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Abstract

Internal combustion (IC) engines have become the most important power source for
automotive during the last 140 years. Diesel engine shows most efficient performance
among internal combustion engines including gasoline engines. Thus the diesel engines
have been widely applied in heavy-duty applications such as big trucks on the road and
electric generators off the road. With the challenges of fuel economy and emission

legislation, the performance of diesel engine should be further improved.

In order to satisfy the increasing requirement of fuel efficiency and strict emission stan-
dard, the advanced technologies of diesel engine have been well developed. Modern
diesel engine is normally equipped with two systems including exhaust gas recirculation
(EGR) system and common-rail injection system. These two systems work together to
reduce the exhaust emissions, particularly NOx with optimal fuel efficiency guaranteed.
The control parameters in the system consist of the fuel quantities of injection, injection
timing and injection pressure during different injection period by common rail. And
the variables also include EGR valve opening, temperature of the engine cylinder, the
engine load, etc. All these setting variables have influence on the engine performance

such as engine speed, fuel consumption, and emissions.

The complication of control will increase the development effort and cost. Furthermore
the traditional method by manual calibration is time consuming and does not lead to
optimal results. Thus the model-based control method becomes attractive since it can

solve such complicated problems efficiently.

The traditional study of engine behavior which influence combustion efficiency and ex-
haust emission has only been concentrated on the steady-state based on pre-calculated
maps. But the real driving usually consists of many transient actions of engine such
as change of speed and load. Furthermore comparing with the steady states, the fuel
consumption and emissions are much worse during transient conditions. Thus so as to
further improve the performance of diesel engine, the research during transient opera-
tion has much potential. Thus this study will concentrate on two topics: 1. dynamic
model for control purpose; 2. robust control algorithm in consideration of model uncer-

tainty for real-time application.

As for the above-mentioned topics, the dynamic model-based control of diesel engine
has been developed. The real process is described by dynamic model with uncertainty.

Then the guaranteed cost control method is studied which could guarantee a certain cost
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under model uncertainty. Furthermore in consideration of input constraints, modified
model predictive (MPC) is proposed to make the steady error zero by disturbance model
which could describe the model mismatch. The proposed control systems have been
successfully implemented on an one cylinder diesel engine. The dissertation consists of

six chapters which are organized as follows:

Chapter 1 briefly describes the research background. Developing more effective system
is essential for improvement of fuel efficiency and reduction of exhaust emissions for
diesel engine. After emphasizing the importance of dynamic model-based methods

during transient condition, the motivation and objective of this research are presented.

Chapter 2 describes the current status of studies on model-based control methods of
diesel engine. It analyzes various MBCs according to their different models and control

algorithms. The main challenges and strategies of this dissertation are expressed.

Chapter 3 introduces the experimental device and dynamic model of diesel engine by
linear state space equation. In our test bench, the YANMAR TF70V-E diesel engine is
modified for research application by the MicroAutoBox of dSPACE system. The data of
inputs and outputs for modeling is obtained from this system. Furthermore the models
for control purpose of diesel engine are described. In consideration of computation
speed, linear state space equation is selected for modeling. Firstly the engine models
are defined including the inputs and outputs. Engine speed and NOx value are chosen
as the control targets. Accurate and fast tracking of engine speed will increase the fuel
efficiency. NOx is the main emission of diesel engine when lean burn mode is applied
to ensure other emissions such as particular matter, CO in a low level. Then the general
binary noise (GBN) signals are designed to excite the engine system to get the data for
modeling. At last the models are identified by the prediction-error minimization (PEM)
method. (The second modeling fit for engine speed and NOX is 77.4% and 80.3%.)

Chapter 4 presents the extended guaranteed cost control of the diesel engine system
with input constraints. The combustion uncertainties and nonlinear behavior of diesel
engine are expressed by parameter uncertainties based on linear state space equations
obtained in Chapter 3. The uncertainties are presented by variation on parameter ma-
trices. The idea of confidence interval is proposed to describe this variation. The un-
certainty matrices designed in our paper will ensure the confidence interval 75.45% for
the engine speed model and 87.03% for the NOx emission model. For controller de-
sign, the quadratic performance with uncertainty, the inputs constraints and the demand

of tracking are guaranteed by three augmented linear matrix inequalities (LMIs). The
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gains of control and state estimate are obtained simultaneously. Then the real-time test
by the proposed approach is done in our test bench. Comparing with traditional method
LQR, for case 1 in the defined linear working range(2300 2500rpm), the tracking er-
ror for engine speed by the proposed method decreases by 37.2% and NOXx emission
value decreases by 19.2%. For case 2 with bigger working region(2200 2600rpm), the
overshoot for engine speed by the proposed method decreases by more than 68.8% and
NOx emission value decreases by 38.3%. For case 3 with the biggest working range
(2100 2700rpm), the tracking error for engine speed by proposed method decreases by
more than 34.0% and NOx emission value decreases by 33.7%. The experimental re-

sults prove that the designed cost guaranteed cost algorithm is effective and applicable.

Chapter 5 raises a modified model predictive control of diesel engine with no steady
error. Since the application of input constraints in the prior chapter is not so convenient
(initial state in the LMI need to be calculated each time), the MPC method becomes an
attractive choice. Facing the model uncertainty and mismatch, the disturbance model
is used in MPC. Based on this disturbance model, the condition for no steady error
has been obtained. In details, in order to get the parameter By and D; in disturbance
model, dynamic observer has been built in which the cost function is optimized under
H,, norm. The solution of this Hy, has been proposed by the satisfaction of one LMI. A
two-step algorithm has been proposed to search the optimal value of two parameters @
and vy in LMI. The first step is to optimize y under the assumption that @ = 1; the second
step is to search the suitable « to satisfy the condition of zero offset. Then the state
observer could be obtained based on the parameter B; and D,. Finally the obtained
disturbance model and state observer are applied in the solver (qpOASES) of quadratic
programming (QP) problem, which is the core of MPC problem. The real-time test by
the proposed approach is also done in our test bench. The experimental results prove
that the designed control system can achieve the reference tracking control of engine
speed precisely, meanwhile the emissions can be reduced feasibly. For case 1 in the
defined linear working range (2300 2500rpm), the tracking error for engine speed by
the proposed method MPC 3 decreases by 61.2 % and NOx emission value decreases
by 35.1% comparing with MPC 1 which is designed by normal MPC method. For case
2 with bigger working range (2150 2650rpm), comparing with MPC 1,the tracking error
for engine speed by the proposed method decreases by 95.3% and NOx emission value

decreases by 11.8%.

Chapter 6 gives the conclusions and future work.
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Chapter 1

Introduction

1.1 Research background

After Nikolaus Otto (1876) firstly applied 4-cycle internal combustion (IC) engines suc-
cessfully and Rudolf Diesel (1892) proposed the idea of compression ignition, IC en-
gines have been the main power source of automotive which pushed the development of
society during the last 140 years [1]. In recent decade, the other power sources of vehi-
cles such as electric, natural gas and bio-fuels have been developing. However the wide
application of such alternative power sources has the limitation due to high cost and
short of power storage [2]. Meanwhile, in order to satisfy the increasing requirement
of fuel efficiency and strict emission standard, the advanced technologies of modern
automotive engines have been well developed. Thus there is still a bright future for the

development of IC engines for vehicles in the 21st century [3].

1.1.1 Society problems of fuel crisis and air pollution

With the growth of the global population and an increasing number of vehicles, the
concern about fuel crisis and air pollution caused by automotive has been raised. The
study showed that there will be an increasing demand for energy consumption from
road transportation in the next twenty years. It is shown in Figurel.1. Although there is
some small development for other energy supplies, fossil fuels including gasoline and
diesel will still be main sources. As we know, the fossil fuels are precious resources

which can not be renewable.
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In order to meet the growing demand of energy consumption from road transportation,

it is an essential issue to improve the fuel efficiency for the automotive industry.

mmm Gasoline s Diesel msm Natural Gas
120,000 == Biofuels LPG mmm Electricity
=== Hydrogen =—MHDV Energy LDV Energy

100,000

80,000

60,000

(Trillion Btu)

40,000

20,000

2015 2020 2025 2030 2035

FIGURE 1.1: Energy consumption from road transportation (Navigant Research 2014)

On the other hand, the environment problems caused by emissions from vehicles have
been widely concerned by the society in recent years. The well-known emission regu-
lation from the European Union was firstly introduced in 1992. It included the limits
for exhaust emissions such as carbon dioxide (CO), hydrocarbon (HC), nitrogen oxide
(NOx) and particulate matter (PM). With the increasing concern about the environment
problems caused by the emissions, the regulation has become stricter and stricter. The
emission regulation by EU for heavy-duty diesel engines is shown in Figure 1.2. We
can see that limits for all emissions have been reduced in a great amount, i.e. the critical
value on NOX has been reduced by 97% [4]. And we believe that the regulation will be
further enforced in the near future (by Figure 1.3). Thus in order to satisty the tighter
requirement, the performance improvement of diesel engine which is concentrated on

reducing exhausted emissions is really necessary and important.

Stage | Date | CO(g/kWh) | HC(g/kWh) | NOx(g/kWh) | PM(g/kWh)
Euro 1 | 1992 45 1.1 8.0 0.612
Euro 2 | 1996 4.0 1.1 7.0 0.25
Euro 3 | 2000 2.1 0.66 5.0 0.10
Euro 4 | 2005 1.5 0.46 35 0.02
Euro 5 | 2008 15 0.46 2.0 0.02
Euro 6 | 2013 15 0.13 0.40 0.01

FIGURE 1.2: EU emission standards for heavy-duty diesel engines
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g/kWh

Euro 1(1992) Euro 11(1996) EuroII1(2000) Euro IV(2005) Euro V(2008) Euro VI(2013)

FIGURE 1.3: Trend of standard for NOx
1.1.2 Development of technologies for diesel engine

The diesel engine shows most efficient and powerful performance among internal com-
bustion engines including the gasoline engine. It has been widely used in heavy-duty
applications such as big trucks on the road and some generators off the road. The early
diesel engine is very big, heavy and noisy. With the persistent efforts of researchers and

engineers through many generations, the modern diesel engine has been well developed.

In last section, we discussed the main challenges for IC engines. The target is to satisfy
the increasing requirement for fuel efficiency and stricter emission standards. Especially
in the last decade, many advanced technologies have been developed and successfully

implemented in the diesel engine.

Common-rail injection system is one important technology that is made up of three
parts. The first one is a pump which can be controlled. The second part is the com-
mon rail that the fuel can go through. And the last part is the injectors that can be
electronically controlled. The pressure of injectors are more than I00MPa and the fuel
quantities of the injections are really precise in small scale [5].The injection strategy
such as the pressure of fuel injection, the timing of fuel injection, and the quantity
of fuel injection can be flexibly organized to contributes to the highly efficient com-
bustion. But higher NOx is produced inevitably. EGR (Exhaust gas recirculation) is
another advanced technology recirculating the exhaust gas into intake manifold driven
by the motor. It will reduce peak temperature of combustion when the exhaust gas is
inserted into the cylinder. Consequently the formation of NOx will be suppressed [5—
7]. But high EGR levels reduce the amount of fresh air, which will cause an increase
in particulate matter and possibly visible smoke. The particulate matter is emitted be-

cause of uncompleted combustion of diesel or lacking of oxygen. It is now reduced
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by turbocharger, diesel particulate filter (DPF)[8], or by applying the lean burn which
may cause engine damage and high level of NOx[9]. Last but not least, in order to
govern all these components, a powerful engine control unit (ECU) is needed. With an
increasing number of setting variables and more sophisticated structure, algorithms that
can optimize the control parameters should be well developed. The control parameters
of diesel engines in recent generations is shown in Figure 1.4. We can clearly see that
the number of control parameters is growing. As a result, it is critical and difficult to

operate modern diesel engine properly.

Year | Number of actuators | Description of control parameters
2001 1 Injector valve

Injector valve

2004 3 EGR valve

VGT

2Injector valves

EGR valve

2007 6 VGT

Inlet throttle

HC doser

2Injector valves

EGR valve

VGT

2010 7 Inlet throttle

HC doser

Turbo-compound engage ment
Urea doser

2Injector valves

EGR valve

VGT

Inlet throttle

HC doser

Turbo-compound engage ment
Urea doser

VVT

2015+ 10+

FIGURE 1.4: Control parameters of diesel engine

1.1.3 Model based control method

The complication of control will increase the development effort and cost. Furthermore
the traditional method by manual calibration is time consuming and does not lead to
optimal results. Thus the model-based control method become an attractive option due
to its ability of dealing such complicated problems efficiently. The advantage of model-

based control method is shown as follows:
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e Decrease the number of experiments
e Increase the efficiency of development procedure

e Improve the response and effect of control

The model for control purpose consists of static model and dynamic model. The static
model-based control method uses mass experiment data to acquire the regression model
and combines the mathematical optimization theory with control parameters [10-17].
Control inputs could be obtained in each static operating point. One example of opti-
mized results by TOYOTA is shown as follows in Figure 1.5. In each static operating
point defined by engine speed and load, the corresponding optimal control inputs (such

as injection quantity, timing and pressure) are obtained.

25 o zw m0 0 O g, g 0 S0 B0 2y SR T, e 1600
500 1500 E 1500
meng.me Speed [rpm] mengi“e Speed [rpm] 100 Engine Speed frpm]

Injection quantity Injection timing Injection pressure

FIGURE 1.5: One example of optimized results by TOYOTA

The dynamic model-based control method is used to calculate the control inputs in each
sampling time. Dynamic model can predict the process. And the control algorithm
will optimize the inputs to satisfy the cost function (Target). The most representative
structure of dynamic model-based control is shown in Figure 1.6. Different kinds of
dynamic models and control algorithms are introduced in Chapter 2. The better per-
formance during transient condition makes dynamic model-based control a hot topic in

last two decades.

l l Output feedback

3 Dynamic Model
—_— e based Real Engine System

£ Control Algorithm
Reference

FIGURE 1.6: Dynamic model-based control structure
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1.2 Motivation and objective

The traditional study of engine behaviour which influence combustion efficiency and
exhaust emission has only been concentrated on the steady-state. But the real driving
usually consists of many transient actions of engine. Furthermore comparing with the
steady states, the fuel consumption and emissions are much worse during transient con-
ditions [18]. Thus in order to further improve the performance of diesel engine, the

research during transient operation has much potential. Motivation is listed as follows:

e Desire to improve the fuel efficiency and reduce the emissions of diesel engine,

especially during the transient condition.

e The requirement for real-time application which could be used in the vehicle driv-

ing test.

In this study, a modern diesel engine was applied. It was equipped with a common rail
injection system and EGR system. Our objective is to design the transient model-based
control that satisfies the above requirement for real-time application of diesel engine.
Furthermore the control system is modified for the challenge of nonlinear fast engine
process with input constraints. As for the research objective, the detailed work is shown

as follows:
e Analyzing the characteristics of engine during the transient condition of engine
speed.

e Constructing a linear dynamic model with high computation speed based on the

experimental data.

e Modification of two control algorithms based on the obtained model suitable for

the nonlinear fast engine process with input constraints.

e Implementing the control algorithms into a real engine and validating the control

strategies in the real-time application.
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1.3 Organization of the dissertation

This thesis shows the cumulative works over my doctor career through six chapters.
Chapter 1 laid the the fundamental background and story that connects the whole the-
sis. In Chapter 2, the previous research has been reviewed. The experimental engine
and modeling of diesel engine for online control purpose are introduced in Chapter 3.
Based on the identified model, Chapter 4 proposed a extended guaranteed cost con-
troller design method. And Chapter 5 develops an offset-free model predictive control
method by combined design of disturbance model and observer. Finally, our findings

and future study are summarized in Chapter 6. Figure 1.7 shows the thesis outlines.

Chapter 4
Extended Guaranteed Cost
Controller Design

Y

o Chapter 2 Chapter 3 Chapter 6
Chapter 1 G T T o
3 e Overview of Experimental Engine and———— Conclusions and
Introduction . 3 " .
Current Research Modeling Future Work

Chapter 5
Dffset-free Model

Predictive Control Design

FIGURE 1.7: A diagram of the thesis outlines

The general theme of this thesis is to apply dynamic model-based control method for
real-time application on diesel engine for satisfying the driver’s demand and reducing

the exhaust emission.

The overview of current researches is described in Chapter 2. The current status of
studies on model-based control method of diesel engine is introduced. It analyzes vari-
ous MBCs according to their different models and control algorithms; discusses current

problems; and then expresses the main approaches of this dissertation.

In Chapter 3, the experimental engine setup is introduced firstly. Then the model is
identified for control purpose. The procedure of the linear system identification of en-
gine model is proposed. At first the inputs and outputs of the model are selected for
control purpose. Then the stair tests are performed to ensure the linear working region
and inputs constraints. And the general binary signals (GBN) are designed based on

the step-responses. Finally the linear state space models of diesel engine process are
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identified based on the data of inputs and outputs from real-time experiments by the
PEM method.

In Chapter 4, the extended guaranteed cost state-feedback control of diesel engine with
input constraints is presented. The engine process is fast and uncertain. In order to
achieve the real-time application, the combustion uncertainties and nonlinear behavior
are expressed by parameter uncertainties based on linear state space equations obtained
in Chapter 3. For controller design, the quadratic performance with uncertainty, the
inputs constraints and the demand of speed tracking are guaranteed by three augmented
linear matrix inequalities (LMIs). The gains of control and state estimate are obtained
simultancously. Then the real-time test by the proposed approach is done in our test
bench. The experimental results prove that the designed control system achieves a sat-

isfied performance. The main contributions related to this chapter are shown as follows:

e The process of diesel engine through both air and fuel loop is expressed by linear
state space equations with parameter uncertainties based on the idea of confidence

interval;

e Compared with traditional guaranteed cost control, the state feedback and esti-

mate gains are given from feasible solution of an augmented LMI simultaneously;

e To deal with tracking problem and physical constraints, more LMI conditions are

discussed.

Chapter 5 raises a modified model predictive control of diesel engine with no steady
error. Since the application of input constraints in the prior chapter is not so conve-
nient, the MPC method becomes an attractive choice. As MPC itself has robustness
to uncertainties, the main problem is the steady error in real-time application. In order
to solve this problem, the definition of disturbance model and state estimate is firstly
given. Then the parameters of disturbance model and state estimate are obtained from
a combined design based on H, theory. For the solution to Hs problem, there will
be two challenges. Firstly for general application of H,, theory, the general solution
is put forward. Secondly with the dimension of the model increasing, the reduced-
order design for H, problem is needed. Then a two-step algorithm is presented for the
reduced-order solution which is suitable in general case. Finally the obtained distur-
bance model and state estimate gain are applied in the solver (qpOASES) of quadratic
programming (QP) problem, which is the core of MPC problem. The real-time test by

the proposed approach is also done in our test bench. The experimental results prove
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that the designed control system can achieve the reference tracking control of engine
speed precisely and affectively, meanwhile the emissions can be reduced feasibly. The

main contributions related to this chapter are shown as follows:
e Compared with traditional offset-free tracking control, the disturbance model and
state estimate are given from a combined design based on H, theory.

e The general solution of H, problem is put forward for the condition of tracking

control without steady error.

e With the dimension of the model increasing, the reduced-order design for Hy,

problem is discussed.

e A two-step algorithm is presented for the reduced-order design problem which is

suitable for the above additional condition.

Chapter 6 summarizes the thesis and gives suggestions for potential future research.






Chapter 2

Overview of Current Researches

2.1 Introduction

This chapter describes the current status of studies on model-based control method of
diesel engine. With the purpose of increasing fuel efficiency and reducing emissions,
researchers have developed many MBCs with different models and control algorithms.
Instead of traditional methods based on look-up tables, the MBCs can ease the burden of
calibration work when setting variables in diesel engine grow. As discussed in the prior
chapter, we can categorized MBCs according to their models and control algorithms
(including optimization algorithms). To discuss the existing MBCs in detail, this chapter
is organized in the following: section 2.2 discusses different optimization algorithms
based on different static models. Section 2.3 focuses on different control strategies
based on different dynamic models. Section 2.4 summarizes the current MBCs and

gives the conclusion.

2.2 Static model-based control

The static model-based control which is also called static model-based calibration is
well developed by researchers in universities and companies. It could be easily applied
in real-time application of diesel engine, because the solutions are obtained off-line
which is shown in Figure 2.1 [19]. Afterwards, these optimal values are verified on

the test bench. If the verification was successful, then the engine operation maps are

11
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generated and stored on the ECU. The static model and the optimization method are

introduced and compared in this section.

Design of
Experiments (DoE)

PC

Engine Map

Modeling Optimization Generation

y

Measurement Verification ECU

Test bed

FIGURE 2.1: Static model-based calibration

2.2.1 Static model

The static model mainly consists the following three types:

polynomial model

The polynomial regression model used for engine calibration are mainly with first and

second order. That with first order is in the following form [20, 21]:

y= Z(aixi) +¢ 2.1)
i=1

That with second order is in the following form [22-26]:

y= Zn:(bixi) + Z Z(bijxixj) + i(biixiz) +¢; (2.2)
Py T i=1

where x; are the inputs, y is the outputs. The polynomial model expresses the relation-
ship between the inputs and outputs of diesel engine. A number of regression analysis
are done to get coefficients(a;, b;, b;j, bj;) so that the models can be used to describe the

responses.
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redial basis function

Redial basis function (RBF) can be applied to build a regression model. RBF is suitable
for building functions for such a target: diesel engine[27]. RBF is widely applied in
nonlinear usage. Comparing with other modeling methods, it has rapid convergence [28,
29]. RBFs are radially symmetric functions that can be used to model complex surfaces

with limited data [30]. A radial basis function can be written as

2(x) = f(llx—cl) (2.3)

where f is the radial basis kernel. ||...|| means the Euclidian distance between input x
and center ¢. The kernel function f can be of many different forms. Some examples of

kernel functions and RBFs can be seen in Figure 2.2.

Type Profile Function/ Kernal Radial Basis Function
~ = = 7
Gaussian fr) = e_;_z z(x) = exp (Hgiz'u“)
Multiquadric () =+r? +0? z(x) = /|lx — |z + o2
Reciprocal Multiquadric ) e —— zZ(x) = ——
E . N Vilx =l + ¢
Linear JR)==F z(x) = —lx —pull
Cubic Fr)=r2 z(x) = |lx —p||®
G E—— @) !
Logistic 1= : 2w = =
B 1+exp (;;) 1+ exp (L( o “H)
Thin Plate Spline f@) =r?log (r) z(x) = llx — pllPlog (llx — D)

T - o 1s standard deviation of profile function

FIGURE 2.2: Types of Radial Basis Functions

Then the entire system is modeled as a linear combination of N radial basis functions

with N centers. The RBF network is given by

N
y(x) = ) Bizi(x) (2.4)

i=1

where £ is a weight factor for RBF centered at ¢; and y is the output.



Chapter 2. Overview of Current Researches 14

neural network

The linear modeling techniques suffer from several limitations since the engine process
is nonlinear. The multi-layer perceptron (MLP)neural network which is the general
form of RBF can be used as a kind of nonlinear regression model. It has been the most
commonly used nonlinear modeling technique in engine calibration. As is well know,

the schematic structure of the MLLP network is shown in Figure 2.3.

Input Layer Hidden Layer Output Layer
Weights Weights

FIGURE 2.3: Schematic structure of the MLP network

The data of inputs and outputs of diesel engine in the static operating point is collected
for training the neural network [19, 31-34]. Based on enough data from real test of en-
gine, neural networks are able to learn the complicated nonlinear relationships between

each setting variables.

2.2.2 Optimization method

With the model obtained in the section 2.2.1, the optimal settings of the parameters
can be found by numerical optimization. Depending on different types of model and

objective function, different suitable optimization algorithms can be applied.

response surface method

The response surface method (RSM) includes three parts: modeling, analysis and op-
timization. The model here is usually the polynomial regression model introduced in
the prior part. Then the response surfaces of each inputs are generated. The trade-off

between setting variables is analyzed.
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Finally the optimal values of engine operating parameters were evaluated by using the
desirability based approach of RSM. The RSM has been applied to diesel engine op-
timization [21, 24-26, 35]. In [21], T. Lee showed a good result of RSM in a high-
speed diesel engine that equipped with common rail injection system and EGR valve.
In the experiment, the manipulated variables such as injection quantity,injection pres-
sure,injection timing, and EGR are decided. In [35], EGR and injection pressure are
selected as manipulated variables. The linear polynomial model was chosen. They also
defined an objective function considering NOx, PM. The results proved that it success-
fully reduced NOx and PM, meanwhile maintained fuel efficiency of a single cylinder
direct injection (DI) diesel engine. However, RSM method has a disadvantage of often

trapping into a local optima.

genetic algorithm

GA is adaptive heuristic search algorithm based on the evolutionary ideas of natural
selection and genetics, which is proposed by John Holland[36]. Tt belongs to a part of
evolutionary computing that has been widely experimented and applied to the fields of

artificial intelligence.

Due to the advantage of GA, it has been fully used to emission and fuel efficiency
optimization problems of diesel engine [24, 34, 37—41]. In [24], the second-order poly-
nomial model was used to describe emissions(CO, HC, NOx, PM) by injection timing,
load torque and engine speed. Comparing with the traditional RSM, GA has less work
burden of procedure of trial and error. In [34, 37], the neural network was trained to
predict the emissions and fuel efficiency with the ability of solving complex multiple re-
lations. GA was applied in the optimization process to get the optimal AFR (air to fuel
ratio), injection quantity and injection timing in each static operating point define by
engine speed and load. In [38—41], T.Hiroyasu has done a great job applying and mod-
ifying the GA to calibration of diesel engine. In his research, the engine process was
described by phenomenological model using HIDECS. Emission and fuel efficiency are
selected as optimization target. An extended GA called “Neighborhood Cultivation GA”
was applied to solve the problem in [38]. Simulation results proved the effectiveness of
the proposed GA algorithm for diesel engine. In [40] T.Hiroyasu extended the former

research [38] to multiple injection pattern including EGR.
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particle swarm optimization

PSO is a stochastic population-based optimization method which was firstly proposed
by Kennedy and Eberhart [42]. PSO is a kind of evolutionary computation. It is based
on genetic algorithm and evolutionary programming with particle’s velocity and po-
sition inside. PSO was integrated with diesel engine experiments to reduce emissions
while maintaining high fuel efficiency [20, 23,43, 44]. In [23], Wahono applied PSO al-
gorithm to a second-order model to find the optimal operating conditions for low emis-
sions. In [20], PSO was modified by Wu with better convergence performance. The
objective includes NOx, PM and fuel efficiency. The simulation results prove that the
modified PSO show a sufficient solution to satisfy the multiple objectives. In [43, 44],
PSO was directly to generate the manipulated variables including EGR, start of injec-
tion (SOI) and injection pressure without modeling. The application was implemented
in different cases including single- and double-injection. In each static operating point,

favorable inputs were obtained.

2.3 Dynamic model-based control

As discussed in Chapter 1, the study of engine behaviour including combustion effi-
ciency and exhaust emission has only been concentrated on the steady-state. But the
real driving usually consists of many transient actions of engine. Furthermore compar-
ing with the steady states, the fuel consumption and emissions are much worse during
transient conditions [18]. Thus the dynamic model-based control suitable for transient

condition has become hot topic last two decades.

The structure of dynamic model-based control has been mentioned in Chapter 1. The

dynamic model and the control algorithm are introduced and compared in this section.

2.3.1 Dynamic model

The dynamic model mainly consists the following three types:
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thermodynamic model

The thermodynamic modelling for diesel engine is usually based on physical first prin-
ciples. This kind of models can be found in [45—49]. They can be applied in the perfor-

mance simulation and prediction, but still too complicated for control purpose.

Thus the so-called mean-value model (MVM) was introduced by some simplification
and approximation [6, 50-55]. The mean-value diesel engine models usually consist of
a series of first-principles models. In the models, the dynamics inside engine including
the intake manifold, the exhaust manifold, the compressor and turbocharger are chosen
as state variables. MVMs with a minimum set of differential equations show superiority
for control design. It will reduce the computation burden in a certain level. The differ-
ence between MVM and other physical models of diesel engine is that time is chosen
as the independent variable. Meanwhile the time scale in MVM is considered as one
engine cycle. And there are also many literatures about the control method based on the

mean-value model.

In [53], the time-based equations of mean-value model is transformed into the engine
cycle domain. But the dynamics of turbocharger are not directly related to the com-
bustion behaviour of the diesel engine. They are different from the phenomenon in the
intake manifold and exhaust manifold. Therefore the process in turbocharger is better
modelled not in cycle domain but in time domain. So as to make the controller solvable,

the engine model is simplified with three state equations.

In [52], the mean-value based robust control has been investigated. It focuses on the
parameterisation of the turbocharger which is the challenging point of the paper. In
order to design the controller for extended operating region, the nonlinear models are

simplified and converted into linear parameter-varying (LPV) form.

In [53] the physical MVMs of diesel engine is discussed in details which are used in the
dynamic optimization process. Six differential equations were built, which represent
the dynamic processes in different engine’s blocks (the intake manifold, the exhaust
manifold, the cylinder and the variable geometry turbo-compressor). From the above
literatures, we know that this kind of method requires much work of parameterization.
It is not easy to apply the resulting nonlinear models directly for controller design.
Furthermore the mean-value model is often not suitable for modeling of fuel-loop dy-

namics.
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nonlinear parametric identification model

Thus it is really attractive to describe the process of combustion engines by parametric
identification models for control purpose. There are two types of model: linear and

nonlinear.

With the development of computer technology, the computation ability make the ap-
plication of nonlinear model available for fast engine process. Two types of model are
well developed: NARMAX and neural network.

In [56], a NARMAX model representing the process of diesel engine was raised. The

model is in the following form of differential equation.

y(t)y=—ag+aiy(t— 1)+ aru(t) +azu(t—1) +a4y2(t— 1) 2.5)
+asy(t— Du() — agy(t — Du(t — 1) — agu® (1) — agu*(1 = 1) '

Here u describes the input which is fuel rack position in the study. y is the output which
is engine speed. a; are the coefficients obtained by the system identification based on

data of dynamic experiments.

Aside of NARMAX models, neural network models are another option for nonlinear
modeling of diesel engine. The NN models here is dynamic which differs from the
static ones mentioned in the prior part. The dynamic NN models are built to make
the prediction in [57-61]. The data of former states (inputs and outputs) is needed for
building NN model. It makes the model has dynamic characteristics and prediction

ability.

In [58, 61], the dynamic NN models of spark ignition (SI) engine were proposed. The
Figure 2.4 in [61] shows the structure of dynamic NN model. The fuel injection, throttle
angel and air-fuel ratio in former time are selected as the inputs of the NN, the current

air-fuel ratio as output. This kind of model could be applied in predictive algorithms.

Madel output:

ir-fiuef ravio

FIGURE 2.4: Structure of dynamic NN model
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linear parametric identification model

Because of the nonlinear behavior of a diesel engine in the wide operating region (for
example, engine speed changes from 800 rpm to 4500 rpm), obtaining a unique linear
model becomes impossible with high precision. To deal with this problem, the entire
operation region of engine is then segmented into several sub-zones. [54, 62—65]. One
example is shown is Figure 2.5. Within each sub-zone, a linear model is identified.

r
fuel

10| 11| 12

speed

FIGURE 2.5: One example for segmentation of the engine operation region

There are two types of linear model: transfer function and state space equation. State
space equation has become the common choice in recent research [54, 62-65]. After
the inputs and outputs of the model are determined, the pseudo-random binary sequence
(PRBS) signal is implemented to generate data for system identification. It is proved
that the state space equation could play a significant role in real-time application in

diesel engine because of its simplicity and fast computation.

2.3.2 Control strategy

Many control strategies based the above dynamic models have been developed for diesel
engine. As discussed in the previous part, the control during transient condition is the
key of performance improvement for diesel engine. The representative control strategies

are introduced in the following part.

neural network control

Neural network is mentioned three times in the dissertation. As presented in the pre-

vious part, neural networks have been used to describe the relationship between inputs
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and outputs of diesel engine in static and dynamic condition. Based on the strong ability

of learning, the neural network has also been used as controller of diesel engine.

Optimal control using neural networks is applied in [53]. At first, the optimization algo-
rithm was conducted for searching the optimal control action during transient condition.
Then the neural network was trained based on the database of optimal control action.
The NN controller is implemented in real time simulations on the ETC cycle. From the

results it can seen that a better performance is obtained than the traditional method.

An adaptive critic learning controller for engine control based on neural networks was
studied in [66]. The structure of controller is shown in Figure 2.6. The commanded
values are the reference including air-fuel ratio (AFR) and torque (TRQ). Q(¢) is the
critic network outputs function which is also the cost function of the controller. The
simulation results prove that the proposed self-learning control is effective in tracking

the TRQ and AFR in SI engine.

Commanded values AFR*(t+1)
TRQ¥(t+1)

Combustion

Intake AFR(t+1)

TRQ(t+1)

Engine model

U = e

FIGURE 2.6: Structure of the adaptive critic learning engine controller

minimize Q(t)

nonlinear MPC

As we talk about the model-based control method, the model predictive control (MPC)
is a inevitable topic. MPC is a beneficial approach for MIMO control and performance

optimization with adjustment of constraints.

A control structure for a turbo-charged diesel engine based on nonlinear model predic-
tive control (NMPC) is illustrated in [67]. The process of diesel engine is described
using the differential equation with nonlinearities and constants from MVMs. Then a
NMPC with quasi-infinite horizon is applied. The improved transient behaviour could
be seen in the simulation. But it is not possible to apply the NMPC system directly in

real-time test since the time of computing will be a huge burden.

In [68], the nonlinear model predictive control NMPC) of an air-loop of a diesel engine

based on a LPV model is shown. The LPV model is identified based on real data from
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an engine test bench. The software package qpOASES is used to solve the nonlinear
QP problem. An excellent tracking performance by nonlinear MPC is shown in the
simulation. But computation burden is a huge problem. As a consequence, it proves

that nonlinear MPC cannot be used for real-time application at that time in 2009.

explicit linear MPC

As we just discussed, the concern for control of diesel engine in real-time is computation
speed. Explicit MPC is a method to apply the MPC algorithm to fast process such as
diesel engine. In [54, 63—63], the solver such as active set method for the QP problem
of MPC requires much computation effort. As a result, the application of MPC has been
restricted for slow processes. Thus for every possible initial state, each affine control
law is precalculated and stored in look-up tables. With this method the MPC could be

applied in fast process such as diesel engine. The procedure is shown in Figure 2.7.
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Engine Control
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___________________________

FIGURE 2.7: Implementation procedure of EMPC on the diesel engine

online linear MPC

Comparing with above strategies, a more efficient method to deal with the problems
of quadratic programming of MPC is given in [62]. The condition of applying this
method which is called online strategy is that there is not too much change for the
active set of QP between each sampling time. However this kind of method is different
from conventional techniques for warm starting. In this way the online calculation in a
given sampling time becomes possible. And in our thesis, this method of QP solving
is applied in the MPC design. Above all any calibration work was not required. This
system has been tested in real-time application, but the dynamic behavior of fuel loop

is not discussed.



Chapter 2. Overview of Current Researches 22

linear quadratic regulator

It is common to apply LQR as an optimal algorithm to solve control problems. LQR is
superior due to its advantage of easy implementation and fast computation speed. LQR

is widely used in engine control for reduction of emissions [69-71].

In [69], the EGR and injection timing are selected as manipulated variables. The target
is to solve the NOx-soot trade-off problems. The real-time experiment on a six-cylinder
engine proves its effectiveness not only in stationarity but also in transients. Linear
optimal control approach of LQR has been applied to an advanced diesel engine with
EGR and turbocharger in [70]. The control is focuses on the air loop of the engine.
The objective is to regulate oxygen fractions and pressures in manifolds by EGR and
VGT (variable geometry turbocharger). The tracking performance in the simulation is

satisfied.

2.4 Summary

In summary, the overview of current researches focuses on model-based control meth-
ods of diesel engine. With the purpose of increasing fuel efficiency and reducing emis-
sions, researchers have developed many MBCs with different models and control algo-

rithms. Through the review of literature, main results are discussed as follows:

1. The static model based calibration is well developed and implemented into real-time
application of production diesel engine. But the performance during transient condition
is the main source of air pollution. It makes the transient control based on dynamic

model an attractive choice.

2. The modeling of engines has a long story. And the model is very important in the
design of control strategies. In consideration of real-time application including air and
fuel loop of diesel engine, it motivates us to use linear state space equation for modeling

because of its simplicity and fast computation.

3. Many control strategies have been developed to improve the performance during
transient condition. As we know the simulation results are satisfied. But the real-time
experimental results are lack. In another word, the real-time controller of diesel engine
which is easily implemented is desired. Among the existing methods, MPC and LQR

have been proven a good choice.
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Engine Test Bench and Modeling

3.1 Introduction

The experimental experiments described in this thesis were performed in a diesel en-
gine test bench at the Laboratory of Ogai, at the graduate school of information pro-
duction and system, Waseda University. The engine applied in the test bench was an
one-cylinder YANMAR TF70V-E. Then it was modified for research purpose. Two
computer systems were inserted, which could be used for the measurement, data acqui-

sition and the engine control.

The requirement of an engine model that will predict the plant behaviour and can be
used inside the controller has been declared. The behavior of a diesel engine usually
involves air-path and fuel-path loop, which is easily captured simultaneously by state
space equation introduced in previous chapter. Meanwhile the engine combustion is a
real fast process. In consideration of on-line computation burden, it motivates to use

linear state space equation to describe the diesel engine system.

Thus this chapter describes the engine test bench and the model for control purpose.
The rest of this chapter is organized as follows: Section 3.2 describes the detailed setup
of the engine test bench. In section 3.3, the procedure of linear system identification for

diesel engine model is conducted. And finally Section 3.4 summarizes the conclusions.

23
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3.2 Engine test bench

The engine test bench is shown in Figure 3.1. And the schematic view of the engine test

bench is shown in Figure 3.2.

FIGURE 3.1: Diesel engine test bench
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FIGURE 3.2: The schematic view of engine test bench
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3.2.1 Diesel engine

The heart of the test bench is the YANMAR TF70V-E diesel engine, modified for ad-
vanced research applications. The main specifications of the investigated diesel engine
are described in Table 3.1. The engine in its commercial form is mainly used for ship-

board electric power generation and small ship propulsion.

TABLE 3.1: Specifications of diesel engine

Name YANMAR TF70V-E
Type 4-cycle, 1 cylinder, DI
Bore x Stroke 78mm X 80mm
Compression ratio 21.4
Displacement 382cc
Maximum power 5.5/2600 kW/min™"
Rated power 4.8/2600 kW/min~!
Fuel type Diesel
Fuel tank capacity 7.1 liter
Size 640%330.5%474 mm’
Drying quantity 78.5 kg

In the experimental setup, the engine is coupled to an electric dynamometer, VLC134-
100kg. The connection between the engine and the dynamometer is realized via a shaft
and a flexible coupling (® in Figure 3.2). The dynamometer typically works in two

modes:

Constant speed mode In this mode, engine is kept at a constant speed. This is achieved
by a feedback loop, for example, using Proportional-Integral-Derivative (PID)

controller to control the engine speed by adjusting the load on the engine.

Constant load mode In this mode, a constant load generated by the dynamometer is

set to the engine. The constant load mode is set in this thesis.

3.2.2 Instrumentation

Each instrumentation of the engine test bench with marked number is shown in Figure
3.2. Table 3.2 provides the identification of sensors and actuators. Just as the descrip-

tions about sensors in Table 3.2, the information about measurement instrumentation



Chapter 3. Modeling 26

for exhausted emissions, pressures and temperatures could be found from the manufac-
turer, which are not described in details here. The devices for monitoring exhausted

emissions (@),©)), pressures (),(9)) and temperatures ((9)) are shown in Figure 3.3.

TABLE 3.2: Sensors and actuators at test bench

No. Name Model Manufacturer

D Engine TF70V-E YANMAR
Common rail: Bosch

@ | Common rail system / Controller: Denso
Fuel pump: Bosch

@ Soot sensor MEXA-600SW Horiba

© NOx sensor MEXA-720NOx Horiba

©® | CO, HC, CO; sensor MEXA-584L Horiba

® Dynamometer VLC134-100kg VMC

(0 Flow rate sensor FD-SS02A KEYENCE

25620-46090
3 EGR valve 135000-808 1 Toyota

FIGURE 3.3: Operation platform

3.2.3 Data acquisition and control system

The engine data acquisition system (DAQ) acquires and stores measured data from sen-
sors and actuators during test runs. Meanwhile the control system sends commands to

actuators.
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FIGURE 3.4: Modified operation platform with two computer systems
FC-design system

The original diesel engine was modified by the FC-design company. FC-design is a
company focused on the development of engine control. As shown in the Figure 3.4,
the computer with the provided software in the yellow frame on the left side processes
and collects the data from all the sensors and measurement devices. The information
of engine speed, output power, fuel efficiency, exhausted emissions, pressures and tem-
peratures can be shown on the display. The controller panel in the blue frame is used to
send and display the commands to actuators such as EGR valve opening and fuel injec-
tion parameters. But these input variables including EGR, injection quantity, injection
timing and injection pressure can only be set manually. The detailed information about

the communication configuration of FC-design system is omitted here.
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dSPACE system

dSPACE is one of the world’s leading providers of tools for developing electronic con-
trol units (ECU). In recent years, the dSPACE system is widely applied in area of auto-
mobile industry. The heart of the dSPACE system in out test bench is the MicroAutoBox
1401 shown in red frame in Figure 3.4. MicroAutoBox is a real-time system for per-
forming fast function prototyping. It can operate without user intervention, just like an
ECU in the vehicle. MicroAutoBox is running at S00MHz. The SIMULINK in Matlab

could be used to program for fast prototyping.

VLC134- | MEXA- | MEXA- FD-
100kg 720NOx | 600SW | SS02A

Torque(3) NOx(4)  Soot(5) Fuel(6)
EGR Common Rail
System Il i 1l
11 11 (—Temperature(7)— Ter;lgrel:;i;ure
PWM ADC 1 Intake Intake
Tx Rx Tx " Pressure(8) | Sensor
MircoAutoBox MEXA
1l N 584L DL750P
—Rx(1 i
Splitter L (= S;(I;l;l Ethernet ;?;:ﬁ; | | | |
Tx(2)—/] .
—Tx(2) I | == CO, HC, Cylinder
Data CJOLZ PrersLure
ControlDesk IZZX_ Displayl Display2

F1GURE 3.5: Connections with MicroAutoBox

The dSPACE system in our test bench was developed by our diesel engine group of the
Ogai lab. And the detailed work will be introduced in the following parts. The hardware

connection in the system is depicted in Figure 3.5.

There are four kinds of communication interfaces in MicroAutoBox. The communi-
cation between the MicroAutoBox and the controller panel of EGR and common real
system is by the interface of serial port. The detailed information about the serial port
protocol is shown in Table 3.4 and 3.5. The communication of dynamometer is by the
interface of pulse-width modulation (PWM). The communication of all the other sen-

sors and measurement device is by the interface of analog-to-digital converter (ADC).
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T .3: Description of communication protocols and data acquisition interfaces
Index Name I/0 | Interface Value Unit
(D) Engine Speed I | Serial port See Table. 3.4 RPM
(D Rail Pressure I | Serial port See Table. 3.4 MPa
(2) EGR O | Serial port See Table. 3.5 Y%
(2) | Injection Parameters | O | Serial port See Table. 3.5 /
Period: 2ms
) Torque © PWM Duty ratio 0.001 for 0.225N.m Nm
4) NOx | ADC Voltage(V) x 400 ppm
&) Soot I ADC Vx10 1/m
(6) Fuel I ADC (V—=1)x3000 cc/h
(7D Temperature I ADC Vx40 °C
(8) Intake Pressure I ADC (V-1)yx233.2+0.44 KPa
TABLE 3.4: Serial port receiving protocol
R: engine speed(RPM)x 1
Description P: measured rail pressure(MPa)x10
CSCIpHO Checksum: sum from byte 1 to 38
E: Error
Byte[0:7] | OxFF | 0x01 | Ox41 | R[8:15] | R[0:7] | P[8:15] | P[0:7] | E[8:15]
Byte[8:39] | E[0:7] 0---0 Checksum
T
T,: nth injection timing([0 720]degree)x2
Tn‘Tn—l28
o Qy: nth injection quantity([0 30000]us)x 1
Description E: EGR rate([0 100]%) X 10
P: rail pressure set-point([0 200]MPa)x 10
Checksum: sum from byte 1 to 38
Byte[0:7] OxFF 0x01 0x64 | T1[8:15] | T1[0:7] | T2[8:15] | T2[0:7] | T3[8:15]
Byte[8:15] | T3[0:7] | QI[8:15] | QI[0:7] | Q2[8:15] | Q2[0:7] | Q3[8:15] | Q3[0:7] | P[8:15]
Byte[16:23] | P[0:7] | E[8:15] | E[0:7] | T4[8:15] | T4[0:7] | T5[8:15] | T5[0:7] | Te6[8:15]
Byte[24:31] | T6[0:7] | T7[8:15] | T7[0:7] | Q4[8:15] | Q4[0:7] | Q5[8:15] | Q5[0:7] | Q6[8:15]
Byte[32:39] | Q6[0:7] | Q7[8:15] | Q7[0:7] 0 0 0 0 Checksum
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The communication protocols and the data acquisition interfaces between sensors, ac-
tuators and MicroAutoBox are depicted in Table 3.3. The communication between the
MicroAutoBox and the computer is by the interface of ethernet. The computer is shown

in the black frame in Figure 3.4.

ControlDesk is a software from dSPACE experiment package installed in this computer
for ECU development. All the necessary tasks could be performed in it. The simple
and efficient working environment is given from the start of experimentation to the end.

One example for operation interface built by ControlDesk is shown in Figure 3.6.

BR A% ak en
| soot fuel [Torque [ RPM [ Mpa

49.0837 (1140 [scorses 18632 |00 [80.400

pilot2 timing |

FIGURE 3.6: Operation interface built by ControlDesk

3.3 Modeling

With this setup, experiments were designed and conduct to obtain experimental data
which could be used for system identification. Identification and derivation of dynamic

models for control purpose are the subjects of the section.
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The derivation of such an engine model is based on system identification. For system
identification, there are mainly five parts depicted in Figure 3.7 including experiment
design, the preprocessing of data, the selection of model structure, the estimation of

unknown parameters and validation.

Experiment
design

Data
preprocessing
1
Model structure
selection
1
Parameter
Yes estimation

1

No

Validation

FIGURE 3.7: System identification procedures

Models obtained following the above procedure are often called black box models. As
an advantage, they are relatively easy to obtain and more importantly are simple enough
to make dynamic model-based control system design mathematically and practically

tractable.

3.3.1 Engine model definition

Since the behavior of a diesel engine is nonlinear in the wide operating region (for
example, engine speed changes from 800 rpm to 4500 rpm), obtaining a unique linear
model becomes impossible with high precision. To deal with this problem, the entire
operation region of engine is then segmented into several sub-zones [54, 63]. Within

cach sub-zone, a linear model is identified.

The control objective in this thesis is to operate the engine to meet drivers speed demand
and reduce NOx emission. As for the diesel engine we tested, lean-burn is applied. Thus
the particular matter is not considered as the control target here. Figure 3.8 shows the

structure of the model of whole engine system.



Chapter 3. Modeling 32

External Signals

Surface Temperature Lngine Load

|

Main Injection Quantity
Engine Speed
Fuel Path Main Injection Timing
o Diesel Engine
Injection Pressure NOx
—_—
Air Path EGR Valvc Opening

F1GURE 3.8: Identification structure of diesel engine

Traditionally, the values of NOx emission and engine speed are not directly selected as
feedback variables. The reason is that direct measurements of such variables, which
are so-called high-level objectives, have not been available in production engines. As
the new sensor technic has been developed [72], there exists a chance to design the
control system based on high-level values. In this thesis engine speed and NOx value
are directly selected as the outputs (y) of the model. The engine speed is expressed by
revolutions per minute (RPM). These two variables are influenced by many factors, but
test results indicate that the main influences are main injection quantity, main injection
timing, injection pressure and EGR valve opening. These manipulated variables are
selected as the inputs (u) of the model. The surface temperature of engine cylinder and

the engine load are the measured disturbances.

3.3.2 Data preparation

For system identification, it can be considered as the process of obtaining a model to
describe the behavior of a plant. The parameters in the model are obtained based on

inputs and outputs data [73-76].

The procedure of obtaining the data is normally performed in the following way. The
predesigned signals are inserted into the systems as inputs. Then the resulting outputs
are recorded. Thus the design of inputs signals is naturally very important. As a result,

the data preparation is introduced in details in this section.
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stair test

In this section, stair tests on diesel engine are performed to develop a linear working
region. Since the linear model and linear system identification are applied, the engine
should be ensured to work in a linear range. The constraints of inputs (lower bound
u and upper bound %) should be chosen according to the signal noise ratio (SNR) and
the linearity. If the inputs range is too small, it could be easily influenced by the noise
signal. On the contrary, if it is too big, there will be nonlinearity in the system and
the linear system identification results might not be satisfied. Therefore, the lower and
upper boundary of inputs should be chosen as wide as possible in the linear zone. The

linearity of the working region could be checked by stair test (multi-step test).

Through the stair test for our diesel engine, the inputs boundaries are chosen by our-
selves. In another word, the choice of input boundaries is very subjective. Among these
groups of data, one selection is chosen in Table 3.6. In this region, if we do the stair

test, the responses seem like linear relation.

TABLE 3.6: Inputs boundaries

Inputs Lower boundary: u | Upper boundary: u | Unit
Injection quantity 680 700 us
Injection timing 710 712 degree
EGR 11 15 %
Injection pressure 100 110 MPa

Choice of input signal

The signal used for the experimental input is called the exciting signal. In identification
test the system is usually excited with known impulse and step signal and the output is
recorded. But the noise will distort the measured output. In this case the exciting signal
should be applied repeatedly and persistently [73—76]. Persistence of excitation is the
basic requirement for an informative experiment and guarantees the unique solution for

the parameter estimation. Here open loop experiment is discussed.

Some representative persistent exciting signals are introduced in the literature [76]:

- Pseudo random binary signal (PRBS): PRBS signal is a kind of binary signal

switching between u and u. PRBS signal could be generated from a shift register



Chapter 3. Modeling 34

with feedback. The binary signal is easy to be designed and implemented. PRBS
signal has a wide spectrum just like the white noise. Therefore much information
can be excited from the system. The disadvantage for binary signal is that the
validation against nonlinearity can not be allowed. For example, if the true system
has different steady-state gain, this could not be detected from this exciting signal.
For this case the amplitude-modulated PRBS (APRBS) signal could be used.

- General binary signal (GBN): Just like PRBS, GBN signal is another kind of
binary signal switching between u and u. But unlike PRBS, GBN signal is gen-
erated with a switching possibility and the spectrum is mainly in the lower and
middle frequency domain. Usually it is better for the manipulated variables not to
change rapidly and the spectrum of manipulated variables would be also lack of
power in the high frequency domain. Using the GBN signal could be more likely

to obtain a model for control purpose.

- Filtered Gaussian white noise: By filtering the Gaussian white noise, the signal
with any spectrum could be achieved using different filter. The Gaussian noise
signal is theoretically not bounded and it should be saturated with a certain am-

plitude.

- Combination of sinusoids: Several sinusoids with different frequencies are com-
bined together. Using the combination of sinusoids will be unavoidably distorted

by nonlinearities and the result may not be satisfied.

In this thesis, GBN signal is selected as the exciting signal for the following reasons:

- Easy to be designed and implemented.

- The lower and middle frequency domain of the true system is excited. Thus the

model obtained is suitable for the control purpose.

- Comparing with PRBS, GBN signal has less possibilities to have multiple manip-

ulated variables changing simultaneously, which is good for monitoring.
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Design of GBN signal

GBN signal switches between the boundaries u and u with a possibility of py, in every

minimum switching time Ty,

P(ugp = —up—1) = psw
(g k1) Psu 3.1)
Plup =up—1) = 1 — psw
The parameters for designing a GBN signal are depicted in Table 3.7.
TABLE 3.7: GBN parameters
Upper and lower boundaries | u and u
Switching possibility Psw
Minimum switching time Tew
Length n
The power spectrum of GBN signal is:
1= qH)T i
D, (w) = 4 i (32)

1 =2gcos(wTin) +q*
where g = 2pg, — 1.

The GBN signal depends on these parameters. The details of these parameters are

depicted as follows:

- Upper and lower boundaries u and u: As is described in section 3.3.2.

- Switching possibility pg,: the power spectrum of the signal is decided by py, as

depicted in Eq. (3.2). The methods for choosing pg,, is shown in [76] and [77].

In [76], the mean switching time ETy, is chosen as:

Tyi 1
ET,, = —" = —¢, (3.3)
1 — Psw 3
where 7, is 98% of the settling time. Then T, can be chosen as sampling time

and pg, can be calculated.

In [77], the optimal pg, is chosen so that the power in the frequency interval
Wipin < W < Wipgy 18 Maximized.
1 a

Wi = ——— S W < — = Wyax (34)
Btu TL



Chapter 3. Modeling 36

where 8 is the factor representing the settling time of the process and « is the
factor representing the closed-loop speed of response as a multiple of the open-
loop response time. 7y and 77, are the slowest and fastest time constants over all

of the channels. Typically, g is chosen as 3 and « is chosen as 2.

The frequency interval wy,;; < W < Wy 18 the frequency interval for control pur-

pose. The GBN signal is designed to mainly excite for this interval. wy;, and

Wiax can be obtained from the step response. The optimal py,, is given as:

1
Psw = 1- (35)

1+ Jt'dn Winin Tyin tan Wingx Timin
2 2

In this thesis, the method of [77] is employed, since it is reasonable to increase

the power in the frequency interval for the control purpose.

- Minimum switching time 7,;,,: T),;, is usually chosen the same as the sampling
time. Alternatively, one could choose T,;; as the times of sampling time. Then

Psw can be calculated according to Eq.(3.5).

- Length n: As for the length , there is a trade-off between experiment cost and
parameter estimation variance. #n is usually chosen six to eight times the length of
the settling times. As a matter of fact there exists distortion in the engine system.
In order to reduce the effect of distortion, length could be chosen six to eight

times longer than the settling times.

Therefore, the GBN signal parameters are chosen according to the procedures depicted
in Figure 3.9. Step test is very important because it can give us an intuitive impression
on the system. The parameters of GBN signal could be obtained according to the time
constant and settling time by the step test. After doing the stair test, the inputs bound-
a  uand u are depicted in Table 3.6. The step responses from each input channel to

each output channel are depicted in Figure 3.10.

Based on the step response tests, the sampling time is selected as 1 second. Settling
time is depicted in Table 3.8. Time delay is depicted in Table 3.9. Time constant is
depicted in Table 3.10.

For each input channel, two outputs are excited. Thus the time constant should be
chosen as the biggest (slowest) and smallest (fastest) among all the outputs. For example

in Table 3.10, for injection quantity, 7z is chosen as 5.83 and 7 as 8.57.
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Stair test Step test
InputE l;(;ludniaries Time delay Tir;'f ;ﬁgsftjnt Settling time
Frequency interval Length Sampling
[Wmin Wmax] n time T
Switching Minimum switching
possibility pg,, time T,,;,,
FIGURE 3.9: GBN signal design procedures
TABLE 3.8: Settling time
Settling time
Injection quantity | Injection timing EGR Injection pressure | Unit
Up Down Up Down Up | Down | Up Down
RPM | 17 16 38 25 30 16 8 S
NOx | 23 12 16 23 21 16 13 S
TABLE 3.9: Time delay
Time delay
Injection quantity | Injection timing EGR Injection pressure | Unit
Up Down Up Down Up | Down | Up Down
RPM | 1 1 1 1 1 0 0 s
NOx | 1 0 0 0 0 0 0 S
T
Time constant
Injection quantity | Injection timing EGR Injection pressure
Up Down Up Down Up | Down | Up Down
RPM | 7.00 3.00 4.00 8.63 8.79 | 17.79 | 4.20 1.84
NOx | 5.83 8.57 1.36 1.96 245 | 247 |6.20 5.50
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T
TL TH Winin Winax Psw Tiin (S) Length (S)
Injection quantity | 5.83 | 8.57 | 0.0389 | 0.3431 | 0.0549 1 575
Injection timing | 1.36 | 8.63 | 0.0386 | 1.4706 | 0.1167 1 575
EGR 245 | 17.79 | 0.0187 | 0.8163 | 0.0598 1 575
Injection pressure | 1.84 | 6.20 | 0.0538 | 1.0870 | 0.1130 1 575

Through the procedure shown in Figure 3.9, the parameters are chosen as Table 3.11.

Then the GBN signal can be designed and applied to the test bench. The diesel engine
system is excited for almost thirty minutes. The signals of main injection quantity, main
injection timing, injection pressure and EGR valve opening are designed as Figure 3.11
shows (a part of the total collected data). The engine load is chosen as 50 N. The surface
temperature of the engine stays around 90 degrees. In Figure 3.11 the constraints of
identification signals is designed to ensure the tested diesel engine is working in the
linear sub-zone where the engine speed changes from 2250 to 2550 rpm. The engine
speed and NOX responses are also shown in Figure 3.11. Then the data for system

identification can be obtained.

3.3.3 Parameter estimation

After the data of inputs and outputs being obtained, the linear system identification is
then implemented. In linear system identification, a certain structure of model should be
firstly determined. Then the parameter estimation is needed. The parameters inside are
optimized to minimize the error (specified distance) between the measured and model

outputs.

There are several common-used model structures for linear models:

- Polynomial model The general form of polynomial model is:

m

Algyk) = Z[‘ Flig ui(k — nk;) + Dicq[;

e(k) (3.6)

where A, B, C, D and F are unknown polynomials expressed in the time-shift
operator ¢~ L. m is the number of inputs, nk; is the input delay and e is the distur-
bance. The common linear polynomial model structures include ARX, ARMAX,
OE and BJ [78].




Chapter 3. Modeling 40

7118

7116

7114

(degree)

7112

7108

Injection timing

7106

EGR vale opening rate (%)

7104

7102

u— e 70p U =

350 400 450 500 100 150 200 250 350 400 450 500

300
Time (s)

(a) EGR opening rate (b) Injection timing

Injection pressure (MPa)

(¢) Injection quantity (d) Tnjection pressure

2500

2450

24001

2350

Engine speed (rpm)

2300

2250

100 150 200 250 300 350 400 450 500 100 150 200 250 300
Time (s) Time (s)

(¢) Enginc spced (f) NOx

F1IGURE 3.11: Identification signals for the linear model

- State space model The state space model can be defined in continuous-time form
and in discrete-time form. The discrete-time state space model structure that is

applied in this thesis is often written in the following form:

x(k+ 1) = Ax(k) + Bu(k)

3.7
y(k) = Cx(k) + Du(k)

Therein x(k) denotes the states of the identified model, u(k) the manipulated vari-
ables. And y(k) denotes the controlled variables. A, B,C and D are the unknown

parameter matrices to be identified.

- Transfer function For the discrete time system, transfer function is a special
form of polynomial model structure. Transfer function describes the relationship

between input and output.
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As for the linear system identification, prediction-error minimization (PEM) is often
chosen as the method of parameter estimation. The basic idea behind PEM is described

as follows:

For convenience, here 8 is used to represent all of the unknown parameters.

- Describe the one-step prediction function of output using Eq. (3.7) as:

Hiklk—1) = f(Z¥',0) (3.8)

- Define the distance V() between predicted output 7(1]0),..., y(N|N — 1) and mea-
sured output y,,(1),....y,»(N). The distance can be chosen as the assumed proba-
bility density function, which will be the maximum likelihood estimate, or the

Euler distance.

- Find 8 to minimize the distance function.

A

¢ = argmin Vy(6) (3.9

The distance function may have several local solution. The method of damped

Gauss-Newton is usually used to search for the solution..

In this thesis, the diesel engine is modelled by linear discrete state space equation.

xp(k +1)= Apxp(k) + Bpu(k)
yp(k) = Cpxp(k)

(3.10)

Therein x,(k) € R" denotes the states of the identified engine model, u(k) € R™ the ma-
nipulated variables including main injection quantity, main injection timing, injection
pressure and EGR valve opening. And y,(k) € R? denotes the controlled variables in-
cluding engine speed and NOx value at the krh sampling instant respectively. A,, B, and
C, are the parameter matrices that can be obtained by PEM method using the MATLAB
System Identification Toolbox [78].
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3.3.4 Validation results

Based on the data of inputs and outputs in section 3.3.2, the state space model and the
parameter estimation method of PEM described in section 3.3.3, the system identifica-
tion could be finished. For different application in model-based controller design in the
following chapters, models with different orders are obtained. The order discussed here

is the dimension of parameter matrix A,,.

For Chapter 4, the models of engine speed and NOx emission have been identified
separately. By comparing the fitting values and mean square error (MSE), a fourth-order
model with the best fit is chosen as the engine speed model and a fourth-order model
as the NOx emission model. The modeling fit for engine speed and NOx is 69.7%
and 81.2%. Then two multiple-input single-output (MISO) models are augmented into
one multiple-input multiple-output (MIMO) model with eighth order. Especially in this
form, the uncertainty matrices will be easily added to each model to influence each
output respectively. The validation results and superiority of this form will be explained

further in Chapter 4.

For Chapter 5, since the order discussion is really important in the offset-free condition
and reduced-order H infinity control problem, the second-order and fourth-order MIMO
models of the engine system have been identified in this part. For the second-order

model, the parameter matrices are as follows:

[ 06930 -0.0259
P71 02679 0.8305

_ | 0.00019765 -0.0150 -0.0126 0.00073984
P71 —0.00042114 —0.0070 —0.0129 —0.00042944

( 1188.1 —851.2876 ]
C,=

1237.1 1101.4
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For the forth-order model, the parameter matrices are as follows:

0.7996  0.0698 0.1726  0.2252
-0.2506 0.8381 -0.1044 0.2343
-0.3622 -0.2608 -0.0982 0.0608
-0.1569 -0.3859 0.0238 -0.0246

—-0.00019828 —0.0085 -0.0017 -0.00019962

e 0.0023 -0.0274 -0.0299 0.0042
re 0.0110 -0.0928 -0.0976 0.0195
—0.0056 0.0353 0.0183 —0.0090
| 1283.3 —889.7686 245.5906  21.5544
p

| 10818 13529  -359.1263 -68.4600

The validation results with data not used for identification are shown in Figure 3.12.
The figures indicate that the models with two kind of orders is similar in tracking the
measured outputs of engine speed and NOx value. The second modeling fit for engine
speed and NOX is 77.4% and 80.3%. And the forth modeling fit is really similar. Main
dynamics are captured well. These models are suitable for operation of the model-based

controller design, as this is formulated and further implemented in the next chapters.

3.4 Summary

In this chapter, the test bench with experimental diesel engine was described. Infor-
mation on the structure of the test bench and each component was provided. With this
setup, experiments were designed and conduct to obtain experimental data which could
be used for system identification. And the proposed control algorithm in chapter 4 and

5 can be applied for real-time application on the engine test bench.

Then as for diesel engine system, the procedure of the linear system identification is
conducted. At first the setting variables of the model are selected for control pur-
pose. Then the stair tests are performed to ensure the linear working region and inputs
constraints. And the general binary signals (GNB) are designed based on the step-

responses. Finally the linear state space engine models of the engine process through
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FIGURE 3.12: Validation results of the model

both air and fuel loop are identified based on the data of inputs and outputs from real-
time experiments by the PEM method. The validation results show that the identified

dynamic model could be used for the controller design in the next chapters.
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Extended Guaranteed Cost Controller

Design

4.1 Introduction

As was discussed in Chapter 2, various model-based control approaches for diesel en-
gine have been proposed. Although the aforementioned studies provide model-based
methods to construct controllers, unfortunately, the problem of system uncertainties
was not discussed. Meanwhile in real-time application, there must be uncertainties in
the linear model identified in the staff-defined linear working region. The uncertainties
of diesel engine control system include nonlinearities, some unmodeled dynamics and
unknown parameters [79]. In consideration of guaranteeing the closed-loop stability of
this uncertain system, the so-called guaranteed cost approach is proposed. Furthermore
a certain quality of control performance can be guaranteed at the same time. In the last
few years, the method of linear matrix inequalities (LMI) has been widely applied in the
controller design for its advantage of analysis of uncertain system. Meanwhile solving
methods of LMI have been well developed [80]. This chapter is mainly contribute to
building an extended guaranteed cost controller of diesel engine system with input con-
straints via LMI approach. The control target is to track the engine speed and reduce the
exhaust emissions. The quadratic performance with uncertainty, the inputs constraints
and the demand of tracking are guaranteed by two augmented LMIs. The main contri-
bution is the diesel engine model expressed by linear state space equations obtained in
Chapter 3 with parameter uncertainties. And the control laws and state estimate gains

are given from feasible solution of an extended LMI simultaneously.

45
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The rest part of this chapter is written as follows: A diesel engine model with parameter
uncertainties is built in Section 4.2. Section 4.3 focuses on the design of a extended
guaranteed cost controller with input constraints. The real-world experimental results

are given in Section 4.4. Finally, conclusions are summarized in Section 4.5.

4.2 Model with norm-bounded parameter uncertainties

The nonlinear characteristic of the diesel engine system is represented by linear mod-
els of state space equations in Chapter 3. Due to the subjective decision of the linear
working region by experimental staff, the linear models may include large parameter
uncertainty. In this chapter, the parameter uncertainty in the system is assumed to be
norm-bounded and time-varying. Then the diesel engine system is described in the

following form:

{ xp(k+1) = (A, +AA)x (k) + (B, +AB)u(k) @

ypk) = Cpxp(k)

where A,,B),,C), are the certain matrices by linear system identification in Chapter 3.

09516 —0.2089 —0.1021 —0.0132 0 0 0 0
03226  0.0163 05249 -0.1890 0 0 0 0
0.0147 -0.2844 0.2810 -0.6033 0 0 0 0

A, - -0.0407 -0.0764 -0.3110 0.1084 0 0 0 0
0 0 0 0 0.6293  0.3655 0.0328 0.1063
0 0 0 0 -0.4477 0.0432 -0.6806 0.3366
0 0 0 0 -0.1234 -0.4062 0.5196 0.5551
0 0 0 0 0.0387 -0.06838 0.0682 0.1960|
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[ —1.5856+107% —2.4805%107* —0.0014 —3.2707%10~*
-0.0071 0.0830 -0.0203 -0.0122
0.0058 —-0.0345 0.0404 0.0078
. 0.0062 —-0.0298 0.0411 0.0083
P71 231781073 -0.0116 —0.0035 1.0763x10~*
9.4971 % 1074 -0.0260 -0.0535 0.0030
0.0011 —-0.0161 —0.0201 0.0027
| —5.7088 10~% 0.0058 —0.0054 -0.0013
C. = [1.5851*103 ~79.6091 —144.6003 110.4044 0 0 0 0 ]
p 0 0 0 0 1.6819x10% 259.9515 —681.8811 —142.3450
A
[80-86].
A |=DF|E, E 4.2)

where F' is an unknown matrix that satisfies
FTF<1 (4.3)

D.E,, Ej, are the defined constant matrices with appropriate dimensions. I denotes the

identity matrix.

When the system uncertainty is expressed in this form, it is usually applied in numerical
examples such as [81-84]. It is challenging to apply in the real process. In [85], this
kind of uncertainty description is applied in the motion control system of the robot
prototype. But in the article, the uncertainty matrices are defined randomly without
physical meaning. [86] mainly talks about tracking control for autonomous homing
phase of spacecraft rendezvous. The uncertainty matrices in this article are defined
for 4 cases. But the uncertainty matrices are determined only to ensure the system
stability, also without physical meaning. In [80], the control of a boiler-turbine unit
with reference tracking is discussed. Especially the state variables in the model have
the real physical meaning. Thus the uncertainty matrices could be determined according

to the constraints of these state variables.

In this thesis, the idea of confidence interval is applied to obtain the uncertainty ma-

trices from the experimental data. The confidence interval express the possibility that
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the measured outputs lie within the lower and upper bound defined by the uncertainty
matrices. The uncertainty matrices D, E,, Ej, are designed in the form of diagonal pa-
rameter uncertainty. Thus the augmented MIMO models with eighth order is suitable in
this case. With bigger uncertainty matrices, the confidence level that the measured out-
puts lie within the lower and upper bound will increase. But the optimization problem

by LMI is unsolvable if the uncertainty matrices are too big.

Remark 4.1 The constant matrices D, E,, E, must be determined by two requirement.
The first one is to ensure the max level of the confidence interval. The confidence inter-
val is the possibility that the measured outputs of engine speed and NOx value lie within
the representation area of the uncertain models. The second one is that the optimization

problem by LMI in the following section must have feasible solution.

In this chapter, D, E,, E}, are given by

D

diag{0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1}, (4.4)
E, = diag{0.001,0.001,0.001,0.001,

0.001,0.001,0.001,0.001}, 4.5)
£, - diag{0.004,0.004,0.004,0.004} 4.6)
diag{0.015,0.015,0.015,0.015}

A validation result for the system model by Eq. (4.1) with data not used for identifica-
tion can be seen in Figure 4.1. The solid lines describe the nominal models which are
linear state space equations with parameter matrices A,,B5,.C), identified by the method
in Chapter 3. I =1 is chosen as the upper bound of parameter uncertainties, and F = -1/
as the lower bound. The dashed lines show the representation area of the uncertain
models. The uncertainty matrices D, E,, £}, designed here will ensure the confidence
interval 75.45% for the engine speed model and 87.03% for the NOx emission model.
We can see that most parts of the measured outputs of engine speed and NOx value lie

within the lower and upper bound. Main dynamics are captured well.

Here is on thing we should pay attention to. As for the calculation of confidence interval,
we need more data of real outputs. And average value should be used for the calculation

of confidence interval.
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4.3 Controller design

4.3.1 Extended guaranteed cost state feedback control

The controller described in this section is based on the idea of guaranteed cost control
technique [81]. The control goal is to achieve the output reference tracking with input
constraints. Associating with the system by Eq. (4.1), the quadratic performance which

is also called cost function is defined as follows:
J= Z |3 (k) Qx,p () + " (R)Ru(k) | 4.7)
k=0

where Q and R are the defined weight matrices to make the performance of the controller

satisfied.

But unlike [80-83], the state variables in engine uncertain model have no physical
meaning, which means they are unmeasured. Thus state estimate is needed. A Lu-

enberger observer [87] for state estimate is given by

{ & (k+ 1) = Apkp(k) + Bpu(k) + Ly, (k) = (k)| 45

gp(k) = C)Afp(k)

where £, is the estimation of the state x,, §j,, the observer output, L the observer gain.

The control law is designed in the following form with state feedback.
u(k) = —KXx,(k) (4.9)

Then the resulting extended closed-loop system could be obtained.

{ xplk+1) = Ayxp(k) + By Ke(k) (4.10)

e(k+1)=A.x,(k)+ B.e(k)

Then the objective is to get a suitable K making the closed-loop system in Eq. (4.10)
asymptotically stable for the uncertain matrices. Meanwhile the value of the cost func-
tion in Eq. (4.7) satisfies J < J* , where J* is some specified constant. Due to the

existence of state observer, the original system is augmented. e(k) = x,(k) — X,(k) is the
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estimated error.

Ay=A,+AA-B,K—ABK
B, = B,K + ABK

A, = AA—ABK
B,=A,—LC,+ABK

4.11)

In order to make the proof of the final conclusion, the following lemma is introduced.

Lemma 4.1 The inequality
Y+HFE+E'FTH" <0 (4.12)

where the matrix Y is symmetric and the matrices inside should have the appropriate

dimensions. It could be transferred to the following form for all F satisfying F'F <1,
Y+eHH '+ 'ETE <0 (4.13)

if the scalar € is bigger than 0.

Theorem 4.1 u(k) = —KXx,(k) is the control law for system by Eq. (4.10) and satisfies

the guaranteed cost condition of J < J* if the following matrix inequality is satisfied.

ATPA,+ATTA,—P+Q+K'RK  AlPB,+AlTB,

<0 (4.14)
BTPA,+B'TA, B'PB,+B'TB,-T

where P, T are the matrices that are symmetric and positive-definite.

Proof. The proof procedure is similar to ref. [81]. Suppose we have the matrices P, T

that are symmetric and positive definite, then the Lyapunov function candidate

V(k) = x, (k)Pxp(k) +e" () Te(k) (4.15)
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is positive definite. Consequently the corresponding difference of the Lyapunov func-

tion candidate based on the closed-loop system by Eq. (4.10) is given by

AV = V(k+1)-V(k) (4.16)
= xp(k+DPxp(k+ D +e"(k+ DTe(k+1)
— Xy (k)Pxp(k) — " (k)T e(k) (4.17)

= (Ayxp(k) + Bre(k)) P(A,xy(k) + Bye(k))
+ (Aexp(k) + Bee(k))TT(Aexp(k) + Bee(k))
— Xy ()Pxp(k) — e ()T e(k) (4.18)

. eT(k))(AIPAx+AZTAe—P ATPB,+ATTB,
|2

B'PA,+B'TA, BTPB,+BITB,-T

xp(k)
4.19
e 419

From condition in Eq. (4.14), we can get
AV(k) < =x,(k)(Q + K"RK)xp(k) (4.20)

Thus we can see that the Lyapunov stability theory is satisfied. And obviously the
system by Eq. (4.10) is asymptotically stable. Furthermore, form Eq. (4.20) we can get

—AV(k) > x, (k)(Q+ KTRK)xp(k) 4.21)

The following inequality could be obtained by adding both sides of the above inequality

from 0 to oo,
J < x5 (0)Px,(0) + € (0)Te(0) (4.22)

We can see that the guaranteed cost form is established. The upper bound of the cost

function is connected with the initial state in Eq. (4.10).
J* = x)(0)Px,(0) + ¢ (0)Te(0) (4.23)

The proof of the theorem is completed. m|

In the next part, the sufficient condition for the existence of guaranteed cost controller

and corresponding state observer is given if the extended LMI in Eq.(4.24) has a feasible
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solution.

Theorem 4.2 Theorem 4.1 holds if there exist scalar ) > 0,&7 > O, matrices W, U and
symmetric matrix M which is positive-definite in order to make the LMI in Eq. (4.24)
satisfied.

—M+g,DDT 0 0 A,M-U 0 0 0 0
0 —M+&,DD" A,M-B,W B,W 0 0 0 0
0 (ApM-B,WNT  -M 0 (E;M-E,WT (E,M-E,WYT MT w7
Ap,M-Uy"  (B,W)" 0 -M (EyW)" EyW)" 0 0 |<0@4.24)
0 0 E.M-E,W  E,W -1 0 0 0
0 0 E.M-E,W  E,W 0 -l 0 0
0 0 M 0 0 0 -0°' 0
0 0 w 0 0 0 0 -r7!
F , if matrix inequality in Eq. (4.24) can be solved, the solution variables

e, &, W, U, M could be obtained. Then the control law based on extended guaranteed

cost theory with the state feedback is as follows
uk) = -WM~™"'%,(k) (4.25)
and the observer gain is given Dy

L=U(C,M)"! (4.26)

Proof. Matrix inequality in Eq. (4.14) can be written as

ATTA,—~P+Q+K'RK  AlTB,
BITA, BITB,-T

A%
+ (BI]P(AX B,)<0 (4.27)

The above inequality is equivalent to the following form using the theory of Schur

complement.

—p! Ay B,
AT ATTA,-P+Q+K'RK AlTB, <0 (4.28)
BT BITA, B'TB,-T
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Then by similar procedure, we can solve the matrices with respect to T

-T7" 0 A, B,
0o -pt A B
T T * T “1<0 (4.29)
AT AT _P+Q+K'RK 0
Bl B! 0 -T

By substituting Eq. (4.2) and Eq. (4.11) in the above inequality, it can be rewritten as

-7 0 0 A,—-LC,
0 —p! A, B,
0 AT —-P+Q+K'RK 0
(Ap-LC,)' B} 0 -T
D
0
4 F(0 0 E,~EK EyK)
0
T
D
T 1|0
+(0 0 E,~Eyk EpK) F . <0 (4.30)
0

By applying the method of Lemma 4.1 and Schur complement, under the condition of

any admissible uncertain matrices F, the inequality in Eq. (4.30) could be transferred

into the following LMI if there exists a scalar g).

~T'+&DDT 0 0 Ap—LC, 0
0 —p! Ay B, 0
0 Al —-P+Q+K'RK 0 (E,—E,K)'|<0
(Ap,—LC,)" BT 0 -7 (E,K)T
0 0 E,—EyK E K —e1

(4.31)
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By the similar procedure, matrices A, and B, can be solved.
~T~'+&DDT 0 0 A,—LC, 0 0
0 -P'+5DDY  A,-B,K B,K 0 0
0 (Ap—B,K)' -P+Q+K'RK 0 (E,—ExK)T (E,—E,K)T 0
<
(Ap—LCH)T (B,K)T 0 -T (E KT (E,K)T
0 0 E,-E,K ELK —e1 0
0 0 E,-EyK E,K 0 —&y1
(4.32)
Then the above inequality is pre-multiplied and post-multiplied in both sides by
I 0 00
0 7 0 0
00 P! 00
(4.33)
00 7' 0 0
00 I 0
00 O 0 7
Then we can obtain
~T7"+&, DD 0 0 ApT™'-LC, T 0 0
0 -P~'45,DDT ApP~'-B,KP! B,KT~! 0 0
0 P~'(Ap-B,K)T —P~'+P~1QP~'+P~'KTRK P! 0 P UE«~EK) P E«~EK)T
TV A,-LC,)T  T7YB,K)T 0 -71 T-YE,K)T T-HELK)T
0 0 E,P'-E,KP! E KT -1 0
0 0 E.~ELK E,KT™! 0 —&1
(4.34)

Finally the matrix inequality in Eq. (4.24) is obtained using the theory of Schur com-

plement again. Where M = P =7-1, W=KP ', U=LCT™".

The proof of the theorem is completed.

In order to solve the above LMI in Eq. (4.24), we use the LMI toolbox of Matlab in
this dissertation. The LMI such as Eq. (4.24) can be written into the program by LMI

toolbox of Matlab. The variables 1, €» and matrices W, U, M are the solution variables.

The solution variables could be obtained by two kinds of calculation function. The first

one is ‘feasp’ which can calculate the feasible solution that make the LMI satisfied.

This function is used in this chapter. The other one is ‘mincx” which can optimize target

function and make the LMI satisfied. This function is used in Chapter 5.
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Remark 4.2 The matrix inequality is extended by lines and rows through the existing
matrix T in Eq. (4.34) for the solution of observer gain. It is even unsolvable due to this
augmented portion. By the assumption P =T, the problem is transferred to final LMI
Sformation Eq. (4.24) that can be solved by Matlab program.

4.3.2 Input constraints

There are physical constraints on main injection quantity, main injection timing, in-
jection pressure and EGR valve opening. The manipulated variables u in the system

Eq.(4.1) are subjected the following constraints:
i <u; <uji=1,2,---,m, (4.35)

where u; is the ith element in the manipulated variables u, u and u; are known lower
and upper bound. m is the number of the manipulated variables. The constraints can be

normalized to the following form:
—1/20u; — 1) < (ui = 1/20u; + 1)) < 1/2Qu; —w), i = 1,2, m, (4.36)

where the term (i; — ;) and term (u; + 1;) are known constants.

By defining the set A using Lyapunov function [88],

T
N (xpac)] [xpao] (P ()](x,xk)]Sl 4.37)
e(k) JI\ ek) ) L0 T e(k)

Where A is positive invariant set.

As discussed in [88], x,(0) is a known value. The initial estimation error is assumed to

be (. Then in order to ensure
J* = x,(0)Px,(0)+¢" (0)Te(0) < 1 (4.38)

the following matrix inequality must hold [89]

Pl x,(0)
0 4.39
(xZ(m | ] @
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The control law can be written in the form of x and e as follows

u(k) = =K %,(k) = =K (x, (k) — e(k))

:—([( _[() x,p (k) (4.40)
e(k)

Theorem 4.3 If the matrix inequality in Eq. (4.24) holds for any admissible uncertain-

ties and following three inequalities

M x,(0)
>0 (4.41)
x0) 1
M 0 W'
0 M -W'|>0 (4.42)
w -wW X
Xi < (12— u))*,i=1,2,--,m. (4.43)

are satisfied, Then control law u(k) = KX,(k) based on the extended guaranteed cost
theory could be obtained. Furthermore the constraints in Eq. (4.36) of system by Eq.

(4.1) are also guaranteed.

Proof. This theorem can be proved with the similar way in [82]. The difference is that
this theorem computes the augmented matrix inequalities, but this does not affect the

proof. The following matrix inequalities can be obtained easily,

P 0 KT
0 T -KT|>0 (4.44)
K -K X

Based on the same assumption in Theorem 2. Then the above inequality is pre-multiplied

and post-multiplied in both sides by

Pt 0 0
o 7! o0 (4.45)
0O 0 1

Then the matrix inequalities in Eq. (4.41) and Eq. (4.42) are obtained. These LMIs

guarantee that control law never saturates over A.

The proof of the theorem is completed. m|
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4.3.3 Tracking control

The main control goal is to track the engine speed of diesel engine and reduce NOx
emission. Consider the uncertain system by Eq. (4.1) and the desired tracking output is

Yref, then we can get the tracking error by [80]
2(k+ 1) = z2(k) +yp(k) = Yyes (4.46)

Then the augmented system is given in the following form

BpE+D) A+ x,(k)
W+ 1) ] N z(k)

(B b+ ABJ ( 0 ]
+ u(k) + “4.47)
0 “Yref
or in a compact form
F(k+1) = (A+ADRKk) + (B + AB)u(k) +d(k) (4.48)

where

(o)
B=|""|.du = (4.49)
0 “Yref

The augmented uncertainty matrices are also augmented in the following form
|AA AB|=DF[E, E
. |[D 0] . E, 0] . £y
D= Eq= JEp = (4.50)
0 0 0 0 0

Thus the extended guaranteed cost tracking control can be obtained by Theorem 4.2 as
. N . L
u* = Kik). K = (K K 1) and observer gain as L = [0] K is the control matrix by state

feedback and Kj is the integral action matrix.
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4.4 Experimental results

For comparisons, the linear quadratic regulator (LQR) design is discussed. The cost
function of LQR method and the proposed method is the same. And the state inside is

the augmented one as follows:
J= Z [fc(k)T(k)Qi(k) + uT(k)Ru(k)l 4.51)
k=0

The closed-loop control performance is really influenced by the weighting matrices Q
and R in the cost function. So the it is crucial to choose the value of weighting matrices.
Here in this thesis, the weighting matrices is decided by the procedure of trial and error
to get a satisfied result [8§0]. Through the trial and error method by the simulation, the

following weighting matrices are obtained:

Q =diag{l1,1,1,1,1,1,1,1,1,0.00001},
R = diag{1500,40000, 15000, 4000} (4.52)

Meanwhile the weighting matrices Q and R in Eq. (4.7) is chosen the same as above.

Then control inputs are subjected to the following constraints:

680 < uy < 700,706 < up < 716,
100 < u3 < 110,6 < us < 20 (4.53)

where u;,i = 1,2,3,4 imply the injection quantity, injection timing, injection pressure
and EGR valve opening. The constraints of u#; and u4 are expanded from the original
ones applied for linear system identification. Thus the tested diesel engine can work in

a wider nonlinear operation region.

When we design the controller in considering of input constraints, Theorem 4.3 is ap-
plied. In Eq. (4.41), the initial state x,(0) should be given. In our experiment, we use
the undisturbed switching between manual mode and automation mode. In all the cases
of experiment, we choose the middle of the working range as 2400 rpm. So we choose
the initial state by state observer when the output of engine speed is 2400 rpm. In our
case, we select the average value in 5 sampling times before the switching. The initial

states are shown as follows:

x(0) = [0,0.013,-0.011,-0.0072,0.0074,0.0052,0,0.0016]" (4.54)
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4.4.1 Simulation results

The simulation results in Matlab is shown in this section. The control system of LQR
and Extended guaranteed cost are built in the simulink. The reference of engine speed

make a step from 2300 rpm to 2500 rpm. The reference of NOx stays at 50 ppm.

In this case, the disturbance is added into the system in an uncertainty form (random
with constraints) as Figure 4.2. There is some model mismatch between the model used
for controller and target model (Figure 4.3). The simulation results of control variables
and manipulated variables are shown in Figure 4.4 and Figure 4.5. From the results,
we can see that under the influence of uncertain disturbance, the response time be the
proposed method is shorter. And the overshoot by the method of LQR is bigger. With
the better transient performance, the NOx value is lower by the proposed method. The

comparison is shown is Table 4.1.

9 T T T T T T T T T

Uncertainty on engine speed

|

Uncertainty on engine speed

|

1 | | | | | | | | |
100 110 120 130 140 150 160 170 180 190 200
Time (S)

6 T T T T T T T T T

Uncertainty on NOx
4 i

Uncertainty on NOx
o
T

6 | | | | | | | | |
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Time (s)

FIGURE 4.2: Uncertainty
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T

LQR Extended LMI
Overshoot(rpm) 16 0
NOx value (ppm/point) | 176.1242 148.3190

4.4.2 Real-time test results

The proposed control system is implemented in the dSPACE system. The control per-
formance is evaluated in the real-time application. All the experiments are done in the

test bench described in Chapter 3 which is fully warmed.

In this section three cases will be considered. In case 1 the engine speed reference
changes in the working range where the system identification in Chapter 3 is done.
Case 2 and 3 analyze how efficient the proposed control system could be during the
working range of diesel engine expands. The NOx reference remains at 50 for each
case. This is done to ensure the exhaust emission is as low as possible when the engine
speed is changing.
Casel :
y] “/ =2300,y57 =50,0<1<10
y'* = 2500, = 50,10 <1 <50
y| f = 2300,45" = 50,50 <1< 90

Case? :

Y =2200,y57 =50,0<1<10
f = 2600,y5” =50,10<1<70
f =2200,45"/ = 50,50 <7< 110

Case3 :

Y =2100,4)7 =50,0<1< 10
f =2700,y5” =50,10<1 <70
’ff =2100,45 = 50,50 <1< 110

The experimental results of case 1, 2 and 3 are summarized in Figure 4.6, Figure 4.7,
Figure 4.8,Figure 4.9, Figure 4.10 and Figure 4.11. In these figures, the control variables
and manipulated variables are depicted. The red solid lines show the results of the

proposed method, and the blue dashed lines show the results of the linear control method
by LQR.
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FIGURE 4.6: Control variables of case 1

For case 1, the tracking performance of engine speed by proposed method is similar to
the linear control design. But the overshoot can be seen in linear control design with
larger manipulated variables in Figure 4.6 and 4.7. Meanwhile the variation of inputs
and outputs is bigger by the linear method of LQR. Also, the exhaust emission of NOx
is higher than by proposed method.

For case 2, the working range expands as the nonlinearities and uncertainties increase.
In Figure 4.8 and 4.9, the overshoot of engine speed is too large during speed up pro-
cess by linear approach. Conversely, the system designed in this chapter shows a good
performance in this case. Moreover the exhaust emission of NOx decreases much more

than the linear approach.

For case 3, the working range expands larger. As a result the manipulated variables by

the linear approach saturate the constraints occasionally. On the contrary the proposed
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method with superiority of dealing with the input constraints can achieve great control
performance. Due to the constant load set to the tested engine, the sharp decrease can
be seen when reference of engine speed is down in all cases. During the speed-down
process, the load will have the direct prior influence on the diesel engine. After the sharp
decrease of engine speed, linear approach shows faster response with bigger vibration.
The engine speed tracking performance and the exhausted emission reduction are really

satisfied by the proposed method.

In Chapter 3, it can be seen that the definition of linear working region is really time-
consuming. With the proposed method, the designed model-based control system could
be used in wider working region, which means that the time cost of the design for full
working region will be reduced at the same time. The comparison of experiments results

for each case is shown in Table 4.2.
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4.4.3 Discussion about robustness

In order to discuss the robustness of the proposed method, we try to compare the exper-

imental results from two different dates. Besides the experimental results in this section

from 8th October 2016, here we show more results from 5th October 2016. In Figure

4.12 and Figure 4.13, it shows the control variables in case 1 and 2 on 5th October

2016. The detailed comparison of experimental results is shown in Table 4.3. From

the results we can see that even in different experimental dates, the performance of the

proposed method is similar. In another word, the extended guaranteed cost control can

deal with the uncertainty very well.

From the results in the above tables, we can see
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T -time results for 3 cases
Case 1 LQR Extended LMI
Settling time(s) 15 11
Overshoot(rpm) 13 0
Steady tracking error (MSE from 25s o 50s) | 106.9231 23.6923
NOx value (ppm/point) 117.0064 81.9605
Case 2
Settling time(s) 32 29
Overshoot(rpm) 80 0
Steady tracking error (MSE from 42s (o 70s) | 135.5862 84.8276
NOx value (ppm/point) 181.7596 108.4164
Case 3
Settling time(s) 38 39
Overshoot(rpm) 189 21
Steady tracking error (MSE from 49s to 70s) | 146.5455 96.5909
NOx value (ppm/point) 186.0979 123.3580
T -time results from 2 different days
Case 1 Extended LMI | Extended LMI Average value
(10.05) (10.08)
Settling time(s) 15 11 13
Overshoot(rpm) 11 0 5.5
Steady tracking error
(MSE in the middle of 20s) 86.7620 20.6923 53.7272
NOx value (ppm/point) 107.0155 81.9605 94.488
Case 2
Settling time(s) 36 29 32.5
Overshoot(rpm) 50 0 25
Steady tracking error
(MSE in the middle of 20s) 95.9673 64.3571 80.1622
NOx value (ppm/point) 121.4298 108.4164 114.9231

the improvement by the proposed method. One thing needs to be mentioned: in Table
4.2, the period of tracking error calculation is 25s; in Table 4.3, the period of tracking
error calculation is 20s. In order to make comparison in the same situation, the average
value of tracking error during 20 s need to be multiplied by 1.25. For case 3, there was
only one group of experiment data on 8th October. So there is no comparison for case

3 in this research.

For case 1 in the defined linear working range, the average value of overshoot by
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the proposed method decreases by 57.7% ((13-5.5)/13). The average value of track-

ing error for engine speed by the proposed method decreases by 37.2% ((106.9231-
53.7272*1.25)/106.9231) and NOx emission value decreases by 19.2% ((117.0064-
94.488)/117.0064) than LQR. For case 2 with bigger working region, the average value

of overshoot for engine speed by the proposed method decreases by more than 68.8%
((80-5.5)/80) and NOx emission value decreases by 38.3% ((181.7596-114.9231)/181.7596).
For case 3 with the biggest working range, the tracking error for engine speed by the
proposed method decreases by more than 34.0% ((146.5455-96.5909)/146.5455) and
NOx emission value decreases by 33.7% ((186.0979-123.3580)/186.0979).

4.5 Summary

This chapter presents an extended guaranteed cost tracking control of diesel engine with
input constraints. Combustion uncertainties and nonlinear behavior of the system make
the problem difficult to handle using classical control design methods. In this chapter,
the process of diesel engine through both air and fuel loop is expressed by linear state
space equations with parameter uncertainties. Compared with traditional guaranteed
cost control, the state feedback and estimate gains are given from feasible solution of
an augmented LMI simultaneously. To deal with tracking problem and physical con-
straints, more LMI conditions are discussed. The experimental results prove that the
proposed control system achieve a better performance in precise reference tracking,

meanwhile NOx is in a lower level as well.

From the Theorem 4.3, we can see that the solution to input constraints in this research is
relative to the initial state of the system. As a result, the application of input constraints
is not so convenient. Although the simple structure of state feedback control is very
suitable for real-time application of diesel engine, it still motivates us to apply the model
predictive control that can deal with the input constraints in MIMO systems in the next

chapter.



Chapter 5

Modified Model Predictive Controller
Design

5.1 Introduction

As described in Chapter 2, the fact that various model-based control methods for diesel
engine has been ensured. As is well known, the diesel engine is a very complicated
system. It is proved to be a highly coupled nonlinear multi-input multi-output (MIMO)
system with input constraints. Among all these control strategies including the methods
in Chapter 4, model predictive control (MPC) is one of the most attractive methods for
the ability to deal with the input constraints in MIMO systems. In practice, modeling
error, unmeasured disturbances and nonlinearity in the system can result into steady-
state offset. For the real-time diesel engine control purpose, the offset-free control is
needed. To achieve the reference tracking control of diesel engine with no offset, the
disturbance model is introduced into MPC controller [62—-65, 72, 90]. Unfortunately, the
choice of disturbance model is not discussed in aforementioned studies. Many different
researches [91-93] show that the closed-loop performance is extremely influenced by
the choice of disturbance models. Still the importance of the state observer for the
closed-loop performance is the same as the disturbance model itself. The method of
design of the disturbance model and state observer at the same time was firstly proposed
in [93]. The dynamic observer is designed based on the idea of H-infinity theory. The
core of H-infinity theory is to minimize the effect from noise to the prediction error. This
part of noise includes the unmeasured disturbances and model mismatch. However the

H, control problem of general solution and reduced order design were not discussed.

73
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This chapter is mainly devoted to applying an offset-free MPC to the diesel engine
system by combined design of disturbance model and state observer which are given
from feasible solution of the linear matrix inequality (LMI). Furthermore the method of
reduced-order design for H-infinity problem which satisfies the additional condition of

offset-free tracking is addressed.

The rest of this chapter is organised as follows. Some preliminary results are described
in Section 5.2. Section 5.3 focuses on the design of disturbance model and state ob-
server. Furthermore the condition of offset-free tracking based on general solution of
H, problem is presented. The reduced-order design for H-infinity problem is addressed
in Section 5.4. The MPC algorithm and experimental results including simulation and
real-time application are given in Section 5.5 and 5.6. Finally, conclusions are summa-

rized in Section 5.7.

5.2 Preliminary results

5.2.1 State space model

For the convenience, the diesel engine model in the form of discrete state space equa-

tions that was identified in Chapter 3 is introduced here again.

xp(k+ 1) = Apxp(k) + Bpu(k)
I/p(k) = Cpxp(k)

(5.1)

Therein x,(k) € R" denotes the states, u(k) € R™ the manipulated variables, and y,(k) €

R? the controlled variables.

5.2.2 Disturbance model

The model accuracy plays a important role in the design of model-based control system.
It will really influence the closed-loop control performance. Especially in real-time
application, modeling error and unmeasured disturbances can result into steady-state
offset. Thus these problems should be considered in the control design. The solution

to these problems are so-called offset-free method. The most widely-used way is to
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augment the original process model to disturbance model [91, 92]. The disturbance

model in general form is considered as the following augmented system.

xpkt D) _(4p Ba|(x0) By .
d(k+ 1) o 1TNdr] \o

(5.2)
k
vk =(C, Dy) (Xp( )]

d(k)

A sufficient condition for reference tracking without offset of given reference is given
in [92]. It is that the number of augmented variables should be equal to the number of
measured outputs, just as, dim(d) = dim(y,). Moreover, the augmented system of Eq.

(5.2) must be detectable so that the following condition should be satisfied:

I-A, -By . ,

rank = dim(xp) + dim(d) (5.3)
C, Dy

By this augmented disturbance model, the new states could be used to eliminate the

effect of the unmeasured disturbance and model mismatch in the system. The original

states and the additional integrating disturbance are estimated by the state observer de-

signed for the augmented system of Eq. (5.2) based on the output measurement in the

following section.

5.2.3 State estimate

A Luenberger observer is applied to estimate the states and the disturbance in Eq. (5.2).

2,k+ 1)) (4, Bal[50) (B, I ) A
- k k) —C, %, (k) — D d(k 5.4
(&(kﬂ)] (0 1 )[g(k)J+(0)”( )+(L2](yp( )= Cpp(k) = Dad())  (5.4)
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5.3 Combined offset-free design

5.3.1 Dynamic state observer

The discrete-time linear model of the diesel engine in real process is considered as

xp(k+1) = Apxp(k) + Bpu(k) + Byw(k)
yp(k) = Cpxp(k) + Dyw(k)

(5.5)

in which w € R9 is the random noise. All unmeasured disturbances and model mismatch
we discussed above are included in w € R?. In practice, there must be model mismatch

between the linear model with matrices (A, B,,,C}p) in Eq. (5.1) and the real process.

In general case, and for the match of matrix dimension, the condition that dim(w) =n+p

should be assumed. Then the following matrices with parameters are obtained.

By=(I, 0).D,=(0 1,) (5.6)

The state estimate X, and output estimate 4, can be obtained by the dynamic observer

& (k+1)=Ap2,(k) + Bpu(k) + Byu(k)
pk) = Cpip(k) + Dyv(k)
§(k+1) = Ar&(k) + Bre(k)
v(k) = Cr&(k) + Dre(k)

(5.7)

where £(k) is the auxiliary state and e(k) = y,(k) — §J,(k). e(k) is the error between
the model output and the estimated output. Then definition of e(k) in this chapter is
different from the last chapter. Az, By, Cr and Dy are unknown parameter matrices with
appropriate dimensions. Similar to the above assumption, here the condition dim(v) =

n+ p is considered and that

B,=(1, 0).D,=(0 1) (5.8)
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5.3.2 Connection with disturbance models

By the dynamic observer of Eq. (5.7) the following closed-loop augmented system is

)Ep(k+1) _ Ap BL,CL )?p(k) 4 Bp u(k)+ B,D; e(k)
Ek+1) 0 AL &(k) 0 By,

k)= +D,Dp)"y, (k) - T k)
e(k) = (I +D,Dy) (ypu (c, DUCL)( ‘o

obtained:

(5.9

As discussed in [93], the closed-loop system by Eq. (5.9) is treated equivalent to the
augmented system by Eq. (5.4). Thus we can get B; = B,Cr, D; = D,Cy and A = I.

The observer gain is also obtained

L B,D; (I+D,D;)"!
[ = 1 _ L( + L) (510)
L, B (I+D,Dp)™!

Moreover according to the Theorem 1 in [93], the necessary condition of tracking per-

formance with zero offset is that

Ap=1 (5.11)

5.3.3 Design procedure

Given the engine model of Eq. (5.5) with (A,, C)) is detectable, the main target is to
design a disturbance model (By, Dy) and a state observer gain L so that the predicted
output error (y — i) based on Eq. (5.4) can converge to zero asymptotically for the

random noise w.

The design of the dynamic observer of Eq. (5.7) by introducing ideas from linear H,
theory is firstly proposed in [93]. Consider the block diagram shown in Figure 5.1, and

make

(k) = x,(k) — (k). s(k) = e(k) (5.12)
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FIGURE 5.1: Closed-loop block diagram (traditional H, theory)

From Eq. (5.5) and Eq. (5.7), we obtain

K(k+1) = A, (k) + Byw(k) — Byu(k)
s(k) = Cp%(k) + Dyw(k) — Dyu(k) (5.13)
e(k) = Cpx(k) + Dyyw(k) — Do(k)

The system of block P in Figure 5.1 is described by Eq. (5.13). Equivalently, the system

of block P could be presented in terms of discrete-time transfer matrices:
: Py P
o pl® 2| (5.14)
e v Py Pynjlv

D, -D,
D, -D,

where

Cp

P(z) = +

](zl—A 27 (By -B) (5.15)
p

The relationship between v and e is given:
v=Fe (5.16)
where F is easily obtained form dynamic observer by Eq. (5.7)

F(z) =Dy +Cr(zI-Ar) " 'Bg (5.17)
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At the end, the closed-loop system from w to s expressed by the transfer matrix is shown

as

G(P,F)= P+ P2 F(I— PnF) Py, (5.18)

We wish to design F (Ar, Br,Cr,Dr) in order to satisty the following two requirement:
the above closed-loop system of Eq. ( reflooptransfer) is asymptotically stable. Besides
this basic requirement, the influence from w to s should be minimized. Here we consider

using the H infinity norm as
| G(P.F) |lo<y (5.19)

which means that the Hs norm of G(P, F) (the maximum gain from w to s) is strictly

less than y. 7y is the upper bound for the worst-case performance.

5.3.4 General solution for H., problem

By this procedure, the dynamic observer by Eq. (5.7) is designed from solving the H,
problem defined in Eq. (5.19). This kind of problem could be solved efficiently by the
method of LMI[94, 95]. A realization of the closed-loop transfer function from w to s

is obtained on the assumption that Dy = —-D, = 0:

G(P,F) =D+ Cer(zl = Ae)) ' By (5.20)
where
-B,D.C, -B,CL
Acl —
| BC, A
B, = EBw_BvDLDw 591
1= .

Ca=|C,~D,D1C, -DiCy]

Dy=D,-D,Di D,

In Lemma 5.1, if the linear matrix inequality (5.29) is satisfied, F (Az,Br,Cr,Dy) can
solve the Hy, problem || G(P, F) ||co< .
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However in this thesis, especially in the case of designing the dynamic observer, the
parameter D, is not equal to 0. Thus a linear change of variables is utilized. A fictitious

variable is defined:
er(k) = Cpx(k) + Dyw(k) (5.22)
In this condition Dy = 0, for the system

T(k+1) = Apx(k) + Byw(k) — Byo(k)
s(k) = Cp(k) + Dyw(k) — D,u(k) (5.23)
e (k) = Cpi(k) + Dyuw(k)

the dynamic observer assuming e,(k) is available for feedback is designed. Inside

Ar,B1,Cr, Dy could be easily obtained. The dynamic observer is given:

&lk+1) = Aré(k) + Bres(k)
v(k) = Cré(k)+ Drey(k)

(5.24)

Then e (k) is replaced by e(k) + D,u(k). The general dynamic observer is obtained in

the following form:

Ek+ 1) = ALE(k) + Bre(k)

) } (5.25)
v(k) = Cré(k) + Dye(k)
where
Ar=Ar—Br(-Dy)(I+Dy(-Dy))"'Cr.
By =By —-Br(-D,)(I+Dy(-D,))"'Dy
(5.26)

Cr=I+Di(-Dy))'Cy
Dy = +Dy(-D,))"'Dy

Existence of solution

Under the assumption that Dy = -D, =0, F (A7, Br,Cr, D) can solve the H, prob-
lem. If D, = 0, the general solution in (5.26) is that A; = A;,B; = B;,C; = Cr,Dy =
Dyr. 1If D, # 0, the general solution Az, B;,Cr, D exists under the assumption that
I+ Di(—D,) # 0. Thus the general solution in F (Ar,B;,Cy,Dy) is the extension of
solution in F (A7, B, Cr,Dyp).
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Remark 5.1 As discussed in this section, the dynamic observer is designed based
on the idea of Hs theory which can be efficiently solved by the method of LMI. But
with additional condition for tracking control without steady error by Eq. (5.11), Ay
should be identity matrix. With this nonlinear equality constraints, the LMI convex
optimization problem becomes complicated and even unsolvable. Here we try to solve
this problem in a simple but efficient way. The constraints are equivalent to the following
two requirements:(1) Ay = I; (2) minimize Dy(—D,) under the minimization of By and

Cr. The numerical details are discussed in section 5.6.
Discussion

The necessary condition of offset-free tracking is that Ay = 1. In order to make sure that
Ar = A — BL.(=D,)(I + D1 (-D,)~'Cr, = I, here we try to solve this nonlinear equal-
ity by (1) AL =1; (2) Br(-D,)I + Dr(-D,))"'Cy = 0. Since the condition (2) is still
nonlinear equality. So we try to solve this problem by minimizing D7 (—D,) under the

minimization of By, and C7y.

In section 5.3.2, we know the relation between the disturbance model and dynamic
observer. we can get By = B,Cy, Dy = D,Cp and A; = 1. The observer gain is also

obtained

. Li| (B.DL(I+D,Dp)™"
N\, | BLu+D,Dp)!

So By, Cr and Dy should not be equal to 0. In order to make BL(—DU)(I+DL(—DU))’1CL ~
0, we just minimize Dy (—D,) under the minimization of By and Cy. Based on Eq. (5.25)

and Eq. (5.26), the following system is considered

E(k+1) = E(k) + Bre(k)
v(k) = Cré(k) + Dre(k)

The system is very special since Arp=1. By, Cr and Dy are in really small values. As a

result, B;,Cr, Dy are in really small values, but not equal to zero matrices.

From the above discussion we can see the solution proposed here is one kind of com-
promise. The best solution is Ay, Br,Cr, Dy that directly make A; =I. Tn the future, it

will be a hot topic to solve this nonlinear equality.
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5.4 Reduced-order design

A sufficient condition for reference tracking without offset is given in section 5.2.2 that
the number of the integrating variables of the augmented system should be equal to the
number of the measured outputs, just as, dim(d) = dim(y,). As for the system by Eq.
(5.2) and the equivalent system by Eq. (5.9), we find that the order of the dynamic ob-
server should be equal to the number of integrating disturbances, dim(Ar) = dim(d). In
order to achieve the reference tracking without offset, the order of the dynamic observer
must be designed equal to the number of the measured outputs, which might be less than
the order of the system by Eq. (5.13). Thus when we solve the H, control problem of
the system by Eq. (5.13), reduced-order design is really needed.

The design of solving reduced-order problems has received great attention in recent
years. And the reduced-order design is a very challenging issue in the robust control
theory, since it has been proved to be a non-convex problem. Many different strategies
have been applied to solve it. [94, 96—100]. In this chapter, the two-step algorithm
initiated with HIFFO is presented for solving the non-convex reduced-order problem
[101, 102]. HIFFO is a toolbox of Matlab for fix-order H,, controller design. A struc-
ture for introducing the slack matrix variable is used for relaxing the LMI. Then an
iterative procedure for updating the slack matrix variables from the initial solution of

reduced-order problem is conducted to decrease the upper bound of the H,, norm.

Lemma 5.1 From the bounded real lemma [94, 95], internal stability and the H, norm

constraint by Eq. (5.19) are equivalent to the existence of X.; = XZ; > 0 such that

-X7!' Ay Bag O
T T
Acl Al 0 Ccl
0 —yI D]
0 Ccl Dcl _7[

<0 (5.27)

Then the above inequality is pre-multiplied and post-multiplied in both sides by

I 0 00
0 xX;' 00
% (5.28)
0 0 10
0 0 01



Chapter 5. Model Predictive Control with no steady error 83

Letting M = X;ll = M7, the following matrix inequality is obtained,

-M AqM By 0

MAT —m 0 MmcCT

cl cl
T T
Bl 0 -yl DY

0 CuyM D, —yI

<0 (5.29)

The main method in this section is to transfer matrix variables M with slack variable
« inside. This is done to solve the non-convex problems by LMI relaxing. Now, M is

designed in the following structure,
al, 0
M = My (5.30)

where scalar « is the decision variable.

Suppose that there exists an initial solution of order dim(Ar) with the H, norm require-
ment || G(P,F) |le< ¥ I condition in Eq.
(5.29) is satisfied when v is equal to yg. Note that if we assign that @ = 1, we can get
that the matrix M is equal to My. Based on Eq.(5.21) and Eq.(5.34), we define

—  [(aA,-B,DiC, -B,.Cy
Ay = _ _
BLC), Ar

_ (an - BUBLDU,,]

cl = — 5.31
BLDw ( )
Ecz = (a/Cp - DUBLCP —DUZL)
Bcl =aDy,—-D,Dy D,
where
A; =aAr,Br =aB;,Cr =aCr,Dy = aDy, (5.32)

Then based on the above definition the following theorem for the reduced-order con-

troller design could be obtained.
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Theorem 5.1 Suppose that matrices My is given. Then the inequality || G(P, F) ||o< 7y

holds if there exist scalar a such that

-M A My By 0
—T —T
MoAL, -M 0 MoC
e Ol <o (5.33)
B

—T
cl 0 _0'27[ D cl
0 CaMy Dy =yl

is feasible. where

af, 0
M= My (5.34)
0 al,

Proof. Since the calculation procedure is obvious by the assumption of the parameter

matrix, the proof is omitted here. m]

It can be seen that there exists a term @ in Eq. (5.33). It will make the inequality
unsolvable. Thus it is necessary to make a line search for finding the upper bound y
of the Hs norm. It is obvious to see that if @ = 1, the inequality in Theorem by Eq.
(5.33) is equivalent to the LMI of Lemma by Eq. (5.29). This fact implies that the
initial solution will always satisfy the inequality in the Theorem. As a consequence, the
calculated upper-bound y in Eq. (5.33) should be equal or less than yy from the initial
solution. The decreasing of the upper bound y of the H,, norm can be guaranteed by
solving the LMI problem Eq. (5.33) when a = 1. Then the line search of « is finally

released.
The reduced-order design is conducted as the following procedure:
Step 1: The initial reduced-order controller is given by discrete time HIFFO [103].

Step 2: For an initial given controller, My is calculated according to the LMI by Eq.

(5.33), when « is assumed to be 1.

Step 3: The first-step for decreasing of the upper bound on the H., performance is
designed by Theorem 5.3 in consideration of @ = 1. The value of vy is updated in each

iteration.

Step 4: The second-step is that the line search over « is performed under the Theorem

by Eq. (5.33) after the suitable y is obtained in step 3.
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Remark 5.2 The reduced-order procedure in this paper is designed from Step 1 to Step
4. The reduced-order controller is initially given by discrete time HIFFO in Step 1. It
is worth mentioning that the two step algorithm from Step 2 to Step 4 is not capable of
reduce the order of the solution. However this two-step algorithm started by discrete
time HIFFO is really suitable for the satisfaction of Eq. (5.11) and the additional

condition in the section 5.3.4.

5.5 Controller design

The model predictive control algorithm for general used in this thesis is described in

details.

5.5.1 MPC algorithm

The discrete-time MPC problem in general case can be formulated as:

N-1 N-1
min Z (x(k)T Ox(k) + u(k)” Ru(k)) + x(N)T Qnx(N) + Z Au(k)T PAu(k)  (5.35)
k=0 k=1
where:
U = u(0),u(1),-- ,u(N—1)" (5.36)
S.t.
x(k+ 1) = Ax(k) + Bu(k) (5.37)
Au < Au(k) < ATl (5.38)
u<uk)<u (5.39)

Au(k) =0,k > n, (5.40)
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Eq. (5.37) is used to describe the general model for controller design. x and u are
the states and manipulated variables for the general model. A and B are the parameter
matrices with appropriate dimensions.Q, Oy and P are positive semidefinite matrices
and R is a positive definite matrix. Q and Qy are the weight matrices for the states and
R is the weight matrix for inputs. Q and R here are different from the ones defined in
Chapter 4. P is the weight matrix for inputs rates. N is the prediction horizon. n, is the

control horizon.

5.5.2 Solving quadratic programming problem

The MPC problem from Eq. (5.35) to Eq. (5.40) needs to be solved at each sampling
time. In this paper, an open source software named as gpOASES [104] is used to solve
the quadratic programming (QP) problem in the following form:

1
min —x"Hx+ ng(wo)
x 2

s, IbA(wg) < Ax < ubA(wp) (5.41)

Ib(wq) < x < ub(wyp)

where the Hessian matrix H is symmetric and positive (semi-)definite. The gradient
vector ¢g and the constraint vectors [b,ub is affinely related to the parameter wg. The
main idea of gpOASES is inspired to deal with the problem of quadratic programming.
The condition of applying this method which is called online strategy is that there is
not too much change for the active set of QP between each sampling time. Tt will be
really fast and efficient when gpOASES is applied to solve the problem of quadratic

programming for model predictive control.

The problem arises on how to transfer this MPC problem by Eq. (5.35) to the QP form
by Eq. (5.41).

Remark 5.3 The variable x in Eq. (5.41) is just the optimization target of QP problem
that is different from the state variable in Eq. (5.37). For the MPC design in this paper,

the optimization target is the calculation of the manipulated variables u.
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Based on the current state x(0) and the model by Eq. (5.37), we can predict the future

state:
x(0) = x(0)
x(1) = Ax(0)+ Bu(0)
x(2) = A2x(0) + ABu(0) + Bu(1) (5.42)
x(N) = A¥x(0)+ AN"'Bu(0) + AN 2Bu(1)+ -+ BuN - 1)
Then we can easily write this to matrix form:
x(0) I 0 u(0)
x(1) A B 0 u(l)
x2) |=| A% |x(0)+| AB B 0 u(2) (5.43)
x(N) AN AN"IB AN2B AN3B ... B J\ u(N-1)
then Eq. (5.43) could be transferred to:
X = Ax(0)+ BU (5.44)
where:
X 1 0
X1 A 0
X=| x A=| A2 B=| AB B 0 (5.45)
XN AN AN-lp AN-2p AN-3p ... B

The cost function in MPC 1s:

N-1 N
J= Z(x(k)T Ox(k) + u(k)T Ru(k)) + x(N)T Qyx(N) + Z Au(t)T PAu(k)  (5.46)
k=0 k=1

Writing Eq. (5.46) to the vector form:

I B
J= EXTQX+ SU'RU (5.47)



Chapter 5. Model Predictive Control with no steady error 88

where:
Q
Q
0= (5.48)
0
On
R+P -P
—P R+2P -P
R= _p _p (5.49)
—P R+2P -P
—P R+P
Then the MPC problem by Eq. (5.35) is obtained as:
. et 1 =
minJ =min-X QX+ -U"RU
U v 2 2
| . ; (5.50)
= min 3 Ut (B OB+ R) U+UTB QAx(0)
Eq. (5.50) is the form of Eq. (5.41), where:
—T— —
H=B QOB+R
(5.51)

g(wo) =B 0Ax(0)

By introducing the constraints of input rate, the transform procedure becomes more
complicated especially the definition of R. With input rate constraints, the input con-
straints by Eq. (5.41) need to be updated every sampling time to take the input rate

limitations into consideration.

5.5.3 Tracking control

To achieve the tracking control of diesel engine in this chapter, the disturbance model
by Eq. 5.2 is augmented with a new state x.(k) = y, (k) — y,es(k), where y,.¢(k) is the

reference for tracking. This state represents the error between real measured output and
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setpoint.
xp(k+1) Ap By O xp(k) B,
dk+1) [= 0 I 0|ldk [+ 0 [|u(k) (5.52)
X(k+1) CyA,—Cp, Cu,By I)\x.(k) CpyB,

The tracking control is achieved by applying this augmented form into the MPC design
of Eq. (8.37):

xp(k) B, Ap B; O
x(k) = d(k) B=| 0 A= 0 I 0 (5.53)

At each sampling time, the state x, and 4 are estimated by the Luenberger observer by

Eq. 5.9. And the output y, can be measured.

We can clearly see that the augmented disturbance 4 is not affected by the manipulated

variables u. But because the disturbances are observable, the bad influence can be

removed from the control performance based on the estimates.

5.6 Experimental results

The parameters of the MPC are designed as Table 5.1 shows.

TABLE 5.1: Parameters of MPC with second-order model

(@) diag{0,0,0,0,0,0,1,0.01}
R diag{10,1,1,1}
P P={10,10,10,10}
Control horizon 3
Prediction horizon 5
Injection quantity 680 <u; <700

Injection timing

708 <ur <714

Injection pressure

100<u3 <110

EGR valve

9<uys <17

The control objective in this thesis is to operate the engine to meet drivers speed demand
and reduce NOx emission. Thus the accurate tracking control for engine speed with no
offset 1s needed. Since the NOx emission is inevitable in the cycle of diesel engine

working, we try to reduce the NOx emission instead of offset-free tracking of reference
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zero. So the reference of NOx emission is set as 50 ppm and the weight on the output
of NOx emission is chosen as 0.01. As Table 5.1 shows, since the prior control target
is the engine speed tracking, the weight on engine speed tracking is chosen as 1 and
NOx emission 0.01. The weights on the other states are set to zeros. In consideration
of fuel consumption, the weight on injection quantity is chosen as 10 which is bigger
than other manipulated variables. The constraints of uy and uy are expanded from the
original ones applied for linear system identification. Thus the tested diesel engine can

be working in a wider nonlinear operation region.

The three control systems is different in the chosen disturbance model and related state

observer. The details are shown as follows, .

MPC 1: the second order model is identified in Chapter 3, and state estimate by Kalman
filter is applied in MPC design.

MPC 2: the disturbance model by Eq. (5.2) is chosen as B; = 0 and D; = I in general

case, with state estimate by steady-state Kalman filter.

MPC 3: the disturbance model and state observer are given by the proposed method.

Using the method in Remark 1, the following parameter can be obtained

~
o

3 0.9992 0.0010
Apr=1LA =
-2.9131%10™* 1.0000

0.0035 —1.602410~*
_ (5.54)

0.0044 0.0012

(44463 9.1777
1=23.5656 —8.2174

5.6.1 Simulation results

The simulation results are demonstrated in this section. The control system of MPC1,
MPC2 and proposed MPC3 are built in the simulink. The reference of engine speed
make a step from 2300 rpm to 2400 rpm. The reference of NOX stays at 50 ppm.
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MPC with second-order model

The model mismatch between the model used for controller and target model is set
in Figure 5.2. The steady disturbance is added into the system as Figure 5.3. The
simulation results of control variables and manipulated variables are shown in Figure

5.5. From the results, we can see that under the influence of model mismatch and

Function Block Parameters: Discrete State-Space X
DiscreteStateSpace
Discrete state—space model:
x(n+1) = Ax(n) + Bu(n)
y(m) = Cx(n) + Duln)
Main State Attributes
A:
A |

B:
B |

C:
0. 8%C |

D:
D |

Initial conditions:
o |

Sample time (-1 for inherited):

i |

0K Cancel Help Apply

F1GURE 5.2: Condition of model mismatch

50.05 b

49.95 b

NOx offset disturbance

49.85 I I I I I I
30 40 50 60 70 80 90 100

Time (s)

FIGURE 5.3: Unmeasured steady disturbance

steady disturbance, the response time is similar by three methods. Comparing with the
MPC2 with normal disturbance model, MPC3 by the proposed method shows smaller
overshoot and settling time. There is steady offset in the tracking results by MPCI.

With the better transient performance, the NOx value is lower by the proposed method.
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F1IGURE 5.4: Simulation results of control variables with second-order model

MPC with fourth-order model

The model used in this case is fourth-order identified in Chapter 3. By the reduced-
order design method proposed in this chapter, the simulation results are similar to the

ones with second-order model. It is proved that the proposed condition for general case

and reduced-order design are effective. The comparison is shown is Table 5.3.

TABLE 5.2: Comparison of simulation results

MPC1 | MPC2 | MPC 3
Settling time(s) 19 30 19
Overshoot(rpm) 5 21 12
Steady tracking error (MSE from 25s to 50s) | 33.36 0.0683 | 0.0163
NOx value (ppm/point) 89.6124 | 62.8376 | 62.7812

5.6.2 Real-time test results

The real-time test results are demonstrated in this section.
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FIGURE 5.5: Simulation results of manipulated variables with second-order model
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FIGURE 5.6: Simulation results of control variables with fourth-order model

MPC with second-order model

The proposed control system is also implemented in the dSPACE system. The control
performance is evaluated in the real-time application. All the experiments are done in

the test bench described in Chapter 3 which is fully warmed.

In this section we consider two case. In the first case, the engine speed reference changes
in the working range where the system identification is done in Chapter 3. In Case 2,
the engine speed range is almost the entire normal operation range of the tested diesel
engine. The second case analyzes how efficient the proposed control system can be
applied during the working range of diesel engine expands. The NOx reference remains
at 50 for each case. This is done to ensure the exhaust emission is as low as possible

when the engine speed is changing.

Casel :

v = 2300, = 50,0 <1 <20
v =2500,y;" = 50,20 <1 <70

¥ = 2300, =50,70 <1< 110
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FIGURE 5.7: Simulation results of manipulated variables with fourth-order model
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Case? :

' =2150,y5 =50,0<1<20

Y =2650,y5 =50,20<1<70

y) =2150,55 = 50,70 <1< 120

The experimental results of all the cases are summarized in Figure 5.8 and Figure 5.9.
In these figures, (a) show the control variables and (b) depict the manipulated variables.
The red solid lines show the results of the proposed method, the blue dashed lines show

the results of MPC 2, and the green dotted lines show the results of MPC 1.

The results shown here clearly indicate that the closed-loop control performance is sig-
nificantly influenced by the disturbance model and the related state observer together

especially if there is model mismatch and nonlinearity in the system.

In Figure 5.8 we can see that the tracking performance of engine speed by MPC 1, MPC
2 and MPC 3 is similar for case 1. But for MPC 3, designed with the proposed method,
the offset of tracking is least. Also, the exhaust emission of NOx is lower than the
other methods. Due to the fixed-structure of the observer (steady-state Kalman filter), it
seems like that MPC 2 has a worse performance. While the combine design of MPC 3

can realize its priority to choose the observer gain.

For case 2, the working range expands as the nonlinearities and model mismatch in-
crease. It can be obviously seen that the tracking performance of MPC 3 is much better
than the other two methods. It seems like that the offset-free tracking is achieved quickly
for the proposed method. In another word, the estimate error of the outputs can go to
zero more quickly by the proposed method. As a results, the manipulated variables can
be used more quickly and efficiently. Since the proposed method can deal with wider
working range, it is less time-consuming when the MPC in the sub-zone is extended to

the entire working range by gain schedule technique.

MPC with fourth-order model

The parameters of MPC regulators are the same except for

Q = diag{0,0,0,0,0,0,1,0.01} (5.55)
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FIGURE 5.8: Step response test by second-order model for case 1
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FIGURE 5.9: Step response test by second-order model for case 2
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With the fourth order model, the dimension of the states increases. The disturbance
model and state observer used in MPC 3 is designed by the proposed reduced-order

method. By the method in Remark 5.1 and 5.2, the following parameter can be obtained

~
~

_ 0.9987 —-9.1583%107°
Ap=1A; =
-0.0159 1.0011

0.0012 —1.1909x 107

—0.0083 3.1866x% 10~*

By = (5.56)
0.0149 ~0.0021

-0.0112 0.0017

14.0414 -1.0719
-9.9634 0.7216

The solution could be obtained after 5 times in which the total iteration is 100. The
initial bound on the H. performance is yy = 1.5762 % 10%. By the search procedure
proposed, @ =8 = 100, we get the updated H,, performance y = 1.3110 10°. The lower
bound is obtained. More optimized solution to the reduced-order problem is obtained

to ensure a better dynamic performance for the controller.

In this section the same two cases of experiment are considered. The experimental
results are summerized in Figure 5.10 for the first case and in Figure 5.11 for the second

<ase.

The realtime test results obviously prove that the design of the control system by the
reduced-order method are also efficient. In Figure 5.10 and 5.11, the tracking perfor-
mance of MPC 3 designed by the proposed reduced-order method is better than MPC
1 and MPC 2. The tracking error is obviously less than the other two methods. Also
the NOx value is maintained in a lower level by the method designed in this paper. The

comparison of experiments results for each case is shown in Table 5.3. *

5.6.3 More real-time results

The above real-time experiments were done on 20th and 22th November 2017. As a
matter of fact, many real-time tests were done before. The real-time tests on 18th and
19th are shown in Figure 5.12 and 5.13. The comparison between three methods from

different days is shown in Table 5.4. As for MPC 2 which is the normal offset-free
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FIGURE 5.10: Step response test by fourth-order model for case 1
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FIGURE 5.11: Step response test by fourth-order model for case 2
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T -time results for 2 cases
Case 1 MPC 1 MPC 2 MPC 3
Settling time(s) 25 24 19
Overshoot(rpm) 0 0 0
Steady tracking error (MSE from 25s to 50s) | 214.8462 | 56.5385 | 44.0000
NOx value (ppm/point) 283.0822 | 233.5020 | 197.0302
Case 2
Settling time(s) 40 32 26
Overshoot(rpm) 0 0 0
Steady tracking error (MSE from 25s to 50s) | 999.1875 | 158.6875 | 46.8125
NOx value (ppm/point) 255.5243 | 248.0755 | 225.3903

MPC, we can see that the average value of settling time and overshoot are bigger than
MPC 1 which is the normal MPC. But with the offset-free design, the steady tracking
error of MPC 2 is smaller than MPC 1. The proposed method MPC 3 has the best per-
formance including the engine speed tracking and NOx value. The dynamic and static

performance are both satisfied. In details of Table 5.4, for case 1 by fourth-order model

TABLE 5.4: Comparison of real-time results for different days

Case 1 MPC 1 MPC 1 MPC 1 average value
(11.18) (11.19) (11.20)
Settling time(s) 30 19 25 24.67
Overshoot(rpm) 0 25 0 8.33
Steady tracking error
(MSE in the middle 255) 354.3591 | 501.4739 | 214.8462 356.8931
NOx value (ppm/point) | 325.7407 | 306.8257 | 283.0822 305.2162
Case 1 MPC 2 MPC 2 MPC 2 average value
(11.18) (11.19) (11.20)
Settling time(s) 30 28 24 27.33
Overshoot(rpm) 47 48 0 31.67
Steady tracking error
(MSE in the middle 255) 184.5092 | 174.9709 | 56.5385 138.6729
NOx value (ppm/point) | 302.8231 | 288.3870 | 233.5020 274.9040
Case 1 MPC 3 MPC 3 MPC 3 average value
(11.18) (11.19) (11.20)
Settling time(s) 21 19 19 19.67
Overshoot(rpm) 0 0 0 0
Steady tracking error
(MSE from 255 to 50s) 212.5983 | 158.7482 | 44.0000 138.4488
NOx value (ppm/point) | 194.7924 | 202.4092 | 197.0302 198.0773

in the defined linear working region, the tracking performance for engine speed is simi-

lar, but the settling time and tracking error are least by the proposed method and average
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value of NOx emission decreases by 26.7% ((274.9040-201.6374)/274.9040) compar-
ing with MPC 2 which is designed by normal offset-free method. Comparing with MPC
I which is the normal MPC without disturbance model, the tracking error of engine
speed is decreased by 61.2% ((356.8931-138.4488)/356.8931) and NOX emission de-
creases by 35.1% ((305.2162-198.0773)/305.2162) by the proposed method. In details
of Table 5.3, for case 2 by fourth-order model with bigger working region, compar-
ing with MPC 2,the tracking error for engine speed by the proposed method decreases
by 70.5% ((158.6875-46.8125)/158.6875) and NOx emission value decreases by 9.1%
((248.0755-225.3903)/248.0755). Comparing with MPC 1, the tracking error for engine
speed by the proposed method decreases by 95.3% ((999.1875-46.8125)/999.1875) and
NOx emission value decreases by 11.8% ((255.5243-225.3903)/255.5243).

Remark 5.4 The offset-free design is the modification of normal MPC itself. In this
research, there are two control target. At first, we choose the engine speed as the main
target which has priority. So weight of engine speed in the cost function in Table 5.1
is I which is bigger than the weight of NOx 0.01. As for the second target, the NOx is
inevitable which means we cannot control it as zero. To make a compromise, we set the
reference value of NOx as 50 ppm. As a result, we can have a good performance of

engine speed tracking and NOx in a low level.

5.7 Summary

This chapter presents an offset-free model predictive control of diesel engine with input
constraints. Coupling relationship between the setting variables and nonlinear behavior
of the system make the problem difficult to solve by classical control design methods
especially with the input constraints. Compared with traditional offset-free tracking
control, the disturbance model and state estimate gains are given from a combined
design. Furthermore the general solution and method of reduced-order design for H-
infinity problem are addressed. A two-step algorithm is presented for the reduced-order
controller design which is suitable for additional condition of offset-free tracking. The
realtime test results prove that the reference of engine speed can be tracked precisely

and the emissions can be reduced feasibly by the proposed method.

MPC has the ability to deal with input constraints. However the limitation of MPC is
the computation speed. The simple structure of state feedback control in prior chapter

makes it has no such concern.



Chapter 6

Conclusions

6.1 Conclusion

In order to comply with increasingly stringent emission regulations and fuel efficiency
standards, the performance of diesel engine should be further improved, especially dur-
ing the transient condition. In the research, dynamic model-based control method is
applied on a real-time diesel engine for satisfying the driver’s demand and reducing
the exhaust emission. In addition, the techniques for improving the closed-loop perfor-
mance of model-based control system are developed. The performance is satisfied with
following requirement.

e Faster response of engine speed;

e Smaller overshoot of variables during the transient condition of engine speed;

e Accurate tracking of engine speed without steady offset;

e With better transient performance, the NOx value is reduced.
The research is included in one model and two control algorithms.
e Dynamic model of diesel engine by state space equation including air loop and
fuel loop together;

e Extended guaranteed cost control algorithm;

e Modified model predictive control algorithm with no steady error.
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Finally the designed control algorithms have been tested for the real-time application.

The main work of the thesis has been described in Chapter 3, 4, and 5.

In Chapter 3, we develop the diesel engine test bench for investigating the characteristics
of diesel engine. It is used for collecting data for modeling and real-time test of control
algorithm. After getting data by designed experiment, the linear system identification
is applied for model including air loop and fuel loop. The modeling fit for engine speed
and NOx for controller design in Chapter 4 is 69.7% and 81.2%. As for controller
design in Chapter 5, the second modeling fit for engine speed and NOx is 77.4% and
80.3%. For further discussion of dimension problem, the forth-order model is raised
with similar fit. It is proved that the identified dynamic model in state space form can

be used for the controller design and real-time test in the following chapters.

In Chapter 4, the guaranteed cost state-feedback tracking control for the diesel engine
system with input constraints is presented. The engine process is fast and uncertain. In
order to achieve the real-time application, the combustion uncertainties and nonlinear
behavior are expressed by parameter uncertainties based on linear state space equations
identified in chapter 3. For controller design, the quadratic performance with uncer-
tainty, the inputs constraints and the demand of tracking are guaranteed by three linear
matrix inequalities (LMIs). The state feedback and estimate gains are given from feasi-
ble solution of an augmented LLMI simultaneously. Then the simulation is done to prove
the priority of the proposed method with faster response speed and smaller overshoot
of engine speed. Furthermore the NOX is reduced at the same time. Finally the real-
time test of the proposed control system is applied on our test bench. The experimental
results prove that the proposed control system achieve a better performance in precise
reference tracking, meanwhile NOx is in a lower level as well. For case 1 in the defined
linear working range, the tracking error for engine speed by the proposed method de-
creases by 37.2% and NOx emission value decreases by 19.2%. For case 2 with bigger
working region, the overshoot for engine speed by the proposed method decreases by
more than 68.8% and NOx emission value decreases by 38.3%. For case 3 with the

biggest working range, the results are similar to case 2.

The main contributions related to this chapter are shown as follows:

e The process of diesel engine through both air and fuel loop is expressed by linear

state space equations with parameter uncertainties

e Compared with traditional guaranteed cost control, the state feedback and esti-

mate gains are given from feasible solution of an augmented LMI simultaneously.
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e To deal with tracking problem and physical constraints, more LMI conditions are

discussed.

Chapter 5 raises an model predictive control for the diesel engine process with no steady
error. Since the application of input constraints in the prior chapter is not so convenient,
the MPC method becomes an attractive choice. As MPC has more robustness to uncer-
tainties, the main problem is the steady error in real-time application. In order to solve
this problem, the definition of disturbance model and state estimate is firstly given.
Then the parameters of disturbance model and state estimate gains are obtained from a
combined design based on H, theory. For the solution to Hy problem, there will be

two challenges.

Firstly for general application of Ho, theory, the general solution is put forward. And the
additional condition of offset-free tracking based on this solution is discussed. Secondly
with the dimension of the model increasing, the reduced-order design for Hy, problem is
needed. Then a two-step algorithm is presented for the solution which is suitable for the
the additional condition of offset-free tracking. Finally the obtained disturbance model
and state estimate gain are applied in the solver (qpOASES) of quadratic programming
(QP) problem, which is the core of MPC problem. The real-time test by the proposed
approach is also done in our test bench. For case 1 in the defined linear working range
(2300 2500rpm), the tracking error for engine speed by the proposed method MPC 3
decreases by 61.2 % and NOx emission value decreases by 35.1% comparing with MPC
1 which is designed by normal MPC method. For case 2 with bigger working range
(2150 2650rpm), comparing with MPC 1,the tracking error for engine speed by the
proposed method decreases by 95.3% and NOx emission value decreases by 11.8%. The
experimental results prove that the designed control system can achieve the reference
tracking control of engine speed precisely and affectively, meanwhile the emissions
can be reduced feasibly. The control performance by forth-order model proves the
effectiveness of the proposed reduce-order design. The main contributions related to

this chapter are shown as follows:

e Compared with traditional offset-free tracking control, the disturbance model and

state estimate gains are given from a combined design based on H, theory.

e The general solution of H, problem is put forward. The additional condition of

offset-free tracking based on this solution is discussed.
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e With the dimension of the model increasing, the reduced-order design for H,

problem is presented.

e A two-step algorithm is presented for the reduced-order design problem which is

suitable for the the additional condition of offset-free tracking.

In summary, the relations between traditional methods and proposed methods are shown

as follows:

Fast dynamics Steady error (Offset) .

(Real-time)

. Sampling time >0.01s .
8 Sampling time <0.01s “

@ @
@ @
b4 A @ @

. Good A Available but not good enough : Bad

MIMO system

Uncertain system

8 o o0
@ @@ ©

Input constraints

FIGURE 6.1: Relations between traditional methods and proposed methods

As it shows, we can see that the method proposed in Chapter 5 has better ability of
handling input constraints than extended guaranteed cost control in Chapter 4. But
when sampling time is smaller than 0.01s, the method of guaranteed cost shows great

advantage with simple structure.
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6.2 Topics for future research

Despite several progress that has been made in these research, there are still many as-

pects that needs further investigations. There are two main aspects.

6.2.1 Transient performance between each sub-zone

In order to describe the nonlinear behavior of a diesel engine, the wide operating region
is divided into several sub-zone. [54, 62—-65]. One example is shown is Figure 6.2 in
Chapter 2.

fuel

10| 11| 12

»>

speed

FIGURE 6.2: One example for segmentation of the engine operation region

So it is interesting to see how the performance will be by the proposed method when the
diesel engine is working across each sub-zone. But it is not suitable for our test bench
currently. The one-cylinder diesel engine we test is YANMAR TF70V-E. Its normal
working range is from 1600 to 2700 rpm. It was firstly implemented in our lab in 2002.
After so many years and some reform by the company of FC-design and ourselves, its
normal working range is currently from 2000 to 2700 rpm. When the engine speed is
under 2000 rpm, the engine will flameout itself. So almost the entire normal working
range is tested in our experimental results. If possible, T hope that the proposed method

could be tested when the engine is working across the sub-zones.

The proposed methods could be easily applied into multiple sub-zones.

e Gain scheduling method

Different from [52, 68, 105], the gain scheduling method discussed here is not
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based on LPV model. The state feedback gain and state estimate gain are ob-
tained by the strategy proposed in Chapter 4 in each sub-zone. W

-zones will be much less than the original linear
methods. The logic of gain scheduling is that it depends on the engine speed. For
example, there are two sub-zones, one is from 1000 rpm to 2000 rpm, and the
other one is from 2000 rpm to 3000 rpm. When engine speed is changing from
1900 rpm to 2500 rpm, the state feedback gain and state estimate gain change at
the point of 2000 rpm. The transient performance will be an interesting topic to

discuss.

Multi-MPCs

The MPC algorithm could be easily extended into Multiple MPCs. In simulink
of MATLAB, there are tools of multiple MPCs that can switch between multiple
implicit MPC controllers. In each linear sub-zone, one MPC controller could be
obtained by the strategy proposed in Chapter 5. Also the transient performance

between each sub-zone needs to be further studied.

6.2.2 Nonlinear control method

With the development of hardware, the computation speed will be satisfied to apply the

nonlinear method for diesel engine control. The neural network-based nonlinear model

predictive control will be an interesting choice. The whole working range of the engine

can be described by the neural network. And the QP solver for NMPC will be used for

on-line application. The structure of neural network-based nonlinear model predictive

control is shown in Figure 6.3.

NMPC
Controller

MLP
Neural

Network

FIGURE 6.3: Structure of neural network-based nonlinear model predictive control

The challenge of this method consists of the following two parts:
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e Neural network model
Just as the Figure 6.3 shows, the model here is with the simple structure of MLLP
for fast computation speed. As for the parameters in neural network such as
number of neurons, the number of delays, it needs further study in consideration

of computation speed and model prediction accuracy.

o NMPC solver
The computation speed of NMPC solver is a critical issue. It is very important for
real-time application of neural network-based nonlinear model predictive control.
The research on NMPC solver has been a very hot topic. As far as [ am concerned,

the parallel algorithm will be a solution of increasing speed of computation.

6.2.3 Application in production diesel engine

Since our research is focused on real-time test in engine test bench, the application and
improvement of production diesel engine are worth looking forward to. I will work in
the research center in company of DENSO. DENSO is a company that is world-top of
engine technology. There are many research about transient control of engine. I hope
my knowledge will be useful in the development of engine technology, and I will try

my best to make contribution to the society for a better world in the future.
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