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Chapter 1

Introduction

We work over the field of complex numbers C. By a variety we mean an irreducible re-
duced scheme of finite type. Let G be a reductive algebraic group, X an affine G-variety,
and h : Irr(G) — Zs¢ a Hilbert function that assigns a non-negative integer to each irre-
ducible representation of G. The invariant Hilbert scheme Hilbg(X ) is a moduli space that
parametrizes G-stable closed subschemes of X whose coordinate rings have Hilbert function
h. It was first introduced by Alexeev and Brion [ABOS5] for G connected. Later, Brion [Bril3]
extended the construction to the case where G is any reductive algebraic group. Therefore, the
invariant Hilbert scheme can be considered as a generalization of the G-Hilbert scheme of Ito
and Nakamura [IN96] for a finite group G. If we take & to be the Hilbert function of a general
fiber of the quotient morphism 7 : X — X //G := Spec(C[X]°), we obtain a morphism

y HilbY(X) — X//G, [Z]~ ZJ/G.

The morphism v is called the quotient-scheme map, or the Hilbert—Chow morphism. By the
choice of the Hilbert function #4, it turns out that y is an isomorphism over a dense open subset

Yy of X //G. Therefore, the Zariski closure #"%" := y~1(Y,) equipped with a reduced scheme
structure is an irreducible component of the invariant Hilbert scheme Hilbf(X), which is
called the main component of Hilbf(X ). Since the restriction of y to the main component
H™M@n s projective and birational, we can ask the following questions:

Question 1.0.1. Does the restriction y|ymain give a resolution of singularities of the quotient
variety X //G?



Question 1.0.2. Does the invariant Hilbert scheme Hilbg(X ) coincide with the main compo-
nent €7 In other words, is Hilbg(X ) irreducible?

When the group G is finite, the G-Hilbert scheme G-Hilb(X) is known to give a crepant
resolution of singularities of the quotient variety X /G if X is a smooth variety of dimension
less than four and if the G-action is Gorenstein ([IN96, NakO1, BKRO1]). It provides a
moduli-theoretic perspective to the theory of McKay correspondence and has been actively
studied also in connection with representation theory. However, in the case of infinite groups,
not many examples of invariant Hilbert schemes are explicitly known except for some cases
where G is a classical group and X is a classical representation of G ([JR09], [Becll1],
[Terl14a], [Ter14b]). In this thesis, we focus on the fact that any 3-dimensional affine normal
quasihomogeneous SL(2)-variety can be described as a GIT quotient, and determine the
geometric structure of the associated invariant Hilbert scheme. This gives a new family of
examples where the corresponding Hilbert—Chow morphism is a resolution of singularities.
We also provide a necessary and sufficient condition for the resolution to be minimal. Here
we say that a resolution of singularities f : W — Y is minimal if Ky - C > 0 holds for any
curve C C W that is contracted to a point under f, where Ky denotes the canonical divisor of
W.

This thesis consists of six chapters. Below we summarize the content of each chapter.

In chapter 2, we first review general properties of invariant Hilbert schemes and spherical
varieties, then overview some known results on quasihomogeneous SL(2)-varieties, where
a variety with a reductive group action is called quasihomogeneous if it contains a dense
open orbit. In [Pop73], Popov gives a complete classification of 3-dimensional affine normal
quasihomogeneous S L(2)-varieties; they are uniquely determined by a pair of numbers (/,m) €
{QnN(0,1]} xN, where (0, 1] stands for the half-open interval {x : 0 < x < 1}. Popov proves
that the variety Ej,, corresponding to a pair (/,m) is smooth if and only if / = 1; otherwise
E; ,, contains a unique singular point, which is SL(2)-invariant. After the work of Popov, such
SL(2)-varieties have been extensively studied by Kraft [Kra84], Panyushev [Pan88, Pan91],
Gaifullin [Gai08], Batyrev and Haddad [BHO8], and others. Batyrev and Haddad described
Ej;, as a GIT quotient of an affine hypersurface H,, in C> modulo an action of C* X y,,,, where
p and g are positive coprime integers such that [ = p/q. By using the quotient description,



they show that there exists an equivariant flip

by variation of GIT quotients. They also show that the varieties £, and E;’ are dominated
by a weighted blow-up E| := BIZ(E;;) of Ej, with a weight w, where w depends on the
parameters [ and m. Furthermore, they define an additional C*-action on Ej,, and prove that

E;,, becomes a spherical SL(2) x C*-variety with respect to the Borel subgroup B:= BxC*.

In chapters 3,4, and 5, we study the birational geometry of Ej,, through the invariant
Hilbert scheme € := Hilbf*x“ "(H,-p) associated with the triple (C* X u,,, Hy—p, h), where h
is the Hilbert function of a general fiber of the quotient morphism r : H,_, — E|,,, and by
examining the corresponding Hilbert—-Chow morphism 7y : #€ — Ej,,. The main results of
this thesis are the following.

Theorem 1.0.3 (Corollaries 3.1.3 and 5.3.3 and Theorem 3.2.4). The invariant Hilbert scheme
HC is irreducible and reduced (therefore, F€ coincides with the main component F€"*"), and

the Hilbert—Chow morphism vy is an equivariant resolution of singularities of E;,,. Moreover,

FC€ is described as follows.

(i) Ifl =1, then S€ is isomorphic to E .

(i) If | <1 and if E;,, is toric (i.e. if q—p divides m, see Theorem 2.3.3 and Remark
2.3.3.1), then € is isomorphic to El’m

P—

(iii) Ifl < 1 and if Ey is non-toric, then € is isomorphic to the minimal resolution E| = of
’
El

Theorem 1.0.4 (Theorem 5.4.1). Let k = g.c.d.(m,q—p), a=m/k, and b= (q—p)/k. Then,
the Hilbert—Chow morphism vy is a minimal resolution of E,, if and only if 1+ b < ap.

In chapter 3, we describe the minimal resolution EZT;; in terms of the colored fan by using
the combinatorics of the colored cone of El’ - 10 chapter 4, we give explicit descriptions of
the ideals corresponding to each SL(2)-orbit of the invariant Hilbert scheme €. In chapter 5,
we first show that the Hilbert—Chow morphism 7 factors through E

T building on the results
m



from chapters 3 and 4, and then we complete the proof of Theorem 1.0.3 by calculating the
dimension of the Zariski tangent space at each Borel-fixed point. The proof of Theorem 1.0.4
will be given at the end of the chapter.

In chapter 6, we present the following question as a generalization of the framework of
the problem we have considered in the previous chapters.

Question 1.0.5. When a singularity is described as a GIT quotient of its Cox ring by the natural
action of a quasitorus, does the corresponding invariant Hilbert scheme give a resolution of
singularities?

This thesis considers the question for the singularity of the closure of the maximal nilpotent
orbit in sl,,. We will see that, at least if n = 2,3, the corresponding Hilbert—Chow morphism
coincides with the Springer’s resolution.



Chapter 2

Preliminaries

2.1 The invariant Hilbert scheme

Brion’s survey [Bril3] offers a detailed introduction to the invariant Hilbert scheme. In this
section, we briefly review some definitions and properties on invariant Hilbert schemes.

2.1.1 The invariant Hilbert scheme and the Hilbert—Chow morphism

Let G be a reductive algebraic group, and denote by Irr(G) the set of isomorphism classes of
irreducible representations of G. For any G-module V, we have its isotypical decomposition:

Ve (P Hom®(M,V)eM.
Melrr(G)

The dimension of Hom®(M, V) is called the multiplicity of M in V. If the multiplicity is finite
for every M € Irr(G), it defines a function

hy : Ire(G) — Zso, M +— hy(M) := dimHom®(M, V),

which is called the Hilbert function of V.

Let X be an affine G-variety, S a Noetherian scheme on which G acts trivially, and Z a
closed G-subscheme of X xS. We denote the projection Z — S by f. Then, according to



[Bril3], there is a decomposition of f.0 as an Og-G-module

f07= D FuoM,

Melrr(G)

where sheaves of covariants %y, := ﬁ‘é)omgs (M ®0s, f.07) are sheaves of Og-modules. Assume
that each %), is a coherent Og-module. Then, each of them is locally-free if and only if it is
flat over S.

Definition 2.1.2 ([ABOS5, Definition 1.5]). Let 4 : Irr(G) — Zs( be a Hilbert function. For
a given triple (G, X, h), the associated functor

%ilbg(X) : (Sch)®P — (Sets)
7 C XxS Z is a closed G-subscheme of X X S;

S l f is a flat morphism;
I )
X PL ﬁk@z = @Melrr(G) 9M ®M;
S | Fy is locally-free of rank h(M) over Og

is called the invariant Hilbert functor.

Theorem 2.1.3 ([Bril3, Theorem 2.11]). The invariant Hilbert functor is represented by a
quasiprojective scheme Hilbg(X), the invariant Hilbert scheme associated with the affine
G-variety X and the Hilbert function h. We denote by Univg(X ) C XX Hilbg(X ) the universal
family over Hilbg(X).

We denote by Tjz) Hilbf(X ) the Zariski tangent space to the invariant Hilbert scheme
Hilbg(X ) at a closed point [Z]. We sometimes represent a closed point of Hilbf(X ) by the
defining ideal I of Z if there is no danger of confusion.

Theorem 2.1.4 ([Bril3, Proposition 3.5]). With the above notation, we have

Tizy Hilb (X) = Homg, (17, C[X]/17).

The invariant Hilbert scheme comes with a projective morphism called the quotient-
scheme map, or the Hilbert—Chow morphism. This is a generalization of the Hilbert—Chow
morphism from the G-Hilbert scheme G-Hilb(X) to the quotient variety X /G that sends a



G-cluster to its support. The construction of the quotient-scheme map in a general setting
is explained in [Bril3, §3.4]. Here we restrict ourselves to the situation we consider in this
thesis. Let

m: X — X//G :=Spec(C[X]°)

be the quotient morphism. By the generic flatness theorem, 7 is flat over a non-empty open
subset ¥ of X//G. According to [Bril3, §3.4], every scheme-theoretic fiber of 7 over the flat
locus yields the same Hilbert function. This special function is called the Hilbert function of
a general fiber of m, and we denote it by hy. Since hx(0) = 1, where O stands for the trivial
representation of G, the associated quotient-scheme map is a morphism

y :Hilb§ (X) — X//G, [Z]~ Z//G.

Proposition 2.1.5 ([Bril3, Proposition 3.15], [Bud10, Theorem 1.1.1]). With the preceding
notation, the diagram

. pr
Unlvgx (X)——X

| \

Hilb; (X) —— X//G

commutes. Moreover, the pullback of 'y to the flat locus Yy of m is an isomorphism.

The Zariski closure %" := y~1(Y,) equipped with a reduced scheme structure is an
irreducible component of Hilbe(X), which is called the main component of Hilbe(X)
([Becll, Definition 2.4], [LT15, Definition 2.3]). Since the restriction

'ylygmain . yemain — X//G
is projective and birational, it is natural to ask whether y|yemain gives a resolution of singular-

ities of the quotient variety X //G.

2.1.6 Tools to study the invariant Hilbert scheme

We consider a situation where there is an action on X by another connected reductive algebraic
group G’. Suppose that the action of G’ on X commutes with that of G. Then, G’ acts on
Hilng (X), and the quotient-scheme map y is G’-equivariant ([Bril3, Proposition 3.10]). Let

9



us especially consider the action of a Borel subgroup B’ € G’ on Hilbfx (X), and denote by
768" the set of fixed points for the action of B’.

Theorem 2.1.7 ([Terl4a, Lemmas 1.6 and 1.7]). Suppose that X //G has a unique closed
G’-orbit, and that this orbit is a point. Then the following hold.

(i) Each G’-stable closed subset of Hilng(X) contains at least one fixed point for the
action of the Borel subgroup B'. Moreover, if Hilbe(X) has a unique B’-fixed point,
then Hilbfx (X) is connected.

(ii) The following are equivalent:

(a) Hilby (X)=#"" and Hilb (X) is smooth;
(b) dimT7jz Hilbfx (X) = dim#"“" for any [Z] € #€', and Hilng (X) is connected.

There is one more useful tool to study the invariant Hilbert scheme. To elaborate, let
G, X, hx, and G’ be as above. For any irreducible representation M € Irr(G), there is a finite-
dimensional G’-module Fy, that generates Hom®(M,C[X]) as a module over the invariant
ring C[X]% ([Bec11, Proposition 4.2]). Let [Z] € Hilbfx (X), and let

mz: Fy — HomG(M,C[Z])

be the composition of the inclusion Fj; — Hom®(M,C[X]) and the natural surjection
Hom(M,C[X]) — Hom®(M,C[Z]). Then, the quotient vector space Fy/Ker fy.z de-
fines a point in the Grassmannian Gr(hx(M), Fy;). In this way, we obtain a G’-equivariant
morphism

nu < Hilbf (X) — Gr(hx(M). Fy)),  [Z]— Fu/Ker fu 2.

Moreover, there is a finite subset # C Irr(G) such that the morphism

yx ]_[ m < HilbY (X) — X//G x ]_[ Gr(hx(M), Fy))
Me Me

is a closed immersion (see [Becl1, §4.2] for details).

2.2 Spherical varieties

The main references for this section are [Kno91], [Pas17], [Per14], and [Tim11].

10



2.2.1 C(lassification

Spherical varieties are classified by combinatorial data called colored fans, which are gener-
alization of fans for toric varieties.

Let G be a connected reductive algebraic group, and let H be an algebraic subgroup of
G. A normal G-variety X is called spherical if it contains a dense open orbit under a Borel
subgroup B of G. By a spherical embedding, we mean a normal G-variety X together with
an equivariant open embedding G/H — X of a homogeneous spherical variety G/H.

Let X be a spherical embedding of G/H with respect to a Borel subgroup B. We denote
by X(B) the group of characters of B, and by C(G/H)®) the set of rational B-eigenfunctions:

C(G/H)® ={f eC(G/H)" : Ix; € X(B)VgeBg- = x/(g)f}.

Consider a homomorphism 7 : C(G/H)®) — X(B) defined by f — xf,andletI" C X(B) be
its image. Then, I is a finitely generated free abelian group. Since G/H contains a dense
B-orbit, the kernel of 7 consists of constant functions. Therefore, we get the exact sequence

1 —C"— C(G/H)® —T —0.
We see that any valuation v : C(G/H)* — Q of G/H defines a homomorphism
CG/H)P —Q  fr(f),

which factors through I'. Hence, it induces an element p,, € Q := Hom(I', Q), which satisfies
pv(xr)=v(f) forany f € I'. A valuation v is called G-invariant if v(g - f) = v(f) holds for
any g € G. We denote by ¥ the set of G-invariant valuations. Since it is known that the map
Y — Q, v > p, is injective ([LV83, 7.4 Proposition]), we will not distinguish ¥ and its
image in Q. Moreover, the set of G-invariant valuations "/ is known to be a finitely generated
cone ([Kno91, Corollary 5.3]).

Definition 2.2.2 ([Pas17, Definition 2.8]). A primitive element of a ray of the opposite =¥
of the dual in I'®7 Q is called a spherical root of X.

Let Y be a G-orbit of X, and set Xy :={x € X:Y c G-x}. Then, Xy is a G-stable
open subset of X, and Y is a unique closed G-orbit of Xy . A spherical variety X is called

11



simple if it contains a unique closed G-orbit. It is known that any spherical variety is covered
by finitely many simple spherical varieties ([Kno91, §2], [Per14, §3.1]).

Let us denote by % (X) the set of B-stable prime divisors on X. We simply write 9 for
%(G/H), and an element of 9 is called a color. If a divisor D € 9 (X) non-trivially meets the
open orbit G/H, then we have DN (G/H) € 9. Otherwise, D is an irreducible component of
the complement X \ (G/H) and hence is G-stable. Therefore, each G-orbit Y of X determines
two sets

By(X):={vp eV :D e Py(X)is G-stable},

where vp stands for the valuation associated to the divisor D, and
Fy(X):={DN(G/H) €D : D € Dy(X) is not G-stable},

where Dy(X) :={D € 9(X):Y c D}.

Remark 2.2.2.1. Let X be a simple spherical variety with a closed orbit Y. Set Xy :=
X\ Upeaxnayx) D> and set X; := G/H \ Upeg)\g; (x) D- Then, Xo is a B-stable affine open
subset, and its coordinate ring is described as follows:

ClXo] ={f €C[X1] : v(f) = Oforall v € By(X)}.
Moreover, we have X = GXj (see [Kno91, Theorems 2.1 and 2.3]).
Consider amap 0:% — Q given by D — o(D) := p,,,.

Definition 2.2.3. A colored cone is a pair (6,5 ) with 6 c Q and F C 9 that satisfies the
following properties: 6 is a cone generated by o(% ) and finitely many elements of ¥; and
6°NY £ 0, where 6° stands for the relative interior of 6. A colored cone (6,% ) is called
strictly convex if 6 is strictly convex and if 0 ¢ o(F). A pair (6, %) is called a face of a
colored cone (6, %) if 6 is a face of 6, 6, NV # 0, and if Fp = F N o~ 1(6p).

For a G-orbit Y of X, “6y(X) C Q denotes the cone generated by o(Fy(X)) and By (X).

Theorem 2.2.4 ([LV83, 8.10 Proposition]). The map X — (6y(X),Fy(X)) gives a bijective
correspondence between the isomorphism classes of simple spherical varieties X with a closed

orbit Y and strictly convex colored cones.

12



Theorem 2.2.5 ([Kno91, Lemma 3.2]). Let X be a spherical variety, and let Y be a G-orbit.
Then, the map Z +— (6 z(X),Fz(X)) gives a bijective correspondence between G-orbits whose
closure contain Y and faces of (€y(X), Fy(X)).

Definition 2.2.6. A colored fan is a non-empty finite set & of colored cones satisfying the
following properties: every face of (6,F ) € & belongs to &; for every v € "V, there is at most
one (6,%) € § such that v € 6°. A colored fan § is called strictly convex if (0,0) € §, namely
if all elements of & are strictly convex.

For a spherical variety X, set §(X) := {(6y(X),Fy(X)) : Y C X is a G-orbit}.

Theorem 2.2.7 ([Kno91, Theorem 3.3]). The map X — §(X) gives a bijective correspondence

between the isomorphism classes of spherical varieties and strictly convex colored fans.

Remark 2.2.7.1 ([Kno91, §3]). An order relation can be given to the set of G-orbits of X by
the inclusion of closures. Theorems 2.2.4 and 2.2.5 imply that ¥ +— (6y(X),Fy (X)) is an
order-reversing bijection between the set of G-orbits and F(X). In particular, the open orbit
corresponds to (0, ().

Theorem 2.2.8 ([Kno91, Theorem 4.1]). Let X and X’ be spherical embeddings of G/H.
Then, the following are equivalent.

(i) An equivariant birational morphism X — X' exists.
(ii) For any (6,%) € §(X) there exists (6',F") € F(X') such that € C 6" and F C F’.

Definition 2.2.9. A spherical variety X is called roroidal if Fy(X) = 0 for any G-orbit Y,
namely if no D € 9 contains a G-orbit in its closure.

Remark 2.2.9.1. Let X be a toroidal spherical variety whose maximal colored cones are
(61,0), ..., (6,,0). A local structure theorem for toroidal spherical varieties ([BP87, 3.4],
see also [Tim11, Theorem 29.1] and [Per14, Proposition 3.3.2]) implies that any equivari-
ant resolution of singularities for X can be obtained by subdividing the cones 6y, ..., 6,
appropriately, as in the toric case.

13



2.2.10 Weil divisors on a spherical variety

Let X be a spherical embedding of G/H. According to [Per14, §3.2], any Weil divisor on X
is linearly equivalent to a divisor of the form 6 = X pegx)npD-

Theorem 2.2.11 ([Per14, Theorem 3.2.1]). With the above notation, § is Cartier if and only
if for any G-orbit Y there exists fy € C(G/H)B) that satisfies np = vp(fy) for any D € Dy(X).

Definition 2.2.12 ([Per14, Definition 3.2.2]). Let X be a spherical variety.

(i) We denote by 6 (X) the union of all 6y(X), where Y runs over all G-orbits.

(ii) A collection [ = (ly) indexed by G-orbits Y is called a piecewise linear function on the
colored fan §(X) of X if it satisfies the following conditions:

e for each G-orbit Y, ly is the restriction of an element of I to €y (X);

e for any G-orbits Y and Z with Z C Y, we have 7]y (x) = ly-
We denote by PL(X) the abelian group of piecewise linear functions on &(X).

Remark2.2.12.1 ([Per14, Remark 3.2.3]). Anelement/ € PL(X) depends only on its values on
maximal colored cones, namely cones corresponding to closed orbits in the sense of Remark
2.2.7.1.

Let Car®(X) be the group of B-stable Cartier divisors on X. Then, we have a homomor-
phism Car?(X) — PL(X), 6 — Is, where (I5)y = fy with the notation of Theorem 2.2.11.
Set Do(X) := UDy(X), where Y runs over all G-orbits.

Theorem 2.2.13 ([Tim11, Theorem 17.18]). For any B-stable Cartier divisor

0= Z VD(l(j)D-I- Z nDD
De%y(X) DeD(X)\Do(X)

on X, the following properties are equivalent.

(i) The divisor ¢ is generated by global sections.

(ii) For any G-orbitY, there exists fy € C(G/H)) that satisfies the following conditions:

14



o frleyx) = lsleyx)s
o friecneyx) < lslexneyx)
e vp(fy) < np for any D € D(X)\ Do(X).

Theorem 2.2.14 ([Pas17, Theorem 2.15]). Keep the above notation. Let D € 9, and choose a
simple root a with respect to B such that the action of the corresponding parabolic subgroup
P, does not preserve the divisor D, i.e., P, - D # D. Then, one and only one of the following
cases occurs: (i) a is a spherical root of G/H; (ii) 2a is a spherical root of G/ H; (iii) neither

a nor 2a is a spherical root of G/H.

Remark?2.2.14.1 ([Pas17, §2]). The anticanonical divisor of a spherical embedding G/H — X

can be described as
Ky = Z D+ Z apD,
DeD(X\D De%

where the coefficient ap attached to D € 9 is determined according to the type of D classified
in Theorem 2.2.14. Denote by P C G the stabilizer of the open B-orbit of G/H, and by Sp
the set of simple roots @ such that —« is not a weight of the Lie algebra of P. Then the
integer ap is given as follows: if D is of type (i) or (ii), ap = 1; and if D is of type (iii),
ap = ZQE%; (@,a"), where %} stands for the set of positive roots with at least one non-zero
coeflicient for a simple root of Sp.

Remark 2.2.14.2. Keep the notation of Remark 2.2.14.1. For later use, we consider a linear
function A associated to a colored cone (6, F) € F(X): the function A is defined so that
h¢(pp) = ap for any D € &, and that h¢(v) = 1 for any primitive element v of a ray of 6 that
is not generated by some pp with D € & (cf. [Pas17, Proposition 5.2]).

Remark2.2.14.3. Let X be a Q-Gorenstein spherical G/H-embedding. Given a G-equivariant
resolution of singularities f : ¥ — X, one has Ky = f*Kx + )};c; a; F; for some g; € Q, where
{F; : i€ I} is the set of exceptional divisors of f. Let (6, &) be the colored cone of F(X)
such that pf, € € under the notation of Remark 2.2.14.2. Then, according to the proof of
[Pas17, Proposition 5.2], the coeflicient g; attached to F; is h¢(pF,) — 1.
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2.3 Affine normal quasihomogeneous SL(2)-varieties

2.3.1 Classification

Popov [Pop73] gives a complete classification of affine normal quasihomogeneous SL(2)-
varieties. Consult also the book of Kraft [Kra84, I11.4].

Theorem 2.3.2 ([Pop73, Corollary of Proposition 9]). Every 3-dimensional affine normal
quasihomogeneous SL(2)-variety containing more than one orbit is uniquely determined by
a pair of numbers (I,m) € {QN(0,1]} xN.

Remark 2.3.2.1. The classification of 3-dimensional affine homogeneous SL(2)-varieties can
be found in [Pop73, Proposition 6].

We denote by E;,, the variety corresponding to a pair (/,m). The numbers / and m are
called the height and the degree of E,,, respectively. Write [ = p/q, where g.c.d.(q,p) = 1,

and set

ki=g.cd(mg—p), a:-= % b= %. @.1)
Theorem 2.3.3 ([Gai08], see also [BHO08, Corollary 2.7]). An affine normal quasihomoge-
neous SL(2)-variety E;,, is toric if and only if g — p divides m.
Remark 2.3.3.1 ([BHOS, §3]). Let {e;,e, ez} be the standard basis of R3. If ¢ —p divides
m, i.e., if m = a(q — p), then the toric variety E,, is defined by the cone Z?Zl R>ov;, where

V| = ey, Vo = —e| +ages, V3 = e, and v4 = —e) +apes.

We use the following notation for some closed subgroups of SL(2):

t 0 . )t ouw . .
T.—{(O t_l).teC}, B.—{(O t_l).teC,ueC},

0
U, := {(g ;1) : g”:l,ueC}, Cu ::{(g {‘1) . 5":1}.

Remark 2.3.3.2. An SL(2)-variety E,, is smooth if and only if / = 1.

(i) If [ =1, then Ej, contains two SL(2)-orbits: the open orbit U = SL(2)/C, and a
2-dimensional orbit © = SL(2)/T. It is known that

Eim = SL(2)x7 C := Spec (C[SL(2) xC]T),
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where T acts on C by the character y,, : t — " (see [Kra84, 1I1.4.5, Beispiel 2] and
[Pan91, Proposition 5]).

(ii) If I < 1, then Ej,, contains three SL(2)-orbits: the open orbit U = SL(2)/C,,, a 2-
dimensional orbit D = SL(2)/Uy,(4+p), and the closed orbit {O}. The fixed point O is a
unique singular point, which is SL(2)-invariant.

Remark 2.3.3.3. Let [ < 1. An explicit construction of Ej,, reduces to determine a system of
generators of the following semigroup ([Kra84, I11.4.7, Satz 1], [Pan88]):

M} = {0, ) €22y j<li, mli-j)}.
Let (i1, /1), - .., (iy, Ju) be a system of generators of M +m, and consider a vector
v= (XY L XYy e V(i + )@@ V(i +ju) =V,

where V(n) := Sym"(X,Y) is the irreducible SL(2)-representation of highest weight n. Then,
E} ,, is isomorphic to the closure SL(2)-v C V.

. . '
i—j=m i—j=2m

Figure 2.1: The semigroup M,"

Remark 2.3.3.4. If [ = 1, then we see that M 1+ ., is minimally generated by (1,1) and (m,0). An
algorithm for finding a system of generators of lem for / < 1 can be found in [Pan88]. By
applying the algorithm for the case when m = a(q —p), i.e., when Ej,, is a toric variety (see
Theorem 2.3.3), we see that M Z'm is minimally generated by (m,0), (m+1,1), ..., (aq,ap).
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2.3.4 Quotient description

According to [BHOS, §1], an affine normal quasihomogeneous SL(2)-variety Ej,, has a
description as a categorical quotient of a hypersurface in C>. We consider C> as the SL(2)-

module V(0)® V(1)@ V(1) with coordinates Xy, Xi, X2, X3, X4, and identify X, X5, X3, Xy
with the coeflicients of the 2 X 2 matrix (Xl X3

X Xu
We consider actions of the following diagonalizable groups on C>:

) so that SL(2) acts by left multiplication.

Go := {diag(t, 1P, t7P, 19, 19) : t € C*}, Gpp:={diag(l, &\, ¢ ¢, 0):¢m=1}.
It is easy to see that the SL(2)-action on C> commutes with the Go X G,,-action.

Theorem 2.3.5 ([BHO8, Theorem 1.6]). Let E;,,, be a 3-dimensional affine normal quasiho-
mogeneous SL(2)-variety of height | = p/q < 1 and of degree m. Then, E;,, is isomorphic to
the categorical quotient of an affine hypersurface H,_, C C° defined by Xg P =X X4 - X0 X3
modulo the action of Gy X G,.

Remark 2.3.5.1. According to the proof of [BHO8, Theorem 1.6], the dense open orbit
of Ej,, is isomorphic to the Gy X G,-quotient of the open subset in H,_, defined by the
condition X # 0. Also, the ring of Go-invariants of H,_, N {Xy # 0} is generated by the
monomials X := X[ X;,Y := X, 7X3, Z := X[ X>, and W := X/ X4, which satisfy the equation
X Y - _
det (Z W) = Xg qX1X4—Xg XX = 1.
An SL(2)-variety Ej,, has another description as an affine categorical quotient. In order
to see this, let H;, € C° be an affine hypersurface defined by the equation Yob = X1 X4 — X2 X3,
and consider the action of the group G|, X G, where

G, = {diag(t", 1P, 177, 19, t9) : 1 € C*}, Gg:={diag(1l, ¢™Y, 7Y, ¢, 0): ¢4 =1}

Theorem 2.3.6 ((BHO8, Theorem 1.7]). Let E;,,, be a 3-dimensional affine normal quasiho-
mogeneous SL(2)-variety of height | = p/q < 1 and of degree m. Then, E,,, is isomorphic to
the categorical quotient of H, modulo the action of Gy X G.

Remark 2.3.6.1. According to the proof of [BHOS, Theorem 1.7], Gy X G, contains a subgroup
isomorphic to G} = {diag(¢, 1, 1, 1, 1): ¢ k =1}, and the hypersurface H, is isomorphic to
the G/ -quotient of H,_,.
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Theorem 2.3.7 ([BHO8, Corollary 2.6]). For any affine SL(2)-variety Ej,, the Cox ring
Cox(Ey ) of Eyy, is isomorphic to the coordinate ring C[Hp| of Hp.

Let L~ and L* be linearizations of the trivial line bundle over H} corresponding to non-
trivial characters ™ : Gy X G, — C*, (t,{) — tk=P+q and y* : Gy XG, — C*, (1,{) =
t7k+P=4 of G, X G, respectively. Also, consider the Zariski open subsets U™ := Hj \ {X3 =
X4 = 0} and U* = Hb\{Xl = X2 = 0} Obe.

Theorem 2.3.8 ([BHO8, Propositions 3.2 and 3.3]). The subsets H,*(L™) and H,*(L") of
semistable points of Hy, with respect to the Gy X G-linearized line bundles L™ and L* are U~

and U™, respectively.

Theorem 2.3.9 ([BHO8, Theorem 3.4]). Set E; := H,*(L")//(GyxG,), and set E}' :=
H*(LY)//(Gyx Gy). Then, the open embeddings H,*(L™) C Hy, and H)*(L") C H), define
natural birational morphisms E;, — Ej and E;' — Ej;, and the SL(2)-equivariant flip

Remark 2.39.1. Let E;,, =V =2 V(i1 +j1)®---®V(i, + j,) be the equivariant closed em-
bedding mentioned in Remark 2.3.3.3, and consider an action of t € C* on V defined by
multiplication of (#1771, ..., t*7J«). Then, since this C*-action commutes with the SL(2)-
action, the affine variety Ej, C V remains stable under the C*-action. This enables us to
consider Ej,, as an SL(2) x C*-variety. The same C*-action on Ej,, can be defined in another
way: an action of C* on Hj, defined by the matrices {diag(1, s7h 571 s, 5) 1 s € C*} commutes
with the SL(2) X G{) X G4-action, and therefore it descends to Ej,, (see [BHO8, Remarks 3.12
and 4.2)).

Remark 2.3.9.2 ((BHOS8, Remark 3.12]). Let/ < 1, and let El’m := B3 (E}m) be the weighted
blow-up of Ej,, with weight w defined by the C*-action considered in Remark 2.3.9.1. The
exceptional divisor D’ of the weighted blow-up E l’ n — Eim is isomorphic to P! xP!, and we
obtain surjective morphisms y~ : El’ m— E,, and vt El’ > Elfm by contracting P! x P!
in different directions to P!, which fit into the following commutative diagram:



The exceptional divisor D’ = P! x P! contains two SL(2) x C*-orbits under the diagonal action
of SL(2) and under the trivial action of C*: the closed orbit C = (SL(2) xC*)-([1:0],[1:0])
and a 2-dimensional orbit C’ = (SL(2)xC*)-([1:0],[0: 1]).

Theorem 2.3.10 ([BHOS8, Proposition 3.13]). Let C* be the image of D’ under the morphism
v*. Then the canonical divisor K E: of E}, has the following intersection number with C*:

1+b)k 1+Db)k
K- -C_:—( 2) , Kg+ -C+:!.
I,m aq I,m ap2
Theorem 2.3.11 ([BHOS, §3]). The weighted blow-up E|, contains a unique closed SL(2) X
C*-orbit C, which is isomorphic to P'. Moreover, along the closed orbit C, E|  is locally
isomorphic to Cx C?/ .

Remark 2.3.11.1. By Theorem 2.3.3, Ej, is toric if and only if b = 1. Therefore, in view of
Theorem 2.3.11, El’ n 1S smooth if and only if Ej,, is toric. Furthermore, if E;,, is toric, then
the weight w is trivial since we have i} — j; = --- =i, — j, = m (with the notation of Remark
2.3.9.1) by Remark 2.3.3.4, in which case £ l’ ., 18 the usual reduced blow-up of the fixed point
O in E[,m.

2.3.12 Spherical geometry

Theorem 2.3.13 ([BHO8, Proposition 4.1]). An affine SL(2) x C*-variety E,,, is spherical
with respect to the Borel subgroup B := BXC*

Batyrev and Haddad ([BHO8, §4]) compute the colored cones of Ej,,, E o El+m, and E l’ "
The lattice I of rational E—eigenfunctions on U is given as follows (see Remark 2.3.5.1 for the
definition of the variables Z and W):

[ ={Z'W e CQ)*: m|(i—j)}.

The varieties Ej,,, E; and EzJ,rm contain exactly three B-stable divisors D = (H, N {Y, =
0H//G', S~ = (Hyn{X4 =0})//G’, and S* = (Hy N {X> = 0})//G’, where G’ = G|, X Gq,
and E], contains an SL(2)x C*-stable divisor D’ = P! x P!, the exceptional divisor of the
weighted blow-up El’ n — Eim. The divisors D, §7, S*, and D’ define lattice vectors

Pvps Prs—s Prgir Py € TV in the dual space O = Hom(I',Q). We can take {p,;,p,.} as a

20



Q-basis of Q, and the set "V of SL(2) x C*-invariant valuations is givenas "V = {xp,, + ypys- €
Q : x+y < 0}. Under the notation of §2.2, the colored cones of Ej,,, E . Efm, and El’m are
described as follows:

6
(6_
(6+

(6/

The weighted blow-up E; is toroidal since 7’ = 0.

= 6(ELm) = Q200v + Q200v5-
=6(E,) = Q200v, + Q2000
= (G(E;rm) = Qx0pvp + Qx0pvs-»
= cg(Ellm) = Qx0pvp + Qx0p0v,»
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T~ =F(E,) ={pv}:
FT=F(E,) = {pvs- )3

F' = F(E],)=0.



Chapter 3

Invariant Hilbert schemes and resolutions
of singularities of affine normal
quasihomogeneous SL(2)-varieties I:
colored fan of the minimal resolution

3.1 Flatlocus and the Hilbert function of a general fiber

Let/ <1, and let
n:Hyp — Hyp[[(GoX Gp) = Epm

be the quotient morphism. In this section, we determine the flat locus of 7 and the Hilbert
function & := hu,_, of a general fiber of 7. Let x =(1,1,0,0,1) € H,_,. Then, the SL(2)x
C* X Go X G,-orbit of x coincides with the open subset H,_, N {Xo # 0} of H,_,, and the
categorical quotient of H,_, N {Xy # 0} by Gy X G,, is isomorphic to the dense open orbit
U (see Remark 2.3.5.1). Namely, U is the SL(2) x C*-orbit of m(x). We can verify that
D is the SL(2) x C*-orbit of m(x’), where x" = (0,1,0,1,0) € H,_,, as follows. Note that
(W) = Hy—y n{Xo # 0}. If [ = 1, then we get x’ € 7~ (D) since U and D are the only orbits
of E, (see Remark 2.3.3.2). If / < 1, and if we assume that 7(x") ¢ D, then 7(x") = O. But
this is a contradiction since XlaqX; Pe C[Hq_p]GO><Gm = C[E} ], and since the X;-coordinate
and the X3-coordinate of x’ are both 1. Consequently, D is the SL(2) X C*-orbit of m(x’).

Proposition 3.1.1. Let [ < 1. With the above notation, we have the following.
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(i) For any g € SL(2), the Go X G,-orbits of g - x and g - x" are closed and isomorphic to
Gox Gy,.

(i) Foranyy e WUD, the fiber n~(y) is isomorphic to Gy X Gy,

(iii) Ifl =1, then nt is flat. Otherwise, Ej,, \ {O} = WU D is the flat locus of 7.

Proof. We have seen in Remark 2.3.3.2 that 21U D is smooth. Therefore, taking into account
Remark 2.3.6.1 and Theorem 2.3.7, items (i) and (ii) follow from [ADHL15, Remark 1.6.4.2].
Also, it follows from [ADHL15, Proposition 6.1.3.9] that r is flat over the smooth locus LU D
of Ej,,. Therefore, mr is flat if / = 1. Suppose that / < 1, and let x” = (0,1,1,0,0) € H,_,.
Then we see that 7(x”") = O, since monomials X ldl dez with (dy,d3) # (0,0) are never Go X G-
invariant. The stabilizer of x” under the SL(2)-action is 1-dimensional, which implies that 7
is not flat at the origin O concerning item (ii). Q.E.D.

Remark 3.1.1.1. Consider the following ideals of C[ Xy, X1, X2, X3, X4]:
11 = (X(;{—p —X1X4, X2, X3, 1 —X(T”le), J] = (Xé(, X2, X4, 1 —X{qu;p).

By asimple calculation, we see that the underlying topological spaces of the orbits (Go X G,) - x
and (Go X G,,,) - x’ coincide with the zero sets of I} and Jj, respectively. In the case where
[ <1, we will see in Theorems 4.2.2 and 4.2.3 that the ideals of the scheme-theoretic fibers
n~Y(n(x)) and 77! (m(x")) coincide with I; and J;, respectively.

Corollary 3.1.2. The Hilbert function h of a general fiber of the quotient morphism r coincides
with that of the regular representation C[Go X G, ]:

h:ZXZ|/mZ — Zsy, (n,d)— h(n,d)=1,
where we identify Irt(Go X G,) with ZX Z | mZ.
Let us denote by F€ the invariant Hilbert scheme HilbeXG’”(
(Go X G, Hy—p, h), and consider the Hilbert-Chow morphism

H,_,) associated to the triple

Y : 9 — Hyp/[(GoX Gp) = Epjp.

By Theorem 2.1.5 and Proposition 3.1.1, we see that y is an isomorphism over A U D, and
that the restriction of y to the main component

A =y (MU D) =y Q)
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is projective and birational. As a consequence of Proposition 3.1.1, we have:

Corollary 3.1.3. If | = 1, then the invariant Hilbert scheme FC is isomorphic to E\ .

Until the end of chapter 5, we always assume that /[ < 1 taking into account Corollary
3.1.3.

Remark 3.1.3.1. It will be important to have an explicit description of the orbit decomposition

of the varieties Ej ,, E;

I and the minimal resolution £ l’ m of £ l’ " So here we recall that £,

contains exactly three orbits, and that E l’ ,, contains exactly four orbits:

e E;, =UUDU{O0}, where U is the dense open orbit, D is a 2-dimensional orbit, and O
is the closed orbit (see Remark 2.3.3.2 (ii)).

e E/ =UUDUC'UC, where C" = SL(2)/T is a 2-dimensional orbit, and C = SL(2)/B =
P! is the closed orbit (see Remark 2.3.9.2).

The orbit decomposition of E] = will be given in Remark 3.2.4.2.

3.2 Minimal resolution of the weighted blow-up

A resolution of singularities f : X —> X is minimal if the canonical divisor K 5 of X is f-nef,
i.e., Kz-S§ >0 for any curve § C X which is contracted to a point under f.

Recall that the weighted blow-up El’ ,, 18 @ simple toroidal spherical SL(2) x C*-variety,
and that it is locally isomorphic to Cx C?/u;, along the closed orbit C = P! (Theorem 2.3.11).
We denote by El’vm the minimal resolution of singularities of £ l’ ,, obtained by the minimal
resolution of the cyclic quotient singularities C*/up,. As we have seen in Remark 2.2.9.1
that any equivariant resolution of singularities of a toroidal spherical variety is obtained by
subdividing the cones of its colored fan, this applies in particular to the minimal resolution

E m of £ l’ ” whose we will calculate the colored fan in §3.2.2.

!
3.2.1 Singularities of the weighted blow-up

We see that the lattice T’ = {Z'W/ € CQ)* : m|(i — j)} of rational E—eigenfunctions on U
is generated by ZW and Z™. Since (t,5) € TXC* C B acts on Z'W/ via (1,5)- ZIW/ =
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111 5i=1 Z'WJ | the natural homomorphism f : I — ¥(B) = Z2 is given by ZIW/ - (i + j,i — j).
Set vy := f(ZW) =(2,0), and set v, := f(Z™) = (m,m). We denote the dual basis of {v},v,}
by {uj,u}. By virtue of [Pan91, Theorem 2] and [BHO08, Proposition 2.8], we see that the
lattice vectors p,,,, Pvs-» Pvgs» Py, € L' can be written as follows:

Pvp =—bup+apuy,  pyg =y, Pyge =0 MU, Py, = Up.

Therefore, E], has singularities of an affine toric surface defined by the following cone (see
[BHOS8, Remark 3.12]):

o = Qzouz + Qxo(—buy +apuwy).

We denote by X, the toric variety of the cone 0. Let @ and S be the quotient and the remainder
of mp divided by g — p, respectively, i.e., mp = a(g — p) + 5, and set

_49-r-P
k

u)) (-1 a+1)(w
=0 ")) 5

to make o into the normal form in the sense of [CLS11, Proposition 10.1.1]:

t: =(a+1)b—ap. (3.1)

We consider the base change

o = Qsou) + Qxo(bu] —ruj).

It follows that X, is a cyclic quotient singularity of type %(1, t). Therefore, by Theorem 2.3.3,
X, is smooth if and only if Ej,, is toric. If Ej,, is non-toric, then X, has a minimal resolution
described by the Hirzebruch—Jung continued fraction expansion of b/t (see [CLS11, §10.2],
[Ful93, §2.6]).

3.2.2 Colored fan of the minimal resolution

To each Ej,,, we assign an integer r = r(Ej,,) as follows.

e If £y, is toric, then we define r = 0.

25



* If E;,, is non-toric, then we define r to be the length of the Hirzebruch—Jung continued
fraction expansion of b/t:

1
P llen o ell= e

C—
2 1

cr

Set Py :=0, set Qg :=—1, set Py :=1, and set Q; :=0. For 2 <i < r+1 (this only happens if
E;,, is non-toric), we recursively define

Pii=ci-1Pis1 = Pimy,  Qii=¢im10i-1 — Qi2. (3.3)
Theorem 3.2.3 ([CLS11, Proposition 10.2.2]). The numbers P; and Q; (0 <i <r +1) defined
above satisfy the following properties.
(i) Po<Pr<-+<Prs1, Q0<01 < <QOrs1;
(i) Pi-1Qi—PiQi-1=1forany1 <i<r+1;

b_ Pr+1 Pr P2
(iii)) — = < —-n <=
Qr+1 Qr Q2

We define the vectors
pi = —Pu; + {(a/+ I)Pi - Qi}llz (0 <i<r+ 1)
in Q and consider the cone spanned by p; and p;:

€6; :=Qs0pi +Qsopivy1 (0<i<r).

Let us denote by EZ; the toroidal spherical SL(2) x C*-variety whose colored fan has

(60,0), ..., (6,,0) as its maximal colored cones. Then, E?; = E|, if Ej is toric. If

E},, is non-toric, then El’ n E/  is the minimal resolution concerning [CLS11, Theorem
10.2.3] and the base change (3.2).

The main result of this thesis is the following:

Theorem 3.2.4. The main component #€™" is isomorphic to E |
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The proof of Theorem 3.2.4 will be given in §5.3.
Remark 3.2.4.1. Keep the above notation.

(i) We have pg = p,,,, and p,41 = p,,, by definition.
(ii) Let E; (0 <i <r) be the simple spherical subvariety of E; whose colored cone is
(6:,0). Then, Up<i<, E; gives an open covering of 1/57;

Remark 3.2.4.2. In view of Theorem 2.2.5, we can read off information of SL(2) x C*-orbits
of IE?; from its colored fan. First, the colored cones (0,0), (Qs00,+1,0), and (Qx0p0,0)
correspond to i, D, and C’, respectively. Next, we denote the closed orbit that corresponds to
(‘6;,0) by ¥; foreach 0 < i < r. Notice thatif £}, is toric, i.e., if r = 0, then Y} is nothing but the
closed orbit C = P!. In the case where Ej,, is non-toric, we denote the orbit corresponding to

(Q>0pi,0) by O; for each 1 <i < r. Summarizing, the SL(2) x C*-orbits of £/ are described
as follows.

(i) If r =0, i.e., if E;,, is toric, then 1’?7; = El’ ,, contains exactly four orbits: 2, D, C’, and
Yy = C (see Remark 2.3.9.2, see also Remark 3.1.3.1).

(i) Ifr >0, i.e., if £y, is non-toric, then E] = contains 2r +4 orbits: 1, D, ", Y; (0<i <r),
and O; (1 <i<r).

Before moving on to the next section, let us define some more notations. Set
ei:=(a+1+mP;—Q;, Li:=(@+1)Pi—=Qi ni:=-pei+ql

for each 0 <i < r+ 1. Then we get the following lemma as a consequence of Theorem 3.2.3,
which will be frequently used in the remaining sections.

Lemma 3.2.5. Keep the above notation.
(i) We have n; = k(tP; —bQ;) forany 0 <i <r+1.
(ii) If Ey s is non-toric, then we have n; = ci—1nj—1 —nj—a forany 2 <i <r+1.
(iii) We have n; > nj1 forany 0 <i <r.

(iv) We have no=q—p, n, =k, and n, 1 =0.
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Chapter 4

Invariant Hilbert schemes and resolutions
of singularities of affine normal
quasihomogeneous SL(2)-varieties II:
calculation of ideals

4.1 Generators as a module over the invariant ring

Let r > 0, and let A be the polynomial ring C[ Xy, X1, X», X3, X4]. We consider the following
two families of ideals of A parametrized by s € C:

Iy = (XJ7 = X Xa, Xoo Xa, s = XgPXT),  Js 1= (Xg, Xo, Xa, 5= X[UXP).

Note that the ideals /; and J; have already appeared in Remark 3.1.1.1. We will see that
the closed subschemes of H,_, associated with the ideals I and J; define closed points of
FE™4n and that the SL(2) x C*-orbits of the closed points [11], [o], [/1], and [Jo] coincide
with U, C’, ©, and ¥, under the isomorphism F€"%" =~ EZ , respectively (see Corollary 4.2.5
and the proof of Theorem 3.2.4, which will be given in §5.3). If Ej,, is toric, i.e., if r =0,
then EZ; = El’,m =UUDUC’'UY) by Remark 3.2.4.2. In the case where r > 0, i.e., where Ej ,,
is non-toric, we consider r additional families of ideals of A parametrized by s € C. Let K be
the ideal of A generated by monomials of the form

XPUTIRXNXE, (unun) € M), \{(0,0)),
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which are G X G,,-invariant (see Remark 4.1.2.2), and define
L= (X, Xo, Xa, sX)' = XOXD)+K C A

for each 1 <i <r. We will see that the closed subschemes of H,,_, associated with the ideals
L! define closed points of ™" and that the SL(2)x C*-orbits of [L’i] and [Lé] coincide
with O; and Y;_; under the isomorphism #"*" =~ E ’ > Tespectively (refer again to the proof
of Theorem 3.2.4 in §5.3). This section is a preparation for the next one, where we calculate
the Hilbert functions of the ideals I, J;, and Lé (Theorems 4.2.2, 4.2.3,4.2.7, and 4.2.8).

Remark 4.1.0.1. If s € C*, then I, J;, and Lé are SL(2) x C*-translates of I;, Ji, and L’i,
respectively.

Let S be the coordinate ring of H,_:
S:=C[Hypl = A/(X]" - X1 X4+ X2 X3).

Remark 4.1.0.2. For a Gy x G,,-module V, we denote Hom®0*Cm (M(1,4),V) by Vina), Where
My,,q) stands for the irreducible representation of weight (n,d) € ZxXZ/mZ.

For any weight (n,d) € Z X Z/mZ, there is a finite-dimensional SL(2) X C*-module F,, 4
that generates the weight space S, 4) over the invariant ring §G0%Gm (see §2.1.6). In order to
calculate the Hilbert function of A/Iy, A/J;, and A/LE, we need to find an appropriate F;, 4
for some weights. For each n > 0, consider the following irreducible SL(2)-representations
of highest weight n:

A(n) := Sym" (X}, Xp) = V(n), B(n):=Sym"(Xs, X4) = V(n).
Also, define C(n) := (X) = V(0) for each n € Z.
Lemma 4.1.1. With the above notation, we have the following.
(i) Sp-1) = SEXCOmX| + §CxCnX,,
(ii) S(g1) = SCOXCOm X5 4+ §C0XCmx,,

(iii) We can take F_,_1 = A(1) and F,; = B(1).
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Proof. Since X1, X, € S(_p 1), itis clear that S, 1) D SE0*Om X, + §60XGm X, To see the other
inclusion, take an arbitrary f = Xgon ! X;2X3d3Xf4 € A(—p-1). If either d; > 0 or d> > 0 holds,
then we clearly have f € AG0XGn X + AGoxGn X, Otherwise, f is of the form f = XXX,
But this contradicts to f € A, _1), since the Go-weights of Xy, X3, and X, are all positive.
This shows (i). Item (ii) follows in a similar way. Item (iii) is a consequence of items (i) and
(ii). Q.E.D.

Remark4.1.1.1. Let[I] be aclosed point of €. By Lemma4.1.1 (iii), we see that s; X| + 5, X5 €
I and s3X3 + 54Xy € I hold for some (s1,52) # 0 and (s3,54) # 0, respectively, concerning

h(=p,—1) = h(g, 1) = 1.

Looking only at the weights (—p,—1) and (g, 1) is not enough to calculate the Hilbert
function of the ideals I, J;, and Lf;, and we need to find a suitable F, , for (n,d) = (n;,0)
(0 <i <r)as well. The goal of this section is to prove the following

Proposition 4.1.2. With the above notation, we have the following.

(i) We can take Fy,0 = A(eo) ® B(lp).

(ii) Suppose that Ej,, is non-toric, i.e., that r > 1. Then, we can take F, o= A(e;) ® B(l;) ®
C(n;) forany 1 <i<r.

The proof of Proposition 4.1.2 requires intricate combinatorial arguments. In order to
simplify the discussion, we introduce new notation and prepare a series of lemmas.

Let j € {3,4}, and set
R :=C[Xo, X1, X;] C A. 4.1)

For each c,n € Z, we consider the following vector subspaces of R:
R := (XgOdelX;.ij €ER :di—-dj=c), R,:= (XgodelX;ij €R : dy—pd +qdj =n).

Then we have R = P ., R° = P,z Rs. Define RS := R° N R,,. Then, the weight space R4
can be described as R, 4y = P, (mod m) R

Remark 4.1.2.1. In order to show Proposition 4.1.2, it suffices to determine a subspace of
R, 0) that generates Ry, o) over the invariant ring RO0*Gm concerning that X; and X, (resp.
X3 and X4) have the same SL(2) X C* X Gy X G,,,-weight.
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Remark 4.1.2.2. The weight space R is the invariant ring R€*%». By the proof of
[BHOS, Theorem 1.6], we see that RC0XCm = C[Xé’”l_q”zX;“X;.‘z S(ur,up) € M} .

Lemma 4.1.3. If Ry, # 0, then we have ¢ > —n/q. In particular, the minimum c(,q4) := min{c €
Z: c =d (mod m), RS # 0} exists for any (n,d) € ZXZ[mZ.

Proof. Take an arbitrary XS’(’de1 Xj.ij € R\ {0}. Then, we have n = dy — pdy +qd; = dy+(q —
p)di —qc. Since dy, d; > 0, it follows that ¢ > —n/q. Q.E.D.

Example 4.14. If 0 < n < g — p, then we have c(,0) = 0. This can be verified as follows.
Suppose that RS # 0 holds for some ¢ < 0, and take XgOdelij € RS\ {0}. Then, n=
do+(q—p)di — qc = q > q— p. Moreover, by a direct calculation, we see that R? = (Xp) if
0 <n<gq-p,andthat RO = (Xg_p, XiX;)ifn=q-p.

Consider a Z-linear map u : Z> — 7> defined by
(do,dy,dj) = p(do, dy, dj) := (do — pdy + qdj, di —d;, pdy —qd,),
which is injective. Let us denote by A the image of ,ulzs2 g and define
Ry := <X5’°Xf’1xj’f € R: u(do.dy,dj) = A)
for each A € A. Then we have R = (5., Ra.

Lemma 4.1.5. Let A = (n,c,w) € A. Then, R, is a 1-dimensional vector space spanned by

gc—w pc—w

fai= X(’)”“’Xl‘"” XJ.""’ . In particular, n + w, qqc__;), and ’% are all non-negative integers.

Proof. Let(do,d1,d;) = u~'(2). By the definition of y, one has n = dy — pd; + qd;, c=d\—d;,
and w = pd, — qd;. Therefore, a direct calculation gives do =n+w, dy = 2==, and d; =
E= Q.E.D.

Remark 4.1.5.1. Let A = (n,c,w) € Z°. Lemma 4.1.5 implies that we have 1 € A if and only

if all of n+ w, L2
q-p

pc—w . .
, and o—p are non-negative integers.

Lemma 4.1.6. Forany A, A’ € A, we have fifi = firr.

Proof. This follows from the definition of f;. Q.E.D.
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Remark4.1.6.1. The polynomial ring R = C[ Xy, X1, X;] has anatural ZXZ/mZ-grading defined
by the G X G,-action. Although, each graded component R, ;) with respect to this grading is
infinite-dimensional. On the other hand, Lemma 4.1.6 implies that R admits another grading,
namely the A-grading, such that each graded component R is 1-dimensional. We will see
below that this makes it easier to analyze the structure of R, ).

Consider the projection fi : Z> — Z?, (n,c,w) — (n,c) to the first and the second factor,
and set u’ := fio u. We denote by A’ the image of /'3 . Then, we have R = @(n’c)e A Ry, and

R, = @Aeﬁ—l(n,c)rm R;.

Lemma 4.1.7. Let (n,c) € A’. Then, for any 1 = (n,c,w), I’ = (n,c,w’) € i (n,c)NA, we
have w—w' € (q—p)Z.

Proof. Let pu~'(1) = (do,dy,d;), and let () = (dj,d,d}). By Lemma 4.1.5, we have
M H 0% y

dy = —q —- and d] = qc “ Therefore, w —w' = =(q-p)d|-d\) € (q-p)Z. Q.E.D.

Let A = (n,c,w), and let (do, dy,d;) = ~1(1). By Lemma 4.1.5, we have w = —(q — p)d; +
qgc > qc and n = dy+ (q — p)d; — gc. Combining these, we get gc < w < n+ gc. Therefore,

max
(n,0)
:=min {w €Z:(ncw)e fi (nc)n A} exist for any (n, c) € A’. In particular, the vector

we see that the maximum w
mm

Dne) -
space R is finite-dimensional: we have RS = €D min -, < mo Rinew)-
)=~ (n,c)

= max {w €Z:(ncw)e i (nc) OA} and the minimum

Lemma 4.1.8. Let (n,c) € A'. If ¢ <0, then wz‘;ac") = gc. Otherwise, w(mnac") = pc.

Proof. Let u~ (n c, wmax) = (do,d1,dj). Suppose that di, d; > 0, and set v = (dp+¢q —

p.di—1,d;—1). Then, we have v € Z320 and u(v) = (n c, w?zax) +q- p) This implies that

u(v) € i~'(n,c) N A, which contradicts to the maximality of w?‘a") Thus, either d; =0 or

dj =0 holds. If ¢ <0, then we see that d; = 0, and therefore w?‘a") gc. Otherwise, we have

dj =0, and hence w "% = pc. Q.E.D.
min

Lemma 4.1.9. Let (n,c,w) € A. Then, we have n+w < g — p if and only if w = Wlneey

pcw

Proof. First, suppose thatn+w > g—p, and setv = (n +o, 24, + 1) where w’ = w—

q-r
(¢ — p). Taking into account Lemma 4.1.5, we see that v € Z;’O. Slnce we get u(v) = (n,¢,0")
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min

(nc)’
> g — p holds by Lemma 4.1.7. Since we

by a direct calculation, it yields that (n,c,w’) € i~ '(n,c) N A. Therefore, one has w > w
min Then @ — ™"
(n,c) (n,0)

have n + w?y‘:?) > 0 by Lemma 4.1.5, it follows that n+w > n + w?y‘:‘c‘) +q-p>q-p. QED.

Example 4.1.10. Let 0 <i <r+1, and set A = (n;, mP;,—n;) € 73. We claim that 1 € A. By
the equation (3.1) (see §3.2.1) and Lemma 3.2.5 (i), we get the following:

Conversely, suppose that w > w

pmP;+n; = {a(q—p)+p}P;+k(tP;— Qi) = {(a+ 1)P; - Q;}(qg—p) = li(g—p);
gmP;+n; =(q—p)mP; +(pmP; +n;) = e;(q - p).

By these we obtain 2220 — . and 4820 — 4. Since I;, ¢; > 0, we deduce that 1 € A by
9-p 9-p

Remark 4.1.5.1. Note that f; = Xle ! Xj . Also, one has pmP; = w(“;’:"; P and cu?;;nm py = T by

min

Lemmas 4.1.8 and 4.1.9, respectively. Therefore, 1 = (n,-, mP;, W lnemPr) )

Lemma 4.1.11. Let A = (n,c,w) € A. If w > a)mm), then f is contained in the ideal (X') C R
forany 0 <i<r.

Proof. By Lemmas 3.2.5 and 4.1.9, one has n+w > g — p > n;. Therefore, we see that
f1€ (Xgi) holds concerning Lemma 4.1.5. Q.E.D.

Definition 4.1.12. For each (n,d) € ZXx7Z/mZ, we define:
(i) Apa) ={(n,c,w) € A:c=d(modm)};

(i) Apa) = (n C(nd)> W (m(n d))) Anay-

Remark 4.1.12.1. We obtain the following three different ways of expressing the weight space
R(n,d)i

Ruy= D Ri= D D k=P ke

c=d (mod m) c=d (mod m) \Aei~1(n,c)NA A€A (4
C2C(n,d) C2C(n,d)

Example 4.1.13. Let [ = p/q = 1/3, and let m = 2. By Remark 2.3.3.4, the semigroup M
is minimally generated by (2,0) and (3,1). Therefore, in view of Remark 4.1.2.2, we have
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R0 = RO0XGm — C[XZX 2 X7 X 3x ;]. We can also calculate the following:

R8 =G,

R§ = Ri020)® R022) f020) = X; Xj» flo22) = X5 X1

RY = R1,00) fi1.00) = Xo;

R} = Ru20)® Ri122), f120) = X0 X X), fuon) = X3 X

R) = Ro0-2)® Ro00) fioo-2 = X1X), f00) = X5

R} = Roo-2)®Ro20)® Ry foo-2 = Xi X} foon = X5 X0 X, faan = X X7
We see that 4(g0) = (0,0,0), A(1,0) = (1,0,0), and A0y = (2,0,-2).
Lemma 4.1.14. Let A = (n,c,w), A" = (n,c’,w’) € Ay, q). Then the following hold.

(i) If c =, then we have f)— fy € (Xg_p - X1X;).
(i) If ¢ > c(ya), then we have fo € (X" - X1X;, X, X[").
(iii) We have fi— fu € (X377 = X1 Xj, 1 - X" X™"),

gc-w  pc-w '~w’  pc’-w’

Proof. By definition, we have f; = X" X " X; 7 and fy = X”+‘” X KR X; 7 Also,
by the definition of A, 4), we can write ¢ and c’ as ¢ = C(nq)+mx and ¢’ = c(pq) +mx’ with

some x, x' € Zx.

(i) We may assume that w > «’. Then, by Lemma 4.1. 7, W= w’ = y(q — p) holds for some

gc-w  pcw

y > 0. Therefore, one obtains fj; — fy = Xg*‘“ X, Xj" g {(Xg_p)y -(X1X;)} € (Xg_p -
X1 X)).

(ii) We first remark that fiommp) = X" X|" € RE*Gm_ Hence, we have foymmp) =
(X, X{")* by Lemma 4.1.6. By setting

V= Ana) + (0, xm, xmp) = (n, C W(nega) + xmp) ,

we get fL— fir € (Xg_p — X1 X;) taking into account (i). Since we have f» = fl(ﬂ’d)(X(')"pXi")x
again by Lemma 4.1.6, it follows that f; € (X] " - X1 X;, X;""X[").

(iii) By (i), we may assume that ¢ > ¢’. Let 1” be as in the proof of (ii), and set
A" = Ana) +(0,X'm, x'mp) = |n, ¢, W) + x’mp). Then we have

f/l" _f/l”' = f/l(n,d)(Xgle{n)x,{(X(;anfn)x_x’ _ 1} c (1 _ Xg'le{n)
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Therefore we get fo— fu = (fa— far) + (far = for) + (for = fa) € (X5 " = X1 X, 1= X7 X]"),
since we have f) — fi, fir— fr € (Xg_p - X1X;) by (i). Q.ED.

Lemma 4.1.15. Let A = (n c, a)?“n)) A= (n, c, wg}llg)) € Aoy, where 0 <n<gq-p. If

n+ w(mni?) <k and n+ w(mnl?,) < k hold, then the following properties are true.

min _ ,min - und e — ¢’ € mbZ.
(n,c) (n,c”)

(ii) If ¢’ > c, then we have f) € (f,leqX;.lp).

(i) We have w

(iii) We have fy — f1 € (1 —quX;.lp).

Proof. We may assume that ¢’ > ¢. By Example 4.1.4 and the definition of A, ), we can write
¢’ as ¢’ = ¢ +mx with some x > 0. Recall that f(o,mp) = Xé"pXi". Set A7 = A+ x(0,m,mp) =

(n, c, wgf?) +xmp). Then, 1”7 € ﬂ‘l(n, ¢’)NA. Therefore, wglli?) + xmp — a)mm,) €(g—p)Zso
holds by Lemma 4.1.7. Taking the relations mp = akp and g — p = bk into account (see

(2.1) in §2.3.1), we see that (n+w?““)) - (n+w?’m)) € kZ. On the other hand, we have

0<n+ w?“m), n+ w?‘i“ < k by Lemma 4.1.5. Therefore, w?‘m) = w?““,) It also follows from
Lemma4.1.5 that gc — w?““), qc’ — mm,) €(q—p)Zso. Thus, 0 =gmx—y(q—p) = k(agx—by)
holds for some y > 0. Since g.c.d.(aq,b) =1, we have x = x’b with some x" > 0. To see
items (ii) and (iii), set " = x’(0,aq — ap,0) = (0,xm,0). Then we have fy~ = (X| qX;’p Y and

A+A" =A". Hence we get fir = f/l(quX;-lp)x, by Lemma 4.1.6. QE.D.

Lemma 4.1.16. Let (n,c), (n’,c’) € A’. Then the following properties are true.

() Ifn=0, thenOSwEgm) <qg-p.

(ii) We have w(mnlfn crer) = ?n“?) + a)n;ll, ’) if and only if a)?;lm) + w(mnl,n it n<q-p.

Proof. Let u= (n c, wmm) = (do,d,d;). If n =0, then we have 0 < dj = zgm) <q-pby
Lemmas 4.1.5 and 4.1.9. Item (ii) follows from the fact that

(n+n c+c’ a)g;‘?)+a)(n C,))EA

and Lemma 4.1.9. Q.E.D.
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Definition 4.1.17. Let m; and m, be any positive integers. We denote by Q[m,m,] (resp.
R[my,my]) the quotient (resp. the remainder) of m; divided by m;.

Lemma 4.1.18. Let (n,c) € A’. Suppose that n > 0 and that ¢ > 0. Then, we have a)?:li?) >0
if and only if R[pc,qg—pl+n < qg-p.

Proof. By Lemmas 4.1.7 and 4.1.8, pc — ™" = @™ — MM = x(g - p) holds for some x > 0.

(n,c) (ne)~ Yne) T
min

Also, we have n +cu( H<4qa-r by Lemma 4.1.9, and hence w?‘m) < g—pbyn>0. Therefore,

R(pc,qg—p] = 31;2) if a)?r‘l"cl) >0. If w?‘m < 0, then R[pc, q- pl=x"(g-p)+ wzzlg) holds for
n

some x’ > 0. Thus we get R[pc,q—pl+n=x"(¢—p)+ w(mnlc) +n > g —p, since w?:l‘?) +n>0

by Lemma 4.1.5. Q.E.D.

The rest of this section is devoted to the proof of the following two propositions.

Proposition 4.1.19. The weight space Ry ) is generated by R,?O as amodule over the invariant

ring RO0*Cm,

Proposition 4.1.20. Suppose that E,,, is non-toric, i.e., that r > 1. Then, forany 1 <i <r,
the weight space R, o) is generated by R (

min

O min
(n;,mP;)

“(n;.0)

and R as a module over the
)7 )

ni,mPi,w

invariant ring RG0*Cm.

Recall that ny = g— p, and that ey = [ = 1. We have seen in Example 4.1.4 that RSO =(X;")®
(X X]l.o>. Since the SL(2)-submodule of A = C[Xo, X1, X2, X3, X4] generated by X;° and X" XJZ.O
is C(ng) ® A(eg) ® B(ly), we see that Proposition 4.1.2 (i) can be obtained as a consequence
of Proposition 4.1.19, concerning that the defining ideal of H,_, is (X(;’0 - X1 X4+ X2X3).
Similarly, since we have R = (X,") and R =(X{'X li) forany 1 <i<r

0 min

“n;.0)
by Examples 4.1.4 and 4.1.10, we see that Pr0p0s1t10n 4. 1 2 (ii) follows from Proposition

4.1.20. See also Remark 4.1.2.1.

Proof of Proposition 4.1.19. Recall that R,y decomposes as R0y = P . At 0) R,. Let
(no,

= (no, c,w) € A(n,0), and write fj = dOX le 7. It suffices to show that either f; € (X,°) or
fA € (X1 X;) holds. Indeed, if f; € (Xg"), then we have f) = f X for some f € R. Since both f;

and X, "0 are homogeneous elements of G x G,,-weight (19, 0), we deduce that f € R€0*Cm_ The
min

(no.c)’ Then, we have dy = nog+w > ng

same holds true if f; € (X;X;). Next, suppose that w > w
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by Lemmas 4.1.5 and 4.1.9. Therefore, f; € (X(r)m)_ Ifw= a)g‘li)nc), then we have w < 0 again

by Lemma 4.1.9. On the other hand, we have w = pd; — qd; by Lemma 4.1.5, which tells us
that d; > 0 and d; > 0 hold. Therefore, f; € (X1X;). Q.E.D.

We show Proposition 4.1.20 separately for the case i = 1 and the case i > 1. The former
case can be shown by following similar lines as in the proof of Proposition 4.1.19, while the
latter case requires more preparatory lemmas.

Proof of Proposition 4.1.20 for i = 1. Recall that Py = 1. Let A = (n1,c,w) € A, o), and write
fi= Xg‘)de1 Xff . By the definition of A, o), we have ¢ € mZ. Moreover, since we have
C(n,0) = 0 by Example 4.1.4, we can write ¢ = mx with some x > 0. As in the proof of
Proposition 4.1.19, it suffices to show that either f; € (XJ') or f € (X] 'le.‘) holds. If
w > ™" then we have dy > n; by Lemmas 3.2.5, 4.1.5, and 4.1.9. Therefore, f, € (Xgl).

(n1,¢)’

Next suppose that w = w(mnilnc). If ¢ =0, then f) = Xg". So let us assume that ¢ > 0 and

consider an element f of R; defined by f = f(nl,c,w;m“ T 1)mp) = f(nlmwg“i“ )) f(’&_nimp) =
ny,m T (ng,m

min
T (ng,m)

4.1.10). Let 8 = Q[(x — 1)mp,q — p], and let ® = R[(x — 1)mp, g — p]. Then, we see that f
can be written as f = X 1XJI.' x: )GX(?Xfx_l)m. We define f’ to be the monomial obtained
by replacing the factor X/ ™" in f by X, X;, ie., f' = Xle]l.‘ (XlXj)eX(?Xfx_l)m. Since both
Xg_p and X, X; are elements of Rg_p, we see that /7 € R, . Therefore, we can write f" = fy
with some A" = (n1,¢,w’) € A, 0)- By Lemma 4.1.5, we have ® = n; +w’. Moreover, we have

Xy le.l (X, X"y*~!, where the last equality follows from f| . ) =X/ le.l (see Example
1s

® < g — p by its definition. Thus, we get ' = wg’lilnc) by Lemma 4.1.9. It follows that 2 = A,
and hence f) = fy € (Xf‘X;l). Q.E.D.

Henceforth, we assume that r > 1 and prepare some lemmas that we need for the proof of
Proposition 4.1.20 for the case 1 <i <r.

Remark 4.1.20.1. Recall that we have considered the Hirzebruch—Jung continued fraction
expansion b/t = [[cy, ..., ¢]] in §3.2.2. Set #; :=¢. Then we have the following equations
that arise from the modified Euclidean algorithm (see [CLS11, §10]):

b=citi—t), th=cbh-13, ..., Li1=Cli—titl, ..., L_1=Ctlp. 4.2)
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Since b =ny/k and t| = n;/k, Lemma 3.2.5 and (4.2) yield that #; = n; / k holds forany 1 <i <r.
Furthermore, the following equation holds for any 1 <i <r:

b—t = (C1 —2)1‘1 +(C2 —2)t2 +-- 4+ (C,'_l —2)1‘,'_1 +ti-1—1t;. 4.3)

Let us fix an integer L that satisfies 1 < L < r, and let x be any integer such that 0 < x <
P —P;_y. Set®, :=R[t1(Pr—1 +x),b], and set 6, := Q[t1(Pr_1 +x),b] —Qr—1. Then, 6, > 0.
Indeed, we have t{ P =bQpr_1 +1t1-1 withO <t;_1 < bby Lemma 3.2.5, and this implies that
Q[t1Pr-1,b] = Q11 and R[t1Pr_1,b] = t;—1. Therefore, we have Q[t;(Pr-1 + x),b] > Q1.
Also, note that ®, = t;_; +t;x — b0, holds.

Remark 4.1.20.2. With the above assumption and notation, we have the following.

(i) We have 0, —0,_1 = Q[ti(Pr-1 +x),b] - Q[t;1(P._1 + x—1),b] € {0,1}, since t; < b.
Furthermore, the following properties are true.
e Wehave 6, —6,_; =0if and only if ®,_ +#; —b < 0. In this case, O, = O,_| +1;.
e We have 0, —6,_; =1 if and only if ®,_1 +1; —b > 0. In this case, O, = O,_| +
t1—b.

(i) Let x’ be any integer such that 0 < x" < P; — P;_;. Since P; — P;_; < b, we have
0, =0, if and only if x = x".
(iii) We have g =0 and Oy =17_;.

(iv) Suppose that ¢ > 2 holds for some 1 < s < L — 1, and denote by spax the maximum
among them. Then, we have P, — Py =(c1 —1)P1+(c2=2)Pa+ -+ (Cs,,, —2)Ps,o =
Py, .. +1— Ps,, by Lemma 3.2.5.

Smax

Definition 4.1.21. Keep the above notation. Foreach 1 < j < L—1, we define M; := max{0O, :
0<x<Pji}and N; :=max{0, :0< x < Pj 1 —Pj}.

The next lemma will be the core of the proof of Proposition 4.1.20.

Key Lemma. Let 1 < L <r. Then, ®, > t;_ holds for any 0 < x < P — Py 1. Moreover, we
have O, =ty if and only if x = 0.

We need the following lemmas for the proof of Key Lemma.
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Lemma 4.1.22. Let 1 < L <r, andlet0 < x < Pr. — Py _1 as above . Assume that c; > 2 holds
for some 1 <s < L—1, and let smax be as in Remark 4.1.20.2 (iv). If ®, =t;_1 +(c1 —2)t; +
co+(cj1 = 2)tj—1 +(cj = 1)t; holds for some 1 < j < syax, then we have Oy = tr_1 +1j41.

Proof. By a direct calculation using (4.3) (see Remark 4.1.20.1), we have @, +# —b =
tr-1+1j+1. On the other hand, we have 77 _; +¢;11 > 0 by Lemma 3.2.5, and therefore we
obtain ®,;1 =0, +1 —b=1t;_1 +1j41 by Remark 4.1.20.2 (i). Q.E.D.

Lemma 4.1.23. Keep the notation and the assumption of Lemma 4.1.22, and let 1 < j < Spax-
Then the following properties are true.

(i) Suppose that P; < x < Pj,1. Set k = Q[x, P;], and set € = R[x, Pj], i.e., x = kPj +¢&.
Then, we have ©, = O, +«t;. In particular, ®, > t; 1 holds.

(ii) We have Mj = ®P_,<+1—Pj =111 +b—l‘j +1j+1-
Remark 4.1.23.1. In Lemma 4.1.23 (i), we see that 1 < « < ¢; — 1 holds concerning the relation

Pj+l =(Cj—1)Pj+(Pj—Pj_1). Also, ifK:Cj—l,theIlOSS<Pj—Pj_1.

Proof of Lemma 4.1.23. We proceed by induction on ;.

Let j = 1. Recall that P; = 1, and that P, = ¢;. By induction on x, we show that
O, =171 +xt; holds for any P; < x < P,. Firstly, by (4.3) and ¢, > 2, we have

Op+ti—b=tp1+ti—=b=tp—{(c1 -2t +---+(c-1—2)t1-1}

=1L - {(Cl _z)tl el o (Csmax _2)tsmax} < L — tsmax <0.

The last inequality follows from Lemma 3.2.5. By Remark 4.1.20.2, we get O = t,_1 +1;.
Suppose that x > 1. Then, by the induction hypothesis, we have ®,_; =71 + (x —1)#;. Since
c1—x—12>0and spmax > 2, we see that the following holds:

O i+ti—b=tp—{(ci—x-Dt1 +(c2=2)t2 + -+ (Copae = 2 } < 1L — 5 < 0.

Therefore, we get ®, = f7_1 + xt;. Furthermore, this yields that M; = ®,,_1 = ®p,_p,. Also,
we see that 1,1 +b—t +1t =171 + (c; — 1)t; holds, since we have b—1t; + 1, = (c; — 1)t; by
(4.2) (see Remark 4.1.20.1).

Let j > 1. We divide the proof into three steps.
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Step 1. We show by induction on « that the following holds for any 1 < k < ¢; —1:
Oup; =111 +Ktj. (4.4)

Letk = 1. Therelation P;—1=(cj_1 —1)Pj_1 +(Pj_1 — P> — 1) implies that Q[P; - 1, P;_1] =
cj-1—1,and that R[P; —1,P;_1] = P;_1 — P> — 1. Taking these into account, it follows from
the induction hypothesis for item (i) that ®p,_; = Op,_,—p; ,-1 + (cj-1—1)tj—1. By Remark
4.1.20.2, we see that either @p,_,_p, , =Op,__p; ,-1+11 0r Op,__p, , =0Op,_,_p,_,_1+11=b
holds. If the latter holds, then @pj_l_pj_z —11 < 0. On the other hand, we have @pj_l_ P, =
t;—1+b—1t;j_»+1;_ by the induction hypothesis for item (ii), and hence

®Pj—l_Pj—2 -t =t 1+(c1 =21+ + (Cj_2 —2)tj_2 >0
by (4.3). This implies that the former holds, i.e., we have ®pj_1_,>j_2 = @pj_l_pj_z_l +1.
Therefore,
Op;-1=0p,_-p, -1 +(cjm1 =11 =Op,_,_p,, —t1 +(cjm1 = 1)1j
=ttt (Cl —2)1‘1 +---+ (Cj_z — 2)l‘j_2 + (Cj_l - 1)lj_1. (4.5)
Hence, we get @pj =171 +1t; by Lemma 4.1.22. Next, let « > 1. We first show that
O-1)p;+e = O + (k= 1)t; (4.6)

holds for any 1 < & < P;. By the induction hypothesis for Step 1, we have ©—_1)p; = -1 +
(k—1)t;. Thus, concerning the definition of ® and Remark 4.1.20.2 (i) and (iii), it suffices to
check that ®, + (k- 1)t; < bholds. Here, note that @, < M;_;. Since M;_1 =t;_1+b—tj_1+1;
holds by the induction hypothesis for item (ii), we have
b—{O;+(k— l)lj} >b-— {Mj—l +(Cj —2)lj} =tj—tj+1—1L-1

= (Cj+1 - 2)l‘j+1 +eet (Csmax - z)txmax + (tsmax - tsmax+1) 11

2> l‘sm;lx + (txmax - tsmax+1) —Ir-1> 0.
This shows (4.6). Taking € = P; — 1, one obtains O,p,—; = Op,_1 + (k—1)t;. Therefore, by (4.3)

and (4.5), we have @Kpj_l +1—b=1,_1+«t; > 0. Hence we see that @Kpj = @Kpj_l +H—b=
-1+ ktj by Remark 4.1.20.2. This shows (4.4).

Step 2. In this step, we prove that the following holds for any 0 < & < P; — P;_y:

O(c;-1)P+e = O +(cj — 1)t 4.7)
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If ¢y =---=cj_1 =2, then we have P; — P;_| = 1, so we may suppose otherwise. Similarly
as in the proof of (4.6), it suffices to show that N;_; +(c; — 1)t; < b holds. Set u := max{;" :
1 <j <j-1,cjy>2}. Then, we have Pj — P;_| = Py41 — P,. In view of this relation, we
show that N, +(c; — 1)t; < b holds. Sine P,+1 - P, = (¢, —2)Py + (P, — P,_1), we see that N,
coincides with the maximum between max{@®, : 0 < & < (¢, —2)P, } and max{0; : (¢, —2)P, <
g < P,;1 —P,}. Concerning the induction hypothesis for item (i), we see that the relation
(cu —2)Py, = (¢, —3)P, + P, implies that @, = Og(. p,| + (cu, —3)t, and 0 < R[e, P,] < P, hold
for any (¢, —3)P, < € < (¢, —2)P,. Therefore, we see that max{®, : 0 < e < (¢, —2)P,} =
(cu —=3)t,+ M,_;. In a similar manner, we see that max{®, : (¢, —2)P, < & < Py.1 —P,} =
(cy —2)t, + Ny—1. Therefore, N, = max{(c, —3)t, + M,—1, (¢, —2)t, + N,—1}. By continuing in
this way and concerning that ®y = #;_;, one finally obtains

Ny = max{(cu - 3)tu +M,, (Cu - 2)tu +-- (Cl _2)t1 +tL—1}-

Since we have M, =t;_1+b—t,-1 +1, by the induction hypothesis for item (ii), we get
(cu—3)t,+M,_1 = b—t,+1tr. This yields that N, = (¢, —3) + M,,—;. Therefore,

b—{Nu+(Cj—1)tj} = tu+(C,,,+1 —2)lu+1 +---+(Cj—2)[j

o (Comm = Dsimae T Esmax — Esmac+1 — tL—1—(cj — 1)t

2 Iy + tsmax +t5max _tsmax+1 _t] —IL-1> 0.

This completes the proof of (4.7). Since we have P;1 = (c; — 1)P; +(P; — Pj-1), item (i)
follows from (4.4), (4.6), and (4.7).

Step 3. In this last step, we complete the proof of item (ii). First, we show that
Mj=t,_1+b—t;+tj1 holds. Set My :=max{®,: P; < x <(c;—1)P;}, and set Mp :=
max{0®, : (c; = 1)P; < x < Pj1}. Then, M; is the maximum among M;_;, M4, and Mp.
Following the similar line as in the proof of (4.7), we see that My = (¢; —2)t; + M;_1 =
tr-1+b—t;+t;j.1, and that Mp = (c; — 1)t; + N;_1, which implies that M; = max{Ms, Mp}. If
¢y =---=cj_1 =2, then we have Mp = (c; — 1)t; + 71, and hence My —Mp =b—1t;_1 > 0.
Therefore, M; = M4. Suppose that ¢;» > 2 holds for some 1 < j* < j—1, and let u be as in
Step 2. Then, since M,y =t;_1 +b—1t,_1 +1,, we have Mp = (c; — 1)t; +(c, = 3)t, + M,_1 =
tr-1+b+t,01—2t,+(cj—1)t;. Byusing (4.2), we see that My — Mp = (t, —t,+1) +(t, —tj—1) > 0.
Therefore, Mj =Mjs=t;_1+ b—lj +71j+1. Next we show that £;_; +b—l‘j +1jv1 = @pj+1_pj.
By the induction hypothesis, one obtains

tr—1 +b—tj+tj+1 = (tL—l +b—lj_1 +tj)+(Cj—2)[j :G)Pj—Pj,] +(Cj—2)lj.
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Since ®Pj—Pj_1 +(Cj —2)tj < b, itfollows that ®Pj—Pj_1 +(Cj —2)1‘]' = ®Pj_Pj—l+(Cj_2)Pj = ®Pj+l_Pj'

This completes the proof of the lemma. Q.E.D.

Proof of Key Lemma. If ¢; =---=cp-1 =2, then Pp — P;_ = 1, and we have already verified
that @g = 771 in Remark 4.1.20.2. Suppose that c¢; > 2 holds for some 1 < s < L—1. Let spax
<x< Psmax+1 _Psmax‘ Set

max —

be as in Remark 4.1.20.2, and let x be any integer such that P;
k = Q[x, Py, |, and set € = R[x, Py, ]. By following a similar line as in the proof of Lemma
4.1.23, we can check that the following hold:

O, + Kt < (Cspae = sy + M, -1 < b (f1 <k <c¢g, —3);

®8 + Ktsmax S (CSmax - 2’)l‘Smax + NS -1 < b (lf K= Csmax - 2)

max

These yield that ®, = O, + kt;, . In particular, we have ®, > t; . Therefore, taking Lemma
4.1.23 into account, we see that ®, > #;_; holds for any 0 < x < Py, — Py_1, and that the
equality is true if and only if x = 0. Q.E.D.

Corollary 4.1.24. Let 1 <i <r. Then, we have R[t|P;,b] =t;. Moreover, if i > 1, then
tio1 SR[t(1x,b] < b+t;—t;_1 holds for any 0 < x < P;.

Proof. We have already seen that R[t; P;,b] =1;. Let 0 < x < P;. Then, we see that P;_; <
x < Pr holds for some 1 < L <i. By definition, we have R[#;x,b] = ®,_p, ,. Therefore,
it follows from Lemma 3.2.5 and Key Lemma that R[t;x,b] > ;-1 > t;—;. Let us show that
R(t1x,b] < b+1t;—t;—;. First, suppose that ¢c; = --- = ¢y = 2. Then, we have R[#,x,b] =17
in view of the proof of Key Lemma. Also, we get b+t;—t;_1 =(c1— Dt +(ca —2)t2 +--- +
(ci—1 —2)ti—1 = t; =t 1 by (4.3). Next, suppose that we have ¢; > 2 for some 1 < s < L -1,
and let syx be as in Remark 4.1.20.2. Concerning the proof of Key Lemma, we see that
Ni-1 =(cs,, =3, + M, .1 holds, and therefore

max

b+ti—ti1 —R[t1x,b] = b+1t; —ti-1 —{(Csp. = 3sae + Mispn—11}
2 (ci—l - 2)ti—1 - (Csmax - 3)tsmax > 0

Consequently, we get t;_ < R[t1x,b] < b+1; — 1. Q.E.D.

Proof of Proposition 4.1.20 for 1 <i <r. Let A= (n;,c,w) € A, 0), and write f) = XgOde' X;l".
Then we have ¢ = xm for some x > 0. As in the proof of Proposition 4.1.20 for the casei = 1,
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we show that either f; € (X;') or fy € (X{'X l") holds. If w > w‘(mi“ then we have f; € (X;")

?‘m) By Example 4.1.4, we have f) = X" if

x = 0. Next, we assume that 0 < x < P; and show that w?““) > 0 holds. First, we have

by Lemmas 4.1.5 and 4.1.9. Suppose that w = w

R(pc,q—pl+n <qg—p < R|pc+ni,q—pl =n; @%[pcljni,b] > 1. (4.8)

By using the equation (3.1) (see §3.2.1), we see that

pc;”" — x{(@+D)b—-1,} + (1P —bO;) = 1(Pi—x) (mod b)
holds, which yields that
pC + n;
ER[ - ,b] — R[1(Pi—x),b]. 4.9)

Therefore, it follows from Lemma 4.1.18 and Corollary 4.1.24 that w?gmc) > 0. Since dy =

n; +w?‘m), this implies that f; € (X;’). If x = P;, then we have f; = X|' le." by Example
4.1.10. Therefore, we are left to consider the case where x > P;. We show that d; > ¢; and
d; > [; hold in this case. Set w’ = —n; +q(c —mP;), and set w” = —n; + p(c —mP;). Suppose

min

that d; < ¢;. Then we have gc — a)( ) < (g — p)e; = nj + gmP;, and hence W™

(ni,c)
min

follows that 0 < pc — Wy < PC— w' = n, + gmP; — c(q — p). Therefore, all of the following

>, It

are positive integers: n; +w’ = g(c —mP;), q; Z = "’;q_'ZP , B ;_;” = "’ZZ’;P —c. Thus we get
(nj,c,w’) € fi~'(ni,c) N A by Remark 4.1.5.1. But this contradicts to the minimality of ™"

(ni,c)’

min > a)”. In a similar

min
(ni,c)
manner, we see that this 1mphes (n,, c,w”) € i~ (ni,c)NA, which is a contradiction. Q.E.D.

If d; < I;, then we have pc — Wiy < (g —p)l; = n; + pmP;, and hence w

Corollary 4.1.25. Let 1 <i <r. Then, R[pmx +n;,q — p| = n; + R[pmx, g — p] holds for any
O0<x<P;.

Proof. We have seen in the proof of Proposition 4.1.20 that R[pmx + n;,q — p] = n; holds if
0 < x < P;. On the other hand, since n; < g — p, we have

ni+R[pmx,q—p] (f n; +R[pmx,q—p]l <q-p)

Rlpmx +n;,qg—p| =
[p i»q—D] {nﬁ‘ﬁ[pmx,q—l’]—q"'l’ (otherwise).

Therefore we deduce that R[pmx + n;,q — p] = n; + R[pmx, g — p], since otherwise we have
n; < n;+R[pmx,q—pl—q+p <n;. Q.E.D.
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4.2 Hilbert function of the ideals

4.2.1 Calculation of the Hilbert function I

In this subsection, we show that the Hilbert function of the ideals /; and J; coincide with the
Hilbert function 4 of a general fiber of the quotient morphism 7 (Theorems 4.2.2 and 4.2.3).
Recall that & coincides with the Hilbert function of the regular representation of Gy X G,
(Corollary 3.1.2).

Theorem 4.2.2. For any s € C, the quotient ring A/l; has Hilbert function h. Namely,
dim(A/Iy)na) = h(n,d) holds for any Go X G,,-weight (n,d) € Z X Z[mZ.

Proof. Taking Remark 4.1.0.1 into account, it suffices to consider the cases where s =0, 1.
Let R = C[Xo, X1, X4], i.e., let j =4 in (4.1) (see §4.1), and consider the ideals I; := (X7 -
X1 Xy, 1= X" X") and Iy := (X7 " = X1 X4, X;"X]") of R. Then, we have A/ = R/I; and
A/ly = R/I;.

Case 1: 5 =1. We first show that dim(A/I;)nq) > h(n,d) holds. Recall that the open
orbit i C E;, coincides with the SL(2)-orbit of m(x), where x = (1,1,0,0,1) € H,_,,, and
that the Hilbert—Chow morphism 7y is an isomorphism over 2l U D (Proposition 3.1.1). Let
[1] =y~ '(x(x)). Since Xg’ P X" e A%0%Gm and since the Xp-coordinate and the X;-coordinate
of x are both 1, we have 1 — X(')" P X" € 1. Similarly, since Xg’ P X e AG0XGm gnd since the
Xp-coordinate of x is 0, we have X;""X!" € I. On the other hand, 51X +5X; € I holds for
some (s1,57) # 0 by Remark 4.1.1.1. Then we see that s; = 0, since otherwise we have 1 € [
by the conditions 1 - X" X", X;"" X" € I. Therefore, we get X, € 1. Similarly, since we
have Xlangp, Xlaqup e A9%Gm it follows that quXSaP, 1- quXfp € 1. This implies that
X3 € I again by Remark 4.1.1.1. Therefore, we have I; C I, which induces a natural surjection
A/lI; — A/I. This yields that dim(A/I1)(,,q4) > dim(A/I),q4) = h(n,d). Next, we show that
dim(R/ I Ynd) < h(n,d) holds. The weight space R, ) decomposes as Riqa) = P ;. Avna) R,.

In view of this decomposition, we see that dim(R/ 71 )na) < 1 holds by Lemma 4.1.14 (iii).

Case 2: s=0. Let [I’] € y"(O) be a point such that y([I']) € Hy ,n{Xo=X3=
0}//(Go % G,), where O stands for the origin of Ej,, (see Remark 2.3.3.2). Then we see in
a similar way as above that Iy C I’ holds. Thus, dim(A/Iy)nq4) > h(n,d). Next, notice that

4 /

R(n,4) decomposes as R, 4) = Rff"’d) ® R( nd)’ where we set R(n’ 0= PBe=d (moda m) RS- By Lemma

C>C(n,d)
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4.1.14 (ii), we see that Rzn, 0 C Io. Hence we get dim(R/ E))(n,d) < 1 by applying Lemma 4.1.14

(i) with ¢ = ¢(,q). Q.ED.
Theorem 4.2.3. For any s € C, the quotient ring A/Js has Hilbert function h.

Lemma 4.2.4. For any s € C and (n,d) € ZXZ/mZ, we have dim(A/Jy)na) > h(n, d).

Proof. We proceed in a similar way to the proof of Theorem 4.2.2.

Case 1: s = 1. We have seen in §3.1 that D coincides with the SL(2)-orbit of m(x"),
where x” = (0,1,0,1,0) € H,_,. Let [J] = y~ Yz (x)). Similarly as in Case 1 of the proof
of Theorem 4.2.2, we have 1 —quXgp, Xzanglp € J since Xlangp, Xzangp € A9XGm and
since the Xi-, X;-, and X3-coordinates of x” are 1,0, and 1, respectively. By Remark 4.1.1.1,
it follows that X,, X4 € J. Therefore, we have (Xg Xy, Xg, 1 — Xf qX3a ecJ concerning
that the defining ideal of H,_, is (X ¥ — X1 X4 + X2X3). If Ey,, is toric, then we get J; C J,
since k = g —p. Suppose that Ej,, is non-toric. By Proposition 4.1.2, S ) is generated
by Sym“(X;,X,) ® Sym" (X3, X4) ® (XX) over the invariant ring S60*Cn. Therefore, the
conditions dim(A/J)(,.4) = h(n,d) = 1 and X, X, € J imply that sX| ’Xé’ + s’Xé‘ € J holds for
some (s,s") #0. If s # 0, then we deduce from the conditions e, < e, = aq, I, < l,+| = ap,
and k < g—p that 1 € J. Thus we get s =0, and hence Xé‘ € J. Therefore, we see that
J1 € J holds in the non-toric case as well. The inclusion J; C J induces a natural surjection
A/Jy — A/J, which yields that dim(A/J1), ) > dim(A/J)(,.q0) = h(n,d).

Case 2: s=0. Let [J/] € y~'(0) be a point such that y([J']) € Hy ,N{X; =Xy =

0}//(Gox Gy,). Then we can show in a similar way that Jy C J’ holds. Therefore, we have
dim(A/Jo)na) = h(n,d). Q.ED.

Proof of Theorem 4.2.3. Let R = C[ Xy, X1, X3], i.e., let j =3 in (4.1) (see §4.1).
Case 1: s = 1. Set J = (X}, 1 -X"X{"). Then, we have A/J; = R/J and R4/ Jna) =
P.-, (mod m) Bn/(J N Ry). The vector space R;; decomposes as Rj, = @wm?m R(nc,0), and we
- = (n,c)
have @ wowmin Rnew) CJ by Lemma 4.1.11. Therefore, it suffices to show that dimW, 4 <1,
(n,c)

where we set W, s = B Ry/(JNRy). We divide its proof into two steps.

A= (n,c,wz;i‘;)) EA(,,,d)

Recall that R, is a 1-dimensional vector space spanned by f; (see Lemma 4.1.5).
Step 1 of Case 1. In this step, we show that dimW, ; < 1 holds if 0 < n < g—p and
if d =0. Let us consider the set C = {c €eZ: (n, c, a)mi“)) € Ano), n+a)mi£‘) < k}. If C is

(n,c (n
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min
(n.c)
4.1.5. This implies that dim W, = 0, and hence we get dim(R/J)(,0) = 0, which contradicts

empty, then we see that f; € (Xé< ) holds for any A = (n, C,w ) € A(,0) concerning Lemma

to Lemma 4.2.4. Therefore, C is non-empty. Let A = (n, c, w?;?)) € Appo). If ¢ ¢ C, then

we have n+w?’f?) > k, and hence f) € (Xé‘) by Lemma 4.1.5. If ¢ € C, then we have

fi— (nemmemn ) € (1-X{7X5") by Lemma 4.1.15, where ¢y denotes the minimal element
»Cmins (n,Cmin)

of C. Consequently, we get dimW, o < 1.
Step 2 of Case 1. In this step, we show that dimW, ;s < 1 holds for any (n,d). Let
A= (n, ¢, ™min ) € Apay- Setn’ =n+ ™min set ¢’ = ¢ —c(na), and set A’ = (n’, c,w

(}’l,C) (nac(n,d)) ’

Agr ). Let A” € A be the image of

min
(n,c)) €

i

() (]C(n,d) - w?}fll,n(n’d)) pc(n’d) N w?"]:g(n,d))
’ q-p ’ q-p

under the map u. Then a direct calculation shows A" = (n—n’, Clnd)s a)g‘;?(md))) € An-n',d)-

Therefore, 1’ + A" = (n, ¢, MmN 4 ymin ) Since we have @™ |+ M0 4y = min 4

(n',¢”) (n.cma)) (n',c”) (ncn.a) e
n’ < g—pbyLemma4.1.9, it follows from Lemma 4.1.16 that wa‘,"c,) + wg;‘g( = a)?r‘l"g). Thus
we get A = A"+ A”. On the other hand we have 0 < n’ < ¢ —p by Lemmas 4. 1.5and 4.1.9, and
therefore dim R,/ )/ J(w,0) < 1 by Step 1. This yields that dim R, 4)/ J,.q4) < 1, since we have
Jfa = fufarand fir € Ry ).

Case 2: s =0. Set J' = (X}, quXgp). Then, we have A/Jy = R/J’. Concerning Case
1, it suffices to show that dimWr’l P 1 holds if 0 < n < g—p and if d = 0, where we set
W, = @,1= (M,w&))e A Ry/(J'NRy) . Let A = (n,¢,w) € An0), and let C be the set defined
in Step 1 of Case s = 1. If ¢ € C\ {cmin}, then we have f) € (quXgp) by Lemma 4.1.15.
Otherwise, we get f) € (X(’)‘). Therefore, we have f; € J” whenever ¢ # ¢pin, Which shows
dimW’ < 1.

This completes the proof of the theorem. Q.E.D.
Corollary 4.2.5. The subsets y~' () and y~' (D) of #€ = HilbgOXG’" (Hy-p) are SL(2)-orbits
of [Ih] and [ 1], respectively. In particular, the equivariant isomorphism y|,-1qup) : y~lQru
D) — U UD is given by sending [I1] and [J,] to n(x) and n(x’), respectively, where x =
(1,1,0,0,1), x" = (0,1,0,1,0) € H,,.

Proof. Taking Remark 3.1.1.1 into account, we deduce from Theorems 4.2.2 and 4.2.3 that
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the defining ideals of 7~ '(w(x)) and n~!(x(x")) are I; and J;, respectively. This shows the
corollary. Q.E.D.

4.2.6 Calculation of the Hilbert function II

In this subsection, we evaluate the Hilbert function of the ideals L from above (Theorems
4.2.7 and 4.2.8). Let R = C[ Xy, X1, X3],i.e.,let j =3 in (4.1) (see §4.1), and let K be the ideal
of R generated by elements of the form X(I; “‘_WZXIM 1X3”2, where (uy,uy) € lem \ (0,0). For
eachs € Cand 1 <i <r, we define

Li:= (X}, sX)" - X X2)+K C R.
Then, A/L! = R/ L~§ The goal of this subsection is to prove the following theorems:
Theorem 4.2.7. We have dim(R/ Zg)(n,d) < h(n,d) forany 1 <i <r and (n,d) € ZXZ/mZ.

Theorem 4.2.8. We have dim(R/ Z{)(n’d) < h(n,d) forany 1 <i <r and (n,d) € ZXZ/mZ.

We will see in Corollary 5.3.1 that the Hilbert function of L’ coincides with & for any
1 <i<r and for any s € C. The following series of lemmas help to avoid complicated
arguments in the proof of Theorems 4.2.7 and 4.2.8.

Lemma 4.2.9. Let A = (n,c,w) € A,0). If n, w >0 and c > 0, then we have f; € K.

Proof. Set uj = %, and set up = %. Then, we have fi = X/*“X|"X;? by Lemma
4.1.5. Since we have u; —up € mZs( by the conditions A € A(,p) and ¢ > 0, we see that
(u1,uz) € M;* \{(0,0)}. Moreover, one has pu; — quy = w. Therefore, f) can be written as

fu=XM(XPTM X X1%), which tells us that f; € K. Q.E.D.
Lemma 4.2.10. Let (n,c) € A’. Assume that 0 < n < q—p, and that ¢ > 0. Then:

min

(0.¢)

+n < g-pifand only ifwmin _ w(mni?)’.

(i) we have w 00 =

min min min

(ii) we have W tn=q-p if and only if“)(o,c) =W T4

min

(iii) we have Wy 4P~ B if and only if w?&ig o) = w?&ig) —-qg+p+p;
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(iv) we have w?&i?) < q—p-pBifandonlyif w?&i?m) Er(;m) B.

Proof. The if part is easy to check, so we prove the only if part. Note that one has 0 <

min

min ¢ w(Oz) L) Z3
Oy g-p ° gq-p

mln
“(0.0)
under the map u is (n,c, w?&i“)) it follows that (n, c, a)zgi“)) € i '(n,c)N A. This implies that
Concerning this relation, item (i) follows from Lemma4.1.9. Next, we show (ii).

< qg—p by Lemma 4.1.16. Since the image of (n+w

omin > wmln
“0.0) = Pine

Iftn +w?5‘“) 2 q — p, then we have w?&f‘c‘) > w“r‘l‘? by Lemma 4.1.9. Thus, “’?832) —w?;lj‘c‘) =x(g—p)

holds for some x > 1 by Lemma 4.1.7. By Lemma 4.1.5, we have w(mni?) +n >0, and
S Wi
min

To see (iii), suppose that WioeyZ 4P~ B, and set

min
(n.c)
contradicts to the minimality of w

thus w™ +¢g—p > 0. It follows that x = 1, since otherwise one has w""\ > g — p, which

min
, (0.0)°
w=w™ —qg+p+pB. Then, 0 < w < g—p. By adirect calculation using (3.1) (see §3.2.1),

(0.¢)
_ ge-win _ pe-min
we get 4(6+m) © _ %009 4 4 m+1and p(C+m) w _ (0 )+ w+1. Therefore, q(c+m) >0

min mm

) pc—w
— ;)00, — ;f‘) > 0 by Lemma 4.1.5. On the other

q(C;mzz =, p(c; m,i w) € Z3 under  is (0, ¢ +m, w). It follows
that (0,c + m,w) € E‘I(O,c +m)NA. Therefore, we have w > a)?olf?%m). Since w < g —p,
min min

] (0,c+m)* (0.0)
?8}21) +B. Then, 0 < w < g—p. In a similar way as in the proof of (iii), we see that

0,c+m, ) € /1_1(0, c+m)NA. Therefore, we get ' = w$f2+,n). Q.E.D.

min mm

and ’W > 0 hold, since we have

hand, we see that the image of (

we see that w = w Finally, we show (iv). Suppose that w". < g —p —f, and set

w=w

Lemma 4.2.11. Suppose that r > 1, and let 1 <i <r. Then, nj_; —n; < w?(;‘;x) <g—-p—ni_i
holds for any 0 < x < P;.

min
(0,mx
with R[pmx + n;,q — p] —n; by Corollary 4.1.25. Also, we see that R[pmx + n;,q —p] =
kR[t1(P; — x),b] holds by (4.9) in the proof of Proposition 4.1.20. Moreover, we have #;_| <
R[t1(P; — x),b] < b+1t; —t;—1 by Corollary 4.1.24. Therefore, the lemma follows concerning
q—p= kb, n; = kt;, and n;_1 = kt;_1. Q.E.D.

Proof. By the proof of Lemma 4.1.18, we have w )= R[pmx,q — p], which coincides

Definition 4.2.12. For each ¢ € mZ., we define

min min
A¢ (6] P =W,y G W0,c) ™ q+p) € A(q—P w[?)‘Q)O)

mm

pe-wi™
(Oc) 1’ (0,¢) + 1
q-p q=p

which coincides with the image of (O, - ) € Zio under the map pu.
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qc_wmin min

©e) 1 PT%00)
By a direct calculation, we have f). = X, q"’. ’ X, - Also, by applying Lemma
4.2.10 (ii) withn=qg—-p— w?&‘g), we see that a)(mof?) —-q+p= wr(nqlfp_wmm c) holds. Therefore,
¢y

min min
c,w

0. ™ (g-p-wigt.c) |

we have A, = [g—p-w

Example 4.2.13. By Example 4.1.10, Lemmas 4.1.16 (i), and 4.2.10 (i), (ii), we have w?&ifn Py =

min
(ni’mPi)
X{7 XY hold.

w +q—p = —n;+q—p. Therefore, we see that A,,p, = (nl-, mP;, w?;nmp')) and fy,,, =

Lemma 4.2.14. Let c,c’ € mZso. Then we have f, € (fa,) if and only if ¢’ > c.

Proof. We may assume that ¢’ = c+m . Then, by (3.1) (see §3.2.1) and Lemma 4.2.10, we have
fu = Xil+m+l X3C”+1 fu. if wég,ig) > g — p— f; otherwise, we have f; , = X" X{ f..  Q.E.D.

Lemma 4.2.15. Let A = (n,c, 0™ | € A(,.0). Assume that ¢ > 0, and that 0 < n < q—p-. Then
(n,c) (n,0)

we have the following.

(i) If ™" + 1 < g—p, then we have f; € K.

(0c)
(i) If o™ +n > g—p, then we have f) = Xn+w?’1’l’2) fi = Xn+w$:2)_q+p f
00T =47P ) 2 =X 2

Proof. Item (i) follows from Lemmas 4.1.16 (i), 4.2.9, and 4.2.10 (i). Item (ii) is a consequence
of Lemma 4.2.10 (ii) and the definition of A.. Q.E.D.

Lemma 4.2.16. Let 0 <n < g—p, and let A = |n,c, wg‘jg)) € An0). Then, c can be written as

¢ = mx with some x > 0 by Example 4.1.4. Under this assumption and notation, the following

properties are true forany 1 <i <r.
(i) If0 < x < P; and if 0 < n < nj_1, then we have f, € K.
(ii) If x = P; and if O < n < n;, then we have f, € K.
(iii) If x = P; and if n; < n < q—p, then we have f) € (XfiXéi).

(iv) If x> P; and if 0 < n < g — p, then we have f) € (XfiXéi)+E.
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(v) If x > P; and if O < n < n;, then we have f € L’i.
(vi) Let x > P;, and let n; < n < mn;_q.
(vi-1) If x is not a multiple of P;, then we have f) € L’i.

(vi-2) If x is a multiple of P;, then we have f) — f( i ) €Ll

n,c—mPi,w(n!c_mPi)

Proof. Item (i) follows from Lemmas 4.2.11 and 4.2.15 (i). Item (ii) is a consequence of
Example 4.2.13 and Lemma 4.2.15 (i). We get item (iii) by applying Lemma 4.2.15 (ii)

with ¢ = mP; and taking into account Example 4.2.13. If x > P;, then we have f;. € (f4,,,,)

by Lemma 4.2.14. Thus, item (iv) follows from Lemma 4.2.15. Next we show (v). If
min
(0,¢)

n+w?gi?) >qg-p,andsetn’ =n+w

n+w™" < g—p, then we have f, € K by Lemma 4.2.15 (i), and hence f; € Li. Suppose that

min
(X9,
4.2.14, we see that fj, can be written as fy, = fi,, f = Xf"Xé" f with some f € R;'_n,_nl_,
; "+n; ’ i i yrli
where we set ¢ = ¢~ mP;. There’fore, we can write fy as fi = X " f = X} f(X)' - X[ XF).
Since X, ™ f € RS, we have X ™ f = f with some A’ = (n,¢, ,(f),’ ) € A(no): We have f) =

fv— X(’)l' fXy = X7 Xéi ). Therefore, it suffices to show that fyr € L. If o’ > ™, then we

H (n.c’y’
have fy € (Xg"‘l) by Lemma 4.1.11. Hence we get f) € L’i. Now we are left to consider

the case where w’ = w?rlli?,). If 0 < ¢’ < mP;, then we have f) € K by (i) and (ii), and hence

fi€ Z’; Suppose that ¢’ > mP;. Then, by applying the above discussion to f- and continuing

—q+ p. Then, we have f) = X(’)l' fa.. Also, by Lemma

in this way, one finally obtains f; € L’i. (vi) is a consequence of the proof of (v). Q.ED.

Lemma 4.2.17. Let A = (n, c, w?;lig)) € A(n0) with ¢ = mx. Suppose that P; < x < P, nj <n <

nj_1, and n—n; < n;_y hold for some 1 < j <i <r+1. Then, we have f; = Xg_njf/lmpjf,y,

where I’ = (O,c—ij,wmi“ ) € Ao)- In particular, f) € K.

(0,c—mP;)
Proof. Set A" = (n=n;,0,0). Then, we have A"+ A, +4' = (mc. i, —n;) and fur =
g J
Xg—Anj. Since 0 < x _APj < P;, we have n +w$,i?—ml’_,-) —nj <g-pbyLemma4.2.11, and hence
w?(;,l?—ij) —nj = w3 by Lemma 4.1.9. It follows that " + Ayp; + A" = 4, and thus we get

fi= Xg 4 f, ’; fa. Taking Remark 4.1.2.2 and the definition of K into account, we see that
fv €K. Q.ED.

50



Proof of Theorem 4.2.7. Set L = Z{;. In view of the proof of Theorem 4.2.3, it suffices to show
thatdimV, ; < T holdsif 0 <n <g—pandifd =0, where we setV, 4 = @A:( ) Ry/(LN

. ,,min
7 (nyc)

R)). Let A = (n, c, a)z“i“ ) € A(,0).- Note that we have ¢ = mx for some x > 0 by Example 4.1.4.

n,c)
Case 1. Let 0 < n < n;_;. By Lemma 4.2.16 (i), (ii), (ii), (iv), we see that f; € L holds if
x > 0. This implies dimV,, o < 1.

Case 2. Let n;_; <n < g—-p. By Lemma 3.2.5, there is a unique integer j; that satisfies
I<ji<i-landn; <n<nj_1. If n—n; > n;_1, then we can take an integer j, uniquely
to satisfy 1 < j <i—1and nj, <n-n; <nj_1. By continuing in this way, we finally get

n—(nj +nj+---+n;, _ +nj )<n;y forsomel<ji, ja, ..., ju, <i—1. Namely, we have

{l’ljl <n<nj-|

n—nj 2 ni_|

nj, < n—nj <nj,_i
n—(njl +njz) >N

njun—] S n-— (n]l L +njun—2) < njun—l_l
n-— (nJl +e +njt¢n—2 +njun—l) 2 nj-1

njun S n_(njl +ee +njun71) < njun_l
n—(njl +--- +njun_1 +I’ljun) <ni—1

In the following, we show dimV, ¢ < 1 by inductionon u,,. Setu =u,,andsetP = P; +---+P; .
First suppose that u = 1. Since j; < i, we have P < P;. We show that f; € L holds if x # P. If
x =0, then fj) = X} by Example 4.1.4. Therefore, f € L. If 0 < x < P, then we have f; € K
by applying Lemma 4.2.16 (i) with i = j;. If P < x < P;, then by applying Lemma 4.2.17
with j = j; we see that f; € K holds. If x > P;, then we have f € (XfiXéi) +K by Lemma
4.2.16 (iii), (iv). Therefore, we see that dimV, o < 1 holds if u = 1. Next suppose that u > 1.
If x =0, then we have f; € (Xgi‘l). Also, we see as above that f; € K holds if 0 < x < Pj,.

Letx > Pj,andset P’= P—P;,setn’ =n—n;,setc’=c—mPj,and set A’ = (n’,c’,wzni,n‘, )
n’,c’)

Since we have w%‘l’m P) + wg’;,"’c,) +nj +n = w?y‘li,"’c,) +n’ < g—p by Example 4.1.10, it follows

from Lemma 4.1.16 that w?:?) = w?y’i“ mp) wg‘li,“c,). Thus we get A = A,,p, +A’, and hence
> J1° J1 s
fa= f,lmpj fir by Lemma 4.1.5. Since we have u,» = u—1, it follows from the induction
1

hypothesis and the relation f) = f/lmpj far that dimV,,o < 1 holds. Q.E.D.
1
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Remark 4.2.17.1. Let 0 <n < g—p, and let A = (n,c,w) € A(,0). By the proof of Theorem
4.2.7, we deduce the following.

e Let 0 <n < n;_;. Then, we have f; € Zg if A # (n, 0, w(mnf(’)‘)).

e Let nj_; <n<qg—p. Then, we have f; € fg if 1# (n mP, “)(mn,i:lnp))’ where P = P; +

-+++ P; asin the proof of Theorem 4.2.7.

Proof of Theorem 4.2.8. Set L' = 2‘71 and set V, , = (P in

/l:(n’c’w(n,c))el\(n,d) RA/(L N R/l) AS 1mn
the proof of Theorem 4.2.7, it suffices to show that dimV’ <1 holds if 0 <n < g—p and if

d=0.Letd= (n, c, w(mnl?)) € A(n0).-

Case 1. Let 0 < n < n;. By Lemma 4.2.16 (i), (ii), (v), we see that f; € L’ holds if ¢ > 0.
Therefore, we get dimV) ; < 1.

Case 2. Letn; <n <n;_1. By Lemma 4.2.16 (i), we have f € L’ if 0 < x < P;. If x > P;,

. _ n—n; e; l[ _ n; 2
then taking f(n,mP,-,w{‘,‘,{‘;n Pi)) — f(n’ O,w?,‘,{‘(‘))) =X, (X;'X5 - X,') € L’ into account, we deduce from
Lemma 4.2.16 (vi) that either of the following holds: f; € L’; or f — f; i el .
(n,c—mPi,w(n’c_mPi))

This implies that dimV’ , < 1.

Case 3. Let n;_; <n < g—p. We follow similar lines to Case 2 of the proof of Theorem
4.2.7: we define u and P in the same way and proceed by induction on . Letu = 1. In a similar
way, we see that fj € L’ holds if 0 < ¢ < mP. Let ¢ > mP. Then we can write f; = fi fi

mP?
?:fnjl’c_mm). If 0 <n-nj <n;, then we have f» € L’ by Lemma
4.2.16 (i), (ii), (v), which tells us that dimV’ / < 1 holds in this case. If n; <n—-n; <n;_y,

then we can show that dimV/ , < 1 is true by following a similar argument to the one in Case

where A’ = (n—njl,c—mP,w

2. Q.E.D.
Remark 4.2.17.2. Let us define F; = f(o i ) foreach 1 < j <b-1. We claim that
MO 0,mj)

Lé coincides with (Xgi“, Xo, Xa, XfiXé", Fi, ..., Fpy) for any 1 <i <r. To see this,

let (u1,uz) € M/ \{(0,0)}, and set ¢ = u; —up, and set w = pu; —qup. Then, we have
XPTT XX = fo,ew)- Also, we can write ¢ = mx with some x > 0 by the definition of
M l+ Concerning the definition of L!, it suffices to check that J(0,c,0) 1s contained in the ideal

m’
(X[, XleiXéi’ Fi,...,Fpu)) CR. fw> w?(;i?), then we get fio,c.) € (X;"") by Lemma4.1.11.
Suppose that w = a)?(;”;) If x = b, then we have ﬁO,c,w) = XlaqX;p = Xle”lXé’” c (XfiX?ii)' If
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x > b, then we see that fo.) € (X;?X;”) holds. Therefore, the two ideals coincide. In a
similar manner, we see that J; coincides with (X", X5, X4, Xle r+l Xé”l, Fi, ..., Fp_y).
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Chapter 5

Invariant Hilbert schemes and resolutions
of singularities of affine normal
quasihomogeneous SL(2)-varieties III:
proof of the main results

5.1 Morphism to the fiber product

Let us consider the diagonal SL(2) X C*-action on the fiber product £, Xg,, E;" . Then we
have the following equivariant commutative diagram:

In this section, we construct a morphism from the main component %" = m to
E XE, E;"m, which is in equivariant bijection with the weighted blow-up El’ e We have
seen in Lemma 4.1.1 that F_, | = (X;,X) (resp. F,1 = (X3,X4)) generates S, _1) (resp.
S(g,1)) as a module over the invariant ring §GoXGm  Therefore, taking §2.1.6 into account, we
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can construct the following equivariant morphisms:
N-p-1: I — Gr(h(-p,=1),F", ) = P!, ng1:# — Gr(h(g, 1), F/)= P!,

where the isomorphisms Gr(A(—p,—1), F_Vp7_1) = P! and Gr(h(g, 1), Fq\fl) =~ P! are given by
(01X +xX)) =[x xo] and (x3X3 +x4X,') > [x3 : x4], respectively. Since X;, X3 € i,
it follows from Lemma 4.1.1 that (S/I1)p-1) = (X1) and (S/I1)(4,1) = (X4). Therefore, we
have n_, _1([/1]) = [1:0] and 1 ([/1]) = [0 : 1]. Set

Y=y XT_po1 X Mg HE — Epy X P X P

Since y([1;]) = n(x) by Corollary 4.2.5, we see that ¢ ([11]) = (x(x),[1: 0],[0 : 1]). Similarly,
we have ¢/([J1]) = (7(x"),[1: 0],[1 : 0]). In what follows, we show that the image of %"

. . . — +
under ¢ is isomorphic to E; xg,, E/ .

Lemma 5.1.1. The equivariant morphism E; — E X, E' induced by the universal
property of the fiber product is bijective and birational.

Proof. Tt follows from the description of the surjective morphisms £/ — E; and E] —

E given in Remark 2.3.9.2 that £/, — E; Xg,, E

* isirreducible. Since E;. Xg, E' contains an open orbit isomorphic
m Lm Lm ~Im

L
to U, we deduce that El’ w E 1m X Eim E +n is birational. Q.ED.

Ly

is bijective. Therefore, the fiber
product £, Xg,, E

Lemma 5.1.2. There are SL(2) X C*-equivariant embeddings:

E/,, = Em X Gr(h(-p,~1), F_Vp’_l) =~ Ej,, xP';
E;,, = EimxGr(h(g, 1), F,)}) = Ein X pl

Proof. We have the following equivariant morphism (this morphism was first constructed in
the proof of [BHOS, Theorem 3.10]):

U™ — Gr(h(-p,-1), Fl/p,_l) =P (Yo, X1, X2, X3, X4) = [ X : Xa].

Also, we have an equivariant morphism U* — Ej,, as a composition of the inclusion
U* — Hj, and the quotient morphism H, — E;,,. Therefore, we get a G6 X G 4-invariant
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morphism Ut — Ej,, x P!, which factors through E;rm by the universal property of the

|

UGy xGa) = By,

categorical quotient:
El,m X Pl

Let [T} : T»] be the coordinate of Gr(h(—p,—1), Fl’p )= P'. Then, for eachi € {1,2}, we have
the following commutative diagram:
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U n{X; # 0} = Hy,N{X; # 0} — Spec (C[El’m] [%

m

(Hp N {X; # 0})//(Gy X Ga)

=

We see that (C[Hpy,)%0*% = C[H,]¢0*Ca [i—j, %] holds as a subring of C[Hp]x,. There-
fore, a* is a closed immersion. Analogously, we have an equivariant morphism U~ —
Gr(h(g, 1), Fq\fl) = P!, (Yo, X1, X0, X3, X4) — [ X3 : X4], which induces an equivariant morphism

a E — Ej X P!. In a similar way, we see that @~ is a closed immersion. Q.E.D.

By Lemmas 5.1.1 and 5.1.2, we get an equivariant closed embedding followed by an
equivariant bijection:

¢:E, —E Xg,, E, —— EjnxP' xP.

Corollary 5.1.3. We have y(#6"%") = ¢(E],) = E Xg,, E..
Proof. Since y~'(U) is the SL(2) x C*-orbit of [I;], and since ¥ (™) = y(y~1(N)), we
see that y(F€m¥™) is the SL(2) x C*-orbit closure of ¥([I;]). On the other hand, consider
the blow-up morphism f : El’ n —— Eim, and let y € El’ ,, be a point such that f(y) = m(x).
Then, it follows from the construction of ¢ that ¢(y) = ¢([I;]). Therefore, one obtains
Y (FOmny = ¢(E] ), which is isomorphic to £, X, E Q.E.D.

ILm*

In view of Remark 2.3.9.2, E l’ ., contains four orbits 2, D, C, and C’, and they are described
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as follows under E; — @(E;,) C Ejy XxP' xP':
U =) =(SL(2)XC")-(n(x),[1:0],[0:1]),
D= p(D)=(SLR2)XC*)-(n(x"),[1:0],[1:0]),
@(C) = (SL(2)xC")-(0,[1:0],[1:0]),
o(C")=(SL(2)xC")-(0,[1:0],[0:1]).
Lemma 5.1.4. /| ypmain : #"“" — @(E] ) is bijective outside ¢(C).

Proof. Since |yemain is an isomorphism over A U D, it suffices to show the bijectivity of
Y| emain over ¢(C”). By the construction of ¢, we see that the set-theoretical fiber of (O,[1 :
0],[0 : 1]) consists of closed points [I] € #"" that satisfies X, X3 € I and y([I]) = O. In
view of the proof of Theorem 4.2.2, we have Iy C I. Since A/l has Hilbert function & by
Theorem 4.2.2, it follows that I = Iy. Therefore, | yemain is bijective over ¢(C’). Q.E.D.

5.2 Morphism to the minimal resolution

The goal of this section is to construct an equivariant morphism ¥ : F"4" — EIT,; in two
steps. First, we realize EZ; as a closed subscheme of a projective space Ej,, X P(V"Y) over Ej .
Next, we construct a morphism W : # —s E;,, x P(V) and show that the image WP(#"")
is isomorphic to ElT;n . In the next section, we will see that ¥|yemain is an isomorphism, which
completes the proof of Theorem 3.2.4.

5.2.1 Equivariant embedding of the minimal resolution

In this subsection, we construct an equivariant morphism E; —> P(VV) defined by a base-
point-free V C F(Etn,@(é)), where ¢ is an SL(2) x C*-stable Cartier divisor on E’, and

L,m’
show that the natural morphism @ : E/ — Ej;, X P(V") is a closed immersion (Proposition

5.2.7). In below, we use notations introduced in §2.2 and in §3.2. Let D; (0 <i <r+1) be
an SL(2) x C*-stable prime divisor on E]  corresponding to the extremal ray Q>op;. Note
that we have Dy = D’ and D,,; = D (see Remark 3.2.4.1 (i)). Then, the set of B-stable prime

divisors on El’ is given as
m

D(E],)={Do, ..., Drs1, S%, 57},
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where S* (resp. §:) is anon-SL(2) X C*-stable prime divisor on £/ such that its image under
the resolution of singularities 7517,; — Ej,, is the B-stable divisor S* (resp. $7) on Ej,,. By
definition, we have vp,(f) = pv, (xr) = pi(xy) for any f € CQI)8 c C(X,Y,Z,W). For each

0 <i<r+1, wedefine 0y, f; € CQA)B to be

o= Ze[Wl[ — (Zw)(a-l-l)Pi—Q[(ZWl)Pi, ﬁ = l_[ O-j,

where ¢; = (@ +1+m)P;—Q; and [; = (& + 1)P; — Q; as defined in §3.2.2.
Lemma 5.2.2. With the preceding notation, the following properties are true.
(i) Let 0 <i, j <r+1. Then we have: vp/(0y) >0 ifi> j; vp,(oy) =0 ifi=j; and
vp,;(07) <0 ifi < j. In particular, we have vp,(cj+1) = 1 and vp,(cj-1) = — 1.

(i) We have vp,(f;) = vp,(fi-1)-

Proof. A direct calculation shows vp,(07) = pj(xe,) = —Pi{(a + 1)P; = Q;} + {(a + DP; -
Q;}P; = P;Q; — P;Q;. Therefore, we get (i) by Theorem 3.2.3. Item (ii) follows from the
definition of f; and (i). Q.ED.

Let E; (0 <i <r) be the simple spherical open subvariety of E;

colored cone (6;, 0), and let ¥; be the unique closed orbit of E, Then we have

corresponding to the

D(E) ={Dilg> Dislg> S*5, S|z} Dr(E) = {Dilg, Dinlz }-
Moreover, let us consider the following SL(2) x C*-stable divisor on EIZ :

0:= Z VDi(fi_l)Di-

1<i<r+l1

Though the Cartierness of ¢ follows immediately from the smoothness of EZT}; , we check the
criterion for a Weil divisor to be Cartier given in Theorem 2.2.11 as a preparation for the
proof of Lemma 5.2.3: with the notation used in Theorem 2.2.11, we see by Lemma 5.2.2 (ii)
and vp,( fo_l) =0 that fy, = ]j_l (0 <i < r) satisfy the required condition.

Lemma 5.2.3. The Cartier divisor ¢ is generated by global sections.
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Proof. Taking Theorem 2.2.13 and the fact that the cone 6; is spanned by p; and p;, into
account, it is enough to show the following two conditions:

(C1) vp,(fv) <vp,(fy;) and vp,, (fy,) < vp,, (fy;) hold for any 0 <, j <r; and

(C2) vg(fy) <0and ve=(fy;) <O hold forany 0 <i <r.

Condition (C1) follows from Lemma 5.2.2. Moreover, by a direct calculation, we have
v (fi) = 2o<j<iej = 0 and ve=(fi) = Xo<j<ilj > 0. This shows (C2). Q.E.D.

Remark5.2.3.1. Since ¢ is SL(2) x C*-stable, there is a linearization of the action of SL(2) x C*
with respect to the line bundle G (6) such that the induced action on I (E; , 0(6)) coincides
with that on the function field C(E] ) (see [ADHLIS]).

We denote by V(n) the irreducible SL(2)-representation of highest weight n. Set
V:={((SLR)XC")-fi : 1 <i<r).

Then, we see that V is isomorphic to @lsig Viep+er+---+e)@V(lp+1+---+1;). Also,
we can take the following as a basis of V:

1<i<r;
d - X80+el+“'+e"_eZeY10+ll+"’+l"_lWl c C(u) : O S e S €0+€1 ++€1,
0<I<lp+l+-+]

Lemma 5.2.4. The vector space V is an SL(2) X C*-submodule of F(F 6 (6)).

Lm’
Proof. Let1 <i<r. Forany 0 < j <r, we have:
div(f)lg = v (AS*Ig +ve=(DS™IE +vo, (ADjlg + v, (D)1 I
Sl = vo,(Fr)Djlg; +vp,. (fry )Djni I
Therefore, we get div( ﬁ)|757 +0 |E]f > 0 by comparing each coeflicient using the condition (C1)

in the proof of Lemma 5.2.3. This shows f; € F(E":n,@(é)). Q.E.D.

As a consequence, one obtains a natural equivariant morphism

@ : 12“;1 — Eppy XP(VY).
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We show that @ is a closed immersion. Recall that E] E ., 18 covered by simple open subembed-
dings Eq, ..., E,, and that we have E; = (SL(2) X C*)(E )o» Where

En=E\ |J D=E\SI5FUSp)
DeD(E)\ Dy, (Er)

with the notation of §2.2. Also, we have (l:fi)l =UN{ZW #0}, (E;m)o = Em, and (Ej )1 = U
Therefore, we get the following by Remark 2.2.2.1:

CI(E)o] = {F € C[Wzw : vp, ,(F) 2 0, vp,(F) > 0} ;
C[E;m] = {F €eC[U] :vp,,,(F) > 0}.

Let L be the subring of C(2l) defined as L := {F € C[U]zw : vp,,,(F) > 0}. Foreach0 <i <r,
we consider an open subset U; := Spec (L [ f¥/ ¥ : f € o) of Ej,nXP(V"), where £ denotes
the dual basis of f. We also consider a homomorphism

FIL[fYS  fed] —ClEN]  (0<i<r)

defined by sending F f—z where F e L,t0o F ]ii

Lemma 5.2.5. The homomorphism (I)f is well-defined for any 0 <i <.

Proof. Let F € L. We may assume that F is of the form F = Z(ZZV‘Z;W € L,whered,,d,,d € Zs.
Moreover, since F is G,-invariant, we have d, —d,, = cm for some ¢ € Z. Therefore, F' can
be written as (ZW)®~4(Z™)¢. Since vp,,,(F) = 0, we get (aﬂ)b WPl > d, —d by a direct
calculation. This implies that ¢ > 0, since otherwise we get ¢ < 0 and d,, —d < 0, which

contradicts to F € L. Therefore, we have

VDj(F) = —Pj(a’w—d)+{(a+ I)PJ'—QJ‘}C

> (2P~ 0))e = 1P -bQ)c = e =" c50 (O<Vj<re1)
=\ 7P 0 =, (tP; Q]c—bkc—q_pc_ <Vj<r

by Lemma 3.2.5, and this shows L C C[(E:)o]. Moreover, we have filfi € C[(E)O] by
the condition (C1) in the proof of Lemma 5.2.3, and hence f/f; € C[(E;)o] holds for any
fed. Q.E.D.

Lemma 5.2.6. The homomorphism q)f‘t is surjective for any 0 <i <r.

60



Proof. Let F € C[(E)o]. Concerning the proof of Lemma 5.2.5, we may assume that F' ¢ C
and that F is of the form F = (ZW)4(Z™) for some d, ¢ € Z. Notice that vp_,(F) > 0 if and
only if @V > g If vp,,,(F) 2 0, then we have F = ®(F). Suppose that vp, ,(F) <0,
and set F = F/oy,1. Then, as an element of C(Ql), F can be written as F = F ’fl—j‘ We claim
that the following two conditions hold: (I) vp,,,(F’) > vp,,,(F); (Il) F' € C[(E;)o]. Indeed, (I)
follows from Lemma 5.2.2. Since we have vp,(0y+1) =1 andvp,, (07+1) =0by Lemma5.2.2, it
suffices to show that vp,(F) > 1 holds to get (II). Suppose that vp,(F) < 1. Since F € C[(Ej)ol,
this implies that vp,(F) = 0. Namely, we get 0 = —dP; + {(a+1)P; — Q;} c. If i =0, then we
obtain ¢ = 0. It follows that 0 < vp, (F)) = —d, which contradicts to vp,,, (F) < 0. Next, leti > 1.
Since we see that vp,, (F) = ¢;vp,(F)—vp, ,(F) by (3.3), the condition vp,,,(F) > 0 implies
that 0 > vp, ,(F). Leti = 1. Then, we have 0 > vp,(F)=cand 0 =vp, (F) = -d + (e + 1)c.
If ¢ <0, then vp,,,(F) <0 implies that (¢ +1)b—t > (e + 1)b. Thus, ¢ = d =0, which
contradicts to F' ¢ C. If i > 1, then we have cQ‘ < cﬁ by vp,(F)=0and 0 > vp,_ (F). It
follows that ¢ = 0 concerning Theorem 3.2.3. In the same manner, we see that this contradicts

tovp,,,(F)<0. Thus, F' € C[(E;)o]. The conditions (I), (Il) and F = F ’% yield that there is

~ t
an F”" € C[(E;)o] with vp, , (F"”) = 0 such that F = F” (%) holds for some r > 0. Q.E.D.

Proposition 5.2.7. The morphism © : EZT}; —> E;n XP(VY) is a closed immersion.

Proof. This follows from Lemmas 5.2.5 and 5.2.6. Q.E.D.

5.2.8 Morphism to the minimal resolution

In this subsection, we construct an equivariant morphism ¥ : # — E;,, x P(V") that satisfies
P(Femainy = (I)(E’ ) = E’ (Proposition 5.2.11). First, by §2.1.6 and Proposition 4.1.2 , we
can construct an equ1var1ant morphism 7, : #6 — Gr(h(n;,0),F’ ) foreach 0 <i <r.

Remark 5.2.8.1. If i =0, then F};’O o = ((X2X4)",(X1X4)",(X2X3)", (X1 X3)"). For later use, we
fix an isomorphism Gr(h(n;,0), Fn\g o) = ]P(Fn\g o) given by the following:

150 (XaXa) +100 (X1 Xa)Y 410 (X X3)Y 4100, (X1 X3)Y > [150 10 16 1) ],

()

where ¥ ,
0,0

(0) (0
0.0° t t ol

0o Leoly € C. If i > 1 (this happens only if Ej,, is non-toric), then

i i i~ li—l i li
Fyl o= (XY, (X5 XY, (XXX XY, L (X X)),
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As above, we fix an isomorphism Gr(A(n;,0), FnVi,O) = P(F,;;O) given by sending

uD(xp)Y +18

i yli i i— li— ' i yli
DOXGTXY 4+ 1 OGTX XTI XD Y (XX

to [u(i) : t(()fz) Tl tg; Deee tg?li], where u?, t(()f()), tg_?li € C. In below, we denote the
composition # —> Gr(h(n;,0), FIZ’O) = P(ani,o) by the same 77,0 (0 <i < 7).

Remark 5.2.8.2. AsinRemark 2.3.3.3, we denote by V(n) = Sym"(X,Y) the irreducible SL(2)-
representation of highest weight n. For any partition n = y; +- - - + u, the tensor representation
V(u1)®---®V(uy) contains an irreducible representation V(uj, ..., u) isomorphic to V(n)
by the Clebsch—Gordan theorem. For each 0 <i < n, set

1 o o
bi = — Z (".“)...(?S)X’““‘”Y”®~~~®X“S"°‘Y‘S eV(u)® - ®V(uy).
. S

Then, {¢o, ..., ¢,} forms a basis of V(u1, ..., ts). On the other hand, we can take {X"~'Y" :
0 <i < n} as a basis of V(n), and the linear map V(n) — V(uj, ..., u,) that sends X" 'Y’ to
¢; is an SL(2)-equivariant isomorphism.

Let V' := F 0 ® Fp0®---®F, 0. We see that V’ coincides with
@ Aleo)® B(lo) ® Ae;,)® B(l;,)® ... A(e;,) ® B(l,,) @ C(n;,) ®---® C(n;, ),

where the sum runs over {iy, ..., is, Jji, ..., ju} = {1, ..., r} such that i; < --- <i; and
J1 < --+ < jyu. In order to describe a submodule of V’ isomorphic to V, let us denote by
Aleq,eq,...,e;) the irreducible representation of highest weight ey + e; + - -- + ¢; contained
in A(ep) ® A(e]) ® --- ® A(e;) in the sense of Remark 5.2.8.2. Namely, A(eg,eq,...,¢;) =
V(eo, e1,...,e;) = V(e,+e1 +---+e;). Likewise, we denote by B(ly,[y,...,[;) the irreducible
representation of highest weight ly+1; +---+1; in B(lp) @ B([;)®---Q B(l;), i.e., B(lp, 11, . .., [;) =
V(lp, 1y, . .., 1;), which is isomorphic to V(lp+ 1} +-- - +1;). Let V be the submodule of V’ defined
as follows:

V= EB Aleo, €1, .., €)@ B(lo, Ly -, ) ®Cnis1)® - & C(ny).

1<i<r

Since V C F(fi"; ,0(6)) coincides with

@A(eo+e1+---+ei)®B(lo+ll+---+l,~)®C(—(n0+n1+---+n,~)),

1<i<r
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we see that V = V, where the isomorphism

C(—(no+n +---+m)) = Clnjp1 +---+n,) = C(ni1)® - @ C(ny)

no+ny+-- +I’lr

is given by multiplying X

Example 5.2.9. Let [ = p/qg = 1/4, and let m =2. Then, we have k =1, a=2, b =3,
a=0,8=2,and t = 1. Therefore, the Hirzebruch—Jung continued fraction expansion of
b/l‘iS b/t=Cl =3,and we have P =0, Qp=-1,P;1=1,0,=0,P,=c;=3,and O, = 1.
Thus, we get po =W, p1 = W +up, and py = —3u; + 2uy, and the maximal cones of the
colored fan of E’ are 61 = Q000 + Qs0p1 and 6, = Qspp1 + Qs0p2. Also, we have
(60,10,710) = (1 1 3) (61,11,1’11) = (3 1 1) and (62,[2,]12) = (8 2 0) Thus we get f() = ZW
fi =Z*W?, and f, = Z'>W* by definition, and therefore

V = ((SL(2)XC*)-ZW) ® ((SL(2) xC*) - Z*W?)
= (X, Z) Y, W) (X* X*Z, X*7Z2.XZ3,ZH @ (Y>, YW, W?)
=V(DHeV()e V) e V(2).

We have V' = Frp0 ® Fy, 0, where Fup0 = A(1)®B(1) = (X1, X3) ® (X3, X4) and
Fuo=AR)®B(1)eC(1) = (X}, X{ X2, X1 X5, X;) ® (X3, X3) ® (Xo).

Furthermore, we have V = A(1,3)® B(1,1)® A(1)® B(1), where A(1,3) is a subrepresentation
of A(1)® A(3) spanned by X; ® X;, ;(X> ® X7 +3X, ® X2 X)), 3(Xo ® X2 X2 + X1 ® X1 X3),
13X ® X1 X} +X;®X3), and Xo® X3. Also, B(1,1) is a subrepresentation of B(1)® B(1)
spanned by X3 ® X3, %(X3 ® X4+ X4 ®X3), and X4 ® X4.

We define ¥’ to be the composition of

yx [ ] o 26— Erwx [ | BGEL)

0<i<r O<i<r

and idg, ,, Xt, where ¢ denotes the Segre embedding ¢ : [Ty, P(F ;) = P(V"Y). Namely,
Y H — Ep, xP(V'Y).
Let us consider the projection pr : Ep, X P(V"Y) — Ep, X P(VV).
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Proposition 5.2.10. The restriction pr|y: (s of the rational map pr to the image of ¥ is a

morphism.

Proof. Suppose that there is a point [/] € #€ such that pr is not defined at W'([/]). Let
Muoo(LID) = [t : 10 <18 1%, 1, and Tty o([1]) = [u® 1y o 26f) 0D (1< <)
following the notation of Remark 5.2.8.1. By Remark 4.1.1.1, we have s1X; + 52X, € I for
some (s1,52) # 0. Since ¥ is SL(2)-equivariant, we may assume that X, € I. Note that
the subrepresentation A(eg, ey, ...,e,)® B(lo,1i,...,1,) of V contains X'"®X'®--®X["®

Xéo ® Xé‘ ® - ® Xér. Therefore, we have tig,)zotg,)l : ir)l = (0 by the assumption on /. Let
®

J = min{i : t,; =0 0<i< r}. Then we have X1 X3’ € I by the construction of 7,, 0,
which implies that Xf ! Xé" € [ holds for any i > j. Next, again by Remark 4.1.1.1, we have
53X3 + 54Xy € I for some (s3,54) # 0. Therefore, one of the following holds: (I) s3 #0, s4 #0;
(D) s3 =0, s4 # 0; (II1) s3 # 0, s4 = 0. Suppose that we are in the case (I). Then, by multiplying
ijX;’_l to s3X3 + 54X4, we get XffXéj_1X4 € 1. By continuing in this way, we see that
ij_eXzeXéj_lXi € I'holdsforany 0 < e < e¢; and forany 0 </ < [; concerning X, € I. Lastly, we
pay attention to the vector X © X' ®-- @ X/ @ X' o X' ®-- @ X/ ® X' ®---® X" in the

subrepresentation A(eg, ey, . ..,ej-1)®B(lo, l1,...,1j-1)®C(n;)®---®@C(n,) of V. Likewise, we
©) t(l) ...t(j_l) u(j)..

eo.lo el ej_1,lj

have ¢ -u'") = 0 by the assumption on . This implies that u)--- 4" =0
by the minimality of j. In particular, we have uY") = 0 for some j < j’ < r. It follows that
ng " e I by the construction of Nn;.,0- Therefore, Xg" € I. Consequently, we get F;, 0 C 1,
and it follows from Proposition 4.1.2 that dim(S/1),,,0) = 0 # h(n;,0), which contradicts to
[I] € #€. If we are in the case (IT) or (II), we can show that the assumption on the ideal /

leads to a contradiction by following a similar line as above. Q.E.D.

Combining the above discussion, we obtain the following equivariant morphism:
¥y XPOVY) P By XB(VY) == Epy xP(VY).

Proposition 5.2.11. We have V(76" = CI)(EZZ ). In particular, P(F€m4") = EIZ

Proof. Let f : EZT; — Ej,, be the resolution of singularities, and let y € E; be a point such
that f(y) = n(x). Then, concerning Remark 2.3.5.1, we have ®(y) = (n(x),v), where v is a
point of P(VY) whose coordinates are all 0 except for the ones corresponding to the bases
{(Xeoteartreylth+-+iyV . | <j < r}. On the other hand, we see by the definition of I; and
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the construction of 1, o that n,,0([11]) = ((X1X4)"), and that n,, o([1;]) = ((X(’)“)v +(X]' Xi")v)
(1 <i <r). Taking the relations X = Xé’ X; and W = Xo_ 1X, into account, we deduce that
Y([1;]) = ©(y). This shows the proposition, since W(#"“") and <I)(El” ) are SL(2) x C*-orbit
closures of W([/;]) and ®(y), respectively. Q.E.D.

Summarizing, we get the following equivariant commutative diagram:

El,m X P(Vv)
U

5.3 Proof of Theorem 3.2.4

We have seen in Proposition 5.2.11 that W(#"%") = El?; . Therefore, in order to complete
the proof of Theorem 3.2.4, we are left to show that ¥|yemain is injective. Indeed, it follows
from the Zariski’s Main Theorem that W¥|yemain being injective implies ¥|ypmain being a closed

immersion.

Proof of Theorem 3.2.4. Lett: E E —> E] . be the resolution of singularities. We first show
the injectivity of ¥|g-1(-1(¢)) - (T 1(C)) — 771(C) orbit-wise. By Remark 3.2.4.2, we
see that 7-!1(C) contains 2r + 1 orbits ¥; (0 < i < r)and O; (1 <i < r). Let us elaborate on this.
Recall that we have constructed an equivariant closed immersion O : E:n — Ep, XxP(VV).
We denote by y; (0 <i < r) the point of P(VY) whose coordinates are all 0 except for

(1) _01 € SL(2). Then, we have
O(Y;) = (SL(2) xC*) - v;, where we set v; = (0, y;). Similarly, we denote by y/ (1 <i <r) the
point of P(V") whose coordinates are all 0 except for the ones corresponding to the bases g - .
and g- fY,. Then, we have ®(0;) = (SL(2) XC*)- v/, where v/ = (0, y!). In the following, we

show that each of the set-theoretical fibers of v; and v; consists of one point. More precisely,

the one corresponding to the basis g - fl.v, where g =

65



we show that W~'(v;) = {[L{"']} and W~'(v)) = {[L!]} hold, where we set L*! := J for the
sake of convenience.

First, we show that ¥~!(v;) = {[L{*']} holds forany 0 <i <r. Let[L] € ¥~!(v;). Asinthe

proof of Proposition 5.2.10, write 17,,0([L]) = [#,, 10 ig)o : t(()f)li : tig,)lo]’ and 1, 0([L]) = [
t(()jo) Do (J) ] (1 <j<r). It follows from y([L ]) = O that K C L, since the ideal K C A is

generated by Go X G,-invariants. We see that

g fi= xeotertteiylotlit -+l _ Xo_(n()"'nl+"'+”li)X190+€l+"'+eixé()+ll+"'+li

maps to

XPoX!'® X X Xl o X  @X) @@ X"
€ A(ep, e, ..,€)®B(lo, 11, ..., ) ® C(ni+1) ® - ® C(n,)

under the isomorphism V = V. Therefore, by the definition of y;,

(© (DO D0 2 (5.1)

eo.lo e1,h e l;
holds for some s € C*. Similarly, by paying attention to g - fi+1, we have

MORMCY @O (i) G+2) L, 0) =

60 lOtel L tez el ™ l " =0. (5.2)
By (5.1) and (5.2), we get tg-_:l;“ = (0, which implies that Xf”‘Xé”‘ € L. Next, we see that
zeoxert-+eiyloyh+-+i — XO—(HO‘HH+"'+ni)X2€0X1€1+'“+€iXiOX§1+'“+li maps to

e ! l i li iy r
XX 0X'®X)®---®X'®X; ®X "' - @ X
€ A(eg)@B(lp) @ A(e1)®B(l))®--- @ A(e;)  B(;)) @ C(nj1) ®---® C(n,)

under V =V c V’, which yields that t(o) (l) (l)l u@D ... = 0. By comparing this

ell

equation with (5.1), we have t( ) = =0, Wthh tells us that X;OXiO = X,X4 € L. In a similar
way, we see that X> X3, XXy e L holds as well. Concerning Remark 4.1.1.1, it follows
that (X, X4) € L . Therefore, we get (Xg_p, X5, X4, Xle"“Xé"“) +K c L. If i =0, then we
have Lé C L since ny = g — p. It follows that dim(A/ Lé)(n,d) > dim(A/L)nq) = h(n,d) holds
for any weight (n,d) € ZXZ/mZ. On the other hand, we have seen in Theorem 4.2.8 that
dim(A/Ly)na) < h(n,d). Consequently, we get L = L. Next, suppose that i > 0. Since the

vector

eotert+ eyl +o+lioy _ y—(notnitetniog) yeoter+teiy ylo+l i
X Y —XO X1 X3
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maps to X" ®X;° ® X' @Xé1 Q- ®Xf"*‘Xé"" ® X' ®---® X" under the isomorphism V =

V C V', we see that tio)l S)l tg;l}i_lu(i) ---u'") = 0. Again by comparing this equation with

(5.1), we get u') = 0, which implies that X, € L. Therefore, one obtains L' C L. As above,
we deduce that Lé“ =L.

Next, we show that W~'(v/) = {[L}]} holds forany 1 <i <r. Let [L'] € ¥~!(+)), and write
0) .. 0) . .0 NG ' .

Moo 11D = [0 <10 ) 10, Yand o (LD = ()< ) 49 1 (1 < j < 1) as above.
In a similar manner, we can show that (X"’ ', X5, X4)+ K c L’. The conditions X», X4 € L’
(’) —t(’) -1 = 0. Moreover, we see that tio)l 21)1 : i’ 113 l14(1')Lt(i“)---bt(’) =5
20)1 21)1 : t(’ 13 (l)l (@+1... (") = g hold for some s € C*. Therefore, we get u) = t(i-)z-’
1,t1 el]l]ell €l
and hence we have i, o([L']) =[1:0:---:0: 1]. It follows that X"" —Xe"Xl" € L’ concerning

the construction of 77,0 and the fixed isomorphism Gr(A(n;,0), F, V 0) = P(F N O) (see Remark

imply thatz,
and ¢

5.2.8.1). As a consequence, we get L’1 c L’, and hence L’1 =L

Lastly, we show that Wly-1;-1(c) : Y-1(r71(C")) — v 1(C’) = C’ is bijective. Taking
into account Lemma 5.1.4, it suffices to show that ! (¢(C”)) coincides with ¥~!(z71(C")) as
subsets of #€"%" By the proof of Lemma 5.1.4, ! (¢(C")) is the SL(2)-orbit of [Iy], where
Io = (X{ ™" — X1 X4, X2, X3, X, X[") (see §4.1). With the notation of Remark 5.2.8.1, we have
Tn,0([lo]) =[0:1:0:0]. If 1 <i < r, wehave (X! "= X; X4)' X" = X2 (X)'P X)Pi - X1 X} =
—Xf"Xi" modulo the ideal Iy, since (g — p)l; = n; + p(e; — ;) and e; = [; + mP; (see §3.2.2).
Therefore, Xe"Xl" € Ip. It follows that 17, 0([lp]) =[1:0: : 0], ie., u® =1, t(l) =
) = 0 with the notation of Remark 5.2.8.1. This shows ‘P([Io]) ¢ 7-1(C), since there is no

el li

g € SL(2) that translates X; to X;, and X, to X3. Therefore, ¥([Iy]) € 7~1(C"). Q.E.D.

Corollary 5.3.1. For any s € C and for any 1 <i <r, A/L! has Hilbert function h.

Proof. By the proof of Theorem 3.2.4, the quotient rings A/ Lé and A/ L’i have Hilbert function
h for any 1 <i < r. Therefore, the corollary follows concerning Remark 4.1.0.1. Q.E.D.

Remark 5.3.1.1. Let0 <n < g—p, and let A = (n,c,w) € A, o). Taking into account Remark
4.2.17.1 and Corollary 5.3.1, we see that the following properties are true.

e Let 0 <n < n;_;. Then, we have f; € fg if and only if A # (n 0, w(mnfg)).

e Letn;_; <n<q—p. Then, we have f) € Lé if and only if A # (n, mP, wf?::m))'
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Let us denote by HEB the set of B-fixed points of #€. Recall that we have set L(’)Jr1 :=Jpin
the proof of Theorem 3.2.4.

Corollary 5.3.2. We have #¢8 = {[Li]: 1 <i <r+1}.

Proof. Let [L] € 3‘85. Then, 51X + 52Xp, s3X3 +54X4 € L hold for some (s1,52) # 0 and
(s3,54) # 0 by Remark 4.1.1.1. Since L is stable under the action of §, we have X», X4 € L.
Therefore, since y([L]) = O, we get (X, X4)+ K C L. Concerning the conditions X, X4 € L
and h(n;,0) = 1, we deduce from Proposition 4.1.2 that either ng e Lor Xle / Xéi € L holds for
any 1 <j<r+1. Leti =min{j: ijXéj € L}. Then, we have (X", Xle"Xé") c L, and hence
L, c L. This implies that L = L, since both L, and L have Hilbert function #. Q.E.D.

Corollary 5.3.3. The invariant Hilbert scheme F€ is irreducible and reduced.

Proof. By [Terl4a, Lemma 1.6], every closed subset of #€ contains at least one fixed point
for the action of B. It yields that #€ is connected, since Corollary 5.3.2 implies that every
B-fixed point is contained in Jemain - Therefore, we are left to show that #€ is smooth.
Concerning Theorem 2.1.4 and the proof of [Terl4a, Lemma 1.7], it suffices to show that
dimHom{§**"(Li, A/L}) = dim#€"%" = 3 holds for any 1 <i < r+ 1, where S = C[H,_,]
as in §4.1. Let R be the subring C[Xp, X1, X3] of A, i.e., let j =3 in (4.1) (see §4.1),
and we use notations of §4.1 and §4.2. Recall that we have seen in Remark 4.2.17.2 that
Li=(X)"", Xo, X4, XXV, Fy, ..., Fy1). Let ¢ € Hom{*"(L{, A/L}). Since ¢ is Go X G-
equivariant, we see that ¢(Xgi") = ale"*‘XéH, d(X2) = Xy, ¢(Xy) = a3X3, ¢(Xf"Xé") =
asX)', and ¢(Fj) = B; (1 < j < b—1) hold for some @, @y, @3, as, B; € C. Moreover, since
¢ is a homomorphism of S-modules, we have

0= (X"~ X1 X4+ XoX3) = an XTI X XI — a3 X X3 + a0 X X

If i = 1, then we have Xg_p_"i"Xfi*'Xéf*‘ = X; X3, and hence @ +as —a3 =0. If i > 1, then

we have e;_i, [;_; > 1, and thus we can write Xg_p _'1"‘1X1"”“1 Xé"‘l = X1 X3 f with a monomial
f € A. On the other hand, we have X7 77" x%-1 x/-1 = ¢ , and X, X3 =
0 : ; (q_p’mpi_l’wzlfp,mP'—l))

, by Lemmas 4.1.5 and 4.1.9, which tells us that f = - =Fp. ..
f(q_p’()’w?;fp,o)) y f f(o’mpifl’w?(;ffnpi_l)) Pz—l
Therefore, one obtains a, —a3 =0ifi > 1.

qmj_wmin

©,mj)

' q-p
pmj—wmi" . wp™ d 1 vds;+1
—— 2. Then, we have F; = X CIX X5 and fy,,; = X{ X by Lemma

In the following, we show that 8; = 0 holds for any 1 < j <b-1. Set d; =

and set d3 =
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4.1.5 and Definition 4.2.12, respectively. If j = P;, then we have f3,, = Xf ”Xé" (see Example
4.2.13).

Case 1. Let j > P;. Then, d;+1 > ¢; and d3 + 1 > [; hold by Lemma 4.2.14. By setting

Oy vrdy+1—e; <rdy+1-1;
f:XO(’"’”Xl1 e’X33 _we have

0= X1 X3¢(F))— fS(X}'Xy) = B; X1 X3 — au X' .
n; ’ ’ w(r?{nmj)mi di—e; yd3—li g n;
Here we have X' f = X, X3/, where [’ = X, X,V X3P Since both X' f and X X3
are homogeneous elements of G X G,,-weight (g — p,0), it follows that f* € K. Therefore,
one has X(')” f e Lé. On the other hand, we see that X;X3 ¢ L., since otherwise we get
dim(A/L{)4-p,0) = 0 by Proposition 4.1.19, which contradicts to Corollary 5.3.1. Therefore,
we have B; = 0.

Case 2. Let j = P;. Then, we have
0=X1X3¢(Fp,) - Xg_p_nifl’(xfixéi) =Bp X1 X3 —au X"

Since we have X; X3 ¢ Lé and Xg_p € Lé, it follows that gp, = 0.

Case 3. Let 1 < j < P;. As above, we see that the condition j < P; implies that d; < ¢;
and d; < [;. Then we have

min

i~ i~ “(0,mj iyl
0= X[~ X{ TP G(F)) - X, " G(X} X) = Bi fa, — aa X,

Z‘gi;‘lj) +n;, and ¢ = m(P; — j). Since we have n;_; < n < g—p by Lemma
4.2.11, it follows that Xg € Lé. Therefore, we are left to show that f . ¢ Lf). As in Case 2 of the

proof of Theorem 4.2.7, we have n—(nj, +---+n;, ) <n;_j forsome 1 < jy, ..., j,, <i—1.

where we set n = w

(n,mP) )"
First, we have f;_ ¢ (Xf"Xé") by Lemma 4.2.14. If f;_ € K, then we have f € (Fi, ..., Fp_1)
since ¢ < b—1. On the other hand, we see that the degree of F- with respect to X is greater

Set P=Pj +---+Pj, ,and set A = (n, mP, w™n ) We show that f) coincides with f;.

than O for any 1 < j* < b—1. This is a contradiction since f; ¢ (Xo). Therefore, we have
fa. ¢ K, and hence ¢ = mP concerning the proof of Theorem 4.2.7. It follows from Remark
5.3.1.1 that £y, ¢ L\, and thus we get B;i=0.

Consequently, we get dimHomg"XG’” (L A/Lj) < 3, and hence the equality. Q.E.D.
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5.4 Minimality of the invariant Hilbert scheme

We have seen that the invariant Hilbert scheme 7€ = HilbeXG’" (H,4-p) is isomorphic to the
minimal resolution of the weighted blow-up E 1/ ,, in the cases where [ = p/q < 1. It is then
natural to ask if #€ is minimal over the SL(2)-variety E} ,; in other words, if the Hilbert—Chow
morphism 7y is a minimal resolution of singularities. The following gives an answer to this
question.

Theorem S5.4.1. The Hilbert—Chow morphism vy is a minimal resolution of E} ,, if and only if
1+b<ap.

Recall from the previous sections that the invariant Hilbert scheme € fits into the following
equivariant commutative diagram:

F€
¥
_ El' N
- / ;1\E+
Im ILm
\El,m/

Since i is a minimal resolution, it suffices to show that K E; s f-nefifand only if 1 +b < ap,
where the former condition is equivalent to Kg; ~being y™-nef and v*-nef. We start by
expressing the canonical divisor Kg; in two ways with some «, 5 € Q:

Kg, = ()’_)*KE,jm +aD = (7+)*KEZ’m +pD’.

Lemma 5.4.2. Let C— and C* be curves in E|, that are contracted to a point under y* and

v~, respectively. Then the canonical divisor K, E/ has the following intersection numbers with

C- and C:
Ko 0= PO+ oo al+bk
Fim (@-Bag? Fim (@—-B)ap?’

Proof. By the projection formula, we have
Kg -C-=Kg- -C +aD'-C-=pD'-C"
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and
Kg Ct=aD'-C*=Kg. -C*+pD'-C¥,

I,m

so that the lemma follows from Theorem 2.3.10. Q.E.D.

Below we compute the coefficients @ and S by using combinatorial data of the colored
cones of £, E:m, and El’ - Denote by X(B) the group of characters of B. The lattice
M ={Z'W’/ e CQU)* : m|(i—j)} of rational B-eigenfunctions on the dense orbit 2l is generated
by ZW and Z™, and the natural homomorphism f : M — %(E) =~ 72 is given by Z'W/
(i+j,i—j). Wedenote theimage of f by I'. Setv := f(ZW)=(2,0),and v, := f(Z™) = (m,m).
We remark that v, is a simple root of SL(2) x C*. If we denote the dual basis of {v,v,} by
{uy,uz}, the lattice vectors py,,, pvs-» Pyg:» and p,,, in 'V c Q := Hom(T', Q) defined by the

B-stable divisors D, S~, S*, and D’ are given as follows:

Pvp = —buy +apuy, Prs- =1, Prge = U1 +muy, Prpy = U,

The valuation cone ¥ C Q can be described as ¥ = {xu; + yuy € Q : x <0}, and =¥V is
generated by vy, which turns out that v; is a spherical root. Moreover, the colored cones of
E - ,E' , and E/ are descried as follows:

C6_:C6(E‘lj}n):(QZOpVD-l_(QZOpVS+7 gp_:g:(Ele):{pVy}
C€+:%(Ez—m):QZOpVD-FQZOva—’ 9:+:‘CFJ"\(E‘Z_M):{pl{g—}
(6/ZCG(EI/’m):QZOpVD-'-QZOpVD” LGf:/:‘Cg:(zz‘l/’rn)zo'

Remark 5.4.2.1. Colored cones of E" . E;fm, and El’ m have already been given in §2.3.12 and
§3.2.1. However, we have included the calculation above to specify the basis of the lattice I,
which is different from the one chosen in §2.3.12 and more convenient for our later discussion.

Lemma 5.4.3. Let hg- and hg+ be linear functions corresponding to the colored cones
(67,F7)and (6*,F ), respectively, in the sense of Remark 2.2.14.2. Then, one has

-k 1+b 1+b
P v+ Vo, hc@+ =V|i+—Vs.
ap

heg- =
aq

Proof. The anticanonical divisor of E, (and hence of El+m) can be described as —K B =
D +as-S™ +as+S™ for some ag-, ag+ € Q. Taking into account that the parabolic subgroup

corresponding to vy is SL(2)x C*, and that (SL(2)XC*)- S~ # S~ and (SL(2)xC*)-S* # S*, it
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follows from Remark 2.2.14.1 that as- = ag+ = 1. Therefore, we have h¢-(p,,) = 1 = hg-(pyg. )
and h¢+(py,) = 1 = hg+(py,-), and hence the lemma. Q.E.D.

Proof of Theorem 5.4.1. By Remark 2.2.14.3, one has

1+b 1+b
@ =hg-(pyy)—1=——-1, B =he¢(pyy)—1=——--1
aq ap
In particular, @ — 8 < 0. Therefore, in view of Lemma 5.4.2, we have KE[m .C~ >0 and

Ky .C*>0ifand only if 1 +b < ap. Q.E.D.

,m

Remark 5.4.3.1. The existence of the minimal resolution W of Ej,, was proved by Panyushev
[Pan88], and he constructed it as the minimal resolution of El+m =~ SL(2)xp S*, which is
described by the Hirzebruch—Jung continued fraction arising from the cone o of the toric
surface S* (see also [BHO8]). It follows that the Hilbert—-Chow morphism 7y factors as

S — W — Elfm — Eip.

Therefore, Theorem 5.4.1 implies that the invariant Hilbert scheme € and the minimal
resolution "# coincide if and only if 1+ < ap. Consider the subdivision of o obtained by
adding a new ray Rspe;. This defines the morphism El’ m E;rm If 14+b < ap, then the
subdivision coincides with the first step of that defined by the Hirzebruch—Jung continued
fraction for constructing the minimal resolution #, concerning that the cone o is in the
normal form in the sense of [CLS11, §10.1] if and only if 1+ b < ap.
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Chapter 6

Further discussions

6.1 The Coxring and the associated invariant Hilbert scheme

Given an affine normal variety, there would be several ways to describe it as an affine quotient.
One of them, on which we elaborate below, is to consider its Cox ring equipped with a
natural action of a quasitorus. By definition, a quasitorus is an affine algebraic group whose
coordinate ring is generated by characters as a C-vector space ((ADHL15, Definition 1.2.1.1]).
Below we recall the construction of the Cox ring following [BHOS, Definition 2.1] (see also
[ADHL15, §1.4]).

Let Y be a normal variety with the field of rational functions C(Y). For a divisor D on Y,
we put £(D):={f € C(Y) : (f)+ D > 0}. Assume that every invertible regular function on
Y is constant, and that the divisor class group CI(Y) is finitely generated, so that there is an
isomorphism CI(Y) = Z"@®Z/m|Z®- - - ®Z/myZ. We fix divisors E, ..., E, inY that generate
the free part Z". We also fix a divisor W; (1 < j < s) in Y whose class generates Z/m;Z and
choose a rational function f; such that m;W; = (f;). For each tuple k = (ky, ..., ky4g) € Z™*5,
we set D(k) := X 1<icp kiEi + X1 <j<s kn+jW;. Then we have the following isomorphism for
any 1 <j <s:
aj: L(D(k)) — L(D(k)+m;W;), f— %

J
We denote by S the Z"+*-graded ring €, .7+ L (D(k)), and consider the ideal 7 of S generated
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by f—a;(f) forevery f € £(D(k)), k € Z"**,and j € {1, ..., s}. Then,
Cox(Y):=S/I

is called the Cox ring of Y. It is uniquely defined up to isomorphism and does not depend on
the choice of E;, W;, and f;. Moreover, it has a natural structure of a CI(Y)-graded ring:

Cox(Y) = S/I = @ [(Y,6y(D)).
[D]eCI(Y)

The CI(Y)-grading on Cox(Y) defines an action of the quasitorus G = Spec(C[CI(Y)]) on
X = Spec(Cox(Y)). We consider the quotient X//G := Spec(C[X]®), which comes with the
quotient morphism 7 : X — X //G.

Theorem 6.1.1 ((ADHL15, Corollary 1.6.3.4]). IfY is affine, then X //G is isomorphic to Y.

Theorem 6.1.2 ((ADHLI15, Remark 1.6.4.2]). Keep the above notation.

(i) Let Yreg C Y be the set of smooth points. Then, JT_l(Yreg) C X is smooth, and G acts
freely on n_l(Yreg).

(ii) Forany x € 7r_1(Yreg), the orbit G - x is closed in X.

Remark 6.1.2.1. By Theorem 6.1.2, the Hilbert function of a general fiber of 7 coincides with
that of the regular representation C[G].

We will use the following theorems in the forthcoming sections.

Theorem 6.1.3 ((ADHL15, Lemma 1.5.1.2]). Let Y be as above, and let U be an open subset
of Y such that codim(Y \ U) > 2. Then, Cox(Y) — Cox(U), f + f|y is an isomorphism.

Theorem 6.1.4 (|[ADHLI15, Theorem 4.5.1.8]). Let H be a connected affine algebraic group
with trivial Picard group Pic(H) and trivial character group X(H), and let F C H be a closed
subgroup. Define Fy := (), cxr)Ker(x) C F, and G := Spec(C[X(F)]). Then, G is isomorphic
to the quasitorus Spec(C[CI(H/F)]), and the Cox ring of H/F is given as follows:

F

Cox(H/F) = C[H/F,] = C[H]"" = EB ClH%

XEX(F)
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Remark 6.1.4.1. In the situation of Theorem 6.1.4, the H-action on the homogeneous space
H / F lifts to the Cox ring Cox(H / F) via the isomorphism Cox(H/F) = C[H/F;]. A more gen-
eral statement about lifting of a given action of an affine algebraic group on Y to Spec(Cox(Y))
can be found in [ADHL135, Theorem 4.2.3.2]. See also [Gai08, Proposition 2].

Given an affine normal variety Y with only constant invertible regular functions and finitely
generated divisor class group, Theorem 6.1.1 tells us that Y can be restored from its Cox ring
Cox(Y). This motivates us to consider the associated invariant Hilbert scheme and ask the
following question: if we describe Y as an affine quotient of X = Spec(Cox(Y)) by the action
of G = Spec(C[CI(Y)]) and if we take & to be the Hilbert function of a general fiber of the
quotient morphism 7 : X — Y, does the associated invariant Hilbert scheme Hilbg(X ) give
a resolution of singularities of Y via the Hilbert—-Chow morphism 7 : Hilbg(X )—Y?

In the forthcoming sections, we consider the case where Y is a closure of the maximal
nilpotent orbit in the Lie algebra sl, and ask if the corresponding Hilbert—Chow morphism
coincide with the Springer’s resolution. As we will see below, the case n = 2 is classical and
known to give a positive answer (Example 6.2.2). The case n = 3 will be discussed in the last
section.

6.2 Closures of nilpotent orbits in sl

We first review the one to one correspondence between nilpotent orbits in sl,, and partitions
of n. Given a partition d = [dy, ..., di] of n, i.e., di, ..., di are integers that satisfy d; >
-+ >dy > 0and dy +---+di = n, we can define a nilpotent element Aq in sl, according to
the partition d as follows:

Ja,
Aq = ,
Ja,
where
0 1
0
Ja, =
0 1
0
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is the Jordan block of size d;. The orbit of Ag under the conjugate action of SL(n) is denoted
by Oq. Since any nilpotent element A € sl,, is conjugate to a unique Ay for some partition d
of n, the correspondence d — Oy is bijective ((CM93, Proposition 3.1.7]). An order relation
is defined on the set of nilpotent orbits in sl,, by inclusion of closures. The maximal orbit
corresponds to the partition d = [n]. According to [Fu03, FNO4], the closure E of the
maximal nilpotent orbit admits a unique symplectic resolution of singularities, the Springer’s
resolution:

SL(n)xgn — Oy, (X,A) > XAX™,

wheren={A=(a;;)€sl, : a;j=0( > j)}, and SL(n)xpn denotes the quotient (SL(n)xn)/B
under the action of the Borel subgroup B = {b = (b;j) € SL(n) : b;; =0 (i > j)} defined by
b-(X,A)=(Xb~',bAb7).

A natural question that arises is whether the Springer’s resolution of O, can be obtained
as the invariant Hilbert scheme associated with the Cox ring Cox(%) in the sense of the
previous section. We first remark that codim(%\ Opy) = 2, so that the Cox ring of % is
isomorphic to that of O, by Theorem 6.1.3. Following the notation of Theorem 6.1.4, F
denotes the stabilizer of Af,):

F={X=(xi;j)€SL(n) : xij =Xi+1j+1 ( < j), xj =0( > j)}.

Also, we have F; = {X = (x;j) € F : x;; = 1}. The Cox ring of the maximal orbit O, is
isomorphic to the invariant ring

R:=ClSLm)]"= 5 cCISLm)y,
XEX(F)=Z/nZ

and the quotient of Spec(R) by the action of Spec(C[X(F)]) = u, is isomorphic to Oy,.

We denote by /], the invariant Hilbert scheme Hile "(Spec(R)) associated with the triple
(tn, Spec(R), h), where h is the Hilbert function of a general fiber of the quotient morphism

7 : Spec(R) — O,). As mentioned in Remark 6.1.2.1, & coincides with the Hilbert function
of the regular representation C[u,|. The corresponding Hilbert—Chow morphism

Y 1 Hn) — Opy)

is an isomorphism over the maximal orbit O}, so that the main component is F€"%" =
¥~ 1(Op,). We pose the following question.
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Question 6.2.1. Does the Hilbert—Chow morphism 7y (or its restriction to the main component
Hmeiny give a resolution of singularities of (»]7 And if it does, does it coincide with the
Springer’s resolution?

0 &
coincides with the unipotent radical of the Borel subgroup B ¢ SL(2). The Cox ring of % is

Example 6.2.2. Whenn =2, we have F' = {(f a) : fz =1,ac C}, and the subgroup F; C F

isomorphic to a polynomial ring in two variables C[#,1,], and the quasitorus Spec C[X(F')] =
o acts on C[ty, 1;] via multiplication on each variable. Therefore, the invariant Hilbert scheme
A7) is isomorphic to the u,-Hilbert scheme uo-Hilb(C?), which is known to give the minimal
(hence crepant) resolution of singularities of c2/ o via the Hilbert—Chow morphism ([IN96]).
Since the notion of crepant resolutions coincides with symplectic resolutions for symplectic
varieties, we see that the case n = 2 gives a positive answer to Question 6.2.1.

6.3 Thecasen=3

In this subsection, we consider the case where n = 3 and show the following.

Theorem 6.3.1. The Hilbert—Chow morphismy : /€131 —> O3] is a resolution of singularities.
Moreover, the invariant Hilbert scheme €3 is isomorphic to SL(3) Xgn, and under this
isomorphism, y coincides with the Springer’s resolution.

Remark 6.3.1.1. The nilpotent matrix corresponding to the partition d = [3] is

The closure Ops) is a 6-dimensional subvariety of sl3, and it has three SL(3)-orbits: Oy,
Op2,1}, and the origin O = Op;3). Also, the closed subgroups Fy C F C SL(3) are given as
follows:

b 1 a b
:w3:1,a,beC DF1=3]0 1 a|:abeC
0 1

a
w 0

1
Il
oot
o8 9

Let X = (x;j)1<i,j<3 be the coordinate of SL(3), and R = C[SL(3)]'. The action of F on
R gives it a natural structure of a Z/3Z-graded ring, and for each 0 < i < 2, the component
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R of weight i is an SL(3)-submodule of R. The F-invariant ring RF = Ry = C[SL(3)/F]is
generated by y; ; (1 <i,j < 3), where y; ; denotes the (i, j)-entry of the matrix ¥ = XA[3;X -1
Since % is normal and codim(%\ Op31) = 2, the regular functions y; ; on SL(3)/F = Oy
extend to those on @, which we denote by the same symbol y; ;. Set

X2,1 X222
X311 X32

XLl X1,2
X311 X32

X1,1 X1,2

831 =
X2,1 X222

) 832 =~ ) 833 =

b

and
fi=yrL1+y22+y33,
J2=Y22Y33 = Y23Y32 + Y1,1Y33 — Y13Y3,1 + V1,1Y22 — Y1.2Y2.1
= Y1,1831 52,1832+ ¥3,1833
fa= 12831+ 22832+ Y32833
f5=Y1383,1 + 23832 + 33833
fo=yiL1x11 +Y12%2,1 + Y1,3X3,1
f1=y21X1,1 +Y20X01 + Y233 1,
8= y3,1X1,1 +¥32X21 +Y33X31,
fo=g5,+y21x31 = y31201,
J10 = 83,1832+ ¥22X31 — ¥32X2.1,
Sf11 = 831833+ ¥23X31 — ¥33X2,1,
fi2 =85, = Y12%31 + y32X11,
S13 = 832833 — Y1.3X31 + ¥33XL1,
fia = &34+ y13%21 = y23X11,
fis = X7 = V12833 + ¥138325
Ji6 = X1,1%2,1 — ¥2,2833 + 238325
fi7 = x11X31 — ¥32833 + V33832
fis = X3, + 21833~ ¥2383.1,
J19 = x21x3,1 + ¥31833 — ¥3383,15
fr0 = X5 = V31832 + V328315
J21 = X1,183.1 — Y22Y33 + Y23Y33
S22 = Xx11832 + Y1233 — Y1.3Y3,25
J23 = X1,1833 — Y1223 + Y1.3)2.2,
J24 = X2,183.1 — Y2.1Y33 + Y23Y3.1,
J2s = X2,1832 = Y1.1Y33 + Y13Y3.1,
J26 = %2,1833 + Y1.1Y2.3 = Y1.3Y2.15
J27 = X3183,1 — Y2132 + Y22)3.15
28 = X31832+ Y1.1Y32 — Y12Y3.15
J29 = X31833 — Y1.1Y22 + Y12Y2.1-
We can check that the following lemma actually holds, by a brute-force calculation on the
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computer algebra system Macaulay2 [GS].

Lemma 6.3.2. The Fi-invariant ring R = C[SL(3)]"" is generated by X115 X2,15 X3,1, 83.1> 832,
833, and y;j (1 <i,j < 3), and the ideal of relations among these generators is generated by
fis ..., fro. Moreover, the weight space Ry (resp. R(2)) is generated by x1,1, x2,1, and x3
(resp. g3.1, 832, and g33) as a module over the F-invariant ring RY = R o).

Remark 6.3.2.1. Let V| = <X1,1,X2,1,X3’1>, and let V, = <g3’1,g3,2,g3,3>. Then, V| and V, are
SL(3)-submodules of R(j) and R(y), respectively. Moreover, V; is isomorphic to the standard
representation V of SL(3), and x;; is the highest weight vector with respect to the Borel
subgroup B ¢ SL(3). Also, V, is isomorphic to A2V = VY, and 833 is the highest weight
vector.

Recall that the Hilbert-Chow morphism vy : #3) — % is an isomorphism over the
maximal orbit O[3). The next lemma gives the ideal corresponding to the closed point which
is mapped to A3} under the isomorphism.

Lemma 6.3.3. Let I3 be the ideal of R generated by the entries of the matrix

yii yiz—=1  yi3
21 Y22 y3—1
Y31 Y32 Y33

and x21, X31, 3.1, 832, xlz’1 — 833, X1.1 —g§,3, x1,1833 — 1. Then, Ij3) defines a point in 7|3
and y([131]) = Ap).-

Proof. Let I C R be the unique u3-stable ideal such that y([/]) = A[3). Since the image of
the zero set of I under the quotient morphism x : SpecR — % is A3}, we get (y1,1, Y12 —
L, y13, ¥21> ¥22» Y23 — L, y3.1, ¥32, ¥33) C I. Taking into account that fy, f5, fe, f7, fi4,
fis, fa3 € I, one obtains (g3,1, €32, X2.1, X31, X7 — €33, 833~ X11, X1.1833 — 1) C I. Namely,
Iz) € 1. On the other hand, we have R/Ij3 = C[xy] /(xil — 1), which implies that the
closed subscheme of Spec R associated with the ideal /j3) defines a point in #€[3}. Therefore,

Iz =1. Q.E.D.

We consider the set 3‘6[3]3 of fixed points in 7|3 for the action of the Borel subgroup B.
The lemma below shows that #€|3) contains a unique B-fixed point.
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Lemma 6.3.4. Let Iy be the ideal of R generated by the entries of the matrix

Y1 Y12 Y13
Y21 Y22 Y23
Y31 Y32 Y33

and X2,1, X3.1, 83,1, 83,2 x12,1’ X1,183,3> g§,3. Then, 3‘6[3]3 = {[10]} In particular, 3‘6[3] is
connected.

Proof. Take any [I] € #€B. Then, we have y([I]) = O since the origin O € % is the unique
B-fixed point. Therefore, y;; € I for any 1 <i,j < 3. Since I C R is B-stable, we see
by Remark 6.3.2.1 that the weight spaces (R/I)(1) and (R/I);) of uz-weight 1 and 2 are
spanned by x| and g3 3, respectively. Therefore, (x21, X371, g3.1, g32) C I. Moreover, we get
(x12,1’ g§’3, x1,183.3) C I by the conditions fis, fi4, f23 € I. Thus, Iy C I. Since I is of colength
3, one obtains Iy = /. The connectedness of 73] follows from Theorem 2.1.7. Q.E.D.

Lemma 6.3.5. dimHom’’(Iy, R/Io) = 6 (= dim #"").

Proof. Let¢ € Homl’' (Io, R/Ip). Since R/Iy = C[x11,833]/ (xil, g§’3, x1,183.3) and ¢ preserves
the action of u3, we have

P(x21) = arx11, ¢(x31) = azxry, #(g31) = @3g33, #(832) = 24833
o(x7)) = asgas B(x11833) = a6 B(835) = arxnn, ¢(vij) =By

for some ay, ..., a7, B;j € C. On the other hand, since ¢ is a homomorphism of R-modules,

we get Bi11 = P21 = P31 =B32=PB33=0Dby f3, fa, f5. fe, f1. fs € I. Also, by fi4, fis € I, we
have @7 — 23 = @5 — B12 = 0. Moreover, we have B> = @ = 0 by fie, fo3 € I. Therefore,
dimHom%’ (1o, R/Ip) < 6, and hence the equality. Q.E.D.

Corollary 6.3.6. The invariant Hilbert scheme S€[3) is smooth and coincides with the main
component JC™"

Proof. This is an immediate consequence of Theorem 2.1.7. Q.E.D.

Proof of Theorem 6.3.1. Taking into account the discussions above, it remains to show that y
coincides with the Springer’s resolution. For each i € {1,2}, we define

ni: Hz — Gr(l,ViV) ~ P2, I — V;/Ker f;,

80



where f; is the composition of the natural inclusion F; < R;) and the surjection R;) —
(R/I) (see §2.1.6 for details). The isomorphism Gr(1,V}") = P? is given by sending sox 1" +
511" +52x31" to [s0 : 51 : 52], where x; 1" denote the dual basis of x;; (1 <i < 3). Similarly,
the isomorphism Gr(1,V,’) = P? is given by fog31" + 11832 + 133" > [to : 11 : t2], where
g3, denotes the dual basis of g3; (1 < j <3). Setn =n X : H3) — P2 x P2. Then we
have n([/31]) = ([1:0:0],[0:0: 1]). The stabilizer of n([/[31]) is the Borel subgroup B, and
hence we get a surjective morphism 7 : 73 — SL(3)/B. Let N = n~'(1), where 1 stands
for the identity matrix. Then, we have #€}3) = SL(3) xg N. We claim that N = n, where

0 yi2 yi3
n=410 0 y3]: y12 y13 »3€C
0 O 0

Let [/] € N, and let y([]) = (ai;)i<ij<3 € O] C sl3. By the construction of 7, we have
X21, X3,1, 83,1, 832 € I. Then it follows that aj) =daz1 =as) =axy =azp =dazz = 0 by the
conditions f3, f1, f5, f6, f7. f3, fie € I. This implies that N = n. Q.E.D.

Remark 6.3.6.1. One would be able to show that the answers to Question 6.2.1 is also positive
for the cases where n > 4 by using theorems from [Gra92].
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