
Investigating an Effective Character-level Embedding
in Korean Sentence Classification

Won Ik Cho, Seok Min Kim, and Nam Soo Kim
Human Interface Laboratory

Department of Electrical and Computer Engineering and INMC
Seoul National University

1 Gwanak-ro, Gwanak-gu, Seoul, Korea, 08826
{wicho,smkim}@hi.snu.ac.kr, nkim@snu.ac.kr

Abstract

Different from the writing systems of many
Romance and Germanic languages, some lan-
guages or language families show complex
conjunct forms in character composition. For
such cases where the conjuncts consist of
the components representing consonant(s) and
vowel, various character encoding schemes
can be adopted beyond merely making up a
one-hot vector. However, there has been lit-
tle work done on intra-language comparison
regarding performances using each represen-
tation. In this study, utilizing the Korean lan-
guage which is character-rich and agglutina-
tive, we investigate an encoding scheme that is
the most effective among Jamo1-level one-hot,
character-level one-hot, character-level dense,
and character-level multi-hot. Classification
performance with each scheme is evaluated on
two corpora: one on binary sentiment analy-
sis of movie reviews, and the other on multi-
class identification of intention types. The re-
sult displays that the character-level features
show higher performance in general, although
the Jamo-level features may show compatibil-
ity with the attention-based models if guaran-
teed adequate parameter set size.

1 Introduction

Ever since an early approach exploiting the char-
acter features for the neural network-based natural
language processing (NLP) (Zhang et al., 2015),
character-level embedding2 has been widely used

1Letters of Korean alphabet Hangul.
2Throughout this paper, the terms embedding and encoding

are parallelly used depending on the context.

for many tasks such as machine translation (Ling et
al., 2015), noisy document representation (Dhingra
et al., 2016), language correction (Xie et al., 2016),
and word segmentation (Cho et al., 2018a). How-
ever, little consideration was done for intra-language
performance comparison regarding variant represen-
tation types. Unlike English, a Germanic language
written with an alphabet comprising 26 characters,
many languages used in East Asia are written with
scripts whose characters can be further decomposed
into sub-parts representing individual consonants or
vowels. This conveys that (sub-)character-level rep-
resentation for such languages has the potential to
be managed with more than just a simple one-hot
encoding.

In this paper, a comparative experiment is con-
ducted on Korean, a representative language with a
featural writing system (Daniels and Bright, 1996).
To be specific, the Korean alphabet Hangul consists
of the letters Jamo denoting consonants and vow-
els. The letters comprise a morpho-syllabic block
that refers to character, which is resultingly equiva-
lent to the phonetic unit syllable in terms of Korean
morpho-phonology. The conjunct form of a charac-
ter is {Syllable: CV(C)}; this notation implies that
there should be at least one consonant (namely cho-
seng, the first sound) and one vowel (namely cwung-
seng, the second sound) in a character. An additional
consonant (namely cong-seng, the third sound) is
auxiliary. However, in decomposition of the charac-
ters, three slots are fully held to guarantee a space
for each component; an empty cell comes in place
of the third entry if there is no auxiliary consonant.
The number of possible sub-characters, or (compos-

10 
33rd Pacific Asia Conference on Language, Information and Computation (PACLIC 33), pages 10-18, Hakodate, Japan, September 13-15, 2019 

Copyright © 2019 Won Ik Cho, Seok Min Kim and Nam Soo Kim



ite) consonants/vowels, that can come for each slot is
19, 21, and 27. For instance, in a syllable ‘간 (kan)’,
the three clock-wisely arranged characters ㄱ, ㅏ,
and ㄴ, which sound kiyek (stands for k; among 19
candidates), ah (stands for a; among 21 candidates),
and niun (stands for n; among 27 candidates), refers
to the first, the second and the third sound respec-
tively.

To compare five different Jamo/character-level
embedding methodologies that are possible in Ko-
rean, we first review the related studies and the
previous approaches. Then, two datasets are intro-
duced, namely binary sentiment classification and
multi-class intention identification, to investigate the
performance of each representation under recurrent
neural network (RNN)-based analysis. After search-
ing for an effective encoding scheme, we demon-
strate how the result can be adopted in combating
other tasks and discuss if a similar approach can be
applied to the languages with the complex writing
system.

2 Related Work

Inter-language comparison with word and character
embedding was thoroughly investigated in Zhang
and LeCun (2017), for Chinese, Japanese, Korean,
and English. The paper investigates the languages
via representations including character, byte, ro-
manized character, morpheme, and romanized mor-
pheme. The observation of tendency for Korean sug-
gests that adopting the raw characters outperforms
utilizing the romanized character-level features, and
moreover both the performance are far beyond the
morpheme-level features. However, to be specific
on the experiment, decomposition of the morpho-
syllabic blocks was not conducted, and the exper-
iment did not make use of the dense embedding
methodologies which can project the distributive se-
mantics onto the representation. We concluded that
more attention is to be paid to different character
embedding methodologies of Korean. Here, to re-
duce ambiguity, we denote a morpho-syllabic block
which consists of consonant(s) and a vowel by char-
acter, and the individual components by Jamo. A
Jamo sequence is spread in the order of the first to
the third sound if a character is decomposed.

There has been little study done on an effec-

tive text encoding scheme for Korean, a language
that has distinguished character structure which can
be decomposed into sub-characters. A comparative
study on the hierarchical constituents of Korean
morpho-syntax was first organized in Lee and Sohn
(2016), in the way of comparing the performance
of Jamo, character, morpheme, and eojeol (word)-
level embeddings for the task of text reconstruction.
In the quantitative analysis using edit distance and
accuracy, the Jamo-level feature showed a slightly
better result than the character-level one. The (sub-
)character-level representations presented the out-
come far better than the morpheme or eojeol-level
cases, as in the classification task of Zhang and Le-
Cun (2017). The results show the task-independent
competitiveness of the character-level features.

In a more comprehensive viewpoint, Stratos
(2017) showed that Jamo-level features combined
with word and character-level ones display bet-
ter performance with the parsing task. With more
elaborate character processing, especially involving
Jamos, Shin et al. (2017) and Cho et al. (2018c)
made progress recently in the classification tasks.
Song et al. (2018) aggregated the sparse features
into multi-hot representation successfully, enhanc-
ing the output within the task of error correction. In a
slightly different manner, Cho et al. (2018a) applied
dense vectors for the representation of the charac-
ters, obtained by skip-gram (Mikolov et al., 2013),
improving the naturalness of word segmentation for
noisy Korean text. To figure out the tendency, we
implement the aforementioned Jamo/character-level
features and discuss the result concerning classifica-
tion tasks. The details on each approach are to be
described in the following section.

3 Experiment

In this section, we demonstrate the featurization
of five (sub-)character embedding methodologies,
namely (i) Jamo (Shin et al., 2017; Stratos, 2017)
(ii) modified Jamo (Cho et al., 2018c), (iii) sparse
character vectors, (iv) dense character vectors
(Cho et al., 2018a) trained based on fastText (Bo-
janowski et al., 2016), and (v) multi-hot charac-
ter vectors (Song et al., 2018). We featurize only
Jamo/character and no other symbols such as num-
bers and special letters is taken into account.

11



Representation Property Dimension Feature type
(i) Shin2017 ㄱ · · · ㅎ /ㅏ · · · ㅢ /ㄱ · · · ㅄ Jamo-level 67 one-hot
(ii) Cho2018c (i) +ㄱ · · · ㅏ · · · ㅄ Jamo-level 118 one-hot

(iii) Cho2018a-Sparse · · · 간 · · · 밤 · · · 핫 · · · character-level 2,534 one-hot
(iv) Cho2018a-Dense · · · 간 · · · 밤 · · · 핫 · · · character-level 100 dense

(v) Song2018 · · · 간 · · · 밤 · · · 핫 · · · + α character-level 67 multi-hot

Table 1: A description on the Jamo/character-level features (i-v).

For (i), we used one-hot vectors of dimension
67 (= 19 + 21 + 27), which is smaller in width
than the ones suggested in Shin et al. (2017) and
Stratos (2017), due to the omission of special sym-
bols. Similarly, for (ii), 118-dim one-hot vectors are
constructed. The different point of (ii) regarding (i)
is that it considers the cases that Jamo is used in the
form of single (or composite) consonant or vowel,
as frequently observed in the social media text. The
cases make up an additional array of dimension 51.

For (iii) and (iv), we adopted a vector set that is
distributed publicly in Cho et al. (2018a), reported
to be extracted from a drama script corpus of size
2M. Constructing the vectors of (iii) is intuitive; for
N characters in the corpus, a N -dimensional one-
hot vector is assigned for each. Case of (iv) can be
considered awkward in the sense of using charac-
ters as a meaningful token, but we concluded that
the Korean characters can be handled as a word
piece3 (Sennrich et al., 2015) or subword n-gram
(Bojanowski et al., 2016) concerning the nature of
their composition. All the characters are reported
to be treated as a separate token (subword) in the
training phase that uses skip-gram (Mikolov et al.,
2013). Although the number of possible character
combinations in Korean is precisely 11,172 (= 19
* 21 * 28), the number of ones that are used in
real-life reaches about 2,500 (Kwon et al., 1995).
Since the description says that the corpus is removed
with punctuation and consists of around 2,500 Ko-
rean syllables, we exploited the dictionary of 100-
dim fastText-embedded vectors which is provided in
the paper, and extracted the list of the characters to
construct a one-hot vector dictionary4.

3The word piece models were not investigated in this study
since here we concentrate on the (sub-)character-level embed-
dings.

4Two types of embeddings were omitted, namely the Jamo-
based fastText and the 11,172-dim one-hot vectors; the former
was considered inefficient since there are only 118 symbols at

(v) is a hybrid of Jamo and character-level fea-
tures; three vectors indicating the first to the third
sound of a character, namely the ones with dimen-
sion 19, 21, and 27 each, are concatenated into a sin-
gle multi-hot vector. This preserves the conciseness
of the Jamo-level one-hot encodings and also main-
tains the characteristics of conjunct forms. In sum-
mary, (i) utilizes 67-dim one-hot vectors, (ii) 118-
dim one-hot vectors, (iii) 2,534-dim one-hot vectors,
(iv) 100-dim dense vectors, and (v) 67-dim multi-hot
vectors (Table 1).

3.1 Task description

For evaluation, we employed two classification tasks
that can be conducted with the character-level em-
beddings. Due to a shortage of reliable open source
data for Korean, we selected the datasets that show a
clear description of the annotation. One, a sentiment
analysis corpus, is expected to display how well
each character-level encoding scheme conveys the
information regarding lexical semantics. The other,
an intention analysis corpus, is expected to show
how comprehensively each character-level encoding
scheme deals with the syntax-semantic task that con-
cerns sentence form and content. The details on each
corpus are stated below.

3.1.1 Naver sentiment movie corpus
The corpus NSMC5 is a widely used benchmark

for evaluation of Korean language models. The an-
notation follows Maas et al. (2011) and incorporates
150K:50K documents for the train and test set each.
The authors assign a positive label for the reviews
with a score > 8 and negative for the ones with a
score < 5 (in 10-scale), adopting a binary labeling
system. To prevent confusion that comes from gray-
zone data, neutral reviews were removed. The posi-

most and the latter was assumed to require a huge computation.
5https://github.com/e9t/nsmc

12



tive and negative instances are equally distributed in
both train and test set.

3.1.2 Intonation-aided intention identification
for Korean

The corpus 3i4K6 (Cho et al., 2018b) is a re-
cently distributed open-source data for multi-class
intention identification. The labels, in total seven,
include fragment and five clear-cut cases (state-
ment, question, command, rhetorical question (RQ),
rhetorical command (RC)). The remaining class is
for the intonation-dependent utterances whose in-
tention mainly depends on the prosody assigned to
underspecified sentence enders, considering head-
finality of the Korean language. Since the labels are
elaborately defined and the corpus is largely hand-
labeled (or hand-generated), the corpus size is rel-
atively small (total 61K) and some classes possess
a tiny volume (e.g., about 1.7K for RQs and 1.1K
for RCs). However, such challenging factors of the
dataset can show the aspects of the evaluation that
can be overlooked. The train-test ratio is 9:1.

3.2 Feature engineering

In the first task, to manage with the document size,
the length of Jamo or character sequence was fixed
to the maximum of (i-ii) 420 and (iii-v) 1407. Sim-
ilarly, in the second task, (i-ii) 240 and (iii-v) 808.
The length regarding (i-ii) being three times as long
as that of (iii-v) comes from the spreadings of the
sub-characters for each character.

For both tasks, the document was numericalized
in the way that the tokens are placed on the right
end of the feature, to preserve Jamos or charac-
ters which may incorporate syntactically influential
components of the phrases in a head-final language.
For example, in a sentence “배고파 (pay-ko-pha,
I’m hungry)”, a vector sequence is arranged in the
form of [0 0 · · · 0 0 v1 v2 v3], where v1, v2, and
v3 each denotes the vector embeddings of the char-
acters pay, ko, and pha. Here, pha encompasses the
head of the phrase with the highest hierarchy in the
sentence, which assigns the sentence a speech act of

6https://github.com/warnikchow/3i4k
7The data description says the maximum volume of the input

characters is 140.
8The number of the utterances with the length longer than

80 were under 40 (< 0.07%).

statement. The spaces between eojeols were repre-
sented as zero vector(s)9.

To look into the content of the corpora, the first
dataset (NSMC) contains many incomplete charac-
ters such as solely used sub-characters (e.g., ㅋㅋ,
ㅠㅠ) and non-Korean symbols (e.g., Chinese char-
acters, special symbols, punctuations). The former
ones were treated as characters, whereas the latter
ones were ignored in all features. Although (i, iii,
iv) do not represent the symbols regarding the for-
mer as non-zero vector while (ii, v) do so, we con-
cluded that this does not threaten the fairness of the
evaluation, since a wider range of representation is
own advantage of each feature. The second dataset
(3i4K) contains only the full characters. Thus no dis-
turbance or biasedness was induced in the featuriza-
tion.

3.3 Implementation
The implementation was done with Hangul
Toolkit10, fastText11, and Keras (Chollet and
others, 2015), which were used for character
decomposition, dense vector embedding and RNN-
based training, respectively. For RNN models,
bidirectional long short-term memory (BiLSTM)
(Schuster and Paliwal, 1997) and self-attentive
sentence embedding (BiLSTM-SA) (Lin et al.,
2017) were applied.

In vanilla BiLSTM, an autoregressive system that
is representatively utilized for time-series analysis,
a fully connected layer (FC) is connected to the last
hidden layer of BiLSTM, finally inferring the out-
put with a softmax activation. In BiLSTM with a
self-attentive embedding, the context vector whose
length equals to that of the hidden layers of the BiL-
STM, is jointly trained along with the network so
that it can provide the weight assigned to each hid-
den layer. The weight is obtained by making up an
attention vector via a column-wise multiplication of
the context vector and the hidden layers. The model
specification is provided as supplementary material.

3.4 Result
For both tasks, we split the train set into 9:1 to have
a separate validation set. As a result, we achieved

9Eojeol denotes the unit of spacing in the written Korean.
10https://github.com/bluedisk/hangul-toolkit
11https://pypi.org/project/fasttext/

13



Accuracy
(F1-score)

NSMC 3i4K
BiLSTM BiLSTM-SA BiLSTM BiLSTM-SA

(i) Shin2017 0.8203 0.8316 0.8694 (0.7443) 0.8769 (0.7692)
(ii) Cho2018c 0.7895 0.7973 0.8688 (0.7488) 0.8728 (0.7727)

(iii) Cho2018a-Sparse 0.8271 0.8321 0.8694 (0.7763) 0.8722 (0.7741)
(iv) Cho2018a-Dense 0.8312 0.8382 0.8799 (0.7887) 0.8844 (0.7963)

(v) Song2018 0.8271 0.8314 0.8696 (0.7713) 0.8761 (0.7828)

Table 2: Performance comparison. Only the accuracy is provided for NSMC since the labels are equally distributed.
Two best models regarding accuracy (and F1-score for 3i4K) are bold (and underlined) for both tasks, with each
architecture (BiLSTM and BiLSTM-SA).

135K instances for the training of NSMC (15K for
the validation) and 50K for the training of 3i4K (5K
for the validation).

3.4.1 Performance

The evaluation phase displays the pros and cons
of the conventional methodologies (Table 2). In both
tasks, (iv) showed significant performance. It is as-
sumed that the result comes from the distinguished
property of (iv); it does not break up the syllabic
blocks and at the same time provides the distribu-
tional semantics to the models, in the way of em-
ploying skip-gram (Mikolov et al., 2013). (v) also
performs in a similar way, by using a multi-hot en-
coding that assigns own role to each vector repre-
sentation, displaying a compatible performance us-
ing BiLSTM in both tasks.

(iii) preserves the blocks as well, but one-hot en-
coding hardly gives any information on each char-
acter. It is assumable that such representation can be
powerful for the dataset with a rich and balanced re-
source, as in NSMC, but is weak if the class volume
is imbalanced, which led to an insignificant result
for 3i4K. Although some compatible performance
was achieved with BiLSTM, the models regarding
(iii) reached saturation fast and displayed overfitting
afterward, while the models with the other features
showed a gradual increase in accuracy. The reason
for fast saturation seems to be the limited flexibility
coming from the vast parameter set size.

The unexpected point is that the models utiliz-
ing additional letters (ii) showed significant perfor-
mance degeneration in NSMC task, where the solely
used sub-characters (as ㅋㅋ implying joy or ㅠㅠ
implying sadness) were expected to be aggregated
into the featurization and yield a positive outcome.

In the pilot research executed without validation set
(that the model performing best with the test set was
searched greedily), a comparable result as in (i) was
shown. Thus, the reason for the degeneration seems
to be the limitation of using a validation set, where
the cutback in the training resource is inevitable12.
Also, some solely used sub-characters might have
caused the disorder in the inference of the sentiment,
since not all the users employ the sentiment-related
sub-characters in the same way. Supporting this ob-
servation, feature (ii) shows much less difference
with (i) in 3i4K, where only the full characters are
adopted.

3.4.2 Using self-attentive embedding

The advantage of using self-attentive embedding
was the most emphasized in Jamo-level feature (i)
for both tasks, and the least in (iii) (Table 2). We
assume that relatively more significant improve-
ment using (i) originates in the decomposability of
the blocks. If a sequence of the blocks is decom-
posed into the sequence of sub-characters, the mor-
phemes can be highlighted to provide more syntac-
tically/semantically meaningful information to the
system, especially the ones that could not have been
revealed in the block-preserving environment (iii-v).
For example, a Korean word ‘이상한 (i-sang-han,
strange)’ can be split into ‘이상하 (i-sang-ha, the
root of the word)’ and ‘-ㄴ (-n, a particle that makes
the root an adjective)’, making up the circumstances
in which the presence and role of the morphemes
is pointed out. This property is also reflected in the
case of using the feature (ii), although the absolute
score is not notable.

12It is highly recommended to use the cross-validation if one
wants to boost the performance.

14



Trainable
param.s &

Training time

BiLSTM BiLSTM-SA

Param.s
Time /
epoch

Param.s
Time /
epoch

(i) Shin2017 34,178 13.5m 297,846 18m
(ii) Cho2018c 47,234 16m 310,902 20.5m

(iii) Cho2018a-Sparse 665,730 33m 772,318 38.5m
(iv) Cho2018a-Dense 42,626 6.5m 149,214 6m

(v) Song2018 34,178 6m 140,766 6m

Table 3: Computation burden for NSMC models.

3.4.3 Decomposability vs. Local semantics

The point described above is the disadvantage of
character-level features (iii-v) in the sense that in
such ones, characters cannot be decomposed, even
for the sparse multi-hot encoding. The higher perfor-
mance of (iv-v) compared to the Jamo-level features,
which is currently displayed, can hence be explained
as a result of preserving the cluster of letters. If the
computation resource is sufficient so that exploit-
ing deeper networks (e.g., Transformer (Vaswani et
al., 2017) or BERT (Devlin et al., 2018)) is avail-
able, we infer that (i-ii) may also show compatible or
better performance, since the modern self-attention-
based mechanisms utilize the positional encodings
to grasp the relation between the tokens, advanced
from the location-based models we adopted. Never-
theless, it is still quite impressive that (iv) scores the
highest even though the utilized dictionary does not
incorporate all the available character combinations.
It is suspected to be where the distributive semantics
on the word pieces are engaged in.

3.4.4 Computation efficiency

In this study, we investigate only on the classifica-
tion tasks. Notwithstanding they take a short amount
of time for training and inference, the measurement
on parameter volume and complexity is meaningful
(Table 3). It is observed that (v) yields a compati-
ble or better performance with respect to the other
schemes, accompanied by less burden of computa-
tion. Besides, we argue that the multi-hot encod-
ing (v) has a significant advantage over the rest in
terms of multiple usages; it possesses both concise-
ness of the sub-character (Jamo)-level features and
local semantics (although not distributional) of the
character-level features. Due to these reasons, the
derived models are fast in training and also have po-
tential to be effectively used in sentence reconstruc-

tion or generation, as shown in Song et al. (2018),
where applying large-dimensional one-hot encoding
has been considered challenging.

4 Discussion

The primary goal of this paper is to search for a
Jamo/character-level encoding scheme that best re-
solves the given task in Korean NLP. Empirically,
we found out that the fastText-embedded vectors
outperform the other features if provided with the
same environment (model architecture). It is highly
probable that the distributive semantics plays a sig-
nificant role in the NLP tasks concerning syntax-
semantics, at least in the feature-based approaches
(Mikolov et al., 2013; Pennington et al., 2014).
However, we experimentally verified that even with
traditional feature-based systems, the sparse encod-
ing schemes also perform adequately with the dense
one, especially displaying computation efficiency in
the multi-hot case.

At this moment, we want to emphasize that the
utility of the comparison result is not only restricted
to Korean, in that the introduced character encod-
ing schemes are also available in other languages.
Although the Korean writing system is unique, the
Japanese language incorporates several morae (e.g.,
small tsu) that approximately correspond to the third
sound (cong-seng) of the Korean characters, which
may let the Japanese characters be encoded in a
similar manner with the cases of Korean. Also,
each character of the Chinese language (and kanji
in Japanese) can be further decomposed into sub-
characters (bushu in Japanese) that have meanings
as well, as suggested in Nguyen et al. (2017) (e.g.,
鯨 “whale” to魚 “fish” and京 “capital city”).

Besides, many other languages that are used in
South Asia (India), such as Telugu, Devanagari,
Tamil, and Kannada, have writing system type of
Abugida13 (Daniels and Bright, 1996), the compo-
sition of consonant and vowel. The cases are not the
same as Korean in view of a writing system since
featural decomposition of the Abugida characters
is not represented in the way of segmentation of a
glyph. However, for example, instead of listing all
the CV combinations, one can simplify the repre-
sentation by segmenting the property of the charac-

13https://en.wikipedia.org/wiki/Writing system

15



ter into consonant and vowel and making up a two-
hot encoded vector. The similar kind of character
embedding can be applied to many native Philip-
pine languages such as Ilocano. Moreover, we be-
lieve that the argued type of featurization is robust
in combating the noisy user-generated texts.

5 Conclusion

In this study, we have reviewed the five differ-
ent types of (sub-)character-level embedding for a
character-rich language. It is remarkable that the
dense and multi-hot representation perform best
given the classification tasks, and specifically, the
latter one has the potential to be utilized beyond the
given tasks due to its conciseness and computation
efficiency. The utility of the sub-character-level fea-
tures is also noteworthy in the syntax-semantic tasks
that require morphological decomposition. It is ex-
pected that the overall performance tendency may
provide a useful reference for the text processing of
other character-rich languages with conjunct forms
in the writing system, including Japanese, Chinese,
and the languages of various South and Southeast
Asian regions. A brief tutorial on both datasets using
embedding methodologies presented in this paper is
available online14.

Acknowledgement

This research was supported by Projects for Re-
search and Development of Police science and Tech-
nology under Center for Research and Development
of Police science and Technology and Korean Na-
tional Police Agency funded by the Ministry of Sci-
ence, ICT and Future Planning (PA-J000001-2017-
101). Also, this work was supported by the Technol-
ogy Innovation Program (10076583, Development
of free-running speech recognition technologies for
embedded robot system) funded by the Ministry of
Trade, Industry & Energy (MOTIE, Korea). The au-
thors appreciate Yong Gyu Park for giving helpful
opinions in performing validation and evaluation.
After all, the authors want to send great thanks to the
three anonymous reviewers for the insightful com-
ments.

14https://github.com/warnikchow/kcharemb

References

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2016. Enriching word vec-
tors with subword information. arXiv preprint
arXiv:1607.04606.

Won Ik Cho, Sung Jun Cheon, Woo Hyun Kang, Ji Won
Kim, and Nam Soo Kim. 2018a. Real-time automatic
word segmentation for user-generated text. arXiv
preprint arXiv:1810.13113.

Won Ik Cho, Hyeon Seung Lee, Ji Won Yoon, Seok Min
Kim, and Nam Soo Kim. 2018b. Speech intention un-
derstanding in a head-final language: A disambigua-
tion utilizing intonation-dependency. arXiv preprint
arXiv:1811.04231.

Yong Woo Cho, Gyu Su Han, and Hyuk Jun Lee.
2018c. Character level bi-directional lstm-cnn model
for movie rating prediction. In Proceedings of Korea
Computer Congress 2018 [in Korean], pages 1009–
1011.

François Chollet et al. 2015. Keras. https://
github.com/fchollet/keras.

Peter T Daniels and William Bright. 1996. The world’s
writing systems. Oxford University Press on Demand.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understanding.
arXiv preprint arXiv:1810.04805.

Bhuwan Dhingra, Zhong Zhou, Dylan Fitzpatrick,
Michael Muehl, and William W Cohen. 2016.
Tweet2vec: Character-based distributed rep-
resentations for social media. arXiv preprint
arXiv:1605.03481.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Hyuk-Chul Kwon, Ho-Jeong Hwang, Min-Jung Kim, and
Seong-Whan Lee. 1995. Contextual postprocessing
of a korean ocr system by linguistic constraints. In
icdar, page 557. IEEE.

Jaeyeon Lee and Kyung-Ah Sohn. 2016. Comparison of
decoder performance by representation for korean lan-
guage in rnn encoder-decoder model. In Proceedings
of the KISS conference [in Korean], pages 609–611.

Zhouhan Lin, Minwei Feng, Cicero Nogueira dos Santos,
Mo Yu, Bing Xiang, Bowen Zhou, and Yoshua Bengio.
2017. A structured self-attentive sentence embedding.
arXiv preprint arXiv:1703.03130.

Wang Ling, Isabel Trancoso, Chris Dyer, and Alan W
Black. 2015. Character-based neural machine trans-
lation. arXiv preprint arXiv:1511.04586.

Andrew L Maas, Raymond E Daly, Peter T Pham, Dan
Huang, Andrew Y Ng, and Christopher Potts. 2011.

16



Learning word vectors for sentiment analysis. In Pro-
ceedings of the 49th annual meeting of the associa-
tion for computational linguistics: Human language
technologies-volume 1, pages 142–150. Association
for Computational Linguistics.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositionality.
In Advances in neural information processing systems,
pages 3111–3119.

Viet Nguyen, Julian Brooke, and Timothy Baldwin.
2017. Sub-character neural language modelling in
japanese. In Proceedings of the First Workshop on
Subword and Character Level Models in NLP, pages
148–153.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word rep-
resentation. In Proceedings of the 2014 conference
on empirical methods in natural language processing,
pages 1532–1543.

Mike Schuster and Kuldip K Paliwal. 1997. Bidirec-
tional recurrent neural networks. IEEE Transactions
on Signal Processing, 45(11):2673–2681.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2015. Neural machine translation of rare words with
subword units. arXiv preprint arXiv:1508.07909.

Haebin Shin, Min-Gwan Seo, and Hyeongjin Byeon.
2017. Korean alphabet level convolution neural net-
work for text classification. In Proceedings of Korea
Computer Congress 2017 [in Korean], pages 587–589.

Chisung Song, Myungsoo Han, Hoon Young Cho, and
Kyong-Nim Lee. 2018. Sequence-to-sequence au-
toencoder based korean text error correction using
syllable-level multi-hot vector representation. In Pro-
ceedings of HCLT [in Korean], pages 661–664.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya
Sutskever, and Ruslan Salakhutdinov. 2014. Dropout:
a simple way to prevent neural networks from over-
fitting. The Journal of Machine Learning Research,
15(1):1929–1958.

Karl Stratos. 2017. A sub-character architecture
for korean language processing. arXiv preprint
arXiv:1707.06341.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Process-
ing Systems, pages 5998–6008.

Ziang Xie, Anand Avati, Naveen Arivazhagan, Dan Juraf-
sky, and Andrew Y Ng. 2016. Neural language cor-
rection with character-based attention. arXiv preprint
arXiv:1603.09727.

Xiang Zhang and Yann LeCun. 2017. Which en-
coding is the best for text classification in chi-
nese, english, japanese and korean? arXiv preprint
arXiv:1708.02657.

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015.
Character-level convolutional networks for text classi-
fication. In Advances in neural information processing
systems, pages 649–657.

17



Supplementary Material

BiLSTM and BiLSTM-SA model specification
Variables
• Sequence length (L) and the number of output classes (N) depend on the task. For NSMC, L = 420 for

feature (i-ii) and 140 for (iii-v). For 3i4K, L=240 for feature (i-ii) and 80 for (iii-v). N equals 2 and 7
for NSMC and 3i4K, respectively.

• Character vector dimension (D) depends on the feature. For features (i-v), D equals 67, 118, 2534, 100,
and 67, respectively.

BiLSTM
• Input dimension: (L, D)

• RNN Hidden layer width: 64 (=32×2)

• The width of FCN connected to the last hidden layer: 128 (Activation: ReLU)

• Output layer width: N (Activation: softmax)

BiLSTM-SA
• Input dimension: (L, D)

• The dimension of RNN hidden layer sequence output: (64 (= 32×2), L)
>> each layer connected to FCN of width: 64 (Activation: tanh; equals to da in Lin et al. (2017)) [a]

• Auxiliary zero vector size: 64
>> connected to FCN of width 64 (Activation: ReLU, Dropout (Srivastava et al., 2014): 0.3)
>> connected to FCN of width 64 (Activation: ReLU) [b]

• Vector sequence [a] is column-wisely dot-multiplied with [b] to yield the layer of length L
>> connected to an attention vector of size L (Activation: softmax)
>> column-wisely multiplied to the hidden layer sequence to yield a weighted sum [c] of width 64
>> [c] is connected to an FCN of width: 256 (Activation: ReLU, Dropout: 0.3) × 2 (multi-layer)

• Output layer width: N (Activation: softmax)

Settings
• Optimizer: Adam (Kingma and Ba, 2014) (Learning rate: 0.0005)

• Loss function: Categorical cross-entropy

• Batch size: 64 for NSMC, 16 for 3i4K (due to the difference in the corpus volume)

• For 3i4K, class weights were taken into account to compensate the volume imbalance.

• Device: Nvidia Tesla M40 24GB

18




