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Summary 

Among various medical devices, ultrasonoscopy is the most widely used imaging modality 

for antenatal examination, because it is harmless to human tissue and can obtain real-time 

results. The accuracy of ultrasound (US) examination relies on radiologist with years of 

experience. Lacks of professional training courses could cause to increase the risk of 

misdiagnose. Moreover, the manpower storage with clinical experience in hospitals is 

becoming serious issues for many countries all over the world. Thus, to provide more 

valuable examinations, the working efficiency of doctors needs to be improved by automatic 

systems. Such automatic system heavily relies on the performance of related medical image 

processing techniques, which still have gaps with human doctors. Therefore, this thesis aims 

at providing accurate semantic information of specified anatomical structures for robotic 

medical care, such as automatic antenatal examination system. To this end, conventional 

medical image processing methods have drawbacks on accuracy, running speed, etc. On the 

other hand, with the fast development of deep learning algorithms and hardware acceleration 

techniques, the computer vision area has achieved great success in recent years. However, 

deep learning techniques have not yet been fully utilized for medical imaging domain. To 

solve the above-mentioned issues, this research proposes new deep learning based approaches 

for analyzing antenatal US images automatically. 

The proposals of this thesis are categorized in the following three aspects: 

Location of uterus The location and the border of the uterus are important for subsequent 

processes such as the segmentation of anatomical structures, and the location based guidance 

of a US probe in automatic medical care systems. Challenges in localizing of uterus from US 

images include noises and irregular shapes of the target object. The noises may lead to blurred 

areas in the border of the uterus and incorrect appearances of tissue structures. The uterus has 

irregular shape because of the non-rigid tissues and different view angles.  

Areas of amniotic fluid and fetal body The areas of amniotic fluid and fetal body provide 
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important physiological indexes which can reflect physiology changes in the fetus, and can be 

used as the guidance of the probe in antenatal examinations. Challenges of the segmentation 

of the anatomical structure include noises and artifacts in the border areas of the fluid and 

fetal body. In addition, similar appearance of the body tissue and other tissues such as uterine 

wall of pregnant women could cause adhesion in adjacent blobs.  

Area of fetal head The region of the fetal head provides the fine grained information on the 

fetal face and brain. The shape and the appearance of the fetal head can be adopted to 

diagnose fetal hydrocephalus and/or brain tumor. The shape and the position of the fetal head 

are important for automatic fetal care systems. Such a system requires technologies that locate 

the fetal head so as to infer the gesture and position of the fetus. It is difficult to determine the 

classification hyper plane of the slices that include the fetal head, because the appearances of 

the most of the slices of fetal head are easy to be confused with other fetal body parts such as 

abdomen slice, etc.  

Derived from the above-mentioned issues, the proposed deep learning based approaches 

target at filling the blank areas of related tasks in antenatal examinations and optimizing the 

existing deep learning methods for US image areas. The scheme is separated into the 

following three modules: 1) bounding box regression Convolutional Neural Network (CNN) 

for uterus localization, 2) segmentation CNN for semantic segmentation of multiple 

anatomical structures, and 3) weakly-supervised module for region mining of fetal head.  

The proposed methods and the relationship among the three modules are explained below. 

1) Bounding box regression CNN for the uterus localization: 

The accurate position of the uterus can be used as the region of interest for the subsequent 

processes such as the semantic segmentation of the anatomical structures. It is difficult to 

learn shape information from non-rigid objects by handcraft feature descriptors. The existing 

deep learning based object detectors are mainly used for natural image areas and lack of 

alignment accuracy. This module proposes a novel method for accurately locating the 

bounding box of the pregnant uterus in US images. 
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The proposed deep learning based method utilizes off-the-shelf CNN architecture as the 

backbone network, and designs a specific regression output structure to regress the candidate 

positions of the uterus. In particular, to obtain the abundant positions information of the uterus 

in US image, multiple densely positioned reference boxes are assigned according to the 

original image. The output of the network is designed as a vector which has same length as 

the coordinates and confidence of all of the reference boxes. Note that, to enhance the global 

context information, the output vectors are obtained through linear combination with fully 

connected weights. During the training phase, the weights of the network are assigned to learn 

the offsets between pre-defined positions to the ground truth and the confidence of each of the 

reference box. During the testing phase, the multiple candidate positions of the uterus are 

regressed by using predicted offset vectors to transfer the pre-defined positions. As the post 

processing approach, the method seeks the final position by non-maximum suppression to 

eliminate the redundant candidates. 

The proposed uterus localization method is verified using the pregnant US dataset which is 

collected from clinical examinations. Comparative experiments demonstrate higher detection 

accuracy than directly using the methods that are to be applied for natural images. Other than 

that, the method achieves better alignment to the uterus area. 

2) Optimized framework for semantic segmentation of multiple anatomical structures: 

It is difficult to adopt local feature or cluster analysis based approaches to achieve accurate 

pixel-wise segmentations in US images. Related deep learning based methods for natural 

images still have room to improve on segmentation accuracy and smoothness in US images. 

To provide more accurate and smooth location information of multiple anatomical structures 

such as the uterus, amniotic fluid and fetal body in pregnant US images, this thesis adopts a 

deep learning based semantic segmentation framework and proposes specifically designed 

optimizations. 

The segmentation CNN first encodes the input US image into down-scaled feature maps; then 

adopts the symmetric designed up-scaling operations to map the feature maps back to the 
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original size to perform pixel-wise classifications. The final predicted masks of multiple 

anatomical structures are obtained by threshold on the confidence map of each of the 

categories. Through preliminary experiments on US images, the study finds that the method 

needs to be further improved for better segmentation accuracy and smooth border areas. 

The optimizations for above-mentioned issues are carried out by various ways: 1. The 

additional inner layers which can enhance the global representations; 2. The usage of the 

bounding box of the uterus detection which can reduce the data imbalance issue in the 

pixel-wise classification tasks; and 3. The multiple intermediate supervision layers which can 

bring obvious improvements to the smoothness of the segmentation blob. 

The effectiveness of the proposed approach is evaluated by several different metrics such as 

IOU (Intersection Over Union), and ROC (Receiver Operating Characteristic) curve of each 

category on clinical US dataset. Compared with other related deep learning based methods, 

the proposed method achieves smaller errors to the ground truths (which are manual 

annotated by doctors with years of experience). In addition, the visualized results demonstrate 

smoother segmentations by comparing with the baseline methods in US images. The results of 

this work can be used to accurate reconstructions of fetuses or guidance of an automatic US 

probe. 

3) Weakly-supervised methods for region mining of fetal head: 

This module aims at implicitly learning the region of the fetal head based on image level 

annotations. The existing deep learning based weakly-supervised approaches have defects 

such as inaccurate localization and incomplete segmentation because of the discriminative 

area of the used feature level cannot represent the integrated region of the object. Therefore, 

an optimized method for fetal head plane classification and region mining by learning from 

image level annotations is proposed. To obtain more complete fetal area than existing works, 

the study proposes an optimized method which extracts the multiple hieratical feature maps as 

the discriminative area of the fetal head. In particular, to deal with the issue of incomplete 

segmentations in US images, a multiple output structure with different feature levels is 
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designed. The proposed weakly-supervised module merges multi-scaled discriminative maps 

with different feature levels to get more complete salient areas. By means of the proposed 

multiple output structure, final results are optimized through the combination strategy of 

multiple discriminative maps. 

Comparison experiments are conducted on manual labeled fetal head US slices. Experiments 

demonstrate the method achieves high classification results and overlapping accuracy. 

Furthermore, the completeness of the obtained fetal head region is better than conventional 

related methods. 

In summary, first, this thesis has introduced a deep learning based framework for fully 

supervised uterus detection in US images. Second, the experiments verify the effectiveness of 

various deep learning based methods for multi-category anatomical structure segmentation 

and has proposed optimizations for pregnant US images. Furthermore, this thesis has 

optimized weakly-supervised region mining of fetal head by merging multiple discriminative 

areas. To verify the gaps between the proposed methods and real-world usages, the 

performance of each module is compared with human doctors with years of experience. The 

results are promising that this research makes the development of automatic antennal 

examinations one step closer to the real world solutions. 

The overviews of each chapter are listed as follows. 

Chapter 1 describes the background and purpose of the thesis. And it makes brief 

introductions to the related works of the study, existing issues, and proposed technique 

modules. 

Chapter 2 describes the related works from several aspects: the detection and semantic 

segmentation work in the medical image processing area, the development of related deep 

learning techniques applied in other computer vision areas, and the usage of deep learning 

techniques in the medical image processing area. 

Chapter 3 explains the uterus detection module and demonstrates the results of experiments 
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for algorithm verification. The CNN structure for uterus detection and detailed training 

parameters can be found in this chapter, and, the models that trained under different settings 

are compared through experimenting on a pregnant US dataset.  

Chapter 4 explains the proposed semantic segmentation of anatomical structure module. The 

algorithm is verified through a serial of experiments that conducted on clinical US dataset. 

Chapter 5 proposes an optimized weakly-supervised region mining method for fetal head area 

discovering and localization. The preliminary experiments verified the effectiveness of the 

proposed method. 

Chapter 6 summarizes the thesis and prospects the future development of the research. 
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Chapter 1. Introduction 

 

1.1 Background 

The antenatal examination is critical to pregnant women and fetuses. Through antenatal 

examinations, doctors can check growth and health condition such as the height and weight of 

the fetus [1] or the obstetrical complications of expectant mothers at various stages of 

pregnancies [2]. The antenatal examination is carefully scheduled at set intervals during the 

entire pregnancy. Lack of standard in the examinations will cause to increase the risk of 

misdiagnosing [3]. Therefore, physicians cost lots of efforts and times to inspection and 

analyze to the examination results. More recently, with increased health awareness of people 

from developing countries such as China and India, the shortage of manpower with clinical 

experience in hospitals is becoming big issues to many countries all over the world. The total 

amount of quality service resources for maternal and child health care is insufficient. To 

alleviate the situation, the working efficiency of doctors needs to be increased.  

On the other hand, with the rapid development of medical imaging devices, computer 

diagnostic system and clinical diagnosis could be proceeded by various imaging modalities. 

Human doctors or computer-aided medical care systems rely on visual inputs as part of the 

reference to make diagnostic. Visualized human organs and tissues bring intuitive diagnostic 

references for doctors, and non-contact diagnostic applications bring less harm to patients. 

Many kinds of imaging modalities such as magnetic resonance imaging (MRI), computed 

tomography (CT), positron emission tomography (PET), and X-ray can be applied to medical 

examinations. Among various modalities, ultrasonography is commonly used, because it 

provides a real-time and intuitive reference to the doctors from the department of gynecology 

and obstetrics. What is more important, in antenatal care, the fetus and pregnant woman are 
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very sensitive to physical or chemical damages. The patient needs more medical care than in 

normal situations. Under this situation, the radiation based fluoroscopy image systems such as 

X-ray or PET-CT should be avoided as much as possible [4]. In contrast, the US device is 

non-invasive and harmless to both of the patient and fetus. And the US examination has 

advantages in relatively low cost, compared with other medical imaging devices such as MRI. 

Thus, most clinical antenatal examinations are preferred to use the ultrasound (US) imaging 

devices [5]. 

The fully automatic or computer-aided medical care system based on medical images can be 

expected to raise the efficiency of doctors’ jobs. To achieve this target, image processing 

modules are critical to such a system. Therefore, in this research, the author proposes to adopt 

several high level semantic extraction modules, which could be used as the important 

intermediate links between upper level automatic medical care system and raw US image data, 

as shown in Figure 1.1.  

 

Figure 1.1 Position of the proposed targets and solutions in medical image processing area. 
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In the early time, the research in medical image processing areas rely on low-level feature 

descriptors such as gradient and corner, as well as handcraft descriptors, in order to provide 

useful information for computer-aided systems or doctors. Those methods, however, have 

limitations for tasks that need to deal with more complex hidden features or higher precision 

requirements. In contrast, in recent years, the deep learning based approaches outperform the 

handcraft feature descriptors and traditional classifiers in many computer vision areas. The 

exploration of the usage of deep learning based technology in medical imaging becomes a 

concerning topic as well. 

As a modern machine learning scheme, deep learning is first named by Geoff Hinton at the 

University of Toronto in 2006 [6]. To the image processing area, it is a starting point in which 

the deep learning technique has made considerable achievements in many tasks. The 

mechanism of share-able weights of the convolution neural network (CNN) reduces tons of 

learning space. And, the development of graphics processing unit (GPU) accelerates the 

computation by hundreds of times than traditional processing speed. The usages of these 

techniques and hardware have significantly contributed to the progress of most of computer 

vision tasks in the world, such as object recognition task [7][8][9], object detection task 

[10][11][12], and semantic segmentation task [13][14]. With the development of deep 

learning techniques, the study to the medical image processing is also being widely and 

successfully researched during the last few years. The performances of deep learning based 

algorithms have outperformed many of conventional approaches with large gaps. For example, 

Rajpurkar et al. [15] report their deep learning based algorithm achieves higher accuracy than 

expert teams that classify chest pathologies from chest x-ray images. 

Inspired by related deep learning works, in this research, the author proposes a series of deep 

learning based medical image processing approaches to provide high level semantic features 

such as the location or the fine-grained area of desired anatomical structures in US images for 

both human doctors and computer-aided systems conducting antenatal examinations. In 

particular, from course to fine, this study focuses on the following three aspects: the 

localization of the uterus, the semantic segmentation of the amniotic fluid and fetal body, and 
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the weakly supervised region mining for the fetal head area. The medical indicators, 

appearance feature, challenges and proposed solutions of each related anatomical structure is 

introduced as follows: 

Uterus In the prenatal care, the uterus is the most important anatomical structure for 

pregnancy tests and fetal examinations. As the major reproductive system, the uterus carries 

and protects the fetus. The uterus is supported by multiple tissues such as a pelvic diaphragm, 

perineal body, the peritoneal ligament and the broad ligament of uterus [16]. In US image 

processing, the location and the border of the uterus are important for the subsequent 

processes such as the segmentation of anatomical structures, for providing the location-based 

guidance with the US probe for automatic medical cares, and for helping to reveal the 

intrauterine disease for human doctors. As an instance, in the machine-aided amniocentesis 

(also referred to as amniotic fluid test or AFT) [17], in order to collect cells from the fluid and 

fetal tissue from the living body, the doctor lets a sampling probe go through the uterus from 

outside of the abdomen of pregnant subject. The sampling probe needs to pierce the 

abdominal cavity and uterine wall and to collect amniotic fluid from the uterus. The 

improperly implemented amniocentesis could cause amniotic fluid embolism precipitated [18]. 

To such systems, the size and position of the uterus can provide the most fundamental 

location information to guide the multiaxial servo controlled manipulator.  

The uterus has an inverted triangle shape and is centered at the pelvic cavity [19]. For a 

healthy pregnant woman, the uterus includes several anatomical structures such as the uterine 

wall, amniotic cavity, and fetal body. The uterine wall is a tissue composed of soft structures. 

In US images, the appearance of pregnant uteruses presents an irregular form in a closed 

shape. The irregular shape of the appearance is caused by the different size of the fetus and 

the position in the abdominal cavity. Inside this closed area of the pregnant woman, the 

tissues of the fetus can be viewed as similar appearances to other body tissues. Dark areas in 

the uterus are amniotic fluid. The tissues and amniotic fluid have different tissue densities, 

which results in different appearances in US images. 
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The challenge in the localization of the uterus from US images includes image noises and 

irregular shapes of the target. First, the noises and artifact inevitably appear in medical US 

images because of various factors in imaging mechanisms such as the coherence property and 

reflections [20]. The noise and artifact may lead to blur the border of the uterus and to yield 

incorrect appearances of located tissue structures. Second, as above-mentioned, the uterus 

shows an irregular shape because of the soft structure of the tissue and different view angles. 

In general, it is difficult to describe and learn shape information on non-rigid objects. 

In summary, in order to provide the base location information of uterus for subsequence 

approaches or automatic medical care system, the research proposes a specific module to 

localize the position of the uterus from the raw US images. 

Amniotic fluid and the fetal body In addition to the location of the uterus, the automatic 

system desires to make further use of more high level information from the pregnant US 

images such as the shape and the position of amniotic fluid and fetal body. The amniotic fluid 

and fetal body, which are wrapped in the uterus, are important physiological indexes which 

can reflect physiology changes in pregnant women and fetuses. In particular, the amniotic 

fluid volume is the material that is filled in the uterine wall. The main component of amniotic 

fluid is alkaline liquid which consists of 90% of water and 10% of other materials such as 

urea, uric acid, and epithelial cells of fetus [21]. The number of specific proteins in amniotic 

fluid can be used as a marker for monitoring abnormalities of the fetus, and the estimation of 

the volume of the liquid can be used for measuring placental functions and to prevent body 

disorders such as hypolimnion and hydramnios [22]. Indicators for fetal body parts can be 

used for estimating the weight of the fetus and prediagnosing the fetal abnormalities. On the 

other side, in the amniotic fluid testing system, besides the position and shape of the uterus, 

the critical information is obtained from the accurate segmentation of the amniotic fluid and 

fetal body. The needle of the probe is required to be located inside the uterine wall and 

collects different samples from the amniotic fluid and part of the body tissue of the fetus. 

Therefore, the segmentation of the amniotic fluid and the fetal body in the uterus area in the 

US image is essential to the automatic medical care system.  
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Regarding the structure of different tissues in the uterus, all of the tissues of the fetus are 

soaked in the amniotic fluid. Most of the anatomical structures of the fetus can also be 

observed in the US slices. The shape and size of such anatomical structures in the US image 

are irregular because of the variation in view angles and fetal postures. Regarding the 

amniotic fluid, the amniotic fluid, which is dense liquid, is normally observed as dark areas 

inside the uterine wall. The fetal body tend to have complex shapes and appearances, because 

the fetus is bent inside the uterus; therefore, multiple tissues can be viewed in each slice, and 

the appearance and acoustic shadows of different tissues influence each other in US images. 

The challenges of segmenting the anatomical structure in the US image are caused by several 

aspects. First, defects of imaging mechanisms cause noises and artifact in the border area of 

the uterus. The segmented blobs have unsmoothed borders. Then, similar appearances of the 

body tissue and other tissues such as the uterine wall of pregnant women cause the adhesion 

of the segmented blobs. As it is known, the terminal system of the US probe can provide 3D 

fetal images by removing the amniotic fluid. The system can judge the categories of materials 

by different densities of objects. However, even if the system can distinguish the amniotic 

fluid from other tissues, it is hard to separate the fetal body and uterus because the densities of 

those structures are similar.  

Therefore, as one of the modules of the automatic medical care system, this thesis proposes 

and verifies a visual based semantic segmentation module to segment the specified structures 

in the US images of pregnant women. 

Fetal head Among fetal body parts, the fetal head can be used for estimating the health status 

of the pregnant woman and fetus. Doctors adopt the size and shape of the fetal head to make a 

diagnosis for the patient and judge if the parturition will go well. For example, the biparietal 

diameter (BPD) is used as one of the parameters to estimate the weights and growth of the 

fetus [23]. The shape and appearance of the fetal head can be utilized to diagnose the 

hydrocephalus or brain tumor for the fetus. In addition, the relative position of the fetal head 

and pelvis is an important reference to the doctor to judge the appropriate way of parturition. 
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The shape and position of the fetal head are also important for automatic fetal care systems. 

Such a system requires a technology that locates the fetal head so as to infer the gesture and 

position of the fetus; then, the system can perform subsequent processes such as guiding the 

US probe to the specified positions for further measurements. In the above-mentioned 

amniotic fluid testing system, the needle needs to reach the position accurately inside the 

uterine wall and collects the amniotic fluid and fetal tissues. During the examination, the head 

of the fetus must not be touched by the probe because it is dangerous for the fetus. Therefore, 

the accurate identification of the fetal head area in the raw US image can help to guide the 

position of the needle to avoid hurting the important head tissues of the fetus. 

The head of the normal fetus is bilaterally symmetrical and can be observed as a closed ellipse 

shape in the US image. The appearance of the fetal head temporally changes. Under normal 

condition, the complete hyperechoic of the skull and internal tissue structures (such as the 

midline structure and the thalamus) can be seen after 11 weeks [24]. In order to prompt the 

slice with the fetal head and highlight the entire head structure in the input image sequence for 

automatic examination systems, in this research, the target location of the object includes the 

entire region of the fetal head structure. This task is more difficult than only extracting the 

standard plane of the fetal head because the appearance of the fetal head is very easy to be 

confused with other fetal body parts such as abdomen slice by common classification models. 

Regarding the challenges of the proposed work, except the difficulty above-mentioned, such 

as the image noises and artifact of US imaging devices, the variation of the viewpoint and the 

shadows occluding other tissues, the fetal head has extra difficulty in making annotations. The 

elliptical outline of the fetal head has similar appearance feature with other tissues such as the 

fetal abdomen, and the fetal head slices can be viewed by doctors only in part of the video 

sequence. The professions need more meticulous annotation and take more time to judge 

whether the input image includes a fetal head or not.  

The annotation of the fetal head slice can save much more time and reduce the human cost for 

annotation works. Compared with the tight bounding box or pixel-wise annotation of the fetal 
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head area in US images, the image level annotations such as the slice with or without a fetal 

head are much easier for annotation workers. What is more important, distinguishing the fetal 

head slice requires less practical experiences than pixel-wise annotations. Therefore, this 

thesis proposes a weakly-supervised module to learn fine-grained annotations of the fetal head 

area (such as bounding box and pixel-wise classification) only by coarse annotations (image 

level labels). 

1.2 Related work 

The recognition of the category and position of the anatomical structure is very important for 

automatic surgery and computer-aided medical care systems. Such fine-grained location 

information can be used to aid the automatic surgery system or human doctors to conduct 

precise operations. The detection and segmentation of the specified structure in the medical 

image has been widely researched for a long time. With the fast development of the CNN and 

hardware devices, the deep learning technique has made considerable achievement in many of 

the computer vision areas. More recently, the deep learning based method also affects the 

development in medical image processing areas and arouse lots of attention to the researchers. 

More details of related convention and deep learning based works can be found in Chapter 2. 

1.3 Motivation 

As above-mentioned, the shortage of medical doctors who can conduct medical examinations 

has become a serious problem for hospitals all over the world. The targets of this thesis 

include improving the efficiency of doctors who conduct medical image based antenatal 

examinations and providing high-level semantic information (such as the location of specific 

anatomical structures and the category of the input US slice) for automatic medical care 

systems. More specifically, the purposes of each module that is proposed in this study are 

listed below. 

1) The position of the uterus is required by automatic surgeries or computer-aided systems in 

antenatal examinations, and can be used as the region of interest for the subsequent 

processes such as the semantic segmentation of the anatomical structure. Existing works 
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(e.g. [29][30][31]) try to estimate the position of tissues or lesions in different ways. 

However, these existing methods are not robust enough to deal with objects such as the 

uterus, because it is hard to discriminate the irregular shape by manually designed feature 

descriptors. This thesis proposes a deep learning based method for locating the position of 

the pregnant uterus in US images. The bounding box of the uterus is localized through a 

regression-based CNN framework. 

2) To provide the fine-grained location information for different anatomical structures in the 

uterus, this thesis proposes a semantic segmentation method for distinguishing the areas 

of the uterus, amniotic fluid, and fetal body. The related works [34][41] cannot achieve 

acceptable accuracy, because the local feature extracted from the US image is easy to be 

confused, and shape based methods [43][45] heavily rely on the initial positions. On the 

other hand, the precise segmentation information is important for automatic examination 

systems such as computer-aided AFT. Therefore, in order to improve the smoothness of 

the segmentation results and pixel-wise classification accuracy, this thesis further 

proposes an optimized approach for the accurate segmentation of specified anatomical 

structures. 

3) Some of the existing methods use fully supervised approach to detect an object; however, 

the workloads of annotating fetal head areas cost large human powers. Thus, after 1) 

detecting the uterus and 2) segmenting different anatomical structures in the US image, 

the fine-grained classification, and region mining of the fetal head using image level 

annotations are performed as the third module. In preliminary weakly-supervised works 

[15] [54] in the medical image area, the performance of the works still needs to be 

improved, because the existing weakly-supervised approaches lack completeness of 

segmentation results. Therefore, to simplify the annotation and save work time, and to 

provide more feasibility for accurate localization by the weakly-supervised method, this 

thesis proposes an improved method for learning to mine the region of the target only 

using image level labels. 
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1.4 Introduction of Proposed Approach 

To achieve the targets that described above and solve the related issues, this thesis proposes 

an approach that consists of three parts as follows. 

1) Detection of uterus 

The proposed deep learning based method utilizes a backbone CNN network and regression 

output structure to regress candidate positions of the uterus. Then, as the post-processing 

approach, the method seeks the final position by eliminating redundant candidates. The 

method adopts densely designed reference boxes to achieve abundant position information 

from US image to obtain the accurate uterus localization results for the subsequence modules. 

 Uterus detection network 

The proposed method utilizes advantage of the end-to-end learning task. It is designed to use 

the resized US image as the input and directly map the output into a vector with the fixed 

number of elements that correspond to the offsets of multiple pre-defined reference positions. 

Regarding the backbone network, the proposed method utilizes CNN with fully connecting 

output layer as the feature extractor. The output structure is composed of the weights which 

can map the feature vector to the same length vector containing the coordinates of the offsets 

and confidence scores. The offsets correspond to the top left and bottom right distances 

between the pre-defined positions and ground truth bounding boxes, and the confidence 

scores correspond to the probability that the uterus is at each position. 

 Post-processing  

The proposed method determines the candidate positions of the uterus by thresholding the 

output confidence scores. The accurate positions of each candidate are obtained by reshaped 

offset vectors and transferring operations. The final position of the bounding box is 

determined by eliminating the redundant boxes based on box overlapping and confidence 

score of each candidate. 

2) Semantic segmentation of amniotic fluid and fetal body 
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The proposed deep learning based segmentation CNN is separated into two strategies (a 

binary category for the uterus as the preliminary research, and multi-category for amniotic 

fluid and fetal body). This thesis also proposes optimization schemes to improve the 

pixel-wise classification results and provide more smooth segmentations. 

 Uterus segmentation network (Binary category) 

As the preliminary research, the author follows the existing method applied for nature image 

area and explores the limitation of the methods. An encoding-decoding architecture is adopted 

to segment the uterus from US images. The uterus segmentation CNN first encodes the input 

US image into down-scaled feature maps, and then adopts symmetric designed up-scaling 

operations to scale the feature maps back to the original size to perform pixel-wise 

classification of the uterus. The weights of the network are learned from fully supervised 

annotations of the uterus area and use the per-pixel sigmoid and binary loss as the target 

function. The confidence map of the uterus is mapped by stacked convolution operations and 

probability output functions. The final binary mask of the uterus is obtained by thresholding 

the confidence map. Through experiments, several issues are discovered and discussed. 

 Amniotic fluid and fetal body segmentation network (multi-category) 

The main framework of the multi-category segmentation CNN also follows an 

encoder-decoder structure to perform pixel-wise classification in the input US image. In order 

to achieve the multi-category segmentation, the cost function of the framework utilizes the 

multinomial loss. The confidence maps of each of the category are calculated from the output 

of the model. The segmentation masks of each specified structure are obtained by maximum 

operations at each pixel. To solve the issues discovered in the preliminary research, 

optimizations are proposed by the author. 

 Optimizations 

This thesis points out that, obtaining the smoothed border and accurate segmentation is 

important for the subsequence processes; thereby, this thesis further embeds optimization 
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schemes into the segmentation CNN applied to anatomical structures in US images. 

Specifically, the following three optimizations are introduced due to respective reason: 1. 

additional inner layers which can enhance global representations; 2. the usage of bounding 

boxes for uterus detection, which can relieve the data imbalance issue in pixel-wise 

classification task; and 3. multiple intermediate supervision layers, which can optimize the 

smoothness of the segmented blobs. 

3) Weakly-supervised region mining of fetal head 

After obtaining the bounding box of the uterus and the result of the semantic segmentation of 

amniotic fluid and fetal body, this thesis searches for region information of the fetal head by a 

fine-grained localization task. Due to the complexity and time cost of the pixel-wise 

annotation works, this thesis proposes a weakly supervised learning method for region mining 

of the fetal head area using image level annotations. 

 Classification of the fetal head slice 

The classification of the fetal head is conducted by a basic classification CNN structure so 

that the result of classifying the fetal head is obtained by learning using image level 

annotations. In order to achieve the target of the fetal head region mining, some parts of the 

network structure are modified to make use of the learned feature maps to infer the region of 

the object. 

 Region mining of the fetal head area using image level labels 

The method for the region mining of the fetal head area utilizes the learned classification 

model. This classification model discards the fully connecting layers and replaces with one 

global pooling operation. The regions of the positive object are extracted from the cumulated 

responses of multiple stacked convolution layers. The learned parameters of the output layer 

are used as the weights for calculating the final cumulative map. This thesis proposes a CNN 

network with new sub-structures to solve the issue of incomplete segmentations. In addition, 

the final results are optimized through the proposed combination strategy of multiple 
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discriminative maps. 

1.5 Organization of this Thesis 

In order to provide important semantic information of target objects such as the location of 

the uterus and pixel-wise classification of anatomical structures in US images for automatic 

medical care systems, and to solve the related issues, this author proposes the three main 

modules in each of the following chapters, respectively, as follows. Chapter 3: detection of 

the uterus, Chapter 4: semantic segmentation of anatomical structures, and Chapter 5: 

weakly-supervised region mining of the fetal head. The relationship between the three 

modules and the rest of the chapters are illustrated in Figure.1.2. 

Regarding the relationships of the proposed modules, first, all of the anatomical structures are 

located inside the uterus. The localization of the uterus is proposed as the first module. The 

localized area can be used as a coarse position for the subsequent semantic segmentation 

module. Therefore, the proposed method of localizing the position of the uterus in the raw US 

 
Figure 1.2 Organization of the thesis. 
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image can be used as the pre-process for the segmentation of anatomical structures. Then, in 

order to further provide a more important area of the fetal head from the segmented fetal body 

inside the uterus, this thesis proposes the third module to localize the fetal head area by 

learning using image level annotations. Note that the proposed weakly supervised method can 

be extended to future research works and bring advantages to related areas. 

An overview of each chapter, together with the publications, is described as follows. 

Chapter 1 describes the background and purpose of this thesis. Then, a brief introduction to 

the related work of this thesis, existing issues, and the proposed three modules are described. 

Chapter 2 describes related works in terms of several aspects: detection and semantic 

segmentation work in the medical image processing area, the development of related deep 

learning techniques applied in other computer vision areas, and the usage of deep learning 

techniques in the medical image processing area. 

Chapter 3 explains the proposed uterus detection module and demonstrates the results of 

experiments for verifying the validity of the algorithm. The CNN structure for uterus 

detection and detailed training parameters are explained, and models that are trained under 

different settings are compared through experiments using a pregnant US dataset. As shown 

in Fig. 1.2, the contents of Chapter 3 are published in the journal [62] (to appear). 

Chapter 4 explains the proposed module for the semantic segmentation of anatomical 

structures. The algorithm is verified through experiments conducted using a clinical US 

dataset. The part of binary segmentation of uterus area is published in [63], and the 

segmentation of multiple anatomical structures and its optimization methods are published in 

[64] and [62] (to appear). 

Chapter 5 proposes an optimized weakly-supervised region mining method for finding and 

localizing the fetal head area. The preliminary experiments verified the effectiveness of the 

proposed method. The contents of this chapter are published in [65] (to appear). 

Chapter 6 summarizes this thesis and prospects the future development of the research. 
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Chapter 2. Related Work 

 

The related works described in this chapter are organized as follows: the traditional method 

based object detection and segmentation work in US images are introduced in Section 2.1 and 

2.2. The related deep learning works applied by other computer vision areas are introduced in 

detail in Section 2.3. Then, the last section lists state-of-the-arts of deep learning based 

medical image processing works related to author’s research. 

2.1 Detection of anatomical structure in US image 

The object detection technique can be used to assist human doctors or computer-aided 

medical care systems by providing useful location or region information of specific 

anatomical structure or lesions from raw US image data. The task is closely related to locate 

the spatial information of the object with a specific appearance that different from other 

background areas. The introductions of related works are as follows. 

 Template matching 

The template matching is widely used to detect target object in US image [26]. The S. Yu et al 

[25] use template matching based method to achieve lumber detection approach. The authors 

of [66] propose an adaptive function to detect the boundary of the brachial artery in US scans. 

The authors improve the traditional method by the adaptive designed template to suit the 

changeable shape of the target object, but the accuracy of the template matching approaches is 

still very sensitive to the position and relies on rigid shape information of the target object. 

The authors of [27] extend the template matching to a 3D based approach to detect the 

boundary of a kidney from sequential captured kidney US images. The method adopts the 

method named as PKSM to estimate the initial position of the kidney. The PKSM method fits 
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3D voxels of kidney’s statistic template to the position which has the maximum probability in 

the volume of US data. The model can locate the 3D position in volume data by template 

matching. However, the method uses related small-scale training data, and it is only feasible 

for the simple and independent structures such as the kidney. In their proposal, it is also hard 

to determine the kidney exists or not.  

 Object classifier and sliding window 

The sliding window method divides the input image into multiple sub-regions with 

overlapped areas and performs object classification in each of the windows. For example, in 

2015, N. B. Albayrak et al. et al proposed to use handcraft feature descriptor (HOG) to extract 

the responses of detection widows at each of the positions. The algorithm predicts the 

probability at each of the positions using a support vector machine (SVM) classifier to obtain 

the heat map of the anatomical regions in US images [67]. In another similar work, B. 

Rahmatullah et al. use local haar-like [30] feature descriptor and AdaBoost [68] as a classifier 

to perform a sliding window based fetal stomach and umbilical vein detection from a 

cross-section of fetal US slices [28]. The harr-like feature can achieve relatively fast feature 

extraction speed, while it is easy to have many false positives because of the lack of 

discriminative representations.  

Another representative work by G. Pons et al. [29] propose to use a method with more 

advanced and complex approaches than using single object classification based method. In 

their work, Pons et al. utilize the deformable part based model (DPM [69]) to detect the 

position of the lesion. The DPM provides the detection score of part of the object and uses 

chain model to learn the adaptive model between different components. However, the 

bottleneck of the DPM based approaches is the redundant computation on a large number of 

windows, which causes the methods are hard to be transferred to real-world solutions. 

Basically, these methods follow the object detection schemes that are used in nature images. 

In order to ensure the target object can be contained in the windows, the scales and the 

positions of the predefined windows are critical to the performance of related approaches. The 
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oversampled sliding window causes the redundant computation, while the insufficient sliding 

windows cannot estimate accurate alignment of the detection because the windows are too 

sparse for the location of the ground truth position. 

 Region proposal 

To deal with the issues of redundant computation for sliding window based approaches, some 

researchers choose to start their detection works from the pre-generated region of interest 

(ROI). R. Bharath et al. [31] propose a corner point descriptor based method to extract the 

region of interest for detecting fetal genital organs. W. Mahmud et al. [32] also propose to use 

automatic generated ROI to speed up and constrain the searching region to improve the 

accuracy of the detection of the kidney in US images. In Mahmud et al.’s work, the one or 

multiple seed regions are extracted by binary image based region mining. The candidate 

windows are extracted by prior knowledge of the appearance of the kidney in US images. The 

W. Mahmud et al.’s proposed method uses many handcraft parameters and prior knowledge; 

thereby, it lacks generalization to other anatomical structures.  

The classification results in each of the window are affected by the local feature of the object 

because the feature of the medical image is different from the nature image because of the 

nonrigid appearance of the anatomical structures. In addition, another demerit of the methods 

is the heavy dependence on the ROI extractor. The recall of the detection results is limited by 

the quality of the proposed candidate windows. 

2.2 Fully automatic segmentation of anatomical structure in the US image 

The segmentation can be seen as the pixel-wise classification task. Compared with object 

detection task, fine-grained shape or area information can provide more valuable information 

to doctors or automatic systems. This thesis addresses the developments and issues in fully 

automatic segmentation applications without any manual interventions. The related works are 

detailed as follows. 

 Region growing and watershed 
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In order to locate the common area belonging to the same object, the region growing method 

relies on the seed position to generate multiple small groups of pixels as regions and 

combines multiple independent regions into larger one. In particular, the starting positions of 

the region growing methods are based on the seed regions; then, the pixels or areas with the 

same priority are gradually merged into the same blob. P. R. Thangaraj et al. propose a 

watershed-based method to use seed regions for identifying and classifying the areas of renal 

calculi [34]. The same authors further optimize the watershed by ANFIS [70] method in [35] 

and [36]. Similarly, P. T. Akkasalgar et al. [71] utilize the region growing method to segment 

the area of a kidney in US images and use it as the pre-processing of the detection of the 

abnormal objects. Although sometimes with no prior knowledge can be used, the advantage 

of region growing based method is that the good performance still can be obtained. However, 

to the region growing algorithm, the computation cost is relatively large, and the speckle 

noises and gray level heterogeneity may lead to over-segmentation.  

 The low-level feature descriptor  

Low-level features such as edge, corner, or gradient can be used as good prior for segmenting 

the specific area from the image. For example, [39] proposes to use Canny [40] as a feature 

extractor to extract the contour of the follicles from US images. Although the low-level 

feature based methods or morphology operations such as Canny operator or region growing 

method have advantages in label-free mechanism, however, the local appearance based 

feature is very easy to be affected by speckle noises or blurred borders in the US image, 

because the manually designed feature descriptors are very sensitive to the pixel-wise 

variance and lack of prior knowledge of global shape. 

 Cluster analysis 

Similar to region growing based methods, cluster analysis is an unsupervised segmentation 

method. People do not need to manually add labels to each sample in the dataset. The cluster 

structure is automatically discovered by discriminative feature. N. Archip et al. [72] make use 

of spectral clustering based normalized cut (NuCut) method to segment fetus and abdominal 
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on simulated US image. Recently, in 2011, related optimizations are published in [73]. The 

method first splits the raw image into multiple continuous subregions, then uses curvelet 

transform and GLCM to extract various feature vectors, the spectral cluster is performed 

based on the feature, at last, they use KNN to segment the pathological area in US images. 

The spectral cluster has advantages than the common k-means method in high adaptability to 

data distribution and lower computation cost. J. Shan et al. adopt the optimized feature 

extractor and neutrosophic cluster to segment the lesions in breast US images in their works 

[41][42] and [74].  

The merit of clustering based methods is its un-supervised learning scheme brings relatively 

fast training speed, while the method is sensitive to the isolated cluster and lack of evidence 

for choosing the suitable number of clusters and initialization of cluster centers. 

 Energy function based contour extraction 

The energy function based method refers to the active contour model [75] and its derivations. 

The basic idea is to use a continuous curve with multiple landmarks to express the edge of the 

target and define energy function to make the variable shape includes the curve of the object. 

In particular, the active contour model relies on multiple landmarks to extract the feature from 

the gradient with a high variance that fits the statistic model of the target object. The method 

is widely used in human face related image processing tasks such as feature point extraction. 

In medical image area, G. Slabaugh et al. make use of energy function based statistic model 

for extracting the contour of specific tissues from US images [43]. In addition, G. Slabaugh et 

al. further optimize their active contour-based method in [44]. In their proposed method they 

use active contour model based on whiten images and fisher-tippett distribution feature. The 

highlight of the research is the noise reduction pre-processing approach. However, the feature 

is still hard to deal with the structures with an irregular shape. 

The active shape model is suitable to fit the shape of the object with closed contours and 

regular shape. The defect of the active contour model-based method is the heavy dependence 

on the initial positions and diversity of statistical models. 
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The above introduced related works are summarized in Table 2.1. 

2.3 The development of related deep learning techniques applied to other 

computer vision areas 

As mentioned above, deep learning based techniques achieve great success in many tasks of 

Table 2.1 Summarize of related works 

Tasks  Methods  Authors  Issues  

Detection of 

anatomical 

structure 

Template 

matching  

S.Yu et al, [25] 

L. Fan L et al, [66] 

M. Marsousi et al, [27] 

-only feasible to the 

simple and independent 

structures 

Object classifier 

and sliding 

window  

N. B. Albayrak et al, [67] 

B. Rahmatullah et al, [30] 

G. Pons, [29] 

-redundant computation 

-cannot estimate accurate 

alignment 

Region proposal  R. Bharath et al [31] 

W. M. H. W. Mahmud et al 

[32] 

-heavily dependence of the 

ROI 

Fully 

automatic 

segmentation 

of 

anatomical 

structure 

Region growing 

and watershed 

P. R. Thangaraj et al, 

[34][35][36] 

P. T. Akkasalgar et al, [71] 

-Not robust to the spackle 

noise and gray level 

heterogeneity  

Low level 

feature 

descriptor 

P. S. Hiremath P S et al, [39] -not robust to speckle 

noise and blurred borders 

-lack prior knowledge of 

global shape 

Cluster analysis N. Archip et al, [72] 

H. –D. Cheng et al, [41][42] 

-sensitive to the isolate 

cluster  

-lack of evidence for 

choosing the suitable 

number of clusters and 

initialization of cluster 

centers. 

Energy function 

based contour 

extraction 

G. Slabaugh et al, [43][44] - hard to deal with the 

structures with irregular 

shape 

- heavily affected by initial 

position 

 



Chapter 2. Related Work 39 

 

computer vision area. This thesis tries to explore the feasibility of the related deep learning 

approaches of proposed targets. As a basic survey in this research, the development and 

common usage of deep learning methods for other computer vision areas are introduced in 

this section. 

Backbone network and object classification Real-world solutions with deep learning based 

model are started to be noticed by researchers early in 1998. Y. L. Lecun et al. propose a 

neural network structure with stacked convolutional operations in their publication [76]. The 

proposed deep learning model is adapted to recognize a large amount of hand-written digits 

and demonstrates high classification accuracy. Compared with traditional neural network 

approaches, it utilizes convolutional operations with shared kernels to reduce the volume of 

learn-able parameters to a relatively acceptable range. After that, in 2012, A. Krizhevsky et al. 

[7] used a more complex CNN structure to classify a common object in nature images and 

achieve the best score in Imagenet [47] challenge. In their work, they propose a deeper 

network structure with more convolutional layers with learn-able weights and efficient 

training method by making use of multiple GPU devices. After that, in the following works 

that relate to the backbone network, the structure becomes more complex, such as VGG [48], 

googleNet [8], RESNet [9] etc. The networks are not only deeper than before, but also more 

efficient in learning from large-scale training data by optimized activation functions, loss 

functions and skip connection mechanisms etc. Researchers make use of end-to-end learning 

strategy to achieve successes in many of the computer vision tasks. Since then, the efficient 

training method, and related hardware devices have been widely researched and spreading to 

the field of computer vision in very fast speed.  

Object detection Using CNN classification model on each position of the sliding window is a 

high computation cost choice. Compared with sliding window fashion, modern convolutional 

object detectors tend to detect objects in an end-to-end pipeline. The methods adopt a 

classification and regression network with shared convolution kernels to provide end-to-end 

learning scheme to regress the positions of foreground objects and classify the proposed 

candidates into specific categories. For example, the series of CNN detectors proposed by R. 
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Girshick et al. [78] [77] [10]. Their method treats the object detection problem as region 

proposal and object category classification phases. The position of the object is obtained 

Table 2.2 Summarize of related deep learning based approaches 

Tasks  Methods  US 

images  

Introduction  

Object 

localization 

Faster-RCNN [10] 
× 

- RPN based two-stage object 

detector. 

SSD [11] 
× 

- Fully convolution single-stage 

object detector. 

J. M. Wolterink et al, 

[83] ○ 

- Detect the coronary artery calcium 

in 3D US image volume by 3D 

convolution network 

Semantic 

segmentation 

Segnet [14] 
× 

- Symmetric designed 

encoding-decoding structure 

FCN [13] 
× 

Iterative trained fully convolution 

models 

DeeplabV3+ [95] 
× 

- Optimized by atrous convolution 

kernels 

PSPNet [96] 
× 

- Optimized by pyramid spatial 

pooling modules 

G. Carneiro G et al, 

[52] ○ 

- Deep belief network (DBN) based 

segmentation framework to extract 

the area of left ventricle 

H. Chen et al, [53] 

○ 

- FCN based segmentation 

framework to extract the area of left 

ventricle 

Weakly- 

supervised 

localization 

S. Karen et al, [58] 
× 

- Visualize the discriminative area 

by back propagation 

M. Oquab et al, [57] 
× 

- Visualize the discriminative area 

by global max pooling 

CAM & its variants, 

[55] [56] 
× 

- Visualize the discriminative area 

by discriminative mapping 

Sononet & its variants, 

[54][59][60] 
○ 

- Optimized back propagation [58] 

based method in US images 

N. Toussaint et al, [61] ○ - Directly adopt [56] in US images 
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through prediction of end-to-end defined offsets between the ground truth and multiple 

anchors, and each anchor also predicts the confidence of the objectness. The final positions of 

objects are determined by further regressed offsets and confidence of object categories. There 

are other works such as [11] [12] that compress the detection pipeline into a single stage. In 

particular, similar to the first half stage of [10], in a single stage based convolutional object 

detectors, the position and category of the object are directly regressed and classified at the 

same time in jointly learned convolution layers. The final bounding boxes of the objects are 

obtained by transferring the multiple pre-defined positions (named as anchors) with regressed 

offsets. The methods show success in many object detection challenges. 

Semantic segmentation Object segmentation can be seen as the fine-grained object detection 

task. The category of each of the pixels is required to be predicted. To obtain the best 

segmentation results without losing spatial information, the prediction results and original 

input image have a one-to-one correspondence in the pixel level. Similar to the classification 

or object detection tasks, the basic concept of deep learning based segmentation model also 

follows the end-to-end scheme. Compared with a traditional neural network, one of the 

advantages of CNN is the invariance of the spatial structure. This feature is much helpful for 

the segmentation task. In addition, in order to minimize the information loss for the 

one-to-one corresponding results, the main problem to be solved in deep learning based 

semantic segmentation task is how to scale the compressed feature maps back to the same size 

as the input image. E. Shelhamer et al. [13] propose to use transpose convolutional operations 

to perform up-scaling in the feature maps. Another work [14] utilizes the un-pooling 

operation to up-scale the feature maps by recorded positions of maximum value in max 

pooling. Formally, both of the works treat the segmentation CNN as “encoder-decoder” 

structures. In the encoding stage, the feature maps are extracted and downscaled by 

convolution and pooling operations. In the decoding stage, the feature maps are up-scaled and 

mapped to the specific dimensions. The various encoder-decoder architectures are widely 

used in the deep learning based image segmentation techniques such as instance and scene 

recognition or automatic driving tasks. 
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2.4 The deep learning techniques in the medical image processing area 

With the fast developing of deep learning techniques in image processing domain, the usage 

of related methods in the medical image processing is also arouse attention by researchers and 

industrials. The classification of the disease of specific organs is the most directive usage of 

deep learning techniques in the medical image processing area. A. Esteva et al. [50] directly 

use the off-the-shelf network structure (Inception v3 [79]) on human skin images. Esteva et al. 

change the number of weights on the last output layer to the desired 2032 categories of skin 

cancers and pre-trained the model on nature image datasets. The results demonstrate good 

performance that outperforms the human doctors.  

A similar approach also has been published based on the x-ray image. P. Rajpurkar et al. [15] 

utilize the off-the-shelf backbone network (DenseNet [80]) to classify up to 14 pulmonary 

diseases from raw x-ray images. In their works, the models are also pre-trained on nature 

images and they achieve remarkable results that surpass the professions in the related fields. 

Similar deep learning based classification works can be found in recent years such as M. 

Cicero et al. [81]. use Googe LeNet as the backbone network with the standard 224x224 input 

to achieve a classification model for abnormalities on frontal chest radiographs. G. M. Van et 

al. propose to use hard example mining to enhance the classification accuracy of the deep 

learning model for detecting hemorrhages in color fundus images [51]. The supports under 

these algorithms are a large number of labeled datasets and hardware accelerated training 

platforms.  

Regarding the deep learning based applications for detection and segmentation in the medical 

image; some of the works make use of the 3D information by 3D CNN structure. For example 

by H. Chen et al/ in [82], the work proposes to use CNN structure with 3D convolutional 

kernels to detect bleed in brain MRI. The medical image has strong correlations in the 

sequential order; the 3D kernel takes advantages to this kind of dataset. However, the 3D 

convolution costs a large amount of computation and requires more memory space in the 

GPU device. J. M. Wolterink J M et al. use three independently trained CNN models with 
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shared structures from three perpendicular planes to detect the coronary artery calcium in 3D 

US image volume [83]. The network structure is designed as a full convolution structure 

without any pooling or fully connecting layers. The demerit of this kind of structure is a large 

amount of computation complexity. S. B. Lo et al. combine the template matching based 

method and deep learning model to detect the lung nodule from chest images [84]. The 

traditional template matching is adopted to extract all of the circle areas from the input image. 

Then, The CNN classification model is run on each of the candidates to judge if the area 

belongs to lung nodule. The method uses the CNN as a classification model, which cannot 

end-to-end learns from training dataset for detection task and causes high computation costs. 

The existing deep learning based detection methods basically use the deep learning simply as 

the classification model. But as above-mentioned, the deep learning based object detector is 

more suitable for detecting multiple objects with different categories from given raw image 

input and it can provide end-to-end learning mechanism. The methods should be introduced to 

the medical image to improve the detection accuracy of the anatomical structure in US images. 

However, the positions of the detected bounding boxes are not so well aligned to the ground 

truth because of the errors of the regressed values and heavily affected by the imbalanced 

numbers of the positive and negative samples. Therefore, to make use of related works that 

applied in deep learning based object detector, this thesis proposes an optimized regression 

based CNN model to end-to-end learn the position of desired structures from raw US images. 

In addition, some other works adopt the weakly-supervised method to infer the location of the 

interested object from learned weights of deep learning models. For instance, the 

above-introduced work [15] also provides the function to extract the discriminative map from 

the classification model. However, they do not provide the evaluation of the performance of 

the localization results. In addition, in the above-mentioned work [15], P. Rajpurkar et al. also 

provide the weakly-supervised localization results of the pulmonary diseases by cumulative 

activation mapping (CAM) [55]. However, the original CAM method extracts the area by 

finding the most discriminative area, which cannot represent the shape of the whole object. 

Therefore, the completeness of the region mining results still needs to be optimized. A similar 
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approach [54] tries to localize the different tissues in US image from the learned classification 

model of fetal standard planes. The feature localization method costs more computation and 

requires extra calculations on the back-propagations. One of the largest issues in the present 

weakly-supervised deep learning methods is lack of completeness of the segmented object 

area. The reason might be the classification model only focuses on the part of the object with 

the most discriminative features correspond to the feature level of output layers. For example, 

regarding the fetal head, the most discriminative area difference of the background object is 

the appearance of two ends of the fetal skull bones. However, the two ends of the skull cannot 

be seen as the entire area of the fetal head. 

Regarding the pixel-wise classification of the anatomical structures or lesions in the medical 

image, in 2012, the authors of [52] proposed a deep belief network (DBN) [85] based 

segmentation framework to extract the area of left ventricle from US image, and they further 

improve the method in [86] for tracking the object in sequential US images. The method uses 

multiple cropped subregions and seeks for the edge of the target by pre-trained DBN network. 

They adopt DBN to un-supervised train stacked neural networks as a binary classifier to 

locate the most likely positions on the perpendiculars to the shape (contour) of anatomical 

structures. The works aim at segmenting the left ventricle, which is a single structure with a 

distinctive appearance in US image compared with the target of this thesis. 

Other works use similar algorithms in the nature image as references. Such as [53], the 

authors choose to use the FCN [13] architecture to perform semantic segmentation of the left 

ventricle from US image. The feature maps are up-scaled to the original size by transpose 

convolution operations and iterative trained multiple segmentation networks in different 

output scales. The iterative training costs more time than the end-to-end trained model, and 

difficult to converge. The authors of another work [87] use symmetrically designed 

architecture to perform pixel-wise classification in US images. In their work, the authors use a 

similar optimization method proposed by K. –M. He et al in their network structure [9]. They 

add cross-layer connections to enhance the feature representation in higher levels. From the 

results of the papers, the segmented blobs still have space to be improved, especially for more 
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smoothed segmentation borders. 

The above introduced related deep learning based approaches are summarized in Table 2.2. 

2.5 Summary 

As a summary, Section 2.1 and 2.2 first describe the problems of the traditional method in 

detection and segmentation anatomical structures from US images. The main problems 

existing in the traditional methods are: hard to fit the irregular shape by handcraft features, 

relies heavily on initial position, and cannot make use of global shape information from 

hard-to-defined features.  

Throughout the related works in deep learning based works in other computer vision areas 

from Section 2.3, this thesis finds that the deep learning based technique might bring 

feasibilities to US image processing to achieve the targets of this research.  

Section 2.4 makes a survey to the current existing deep learning based works that applied in 

related medical image processing area. Some of the work can be found that they still have 

space to further improvement. For example, in the segmentation of the anatomical structure, 

the existing methods cannot achieve enough accuracy on segmentation of fine-grained objects 

such as amniotic fluid and fetal body. In addition, the segmented blobs are lack of smoothness 

in the border of the object. On the other hand, some of the related works rely on pixel-wise 

annotations of the areas of the desired tissues, which cost much more manpower to make 

annotations. This thesis also proposes to adopt a weakly-supervised method to reduce the 

annotation workloads and improve the efficiency to the human doctors. According to the 

survey of the related works, even if there are some existing methods propose 

weakly-supervised approaches to solve the similar issues, their experiments demonstrate that 

the related methods are not good enough because of lack of completeness in the areas that do 

not have strong discriminative representations. 
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3.1 Introduction 

As mentioned in Chapter 1, the location of the uterus plays an important role in the 

subsequent processes of automatic medical treatment systems. In addition, in this thesis, the 

following module makes use of the location of the uterus to suppress the data imbalance issue 

by the pre-generated region of interest. Therefore, as the first module, this chapter proposes a 

CNN based regression model to automatically locate the position of the pregnant uterus in 

raw US images. 

The uterus is the soft tissue to carry the important anatomical structures such as fetus and 

amniotic fluid. The uterus has an inverted triangle shape and is located in the center of the 

pelvic cavity. Examples of fetal US images are visualized in Figure.3.1. The appearance of 

the uterus presents an irregular shape in US images, because of the gesture and posture of the 

fetus, and view angles etc. On the outer side of the uterus, the uterine wall can be observed. 

The uterine wall is composited by smoothed material but affected by noise and pseudo of the 

imaging devices, the appearance of the uterine wall is blurry in US images. 

To localize the bounding box of anatomical structures in US images, conventional methods 

use manually designed feature descriptors and trained classifiers to detect the object in the 

images using a sliding window. For instance, N. B. Albayrak et al. [67] use “histograms of 

oriented gradients” (HOG) to extract the responses of the detection widow at each of the 

positions, and scores at each of the positions using a support vector machine (SVM) classifier 

so as to obtain the heat map of the anatomical regions in the US image. In Albayrak et al.’s 

explanations, they elaborate that their method requires prior knowledge about relationships 

between the relative positions of adjacent anatomical regions.  
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On the other hand, the deep learning (DL) based convolutional object detectors (such as 

Faster-RCNN [10] and SSD [11]) have recently shown large advantage over conventional 

methods for object detection by well-designed neural network structures. The DL based 

detectors map the input image into a target dimension space which corresponds to the vectors 

between sets of pre-defined positions to the ground truths. Inspired by their bounding box 

regression methods, this thesis makes use of the hieratically learned representations to achieve 

accurate uterine localization in fetal US images. 

C. F. Baumgartner et al. [54] proposes a weakly supervised method which can localize the 

fine-grained tissues in US images such as fetal head and spine. Baumgartner et al.’s method 

localizes the region of interest in implicit obtained feature maps by learning inter-class 

distances. However, note that Baumgartner et al.’s method aims at learning the difference 

between image level annotations, which are not applicable to the task of this thesis, because 

most of the experimental data and annotations for uterus localization do not have such image 

level differences. 

To verify the performance of deep learning based approach for uterus localization and 

improve the accuracy of the subsequent segmentation task, this thesis proposes a CNN based 

bounding box regression model to regress the offsets of a fixed number of multiple 

pre-defined positions (which is named as reference box).  

Specifically, the proposed approach adopts an end-to-end learned regression CNN model. The 

input of this system is a still US image. The method feeds the raw US still image into a 

bounding box regression network to predict multiple candidate positions of the uterus. In 

 

Figure 3.1 Examples of fetal US image. 

This figure shows three different frames that are sampled from raw US video clips. 
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order to do this, the bounding box regression network predicts the offsets between a set of 

pre-defined coordinates and the ground truth positions. The output vector of the network is a 

specifically designed structure which has a one-to-one corresponding relationship to each of 

the pre-defined positions. The element values of each position in the output vector indicate 

the offsets distance and probability that the uterus is at that position, respectively. During the 

testing, each of the predefined position is transferred by the predicted offset values and 

assigned as the predicted probability score. To obtain a final result from multiple candidate 

bounding boxes, the Non-Maximum Suppression [88] (NMS) is adopted as a post-processing 

approach to cluster the multiple positions into one position.  

3.2 Methods  

This section elaborates on how the proposed method localizes the position of the uterus in raw 

pregnant US images through the bounding box regression network. The overall framework, 

the regression structure, the backbone architecture, and the post-processing technique are 

detailed as follows. 

3.2.1 Framework 

The proposed method defines the position of the uterus as a tight bounding box, which can be 

represented by                    , where                 indicate the x (horizontal) and y 

(vertical) coordinates of the top left and bottom right corners, respectively (see Figure 3.2). 

The ground truth position     of the bounding box is defined as the tight rectangle that starts 

 

Figure 3.2 Definition of uterus bounding box.  

Green rectangle indicates the ground truth bounding box of uterus.  
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from the leftmost pixel of the uterus, and ends at the rightmost pixel of the uterus. Similar to 

convolutional object detectors such as F-RCNN [10] and SSD [11], the proposed method uses 

multiple reference boxes with fixed initial positions and calculate the distance to the target 

positions. This thesis expects the deeply learned model to learn the offsets between the initial 

position and ground truth, and object confidence of each of the reference boxes as well. As a 

brief explanation of the proposed CNN regression model, the framework of the designed 

network and its output structure are illustrated in Figure 3.3. 

3.2.2 Offset regression 

To predict the position of the bounding box of the uterus by the convolution neural network 

model, this thesis designs a regression model which predicts the distance between sets of 

pre-defined locations and the ground truth locations. It defines multiple reference boxes 

through initial positions      . For each sample image, we equally place   initial reference 

 

Figure 3.3 Framework of bounding box regression network.  

Rectangles in green and orange: predicted bonding boxes. 
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boxes at every column and row. Given sample image     , the offset is defined as        
  

 

      
  
     

  
     

  
     

  
  for the reference box      , where      

  
     

  
  is the vector from 

the top left corners of the reference box to the ground truth, and      
  
     

  
  is the vector 

from the bottom right corner of the reference box to the ground truth. Additionally, the 

localization model also needs to learn the confidence score    , which indicates whether the 

reference box      . The reference boxes is used as positive or negative samples by assigning 

different annotations (0 or 1) according to the overlapping area with the ground truth, as 

detailed below in the last paragraph of this section. Formally, the model learns the following 

mapping of         
    

       
   

    
       

          
    

  
     

  
 

    
  
     

  
    

   for each of the reference box 

     , where i and j range from 1 to  . All of the           outputs are learned 

simultaneously by the weights of the network (Figure 3.3). This gives the method 

(normalized) predicted positions       for each of the reference boxes by 

                                                                            

where       indicates the trained bounding box regression network. 

In this thesis’ implementations, the offset value    and    are normalized by the size of 

the original image, such as, 

                                                                     

where               and           are the X and Y coordinates of the initial position and the 

ground truth, respectively;   and   are the width and height of the input US image, 

respectively. The normalization limits the output values so that the training losses converge. 

The ground truth category    
  

 of each reference box is determined by the area     in which 

the reference box and ground truth bounding box overlap, such as, 
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where    is a pre-defined threshold value (this thesis uses 0.3). The confidence labels of the 

corresponding reference boxes are set to 1 (positive); otherwise, the label is set to 0 (negative). 

The specific computation of the overlapping area    , in which the ground truth bounding box 

and reference box overlap, are performed by Eq.(3.4), 

                 
                                                           

where     indicates the area of the reference box      ,     indicates the area of the uterus 

(ground truth) bounding box,   and   are intersection and union of the two areas, 

respectively (Figure 3.4). This thesis calculates the confidence value for each of the reference 

boxes at its initial position and concatenates them to the offset vectors. Note that in this 

implementation, all of the outputs (the sets of regression offsets and confidence scores) are 

put into one vector, which is together calculated as a linear combination by the fully 

connecting layer (Figure. 3.3). This vector based scheme can deal with robust global and 

context information, because all of the positions and confidence scores of the reference boxes 

are considered jointly. 

Samples of labeled reference boxes are shown in the first column of Figure 3.5, where the 

rectangles in green and red are the positives and negatives, respectively. 

3.2.3 Backbone network 

This thesis uses the VGG16 (detailed in Table 3.1) structure as the base feature extractor 

 

Figure 3.4 Illustration of IoU.  

The area bounded by red indicates the union area, while the area bounded by black is the 

intersection area. 
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(backbone network) for both bounding box regression and semantic segmentation networks. 

VGG16 has been successful in many computer vision and recognition tasks such as ImageNet 

[7] object classification challenge. Specifically, the feature extraction network is constructed 

by 14 convolutional layers. At the end of each of the linear combination operation this thesis 

uses Rectified Linear Units (ReLU) to perform an active function which maps the output 

feature to non-linear feature space. This thesis treats the backbone network as a feature 

extractor and does not measure effects on different backbone networks. 

Regarding the structure of the output vector of the bounding box regression network, the 

model predicts the offsets and confidence scores     for each of the     bounding boxes 

from per US image. As shown in Figure 3.3, this thesis organizes the output (the offsets and 

 

Figure 3.5 Initial position and transferred position of reference boxes. 

Column a) Initial reference boxes with category annotations (green: positive, red: negative) 

which are assigned by overlapping area with ground truth. Column b) The regressed positive (in 

green) and negative (in red) bounding boxes. Column c) The uterus localization results after 

NMS; the yellow rectangles indicate the ground truth bounding boxes. The images in upper and 

lower rows are two different frames that are sampled from raw US video clips. 
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confidences) as a one-dimensional vector. Thus, the method converts the       offsets 

values and        confidence values to one long vector       and use it as the output of 

the model. The Euclidean loss is adopted as the loss function of the detection network by, 

               
                                                      

where     is the ground truth vector. During the testing, this thesis feeds the raw US image 

into the bounding box regression network after resizing the input image to         pixels, 

which is same as the training phase. The network outputs the offsets and the uterine 

confidence of each of the reference boxes in float numbers. 

3.2.4 Post-processing 

As introduced earlier, the method first transfers all of the initial coordinates to the target 

positions       by corresponding offsets, as indicated by Eq. (3.1). The initial prediction 

contains many overlapped bounding boxes which are assigned to the same object in the image 

(as shown in Figure 3.5 (b)). Therefore, the approach needs to further eliminate redundant 

Input:                                      

P and C contain the initial predictions and 

corresponded confidence scores 

P’ and C’ are the final predictions 

  is the preset threshold 

P’ = {}, C’= {} 

while isempty(P)=False do 

  i = argmax(C) 

  P’.append(  ), C’.append(  ) 

  P.remove(  ), C.remove(  ) 

  for j in P do 

    if iou(  ,   ) >    then 

      P.remove(  ), C.remove(  ) 

    end 

  end 

end 

return P’, C’ 

Figure 3.6 Pseudo code of NMS. 
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predictions. This thesis clusters the multiple overlapping boxes by Non-Maximum 

Suppression (NMS). 

The NMS seeks for the position with the maximum confidence value in a given region which 

might contain the same object by eliminating all of the bounding boxes whose overlapping 

areas are larger than a threshold. The pseudo code of the common NMS method used in this 

thesis can be found in Figure 3.6. Consequently, the merged bounding box is obtained as the 

final result of the uterus detection. Among the obtained multiple candidate bounding boxes, 

this thesis keeps the bounding box which has the largest confidence as per NMS.  

3.3 Numerical Results and Discussions  

This thesis aims at providing solutions for real-world problems; therefore, all of the methods 

proposed in this thesis are evaluated using clinical dataset. First, detailed experiment 

environments and training parameters are explained. Then, to verify the effectiveness and 

seek for the optimal parameters for further modules, numerical results are obtained through 

experiments. This thesis discusses the performance in several different settings and gives 

intuitive conclusions through visualized examples. 

3.3.1 Experimental environment 

To conduct experiments, this thesis receives approval from the Ethics Review Committee on 

Research with Human Subjects, Waseda University (2014-165). The examinations use GE 

Voluson E8 and C1-5 linear array transducer with frequencies in the range of 4.0 Hz. The 

axial and lateral resolution is 2mm and 3mm, respectively. The field of views is 66 degrees 

and the depth setting is 15cm. The average fetal age of the subjects is approximately 22 weeks. 

This thesis acquires four video clips from anonymous patients. The original resolution of each 

frame is         pixels. The raw data are sampled from each video clips every two frames. 

This thesis uses 2-fold cross validation by first randomly separating the different patients’ 

data into the training and testing sets. The contour annotations are made by doctors who have 

years of US examination experiences. 
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3.3.2 Data cleaning 

Because of the manual operation of the antenatal examination, the ultrasonic probe moves at 

non-uniform velocity during the scanning, and sometimes stops for a period of time. If frames 

are directly taken at equal sampling interval from the video data, the experiments get a large 

number of repetitive or nearly duplicated frames. The duplicate or nearly duplicate images do 

not contribute to the training, and cause bias to the dataset. The bias could affect the 

distribution of the training data and the data diversity, which results in bad generalization to 

the regression models. Therefore, this thesis adopts a simple and effective method to filter out 

highly similar samples between adjacent frames in the dataset. Actually, the method one by 

one feeds each of the data samples through a pre-trained CNN model (i.e. Alexnet [7] 

network structure and trained on ImageNet dataset). Then the feature vector outputted from 

the fully connecting layer is adopted as the decomposed representation of the input image. 

The extracted feature vector of the current frame is compared with the next frame in the entire 

image sequence. If the Euclidean distance of the current frame and previous frame is smaller 

than threshold, the previous frame is discarded. Till the method finds an image which has 

large enough distance with current frame the model update the current frame to this one. The 

Input:  I = {I1,I2,…In},  

F() is the feature extraction model 

      is the cleaned dataset 

   is the preset threshold 

       = {} 

Ic = I1 

      .append (Ic) 

for i in n do 

if Edist(F(Ic),F(Ii))>thrs then 

Ic = Ii 

      .append (Ic) 

end 

end 

return        

Figure 3.7 Pseudo code of data cleaning method. 
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pseudo code of the data cleaning method is shown in Figure 3.7. In other words, image pairs 

which have a very short distance are treated as the similar image samples. This thesis discards 

all of the redundancies from the original data set both for training and validation. The cleaned 

dataset has about 400 samples in total for training and validation. 

3.3.3 Data augmentation and hyper parameters 

In order to enhance the diversity of training data, the method augments the training data by 

adding random disturbances to the predicted uterus bounding boxes. In particular, multiple 

sub regions are cropped from the original image with random transfer factor on the four 

points of the bounding box. Detailed parameters and illustration for augmentation method are 

shown in Figure 3.8. The data augmentation increases the training samples to more than 4000 

training samples in each subset. 

The experiments run on a single NVIDIA GTX 1080. The deep learning platform is modified 

from Caffe [89]. For each iteration, the method feeds multiple images into one batch and 

minimizes the error of the entire batch. The error between the ground truth and output is 

summed and averaged over all of the samples. This thesis stops model training after 20000 

 

Figure 3.8 Data augmentation method. 

The area in the red rectangle is used as the augmented image for training. 
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iterations. The inference time on GPU is about 30ms for the detection and 60ms for the 

segmentation networks per image, respectively. 

3.3.4 Domain transferred learning 

Studies proved that the low level feature representations are highly similar across many 

domains. Compared with randomly initialized weights, the fine-tuning on the pre-trained 

model converges at a faster speed and achieves better performance. The weights of the 

convolution layers of the segmentation model are initialized to a pre-trained model [48]. Note 

that the only difference between training from randomly initialized weights and training from 

pre-trained weights is the starting (initial) values of weights of each learn-able layer. In 

addition, only the operations which have exactly same number of weights are adopted from 

pre-trained weights. Therefore, during fine-tuning of the models, the newly added layers are 

initialized by Gaussian distributions and have five times as large learning rate as the other 

Table 3.1  VGG16 backbone network. 

Conv. Layers of VGG16 

Conv1_1: 64x3x3, Stride: 1, Pad: 1 

Conv1_2: 64x3x3, Stride: 1, Pad: 1 

Pool1: 3x3, Stride: 2 

Conv2_1: 128x3x3, Stride: 1, Pad: 1 

Conv2_2: 128x3x3, Stride: 1, Pad: 1 

Pool2: 3x3, Stride: 2 

Conv3_1: 256x3x3, Stride: 1, Pad: 1 

Conv3_2: 256x3x3, Stride: 1, Pad: 1 

Conv3_3: 256x3x3, Stride: 1, Pad: 1 

Pool3: 3x3, Stride: 2 

Conv4_1: 512x3x3, Stride: 1, Pad: 1 

Conv4_2: 512x3x3, Stride: 1, Pad: 1 

Conv4_3: 512x3x3, Stride: 1, Pad: 1 

Pool4: 3x3, Stride: 2 

Conv5_1: 512x3x3, Stride: 1, Pad: 1 

Conv5_2: 512x3x3, Stride: 1, Pad: 1 

Conv5_3: 512x3x3, Stride: 1, Pad: 1 

Pool5: 3x3, Stride: 2 
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fine-tuned layers. 

3.3.5 Evaluation criteria 

The experiments use intersection of union (IOU) to evaluate the uterus detection networks. 

 

Figure 3.9 Comparison between a) 3x3, b) 5x5 and c) 7x7 reference boxes  

(green: positive, red: negative, yellow: ground truth), left column: bounding boxes before NMS, 

right column: bounding boxes after NMS. 
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Specifically, IOU is the proportion of the intersection of true positive pixels and union area of 

the predictions and ground truths. Besides IOU, the experiments also adopt Average Precision 

(AP) [97] to evaluate the detection performance. To demonstrate the different alignment 

accuracy between ground truth bounding box and prediction, this thesis uses three 

overlapping thresholds: 0.5 (AP.5), 0.6 (AP.6) and 0.7 (AP.7). The bounding boxes which 

have overlapping ratio larger than the thresholds are considered as True Positives (TP). It 

means that the larger threshold is stricter than smaller one. 

3.3.6 Results and discussions 

This section compares different settings of the bounding box regression network. The 

quantitative results of IOU and AP are shown in Table 3.2 and Table 3.3, respectively. The 

proposed uterus regression networks in this thesis are named as URN. 

 

Figure 3.10 Normalized uterine images by detected bounding box. 

The figures from left to right show four different frames that are sampled from raw US 

video clips. 

Table 3.2 Evaluation results of uterus localization (IOU) (%) 

 URN_3x3  URN_5x5  URN_7x7  FRCNN SSD 

Sub.1 55.7 63.1 64.6 61.0 60.7 

Sub.2 55.0 61.7 59.7 60.2 59.1 

Avg. 55.3 62.4 62.1 60.6 59.9 

 

Table 3.3 Evaluation results of uterus localization (AP) (%) 

 URN_5x5 FRCNN SSD 

AP.5 99.6 99.5 99.4 

AP.6 88.6 85.4 83.3 

AP.7 68.3 53.7 50.2 
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This thesis evaluates the uterus localization results on different setting and compares them 

with Faster-RCNN [10] (FRCNN) and SSD [11]. For FRCNN this thesis uses multi-scale 

training scheme to randomly resize the input image in three different scales. During testing 

this thesis uses the original size as input. Regarding SSD, this thesis adopts 300x300 pixels as 

both training and testing inputs. For both of the above-mentioned methods, this thesis adopts 

VGG16 as the backbone network.  

The IOU shows that URN_5x5 achieves the best score but the gaps between different results 

are not obvious. The AP demonstrates that URN_5x5 model achieves the highest accuracies, 

especially in case of more strict criteria (AP.7). It proves that the proposed method has better 

alignment accuracy. The major difference is the last fully connecting operation. It introduces 

global feature to the offsets regression, which brings richer context information. The global 

regression scheme is more robust in case of uterus localization in US images. 

Regarding the different settings of the reference boxes, as shown in Figure 3.9, the 

comparisons of multiple different settings by using 3x3, 5x5 and 7x7 boxes as the initial 

positions can be intuitively observed. This thesis observes that in most of the situations the 

predictions have smaller size than the ground truth in width. This is caused by the unclear 

area at the two sides of the sector. Although the predicted uterus area is smaller than the 

 

Figure 3.11 Visualized results of uterus detection.  

Green: manual annotation; yellow: prediction. This figure shows eight different samples. 
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uterus (caused by unclear shadows), it does not affect the subsequent scheme too much. Since 

the method extends every bounding box with a fixed factor, this issue mostly happens on the 

left and right sides of the US image, which contain relative large black area. 

Through comparing different settings on the output structures, the results show that the output 

positions which are generated with 3x3 reference boxes has relatively smaller overlapping 

areas with the ground truth bounding box, which causes lower IOU as a result of comparing 

with 5x5 and 7x7. The results prove that the model with more dense reference boxes achieve 

better performance on localization accuracy. This is because in the preliminary experiment, 

the uterus area has relatively large size, compared with the original image; the effectiveness 

of using more densely regressed positions cannot be well reflected with this dataset. On the 

other hand, inaccurate localizations are concentrated on the left and right side on x axis. It is 

hard to fit to the target bounding box if the two sides of the object are heavily cast by shadow 

in the US image; the edge of the uterus is unclear and out of the range of the view angles. In 

contrast, the top and bottom position of the predicted bounding box on y axis is relatively 

accurate, and this result is enough for this thesis to further optimize the subsequent modules, 

because most of the background areas are positioned in the upper and lower area of the 

pregnant US images. 

The advantages of using cropped areas can be explained in terms of the following two 

aspects: 1. constrain the location of the uterus to the area inside the uterus bounding box; 2. 

alleviate the unbalanced data distribution. It can be said that the predicted uterus area smaller 

than the uterus because of unclear features at the left and right areas (some of the visualized 

results are shown in Figure 3.11). This does not heavily affect the following segmentation 

scheme, because the method extends every bounding box with a fixed factor. As a 

pre-processing stage of anatomical structure segmentation, the uterine localization results 

relieve the severe data imbalance problem caused by background pixels. The performance of 

the localization model can be viewed from the quantitative results using IOU. The IOU 

reflects the alignment accuracy of prediction and ground truth. The best result achieves higher 

than 62% on averaged IOU with ground truth. Regarding the detection rate, the proposed 
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model achieves acceptable accuracy (higher than 88% at AP.6) for the uterus detection task, 

and outperforms other compared existing deep learning based approaches which are applied 

to nature image domain.  

3.4 Conclusion 

This chapter has proposed a deep learning based uterus localization frameworks. The method 

adopts specifically designed regression output structure to regress candidate positions of the 

uterus. In particular, to obtain the abundant position information of the target object in US 

images, multiple densely positioned reference boxes are assigned according to the size and 

length-width ratio of the original image. The target of the model is to learn the offsets 

between each of the reference box and target position and predicts the confidence of the 

positive sample. In order to achieve this, the output of the network is designed as a vector 

which has the same length as the coordinates and confidence of all of the reference boxes. 

During the training, the model is optimized by minimizing the loss between predictions and 

manually annotated ground truth. 

Through experiments this thesis verifies the methods and concludes the results as follows: the 

detection rate of the uterus using the best the model achieves about 88% for AP@IOU>0.6 

using clinical pregnant US dataset, and higher than 62% for IOU averaged with the ground 

truth. The proposed US uterus localization scheme outperforms other compared deep learning 

based methods, which are applied for nature image domains. The results demonstrate the 

proposed method can achieve relatively high detection performance on predictions with 

almost no miss detections. In this thesis, this module works as the beginning of the 

subsequent processes. In the next chapter, to improve the performance of the semantic 

segmentation of anatomical structures, the approach makes use of the results estimated by this 

uterus regression CNN. 
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Chapter 4. Semantic Segmentation of 

Anatomical Structure 

 

4.1 Introduction 

As mentioned in Chapter 1, the anatomical structures inside the uterus such as the fetal body 

and amniotic fluid reflect several important physiological indexes of the pregnant patients. 

Segmenting anatomical structures in US images is very important for achieving many 

automatic systems such as fetal biometry measurement, 3D fetus reconstruction, and 

computer-aided amniotic fluid test. In the last chapter, a uterus localization CNN is proposed; 

the position of the uterus provides a region of interest for fine-grained structure segmentation. 

Therefore, this thesis further proposes a method to distinguish the areas of anatomical 

structures in the given US images.  

The segmentation is challenging, as shown in Figure 4.1, because of irregular shapes of the 

uterine walls deformed by the fetal bodies that could change their postures, noisy reflected 

waves (black shadow-like areas in Figure 4.1) that are generated by tissues and bones, and 

blurry edges. On the other hand, the structure density based segmentation relies on low-level 

features to distinguish the liquid and tissues from US examinations. It is difficult to 

distinguish the different tissues, and cannot obtain smooth segmentation on the border of the 

object. 

Energy function based boundary searching method is one of the common ways to learn 

deformable shape information in US images: for example, P. R. Thangaraj et al. [34] adopt a 

watershed-based method to use seed regions for identifying the areas of renal calculi in US 

images. However, these methods either heavily rely on strong and clear image patterns or 
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require extra precise initialization; therefore, it is difficult for these methods to be applied to 

the pregnant uterine US image segmentation. 

Other than a low level feature, extracting the edge of the object is commonly used to segment 

the object in a closed region. N. Martins et al. [90] adopt the energy function and statistic 

model-based approaches. Martins et al. adopt an active contour model to fit the morphable 

model to the target shape (contour) by minimizing the energy functions which are defined on 

the perpendiculars to the key points on the contours. B. Georgescu et al. [91] propose a 

data-driven approach to detect and segment the edge of the left ventricle (LV) in US images. 

Georgescu et al. first detect the desired object by hand-craft features and boosted cascade 

trained classifier. Then Georgescu et al. use selected features to obtain the shape inference on 

the aligned LV images. Georgescu et al.’s method is not directly applicable to the setting, 

because it is only capable of binary classification and it relies on regular shape information.  

Apart from these model-driven or pre-defined rules-based approaches, deep learning based 

machine learning mechanism achieved great success in nature image processing. As a 

data-driven method, convolution network structures could approximate any objective function 

by tons of neurons and effectively choose the most discriminative features by local receptive 

fields filtering on input image signals. Recent research works have shown that CNN 

(Convolutional Neural Network) could handle segmentation on complex scenarios such as 

road images and indoor object images [13][14][92], by treating the problem as a pixel-wise 

classification task. They have shown that deep learning could get better results than traditional 

approaches from automatically learned hieratical representation and relative large training 

 
Figure 4.1 Examples of pregnant US image. 

This figure shows three different frames that are sampled from raw US video clips. 
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data is better than one or more manually designed features for semantic segmentation of 

objects from nature images. 

Regarding the deep learning based US image segmentation, G. Carneiro et al. [52] adopt a 

deep belief network (DBN) to train stacked neural networks as a binary classifier to localize 

the most likely positions on the perpendiculars of the contour of anatomical structures. The 

feature is extracted on each of the positions of the anchor points to obtain the responses, 

which makes redundant computations in overlapping areas. Their annotation model, however, 

is not stable when applied to a unique shape which is not included in the training. H. Chen et 

 
Figure 4.2 Examples of pixel-wise annotation of uterus. 

1st row: four original pregnant US image samples; 2nd row: corresponded ground truth 

annotations (in white) of uterus. 

 

Figure 4.3 The illustration of the desired anatomical structures.  

Amniotic fluid (in blue), fetal body (in yellow) and other areas are considered as 

background. 
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al. [53] used off-the-shelf fully convolution network (FCN) structure [13] to segment the LV 

in designated US slices. They iteratively segment the desired object in the subregion of the 

US image. The results show that the segmentation in the detailed areas of complex scenes still 

needs to be improved. 

This thesis explores the effectiveness of applying the deep learning technology to segmenting 

pregnant uteruses in US images. More specifically, this thesis aims at automatically 

determining whether each pixel belongs to the desired anatomical structures or not in input 

pregnant US images. The segmentation methods proposed in this thesis are separated into two 

parts: the first part is the binary segmentation of the uterus in US images, and the other part is 

the multi-category segmentation of amniotic fluid and fetal body in US images. For the binary 

segmentation of the uterus, the definition of the “uterus” area is the pixels inside the uterine 

walls, where the uterus area could probably include the amniotic fluid and fetal body. The rest 

of the pixels are defined as “non-uterus”, as shown in Figure 4.2. Regarding the semantic 

segmentation of amniotic fluid and fetal body, the fine-grained structures are pixel-wise 

labeled inside the uterus, as shown in Figure 4.3. 

To solve the above two problems, in following sections, this thesis first introduces a fully 

convolution network structure which outputs the binary confidence that each pixel 

corresponds to the uterine or background area in the input image. In the training phase, the 

weights of the network are updated using manually labeled training data. During the test 

phase, this thesis directly feeds the entire image to the trained model. Then, this thesis extends 

the method into multi-categories segmentation of amniotic fluid and fetal body. The output 

structure is modified, and the target of the learning is changed to multinomial loss function. 

The experimental results show that the segmentation in the detailed areas of complex scenes 

still needs to be improved. In section 4.4, optimization methods are introduced to relieve the 

“inaccuracy” issue and “unsmoothed” segmentations on the object borders. By conducting 

experiments that use pregnant uterine US images, the effectiveness of the proposed methods 

is explored. 
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4.2 Preliminary research: Semantic segmentation of Uterus 

This thesis first designs preliminary research to segment the uterus area in the US image. 

More specifically, this thesis adopts an off-the-shelf deep learning segmentation framework to 

verify the effectiveness in US images. 

The overall framework of the preliminary research is shown in Figure 4.4. Detailed 

explanations are as follows. 

4.2.1 Network structure for binary segmentation  

The main difference from common CNN with full connected layer structure is that the output 

layer of the CNN this thesis uses is a dense map, which is a set of multiple labels. For this, 

this thesis uses an encoding-decoding CNN structure and pixel-wise loss which is designed 

for object segmentation, as shown in Figure 4.4. 

The network consists of two parts: encoding and decoding parts. Specifically, in the encoding 

part, all of the kernel sizes for the convolution layer is fixed. The method pads each response 

map by zeros on the border of the matrix (kernel) in order to keep the size fixed after being 

filtered by the convolution kernel. Every convolution layer is followed by a rectified linear 

unit (Rely [94]) activation function for the models. Then, the size of the response maps is 

 

Figure 4.4 Encoding-decoding network structure for binary segmentation of uterus.  

Light gray: Conv-RELU max pooling in the encoding part; Dark gray: up-sample conv in the 

decoding part. 
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determined as the one obtained by decreasing the size of the pooling layers. This could yield 

scale invariance and represent information from surrounding (larger) areas. For the pooling 

strategy the model uses max pooling which shrinks the input map by only keeping the 

maximum value of the specific pixel neighbors. Both of the size and stride this thesis uses for 

each pooling layer are 2. Note that the method needs to record the max indices, in order to 

transfer back the response map by the up-sample layers in the decoding part of the network. 

The method repeats this kind of layer blobs (conv-RELU-maxpooling) four times totally in 

the encoding network. 

Concerning the decoding part, to decode the encoded response maps without losing dense (the 

same resolution as the input) information, the model needs to up-scale the layer to the same 

resolution as the input image. This could be achieved by several optional up-scale schemes, 

for example by using bi-linear transform [13], or learn-able de-convolution kernels [92]. This 

method records maximum position to up-sample the feature maps to larger scale in the 

decoding stage (see Figure 4.5). In particular, the max pooling indices are recorded in the 

encoding layer as mentioned earlier, so that for each up-scaled image, the model could restore 

the pixel values by finding the corresponding values and put them in the previously recorded 

position. The other pixels are all filled by zeros. Then, each up-sample layer is followed by 

the convolution layers with activations as usual as described before. The method uses exactly 

same numbers of layers in the reversed order as the encoding layers. 

For each input image this thesis resizes it to a fixed size of 480*360 pixels, and converts it to 

a single gray level channel. Since the method uses a fully convolution network structure, there 

 

Figure 4.5 Down-scaling and corresponded up-sampling operation. 
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are no fully connecting layers, which allows us to handle any arbitrary input resolution in the 

testing phase, and the output is always an end-to-end segmentation map. The specific 

resolution of each layer’s output is shown in Figure 4.4. Different kernel numbers are set for 

each layer; for the first two convolution layers there are 64 shared kernels for each and for the 

following two layers the kernels are increased by factor of square of 2. For the decoding part 

the model uses corresponding number of kernels as shown in Figure 4.4. The last layer has 

only one layer output, which indicates the confidence of uterus or non-uterus at each pixel. 

To deal with the segmentation task for the uterus area, the binary segmentation CNN directly 

compares the Euclidean distance with the ground truth in training. In particular, the training 

procedure calculates the loss of the network by summing each sample's pixel-wise Euclidean 

distance between the response map and ground truth label map. The loss function of the 

segmentation network is shown as:  

    
 

 
               

 

   

                                                

where   indicates a pixel in image  ,       is the ground truth label and       indicates 

the outputted pixel value at pixel  . During the back propagations, for the decoding part of 

the network, the derivatives are down sampled by recorded max indices. This process is 

performed in the opposite direction of the decoding process. 

To summarize, the method uses an encoding-decoding CNN network structure to perform an 

end-to-end, pixel-level supervised learning mechanism. Compared with only using 

down-scaled feature map output and then up-scaling by interpolations, the usage of up-sample 

layers followed by convolution layers brings dense predictions for each of the positions that 

correspond to every pixel on the original input. 

4.2.2 Result thresholding 

The value of each pixel of the response map indicates a confidence value of whether it 

belongs to “uterus” or not. In order to obtain a reasonable threshold for binary mask for the 
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uterus class despite imbalanced numbers of pixels in the two classes (uterus or non-uterus), 

before setting this threshold to the testing set, the model first runs on training set. By testing 

several different thresholds within a specific range, a best threshold could be determined. This 

thesis assumes the testing set has a similar distribution with the training set. The method treats 

this threshold value as the most suitable threshold during the testing. 

4.2.3 Experiments 

Dataset The experiment uses a GE Voluson E8 and C1-5 linear array transducer with 

frequencies in the range of 4.0 Hz. The average fetal week of the subjects is approximately 22 

weeks. Concerning the parameters of the data capture device, axial and lateral resolution is 

2mm and 3mm, respectively, and the field of views is 66 degrees. The depth setting is 

relatively high (15cm), because the entire transverse section of patient’s uterus should be 

observed in the US slices. During the clinical examination, the doctors scan from side to side 

on the entire abdomen several times for each of the patients. The gestational weeks of the 

fetal video used for this experiment are around 19 and 23 weeks. As a preliminary experiment, 

226 frames for the training set (week 19) and 188 for the test set (week 23) are sampled from 

the videos. Both of the training and testing images are resized to a size of 480*480 pixels in 

order to directly input to the CNN.  

Each pixel’s label is manually given: specifically, if a person specifies the (enclosed) area of 

the uterus in each US image using a graphic tool, then, the “uterus” label is given to all the 

pixels inside the specified uterus area, while the “non-uterus” (background) label is given to 

the other pixels. Note that for each US image, it is ensured that in almost all of the samples 

the fetal body could be observed inside the uterus. 

Metrics The method uses following three different metrics for quantitative evaluations of the 

results: 1. Global accuracy (Accu_G): the properly classified pixel counts divided by the total 

pixel counts in the dataset. 2. Mean accuracy over all categories (mAccu_C): averaging the 

pixel-wise classification accuracy of all of the classes (in case of this preliminary experiment, 

two classes). This index could reflect the imbalanced factor of each class. 3. Mean 
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intersections over union (mIoU): the IoU of each class   is calculated by the following 

equation: 

                                                                    

where   indicates the area of predicted pixels, while    indicates the area of corresponding 

ground truth pixels. Equation (4.2) indicates that the IoU reflects both of the false positives 

and the false negatives; therefore, it can be said that this criterion is more strict than the other 

two criteria. 

Training details Concerning the hyper parameters of the model, the method uses a fixed 

learning rate at 1*10
-6

. The learning rate is quite small, because the loss is calculated by 

summing all the pixels of the image, which could generate a large value for the loss. The loss 

tends to decrease if it reaches approximately 16,000. This thesis stops the training at around 

500, which corresponds to 20,000 iterations or more. Under this network structure and these 

settings, the training program costs about 6,600 Mb GPU memories with batch size set to 4. It 

takes for the training about 5 hours for 20,000 iterations on a NVIDIA GTX1080. 

4.2.4 Numerical Results and Discussions 

First, whether the assigned label is correct or not is checked at each pixel in all of the test data. 

Table 4.1 Overall segmentation accuracy. (Preliminary Exp.) (%) 

 Accu_G mAccu_C mIoU 

EuclidieanL_k3 90.45 84.99 73.14 

EuclidieanL_k5 94.28 90.05 82.12 

MultinomialL 93.00 90.46 79.57 

EuclidieanL_k7 95.20 90.73 84.42 

 

Table 4.2 Class separated segmentation accuracy. (Preliminary Exp.) (%) 

 Accu_BG Accu_U IoU_BG IoU_U 

EuclidieanL_k3 93.17 76.80 89.05 57.23 

EuclidieanL_k5 96.39 83.71 93.35 70.89 

MultinomialL 94.27 86.66 91.82 67.32 

EuclidieanL_k7 97.42 84.05 94.41 74.43 
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Table 4.1 lists the three criteria for the Euclidiean loss (EuclidieanL), where Euclidiean_k3, 

Euclidiean_k5 and Euclidiean_k7 are the results of using different kernel size 3x3, 5x5 and 

7x7 pixels, respectively. As can be seen in Table 4.1, among the three different kernel sizes, 

the largest kernel size (7x7) gives the best segmentation accuracy. 

Second, the segmentation accuracy is evaluated in each of the two classes. To evaluate this 

accuracy, Accu_BG, Accu_U, IoU_BG and IoU_U are used, which indicate the accuracy and 

IOU of the background (_BG) and uterine area (_U). From Table 4.2, it can be said that the 

background (_BG) area gives higher accuracy than the uterus (_U). Since the number of 

pixels in the non-uterus is larger than the uterus, their pixel value variation is larger; thus, 

many pixel values tend to be treated as the background. Another reason is that the features of 

the fetal body in the uterus tend to be quite similar to those of the background area. 

Some examples of the result are visualized in Figure 4.6. In Figure 4.6, the four columns 

correspond to four different US images, and four rows show the original US image, ground 

truth for the uterus area (indicated by white), the obtained border between the uterus and 

non-uterus (yellow line) and the obtained uterus area (white), respectively. The segmentation 

 

Figure 4.6 Down-scaling and corresponded up-sampling operation.  

Each row shows one different US image sample. 
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is hardly affected by fetal bodies, which tend to have very similar pixel value variations in 

non-uterus pixels. This indicates that the CNN based method is robust to the 

easy-to-be-confused local patterns. 

4.2.5 Issues 

On the other hand, some problematic cases can be seen. The research shows the major issues 

in Figure 4.7. The problems can be classified into the following cases. First, the wrong 

segmentations occur in areas contaminated by noisy reflections, specifically, the misclassified 

pixels easily appear at the blurry edge (unsmoothed segmentation). In such an area, enough 

amounts of training data was not obtained, and a large size of the convolution kernel cannot 

cover this problem. Second, the under segmentations are obtained. Errors often happen in case 

that part of the border (typically, the left and/or right border) of the amniotic fluid area in the 

uterus overlaps with the outer (out of the field of view of US probe) area, where the 

gray-levels of amniotic fluid and outer area are dark and similar. In addition, in order to 

achieve better results for future applications, this method still needs to be further improved, 

especially on the object borders. 

 

Figure 4.7 Major issues in uterus segmentation results. 

Area in red rectangle shows the unsmoothed contour. Areas in red circles indicate the 

under segmentation results. 
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4.3 Optimized multi-categories semantic segmentation 

In the above-mentioned sections a method for binary segmentation of the uterus in US images 

is described. However, in real world solutions, systems require for more fine-grained 

information for areas of multiple structures. In addition, from the results of the preliminary 

experiment, there are defects in some aspect such as the in-accurate segmentation and 

un-smoothed borders. Therefore, this section further extends the research to multi-object 

segmentation by multi-category segmentation CNN and proposed several optimization 

methods to solve the issues.  

To achieve this goal, this thesis proposes a two-tier approach of deep learning based 

techniques to (I) locate the bounding box of the uterus and (II) segment the pixels in the 

uterine region into fetal body, amniotic fluid, and background. An example of fetal US image 

and its fine-grained annotation of amniotic fluid and fetal body are visualized in Figure 4.8.  

First, the method makes use of the localized uterus area to improve the semantic segmentation 

results. The segmentation can be constrained in the area of the uterus, and the cropped image 

relieves the data imbalance issues that caused by background area. 

 

Figure 4.8 Example of the fetal US image and its annotation.  

The green rectangle indicates the bounding box of uterus. 
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Other than segmentation in the region of interest, this thesis proposes an optimized CNN 

based architecture to segment the fetal body and amniotic fluid in an end-to-end, fully 

supervised learning pipeline. To further improve the predictive performance in complex 

scenes and smooth out the segmentation results, this thesis modifies the structure with 

additional layers and multi-scale supervisions.  

In particular, regarding the base framework of the segmentation CNN, for each input image 

the method directly feed the data blob to a down-scaled convolution structure, so as to obtain 

multiple down-scaled feature maps. Then, corresponding un-pooling layers followed by 

learn-able convolution kernels are adopted to decode the feature maps to the same size as the 

input image. To deal with the multiple category output, the output structure is changed to 

multiple output channels which indicate the confidence maps for different anatomical 

structures. First, the basic technique elements of the module are described as follows. 

4.3.1 Encoding decoding framework 

As shown in Figure 4.9, the method still follows the encoding-decoding framework which is 

same as the preliminary experiments. The input image is first mapped to a set of down-scaled 

feature maps by convolution and pooling operations. This work uses max-pooling, which 

keeps only the maximum value of each pooling window. In the first half stage of the network 

(encoding stage), multiple max-pooling operations are adopted. Overall, the feature maps of 

the last layer of the encoding stage are down scaled to        of the raw input by M 

 
Figure 4.9 Symmetric designed encoding-decoding framework. 
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max-pooling layers with stride two. 

In the encoding stage, the input image is mapped to a set of down-scaled feature maps by 

convolution and pooling operations. Normally, in case of other image processing tasks such 

as object classification, the dimension of the feature maps is further reshaped to one 

dimension feature vector, and then sent to the output layer. However, concerning the image 

segmentation task, if the model directly connects the down-scaled feature map to the output, 

the information owned by the neighbor pixels in each of the pooling windows is lost. 

Therefore, to achieve a pixel-to-pixel classification without losing dense information, the 

method needs to up-scale the feature map back to the same size of the input image by 

learn-able weights. There are several ways to resize a matrix such as bi-linear interpolation 

and nearest neighbor. Here, this thesis adopts un-pooling [93] to restore feature maps to a 

larger size, which is same as the corresponding feature maps in the encoding stage. As shown 

in Figure 4.5, each pixel is assigned to the recorded maximum position in each of the 

corresponding windows, while the other positions are filled with zeros. For the backward 

propagation, the derivatives are passed to the former layer by only keeping the largest one in 

the window, which is same as the feed forward operation in the max-pooling layer. For each 

un-pooling layer, the model concatenates them with convolution layers which have learnable 

convolution kernels. In the overall architecture, it has numbers of un-pooling layers as the 

max pooling layers. In the last layer of the decoding stage, the feature maps are finally 

 

Figure 4.10 Pixel-wise softmax for multi-category segmentation. 
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up-scaled to the original size. To up-scale the feature maps to the exactly same size as the 

input image, the parameters of the un-pooling layers one-to-one correspond to the pooling 

layers in the encoding stage. 

4.3.2 Backbone network 

Concerning the network architecture, the method uses the first 10 convolution layers of 

VGG16 [48] as the base network structure. The network uses sets of convolution kernels with 

relatively small (3x3) convolution kernels. This model uses four max-pooling layers with 

stride of two pixels. This thesis fixes the input image size to 480x480 pixels, where the 

smallest size of the feature map is 15x15 (the last convolution layer in the encoding structure). 

Note that this module treats the backbone network as feature extractor and do not measure the 

effects on different backbone networks. The specific resolution of each layer’s output is 

demonstrated in Figure 4.9. 

In order to predict the confidence maps of objects of multiple categories, the method extends 

the output structure to multiple channels and changes the loss function to multinomial logistic 

loss.  

During testing, the method calculates the softmax at each pixel of the last output map in 

channel dimensions (as shown in Figure 4.10). During training, for each input image   with 

  pixels, the corresponding loss function     for the proposed multi-category segmentation 

network is: 

      
 

 
      

 

   

                                                            

where    is the predicted confidence of pixel   which corresponds to its ground truth 

category. The error between the ground truth and output is summed and averaged over all of 

the pixels of each batch. The author uses stochastic gradient descent (SGD) method to update 

weights in the back propagation training.  

Note that this architecture does not have any fully connected layers. Therefore, structurally, 
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the input does not need to be fixed for each of the convolution layer. Even so, during the 

training and testing phases the model uses fixed size as the input, in order to make the local 

receptive field keep consistent. 

4.3.3 Optimized Semantic Segmentation Framework 

Through the preliminary experiments, several issues have been revealed. First, the segmented 

blobs lack of global representation, which cause the in-accurate segmentation on some objects 

with irregular shapes. Second, the experiments reveal that the model is hard to converge in 

training and final segmentation results tend to miss-classify many of the pixels into 

background areas because of the imbalance distribution between negative (background) and 

positive (anatomical structures) pixels. Third, the segmented blobs lack smoothness in the 

border of the object, which generates rough edges in the reconstructed models. 

 

Figure 4.11 The flow map of proposed 2-tier approach for multi-category object 

segmentation. 
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In order to avoid the issues mentioned above, this thesis proposes an optimization framework 

for the segmentation of anatomical structures in US images. First, to relieve the data 

imbalance issues caused by large area of background pixels, the optimized method makes use 

of the result of uterus localization by CNN to shrink the input area. What is more, to improve 

the segmentation accuracy, the method proposes to use addition 1x1 sized kernels to enhance 

the global representation of the segmentation model. In addition, to solve the problem of 

un-smoothed segmentations, this thesis further proposes a multiple intermediate supervision 

method to achieve smoothed segmentation on the border of the objects. Details of each 

building block of this research are introduced as follows. The overall working flow of 2-tier 

framework is illustrated in Figure 4.11, and the detailed the optimizations structures are 

shown in Figure 4.12. 

4.3.3.1 2-tier segmentation 

The input of the system is a still US image. The method first feeds the raw US still image into 

a bounding box regression network (see Chapter 3) to localize the position of the uterus. Then, 

it extracts the uterus area by the obtained bounding box and then resizes the sub region of the 

image to a fixed size. An optimized segmentation CNN is used to classify each of the pixels 

to pre-defined categories in the input region. Finally, the pixel-wise probability map is 

transferred back to the origin position by the localized uterus area. 

As shown in Figure 4.11, this section describes the semantic segmentation model for 

anatomical structure segmentation. To prevent that the obtained bounding box is smaller than 

the actual uterus area, the method extends the bounding box area with a fixed factor of 1.2 to 

leave some residuals for the areas near the uterine border. 

4.3.3.2 Inner layers 

The higher layers of the network structure represent more high level responses. To this end, 

this thesis adds layers called “inner layers” between the encoding and decoding stages to 

enhance high level representations (as shown in the middle part of Figure 4.12). The inner 

layers are stacked 1x1 sized convolution kernels which are connected to the last layer of down 
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sampling network. The inner layer works as smallest size local receptive fields. It does not do 

integral on local regions, but it shifts the dimensionality in filter space. With the increase in 

the network parameters, the feature space of the model becomes larger. To this end, the model 

directly uses more layers with learnable weights to enhance the hieratical representation. For 

each of the inner layers, the model uses much more kernels than any other layers in order to 

map the features to relatively large dimensions. Here, 1x1 sized kernels do not significantly 

increase the computation cost compared with layers with larger kernels.  

The local appearances of human tissues are very similar to each other. The feature of general 

objects such as human and cars, local appearance has stronger discriminative power in 

gradient, color, texture, etc. However, it is hard to parse objects from partial features in US 

images. The false alarm tends to happen at similar areas with adjoining edges if the model 

lacks global representations. To verify the effectiveness this thesis compares several settings 

with different inner layers; details of the experimental results are presented in Section 3. 

4.3.3.3 Intermediate supervision 

In the decoding stage of segmentation network, it can be said that the un-pooling operation 

causes un-smoothed segmentation in the border areas. By comparing with interpolation 

up-scaling, the un-pooling operation’s output is relatively sparse, because most of the 

positions are filled with zeroes. It causes the final segmentation results to be very non-smooth 

in some areas, especially in the boundaries.  

As shown in the output part of Figure 4.12, the method proposes to improve the smoothness 

by using multiple output branches with multi-scaled supervision signals. The images with 

different resolutions yield different detailed information in the borders. The higher resolved 

segmentation maps contain more information in the border area and have smoother edges. 

Thus, this thesis expects to enhance the continuity of each group of convolution layers by 

different resolved ground truth segmentation maps. Specifically, inspired by GoogLeNet [8], 

the model not only uses the error from the last output layer, but also from inserted additional 

output branches among the decoding structure. The additional outputs are used as auxiliary 
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branches for calculating the errors between the predictions and down-scaled ground truth 

label maps, they are concatenated to the output of convolution layers in the up-sampling stage. 

 

Figure 4.12 Optimized semantic segmentation framework for semantic segmentation of 

multi-category anatomical structures. 
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To map the intermediate output to the same dimension number as the ground truth, for each of 

the intermediate branch the method uses convolution layers with a fixed number of 

convolution kernels (the number of kernels equals to the number of channels of the output).  

Here, this thesis uses nearest neighbor interpolation to down-scale the ground truth label map 

from the original size to the same size as the corresponding output branch. Examples of 

down-scaled label maps are visualized in Figure 4.13. The corresponded resolution of the 

label maps are         ,          and          pixels. Through intermediate 

supervision, the convolution layers after un-pooling tend to learn extra information from 

small to large segmentation maps. The larger sized segmentation maps contain more 

information in the border area. In Figure 4.13, the difference between the different sized 

segmentation maps are mainly in the border of the blobs. The larger sized segmentation maps 

have smoother edges. Thus, the proposed method expects to enhance the continuity of each 

group of convolution layers after un-pooling operations by learning the differences between 

multi-sized ground truths. 

 

Figure 4.13 Ground truth label maps with different image scales. 

a) 120x120, b) 240x240 and c) 480x480 sized output branches. (The images are resized 

to the same size for visualization). Each row indicates one different ground truth of US 

image sample. 
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During training, each of the intermediate supervision layer targets at minimizing the 

cross-entropy loss of all of the positions in the response map. This thesis treats all of the 

errors equally by summing the derivatives of each of the branches with same weights during 

the back propagation training. The method does not weight the error of each branch layer by 

the size of the output map, because the loss is normalized by the number of pixels of the 

output.  

During testing, the auxiliary branches are discarded, and only the output of the last layer is 

used as the final segmentation results. 

4.3.4 Experiments 

The evaluations are conducted using clinical US image dataset, which has approval from the 

Ethics Review Committee on Research with Human Subjects, Waseda University (2014-165). 

Data acquirement The data source used in this verification is same as the preliminary 

experiments, which are introduced in Section 4.2.3. The method re-samples the US frames in 

the raw US images to obtain more samples for training and testing. As a result, there are in 

total over 900 images for the training and 400 images for the testing (three subjects for 

training and the last one for testing). 

To obtain the ground truth annotations, a radiologist manually labels each of the US images in 

the cleaned dataset. In order to automatically estimate the amniotic fluid volume and fetal 

body size by segmented blobs, there are in total three categories (fetal body, amniotic fluid 

and background) need to be annotated. The contour annotations are made by doctors who 

have years of US examination experiences. The pixel-wise labels of each category are 

assigned by judging to which closed region each pixel belongs, as shown in Fig.4.13. Note 

that for each image, it is ensured that one could observe the uterus in all of the samples. 

Data cleaning In addition, as introduced in Chapter 3, this thesis eliminates completely 

duplicate or nearly duplicate frames in the original sampled data. These duplicate or nearly 

duplicate images do not contribute to the training and increase the manpower for label 
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annotations. The feature is first extracted by pre-trained CNN model, and then the experiment 

discards the similar samples from the original data set. The finally obtained clean dataset has 

413 for the training set and 188 for the testing set. The segmentation network is equivalent to 

a pixel-wise classification task. Although the dataset is relatively small, each pixel could be 

seen as a training sample. 

Metrics Besides intersections over union (IOU), this thesis further demonstrates the class 

specified evaluation results by ROC (Receiver Operating Characteristic) curve. The true 

positive rate (TPR) and false positive rate (FPR) over classes are calculated by:  

                                                              

where    ,    ,     ,      indicate the number of true positive, false positive, positive 

and negative pixels of each category, respectively. This thesis also adopts pixel-wise 

classification accuracy (Accu) to evaluate the segmentation results without the effect on 

different categories. Note that the segmentation results are calculated based on the original 

map. The outside area is judged as background. 

Training details The experiments run on a single NVIDIA GTX 1080. The deep learning 

platform is modified from Caffe [89]. The error between the ground truth and output is 

summed and averaged over all of the samples. The training is stopped after 20000 iterations. 

The method uses a stepped learning rate starting from       , and decreases the learning rate 

by a factor of 0.1 at each of 4,000 iterations. Each of 50 iterations takes about 51 seconds in 

the training phase. The inference time on GPU is about 60ms for the segmentation networks 

per image. 

Data augmentation The method uses same augmentation method as introduced in Chapter 3. 

It makes the training samples increase to more than 4000 training samples in each subset. For 

comparison, the result w/o data augmentation (“_w/o_aug”) can be found in Table 4.3. 

Domain transferred learning The above-mentioned experiments have proved that the low 

level feature representations are highly similar across many domains. Therefore, this method 

initializes the weights of the convolution layers of the segmentation model from pre-trained 
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model [48]. During fine-tuning of the models, the newly added layers have five times as large 

learning rate as the fine-tuned layers. For comparison, the result w/o using pre-trained model 

(“_w/o_pre”) can be found in the last row of Table 4.3. 

4.3.5 Numerical Results and Discussions 

This thesis names the optimized scheme “EDN_”. The base scheme without any modification 

is same as Segnet; thereby, this thesis names the baseline work of EDN  “Segnet”. To 

demonstrate the performance of intermediate supervision layers, in Fig.4.14, this thesis shows 

some of the segmentation results by highlighting the edge of the segmented blobs. The 

smoothed boundaries which are predicted by model with intermediate supervision layers 

show significant improvements in the given image samples. The intermediate supervision 

layers also improve the overall segmentation accuracy (EDN_IS of Table 4.3). The visualized 

 
Figure 4.14 The visualized segmentation results. 

a) SegNet (w/o intermediate supervision layers), b) EDN_IS (w/ intermediate supervision 

layers) and c) PSPVGG16. 
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results (Figure 4.14) show significantly improvements especially on the border of the 

segmented areas. 

Regarding the 2-tier segmentation framework, it can be said that the predicted uterus area is 

Table 4.3 Accuracy over all of the pixels (Accu). (%) 

 Segnet_ 

nodet 

Segnet EDN_IS EDN_1IL

_IS 

EDN_2IL

_IS 

EDN_3IL

_IS 

w/ cropped uterus 

area 
 ✓ ✓ ✓ ✓ ✓ 

w/ intermediate 

supervision (_IS) 
  ✓ ✓ ✓ ✓ 

w/ Inner1 (_1IL)    ✓ ✓ ✓ 

w/ Inner2 (_2IL)     ✓ ✓ 

w/ Inner3 (_3IL)      ✓ 

Subset 1 91.99 92.23 93.43 93.97 93.81 94.08 

Subset 2 90.41 91.05 92.22 92.39 92.49 93.71 

Avg. 91.20 91.64 92.83 93.18 93.15 93.90 

 

Table 4.4 Structures of inner layers used by different models 

Layer name EDN _1IL _2IL _3IL 

Layer1 None 512 4096 4096 

Layer2 None None 512 4096 

Layer3 None None None 512 

 

Table 4.5 Class specified results (IOU) and pixel-wise accuracy over all of the pixels (Accu). 

(%) 

 Fetal 

body 

Amniotic 

fluid 

Bkg. mIOU Accu 

FCN8S 49.32 36.06 92.37 59.25 89.86 

SegNet 55.00 44.83 93.35 64.39 91.64 

PSPVGG16 65.13 55.13 94.84 71.70 93.03 

V3+_VGG16 69.17 52.64 95.19 72.33 93.51 

EDN_IS 64.10 51.71 94.90 70.24 88.01 

EDN _w/o_aug 44.29 30.91 92.03 55.74 89.90 

EDN _w/o_pre 61.24 50.81 93.10 68.38 92.83 

EDN_3IL_IS 69.36 54.79 95.44 73.19 93.90 
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smaller than uterus, it is caused by unclear features at the left and right areas (as shown in 

Figure 3.11). It does not heavily affect the segmentation scheme, because this thesis extends 

every bounding box with a fixed factor. The quantitative results of semantic segmentation w/ 

and w/o cropped uterus area can be found in the column 1 (“SegNet_nodet”) and 2 (SegNet) 

of Table 4.3. It proves that the localization scheme improves the accuracy of the following 

segmentation work. 

Then, to verify the effectiveness of the inner layers, this thesis uses several settings with 

different number of the inner layers. The detail of the structures of the inner layers is listed in 

Table 4.3. The suffix “_nIL” indicates the model with n (n=1, 2, 3) inner layers. The 

visualized results (Figure 4.15) show the additional inner layers bring higher accuracy on the 

segmentation results. Table 4.5 shows the class specified evaluation results by IOU for 

amniotic fluid and fetal body. It shows that the additional learn-able weights in the middle of 

the encoding decoding network lead to better performance among other models. The detailed 

pixel-wise classification results can be viewed from the category specified ROC curves, 

which are drawn in Figure 4.16. 

Besides this, the “_w/o_pre” (no pre-training) is trained without domain transfer learning and 

has same network structure to “EDN_3IL_IS”. In addition, the “_w/o_aug” (no augmentation) 

is trained without data augmentation and has same network structure to “EDN_3IL_IS”.  

Concerning comparison experiments, the research adopts FCN and Segnet as baseline 

methods. Besides the baseline methods, this thesis also evaluates Deeplabv3+ [95] and 

PSPNet [96] with same training and testing sets. Note that all of the segmentation models are 

trained based on the cropped uterus area for fair comparison. The FCN model adopts 

transpose convolution to learn the up-sample operations. The FCN8s model is iteratively 

trained by FCN32s and FCN16s. Regarding the Deeplabv3+, the major feature of the method 

is that it adds multiple atrous convolution kernels (ASPP) with batch normalizations to the 

last feature maps to enlarge the field of views. This research adopts the ASPP scheme with 

batch normalizations and an additional encoder-decoder layer. Regarding the PSPNet, this 
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thesis adds 4 pooling operations after the last convolution layer of VGG16 (conv_5_3) with 

different size of pooling windows, then uses interpolation to up-scale the feature maps to the 

 

Figure 4.15 Visualized segmentation results 

 Visualized segmentation results of: a) FCN8S, b) PSPVGG16, c) V3+VGG16, d) 

EDN_IS, e) EDN_3IL_IS, f) ground truth. Each column indicates one different sample. 



Chapter 4. Semantic Segmentation of Anatomical Structure 91 

 

same size and concatenate them into one. The compared models with VGG16 as the backbone 

structure are named V3+_VGG16 and PSPVGG16. Numerical results of the above models are 

demonstrated in Table 4.5 and Figure 4.16. Some visualized examples of the extracted 

contours and segmented blobs with different approaches and the proposed methods can be 

found in Fig. 4.14 and Fig. 4.15. 

In addition, this thesis further provides the results of Deeplabv3+ and PSPNet with Resnet50 

[9] as the backbone network in Table 4.6 (V3+_RES50 and PSPNet). Interestingly, the 

numerical results do not achieve better scores than using VGG16’s model in the experiments. 

It might be because this thesis uses relatively small batch size (batch size=6 for both models) 

on a single GPU device. Even if this thesis has trained the models with more iterations, it 

seems that the performances of networks trained with batch normalizations (i.e Resnet50, 

Resnet101) heavily depend on the large batch size.  

Note that in this module this thesis does not extend the proposed optimizations to other 

backbone networks such as Resnet. The reason is because the scheme records geometric 

representation and makes use of more local position information which is obtained from 

max-pooling operations. However, the original Resnet does not provide such down scaling 

method which is required by the currently used decoding scheme. Regarding the limitation of 

the work, the symmetric designed segmentation scheme has drawbacks on high GPU memory 

cost in the training, which could cause that the training process on the currently used device 

might encounter GPU memory problems. It limits the module to adopt the backbone networks 

with less learn-able weights. Therefore, this module does not concern much about the 

backbone networks. 

Overall, the best performance in the quantitative results is the proposed optimized 

Table 4.6  Evaluation results of DeeplabV3+ and PSPNet with Resnet50 as the 

backbone network. (%) 

 IOU_fb IOU_af IOU_bkg. mIOU Accu 

PSPNet 61.48 50.41 94.17 68.69 92.95 

V3+_RES50 61.79 51.80 94.83 69.47 93.50 
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encoding-decoding model with 3 inner layers and intermediate supervisions. Although the 

result does not have large gaps with V3+_VGG16 and PSPVGG16, it ca be said that it can be 

proved more complete contour of objects. The proposed inner layers bring similar effects as 

the atrous convolution or multi-scale pooling by introducing larger field of views to the 

feature maps. Compared with PSPVGG16, the additional intermediate supervision branches 

not only have advantages in faster converging speed in the training, but they also bring 

smoother segmentation results by using different scales of ground truth masks in training. 

From the visualized results, the FCN8s model shows under fitting to the ground truth area. 

The proposed model performs more complete and accurate contour information on the 

segmentation results than others. Despite this, visualized samples show that the model with 

intermediate supervision have more smooth segmentations in the border areas. 

On the other hand, the visualized results demonstrate that, as inner layers increase, the overall 

performance gets better. The network with the three inner layers achieves the best 

performance among all of the three indexes, and the model without inner layers performs 

relatively worse than others. The feature learned by additional layers is more conducive to 

suppress false positives in anatomical structures such as the uterus in fetal US images. On the 

other hand, the optimized multiple supervision module significantly improved the smoothness 

of the segmentation borders. With the help of the proposed multiple supervision layers, the 

 

Figure 4.16 Category specified ROC curves of different models. 
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method does not use any post processing methods such as condition random field or 

morphology operations and still can achieve smooth segmentation results. In addition, the 

model without pre-training or data augmentations gets lower scores. The experiments show 

the importance of pre-training, it further demonstrates that it could bring positive effects to 

the cross-domain tasks by transferring learning from nature images to US images. 

4.4 Conclusion 

This chapter first proposes preliminary research to CNN based segmentation work for the 

pregnant uterus and identifies the existing issues. Then, this thesis further proposes optimized 

frameworks and applies the method to segmentation of multiple anatomical structures. To 

segment the amniotic fluid and fetal body in the uterus, this thesis adopts a fully convolution 

network in an encoding-decoding architecture. The input US images first are mapped into 

multi-channel down-scaled feature maps and then up-scaled to original size by symmetric 

designed decoding structures. The final segmentation results are calculated by thresholding 

confidence maps. It was found that the overall segmentations lack accuracy in case of some 

irregular shapes and not smooth enough at border areas. In order to relieve the data imbalance 

issue, a 2-tier approach is introduced by segmentation in the cropped uterine area. This thesis 

further uses stacked inner layers and intermediate supervision structure to improve the overall 

segmentation accuracy and smoothness at the boundaries of the segmentation results. 

Comparative experiments are conducted to verify the effectiveness of the proposed methods. 

This thesis concludes the results of this chapter as follows: 

1) A fully convolutional network for semantic segmentation of pregnant US images based 

on backbone networks which are commonly used in nature image classification tasks. 

The deep learning based segmentation framework achieves pixel-wise classification in 

US images through hieratically decomposed feature maps and end-to-end learning using 

manually annotated ground truth label map.  

2) A 2-tier segmentation approach which adopts the bounding box of the uterus to reduces a 

large number of background areas. Compared with segmentations applied directly to raw 
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US images, segmentation in the cropped uterine area optimize the segmentation results 

by relieving the imbalance issue and aligning the region of target pixels. 

3) The inner layer with 1x1 sized convolution kernels. The additional convolution 

operations between encoding and decoding structures improve the overall segmentation 

accuracy by extending the network to larger dimensional space and enhanced global 

representations. 

4) The intermediate supervision structures. The intermediate supervision of multiple 

down-scaled ground truth label maps brings smoother segmentation results by adding 

supervisions with different size of down-scaled factors for each group of output layers 

with different feature levels. 

The experiments demonstrate the performance of the designed baseline structures and the 

effectiveness of the proposed optimizations. The averaged pixel-wise classification accuracy 

is about 93% and averaged intersection of the union is about 73%. The quantitative results of 

the proposed model outperform all of the other segmentation approaches. The visualized 

results demonstrate smooth segmentations than other methods. 

Regarding the future work of the research, it can be said that in order to provide more useful 

semantic information for the subsequent systems, more fine-grained categories are desired to 

be recognized such as the fetal head, brain, and bones in the given pregnant US images.  

It is found that in the proposed two-tier segmentation approach, the separate calculations of 

uterus detection and anatomical structure segmentation by using two independent models are 

computation redundant. Future study might have a chance to seek for a joint learning 

architecture to learn the multiple tasks (the detection and segmentation) with shared 

convolution weights simultaneously. 

On the other hand, the limitation of extending the proposed optimizations to more advanced 

backbone structures such as Resnet should be dealt with. First, the structure needs to be 

further modified to fit the decoding structure used in the proposed segmentation scheme. Then, 
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the extra memory cost caused by the symmetrically designed scheme needs to be reduced by 

making the network more lightweight to avoid the computation limitation without losing too 

much performance.  

Furthermore, to train the segmentation model, medical professions are asked to carefully label 

the anatomical structures on each of the frames. Such fully annotations on the border of each 

of the anatomical structures in US images are difficult and time-consuming for future medical 

applications. 
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Chapter 5. Weakly Supervised Region 

Mining of Fetal Head 

 

5.1 Introduction 

As mentioned in Chapter 1, automatic fetal care systems are desired by medical areas. In 

order to prove such high-level semantic information for post-sequence systems, this thesis has 

already introduced two of the proposed modules in Chapter 3 and Chapter 4, which are: 

bounding box localization of the uterus and semantic segmentation of anatomical structures in 

pregnant US images.  

Next, this thesis proposes to introduce a weakly-supervised learning method for region 

mining of fine-grained anatomical structure. Such a system requires a technology that locates 

the fetal head so as to infer the gesture and position of the fetus; then, the system can perform 

subsequent processes such as guiding the US probe to the desired positions for further 

measurement. Furthermore, through the above introduced modules, it is found that the manual 

annotation of the pixel-wise segmentation is very time-consuming and cost relatively high. 

Therefore, the fetal head is desired to be separated from other fetal body parts in an efficient 

and low-cost manner. This chapter proposes a fetal head region mining method based on a 

weakly-supervised approach. 

In this chapter, the major target is to propose a weakly supervised approach for localizing 

anatomical structures which are difficult to be annotated. Classification of the fetal head plane 

in US image has been studied for a long time as introduced in the previous chapters, e.g. by H. 

Chen et al [98]. However, in many cases of automatic medical treatments, classification of the 

category of US planes is not enough. The model needs to locate the position of the targets in 
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the image in order to provide more reliable references. Normally, object detection or 

pixel-wise classification model can be obtained by fully supervised learning, as introduced in 

the previous chapters such as N. B. Albayrak et al. [67]. However, these methods rely on 

accurate manual annotation of the target position, such as the pixel-wise classification mask 

or bounding boxes, which cost a large number of human resources. 

The hieratical feature can be used to visualize the discriminative region by the method 

proposed by B. –L. Zhou et al. [55]. The convolutional neural network maps the input data 

into hieratical feature spaces; then the feature maps can be adopted as a salient image of the 

target object through linear combination. In case of medical image processing, recently, some 

of the publications directly use the method to visualize the interesting area of the illness, for 

instance, X. –S. Wang et al. [99]’s work. X. –S. Wang et al. mainly target the classification 

tasks. The extracted response of the last convolution layers has a small size and high feature 

level, which causes the response map only reflects the regions which have the most 

discriminative information. Y. –C. Wei et al. [100] propose to solve the problem by iteratively 

masking the pixels which have high confidence, then by re-classifying the image from the rest 

of the pixels. However, the method cannot provide a reliable termination method; i.e. the 

mining region has a risk to be over-segmented. Therefore, the issue of the completeness of the 

 

Figure 5.1 Localization of fetal head by learning from image level annotations. 
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weakly supervised region mining still needs to be further solved. 

Concerning the weakly supervised object localization approach for US images, C. F. 

Baumgartner et al. [54] leverage the work of [58] to visualize the discriminative areas of the 

fetal body in US images by back propagation, and improve the localization accuracy by using 

the saliency map [57] as a weighted linear combination of the back prorogation results. In 

their following works [59] [60], they further extend the method by introducing attention 

mechanism etc. Their methods suppress the noise in the generated saliency map to some 

extent. However, the back prorogation and global max-pooling operation are limited to a 

point of the most discriminative area rather than determining the full extent of the object. In 

other words, their methods face the issue of the extracted areas could hardly coincide with the 

entire object, which is very important for some medical applications such as the 

reconstruction of the fetal body. In addition, the proposed results lack quantitative comparison 

with others. N. Toussaint et al [61] propose to directly adopt the work [56] which is originally 

applied for nature images to extract the saliency area of the fetal body in US images. Their 

experiments are implemented on a notebook PC with a relatively shallow backbone network 

and lack of quantitative comparisons. 

The targets of this model are illustrated in Figure 5.1. Given US images, through learning 

using image level annotations, the method aims at mining the region of the fetal head from the 

learned models. The region of the fetal head is represented as a tight bounding box of the fetal 

head area. This thesis first adopts a fetal head classification framework based on existing 

backbone networks and then proposes to use discriminative maps of the fetal head which are 

merged in multi-scale feature maps to improve the completeness of the mined region. 

5.2 Region mining of fetal head from image level annotations 

5.2.1 Fetal head plane classification from US images 

The modified CNN models are used to train classifier in US slices and image level fetal head 

annotations, which are manually specified if each image includes a fetal head. To classify the 

input US image into different categories, the CNN model uses a hieratical designed backbone 
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network to extract the feature. In this thesis, author treats off-the-shelf networks as the feature 

extractors, and their base structures remain unchanged. 

In order to visualize the discriminative area from learned classification models, the essential 

modifications come from the output of the network structure. In order to map the output into 

one-dimensional vector, which indicates whether a fetal head exists, the normal CNN 

classification model first needs to reshape the responses of the convolution layers into a 

vector and then connects the feature vectors to inner production layers. The method needs to 

use discriminative feature maps to localize the fetal head area. Therefore, the network 

structure (for extracting feature maps, which is introduced in the next section) replaces the 

reshape and inner product operations of the selected backbone structures by a single global 

average pooling layer. 

Regarding the loss function, during the training phase, the method uses typical cross entropy 

loss to update the weights of the binary classification model. In the sample US video sequence, 

fetal heads exist only in a small number of the sequences. This leads to the situation in which 

the data distribution has severe imbalances. Therefore, this thesis modifies the loss function 

with weights of the negative category. The weight   is calculated by            , where 

     and      are the number of positive and negative samples. For each batch with   

samples, the loss function of fetal head classification network can be written by 

     
 

 
                          

 

   

                                   

where       indicate ground truth and predicted confidence of image  , respectively. 

5.2.2 Localization of fetal head by multi-scale discriminative maps 

The method proposed by Zhou et al. [55] adopts the feature maps’ responses of the last 

convolution layer and the weights of the output layer to obtain the discriminative map   

from the learned model. In particular, the input blob of the output layer is calculated from 

global averaging pooling (GAP) over the feature maps   of the last convolution layer. Then 
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the compressed feature is directly mapped into the shape of the output vector by linear 

combination with the weights   corresponding to the desired categories. The approach can 

be represented by, 

       
 

                                                                    

where   is the  th channel of   and  . 

The highest feature level in the deep learning model is learned from the most discriminative 

areas of the input feature maps.  

However, the most discriminative area cannot be seen as the complete area of the target object. 

The mined region lacks completeness due to the presence of some of not so important areas. 

This finally causes the located fetal head area to be not good enough. 

The pooling layers are used multiple times to narrow down the original image through 

averaging or maximum operations. In this study, the response maps for the discriminative 

localization are extracted from the last output of the hieratical layers. As the feature level 

becomes deeper; the semantic features get higher. The less important feature areas are 

progressively ignored by the network. This thesis assumes that the ignorance could degrade 

the completeness of the target shape. To deal with the issue, the method proposes to adopt the 

 

Figure 5.2 Proposed optimizations for complete fetal head region extraction. 

Merging of multi-scale discriminative maps. 
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outputs from the multi-level features. The response maps from different feature levels 

represent different discriminative locations. 

To deal with the above-discovered issues, in this module, the proposed method replaces the 

output by multiple output branches which split from a different level of backbone network’s 

outputs and merge the multiple discriminative maps into one, as shown in Figure 5.2. In 

particular, for each output branch, this thesis adds a specified number of convolution layers 

and global average pooling operations. During the training, the output of each branch is 

compared with the ground truth labels, and the weights of each output branches are 

independently updated. By merging multiple outputs, the models learn discriminative 

response maps from layers with different feature levels. The branch structure with detailed 

parameters on VGG19 [48] structure can be found in Figure 5.3. During the localization, the 

method extracts the response maps of the last convolution layers from each output branch and 

use the weights of each branch separately to linearly combine them as multiple discriminative 

maps. The acquirement of the fetal head salience maps of the proposed optimized approach 

can be presented as  

   
 

  
    

   

                                                           

where 
 

  
          is the discriminative map which adopts the weights and feature maps 

 

Figure 5.3 Detailed structure of output branches added on VGG19. 
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from the ith convolution layer.       and    indicate the weights that correspond to the fetal 

head, feature maps, and channels of the ith output branch, respectively. The method proposed 

in this chapter merges discriminative maps which are extracted from multiple branches and 

uses it as the final salient image of the fetal head. 

5.2.3 Threshold 

The output of the region is the heat map of the fetal head, which means that each pixel 

corresponds to the confidence of whether each pixel belongs to the fetal head area. Therefore, 

in order to convert the results to a bounding box from this kind of heat maps, the method 

needs to obtain the tight bound box from connecting regions larger than a given threshold. In 

this preliminary experiments, the discriminative map is first normalized to [0,1] by min and 

max values. Then, this study uses a fixed value (0.8) to obtain binary masks. The bounding 

box of the fetal head is obtained from the connected domain. To determine the threshold value, 

this thesis quantitatively evaluates the IOU of region mining results on the training sets and 

roughly selects the values which have the best performance on each subfolders. Note that the 

method only keeps the bounding box which has the largest area if multiple areas are obtained. 

5.2.4 Backbone network 

The weakly supervised region mining is different from classification tasks. Therefore, 

multiple candidate backbone networks are compared in this study. This thesis chooses three 

popular backbone networks: 1) VGG19 [48], 2) Alexnet [7], and 3) Resnet50 [9].The detailed 

parameters of each network are shown in Table 5.1, Table 5.2, and Table 5.3. The method 

seeks for the best structures through experiments. 

5.3 Numerical Results and Discussions 

5.3.1 Dataset and training details 

Data collection This thesis conducts experiments on clinical US dataset to verify the validity 

of the proposed method of weakly-supervised region mining of the fetal head. The research 

acquires four clips of US pregnant examinations from a hospital as the metadata. For each US 
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video clip, an anonymous patient with different fetal weeks that arranged from 19 to 23 weeks 

is used for the experiments. The 2-folder cross-validation is adopted by alternatively training 

and testing on randomly selected groups of US clips (each group has two clips) with different 

subjects. This thesis selects the clips that have fetal body perpendicular to the US scan plane. 

After pruning and interval sampling operations, the US video clips are stored in a sequential 

image format. Cross-validation is used to alternatively train and test on each US clips. 

Professions are asked to manually identify the frames in which the fetal head can be observed.  

Then, they are asked to assign pixel-wise labels to each of the images containing fetal heads. 

Note that the pixel-wise annotations are only used for evaluation purpose. The bounding 

boxes of the fetal head are calculated from thus obtained segmentation masks.  

Data augmentation The dataset has severe data imbalance and lacks diversity. Therefore, the 

method uses related large scaled data augmentation operations on the training set. The random 

crop, rotation, scale transform, and horizontal flip are added to the raw US image to give 

disturbances to each of the training samples. The augmented samples are resized to the fixed 

size in order to fit the input of the backbone network. 

Domain transferred learning Compared with learning from random initialed weights, better 

initializations can be obtained from pre-trained low-level representations that learned from 

large-scale cross-domain images. Most of the weights of the convolution layers are updated 

from ImageNet [47] pre-trained models, while the additional layers with learn-able weights 

are learned from scratch. 

5.3.2 Evaluation metric 

First, to evaluate the model for fetal head plane classification, the experiments adopt precision, 

recall and    score. They can be defined as 
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where                     ,                         , the    ,     and 

    are the numbers of true positive, false negative and false positive predictions, 

Table 5.1 Backbone network architecture: VGG19 

Conv. Layers of VGG16 

Conv1_1: 64x3x3, Stride: 1, Pad: 1 

Conv1_2: 64x3x3, Stride: 1, Pad: 1 

Pool1: 3x3, Stride: 2 

Conv2_1: 128x3x3, Stride: 1, Pad: 1 

Conv2_2: 128x3x3, Stride: 1, Pad: 1 

Pool2: 3x3, Stride: 2 

Conv3_1: 256x3x3, Stride: 1, Pad: 1 

Conv3_2: 256x3x3, Stride: 1, Pad: 1 

Conv3_3: 256x3x3, Stride: 1, Pad: 1 

Conv3_4: 256x3x3, Stride: 1, Pad: 1 

Pool3: 3x3, Stride: 2 

Conv4_1: 512x3x3, Stride: 1, Pad: 1 

Conv4_2: 512x3x3, Stride: 1, Pad: 1 

Conv4_3: 512x3x3, Stride: 1, Pad: 1 

Conv4_4: 512x3x3, Stride: 1, Pad: 1 

Pool4: 3x3, Stride: 2 

Conv5_1: 512x3x3, Stride: 1, Pad: 1 

Conv5_2: 512x3x3, Stride: 1, Pad: 1 

Conv5_3: 512x3x3, Stride: 1, Pad: 1 

Conv5_4: 512x3x3, Stride: 1, Pad: 1 

Pool5: 3x3, Stride: 2 

 

Table 5.2 Backbone network architecture: Alexnet  

Conv. Layers of AlexNet 

Conv1_1: 96x11x11, Stride: 4, Pad: 1 

Pool1: 3x3, Stride: 2 

Conv2_1: 256x5x5, Stride: 1, Pad: 1 

Pool2: 3x3, Stride: 2 

Conv3_1: 384x3x3, Stride: 1, Pad: 1 

Conv3_2: 384x3x3, Stride: 1, Pad: 1 

Conv3_3: 256x3x3, Stride: 1, Pad: 1 

Pool3: 3x3, Stride: 2 
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respectively. This study also provides the area under curve (AUC) of ROC. The definition of 

AUC can be seen in Figure 5.4. Regarding the localization accuracy, the method obtains the 

bounding box from manually annotated segmentation masks of the fetal head. The metric 

adopts the intersection of union (IoU) to evaluate the results. The IOU is defined as 

                                                             

where   and     are obtained area of the predictions and the ground truth. Besides IOU, of 

the bounding box (Bbox_IOU), the pixel-wise IoU (Pwise_IOU) is also provided. The 

calculation of pixel-wise IOU is similar to the bounding box IOU, except the research judges 

the classification accuracy at each of the pixels of the input image. 

5.3.3 Results and discussions 

Regarding the classification model, the experiments compare several popular backbone 

networks, which are Alexnet, Resnet50 and VGG19. The detailed parameters of each 

structure are explained in Section 5.2.3. For both Alexnet and VGG19 structures, the models 

are added with batch normalization [101] operations after each convolution layer. As 

Table 5.3 Backbone network architecture: ResNet50 

Conv. Layers of ResNet50 

Conv: 64x7x7, Stride: 2, Pad: 3 

Pool1: 3x3, Stride: 2 

Conv: 64x1x1, Stride: 1, Pad: 0 

Conv: 64x3x3, Stride: 1, Pad: 1 

Conv: 256x1x1, Stride: 1, Pad: 0  X3 

Conv: 128x1x1, Stride: 1, Pad: 0 

Conv: 128x3x3, Stride: 1, Pad: 1 

Conv: 512x1x1, Stride: 1, Pad: 0  X4 

Conv: 256x1x1, Stride: 1, Pad: 0 

Conv: 256x3x3, Stride: 1, Pad: 1 

Conv: 1024x1x1, Stride: 1, Pad: 0  X6 

Conv: 512x1x1, Stride: 1, Pad: 0 

Conv: 512x3x3, Stride: 1, Pad: 1 

Conv: 2048x1x1, Stride: 1, Pad: 0  X3 
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mentioned in Section 5.2.1, the method replaces all of the fully connecting layers with the 

convolution layer and global average pooling operations.  

The comparison results of the three models for the fetal head plane classification task can be 

found in Table.5.4. As the results show, among the selected three models, the VGG19 with 

batch normalized structure achieves the best performance. Although the AlexnetGAP has a 

simple structure and the smallest network scale, it still can get acceptable classification rate 

because of the batch normalization and the pre-trained weights. The following experiments 

build optimizations based on VGG19 structure. 

The comparison of the IOU of the bounding box of the three backbone structures can be seen 

in Table.5.5. In Table.5.5, to decouple the localization and classification performance, the 

scores (not in brackets) do not count false negative classification samples, while the scores in 

brackets are the IoU results with false negative classifications. The results of Resnet50GAP 

are worse than AlexnetGAP probably because it has too small feature map size. Same as the 

classification results, the VGG19 achieves the best localization results. By adding the 

proposed optimization method (VGG19GAP_OutputMerge), the localization performance is 

further improved. This thesis compares the result of only using the last feature map output and 

the two optimization methods in Table.5.6. The name of each result indicates the output of 

different layers in VGG19GAP. Regarding the proposed multiple discriminative outputs, the 

method adopts the conv4_3, conv5_3, and conv6_3 from VGG19 structure (the detail is 

 

Figure 5.4 Definition of area under curve (AUC). 



108  Chapter 5. Weakly Supervised Region Mining of Fetal Head 

 
 

shown in Figure 5.3). The result obtained by merging the above-mentioned three outputs is 

indicated by “OutputMerge”. From the quantitative results they proved that the merged 

feature maps bring significant improvements by enriching the integrity of the fetal head area. 

Some of the results and their ground truth annotations are shown in Figure 5.5. More 

visualized results are demonstrated in Figure 5.6. The examples in the first three rows are the 

true positive predictions, while the examples on the last row are wrong predictions. 

Table 5.4 Classification results of different backbone networks (%) 

 AlexnetGAP Resnet50GAP VGG19SP VGG19GAP 

Recall 87.79 86.92 86.38  90.92 

Precision 88.65 90.73 94.94  90.26 

F1 score 87.62 88.39 90.32  90.35 

AUC 95.87 96.34 96.76  96.80 

 

Table 5.5 Localization results* with different backbone networks (%) 

 
AlexnetGAP Resnet50GAP VGG19SP VGG19GAP 

VGG19GAP 

_OutputMerge 

Bbox_IoU 41.4 (37.0) 40.3 (36.1) 60.5 (54.9) 61.2 (54.8) 65.3 (58.0) 

Pwise_IoU 60.7 (58.8) 57.7 (55.0) 70.3 (69.2) 72.0 (70.8) 76.5 (73.1) 

*Values not in bracket: w/o false negative classifications. Values in bracket: w/ false negative 

classifications. 

 

Table 5.6 Localization results with different output strategies (%) 

 Conv4_4 Conv5_4 Conv6_3 OutputMerge 

Pwise_IoU_FetalHead 19.83 51.51 54.95 57.94 

Pwise_IoU_Bkg. 92.80 95.40 94.83 95.13 

Bbox_IoU 53.20 62.24 55.71 65.25 

Pwise_IoU 56.32 73.46 74.89 76.53 

 

Table 5.7 Localization results of weakly and fully supervised methods (%) 

Method 
Weakly 

supervised 

Fully 

supervised 
Bbox_IoU 

VGG19GAP   × 61.2 

VGG19GAP_OutputMerge   × 65.3 

FRCNN12) ×   72.2 
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Concerning the comparisons with related work applied in US images, this thesis provides the 

results of comparing with [61] and shows them in Table 5.4 and Table 5.5. Note that for fair 

comparison purpose, this thesis extends the backbone structure used in [61] from VGG13 to 

VGG19, which achieves the best performance in this research. The method is based on the 

network with soft proposal [56] modules; thus here the results are indicated by “VGG19SP”. 

In the classification results (Table 5.4), the VGG19SP achieves the similar accuracy to 

standard VGG19GAP with higher precision and lower recall. It seems that the effect of the 

backbone network plays a dominant role as classification task. On the other hand, the 

localization results (in Table 5.5) shows that the model with the proposed optimizations 

achieve better performance than VGG19SP. Some of the visualized results are demonstrated 

in Figure 5.5. 

In addition, to evaluate the accuracy difference with the fully supervised approach, this thesis 

further demonstrates the results which are obtained from Faster-RCNN [10] (FRCNN). Note 

 
Figure 5.5 Some of the visualized results obtained by different approaches.  

a) VGG19GAP (CAM), b) VGG19SP, c) VGG19GAP_OutputMerge (proposed), d) merged 

heatmap of VGG19GAP_OutputMerge, e) obtained bounding box of VGG19GAP_OutputMerge 

(yellow) and ground truth (red) of fetal head region, f) classification probability of positive 

category. 
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that the model of FRCNN is learned from bounding box annotations. Compared with weakly 

supervised methods, it is impossible to learn from image level annotations. To train this 

model, the experiment adopts the manually labeled bounding box annotations, which are 

originally used for evaluation. In particular, to the structure of FRCNN model this thesis 

embeds the original VGG16 as the backbone structure and use 600x600 pixels as the input 

resolution for both training and testing. The comparison results are shown in Table.5.7. The 

results show that compared with the baseline weakly supervised method (first row), the 

method with the proposed optimizations (second row) shorten the accuracy gaps between the 

models which learn from image level annotations and from object position annotations. On 

the other hand, the weakly supervised method has strong advantages over learning only from 

image level annotations, in that the weakly supervised method can avoid complex and 

time-consuming medical image annotation tasks 

 

Figure 5.6 More visualized results obtained by VGG19GAP_OutputMerge. 

The first and the fourth columns show the US image samples. The second and the fifth columns 

show the merged feature maps obtained by the proposed methods. The third and the sixth columns 

show the mined regions of fetal head. 
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5.4 Conclusion 

This chapter proposes a weakly supervised method to obtain the fetal head area in US images. 

The method first adopts modified CNN architecture as a binary classifier to learn if the input 

US plain contains a fetal head or not. Then the feature maps of the model can be used to 

visualize the fetal head area as the most discriminative region which can distinguish the 

positive and negative samples. The learned weights of the last output layer are used to sum up 

the feature maps. 

Through experiments, the study has findings and discussions about the insufficiency of the 

current method. The currently used class activation mapping method lacks completeness in 

the entire object region. In response, the research finds that the feature maps of multiple 

feature levels represent a different discriminative region. Therefore, this thesis proposes to 

make use of more redundant information of multiple feature levels from different layers of the 

network. Multiple feature maps are extracted and merged to improve the results of 

weakly-supervised region mining for fetal head area. 

As the main contribution of this module, this thesis inspires the future research to merge 

multi-scaled discriminative maps with different feature levels to get more complete salient 

areas. The effectiveness of the proposed method is verified through preliminary experiments. 

As the results, the method achieves higher than 95% AUC for fetal head classification and 

76% for overlapping accuracy in IOU with manually labeled ground truth, which outperforms 

the baseline deep learning approach and other related works.  
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Chapter 6. Conclusion 

 

6.1 Summary of Thesis 

To extract accurate high level semantic information of important tissues for raw US images. 

In this research, the author explores the feasibility of deep learning techniques in the US 

image processing area. In particular, this thesis has proposed three related modules that 

localize and extract the areas of multiple anatomical structures in US images by end-to-end 

learned CNN based architectures and weakly supervised learning. The proposed solutions 

discuss the limitation of existing tradition or deep learning methods. To verify the 

effectiveness proposed optimizations and compare with previous works, the proposed 

algorithms are evaluated through quantitative experiments and intuitive visualized results on 

pregnant US image slices obtained by clinical examinations. 

In summary, the three modules that are proposed in this thesis are 1) uterus localization using 

a bounding box regression CNN, 2) semantic segmentation of multiple anatomical structures 

using CNN and its optimizations, and 3) weakly-supervised method for region mining of the 

fetal head. From coarse to fine, the methods 1), 2) and 3) are explained in Chapter 3, Chapter 

4 and Chapter 5, respectively. The conclusions of each module that is proposed in this thesis 

are summarized as follows. 

 Localization of uterus  

A specifically designed CNN regression network is used to localize candidate positions of the 

bounding box of the uterus in raw US images. The input image is mapped to a vector with a 

specific length that corresponds to a set of the offset and probability values through stacked 

dimension transformation operations. The dimension transformation contains convolution, 
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pooling, non-linear activation, and inner production operations. The (output) offset values are 

used to transfer multiple densely designed reference boxes to target positions with high 

probabilities of containing the uterus, and the (output) probability values are used to judge if 

the corresponded reference box belongs to a positive object (uterus). The final position of the 

uterus is obtained by eliminating redundant candidates by non-maximum suppression 

algorithm. The design of the backbone network follows the existing work in the nature image 

processing area. The CNN regression model is trained in an end-to-end manner through the 

manually annotated position of the uterus. 

Experiments are conducted through an evolution of the clinical dataset. In the best setting of 

the trained model, the intersection of union between the predicted bounding box and ground 

truth achieves 62%, which is higher than other related deep learning based approaches, which 

are originally applied for nature image domains. What is more important, the localized uterus 

area helps to improve the subsequent semantic segmentation by suppressing the data 

imbalance issue. 

 Semantic segmentation of the anatomical structure 

The method follows an encoder-decoder CNN architecture as a baseline to provide pixel-wise 

classifications in US images to segment the areas of desired anatomical structures, which are 

a uterus, amniotic fluid, and fetal body. The model first maps the input image into 

down-scaled feature maps through sets of convolution, pooling, and non-linear activation 

operations. Then, in order to achieve pixel-wise segmentation, the model transfers the feature 

maps back to the same sized input image and outputs a feature matrix in the specific format 

through recorded maximum indexes used in pooling operations. The methods proposed in this 

thesis further improve the performance in terms of several aspects. To enhance the global 

shape information to increase the segmentation accuracy, multiple inner layers with 1x1 sized 

convolution kernels are inserted between encoding and decoding parts. To improve the 

smoothness of the segmented blobs, the network structures with intermediated supervision 

operations are proposed. In addition, as mentioned earlier, the method makes use of localized 
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uterus area to relieve the imbalance issue.  

The methods are evaluated on cleaned US images through cross-validations. The averaged 

pixel-wise classification accuracy is about 93% and averaged intersection of union is about 

73%. The visualized results demonstrate smoother segmentations than other deep learning 

based methods compared. The acceptable results prove that the proposed methods can be used 

for subsequent automatic systems. 

 Weakly-supervised region mining of fetal head 

A specifically designed CNN classification model and optimized region mining method are 

proposed to extract the complete discriminative area of fetal head from US images. The 

model learns to classify the plane with the fetal head by image level annotations. During 

testing, the image is resized and input to the classification model. Then, the probability of the 

fatal head slice is predicted through backbone network structures. Regarding the region of the 

fetal head, the cumulative activation mapping is used to extract the discriminative area of the 

input image. The discriminative area can be seen as the region of the fetal head. The final 

position of the fetal head is obtained through thresholding the merged feature maps. The 

original method lacks completeness on the fetal head in US images; therefore, the proposed 

method proposes to optimize the completeness through extracting multiple feature maps from 

feature levels in different size of receptive fields. 

Experiments demonstrate higher than 96% classification results in AUC, and 76% 

overlapping accuracy in the intersection of the union. The results prove that in the pregnant 

US image the optimized methods can achieve good performance that outperforms original 

proposals and other deep learning based method. 

In summary, this research has introduced deep learning based frameworks and optimizations 

for accurate high level semantic information extraction from various aspects. To verify the 

gaps between the proposed methods and real-world usages, the performance of each module 

is compared with human doctors with years of experience. The results are promising that this 

research makes the development of automatic antennal examinations one step closer to the 
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real world solutions. The proposed methods have potential to be used to assist the human 

doctors in clinical examinations or to be used as the inputs of other upper level medical 

application systems such as automatic amniotic fluid detection to relieve the issues of 

shortage of manpower in hospitals. 

6.2 Future works 

Remaining issues and possible solutions for future works are summarized in following. 

 Multi-task learning 

This thesis proposes various approaches by using multiple independent CNN models. Each 

model is used to solve one specific task in the US image processing. Recently, some works 

[102] have proved that the weights of the CNN model can be used to learn share-able feature 

representations from multiple tasks (or even cross-domain tasks) by using a single model. 

This feature allows the model to handle multiple tasks with less memory storage and faster 

inference speed. What is more, for some of the tasks, multi-task learning can achieve higher 

performances by correlations features. It is possible to design an “all-in-one” model which 

can simultaneously output multiple objectives such as localization of uterus and semantic 

segmentation of amniotic fluid and fetal body with shared network structures and weights. 

 Segmentation of fine-grained structures 

This thesis targets some representative organs in the antenatal examination. More structures 

with fine-grained categories still need to be handled to achieve completeness information for 

automatic systems: for example, the body parts of the fetus. The body parts of the fetus can 

provide more information about the pregnancy to the tasks such as gesture recognition and 

localization of interior robot. To distinguish the difference between multiple fetal body parts, 

the learning of intra class distance between different object needs to be enhanced. 

 Data generation 

For deep learning based techniques, data collection and annotation are always treated as the 

most important and difficult mission all the time, especially for medical image processing 



Chapter 6. Conclusion 117 

 

area. Under the conditions of policy restrictions, the best way is to make more contact with 

hospitals and patients to ask for the permissions of data usage and profession annotations. It is 

no doubt that the gathering of real-world dataset will cost lots of times and risks for the 

researchers. Another option is the use of simulated data generated by simulation models. The 

demerit of simulated data is obvious: the model learned from fake data cannot be suitable to 

the real-world solutions very well. According to the recent development, a possible way of 

learning from low shot dataset is data augmentation through generative adversarial networks 

(GAN) [103] and its verities such as [104] [105], etc. The specifically designed CNN 

structure uses the adversarial scheme to supervise the generation model to generate images 

which have a close appearance feature with real images. The method could generate realistic 

images with good visual appearance and coherent feature distribution. Through joint learning 

with the target task, it can improve the accuracy of models by generating more images to 

relieve the poor performance caused by too few training dataset or bad distributions. 

In summary, deep learning techniques provide large chances to bring machine learning 

algorithms into real-world solutions. Preliminary experiments have verified the possibility 

and correctness on related medical image processing tasks. In order to further improve the 

efficiency of doctors, future study should seize the opportunity to extend the experiments on 

larger scaled datasets and integrate deep learning algorithms to medical imaging devices. 
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