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Preface 

The human triceps surae muscle-tendon unit is a complex muscle group comprised 

of two biarticular gastrocnemii and one monoarticular soleus. All three muscles join to 

the common Achilles tendon distally, while intricated aponeuroses are located in both 

posterior and anterior surface regions of each muscle belly. The main function of triceps 

surae muscle-tendon unit is plantar flexion, and it plays an important role in human 

motor performance, such as walking. During human motor performance, the muscles 

work as actuators while the tendinous tissues (tendon and aponeurosis) work as spring, 

and both muscles and tendinous tissues interact with each other anatomically and 

functionally. The muscle-tendon interaction during motor performance works in such a 

way that the spring-like function of tendinous tissues contribute to energy saving and 

power enhancement. However, being as a substantially large and sheet-like tendinous 

tissues, the aponeurosis in the triceps surae can function both as a spring and muscle 

fibers’ attachment base. A large number of studies have focused on the mechanical 

property of the Achilles tendon, but morphological and mechanical properties of the 

complicated aponeuroses still remain unclear. This thesis compiles a series of studies 

which were carried out on the morphological and mechanical properties of the human 

triceps surae aponeuroses in vivo and ex-situ, in an attempt to understand how this 

elastic sheet tissue contributes to human motor performance. 
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CHAPTER 1 Aponeuroses within the triceps surae 

1-1 Introduction 

The human triceps surae (TS), is a muscle group comprised of two biarticular 

gastrocnemii [medial and lateral gastrocnemius (MG and LG)] and one monoarticular 

soleus (SOL), contributing to human posture control and locomotion (Branthwaite et 

al., 2012; Honeine et al., 2013; Tokuno et al., 2007). It has aponeuroses in the proximal 

and distal sites, and the distal sites insert into the calcaneus by sharing the common 

Achilles tendon (Blitz and Eliot, 2007, 2008). The tendinous tissues (tendon and 

aponeuroses) play a significant role in human movements functioning as a spring and 

contributing to energy saving and power enhancement of the muscle-tendon unit 

(Fukunaga et al., 2002; Kawakami, 2012; Maganaris, 2002). Unlike the cord-like 

structure of tendon, the sheet-like structure of aponeurosis serves as an attachment site 

of muscle fascicles on the surface of a muscle belly, and can bear the pressure and 

tension during muscle contraction (Raiteri et al., 2016; Scott and Loeb, 1995).  

To date, anisotropic and inhomogeneous properties of the TS aponeuroses have 

been reported (Muramatsu et al., 2001; Slane et al., 2017), and site-dependent 

differences of aponeuroses strains have been found during human movements through 

in vivo studies (Bojsen-Moller et al., 2004a; Finni et al., 2003; Magnusson et al., 2003). 

Few studies, however, focused on the site-dependent morphology and mechanical 

properties of TS aponeuroses. During muscle contraction, the aponeurosis is stretched 

both in the longitudinal (along the muscle’s line of action) and transverse directions, 

and larger transverse deformability has been documented (Iwanuma et al., 2011). 
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Likewise, intrinsic bidirectional differences of aponeurosis have been confirmed in an 

animal cadaveric study (Azizi and Roberts, 2009), however, it remains unclear if 

intrinsic mechanical properties of human aponeurosis are direction-specific. 

Recent advance of the ultrasound shear wave elastography (SWE) allows 

investigators to measure muscle and tendinous tissue stiffness during muscle 

contraction (Jeon et al., 2018; Mendes et al., 2018; Ryu and Jeong, 2017; Yoshitake et 

al., 2014), which has provided a method for investigating the muscle-tendon behavior 

during muscle contraction in vivo. Some studies (Ateş et al., 2015; Bouillard et al., 

2012; Bouillard et al., 2011) reported a linear relationship of muscle stiffness and torque 

during muscle contractions, while others found a non-linear relationship for the 

mechanical properties of aponeurosis and exercise intensities (Arampatzis et al., 2007). 

Moreover, biaxial (longitudinal and transverse) strain of aponeurosis during muscle 

contraction was previously reported (Arellano et al., 2016). However, it remains 

unresolved whether the changes in stiffness are also direction-dependent. 

Since the interaction between the foot and ground is extremely important for 

human beings’ unique bipedal characteristics, the TS has achieved distinctive 

development (Hanna and Schmitt, 2011; Kumakura and Inokuchi, 1991). In addition, 

the essentiality of TS to walking which is human’s most basic motor performance has 

been particularly recognized (Honeine et al., 2013), and the distinctive architectures of 

TS muscle and tendinous tissues (tendons and aponeuroses) are considered to be the 

results of adaptation to their required functions. Moreover, walking is one of the major 

daily physical activities of humans, and its performance is particularly important in the 
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elderly. However, walking performance has been shown to decline as people get older, 

and this can cause serious impact on life quality of the elderly (Yonei et al., 2008). 

Muscle strength of the TS and spring-like function of their tendinous tissues are known 

to play considerable roles in walking performance. In order to know how the tendinous 

tissues of the TS with various length and shapes function as springs, it is necessary to 

characterize their mechanical properties. 

 

1-2 Terminology 

1-2-1 Morphological property 

Triceps surae 

In this thesis, the triceps surae (TS) is a skeletal muscle (hereinafter muscle) group 

located in the posterior aspect of lower leg, comprised of three pennate muscles, which 

are medial gastrocnemius (MG), lateral gastrocnemius (LG) and soleus (SOL).  

 

Triceps surae aponeuroses 

Triceps surae aponeuroses are mainly distributed in eight regions: posterior and 

anterior regions of medial gastrocnemius (MG), lateral gastrocnemius (LG), medial part 

of soleus (SOL-med), lateral part of soleus (SOL-lat). In addition, aponeuroses in the 

anterior region of gastrocnemii and posterior region of soleus were named adjoining 

aponeuroses between gastrocnemii and soleus in chapter 3 and chapter 4 of this thesis. 

 

Triceps surae muscle-aponeurosis-tendon unit 
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In this thesis, triceps surae muscle-aponeurosis-tendon unit (MTU, Fig. 1-1) is 

defined as a junctional complex connected by muscle fibers and connective tissue (e.g., 

aponeurosis and tendon) structures from proximal to distal. The muscle fibers and 

connective tissue structures within the MTU are not only simply combined with each 

other, but also interact anatomically and functionally (Kawakami, 2012). 

 

Inter-muscular difference 

In this thesis, inter-muscular difference is defined as difference of aponeurosis 

thickness between muscles (MG, LG and SOL), e.g., differences between gastrocnemii 

and soleus, or differences between medial gastrocnemius and lateral gastrocnemius. 

 

Intra-muscular difference 

Intra-muscular difference is defined as difference of aponeurosis thickness within 

a muscle (e.g., proximal and distal site of MG, posterior and anterior region of MG 

aponeuroses). 

 

Inhomogeneity (site-dependence) 

In this thesis, inhomogeneity feature is defined as site-dependent differences of 

aponeurosis thickness in chapter 2. The aponeurosis specimens were dissected from 

proximal, middle and distal site of each region of aponeurosis.  

 

Muscle architecture 
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In this thesis, muscle architecture means the muscle fibers’ geometrical 

arrangement within a muscle, such as pennation angle. Pennation angle of TS is defined 

as the angle of the muscle fascicle and the aponeurosis between gastrocnemii and soleus 

(Kawakami et al., 1998). 

 

1-2-2 Mechanical property 

Stiffness 

In chapter 2, stiffness means the extent to which the aponeurosis specimen resists 

deformation in response to the applied tensile force. It was calculated from the slope of 

linear region of force-displacement curve. In chapter 3 and 4, the stiffness means the 

muscle or aponeurosis tissue property, which can show how stiffer the tissue is. 

 

Young’s modulus 

In chapter 2, Young’s modulus of aponeurosis specimen was calculated from the 

slope of linear region of stress-strain curve during the tensile test. In chapter 4, Young’s 

modulus was calculated from the propagation speed of shear wave in tissue and the 

tissue density. Higher Young’s modulus of tissue in this thesis means stiffer tissue. 

 

Hysteresis 

In chapter 2, the hysteresis was calculated from the areas under the loading and 

unloading force-displacement curve during tensile test. It can indicate the energy 

dissipation of aponeurosis specimen during loading and unloading process. 
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Shear wave velocity 

Shear wave velocity (SWV) is determined by the propagation velocity of 

ultrasonic pulse in tissue and detected from the ultrasound shear wave elastography 

(SWE). In this thesis, SWS was used to determine aponeurosis and muscle stiffness in 

vivo. 

 

Inhomogeneity (site-dependence) 

In this thesis, inhomogeneity of mechanical property means differences from 

proximal to distal site. In chapter 2, the aponeurosis specimens were dissected from 

proximal, middle and distal site of each region of aponeurosis. In chapter 3 and 4, the 

proximal site was determined at the level of 30% lower leg length from the proximal 

end, and the distal site was determined at the level of distal end of gastrocnemii muscle-

tendon junction point. 

 

Anisotropy (direction-dependence) 

In this thesis, anisotropy is defined as direction-dependent differences of 

mechanical properties of TS aponeuroses between longitudinal and transverse direction, 

thereinto, longitudinal direction corresponding to direction along the muscle’s line of 

action, and transverse direction corresponding to direction orthogonal to the muscle’s 

line of action. 
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Viscoelasticity 

In this thesis, viscoelasticity of aponeurosis is determined as viscous and elastic 

characteristics undergoing deformation, and the hysteresis was used to identify the 

viscoelasticity of aponeurosis under tensile test in chapter 2. 

 

1-2-3 Function 

Muscle-aponeurosis interaction 

Since aponeurosis serves as an attachment site of muscle fascicles on the surface 

of a muscle belly, muscle-aponeurosis interaction means the mutual influence between 

muscle fibers and aponeurosis during movement. Muscle plays like an actuator while 

the aponeurosis plays like a spring during motor performance. 

 

Myofascial force transmission 

Within the muscle-tendon unit, the forces produced from muscles fibers can not 

only serially transmit to the tendon, but also can transmit forces to the adjacent muscles 

through connective tissue (i.e., aponeurosis and facia) (Huijing and Baan, 2001; Huijing 

and Baan, 2003), later of which was defined as myofascial force transmission in this 

thesis. 

 

Ex situ 

The specimens of TS aponeuroses were dissected from human cadavers and they 

were applied to tensile test to determine the mechanical properties, which was termed 
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“ex situ” condition to test intrinsic aponeurosis mechanical properties in this thesis. 

 

In vivo 

The term “in vivo” in this thesis refers to the ultrasound experiment done in the 

living human TS muscles and aponeurosis. 

 

1-3 Literature Review 

The purpose of this thesis is to examine the site- and direction- dependent 

differences of morphological and mechanical properties of TS aponeuroses ex situ and 

in vivo, and how the muscle-aponeurosis behavior changes during muscle contraction, 

and to examine correlations between aponeuroses’ stiffness and walking performance. 

The following topics will be overviewed in this literature review: 1) Ex situ and in vivo 

approaches in tissue morphological and mechanical properties, 2) architecture and 

function of the TS muscles and aponeuroses, 3) muscle-aponeurosis interaction during 

muscle contraction, and 4) mechanics of human TS muscles and aponeuroses in motor 

performance. 

 

1-3-1 Ex situ and in vivo approaches in tissue morphological and mechanical 

properties 

1-3-1-1 Ex situ (cadaveric study) 

In order to enhance the understanding of the function of the soft tissues, a tensile 

test is an common and reliable measure to evaluate the mechanical properties of the soft 
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tissues, and has been applied to obtain the stiffness and/or Young’s modulus of muscle, 

aponeurosis and tendon (Azizi et al., 2009; Louis-Ugbo et al., 2004; Morrow et al., 

2010; Takaza et al., 2013). The basic idea of a tensile test is to fix a tissue sample by 

grips of the test instrument, dimensions (e.g., width, thickness, length) and cross-

sectional area of the tissue sample are measured before tensile test, load and 

displacement are recorded during tensile test, the stiffness (N/mm) and tensile modulus 

(Young’s modulus, MPa) were calculated from the slope of the linear region of the 

load-displacement relationship curve and stress-strain relationship curve respectively. 

However, previous studies on the tensile test of viscoelastic tissues (e.g., ligament and 

tendon) mentioned that the results could be affected by the experimental conditions and 

implemented procedure, the humidity, temperature and stretching speed of the machine 

should be carefully considered (Innocenti et al., 2017; Sta et al., 1999; Woo et al., 1991). 

In addition, Gras et al., (2012) reported that the parameters of tensile test were sensitive 

to experimental conditions rather than the changes in velocity. To our knowledge, 

although tensile test of muscles has been performed on both animals and humans (Gras 

et al., 2012; Morrow et al., 2010; Takaza et al., 2013), few studies focused on the tensile 

test of human aponeurosis. Even though the soft tissues such as ligaments and tendon 

have been tested, but only small dimension of tissue specimens were dissected which 

omitted the entire region of soft tissues. 

 

1-3-1-2 In vivo 

Magnetic resonance imaging (MRI) has been considered “gold standard” imaging 
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technique used to noninvasively measure the human muscle size. Previous studies have 

using MRI to assess the muscle adaptations in response to training in sport science 

(Fiatarone et al., 1990; Maeo et al., 2018a; Maeo et al., 2018b). In addition, except for 

the muscle size changes after training, studies on the tendinous tissues using MRI were 

also carried out recently (Backer et al., 2019; Haims et al., 2000; Prasetyono and Sisca, 

2019). However, MRI are still limited to measurements at rest, even though Iwanuma 

et al. (2011) reported in vivo deformation of the Achilles tendon in the longitudinal and 

transverse directions during isometric contractions (Fig.1-2). For the muscle 

architecture changes during movement, real time ultrasonography (B-mode) provides a 

method to delineate the individual muscle architecture with higher validity and 

reliability. Previous studies used B-mode ultrasonography to investigate the muscle 

architectures at rest and during contractions (Ito et al., 1998; Kawakami et al., 1993; 

Kawakami et al., 1998). Additionally, B-mode ultrasonography was used to tract the 

muscle fascicle length changes during human walking (Arnold et al., 2013; Fukunaga 

et al., 2001), as well as the in vivo deformations of tendinous tissues during walking 

(Franz et al., 2015; Fukunaga et al., 2001). 

Since the common ultrasonography has limitations to measure the biomechanical 

properties of tissue, a new ultrasonography technology named shear wave elastography 

(SWE) has been developed to quantify the mechanical properties of tissue by 

determining the propagation speed of shear wave through tissue (Fig. 1-3) (Bercoff et 

al., 2004). During the past few years, SWE was applied to assess the tissue stiffness 

(Brandenburg et al., 2014; Cortes et al., 2015; Martin et al., 2015; Taljanovic et al., 
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2017; Zhang et al., 2016b), and spatial variations in shear wave velocity of muscles and 

tendons have been reported (DeWall et al., 2014; Slane et al., 2015; Slane et al., 2017; 

Yoshida et al., 2017). In addition, recent advance of the ultrasound SWE allows 

investigators to measure muscle and tendinous tissue stiffness during muscle 

contraction (Jeon et al., 2018; Mendes et al., 2018; Ryu and Jeong, 2017; Shinohara et 

al., 2010; Yoshitake et al., 2014), which has supplied a method for the investigation of 

the muscle-tendon behavior during muscle contraction in vivo. 

SWE could be a promising tool to measure mechanical properties of muscle and 

tendon, and some studies reported the repeatability and validity of SWE in muscle-

tendon measurement (Ateş et al., 2015; Baumer et al., 2017; Eby et al., 2013; Ting et 

al., 2015). Baumer et al. (2015) reported that the intraclass correlation coefficient (ICC) 

values of day-to-day reliability was greater than 0.33 for passive muscle, 0.65 for active 

muscle, 0.48 for passive tendon and 0.94 for active tendon. In addition, Ates et al. (2015) 

showed that the ICC values of measured muscle during isometric contractions were 

from 0.73 to 0.98. Otsuka et al. (2019) and Shiotani et al. (2019) reported that the SWE 

measurements were highly repeatable for human fascia lata (0.68-0.99) and plantar 

fascia (ICC > 0.93) tissues. Moreover, Eby et al. (2013) and Ting et al. (2015) 

demonstrated valid SWE results for muscles, however, the orientation of transducer and 

depth of detection should be taken into consideration for valid measurement.  

 

1-3-2 Architecture and function of the triceps surae muscles and aponeuroses 

1-3-2-1 The triceps surae architecture 
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The TS structure refers to the muscle size, shape and arrangement of fibers. The 

human TS is composed of two biarticular gastrocnemii (MG and LG) and one 

monoarticular soleus (Gray anatomy, 1995), and within soleus, the muscle belly has 

been shown to be divided into two portions, which are the posterior portion and anterior 

portion (Martin et al., 2001) (Fig. 1-4). Both gastrocnemii and soleus belong to pennate 

muscle depend on their muscle fibers architecture. As pennate muscle, muscle fascicles 

insert into the aponeurosis obliquely relative to the line of muscle action, and the 

pennation angle (PA) has been reported as an important factor of muscle function 

(Fukunaga et al., 1997b).  

To date, data of muscle architecture such as PA derived from cadaver specimens 

(Friederich and Brand, 1990; Martin et al., 2001) has been used to understand the gross 

muscle fiber architectures. Friederich and Brand (1990) found the difference of PA 

between gastrocnemii (6.5-17.5 deg) and soleus (32deg) through measuring on a 

cadaver, while Martin et al., (2001) reported the different value of PA of gastrocnemii 

(21-32.5 deg) and soleus (30.3 ± 7.3 deg). However, cadaver studies do not allow us to 

understand its dynamic behavior (i.e., during muscle contraction).  

In the last few decades, the technique of ultrasonography has been developed to 

directly measure the structural parameters of muscles in vivo (Chow et al., 2000; 

Fukunaga et al., 1997a; Kawakami et al., 1998; Kwah et al., 2013; Maganaris et al., 

1998; Stenroth et al., 2012). Chow et al., (2000) found significant differences of muscle 

thickness and PA of the TS in males and females. Stenroth et al., (2012) reported that 

the TS muscle size was smaller (p < 0.05) and muscle fascicle length was shorter (p < 
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0.05) in old subjects than young counterparts. As Kwah et al., (2013) documented, the 

ultrasound measurements of muscle architecture are reliable (ICC were always > 0.5) 

in many experimental conditions, while for the validity, validity coefficient value can 

be over 0.7 only in certain conditions (e.g., rest state). Studies on muscle architecture 

during muscle contraction should consider the test validity. During muscle contraction, 

the changes of muscle fascicle length and PA were deduced to be related to muscle 

force-producing capabilities and elastic features of tendinous tissues (tendon and 

aponeurosis) (Kawakami et al., 1998). 

 

1-3-2-2 Triceps surae aponeuroses and tendon structure 

Within the muscle-aponeurosis-tendon unit, the tendinous tissue was divided into 

the free tendon and aponeurosis, later of which covered on the surface of muscle belly 

portion in a white, flat and sheet-like structure (Benjamin et al., 2008). The aponeurosis 

is composed of fibroblasts and ordered arrangement of collagenous fiber bundles. It 

provides attachment points for muscle fibers to attach to the tendon, and microscopy 

study has showed the connection between muscle fibers and connective tissues (Trotter 

et al., 1985) (Fig. 1-5). The human TS has aponeuroses in the proximal and distal 

aspects, covering both posterior and anterior region of gastrocnemii and soleus. The 

adjoining aponeuroses exist between gastrocnemii and soleus and ultimately insert into 

the calcaneus by sharing the common Achilles tendon (Blitz and Eliot, 2007, 2008; Oda 

et al., 2015) (Fig. 1-6 & 1-7).  

Studies on the morphology of aponeurosis and tendon were mainly conducted by 
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using finite element simulation (Rehorn and Blemker, 2010) and cadaver study (Oda et 

al., 2015). Rehorn and Blemker (2010) developed computational model of aponeurosis 

to investigate how the aponeurosis morphology influences muscle stretch distribution, 

and the simplified model of aponeurosis architecture used uniform thickness throughout 

the whole length. However, the information of aponeurosis thickness distribution was 

not considered during previous simulation study. Thus, Oda et al. (2015) directedly 

measured the cross-sectional thickness of TS aponeuroses from a human cadaver. The 

results showed that higher thickness of aponeuroses was observed near the aponeurosis-

bone and aponeurosis-tendon junction. Although studies to date have examined the 

thickness heterogeneity of aponeurosis, further studies are required to understand the 

morphology of TS aponeuroses and how it affects the muscle-tendon function. 

 

1-3-2-3 Mechanical properties of the triceps surae 

The TS mainly works as ankle plantar flexion, which lifts the heel up, contributing 

to human locomotion such as walking (Honeine et al., 2013). However, previous studies 

(Francis et al., 2013; Neptune et al., 2001) reported that gastrocnemius and soleus make 

different contributions to walking performance. Both studies found that gastrocnemius 

and soleus have opposite effect on forward progression of leg during walking. Function 

of the TS is greatly associated with the mechanical properties of muscle fibers 

(Kawakami et al., 1998). Therefore, differences of the mechanical properties of 

synergist muscles (inter-muscular differences) need to be clarified. For the inter-

muscular differences of the TS, previous study found different passive stiffness among 
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GM, GL and SOL depending on the ankle positions (Lacourpaille et al., 2017). In 

addition to the inter-muscular differences, intra-muscular difference within a muscle 

was also examined (Giordano and Segal, 2006; Segal and Song, 2005). Both studies 

found that site-dependent differences of muscle activity exist within the individual 

muscle of the TS. 

 

1-3-2-4 Mechanical properties of the triceps surae aponeuroses and tendon 

The tendinous tissue (aponeurosis and tendon) has been proved to perform an 

important role in locomotion (Fukunaga et al., 2002). It plays a significant role in 

human movements functioning as a spring and contributing to energy saving and power 

enhancement of the muscle-tendon unit (Fukunaga et al., 2002; Kawakami, 2012; 

Maganaris, 2002). Unlike the uni-axial loading pattern on the cord-like structure of 

tendon during contraction, the sheet-like structure of aponeurosis serves as an 

attachment site of muscle fascicles on the surface of a muscle belly, and can bear the 

pressure and tension with more complicated shape changes during muscle contraction 

(Raiteri, 2018; Raiteri et al., 2016; Scott and Loeb, 1995). During muscle contraction, 

the aponeurosis is stretched both in the longitudinal (along the muscle’s line of action) 

and the transverse directions, and higher transverse deformability has been documented 

in previous studies (Azizi and Roberts, 2009; Iwanuma et al., 2011; Maganaris et al., 

2001). However, the aponeurosis strain was less (14%) during muscle contraction than 

the strain (24%) during passive tensile loading condition, which indicates that the 

aponeurosis stain could be affected by the muscle contraction (Bojsen-Møller and 
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Magnusson, 2019; Lieber et al., 2000). Furthermore, previous studies have reported 

anisotropic (different material properties in the transverse and longitudinal directions) 

and inhomogeneous properties of the TS aponeuroses (Muramatsu et al., 2001; Slane 

et al., 2017), and site-dependent differences between aponeuroses and tendon strains 

have been found during human movements through in vivo studies (Bojsen-Moller et 

al., 2004a; Finni et al., 2003; Magnusson et al., 2003). However, Muramatsu et al. 

(2001) reported that there was no significant difference in the maximal strain between 

aponeurosis (5.9 ± 1.6%) and Achilles tendon (5.1 ± 1.1%), and even no significant 

differences between proximal and distal region of aponeurosis. On the other hand, 

Iwanuma et al. (2011) the stain of Achilles tendon (3.3%) was higher than that of 

aponeurosis (1.1-1.6%) at submaximal contractions. The different functional roles 

during muscle contractions between the aponeurosis and tendon still remain unclear. 

 

1-3-3 Muscle-aponeurosis interaction during muscle contraction 

Within the muscle-tendon unit, muscle fibers and tendinous tissues act as 

contractile and elastic components, respectively (Lieber et al., 1992). And Lieber et al. 

(1992) demonstrated the interaction between the contractile and elastic components by 

the finding that internal muscle fiber shortening causes the elongation of tendon length 

during force development. In addition, another study further proved that the 

aponeurosis tissue plays a major role in muscle-tendon interaction (Kawakami and 

Lieber, 2000). Muscle-aponeurosis-tendon mechanical function is determined by 

interaction between muscle fibers and the connective tissues (Stenroth, 2016). 
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Depending on the thickness distribution of aponeuroses (Oda et al., 2015) and 

architecture of muscle fibers (Maganaris et al., 1998), the muscle-aponeurosis 

interaction could lead to non-uniform behaviors of muscle-tendon unit (Finni, 2006; 

Kawakami et al., 1998). Previous in vivo studies (Arampatzis et al., 2006; Ateş et al., 

2018; Bojsen-Moller et al., 2004b) reported different muscle behaviors under different 

knee-joint positions during muscle contractions, and the TS was proved to activate 

differently from proximal to distal sites during submaximal plantarflexions (Giordano 

and Segal, 2006; Segal and Song, 2005). The architectural heterogeneity and different 

muscle activation may make the aponeurosis behavior more complicated. 

The force generated by individual actin-myosin cross bridges is transmitted within 

the fiber both longitudinally and transversely, then the transmission of force reaches the 

aponeurosis, tendons, and joints, which causes the movement. Some studies (Ateş et al., 

2015; Bouillard et al., 2012; Bouillard et al., 2011) reported linear relationship of 

muscle stiffness and torque during muscle contractions, while non-linear relationship 

of mechanical properties of aponeurosis and sports intensities was also reported 

(Arampatzis et al., 2007). This signifies that the relationship existing between muscle-

aponeurosis stiffness and torque still remains unclear. Moreover, during isometric 

muscle contraction, the architecture of muscle changes with the increasing level of 

contraction, such as PA (Ito et al., 1998; Narici et al., 1996). The aponeurosis’s length 

and width could be altered by the shape changes of muscle belly, which indicates 

mechanical loading of aponeuroses is more complex than that of tendons (Arellano et 

al., 2016; Scott and Loeb, 1995). 
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1-3-4 Mechanics of human triceps surae muscles and aponeuroses in motor 

performance 

Human motor performance is regarded as a subfield of human performance, it can 

be affected by capacity of information processing and movement output. The 

movement output need not only agonist muscle contraction, but also control of synergist 

muscles (Kaurranen, 1999). As described above for the structural and functional 

features of human TS, it works as a major plantar flexor and generates forces for 

propelling forward and stabilizing the body in human common movement (e.g., 

walking, running) (Bassey et al., 1988; Hof et al., 2002; Honeine et al., 2013). During 

human walking, although the bi-articular gastrocnemii and mono-articular soleus were 

proved to have different mechanical behavior of muscle fascicles (Ishikawa et al., 2005), 

they all contract and were stretched during the gait cycle, which is regarded as a stretch-

shorten cycle behavior in the muscle-tendon unit. Because of the interaction between 

muscle fascicles and tendinous tissues, spring-like behavior of tendinous tissues (i.e., 

tendon and aponeurosis) of these muscles also contributes to the maintenance of 

walking speed by storing and releasing elastic energy (Franz and Thelen, 2016; 

Fukunaga et al., 2001; Hof et al., 2002). The matching of muscle fibers as force 

generators and tendinous tissues as elastic springs can influence walking performance 

(Stenroth et al., 2017). Another previous study suggested that the relationships between 

musculotendinous properties and walking performance can be changed by aging 

(Stenroth et al., 2015). Such a change may be due to the reduced muscle strength and 
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altered mechanical properties of tendinous tissues with aging (Foster-Burns, 1999; 

Narici et al., 2008), which awaits empirical verification. In addition, it is unknown 

whether enlargement of inter-individual variability of walking ability in the elderly is 

attributable to the changes in muscle strength or tendinous tissue, or both. 

 

1-4 Purpose 

As mentioned in the literature review, little is known about the morphological and 

mechanical properties of human TS aponeuroses not only in vivo but also ex situ, and 

consensus was not reached on the muscle-aponeurosis changes of morphological and 

mechanical properties during muscle contraction. Therefore, the general purpose of this 

thesis is to investigate the intrinsic morphological and mechanical properties of TS 

aponeuroses ex situ and in vivo. 

In Chapter 2, data on site- and direction-dependence of the material properties of 

human TS aponeuroses under biaxial tension with their functional implications are 

presented. 

In Chapter 3, using ultrasound SWE to measure the architecture and stiffness of 

TS muscles and aponeuroses during different levels of muscle contractions, and 

examine the relationships between relative tendon length change and stiffness of 

muscles and aponeuroses. 

In Chapter 4, using ultrasound SWE to examine the site- and direction-dependent 

differences of the TS muscles and aponeuroses in the elderly, and to investigate the 

relationships between TS aponeuroses stiffness and muscle strength and walking 
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performance. 

In Chapter 5, the main findings of each chapter are listed. Then, the following 

sections are discussed: 1) generalization of the findings: site- and direction-dependence, 

2) applicability of the findings, which are implications for muscle-tendon interaction 

and motor performance, 4) limitations. Finally, conclusion of this thesis and future 

direction are addressed. 
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Fig. 1-1 Parallelogram model of a muscle-aponeurosis-tendon unit comprised of 

muscle fibers and connective tissues (aponeurosis and tendon). (Zajac 1989) 
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Fig. 1-2 Typical MR images at the positions corresponding to 0% (middle) and 90% 

(left) of aponeurosis length and 80% (right) of tendon length. Dashed lines: tendon 

width; a: medial edge; b: lateral edge. (Iwanuma et al., 2011) 
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Fig. 1-3 Basic physics of shear wave elastography. (Mihra et al., 2017) 
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Fig. 1-4 Posterior view of the human triceps surae comprised of medial 

gastrocnemius (MG), lateral gastrocnemius (LG), posterior portion of soleus and 

anterior portion of soleus. (Martin et al., 2001) 
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Fig. 1-5 Transmission electron micrograph of the muscle-tendon inter-face of a 

single plantaris muscle fiber. (Trotter et al., 1985) 
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Fig. 1-6 Sonography of the triceps surae adjoining aponeuroses between 

gastrocnemius and soleus. GA, gastrocnemius muscle; SO, soleus muscle. The 

adjoining aponeuroses were seen on the ultrasound image as two distinct entities with 

a small separating space. (Magnusson et al., 2001) 
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Fig. 1-7 Schematic representation of aponeuroses distribution in the triceps surae 

muscle-aponeuroses-tendon unit. 
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CHAPTER 2 Morphological and mechanical properties of the human triceps 

surae aponeuroses taken from elderly cadavers 

 

2-1 Introduction 

As mentioned in Chapter 1, although the aponeurosis is reported to stretched more 

in the transverse direction than in the longitudinal direction, the intrinsic bidirectional 

differences in the human aponeurosis mechanical properties still remain unclear. 

Previous studies have reported anisotropic (different material properties in the 

transverse and longitudinal directions) and inhomogeneous properties of the TS 

aponeuroses (Muramatsu et al., 2001; Slane et al., 2017), and site-dependent differences 

of aponeuroses strains have been found during human movements through in vivo 

studies (Bojsen-Moller et al., 2004a; Finni et al., 2003; Magnusson et al., 2003). Few 

studies, however, focused on the site-dependent morphology of TS aponeuroses. While 

a cadaveric study revealed the geometry and thickness distribution of the TS 

aponeuroses using one leg of an elderly male cadaver (Oda et al., 2015), there is still a 

paucity of information on the intrinsic morphological properties of human aponeurosis. 

Another previous study showed the gradient in aponeurosis thickness appeared to match 

the gradient in tension transmitted along aponeurosis structure (Scott and Loeb, 1995), 

therefore we hypothesized that thinner aponeuroses are more compliant than thicker 

aponeuroses. Additionally, it remains unknown whether or not the anisotropy, 

inhomogeneity and inter-muscular differences of human aponeuroses are due to 

differences of their morphological and mechanical properties. These issues cannot be 
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approached by in vivo studies where one cannot directly and accurately measure 

intrinsic morphological and mechanical properties of aponeuroses. This study therefore 

aimed to identify the intrinsic morphological and mechanical characteristics of the 

human TS aponeuroses, in particular, the site- and direction-dependent differences and 

differences between gastrocnemii and soleus. 

 

2-2 Materials and Methods 

2-2-1 Materials  

This study was approved (2017-M001) by the ethics committee of Aichi Medical 

University. Twenty-five TS muscle-tendon units (324.2 ± 98.8 g, mean ± s.d.) were 

procured from 13 human donors (formalin fixed, 6 males, 7 females) aged 67-92 years 

(82.2 ± 10.1, mean ± s.d.). The sample size (n = 25) exceeded the necessary number of 

samples for this study (n = 24, determined by power analysis with the power: 0.80 and 

effect size f = 0.75) (Faul et al., 2007). The cadavers were donated to Aichi Medical 

University, Aichi, Japan. Before they died, the donors signed the informed consent 

agreeing to body donation and its use for research. The cadavers were embalmed by 

using 20% formaldehyde, a Porti-boy pump with cannula was used to inject embalming 

fluid into the body through the femoral artery (toward the feet) and common carotid 

artery (toward the cephalad). Once embalming was completed, the body was placed in 

a sealed plastic body bag and stored at room temperature (Hayashi et al., 2014). 

Specimens of aponeuroses were excised from eight regions: posterior and anterior 

regions of gastrocnemius medialis (GM), gastrocnemius lateralis (GL), medial part of 
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soleus (SOL-med), lateral part of soleus (SOL-lat). In each region, three size-matched 

rectangular pieces of aponeuroses (2-4 cm x 2-4 cm) were harvested from the proximal, 

middle and distal sites (Figs. 2-1B, 1C, 1D). The muscles and aponeuroses specimens 

were kept moist by using Alcohol (50% by volume) throughout the dissection process 

(Otsuka et al., 2018).  

 

2-2-2 Measurements 

The average thickness of each aponeurosis specimen was calculated after 

measuring the thickness at four different sites (Fig. 2-1E) of each specimen by using a 

digital vernier caliper (LIXIL VIVA, Japan) (Hwang et al., 2012; Kumar et al., 2011). 

It was not possible to perfectly remove muscle fibers from each sample (otherwise we 

could break it) but we took great care to trim them as much as we could while not 

destroying the aponeurosis, and to avoid inclusion of remaining fibers during thickness 

measurement. For each site, we repeated at least 3 times to avoid variations between 

trials, then the value of thickness was recorded. The specimen’s average thickness and 

width (or length) were used to calculate the cross-sectional area of the specimen. The 

uniaxial tensile test was implemented by using an instrument (IMADA CO., LTD, 

Japan) that was equipped with one test stand and two sets of force gauges (1: ZTA-

500N, 1000Hz; 2: ZTA-5N, 1000Hz, Fig. 2A). Before placing and fixing each specimen 

of aponeurosis on the instrument, sandpapers (5 cm × 0.5 cm) were glued to the top and 

bottom ends of the specimen to prevent slipping from the thin film grips during the 

tensile test (Lynch et al., 2003) and the synchronous loading-unloading curve that was 
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displayed real-time during measurement to ensure slippage did not occur. In such a case 

with an irregular shape of the curve, the test was repeated after adjusting the grip 

interface. The specimens of aponeuroses were loaded longitudinally (along the 

muscle’s line of action) and transversely, to avoid the order effect of testing in one to 

the other directions, the order of testing on the two directions was randomized and 

counterbalanced (Otsuka et al., 2018). According to the previous study (Azizi et al., 

2009) and our pilot experiment, the aponeuroses were expected to be stiffer in the 

longitudinal than the transverse direction. Thus, the force gauge 1 (ZTA-500N) and 2 

(ZTA-5N) were used for the longitudinal and transverse direction test respectively. The 

load and displacement during the tensile test were displayed simultaneously in the kit 

software. The speed was set at 25 mm·min-1 (Otsuka et al., 2018) both for the stretch 

and relaxation, and five identical cycles were performed during the cyclic tensile test. 

All the tensile tests were carried out at a room temperature (20-26℃). 

 

2-2-3 Analyses 

The data of all tested specimens were used for the analyses unless the specimens 

were damaged during dissection or tensile test processes. Out of the five cycles of the 

tensile test, forces obtained from the first and second cycles were slightly smaller due 

to the initial aponeuroses settling within the film grips of the force measurement 

instrument. We used only the third cycle for analysis in order not to introduce possible 

force reduction in the last two cycles (4th and 5th) (Azizi et al., 2009). The stress (σ) 

and strain (ε) were calculated using the following equations.  
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 𝜎 = 𝐹/𝐴                                  (2-1) 

 𝜀 = (𝑙 − 𝐿)/𝐿                              (2-2) 

Where F is the tensile force, A is the initial (unloaded) cross-sectional area of each 

specimen, l and L are the final and initial lengths of the aponeurosis, respectively. The 

initial length (resting length) of each specimen was determined using the same threshold 

force (when the load cell reached 0.1N).   

For the load-displacement and stress-strain curves, the linear region was identified 

based on a previous study (Mogi et al., 2013) as follows: First, loads were normalized 

to the maximum load and then elongation was recorded at relative loads of 10%, 20%, 

30%, 40%, 50%, 60%, 70%, 80%, 90%, and 100%. Secondly, from the relationship 

between the relative loads and elongations, slopes at adjacent data points were 

calculated to find the transition point (when the slope is zero) from the toe- to linear-

region (Fig. 2-2B). The stiffness (N/mm) and tensile modulus (MPa) were calculated 

from the slope of the linear region of the load-displacement relationship curve and 

stress-strain relationship curve respectively (Figs. 2-2C, 2D), and were used as 

mechanical variables of the aponeuroses. The mechanical hysteresis was calculated in 

the same way as in a previous study (Maganaris and Paul, 2000) using equation (2-3). 

𝐻𝑦𝑠𝑡𝑒𝑟𝑒𝑠𝑖𝑠 (%) = [(𝑆𝑙𝑜𝑎𝑑𝑖𝑛𝑔 − 𝑆𝑢𝑛𝑙𝑜𝑎𝑑𝑖𝑛𝑔)/𝑆𝑙𝑜𝑎𝑑𝑖𝑛𝑔] × 100            (2-3) 

Where Sloading is the area under the loading curve and Sunloading is the area under the 

unloading curve (Fig. 2-2E). All calculations were performed by using the software 
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Origin 9.0 (OriginLab, Northampton, MA, USA). 

We did not find significant sex differences in any of the measurements and the 

derived parameters, therefore we pooled the data for males and females. 

 

2-2-4 Statistics 

All the data are shown as mean ± standard deviation. Accounting for unequal 

sample size (number of specimens) between sites, and variations among and within 

individuals, a one-way factorial mixed-model ANOVA (analysis of variance) with 

individual as a random effect and sites (proximal, middle and distal) as fixed factors 

was used to determine the site-dependent differences in thickness. To test the site- and 

direction-dependent differences in stiffness, Young’s modulus and hysteresis, a two-

way factorial mixed-model ANOVA with individual as a random effect and fixed 

factors [sites (proximal, middle, distal) and directions (longitudinal and transverse)] 

was performed. To compare across regions (posterior and anterior) within a muscle and 

then compare the differences among muscles (GM, GL, SOL-med and SOL-lat), the 

average [proximal/middle/distal (P/M/D)] thickness and Young’s modulus were 

calculated, and a two-way factorial mixed-model ANOVA with individual as a random 

effect and fixed factors [muscles (GM, GL, SOL-med and SOL-lat) and regions 

(posterior and anterior)] was used. A post-hoc test (Bonferroni) was performed when 

appropriate. All the statistical analyses were performed using SPSS Statistics 24.0 (IBM 

SPSS Statistics, SPSS Inc., Chicago, USA). The significance level was set at α < 0.05. 
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2-3 Results 

2-3-1 Thickness 

In the posterior and anterior regions of GM and GL, significant differences among 

the proximal (P), middle (M) and distal (D) sites were showed [posterior region of GM: 

P (0.52 ± 0.21 mm) > M (0.46 ± 0.18 mm) > D (0.40 ± 0.20 mm), posterior region of 

GL: P (0.59 ± 0.23 mm) > M (0.47 ± 0.20 mm) > D (0.39 ± 0.20 mm), anterior region 

of GM: D (0.57 ± 0.15 mm) > M (0.53 ± 0.17 mm) > P (0.47 ± 0.15 mm), and anterior 

region of GL: D (0.45 ± 0.16 mm) > P (0.38 ± 0.15 mm), p < 0.01]. In the posterior 

regions of SOL-med and SOL-lat, the proximal site was significantly thinner than the 

distal site [SOL-med: D (0.39 ± 0.13 mm) > P (0.33 ± 0.16 mm), SOL-lat: D (0.41 ± 

0.18 mm) > P (0.36 ± 0.17 mm), p < 0.05], and there was no significant difference 

among sites in the anterior regions of SOL-med and SOL-lat (Fig. 2-3). 

For the average (across the P/M/D sites) thickness of aponeuroses in the posterior 

and anterior regions of the TS (GM, GL, SOL-med and SOL-lat), there was significant 

muscle × region interaction (p<0.001) while the main effects of muscle (p<0.001) and 

region (p<0.001) were both significant (Fig. 2-4). In the posterior regions, GL = GM > 

SOL-med = SOL-lat (p<0.01, Fig. 2-4), and in the anterior regions, GM = SOL-lat > 

GL = SOL-med (p < 0.05, Fig. 2-4). 

 

2-3-2 Stiffness 

Stiffness in all regions of the TS aponeuroses showed significant differences 

between the longitudinal and transverse directions (p < 0.001, Table 2-1). Significant 
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differences in the longitudinal stiffness among the proximal, middle and distal sites 

were showed in the posterior (P = M > D, p < 0.01) and anterior (P = M > D, p < 0.01) 

regions of GM and anterior region (P < M = D, p < 0.05) of GL (Table 2-1).  

 

2-3-3 Young’s modulus 

For the Young's modulus, there was no significant interaction between sites and 

directions in any regions of TS aponeuroses, while the values in the longitudinal 

direction were significantly higher than those in the transverse direction in all regions 

(p < 0.001, Table 2-2).  

For the average (across the P/M/D sites) Young’s modulus of aponeuroses in 

posterior and anterior regions of the TS, in the longitudinal direction, the muscle × 

region interaction showed no significance while the main effect of muscle was 

significant (posterior region: GL > GM = SOL-med = SOL-lat, and anterior region: GL 

> GM = SOL-med = SOL-lat, p < 0.001, Fig. 2-5). In the transverse direction, the 

Young’s modulus of posterior region of SOL-lat was significantly higher than GM (p 

< 0.001), GL (p = 0.003), and SOL-med (p = 0.012) (Fig. 2-5). 

 

2-3-4 Hysteresis 

The hysteresis in the transverse direction was significantly larger than in the 

longitudinal direction at the middle and distal sites of posterior region of GM (p < 

0.001), proximal and middle sites of anterior region of GL (p = 0.001), all three sites of 

posterior region of GL (p = 0.01) and SOL-med (p = 0.001), anterior region of SOL-
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med (p = 0.002) and SOL-lat (p = 0.009). In contrast, the hysteresis in the distal site of 

anterior region of GL was higher in the longitudinal than the transverse direction (p = 

0.005, Table 2-3).  

 

2-4 Discussion 

In the present study, we measured morphological and mechanical properties of the 

human TS aponeuroses by using uniaxial tensile tests, and found the site- and direction-

dependent differences in anisotropy and heterogeneity of aponeurotic tissues. In 

addition, differences of material properties of aponeuroses in synergist muscles 

(gastrocnemii and soleus) were provided which would help us better understand the 

contributing factors for the force transmission in muscle-aponeurosis-tendon complex.   

 

2-4-1 Site-dependent differences of morphological and mechanical properties of 

aponeurosis 

In each region of the TS aponeuroses, except for the anterior regions of soleus, the 

thickness distributed inhomogeneously from the proximal to distal sites (Figs. 2-3 and 

2-6), which is consistent with the previous study (Oda et al., 2015) that showed site 

differences of soleus aponeuroses thickness. Being continuous with the free portion of 

the tendon and further extending upon the muscle belly, the aponeurosis not only acts 

to transmit forces in its longitudinal direction, but also bears all the possible tension and 

deformation of the contracting muscle belly in the longitudinal as well as transverse 

direction (Huijing, 1999). A flat sheet-like structure with anisotropic stiffness covering 
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the muscle belly surface would contribute to such contraction-induced muscle behavior. 

As for the longitudinal direction of the aponeurosis, the aponeurotic parts around 

the proximal and distal ends of muscle belly would experience forces developed from 

the majority of muscle fibers, while the parts near the termination of the aponeurosis 

experience forces with far fewer fibers (Magnusson et al., 2001). During muscle 

contraction, the aponeurosis would be stretched more around the ends of muscle belly 

while less around the termination of the aponeurosis. If however the aponeurosis 

exhibits a similar stretch regardless of its part, it should have higher stiffness around 

the muscle belly ends and less around its termination. This is exactly consistent with 

our findings of site-dependent differences of stiffness within the gastrocnemius 

aponeurosis (Table 2-1). On the other hand, The Young’s modulus did not show site-

dependent differences in any regions, although there were tendencies in the values 

being smaller around terminations of both anterior and posterior aponeuroses of the 

gastrocnemius (Table 2-2). Thus, the reason for the site-dependent differences in 

aponeurosis stiffness, is due to different aponeurosis thicknesses rather than a 

difference in the material property. A previous study reported that the longitudinal 

stiffness of aponeurosis influences the muscle fascicle behavior and probably favors the 

magnitude of force production (Raiteri, 2018), which indicates that the aponeurosis 

would act to control the muscle fascicle behavior during movement. 

 

2-4-2 Differences of aponeuroses between gastrocnemii and soleus in 

morphological and mechanical properties 
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Compared to other regions of gastrocnemii and soleus, thinner thickness but higher 

Young’s modulus in the anterior region of GL aponeurosis (longitudinal) and posterior 

region of SOL-lat aponeurosis (transverse) are somewhat unexpected findings (Fig. 2-

4 and 2-5). Such findings were not found in any other region of GM aponeurosis and 

SOL-med aponeurosis. The anterior region of GL aponeurosis and posterior region of 

SOL-lat aponeurosis are adjoining aponeuroses which connect to the Achilles tendon 

serially. The medial-lateral differences in thickness and Young’s modulus may reflect 

different muscle-aponeurosis interaction between synergist muscles (GM, GL and 

soleus), which affects the muscle force transmission to the tendon differently, and 

contributes differently to the limb movement control between medial and lateral side. 

A previous cadaveric study on site specificity of structural and mechanical properties 

of human fascia lata found that higher transverse Young’s modulus accompany with 

higher proportion of transversely directed fibers (Otsuka et al., 2018). Such differences 

in aponeuroses morphology and mechanical properties may be related to the unique 

arrangement of collagenous bundles (Lake et al., 2010; Miller et al., 2012) in the 

adjoining aponeuroses, which awaits future investigation.  

 

2-4-3 Direction-dependent differences of mechanical properties 

The differences of mechanical properties (stiffness and Young’s modulus) of 

human TS aponeuroses between longitudinal (along the muscle-tendon unit’s line of 

action) and transverse (orthogonal to the muscle-tendon unit’s line of action) directions 

found in the current study are consistent with the features of a turkey’s aponeuroses 
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(Azizi et al., 2009) and human fascia lata (Otsuka et al., 2018). All previous studies 

indicate that the aponeuroses are more compliant in the transverse direction, and our 

study further showed that the stiffness and Young’s modulus in the transverse direction 

were much smaller (<1%) than the values in the longitudinal direction, regardless of 

regions (Table 2-1 and 2-2). As previously documented (Azizi et al., 2009), most of the 

collagen fiber bundles of aponeurosis appear to be arrayed longitudinally, so the loading 

regime of aponeurosis is greatly limited to the longitudinal direction. This may cause 

the distinct differences between longitudinal and transverse directions in strain. Higher 

stiffness and Young’s modulus of the aponeurosis in the longitudinal direction, may 

reflect its role as a mechanical spring within the muscle-tendon unit, whilst being more 

compliant in the transverse direction possibly helps to accommodate the expansion of 

the contracting muscle belly in this direction. Compared with the results of turkey’s 

aponeuroses, the transverse Young’s modulus of human aponeurosis was much lower. 

One of the possible reasons may be that they used frozen turkey materials while our 

samples were tested following formalin fixation which may have altered the tissue 

properties. Another possibility may be the differences in the magnitude of the transverse 

strain between species (humans: 6-21% (Iwanuma et al., 2011; Maganaris et al., 2001), 

turkeys: 8% (Azizi and Roberts, 2009)). On the other hand, another study (Otsuka et 

al., 2018) on human formalin-fixed fascia lata showed similar results of Young’s 

modulus in the longitudinal direction (71.6-275.9 MPa) as well as in the transverse 

direction (3.2-41.9 MPa). The anisotropy of the aponeuroses is also far more 

pronounced in the current study than that reported in a previous in vivo human study 
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(Iwanuma et al., 2011). The Young’s modulus determined for the linear region of the 

stress-strain curve in this study was 100-500 MPa (at 3-5% strain) in the longitudinal 

direction which was about 100 times higher than in the transverse direction (0.5-3 MPa, 

at 5-30% strain), whereas an in vivo study reported values of the longitudinal strain 

being only 5-10 times larger than the transverse strain (Iwanuma et al., 2011). Their 

study also found no significant differences in the strains of aponeurosis between 30% 

maximal voluntary contraction (MVC) and 60% MVC along the longitudinal (1.1 and 

1.6%) or transverse (5.0-11.4% and 5.0-13.9%) direction. The elastic feature of 

aponeurosis in the present study was found in the isolated condition, thus the in vivo 

finding of their study could be due to the condition where contracting muscle fibers 

were attaching onto the aponeurosis. In this condition, the aponeurosis mechanical 

properties might be modulated by the stiffened, contracting muscle fibers. The maximal 

load of aponeurosis during the tensile test of the present study was about 37.8 ± 18.3 N 

with the strain at 4.9 ± 1.4%. Previous in vivo studies reported that the aponeurosis 

strain was 1.1-1.6% during 30%-60%MVC muscle contractions (Iwanuma et al., 2011) 

and 5.9-7% during maximal voluntary contraction (Arampatzis et al., 2007; Maganaris 

et al., 2001; Muramatsu et al., 2001). Regarding the aponeurosis strain, the magnitude 

of elongation in our study is comparable to those under the maximal voluntary 

contraction in vivo. Thus the present findings on inter- and intra-muscle variability in 

aponeurosis mechanical properties and their anisotropy may relate to the situations of 

highly active muscle contractions in humans. However, due to substantially variable 

reported values of aponeurosis strains in vivo, and a large number of estimations and 



41 

 

assumptions in the parameters to be used for individual muscle forces, we do not feel 

justified to attempt describing the muscle-aponeurosis behavior during exercises. 

Future studies to accurately determine individual muscle forces will lead to reasonable 

and useful modeling of the functional roles of aponeuroses in motor performance. 

 

2-4-4 Viscoelasticity of triceps surae aponeuroses 

The aponeurosis serially connects to tendon which enables it to transmit the forces 

produced from muscle fibers to tendon, and finally to the bones. However, the work 

produced by muscle fibers cannot be fully transmitted to the bone due to the 

viscoelasticity of aponeurosis and tendon tissues. The energy dissipation during loading 

and unloading process is called hysteresis, and tendon hysteresis has been measured in 

in vivo human studies (Farris et al., 2011; Foure et al., 2012; Foure et al., 2010; Kubo 

et al., 2002) with diverse values between studies. A previous study suggested that 

hysteresis is a quite sensitive measure largely influenced by the method utilized (Finni 

et al., 2012). In our results, the energy dissipation along longitudinal and transverse 

directions was different, with the former being smaller than the latter (Table 2-3). The 

aponeuroses were much softer transversely, and during the unloading phase, more 

energy was lost (dissipated as heat), so the efficiency (unloading energy/ loading 

energy) decreased. Since the amount of hysteresis may influence the efficiency of 

muscle contraction with the same conformation (Foure et al., 2012; Herzog et al., 2012; 

Kostyukov et al., 1995), lower hysteresis in the longitudinal direction may make the 

muscle more efficient, which can relate to the high efficiency of human stretch-
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shortening cycle movement such as walking where the TS are the major agonists (Hof 

et al., 2002). 

 

2-5 Conclusions 

In the present study, site-related differences of thickness were found from 

proximal to distal in TS aponeuroses, with different morphology and mechanical 

properties among aponeuroses of synergist muscles. The reason for site-dependent 

differences in stiffness is due to a reduced aponeurosis thickness rather than a reduction 

in the material property. The anisotropic elastic feature (differences between 

longitudinal and transverse directions in stiffness and Young’s modulus) of the 

aponeuroses were more pronounced than in vivo observations, suggesting inherent 

material design of the aponeurosis that matches three-dimensional contractile behavior 

of muscle fibers. 
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Fig. 2-1. Specimen preparation, three size-matched rectangular specimens of 

aponeuroses were dissected from three sites of each region. (A) Lateral sagittal view 

of triceps surae muscle-tendon unit with aponeuroses. (B) Posterior view of posterior 

part of gastrocnemii. (C) Posterior view of anterior part of gastrocnemii and posterior 

part of soleus. (D) Anterior view of anterior part of soleus. (E) One typical specimen of 

aponeurosis. GM gastrocnemius medialis, GL gastrocnemius lateralis, SOL-med 

medial part of soleus, SOL-lat lateral part of soleus. 
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Fig. 2-2. Mechanical testing and data process. (A) A tensile test machine with an 

inset showing a gripped specimen. (B) A relationship curve between relative loads (to 

maximal) and elongations. (C) A representative load-displacement curve recorded by 

the tensile test. (D) A representative stress-strain curve recorded by the tensile test. (E) 

A representative load-displacement curve during tensile test. The arrows indicate 

loading and unloading directions.  
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Fig. 2-3. Average (mean + s.d.) thickness of aponeuroses from proximal to distal 

sites in each region. a: denotes different from proximal site, p < 0.05; b: denotes 

different from middle site, p < 0.05. GM gastrocnemius medialis, GL gastrocnemius 

lateralis, SOL-med medial part of soleus, SOL-lat lateral part of soleus. 
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Fig. 2-4. Average (proximal/middle/distal sites, mean ± s.d.) thickness of 

aponeuroses in posterior and anterior regions of the triceps surae. *: denotes 

differences between posterior and anterior regions, p < 0.05; α: denotes different from 

GM, p < 0.05; β: denotes different from GL, p < 0.05. GM gastrocnemius medialis, GL 

gastrocnemius lateralis, SOL-med medial part of soleus, SOL-lat lateral part of soleus. 
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Table 2-1. Mean and standard deviations (s.d.) of the stiffness values for the tested specimens (N/mm) 

  GM-posterior   GM-anterior   SOL-med-posterior   SOL-med-anterior 

  L T   L T   L T   L T 

Proximal 114.2±36.7 0.7±1.4#   107.1±33.3 0.9±0.9#   83.7±27.3 0.9±0.7#   74±26.6 0.9±1.5# 

Middle 114.3±37.5 0.4±0.7#   125.4±40.1 0.6±0.5#   89.6±38 0.9±1.1#   78.7±32.3 0.7±0.6# 

Distal 83.3±34.8a,b 0.3±0.4#   143.6±45.2a 0.8±1.1#   106.9±35.9 0.8±0.7#   69±26.5 1±0.9# 

  GL-posterior   GL-anterior   SOL-lat-posterior   SOL-lat-anterior 

  L T   L T   L T   L T 

Proximal 108.2±35 0.7±0.6#   102±45.9 0.8±0.9#   64.5±29.1 1.2±1.3#   75.9±27.2 0.8±0.9# 

Middle 109.7±36.1 0.9±1#   144.7±41.4a 1.2±1.3#   80.9±35.1 1.5±1.4#   73.9±30.2 0.8±0.7# 

Distal 87.5±18.7 0.8±0.5#   129.6±46.7a 1.8±1.6#   88.4±34.2 1.3±1.1#   80.1±31.3 1.5±1.2# 

#: denotes different from longitudinal direction, p < 0.05; a: differences from proximal site; b: differences from middle site. GM gastrocnemius medialis, GL 

gastrocnemius lateralis, SOL-med medial part of soleus, SOL-lat lateral part of soleus, L longitudinal, T transverse. 
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Table 2-2. Mean and standard deviations (s.d.) of the Young's modulus values for the tested specimens (MPa) 

  GM-posterior   GM-anterior   SOL-med-posterior   SOL-med-anterior 

  L T   L T   L T   L T 

Proximal 207.1±118.7 0.6±0.9#   198.2±118.3 1.1±1.2#   264.3±155.5 1.2±1#   211.6±166.1 0.7±0.9# 

Middle 210.4±96 0.4±0.6#   196.1±89.2 0.8±0.9#   261.7±196.9 1.4±1.6#   199.1±113.1 0.8±0.9# 

Distal 182.8±106.6 0.6±0.6#   207.5±103.2 0.5±0.5#   262±127.7 0.9±0.9#   177.6±120 0.8±0.5# 

  GL-posterior   GL-anterior   SOL-lat-posterior   SOL-lat-anterior 

  L T   L T   L T   L T 

Proximal 289.1±214.5 0.5±0.5#   283.9±168.9 1.1±1.1#   185.7±132.2 2.3±2.2#   164.1±124.6 0.8±0.9# 

Middle 280±104.4 1±1.2#   323.3±151 1.4±1.4#   225.4±168.8 2±1.9#   197.9±181.2 0.7±0.5# 

Distal 191.9±66.5 1.3±0.7#   304.6±157.1 1.9±1.9#   256.2±159.2 1.9±1.9#   173.8±75.6 1.3±1.4# 

#: denotes different from longitudinal direction, p < 0.05; GM gastrocnemius medialis, GL gastrocnemius lateralis, SOL-med medial part of soleus, SOL-lat 

lateral part of soleus, L longitudinal, T transverse.
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Fig. 2-5. Average (proximal/middle/distal sites, mean ± s.d.) Young’s modulus in 

L (longitudinal) and T (transverse) directions of aponeuroses in posterior and 

anterior regions of the triceps surae. α: denotes different from GM, p < 0.05; β: 

denotes different from GL, p < 0.05; γ: denotes different from SOL-med, p < 0.05. 

GM gastrocnemius medialis, GL gastrocnemius lateralis, SOL-med medial part of 

soleus, SOL-lat lateral part of soleus. 
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Table 2-3. Mean and standard deviations (s.d.) of the hysteresis values for the tested specimens (%) 

  GM-posterior   GM-anterior   SOL-med-posterior   SOL-med-anterior 

  L T   L T   L T   L T 

Proximal 41.1±8.5 47.5±20.7   38±8.4 40.5±16.8   26.1±7.8 40.6±20.3#   31.3±7.1 45.2±15.1# 

Middle 33.9±9.9 54±17.8#   45.2±8.8 40.2±9.6   33.7±11.5 38.7±18.7#   36.8±11.7 40.4±12.2# 

Distal 28.2±8.7 53.8±15.8#   46.6±7a 48.6±18.3a   34.8±8.2 38.8±12.9#   33.7±8.7 44.5±21.6# 

  GL-posterior   GL-anterior   SOL-lat-posterior   SOL-lat-anterior 

  L T   L T   L T   L T 

Proximal 41.4±6.9 46.6±19.2#   29±8 50.3±21.3#   29.5±7.9 39.7±17.8   37.9±9.6 44.7±16.4# 

Middle 36.5±8.2 37.8±16.4#   34.5±8.7 39.6±18.2#   35.3±9.9 32.4±9.7   38.1±11.3 48.5±16.4# 

Distal 29±4.9a 41±9.4a, #   40.7±8.7 35.8±12.4#   35.6±10.2 39.1±17.4   34.6±10.3b 37.9±12b, # 

#: denotes different from longitudinal direction, p < 0.05; a: differences from proximal site; b: differences from middle site. GM gastrocnemius medialis, GL 

gastrocnemius lateralis, SOL-med medial part of soleus, SOL-lat lateral part of soleus, L longitudinal, T transverse. 
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Fig. 2-6. Sagittal view of the triceps surae and schematic representation of 

aponeurosis thickness distribution. Orange color (with gradation) denotes tendinous 

tissue (i.e. tendon or aponeurosis). 
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CHAPTER 3 Inhomogeneous and anisotropic mechanical properties of the triceps 

surae muscles and aponeuroses in vivo during submaximal muscle contractions 

 

3-1 Introduction 

In chapter 2, the adjoining aponeuroses exist between gastrocnemii and soleus 

were found thinner but higher Young’s modulus, which indicates different morphology 

and mechanical properties among aponeuroses of synergist muscles. In addition, the 

anisotropic elastic feature of the aponeuroses was more pronounced than in vivo 

observations, suggesting inherent material design of the aponeurosis that matches three-

dimensional contractile behavior of muscle fibers during muscle contractions. The 

aponeurosis’s length and width could be altered by the shape changes of muscle belly, 

which indicates mechanical loading of aponeuroses is more complex than that of 

tendons (Arellano et al., 2016; Scott and Loeb, 1995). Therefore, biaxial (longitudinal 

and transverse) stiffness changes of aponeurosis during muscle contraction need to be 

clarified. Kawakami et al. (1998) reported that different muscle architectures may have 

relation to differences in mechanical behaviors of muscles and aponeurosis. 

Consequently, information on changes of muscle architecture and muscle-aponeurosis 

stiffness becomes essential for the study of muscle-aponeurosis interactions during 

movement. Thus, the present study aims to 1) investigate the site- and direction- 

dependent differences of TS muscle and aponeuroses stiffness in vivo, during graded 

submaximal plantarflexion efforts and 2) examine the relationships between 

architecture changes and mechanical property changes of TS muscles and aponeuroses 
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in vivo. 

 

3-2 Material and methods 

3-2-1 Subjects 

Twelve young male subjects (age: 27 ± 4 years, height: 171.8 ± 6.3 cm, body mass: 

65.9 ± 11.9 kg, lower leg length: 39.3 ± 2.0 cm, body fat percentage: 18.0 ± 5.9%; 

means ± s.d.) volunteered for the current work. The subjects were non-active in any 

sports within 6 months prior to the test time. All subjects were informed about the study 

information and required to fill the informed consent before their participation. This 

study was approved by the Local Ethics Committee and conducted in accordance with 

the principles of the Declaration of Helsinki. 

 

3-2-2 Experimental setup 

A custom-made dynamometer (VTE, VINE, Japan) was used to measure the 

isometric plantar flexion torque. The signal from the dynamometer was processed by a 

strain amplifier (DPM-900, Kyowa, Japan). Then, it was acquired at 1000 Hz rate using 

a data acquisition system (PowerLab, ADInstruments, Australia) and recorded using a 

data acquisition software (LabChart 8.0, ADInstruments, Australia). B-mode and shear 

wave imaging could be obtained using ultrasound shear wave elastography (SWE, 

Version 6.4, Supersonic Imagine, Aix-en-Provence, France) with constant settings (pre-

set, MSK; persistence, high; smoothing, 9). A foot pedal (SE2, Kinesis, USA) was used 

to synchronize videos recording (12Hz) of SWE and torque signal. 
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3-2-3 Torque and ultrasound shear wave imaging recordings 

The subjects were asked to lay in the prone position with knee joint fully extended 

and ankle joint in neutral position. At first, the subjects were asked to keep relaxed and 

the passive torque was recorded. In the meanwhile, the transducer (L15-4, Aixplorer, 

Supersonic Imagine, Aix-en-Provence, France) of SWE was positioned longitudinally 

(along the muscle’s line of action) on the proximal (30% level of lower leg length) and 

distal site (distal end of gastrocnemii) of the TS to measure shear wave imaging of 

proximal and distal sites of medial gastrocnemius (MG), lateral gastrocnemius (LG), 

medial side of soleus (SOL-med) and lateral side of soleus (SOL-lat). Furthermore, 

superficial aponeuroses of MG and LG (MPS and LPS) at the proximal site, adjoining 

aponeuroses (Fig. 3-1) between MG and SOL-med at proximal and distal sites (MPA 

and MDA) as well as adjoining aponeuroses between LG and SOL-lat at proximal and 

distal sites (LPA and LDA) were measured with the longitudinal transducer direction. 

Additionally, the transducer was changed to the transverse direction to measure the 

adjoining aponeuroses between gastrocnemii (MG and LG) and soleus at distal site 

(MDA-t and LDA-t) (Fig. 3-1). Videos of shear wave imaging were recorded twice 

over 5 s period. Subsequently, the subjects performed at least two maximal voluntary 

contractions (MVCs) of isometric plantar flexions after a warm-up (several submaximal 

contractions) in case that the difference between two MVCs was lower than 10%. 

During each MVC, the subjects were instructed to produce the maximal isometric force 

and hold at the maximal level for 3s. Thereafter, submaximal contractions at 20%, 40% 
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and 60% of MVC were performed. Besides, the subjects were asked to maintain at least 

5 s period, during which, the shear wave imaging videos of the same muscle and 

aponeurosis locations as described in the above section were recorded. The order of 

transducer locations and muscle contraction levels was designed with randomization 

and counterbalance. After the completion of first cycle of submaximal contractions 

(20%, 40%, 60%), the second cycle of submaximal contractions was repeated to 

calculate the test-retest reliability (Fig. 3-2). All the ultrasound measurements were 

performed by the same tester, and the ultrasound transducer was maintained on the skin 

with minimal pressure. It should be mentioned that strictly, what we measured on 

aponeurosis are the surface acoustic wave signals, which can reflect the stiffness of the 

sound wave transmission direction, and they have been identified to have the same 

meaning as shear wave, therefore, we defined our measurements as SWV (Saavedra et 

al., 2017; Shiotani et al., 2019). 

 

3-2-4 Data analysis 

3-2-4-1 Plantar flexion torque 

The signal of torque data was low-pass filtered with a cutoff frequency of 10 Hz. 

Initially, the MVC value was calculated from the average value of 2 s duration of 

highest torque value. Afterwards, the submaximal torque value was represented by the 

mean value of the two repeated measurements, while the value of each measurement 

was averaged from 3 s duration at each contraction level.  
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3-2-4-2 Shear wave velocity (SWV) 

As the SWE videos were synchronized with torque signal using the foot pedal 

pulse, therefore, the start time of submaximal contraction was calculated by the time 

difference between foot pedal pulse and the start point of 3 s torque calculation period. 

Subsequently, the start image frame was found, and another 2 images were picked up 

every 12 frames (Fig. 3-3). The SWV of muscle or aponeurosis were measured using 

an adjustable region of interest (ROI, trace function) in the SWE machine. SWV of 

muscle or aponeurosis was represented by the mean value of the two repeated 

measurements, while the value of each measurement was averaged from 3 images of 

each second. 

 

3-2-4-3 Pennation angle 

Three images during at rest and submaximal contractions were obtained the same 

as those for SWV analysis, as described in the above section. For each muscle within 

one image, two visible muscle fascicles were used to calculate the pennation angles. 

Then, the averaged value of two pennation angles was used as pennation angle of each 

muscle in one image (Fukunaga et al., 1997a; Kawakami et al., 1998) (Fig. 3-4a). 

 

3-2-4-4 Tendon length change index (cosα – cosα’) 

In this study, we used the index of cosα – cosα’ to represent the tendon length 

change of the muscle-tendon unit from at rest to submaximal contractions (20%, 40%, 

and 60% of MVC) (Chino et al., 2008; Purslow, 2003). The basis of using it was as 
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follows: 

𝐹𝐿 · 𝑐𝑜𝑠𝛼 − 𝐹𝐿′ · 𝑐𝑜𝑠𝛼′ = ∆𝑇𝐿 

𝐹𝐿 · 𝑠𝑖𝑛𝛼 = 𝑀𝑇 = 𝐹𝐿′ · 𝑠𝑖𝑛𝛼′ 

𝐹𝐿 · 𝑠𝑖𝑛𝛼 = 𝐹𝐿′ · 𝑠𝑖𝑛𝛼′ 

𝐹𝐿

𝐹𝐿′
=

𝑠𝑖𝑛𝛼

𝑠𝑖𝑛𝛼′
   →   𝐹𝐿′ =

𝑠𝑖𝑛𝛼

𝑠𝑖𝑛𝛼′
· 𝐹𝐿 

𝐹𝐿 · 𝑐𝑜𝑠𝛼 −
𝑠𝑖𝑛𝛼

𝑠𝑖𝑛𝛼′
· 𝐹𝐿 · 𝑐𝑜𝑠𝛼′ =  ∆𝑇𝐿 

𝑐𝑜𝑠𝛼 −
𝑠𝑖𝑛𝛼

𝑠𝑖𝑛𝛼′
· 𝑐𝑜𝑠𝛼′ =

∆𝑇𝐿

𝐹𝐿
 

Where FL is the fascicle length at rest, FL’ is the fascicle length during contraction, 

α is the pennation angle at rest, α’ is the pennation angle during contraction, ΔTL is the 

tendon length change, MT is the muscle thickness (Fig. 3-4b). 

 

3-2-5 Statistics 

All the data are shown as means ± standard deviation (s.d.). At first, we assessed 

the test-retest reliability of the SWVs of TS muscles and aponeuroses using the 

intraclass correlation coefficient (ICC), standard error of measurement (SEM) and 

coefficient of variation (CV) (Hopkins, 2000).  

To test the site-, muscle- and level-dependent differences in SWVs and pennation 

angle of the TS, a three-way analysis of variance (ANOVA) [sites (proximal and distal), 

muscles (MG, LG, SOL-med, SOL-lat), levels (at rest, 20%, 40%, 60% of MVC)] was 

performed. If significant interactions and main effects were found, a one-way ANOVA 

with post hoc tests (Bonferroni) was used to compare the differences among muscles 

or contraction levels and a paired t-test was also used to compare the differences 
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between sites. 

To compare the site-, side- and level-dependent differences in SWVs of TS 

adjoining aponeuroses, a three-way ANOVA [sites (proximal and distal), sides (medial 

and lateral) and levels (at rest, 20%, 40%, 60% of MVC)] was used. In addition, to 

determine the direction-dependent differences in SWVs of the adjoining aponeuroses, 

a three-way ANOVA [directions (longitudinal and transverse), sides (medial and 

lateral) and levels (at rest, 20%, 40%, 60% of MVC)] was also used. If significant 

interactions and main effects were found, a one-way ANOVA with post hoc tests 

(Bonferroni) could be used to compare the differences among contraction levels and a 

paired t-test was used to compare the differences between sites, sides or directions. 

The average SWVs (in m/s) of MDA and LDA in the longitudinal and transverse 

directions during linear region (no significant increase) were calculated as aponeuroses 

stiffness and were compared by using a two-way ANOVA [directions (longitudinal and 

transverse) and sides (medial and lateral)]. If significant interactions and main effects 

were found, a paired t-test was also used to compare the differences between directions 

or sides. 

Finally, the Pearson product-moment correlation coefficient was used to test the 

relationship between relative changes of tendon length and SWVs of TS muscles and 

aponeuroses. 

All the statistical analyses were performed using SPSS Statistics 24.0 (IBM SPSS 

Statistics, SPSS Inc., Chicago, USA) and Origin 9.0 (OriginLab, Northampton, MA, 

USA). The significance level was set at p < 0.05. 
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3-3 Results 

3-3-1 Shear wave velocities of triceps surae muscles and aponeuroses 

Table 1 showed low SEM values (0.05 – 0.2 m/s) and high ICC values (0.84 – 

1.00) for TS muscles and aponeuroses at rest, indicating the high reproducibility of the 

SWVs of TS muscles and aponeuroses at rest. However, lower ICC values (lowest: 

0.34) could be shown in some cases during submaximal contractions.  

There existed no significant site × muscle × level interaction on SWVs of muscles, 

while we observed significant site × muscle, site × level and muscle × level interactions 

(p < 0.001), and the main effects of site, muscle and level remained significant (p < 

0.001). Only the SWVs of LG (3.2 – 9.1m/s) and SOL-lat (2.6 – 7m/s) at proximal site 

increased significantly from at rest to 60% of MVC levels. The SWV of soleus (4 – 

7m/s) showed significantly lower than that of gastrocnemii (5.2 – 9.1m/s) during 

submaximal contractions (p < 0.05). In addition, the SWV of proximal site was higher 

than distal site for MG and soleus during submaximal contractions (p < 0.05) (Table 3-

2). 

LPS showed significantly graded increase from at rest to 60% as LG and SOL-lat 

(p < 0.05). For the SWVs of adjoining aponeuroses, the values of distal site (5.2 – 7.8 

m/s) were significantly lower than that of the proximal site (6.7 – 9.7, p < 0.05) during 

submaximal contractions. SWV of LPA increased significantly from at rest to 40% of 

MVC, while MPA and LDA increased significantly from at rest to 20% of MVC (p < 

0.05) (Fig. 3-5a). Significant differences existing between aponeuroses SWV of 
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longitudinal and transverse directions in the lateral side could be observed during at rest 

and submaximal contractions (p < 0.05). However, in the medial side, there was no 

significant difference between longitudinal and transverse directions at 40% and 60% 

of MVC levels (Fig. 3-5a). During the linear region, significant differences between 

longitudinal and transverse SWVs were shown, and the longitudinal SWV of LDA was 

significantly higher than that of MDA (p < 0.05, Fig. 3-5b). 

 

3-3-2 Pennation angle of triceps surae muscles 

There was no significant site × muscle × level interaction on pennation angle of 

the TS, while we observed significant site × muscle and level × muscle interactions (p 

< 0.01). The main effects of muscles and levels were significant (p < 0.001). For the 

pennation angle of both MG and LG, significant changes occurred at 40% of MVC 

level. However, for the pennation angle of SOL-med and SOL-lat, significant changes 

happened at 20% of MVC level. The pennation angle of soleus was higher in 

comparison with gastrocnemii during submaximal contractions (p < 0.05, Table 3-3).   

Only the relative changes of SWVs of gastrocnemii and superficial aponeuroses 

were significantly correlated with the relative tendon length changes from at rest to 

submaximal contractions (r = 0.43 – 0.63, p < 0.01, Fig. 3-6a, b). 

 

3-4 Discussion 

The result showed inhomogeneous and anisotropic mechanical properties of the 

TS muscles and aponeuroses during submaximal muscle contractions. Clear non-linear 
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relationships between the stiffness of TS muscle-aponeurosis and muscle contraction 

levels except for proximal LG and SOL-lat muscle bellies and the superficial 

aponeuroses of LG were found. 

For the passive stiffness of the TS, the distal site (near to the muscle-tendon 

junction point) was stiffer than proximal site, whereas during submaximal contractions, 

muscles in the distal site became softer than the proximal site. Consequently, TS 

muscles in the proximal site stiffen more accompany with the increasing level of plantar 

flexion. As documented by previous studies, there is inhomogeneous (proximal-distal 

differences) activation and adaption within the quadriceps femoris (QF) (Blazevich et 

al., 2006; Ema et al., 2013; Maeo et al., 2017) during muscle contraction and/or after 

exercise training. Additionally, studies (Giordano and Segal, 2006; Segal and Song, 

2005) on the site-dependent activation of TS found that the proximal site of 

gastrocnemii and soleus activated higher than the distal site during calf-raising 

exercises or submaximal plantarflexions. Thus, higher stiffness of the TS at proximal 

site in the present study may be related to higher level of activation of muscles, but the 

reason for this different spatial activation within a muscle is still not clear, which need 

to be further investigated.  

Besides, similar results of site-dependent changes in aponeuroses stiffness could 

also be shown in the present study (Fig. 3-5a). Previously, the aponeuroses were 

reported to play an important role in extra-muscular myofascial force transmission 

(Huijing and Baan, 2001; Huijing et al., 2007; Maas and Sandercock, 2010) between 

adjacent muscles. During muscle contraction, an in vivo study (Lieber et al., 2000) on 
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the frog semitendinosus demonstrated that muscle activation can increase the 

aponeuroses stiffness, so the higher activation of the TS at the proximal site influenced 

the adjoining aponeuroses stiffness. In addition to site-dependent differences, we also 

compared directional differences of the adjoining aponeuroses stiffness during 

submaximal contractions. As shown in Fig. 3-5a, the stiffness in the longitudinal 

direction was higher than that in the transverse direction from at rest to submaximal 

contractions, especially the aponeuroses between LG and soleus. This anisotropic 

difference between longitudinal and transverse directions showed larger in the lateral 

side than the medial side. A previous study reported that the transverse aponeurosis 

stiffness of MG increased in rats (Holt et al., 2016), which was consistent with our 

findings of differences on medial-lateral anisotropy. Azizi and Roberts (2009) reported 

that the aponeuroses can be stretched 4 times greater in the transverse direction than the 

longitudinal direction during active force production, showing consistence with 

findings in the present study. Different from the free tendon, aponeuroses increase both 

in length and width under biaxial load to modulate the muscle shape changes (Arellano 

et al., 2016). However, the stiffness of aponeuroses (LDA and LDA-t) both increased 

and then kept at a constant level during submaximal contractions, while stiffness of 

MDA did not make any change. Different behaviors of aponeuroses between medial 

and lateral side during force production waited to be explored. 

Unexpectedly, significant non-linear relationships between SWVs of TS muscles 

and aponeuroses and levels of contractions were found except for LG and SOL-lat 

muscle bellies and LPS at proximal site. An in vitro study (Ettema and Huijing, 1994) 
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on gastrocnemius medialis (GM) muscle-tendon unit of the rat found a linear model for 

the force-stiffness relationship during isometric contractions. Additionally, previous in 

vivo studies proved that muscle shear modulus is linearly related to muscle torque not 

only during moderate-level (0-60% of MVC) isometric contractions (Bouillard et al., 

2012; Bouillard et al., 2011) but also during higher levels (0-100% of MVC) (Ateş et 

al., 2015). In our findings, even the synergists (LG, MG and SOL) behave differently, 

with the LG and SOL-lat showed graded increase of SWV while MG and SOL-med did 

not. For MG and SOL-med, rather than a linear relationship with contraction levels, the 

muscle stiffness kept increasing until reaching a certain contraction level and the reason 

may come from the influence from adjacent aponeuroses. A previous in vivo study 

(Iwanuma et al., 2011) documented that the strain of aponeurosis close to the Achilles 

tendon presents no differences at 30% MVC and 60% MVC in the longitudinal 

direction (1.1 and 1.6%), which was similar with our results, and this characteristics 

happened not only at distal site but also at proximal site for the TS aponeuroses. Another 

study (Arampatzis et al., 2007) found that the mechanical properties of the TS 

aponeurosis do not show a graded response to the intensity of sports activity, which just 

support our findings of aponeurosis behavior. Rehorn and Blemker (2010) reported that 

the muscle along-fiber stretch distribution can be influenced by morphological 

properties of the aponeurosis during stretching, suggesting the existence of muscle-

aponeurosis interaction within the muscle-tendon unit (MTU). As a result, due to the 

muscle-aponeurosis interaction during active muscle contraction, the neighboring 

muscles and aponeuroses showed similar changes (medial: non-linear, lateral: linear) 
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of mechanical properties in the present study.  

Our results of muscle architecture obtained in vivo suggest that the TS muscle 

architecture changes as a function of force development during isometric plantar flexion, 

yet the significant increase of pennation angle was only within a range of submaximal 

contraction levels. A previous study (Narici et al., 1996) reported that MG pennation 

angle increased (15.7-33.7 deg) from at rest to MVC, which is similar to the results of 

the present study (from at rest to 60% MVC: 17.3-24.9 deg). Besides, we only asked 

the participants to perform from at rest to 60% MVC to match the common activity 

levels in life. The following step for higher level of contractions can make us better 

understand the effect of intensive training on muscle architecture. Regarding to the 

relationships between SWV of TS muscles and aponeuroses and the relative length 

changes, only the SWV of superficial aponeuroses of gastrocnemii significantly 

increased in response to the relative tendon length changes during submaximal 

contractions. This indicate the superficial aponeuroses are more compliant than the 

adjoining aponeuroses in the longitudinal direction to accommodate the expansion of 

the contracting muscle belly (Purslow, 2003) (Fig. 3-7). 

 

3-5 Conclusion 

The results further indicate that the TS muscles and aponeuroses showed 

inhomogeneous and anisotropic mechanical properties during submaximal muscle 

contractions, and the stiffening effect of muscle belly possibly make influence on the 

mechanical properties of aponeuroses during muscle contractions. 
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Fig. 3-1 Locations of shear wave elastography transducer and typical maps of 

shear wave velocities of triceps surae muscles and aponeuroses. The irregular 

yellow shapes represent regions of interest (ROIs) to measure the shear wave velocity 

values of muscles and aponeuroses. 
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Fig. 3-2 Experimental protocol design. Participants first lay prone and stay at rest, 

then performed 2 maximal voluntary contractions (MVC) after warm-up, next, 2 

cycles of submaximal contractions (20%, 40%, 60% of MVC) were conducted. The 

torque was collected during the whole process, while the ultrasound shear wave 

elastography (SWE) was used to measure triceps surae muscles and aponeuroses during 

at rest and submaximal contractions period.     
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Fig. 3-3 Typical data analysis process to synchronize torque signal and ultrasound 

shear wave imaging. 
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Fig. 3-4 Typical ultrasound images of gastrocnemii and soleus (a) and schematic 

diagram showing the relative tendon length change arising from a change in 

penneation angle (b). The yellow lines represent gastrocnemii fascicles, the orange 

lines represent the adjoining aponeuroses between gastrocnemii and soleus, the white 

lines represent soleus fascicles. The pennation angle was averaged for gastrocnemii (φ1 

and φ2) and soleus (θ1 and θ2).  
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Fig. 3-5 The shear wave velocities (mean ± s.d.) of triceps surae aponeuroses 

between different sites and directions plotted with the different relative isometric 

contraction levels (% MVC torque) (a) and the averaged shear wave velocity of 

the adjoining aponeuroses in the linear region between longitudinal and 

transverse directions (b). a, vs. at rest; b, vs. 20%; c, vs. 40%; #, vs. proximal site; *, 

vs. medial side; †, vs. longitudinal direction  
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Fig. 3-6 Shear wave velocity / relative isometric plantar flexion torque (% of MVC) 

relationship for triceps surae muscles and aponeuroses. 
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Fig. 3-7 Simulated model of triceps surae muscle-aponeuroses-tendon unit. 
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Table. 3-1 Reproducibility for shear wave velocities of triceps surae muscles and aponeuroses at different contraction levels  

   
At rest  20%  40%  60% 

Direction Site 
  

CV 

(%) 

SEM 

(m/s) 
ICC   

CV 

(%) 

SEM 

(m/s) 
ICC   

CV 

(%) 

SEM 

(m/s) 
ICC   

CV 

(%) 

SEM 

(m/s) 
ICC 

Longitudinal  Proximal 

MPS 1.57 0.05 1.00  11.85 0.83 0.71  7.16 0.63 0.88  4.33 0.42 0.95 

MG 2.42 0.06 0.98  10.62 0.7 0.48  7.06 0.68 0.47  5.22 0.38 0.84 

MPA 4.3 0.18 0.95  4.63 0.33 0.96  6.24 0.44 0.94  6.12 0.44 0.97 

SOL-med 3.23 0.1 0.97  8.55 0.52 0.8  10.32 0.63 0.87  7.2 0.48 0.82 

   
               

Longitudinal  Proximal 

LPS 1.93 0.06 0.99  11.67 0.86 0.75  8.72 0.68 0.89  9.26 0.98 0.51 

LG 2.24 0.07 0.98  9.7 0.73 0.73  10.62 0.77 0.68  5.99 0.65 0.37 

LPA 2.72 0.08 0.96  8.83 0.6 0.7  5.28 0.37 0.92  6.97 0.57 0.91 

SOL-lat 2.89 0.07 0.96  6.97 0.29 0.86  6.98 0.43 0.62  8.02 0.61 0.63 

   
               

Longitudinal Distal 

MG 1.81 0.06 0.99  5.26 0.31 0.86  4.88 0.25 0.95  7.69 0.42 0.83 

MDA 3.92 0.18 0.98  15.23 0.78 0.73  14.72 0.68 0.87  11.88 0.55 0.86 

SOL-med 3.74 0.14 0.96  17.82 0.71 0.41  14.03 0.6 0.68  14.93 0.63 0.74 

   
               

Transverse Distal MDA-t 3.99 0.08 0.98  11.98 0.52 0.68  18.17 0.79 0.34  13.62 0.58 0.82 

   
               

Longitudinal Distal 

LG 3.28 0.15 0.97  8.72 0.54 0.9  6.53 0.49 0.93  9.42 0.86 0.75 

LDA 2.72 0.14 0.97  7.66 0.53 0.9  8.61 0.55 0.93  8.07 0.66 0.84 

SOL-lat 5.23 0.19 0.84  8.21 0.47 0.75  14.6 0.9 0.42  11.24 0.65 0.65 

   
               

Transverse Distal LDA-t 7.37 0.2 0.93   10.16 0.45 0.63   11.4 0.45 0.71   11.21 0.53 0.57 

CV, coefficient of variation; SEM, standard error of measurement; ICC, Intraclass correlation coefficient 
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Table. 3-2 Shear wave velocities (mean ± s.d.) of the triceps surae at rest and during 

submaximal contraction levels 

Muscle 
Contraction 

level 
Shear wave velocity (m/s) 

Proximal Distal 

MG 

at rest 
3.3±0.5   

3.7±0.8   

20% 6.4±0.8 a 5.2±0.8 a, # 
40% 7.6±0.8 a, b 6±1.1 a, # 
60% 8.3±0.9 a, b 6.3±1 a, b, #  

LG 

at rest 
3.2±0.4   

4.3±0.8 #  
20% 5.4±1.3 a 7.1±1.6 a, Ⅰ, #  
40% 7.4±1.2 a, b 7.6±1.9 a, Ⅰ 
60% 9.1±0.6 a, b, c 8.7±1.5 a, Ⅰ  

SOL-med 

at rest 
3.1±0.5   

3.8±0.8 #  
20% 5.3±1.1 a 4±0.7 Ⅱ 
40% 6±1.9 a, Ⅰ, Ⅱ 4±1 Ⅰ, Ⅱ, # 
60% 7±1.1 a, b, Ⅰ, Ⅱ 4±1.1 Ⅰ, Ⅱ, #  

SOL-lat 

at rest 2.6±0.4 Ⅰ, Ⅱ 3.7±0.4 # 
20% 5±0.7 a, Ⅰ 5.4±0.9 a, Ⅱ, Ⅲ 
40% 5.7±0.7 a, Ⅰ, Ⅱ 5±1 a, Ⅱ  
60% 7±0.8 a, b, c, Ⅰ, Ⅱ 5.7±1 a, Ⅱ, Ⅲ, # 

Note: a, vs. at rest; b, vs. 20%; c, vs. 40%; Ⅰ, vs. MG; Ⅱ , vs. LG; Ⅲ, vs. SOL-med; #, vs. 

proximal site; p < 0.05  
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Table. 3-3 Pennation angle (mean ± s.d.) of the triceps surae at rest and during submaximal 

contraction levels  

 Contraction level 
Pennation angle (°) 

  Proximal Distal 

MG 

at rest 18.4±2   17.3±2.3   

20% 21.3±2.5  19.1±2.5  
40% 23.8±3.4 a 21.3±2.8 a 

60% 24.9±3.7 a, b  22.2±3.2 a, b  

LG 

at rest 15.6±2.2   15.1±2.1   

20% 16.6±2.3 Ⅰ 16.2±1.9  
40% 18.9±1.2 a, Ⅰ 17.7±2.1 a 

60% 20.6±2.2 a, b, Ⅰ  18.6±2.5 a, b  

SOL-med 

at rest 21.1±4.7 Ⅱ  25.7±3.8 Ⅰ, Ⅱ  

20% 26.4±4.4 Ⅰ, Ⅱ 28.3±2.9 Ⅰ, Ⅱ 

40% 29.7±4.9 a, Ⅰ, Ⅱ 30.7±2.1 a, Ⅰ, Ⅱ 

60% 29.1±4.8 a, Ⅰ, Ⅱ 31.5±2.6 a, Ⅰ, Ⅱ 

SOL-lat 

at rest 21.2±3 Ⅱ  22.7±3 Ⅰ, Ⅱ 

20% 27.1±3.6 a, Ⅰ, Ⅱ 28.1±2.8 a, Ⅰ, Ⅱ 

40% 29.2±3.6 a, Ⅰ, Ⅱ 30.3±3.5 a, Ⅰ, Ⅱ 

60% 30.9±3.2 a, Ⅰ, Ⅱ  31.6±2.8 a, Ⅰ, Ⅱ  

Note: a, vs. at rest; b, vs. 20%; Ⅰ, vs. MG; Ⅱ , vs. LG; p < 0.05  
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CHAPTER 4 Inhomogeneous and anisotropic mechanical properties of the triceps 

surae aponeuroses in older adults: correlations with muscle strength and walking 

performance 

 

4-1 Introduction 

The main function of TS muscle-tendon unit is plantar flexion, which is closely 

related to human bipedal walking performance. Since the changes of aponeurosis 

mechanical properties during different levels of plantar flexion have been investigated 

in chapter 3, it becomes necessary to clarify the relationships between aponeurosis 

mechanical properties and muscle strength and walking performance. Walking 

performance is of major importance to human physical activity, especially for the 

elderly (Valenti et al., 2016). Previous studies (Bendall et al., 1989; Himann et al., 1988; 

Song and Geyer, 2018) reported a decline in walking speed over the aging process, 

which was associated with deteriorated quality of living in the elderly. The TS work as 

the major agonist for stabilizing the body while thrusting it forward (Bassey et al., 1988) 

during human walking. In addition, spring-like behavior of tendinous tissues (i.e., 

tendon and aponeurosis) of these muscles also contributes to the maintenance of 

walking speed by storing and releasing elastic energy (Franz and Thelen, 2016; 

Fukunaga et al., 2001; Hof et al., 2002). The matching of muscle fibers as force 

generators and tendinous tissues as elastic springs can influence walking performance 

(Stenroth et al., 2017). However, it is unknown whether enlargement of inter-individual 

variability of walking ability in the elderly is attributable to the changes in muscle 

strength or tendinous tissue, or both. In chapter 3, different behavior between medial 
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and lateral side of TS muscles and aponeuroses were found, and aponeuroses stiffness 

showed inhomogeneous and anisotropic during submaximal muscle contractions. 

Variations and direction-dependent differences (anisotropy) of mechanical properties 

of aponeuroses have been confirmed in chapter 2, but anisotropic features of 

aponeurosis dimensions and mechanical property have not been confirmed in vivo, 

especially in the elderly. Besides, the extent to which free tendon and aponeuroses 

mechanical properties contribute to walking performance in the elderly is not clear to 

date. In the present study, we sought to investigate the site- and direction-dependent 

variations of TS aponeuroses stiffness in vivo using SWE, and examined correlations 

between aponeuroses’ stiffness and muscle strength and walking performance in the 

elderly. 

 

4-2 Material and methods 

4-2-1 Subjects 

Seventy-nine healthy older adults (38 males and 41 females, age 73 ± 5 years, 

height 158.8 ± 9.0 cm, body mass 58.1 ± 9.5 kg; mean ± s.d.) participated in this study. 

All participants provided written-informed consent prior to the study. This study was 

approved by the Institutional Research Ethics Committee and was carried out in 

accordance with the Declaration of Helsinki. 

 

4-2-2 Elastography measurements 

The participants lay prone on an examination table with the feet off the edge of the 
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table, keeping fully relaxed in a neutral position (i.e., knee fully extended, ankle at 90° 

with neutral rotation). The right lower leg was chosen for the measurement. The SSI 

measurement of TS aponeuroses was performed using an Aixplorer ultrasound scanner 

(Version 6.4, Supersonic Imagine, Aix-en-Provence, France) with constant settings 

(pre-set, MSK; persistence, high; smoothing, 9). A linear transducer (L15-4, Aixplorer, 

Supersonic Imagine, Aix-en-Provence, France) was used to locate TS aponeuroses from 

the proximal (corresponding to the level of 30% of lower leg length) and distal (the 

distal end of gastrocnemii) sites. On the proximal site, superficial aponeurosis of MG 

and LG (MPS and LPS) and adjoining aponeuroses of gastrocnemii and soleus (MPA 

and LPA) were collected. On the distal site, adjoining aponeuroses of gastrocnemii and 

soleus (MDA and LDA) were collected (Fig. 4-1). The transducer was placed parallel 

(longitudinal) to the muscle’s line of action to each site and at least 5s of shear wave 

data were collected for each scanning location. In addition, at the distal site of adjoining 

aponeuroses of medial gastrocnemius and soleus (MDA), the transducer was rotated 

(90°) from parallel to perpendicular (transverse) to the muscle’s line of action to acquire 

a transverse view of the adjoining aponeuroses (MDA-t, Fig. 4-1). All ultrasound 

measurements were performed by an experienced examiner. 

 

4-2-3 MRI measurement 

T1-weighted gradient-echo transaxial cross-sectional images of the right lower leg 

were collected using a 1.5T magnetic resonance imaging (MRI) scanner (Signa EX-

CITE, GE Medical Systems, USA). The scan parameters were as follows: echo time, 
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3.332 ms; repetition time, 7.816 ms; slice thickness, 4 mm; gap, 0mm; matrix size, 288 

× 288; pixel bandwidth, 122Hz; field of view, 100 mm. Subjects were asked to lie on 

the magnet bore in a supine position with both legs fully extended and relaxed during 

the test. The MR images were exported to a computer, and an image at the 30% length 

of right lower leg level was selected to measure the cross-sectional area (CSA) of MG, 

LG and SOL with a software (ImageJ, National Institutes of Health, USA) (Saito et al., 

2016). CSA of the TS was defined as the sum of CSA of MG, LG and SOL (Fig. 4-2). 

 

4-2-4 Muscle strength and walking performance protocol 

Isometric plantar flexion torque on the right leg was measured with a custom-made 

dynamometer (VTE, VINE, Japan) in a seated position, and the footplate was adjusted 

to make sure the knee was fully extended and the ankle at approximate neutral position. 

The thigh and ankle of each participant were secured with a broad strap and three 

practice trials were performed in accordance with careful instruction, and then at least 

two maximal voluntary contractions (MVC) of plantar flexion were conducted. In the 

case of ≥10% variation between the two MVC trials, he or she was asked to perform 

further trials interspersed with sufficient recovery until the two best values fell within 

the range of 10%. The best value of the two was then used for further analysis. 

The walking trials were conducted on an over 10 m expanse of floor, on which 

two infrared velocimeters were set at 5 m distance to measure walking speed. Several 

meters were provided for participants to accelerate and decelerate before and after the 

5 m test distance. The participants were asked to walk in normal (comfortable) and fast 
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(as fast as they could safely without running) speed twice, respectively. 

 

4-2-5 Data processing 

Plantar flexion torque was normalized to CSA of the TS for each subject. Shear 

wave data were exported from the machine, Young’s modulus was analyzed with a 

customized code of Matlab (Mathworks, Natick, MA, USA) and the shear wave 

velocity was calculated from Young’s modulus (equation 4-1). 

                                        𝜌𝑐2 = 𝜇 = 𝐸/2 (1 + 𝜈)         (4-1) 

Where μ is the shear modulus, ρ is the tissue density, c is the shear wave velocity, 

E is Young’s modulus, ν is the Poisson’s ratio, and the Poisson’s ratio ν ≈ 0.5 for the 

connective tissue (Vergari et al., 2011). Strictly, SWV measurement of the fascial 

structures included the surface acoustic wave signals from the thin layer of the soft 

tissues, but in the present study we defined our measurements as SWV according to our 

preceding study (Shiotani et al., 2019). 

 

4-2-6 Statistical analysis 

All data are shown as means ± standard deviations (s.d.). An independent sample 

t-test was used to examine gender differences in the subject characteristics, that is, CSA 

of the TS, SWVs of TS aponeuroses, MVC of plantarflexion torque and walking speed. 

Differences in SWVs of TS aponeuroses were examined with two-way analysis of 

variance (ANOVA) [sides (medial and lateral) × sites (superficial of gastrocnemii, 

proximal and distal sites of adjoining aponeuroses between gastrocnemii and soleus)]. 



80 

 

A post-hoc test with Bonferroni corrections was performed where appropriate. Eta 

squared (η2) or Partial eta squared (ηp
2) were calculated as an index of effect size 

(Levine and Hullett, 2002).  

A paired t-test was used to test the differences in SWVs of aponeuroses between 

longitudinal and transverse directions, and Cohen’s d was calculated as an index of 

effect size.  

Pearson product-moment correlation was used to examine the relationships of 

SWVs between longitudinal and transverse directions, walking speed and CSAs of MG, 

LG and SOL, walking speed and plantar flexion torque, SWVs of TS aponeuroses and 

CSAs of MG, LG and SOL, normalized plantar flexion torque and SWVs of 

aponeuroses, walking speed and SWVs of aponeuroses. All the statistical analyses were 

performed using SPSS Statistics 24.0 (IBM SPSS Statistics, SPSS Inc., Chicago, USA) 

and Origin 9.0 (OriginLab, Northampton, MA, USA). The statistical significance level 

was set at p < 0.05. 

 

4-3 Results 

There were no significant differences in age, SWVs of adjoining aponeuroses and 

normal walking speed between elderly male and female individuals, while the males 

were taller, heavier, leaner, had larger TS and greater plantar flexion strength, and 

walked faster during fast walking than the females (p < 0.05, Table. 4-1). 

Significant side × site interaction was observed (p = 0.021, ηp
2 = 0.016: small), 

and main effects of side (p < 0.001, ηp
2 = 0.328: large) and site (p < 0.001, ηp

2 = 0.187: 
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medium) were both significant for the SWVs of aponeuroses (Fig. 4-3). The values 

were significantly higher in the medial side (4.8 – 6.4 m/s) when compared to the lateral 

side (3.3 – 4.6 m/s, p < 0.05), and SWVs of adjoining aponeuroses were significantly 

higher than those of gastrocnemii superficial aponeuroses (Fig. 4-3). 

Aponeurosis passive SWV was highly variable in the longitudinal (CV, 27.8%) 

and transverse directions (CV, 33.9%). SWV in the transverse direction (3.4 ± 1.2 m/s) 

was 1.9-fold lower than the longitudinal direction (6.4 ± 1.8 m/s, p < 0.001, d = 1.73: 

large, Fig. 4-4a). There was significant relationship between longitudinal SWV and 

transverse SWV in both males (r = 0.36, p < 0.05) and females (r = 0.39, p < 0.05, Fig. 

4-4b). 

There was no significant relationship between aponeurosis SWV and CSA of MG, 

LG and SOL either in males or females, or in any sites. CSA of LG in males and plantar 

flexion torque were significantly correlated to fast walking speed (r = 0.33 and 0.27, p 

< 0.05, Fig. 4-5b, d). SWVs of the adjoining aponeuroses between gastrocnemii and 

soleus were significantly correlated with normalized plantar flexion torque (r = 0.26-

0.29, p < 0.05, Table. 4-2), while SWV of the adjoining aponeurosis between MG and 

soleus was significantly correlated with normal and fast walking speed (r = 0.25-0.26, 

p < 0.05), especially in females (r = 0.33-0.37, p < 0.05, Table. 4-2).  

 

4-4 Discussion 

The novel finding was that we confirmed the anisotropic mechanical properties of 

aponeurosis in the elderly in vivo, with considerable inter-individual variability of 
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aponeurosis stiffness. Nonetheless, the inter-individual variability of TS aponeuroses 

stiffness was associated with the inter-individual variability of muscle strength and 

walking performance in the elderly.  

The TS muscle-tendon unit plays a considerable role in propelling forces to human 

locomotion, i.e. walking and running (Hof et al., 2002). Changes of muscle mass were 

shown to be related to muscle strength loss and functional physical performance in older 

adults (Hughes et al., 2001). As a serial connection part between muscle and tendon 

(Blitz and Eliot, 2007), the aponeurosis can act as a mechanical interface between 

muscle and tendon. The present study showed highly variable SWV of the TS 

aponeuroses, and the stiffness of adjoining aponeuroses between the gastrocnemii and 

soleus was found to be positively correlated with walking speed, especially in females. 

This finding strongly suggests that the aponeurosis elasticity can be a limiting factor to 

walking performance in the elderly. Together with the result of the relationship between 

muscle CSA and walking speed, it may be assumed that reduction in muscle size / 

strength (mostly in males) and softening of the aponeuroses (mostly in females) of the 

TS muscle-tendon unit lead to slowing of walking speed. No significant correlation 

between muscle size and aponeurosis SWV in any of the TS suggests no direct 

association of muscle atrophy and aponeurosis elasticity, but this notion needs further 

studies on larger samples including young populations.  

Site-dependent differences were observed in the SWVs of adjoining aponeuroses 

between gastrocnemius and soleus and the superficial aponeurosis of gastrocnemius in 

the elderly, which is consistent with findings of mechanical properties of TS 
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aponeuroses taken from elderly cadavers (Shan et al., 2019). Blitz and Eliot (2007) 

reported that there is tendinous connection between the adjoining aponeuroses, which 

may be the reason of higher SWVs of the adjoining aponeuroses. A weak correlation 

between tendon thickness, depth and SWV was documented (DeWall et al., 2014), and 

Shan and others (2019) found the different thickness distribution of TS aponeuroses 

between different regions, this could also be a factor for the differences between 

superficial and deep aponeurosis. As the attachments of both gastrocnemius and soleus 

fibers, the adjoining aponeuroses showed higher SWV in the distal site than in the 

proximal site. The adjoining aponeuroses may undergo unique localized muscle-

aponeurosis interactions from both gastrocnemii and soleus. In addition to the 

differences between proximal and distal sites, we found that the SWV of the medial 

side was higher than that of the lateral side of aponeuroses, which was consistent with 

a previous study (DeWall et al., 2014) on the Achilles tendon and aponeuroses. They 

explained that the differences may arise from greater intrinsic tissue stiffness or higher 

passive tension in the medial side. In the TS, MG was characterized by larger 

physiological CSA and higher fascicle angles with shorter fascicle lengths than LG 

(Kawakami et al., 1998). As an attachment base of muscle fibers, the aponeurosis might 

adapt to different medial-lateral fascicular architecture, leading to different elastic 

properties. 

Consistent with our hypothesis, our results showed that the SWVs of aponeuroses 

was biaxially anisotropic in vivo, which was similar to previous results (Azizi et al., 

2009; Shan et al., 2019). Higher SWVs of the adjoining MG and soleus aponeuroses in 
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the longitudinal direction, would allow them to act more efficiently as springs within 

the muscle-tendon unit, whilst higher compliance in the transverse direction, possibly 

accommodates the expansion of the contracting muscle belly. The aponeurosis stiffness 

in the transverse direction was not related to either walking performance or triceps surae 

CSA, unlike the aponeurosis stiffness in the longitudinal direction. It seems that the 

aponeurosis stiffness anisotropy is not muscle size- or function-dependent. However, 

changes in stiffness of longitudinal and transverse directions with contraction have been 

observed (Azizi and Roberts, 2009), and this can affect strength development and/or 

walking performance, which warrants further investigation. 

 

4-5 Conclusions 

The mechanical properties of TS aponeuroses demonstrate spatial variations and 

anisotropy in vivo, and the anisotropy is not muscle size dependent. The mechanical 

properties of adjoining aponeuroses were correlated with walking performance in the 

elderly together with the TS’s force generating capacity. 
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Fig. 4-1 Participants were asked to lie on the examination table with the feet off 

the edge keeping fully relaxed in a neutral position. Young’s modulus data was 

measured in aponeuroses [superficial aponeuroses of MG and LG at proximal site (MPS 

and LPS), adjoining aponeuroses of gastrocnemius and soleus at proximal site (MPA 

and LPA), adjoining aponeuroses of gastrocnemius and soleus at distal site (MDA and 

LDA), and transverse direction of MDA (MDA-t)]. Regions of interest (ROIs) were 

determined as the yellow outlines. 
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Fig. 4-2 MRI of the lower leg muscle cross-sectional area (CSA) at proximal 30% 

of lower leg length level showing the process of tracing of medial gastrocnemius 

(MG), lateral gastrocnemius (LG) and soleus (SOL) muscles.   
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Fig. 4-3 Average (± s.d.) shear wave velocity of triceps surae aponeuroses at rest. 

#, different between medial and lateral side; Ⅰ, different from superficial aponeurosis (p 

< 0.05); Ⅱ, different from proximal adjoining aponeurosis (p < 0.05).    
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Fig. 4-4 Shear wave velocity of adjoining aponeuroses between MG and soleus 

along longitudinal and transverse directions (a), and the correlation of shear wave 

velocity between longitudinal and transverse directions (b). *, vs. transverse 

direction, p < 0.01. 
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Fig. 4-5 The correlations between walking speed and cross-sectional area (CSA) of 

medial gastrocnemius (a), lateral gastrocnemius (b), soleus (c) and plantar flexion 

torque (d).  

  

(Fast walking-male) 

(Fast walking-male & female) 
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Table 4-1. Subject characteristics (mean ± s.d.) 

  Male (n = 38)   Female (n = 41) Total (n = 79) 

Age (years) 72.8 ± 4.8  73.0 ± 6.0 72.9 ± 5.4 

Height (cm) 166.4 ± 4.8  151.7 ± 5.4 a 158.8 ± 9.0 

Body mass (kg) 64.3 ± 6.7  52.3 ± 8.0 a 58.1 ± 9.5 

Body fat (%) 20.0 ± 6.1  29.6 ± 8.0 a 25.0 ± 8.6 

Cross-sectional area of the triceps surae (cm2)      
    MG 45.8 ± 9.1  36.8 ± 6.5 a 41.1 ± 9.0 

    LG 29.2 ± 5.6  21.8 ± 4.8 a 25.4 ± 6.3 

    SOL 65.5 ± 10.8  51.0 ± 9.2 a 58.0 ± 12.3 

Shear wave velocities of triceps surae aponeuroses (m/s)      
    MPS 5.1 ± 1.3  4.5 ± 1.2 a 4.8 ± 1.3 

    MPA 5.6 ± 1.3  5.2 ± 1.1  5.4 ± 1.2 

    MDA 6.6 ± 1.6  6.2 ± 1.9  6.4 ± 1.8 

    MDA-t 3.1 ± 1.2  3.7 ± 1.1 a 3.4 ± 1.8 

    LPS 3.5 ± 0.9  3.5 ± 1.0  3.5 ± 1.0 

    LPA 3.4 ± 1.0  3.3 ± 0.7  3.3 ± 0.8 

    LDA 4.8 ± 1.2  4.4 ± 1.1  4.6 ± 1.1 

MVC of Plantar flexion torque (Nm) 127.2 ± 24.2  83.6 ± 16.8 a 104.3 ± 30.0 

Walking speed (m/s)      
    Normal 1.52 ± 0.16  1.53 ± 0.21 1.52 ± 0.19 

    Fast 2.10 ± 0.24   1.97 ± 0.27 a 2.03 ± 0.26 

Note: MG = medial gastrocnemius, LG = lateral gastrocnemius, SOL = soleus, MPS = medial proximal 

superficial aponeurosis, MPA = medial proximal adjoining aponeuroses, MDA = medial distal adjoining 

aponeuroses, MDA-t = medial distal adjoining aponeuroses in the transverse direction, LPS = lateral 

proximal superficial aponeurosis, LPA = lateral proximal adjoining aponeuroses, LDA = lateral distal 

adjoining aponeuroses, MVC = maximal voluntary contraction. 
a: significantly different from male, p < 0.05 
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Table 4-2. Pearson correlation coefficients (r) for the relation of normalized plantar flexion torque, normal walking speed and fast walking speed with the 

shear wave velocities of triceps surae aponeuroses in older adults.  

  Normalized plantar flexion torque (Nm/cm2)  Normal walking speed (m/s)  Fast walking speed (m/s) 

  

Male 

(n=38) Female (n=41) Total (n=79)  Male (n=38) Female (n=41) Total (n=79)  Male (n=38) Female (n=41) Total (n=79) 

  r p r p r p  r p r p r p  r p r p r p 

Shear wave 

velocities of 

triceps surae 

aponeuroses 

(m/s) 

MPS 0.31 0.066 -0.09 0.579 0.21 0.067  0.13 0.453 0.13 0.411 0.12 0.296  0.25 0.125 0.23 0.151 0.28* 0.012 

MPA 0.27 0.108 0.23 0.158 0.29* 0.009  -0.13 0.451 0.03 0.866 -0.05 0.691  -0.09 0.600 0.10 0.525 0.05 0.685 

MDA 0.18 0.299 0.02 0.91 0.14 0.23  0.14 0.404 0.33* 0.032 0.26* 0.022  0.02 0.894 0.37* 0.017 0.25* 0.028 

MDA-t 0.16 0.342 0.01 0.929 -0.02 0.879  0.22 0.192 0.09 0.561 0.15 0.203  0.32 0.055 0.27 0.093 0.21 0.059 

                     

LPS 0.31 0.059 -0.15 0.35 0.07 0.54  0.27 0.105 -0.13 0.424 0.02 0.841  0.21 0.213 -0.02 0.906 0.07 0.528 

LPA 0.35* 0.031 0.05 0.768 0.26* 0.024  0.24 0.152 -0.12 0.47 0.05 0.638  0.19 0.255 -0.01 0.936 0.11 0.323 

LDA 0.30 0.085 0.1 0.557 0.26* 0.025  0.09 0.587 -0.1 0.543 -0.02 0.874  -0.08 0.643 -0.04 0.793 -0.018 0.88 

Note: MPS = medial proximal superficial aponeurosis, MPA = medial proximal adjoining aponeuroses, MDA = medial distal adjoining aponeuroses, MDA-t = 

medial distal adjoining aponeuroses in the transverse direction, LPS = lateral proximal superficial aponeurosis, LPA = lateral proximal adjoining aponeuroses, LDA 

= lateral distal adjoining aponeuroses.  

*: Correlation is significant at the 0.05 level (2-tailed). 
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CHAPTER 5 General discussion 

 

5-1 Main findings of each chapter 

The main findings of each chapter are as follows. 

Chapter 2 

1. In each region of the TS aponeuroses, except for the anterior regions of soleus, the 

thickness distributed inhomogeneously from the proximal to distal sites. 

2. Site-dependent differences of stiffness within the gastrocnemius aponeurosis were 

shown. On the other hand, the Young’s modulus did not show site-dependent 

differences in any regions, although there were tendencies in the values being 

smaller around terminations of both anterior and posterior aponeuroses of the 

gastrocnemius. 

3. Compared to other regions of gastrocnemii and soleus, thinner thickness but higher 

Young’s modulus in the anterior region of GL aponeurosis (longitudinal) and 

posterior region of SOL-lat aponeurosis (transverse) was found. 

4. The medial-lateral differences in thickness and Young’s modulus may reflect 

different muscle-aponeurosis interaction between synergist muscles (GM, GL and 

soleus), which affects the muscle force transmission to the tendon differently, and 

contributes differently to the limb movement control between medial and lateral 

side. 

5. The stiffness and Young’s modulus in the transverse direction were much smaller 

(<1%) than the values in the longitudinal direction, regardless of regions. 
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6. The energy dissipation along longitudinal and transverse directions was different, 

with the former being smaller than the latter. 

 

Chapter 3 

1. For the passive stiffness of the TS, the distal site (near to the muscle-tendon junction 

point) was stiffer than proximal site, whereas during submaximal contractions, 

muscles in the distal site became softer than the proximal site. 

2. The stiffness in the longitudinal direction was higher than that in the transverse 

direction from at rest to submaximal contractions, especially the aponeuroses 

between LG and soleus. 

3. Significant non-linear relationships between SWVs of TS muscles and aponeuroses 

and levels of contractions were found except for LG and SOL-lat muscle bellies and 

LPS at proximal site. 

 

Chapter 4 

1. The present study showed highly variable SWV of the TS aponeuroses, and the 

stiffness of adjoining aponeuroses between the gastrocnemii and soleus was found 

to be positively correlated with walking speed, especially in females. 

2. Site-dependent differences were observed in the SWVs of adjoining aponeuroses 

between gastrocnemius and soleus and the superficial aponeurosis of gastrocnemius 

in the elderly. 

3. The results showed that the SWVs of aponeuroses was biaxially anisotropic in vivo, 
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and SWVs of the adjoining MG and soleus aponeuroses in the longitudinal direction 

were higher than that of the adjoining LG and soleus aponeuroses. 

 

5-2 Generalization of the findings: site- and direction-dependence 

Within the human muscle-tendon unit, a large part of the tendinous tissues is 

aponeuroses which located on the surface regions of muscle. And the aponeurosis’s 

shape is much more complicated than the free tendon. This thesis proved the 

inhomogeneous and anisotropic features in the morphology and mechanical properties 

of the human TS aponeuroses by both cadaveric and in vivo studies.  

In chapter 2, thinner thickness and higher Young’s modulus was found in the 

adjoining aponeuroses (anterior region of LG and posterior region of soleus), which is 

different with the superficial (posterior) region of LG. However, such findings were not 

found in any other region of MG and SOL-med, which indicate the medial-lateral 

differences of aponeurosis morphology and mechanical property may affect the muscle-

aponeurosis interaction between synergist muscles. According to the findings of chapter 

3, the superficial region of aponeuroses in the lateral side showed significant increase 

of stiffness while the adjoining aponeuroses stiffness kept constant from 20% to 60% 

MVC level. It indicates that the superficial regions of gastrocnemii aponeuroses are 

more compliant to modulate the shape changes while the adjoining aponeuroses are 

stiffer and can transmit the forces from muscle fibers to the tendon more efficiently 

during contraction. Besides to the site-dependent differences among different regions 

of gastrocnemii and soleus, in vivo studies found the site-dependent differences from 
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proximal to distal site of the adjoining aponeuroses SWVs for both younger and older 

adults. Since the thickness from proximal to distal site is found to get thicker in 

cadaveric study (Shan et al., 2019), this thickness distribution could be a factor for the 

differences of SWV in vivo (DeWall et al., 2014).  

Cadaveric study found no site-dependent differences (proximal to distal) in 

Young’s modulus of the aponeuroses, but the SWV showed significant site-dependent 

differences for the adjoining aponeuroses. Previous study found that the SWV is 

correlated with the tissue elastic modulus (Royer et al., 2011), which suggest the 

difference of inherent aponeuroses elasticity, while the inter-individual variabilities of 

the cadaver aponeuroses were possibly too large. Muramatsu et al. (2001) reported that 

there was no significant difference in strain between the proximal and distal 

aponeuroses during submaximal muscle contractions (10% to 90% of MVC). On the 

other hand, another study reported that the elongation of the aponeurosis is 

heterogeneously distributed along its length (Zuurbier et al., 1994), which is consistent 

with the results in chapter 3: it showed significant differences between proximal and 

distal site during 20% to 60% of MVC contractions. Since the aponeurosis bears biaxial 

loading during muscle contraction, even though the elongations of aponeuroses along 

the longitudinal direction were similar, the deformation of aponeuroses shape may be 

different in the other direction between proximal and distal sites. 

The calf strain, especially the medial gastrocnemius strain occurs most commonly 

among both athletes and non-athletes (Hsu et al., 2018). Previous study reported that 

medial gastrocnemius is injured more commonly than lateral gastrocnemius, the reason 
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is proved to be higher muscle activity in the medial side (Cibulka et al., 2017). This is 

related to the medial-lateral differences of aponeurosis mechanical properties of this 

thesis. As the strain happens when the muscle belly is stretched maximally, stiffer 

aponeurosis in the medial side make the medial gastrocnemius not more compliant than 

the lateral side, which leads to MG strain happen more frequently. This notion should 

be clarified in the further clinic-related studies. 

Regarding to the direction-dependent differences, the human aponeuroses have 

been further proved to be anisotropic by this thesis. The findings of chapter 2 are 

consistent with the features of animal aponeurosis (Azizi and Roberts, 2009), and the 

in vivo findings of chapter 3 and 4 are consistent with the results of human fascia 

(Otsuka et al., 2019) and aponeurosis (Iwanuma et al., 2011). The aponeuroses are more 

compliant in the transverse direction to accommodate the expansion of the contracting 

muscle belly, while higher Young’s modulus and/or SWV in the longitudinal direction 

may help to act as a mechanical spring within the muscle-tendon unit. This anisotropy 

feature allows aponeurosis bear biaxial loading comparing to uniaxial loading of the 

free tendon during contraction. As the aponeurosis helps to transmit the forces from 

muscle fibers to the free tendon, this transmission could be affected by anisotropy of 

aponeurosis during contraction.  

 

5-3 Applicability of the findings 

5-3-1 Implications for muscle-aponeurosis interaction during contraction 

A previous study stated that the elastic mechanism (e.g. energy conservation vs. 
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power amplification) of biological springy tissues (such as tendinous tissue) is 

important for the effective function of muscle-tendon complex to enhance movement 

(Roberts and Azizi, 2011), since such a mechanism will allow the locomotor system to 

operate by not only the muscle motors but by the interactions between muscle motors 

and elastic tendon springs. A previous study (Azizi and Roberts, 2009) showed the 

variation in the mechanical properties of aponeurosis with biaxial loading during active 

force production, and another in vivo study (Iwanuma et al., 2011) found no significant 

changes of aponeurosis strains in the longitudinal direction between 30% and 60% 

MVC, while the free tendon was deformed. And the results of chapter 3 showed that 

the aponeuroses stiffness showed no significant increase from 20% to 60% MVC, 

which was consistent with previous study. In addition, for the differences between 

longitudinal and transverse direction, our cadaveric study showed the Young’s modulus 

in the longitudinal direction was about 100 times higher than in the transverse direction. 

However, in vivo study of Iwanuma et al. (2011) showed much lower differences (10 

times) between longitudinal and transverse strain, as well as the results of SWV 

between longitudinal and transverse direction in chapter 4. Since the specimens 

measured in the cadaveric study were in isolated condition, which was different with in 

vivo conditions. Therefore, the differences between findings of cadaveric study and in 

vivo studies may be due to the influence from contracting muscle fibers to attached 

aponeurosis. As described earlier, the elasticity of the aponeurosis, and hence the use 

of elastic energy thereof, may depend on the muscle contraction levels. The mechanical 

properties of the aponeurosis could allow for the muscle belly deformation at low force 
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levels, while limiting muscle fibers’ further deviation longitudinally at higher force 

levels so that the free tendon can behave like a spring during movements. Future work 

on in vivo study should consider how the inter-muscle and inter-direction differences 

of TS aponeuroses elasticity depend on muscle contraction levels. 

 

5-3-2 Implications for motor performance 

Human motor performance is quite vital aspect of diverse daily activities, such as 

walking, running and jumping. Within the TS muscle-tendon unit, both TS and the 

Achilles tendon were proved to contribute to the walking performance (Francis et al., 

2013; Franz et al., 2015; Franz and Thelen, 2016; Fukunaga et al., 2001). The studies 

showed that the TS maintains a near-constant length to generate minimal power with 

minimal energetic cost during walking, while the Achilles tendon works to improve the 

energy efficiency by performing a stretch-recoil cycle to generate elastic strain energy 

during walking (Fukunaga et al., 2001; Lichtwark et al., 2007). However, the 

contribution of aponeurosis to walking performance still remains obscure. In chapter 4 

of this thesis, we found the significant correlations between the stiffness of adjoining 

aponeuroses and walking performance in the elderly (Table 4-2), which suggests that 

the aponeuroses stiffness can be a limiting factor to walking performance in the elderly. 

Stenroth (2016) reported that the TS in the elderly operated within a narrower range of 

muscle fascicle length changes while a greater proportion of tendinous tissue length 

changed during preferred walking speed, the elderly preferentially minimize energy 

cost of TS during walking, which indicates that tendinous tissue elasticity contributes 
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more to the walking speed in the elderly. Therefore, for the serial elastic component, 

both tendon and aponeurosis connect to muscle fibers, providing spring-like actions 

that can influence muscle contraction and motor function, and their key parameter such 

as stiffness could be modulated during movement. Previous study reported that the 

tendon stiffness significantly increased after long-term exercise (Buchanan and Marsh, 

2001), which indicate that the stiffness could be modulated to adapt to the effective 

operation of muscle-tendon unit. This variations in tendon stiffness also appears to 

occur in the aponeurosis, which serially connected to the free tendon and provide a wide 

attachment surface for muscle fibers. Some previous studies reported that the stiffness 

of the aponeurosis behaves differently between active contraction and passive loading 

condition (Azizi and Roberts, 2009; Lieber et al., 2000; Zuurbier et al., 1994) (Fig. 5-

1). As the findings of this thesis, the anisotropic mechanical property of aponeurosis 

bears biaxial loading during contraction, and the softer feature in the transverse 

direction may influence the stiffness in the longitudinal direction. However, the 

modulation of aponeurosis mechanical property in the longitudinal and transverse 

directions during movement, and the extent to which the mechanical properties of 

tendon and aponeurosis contribute to motor performance need to be further investigated. 

 

5-4 Limitations 

The limitations of our study should be noted. Firstly, all the specimens were 

dissected from formalin-fixed cadavers in chapter 2. Previous studies (Marieswaran et 

al., 2018; Zhang et al., 2016a) found that formalin fixation decreased stiffness and 



100 

 

Young’s modulus of human femur-ACL-tibial complex significantly compared to the 

fresh tissues (as for stiffness, fresh: 166.45 ± 36.03 N/mm, formalin-fixed: 71.68 ± 5.05 

N/mm; as for Young’s modulus, fresh: 71.5 ± 18.67 N/mm, formalin-fixed: 31.77 ± 

2.52 N/mm) and formalin-fixed bones showed a significantly lower Young’s modulus 

(-12%) compared to the fresh tissues. On the other hand, the cadavers in the current 

study were donated from elderly individuals. An existing study (Lewis and Shaw, 1997) 

proved that the donor age can affect mechanical properties of human Achilles tendon, 

and many studies (Magnusson et al., 2008; Narici et al., 2005; Onambele et al., 2006) 

have found higher tendinous compliance in elderly individuals. Therefore, the 

conclusion of the present study may be limited to the characteristics of the muscle-

tendon unit in the elderly. Anisotropic mechanical behavior of the soft tissues may also 

be affected by fixation although there has been no such report to date. Therefore, we 

conducted additional data collection (Shan et al., 2019) to examine the effect of 

formalin on the mechanical properties of aponeuroses by using urea that has been 

reported to neutralize formaldehyde within cadaveric tissues without affecting 

cadaveric and histological quality (Ninh et al., 2018). The results (Fig. 5-3) showed that 

the Young’s modulus was slightly but significantly increased (pre: 143.1 ± 77.3 MPa, 

post: 157.3 ± 79.8 MPa) only in the longitudinal direction after the urea treatment, while 

there was no significant change for the transverse direction or longitudinal/transverse 

ratio (Table 5-1). This suggests that the anisotropic mechanical behavior would already 

have existed before formalin fixation. Additionally, we used 50% alcohol (an agent that 

dehydrates tissue) instead of normal saline solution to keep the specimens, and to check 
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whether this dehydrating agent potentially impacts our results or not, an additional 

experiment was carried out. The results (Fig.5-2 and 5-3) showed that the moisture 

content of TS aponeuroses was not changed significantly, and there were no significant 

changes in the Young’s modulus either in the longitudinal or transverse direction after 

50% alcohol treatment for 5 hours. Although we tested each specimen twice in two 

directions with a randomized counterbalanced order, it may still have influenced the 

properties between longitudinal and transverse directions. Our additional experiments 

with one specimen for only one direction showed similar results (Fig. 5-3), but this can 

be taken into consideration for the future studies. The present results will open the 

possibility of understanding how aponeuroses mechanical properties are related with 

the muscle-aponeurosis-tendon behavior and/or interactions between the gastrocnemii 

and soleus during contractions in vivo. 

Some limitations also need to be considered for in vivo studies using SWE. 

Although SWE has been proved to be a non-invasive and reproducible methods to 

characterize tissue stiffness, the shear wave imaging technique used in the present study 

sometimes showed artifact in the deep site of muscle and/or aponeuroses when the 

transducer was placed in the transverse direction. Besides, SWE has been proved to be 

a valid tool for measuring shear modulus of pennate muscle along the muscle’s fascicle 

direction (Miyamoto et al., 2015), which may account for low values of ICC for 

aponeurosis stiffness in the transverse direction during submaximal contractions in the 

current work. In chapter 3 and 4, the SWV of TS muscles and gastrocnemius were 

measured not only at rest but also during submaximal muscle contractions. A previous 
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study documented that the SWE can be useful for interring muscle stiffness across a 

wide range of contraction intensity (Yoshitake et al., 2014), however, we observed the 

saturations of aponeurosis tissue appeared during higher intensities (>75% MVC), there 

is still limitations for SWE to measure the tendinous tissues during higher intensities of 

muscle contractions. Another limitation of the study in chapter 3 is that we did not 

evaluate the myoelectric activity to ensure the muscle activities during different level 

of contractions. Since we applied the probe in both proximal and distal sites of the TS, 

appropriate sites for EMG electrodes cannot be located, which should be considered in 

further studies. Finally, elderly cadavers were used to measure the intrinsic 

morphological and mechanical properties of aponeurosis, and older adults were 

recruited for the investigation of correlation between aponeurosis stiffness at rest and 

walking performance, however, the aponeurosis stiffness changes during muscle 

contractions were studied only from younger males. Since the subjects should be asked 

to perform many trials of muscle contractions, it’s hard to apply for the elderly adults, 

so we only measured the aponeurosis stiffness at rest for the elderly in chapter 4. This 

may be limitation since age-related changes may affect the mechanical properties of 

muscle-tendon unit (Danos et al., 2016; Svensson et al., 2016). 

 

5-5 Conclusion of the thesis 

In vivo as well as ex situ evidence showed the human aponeuroses with 

inhomogeneous and anisotropic morphological and mechanical properties, suggesting 

inherent material design of the aponeurosis that matches three-dimensional contractile 
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behavior of muscle fibers. The muscle-aponeurosis interaction varies depend on 

different directions and muscle contraction levels, which is essential for human motor 

performance. 

 

5-6 Future directions 

In the future it should be clarified that aging- and exercise-related morphological 

and mechanical properties of the TS muscle-tendon unit and investigate muscle-

aponeurosis-tendon interaction during different type of muscle contractions and 

different during different motor performance. Combing with kinematics of joint 

movement and muscle activities, using musculoskeletal modeling to improve 

understanding the mechanism of muscle-tendon interaction during human movement.  
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Fig. 5-1 A schematic of aponeurosis behavior during active and passive force 

production. (Robert and Azizi, 2011) 
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Fig. 5-2 Moisture content test on aponeuroses samples from a cadaver. (A) A 

moisture analyzer with a testing specimen. (B) Average (mean ± s.d.) moisture 

content of triceps surae aponeuroses before placing any solution (Pre), after normal 

saline solution for 5hr and after 50% alcohol solution for 5hr.  
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Fig. 5-3 Mechanical properties of triceps surae aponeuroses with different 

solution method. Average (mean ± s.d.) Young’s modulus of triceps surae 

aponeuroses in the longitudinal (A) and transverse (B) directions before (Pre) and 

after (Post) normal saline, 50% alcohol and 18% urea treatment. *: denotes different 

from pre, p < 0.05. 
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Table 5-1. Longitudinal/transverse ratio of Young's modulus before and after 18% urea 

treatment 

 Pre  Post   
Urea 111.7 ± 54.1   113.2 ± 65.4     

 

  



108 

 

References 

Arampatzis, A., Karamanidis, K., Morey-Klapsing, G., De Monte, G., Stafilidis, S., 

2007. Mechanical properties of the triceps surae tendon and aponeurosis in relation 

to intensity of sport activity. J Biomech 40, 1946-1952. 

Arampatzis, A., Karamanidis, K., Stafilidis, S., Morey-Klapsing, G., DeMonte, G., 

Bruggemann, G.P., 2006. Effect of different ankle- and knee-joint positions on 

gastrocnemius medialis fascicle length and EMG activity during isometric plantar 

flexion. J Biomech 39, 1891-1902. 

Arellano, C.J., Gidmark, N.J., Konow, N., Azizi, E., Roberts, T.J., 2016. Determinants 

of aponeurosis shape change during muscle contraction. J Biomech 49, 1812-1817. 

Arnold, E.M., Hamner, S.R., Seth, A., Millard, M., Delp, S.L., 2013. How muscle fiber 

lengths and velocities affect muscle force generation as humans walk and run at 

different speeds. The Journal of experimental biology 216, 2150-2160. 

Ateş, F., Andrade, R.J., Freitas, S.R., Hug, F., Lacourpaille, L., Gross, R., Yucesoy, 

C.A., Nordez, A., 2018. Passive stiffness of monoarticular lower leg muscles is 

influenced by knee joint angle. Eur J Appl Physiol. 

Ateş, F., Hug, F., Bouillard, K., Jubeau, M., Frappart, T., Couade, M., Bercoff, J., 

Nordez, A., 2015. Muscle shear elastic modulus is linearly related to muscle torque 

over the entire range of isometric contraction intensity. J Electromyogr Kinesiol 

25, 703-708. 

Azizi, E., Halenda, G.M., Roberts, T.J., 2009. Mechanical properties of the 

gastrocnemius aponeurosis in wild turkeys. Integr Comp Biol 49, 51-58. 

Azizi, E., Roberts, T.J., 2009. Biaxial strain and variable stiffness in aponeuroses. J 



109 

 

Physiol 587, 4309-4318. 

Backer, H.C., Wong, T.T., Vosseller, J.T., 2019. MRI Assessment of Degeneration of 

the Tendon in Achilles Tendon Ruptures. Foot Ankle Int, 1071100719845016. 

Bassey, E.J., Bendall, M.J., Pearson, M., 1988. Muscle strength in the triceps surae and 

objectively measured customary walking activity in men and women over 65 years 

of age. Clinical Science 74, 85-89. 

Baumer, T.G., Davis, L., Dischler, J., Siegal, D.S., van Holsbeeck, M., Moutzouros, V., 

Bey, M.J., 2017. Shear wave elastography of the supraspinatus muscle and tendon: 

Repeatability and preliminary findings. J Biomech 53, 201-204. 

Bendall, M.J., Bassey, E.J., Pearson, M.B., 1989. Factors affecting walking speed of 

elderly people. Age Ageing 18, 327-332. 

Benjamin, M., Kaiser, E., Milz, S., 2008. Structure-function relationships in tendons: a 

review. J Anat 212, 211-228. 

Bercoff, J., Tanter, M., Fink, M., 2004. Supersonic shear imaging: a new technique for 

soft tissue elasticity mapping. IEEE Trans Ultrason Ferroelectr Freq Control 51, 

396-409. 

Blazevich, A.J., Gill, N.D., Zhou, S., 2006. Intra- and intermuscular variation in human 

quadriceps femoris architecture assessed in vivo. J Anat 209, 289-310. 

Blitz, N.M., Eliot, D.J., 2007. Anatomical aspects of the gastrocnemius aponeurosis and 

its insertion: a cadaveric study. J Foot Ankle Surg 46, 101-108. 

Blitz, N.M., Eliot, D.J., 2008. Anatomical aspects of the gastrocnemius aponeurosis and 

its muscular bound portion: a cadaveric study-part II. J Foot Ankle Surg 47, 533-



110 

 

540. 

Bojsen-Moller, J., Hansen, P., Aagaard, P., Svantesson, U., Kjaer, M., Magnusson, S.P., 

2004a. Differential displacement of the human soleus and medial gastrocnemius 

aponeuroses during isometric plantar flexor contractions in vivo. J Appl Physiol 

97, 1908-1914. 

Bojsen-Moller, J., Hansen, P., Aagaard, P., Svantesson, U., Kjaer, M., Magnusson, S.P., 

2004b. Differential displacement of the human soleus and medial gastrocnemius 

aponeuroses during isometric plantar flexor contractions in vivo. J Appl Physiol 

(1985) 97, 1908-1914. 

Bojsen-Møller, J., Magnusson, S.P., 2019. Mechanical properties, physiological 

behavior and function of aponeurosis and tendon. J Appl Physiol 4. 

Bouillard, K., Hug, F., Guevel, A., Nordez, A., 2012. Shear elastic modulus can be used 

to estimate an index of individual muscle force during a submaximal isometric 

fatiguing contraction. J Appl Physiol (1985) 113, 1353-1361. 

Bouillard, K., Nordez, A., Hug, F.o., 2011. Estimation of individual muscle force using 

elastography. PLoS One 6, e29261. 

Brandenburg, J.E., Eby, S.F., Song, P., Zhao, H., Brault, J.S., Chen, S., An, K.N., 2014. 

Ultrasound elastography: the new frontier in direct measurement of muscle 

stiffness. Arch Phys Med Rehabil 95, 2207-2219. 

Branthwaite, H., Pandyan, A., Chockalingam, N., 2012. Function of the triceps surae 

muscle group in low and high arched feet: an exploratory study. Foot (Edinb) 22, 

56-59. 



111 

 

Buchanan, C.I., Marsh, R.L., 2001. Effects of long-term exercise on the biomechanical 

properties of the Achilles tendon of guinea fowl. J Appl Physiol 90, 164-171. 

Chino, K., Oda, T., Kurihara, T., Nagayoshi, T., Yoshikawa, K., Kanehisa, H., 

Fukunaga, T., Fukashiro, S., Kawakami, Y., 2008. In vivo fascicle behavior of 

synergistic muscles in concentric and eccentric plantar flexions in humans. J 

Electromyogr Kinesiol 18, 79-88. 

Chow, R.S., Medri, M.K., Martin, D.C., Leekam, R.N., Agur, A.M., McKee, N.H., 

2000. Sonographic studies of human soleus and gastrocnemius muscle 

architecture: gender variability. Eur J Appl Physiol 82, 236-244. 

Cibulka M, Wenthe A, Boyle Z, Callier D, Schwerdt A, Jarman D, Strube MJ. Variation in 

medial and lateral gastrocnemius muscle activity with foot with foot position. Int J Sports 

Phys Ther. 2017 Apr;12(2):233-241. 

Cortes, D.H., Suydam, S.M., Silbernagel, K.G., Buchanan, T.S., Elliott, D.M., 2015. 

Continuous Shear Wave Elastography: A New Method to Measure Viscoelastic 

Properties of Tendons in Vivo. Ultrasound Med Biol 41, 1518-1529. 

Danos, N., Holt, N.C., Sawicki, G.S., Azizi, E., 2016. Modeling age-related changes in 

muscle-tendon dynamics during cyclical contractions in the rat gastrocnemius. J 

Appl Physiol (1985) 121, 1004-1012. 

David Hsu, Ke-Vin Chang, 2018. Gastrocnemius Strain. StatPearls Publishing LLC. 

DeWall, R.J., Slane, L.C., Lee, K.S., Thelen, D.G., 2014. Spatial variations in Achilles 

tendon shear wave speed. J Biomech 47, 2685-2692. 

Eby, S.F., Song, P., Chen, S., Chen, Q., Greenleaf, J.F., An, K.N., 2013. Validation of 



112 

 

shear wave elastography in skeletal muscle. J Biomech 46, 2381-2387. 

Ema, R., Wakahara, T., Miyamoto, N., Kanehisa, H., Kawakami, Y., 2013. 

Inhomogeneous architectural changes of the quadriceps femoris induced by 

resistance training. Eur J Appl Physiol 113, 2691-2703. 

Ettema, G.J.C., Huijing, P.A., 1994. Skeletal muscle stiffness in static and dynamic 

contractions. J Biomech 27, 1361-1368. 

Farris, D.J., Trewartha, G., McGuigan, M.P., 2011. Could intra-tendinous hyperthermia 

during running explain chronic injury of the human Achilles tendon? J Biomech 

44, 822-826. 

Faul, F., Erdfelder, E., Lang, A.-G., Buchner, A., 2007. G*Power 3: A flexible 

statistical power analysis program for the social, behavioral, and biomedical 

sciences. Behav Res Methods 39, 175-191. 

Fiatarone, M.A., Marks, E.C., Ryan, N.D., Meredith, C.N., Lipsitz, L.A., Evans, W.J., 

1990. High-intensity strength training in nonagenarians: effects on skeletal muscle. 

The Journal of the American Medical Association 263, 3029-3034. 

Finni, T., 2006. Structural and functional features of human muscle-tendon unit. Scand 

J Med Sci Sports 16, 147-158. 

Finni, T., Hodgson, J.A., Lai, A.M., Edgerton, V.R., Sinha, S., 2003. Nonuniform strain 

of human soleus aponeurosis-tendon complex during submaximal voluntary 

contractions in vivo. J Appl Physiol 95, 829-837. 

Finni, T., Peltonen, J., Stenroth, L., Cronin, N.J., 2012. Viewpoint: On the hysteresis in 

the human Achilles tendon. J Appl Physiol 114, 515-517. 



113 

 

Foster-Burns, S.B., 1999. Sarcopenia and decreased muscle strength in the elderly 

woman: resistance training as a safe and effective intervention. J Women Aging 

11, 75-85. 

Foure, A., Cornu, C., Nordez, A., 2012. Is tendon stiffness correlated to the dissipation 

coefficient? Physiol Meas 33, N1-N9. 

Foure, A., Nordez, A., Cornu, C., 2010. Plyometric training effects on Achilles tendon 

stiffness and dissipative properties. J Appl Physiol (1985) 109, 849-854. 

Francis, C.A., Lenz, A.L., Lenhart, R.L., Thelen, D.G., 2013. The modulation of 

forward propulsion, vertical support, and center of pressure by the plantarflexors 

during human walking. Gait Posture 38, 993-997. 

Franz, J.R., Slane, L.C., Rasske, K., Thelen, D.G., 2015. Non-uniform in vivo 

deformations of the human Achilles tendon during walking. Gait Posture 41, 192-

197. 

Franz, J.R., Thelen, D.G., 2016. Imaging and simulation of Achilles tendon dynamics: 

Implications for walking performance in the elderly. J Biomech 49, 1403-1410. 

Friederich, J.A., Brand, R.A., 1990. Muscle fiber architecture in the human lower limb. 

J Biomech 23. 

Fukunaga, T., Ichinose, Y., Ito, M., Kawakami, Y., Fukashiro, S., 1997a. Determination 

of fascicle length and pennation in a contracting human muscle in vivo. J Appl 

Physiol 82, 354-358. 

Fukunaga, T., Kawakami, Y., Kubo, K., Kanehisa, H., 2002. Muscle and tendon 

interaction during human movements. Exerc Sport Sci Rev 30, 106-110. 



114 

 

Fukunaga, T., Kawakami, Y., Kuno, S., Funato, K., Fukashiro, S., 1997b. Muscle 

architecture and function in humans. J Biomech 30, 457-463. 

Fukunaga, T., Kubo, K., Kawakami, Y., Fukashiro, S., Kanehisa, H., Maganaris, C.N., 

2001. In vivo behaviour of human muscle tendon during walking. Proc Biol Sci 

268, 229-233. 

Giordano, S.B., Segal, R.L., 2006. Leg muscles differ in spatial activation patterns with 

differing levels of voluntary plantarflexion activity in humans. Cells Tissues 

Organs 184, 42-51. 

Gray, H., Williams, P.L., Bannister, L.H., 1995. Gray's Anatomy. 38th ed. Churchill 

Livingstone. 

Gras, L.L., Mitton, D., Viot, P., Laporte, S., 2012. Hyper-elastic properties of the 

human sternocleidomastoideus muscle in tension. J Mech Behav Biomed Mater 

15, 131-140. 

Haims, A.H., Schweitzer, M.E., Patel, R.S., Hecht, P., Wapner, K.L., 2000. MR 

imaging of the Achilles tendon: overlap of findings in symptomatic and 

asymptomatic individuals. International Skeletal Society 29, 640-645. 

Hanna, J.B., Schmitt, D., 2011. Comparative triceps surae morphology in primates: a 

review. Anat Res Int 2011, 191509. 

Hayashi, S., Homma, H., Naito, M., Oda, J., Nishiyama, T., Kawamoto, A., Kawata, S., 

Sato, N., Fukuhara, T., Taguchi, H., Mashiko, K., Azuhata, T., Ito, M., Kawai, K., 

Suzuki, T., Nishizawa, Y., Araki, J., Matsuno, N., Shirai, T., Qu, N., Hatayama, 

N., Hirai, S., Fukui, H., Ohseto, K., Yukioka, T., Itoh, M., 2014. Saturated salt 



115 

 

solution method: a useful cadaver embalming for surgical skills training. Medicine 

(Baltimore) 93, e196. 

Herzog, J.A., Leonard, T.R., Jinha, A., Herzog, W., 2012. Hysteresis and efficiency in 

passive skeletal muscle myofibrils. Biophysical Journal 102, 360a. 

Himann, J.E., Cunningham, D.A., Rechnitzer, P.A., Paterson, D.H., 1988. Age related 

changes in speed of walking. Med Sci Sports Exerc 20, 161-166. 

Hof, A.L., Zandwijk, J.P.V., Bobbert, M.F., 2002. Mechanics of human triceps surae 

muscle in walking, running and jumping. Acta Physiol Scand 174, 17-30. 

Holt, N.C., Danos, N., Roberts, T.J., Azizi, E., 2016. Stuck in gear: age-related loss of 

variable gearing in skeletal muscle. The Journal of experimental biology 219, 998-

1003. 

Honeine, J.L., Schieppati, M., Gagey, O., Do, M.C., 2013. The functional role of the 

triceps surae muscle during human locomotion. PLoS One 8, e52943. 

Hopkins, W.G., 2000. Measures of Reliability in Sports Medicine and Science. Sports 

Med 30, 1-15. 

Hughes, V.A., Frontera, W.R., Wood, M., Evans, W.J., Dallal, G.E., Roubenoff, R., 

Singh, M.A.F., 2001. Longitudinal Muscle Strength Changes in Older Adults: 

Influence of Muscle Mass, Physical Activity, and Health. The Journals of 

Gerontology: Series A 56, 209-217. 

Huijing, P.A., 1999. Muscle as a collagen fiber reinforced composite: a review of force 

transmission in muscle and whole limb. J Biomech 32, 329-345. 

Huijing, P.A., Baan, G.C., 2001. Myofascial force transmission causes interaction 



116 

 

between adjacent muscles and connective tissue: effects of blunt dissection and 

compartmental fasciotomy on length force characteristics of rat extensor digitorum 

longus muscle. Arch Physiol Biochem 109, 97-109. 

Huijing, P.A., Baan, G.C., 2003. Myofascial force transmission: muscle relative 

position and length determine agonist and synergist muscle force. J Appl Physiol 

94, 1092-1107. 

Huijing, P.A., van de Langenberg, R.W., Meesters, J.J., Baan, G.C., 2007. 

Extramuscular myofascial force transmission also occurs between synergistic 

muscles and antagonistic muscles. J Electromyogr Kinesiol 17, 680-689. 

Hwang, S.W., Nam, Y.S., Hwang, K., Han, S.H., 2012. Thickness and tension of the 

gluteal aponeurosis and the implications for subfascial gluteal augmentation. J 

Anat 221, 69-72. 

Innocenti, B., Larrieu, J.-C., Lambert, P., Pianigiani, S., 2017. Automatic 

characterization of soft tissues material properties during mechanical tests. 

Muscles, Ligaments and Tendons Journal 7, 529-537. 

Ishikawa, M., Komi, P.V., Grey, M.J., Lepola, V., Bruggemann, G.P., 2005. Muscle-

tendon interaction and elastic energy usage in human walking. J Appl Physiol 99, 

603-608. 

Ito, M., Kawakami, Y., Ichinose, Y., Fukashiro, S., Fukunaga, T., 1998. Nonisometric 

behavior of fascicles during isometric contractions of a human muscle. J Appl 

Physiol 85, 1230-1235. 

Iwanuma, S., Akagi, R., Kurihara, T., Ikegawa, S., Kanehisa, H., Fukunaga, T., 



117 

 

Kawakami, Y., 2011. Longitudinal and transverse deformation of human Achilles 

tendon induced by isometric plantar flexion at different intensities. J Appl Physiol 

110, 1615-1621. 

Jeon, M., Youn, K., Yang, S., 2018. Reliability and quantification of gastrocnemius 

elasticity at relaxing and at submaximal contracted condition. Med Ultrason 20, 

342-347. 

Kari Kauranen, 1999. Human motor performance and physiotherapy. Oulu: University 

of Oulu. 

Kawakami, Y., 2012. Morphological and functional characteristics of the muscle-

tendon unit. J Phys Fitness Sports Med 1, 287-296. 

Kawakami, Y., Abe, T., Fukunaga, T., 1993. Muscle-fiber pennation angles are greater 

in hypertrophied than in normal muscles. J Appl Physiol 74, 2740-2744. 

Kawakami, Y., Ichinose, Y., Fukunaga, T., 1998. Architectural and functional features 

of human triceps surae muscles during contraction. J Appl Physiol 85, 398-404. 

Kawakami, Y., Lieber, R.L., 2000. Interaction between series compliance and 

sarcomere kinetics determines internal sarcomere shortening during fixed-end 

contraction. J Biomech 33, 1249-1255. 

Kostyukov, A.I., Cherkassky, V.L., Tal'nov, A.N., 1995. Hysteresis of muscle 

contraction and effects of uncertainty in proprioceptive activity and motor 

performance. Alpha and Gamma Motor Systems, 115-117. 

Kubo, K., Kanehisa, H., Fukunaga, T., 2002. Effect of stretching training on the 

viscoelastic properties of human tendon structures in vivo. J Appl Physiol 92, 595-



118 

 

601. 

Kumakura, H., Inokuchi, S., 1991. Lay-out of the human triceps surae muscle: with 

special concern for the origin of the human bipedal posture. Showa Univ. J. Med. 

Sci. 3, 79-89. 

Kumar, P., Pandey, A.K., Kumar, B., Aithal, S.K., 2011. Anatomical study of 

superficial fascia and localized fat deposits of abdomen. Indian J Plast Surg 44, 

478-483. 

Kwah, L.K., Pinto, R.Z., Diong, J., Herbert, R.D., 2013. Reliability and validity of 

ultrasound measurements of muscle fascicle length and pennation in humans: a 

systematic review. J Appl Physiol (1985) 114, 761-769. 

Lacourpaille, L., Nordez, A., Hug, F., 2017. The nervous system does not compensate 

for an acute change in the balance of passive force between synergist muscles. The 

Journal of experimental biology 220, 3455-3463. 

Lake, S.P., Miller, K.S., Elliott, D.M., Soslowsky, L.J., 2010. Tensile properties and 

fiber alignment of human supraspinatus tendon in the transverse direction 

demonstrate inhomogeneity, nonlinearity, and regional isotropy. J Biomech 43, 

727-732. 

Lauri Stenroth, 2016. Structure and function of human triceps surae muscle and tendon 

in aging. Jyväskylä: University of Jyväskylä. 

Levine, T.R., Hullett, C.R., 2002. Eta Squared, Partial Eta Squared, and Misreporting 

of Effect Size in Communication Research. Human Communication Research 28, 

612-625. 



119 

 

Lewis, G., Shaw, K.M., 1997. Tensile properties of human tendon Achillis: effect of 

donor age and strain rate. J Foot Ankle Surg 36, 435-445. 

Lichtwark, G.A., Bougoulias, K., Wilson, A.M., 2007. Muscle fascicle and series 

elastic element length changes along the length of the human gastrocnemius during 

walking and running. J Biomech 40, 157-164. 

Lieber, R.L., Brown, C.G., Trestik, C.L., 1992. Model of muscle-tendon interaction 

during frog semitendinosis fixed-end contractions. J Biomech 25, 421-428. 

Lieber, R.L., Leonard, M.E., Brown-Maupin, C.G., 2000. Effects of muscle contraction 

on the load-strain properties of frog aponeurosis and tendon. Cells Tissues Organs 

166, 48-54. 

Louis-Ugbo, J., Leeson, B., Hutton, W.C., 2004. Tensile properties of fresh human 

calcaneal (Achilles) tendons. Clin Anat 17, 30-35. 

Lynch, H.A., Johannessen, W., Wu, J.P., Jawa, A., Elliott, D.M., 2003. Effect of fiber 

orientation and strain rate on the nonlinear uniaxial tensile material properties of 

tendon. J Biomech 125, 726-731. 

Maas, H., Sandercock, T.G., 2010. Force transmission between synergistic skeletal 

muscles through connective tissue linkages. J Biomed Biotechnol 2010, 575672. 

Maeo, S., Saito, A., Otsuka, S., Shan, X., Kanehisa, H., Kawakami, Y., 2017. 

Localization of muscle damage within the quadriceps femoris induced by different 

types of eccentric exercises. Scand J Med Sci Sports. 

Maeo, S., Shan, X., Otsuka, S., Kanehisa, H., Kawakami, Y., 2018a. Neuromuscular 

Adaptations to Work-matched Maximal Eccentric versus Concentric Training. 



120 

 

Med Sci Sports Exerc 50, 1629-1640. 

Maeo, S., Shan, X., Otsuka, S., Kanehisa, H., Kawakami, Y., 2018b. Single-joint 

eccentric knee extension training preferentially trains the rectus femoris within the 

quadriceps muscles. Translational Sports Medicine 1, 212-220. 

Maganaris, C.N., 2002. Tensile properties of in vivo human tendinous tissue. J Biomech 

35, 1019-1027. 

Maganaris, C.N., Baltzopoulos, V., Sargeant, A.J., 1998. In vivo measurements of the 

triceps surae complex architecture in man: implications for muscle function. J 

Physiol 512, 603-614. 

Maganaris, C.N., Kawakami, Y., Fukunaga, T., 2001. Changes in aponeurotic 

dimensions upon muscle shortening: in vivo observations in man. J Anat 199, 449-

456. 

Maganaris, C.N., Paul, J.P., 2000. Hysteresis measurements in intact human tendon. J 

Biomech 33, 1723-1727. 

Magnusson, S.P., Aagaard, P., Rosager, S., Dyhre-Poulsen, P., Kjaer, M., 2001. Load–

displacement properties of the human triceps surae aponeurosis in vivo. J Physiol 

531, 277-288. 

Magnusson, S.P., Hansen, P., Aagaard, P., Brønd, J., Dyhre-Poulsen, P., Bojsen-Moller, 

J., Kjaer, M., 2003. Differential strain patterns of the human gastrocnemius 

aponeurosis and free tendon, in vivo. Acta Physiol Scand 177, 185-195. 

Magnusson, S.P., Narici, M.V., Maganaris, C.N., Kjaer, M., 2008. Human tendon 

behaviour and adaptation, in vivo. J Physiol 586, 71-81. 



121 

 

Marieswaran, M., Mansoori, N., Digge, V.K., Jhajhria, S.K., Behera, C., Lalwani, S., 

Kalyanasundaram, D., 2018. Effect of preservation methods on tensile properties 

of human femurACL-tibial complex (FATC) – A cadaveric study on male subjects. 

Acta Bioeng Biomech 20. 

Martin, D.C., Medri, M.K., Chow, R.S., Oxorn, V., Leekam, R.N., Mckee, N.H., 2001. 

Comparing human skeletal muscle architectural parameters of cadavers with in 

vivo ultrasonographic measurements. J Anat 199, 429-434. 

Martin, J.A., Biedrzycki, A.H., Lee, K.S., DeWall, R.J., Brounts, S.H., Murphy, W.L., 

Markel, M.D., Thelen, D.G., 2015. In Vivo Measures of Shear Wave Speed as a 

Predictor of Tendon Elasticity and Strength. Ultrasound Med Biol 41, 2722-2730. 

Mendes, B., Firmino, T., Oliveira, R., Neto, T., Infante, J., Vaz, J.R., Freitas, S.R., 2018. 

Hamstring stiffness pattern during contraction in healthy individuals: analysis by 

ultrasound-based shear wave elastography. Eur J Appl Physiol. 

Miller, K.S., Connizzo, B.K., Feeney, E., Soslowsky, L.J., 2012. Characterizing local 

collagen fiber re-alignment and crimp behavior throughout mechanical testing in 

a mature mouse supraspinatus tendon model. J Biomech 45, 2061-2065. 

Miyamoto, N., Hirata, K., Kanehisa, H., Yoshitake, Y., 2015. Validity of measurement 

of shear modulus by ultrasound shear wave elastography in human pennate muscle. 

PLoS One 10, e0124311. 

Mogi, Y., Torii, S., Kawakami, Y., Yanai, T., 2013. Morphological and mechanical 

properties of the Achilles tendon in adolescent boys. Jpn J Phys Fitness Sports 

Med 62, 303-313. 



122 

 

Morrow, D.A., Haut Donahue, T.L., Odegard, G.M., Kaufman, K.R., 2010. 

Transversely isotropic tensile material properties of skeletal muscle tissue. Journal 

of the Mechanical Behavior of Biomedical Materials 3, 124-129. 

Muramatsu, T., Muraoka, T., Takeshita, D., Kawakami, Y., Hirano, Y., Fukunaga, T., 

2001. Mechanical properties of tendon and aponeurosis of human gastrocnemius 

muscle in vivo. J Appl Physiol 90, 1671-1678. 

Narici, M.V., Binzoni, T., Hiltbrand, E., Fasel, J., Terrier, F., Cerretelli, P., 1996. In 

vivo human gastrocnemius architecture with changing joint angle at rest and 

during graded isometric contraction. J Physiol 496, 287-297. 

Narici, M.V., Maffulli, N., Maganaris, C.N., 2008. Ageing of human muscles and 

tendons. Disabil Rehabil 30, 1548-1554. 

Narici, M.V., Maganaris, C., Reeves, N., 2005. Myotendinous alterations and effects of 

resistive loading in old age. Scand J Med Sci Sports 15, 392-401. 

Neptune, R.R., Kautz, S.A., Zajac, F.E., 2001. Contributions of the individual ankle 

plantar flexors to support, forward progression and swing initiation during walking. 

J Biomech 34, 1387-1398. 

Ninh, L.N., Tangkawattana, S., Sukon, P., Takahashi, N., Takehana, K., Tangkawattana, 

P., 2018. Neutralizing formaldehyde in chicken cadaver with urea and urea 

fertilizer solution. J Vet Med Sci 80, 606-610. 

Oda, T., Hisano, T., Hay, D.C., Kinugasa, R., Yamamura, N., Komatsu, T., Yokota, H., 

Takagi, S., 2015. Anatomical geometry and thickness of aponeuroses in human 

cadaver triceps surae muscles. Advanced Biomedical Engineering 4, 12-15. 



123 

 

Onambele, G.L., Narici, M.V., Maganaris, C.N., 2006. Calf muscle-tendon properties 

and postural balance in old age. J Appl Physiol (1985) 100, 2048-2056. 

Otsuka, S., Shan, X., Kawakami, Y., 2019. Dependence of muscle and deep fascia 

stiffness on the contraction levels of the quadriceps: An in vivo supersonic shear-

imaging study. Journal of Electromyography and Kinesiology 45, 33-40. 

Otsuka, S., Yakura, T., Ohmichi, Y., Ohmichi, M., Naito, M., Nakano, T., Kawakami, 

Y., 2018. Site specificity of mechanical and structural properties of human fascia 

lata and their gender differences: A cadaveric study. J Biomech 77, 69-75. 

Prasetyono, T.O.H., Sisca, F., 2019. Achilles tendon reconstruction with a half-width 

Achilles graft and wrap-around fascial flap. Arch Plast Surg. 

Purslow, P.P., 2003. The structure and functional significance of variations in the 

connective tissue within muscle. Comparative Biochemistry and Physiology Part 

A 133, 947-966. 

Raiteri, B.J., 2018. Aponeurosis behaviour during muscular contraction: A narrative 

review. Eur J Sport Sci 18, 1128-1138. 

Raiteri, B.J., Cresswell, A.G., Lichtwark, G.A., 2016. Three-dimensional geometrical 

changes of the human tibialis anterior muscle and its central aponeurosis measured 

with three-dimensional ultrasound during isometric contractions. PeerJ 4, e2260. 

Rehorn, M.R., Blemker, S.S., 2010. The effects of aponeurosis geometry on strain 

injury susceptibility explored with a 3D muscle model. J Biomech 43, 2574-2581. 

Roberts, T.J., Azizi, E., 2011. Flexible mechanisms: the diverse roles of biological 

springs in vertebrate movement. The Journal of experimental biology 214, 353-



124 

 

361. 

Royer, D., Gennisson, J.L., Deffieux, T., Tanter, M., 2011. On the elasticity of 

transverse isotropic soft tissues (L). J Acoust Soc Am 129, 2757-2760. 

Ryu, J., Jeong, W.K., 2017. Current status of musculoskeletal application of shear wave 

elastography. Ultrasonography 36, 185-197. 

Saavedra, A.C., Zvietcovich, F., Lavarello, R.J., Castaneda, B., 2017. Measurement of 

surface acoustic waves in high-frequency ultrasound: preliminary results. Conf. 

Proc. IEEE Eng. Med. Biol. Soc., 3000-3003. 

Saito, A., Ema, R., Inami, T., Maeo, S., Otsuka, S., Higuchi, M., Shibata, S., Kawakami, 

Y., 2016. Anatomical cross-sectional area of the quadriceps femoris and sit-to-

stand test score in middle-aged and elderly population: development of a 

predictive equation. J Physiol Anthropol 36, 3. 

Scott, S.H., Loeb, G.E., 1995. Mechanical properties of aponeurosis and tendon of the 

cat soleus muscle during whole-muscle isometric contractions. J Morphol 224, 73-

86. 

Segal, R.L., Song, A.W., 2005. Nonuniform activity of human calf muscles during an 

exercise task. Arch Phys Med Rehabil 86, 2013-2017. 

Shan, X., Otsuka, S., Yakura, T., Naito, M., Nakano, T., Kawakami, Y., 2019. 

Morphological and mechanical properties of the human triceps surae aponeuroses 

taken from elderly cadavers: Implications for muscle-tendon interactions. PLoS 

One 14, e0211485. 

Shinohara, M., Sabra, K., Gennisson, J.L., Fink, M., Tanter, M., 2010. Real-time 



125 

 

visualization of muscle stiffness distribution with ultrasound shear wave imaging 

during muscle contraction. Muscle Nerve 42, 438-441. 

Shiotani, H., Yamashita, R., Mizokuchi, T., Naito, M., Kawakami, Y., 2019. Site- and 

sex-differences in morphological and mechanical properties of the plantar fascia: 

A supersonic shear imaging study. J Biomech. 

Slane, L.C., DeWall, R., Martin, J., Lee, K., Thelen, D.G., 2015. Middle-aged adults 

exhibit altered spatial variations in Achilles tendon wave speed. Physiol Meas 36, 

1485-1496. 

Slane, L.C., Martin, J., DeWall, R., Thelen, D., Lee, K., 2017. Quantitative ultrasound 

mapping of regional variations in shear wave speeds of the aging Achilles tendon. 

Eur Radiol 27, 474-482. 

Song, S., Geyer, H., 2018. Predictive neuromechanical simulations indicate why 

walking performance declines with ageing. J Physiol 596, 1199-1210. 

Sta, H.U., Schatzmann, L., Brunner, P., Rincon, L., Nolte, L.-P., 1999. Mechanical 

tensile properties of the quadriceps tendon and patellar ligament in young adults. 

The American Journal of Sports Medicine 27, 27-34. 

Stenroth, L., 2016. Structure and Function of Human triceps surae Muscle and Tendon 

in Aging. University of Jyväskylä, 87 p. 

Stenroth, L., Peltonen, J., Cronin, N.J., Sipila, S., Finni, T., 2012. Age-related 

differences in Achilles tendon properties and triceps surae muscle architecture in 

vivo. J Appl Physiol (1985) 113, 1537-1544. 

Stenroth, L., Sillanpaa, E., McPhee, J.S., Narici, M.V., Gapeyeva, H., Paasuke, M., 



126 

 

Barnouin, Y., Hogrel, J.Y., Butler-Browne, G., Bijlsma, A., Meskers, C.G., Maier, 

A.B., Finni, T., Sipila, S., 2015. Plantarflexor Muscle-Tendon Properties are 

Associated With Mobility in Healthy Older Adults. J Gerontol A Biol Sci Med Sci 

70, 996-1002. 

Stenroth, L., Sipila, S., Finni, T., Cronin, N.J., 2017. Slower Walking Speed in Older 

Men Improves Triceps Surae Force Generation Ability. Med Sci Sports Exerc 49, 

158-166. 

Svensson, R.B., Heinemeier, K.M., Couppe, C., Kjaer, M., Magnusson, S.P., 2016. 

Effect of aging and exercise on the tendon. J Appl Physiol (1985) 121, 1237-1246. 

Takaza, M., Moerman, K.M., Gindre, J., Lyons, G., Simms, C.K., 2013. The anisotropic 

mechanical behaviour of passive skeletal muscle tissue subjected to large tensile 

strain. J Mech Behav Biomed Mater 17, 209-220. 

Taljanovic, M.S., Gimber, L.H., Becker, G.W., Latt, L.D., Klauser, A.S., Melville, 

D.M., Gao, L., Witte, R.S., 2017. Shear wave elastography: basic physics and 

musculoskeletal applications. RadioGraphics 37, 855-870. 

Ting, C.E., Yeong, C.H., Ng, K.H., Abdullah, B.J.J., Ting, H.E., 2015. Accuracy of 

Tissue Elasticity Measurement using Shear Wave Ultrasound Elastography: A 

Comparative Phantom Study. World Congress on Medical Physics and 

Biomedical Engineering. 

Tokuno, C.D., Carpenter, M.G., Thorstensson, A., Garland, S.J., Cresswell, A.G., 2007. 

Control of the triceps surae during the postural sway of quiet standing. Acta 

Physiol (Oxf) 191, 229-236. 



127 

 

Trotter, J.A., Samora, A., Baca, J., 1985. Three-dimensional structure of the murine 

muscle-tendon junction. The Anatomical Record 213, 16-25. 

Valenti, G., Bonomi, A.G., Westerterp, K.R., 2016. Walking as a Contributor to 

Physical Activity in Healthy Older Adults: 2 Week Longitudinal Study Using 

Accelerometry and the Doubly Labeled Water Method. JMIR Mhealth Uhealth 4, 

e56. 

Vergari, C., Pourcelot, P., Holden, L., Ravary-Plumioen, B., Gerard, G., Laugier, P., 

Mitton, D., Crevier-Denoix, N., 2011. True stress and Poisson's ratio of tendons 

during loading. J Biomech 44, 719-724. 

Woo, S.L.-Y., Hollis, J.M., Adams, D.J., Lyon, R.M., Takai, S., 1991. Tensile 

properties of the human femuranterior cruciate ligament-tibia complex: The 

effects of specimen age and orientation. The American Journal of Sports Medicine 

19, 217-225. 

Yonei, Y., Takahashi, Y., Hibino, S., Watanabe, M., Yoshikawa, T., 2008. The effects 

of walking with pedometers on quality of life and various symptoms and issues 

relating to aging. Anti-aging Medicine, 5, 22-29. 

Yoshida, K., Itoigawa, Y., Maruyama, Y., Saita, Y., Takazawa, Y., Ikeda, H., Kaneko, 

K., Sakai, T., Okuwaki, T., 2017. Application of shear wave elastography for the 

gastrocnemius medial head to tennis leg. Clin Anat 30, 114-119. 

Yoshitake, Y., Takai, Y., Kanehisa, H., Shinohara, M., 2014. Muscle shear modulus 

measured with ultrasound shear-wave elastography across a wide range of 

contraction intensity. Muscle Nerve 50, 103-113. 



128 

 

Zhang, G.J., Yang, J., Guan, F.J., Chen, D., Li, N., Cao, L., Mao, H., 2016a. 

Quantifying the effects of formalin fixation on the mechanical properties of 

cortical bone using beam theory and optimization methodology with specimen-

specific finite element models. J Biomech Eng 138, 0945021-0945028. 

Zhang, L.N., Wan, W.B., Wang, Y.X., Jiao, Z.Y., Zhang, L.H., Luo, Y.K., Tang, P.F., 

2016b. Evaluation of Elastic Stiffness in Healing Achilles Tendon After Surgical 

Repair of a Tendon Rupture Using In Vivo Ultrasound Shear Wave Elastography. 

Med Sci Monit 22, 1186-1191. 

Zuurbier, C.J., Everard, A.J., Wees, P.d., Huijing, P.A., 1994. Length-force 

characteristics of the aponeurosis in the passive and active muscle condition and 

in the isolated condition. J Biomech 27, 445-453. 

 

  



129 

 

Acknowledgement 

First and foremost, I would like to express my heartfelt thanks to my distinguished 

and cordial supervisor, Prof. Yasuo Kawakami, who agreed me to come to Japan and 

study in his laboratory, influenced me with his insightful ideas and meaningful 

inspirations, and guided me patiently with practical academic advice and feasible 

instructions while I was confused about my research. His thought-provoking comments 

and patient encouragements are indispensable for my accomplishment of this thesis. 

Without his dedicated assistance and insightful supervision, this thesis would have gone 

nowhere. 

Besides my supervisor, I would like to express my special thanks to Profs. Takashi 

Nakano and Munekazu Naito, Dr. Tomiko Yakura, and all the staff members of the 

Anatomy Department of Aichi Medical University for providing me an opportunity to 

do cadaveric studies there, giving me much advice and helping me a lot. Without their 

precious support it would not be possible to conduct this research. 

My sincere thanks also go to Ms. Fumiko Tanaka, Dr. Sumiaki Maeo, Dr. Akira 

Saito, Dr. Takaki Yamagishi, Dr. Ateş Filiz, Dr. Pavlos Evangelidis, Dr. Naoki Ikeda, 

Dr. Natsuki Sado, Dr. Junya Saeki, Mr. Weihuang Qi, Mr. Shun Otsuka, Mr. Hiroto 

Shiotani, Miss. Hoshizora Ichinose, Mr. Gaku Aizawa, Mr. Chi Yang, Miss 

Apibantawesakul Sudarat, Miss Hui Lyu, Miss Moemi Kikuchi, Ms. Mitsuko Oshige 

and other members in Kawakami laboratory of Waseda University, who offered me 

great help, and for all the fun we have had in the last four years. 

Also, I am greatly indebted to China Scholarship Council (CSC) and Ministry of 



130 

 

Education, Culture, Sports, Science and Technology · Japan (MEXT) who provided 

financial aid for my abroad study. 

Last but not the least, thanks go to my beloved parents and sister, whose care and 

support motivate me to move on and make me want to be a better person. 


