。
- ・ 緊急耐震補強の対象線区は、新幹線(南関東地域、仙台地域および活断層に

近接した地域)、在来線(南関東地域、仙台地域内のピーク1時間片道列車本数10本以上の線区)

- ・緊急耐震補強の実施期間は、新幹線概ね3年(平成10年度)、在来線概ね5
  年(平成12年度)とする。
- ・鉄道新設構造物の耐震設計の係る当面の措置として、原則として「阪神・淡路大震災に伴う鉄道復旧構造物の設計に関する特別仕様」を準用する。

つまり、この時点では耐震補強はせん断耐力比の小さい RC の柱部材の補強お よび桁の落橋防止工が対象であり、兵庫県南部地震の被災状況に応じた、重点化 された耐震対策であった。この際に耐震補強が必要な構造物の診断は、設計図書 から部材の曲げ耐力 M<sub>ud</sub>、せん断耐力 V<sub>yd</sub>を算定し、部材が曲げ破壊に達すると きのせん断力 V<sub>mu</sub> = M<sub>ud</sub>/a (a:せん断スパン)とせん断耐力 V<sub>yd</sub>を比較し、

 $\gamma_i \cdot V_{mu} / V_{vd} > 1.0$ 

(1.1)

ここで、

*y<sub>i</sub>*:構造物係数で、一般に*y<sub>i</sub>*=1.0

となる場合には「せん断破壊先行部材」として耐震補強の対象としている。つま り、この耐震診断の際には、部材のせん断耐力 *V<sub>yd</sub>* を適切に評価することが重要 である。すなわち、*V<sub>yd</sub>*を過大評価した場合には地震時せん断破壊を誘発するため、 これはあってはならない状況となる。一方、*V<sub>yd</sub>*を著しく過小評価した場合、せん 断破壊先行型となる部材が多くなり、耐震補強箇所が増大し、鉄道事業者の負担 が無駄に大きくなることになる。ただし、この緊急耐震補強時点では、RC ラー メン高架橋や RC ラーメン橋台、開削トンネルの RC 中柱が対象であったため、 部材形状はあまり複雑なものではなく、適切な耐震診断が実施されていたと考え られる。

#### 1.2.2.2 鉄道構造物等設計標準(耐震設計)<sup>2)</sup>

平成 12 年 4 月には、耐震標準が制定され、兵庫県南部地震の被災状況を考慮 した新たな設計方法が提案された。従来の設計基準からの大きな変更点としては、 以下のようなものがあげられる

- ・ 地震動を2段階(L1地震動、L2地震動)とし、またL2地震動については兵庫県南部地震を考慮した内陸型地震と従来の海洋型地震の2種類の地震動を 考慮することとした。
- ・必要に応じ鋼材の材料修正係数を考慮し、せん断破壊先行を防ぐ設計とした (ρ<sub>m</sub> = 1.2)。
- ・断面力算定にあたって構造系全体をモデル化し、応答スペクトル法により非 線形モデル化された構造系各部材が損傷の限界値に達しないことを確認する こととなった。

 L1 地震動では運行に支障のない損傷レベルを確保し、L2 地震動では構造物の 重要度により復旧が容易な程度の損傷に抑えるか、構造物が崩壊しない程度 の構造物とすることが求められた。

この改訂により、新たに設計する RC 構造物においては従来の構造物に比べて 部材寸法が大きくなったり鉄筋量が増加する状況となった。

#### 1.2.2.3 既存鉄道構造物に係る耐震補強の取扱いについて

平成 13 年 6 月に、新たな耐震設計基準が制定されたことを鑑みて、関東運輸 局より東日本旅客鉄道株式会社へ「既存鉄道構造物に係る耐震補強の取扱いにつ いて」が通知された。この中で、

「新しい耐震設計手法が確立された現在、耐震補強における耐震性能も原則とし て新設構造と同等に近づけるべきであるが、新設する場合と異なり、構造物全体 系としてこれと同等まで耐震性能レベルを引上げることは、施工性や経済性の観 点に照らして困難な場合が多いと考えられる。したがって、「鉄道構造物設計標準 (耐震設計)」を参考に施工性や経済性を考慮して実施する。」

として、耐震補強については新設構造物と同程度にするのは困難であるが、耐震標準を参考にして補強をすることが求められた。また、この通知において、耐震補強の範囲が緊急耐震補強より拡大し、緊急耐震補強対象のうち高架下利用などで未了であった箇所および RC 単柱式橋脚が追加された。

これを受け、東日本旅客鉄道株式会社では設計時点と比較して荷重が増加(= 地震時水平力が増加)する変更を加える、あるいは部材を追加して構造系が変化 するといった当初建設時の設計からの条件変更がない場合は従来通りの耐震補強 方針で補強を進め、荷重の増加や構造系変化がある場合には、耐震標準の考え方 で構造物を耐震診断し、必要と判断される耐震補強を行うこととした。この荷重・ 構造系変化のある場合の耐震診断・設計・補強の考え方はプロジェクトが検討さ れる毎に設計管理者の判断で検討をしてきたが、平成 17 年に統一的な指針を定 め<sup>22)</sup>、以降はこの指針に原則は基づき耐震診断・設計・補強を行っている(図 1-2-17 参照)。



#### 1.2.2.4 主な耐震補強方法と耐震補強設計法<sup>24)</sup>

兵庫県南部地震以降、RC 柱部材の耐震補強が進められた。緊急耐震補強が開 始された時点で技術が確立されていた耐震補強工法として、鋼板巻き立て工法、 炭素繊維シート巻き立て工法、RC 巻き立て工法などがあったが、この中では安 価で柱断面寸法の増加が比較的少ない鋼板巻き立て工法が主に採用された。その 後、高架下利用や盛土近接、河川内橋脚といった特殊条件下での耐震補強を円滑 に進めるため、RB (リブ・バー) 耐震補強工法 <sup>24)</sup>や RP (リブ・プレート) 耐震 補強工法 <sup>24)</sup>、一面耐震補強工法 <sup>24)</sup>、薄板多層巻き耐震補強工法 <sup>24)</sup>など様々な耐 震補強工法が開発された。これらの耐震補強工法の補強設計は、設計を簡略に行 うため、「せん断耐力比」による設計を基本としている。すなわち、部材の曲げ耐 力に達するときのせん断力 V<sub>mu</sub>と部材のせん断耐力と耐震補強工法によるせん断 耐力の和 V<sub>yd</sub>の比率が各工法で必要とする数字以上となるように設計するもので ある。参考に RB 耐震補強工法の耐震補強設計を例に挙げると、以下の式を満た す補強量を設定することとなる。

| $\gamma_i \cdot V_{ud} / V_{mu} \ge 1.5$ | (1.2) |
|------------------------------------------|-------|
| $V_{ud} = V_{cd} + V_{sd} + V_{RB}$      | (1.3) |
| $V_{mu} = M_u / a$                       | (1.4) |

- ここで、
  - *γ*: 構造物係数で 1.0 としてよい
  - V<sub>cd</sub>: 既設 RC 柱のせん断補強鋼材を用いない棒部材の設計せん断耐力で 鉄道構造物等設計標準(コンクリート構造)<sup>25)</sup>(以下、「コンクリー ト標準」という)により求める。なお、部材係数 γ<sub>b</sub>は 1.3 とする。
  - V<sub>sd</sub>: 既設 RC 柱に配筋されている帯鉄筋により受け持たれる棒部材の設計せん断耐力でコンクリート標準により求める。なお、部材係数 γ<sub>b</sub>は 1.1 とする。
  - V<sub>RB</sub>:新たに設置する補強鉄筋により受け持たれる設計せん断耐力で V<sub>sd</sub> と同様の方法で算出してよい。
  - *V*<sub>mu</sub>: 部材が曲げ耐力に達するときのせん断力
  - $M_u$ : 部材の曲げ耐力でコンクリート標準により算定する。なお、部材係数  $\gamma_b$ 、材料係数  $\gamma_c$ 、  $\gamma_s$ はすべて 1.0 とし、鋼材の降伏強度  $f_{sy}$ は、材料修正係数  $\rho_m$ を 1.2 として算定する。
  - a: せん断スパン

よって、適切な耐震補強を実施するためには、部材の補強前のせん断耐力を適切に算定する必要がある。

# 1.2.3 鉄道 RC構造物の耐震設計・補強における現状のせん断耐力算定方法の問題点

#### 1.2.3.1 RC ラーメン高架橋改修時のはり部材耐震診断

一般にビームスラブ式鉄道 RC ラーメン高架橋においては、非常に重量の大き い列車荷重をはり部材が支持しているため、設計時点でははり部材の軸方向鉄筋 量が列車荷重による破壊安全性で決定するケースが多い。そのため、地震時には 柱部材が先行降伏し塑性ヒンジが形成される。その結果、はり部材には柱部材塑 性ヒンジ部で負担する荷重から定まる以上の曲げモーメント・せん断力は発生し ないため、通常の耐震補強では柱部材のみじん性補強すれば、はり部材には大き な悪影響はないと判断し、補強を進めている。これは、「現状非悪化」の考え方で あると言える。

しかしながら、ラーメン高架橋の高架下利用、バリアフリー設備の追加、上部 へのビル建設などにより、高架橋に負荷される地震時水平力の増加や部材追加に よる構造系の変更は、構造系全体の耐震性能を低下させる可能性が高く、よって 現状より構造物に与える地震時影響が大きくなると判断される。そのため、この ような場合には、損傷レベルについては設計管理者の判断にて設定するものの、 基本的には最新の耐震標準を満足する構造系として照査することにしている<sup>22)</sup>。

設計時点と比較して増加した荷重や構造系の変化を考慮して耐震診断した場合、 ①柱の配筋量などにより実降伏震度が設計降伏震度より大きくなっている、②材 料修正係数の考慮により実降伏震度が設計降伏震度より大きくなる、③構造系変 化により当初考慮した断面力以上の断面力が作用する、などの理由により、はり に発生する断面力が大きくなる場合が多い。また、L2 地震力は兵庫県南部地震相 当を考慮するため、要求されるじん性能も大きくなっている。曲げモーメントに 対する照査は、前述の通り列車荷重で軸方向鉄筋量を決定していることから、補 強が不要となる場合がほとんどである。一方、せん断力に対する照査では、はり 部材であっても地震時で鉄筋量が決定するケースも多いため、診断の結果「せん 断耐力先行型部材」「L2 地震時の損傷レベル限界値不足=じん性能不足」とされ ることが多い。

この場合、所要のせん断耐力・じん性能を付与するためには、せん断補強鋼材 の配置が必要になる。しかしながら、上層はり、そして高架下を利用している箇 所の中層はりでは、はりにスラブが付加されているため、柱部材のような「鋼板 巻き立て補強」のような全周を取り囲む補強工法は採用できない(図 1-2-18 参照)。

柱部材の場合、支障物、例えば建築壁を有する柱部材の補強工法として「一面 耐震補強工法」が開発されている<sup>24)</sup>。この工法は、部材の1面でも露出している 面があれば、その面よりあと施工アンカーの要領で補強鋼材を挿入し、最後に露 出面に鋼板を設置してあと施工アンカーをボルト止めすることで、壁を撤去せず

-21-



図 1-2-18 鋼板巻き立て工法 24)

に耐震補強する工法である。この工法が適用可能であれば床スラブの存在を気に することなく施工が可能であるが、はりにおいてもっとも発生せん断力が大きく なる柱接合部付近にはハンチがつけられておりはりの軸方向鉄筋とハンチの軸方 向鉄筋双方が配置されることから、はり内部へのあと施工アンカーの施工はほぼ 不可能である。よって、本工法の適用は不可能と判断される(図 1-2-19)。



図 1-2-19 一面 耐 震 補 強 工 法 の 応 用

このような状況から、前田らははりの外側にせん断補強鉄筋を配置して、はり の側面もしくはスラブ内にあと施工アンカーでせん断補強鉄筋を定着する手法に ついて検討をしている(図 1-2-20)<sup>26)</sup>。本工法ははりの下に増し打ちコンクリー トの型枠支保工とするとともに、せん断補強鉄筋の下側の定着を機械的に確保す る役割のアーチ状の補強鋼材を配置しており、「アーチサポート工法」としてすで に適用事例も存在する。

本工法での問題点の一つははり外側に配置したせん断補強鋼材のはり上部側で の定着方法である。前述の通り前田らは①スラブ下で 90 度折り曲げはりの側面 へ定着、②スラブ内部に定着、の2種類を実験で確認している。実験の結果、全 体的に優れた変形性能を示したもの、①の定着方法の場合せん断補強鉄筋がスラ ブ手前までしか効果がないことから、スラブとウェブの境界面にひび割れが発生 したことから、補強効果が限定的であることが示されている。そのため、「アーチ



図 1-2-20 アーチサポートエ法<sup>26)</sup>

サポート工法」では②のスラブ内への直線定着が採用されている。しかしながら、 一般的なビームスラブ式ラーメン高架橋ではスラブの厚さは 250~300mm 程度 であり、かぶりやスラブ上筋の存在を考慮すると、あと施工アンカーの定着が可 能な長さは 180~230mm となる。あと施工アンカーの所要定着長を鉄筋公称径の 15 倍とすると、D10~D13 しか適用できない。よって、本工法はスラブの厚さが 比較的厚いか、補強量の少なくて済む構造物への適用は可能であるが、一般的な ビームスラブ式ラーメン高架橋では適用が難しいと判断される。

以上の状況より、ビームスラブ式鉄道 RC ラーメン高架橋のはり部材について は、適切なせん断補強工法がなく、耐震標準を満足する補強を行うにはスラブ上 面の軌道階や高架下利用箇所(店舗、事務所等)まで鉄筋を定着させるという非 常に大きなコストを要する工法が必要となる状況である。そのため、新たな鉄道 施設改良プロジェクトを企画する上ではりの耐震補強費用および施工工期がネッ クとなり、プロジェクトの実行が阻害される状況となっている。

#### 1.2.3.2 RC 箱 形 断 面 橋 脚 の 耐 震 診 断 、 耐 震 補 強

鉄道橋りょうの橋脚で、箱形断面を使用したものは道路橋に比べると多くはない。これは、在来線は昭和 40 年代以前に作られたものが多く当時は高橋脚が少ないため中空 RC 橋脚の活用が進んでいなかったこと、新幹線では急峻な地形はトンネル構造で通過することが多く高橋脚を必要とする箇所に路線を計画していないことなどがあげられる。

しかし、箱形(小判形の中空断面を含む)の橋脚を耐震補強計算した結果、場合によっては全く補強不可能な結果となる事例が出ることもある。一例をあげると、図 1-2-21 のような形状の箱形断面橋脚があげられる。本橋脚は、複々線高架橋を支持しており、さらに2線は駅部であるため、ホーム桁も支持している。よ



図 1-2-21 補強困難な箱形断面 RC 橋脚の例

って、本橋脚には複線桁 1 連、単線桁 1 連、ホーム桁 1 連、単線桁 1 連の計 4 連 が架設されている。そのため非常に橋脚の幅が広くなっており、箱形断面 RC 橋 脚が採用されたものと推定される。軸方向鉄筋には異形棒鋼 D32 が 100mm ピッ チで配置されており、強軸方向の曲げ耐力は非常に大きな値となる。そのため、 せん断耐力比は補強前でわずかに 0.4 弱程度となり、せん断破壊先行型として耐 震補強が必要となる。一方、本橋脚を補強する場合、外側に鋼板もしくは補強鉄 筋を配置した巻き立て工法が考えられる。しかし、必要なせん断補強鉄筋量を算 出したところ、D29 を 3mm 間隔で配置するという、不可能な結果になってしま う。当初から設計する場合には中間帯鉄筋をある程度配置することも可能である が、本橋脚は既に供用されているものであり、現実的な補強方法の検討が不可欠 な状況である。

以上の状況により、鉄道構造物の耐震補強の計画・推進において、箱形断面を 有する橋脚の耐震補強は補強方法の選定時点で停滞する場合があり、鉄道構造物 の耐震安全性が不明確であったり、安全性向上のための補強プロジェクトが阻害 されたりする状況となっていた。

#### 1.3 研究の目的および方法

#### 1.3.1 研究の目的

研究の目的は、前節にて記載した背景を鑑み、現状の設計手法では過小評価を している T 形断面および箱形断面を有する RC 部材のせん断耐力の算定方法を明 らかにして、鉄道構造物の改良プロジェクトや耐震補強工事の円滑な推進に資す ることで、鉄道構造物の安全性確保を図ることである。

#### 1.3.2 研究の方法

現在の鉄道RC構造物のせん断耐力算定は、構造物の諸元から設計式により算 定する 手 法 が 主 流 で あ り 、FEM 解 析 の よ う な 精 緻 で 高 度 な 手 法 は 特 別 の 事 情 が あ る場合にのみ採用される。この理由としては、設計作業の効率化、設計者の断面 検討の容易さ、災害発生時の緊急対応への容易さなど、様々な理由があると思わ れる。そこで、本研究では設計式の構築を目的とし、まず第2章では T 形断面を 有する RC 部材について、既往の研究で着目されていなかった「フランジ部の鉄 筋配置」を主なパラメータとしたせん断破壊実験を行い、せん断耐力に与える影 響を確認した。第3章では、箱形断面を有するRC部材について、フランジ部材 厚、フランジ幅、フランジ内鉄筋をパラメータとしてせん断破壊実験を行い、せ ん断耐力に与える影響を確認した。第4章では、今回の実験の結果からT形断面、 箱形断面を有するRC部材のせん断耐力算定式を導き出すとともに、既往の研究 に本研究のせん断耐力算定式を適用し、実験結果と整合するかどうかを確認する ことで式の妥当性を検証した。第5章では、箱形断面 RC 部材の正負交番載荷実 験を行い、本研究で提案したせん断耐力算定式を用いた場合に、破壊形態の判定 を適切に行うことができるか否か、あるいは耐力比とじん性の関連について中実 断面と同様の結果が得られるかどうかを検証した。第6章では、実際のプロジェ クト遂行にあたり、本研究の成果がどのように適用可能かの実例として、駅改良 プロジェクトにおける耐震診断の事例を示した。

せん断耐力算定式は、現在の棒部材、押抜きせん断破壊等のせん断耐力算定式 が実験式である点を踏まえ、本研究でも実験的にせん断耐力算定式を提案する。 そして、提案式によるせん断耐力と既往の実験結果を比較することでその妥当性 を検証する。

#### 第2章 T形断面を有する RC部材のせん断破壊実験

2.1 はじめに

第1章で述べた通り、既往の研究では、T形断面を有する RC 部材に関するせ ん断破壊実験が複数なされている。これらの実験においては、フランジ部分の幅、 厚さ、せん断補強鉄筋の有無、せん断スパン比などが実験パラメータとして設定 されているものが多い。この実験の中では、フランジ幅が十分に大きい場合に、 最終的にフランジ部分が押抜かれるような破壊形態を示したとの結果が得られて いる研究もある<sup>12)</sup>。鉄道構造物で多く用いられるビームスラブ式 RC ラーメン高 架橋においては、このフランジ部分を押抜く破壊形態となる構造が主流を占める と想定される。

このフランジ部を押抜く破壊形態となる場合に、フランジ部分がせん断耐力に 影響を及ぼすパラメータとして、押抜きせん断耐力に影響を及ぼすフランジ(ス ラブ)厚さ(有効高さ)、コンクリート強度、フランジに配置された鉄筋の鉄筋比 などが考えられる。このうち、コンクリート強度は通常の部材に対する影響と大 差がないと考えられる。またフランジ厚についても、押抜き断面が確保されるだ けのフランジ幅があれば、これも通常の部材に対する影響と変わらないと想定さ れる。そこで本検討では、既往の研究では着目されていなかった、フランジの鉄 筋比を主なパラメータとして、鉄道ラーメン高架橋はり部材で一般的な諸元とな る T 形断面 RC 部材の縮小模型破壊実験を行った。また、ウェブ部のせん断補強 鉄筋がない場合、フランジ部が下側になる逆 T 形断面の場合についても実験を行 っている。

本章では、上記の実験概要、実験結果を示すとともに、各パラメータが及ぼす 影響について考察する。

-26-

#### 2.2 実験概要

#### 2.2.1 試験体諸元

各試験体の形状、断面を図 2-2-1 に示す。また、試験体の諸元を表 2-2-1 に示す。









T2、T5 断面図

65

200

860





図 2-2-1 試験体概要

|              |       |            | フラン            | ジ 鉄 筋                      |                 | 廿           | ふ新補強                       | 铁 笜                        |                   |
|--------------|-------|------------|----------------|----------------------------|-----------------|-------------|----------------------------|----------------------------|-------------------|
| No           | 断面    | 軸方向        | 軸 直 交<br>方 向   | 降伏                         | 弹性              | 径@          | 降伏                         | <br>弾性                     | コンク<br>リート<br>強 産 |
|              | N2 1A | 径 -<br>本 数 | 径 @間 隔<br>(mm) | 強度<br>(N/mm <sup>2</sup> ) | 徐               | 間 隔<br>(mm) | 強度<br>(N/mm <sup>2</sup> ) | 係数<br>(N/mm <sup>2</sup> ) | $(N/mm^2)$        |
| T - 1        |       | D10        | -              | 2.4.7                      | 1.88×           | D10@        | 2.4.7                      | 1.88×                      | 28.2              |
| T - 2        |       | - 4        | D10@200        | 347                        | 10 <sup>5</sup> | 200         | 347                        | 10 <sup>5</sup>            | 31.3              |
| T - 3        | Τ 形   |            |                |                            |                 | -           | -                          | -                          | 28.2              |
| T <b>-</b> 4 |       | D16        | -              | 262                        | 1.89 	imes      |             |                            |                            | 35.0              |
| T - 5        |       | - 4        | D16@200        | 303                        | 10 <sup>5</sup> | D10@<br>200 | 347                        | $1.88 \times 10^{5}$       | 35.7              |
| T - 6        | 逆T形   |            | -              |                            |                 | _ 5 0       |                            | - •                        | 35.0              |

表 2-2-1 試験体諸元

各試験体で共通となる諸元は以下の通りである。各試験体は、全長にわたり同 一断面形状である。試験体は、ウェブ幅 200mm、断面高さ 450mm、フランジの 厚さ 110mm、フランジの幅は片側あたりのフランジ張出し量をフランジ厚さの 3 倍 (330mm)、全幅で 860mm の T 形断面としている。フランジの張出し量を片 側あたりフランジ厚さの 3 倍としたのは、既往の検討<sup>12)</sup>において、フランジ面を 押抜くような破壊が見られていたことから、フランジの押抜き破壊面が 45 度で 発生したときに十分な押抜き周長を確保できることを期待したためである。また、 フランジ厚さを 110mm としたのは、一般的な鉄道ラーメン高架橋において、フ ランジ厚さがはり全高の 1/4 程度であるためである。せん断スパン比は斜め引張 破壊となるよう、 3.0 とした。軸方向鉄筋は、曲げ破壊とならないよう、引張側 に総 ネ ジ PC 鋼 棒 の 呼 び 名 23mm (降伏強度 1021N/mm<sup>2</sup>、弾性係数 2.16×10<sup>5</sup>N/mm<sup>2</sup>)を 3 本配置した。配置位置は、試験体下縁から鋼棒中心まで 50mm の位置とした。PC 鋼棒のスパン中央位置にひずみゲージを貼付し、ひず みを計測した。

本実験でパラメータとしたのは、フランジ内の鉄筋量、せん断補強鉄筋の有無、 フランジの位置(上下)である。T-1 試験体は細径(D10)のフランジ軸方向鉄 筋を有する試験体である。T-2 試験体は T-1 試験体にフランジ軸直交方向鉄筋を 同径で追加したものである。T-4 試験体は太径(D16)のフランジ軸方向鉄筋を 有する試験体である。T-5 試験体は T-4 試験体にフランジ軸直交方向鉄筋(D16) を追加したものである。T-3 試験体は、T-4 試験体からせん断補強鉄筋を省略した ものである。T-6 試験体は T-4 試験体をそのまま裏返して逆 T 形断面としたもの である。

フランジ内の鉄筋は、軸方向の鉄筋をフランジ高さ方向の中心に配置し、軸直 交方向の鉄筋がある場合には、軸方向鉄筋の直下(逆T形断面の場合は直上)に 配置している。フランジ内の軸方向鉄筋は、片側あたり2本配置されることとなる。スターラップを配置した試験体については、上縁側にフックを設けたスター ラップを配置した。スターラップの組立を目的として直径4mmのなまし鉄線を 圧縮鉄筋位置に2本配置し、スラーラップのフックと緊結した。なお、T形断面 のフランジとウェブの交点となる部分については、このスターラップ組立て用の 小径なまし鉄線のほかは、軸方向には圧縮鉄筋を配置していない。

試験体に使用した材料諸元を表 2-2-1内に示す。

#### 2.2.2 載荷方法

実験は2点単純支持状態のRCはりに対して、2点載荷で荷重を加えた。載荷 スパンは図2-2-1に示すとおりである。載荷装置の全体概要を図2-2-2にて写真 で示す。支点は、テフロン板2枚を重ねて水平方向の拘束を取り除き鉛直方向の み固定とした可動支点と、鋼板に直接試験体を載せて鉛直方向、水平方向とも固 定とした固定支点の2点とした。載荷点は、均等な2点載荷となるよう、十分に 剛な載荷はりを介して設置されている。載荷板は試験体全幅のものを使用した。 こちらも、載荷幅全域に均等に載荷されるよう、十分に剛な載荷板となっている。 また、載荷板の試験体軸方向の幅は100mmである。



図 2-2-2 載荷装置全景

実験は 20kN 載荷するごとに載荷を止めて試験体のひび割れ状況を観察したほか、大きなひび割れが発生する、あるいは荷重が低下した際には一時的に載荷を 止め、ひび割れ状況を観察した。その後も載荷を続けることを基本としているが、 荷重が低下した後載荷を続けても荷重が上昇しなくなった時点で載荷終了とした。 載荷終了後、全体のひび割れ状況を観察し、必要に応じ破壊面の状況確認を行 った。

#### 2.3 実験結果および考察

#### 2.3.1 各試験体の破壊状況

今回の 6 試験体においては、いずれも斜めひび割れが卓越した破壊となった。 また、最大荷重時、またそれ以降においても、引張側軸方向鉄筋(総ネジ PC 鋼 棒)の発生ひずみは降伏ひずみに達していなかった。以上のことから、すべての 試験体はせん断破壊をしたと判断される。

T 形断面 RC 部材の破壊状況は、各試験体においてほぼ同様の破壊形態となった。しかしながら、T 形断面 RC 部材の試験体の中でも、ウェブのせん断補強鉄筋の有無により、若干相違があった。そのため、本論文においては、T 形断面 RC 部材の破壊状況について 2 例、および逆 T 形断面 RC 部材の破壊状況の 3 つに分けて論述する。

#### (1) ウェブにせん断補強鉄筋のない T 形断面試験体

ウェブせん断補強鉄筋のない T 形断面試験体である T-3 試験体のせん断カー変 位曲線を図 2-3-1 に、破壊時の試験体のひび割れ状況を図 2-3-2、図 2-3-3 に示す。 なお、本論文では以降、載荷点のロードセルで計測した載荷重から算出される、 載荷点と支点間のせん断破壊させる区間に発生しているせん断力を荷重として記 載している。また、変位は T 形断面試験体については試験体中央での変位である。

載荷後、曲げひび割れが 100~200mm 間隔で発生した。支点寄りで発生するひ び割れは若干載荷点方向へ斜めに進展するが、いずれも上フランジ下面に到達す ると、上フランジ内までは進展しなくなった。その後、103kN 載荷時に載荷点と 支点のほぼ中間に斜めひび割れが発生し(図 2-3-2 の(1))、大きく開口した。こ のとき、せん断力が 85kN 程度まで低下した。斜めひび割れは、フランジ下面に おいてウェブからフランジの端部方向へ進展していたが、この時点ではフランジ 上面には大きなひび割れは発生していなかった。その後載荷を続けるとせん断力 は再び増加したが、109kN 載荷時に上フランジ上面の一部が持ち上がり(図 2-3-3)、せん断力が 91kN まで低下した。その後は載荷を進めてもせん断力が増 加しなかったことから、載荷を終了した。

以上のように、せん断補強筋のないT形断面試験体の破壊形態としては、

ウェブへの斜めひび割れの発生

・ 上フランジが部分的に持ちあがる破壊面の形成

という点が特徴的であった。



図 2-3-1 T-3 のせん断カー変位曲線



図 2-3-2 荷重低下時のウェブひび割れ状況



図 2-3-3 T-3 フランジのひび割れ状況
# (2) ウェブにせん断補強鉄筋を配置した T 形断面試験体

せん断補強筋を有する T 形断面はりの代表として T-5 試験体の実験状況を記載 する。T-5 試験体のせん断力 – 変位曲線を図 2-3-4 に、破壊時の試験体のひび割 れ状況を図 2-3-5、図 2-3-6 に示す。また、破壊時の上フランジ破壊面の状況を図 2-3-7 に示す。

曲げひび割れや斜めひび割れの発生状況はせん断補強筋のない T-3 試験体と同様である。しかし、T-5 試験体にはせん断補強鉄筋があることから、T-3 試験体と 異なり斜めひび割れ発生時のせん断力の低下は図 2-3-4 の通りほぼ発生していない。また、図 2-3-5 に示す通り、載荷を進めるに従い、斜めひび割れも分散して 発生する傾向にあった。最大せん断力時に上フランジの一部が持ち上がりせん断 力が大きく低下したことは、T-3 試験体と同様であった(図 2-3-6 参照)。上フラ ンジの破壊面は、斜めひび割れがフランジ下面に到達した位置から載荷板、およ びフランジの左右外縁方向に向けて斜めに発生しており、ウェブによりフランジ が押抜かれたような状態となっていた(図 2-3-7 参照)。



図 2-3-4 T-5 のせん断カー変位曲線



図 2-3-5 T-5 のウェブひび割れ状況



図 2-3-6 T-5 フランジの破壊時ひび割れ状況



図 2-3-7 T-5 フランジの破壊面

図 2-3-8 と図 2-3-9 に T-1 試験体のせん断力 - 変位曲線とフランジ破壊状況を それぞれ示す。図 2-3-10 と図 2-3-11 に T-2 試験体のせん断力-変位曲線とフラ ンジ破壊状況をそれぞれ示す。また、図 2-3-12 と図 2-3-13 に T-4 試験体のせん 断力-変位曲線とフランジ破壊状況をそれぞれ示す。

せん断力-変位曲線はいずれの試験体においても最大せん断力発生までは大き な荷重低下を生じていない。また、フランジ破壊状況も同様であり、ウェブにせ ん断補強鉄筋を有するT形断面の破壊形態としては、

ウェブへの斜めひび割れの発生

という点が特徴的であった。

- 上フランジが部分的に持ちあがる破壊面の形成
- ただし、ウェブ斜めひび割れ発生時の荷重低下はあまり発生せず、その後もほ ぼ連続的に一定割合でせん断力が増加する







図 2-3-8 T-1 試験体のせん断カー変位曲線

図 2-3-9 T-1 試験体のフランジ破壊状況



図 2-3-10 T-2 試験体のせん断カー変位曲線



図 2-3-11 T-1 試験体のフランジ破壊状況



図 2-3-12 T-4 試験体のせん断カー変位曲線



図 2-3-13 T-4 試験体のフランジ破壊状況

#### (3) 逆 T 形断面試験体

逆 T 形断面試験体である、T-6 試験体のせん断力 – 変位曲線を図 2-3-14 に、破壊時の供試体のひび割れ状況を図 2-3-15、破壊時の圧縮縁載荷点付近の状況を図 2-3-16 に示す。

載荷の経過は T 形断面の T-5 と比較して大きくは相違していない。曲げひび割 れは幅の広い下フランジ全幅に渡って発生していた。また、下フランジ上側では、 ひび割れはウェブに直交するのではなく、ウェブに近づくに従い載荷点側へ向け て発生している。ウェブ側面ではそれらのひび割れはすべて斜めひび割れとして 伸展している(図 2-3-15)。破壊時は載荷点付近でコンクリートが圧壊している (図 2-3-16)が、下フランジ部については、T 形断面試験体の上フランジのよう な部分的な破壊は明確には現れなかった(図 2-3-15)。破壊に至るまでは、曲げ ひび割れ発生後、ほぼ一定の割合でせん断力 – 変位関係が推移している(図 2-3-14)。



図 2-3-14 T-6 のせん断カー変位曲線



図 2-3-15 T-6 破壊時の状況(下フランジ)



図 2-3-16 T-6 破壊時の状況 (圧縮域)

以上の通り、今回の実験では逆 T 形断面を有する T-6 試験体を除いて、全ての 試験体においてウェブの斜めひび割れの卓越するせん断破壊と上フランジ部の部 分的な破壊が組み合わさった破壊形態となった。

#### 2.3.2 各試験体のせん断耐力

表 2-3-1 にせん断耐力の実験結果 V<sub>exp</sub> および計算値 V<sub>cal</sub>、フランジ面の破壊状況を示す。なお、せん断耐力の計算値 V<sub>cal</sub>については、現在の設計基準 4)では、T 形断面のせん断耐力算定にあたっては有効幅を腹部(ウェブ)幅のみとしている。 そこで、ここではウェブ部のみ有効断面とし、設計せん断耐力 V<sub>y</sub>を式(2.1)で算定 している。コンクリートが負担するせん断耐力 V<sub>c</sub>の算定は、せん断スパン比に応じて、棒部材のコンクリートが負担するせん断耐力算定式の基礎となった既往の 研究成果 <sup>27)</sup>を用いた。

$$V_v = V_c + V_s \tag{2.1}$$

ここで、

$$V_c = 0.20(0.75 + 1.4d/a) \cdot \sqrt[3]{f'_c} \cdot \beta_d \cdot \beta_p \cdot b_w \cdot d$$

$$V = 4 \cdot f_{-1} \cdot (\sin\theta + \cos\theta) \cdot \frac{1}{2}/s$$
(2.2)
(2.3)

$$V_{\rm s} = A_{\rm w} \cdot f_{\rm wy} \cdot \left(\sin\theta_{\rm s} + \cos\theta_{\rm s}\right) \cdot z/s_{\rm s} \tag{2.3}$$

$$\beta_d = \sqrt[4]{1000/d} \qquad (d: mm)$$
  
$$\beta_p = \sqrt[3]{100p_v}$$

- $f'_c$ : コンクリートの圧縮強度 (N/mm<sup>2</sup>)
- $b_w$ :腹部の幅(mm)
- *d* : 有 効 高 さ (mm)

$$p_v = A_s / (b_w \cdot d)$$

- *A*<sub>s</sub> : 引 張 側 鋼 材 の 断 面 積 (mm<sup>2</sup>)
- a : せん断スパン (mm)
- *A*<sub>w</sub>:区間 *s*<sub>s</sub>におけるせん断補強鉄筋の総断面積(mm<sup>2</sup>)
- *f<sub>wy</sub>*: せん断補強鉄筋の降伏強度 (N/mm<sup>2</sup>)
- *θ*<sub>s</sub>: せん断補強鉄筋が部材軸となす角度
- *s*<sub>s</sub>: せん断補強鉄筋の配置間隔(mm)
- t : 圧縮応力の合力の作用位置から引張鋼材図心までの距離で、一般に d/1.15 としてよい。

| 試 験 体 | せん断耐力の<br>実験値せん断耐力<br>計算値 |                        | 耐 力 の<br>〕 値 |                                        | 破壊形態  |       |
|-------|---------------------------|------------------------|--------------|----------------------------------------|-------|-------|
|       | V                         | $V_{cal}(\mathbf{kN})$ |              | V <sub>exp</sub> /<br>V <sub>cal</sub> |       |       |
|       | (kN)                      | V <sub>c</sub>         | Vs           |                                        | 上フランジ | トフフンジ |
| T-1   | 271.0                     | 86.4                   | 86.1         | 1.57                                   | 押 抜 き | _     |
| T-2   | 328.1                     | 89.4                   | 86.1         | 1.87                                   | 押抜き   | _     |
| Т-3   | 109.2                     | 86.4                   | 0            | 1.26                                   | 押 抜 き | _     |
| T-4   | 280.7                     | 92.8                   | 86.1         | 1.57                                   | 押抜き   | _     |
| T-5   | 296.2                     | 93.4                   | 86.1         | 1.65                                   | 押 抜 き | —     |
| T-6   | 292.2                     | 109.4                  | 86.1         | 1.63                                   | —     | 全幅    |

表 2-3-1 T形断面 RC部材のせん断耐力実験結果および計算結果

表中の上下のフランジ面の破壊状況は、フランジに軸方向と軸直交方向のひび 割れが発生しフランジ部が面外方向に面的に大きく変形し、ウェブ部がフランジ 面を押抜いたような破壊を「押抜き」としている。また、フランジの上下面に軸 直交方向のひび割れがフランジ全幅に発生しているものを「全幅」としている。

いずれの試験体も、実験値のせん断耐力は、ウェブの幅のみを有効幅として算 定したせん断耐力の計算値を大幅に上回っており、フランジ部分を考慮したせん 断耐力算定式の構築が必要であることを明示していると言える。

## 2.3.3 フランジの破壊形状

#### (1) 実験で得られたフランジの破壊形状

2.3.1 各試験体の破壊状況に示した通り、T-6を除いては上フランジが部分的 に持ちあがる、押抜かれるような破壊面が形成された。この破壊面の形状につい て、図 2-3-17 に T-2 試験体の上フランジ押抜き状況を、今回の押抜き破壊面の形 成例として示す。また、図 2-3-18 に T-2 試験体の上フランジ、ウェブを下方から 見た状況を示す。載荷板に向かう破壊面は、フランジ下面では T-2 試験体では載 荷板の端部から約 250mm 離れた位置を起点とし、フランジ上面は載荷板位置ま で発生している。フランジ下面の破壊面発生位置は、ウェブに発生したもっとも 大きい斜めひび割れがフランジに到達した付近に一致している。すなわち、ウェ ブせん断破壊の要因となるひび割れ位置が押抜き載荷点の位置となっていること がわかる。一方、フランジの押抜き破壊は、図 2-3-17 に示すとおり、フランジ部 分の載荷点寄りのみで発生しており、閉合した破壊面を形成していない。いわば、 「片押抜き」の状態となっている。そのため、今回のような T 形断面、箱形断面 のフランジの押抜き状破壊は、厳密には押抜きせん断破壊とは言えない。しかし



載 荷 板 載 約 250mm 荷板 の 端 部

図 2-3-17 T-2 上フランジ押抜き面の状況

図 2-3-18 T-2 上フランジ下面の状況

ながら、面部材において部分的ではあるが面状(2軸3方向)に破壊面が広がっ ていることから、「半断面の押抜きせん断破壊」が生じている状態となっている。 破壊面のフランジ上側での形成幅は、軸方向がウェブの斜めひび割れがフラン ジ下面に到達した位置から載荷板方向に、上記のとおり約250mmであった。ま た、軸直交方向はウェブの端部から約150mmであった。フランジ厚さが110mm であることを考慮すると、軸直交方向については、押抜きせん断破壊で想定する 破壊面である、45度の破壊線にほぼ一致していると考えられる。一方、軸方向に ついては250mmとなっている。これは、スラブ上面付近で表層剥離状に破壊面 が形成されていること、圧縮フランジの圧縮応力場であるためひび割れ角度が小 さくなりやすいことなどが要因として考えられる。

破壊面の載荷板から離れる方向への形成幅は、ウェブ斜めひび割れがフランジ 下面に到達した位置からある程度支点側に離れた位置まで形成される。この位置 について、図 2-3-19~図 2-3-22 に示す。





図 2-3-19 T-1 上フランジ押抜きせん断破壊状況

図 2-3-20 T-2 上フランジ押抜きせん断破壊状況



図 2-3-21 T-4 上フランジ押抜きせん断破壊状況



図 2-3-22 T-5 上フランジ押抜きせん断破壊状況

なお、写真は最大荷重計測直後にフランジ表面が浮き上がり、押抜き面が明確に なった時点で撮影されたもの(T2、T-5)と、最大荷重計測直後は押抜き面が明 確でなかったため十分に破壊を進めた後の時点のもの(T-1、T-4)であり、撮影 時点の載荷状況は異なる。それぞれの写真に、載荷板から押抜き破壊面の後端ま での距離を示した。

載荷板から押抜き破壊面後端までの距離は、約410mm~550mm とばらついた 結果となった。比較的大きな数値となったのは、最大荷重直後には押抜き面が明 確ではなく、その後も載荷を進めフランジの破壊面が明確になってから距離を計 測した T-1、T-4 試験体である。よって、これらの実際の距離はもう少し小さなも のと想定される。T-2、T-5 の載荷板から押抜き破壊後端までの長さはそれぞれ約 410mm、420mm であった。すなわち、今回の実験では押抜き破壊面の後端は 400mm 程度であったと言える。

# (2) 部分的な押抜き破壊面の形成メカニズム

(1)で述べたように、フランジの破壊面は載荷点側の半断面の押抜き破壊となっ ている。Pansuk・Satoの研究<sup>16)</sup>によると、せん断補強筋を有する T 形断面 RC はりのせん断抵抗メカニズムは、当初ビーム機構であったものが、斜めひび割れ がフランジ下面に到達、ウェブとフランジ境界面にひび割れが進展した時点でア ーチ機構に移行するとしている。つまり、この時点では図 2-3-23 左図に示すよう な方向の圧縮応力状態が形成されていると考えられる。よって、この状態ではフ ランジはウェブにより載荷点方向へ斜め上方向の圧縮応力を受けていることとな る。この応力は、右図のように鉛直成分と水平成分に分解することが可能である。 つまり、鉛直成分はフランジを押抜く押抜きせん断力となる。一方、載荷点方向 へ向かう水平成分は、フランジの破壊面を載荷点側に集中させる要因となる。T



図 2-3-23 T形断面はりの応力状態の例

形断面 RC はりのフランジの破壊面形状は、このアーチ機構の卓越による応力状態により形成されたと考えられる。

# 2.3.4 各パラメータが破壊状況、せん断耐力に及ぼす影響

#### (1) せん断補強筋の有無

せん断補強鉄筋の有無のみを変化させた T-3 試験体(せん断補強鉄筋なし)、 T-4 試験体(せん断補強鉄筋あり)の比較を行う。

破壊形態としては、ウェブの斜めひび割れが卓越したせん断破壊と、上フランジを部分的に押抜く、押抜きせん断破壊の組み合わせとなったことについては、いずれの試験体においても同一となった。しかし、T-3 試験体においては、せん断補強鉄筋がないことから、載荷途中で斜めひび割れが大きく開口し、荷重が低下した。その時点では、フランジ側にはほぼ損傷は発生しておらず、その後も載荷をすると再び荷重が増加した。すなわち、T-3 試験体の結果は、斜めひび割れが大きく開口した時点で骨材のかみ合わせ効果が消失し、ウェブ部分のせん断耐力が低下していることにより、試験体のせん断耐力の実験値 V<sub>exp</sub>はウェブ部分のせん断耐力 V<sub>y</sub>とフランジ部分のせん断耐力 V<sub>flg</sub>の足し合わせになっていない可能性が高い、と考えられる。

フランジ部分のせん断耐力 V<sub>flg</sub>はせん断耐力の実験値からウェブのコンクリートが負担するせん断耐力とせん断補強鉄筋が負担するせん断耐力を差し引いたものであると考えられる。

実験結果および計算結果より、

 $V_{flg}$  - T-3 : 109.2 - 86.4 = 22.8 kN

 $V_{flg} - \text{T-}4 : 280.7 - (92.8 + 86.1) = 101.8 \text{kN}$ 

と、フランジ部分の諸元が同一である T-3 と T-4 において、せん断耐力の実験値

からウェブのせん断耐力の計算値を差し引いた結果が大きく異なっている。その ため、T-3 についてはフランジの負担するせん断耐力を評価することは難しいと 判断した。一方、せん断補強鉄筋を有する T 形断面試験体は、T-4 以外の試験体 を含めいずれもフランジが破壊に至るまで連続的に荷重が増加していることから、 せん断耐力の実験値からウェブのせん断耐力の計算値を差し引いた値がフランジ 部分のせん断耐力であると判断する。

# (2) フランジ内の鉄筋比の影響

フランジ内の鉄筋量をパラメータとした試験体として、T-1、T-2、T-4、T-5 各 試験体に関し、図 2-3-24 にフランジ部分のせん断耐力とフランジ内の鉄筋比から 算出したβ<sub>p</sub>の関係を、表 2-3-2 にフランジ部分のせん断耐力 V<sub>flg</sub>とフランジ内に 配置した鉄筋の一覧を示す。



図 2-3-24 フランジ鉄筋比とせん断耐力の関係

|       | せん断<br>耐力の<br>実験値           | せん 断 ī<br>計 算          | 耐力 の<br>値 | フランジ部の フラン・<br>せん断耐力                                      |                | ランジ内鉄筋         |                                |
|-------|-----------------------------|------------------------|-----------|-----------------------------------------------------------|----------------|----------------|--------------------------------|
| 試 験 体 | <i>V<sub>exp</sub></i> (kN) | $V_{cal}(\mathbf{kN})$ |           |                                                           | 軸方向            | 直交方向平均         |                                |
|       |                             | V <sub>c</sub>         | Vs        | $ \begin{array}{c} V_{exp} - \\ (V_c + V_s) \end{array} $ | 径 @間 隔<br>(mm) | 径 @間 隔<br>(mm) | 鉄 筋 比<br><i>p</i> <sub>v</sub> |
| T-1   | 271.0                       | 86.4                   | 86.1      | 98.5                                                      | D10@200        | —              | 0.0032                         |
| T-2   | 328.1                       | 89.4                   | 86.1      | 152.6                                                     | D10@200        | D10@200        | 0.0060                         |
| T- 4  | 280.7                       | 92.8                   | 86.1      | 101.8                                                     | D16@200        | _              | 0.0090                         |
| T-5   | 296.2                       | 93.4                   | 86.1      | 116.7                                                     | D16@200        | D16@200        | 0.0160                         |

表 2-3-2 フランジ部せん断耐力の実験値とフランジ内鉄筋量

ここで、*β<sub>p</sub>*はコンクリート標準示方書[設計編]<sup>4)</sup>「2.4.3.3 面部材の設計押 抜きせん断耐力」における鉄筋比に関する係数である。

鉄筋比とせん断耐力の関係は、T-2 試験体において突出した結果となっている ものの、概ね鉄筋比が増加すればフランジのせん断耐力も増加する傾向がみられ る。また、T-2 試験体、T-5 試験体はそれぞれ T-1 試験体、T-4 試験体に対して鉄 筋量の増加として軸直交方向の鉄筋を追加したものであるが、いずれも軸方向に のみ鉄筋を配置した試験体よりもせん断耐力が向上する結果が見られている。よ って、フランジ部を押抜くせん断破壊形態を示す場合、軸直交方向に配置された フランジ鉄筋もせん断耐力の増加に寄与するものと考えられる。

以上より、T 形断面 RC 部材のせん断耐力算定にあたって、フランジの鉄筋を 適切に考慮することが必要であると判断される。

# 2.4 まとめ

フランジ部分の幅を十分に有する T 形断面、逆 T 形断面の RC 部材について、 せん断破壊実験を行った結果を以下にまとめる。

なお、本実験ではせん断スパン比を 3.0 に固定している。

- (1) T形断面試験体においては、全てフランジ部分がウェブに押抜かれるような 破壊形態が見られた。一方、逆T形断面試験体ではこのような破壊形態とは ならなかった。
- (2) 今回の実験結果は、いずれも現行の基準4)によるせん断耐力算定方法を用いたせん断耐力の計算値を上回る結果となった。そのため、T形断面を有する RC部材のせん断耐力算定式を別途構築する必要があると判断される。
- (3) T形断面の試験体においては、せん断補強鉄筋のない試験体では斜めひび割れが大きく開くことにより、フランジ部の破壊前に一度荷重が大きく低下した。一方、せん断補強鉄筋を有する試験体では、ウェブ斜めひび割れ発生時の荷重低下は小さく、その後もほぼ連続的に一定割合でせん断力が増加した。よって、せん断補強鉄筋を有する試験体においては、ウェブ部分のせん断耐力とフランジ部分のせん断耐力を足し合わせたせん断耐力を持つものと判断される。
- (4) フランジ部分に配置した鉄筋量が増加すると、フランジ部分のせん断耐力は 増加する傾向にある。また、軸直交方向に配置した鉄筋についても、フラン ジ部分のせん断耐力増加に寄与している結果となった。

# 第3章 箱形断面を有する RC 部材のせん断破壊実験

### 3.1 はじめに

箱形断面を有するコンクリート構造物は、RC、PC ともに鉄道、道路問わず桁 式高架橋にて数多く用いられている構造形式である。しかしながら、箱型断面を 有する RC 部材のせん断耐力に関する研究例は少ない。これは、箱形断面を必要 とする比較的長スパンの構造物においては曲げに対する設計が重要となり、せん 断力に対する設計は PC 鋼材配置で厚さが決定すること、特に連続桁では支点付 近で曲げモーメントの偏心を大きくとるため部材高が大きくせん断耐力も大きく なること、部材厚を変化させる程度で容易に設計ができるため、精緻な設計式が 必要とされてこなかったことなどが要因ではないかと考えられる。

しかしながら、当初設計時に想定した荷重を超えて供用される場合や、壁式中 空橋脚において耐震補強が必要かどうかを診断する際には、箱形断面部材の真の せん断耐力を求め補強の要否を判断することにより、施設管理者は大幅なコスト ダウン、工期短縮を実現することが可能となる。

第2章では、T形断面を有する RC 部材はフランジの存在によりせん断耐力が 向上することを実験で確認している。このせん断耐力向上効果は、上フランジ、 下フランジ共に発揮される。そのため、箱形断面の RC 部材は、上下にフランジ を持つ断面形状であることから、さらなるせん断耐力向上が期待されるものであ る。

本章は、箱形断面を有する RC 部材について、フランジ部材厚、フランジ幅、 フランジ内鉄筋をパラメータとしてせん断破壊実験を行い、その結果をまとめた ものである。

# 3.2 実験概要

# 3.2.1 試験体諸元

各試験体の形状、断面を図 3-2-1 に示す。また、試験体の諸元を表 3-2-1 に示す。





図 3-2-1 試験体概要図

|      |     |             | 圧 縮       | 言フランジ(上フ                | <b>フ</b> ランジ)              | 引張フランジ(下フランジ) |                          |                          |  |
|------|-----|-------------|-----------|-------------------------|----------------------------|---------------|--------------------------|--------------------------|--|
| 試験体  | 形状  | 断面<br>B×H   | フランジ      | 軸 方 向<br>鉄 筋            | 軸 直 交<br>方 向 鉄 筋           | フランジ          | 軸 方 向<br>鉄 筋             | 軸 直 交<br>方 向 鉄 筋         |  |
|      | (mm | (mm)        | 厚<br>(mm) | 段 数 、 規 格<br>径 、 本 数    | 段 数 、 規 格<br>径 、 間 隔       | 厚<br>(mm)     | 段 数 、規 格<br>径 、 本 数      | 段 数 、規 格<br>径 、 間 隔      |  |
| B-1  | 箱   | 720×<br>520 |           |                         |                            | 120           | 1 段、<br>SD345<br>D32、8 本 | _                        |  |
| B-2  | 箱   | 900×<br>520 | 120       | 2 段、SD295A<br>D10、 16 本 |                            |               |                          |                          |  |
| B-3  | 箱   |             | 180       |                         |                            | 180           |                          |                          |  |
| B-4  | 逆 U |             | 120       |                         |                            | _             |                          |                          |  |
| B-5  | U   | 720×        |           |                         |                            | 120           |                          |                          |  |
| MA-1 | 箱   | 520         | 0 120     |                         | 2 段 、<br>SD295A<br>D10@100 |               |                          |                          |  |
| MA-2 | 箱   |             |           | 1 段、SD345、<br>D32、10 本  | 1 段、SD345<br>D13@100       |               |                          | 1 段、<br>SD345<br>D13@100 |  |

表 3-2-1 試験体諸元

試験体は、ウェブ幅 120mm、断面高さ 520mm の等断面矩形中空断面を基本と している。試験区間にはせん断補強鉄筋を配置していない。せん断スパン比は、 試験体重量が大きくなり過ぎないよう、2.2 とした。引張側軸方向鉄筋はねじふ し鉄筋を使用しているが、鉄筋の定着を確保するため試験体外側まで突出して配 置し、定着板とナットで定着した。圧縮側軸方向鉄筋は 2 段配置とし、フックを つけて桁端に定着した。

試験体は B-1 試験体を基準とし、実験パラメータとして、フランジの幅・厚さ、 圧縮フランジおよび引張フランジの有無、フランジの軸直交方向鉄筋の有無を設 定している。

フランジの厚さは 120mm を基本とし、パラメータの変化として B-2 試験体に おいて 180mm と設定した。フランジの幅は全幅で 720mm を基本とし、パラメ ータの変化として B-3 試験体において 900mm と設定した。また、矩形中空断面 から圧縮フランジを取り除いたもの、引張フランジを取り除いたものをそれぞれ 1 体、B-4 試験体、B-5 試験体として設定した。また、フランジの軸方向鉄筋は圧 縮側(上フランジ)に D10、引張側(下フランジ)に D32 を配置することを基本 としているが、パラメータの変化として MA-1 試験体において上フランジに軸直 交方向に D13 を 100mm ピッチで配置、MA-2 試験体おいて圧縮側軸方向鉄筋を D32、軸直交方向鉄筋を D13 で配置した。引張側軸方向鉄筋であるねじふし鉄筋

表 3-2-2 に本実験で使用した材料の強度試験結果を示す。

| 規 格                    | 呼び径                            | 使用試験体                                    | 強度(N/mm <sup>2</sup> )                                                                      | 弾性係数(N/mm²)                                                                                                                      |  |  |  |
|------------------------|--------------------------------|------------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| SD295A                 | D10                            | -                                        | 359.1                                                                                       | $1.93 	imes 10^{5}$                                                                                                              |  |  |  |
|                        | D13                            | -                                        | 407.8                                                                                       | $2.02 	imes 10^{5}$                                                                                                              |  |  |  |
| $\operatorname{SD}345$ | D 2 2                          | $B \cdot 1 \sim B \cdot 5$               | 380.6                                                                                       | $1.97 	imes 10^{5}$                                                                                                              |  |  |  |
|                        | D32                            | MA-1、MA-2                                | 376.1                                                                                       | $2.01 	imes 10^{5}$                                                                                                              |  |  |  |
|                        |                                | B-1                                      | 24.1                                                                                        | -                                                                                                                                |  |  |  |
|                        |                                | B-2                                      | 24.6                                                                                        | -                                                                                                                                |  |  |  |
|                        |                                | B-3                                      | 24.6                                                                                        | -                                                                                                                                |  |  |  |
| コンクリー                  | F                              | B - 4                                    | 24.8                                                                                        | -                                                                                                                                |  |  |  |
|                        |                                | B-5                                      | 24.8                                                                                        | -                                                                                                                                |  |  |  |
| MA-1                   |                                | MA-1                                     | 23.9                                                                                        | -                                                                                                                                |  |  |  |
|                        | MA-                            |                                          | 23.8                                                                                        | -                                                                                                                                |  |  |  |
|                        | 規格<br>SD295A<br>SD345<br>コンクリー | 規格 呼び径<br>SD295A D10<br>D13<br>SD345 D32 | 規格呼び径使用試験体SD295AD10-D13-SD345D13-D32B-1~B-5MA-1、MA-2MA-1、MA-2B-1B-2B-3B-3B-4B-5MA-1MA-1MA-2 | 規格呼び径使用試験体強度(N/mm²)SD295AD10-359.1D13-407.8B0345D32B·1~B·5380.6MA·1、MA·2376.1B-124.1B-224.6B-324.6B-424.8B-524.8MA·123.9MA·223.8 |  |  |  |

表 3-2-2 使用材料諸元

#### 3.2.2 載荷方法

実験は2点単純支持状態のRCはりに対して、1点載荷で荷重を加えた。載荷 スパンは図 3-2-1に示すとおりである。載荷位置がスパン中央ではない理由は、 実験場の試験体セット時の重量制限のため、軸方向に長い試験体を設定すること が難しかったことによる。そのため、やや軸方向として偏心した位置で載荷し、 せん断スパン比 2.2を確保する側にはせん断補強筋を配置せず、一方の側はせん 断破壊しないよう、十分なせん断補強鉄筋を配置している。

載荷装置の全体概要を図 3-2-2 にて写真で示す。載荷装置本体は T 形断面の実験と同じ装置であるが、前述の通り載荷はりを介さず 1 点載荷にしている点が異なる。支点条件、載荷板などについては、T 形断面の実験と同様になっている。



図 3-2-2 載荷装置全景

実験は連続的に荷重を与えつつひび割れ状況を観察したが、大きなひび割れが 発生、もしくは荷重が低下した際には一時的に載荷を止め、ひび割れ状況を観察 した。その後も載荷を続けることを基本としているが、荷重が増加せずフランジ 部分の破壊形態が明確になった時点で載荷終了とした。

載荷終了後、全体のひび割れ状況を観察し、必要に応じ破壊面の状況確認を行った。

### 3.3 実験結果および考察

#### 3.3.1 各試験体の破壊状況

今回の 7 試験体においては、いずれも斜めひび割れが卓越した破壊となった。 また、最大荷重時、またそれ以降においても、引張側軸方向鉄筋(ねじふし鉄筋) の発生ひずみは降伏ひずみに達していなかった。以上のことから、すべての試験 体はせん断破壊をしたと判断される。

各試験体の破壊状況としては、ウェブに斜めひび割れが発生後も荷重増加をし たものの、最終的にはフランジ部分が破壊して荷重低下に至るという点では全て の試験体で同一である。しかしながら、フランジの破壊状況は、試験体によって 異なり、T 形断面試験体のようにフランジを部分的に押抜く破壊形態もあれば、 フランジ全域をひび割れが貫通するせん断破壊形態も見られた。以下に、各試験 体のせん断力一変位曲線、ひび割れの状況図を示す。なお、箱形断面試験体の変 位は載荷位置での変位である。

B-1 試験体のせん断力 – 変位曲線を図 3-3-1 に、最大荷重時のウェブ、上フラ ンジのひび割れ状況をそれぞれ図 3-3-2、図 3-3-3に、破壊時の上下フランジのひ び割れ状況をそれぞれ図 3-3-4、図 3-3-5 に示す。なお、載荷直後に剛性の小さい 挙動が発生しているのは、箱形断面試験体の変位測定を載荷板に変位計を設置し て行ったが、載荷板と試験体の間に不陸調整の石灰を設置したため、石灰の圧縮 により発生した変位を含めて測定していることに起因するものである。200kN載 荷中に載荷点へ向かう約 45 度の斜めひび割れが発生した(図 3-3-2の(1))。この ひび割れから派生して、下フランジ上面高さで水平に支点へ向かうひび割れも発 生した。その後も載荷を続けるとせん断力は上がり続け、ひび割れ幅がそれに伴 い開口してきた。257kN載荷時に上フランジのウェブ直上付近に、載荷点から支 点方向へ軸方向のひび割れが発生したが、その後もせん断力は増加を続けた。そ の後、313.8kN載荷時に、載荷点付近からやや角度の緩い斜めひび割れが支点の 近傍、下フランジの上部付近まで発生し(図 3-3-2 の(2))、せん断力が若干低下 した(図 3-3-3)。この時点で上フランジコンクリートの両側のウェブ直上付近に 軸方向のひび割れが発生していた。そのまま載荷を進めたが、最大せん断力時に 入った斜めひび割れ(2)が開口するとともに、上フランジコンクリートのウェブ付 近が軸方向に沿って持ち上がり、破壊に至った(図 3-3-4)。

持ち上がったウェブ直上付近のフランジコンクリートを取り除くと、ウェブ上端からフランジ上面に向けて斜めに約 45 度の破壊面がウェブに沿って進展しており、ウェブ部でフランジを押抜くような破壊性状となっていた。また、下フランジについても同様にウェブ直下付近に軸方向のひび割れが発生し、ウェブ部が押抜かれた状況を呈していた(図 3-3-5)。







図 3-3-2 B-1 ウェブのひび割れ状況



図 3-3-3 B-1 最大せん断力時のフランジのひび割れ状況



図 3-3-4 B-1 破壊時の上フランジのひび割れ状況



図 3-3-5 B-1 破壊時の下フランジのひび割れ状況

B-2 試験体のせん断力-変位曲線を図 3-3-6 に、破壊時の上下フランジのひび 割れ状況をそれぞれ図 3-3-7、図 3-3-8 に示す。また、B-3 試験体のせん断力-変 位曲線を図 3-3-9 に、破壊時の上下フランジのひび割れ状況をそれぞれ図 3-3-10、 図 3-3-11 に示す。



図 3-3-6 B-2 のせん断カ—変位曲線





図 3-3-7 B-2 破壊時の上フランジのひび割れ状況

図 3-3-8 B-2 破壊時の下フランジのひび割れ状況



図 3-3-9 B-3 のせん断カー変位曲線



図 3-3-10 B-3 破壊時の上フランジのひび割れ状況



図 3-3-11 B-3 破壊時の下フランジのひび割れ状況

B-2 試験体においては、上下フランジとも、B-1 試験体と同様に押抜かれる破壊形態が見られた。一方、B-3 試験体においては、上フランジは B-1、B-2 試験体と同様に押抜く破壊形態となっているが、下フランジについては支点に沿って全体的にひび割れが入っており、全幅に渡ってひび割れが貫通していた。

逆 U 形断面の B-4 試験体のせん断カー変位曲線を図 3-3-12 に、破壊時の上フ ランジのひび割れ状況を図 3-3-13 に示す。また、U 形断面の B-5 試験体のせん断 カー変位曲線を図 3-3-14 に、破壊時の下フランジのひび割れ状況を図 3-3-15 に 示す。



図 3-3-12 B-4 試験体のせん断カー変位曲線



図 3-3-13 B-4 試験体の上フランジひび割れ状況



図 3-3-14 B-5 試験体のせん断カー変位曲線



図 3-3-15 B-5 試験体の上フランジひび割れ状況

以下に、B-5 試験体の実験経過を記述する。115kN 載荷時にウェブに斜めひび 割れが発生した。このひび割れは、発生時点でははり側面の下方のみに発生して いたが、載荷を進めるに従い載荷点へ向かって進展した。252kN 載荷時から、載 荷点と斜めひび割れの終端の間で細かなひび割れが発生し始め、圧縮縁近傍の圧 壊の兆候が見られた。しかし、その後もせん断力は増加し続け、280kN 載荷で斜 めひび割れが大きく開口してせん断力の低下に至った。下フランジ下面は、中空 断面の上フランジ上面と同様に、軸方向にウェブと並行してひび割れが入ってお り(図 3-3-15)、ウェブ直下付近のフランジコンクリートを取り除くと、ウェブ 下端からフランジ下面に向けて斜めに破壊面が進展しており、ウェブ部がフラン ジを押抜くような破壊性状となっていた。

B-5 試験体を裏返した状態である B-4 試験体についても同様で、上フランジが 図 3-3-13 の通りウェブ上で押抜かれた破壊形態となっていた。 MA-1 試験体のせん断力 - 変位曲線を図 3-3-16 に、破壊時の上下フランジのひび割れ状況をそれぞれ図 3-3-17、図 3-3-18 に示す。また、MA-2 試験体のせん断力 - 変位曲線を図 3-3-19 に、破壊時の上下フランジのひび割れ状況をそれぞれ図 3-3-20、図 3-3-21 に示す。



図 3-3-17 MA-1 試験体の上フランジひび割れ状況



図 3-3-18 MA-1 試験体の下フランジひび割れ状況



図 3-3-19 MA-2 のせん断カー変位曲線



図 3-3-20 MA-2 試験体の上フランジひび割れ状況



図 3-3-21 MA-2 試験体の下フランジひび割れ状況

以下に、MA-2 試験体の実験経過を記述する。266kN 載荷時において、ウェブ 部の下方に載荷点に向う約 45 度の斜めひび割れが発生した。ただし、この時点 では引張フランジまでは進展しなかった。その後、載荷を続けるに従い斜めひび 割れは載荷点方向へ進展し、ひび割れが開口していった。327kN 載荷時点から斜 めひび割れが引張フランジ内に進展していき、340kN 載荷時に斜めひび割れが発 生するとともに、圧縮フランジ内に進展していった。その後、374kN 載荷時点で 圧縮・引張フランジともにフランジ内を進展していた斜めひび割れが載荷板およ び支点板に達した。その際、上フランジ面には、基準試験体である B-1 試験体に 発生したような軸方向のひび割れは発生せず、フランジ全面に渡って斜めひび割 れが貫通していた。しかし、下フランジ側に関しては、この時点ではフランジ全 面に斜めひび割れが貫通していなかった。そのため、その後も載荷に従いせん断 力は増加したが、フランジ部に貫通した斜めひび割れが徐々に開口して、上フラ ンジ部のずれが拡大していくとともに、下フランジも全体的にずれが生じ、最大 せん断力 411kN に達した。

上記および図 3-3-20、図 3-3-21 の通り、MA-2 試験体においては、上下のフラ ンジがともにフランジ部全体に貫通したひび割れが卓越して破壊に至った。MA-1 試験体についても、上フランジについてはフランジ部全体にひび割れが貫通する 破壊であったが、下フランジに関しては部分的に押抜く破壊形態となった。

# 3.3.2 各試験体のせん断耐力

表 3-3-1 にせん断耐力の実験結果 Vexp および計算値 Veal、フランジ面の破壊状況を示す。なお、せん断耐力の計算値については、第2章と同様の方法による。 また、破壊形態はフランジの破壊状況により、押抜きせん断破壊状のものを「押 抜き」、全幅に渡ってひび割れが貫通したものを「全幅」と記載した。

|       | せん断耐力の<br>実験値            | せん 断 耐 力 の<br>計 算 値    |    |                                        | 破壊形態  |       |
|-------|--------------------------|------------------------|----|----------------------------------------|-------|-------|
| 試 験 体 | V <sub>exp</sub><br>(kN) | $V_{cal}(\mathbf{kN})$ |    | V <sub>exp</sub> /<br>V <sub>cal</sub> |       |       |
|       |                          | V <sub>c</sub>         | Vs |                                        | 上ファンジ | トフランジ |
| B·1   | 313.8                    | 198.7                  | 0  | 1.58                                   | 押抜き   | 押抜き   |
| B-2   | 342.9                    | 200.1                  | 0  | 1.71                                   | 押 抜 き | 押 抜 き |
| B-3   | 384.2                    | 200.1                  | 0  | 1.92                                   | 押 抜 き | 全幅    |
| B-4   | 290.9                    | 200.6                  | 0  | 1.45                                   | 押抜き   | _     |
| B-5   | 280.4                    | 200.6                  | 0  | 1.40                                   | _     | 押 抜 き |
| MA-1  | 432.2                    | 198.6                  | 0  | 2.18                                   | 全幅    | 押 抜 き |
| MA-2  | 416.3                    | 197.9                  | 0  | 2.10                                   | 全幅    | 全幅    |

表 3-3-1 箱形断面 RC部材のせん断耐力実験結果および計算結果

箱形断面のいずれの試験体ついても、T 形断面の試験体と同様に実験値のせん 断耐力は、ウェブの幅のみを有効幅として算定したせん断耐力の計算値を大幅に 上回る結果となり、フランジ部分を考慮したせん断耐力算定式の構築が必要であ ると判断される。

# 3.3.3 各パラメータが破壊状況、せん断耐力に及ぼす影響

# (1) フランジの幅、厚さ

フランジの幅のみをパラメータとして変化させた B-1 試験体(フランジ幅小) と B-2 試験体(フランジ幅大)を比較すると、せん断耐力の実験値と、ウェブの み有効として算出したせん断耐力の計算値との比率(以降、せん断耐力の増加割 合という)はそれぞれ 1.58、1.71 となっている。また、フランジの破壊形態はい ずれも押抜きであった。このことから、せん断耐力の増加割合には若干の向上効 果がみられているものの、破壊形態が同一であることから、この試験体間におい てはパラメータの差は出なかったものと推定される。ただし、仮に幅を小さくし てフランジの破壊形態の差が生ずる(押抜きと全幅)状況になった場合には、フ ランジ幅の影響が表れるものと想定される。 また、フランジの厚さのみをパラメータとして変化させた B-1 試験体(フラン ジ厚さ小)と B-3 試験体(フランジ厚さ大)を比較すると、せん断耐力の増加割 合はそれぞれ 1.58 と 1.92、フランジの破壊形態は、B-3 の下面のみ全幅にひび 割れが貫通した破壊であった。また、図 3-3-4(B-1 試験体上面)と図 3-3-10(B-3 試験体上面)を比較すると、押抜き幅が B-3 試験体の方が広いため、2 つの破壊 面が相当に接近している。これは、押抜き破壊面がフランジ厚さの厚い方が広が るため、両端の押抜き破壊面が接することに起因していると考えられる。以上の 状況から、フランジの厚さはフランジのせん断耐力上昇に寄与し、また破壊形態 の決定要因にもなりうるものと考えられる。



# (2) 断面形状の変化

箱形断面の B-1 試験体、B-1 試験体から上フランジ(ウェブ間)を省略した B-4 試験体、B-1 試験体から下フランジ(同じくウェブ間)を省略した B-5 試験体を 比較すると、いずれもフランジの破壊形式は押抜きせん断破壊で同一であるが、 せん断耐力の計算値と実験値を比較すると、いずれの試験体も実験値は計算値を 上回っている。また、せん断耐力の実験値は、上下にフランジを持つ B-1 試験体 が若干大きく、B-4 試験体と B-5 試験体はほぼ同程度であった(図 3-3-23)。矩 形断面として計算されるせん断耐力の計算値より B-4、B-5 の上下それぞれ片側 にフランジを配置した試験体の実験値が大きかったこと、および両側にフランジ が配置されている B-1 試験体の実験値が片側にのみフランジが配置された試験体 である B-4、B-5 の実験値より大きかったことから、上下のフランジはそれぞれ せん断耐力に寄与すると判断される。



# (3) フランジ内鉄筋の影響

フランジ内の鉄筋量を変化させた試験体 B-1、MA-1、MA-2の比較表を表 3-3-2 に示す。

| 試 験 体 | 上フラ                     | ンジ                       | 下フランジ                    |                        |  |
|-------|-------------------------|--------------------------|--------------------------|------------------------|--|
|       | 軸 方 向<br>鉄 筋            | 軸 直 交<br>方 向 鉄 筋         | 軸方向鉄筋                    | 軸 直 交<br>方 向 鉄 筋       |  |
|       | 段 数 、 径<br>間 隔 、 鉄 筋 比  | 段 数 、 径<br>間 隔 、 鉄 筋 比   | 段 数 、 径<br>間 隔 、 鉄 筋 比   | 段 数 、 径<br>間 隔 、 鉄 筋 比 |  |
| B-1   | 2 段 、 D10               | _                        |                          | _                      |  |
| MA-1  | 112mm, 0.008            | 2 段 、D10<br>100mm、0.009  | 1 段 、D32<br>85.7mm、0.097 | _                      |  |
| MA-2  | 1 段、D32<br>92.5mm、0.124 | 1 段、 D13<br>100mm、 0.013 |                          | 1 段、D13<br>100mm、0.013 |  |

表 3-3-2 フランジ内鉄筋を比較させた実験結果

|       | Varn  | $V_y(\mathbf{k}\mathbf{N})$ |       | V <sub>ern</sub> / | 破壊形態 |       |  |
|-------|-------|-----------------------------|-------|--------------------|------|-------|--|
| 試 験 体 | (kN)  | $V_c$ $V_s$ $V_y$           | 上フランジ | 下フランジ              |      |       |  |
| B-1   | 313.8 | 198.7                       | 0     | 1.58               | 押抜き  | 押 抜 き |  |
| MA-1  | 432.2 | 198.6                       | 0     | 2.18               | 全幅   | 押 抜 き |  |
| MA-2  | 416.3 | 197.9                       | 0     | 2.10               | 全幅   | 全幅    |  |

フランジの鉄筋量を B-1 試験体より増加させた MA-1、MA-2 両試験体について は、せん断耐力が増加しているが、MA-1 試験体とそれよりさらにフランジ鉄筋 量を増加させた MA-2 試験体では、せん断耐力の増分はほぼ同一、やや MA-1 試 験体の方が高い結果となった。この要因としては、破壊形態の変化があげられる。 B-1 試験体は上下いずれもフランジの押抜きせん断破壊となっているが、MA-1 試験体の上フランジ、MA-2 試験体の上下フランジはフランジ全幅を貫通するせ ん断破壊であった。つまり、フランジ鉄筋の増加により押抜きせん断破壊の耐荷 力が増加し、破壊形態が相対的に低いせん断耐力となったフランジ全幅でのせん 断破壊に移行したため、フランジの鉄筋、特に軸直交方向の鉄筋がせん断耐力増 加に寄与しなくなったため、MA-1 試験体と MA-2 試験体ではせん断耐力に差が 見られなくなったものと推定される。

# (4) フランジの押抜きせん断破壊の形状

破壊時にフランジの押抜き面が載荷板からどれだけ離れた位置まで形成された かを、図 3-3-24~図 3-3-27 に示す。なお、以下に示す図はすべてフランジ面が 押抜きせん断破壊をした試験体のものである。



図 3-3-24 B-1 上フランジ押抜きせん断破壊状況





図 3-3-25 B-2 上フランジ押抜きせん断破壊状況

図 3-3-26 B-3 上フランジ押抜きせん断破壊状況



図 3-3-27 B-4 上フランジ押抜きせん断破壊状況

載荷板から押抜き破壊面後端までの距離は、約400mm~460mmとなっており、 ややばらつきがあるが、T形断面試験体と同程度であった。押抜きせん断破壊面 はおおむねウェブ斜めひび割れがフランジ接合面に達した付近から発生している ことを考えるとせん断スパンの影響が大きくなる可能性がある。しかしながら、 せん断スパンはT形断面試験体が1200mm、箱形断面試験体が1012mmとそれほ ど大きな差がなかったことから、今回の実験では影響が確認できなかった。また、 フランジの厚さはT形断面試験体が110mm、箱形断面試験体の大半が120mm、 B-3 試験体のみ180mmであった。しかし、B-3 試験体の押抜き破壊面後端までの 距離は約430mmと、厚さの薄い B-4 断面の約460mmよりも小さい結果となっ ていたため、今回の結果ではフランジ厚さの影響はないと考えられる。
## 3.4 まとめ

箱形断面および箱形断面からウェブ間のフランジを取り除いた U 形断面、逆 U 形断面の RC 部材について、せん断破壊実験を行った結果を以下にまとめる。

なお、本実験ではせん断スパン比を 2.2 に固定している。

- (1) 箱形断面試験体、U形断面試験体、逆U形断面においては、フランジ部が押 抜きせん断破壊する破壊形式と、フランジ部全体を貫通するせん断破壊の2 つの破壊形式に分かれる結果となった。
- (2) 今回の実験結果は、いずれも現行の基準4)によるせん断耐力算定方法を用いたせん断耐力の計算値を上回る結果となった。そのため、T 形断面と同様、箱形断面を有する RC 部材についても、せん断耐力算定式を別途構築する必要があると判断される。また、フランジは上下ともその存在がせん断耐力に寄与する。
- (3) フランジの幅(断面幅)を大きくしても、押抜きせん断破壊でフランジが破壊する場合には耐力の上昇には限界がある。また、フランジの厚さについてはせん断耐力向上に寄与する結果となった。
- (4) フランジ部分に配置した鉄筋量が増加すると、フランジ部分のせん断耐力は 増加する傾向にある。しかしながら、鉄筋量を過度に増加させると破壊形式 が押抜きせん断破壊からフランジ全体を貫くせん断破壊に移行するため、鉄 筋が有効に働くせん断耐力には限界がある。

第4章 T形断面および箱形断面を有する RC部材のせん断耐力算定式の検討

4.1 はじめに

第2章ではT形断面 RC 部材の、第3章では箱形断面 RC 部材のせん断破壊実 験を行った。いずれの結果も、従来の設計基準 4)における「円形断面以外で部材 高さ方向に腹部の幅が変化している場合は、その有効高さ d の範囲での最小幅を bwとする。複数の腹部を持つ場合はその合計幅を bwとする。」として算出するせ ん断耐力を大幅に上回る結果となった。また、フランジ部分の破壊形態が通常の せん断破壊になる場合と押抜きせん断破壊になる場合があるという点に留意が必 要であることも明らかとなった。

本章では、第2章、第3章で行った実験結果をもとに、新たなせん断耐力算定 式の方向性を検討し、フランジ部の二つの破壊形態いずれか耐力の小さい方で部 材全体のせん断耐力が決定する算定式を提案した。すなわち、フランジ部分のせ ん断破壊によるせん断耐力と、押抜きせん断破壊によるせん断耐力の双方を算定 し、いずれか小さい方でフランジのせん断耐力が決定するとしたものである。

さらに、この新たな提案式について、過去の類似実験、すなわち T 形断面を有 する他の実験結果に適用し、その妥当性を検証した。

## 4.2 せん断耐力算定式構築にあたっての方向性

フランジを有する RC 部材の第2章、第3章の実験によるせん断耐力は、フラ ンジがないものとして算出するせん断耐力を上回る結果が得られている。よって、 実験から得られたせん断耐力からフランジがないものとして算出されるせん断耐 力、すなわちウェブ部のみのせん断耐力を差し引き、それをフランジ部分の負担 するせん断耐力としてせん断耐力算定式を構築する。

なお、実験では破壊形態がフランジ部分を押抜く破壊形態と、フランジ部分全 幅を貫通するウェブのせん断破壊の延長となる破壊形態の2種類が見られた。こ れは、フランジ幅が広い場合には「フランジの押抜きせん断耐力」が、フランジ 幅が狭い場合には「フランジ部全幅で破壊するせん断耐力」が、それぞれ相対的 に小さくなるために破壊形態が異なるものと推定される。また、実験ではウェブ が圧壊する試験体での確認はなされておらず、ウェブ圧壊の破壊においてはフラ ンジの効果はないと想定される。よって、せん断耐力式は、

$$V_u = V_y + V_{fla} \tag{4.1}$$

ここで、

 $V_{y}: ウェブの負担する棒部材としてのせん断耐力で、<math>V_{y}=V_{c}+V_{s}$  (4.2)  $V_{c}: コンクリートが負担するせん断耐力$ 

V<sub>s</sub>: せん断補強鉄筋が負担するせん断耐力

 $V_{fla}$ : フランジの負担するせん断耐力で、 $V_{fla} = Min(V_{flap}, V_{flay})$  (4.3)

なお、上下にフランジがある場合は各々個別に検討する。

*V<sub>flap</sub>*: フランジが押抜きせん断破壊するときのフランジのせん断耐力

*V<sub>flay</sub>*: フランジ全体がウェブと一体でせん断破壊するときのフランジのせん断耐力

となる。第2章のT形断面 RC はりせん断破壊実験においてフランジの軸直交方 向鉄筋がせん断耐力に寄与することが確認された。これによりフランジの軸直交 方向鉄筋を配置してせん断耐力を向上させることが可能となるが、上記の通りフ ランジの破壊は「押抜きせん断破壊」と「フランジ全体がウェブと一体で破壊」 する形態のいずれかであるとすることで、フランジの軸直交方向鉄筋を過度に配 置しても後者での破壊がクリティカルになり、不合理な配筋での設計がなされる ことはないと考える。

今回の実験結果から、 $V_{flap}$ と $V_{flay}$ の算定方法を検討する。

なお、今回の実験では T 形断面、箱形断面どちらの実験においてもせん断スパン比は一定とした。せん断スパン比は部材のせん断破壊の形態に大きく影響を及ぼすパラメータであり、T 形断面、箱形断面 RC 部材のせん断破壊においても影

響を及ぼす可能性はある。しかし、既往の研究 <sup>5),8),10)</sup>では斜めひび割れの発生荷 重は矩形断面の試験と変わらなかったとされていること、本研究の実験において ウェブの斜めひび割れは発生し、その斜めひび割れがフランジ面に到達した位置 を起点としてフランジの破壊が生じていたことから、ウェブのせん断破壊は矩形 棒部材と同様にせん断スパン比の影響を受け、かつフランジ部せん断耐力との重 ね合わせが成り立つものと仮定した。

### 4.3 本実験におけるせん断耐力算定式の検討・提案

#### 4.3.1 フランジの押抜きせん断破壊時の耐力算定式の検討

フランジが押抜きせん断破壊をするとした場合、フランジの押抜きせん断耐力 算定式は現行の設計式に準じて構築が可能であると考えられる。すなわち、土木 学会コンクリート標準示方書[設計編]4)に規定された式から安全率を取り除い た、下記の式を基本とする。

$$V = \beta_d \cdot \beta_p \cdot \beta_r \cdot f_{pc} \cdot u_p \cdot d \tag{4.4}$$

ここで、

 $f_{pc} = 0.20 \sqrt{f_c}$  (N/mm<sup>2</sup>)  $\hbar \hbar$  C (N/mm<sup>2</sup>)

 $\beta_d = \sqrt[4]{1000/d}$  (d:mm) ただし、 $\beta_d > 1.5$ となる場合は 1.5とする

 $\beta_p = \sqrt[3]{100p_v}$  ただし、 $\beta_p > 1.5$ となる場合は 1.5とする

 $\beta_r = 1 + 1/(1 + 0.25u/d)$ 

 $f_{c}$ : コンクリートの圧縮強度で、単位は N/mm<sup>2</sup>である

u:載荷面の周長

up:照査断面の周長で,載荷面から d/2 離れた位置で算定するものとする
 d および pv: 有効高さおよび鉄筋比で、二方向の鉄筋に対する平均値とする

この式を準用する場合、問題となるのは載荷面の周長 u および照査断面の周長 up をどのように設定するかである。今回の場合、ウェブ部分がフランジ部分を押 抜いて破壊している。しかし、ウェブ部は軸方向に連続して存在する。また、第 2章 2.3.3 フランジの破壊形状 (1) 実験で得られたフランジの破壊形状に て示したとおり、「片押抜き」のような状況で破壊している。すなわち、破壊面は 載荷板方向にはウェブの斜めひび割れがフランジ下面に到達した点を基準に載荷 板へ向けて斜めに発生している。また軸直交方向には、左右両方向に形成してい る。一方、支点方向には、約 400m 程度まで軸直交方向の破壊面が形成された後 は、支点側には軸方向の破壊面が形成されていない。つまり、ウェブの一部分が 局部的にフランジを押しているものと推定される。

上記を踏まえ、押抜き載荷面の大きさについて検討する。実験で観察された破壊面を箱形断面の上方から俯瞰した図で表すと、概ね図 4-3-1 のように表現される。つまり、照査断面 up も、通常の押抜きせん断破壊の半分の周長を持つ形状であると考える。図中、太い矩形の形が想定する押抜き載荷面、一点鎖線が照査断面である。



図 4-3-1 箱形断面フランジ部の破壊イメージ

押抜き載荷面の幅 A は、ウェブ部分がフランジを押すことが明白であることから、ウェブの幅 tw に等しい。

次に、載荷面と押抜き照査断面の距離 B、Cは、押抜きせん断耐力算定式の原 式では有効高さの 1/2 である d/2 で定義されている。今回の場合、一般的な押抜 きせん断破壊と異なり、押抜かれるフランジに配置されている鉄筋は実際には引 張鋼材として機能していない。また、T 形断面試験体ではフランジ鉄筋を厚さ方 向の中心付近に配置していても破壊断面は大きくなり、フランジの押抜き強度は 高くなっていた。これは、浜田らのかぶりの厚い RC 床版の押抜きせん断破壊に 関する研究 <sup>28)</sup>でも見られた通り、押抜きせん断破壊面の大きさにはかぶり部分も 影響するためであると考えられる。よって、本研究においてはフランジのかぶり 部分もせん断破壊面の大きさに影響を当たるものと判断し、B、C の位置につい てはフランジの全厚さである tf の半分、tf/2 であると仮定した。

次に、載荷板から押抜き面までの距離 D は、前述の通りウェブに発生した大きな破壊面が上フランジ下面に到達した位置が押抜き破壊面の起点となっている。 この位置を理論的に特定することは難しいことから、今回は、図 4-3-2 に示す通り、支点(支持板)と載荷板を結ぶ線と上フランジ下面の交点を押抜き面の端部として検討することとした。この仮定によると、T 形断面試験体の場合に D= 270mm、箱形断面試験体のフランジ厚 120mm の場合(B-3 試験体以外)において D=190mm、箱形断面試験体のフランジ厚 280mm の場合(B-3 試験体)において D=280mm となる。



図 4-3-2 ウェブせん断ひび割れとフランジ下面の交点の仮定

最後に、ウェブと並行方向の押抜き周長 Eについては、実験結果から仮定する。 第2章、第3章にて、載荷板から押抜き破壊面の後端までの距離を掲示している。 また、前述のとおり、押抜き載荷面から載荷板までの位置 Dは試験体により、190 ~280mm と仮定した。よって、それらより計算される各試験体における Eの値 は、表 4-3-1の通りとなる。

| 試 験 体 | フランジ<br>厚さ<br>t <sub>f</sub> (mm) | 押抜き載荷面と載荷<br>板の距離(mm) | ウェブ斜めひび割れ<br>とフランジ下面の交<br>点と載荷板の距離 <i>D</i><br>(mm) | <i>E</i><br>(mm) | $E/t_f$ |
|-------|-----------------------------------|-----------------------|-----------------------------------------------------|------------------|---------|
| T-1   |                                   | 550                   |                                                     | 280              | 2.55    |
| T-2   | 110                               | 410                   | 270                                                 | 140              | 1.27    |
| T- 4  | 110                               | 480                   | 270                                                 | 210              | 1.91    |
| T-5   |                                   | 420                   |                                                     | 150              | 1.36    |
| B·1   | 190                               | 420                   | 100                                                 | 230              | 1.92    |
| B-2   | 120                               | 390                   | 190                                                 | 200              | 1.67    |
| В-3   | 180                               | 430                   | 280                                                 | 150              | 0.83    |
| B-4   | 120                               | 460                   | 190                                                 | 270              | 2.25    |

表 4-3-1 押抜き載荷面と実験載荷板の距離の実験値から算出した Eの値

本実験のような T 形断面・箱形断面のフランジ押抜きせん断破壊は、前述の通り「片押抜き」である。片押抜きせん断破壊において、 E の値は押抜きせん断破 壊の影響範囲であり、その範囲はフランジ厚さの影響を受けるのではないかと考 えた。そこで、今回は E の値をフランジの厚さの関数と考える。 E の値はばらつ きが大きいが、概ねフランジ厚さより大きく、試験体によっては 2 倍以上となっ ており、Eをフランジの厚さ t<sub>f</sub>で除した値の平均値は 1.72 となった。そこで、本 結果より、E の値は平均値より余裕を見て、 E=t<sub>f</sub>と仮定することとした。

以上の結果から、フランジ押抜きせん断破壊時の耐力算定式を、以下のように 定義する。まず、フランジ押抜きせん断破壊時の検討断面は図 4-3-3 の略図に示 すような断面とする。ここでは、箱形断面を例としている。



図 4-3-3 フランジ押抜きせん断破壊の照査概略図

前述の通り、フランジの破壊は軸方向に半断面の押抜きせん断破壊であり、かつ箱型断面においては軸直交方法についてもフランジが片方にしかないため、片側のウェブのみに着目した場合、押抜き周長は通常の約 1/4 となる。また、照査断面のうち、図 4-3-3 の断面図ハッチングの部分はコンクリートの負担するせん断耐力 V<sub>c</sub>として算出されることから、この部分はフランジの照査断面からは控除する必要がある。よって、押抜き周長 u<sub>p</sub>はウェブと平行な線 l<sub>1</sub>とそこから 1/4 円弧の部分 l<sub>2</sub>の和として表される。

次に、フランジ内の鉄筋比の影響について検討する。一般の押抜きせん断破壊 耐力算定式では、鉄筋比は二方向の鉄筋比の平均値を用いて、鉄筋比の影響を表 す係数β<sub>p</sub>を算出するとしている<sup>4)</sup>。一方、図 4-3-3 に示す通り、今回検討する照 査断面の押抜き周長は、軸方向とそこから軸直交方向に向かう円弧のみで構成さ れており、軸直交方向には照査断面を構成していない。そのため、単純に二方向 の鉄筋比の平均値を活用することは適切でない。よって、下記のように考える。

- ・軸方向の照査断面(長さ *l*<sub>1</sub>)に対するフランジ鉄筋比は、交差する軸直交方向の鉄筋比を対象とする。
- 円弧部分の照査断面(長さ 12)に対するフランジ鉄筋比は、軸方向、軸直交方向の二方向の鉄筋の平均値とする。
- ・照査断面全体の鉄筋比は、軸方向の照査断面における鉄筋比と円弧部分の照査 断面における鉄筋比の加重平均、すなわち l<sub>1</sub> と l<sub>2</sub>の長さ比率に応じた平均値 とする。

以上の考え方より、フランジ部分の押抜きせん断耐力算定式は以下に示す通り となる。

$$V_{flap} = \beta_{df} \cdot \beta_{pf} \cdot \beta_{rf} \cdot f_{pc} \cdot u_p \cdot d_f$$
(4.5)

ここで、

 $f_{pc} = 0.2 \sqrt{f_c'}$  tt t L,  $f_{pc} \leq 1.2 \,\mathrm{N/m\,m^2}$  $\beta_{df} = (1000/d_f)^{1/4}$  to to  $\beta_{df} \le 1.5$  $\beta_{pf} = (100 p_{cf})^{1/3}$  to to  $\beta_{pf} \le 1.5$  $\beta_{rf} = 1 + 1/(1 + 0.25 u/d_f)$ u:載荷面の周長(T 形断面の場合 u=b<sub>w</sub>+2t<sub>f</sub>×2、矩形中空断面の場合  $u = 2 \times (b_w + 2t_f \times 2)) \qquad (mm)$  $u_p$ : 押抜き周長の有効範囲 (=2×( $t_f + t_f \times \pi/4$ )) (mm)  $b_w$ : ウェブ幅 (mm)  $t_f: フランジ厚 (mm)$  $d_f$ : フランジ有効高さ (mm) $p_{cf}$ : フランジ部の引張鉄筋比の加重平均 (= $\frac{l_1}{l_1+l_2} \times p_{cfc} + \frac{l_2}{l_1+l_2} \times \frac{p_{cfc} + p_{cfl}}{2}$ ) *p<sub>cfc</sub>*: フランジ部の軸直交方向の引張鉄筋比 *p*<sub>cq</sub>: フランジ部の軸方向の引張鉄筋比 l: 押抜き周長の有効範囲のうち, 直線部分 L: 押抜き周長の有効範囲のうち, 曲線部分

# 4.3.2 フランジ全幅のせん断破壊時耐力算定式の検討

フランジ全幅に渡って貫通するひび割れが発生する破壊モードにおいては、ウ ェブによる載荷面を杭、フランジをフーチング、載荷板を壁式橋脚く体と見立て ると、石橋らの研究<sup>29)</sup>によるせん断耐力算定式が活用可能であると考えられる。 なお、石橋らの提案式のうち、引張鋼材比の影響β<sub>p</sub>と有効高さの影響β<sub>d</sub>は、その 後、二羽らのせん断耐力に関する研究<sup>27)</sup>により、和で表すのではなく個々に乗ず るのが適切であるとされ、現在では土木学会の斜め引張破壊の式はそれぞれの係 数を乗ずる形が採用されている<sup>4)</sup>。そこで、石橋らの提案式は引張鋼材比の影響 β<sub>p</sub>と有効高さの影響β<sub>d</sub>を和の形で考慮しているが、本論文においても、石橋らの 提案式を若干修正して引張鋼材比の影響β<sub>p</sub>と有効高さの影響β<sub>d</sub>を個々に乗ずる、 下記の式を適用することとする。

$$V = 0.76(a/d)^{-1.166} \sqrt[3]{f'_{c}} \cdot \beta_{d} \cdot \beta_{n} \cdot b \cdot d$$
(4.6)

ここで、

 $f'_{c} : コ > ク リ - ト の 圧 縮 強 度 (N/mm<sup>2</sup>)$  $\beta_{d} = \sqrt[4]{1000/d} (d : mm)$  $\beta_{p} = \sqrt[3]{100p_{v}}$ b : 幅 (mm)d : 有 効 高 さ (mm) $p_{v} = A_{s}/(b \cdot d)$  $A_{s} : 引 張 側 鋼 材 の 断 面 積 (mm<sup>2</sup>)$ 

a: せん断スパン (mm)

本式を採用するにあたり、課題となるのは対象断面の幅 b である。既往の研究 では、T 形断面 RC はりのフランジ部の応力分布はフランジ幅方向、厚さ方向と も一定ではなく、有効幅は応力分布を平均化したもので考える必要があるとの報 告がなされている<sup>16)</sup>。しかし、実務設計で実際の応力分布を算定、平均化するの は容易でないことから、本研究ではフランジの有効幅を仮定したうえで実験結果 を評価することとした。

図 4-3-4 にフランジ全幅に渡るせん断破壊時の耐力算定時の考え方を示す。

側 面 図





図 4-3-4 フランジ全幅せん断破壊の照査概略図

ウェブの上下部、フランジとの交点部分はウェブ部分のせん断耐力算定式 V<sub>c</sub> にて考慮するため、フランジ部のせん断耐力は押抜きせん断破壊での検討と同様 に、図 4-3-4 の断面図のうち、斜線ハッチング部を除いたフランジ部分で算定す る必要がある。また、フランジの幅が大きくなっても、有効に作用する幅につい ては限界があると考えられる。そのフランジの有効幅を図 4-3-4 のとおり b<sub>e</sub>とし て、b<sub>e</sub>の仮定を以下のように行う。

実験では、ウェブ部に発生した斜めひび割れがそのままつながってフランジ部 分の破壊に至っている。すなわち、フランジ部だけを対象にする場合、ウェブ斜 めひび割れがフランジ下面に達した位置を支点とし、載荷板までのせん断スパン  $a_f$ について実験を行っていると考えられる。そこで、今回はこの支点と載荷板を 直接結ぶ距離、 $\sqrt{a_f^2 + t_f^2}$ の分だけそれぞれウェブの両側に有効幅を持つものと仮定 する。なお、T形断面は1ウェブあたり両側、箱形断面の場合は2ウェブでそれ ぞれ片側ずつのため、いずれも $b_e = 2\sqrt{a_f^2 + t_f^2}$ となる。また、当然のことながら、フ ランジ全幅よりウェブ幅を引いた値が上限値となる。 よって、フランジ全幅のせん断破壊時耐力算定式は、以下の通りとなる。

$$V_{flay} = 0.76(a_f / d_f)^{-1.166} \sqrt[3]{f'_c} \cdot \beta_{df} \cdot \beta_{pf} \cdot b_e \cdot d_f$$
(4.7)

ここで、

# 4.4 提案するせん断耐力算定式の妥当性検証

# 4.4.1 本実験結果における提案せん断耐力算定式妥当性の検証

本実験におけるせん断耐力算定式の検討・提案にて提案したせん断耐力算 4.3 定式を今回の実験結果にて検証する。検討に使用する式(4.1)~(4.3)、式(4.5)、式 (4.7)を再掲する。

$$V_u = V_v + V_{fla} \tag{4.1}$$

$$V_v = V_c + V_s \tag{4.2}$$

$$V_{y} = V_{c} + V_{s}$$

$$V_{fla} = \operatorname{Min}(V_{flap}, V_{flay})$$

$$(4.3)$$

$$V_{flap} = \beta_{df} \cdot \beta_{pf} \cdot \beta_{rf} \cdot f_{pc} \cdot u_p \cdot d_f \tag{4.5}$$

$$V_{flay} = 0.76(a_f / d_f)^{-1.166} \sqrt[3]{f'_c} \cdot \beta_{df} \cdot \beta_{pf} \cdot b_e \cdot d_f$$
(4.7)

まず、式(4.3)による、フランジ破壊形態の判定結果と実験結果の比較を表 4-4-1 に示す。なお、本検討ではウェブとフランジのせん断耐力が足し合わせになって いないと判定された T-3 試験体を含めて検討している。

| 計 卧 仕        | フランジ | $V_{flap}$   | $V_{flav}$ | 破壊  | 形態   |    |
|--------------|------|--------------|------------|-----|------|----|
| 武 映 14       |      | $(\dot{k}N)$ | (k N)      | 計算値 | 実験結果 |    |
| T- 1         | 上    | 31.9         | 111.3      | 押抜き | 押抜き  | ОК |
| T-2          | 上    | 55.6         | 115.3      | 押抜き | 押抜き  | ОК |
| Т-3          | 上    | 44.8         | 156.6      | 押抜き | 押抜き  | ОК |
| T- 4         | 上    | 49.9         | 169.4      | 押抜き | 押抜き  | ОК |
| T- 5         | 上    | 83.6         | 107.4      | 押抜き | 押抜き  | ОК |
| T- 6         | 下    | 49.9         | 57.2       | 押抜き | 全幅   | NG |
| D - 1        | 上    | 33.4         | 51.6       | 押抜き | 押抜き  | ОК |
| D-1          | 下    | 94.3         | 124.1      | 押抜き | 押抜き  | ОК |
| <b>D</b> - 0 | 上    | 33.7         | 52.0       | 押抜き | 押抜き  | ОК |
| D-2          | 下    | 91.2         | 124.9      | 押抜き | 押抜き  | ОК |
| <b>D</b> = 9 | 上    | 76.2         | 135.6      | 押抜き | 押抜き  | ОК |
| D.9          | 下    | 164.3        | 189.4      | 押抜き | 全幅   | NG |
| B-4          | 上    | 33.9         | 52.1       | 押抜き | 押抜き  | ОК |
| B-5          | 下    | 95.6         | 125.3      | 押抜き | 押抜き  | ОК |
| Μ.Δ1         | 上    | 56.7         | 51.5       | 全幅  | 全幅   | ОК |
|              | 下    | 93.9         | 123.7      | 押抜き | 押抜き  | ОК |
| M A - 9      | 上    | 109.3        | 123.6      | 押抜き | 全幅   | NG |
| IVI A - Z    | 下    | 106.9        | 123.6      | 押抜き | 全幅   | NG |

表 4-4-1 提案式による破壊形態判定と実験結果の比較

18 のフランジ破壊形態判定のうち、全体の 3/4 にあたる 14 ケースで破壊形態 の判定を適切に行うことができており、概ねフランジ部分の破壊が押抜きせん断 破壊とフランジ全幅のせん断破壊のいずれで破壊するかの判定がなされていると 判断される。一方、1/4 弱のケースにおいて NG と判定された要因としては、以 下のような点が考えられる。

- ・ V<sub>flap</sub>と V<sub>flay</sub>の耐力差は最大でも2割程度であり、比較的せん断耐力の差が小さいために破壊形態が想定と異なる結果となった
- フランジには部材全体の曲げ変形による圧縮(上フランジ)、引張(下フランジ)応力が軸方向に発生しているが、本提案式では考慮されていない

次に、表 4-4-2 に部材全体のせん断耐力の実験値と従来の計算式および今回の 提案式による計算値を示す。また、図 4-4-1 に実験結果とそれぞれの計算値の関 係を示す。ここで、従来の計算式によるせん断耐力は、せん断スパン 2.5 以上の 領域においては二羽らの研究成果 <sup>27)</sup>を、せん断スパン 2.5 未満の領域においては 石橋らの研究成果 <sup>29)</sup>による式を用いている。なお、石橋らの研究成果では、有効 高さ d、引張鋼材比 p<sub>c</sub>の影響について、当時の限界状態設計法試案 <sup>30)</sup>に基づき、 (1+β<sub>d</sub>+β<sub>p</sub>)と和の形で考慮している。しかし、現在の基準 <sup>4)</sup>では二羽らの研究成果 に基づき、(β<sub>d</sub>・β<sub>p</sub>)と積の形で考慮している。本研究においても、4.4.3 本実験に おけるせん断耐力算定式の検討・提案にて提案したせん断耐力算定式では有効高 さと引張鋼材比の影響を積の形で考慮している。そこで、従来式と提案式の比較 にあたっては、ウェブ部のせん断耐力算定法が同一になるよう、有効高さと引張 鋼材比の影響を積の形で考慮し、従来式と提案式の比較がフランジ部のせん断耐 力のみとなるようにしている。

| 試 験 体   | 実験値<br>V <sub>exp</sub> (kN) | 計算值 (従来)<br>V <sub>call</sub> (kN) | V <sub>exp</sub> /V <sub>call</sub> | 計算值 (提案)<br>V <sub>cal2</sub> (kN) | $V_{exp}/V_{cal2}$ |
|---------|------------------------------|------------------------------------|-------------------------------------|------------------------------------|--------------------|
| T - 1   | 271.0                        | 172.5                              | 1.57                                | 204.3                              | 1.33               |
| T - 2   | 328.1                        | 175.5                              | 1.87                                | 221.2                              | 1.42               |
| T-4     | 280.7                        | 178.9                              | 1.57                                | 228.9                              | 1.23               |
| T - 5   | 296.2                        | 179.5                              | 1.65                                | 246.7                              | 1.13               |
| T-6     | 292.2                        | 195.5                              | 1.49                                | 245.4                              | 1.19               |
| B - 1   | 313.8                        | 198.7                              | 1.58                                | 326.4                              | 0.96               |
| B-2     | 342.9                        | 200.1                              | 1.71                                | 325.0                              | 1.06               |
| В-3     | 384.2                        | 200.1                              | 1.92                                | 440.6                              | 0.87               |
| B-4     | 290.9                        | 200.6                              | 1.45                                | 234.5                              | 1.24               |
| B-5     | 280.4                        | 200.6                              | 1.40                                | 296.3                              | 0.95               |
| M A - 1 | 432.2                        | 198.6                              | 2.18                                | 343.6                              | 1.26               |
| M A - 2 | 416.3                        | 197.9                              | 2.10                                | 414.1                              | 1.01               |
| 平均      |                              |                                    | 1.67                                |                                    | 1.14               |

表 4-4-2 従来式、提案式による試験体せん断耐力の計算値と実験値の比較



せん断耐力の計算値(kN)

図 4-4-1 せん断耐力の計算値と実験値の比較

表 4-4-2 および図 4-4-1 を見て明らかなとおり、従来式が実験結果を適切に評価できていない一方、提案式は実験結果を正当に評価できていることがわかる。 実験値を従来式による計算値で除した値の平均値は 1.67 であったが、実験値を計 算値で除した値の平均値は 1.14 となった。従来式では、矩形断面のせん断耐力算 定に関し、実験値を計算値で除した値の平均値が、二羽らの式では 1.01、石橋ら の式では 0.94 であったことを考えると、従来式は T 形断面、箱形断面のせん断 耐力を相当に過小評価する状況である。一方、提案式は断面形状の変化による影 響を考慮し、既往式より相対的に実験結果を適切に評価できている。よって、今 回の提案式を採用することで、T 形断面、箱形断面 RC 部材のせん断耐力を適切 に評価できることから、実務設計において合理的な設計が可能になると言える。 また、変動係数は 14.9%であった。既往の研究 <sup>31)</sup>において、現在の設計式 <sup>4)</sup>にせ ん断耐力を評価した結果、実験値を計算値で除した値の変動係数が 14.8%であっ たとの報告がなされている。本研究の変動係数はこの既往の研究における数値と 同程度となっており、本提案式が十分な精度を有していると判断できる。

#### 4.4.2 既存の研究結果での検証

今回の提案式の妥当性について、既往の研究による実験結果で検証を行う。既 往の研究において T 形断面のせん断破壊実験を行ったものはいくつかあるが、今 回の実験で得られた知見、提案式の構成、載荷の方法など、今回の提案式に適合 しないと判断されたものは除外した。除外となる例としては、下記のような条件 がある。

ウェブのせん断補強鉄筋がない実験結果(本実験の知見では、ウェブとフランジのせん断耐力の足し合わせにならない場合がある)

- フランジに鉄筋が配置されていない実験結果(今回提案式において耐力算出不可能)
- 交番載荷をした実験結果(耐力低下の可能性あり)
- ウェブ軸方向鉄筋に丸鋼等、付着性能の低い鋼材を使用した実験結果(ウェブ せん断耐力の算定式適用範囲外)

そこで、今回は狩野・水出の研究<sup>6)</sup>、狩野・岩崎の研究<sup>7)</sup>、松崎らの研究<sup>8)</sup>、岡本らの研究<sup>11)</sup>、中村らの研究<sup>14)</sup>を対象に、提案式の検証を行う。

なお、松崎らの研究は、逆対称曲げモーメントを受けるはりでの実験となって いる。逆対称曲げモーメントを受ける RC 部材のせん断耐力は通常の正曲げ載荷 によるせん断耐力と結果が異なる知見が前田らの研究<sup>32)</sup>により得られているこ とから、*a/d*<2.0 の領域においては以下の式を用いてウェブ部分のせん断耐力を 算定する。

$$V_{v} = V_{c} + V_{s} \tag{4.8}$$

$$V_{c} = \beta_{d} \cdot \beta_{p} \cdot f_{yc} \cdot b_{w} \cdot d \cdot (-0.75 + 4.0/(a/d))$$
(4.9)

$$V_s = A_w \cdot f_{wv} \cdot z \cdot \cot \theta / s_s \tag{4.10}$$

$$\begin{array}{l} \beta_{a} = \sqrt[4]{1000/d} \\ \beta_{p} = \sqrt[3]{100p_{c}} \\ f_{vc} = 0.2\sqrt[3]{f_{c}'} \\ b_{w} : 腹部の幅 \\ d : 有効高さ \\ p_{c} : せん断引張鋼材比 \quad p_{c} = A_{c}/(b_{w} \cdot d) \\ A_{s} : 引張側鋼材の断面積 \\ f_{c}' : コンクリートの圧縮強度 \\ a/d : せん断スパン比 \\ A_{w} : 区間 s_{s} における部材軸と直交するせん断補強鉄筋の総断面積 \\ f_{wy} : せん断補強鉄筋の引張降伏強度 \\ z : 圧縮応力の合力位置から引張鋼材図芯までの距離 \quad z = d/1.15 \\ \theta : 圧縮ストラットの角度 (°) \\ \cot\theta = 0.44(a/d) - 35p_{w} + 0.58 \quad ctic \ \cot\theta \leq 1.0 \end{array}$$

表 4-4-3~表 4-4-7 にそれぞれの既往の実験によるせん断耐力の実験結果および従来式および提案式によるせん断耐力の計算値を、図 4-4-2 にせん断耐力の実験値と既往の式による計算値の関係を、図 4-4-3 にせん断耐力の実験値と提案式によるせん断耐力の計算値の関係を示す。

# 表 4-4-3 狩野・水出 <sup>6)</sup>の実験における従来式、提案式による

|         |                              | せん断耐力                                   |                                         |                                     |                                     |  |
|---------|------------------------------|-----------------------------------------|-----------------------------------------|-------------------------------------|-------------------------------------|--|
| 試 験 体 名 | 実験値<br>V <sub>exp</sub> (kN) | 計算値(従来)<br><i>V<sub>call</sub></i> (kN) | 計算値(提案)<br><i>V<sub>cal2</sub></i> (kN) | V <sub>exp</sub> /V <sub>call</sub> | V <sub>exp</sub> /V <sub>cal2</sub> |  |
| Tc 0    | 73.2                         | 73.1                                    | 77.5                                    | 1.00                                | 0.94                                |  |
| Tc 1    | 107.3                        | 72.3                                    | 86.7                                    | 1.48                                | 1.24                                |  |
| Tc2     | 112.7                        | 72.1                                    | 113.1                                   | 1.56                                | 1.00                                |  |
| Tc3(1)  | 100.5                        | 70.3                                    | 127.6                                   | 1.43                                | 0.79                                |  |
| Tc3(2)  | 127.4                        | 73.9                                    | 135.0                                   | 1.72                                | 0.94                                |  |
| Tc4     | 112.7                        | 73.3                                    | 86.3                                    | 1.54                                | 1.31                                |  |
| Tc 5    | 111.7                        | 72.5                                    | 98.2                                    | 1.54                                | 1.14                                |  |
| Tc6     | 111.5                        | 73.3                                    | 85.6                                    | 1.52                                | 1.30                                |  |
| Tc7     | 78.4                         | 72.1                                    | 88.4                                    | 1.09                                | 0.89                                |  |
| Tt1     | 93.3                         | 72.9                                    | 87.6                                    | 1.28                                | 1.07                                |  |
| T t 2   | 98.3                         | 69.7                                    | 108.8                                   | 1.41                                | 0.90                                |  |
| T t 3   | 101.9                        | 71.8                                    | 130.7                                   | 1.42                                | 0.78                                |  |
| T t 4   | 77.4                         | 71.5                                    | 79.3                                    | 1.08                                | 0.98                                |  |
| T t 5   | 100.5                        | 72.3                                    | 97.8                                    | 1.39                                | 1.03                                |  |
| Tt6     | 79.7                         | 73.2                                    | 85.5                                    | 1.09                                | 0.93                                |  |
| I1      | 139.7                        | 72.0                                    | 96.3                                    | 1.94                                | 1.45                                |  |
| 平均      |                              |                                         |                                         | 1.41                                | 1.04                                |  |

せん断耐力の計算値と実験値の比較

# 表 4-4-4 狩野・岩崎 <sup>7)</sup>の実験における従来式、提案式による

せ ん 断 耐 カ の 計 算 値 と 実 験 値 の 比 較

| 試験体名    |                              | せん断耐力                                   |                                         |                                     |                                     |
|---------|------------------------------|-----------------------------------------|-----------------------------------------|-------------------------------------|-------------------------------------|
|         | 実験値<br>V <sub>exp</sub> (kN) | 計算値(従来)<br><i>V<sub>call</sub></i> (kN) | 計算値(提案)<br><i>V<sub>cal2</sub></i> (kN) | V <sub>exp</sub> /V <sub>call</sub> | V <sub>exp</sub> /V <sub>cal2</sub> |
| Tc-1.2  | 100.5                        | 84.1                                    | 98.6                                    | 1.19                                | 1.02                                |
| Tc-1.7  | 101.7                        | 70.9                                    | 85.4                                    | 1.43                                | 1.19                                |
| Tc-2    | 79.4                         | 66.7                                    | 81.0                                    | 1.19                                | 0.98                                |
| Tc-2.28 | 95.6                         | 63.9                                    | 78.3                                    | 1.50                                | 1.22                                |
| Tt-1.74 | 90.7                         | 70.7                                    | 85.0                                    | 1.28                                | 1.07                                |
| Tt-2.28 | 77.2                         | 64.1                                    | 78.5                                    | 1.20                                | 0.98                                |
| 平均      |                              |                                         |                                         | 1.30                                | 1.08                                |

|             |                              | せん断耐力                             |                                         |                                     |                                     |  |
|-------------|------------------------------|-----------------------------------|-----------------------------------------|-------------------------------------|-------------------------------------|--|
| 試験体名        | 実験値<br>V <sub>exp</sub> (kN) | 計算値(従来)<br>V <sub>call</sub> (kN) | 計算値(提案)<br><i>V<sub>cal2</sub></i> (kN) | V <sub>exp</sub> /V <sub>call</sub> | V <sub>exp</sub> /V <sub>cal2</sub> |  |
| 1.2-T20-48  | 122.5                        | 109.6                             | 114.7                                   | 1.12                                | 1.07                                |  |
| 1.2-T40-48  | 119.6                        | 109.6                             | 114.7                                   | 1.09                                | 1.04                                |  |
| 1.2-T60-48  | 121.5                        | 109.6                             | 114.7                                   | 1.11                                | 1.06                                |  |
| 2.0-T20-48  | 92.1                         | 97.9                              | 102.9                                   | 0.94                                | 0.90                                |  |
| 2.0-T40-48  | 95.1                         | 97.9                              | 102.9                                   | 0.97                                | 0.92                                |  |
| 2.0-T60-48  | 93.1                         | 97.9                              | 102.9                                   | 0.95                                | 0.90                                |  |
| 1.2-4T20-32 | 104.9                        | 88.4                              | 93.9                                    | 1.19                                | 1.12                                |  |
| 1.2-4T40-32 | 112.7                        | 91.2                              | 96.7                                    | 1.24                                | 1.17                                |  |
| 1.2-6T20-32 | 123.5                        | 91.2                              | 102.4                                   | 1.35                                | 1.21                                |  |
| 1.2-8T20-32 | 111.7                        | 91.2                              | 109.7                                   | 1.23                                | 1.02                                |  |
| 2.0-4T20-32 | 86.2                         | 79.2                              | 84.7                                    | 1.09                                | 1.02                                |  |
| 2.8-4T20-32 | 76.4                         | 74.0                              | 79.5                                    | 1.03                                | 0.96                                |  |
| 2.8-4T40-32 | 73.5                         | 74.0                              | 79.5                                    | 0.99                                | 0.92                                |  |
| 2.8-6T20-32 | 73.5                         | 74.0                              | 85.2                                    | 0.99                                | 0.86                                |  |
| 2.8-8T20-32 | 74.5                         | 74.0                              | 92.6                                    | 1.01                                | 0.80                                |  |
| 平均          |                              |                                   |                                         | 1.09                                | 1.00                                |  |

表 4-4-5 松崎ら<sup>8)</sup>の実験における従来式、提案式によるせん断耐力の計算値と実験値の比較

表 4-4-6 岡本ら <sup>11)</sup>の実験における従来式、提案式によるせん断耐力の計算値と実験値の比較

| 試験体名 |                              | せん断耐力                            |                                         |                                     |                                     |
|------|------------------------------|----------------------------------|-----------------------------------------|-------------------------------------|-------------------------------------|
|      | 実験値<br>V <sub>exp</sub> (kN) | 計算値(従来)<br><sub>Vcall</sub> (kN) | 計算値(提案)<br><i>V<sub>cal2</sub></i> (kN) | V <sub>exp</sub> /V <sub>call</sub> | V <sub>exp</sub> /V <sub>cal2</sub> |
| T1H  | 181.2                        | 123.8                            | 143.0                                   | 1.46                                | 1.27                                |
| T4H  | 157.2                        | 115.4                            | 134.1                                   | 1.36                                | 1.17                                |
| T5H  | 167.7                        | 110.8                            | 180.6                                   | 1.51                                | 0.93                                |
| 平均   |                              |                                  |                                         | 1.45                                | 1.12                                |

# 表 4-4-7 中村ら<sup>14)</sup>の実験における従来式、提案式による

|                       |                              | せん断耐力                                   |                                         |                                     |                                     |  |
|-----------------------|------------------------------|-----------------------------------------|-----------------------------------------|-------------------------------------|-------------------------------------|--|
| 試 験 体 名               | 実験値<br>V <sub>exp</sub> (kN) | 計算値(従来)<br><i>V<sub>call</sub></i> (kN) | 計算値(提案)<br><i>V<sub>cal2</sub></i> (kN) | V <sub>exp</sub> /V <sub>call</sub> | V <sub>exp</sub> /V <sub>cal2</sub> |  |
| T450-2.5<br>-0.17     | 173.2                        | 93.0                                    | 133.2                                   | 1.86                                | 1.30                                |  |
| T450-2.5<br>-0.28     | 163.4                        | 110.0                                   | 149.9                                   | 1.49                                | 1.09                                |  |
| T450-2.5<br>-0.38     | 210.8                        | 125.6                                   | 165.3                                   | 1.68                                | 1.28                                |  |
| T450-3.5<br>-0.17     | 118.1                        | 85.2                                    | 125.8                                   | 1.39                                | 0.94                                |  |
| T450-3.5<br>-0.28     | 143.5                        | 101.4                                   | 140.8                                   | 1.41                                | 1.02                                |  |
| T450-3.5<br>-0.38     | 176.5                        | 117.5                                   | 157.1                                   | 1.50                                | 1.12                                |  |
| T450-3.5<br>-0.30-D10 | 141.2                        | 113.9                                   | 153.9                                   | 1.24                                | 0.92                                |  |
| 平均                    |                              |                                         |                                         | 1.51                                | 1.10                                |  |

せん断耐力の計算値と実験値の比較



図 4-4-2 実験結果と既往の式におけるせん断耐力の関係



図 4-4-3 実験結果と提案式におけるせん断耐力の関係

いずれの結果を比較しても、従来の式によるせん断耐力の算定結果は実験結果 を十分に再現できておらず、一方本研究による提案式を用いることで、ほぼ実験 結果に近い値を算出することが可能となっている。せん断耐力の実験値を計算値 で除した値は、従来の式を用いた場合の全平均値が 1.39 とせん断耐力を過小評価 する一方、提案式を用いた場合の全平均値が 1.06 と、より実際のせん断耐力に近 い値を評価することが可能となっている。また、変動係数については 15.0%で、 本研究のみを対象とした結果とほぼ同程度であり、棒部材 RC 部材のせん断耐力 算定式としては十分な精度を有していると言える。

なお、一部の実験結果に対しては、実験値を計算値で除した値が 1.0 を下回っ ており、これは設計上危険側の値を与えることになる。しかし実務設計において は各種安全係数を使用し、せん断耐力の計算値は低減される。よって、本提案式 を使用して実務設計を行っても危険側の判断にはならないと考える。

次に、せん断スパン比 a/d、フランジ幅(片側あたり)とフランジ厚の比  $b_f/t_f$ 、 フランジ鉄筋比の加重平均  $p_{cf}$ と本実験におけるせん断耐力の実験値を提案式に よるせん断耐力の計算値で除した値  $V_{exp}/V_{cal2}$ の関係を図 4-4-4~4-6 に示す。



図 4-4-4 せん断スパン比と Vexp/Vca/2の関係



図 4-4-5 フランジ幅とフランジ厚の比と V<sub>exp</sub>/V<sub>ca/2</sub>の関係



図 4-4-6 フランジ鉄筋の加重平均と V<sub>exp</sub>/V<sub>ca/2</sub>の関係

本検討においては、せん断スパン比は 1.2 から 4.0 までの領域、フランジ幅と

フランジ厚の比は 0.6 から 15.0 までの領域、フランジ鉄筋の加重平均は 0.028% から 0.035%について検討している。せん断スパン比については、1 以下の極めて 小さい領域は本研究が主に対象としている鉄道ラーメン高架橋ではあまり存在し ない。また、せん断スパン比が大きい領域は既往の実績では 4.5 程度までであり、 せん断スパン比についてはおおむね実用されている鉄道ラーメン高架橋の範囲を 網羅した検討となっている。フランジ幅とフランジ厚の比については、実構造物 ではスパン 15m のラーメン高架橋においては 30 程度になることも想定される。 しかし、フランジ幅が著しく大きい場合にはフランジの破壊形態は押抜きに限定 されると考えられるため、この程度の領域で確認できていることで問題はないと 考えられる。フランジ鉄筋比の加重平均については、ラーメン高架橋のスラブ鉄 筋に D22 を 125mm ピッチで使用するケースがあり、この場合 0.4%(圧縮鉄筋は 2 倍ピッチと想定)となる。やや本研究の領域より大きなケースが存在すること となる。10%程度の差であり大きな影響はないと思われるが、フランジ鉄筋比の 加重平均については今後更なる追加検証を行うのが良いと思われる。

また、いずれのケースにおいても、検討範囲内で *V<sub>exp</sub>/V<sub>cal2</sub>*の分布が極端に 1.0 より大きい範囲に偏る領域、あるいは 1.0 より小さい範囲に偏る領域は見られず、 それぞれのパラメータに影響を受けていないと判断される。

以上より、今回の一連の実験および検討結果による提案式を採用することで、 T 形断面および箱形断面を有する RC 部材のせん断耐力を適切に評価することが 可能であることが明らかとなった。

#### 4.5 まとめ

T形断面および箱形断面のRC部材について、新たなせん断耐力算定式を検討、 検証した結果を以下にまとめる。

- (1) 実験の結果、新たなせん断耐力算定式として、フランジ部の二つの破壊形態 いずれか耐力の小さい方で部材全体のせん断耐力が決定する算定式を提案 した。すなわち、フランジ部分のせん断破壊によるせん断耐力と、押抜きせ ん断破壊によるせん断耐力の双方を算定し、いずれか小さい方でフランジの せん断耐力が決定するとしたものである。これにより、部材のせん断耐力は 従来式によるウェブ部のせん断耐力と今回提案するフランジ部のせん断耐 力の足し合わせにより算定が可能である。
- (2) フランジ部の破壊のうち、押抜きせん断破壊によるせん断耐力式は、従来の 土木学会式を応用し、破壊面の周長や押抜きせん断面の設定を今回の実験結 果から仮定した上で決定した。
- (3) フランジ部の破壊のうち、フランジ全面のせん断破壊耐力については、フランジ部の有効幅を仮定した上で既往のせん断耐力式を適用することとした。
- (4) 上記により決定した提案式を本実験に適用したところ、実験結果から得られるせん断耐力を従来の算定式 27)により算出されるせん断耐力の計算値で除した値の平均値は1.67と、本来のせん断耐力を過小評価していたのに対し、提案式を活用することで実験値を計算値で除した値の平均値は1.14となり、 T形および箱形断面 RC 部材のせん断耐力をより適切に評価できる結果が得られた。
- (5) 既往の実験結果に提案式を適用したところ、せん断耐力の実験値を従来の算定式<sup>27),29)</sup>で算出した計算値で除した値の平均値が1.39であったところ、今回の提案式を活用することで、実験値を計算値で除した値の平均値は1.06となり、今回の提案式の妥当性が検証された。

なお、今回の成果は東日本旅客鉄道の鉄道構造物設計において用いられる「鉄 道構造物等設計標準(コンクリート構造)[平成 16 年 4 月版]のマニュアル」<sup>33)</sup> に取り入れられ、実務設計に用いられている。

また、従来のフランジを考慮しないせん断耐力算定方法は、T 形断面および箱 形断面を有する RC 部材に対して、せん断耐力の余力を与えていたこととなる。 今回の研究により T 形断面および箱形断面を有する RC 部材のせん断耐力を正当 に評価できるようになった場合、これまで有していた余力がなくなり、例えば地 震時にせん断破壊先行となる懸念が生ずるかもしれない。しかしながら、矩形中 実断面と同程度の精度でせん断耐力が評価できるならば、現在の矩形中実断面で せん断破壊を防止する思想と同等の設計 2)を行うことでこの懸念は杞憂となる。 また、鉄道ラーメン高架橋のはり部材であれば、大規模地震時の復旧性から定ま るせん断補強鉄筋量を検討する際にはフランジを考慮しないため、従来より極端 にせん断補強鉄筋が少ない構造物が設計されることはない。

# 第5章 箱形断面を有する RC 部材の正負交番載荷実験

### 5.1 はじめに

今回の研究目的の一つは、第1章で述べた通り、既設構造物のうちせん断耐力 が適切に評価できない構造物の耐震診断・耐震補強を効率的に実施できるよう、 部材形状の変化に対応したせん断耐力算定式を構築することである。箱形断面 RC 橋脚は、鉄道では道路に比べると適用箇所が少ない。これは、鉄道が急こう配を 極力採用しないために、く体の軽量化を求められる山間部の高橋脚が少ないこと に起因している。一方、地質の良くない地域において、橋脚の沈下を避ける目的 で橋脚を軽量化するために中空橋脚が用いられる例はあり、東日本旅客鉄道では 40~50 か所の中空橋脚が存在する。

RC 部材の耐震性能を簡略的に算定する手法として、曲げ耐力とせん断耐力の 比率、曲げせん断耐力比(以下、「耐力比」という)によって判定する手法がある。 従来の研究では、概ね耐力比とじん性率が比例関係になることが示されている<sup>34)</sup>。 また、耐震補強工法の多くは耐力比を用いて補強量を算出する方式を採用してい る<sup>24)</sup>。一方、今回の研究は静的一方向載荷にて実験を行ってせん断耐力算定式を 構築したが、矩形 RC 部材と同様に、静的一方向載荷におけるせん断耐力を用い た耐力比により耐震性能の評価が可能かどうか、検証する必要がある。

本章は、耐力比を変化させた箱形断面 RC 部材の交番載荷実験を行い、箱形断面 RC 柱の耐震性能を算定し、今回提案したせん断耐力を用いた耐力比と RC 部材の実際の耐震性能の関係を確認した結果をまとめたものである。

# 5.2 実験概要

# 5.2.1 試験体諸元

各試験体の形状、断面を図 5-2-1 に示す。また、試験体の諸元を表 5-2-1 に示す。



試験体断面図



試 験 体 立 面 図

図 5-2-1 試験体概要図

|         | 軸 方 向 鉄 筋 |                        |                                    | 帯 鉄 筋    |                    |              |                                  | モルタル                               |             |  |
|---------|-----------|------------------------|------------------------------------|----------|--------------------|--------------|----------------------------------|------------------------------------|-------------|--|
| 試 験 体   | 規 格<br>径  | 鉄 筋 比<br>(%)           | 降 伏<br>強 度<br>(N/mm <sup>2</sup> ) | 規 格<br>径 | 配 置<br>間 隔<br>(mm) | 鉄 筋 比<br>(%) | 降伏<br>強度<br>(N/mm <sup>2</sup> ) | 圧 縮<br>強 度<br>(N/mm <sup>2</sup> ) | 軸 力<br>(kN) |  |
| No.1    |           |                        |                                    |          | 130                | 0.27         |                                  | 31.2                               |             |  |
| N o . 2 | SD345     | 1 1 7                  | 252.0                              | SD295    | 60                 | 0.59         | 0504                             | 31.0                               | 469.0       |  |
| No.3    | D10 1.17  | 10   1.17   373.0   D6 |                                    | D 6      | 420                | 0.08         | 353.4                            | 36.5                               | 468.0       |  |
| No.4    |           |                        |                                    |          | _                  | 0.00         |                                  | 28.7                               |             |  |

表 5-2-1 試験体諸元

本実験の断面形状は実橋の中空断面橋脚をモデルとして、その辺長比を約1:2.3 とした。実橋では、このような扁平断面橋脚の場合、中空内短辺方向に中壁があ る。中空断面においては中壁および外壁の総厚を腹部幅としてせん断耐力を算出 することから、本実験では実橋での中壁をウェブ厚に含め、その厚さはフランジ 厚の1.5倍としている。

実験のパラメータは耐力比(曲げ耐力とせん断耐力の比率)のみである。また、 耐力比の変化は、帯鉄筋量の変化のみで行っているため、その他のパラメータは 全て同一である。

軸方向鉄筋は、フランジ部材内およびウェブ部材内の外周および内周に腹鉄筋 として配置し、帯鉄筋を軸方向鉄筋の外側に配置している。外周に配置した帯鉄 筋はフレア溶接により定着をおこない、内周に配置した帯鉄筋は端部に半円形フ ックを設け軸方向鉄筋に固定した。今回は、橋脚断面の外周および内周に配置さ れた帯鉄筋を拘束する中間帯鉄筋は配置していない。また、本実験では帯鉄筋量 をパラメータとしていることから、図 5-2-1 に示す中空部分の帯鉄筋の配置間隔 を変えて実験をおこなった。

実験に用いた試験体諸元および材料強度を表 5-2-1 に示す。中空断面部分の部 材厚が薄く帯鉄筋が密に配置されるため、コンクリートの充てん性を考慮して最 大骨材寸法が 5mm となるモルタルを使用した。使用したモルタルは目標圧縮強 度を 30N/mm<sup>2</sup>とし、セメント細骨材比が 1:3 となる配合とした。

#### 5.2.2 載荷方法

載荷装置の概要を図 5-2-2 に示す。載荷は軸力を一定とした正負交番載荷でお こなった。軸力はコンクリートの圧縮応力度が実橋脚と同程度の約 1.2N/mm<sup>2</sup>と なるように一定軸力を作用させた。

交番載荷方法は、最外縁の軸方向鉄筋が材料の試験結果から定まる降伏ひずみ

に達した時の変位を降伏変位  $(\delta_y)$  とし、1 $\delta_y$  までは荷重制御とした。2 $\delta_y$  以降 は降伏変位  $(\delta_y)$  の整数倍を正負各 1 サイクルずつ変位制御にて載荷し、10 $\delta_y$ 以降の大変形領域では降伏変位  $(\delta_y)$  の偶数倍を正負各 1 サイクルずつ変位制御 にて載荷した。また、載荷位置はフーチング天端から 1.61m の位置とし、載荷位 置付近での破壊を防ぐため、載荷板下から断面高 (h=520mm) の範囲は中実断面 とした。



図 5-2-2 載荷装置概要

#### 5.3 実験結果および考察

#### 5.3.1 各試験体の破壊状況

# (1) No.1 試験体

No.1 試験体の荷重 – 変位曲線を図 5-3-1 に、荷重が前ステップでの最大荷重よりも大きく低下した時点を終局とし、本実験では 10δ<sub>y</sub>時点での破壊状況を図 5-3-2 に示す。

1δ<sub>y</sub>載荷時点から多くの曲げひび割れ、せん断ひび割れが分散して発生するが、 荷重は増加し、2δ<sub>y</sub>載荷時点でほぼ最大荷重に達したのち、その後はほぼ同じ荷 重を維持して載荷ステップを重ねた。8δ<sub>y</sub>載荷時点で試験体基部にわずかに圧縮 域コンクリートの圧壊の兆候が見られ、正側載荷においてその周囲のかぶりコン クリート剥落が始まった。9δ<sub>y</sub>載荷時点ではかぶりコンクリートの剥落範囲が広 がり、軸方向鉄筋が外側にはらみ出す現象も見られ始めた。10δ<sub>y</sub>載荷時点では図 5-3-2 に示すとおり、かぶりコンクリートの剥落は試験体基部の全域に広がり、 荷重低下に至った。

本試験体は、安定した曲げ破壊型の破壊となったと判断される。



図 5-3-1 No.1 の荷重 - 変位曲線



図 5-3-2 No.1 試験体終局時の破壊状況

(2) No.2 試験体

No.2 試験体の荷重 – 変位曲線を図 5-3-3 に、終局時、18δ<sub>y</sub>時点での破壊状況を 図 5-3-4 に示す。



図 5-3-3 No.2 の荷重一変位曲線



図 5-3-4 No.2 試験体終局時の破壊状況

載荷の経過は No.1 と同様であるが、試験体かぶり部分の剥離が始まったのは 12*δ*,載荷からであった。その後も荷重を維持していたが、16*δ*,載荷時点でかぶり コンクリートの剥落が始まり、荷重も低下し始めた。そして 18*δ*,載荷時点で試験 体基部の全域にわたってかぶりコンクリートの剥落が生じ、鉄筋のはらみ出し現 象もみられ、終局に至った。

本試験体も、No.1 試験体と同様に安定した曲げ破壊を呈した。

#### (3) No.3 試験体

No.3 試験体の荷重-変位曲線を図 5-3-5 に、終局時、7δ<sub>y</sub>時点での破壊状況を 図 5-3-6 に示す。

載荷当初はこれまでの試験体と同様であったが、3*δ*,載荷時点で斜めひび割れ が大きく開口し始めた。その後も荷重を維持し続けたが、7*δ*,載荷時点で載荷面 側のコンクリートが部分的に剥落し、荷重が大きく低下した。コンクリートが剥 落したのは図 5-3-7 のようにウェブに沿った範囲で発生しており、コンクリート がウェブに押抜かれた破壊形態となった。実験終了後、浮きコンクリートを除去 した状況を図 5-3-8 に示す。損傷は基部の両外側、ウェブ付近に集中し、中央部 はかぶりコンクリートの浮きや圧壊が発生していない状況である。また、左側の 破壊状況はウェブ位置が最も深く損傷し、フーチングおよびフランジ中央部に向 けて破壊面が形成されており、第3章 箱形断面を有する RC 部材のせん断破壊

**実験**でのせん断破壊実験での破壊状況に近いものとなっていた。 以上より、本試験体は曲げ降伏後のせん断破壊となった。



図 5-3-5 No.3 の荷重一変位曲線



図 5-3-6 No.3 試験体終局時の破壊状況



図 5-3-7 No.3 試験体載荷面終局時の状況



図 5-3-8 No.3 試験体はく離コンクリート 撤去後の状況

## (4) No.4 試験体

No.4 試験体の荷重-変位曲線を図 5-3-9 に、終局時、5δy時点での破壊状況を 図 5-3-10 に示す。

曲げ降伏後、帯鉄筋がないため斜めひび割れはあまり分散せず、集中的に開口 した。そして 4*δy*載荷時点で載荷面側に部分的なコンクリートの剥離が見られ、 5*δy*載荷時点で図 5-3-11 に示すように載荷面左側の縦方向に大きなずれが生じ、 その後大きな剥落となり、荷重が大きく低下した。剥離面は図 5-3-12 に示すよう に、基部中心付近にも一部損傷は発生したが、大部分はウェブに沿って No.3 試

験体同様、押抜きによる部分的なものが両側に発生していた。 以上より、No.4 試験体についても曲げ降伏後のせん断破壊となった。



図 5-3-9 No.4 試験体の荷重一変位曲線



図 5-3-10 No.4 試験体終局時の破壊状況



図 5-3-11 No.4 試験体載荷面の 5<sub>0</sub>時点の状況



図 5-3-12 No.4 試験体はく離コンクリート撤去後の状況

# 5.3.2 各試験体の耐震性能

図 5-3-13 に各試験体の包絡線を示す。また、表 5-3-1 にそれぞれの試験体の降 伏変位と降伏荷重、最大荷重、じん性率を示す。ここで、実験としての降伏変位 は、正負それぞれの載荷において最外縁の軸方向鉄筋が材料の試験結果から定ま る降伏ひずみに達した時の変位を平均化したものとし、図中の塑性率は変位をこ の正負の値を平均した降伏変位で除したものである。また、じん性率は正負それ ぞれの載荷において降伏荷重まで水平荷重が低下した時の変位を、平均した降伏 変位で除した値である。



塑性率(δ/δ<sub>y</sub>)

図 5-3-13 No.1~No.4 の 包 絡 線

| 試 験 体 | 降伏  | 、変 位 | (mm) | 降 伏 荷 重 (kN) |       | 最 大 荷 重 (kN) |       |       | じん性率  |      |      |      |
|-------|-----|------|------|--------------|-------|--------------|-------|-------|-------|------|------|------|
|       | +   | -    | 平均   | +            | -     | 平均           | +     | -     | 平均    | +    | -    | 平均   |
| No.1  | 5.2 | 8.2  | 6.7  | 247.8        | 290.3 | 269.0        | 319.7 | 302.6 | 311.2 | 9.1  | 8.9  | 9.0  |
| No.2  | 4.7 | 4.5  | 4.6  | 246.2        | 251.0 | 248.6        | 321.2 | 308.9 | 315.0 | 18.3 | 17.2 | 17.8 |
| No.3  | 6.8 | 5.1  | 5.9  | 278.4        | 252.3 | 265.3        | 318.8 | 302.2 | 310.5 | 7.0  | 6.3  | 6.6  |
| No.4  | 7.9 | 5.6  | 6.8  | 270.0        | 273.9 | 272.0        | 316.3 | 327.1 | 321.7 | 4.2  | 3.9  | 4.1  |

表 5-3-1 各試験体の降伏変位、降伏荷重、最大荷重、じん性率

じん性率はせん断補強鉄筋の量に比例して大きくなっており、No.2>No.1>No.3>No.4の順となっている。
#### 5.3.3 新しいせん断耐力算定式を活用することによる効果

#### (1) 破壊形態の変化

表 5-3-2 に、本試験体の設計曲げ耐力、曲げ耐力に達するときのせん断力(*M<sub>u</sub>/a*)、 従来式 <sup>27)</sup>によるせん断耐力、本研究の提案式によるせん断耐力、それぞれのケー スの耐力比を示す。なお、本実験では軸方向に圧縮応力度を導入しているが、ウ ェブのせん断耐力 *V<sub>e</sub>*では圧縮応力度の影響をβ<sub>n</sub>として考慮し、フランジ部のせん 断耐力には圧縮応力度の影響を考慮していない。

| 試 験 体   | 曲 げ 耐 力<br>(kN・m) | 曲 げ 耐 力 に<br>達 す る と き の<br>せん 断 力<br>(k N) | せん断耐力<br>(kN) |       | 耐力比  |      |  |
|---------|-------------------|---------------------------------------------|---------------|-------|------|------|--|
|         |                   |                                             | 従来式           | 提案式   | 従来式  | 提案式  |  |
| No.1    | 496.8             | 308.6                                       | 324.2         | 479.9 | 1.05 | 1.56 |  |
| N o . 2 | 496.5             | 308.4                                       | 484.5         | 639.8 | 1.57 | 2.07 |  |
| N o . 3 | 504.9             | 313.6                                       | 239.1         | 407.5 | 0.76 | 1.30 |  |
| N o . 4 | 488.8             | 303.6                                       | 181.4         | 330.7 | 0.60 | 1.09 |  |

表 5-3-2 各試験体の曲げ耐力、せん断耐力計算結果

No.3、No.4 試験体は、ウェブのみを有効とした従来の考え方でせん断耐力を算出した場合、耐力比がそれぞれ 0.76、0.60 となっている。これは、損傷形態判定として、耐力比 0.9 未満の場合にせん断破壊先行型、耐力比 0.9 以上の場合に曲げ破壊先行型とした既往の事例 <sup>35)</sup>に照らし合わせると、No.3、No.4 はいずれも曲げ降伏前にせん断破壊することとなる。しかしながら、本実験においては曲げ降伏後のせん断破壊となった。

一方、本研究におけるせん断耐力提案式から算出した耐力比は、No.3、No.4 においてそれぞれ 1.30、1.09 となっており、破壊形態の想定は曲げ破壊先行型と なる。実際、実験においては No.3、No.4 とも曲げ降伏後のせん断破壊となった ことを考えると、本実験の提案式を用いることで破壊形式の推定が適切に行われ るようになったと判断される。

#### (2) じん性率の推定

図 5-3-14 に既往の実験<sup>34)</sup>と本実験の耐力比とじん性率の関係を示す。なお、 本実験の結果は、耐力比について従来式で算出した値と提案式で算出した値によ るものを併記している。



図 5-3-14 耐力比とじん性率の関係

今回の実験においても、耐力比とじん性率は比例関係が成り立っているが、既 往の式<sup>27)</sup>によりフランジを無視して算出した耐力比とじん性率の関係は、実際の 耐震性能を過小評価する結果となっている。一方、提案式を用いてフランジを考 慮した場合には、既往の実験データにより近い耐力比-じん性率関係が得られて いることがわかる。

以上の結果より、本研究による提案式を活用することで、箱形断面部材の耐震 性能を簡略的な手法で適切に評価することが可能であることが分かった。

## (3) 本研究の活用性

(1)の結果より、地震を受ける T 形断面、箱形断面 RC 部材のせん断耐力を適切 に評価できることが確認された。これにより、構造物の新設にあたっては、耐震 設計における「破壊モードの判定」において、これまでより少ないせん断補強鉄 筋量で部材を「曲げ破壊モード」にすることが可能となり、鉄筋量の減少による 工事費の削減が可能となる。また、既設構造物の耐震診断においては、部材の諸 元によって状況は異なるが、従来のウェブのみを有効としたせん断耐力算定で「せ ん断破壊モード」と判定される部材について、本研究の提案式を活用することで 「曲げ破壊モード」と適切に判定することができ、耐震補強が不要となるケース が増えると期待される。河川内に配置された箱形断面 RC 橋脚のように、耐震補 強を実施するのが困難である場合には、本研究成果の活用により補強を不要とす ることで、大きなコストダウン効果が得られる。また、軌道を支持する鉄道ラー メン高架橋の T 形断面 RC はりのように、列車の営業を中止せずには補強不可能 な部材もある。そのため、T 形断面、箱形断面 RC 部材のせん断耐力を適切に評 価することは非常に有意義なものである。 また(2)の結果より、地震を受ける T 形断面、箱形断面 RC 部材の簡易的なじん 性率算定が可能であることが確認された。この簡易じん性率算定は、正式な耐震 診断では活用されない。しかし、施設管理者が耐震補強計画を立案する段階にお いては、年間の投資額に限りがあることから、数多く存在する構造物に優先順位 をつけて補強を実施する必要がある。将来発生する地震はいつどのくらいの規模 のものなのかはわからないため、一般には耐震性能の低いものから優先的に補強 設計・補強工事を進めることとなる。本研究の提案式は、補強設計をする前の段 階で活用し、各構造物の耐震性能の概算を行い、適切な優先順位の設定を可能と することができる。

なお、既設構造物には、現在の設計基準と異なる構造細目にて建造されている ものが多い。その場合、耐震補強設計では現状の構造細目により試験体を製作、 実験した結果から設計式を構築されている場合があるため、注意を要することと なる。しかし、本章の(1)の場合は、せん断耐力と曲げ耐力の比較のみであり構造 細目の影響を受けないことから、旧構造細目で建造された構造物にも適用可能で ある。また本章の(2)の場合は、構造細目の影響を受ける場合もある。しかし、活 用方法はあくまでも補強設計の前段の優先順位設定であり、実際の補強設計にお いては旧構造細目を踏まえた設計がなされるため、構造物の最終的な安全性には 影響することはない。

# 5.4 まとめ

箱形断面の RC 部材について、交番載荷実験を行い、今回の提案式による簡易 な耐震性能評価を行った。結果を以下にまとめる。

- (1) 実験の結果、既往の式 27)ではせん断破壊先行型となる箱型断面部材においても、部材は曲げ降伏前にはせん断破壊せず、曲げ降伏後にせん断破壊する破壊形態となった。
- (2) 上記の結果を活用することで、従来はせん断補強対象と判断される構造物についてせん断補強が不要であると判定することができ、適切なせん断補強判断が可能となる。
- (3) 今回の提案式を活用することで、既往の実験データと同程度の耐力比–じん 性率が得られた。このことから、箱形断面 RC 部材についても本研究の提案 式を活用することで、簡略的な耐震性能評価が可能となり、迅速な耐震診断 が可能となる。

## 第6章 実務設計への適用例

6.1 はじめに

T 形断面・箱形断面 RC 部材のせん断耐力算定式を構築し、これらのせん断耐力を適切に算出することが可能となった。

本章では、この新たなせん断耐力算定式を活用することで、せん断耐力評価が 適切にできなかったため進捗しなかった鉄道構造物の改良プロジェクトを円滑に 遂行できるようになる事例を紹介し、本研究の有用性を示すものである。

# 6.2 既設高架橋改良プロジェクトへの活用

### 6.2.1 プロジェクトの概要<sup>36)</sup>

K駅は、東京都内にある乗降人員がJR東日本管内でも30位以内に入る主要駅である。路線は1路線のみであるが、複々線化されており、線路4線に対し2面のホームが設置されている。また、いわゆる民鉄線の終点駅が隣接しており、乗換駅としての機能も有している。

駅の構造としては、沿線で連続立体交差化事業が行われたため、1969年より全面高架駅となっている。そのうち駅部として高架下が活用されているのは3ブロックである(その他、商業施設として隣接6ブロックが活用されている。)。図6-2-1、図6-2-2 に構造の概略図を示す。全てRCラーメン高架橋で、第一ブロックは線





図 6-2-2 K 駅 高 架 構 造 断 面 図 <sup>36)</sup>

路方向に3径間、第二ブロックは線路方向に4径間、第三ブロックは線路方向に 3径間の構造である。第一径間の起点方は道路が横断しており、鋼製鈑桁を受け る橋台としても機能している。また第二径間、第三径間の起点方は張出構造にな っており、それぞれ第一径間、第二径間の終点方に支持されている。柱間のスパ ンはラーメン部、張出し部とも8mで統一されている。線路方向の地中梁は各ブ ロック間でも連続的に結合されている。

線路直角方向はいずれも6径間の構造となっている。しかし、第一層すなわち 地中梁と中層はりは6径間ともつながったラーメン構造となっているが、第二層、 すなわち上層はりは端部各径間が1径間、中央が2径間結合されているが、その 間が1径間ずつ、ちょうどホームに当たる位置では結合されていない構造である。 第一層は周辺地盤より低く、第二層の中層はりの位置が周辺地盤高になっている ため、第一層は地下街として活用されている。

改良前の駅は、中層(1階)にコンコース、改札口がありそこから階段を上がったところに M2 階があり、隣接する高架下商業施設および民鉄線との乗換えコンコース、駅業務スペースが高架橋の一部に展開されている(図 6-2-3)。この



図 6-2-3 当初の駅レイアウト 36)



図 6-2-4 M2 階増床後の駅レイアウト 36)

M2 階は土木設計図には記載されていないが、建築部門で設置したもので、柱に 添えばりを添架し、第一ブロックおよび第二ブロックに部分的に M2 階のスラブ を構築している。この駅のバリアフリー化に合わせ、現在 M2 階の床がない部分 にスラブを増床し、駅務施設の集約・拡張、店舗展開を行うのがプロジェクトの 目的であった(図 6-2-4)。

増床される M2階のスラブは図 6-2-5のハッチングした部分となる。図の上部、 L1 通りと L2 通りの間は 1 スパン分だけであるが、L2 通りから L5 通りの間は R1 高架橋および R2 高架橋全体が、L5 通りから L7 通りの間は R1 高架橋全体と R2 高架橋 4 ブロックのうち 2 ブロックが増床対象となる。



図 6-2-5 M2 階増床後位置図 <sup>36)</sup>

# 6.2.2 増床後の耐震診断結果(上層はり従来評価)<sup>36)</sup>

耐震標準<sup>2)</sup>に従い構造物をモデル化し、増床後のラーメン高架橋について耐震性能を診断した。耐震標準に従いモデル化した高架橋を図 6-2-6 に示す。



図 6-2-6 構造物のモデル化<sup>36)</sup>

図 6-2-6 は、対象の線路直角方向(図 6-2-5 の C2 通り)をモデル化したもので ある。本検討において着目する上層はりは、要素番号 1 から 33 となる。これら の上層はり部材は、全て同一諸元であり、以下の断面形状・材料諸元・鉄筋配置 となっている。

はり高(ウェブ高さ): 1200mm はり桁幅(ウェブ幅): 1000mm フランジ全幅(隣接する通りとの中間点相互の幅): 8000mm フランジ厚さ: 300mm はり上側軸方向鉄筋: SD30(現 SD295A 相当) D32-9本 はり下側軸方向鉄筋: SD30(同上) D32-8本 フランジ軸方向鉄筋(上側): SD30(同上) D19@125mm フランジ軸方向鉄筋(下側): SD30(同上) D22@250mm フランジ軸直角方向鉄筋(上側): SD30(同上) D16@125mm フランジ軸直角方向鉄筋(下側): SD30(同上) D16@250mm はりせん断補強鉄筋: SR24(現 SR235 相当) Ø13-2 組@300mm

モデル化にあたっては、スラブ(フランジ)にハンチが設けられているが、計 算システムの都合上自重計算ではハンチを考慮しているが、断面照査ではハンチ の影響を無視している。

また、はりの軸方向鉄筋ははり・柱接合部付近で曲げ上げ配置され、せん断補

強を兼ねている。しかしながら、現在の耐震設計で配置されるせん断補強鉄筋と 比較すると、非常に少量であることがわかる。これは、昭和 30 年台の設計であ ることから、当時の基準として設計水平震度 0.2 の耐震設計がなされ、かつ当時 は耐震に関する構造細目はなかったためである。柱部材についても、D13-300mm ピッチ程度の配置である。

解析は耐震標準に従い、非線形スペクトル解析(プッシュオーバー解析)にて 実施している。実際の耐震診断は、まず柱、はりとも建設当初の状況にて M2 階 の増床や新規バリアフリー施設を考慮した荷重のみ追加をして実施している。そ の結果としては、柱、はりとも耐震性能が不十分であるという結果が得られてい る。

そのため、柱部材には「既存鉄道コンクリート高架橋柱等の耐震補強設計・施 工指針」<sup>37)</sup>に従い、すべての柱部材に所要の厚さの鋼板で耐震補強(鋼板巻き立 て工法)を実施する前提で次のステップに進んだ。本項では、そのステップで検 討された結果のうち、右押し(モデルの左から右へ一方向プッシュオーバー解析) 時の上層はりに発生したせん断力とせん断耐力の結果を概説する。

はりの発生せん断力は、構造系の降伏震度と固有周期、地盤種別より算出され る応答変位(降伏変位×設計塑性率)に至るまでの発生せん断力の最大値であり、 はりのせん断耐力はコンクリート標準<sup>25)</sup>のせん断耐力算定式に従い、フランジの 効果を無視した場合のせん断耐力である。

耐震照査(せん断耐力照査)の結果を、表 6-2-1、図 6-2-7 に示す。

| 要素番号 | 発 生<br>せん 断 力      | コンクリート<br>の負担する<br>せん断力 | せん 断 補 強 鉄<br>筋 の 負 担 す る<br>せ ん 断 力 | 部 材 の<br>せ ん 断 耐 力    | 照查絲                             | 吉果  |
|------|--------------------|-------------------------|--------------------------------------|-----------------------|---------------------------------|-----|
|      | $V_d(\mathbf{kN})$ | $V_{cd}(\mathbf{kN})$   | $V_{sd}(\mathbf{kN})$                | $V_{yd}(\mathbf{kN})$ | V <sub>d</sub> /V <sub>yd</sub> | 判 定 |
| 4    | 1447.3             | 535.5                   | 910.0                                | 1445.5                | 1.001                           | ×   |
| 8    | 1840.5             | 863.9                   | 882.8                                | 1746.6                | 1.054                           | ×   |
| 11   | 1500.6             | 537.1                   | 910.0                                | 1447.1                | 1.037                           | ×   |
| 15   | 1936.4             | 864.9                   | 882.8                                | 1747.6                | 1.108                           | ×   |
| 18   | 661.4              | 529.1                   | 910.0                                | 1439.1                | 0.460                           | 0   |
| 22   | 1093.5             | 859.9                   | 882.8                                | 1742.6                | 0.628                           | 0   |
| 25   | 1159.1             | 534.9                   | 910.0                                | 1444.9                | 0.802                           | 0   |
| 30   | 1710.0             | 863.5                   | 882.8                                | 1746.3                | 0.979                           | 0   |

表 6-2-1 ⑥ 通りの右押し地震時せん断耐力照査結果(従来式) <sup>36)</sup>



表 6-2-1 より、上層はりの半数で L2 地震発生時にせん断破壊が生ずる結果となっている。そのため、上層はりの半数ではりのせん断補強が必要であるが、朝

4 時台から深夜1時過ぎまで列車が走行する上層はりのせん断補強は極めて困難 である。よって、このままではプロジェクトの実行が危ぶまれる状況である。

#### 6.2.3 増床後の耐震診断結果(上層はりフランジ効果考慮)

上層はりのせん断耐力として、本研究の式(4.1)~(4.3)、式(4.5)、式(4.7)を用いてせん断耐力を算出する。なお、本耐震診断業務時点では T 形断面 RC 部材の せん断耐力算定検討の途上であったため、実際の業務は暫定的な考え方にて行われている。

なお、本研究においては、T 形断面の下側にフランジが来る場合についても、 同等のせん断力負担をするとしていることから、地震時の曲げモーメントの向き に関わらず一律のせん断耐力向上効果が期待される。

今回の高架橋において、設定される値は下記の通りである。なお、今回の断面 において、フランジ厚さ、配筋等の諸元は上層はり全域にわたって同一諸元であ った。

 $V_{flap}$ に対して、

 $b_w = 1000 \,\mathrm{m\,m}$ ,  $t_f = 300 \,\mathrm{m\,m}$ ,  $d_f = 243 \,\mathrm{m\,m}$ ,  $p_{cfc} = 0.0158$ ,  $p_{cfl} = 0.0098$ ,

 $f_c' = 24 \,\mathrm{N/m\,m^2}$ 

*V<sub>flay</sub>*に対して

 $b_e = 849 \,\mathrm{mm}, d = 243 \,\mathrm{mm}, A_s = 960.1 \,\mathrm{mm^2}, a = 300 \,\mathrm{mm}, f'_c = 24 \,\mathrm{N/mm^2}$ 

計算の結果、

 $V_{flap}$ =426.5kN、 $V_{flay}$ =586.4kN となる。よって、

 $V_{fla} = \operatorname{Min}(V_{flap}, V_{flay}) = 426.5 \,\mathrm{kN}$ 

が得られる。

このフランジ部のせん断耐力算定結果を反映させると、表 6-2-1 の結果が表 6-2-2の通りに改善され、せん断補強は不要であるとの判断が可能となる。

| 要素番号 | 発 生<br>せん 断 力               | コンクリート<br>の負担する<br>せん断力 | せん断補強<br>鉄筋の<br>負担する<br>せん断力 | フ ラ ン ジ の<br>負 担 す る<br>せん 断 耐 力 | 部 材 の<br>せ ん 断 耐 力    | 照查新          | 結果  |
|------|-----------------------------|-------------------------|------------------------------|----------------------------------|-----------------------|--------------|-----|
|      | $V_d(\mathbf{k}\mathbf{N})$ | $V_{cd}(\mathbf{kN})$   | $V_{sd}(\mathbf{kN})$        | $V_{fla}(\mathbf{k} \mathbf{N})$ | $V_{yd}(\mathbf{kN})$ | $V_d/V_{yd}$ | 判 定 |
| 4    | 1447.3                      | 535.5                   | 910.0                        | 426.5                            | 1872.0                | 0.77         | 0   |
| 8    | 1840.5                      | 863.9                   | 882.8                        | 426.5                            | 2173.1                | 0.85         | 0   |
| 11   | 1500.6                      | 537.1                   | 910.0                        | 426.5                            | 1873.6                | 0.80         | 0   |
| 15   | 1936.4                      | 864.9                   | 882.8                        | 426.5                            | 2174.1                | 0.89         | 0   |
| 18   | 661.4                       | 529.1                   | 910.0                        | 426.5                            | 1865.6                | 0.35         | 0   |
| 22   | 1093.5                      | 859.9                   | 882.8                        | 426.5                            | 2169.1                | 0.50         | 0   |
| 25   | 1159.1                      | 534.9                   | 910.0                        | 426.5                            | 1871.4                | 0.62         | 0   |
| 30   | 1710.0                      | 863.5                   | 882.8                        | 426.5                            | 2172.8                | 0.79         | 0   |

表 6-2-2 ⑥ 通りの右押し地震時せん断耐力照査結果(フランジ考慮)

T 形断面 RC 部材のせん断耐力算定方法を活用することで、上層はりのせん断 補強が不要であると判断され、プロジェクトは実施段階に入った。耐震補強、バ リアフリー、駅業務施設集約・商業施設拡張、自由通路拡幅を目的とした大規模 工事に着手し、2014年度に本プロジェクトは無事完成した。

# 6.3 まとめ

- (1) 既設 RC ラーメン高架橋駅部について、駅改良工事に伴う耐震診断において、 列車を受ける上層はりについてせん断耐力の不足が懸念されるプロジェク トが存在した。
- (2) 当該プロジェクトに対し、今回の研究の成果である「T 形断面を有する RC 部材のせん断耐力算定式」を適用することで、上層はりのせん断補強は不要 であると判断された。これにより、プロジェクトがとん挫することなく進行 し、無事駅改良工事が完遂された。
- (3) スラブを有するビームスラブ式ラーメン高架橋は鉄道構造物で多用されており、今後も同様の既設構造物改良プロジェクトに際しては本研究の成果を活かして適切なせん断耐力評価を行い、円滑なプロジェクト推進をすることが期待される。

#### 第7章 結論

本研究で得られた知見を以下に示す。

T 形断面を有する RC 部材のせん断破壊実験を行ったところ、既往の研究と同様に現行基準によるせん断耐力の計算値より大きなせん断耐力が得られることを 改めて確認した。また、破壊形態は逆 T 形断面の場合を除き、フランジをウェブ 部が押抜く破壊形態となっていた。本研究では、既往の研究でパラメータとして 設定されていなかったフランジ内の鉄筋量をパラメータとして実験を行ったが、 フランジ内鉄筋量の増加により部材のせん断耐力が向上すること、またフランジ の押抜き破壊であることから、軸直交方向に配置される鉄筋の増加によってもせ ん断耐力が向上することが分かった。

次に、箱形断面を有する RC 部材のせん断破壊実験を行ったところ、T 形断面 の結果と同様に、現行基準によるせん断耐力の計算値より大きなせん断耐力が得 られた。しかし、箱形断面の実験では、フランジ部が押抜きで破壊する場合、幅 全体にひび割れが貫通して破壊する場合の2パターンに分かれる結果となった。 また、T 形断面、箱形断面 RC 部材のフランジ押抜き破壊形状は、ウェブに発 生する斜めひび割れがフランジに到達する位置を起点とし、載荷点、あるいは支 点側に向かって破壊面を形成するが、通常の押抜きせん断破壊と異なり押抜き面 が併合しない、片押抜きというべき形状となることが分かった。

以上の実験結果から、T 形断面、箱形断面 RC 部材のせん断耐力算定式を検討 した。算定式は、実務設計での活用を考慮し、現在の矩形断面 RC 部材のせん断 耐力にフランジ部のせん断耐力を加算する構成とした。また、破壊形態がフラン ジの押抜き破壊、全幅にわたるせん断破壊の 2 種類であることを踏まえ、それぞ れの破壊形態におけるフランジせん断耐力のうち小さい方で部材のせん断耐力が 求められるとして、せん断耐力算定式を提案した。その結果、今回の実験結果に ついて、実験値を提案式による計算値で除した値の平均値が 1.14 となった。また、 既往の実験に対して今回の提案式を適用したところ、実験値を提案式による計算 値で除した値の平均値は 1.06 となり、提案式により T 形断面、箱形断面を有す る RC 部材のせん断耐力を適切に評価できることが確認できた。また、実験値を 提案式による計算値で除した値の変動係数は 15%程度となり、式の精度としても 既往の矩形 RC 棒部材のせん断耐力算定式と比較してもそん色のない結果となっ ている。

本提案式が耐震診断に活用可能であることを確認するため、箱形断面の交番載 荷実験を行った。これまでの手法により「せん断破壊先行型」と判定されるにも かかわらず実験では曲げ降伏後にせん断破壊となる試験体については、提案式を 活用することで耐力比が 1.0 を超え、「せん断破壊先行」ではないことを評価でき ていることが確認された。また、部材のじん性率と耐力比には比例関係があるが、

-119-

この関係についてもフランジを評価する本研究の提案式により、矩形断面におけるじん性率と耐力比との関係に近いものが得られることを確認した。

以上の結果から、本研究によるフランジのせん断耐力を考慮した T 形断面、箱 形断面のせん断耐力算定式はそれらの部材のせん断耐力を適切に評価できるもの である。

なお、本研究の今後の課題としては以下のようなものがある。

- (1)本研究ではフランジの負担するせん断耐力算定にあたり、フランジに生ずる 面内の応力を考慮していない。実際のフランジは圧縮縁・引張縁に配置され ることが多く、この影響は少なからずあると考えられる。式の精度向上のた めには、フランジの面内応力を考慮することが必要と考えられる。
- (2) せん断補強鋼材に関する構造細目について、再検討が必要となる可能性がある。たとえば、現在の基準4)では、スターラップの最小配置間隔は計算上せん断補強鋼材が必要か否かで異なっており、せん断補強鋼材が計算上不要な場合はスターラップの最小間隔を広げることが可能である。しかし、フランジの存在によりせん断耐力が増加した場合に、この効果を考慮した結果を「せん断補強鋼材が不要な場合」としてスターラップの最小間隔を拡大できるかどうかは実験では確認していない。よって、当面はスターラップの最小間隔を定める際にはフランジの効果を考慮せず、スターラップの最小間隔を 拡大するには実験等により確認する必要がある。
- (3) 提案式はフランジ内に鉄筋が配置されている場合のみを考慮している。実構造物では無筋フランジ部材は想定されないが、実験ではフランジに鉄筋を配置しない場合でもせん断耐力向上効果はあるため、適用範囲を広げるためにはフランジ内に鉄筋がない、あるいはごく少ない場合の検討が必要である。

#### 参考文献

- 日本国有鉄道:建造物設計標準 鉄筋コンクリートおよび無筋コンクリー
   ト構造物、1983.
- 2) 鉄道総合技術研究所:鉄道構造物等設計標準・同解説(耐震設計)、2000.
- 3) 土木学会:コンクリート標準示方書、1931.
- 4) 土木学会:コンクリート標準示方書[設計編]、2012.
- 5) 大久保全陸、是永健好、東洋一:逆対象モーメントを受ける鉄筋コンクリート T 形ばりのせん断強度に関する研究、第 2 回コンクリート工学年次講演会講演論文集、pp.445~448、1980.
- 6) 狩野芳一、水出錠太郎:鉄筋コンクリート T 形ばりのせん断耐力に及ぼす フランジの効果、第 5 回コンクリート工学年次講演会講演論文集、pp.349 ~352、1983.
- 7) 狩野芳一、岩崎真志保:T形梁のせん断耐力に及ぼすせん断スパン比の影響、
   第6回コンクリート工学年次講演会論文集、pp.485~488、1984.
- 8) 松崎育弘、星野克征、坂本浩孝、山本泰宏:鉄筋コンクリート造 T 形はりのせん断耐力に関する実験研究、第 6 回コンクリート工学年次講演会論文集、pp.489~492、1984.
- 9) 田中浩一、大内一:中空 RC 主塔模型のせん断実験、コンクリート工学年次 論文集、Vol.22、No.3、pp.577~582、2000.
- 10) 岡本大、谷村幸裕、渡辺忠朋、藤田郁美:T形断面を有する RC 梁のせん断耐力の評価、コンクリート工学年次論文集、Vol.26、No.2、pp.331~336、2004.
- 11) 岡本大、川村力、服部尚道、酒谷弘行: せん断補強筋を有する鉄筋コンク リート T型梁のせん断耐力の評価、コンクリート工学年次論文集、Vol.27、 No.2、pp.313~318、2005.
- 12) 岡本大、鬼塚良介、金森真、松岡茂:軸方向鉄筋に丸鋼を用いた T 形 RC 梁のせん断耐力に関する実験的研究、コンクリート工学年次論文集、Vol.29、No.3、pp.715~720、2007.
- 13) 黒川浩嗣、岡本大、西口健太郎、近藤政弘:逆対称曲げモーメントを受けるT形RC梁のせん断耐力に関する実験的研究、コンクリート工学年次論 文集、Vol.30、No.3、pp.751~756、2008.
- 14) 中村麻美、中村拓郎、二羽淳一郎: せん断スパン比とせん断補強鉄筋比の 異なる T形 RC はりのせん断耐荷機構、土木学会論文集 E2(材料・コンク リート構造)、Vol.73.No.3、pp.337~347、2017.
- A.Placas, P. E. Regan : Shear Failure of Reinforced Concrete Beams, ACI Journal, Vol.68, No.10, pp.763~774, 1971.

- 16) Withit Pansuk Yasuhiko Sato; Shear Mechanism of Reinforced Concrete T-Beams with Stirrup Journal of Advanced Concrete Technology, Vol.5, No.3, pp.395~408, 2007.
- 17) 井上晋、家村浩和、田中克直:中空断面 RC 部材のせん断耐荷挙動に関する 検討、コンクリート工学年次論文報告集、Vol.18、No.2、pp.677~682、1996.
- 18) 田中克直、家村浩和、高橋良和:中空断面 RC 橋脚の変形性能に関する実験
   的検討、第24回地震工学研究発表会講演論文集、pp.773~776、1997.
- 19) 湯川保之、緒方辰男、須田久美子、齊藤宗:中空断面鉄筋コンクリート高 橋脚の耐震性能、土木学会論文集、No.613/V-42、pp.103~120、1999.
- 20) 八ツ元仁、堺淳一、星隈順一:高軸力を受ける高軸方向鉄筋比の中空断面 RC橋脚の正負交番繰返し荷重下における破壊特性、土木学会論文集 A1(構造・地震工学)、Vol.69、No2、pp.139-152、2013.
- 21) 篠原聖二、末崎将司、堺淳一、星隈順一:中空断面 RC 橋脚の断面条件が地 震時破壊特性と変形能に及ぼす影響の実験的評価、第 18 回性能に基づく橋 梁等の耐震設計に関するシンポジウム講演論文集、pp.7~14、2015.
- 22) 津吉毅、菅野貴浩、渡邊明之、大迫勝彦、岩田道敏:改良工事に伴う既設 コンクリート高架橋の耐震補強の要否について、Structural Engineering Data、No.25、2005.
- 23) 東日本旅客鉄道株式会社 構造技術センター監修:構造物の改良・改築・ 建築物の付加に関する耐震設計の考え方、構造技術ニュース、No.204、2011.
- 24) 東日本旅客鉄道株式会社 構造技術センター編:耐震補強設計施工マニュ アル、2007.
- 25) 鉄道総合技術研究所:鉄道構造物等設計標準・同解説(コンクリート構造)、
   2004.
- 26)前田欣昌、黒岩俊之、谷村幸裕、田所敏弥:アーチ形鋼材により補強した T
   型 RC 梁の変形性能に関する載荷試験、コンクリート工学年次論文集、 Vol.31、No.2、pp.1105~1110、2009.
- 27) 二羽淳一郎、山田一宇、横沢和夫、岡村甫: せん断補強鉄筋を用いない RC 梁のせん断強度式の再評価、土木学会論文集、第 372 号/V-5、pp.167~176、1986.
- 28) 浜田純夫、毛明傑、田中宏明、楊秋寧:引張側かぶり厚さの大きい RC 床版の押抜きせん断強度に関する研究、土木学会論文集、Vol.802、pp.255~260、2005.
- 29) 石橋忠良、松田好史、斉藤啓一:少数本のくいを用いたフーチングのせん 断設計について、土木学会論文集、Vol.337、pp.197~204、1983.
- 30) 土木学会:コンクリート構造の限界状態設計法試案、コンクリートライブ ラリー、No.48、1981.

- 31) 秋山充良、王衛侖、前田直己、鈴木基行:コンクリート強度 130N/mm<sup>2</sup>、 せん断補強鉄筋降伏強度 1200N/mm<sup>2</sup>までを用いた RC はりのせん断耐力算 定式、構造工学論文集、Vol.50A、pp.907~917、2004.
- 32) 前田友章、田所敏弥、谷村幸裕:逆対称曲げを受ける鉄筋コンクリート梁のせん断耐力評価方法、鉄道総研報告、Vol.22、No.10、pp.17~22、2008.
- 33) 東日本旅客鉄道株式会社 構造技術センター編:鉄道構造物等設計標準(コンクリート構造)[平成 16 年 4 月版]のマニュアル、設計マニュアル II コンクリート構造物編、2005.(2016.改訂)
- 34) 石橋忠良、中山弥須夫、津吉毅:帯鉄筋を配置していない RC 柱の地震時破壊形態、土木学会論文集、Vol.676/V-51、pp.13~18、2001.
- 35) 石橋忠良、池田靖忠、菅野貴浩、岡村甫:鉄筋コンクリート高架橋の地震 被害程度と設計上の耐震性能に関する検討、土木学会論文集、No.563/I -39、pp.95~103、1997.
- 36) 東日本旅客鉄道株式会社:高架橋耐震補強詳細設計他作業(東工役 20 第 74
   号)、2009.
- 37) 鉄道総合技術研究所:既存鉄道コンクリート高架橋柱等の耐震補強設計・
   施工指針、1999.

謝 辞

本論文は、著者が所属する東日本旅客鉄道株式会社において、既設構造物の耐 震診断、耐震補強において課題となった「T 形断面、箱形断面 RC 部材のせん断 耐力評価」を行うため、会社の技術開発テーマとして取り組んだ成果を取りまと めたものです。検討にあたっては、取り組みの方向性検討、試験体の設計、実験、 結果のとりまとめ等で非常に多くの方々のご支援、ご協力をいただきました。

早稲田大学創造理工学部社会環境工学科の秋山充良教授には、ご多忙な身であ りながら論文をまとめ上げるにあたって詳細にわたりご指導をいただき、また主 査として論文審査にご尽力をいただきました。先生のご高配に、心より感謝申し 上げます。同大学創造理工学部社会環境工学科の小野潔教授、岩波基教授、佐藤 靖彦教授には、論文審査の副査として貴重なご助言、ご指導をいただきました。 ここに感謝申し上げます。

JR 東日本コンサルタンツ株式会社の石橋忠良技術統括には、当社構造技術セン ターご在職中より今日まで、本論文の内容はもとより、コンクリート構造物の計 画、設計、施工、研究開発の多分野にわたり多くのご指導をいただきました。こ こに深く感謝申し上げます。

著者にこのような機会を与えていただけることに格別の配慮をいただきました 東日本旅客鉄道株式会社の中井雅彦代表取締役副社長、熊本義寛常務執行役員、 淺見郁樹常務執行役員、大西精治執行役員建設工事部長を始めとする会社幹部の 方々に感謝申し上げます。

東日本旅客鉄道株式会社の津吉毅執行役員国際事業本部部長、野澤伸一郎執行 役員構造技術センター所長、JR東日本コンサルタンツ株式会社の大庭光商取締役 技術本部副本部長、小林薫技術本部鋼構造設計部長、東日本旅客鉄道株式会社の 岩田道敏東北工事事務所次長には、本研究の実施にあたり貴重なご助言、ご支援 をいただきました。ここに、皆様に感謝申し上げます。

本研究の実験にあたりましては、当時著者とともに構造技術センターに在籍し ていた皆様、特に鉄建建設より出向で在籍された安保知紀氏、伊吹真一氏、山田 章史氏、同じく当時東京工事事務所工事管理室の倉岡希樹氏、醍醐宏治氏、フロ ンティアサービス研究所実験棟の皆様に、実験の計画、試験体設計、実験、結果 のとりまとめ等々で多大なご支援をいただきました。皆様に感謝申し上げます。

最後に、私事になりますが、両親にはこれまでさまざまなご支援をいただきま した。感謝の念をもち、ここに学位取得の報告とさせていただきたいと思います。 また、妻敬子、長男一成の理解と協力に深く感謝し、謝辞とさせていただきます。

2018年10月 木野 淳一

# 研究業績一覧

| 種類別           | 題名、                                       | 発表・発行掲載誌                                   | 站名、 発表                | ・発行年月、                 | 連名者(申請者含む)          |  |  |  |
|---------------|-------------------------------------------|--------------------------------------------|-----------------------|------------------------|---------------------|--|--|--|
| a.論文          |                                           |                                            |                       |                        |                     |  |  |  |
| $\bigcirc(1)$ | 中空断面 RC 部材の交番載荷実験とフランジ部せん断耐力を考慮した耐震性能評価   |                                            |                       |                        |                     |  |  |  |
|               | コンクリート工学年次論文集、Vol.40、No.2、pp.805-810、2018 |                                            |                       |                        |                     |  |  |  |
|               | 木野淳一・安                                    | 保知紀·築嶋大輔                                   |                       |                        |                     |  |  |  |
| ○(2)          | T 形断面およ                                   | び矩形中空断面 RC                                 | 梁のせん断耐力               | っに関する実験的               | ]研究                 |  |  |  |
|               | 土木学会論文                                    | 集 E2(材料・コン                                 | クリート構造)、              | Vol.70、No.1、           | pp.44-55、2014       |  |  |  |
|               | 木野淳一、山                                    | 田章史、築嶋大輔、                                  | 石橋忠良                  |                        |                     |  |  |  |
| ○(3)          | 中空断面 RC                                   | 梁におけるせん断而                                  | 力の実験的研究               |                        |                     |  |  |  |
|               | コンクリート                                    | 工学年次論文集、V                                  | ol.35, No.2, p        | p.625-630、2013         |                     |  |  |  |
|               | 山田章史・木                                    | 野淳一・築嶋大輔・                                  | 石橋忠良                  |                        |                     |  |  |  |
| (4)           | 外ケーブル方                                    | 式を用いたセグメン                                  | /ト PC 桁のせ             | ん断破壊性状、                | コンクリート工学年次論         |  |  |  |
|               | 文集、Vol.24、                                | No.2、pp.589-594、                           | 2002、細田暁              | ・小林薫・木野                | 享─                  |  |  |  |
| b.講演          |                                           |                                            |                       |                        |                     |  |  |  |
| (1)           | T 形断面はり                                   | のせん断耐力におけ                                  | 「るファンシ鉄館              | の影響について                |                     |  |  |  |
|               | 用 65 回土本音                                 | 子会年伙子俯講便会<br>翻空处 上南火车                      | 講便慨要集、V               | -085、2010              |                     |  |  |  |
| (2)           | 个町停一・版                                    |                                            | 「初のより影話」              | +                      |                     |  |  |  |
| (2)           | セん阿補短肋                                    | を配直した   空町 <br>※今年次学術講演今                   | 11条のせん例110<br>護済畑亜隹 V | /)<br>080 <b>2</b> 010 |                     |  |  |  |
|               | 界 05 回工术<br>醍醐安治·*                        | F云十八子加碑俱云<br>· 縣這—• 溏如十—自                  | 砰便吼女朱、 ♥<br>〖         | -080, 2010             |                     |  |  |  |
| (3)           |                                           | 当け 仮印入 A<br>受けろ T 形断面デ                     | ヮ<br>ィープビームの          | せん断補強効果                | に関する研究 十大学会         |  |  |  |
| (3)           | 第64回十大学                                   | 之()。1 //////////////////////////////////// | 蒲油概要集 V               | -505 2009              |                     |  |  |  |
|               | 木野淳一・倉                                    | 岡希樹・大庭光商                                   |                       | 2007                   |                     |  |  |  |
| (4)           | 逆対称曲げモ                                    | ーメントを受ける                                   | 「 形 RC 梁のせ/           | ん断実験                   |                     |  |  |  |
|               | 第64回土木雪                                   | 学会年次学術講演会                                  | 講演概要集、V               | -506、2009              |                     |  |  |  |
|               | 倉岡希樹・木                                    | 野淳一・渡部太一郎                                  | ß                     |                        |                     |  |  |  |
| (5)           | 昭和初期に施                                    | エされた SRC 梁の                                | 模型せん断耐力               | 試験                     |                     |  |  |  |
|               | 第63回土木生                                   | 学会年次学術講演会                                  | 講演概要集、V               | -535、2008              |                     |  |  |  |
|               | 木野淳一・小                                    | 室達明・岩田道敏                                   |                       |                        |                     |  |  |  |
| (6)           | 外ケーブル方                                    | 式T形断面PC桁の                                  | せん断破壊性状               | に及ぼす初期プ                | レストレス導入量の影響         |  |  |  |
|               | 第56回土木生                                   | 学会年次学術講演会                                  | 講演概要集、V               | -569、2001              |                     |  |  |  |
|               | 青木大地・小                                    | 林薫・木野淳一・萠                                  | 秦原寅士良                 |                        |                     |  |  |  |
| c.その他         |                                           |                                            |                       |                        |                     |  |  |  |
| (論文)          |                                           |                                            |                       |                        |                     |  |  |  |
| (1)           | 軸万同鉄筋の                                    | 内側にスパイフル領                                  | らを配置した RC             | こ在の局軸力トで               | この変形性能について          |  |  |  |
|               | コングリート                                    | 上字牛次論义集、V                                  | ol.34、No.2、p          | 0.829-834、2012         |                     |  |  |  |
| ( <b>2</b> )  | 本野得一・限                                    |                                            |                       | (1 1                   |                     |  |  |  |
| (2)           | 24th LADSE S                              | nns that don't collapse                    | e easily during la    | rge eartnquake         |                     |  |  |  |
|               | Junich: KINO                              | mposium, 2010.9                            | Takahira VANNI        |                        |                     |  |  |  |
|               | Junichi KinU                              |                                            | Takaniro KANN         | $O_{\chi}$ JUN KANEDA  | A, KAOLA KOBATASHI, |  |  |  |
|               | Tadayoshi ISH                             | ідазпі                                     |                       |                        |                     |  |  |  |

| 種 類 別          | 題名、                                                                           | 発表・発行掲載誌名、                             | 発表・発行年月、               | 連名者(申請者含む)                |  |  |  |
|----------------|-------------------------------------------------------------------------------|----------------------------------------|------------------------|---------------------------|--|--|--|
| (3)            | 軸方向鉄筋の内                                                                       | 側に円形帯鉄筋を配置                             | した鉄筋コンクリート柱            | この地震時変形性能                 |  |  |  |
|                | コンクリート上字論又集 、20 巻、2 号、pp.1-12、2009<br>                                        |                                        |                        |                           |  |  |  |
|                | 官野貴浩・石橋                                                                       | 忠良・木野厚一・小林                             | 重                      |                           |  |  |  |
| (4)            |                                                                               |                                        |                        |                           |  |  |  |
|                | コンクリート上                                                                       | 子牛伙福乂集、Vol.29、<br>送勉                   | No.3, pp.865-870, 200  | /                         |  |  |  |
| (5)            | 小町存 石山<br>軸方向鉄筋の内                                                             | 迫威<br>側に田形帯鉄館を配置                       | した鉄筋コンクリート対            | の正角水亚応釆載荷実験               |  |  |  |
| (3)            | 十大学会論文集、Vol.795、pp.95-110、2005                                                |                                        |                        |                           |  |  |  |
|                | 工作子云端文架                                                                       |                                        | 2005<br>董・小原和宏         |                           |  |  |  |
| (6)            | 矩形帯鉄筋を軸                                                                       | 方向鉄筋の内側に配置                             | した鉄筋コンクリート柱            | の正負水平交番載荷実験               |  |  |  |
| (*)            | 土木学会論文集                                                                       | Vol.732, V-59, pp.27                   | 7-38、2003              |                           |  |  |  |
|                | 石橋忠良・小原                                                                       | 和宏・菅野貴浩・小林                             | 薫·木野淳一                 |                           |  |  |  |
| (7)            | 軸方向鉄筋の内                                                                       | 側に円形スパイラル鉄                             | 筋を配置した鉄道 RC 構          | 造物の耐震設計法の提案               |  |  |  |
|                | コンクリートエ                                                                       | 学年次論文集、Vol.25、                         | No.2、pp.1399-1404、2    | 003                       |  |  |  |
|                | 吉田徹・菅野貴                                                                       | 裕・木野淳一・岩佐高                             |                        |                           |  |  |  |
| (8)            | 軸方向鉄筋の内                                                                       | 側にせん断補強鉄筋を                             | 配置した RC 柱の交番載          | 荷実験                       |  |  |  |
|                | コンクリート工                                                                       | 学年次論文集、Vol.24、                         | No.2, pp.1135-1140, 20 | 002                       |  |  |  |
|                | 小林薫・管野貴                                                                       | 浩・木野淳一                                 |                        |                           |  |  |  |
| (9)            | 付看のない PC 鋼材を配置した PC 桁の曲げ破壊挙動に関する解析的研究                                         |                                        |                        |                           |  |  |  |
|                | 弗9回ノレスト                                                                       | レストコンクリートの                             | 免展に関するンンホンリ<br>茎       | イム、pp.1/-20、1999.9        |  |  |  |
| (10)           |                                                                               | 「月1 <b>、・</b> 石佐向古・小林<br>ヒ汁 - 母美歴史な赤さま | 黒<br>- DC              |                           |  |  |  |
| (10)           | 10 週初の配色力伝、当年に代を及んに「C 们の破壊天歌<br>第9回プレストレストコンクリートの発展に関すスシンポジウム nn 107-110 1000 |                                        |                        |                           |  |  |  |
|                | 男う回 フレハト<br>岩佐高吉・木野                                                           | 这一・小林董·津吉毅                             | 元成に関リるママホマワ            | μ, pp.107-110, 1999.9     |  |  |  |
| (講演)           | 石匠间口 小月                                                                       | 日 小小素 日初                               |                        |                           |  |  |  |
| (1)            | インドにおける                                                                       | 鉄道構造物の設計(設                             | 計業務従事中の経験から            | )                         |  |  |  |
|                | 構造工学委員会                                                                       | 平成29年度第2回研                             | 究会、2017.12             | ,                         |  |  |  |
|                | 木野淳一                                                                          |                                        |                        |                           |  |  |  |
| (2)            | 分岐器直下にお                                                                       | ける長大非開削ボック                             | スカルバートの施工              |                           |  |  |  |
|                | 第68回土木学会                                                                      | 会年次学術講演会講演構                            | 既要集、VI-215、2013        |                           |  |  |  |
|                | 浅川邦明・木野                                                                       | 淳一                                     |                        |                           |  |  |  |
| (3)            | 内巻き帯鉄筋を                                                                       | 配置した RC 柱の高軸                           | カ下における交番載荷試            | 験                         |  |  |  |
|                | 第67回土木学会                                                                      | 会年次学術講演会講演構                            | 既要集、V-224、2012         |                           |  |  |  |
|                | 隈部佳・木野淳                                                                       | ー・岩田道敏・杉田清                             |                        |                           |  |  |  |
| (4)            | 円形局強度帯鉄                                                                       | 筋を軸方向鉄筋内側に                             | 配置した RC 柱の鋼板車          | 載荷時における帯鉄筋ひす              |  |  |  |
|                | み 学期                                                                          | < ∠ 」                                  | 『一世 ひつて 2002           |                           |  |  |  |
|                | 弗 38 凹工本字章<br>  木野涼一, 茵野                                                      | 云午伙子 们                                 | 枕安果、V-365、2003         |                           |  |  |  |
| (5)            | 小町仔 · 目野<br>  田形 甚 鈝 笛 な 軸                                                    | 見11<br>1方向鉄筋内側に配置1                     | た BC 柱の正色な釆載7          | 告時における<br>軸方向鉄<br>盆体      |  |  |  |
| $(\mathbf{J})$ | び出し孝動                                                                         |                                        |                        | ṇݒ▫ᆪݖݐᇯ◡≀៸′┙┯ш╱лӏӵӯѵӼ⋔ЛӏѰ |  |  |  |
|                | 第 58 回十木学4                                                                    | 令年次学術講演会講演構                            | 既要集、V-366、2003         |                           |  |  |  |
|                | 菅野貴浩・木野                                                                       | 淳一                                     |                        |                           |  |  |  |

| 種 類 別 | 題名、                              | 発表・発行掲載誌名、                                  | 発表・発行年月、                     | 連名者(申請者含む)   |  |  |  |
|-------|----------------------------------|---------------------------------------------|------------------------------|--------------|--|--|--|
| (6)   | コアコンクリー                          | トをスパイラル筋で補強                                 | 鱼した円形 RC 柱の交番                | 昏載荷実験について    |  |  |  |
|       | 第 57 回土木学会年次学術講演会講演概要集、V-83、2002 |                                             |                              |              |  |  |  |
|       | 金田淳・小原和                          | 宏・木野淳一<br>(11)- 円形井(11)(広え 17日)             |                              |              |  |  |  |
| (7)   | 軸万同鉄筋の内                          | 側に円形帯鉄筋を配置し                                 | した RC 柱の止負父番                 | 載荷における帯鉄筋ひすみ |  |  |  |
|       | 孚虭<br>  第57 回上士举合                | 左发光建设人建设机                                   | <b>西佳 1400 2002</b>          |              |  |  |  |
| (9)   | 弗 3 / 凹工小子云<br>  杏眠豊洪・大眠         | 空中伏子州 神俱云 神 俱 慨<br><sup>  </sup> 一 • 今 田 這  | 安果、 1-90、 2002               |              |  |  |  |
| (0)   | 自野貝信・小野 <br>  軸方向鉄筋の内/           | 予 ・ 並 山 仔<br>削 に 田 形 甚 鉄 笛 を 嗣 居 〕          | た BC 柱の田形帯鉄館                 | 常量について       |  |  |  |
|       | 第57回十大学会                         | 全次学術講演会講演概                                  | 要集、V-123、2002                |              |  |  |  |
| (9)   | 木野淳一・菅野                          | 貴浩・金田淳                                      |                              |              |  |  |  |
|       | PC あと埋め定着                        | 「部防水工の暴露試験評                                 | 価について                        |              |  |  |  |
|       | 第 57 回土木学会                       | 年次学術講演会講演概                                  | 要集、V-567、2002                |              |  |  |  |
| (10)  | 松田芳範・小林                          | 薫・木野 淳一                                     |                              |              |  |  |  |
|       | レンガ積み構造                          | へのコンクリート構造的                                 | ğ析手法の適用性につい                  | 17           |  |  |  |
|       | 第56回土木学会                         | 年次学術講演会講演概                                  | 要集、V-110、2001                |              |  |  |  |
| (11)  | 菅野貴浩・木野                          | 享一・古谷時春                                     |                              |              |  |  |  |
|       | 既設レンガ構造                          | 物から採取したコアの引                                 | 魚度試験<br>                     |              |  |  |  |
| (10)  | 第56回土木学会                         | 《年次学術講演会講演機<br>史)                           | 要集、V-111、2001                |              |  |  |  |
| (12)  | 不野得一・官野]                         | 貢浩・古谷時春<br>温海しは、断力な盛は、                      |                              | ともに明ナフロル     |  |  |  |
|       | 11日日本川とう                         | 深返しせん町月を受ける<br>、在次受術講演会講演輝                  | ○KC部州のせん町町伸<br>○西住 V206 1006 | 可力に関する研究     |  |  |  |
| (13)  | ₩ 51 回工小子云<br>木野淳一・関博            | 、十八十州 - 两 供 云    两    两    两    两    两    两 | 安来、1-390、1990                |              |  |  |  |
| (15)  | ヤメント硬化体                          | □□≖<br>中の物質移動の評価方料                          | た、関する一考察                     |              |  |  |  |
|       | 第 50 回土木学会                       | 年次学術講演会講演概                                  | 要集、V-3、1995                  |              |  |  |  |
|       | Sudjono Agus Sar                 | ntosa・関博・木野淳一                               |                              |              |  |  |  |
| (特許)  |                                  |                                             |                              |              |  |  |  |
| (1)   | 重量物架設機お                          | よび重量物の架設方法                                  |                              |              |  |  |  |
|       | 特開 2012-03659                    | 6                                           |                              |              |  |  |  |
|       | 大庭光商・木野                          | 淳一・渡辺昌次・松井約                                 | 記幸・行川友和                      |              |  |  |  |
| (2)   | ■ 壁用構造体                          |                                             |                              |              |  |  |  |
|       | 符開 2010-0/10/<br>  丁香中白 十南       | L<br>火奔、大阪涼・・アロケ                            | 公司、「田平                       |              |  |  |  |
| (2)   | 石間心長・人庭]                         | 元冏・小野停一・石田ヤ<br>は                            | 台 <b>问•</b> 上田回              |              |  |  |  |
| (3)   | 生史クリートール                         | 7                                           |                              |              |  |  |  |
|       | 石橋忠良・小林                          | /<br>董・太野這一                                 |                              |              |  |  |  |
| (4)   | 水分測定装置の                          | 情度管理方法                                      |                              |              |  |  |  |
|       | 特開 2002-34083                    | 5                                           |                              |              |  |  |  |
|       | 古谷時春・菅野                          | 貴浩・木野淳一・豊田=                                 | 千暁・廣瀬亨                       |              |  |  |  |
| (5)   | 土質改良工法                           |                                             |                              |              |  |  |  |
|       | 特開平 11-26986                     | 8                                           |                              |              |  |  |  |
|       | 渡邊明之・園田                          | 弘世・福田克利・木野湾                                 | 享一・畠山正則・宮内羽                  | 秀雄           |  |  |  |