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Chapter 1

Introduction

We work over the field of complex numbers C. By a variety we mean an irreducible re-

duced scheme of finite type. Let G be a reductive algebraic group, X an affine G-variety,

and h : Irr(G) −→ Z≥0 a Hilbert function that assigns a non-negative integer to each irre-

ducible representation of G. The invariant Hilbert scheme HilbG
h
(X) is a moduli space that

parametrizes G-stable closed subschemes of X whose coordinate rings have Hilbert function

h. It was first introduced by Alexeev and Brion [AB05] for G connected. Later, Brion [Bri13]

extended the construction to the case where G is any reductive algebraic group. Therefore, the

invariant Hilbert scheme can be considered as a generalization of the G-Hilbert scheme of Ito

and Nakamura [IN96] for a finite group G. If we take h to be the Hilbert function of a general

fiber of the quotient morphism π : X −→ X//G := Spec(C[X]G), we obtain a morphism

γ : HilbG
h (X) −→ X//G, [Z] 7→ Z//G.

The morphism γ is called the quotient-scheme map, or the Hilbert–Chow morphism. By the

choice of the Hilbert function h, it turns out that γ is an isomorphism over a dense open subset

Y0 of X//G. Therefore, the Zariski closure Hmain := γ−1(Y0) equipped with a reduced scheme

structure is an irreducible component of the invariant Hilbert scheme HilbG
h
(X), which is

called the main component of HilbG
h
(X). Since the restriction of γ to the main component

Hmain is projective and birational, we can ask the following questions:

Question 1.0.1. Does the restriction γ |Hmain give a resolution of singularities of the quotient

variety X//G?
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Question 1.0.2. Does the invariant Hilbert scheme HilbG
h
(X) coincide with the main compo-

nent Hmain? In other words, is HilbG
h
(X) irreducible?

When the group G is finite, the G-Hilbert scheme G-Hilb(X) is known to give a crepant

resolution of singularities of the quotient variety X/G if X is a smooth variety of dimension

less than four and if the G-action is Gorenstein ([IN96, Nak01, BKR01]). It provides a

moduli-theoretic perspective to the theory of McKay correspondence and has been actively

studied also in connection with representation theory. However, in the case of infinite groups,

not many examples of invariant Hilbert schemes are explicitly known except for some cases

where G is a classical group and X is a classical representation of G ([JR09], [Bec11],

[Ter14a], [Ter14b]). In this thesis, we focus on the fact that any 3-dimensional affine normal

quasihomogeneous SL(2)-variety can be described as a GIT quotient, and determine the

geometric structure of the associated invariant Hilbert scheme. This gives a new family of

examples where the corresponding Hilbert–Chow morphism is a resolution of singularities.

We also provide a necessary and sufficient condition for the resolution to be minimal. Here

we say that a resolution of singularities f : W −→ Y is minimal if KW ·C ≥ 0 holds for any

curve C ⊂ W that is contracted to a point under f , where KW denotes the canonical divisor of

W .

This thesis consists of six chapters. Below we summarize the content of each chapter.

In chapter 2, we first review general properties of invariant Hilbert schemes and spherical

varieties, then overview some known results on quasihomogeneous SL(2)-varieties, where

a variety with a reductive group action is called quasihomogeneous if it contains a dense

open orbit. In [Pop73], Popov gives a complete classification of 3-dimensional affine normal

quasihomogeneous SL(2)-varieties; they are uniquely determined by a pair of numbers (l,m) ∈

{Q∩(0,1]} ×N, where (0,1] stands for the half-open interval {x : 0 < x ≤ 1}. Popov proves

that the variety El,m corresponding to a pair (l,m) is smooth if and only if l = 1; otherwise

El,m contains a unique singular point, which is SL(2)-invariant. After the work of Popov, such

SL(2)-varieties have been extensively studied by Kraft [Kra84], Panyushev [Pan88, Pan91],

Gaı̆fullin [Gaı̆08], Batyrev and Haddad [BH08], and others. Batyrev and Haddad described

El,m as a GIT quotient of an affine hypersurface Hq−p inC5 modulo an action ofC∗× µm, where

p and q are positive coprime integers such that l = p/q. By using the quotient description,
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they show that there exists an equivariant flip

E−
l,m

//

''

E+
l,m

ww
El,m

by variation of GIT quotients. They also show that the varieties E−
l,m

and E+
l,m

are dominated

by a weighted blow-up E′
l,m

:= Blω
O
(El,m) of El,m with a weight ω, where ω depends on the

parameters l and m. Furthermore, they define an additional C∗-action on El,m and prove that

El,m becomes a spherical SL(2)×C∗-variety with respect to the Borel subgroup B̃ := B×C∗.

In chapters 3,4, and 5, we study the birational geometry of El,m through the invariant

Hilbert scheme H := Hilb
C∗×µm
h

(Hq−p) associated with the triple (C∗× µm,Hq−p, h), where h

is the Hilbert function of a general fiber of the quotient morphism π : Hq−p −→ El,m, and by

examining the corresponding Hilbert–Chow morphism γ : H −→ El,m. The main results of

this thesis are the following.

Theorem 1.0.3 (Corollaries 3.1.3 and 5.3.3 and Theorem 3.2.4). The invariant Hilbert scheme

H is irreducible and reduced (therefore, H coincides with the main component Hmain), and

the Hilbert–Chow morphism γ is an equivariant resolution of singularities of El,m. Moreover,

H is described as follows.

(i) If l = 1, then H is isomorphic to E1,m.

(ii) If l < 1 and if El,m is toric (i.e. if q − p divides m, see Theorem 2.3.3 and Remark

2.3.3.1), then H is isomorphic to E′
l,m

.

(iii) If l < 1 and if El,m is non-toric, then H is isomorphic to the minimal resolution Ẽ′
l,m

of

E′
l,m

.

Theorem 1.0.4 (Theorem 5.4.1). Let k = g.c.d.(m,q− p), a = m/k, and b = (q− p)/k. Then,

the Hilbert–Chow morphism γ is a minimal resolution of El,m if and only if 1+ b ≤ ap.

In chapter 3, we describe the minimal resolution Ẽ′
l,m

in terms of the colored fan by using

the combinatorics of the colored cone of E′
l,m

. In chapter 4, we give explicit descriptions of

the ideals corresponding to each SL(2)-orbit of the invariant Hilbert scheme H. In chapter 5,

we first show that the Hilbert–Chow morphism γ factors through Ẽ′
l,m

building on the results
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from chapters 3 and 4, and then we complete the proof of Theorem 1.0.3 by calculating the

dimension of the Zariski tangent space at each Borel-fixed point. The proof of Theorem 1.0.4

will be given at the end of the chapter.

In chapter 6, we present the following question as a generalization of the framework of

the problem we have considered in the previous chapters.

Question 1.0.5. When a singularity is described as a GIT quotient of its Cox ring by the natural

action of a quasitorus, does the corresponding invariant Hilbert scheme give a resolution of

singularities?

This thesis considers the question for the singularity of the closure of the maximal nilpotent

orbit in sln. We will see that, at least if n = 2,3, the corresponding Hilbert–Chow morphism

coincides with the Springer’s resolution.
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Chapter 2

Preliminaries

2.1 The invariant Hilbert scheme

Brion’s survey [Bri13] offers a detailed introduction to the invariant Hilbert scheme. In this

section, we briefly review some definitions and properties on invariant Hilbert schemes.

2.1.1 The invariant Hilbert scheme and the Hilbert–Chow morphism

Let G be a reductive algebraic group, and denote by Irr(G) the set of isomorphism classes of

irreducible representations of G. For any G-module V , we have its isotypical decomposition:

V �
⊕

M∈Irr(G)

HomG(M,V) ⊗ M .

The dimension of HomG(M,V) is called the multiplicity of M in V . If the multiplicity is finite

for every M ∈ Irr(G), it defines a function

hV : Irr(G) −→ Z≥0, M 7→ hV (M) := dimHomG(M,V),

which is called the Hilbert function of V .

Let X be an affine G-variety, S a Noetherian scheme on which G acts trivially, and Z a

closed G-subscheme of X × S. We denote the projection Z −→ S by f . Then, according to
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[Bri13], there is a decomposition of f∗OZ as an OS-G-module

f∗OZ �

⊕
M∈Irr(G)

FM ⊗ M,

where sheaves of covariants FM :=HomG
OS
(M ⊗OS, f∗OZ ) are sheaves of OS-modules. Assume

that each FM is a coherent OS-module. Then, each of them is locally-free if and only if it is

flat over S.

Definition 2.1.2 ([AB05, Definition 1.5]). Let h : Irr(G) −→ Z≥0 be a Hilbert function. For

a given triple (G,X, h), the associated functor

HilbG
h (X) : (Sch)op −→ (Sets)

S 7→




Z

f
""

⊂ X × S

pr2
��

S

����������

Z is a closed G-subscheme of X × S;

f is a flat morphism;

f∗OZ �
⊕

M∈Irr(G)FM ⊗ M;

FM is locally-free of rank h(M) over OS



,

is called the invariant Hilbert functor.

Theorem 2.1.3 ([Bri13, Theorem 2.11]). The invariant Hilbert functor is represented by a

quasiprojective scheme HilbG
h
(X), the invariant Hilbert scheme associated with the affine

G-variety X and the Hilbert function h. We denote by UnivG
h
(X) ⊂ X ×HilbG

h
(X) the universal

family over HilbG
h
(X).

We denote by T[Z]HilbG
h
(X) the Zariski tangent space to the invariant Hilbert scheme

HilbG
h
(X) at a closed point [Z]. We sometimes represent a closed point of HilbG

h
(X) by the

defining ideal IZ of Z if there is no danger of confusion.

Theorem 2.1.4 ([Bri13, Proposition 3.5]). With the above notation, we have

T[Z]HilbG
h (X) � HomG

C[X]
(IZ,C[X]/IZ ).

The invariant Hilbert scheme comes with a projective morphism called the quotient-

scheme map, or the Hilbert–Chow morphism. This is a generalization of the Hilbert–Chow

morphism from the G-Hilbert scheme G-Hilb(X) to the quotient variety X/G that sends a
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G-cluster to its support. The construction of the quotient-scheme map in a general setting

is explained in [Bri13, §3.4]. Here we restrict ourselves to the situation we consider in this

thesis. Let

π : X −→ X//G := Spec(C[X]G)

be the quotient morphism. By the generic flatness theorem, π is flat over a non-empty open

subset Y0 of X//G. According to [Bri13, §3.4], every scheme-theoretic fiber of π over the flat

locus yields the same Hilbert function. This special function is called the Hilbert function of

a general fiber of π, and we denote it by hX . Since hX(0) = 1, where 0 stands for the trivial

representation of G, the associated quotient-scheme map is a morphism

γ : HilbG
hX
(X) −→ X//G, [Z] 7→ Z//G.

Proposition 2.1.5 ([Bri13, Proposition 3.15], [Bud10, Theorem I.1.1]). With the preceding

notation, the diagram

UnivG
hX
(X)

pr1 //

pr2

��

X

π

��

HilbG
hX
(X) γ

// X//G

commutes. Moreover, the pullback of γ to the flat locus Y0 of π is an isomorphism.

The Zariski closure Hmain := γ−1(Y0) equipped with a reduced scheme structure is an

irreducible component of HilbG
hX
(X), which is called the main component of HilbG

hX
(X)

([Bec11, Definition 2.4], [LT15, Definition 2.3]). Since the restriction

γ |Hmain : H
main −→ X//G

is projective and birational, it is natural to ask whether γ |Hmain gives a resolution of singular-

ities of the quotient variety X//G.

2.1.6 Tools to study the invariant Hilbert scheme

We consider a situation where there is an action on X by another connected reductive algebraic

group G′. Suppose that the action of G′ on X commutes with that of G. Then, G′ acts on

HilbG
hX
(X), and the quotient-scheme map γ is G′-equivariant ([Bri13, Proposition 3.10]). Let
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us especially consider the action of a Borel subgroup B′ ⊂ G′ on HilbG
hX
(X), and denote by

HB′
the set of fixed points for the action of B′.

Theorem 2.1.7 ([Ter14a, Lemmas 1.6 and 1.7]). Suppose that X//G has a unique closed

G′-orbit, and that this orbit is a point. Then the following hold.

(i) Each G′-stable closed subset of HilbG
hX
(X) contains at least one fixed point for the

action of the Borel subgroup B′. Moreover, if HilbG
hX
(X) has a unique B′-fixed point,

then HilbG
hX
(X) is connected.

(ii) The following are equivalent:

(a) HilbG
hX
(X) =Hmain and HilbG

hX
(X) is smooth;

(b) dimT[Z]HilbG
hX
(X) = dimHmain for any [Z] ∈ HB′

, and HilbG
hX
(X) is connected.

There is one more useful tool to study the invariant Hilbert scheme. To elaborate, let

G,X, hX , and G′ be as above. For any irreducible representation M ∈ Irr(G), there is a finite-

dimensional G′-module FM that generates HomG(M,C[X]) as a module over the invariant

ring C[X]G ([Bec11, Proposition 4.2]). Let [Z] ∈ HilbG
hX
(X), and let

fM,Z : FM −→ HomG(M,C[Z])

be the composition of the inclusion FM ֒→ HomG(M,C[X]) and the natural surjection

HomG(M,C[X]) −→ HomG(M,C[Z]). Then, the quotient vector space FM/Ker fM,Z de-

fines a point in the Grassmannian Gr(hX(M),F∨
M
). In this way, we obtain a G′-equivariant

morphism

ηM : HilbG
hX
(X) −→ Gr(hX(M),F∨

M), [Z] 7→ FM/Ker fM,Z .

Moreover, there is a finite subset M ⊂ Irr(G) such that the morphism

γ×
∏

M∈M

ηM : HilbG
hX
(X) −→ X//G×

∏
M∈M

Gr(hX(M),F∨
M)

is a closed immersion (see [Bec11, §4.2] for details).

2.2 Spherical varieties

The main references for this section are [Kno91], [Pas17], [Per14], and [Tim11].
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2.2.1 Classification

Spherical varieties are classified by combinatorial data called colored fans, which are gener-

alization of fans for toric varieties.

Let G be a connected reductive algebraic group, and let H be an algebraic subgroup of

G. A normal G-variety X is called spherical if it contains a dense open orbit under a Borel

subgroup B of G. By a spherical embedding, we mean a normal G-variety X together with

an equivariant open embedding G/H ֒→ X of a homogeneous spherical variety G/H.

Let X be a spherical embedding of G/H with respect to a Borel subgroup B. We denote

by X(B) the group of characters of B, and by C(G/H)(B) the set of rational B-eigenfunctions:

C(G/H)(B) =
{

f ∈ C(G/H)∗ : ∃χ f ∈ X(B) ∀g ∈ B g · f = χ f (g) f
}
.

Consider a homomorphism τ : C(G/H)(B) −→ X(B) defined by f 7→ χ f , and let Γ ⊂ X(B) be

its image. Then, Γ is a finitely generated free abelian group. Since G/H contains a dense

B-orbit, the kernel of τ consists of constant functions. Therefore, we get the exact sequence

1 −→ C∗ −→ C(G/H)(B) −→ Γ −→ 0.

We see that any valuation v : C(G/H)∗ −→ Q of G/H defines a homomorphism

C(G/H)(B) −→ Q, f 7→ v( f ),

which factors through Γ. Hence, it induces an element ρv ∈ Q := Hom(Γ,Q), which satisfies

ρv(χ f ) = v( f ) for any f ∈ Γ. A valuation v is called G-invariant if v(g · f ) = v( f ) holds for

any g ∈ G. We denote by V the set of G-invariant valuations. Since it is known that the map

V −→ Q, v 7→ ρv is injective ([LV83, 7.4 Proposition]), we will not distinguish V and its

image in Q. Moreover, the set of G-invariant valuations V is known to be a finitely generated

cone ([Kno91, Corollary 5.3]).

Definition 2.2.2 ([Pas17, Definition 2.8]). A primitive element of a ray of the opposite −V∨

of the dual in Γ⊗ZQ is called a spherical root of X .

Let Y be a G-orbit of X , and set XY,G := {x ∈ X : Y ⊂ G · x}. Then, XY,G is a G-stable

open subset of X , and Y is a unique closed G-orbit of XY,G. A spherical variety X is called

11



simple if it contains a unique closed G-orbit. It is known that any spherical variety is covered

by finitely many simple spherical varieties ([Kno91, §2], [Per14, §3.1]).

Let us denote by D(X) the set of B-stable prime divisors on X . We simply write D for

D(G/H), and an element of D is called a color. If a divisor D ∈ D(X) non-trivially meets the

open orbit G/H, then we have D∩(G/H) ∈ D. Otherwise, D is an irreducible component of

the complement X \ (G/H) and hence is G-stable. Therefore, each G-orbit Y of X determines

two sets

BY (X) := {vD ∈ V : D ∈ DY (X) is G-stable},

where vD stands for the valuation associated to the divisor D, and

FY (X) := {D∩(G/H) ∈ D : D ∈ DY (X) is not G-stable},

where DY (X) := {D ∈ D(X) : Y ⊂ D}.

Remark 2.2.2.1. Let X be a simple spherical variety with a closed orbit Y . Set X0 :=

X \
∪

D∈D(X)\DY (X) D, and set X1 := G/H \
∪

D∈D\FY (X) D. Then, X0 is a B-stable affine open

subset, and its coordinate ring is described as follows:

C[X0] = { f ∈ C[X1] : v( f ) ≥ 0 for all v ∈ BY (X)}.

Moreover, we have X = GX0 (see [Kno91, Theorems 2.1 and 2.3]).

Consider a map ϱ : D −→ Q given by D 7→ ϱ(D) := ρvD .

Definition 2.2.3. A colored cone is a pair (C,F) with C ⊂ Q and F ⊂ D that satisfies the

following properties: C is a cone generated by ϱ(F) and finitely many elements of V; and

C◦∩ V , ∅, where C◦ stands for the relative interior of C. A colored cone (C,F) is called

strictly convex if C is strictly convex and if 0 < ϱ(F). A pair (C0,F0) is called a face of a

colored cone (C,F) if C0 is a face of C, C◦
0
∩ V , ∅, and if F0 =F∩ ϱ−1(C0).

For a G-orbit Y of X , CY (X) ⊂ Q denotes the cone generated by ϱ(FY (X)) and BY (X).

Theorem 2.2.4 ([LV83, 8.10 Proposition]). The map X 7→ (CY (X),FY (X)) gives a bijective

correspondence between the isomorphism classes of simple spherical varieties X with a closed

orbit Y and strictly convex colored cones.
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Theorem 2.2.5 ([Kno91, Lemma 3.2]). Let X be a spherical variety, and let Y be a G-orbit.

Then, the map Z 7→ (CZ (X),FZ (X)) gives a bijective correspondence between G-orbits whose

closure contain Y and faces of (CY (X),FY (X)).

Definition 2.2.6. A colored fan is a non-empty finite set F of colored cones satisfying the

following properties: every face of (C,F) ∈F belongs to F; for every v ∈ V, there is at most

one (C,F) ∈F such that v ∈ C◦. A colored fanF is called strictly convex if (0,∅) ∈F, namely

if all elements of F are strictly convex.

For a spherical variety X , set F(X) := {(CY (X),FY (X)) : Y ⊂ X is a G-orbit}.

Theorem 2.2.7 ([Kno91, Theorem 3.3]). The map X 7→F(X) gives a bijective correspondence

between the isomorphism classes of spherical varieties and strictly convex colored fans.

Remark 2.2.7.1 ([Kno91, §3]). An order relation can be given to the set of G-orbits of X by

the inclusion of closures. Theorems 2.2.4 and 2.2.5 imply that Y 7→ (CY (X),FY (X)) is an

order-reversing bijection between the set of G-orbits and F(X). In particular, the open orbit

corresponds to (0,∅).

Theorem 2.2.8 ([Kno91, Theorem 4.1]). Let X and X′ be spherical embeddings of G/H.

Then, the following are equivalent.

(i) An equivariant birational morphism X −→ X′ exists.

(ii) For any (C,F) ∈F(X) there exists (C′,F′) ∈F(X′) such that C ⊂ C′ and F ⊂ F′.

Definition 2.2.9. A spherical variety X is called toroidal if FY (X) = ∅ for any G-orbit Y ,

namely if no D ∈ D contains a G-orbit in its closure.

Remark 2.2.9.1. Let X be a toroidal spherical variety whose maximal colored cones are

(C1,∅), . . ., (Cr,∅). A local structure theorem for toroidal spherical varieties ([BP87, 3.4],

see also [Tim11, Theorem 29.1] and [Per14, Proposition 3.3.2]) implies that any equivari-

ant resolution of singularities for X can be obtained by subdividing the cones C1, . . ., Cr

appropriately, as in the toric case.
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2.2.10 Weil divisors on a spherical variety

Let X be a spherical embedding of G/H. According to [Per14, §3.2], any Weil divisor on X

is linearly equivalent to a divisor of the form δ =
∑

D∈D(X) nDD.

Theorem 2.2.11 ([Per14, Theorem 3.2.1]). With the above notation, δ is Cartier if and only

if for any G-orbit Y there exists fY ∈ C(G/H)(B) that satisfies nD = vD( fY ) for any D ∈ DY (X).

Definition 2.2.12 ([Per14, Definition 3.2.2]). Let X be a spherical variety.

(i) We denote by C(X) the union of all CY (X), where Y runs over all G-orbits.

(ii) A collection l = (lY ) indexed by G-orbits Y is called a piecewise linear function on the

colored fan F(X) of X if it satisfies the following conditions:

• for each G-orbit Y , lY is the restriction of an element of Γ to CY (X);

• for any G-orbits Y and Z with Z ⊂ Y , we have lZ |CY (X) = lY .

We denote by PL(X) the abelian group of piecewise linear functions on F(X).

Remark 2.2.12.1 ([Per14, Remark 3.2.3]). An element l ∈ PL(X) depends only on its values on

maximal colored cones, namely cones corresponding to closed orbits in the sense of Remark

2.2.7.1.

Let CarB(X) be the group of B-stable Cartier divisors on X . Then, we have a homomor-

phism CarB(X) −→ PL(X), δ 7→ lδ, where (lδ)Y = fY with the notation of Theorem 2.2.11.

Set D0(X) :=
∪

DY (X), where Y runs over all G-orbits.

Theorem 2.2.13 ([Tim11, Theorem 17.18]). For any B-stable Cartier divisor

δ =
∑

D∈D0(X)

vD(lδ)D+
∑

D∈D(X)\D0(X)

nDD

on X , the following properties are equivalent.

(i) The divisor δ is generated by global sections.

(ii) For any G-orbit Y , there exists fY ∈ C(G/H)(B) that satisfies the following conditions:

14



• fY |CY (X) = lδ |CY (X);

• fY |C(X)\CY (X) ≤ lδ |C(X)\CY (X);

• vD( fY ) ≤ nD for any D ∈ D(X) \D0(X).

Theorem 2.2.14 ([Pas17, Theorem 2.15]). Keep the above notation. Let D ∈ D, and choose a

simple root α with respect to B such that the action of the corresponding parabolic subgroup

Pα does not preserve the divisor D, i.e., Pα ·D , D. Then, one and only one of the following

cases occurs: (i) α is a spherical root of G/H; (ii) 2α is a spherical root of G/H; (iii) neither

α nor 2α is a spherical root of G/H.

Remark 2.2.14.1 ([Pas17, §2]). The anticanonical divisor of a spherical embedding G/H ֒→ X

can be described as

−KX =

∑
D∈D(X)\D

D+
∑
D∈D

aDD,

where the coefficient aD attached to D ∈ D is determined according to the type of D classified

in Theorem 2.2.14. Denote by P ⊂ G the stabilizer of the open B-orbit of G/H, and by SP

the set of simple roots α such that −α is not a weight of the Lie algebra of P. Then the

integer aD is given as follows: if D is of type (i) or (ii), aD = 1; and if D is of type (iii),

aD =
∑
α∈R+

P
⟨α,α∨⟩, where R+

P
stands for the set of positive roots with at least one non-zero

coefficient for a simple root of SP.

Remark 2.2.14.2. Keep the notation of Remark 2.2.14.1. For later use, we consider a linear

function h C associated to a colored cone (C, F) ∈ F(X): the function h C is defined so that

h C(ρD) = aD for any D ∈ F, and that h C(v) = 1 for any primitive element v of a ray of C that

is not generated by some ρD with D ∈ F (cf. [Pas17, Proposition 5.2]).

Remark 2.2.14.3. Let X be aQ-Gorenstein spherical G/H-embedding. Given a G-equivariant

resolution of singularities f : Y −→ X , one has KY = f ∗KX +
∑

i∈I aiFi for some ai ∈ Q, where

{Fi : i ∈ I} is the set of exceptional divisors of f . Let (C, F) be the colored cone of F(X)

such that ρFi
∈ C under the notation of Remark 2.2.14.2. Then, according to the proof of

[Pas17, Proposition 5.2], the coefficient ai attached to Fi is h C(ρFi
)−1.
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2.3 Affine normal quasihomogeneous SL(2)-varieties

2.3.1 Classification

Popov [Pop73] gives a complete classification of affine normal quasihomogeneous SL(2)-

varieties. Consult also the book of Kraft [Kra84, III.4].

Theorem 2.3.2 ([Pop73, Corollary of Proposition 9]). Every 3-dimensional affine normal

quasihomogeneous SL(2)-variety containing more than one orbit is uniquely determined by

a pair of numbers (l,m) ∈ {Q∩(0,1]} ×N.

Remark 2.3.2.1. The classification of 3-dimensional affine homogeneous SL(2)-varieties can

be found in [Pop73, Proposition 6].

We denote by El,m the variety corresponding to a pair (l,m). The numbers l and m are

called the height and the degree of El,m, respectively. Write l = p/q, where g.c.d.(q, p) = 1,

and set

k := g.c.d.(m,q− p), a :=
m

k
, b :=

q− p

k
. (2.1)

Theorem 2.3.3 ([Gaı̆08], see also [BH08, Corollary 2.7]). An affine normal quasihomoge-

neous SL(2)-variety El,m is toric if and only if q− p divides m.

Remark 2.3.3.1 ([BH08, §3]). Let {e1,e2,e3} be the standard basis of R3. If q− p divides

m, i.e., if m = a(q− p), then the toric variety El,m is defined by the cone
∑4

i=1R≥0vi, where

v1 = e1, v2 = −e1+ aqe3, v3 = e2, and v4 = −e2+ ape3.

We use the following notation for some closed subgroups of SL(2):

T :=

{(
t 0

0 t−1

)
: t ∈ C∗

}
, B :=

{(
t u

0 t−1

)
: t ∈ C∗, u ∈ C

}
,

Un :=

{(
ζ u

0 ζ−1

)
: ζn
= 1, u ∈ C

}
, Cn :=

{(
ζ 0

0 ζ−1

)
: ζn
= 1

}
.

Remark 2.3.3.2. An SL(2)-variety El,m is smooth if and only if l = 1.

(i) If l = 1, then E1,m contains two SL(2)-orbits: the open orbit U � SL(2)/Cm and a

2-dimensional orbit D � SL(2)/T . It is known that

E1,m � SL(2)×T C := Spec
(
C[SL(2)×C]T

)
,
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where T acts on C by the character χm : t 7→ tm (see [Kra84, III.4.5, Beispiel 2] and

[Pan91, Proposition 5]).

(ii) If l < 1, then El,m contains three SL(2)-orbits: the open orbit U � SL(2)/Cm, a 2-

dimensional orbit D � SL(2)/Ua(q+p), and the closed orbit {O}. The fixed point O is a

unique singular point, which is SL(2)-invariant.

Remark 2.3.3.3. Let l ≤ 1. An explicit construction of El,m reduces to determine a system of

generators of the following semigroup ([Kra84, III.4.7, Satz 1], [Pan88]):

M+l,m :=
{
(i, j) ∈ Z2

≥0 : j ≤ li, m|(i− j)
}
.

Let (i1, j1), . . ., (iu, ju) be a system of generators of M+
l,m

, and consider a vector

v = (X i1Y j1, . . ., X iuY ju ) ∈ V(i1+ j1) ⊕ · · · ⊕V(iu + ju) = V,

where V(n) := Symn⟨X,Y⟩ is the irreducible SL(2)-representation of highest weight n. Then,

El,m is isomorphic to the closure SL(2) · v ⊂ V .

j =
p

q
i

M+
l,m

i

j

q

p

i− j = m i− j = 2m

Figure 2.1: The semigroup M+
l,m

Remark 2.3.3.4. If l = 1, then we see that M+
1,m

is minimally generated by (1,1) and (m,0). An

algorithm for finding a system of generators of M+
l,m

for l < 1 can be found in [Pan88]. By

applying the algorithm for the case when m = a(q− p), i.e., when El,m is a toric variety (see

Theorem 2.3.3), we see that M+
l,m

is minimally generated by (m,0), (m+1,1), . . ., (aq,ap).
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2.3.4 Quotient description

According to [BH08, §1], an affine normal quasihomogeneous SL(2)-variety El,m has a

description as a categorical quotient of a hypersurface in C5. We consider C5 as the SL(2)-

module V(0) ⊕V(1) ⊕V(1) with coordinates X0, X1, X2, X3, X4, and identify X1, X2, X3, X4

with the coefficients of the 2× 2 matrix

(
X1 X3

X2 X4

)
so that SL(2) acts by left multiplication.

We consider actions of the following diagonalizable groups on C5:

G0 := {diag(t, t−p, t−p, tq, tq) : t ∈ C∗}, Gm := {diag(1, ζ−1, ζ−1, ζ, ζ) : ζm
= 1}.

It is easy to see that the SL(2)-action on C5 commutes with the G0 ×Gm-action.

Theorem 2.3.5 ([BH08, Theorem 1.6]). Let El,m be a 3-dimensional affine normal quasiho-

mogeneous SL(2)-variety of height l = p/q ≤ 1 and of degree m. Then, El,m is isomorphic to

the categorical quotient of an affine hypersurface Hq−p ⊂ C
5 defined by X

q−p

0
= X1X4 − X2X3

modulo the action of G0 ×Gm.

Remark 2.3.5.1. According to the proof of [BH08, Theorem 1.6], the dense open orbit U

of El,m is isomorphic to the G0 ×Gm-quotient of the open subset in Hq−p defined by the

condition X0 , 0. Also, the ring of G0-invariants of Hq−p ∩ {X0 , 0} is generated by the

monomials X := X
p

0
X1, Y := X

−q

0
X3, Z := X

p

0
X2, and W := X

−q

0
X4, which satisfy the equation

det

(
X Y

Z W

)
= X

p−q

0
X1X4 − X

p−q

0
X2X3 = 1.

An SL(2)-variety El,m has another description as an affine categorical quotient. In order

to see this, let Hb ⊂ C
5 be an affine hypersurface defined by the equation Y b

0
= X1X4 − X2X3,

and consider the action of the group G′
0
×Ga, where

G′
0 := {diag(tk, t−p, t−p, tq, tq) : t ∈ C∗}, Ga := {diag(1, ζ−1, ζ−1, ζ, ζ) : ζa

= 1}.

Theorem 2.3.6 ([BH08, Theorem 1.7]). Let El,m be a 3-dimensional affine normal quasiho-

mogeneous SL(2)-variety of height l = p/q ≤ 1 and of degree m. Then, El,m is isomorphic to

the categorical quotient of Hb modulo the action of G′
0
×Ga.

Remark 2.3.6.1. According to the proof of [BH08, Theorem 1.7], G0×Gm contains a subgroup

isomorphic to G′
k
= {diag(ζ, 1, 1, 1, 1) : ζ k

= 1}, and the hypersurface Hb is isomorphic to

the G′
k
-quotient of Hq−p.
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Theorem 2.3.7 ([BH08, Corollary 2.6]). For any affine SL(2)-variety El,m, the Cox ring

Cox(El,m) of El,m is isomorphic to the coordinate ring C[Hb] of Hb.

Let L− and L+ be linearizations of the trivial line bundle over Hb corresponding to non-

trivial characters χ− : G′
0
×Ga −→ C∗, (t, ζ) 7→ tk−p+q and χ+ : G′

0
×Ga −→ C∗, (t, ζ) 7→

t−k+p−q of G′
0
×Ga, respectively. Also, consider the Zariski open subsets U− := Hb \ {X3 =

X4 = 0} and U+ := Hb \ {X1 = X2 = 0} of Hb.

Theorem 2.3.8 ([BH08, Propositions 3.2 and 3.3]). The subsets Hss
b
(L−) and Hss

b
(L+) of

semistable points of Hb with respect to the G′
0
×Ga-linearized line bundles L− and L+ are U−

and U+, respectively.

Theorem 2.3.9 ([BH08, Theorem 3.4]). Set E−
l,m

:= Hss
b
(L−)//(G′

0
×Ga), and set E+

l,m
:=

Hss
b
(L+)//(G′

0
×Ga). Then, the open embeddings Hss

b
(L−) ⊂ Hb and Hss

b
(L+) ⊂ Hb define

natural birational morphisms E−
l,m

−→ El,m and E+
l,m

−→ El,m, and the SL(2)-equivariant flip

E−
l,m

//

''

E+
l,m

ww
El,m

.

Remark 2.3.9.1. Let El,m ֒→ V � V(i1 + j1) ⊕ · · · ⊕V(iu + ju) be the equivariant closed em-

bedding mentioned in Remark 2.3.3.3, and consider an action of t ∈ C∗ on V defined by

multiplication of (ti1− j1, . . ., tiu− ju ). Then, since this C∗-action commutes with the SL(2)-

action, the affine variety El,m ⊂ V remains stable under the C∗-action. This enables us to

consider El,m as an SL(2)×C∗-variety. The same C∗-action on El,m can be defined in another

way: an action of C∗ on Hb defined by the matrices {diag(1, s−1, s−1, s, s) : s ∈ C∗} commutes

with the SL(2)×G′
0
×Ga-action, and therefore it descends to El,m (see [BH08, Remarks 3.12

and 4.2]).

Remark 2.3.9.2 ([BH08, Remark 3.12]). Let l < 1, and let E′
l,m

:= Blω
O
(El,m) be the weighted

blow-up of El,m with weight ω defined by the C∗-action considered in Remark 2.3.9.1. The

exceptional divisor D′ of the weighted blow-up E′
l,m

−→ El,m is isomorphic to P1×P1, and we

obtain surjective morphisms γ− : E′
l,m

−→ E−
l,m

and γ+ : E′
l,m

−→ E+
l,m

by contracting P1 ×P1

in different directions to P1, which fit into the following commutative diagram:

E′
l,mγ−

ww
γ+

''
E−

l,m
//

''

E+
l,m

ww
El,m
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The exceptional divisor D′
� P1×P1 contains two SL(2)×C∗-orbits under the diagonal action

of SL(2) and under the trivial action of C∗: the closed orbit C = (SL(2)×C∗) · ([1 : 0], [1 : 0])

and a 2-dimensional orbit C′
= (SL(2)×C∗) · ([1 : 0], [0 : 1]).

Theorem 2.3.10 ([BH08, Proposition 3.13]). Let C± be the image of D′ under the morphism

γ±. Then the canonical divisor KE±
l,m

of E±
l,m

has the following intersection number with C±:

KE−
l,m

·C−
= −

(1+ b)k

aq2
, KE+

l,m
·C+ =

(1+ b)k

ap2
.

Theorem 2.3.11 ([BH08, §3]). The weighted blow-up E′
l,m

contains a unique closed SL(2)×

C∗-orbit C, which is isomorphic to P1. Moreover, along the closed orbit C, E′
l,m

is locally

isomorphic to C×C2/µb.

Remark 2.3.11.1. By Theorem 2.3.3, El,m is toric if and only if b = 1. Therefore, in view of

Theorem 2.3.11, E′
l,m

is smooth if and only if El,m is toric. Furthermore, if El,m is toric, then

the weight ω is trivial since we have i1 − j1 = · · · = iu − ju = m (with the notation of Remark

2.3.9.1) by Remark 2.3.3.4, in which case E′
l,m

is the usual reduced blow-up of the fixed point

O in El,m.

2.3.12 Spherical geometry

Theorem 2.3.13 ([BH08, Proposition 4.1]). An affine SL(2) ×C∗-variety El,m is spherical

with respect to the Borel subgroup B̃ := B×C∗.

Batyrev and Haddad ([BH08, §4]) compute the colored cones of El,m, E−
l,m

, E+
l,m

, and E′
l,m

.

The lattice Γ of rational B̃-eigenfunctions on U is given as follows (see Remark 2.3.5.1 for the

definition of the variables Z and W):

Γ = {Z iW j ∈ C(U)∗ : m|(i− j)}.

The varieties El,m, E−
l,m

, and E+
l,m

contain exactly three B̃-stable divisors D = (Hb ∩ {Y0 =

0})//G′, S−
= (Hb ∩ {X4 = 0})//G′, and S+ = (Hb ∩ {X2 = 0})//G′, where G′

= G′
0
× Ga,

and E′
l,m

contains an SL(2) ×C∗-stable divisor D′
� P1 ×P1, the exceptional divisor of the

weighted blow-up E′
l,m

−→ El,m. The divisors D, S−, S+, and D′ define lattice vectors

ρvD, ρvS−, ρvS+, ρvD′ ∈ Γ
∨ in the dual space Q = Hom(Γ,Q). We can take {ρvS−, ρvS+ } as a
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Q-basis of Q, and the set V of SL(2)×C∗-invariant valuations is given as V = {xρvS+ + yρvS− ∈

Q : x+ y ≤ 0}. Under the notation of §2.2, the colored cones of El,m, E−
l,m

, E+
l,m

, and E′
l,m

are

described as follows:

C := C(El,m) = Q≥0ρvD +Q≥0ρvS−, F :=F(El,m) = {ρvS+, ρvS− };

C
− := C(E−

l,m) = Q≥0ρvD +Q≥0ρvS+, F
− :=F(E−

l,m) = {ρvS+ };

C
+ := C(E+l,m) = Q≥0ρvD +Q≥0ρvS−, F

+ :=F(E+l,m) = {ρvS− };

C
′ := C(E′

l,m) = Q≥0ρvD +Q≥0ρvD′, F
′ :=F(E′

l,m) = ∅.

The weighted blow-up E′
l,m

is toroidal since F′
= ∅.
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Chapter 3

Invariant Hilbert schemes and resolutions

of singularities of affine normal

quasihomogeneous SL(2)-varieties I:

colored fan of the minimal resolution

3.1 Flat locus and the Hilbert function of a general fiber

Let l ≤ 1, and let

π : Hq−p −→ Hq−p//(G0 ×Gm) � El,m

be the quotient morphism. In this section, we determine the flat locus of π and the Hilbert

function h := hHq−p
of a general fiber of π. Let x = (1,1,0,0,1) ∈ Hq−p. Then, the SL(2) ×

C∗ ×G0 ×Gm-orbit of x coincides with the open subset Hq−p ∩ {X0 , 0} of Hq−p, and the

categorical quotient of Hq−p ∩ {X0 , 0} by G0 ×Gm is isomorphic to the dense open orbit

U (see Remark 2.3.5.1). Namely, U is the SL(2) ×C∗-orbit of π(x). We can verify that

D is the SL(2) ×C∗-orbit of π(x′), where x′ = (0,1,0,1,0) ∈ Hq−p, as follows. Note that

π−1(U) = Hq−p ∩{X0 , 0}. If l = 1, then we get x′ ∈ π−1(D) since U andD are the only orbits

of E1,m (see Remark 2.3.3.2). If l < 1, and if we assume that π(x′) <D, then π(x′) = O. But

this is a contradiction since X
aq

1
X

ap

3
∈ C[Hq−p]

G0×Gm � C[El,m], and since the X1-coordinate

and the X3-coordinate of x′ are both 1. Consequently, D is the SL(2)×C∗-orbit of π(x′).

Proposition 3.1.1. Let l ≤ 1. With the above notation, we have the following.
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(i) For any g ∈ SL(2), the G0 ×Gm-orbits of g · x and g · x′ are closed and isomorphic to

G0 ×Gm.

(ii) For any y ∈ U∪D, the fiber π−1(y) is isomorphic to G0 ×Gm.

(iii) If l = 1, then π is flat. Otherwise, El,m \ {O} = U∪D is the flat locus of π.

Proof. We have seen in Remark 2.3.3.2 that U∪D is smooth. Therefore, taking into account

Remark 2.3.6.1 and Theorem 2.3.7, items (i) and (ii) follow from [ADHL15, Remark 1.6.4.2].

Also, it follows from [ADHL15, Proposition 6.1.3.9] that π is flat over the smooth locusU∪D

of El,m. Therefore, π is flat if l = 1. Suppose that l < 1, and let x′′ = (0,1,1,0,0) ∈ Hq−p.

Then we see that π(x′′) =O, since monomials X
d1

1
X

d2

2
with (d1,d2) , (0,0) are never G0×Gm-

invariant. The stabilizer of x′′ under the SL(2)-action is 1-dimensional, which implies that π

is not flat at the origin O concerning item (ii). Q.E.D.

Remark 3.1.1.1. Consider the following ideals of C[X0,X1,X2,X3,X4]:

I1 := (X
q−p

0
− X1X4, X2, X3, 1− X

mp

0
Xm

1 ), J1 := (X k
0 , X2, X4, 1− X

aq

1
X

ap

3
).

By a simple calculation, we see that the underlying topological spaces of the orbits (G0×Gm) · x

and (G0 ×Gm) · x′ coincide with the zero sets of I1 and J1, respectively. In the case where

l < 1, we will see in Theorems 4.2.2 and 4.2.3 that the ideals of the scheme-theoretic fibers

π−1(π(x)) and π−1(π(x′)) coincide with I1 and J1, respectively.

Corollary 3.1.2. The Hilbert function h of a general fiber of the quotient morphism π coincides

with that of the regular representation C[G0 ×Gm]:

h : Z×Z/mZ −→ Z≥0, (n,d) 7→ h(n,d) = 1,

where we identify Irr(G0 ×Gm) with Z×Z/mZ.

Let us denote by H the invariant Hilbert scheme Hilb
G0×Gm

h
(Hq−p) associated to the triple

(G0 ×Gm,Hq−p, h), and consider the Hilbert–Chow morphism

γ : H −→ Hq−p//(G0 ×Gm) � El,m.

By Theorem 2.1.5 and Proposition 3.1.1, we see that γ is an isomorphism over U∪D, and

that the restriction of γ to the main component

H
main := γ−1(U∪D) = γ−1(U)
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is projective and birational. As a consequence of Proposition 3.1.1, we have:

Corollary 3.1.3. If l = 1, then the invariant Hilbert scheme H is isomorphic to E1,m.

Until the end of chapter 5, we always assume that l < 1 taking into account Corollary

3.1.3.

Remark 3.1.3.1. It will be important to have an explicit description of the orbit decomposition

of the varieties El,m, E′
l,m

, and the minimal resolution Ẽ′
l,m

of E′
l,m

. So here we recall that El,m

contains exactly three orbits, and that E′
l,m

contains exactly four orbits:

• El,m =U∪D∪{O}, where U is the dense open orbit,D is a 2-dimensional orbit, and O

is the closed orbit (see Remark 2.3.3.2 (ii)).

• E′
l,m
=U∪D∪C′∪C, where C′

� SL(2)/T is a 2-dimensional orbit, and C � SL(2)/B �

P1 is the closed orbit (see Remark 2.3.9.2).

The orbit decomposition of Ẽ′
l,m

will be given in Remark 3.2.4.2.

3.2 Minimal resolution of the weighted blow-up

A resolution of singularities f : X̃ −→ X is minimal if the canonical divisor K
X̃

of X̃ is f -nef,

i.e., K
X̃
· S ≥ 0 for any curve S ⊂ X̃ which is contracted to a point under f .

Recall that the weighted blow-up E′
l,m

is a simple toroidal spherical SL(2) ×C∗-variety,

and that it is locally isomorphic to C×C2/µb along the closed orbit C � P1 (Theorem 2.3.11).

We denote by Ẽ′
l,m

the minimal resolution of singularities of E′
l,m

obtained by the minimal

resolution of the cyclic quotient singularities C2/µb. As we have seen in Remark 2.2.9.1

that any equivariant resolution of singularities of a toroidal spherical variety is obtained by

subdividing the cones of its colored fan, this applies in particular to the minimal resolution

Ẽ′
l,m

of E′
l,m

whose we will calculate the colored fan in §3.2.2.

3.2.1 Singularities of the weighted blow-up

We see that the lattice Γ = {Z iW j ∈ C(U)∗ : m|(i − j)} of rational B̃-eigenfunctions on U

is generated by ZW and Zm. Since (t, s) ∈ T ×C∗ ⊂ B̃ acts on Z iW j via (t, s) · Z iW j
=
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ti+ j si− j Z iW j , the natural homomorphism f : Γ −→X(B̃) � Z2 is given by Z iW j 7→ (i+ j, i− j).

Set v1 := f (ZW) = (2,0), and set v2 := f (Zm) = (m,m). We denote the dual basis of {v1,v2}

by {u1,u2}. By virtue of [Pan91, Theorem 2] and [BH08, Proposition 2.8], we see that the

lattice vectors ρvD , ρvS− , ρvS+ , ρvD′ ∈ Γ
∨ can be written as follows:

ρvD = −bu1+ apu2, ρvS− = u1, ρvS+ = u1+mu2, ρvD′ = u2.

Therefore, E′
l,m

has singularities of an affine toric surface defined by the following cone (see

[BH08, Remark 3.12]):

σ := Q≥0u2+Q≥0(−bu1+ apu2).

We denote by Xσ the toric variety of the coneσ. Let α and β be the quotient and the remainder

of mp divided by q− p, respectively, i.e., mp = α(q− p)+ β, and set

t :=
q− p− β

k
= (α+1)b− ap. (3.1)

We consider the base change (
u′

1

u′
2

)
:=

(
−1 α+1

0 1

) (
u1

u2

)
(3.2)

to make σ into the normal form in the sense of [CLS11, Proposition 10.1.1]:

σ = Q≥0u′
2+Q≥0(bu′

1 − tu′
2).

It follows that Xσ is a cyclic quotient singularity of type 1
b
(1, t). Therefore, by Theorem 2.3.3,

Xσ is smooth if and only if El,m is toric. If El,m is non-toric, then Xσ has a minimal resolution

described by the Hirzebruch–Jung continued fraction expansion of b/t (see [CLS11, §10.2],

[Ful93, §2.6]).

3.2.2 Colored fan of the minimal resolution

To each El,m, we assign an integer r = r(El,m) as follows.

• If El,m is toric, then we define r = 0.
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• If El,m is non-toric, then we define r to be the length of the Hirzebruch–Jung continued

fraction expansion of b/t:

b

t
= [[c1, . . ., cr]] = c1 −

1

c2 −
1

. . .−
1

cr

.

Set P0 := 0, set Q0 := −1, set P1 := 1, and set Q1 := 0. For 2 ≤ i ≤ r +1 (this only happens if

El,m is non-toric), we recursively define

Pi := ci−1Pi−1 −Pi−2, Qi := ci−1Qi−1 −Qi−2. (3.3)

Theorem 3.2.3 ([CLS11, Proposition 10.2.2]). The numbers Pi and Qi (0 ≤ i ≤ r +1) defined

above satisfy the following properties.

(i) P0 < P1 < · · · < Pr+1, Q0 < Q1 < · · · < Qr+1;

(ii) Pi−1Qi −PiQi−1 = 1 for any 1 ≤ i ≤ r +1;

(iii)
b

t
=

Pr+1

Qr+1

<
Pr

Qr

· · · <
P2

Q2

.

We define the vectors

ρi := −Piu1+ {(α+1)Pi −Qi}u2 (0 ≤ i ≤ r +1)

in Q and consider the cone spanned by ρi and ρi+1:

Ci := Q≥0ρi +Q≥0ρi+1 (0 ≤ i ≤ r).

Let us denote by Ẽ′
l,m

the toroidal spherical SL(2) × C∗-variety whose colored fan has

(C0,∅), . . ., (Cr,∅) as its maximal colored cones. Then, Ẽ′
l,m
= E′

l,m
if El,m is toric. If

El,m is non-toric, then Ẽ′
l,m

−→ E′
l,m

is the minimal resolution concerning [CLS11, Theorem

10.2.3] and the base change (3.2).

The main result of this thesis is the following:

Theorem 3.2.4. The main component Hmain is isomorphic to Ẽ′
l,m

.
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The proof of Theorem 3.2.4 will be given in §5.3.

Remark 3.2.4.1. Keep the above notation.

(i) We have ρ0 = ρvD′ and ρr+1 = ρvD by definition.

(ii) Let Ẽi (0 ≤ i ≤ r) be the simple spherical subvariety of Ẽ′
l,m

whose colored cone is

(Ci,∅). Then,
∪

0≤i≤r Ẽi gives an open covering of Ẽ′
l,m

.

Remark 3.2.4.2. In view of Theorem 2.2.5, we can read off information of SL(2)×C∗-orbits

of Ẽ′
l,m

from its colored fan. First, the colored cones (0,∅), (Q≥0ρr+1,∅), and (Q≥0ρ0,∅)

correspond to U,D, and C′, respectively. Next, we denote the closed orbit that corresponds to

(Ci,∅) by Yi for each 0 ≤ i ≤ r . Notice that if El,m is toric, i.e., if r = 0, then Y0 is nothing but the

closed orbit C � P1. In the case where El,m is non-toric, we denote the orbit corresponding to

(Q≥0ρi,∅) by Oi for each 1 ≤ i ≤ r . Summarizing, the SL(2)×C∗-orbits of Ẽ′
l,m

are described

as follows.

(i) If r = 0, i.e., if El,m is toric, then Ẽ′
l,m
= E′

l,m
contains exactly four orbits: U, D, C′, and

Y0 = C (see Remark 2.3.9.2, see also Remark 3.1.3.1).

(ii) If r > 0, i.e., if El,m is non-toric, then Ẽ′
l,m

contains 2r +4 orbits: U,D, C′, Yi (0 ≤ i ≤ r),

and Oi (1 ≤ i ≤ r).

Before moving on to the next section, let us define some more notations. Set

ei := (α+1+m)Pi −Qi, li := (α+1)Pi −Qi, ni := −pei + qli

for each 0 ≤ i ≤ r +1. Then we get the following lemma as a consequence of Theorem 3.2.3,

which will be frequently used in the remaining sections.

Lemma 3.2.5. Keep the above notation.

(i) We have ni = k(tPi − bQi) for any 0 ≤ i ≤ r +1.

(ii) If El,m is non-toric, then we have ni = ci−1ni−1 −ni−2 for any 2 ≤ i ≤ r +1.

(iii) We have ni > ni+1 for any 0 ≤ i ≤ r .

(iv) We have n0 = q− p, nr = k, and nr+1 = 0.
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Chapter 4

Invariant Hilbert schemes and resolutions

of singularities of affine normal

quasihomogeneous SL(2)-varieties II:

calculation of ideals

4.1 Generators as a module over the invariant ring

Let r ≥ 0, and let A be the polynomial ring C[X0,X1,X2,X3,X4]. We consider the following

two families of ideals of A parametrized by s ∈ C:

Is := (X
q−p

0
− X1X4, X2, X3, s− X

mp

0
Xm

1 ), Js := (X k
0 , X2, X4, s− X

aq

1
X

ap

3
).

Note that the ideals I1 and J1 have already appeared in Remark 3.1.1.1. We will see that

the closed subschemes of Hq−p associated with the ideals Is and Js define closed points of

Hmain, and that the SL(2) ×C∗-orbits of the closed points [I1], [I0], [J1], and [J0] coincide

with U, C′, D, and Yr under the isomorphism Hmain
� Ẽ′

l,m
, respectively (see Corollary 4.2.5

and the proof of Theorem 3.2.4, which will be given in §5.3). If El,m is toric, i.e., if r = 0,

then Ẽ′
l,m
= E′

l,m
=U∪D∪C′∪Y0 by Remark 3.2.4.2. In the case where r > 0, i.e., where El,m

is non-toric, we consider r additional families of ideals of A parametrized by s ∈ C. Let K be

the ideal of A generated by monomials of the form

X
pu1−qu2

0
X

u1

1
X

u2

3
, (u1,u2) ∈ M+l,m \ {(0,0)},
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which are G0 ×Gm-invariant (see Remark 4.1.2.2), and define

Li
s := (X

ni−1

0
, X2, X4, sX

ni
0
− X

ei
1

X
li
3
)+K ⊂ A

for each 1 ≤ i ≤ r . We will see that the closed subschemes of Hq−p associated with the ideals

Li
s define closed points of Hmain, and that the SL(2) ×C∗-orbits of [Li

1
] and [Li

0
] coincide

with Oi and Yi−1 under the isomorphism Hmain
� Ẽ′

l,m
, respectively (refer again to the proof

of Theorem 3.2.4 in §5.3). This section is a preparation for the next one, where we calculate

the Hilbert functions of the ideals Is, Js, and Li
s (Theorems 4.2.2, 4.2.3, 4.2.7, and 4.2.8).

Remark 4.1.0.1. If s ∈ C∗, then Is, Js, and Li
s are SL(2) ×C∗-translates of I1, J1, and Li

1
,

respectively.

Let S be the coordinate ring of Hq−p:

S := C[Hq−p] � A/(X
q−p

0
− X1X4+ X2X3).

Remark 4.1.0.2. For a G0 ×Gm-module V , we denote HomG0×Gm(M(n,d),V) by V(n,d), where

M(n,d) stands for the irreducible representation of weight (n,d) ∈ Z×Z/mZ.

For any weight (n,d) ∈ Z×Z/mZ, there is a finite-dimensional SL(2) ×C∗-module Fn,d

that generates the weight space S(n,d) over the invariant ring SG0×Gm (see §2.1.6). In order to

calculate the Hilbert function of A/Is, A/Js, and A/Li
s, we need to find an appropriate Fn,d

for some weights. For each n ≥ 0, consider the following irreducible SL(2)-representations

of highest weight n:

A(n) := Symn⟨X1,X2⟩ � V(n), B(n) := Symn⟨X3,X4⟩ � V(n).

Also, define C(n) := ⟨Xn
0
⟩ � V(0) for each n ∈ Z.

Lemma 4.1.1. With the above notation, we have the following.

(i) S(−p,−1) = SG0×Gm X1+ SG0×Gm X2.

(ii) S(q,1) = SG0×Gm X3+ SG0×Gm X4.

(iii) We can take F−p,−1 = A(1) and Fq,1 = B(1).
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Proof. Since X1,X2 ∈ S(−p,−1), it is clear that S(−p,−1) ⊃ SG0×Gm X1+SG0×Gm X2. To see the other

inclusion, take an arbitrary f = X
d0

0
X

d1

1
X

d2

2
X

d3

3
X

d4

4
∈ A(−p,−1). If either d1 > 0 or d2 > 0 holds,

then we clearly have f ∈ AG0×Gm X1+ AG0×Gm X2. Otherwise, f is of the form f = X
d0

0
X

d3

3
X

d4

4
.

But this contradicts to f ∈ A(−p,−1), since the G0-weights of X0, X3, and X4 are all positive.

This shows (i). Item (ii) follows in a similar way. Item (iii) is a consequence of items (i) and

(ii). Q.E.D.

Remark 4.1.1.1. Let [I] be a closed point of H. By Lemma 4.1.1 (iii), we see that s1X1+ s2X2 ∈

I and s3X3 + s4X4 ∈ I hold for some (s1, s2) , 0 and (s3, s4) , 0, respectively, concerning

h(−p,−1) = h(q,1) = 1.

Looking only at the weights (−p,−1) and (q,1) is not enough to calculate the Hilbert

function of the ideals Is, Js, and Li
s, and we need to find a suitable Fn,d for (n,d) = (ni,0)

(0 ≤ i ≤ r) as well. The goal of this section is to prove the following

Proposition 4.1.2. With the above notation, we have the following.

(i) We can take Fn0,0 = A(e0) ⊗ B(l0).

(ii) Suppose that El,m is non-toric, i.e., that r ≥ 1. Then, we can take Fni,0 = A(ei) ⊗ B(li) ⊕

C(ni) for any 1 ≤ i ≤ r .

The proof of Proposition 4.1.2 requires intricate combinatorial arguments. In order to

simplify the discussion, we introduce new notation and prepare a series of lemmas.

Let j ∈ {3,4}, and set

R := C[X0,X1,X j] ⊂ A. (4.1)

For each c,n ∈ Z, we consider the following vector subspaces of R:

Rc := ⟨X
d0

0
X

d1

1
X

dj

j
∈ R : d1 − d j = c⟩, Rn := ⟨X

d0

0
X

d1

1
X

dj

j
∈ R : d0 − pd1+ qd j = n⟩.

Then we have R =
⊕

c∈Z Rc
=

⊕
n∈Z Rn. Define Rc

n := Rc ∩Rn. Then, the weight space R(n,d)

can be described as R(n,d) =
⊕

c≡d (mod m) Rc
n.

Remark 4.1.2.1. In order to show Proposition 4.1.2, it suffices to determine a subspace of

R(ni,0) that generates R(ni,0) over the invariant ring RG0×Gm concerning that X1 and X2 (resp.

X3 and X4) have the same SL(2)×C∗×G0 ×Gm-weight.
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Remark 4.1.2.2. The weight space R(0,0) is the invariant ring RG0×Gm . By the proof of

[BH08, Theorem 1.6], we see that RG0×Gm = C[X
pu1−qu2

0
X

u1

1
X

u2

j
: (u1,u2) ∈ M+

l,m
].

Lemma 4.1.3. If Rc
n , 0, then we have c ≥ −n/q. In particular, the minimum c(n,d) :=min{c ∈

Z : c ≡ d (mod m), Rc
n , 0} exists for any (n,d) ∈ Z×Z/mZ.

Proof. Take an arbitrary X
d0

0
X

d1

1
X

dj

j
∈ Rc

n \ {0}. Then, we have n = d0− pd1+qd j = d0+ (q−

p)d1 − qc. Since d0, d1 ≥ 0, it follows that c ≥ −n/q. Q.E.D.

Example 4.1.4. If 0 ≤ n ≤ q − p, then we have c(n,0) = 0. This can be verified as follows.

Suppose that Rc
n , 0 holds for some c < 0, and take X

d0

0
X

d1

1
X

dj

j
∈ Rc

n \ {0}. Then, n =

d0 + (q− p)d1 − qc ≥ q > q− p. Moreover, by a direct calculation, we see that R0
n = ⟨Xn

0
⟩ if

0 ≤ n < q− p, and that R0
n = ⟨X

q−p

0
, X1X j⟩ if n = q− p.

Consider a Z-linear map µ : Z3 −→ Z3 defined by

(d0,d1,d j) 7→ µ(d0,d1,d j) := (d0 − pd1+ qd j, d1 − d j, pd1 − qd j),

which is injective. Let us denote by Λ the image of µ|Z3
≥0

, and define

Rλ := ⟨X
d0

0
X

d1

1
X

dj

j
∈ R : µ(d0,d1,d j) = λ⟩

for each λ ∈ Λ. Then we have R =
⊕

λ∈Λ Rλ.

Lemma 4.1.5. Let λ = (n,c,ω) ∈ Λ. Then, Rλ is a 1-dimensional vector space spanned by

fλ := Xn+ω
0

X
qc−ω
q−p

1
X

pc−ω
q−p

j
. In particular, n+ω,

qc−ω
q−p

, and
pc−ω
q−p

are all non-negative integers.

Proof. Let (d0,d1,d j) = µ
−1(λ). By the definition of µ, one has n = d0− pd1+qd j , c = d1−d j ,

and ω = pd1 − qd j . Therefore, a direct calculation gives d0 = n+ω, d1 =
qc−ω
q−p

, and d j =

pc−ω
q−p

. Q.E.D.

Remark 4.1.5.1. Let λ = (n,c,ω) ∈ Z3. Lemma 4.1.5 implies that we have λ ∈ Λ if and only

if all of n+ω,
qc−ω
q−p

, and
pc−ω
q−p

are non-negative integers.

Lemma 4.1.6. For any λ, λ′ ∈ Λ, we have fλ fλ′ = fλ+λ′.

Proof. This follows from the definition of fλ. Q.E.D.
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Remark 4.1.6.1. The polynomial ring R=C[X0,X1,X j] has a naturalZ×Z/mZ-grading defined

by the G0×Gm-action. Although, each graded component R(n,d) with respect to this grading is

infinite-dimensional. On the other hand, Lemma 4.1.6 implies that R admits another grading,

namely the Λ-grading, such that each graded component Rλ is 1-dimensional. We will see

below that this makes it easier to analyze the structure of R(n,d).

Consider the projection µ̃ : Z3 −→ Z2, (n,c,ω) 7→ (n,c) to the first and the second factor,

and set µ′ := µ̃◦ µ. We denote by Λ′ the image of µ′|Z3
≥0

. Then, we have R =
⊕

(n,c)∈Λ′ Rc
n and

Rc
n =

⊕
λ∈ µ̃−1(n,c)∩Λ Rλ.

Lemma 4.1.7. Let (n,c) ∈ Λ′. Then, for any λ = (n,c,ω), λ′ = (n,c,ω′) ∈ µ̃−1(n,c) ∩Λ, we

have ω−ω′ ∈ (q− p)Z.

Proof. Let µ−1(λ) = (d0,d1,d j), and let µ−1(λ′) = (d′
0
,d′

1
,d′

j
). By Lemma 4.1.5, we have

d1 =
qc−ω
q−p

and d′
1
=

qc−ω′

q−p
. Therefore, ω−ω′

= (q− p)(d′
1
− d1) ∈ (q− p)Z. Q.E.D.

Let λ = (n,c,ω), and let (d0,d1,d j) = µ
−1(λ). By Lemma 4.1.5, we have ω = −(q− p)d1+

qc ≥ qc and n = d0 + (q− p)d1 − qc. Combining these, we get qc ≤ ω ≤ n+ qc. Therefore,

we see that the maximum ωmax
(n,c)

:= max
{
ω ∈ Z : (n,c,ω) ∈ µ̃−1(n,c)∩Λ

}
and the minimum

ωmin
(n,c)

:=min
{
ω ∈ Z : (n,c,ω) ∈ µ̃−1(n,c)∩Λ

}
exist for any (n,c) ∈Λ′. In particular, the vector

space Rc
n is finite-dimensional: we have Rc

n =
⊕

ωmin
(n,c)

≤ω≤ωmax
(n,c)

R(n,c,ω).

Lemma 4.1.8. Let (n,c) ∈ Λ′. If c < 0, then ωmax
(n,c)
= qc. Otherwise, ωmax

(n,c)
= pc.

Proof. Let µ−1
(
n,c,ωmax

(n,c)

)
= (d0,d1,d j). Suppose that d1, d j > 0, and set v = (d0 + q −

p,d1 − 1,d j − 1). Then, we have v ∈ Z3
≥0

and µ(v) =
(
n,c,ωmax

(n,c)
+ q− p

)
. This implies that

µ(v) ∈ µ̃−1(n,c) ∩Λ, which contradicts to the maximality of ωmax
(n,c)

. Thus, either d1 = 0 or

d j = 0 holds. If c < 0, then we see that d1 = 0, and therefore ωmax
(n,c)
= qc. Otherwise, we have

d j = 0, and hence ωmax
(n,c)
= pc. Q.E.D.

Lemma 4.1.9. Let (n,c,ω) ∈ Λ. Then, we have n+ω < q− p if and only if ω = ωmin
(n,c)

.

Proof. First, suppose that n+ω ≥ q−p, and set v =
(
n+ω′,

qc−ω
q−p
+1,

pc−ω
q−p
+1

)
, whereω′

=ω−

(q− p). Taking into account Lemma 4.1.5, we see that v ∈ Z3
≥0

. Since we get µ(v) = (n,c,ω′)
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by a direct calculation, it yields that (n,c,ω′) ∈ µ̃−1(n,c) ∩Λ. Therefore, one has ω > ωmin
(n,c)

.

Conversely, suppose that ω > ωmin
(n,c)

. Then ω−ωmin
(n,c)

≥ q− p holds by Lemma 4.1.7. Since we

have n+ωmin
(n,c)

≥ 0 by Lemma 4.1.5, it follows that n+ω ≥ n+ωmin
(n,c)
+q− p ≥ q− p. Q.E.D.

Example 4.1.10. Let 0 ≤ i ≤ r +1, and set λ = (ni,mPi,−ni) ∈ Z
3. We claim that λ ∈ Λ. By

the equation (3.1) (see §3.2.1) and Lemma 3.2.5 (i), we get the following:

pmPi +ni = {α(q− p)+ β}Pi + k(tPi −Qi) = {(α+1)Pi −Qi}(q− p) = li(q− p);

qmPi +ni = (q− p)mPi + (pmPi +ni) = ei(q− p).

By these we obtain
pmPi+ni

q−p
= li and

qmPi+ni
q−p

= ei. Since li, ei ≥ 0, we deduce that λ ∈ Λ by

Remark 4.1.5.1. Note that fλ = X
ei
1

X
li
j
. Also, one has pmPi = ω

max
(ni,mPi)

and ωmin
(ni,mPi)

= −ni by

Lemmas 4.1.8 and 4.1.9, respectively. Therefore, λ =
(
ni,mPi,ω

min
(ni,mPi)

)
.

Lemma 4.1.11. Let λ = (n,c,ω) ∈ Λ. If ω > ωmin
(n,c)

, then fλ is contained in the ideal (X
ni
0
) ⊂ R

for any 0 ≤ i ≤ r .

Proof. By Lemmas 3.2.5 and 4.1.9, one has n+ω ≥ q − p ≥ ni. Therefore, we see that

fλ ∈ (X
ni
0
) holds concerning Lemma 4.1.5. Q.E.D.

Definition 4.1.12. For each (n,d) ∈ Z×Z/mZ, we define:

(i) Λ(n,d) := {(n,c,ω) ∈ Λ : c ≡ d (mod m)};

(ii) λ(n,d) :=
(
n,c(n,d),ω

min
(n,c(n,d))

)
∈ Λ(n,d).

Remark 4.1.12.1. We obtain the following three different ways of expressing the weight space

R(n,d):

R(n,d) =

⊕
c≡d (mod m)

c≥c(n,d)

Rc
n =

⊕
c≡d (mod m)

c≥c(n,d)

©­«
⊕

λ∈ µ̃−1(n,c)∩Λ

Rλ
ª®¬
=

⊕
λ∈Λ(n,d)

Rλ.

Example 4.1.13. Let l = p/q = 1/3, and let m = 2. By Remark 2.3.3.4, the semigroup M+1
3
,2

is minimally generated by (2,0) and (3,1). Therefore, in view of Remark 4.1.2.2, we have
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R(0,0) = RG0×Gm = C[X2
0

X2
1
,X3

1
X j]. We can also calculate the following:

R0
0 = C;

R2
0 = R(0,2,0) ⊕ R(0,2,2), f(0,2,0) = X3

1 X j, f(0,2,2) = X2
0 X2

1 ;

R0
1 = R(1,0,0), f(1,0,0) = X0;

R2
1 = R(1,2,0) ⊕ R(1,2,2), f(1,2,0) = X0X3

1 X j, f(1,2,2) = X3
0 X2

1 ;

R0
2 = R(2,0,−2) ⊕ R(2,0,0), f(2,0,−2) = X1X j, f(2,0,0) = X2

0 ;

R2
2 = R(2,2,−2) ⊕ R(2,2,0) ⊕ R(2,2,2), f(2,2,−2) = X4

1 X2
j , f(2,2,0) = X2

0 X3
1 X j, f(2,2,2) = X4

0 X2
1 .

We see that λ(0,0) = (0,0,0), λ(1,0) = (1,0,0), and λ(2,0) = (2,0,−2).

Lemma 4.1.14. Let λ = (n,c,ω), λ′ = (n,c′,ω′) ∈ Λ(n,d). Then the following hold.

(i) If c = c′, then we have fλ − fλ′ ∈ (X
q−p

0
− X1X j).

(ii) If c > c(n,d), then we have fλ ∈ (X
q−p

0
− X1X j, X

mp

0
Xm

1
).

(iii) We have fλ − fλ′ ∈ (X
q−p

0
− X1X j, 1− X

mp

0
Xm

1
).

Proof. By definition, we have fλ = Xn+ω
0

X
qc−ω
q−p

1
X

pc−ω
q−p

j
and fλ′ = Xn+ω′

0
X

qc′−ω′

q−p

1
X

pc′−ω′

q−p

j
. Also,

by the definition of Λ(n,d), we can write c and c′ as c = c(n,d) +mx and c′ = c(n,d) +mx′ with

some x, x′ ∈ Z≥0.

(i) We may assume that ω ≥ ω′. Then, by Lemma 4.1.7, ω−ω′
= y(q− p) holds for some

y ≥ 0. Therefore, one obtains fλ − fλ′ = Xn+ω′

0
X

qc−ω
q−p

1
X

pc−ω
q−p

j
{(X

q−p

0
)y − (X1X j)

y} ∈ (X
q−p

0
−

X1X j).

(ii) We first remark that f(0,m,mp) = X
mp

0
Xm

1
∈ RG0×Gm . Hence, we have f(0,xm,xmp) =

(X
mp

0
Xm

1
)x by Lemma 4.1.6. By setting

λ′′ = λ(n,d)+ (0, xm, xmp) =
(
n,c,ω(n,c(n,d))+ xmp

)
,

we get fλ − fλ′′ ∈ (X
q−p

0
− X1X j) taking into account (i). Since we have fλ′′ = fλ(n,d)(X

mp

0
Xm

1
)x

again by Lemma 4.1.6, it follows that fλ ∈ (X
q−p

0
− X1X j, X

mp

0
Xm

1
).

(iii) By (i), we may assume that c > c′. Let λ′′ be as in the proof of (ii), and set

λ′′′ = λ(n,d)+ (0, x
′m, x′mp) =

(
n,c′,ω(n,c(n,d))+ x′mp

)
. Then we have

fλ′′ − fλ′′′ = fλ(n,d)(X
mp

0
Xm

1 )x′{(X
mp

0
Xm

1 )x−x′ −1} ∈ (1− X
mp

0
Xm

1 ).
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Therefore we get fλ− fλ′ = ( fλ− fλ′′)+ ( fλ′′ − fλ′′′)+ ( fλ′′′ − fλ′) ∈ (X
q−p

0
− X1X j, 1− X

mp

0
Xm

1
),

since we have fλ − fλ′′, fλ′′′ − fλ′ ∈ (X
q−p

0
− X1X j) by (i). Q.E.D.

Lemma 4.1.15. Let λ =
(
n,c,ωmin

(n,c)

)
, λ′ =

(
n,c′,ωmin

(n,c′)

)
∈ Λ(n,0), where 0 ≤ n < q − p. If

n+ωmin
(n,c)

< k and n+ωmin
(n,c′)

< k hold, then the following properties are true.

(i) We have ωmin
(n,c)
= ωmin

(n,c′)
and c− c′ ∈ mbZ.

(ii) If c′ > c, then we have fλ′ ∈ ( fλX
aq

1
X

ap

j
).

(iii) We have fλ′ − fλ ∈ (1− X
aq

1
X

ap

j
).

Proof. We may assume that c′ > c. By Example 4.1.4 and the definition ofΛ(n,0), we can write

c′ as c′ = c+mx with some x > 0. Recall that f(0,m,mp) = X
mp

0
Xm

1
. Set λ′′ = λ+ x(0,m,mp) =(

n,c′,ωmin
(n,c)
+ xmp

)
. Then, λ′′ ∈ µ̃−1(n,c′) ∩Λ. Therefore, ωmin

(n,c)
+ xmp−ωmin

(n,c′)
∈ (q− p)Z≥0

holds by Lemma 4.1.7. Taking the relations mp = akp and q − p = bk into account (see

(2.1) in §2.3.1), we see that
(
n+ωmin

(n,c)

)
−

(
n+ωmin

(n,c′)

)
∈ kZ. On the other hand, we have

0 ≤ n+ωmin
(n,c)

, n+ωmin
(n,c′)

< k by Lemma 4.1.5. Therefore, ωmin
(n,c)
= ωmin

(n,c′)
. It also follows from

Lemma 4.1.5 that qc−ωmin
(n,c)

, qc′−ωmin
(n,c′)

∈ (q−p)Z≥0. Thus, 0= qmx− y(q−p)= k(aqx−by)

holds for some y > 0. Since g.c.d.(aq,b) = 1, we have x = x′b with some x′ > 0. To see

items (ii) and (iii), set λ′′′ = x′(0,aq−ap,0) = (0, xm,0). Then we have fλ′′′ = (X
aq

1
X

ap

j
)x′ and

λ+λ′′′ = λ′. Hence we get fλ′ = fλ(X
aq

1
X

ap

j
)x′ by Lemma 4.1.6. Q.E.D.

Lemma 4.1.16. Let (n,c), (n′,c′) ∈ Λ′. Then the following properties are true.

(i) If n = 0, then 0 ≤ ωmin
(0,c)

< q− p.

(ii) We have ωmin
(n+n′,c+c′)

= ωmin
(n,c)
+ωmin

(n′,c′)
if and only if ωmin

(n,c)
+ωmin

(n′,c′)
+n+n′ < q− p.

Proof. Let µ−1
(
n,c,ωmin

(n,c)

)
= (d0,d1,d j). If n = 0, then we have 0 ≤ d0 = ω

min
(0,c)

< q − p by

Lemmas 4.1.5 and 4.1.9. Item (ii) follows from the fact that(
n+n′,c+ c′,ωmin

(n,c)+ω
min
(n′,c′)

)
∈ Λ

and Lemma 4.1.9. Q.E.D.
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Definition 4.1.17. Let m1 and m2 be any positive integers. We denote by Q[m1,m2] (resp.

R[m1,m2]) the quotient (resp. the remainder) of m1 divided by m2.

Lemma 4.1.18. Let (n,c) ∈ Λ′. Suppose that n ≥ 0 and that c > 0. Then, we have ωmin
(n,c)

≥ 0

if and only if R[pc,q− p]+n < q− p.

Proof. By Lemmas 4.1.7 and 4.1.8, pc−ωmin
(n,c)
=ωmax

(n,c)
−ωmin

(n,c)
= x(q−p) holds for some x ≥ 0.

Also, we have n+ωmin
(n,c)

< q− p by Lemma 4.1.9, and hence ωmin
(n,c)

< q− p by n ≥ 0. Therefore,

R[pc,q− p] = ωmin
(n,c)

if ωmin
(n,c)

≥ 0. If ωmin
(n,c)

< 0, then R[pc,q− p] = x′(q− p)+ωmin
(n,c)

holds for

some x′ > 0. Thus we get R[pc,q− p]+n = x′(q− p)+ωmin
(n,c)
+n ≥ q− p, since ωmin

(n,c)
+n ≥ 0

by Lemma 4.1.5. Q.E.D.

The rest of this section is devoted to the proof of the following two propositions.

Proposition 4.1.19. The weight space R(n0,0) is generated by R0
n0

as a module over the invariant

ring RG0×Gm .

Proposition 4.1.20. Suppose that El,m is non-toric, i.e., that r ≥ 1. Then, for any 1 ≤ i ≤ r ,

the weight space R(ni,0) is generated by R(
ni,0,ω

min
(ni,0)

) and R(
ni,mPi,ω

min
(ni,mPi )

) as a module over the

invariant ring RG0×Gm .

Recall that n0 = q−p, and that e0 = l0 = 1. We have seen in Example 4.1.4 that R0
n0
= ⟨X

n0

0
⟩ ⊕

⟨X
e0

1
X

l0
j
⟩. Since the SL(2)-submodule of A=C[X0,X1,X2,X3,X4] generated by X

n0

0
and X

e0

1
X

l0
j

is C(n0) ⊕ A(e0) ⊗ B(l0), we see that Proposition 4.1.2 (i) can be obtained as a consequence

of Proposition 4.1.19, concerning that the defining ideal of Hq−p is (X
n0

0
− X1X4 + X2X3).

Similarly, since we have R(
ni,0,ω

min
(ni,0)

)
= ⟨X

ni
0
⟩ and R(

ni,mPi,ω
min
(ni,mPi )

)
= ⟨X

ei
1

X
li
j
⟩ for any 1 ≤ i ≤ r

by Examples 4.1.4 and 4.1.10, we see that Proposition 4.1.2 (ii) follows from Proposition

4.1.20. See also Remark 4.1.2.1.

Proof of Proposition 4.1.19. Recall that R(n0,0) decomposes as R(n0,0) =
⊕

λ∈Λ(n0,0)
Rλ. Let

λ = (n0,c,ω) ∈ Λ(n0,0), and write fλ = X
d0

0
X

d1

1
X

dj

j
. It suffices to show that either fλ ∈ (X

n0

0
) or

fλ ∈ (X1X j) holds. Indeed, if fλ ∈ (X
n0

0
), then we have fλ = f X

n0

0
for some f ∈ R. Since both fλ

and X
n0

0
are homogeneous elements of G0×Gm-weight (n0,0), we deduce that f ∈ RG0×Gm . The

same holds true if fλ ∈ (X1X j). Next, suppose thatω > ωmin
(n0,c)

. Then, we have d0 = n0+ω ≥ n0
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by Lemmas 4.1.5 and 4.1.9. Therefore, fλ ∈ (X
n0

0
). If ω = ωmin

(n0,c)
, then we have ω < 0 again

by Lemma 4.1.9. On the other hand, we have ω = pd1 − qd j by Lemma 4.1.5, which tells us

that d1 > 0 and d j > 0 hold. Therefore, fλ ∈ (X1X j). Q.E.D.

We show Proposition 4.1.20 separately for the case i = 1 and the case i > 1. The former

case can be shown by following similar lines as in the proof of Proposition 4.1.19, while the

latter case requires more preparatory lemmas.

Proof of Proposition 4.1.20 for i = 1. Recall that P1 = 1. Let λ = (n1,c,ω) ∈ Λ(n1,0), and write

fλ = X
d0

0
X

d1

1
X

dj

j
. By the definition of Λ(n1,0), we have c ∈ mZ. Moreover, since we have

c(n1,0) = 0 by Example 4.1.4, we can write c = mx with some x ≥ 0. As in the proof of

Proposition 4.1.19, it suffices to show that either fλ ∈ (X
n1

0
) or fλ ∈ (X

e1

1
X

l1
j
) holds. If

ω > ωmin
(n1,c)

, then we have d0 > n1 by Lemmas 3.2.5, 4.1.5, and 4.1.9. Therefore, fλ ∈ (X
n1

0
).

Next suppose that ω = ωmin
(n1,c)

. If c = 0, then fλ = X
ni
0

. So let us assume that c > 0 and

consider an element f of Rc
n1

defined by f = f(
n1,c,ω

min
(n1,m)

+(x−1)mp
)
= f(

n1,m,ω
min
(n1,m)

) f x−1
(0,m,mp)

=

X
e1

1
X

l1
j
(X

mp

0
Xm

1
)x−1, where the last equality follows from f(

n1,m,ω
min
(n1,m)

)
= X

e1

1
X

l1
j

(see Example

4.1.10). Let θ = Q[(x − 1)mp,q− p], and let Θ = R[(x − 1)mp,q− p]. Then, we see that f

can be written as f = X
e1

1
X

l1
j
(X

q−p

0
)θXΘ

0
X
(x−1)m

1
. We define f ′ to be the monomial obtained

by replacing the factor X
q−p

0
in f by X1X j , i.e., f ′ = X

e1

1
X

l1
j
(X1X j)

θXΘ
0

X
(x−1)m

1
. Since both

X
q−p

0
and X1X j are elements of R0

q−p, we see that f ′ ∈ Rc
n1

. Therefore, we can write f ′ = fλ′

with some λ′ = (n1,c,ω
′) ∈ Λ(n1,0). By Lemma 4.1.5, we haveΘ = n1+ω

′. Moreover, we have

Θ < q− p by its definition. Thus, we get ω′
= ωmin

(n1,c)
by Lemma 4.1.9. It follows that λ = λ′,

and hence fλ = fλ′ ∈ (X
e1

1
X

l1
j
). Q.E.D.

Henceforth, we assume that r > 1 and prepare some lemmas that we need for the proof of

Proposition 4.1.20 for the case 1 < i ≤ r .

Remark 4.1.20.1. Recall that we have considered the Hirzebruch–Jung continued fraction

expansion b/t = [[c1, . . ., cr]] in §3.2.2. Set t1 := t. Then we have the following equations

that arise from the modified Euclidean algorithm (see [CLS11, §10]):

b = c1t1 − t2, t1 = c2t2 − t3, . . ., ti−1 = citi − ti+1, . . ., tr−1 = cr tr . (4.2)
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Since b= n0/k and t1 = n1/k, Lemma 3.2.5 and (4.2) yield that ti = ni/k holds for any 1 ≤ i ≤ r .

Furthermore, the following equation holds for any 1 < i ≤ r:

b− t1 = (c1 −2)t1+ (c2 −2)t2+ · · ·+ (ci−1 −2)ti−1+ ti−1 − ti . (4.3)

Let us fix an integer L that satisfies 1 < L ≤ r , and let x be any integer such that 0 ≤ x <

PL −PL−1. SetΘx :=R[t1(PL−1+ x),b], and set θx :=Q[t1(PL−1+ x),b]−QL−1. Then, θx ≥ 0.

Indeed, we have t1PL−1 = bQL−1+ tL−1 with 0 ≤ tL−1 < b by Lemma 3.2.5, and this implies that

Q[t1PL−1,b] = QL−1 and R[t1PL−1,b] = tL−1. Therefore, we have Q[t1(PL−1+ x),b] ≥ QL−1.

Also, note that Θx = tL−1+ t1x− bθx holds.

Remark 4.1.20.2. With the above assumption and notation, we have the following.

(i) We have θx − θx−1 = Q[t1(PL−1 + x),b] −Q[t1(PL−1 + x − 1),b] ∈ {0,1}, since t1 < b.

Furthermore, the following properties are true.

• We have θx − θx−1 = 0 if and only if Θx−1+ t1−b < 0. In this case, Θx =Θx−1+ t1.

• We have θx − θx−1 = 1 if and only if Θx−1+ t1 − b ≥ 0. In this case, Θx = Θx−1+

t1 − b.

(ii) Let x′ be any integer such that 0 ≤ x′ < PL − PL−1. Since PL − PL−1 < b, we have

Θx = Θx′ if and only if x = x′.

(iii) We have θ0 = 0 and Θ0 = tL−1.

(iv) Suppose that cs > 2 holds for some 1 ≤ s ≤ L − 1, and denote by smax the maximum

among them. Then, we have PL −PL−1 = (c1−1)P1+ (c2−2)P2+ · · ·+ (csmax
−2)Psmax

=

Psmax+1 −Psmax
by Lemma 3.2.5.

Definition 4.1.21. Keep the above notation. For each 1 ≤ j ≤ L−1, we define Mj :=max{Θx :

0 ≤ x < Pj+1} and Nj :=max{Θx : 0 ≤ x < Pj+1 −Pj}.

The next lemma will be the core of the proof of Proposition 4.1.20.

Key Lemma. Let 1 < L ≤ r . Then, Θx ≥ tL−1 holds for any 0 ≤ x < PL −PL−1. Moreover, we

have Θx = tL−1 if and only if x = 0.

We need the following lemmas for the proof of Key Lemma.
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Lemma 4.1.22. Let 1 < L ≤ r , and let 0 ≤ x < PL −PL−1 as above . Assume that cs > 2 holds

for some 1 ≤ s ≤ L −1, and let smax be as in Remark 4.1.20.2 (iv). If Θx = tL−1+ (c1 −2)t1+

· · ·+ (c j−1 −2)t j−1+ (c j −1)t j holds for some 1 ≤ j ≤ smax, then we have Θx+1 = tL−1+ t j+1.

Proof. By a direct calculation using (4.3) (see Remark 4.1.20.1), we have Θx + t1 − b =

tL−1 + t j+1. On the other hand, we have tL−1 + t j+1 > 0 by Lemma 3.2.5, and therefore we

obtain Θx+1 = Θx + t1 − b = tL−1+ t j+1 by Remark 4.1.20.2 (i). Q.E.D.

Lemma 4.1.23. Keep the notation and the assumption of Lemma 4.1.22, and let 1 ≤ j < smax.

Then the following properties are true.

(i) Suppose that Pj ≤ x < Pj+1. Set κ = Q[x,Pj], and set ε = R[x,Pj], i.e., x = κPj + ε.

Then, we have Θx = Θε + κt j . In particular, Θx > tL−1 holds.

(ii) We have Mj = ΘPj+1−Pj
= tL−1+ b− t j + t j+1.

Remark 4.1.23.1. In Lemma 4.1.23 (i), we see that 1 ≤ κ ≤ c j −1 holds concerning the relation

Pj+1 = (c j −1)Pj + (Pj −Pj−1). Also, if κ = c j −1, then 0 ≤ ε < Pj −Pj−1.

Proof of Lemma 4.1.23. We proceed by induction on j.

Let j = 1. Recall that P1 = 1, and that P2 = c1. By induction on x, we show that

Θx = tL−1+ xt1 holds for any P1 ≤ x < P2. Firstly, by (4.3) and csmax
> 2, we have

Θ0+ t1 − b = tL−1+ t1 − b = tL − {(c1 −2)t1+ · · ·+ (cL−1 −2)tL−1}

= tL − {(c1 −2)t1+ · · ·+ (csmax
−2)tsmax

} ≤ tL − tsmax
< 0.

The last inequality follows from Lemma 3.2.5. By Remark 4.1.20.2, we get Θ1 = ti−1 + t1.

Suppose that x > 1. Then, by the induction hypothesis, we have Θx−1 = tL−1+ (x−1)t1. Since

c1 − x−1 ≥ 0 and smax ≥ 2, we see that the following holds:

Θx−1+ t1 − b = tL − {(c1 − x−1)t1+ (c2 −2)t2+ · · ·+ (csmax
−2)tsmax

} ≤ tL − tsmax
< 0.

Therefore, we get Θx = tL−1+ xt1. Furthermore, this yields that M1 = Θc1−1 = ΘP2−P1
. Also,

we see that tL−1+ b− t1+ t2 = tL−1+ (c1 −1)t1 holds, since we have b− t1+ t2 = (c1 −1)t1 by

(4.2) (see Remark 4.1.20.1).

Let j > 1. We divide the proof into three steps.
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Step 1. We show by induction on κ that the following holds for any 1 ≤ κ ≤ c j −1:

ΘκPj
= tL−1+ κt j . (4.4)

Let κ = 1. The relation Pj −1= (c j−1−1)Pj−1+ (Pj−1−Pj−2−1) implies thatQ[Pj −1,Pj−1]=

c j−1−1, and that R[Pj −1,Pj−1] = Pj−1−Pj−2−1. Taking these into account, it follows from

the induction hypothesis for item (i) that ΘPj−1 = ΘPj−1−Pj−2−1 + (c j−1 − 1)t j−1. By Remark

4.1.20.2, we see that either ΘPj−1−Pj−2
= ΘPj−1−Pj−2−1+ t1 or ΘPj−1−Pj−2

= ΘPj−1−Pj−2−1+ t1 − b

holds. If the latter holds, then ΘPj−1−Pj−2
− t1 < 0. On the other hand, we have ΘPj−1−Pj−2

=

tL−1+ b− t j−2+ t j−1 by the induction hypothesis for item (ii), and hence

ΘPj−1−Pj−2
− t1 = tL−1+ (c1 −2)t1+ · · ·+ (c j−2 −2)t j−2 > 0

by (4.3). This implies that the former holds, i.e., we have ΘPj−1−Pj−2
= ΘPj−1−Pj−2−1 + t1.

Therefore,

ΘPj−1 = ΘPj−1−Pj−2−1+ (c j−1 −1)t j−1 = ΘPj−1−Pj−2
− t1+ (c j−1 −1)t j−1

= tL−1+ (c1 −2)t1+ · · ·+ (c j−2 −2)t j−2+ (c j−1 −1)t j−1. (4.5)

Hence, we get ΘPj
= tL−1+ t j by Lemma 4.1.22. Next, let κ > 1. We first show that

Θ(κ−1)Pj+ε = Θε + (κ−1)t j (4.6)

holds for any 1 ≤ ε < Pj . By the induction hypothesis for Step 1, we have Θ(κ−1)Pj
= tL−1 +

(κ−1)t j . Thus, concerning the definition of Θ and Remark 4.1.20.2 (i) and (iii), it suffices to

check thatΘε+ (κ−1)t j < b holds. Here, note thatΘε ≤ Mj−1. Since Mj−1 = tL−1+b− t j−1+ t j

holds by the induction hypothesis for item (ii), we have

b− {Θε + (κ−1)t j} ≥ b− {Mj−1+ (c j −2)t j} = t j − t j+1 − tL−1

= (c j+1 −2)t j+1+ · · ·+ (csmax
−2)tsmax

+ (tsmax
− tsmax+1)− tL−1

≥ tsmax
+ (tsmax

− tsmax+1)− tL−1 > 0.

This shows (4.6). Taking ε = Pj −1, one obtainsΘκPj−1 =ΘPj−1+(κ−1)t j . Therefore, by (4.3)

and (4.5), we have ΘκPj−1+ t1− b = tL−1+ κt j > 0. Hence we see that ΘκPj
=ΘκPj−1+ t1− b =

tL−1+ κt j by Remark 4.1.20.2. This shows (4.4).

Step 2. In this step, we prove that the following holds for any 0 < ε < Pj −Pj−1:

Θ(cj−1)Pj+ε = Θε + (c j −1)t j . (4.7)
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If c1 = · · · = c j−1 = 2, then we have Pj −Pj−1 = 1, so we may suppose otherwise. Similarly

as in the proof of (4.6), it suffices to show that Nj−1+ (c j −1)t j < b holds. Set u :=max{ j′ :

1 ≤ j′ ≤ j − 1, c j ′ > 2}. Then, we have Pj − Pj−1 = Pu+1 − Pu. In view of this relation, we

show that Nu + (c j −1)t j < b holds. Sine Pu+1 −Pu = (cu −2)Pu + (Pu −Pu−1), we see that Nu

coincides with the maximum between max{Θε : 0 ≤ ε < (cu−2)Pu} and max{Θε : (cu−2)Pu ≤

ε < Pu+1 − Pu}. Concerning the induction hypothesis for item (i), we see that the relation

(cu −2)Pu = (cu −3)Pu+Pu implies that Θε = ΘR[ε,Pu]+ (cu −3)tu and 0 ≤ R[ε,Pu] < Pu hold

for any (cu − 3)Pu ≤ ε < (cu − 2)Pu. Therefore, we see that max{Θε : 0 ≤ ε < (cu − 2)Pu} =

(cu − 3)tu +Mu−1. In a similar manner, we see that max{Θε : (cu − 2)Pu ≤ ε < Pu+1 −Pu} =

(cu −2)tu+Nu−1. Therefore, Nu =max{(cu −3)tu+Mu−1, (cu −2)tu+Nu−1}. By continuing in

this way and concerning that Θ0 = tL−1, one finally obtains

Nu =max{(cu −3)tu +Mu−1, (cu −2)tu + · · ·+ (c1 −2)t1+ tL−1}.

Since we have Mu−1 = tL−1 + b− tu−1 + tu by the induction hypothesis for item (ii), we get

(cu −3)tu +Mu−1 = b− tu + tL . This yields that Nu = (cu −3)+Mu−1. Therefore,

b− {Nu + (c j −1)t j} = tu + (cu+1 −2)tu+1+ · · ·+ (c j −2)t j

+ · · ·+ (csmax
−2)tsmax

+ tsmax
− tsmax+1 − tL−1 −(c j −1)t j

≥ tu + tsmax
+ tsmax

− tsmax+1 − t j − tL−1 > 0.

This completes the proof of (4.7). Since we have Pj+1 = (c j − 1)Pj + (Pj − Pj−1), item (i)

follows from (4.4), (4.6), and (4.7).

Step 3. In this last step, we complete the proof of item (ii). First, we show that

Mj = tL−1 + b− t j + t j+1 holds. Set MA := max{Θx : Pj ≤ x < (c j − 1)Pj}, and set MB :=

max{Θx : (c j − 1)Pj ≤ x < Pj+1}. Then, Mj is the maximum among Mj−1, MA, and MB.

Following the similar line as in the proof of (4.7), we see that MA = (c j − 2)t j +Mj−1 =

tL−1+ b− t j + t j+1, and that MB = (c j −1)t j +Nj−1, which implies that Mj =max{MA,MB}. If

c1 = · · · = c j−1 = 2, then we have MB = (c j − 1)t j + tL−1, and hence MA − MB = b− t j−1 > 0.

Therefore, Mj = MA. Suppose that c j ′ > 2 holds for some 1 ≤ j′ ≤ j − 1, and let u be as in

Step 2. Then, since Mu−1 = tL−1+ b− tu−1+ tu, we have MB = (c j −1)t j + (cu −3)tu +Mu−1 =

tL−1+b+tu+1−2tu+(c j −1)t j . By using (4.2), we see that MA−MB = (tu−tu+1)+(tu−t j−1)> 0.

Therefore, Mj = MA = tL−1 + b− t j + t j+1. Next we show that tL−1 + b− t j + t j+1 = ΘPj+1−Pj
.

By the induction hypothesis, one obtains

tL−1+ b− t j + t j+1 = (tL−1+ b− t j−1+ t j)+ (c j −2)t j = ΘPj−Pj−1
+ (c j −2)t j .
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SinceΘPj−Pj−1
+(c j −2)t j < b, it follows thatΘPj−Pj−1

+(c j −2)t j =ΘPj−Pj−1+(cj−2)Pj
=ΘPj+1−Pj

.

This completes the proof of the lemma. Q.E.D.

Proof of Key Lemma. If c1 = · · · = cL−1 = 2, then PL −PL−1 = 1, and we have already verified

thatΘ0 = tL−1 in Remark 4.1.20.2. Suppose that cs > 2 holds for some 1 ≤ s ≤ L−1. Let smax

be as in Remark 4.1.20.2, and let x be any integer such that Psmax
≤ x < Psmax+1 −Psmax

. Set

κ =Q[x,Psmax
], and set ε = R[x,Psmax

]. By following a similar line as in the proof of Lemma

4.1.23, we can check that the following hold:

Θε + κtsmax
≤ (csmax

−3)tsmax
+Msmax−1 < b (if 1 ≤ κ ≤ csmax

−3);

Θε + κtsmax
≤ (csmax

−2)tsmax
+Nsmax−1 < b (if κ = csmax

−2).

These yield that Θx =Θε + κtsmax
. In particular, we have Θx > tL−1. Therefore, taking Lemma

4.1.23 into account, we see that Θx ≥ tL−1 holds for any 0 ≤ x < PL − PL−1, and that the

equality is true if and only if x = 0. Q.E.D.

Corollary 4.1.24. Let 1 ≤ i ≤ r . Then, we have R[t1Pi,b] = ti. Moreover, if i > 1, then

ti−1 ≤ R[t1x,b] ≤ b+ ti − ti−1 holds for any 0 < x < Pi.

Proof. We have already seen that R[t1Pi,b] = ti. Let 0 < x < Pi. Then, we see that PL−1 ≤

x < PL holds for some 1 < L ≤ i. By definition, we have R[t1x,b] = Θx−PL−1
. Therefore,

it follows from Lemma 3.2.5 and Key Lemma that R[t1x,b] ≥ tL−1 ≥ ti−1. Let us show that

R[t1x,b] ≤ b+ ti − ti−1. First, suppose that c1 = · · · = cL−1 = 2. Then, we have R[t1x,b] = tL−1

in view of the proof of Key Lemma. Also, we get b+ ti − ti−1 = (c1 − 1)t1 + (c2 − 2)t2 + · · ·+

(ci−1 −2)ti−1 ≥ t1 ≥ tL−1 by (4.3). Next, suppose that we have cs > 2 for some 1 ≤ s ≤ L −1,

and let smax be as in Remark 4.1.20.2. Concerning the proof of Key Lemma, we see that

NL−1 = (csmax
−3)tsmax

+Msmax−1 holds, and therefore

b+ ti − ti−1 −R[t1x,b] ≥ b+ ti − ti−1 − {(csmax
−3)tsmax

+Msmax−1}

≥ (ci−1 −2)ti−1 −(csmax
−3)tsmax

> 0.

Consequently, we get ti−1 ≤ R[t1x,b] ≤ b+ ti − ti−1. Q.E.D.

Proof of Proposition 4.1.20 for 1 < i ≤ r . Letλ= (ni,c,ω) ∈Λ(ni,0), and write fλ = X
d0

0
X

d1

1
X

dj

j
.

Then we have c = xm for some x ≥ 0. As in the proof of Proposition 4.1.20 for the case i = 1,
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we show that either fλ ∈ (X
ni
0
) or fλ ∈ (X

ei
1

X
li
j
) holds. If ω > ωmin

(ni,c)
, then we have fλ ∈ (X

ni
0
)

by Lemmas 4.1.5 and 4.1.9. Suppose that ω = ωmin
(ni,c)

. By Example 4.1.4, we have fλ = X
ni
0

if

x = 0. Next, we assume that 0 < x < Pi and show that ωmin
(ni,c)

≥ 0 holds. First, we have

R[pc,q− p]+ni < q− p ⇔ R[pc+ni,q− p] ≥ ni ⇔ R
[ pc+ni

k
,b

]
≥ ti . (4.8)

By using the equation (3.1) (see §3.2.1), we see that

pc+ni

k
= x {(α+1)b− t1}+ (t1Pi − bQi) ≡ t1(Pi − x) (mod b)

holds, which yields that

R

[ pc+ni

k
,b

]
= R [t1(Pi − x),b] . (4.9)

Therefore, it follows from Lemma 4.1.18 and Corollary 4.1.24 that ωmin
(ni,c)

≥ 0. Since d0 =

ni +ω
min
(ni,c)

, this implies that fλ ∈ (X
ni
0
). If x = Pi, then we have fλ = X

ei
1

X
li
j

by Example

4.1.10. Therefore, we are left to consider the case where x > Pi. We show that d1 ≥ ei and

d j ≥ li hold in this case. Set ω′
= −ni + q(c−mPi), and set ω′′

= −ni + p(c−mPi). Suppose

that d1 < ei. Then we have qc −ωmin
(ni,c)

< (q − p)ei = ni + qmPi, and hence ωmin
(ni,c)

> ω′. It

follows that 0 ≤ pc−ωmin
(ni,c)

< pc−ω′
= ni + qmPi − c(q− p). Therefore, all of the following

are positive integers: ni +ω
′
= q(c−mPi),

qc−ω′

q−p
=

ni+qmPi

q−p
,

pc−ω′

q−p
=

ni+qmPi

q−p
− c. Thus we get

(ni,c,ω
′) ∈ µ̃−1(ni,c)∩Λ by Remark 4.1.5.1. But this contradicts to the minimality of ωmin

(ni,c)
.

If d j < li, then we have pc−ωmin
(ni,c)

< (q− p)li = ni + pmPi, and hence ωmin
(ni,c)

> ω′′. In a similar

manner, we see that this implies (ni,c,ω
′′) ∈ µ̃−1(ni,c)∩Λ, which is a contradiction. Q.E.D.

Corollary 4.1.25. Let 1 < i ≤ r . Then, R[pmx +ni,q− p] = ni +R[pmx,q− p] holds for any

0 < x < Pi.

Proof. We have seen in the proof of Proposition 4.1.20 that R[pmx + ni,q− p] ≥ ni holds if

0 < x < Pi. On the other hand, since ni < q− p, we have

R[pmx+ni,q− p] =

{
ni +R[pmx,q− p] (if ni +R[pmx,q− p] < q− p)

ni +R[pmx,q− p]− q+ p (otherwise).

Therefore we deduce that R[pmx + ni,q− p] = ni +R[pmx,q− p], since otherwise we have

ni ≤ ni +R[pmx,q− p]− q+ p < ni. Q.E.D.
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4.2 Hilbert function of the ideals

4.2.1 Calculation of the Hilbert function I

In this subsection, we show that the Hilbert function of the ideals Is and Js coincide with the

Hilbert function h of a general fiber of the quotient morphism π (Theorems 4.2.2 and 4.2.3).

Recall that h coincides with the Hilbert function of the regular representation of G0 ×Gm

(Corollary 3.1.2).

Theorem 4.2.2. For any s ∈ C, the quotient ring A/Is has Hilbert function h. Namely,

dim(A/Is)(n,d) = h(n,d) holds for any G0 ×Gm-weight (n,d) ∈ Z×Z/mZ.

Proof. Taking Remark 4.1.0.1 into account, it suffices to consider the cases where s = 0,1.

Let R = C[X0,X1,X4], i.e., let j = 4 in (4.1) (see §4.1), and consider the ideals Ĩ1 := (X
q−p

0
−

X1X4, 1− X
mp

0
Xm

1
) and Ĩ0 := (X

q−p

0
− X1X4, X

mp

0
Xm

1
) of R. Then, we have A/I1 � R/Ĩ1 and

A/I0 � R/Ĩ0.

Case 1: s = 1. We first show that dim(A/I1)(n,d) ≥ h(n,d) holds. Recall that the open

orbit U ⊂ El,m coincides with the SL(2)-orbit of π(x), where x = (1,1,0,0,1) ∈ Hq−p, and

that the Hilbert–Chow morphism γ is an isomorphism over U∪D (Proposition 3.1.1). Let

[I] = γ−1(π(x)). Since X
mp

0
Xm

1
∈ AG0×Gm and since the X0-coordinate and the X1-coordinate

of x are both 1, we have 1− X
mp

0
Xm

1
∈ I. Similarly, since X

mp

0
Xm

2
∈ AG0×Gm and since the

X2-coordinate of x is 0, we have X
mp

0
Xm

2
∈ I. On the other hand, s1X1 + s2X2 ∈ I holds for

some (s1, s2) , 0 by Remark 4.1.1.1. Then we see that s1 = 0, since otherwise we have 1 ∈ I

by the conditions 1− X
mp

0
Xm

1
, X

mp

0
Xm

2
∈ I. Therefore, we get X2 ∈ I. Similarly, since we

have X
aq

1
X

ap

3
, X

aq

1
X

ap

4
∈ AG0×Gm , it follows that X

aq

1
X

ap

3
, 1− X

aq

1
X

ap

4
∈ I. This implies that

X3 ∈ I again by Remark 4.1.1.1. Therefore, we have I1 ⊂ I, which induces a natural surjection

A/I1 −→ A/I. This yields that dim(A/I1)(n,d) ≥ dim(A/I)(n,d) = h(n,d). Next, we show that

dim(R/Ĩ1)(n,d) ≤ h(n,d) holds. The weight space R(n,d) decomposes as R(n,d) =
⊕

λ∈Λ(n,d)
Rλ.

In view of this decomposition, we see that dim(R/Ĩ1)(n,d) ≤ 1 holds by Lemma 4.1.14 (iii).

Case 2: s = 0. Let [I′] ∈ γ−1(O) be a point such that γ([I′]) ∈ Hq−p ∩ {X2 = X3 =

0}//(G0 ×Gm), where O stands for the origin of El,m (see Remark 2.3.3.2). Then we see in

a similar way as above that I0 ⊂ I′ holds. Thus, dim(A/I0)(n,d) ≥ h(n,d). Next, notice that

R(n,d) decomposes as R(n,d) = R
c(n,d)
n ⊕R′

(n,d)
, where we set R′

(n,d)
=

⊕
c≡d (mod m)

c>c(n,d)

Rc
n. By Lemma
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4.1.14 (ii), we see that R′
(n,d)

⊂ Ĩ0. Hence we get dim(R/Ĩ0)(n,d) ≤ 1 by applying Lemma 4.1.14

(i) with c = c(n,d). Q.E.D.

Theorem 4.2.3. For any s ∈ C, the quotient ring A/Js has Hilbert function h.

Lemma 4.2.4. For any s ∈ C and (n,d) ∈ Z×Z/mZ, we have dim(A/Js)(n,d) ≥ h(n,d).

Proof. We proceed in a similar way to the proof of Theorem 4.2.2.

Case 1: s = 1. We have seen in §3.1 that D coincides with the SL(2)-orbit of π(x′),

where x′ = (0,1,0,1,0) ∈ Hq−p. Let [J] = γ−1(π(x′)). Similarly as in Case 1 of the proof

of Theorem 4.2.2, we have 1− X
aq

1
X

ap

3
, X

aq

2
X

ap

3
∈ J since X

aq

1
X

ap

3
, X

aq

2
X

ap

3
∈ AG0×Gm and

since the X1-, X2-, and X3-coordinates of x′ are 1,0, and 1, respectively. By Remark 4.1.1.1,

it follows that X2, X4 ∈ J. Therefore, we have (X
q−p

0
, X2, X4, 1− X

aq

1
X

ap

3
) ⊂ J concerning

that the defining ideal of Hq−q is (X
q−p

0
− X1X4+ X2X3). If El,m is toric, then we get J1 ⊂ J,

since k = q − p. Suppose that El,m is non-toric. By Proposition 4.1.2, S(k,0) is generated

by Symer ⟨X1,X2⟩ ⊗ Symlr ⟨X3,X4⟩ ⊕ ⟨X k
0
⟩ over the invariant ring SG0×Gm . Therefore, the

conditions dim(A/J)(n,d) = h(n,d) = 1 and X2,X4 ∈ J imply that sX
er
1

X
lr
3
+ s′X k

0
∈ J holds for

some (s, s′) , 0. If s , 0, then we deduce from the conditions er ≤ er+1 = aq, lr ≤ lr+1 = ap,

and k < q − p that 1 ∈ J. Thus we get s = 0, and hence X k
0
∈ J. Therefore, we see that

J1 ⊂ J holds in the non-toric case as well. The inclusion J1 ⊂ J induces a natural surjection

A/J1 −→ A/J, which yields that dim(A/J1)(n,d) ≥ dim(A/J)(n,d) = h(n,d).

Case 2: s = 0. Let [J′] ∈ γ−1(O) be a point such that γ([J′]) ∈ Hq−p ∩ {X2 = X4 =

0}//(G0 ×Gm). Then we can show in a similar way that J0 ⊂ J′ holds. Therefore, we have

dim(A/J0)(n,d) ≥ h(n,d). Q.E.D.

Proof of Theorem 4.2.3. Let R = C[X0,X1,X3], i.e., let j = 3 in (4.1) (see §4.1).

Case 1: s = 1. Set J = (X k
0
, 1− X

aq

1
X

ap

3
). Then, we have A/J1 � R/J and R(n,d)/J(n,d) �⊕

c≡d (mod m) Rc
n/(J∩Rc

n). The vector space Rc
n decomposes as Rc

n =
⊕

ω≥ωmin
(n,c)

R(n,c,ω), and we

have
⊕

ω>ωmin
(n,c)

R(n,c,ω) ⊂ J by Lemma 4.1.11. Therefore, it suffices to show that dimWn,d ≤ 1,

where we set Wn,d =
⊕

λ=

(
n,c,ωmin

(n,c)

)
∈Λ(n,d)

Rλ/(J ∩ Rλ). We divide its proof into two steps.

Recall that Rλ is a 1-dimensional vector space spanned by fλ (see Lemma 4.1.5).

Step 1 of Case 1. In this step, we show that dimWn,d ≤ 1 holds if 0 ≤ n < q − p and

if d = 0. Let us consider the set C =
{
c ∈ Z :

(
n,c,ωmin

(n,c)

)
∈ Λ(n,0), n+ωmin

(n,c)
< k

}
. If C is
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empty, then we see that fλ ∈ (X k
0
) holds for any λ =

(
n,c,ωmin

(n,c)

)
∈ Λ(n,0) concerning Lemma

4.1.5. This implies that dimWn,0 = 0, and hence we get dim(R/J)(n,0) = 0, which contradicts

to Lemma 4.2.4. Therefore, C is non-empty. Let λ =
(
n,c,ωmin

(n,c)

)
∈ Λ(n,0). If c < C, then

we have n +ωmin
(n,c)

≥ k, and hence fλ ∈ (X k
0
) by Lemma 4.1.5. If c ∈ C, then we have

fλ− f(
n,cmin,ω

min
(n,cmin)

) ∈ (1−X
aq

1
X

ap

3
) by Lemma 4.1.15, where cmin denotes the minimal element

of C. Consequently, we get dimWn,0 ≤ 1.

Step 2 of Case 1. In this step, we show that dimWn,d ≤ 1 holds for any (n,d). Let

λ =

(
n,c,ωmin

(n,c)

)
∈ Λ(n,d). Set n′ = n+ωmin

(n,c(n,d))
, set c′ = c− c(n,d), and set λ′ =

(
n′,c′,ωmin

(n′,c′)

)
∈

Λ(n′,0). Let λ′′ ∈ Λ be the image of(
0,

qc(n,d)−ω
min
(n,c(n,d))

q− p
,

pc(n,d)−ω
min
(n,c(n,d))

q− p

)

under the map µ. Then a direct calculation shows λ′′ =
(
n−n′,c(n,d),ω

min
(n,c(n,d))

)
∈ Λ(n−n′,d).

Therefore, λ′+λ′′ =
(
n,c,ωmin

(n′,c′)
+ωmin

(n,c(n,d))

)
. Since we have ωmin

(n′,c′)
+ωmin

(n,c(n,d))
+ n = ωmin

(n′,c′)
+

n′ < q− p by Lemma 4.1.9, it follows from Lemma 4.1.16 thatωmin
(n′,c′)
+ωmin

(n,c(n,d))
=ωmin

(n,c)
. Thus

we get λ = λ′+λ′′. On the other hand we have 0 ≤ n′ < q− p by Lemmas 4.1.5 and 4.1.9, and

therefore dim R(n′,0)/J(n′,0) ≤ 1 by Step 1. This yields that dim R(n,d)/J(n,d) ≤ 1, since we have

fλ = fλ′ fλ′′ and fλ′ ∈ R(n′,0).

Case 2: s = 0. Set J′ = (X k
0
, X

aq

1
X

ap

3
). Then, we have A/J0 � R/J′. Concerning Case

1, it suffices to show that dimW′
n,d

≤ 1 holds if 0 ≤ n < q − p and if d = 0, where we set

W′
n,d
=

⊕
λ=

(
n,c,ωmin

(n,c)

)
∈Λ(n,d)

Rλ/(J
′∩Rλ) . Let λ = (n,c,ω) ∈ Λ(n,0), and let C be the set defined

in Step 1 of Case s = 1. If c ∈ C \ {cmin}, then we have fλ ∈ (X
aq

1
X

ap

3
) by Lemma 4.1.15.

Otherwise, we get fλ ∈ (X k
0
). Therefore, we have fλ ∈ J′ whenever c , cmin, which shows

dimW′
n,0

≤ 1.

This completes the proof of the theorem. Q.E.D.

Corollary 4.2.5. The subsets γ−1(U) and γ−1(D) of H = Hilb
G0×Gm

h
(Hq−p) are SL(2)-orbits

of [I1] and [J1], respectively. In particular, the equivariant isomorphism γ |γ−1(U∪D) : γ−1(U∪

D) −→ U ∪D is given by sending [I1] and [J1] to π(x) and π(x′), respectively, where x =

(1,1,0,0,1), x′ = (0,1,0,1,0) ∈ Hq−p.

Proof. Taking Remark 3.1.1.1 into account, we deduce from Theorems 4.2.2 and 4.2.3 that
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the defining ideals of π−1(π(x)) and π−1(π(x′)) are I1 and J1, respectively. This shows the

corollary. Q.E.D.

4.2.6 Calculation of the Hilbert function II

In this subsection, we evaluate the Hilbert function of the ideals Li
s from above (Theorems

4.2.7 and 4.2.8). Let R = C[X0,X1,X3], i.e., let j = 3 in (4.1) (see §4.1), and let K̃ be the ideal

of R generated by elements of the form X
pu1−qu2

0
X

u1

1
X

u2

3
, where (u1,u2) ∈ M+

l,m
\ (0,0). For

each s ∈ C and 1 ≤ i ≤ r , we define

L̃i
s := (X

ni−1

0
, sX

ni
0
− X

ei
1

X
li
3
)+ K̃ ⊂ R.

Then, A/Li
s � R/L̃i

s. The goal of this subsection is to prove the following theorems:

Theorem 4.2.7. We have dim(R/L̃i
0
)(n,d) ≤ h(n,d) for any 1 ≤ i ≤ r and (n,d) ∈ Z×Z/mZ.

Theorem 4.2.8. We have dim(R/L̃i
1
)(n,d) ≤ h(n,d) for any 1 ≤ i ≤ r and (n,d) ∈ Z×Z/mZ.

We will see in Corollary 5.3.1 that the Hilbert function of Li
s coincides with h for any

1 ≤ i ≤ r and for any s ∈ C. The following series of lemmas help to avoid complicated

arguments in the proof of Theorems 4.2.7 and 4.2.8.

Lemma 4.2.9. Let λ = (n,c,ω) ∈ Λ(n,0). If n, ω ≥ 0 and c > 0, then we have fλ ∈ K̃ .

Proof. Set u1 =
qc−ω
q−p

, and set u2 =
pc−ω
q−p

. Then, we have fλ = Xn+ω
0

X
u1

1
X

u2

3
by Lemma

4.1.5. Since we have u1 − u2 ∈ mZ>0 by the conditions λ ∈ Λ(n,0) and c > 0, we see that

(u1,u2) ∈ M+
l,m

\ {(0,0)}. Moreover, one has pu1 − qu2 = ω. Therefore, fλ can be written as

fλ = Xn
0
(X

pu1−qu2

0
X

u1

1
X

u3

3
), which tells us that fλ ∈ K̃ . Q.E.D.

Lemma 4.2.10. Let (n,c) ∈ Λ′. Assume that 0 ≤ n < q− p, and that c ≥ 0. Then:

(i) we have ωmin
(0,c)
+n < q− p if and only if ωmin

(0,c)
= ωmin

(n,c)
;

(ii) we have ωmin
(0,c)
+n ≥ q− p if and only if ωmin

(0,c)
= ωmin

(n,c)
+ q− p;

(iii) we have ωmin
(0,c)

≥ q− p− β if and only if ωmin
(0,c+m)

= ωmin
(0,c)

− q+ p+ β;
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(iv) we have ωmin
(0,c)

< q− p− β if and only if ωmin
(0,c+m)

= ωmin
(0,c)
+ β.

Proof. The if part is easy to check, so we prove the only if part. Note that one has 0 ≤

ωmin
(0,c)

< q − p by Lemma 4.1.16. Since the image of

(
n+ωmin

(0,c)
,

qc−ωmin
(0,c)

q−p
,

pc−ωmin
(0,c)

q−p

)
∈ Z3

≥0

under the map µ is (n,c,ωmin
(0,c)

), it follows that (n,c,ωmin
(0,c)

) ∈ µ̃−1(n,c) ∩Λ. This implies that

ωmin
(0,c)

≥ωmin
(n,c)

. Concerning this relation, item (i) follows from Lemma 4.1.9. Next, we show (ii).

If n+ωmin
(0,c)

≥ q−p, then we haveωmin
(0,c)

> ωmin
(n,c)

by Lemma 4.1.9. Thus,ωmin
(0,c)

−ωmin
(n,c)
= x(q−p)

holds for some x ≥ 1 by Lemma 4.1.7. By Lemma 4.1.5, we have ωmin
(n,c)
+ n ≥ 0, and

thus ωmin
(n,c)
+ q− p > 0. It follows that x = 1, since otherwise one has ωmin

(0,c)
> q− p, which

contradicts to the minimality of ωmin
(0,c)

. To see (iii), suppose that ωmin
(0,c)

≥ q− p− β, and set

ω = ωmin
(0,c)

− q+ p+ β. Then, 0 ≤ ω < q− p. By a direct calculation using (3.1) (see §3.2.1),

we get
q(c+m)−ω

q−p
=

qc−ωmin
(0,c)

q−p
+α+m+1 and

p(c+m)−ω
q−p

=

pc−ωmin
(0,c)

q−p
+α+1. Therefore,

q(c+m)−ω
q−p

> 0

and
p(c+m)−ω

q−p
> 0 hold, since we have

qc−ωmin
(0,c)

q−p
,

pc−ωmin
(0,c)

q−p
≥ 0 by Lemma 4.1.5. On the other

hand, we see that the image of
(
ω,

q(c+m)−ω
q−p

,
p(c+m)−ω

q−p

)
∈ Z3

≥0
under µ is (0,c+m,ω). It follows

that (0,c +m,ω) ∈ µ̃−1(0,c +m) ∩Λ. Therefore, we have ω ≥ ωmin
(0,c+m)

. Since ω < q − p,

we see that ω = ωmin
(0,c+m)

. Finally, we show (iv). Suppose that ωmin
(0,c)

< q − p− β, and set

ω′
= ωmin

(0,c)
+ β. Then, 0 ≤ ω < q− p. In a similar way as in the proof of (iii), we see that

(0,c+m,ω′) ∈ µ̃−1(0,c+m)∩Λ. Therefore, we get ω′
= ωmin

(0,c+m)
. Q.E.D.

Lemma 4.2.11. Suppose that r > 1, and let 1 < i ≤ r . Then, ni−1 −ni ≤ ω
min
(0,mx)

≤ q− p−ni−1

holds for any 0 < x < Pi.

Proof. By the proof of Lemma 4.1.18, we have ωmin
(0,mx)

= R[pmx,q − p], which coincides

with R[pmx + ni,q − p] − ni by Corollary 4.1.25. Also, we see that R[pmx + ni,q − p] =

kR[t1(Pi − x),b] holds by (4.9) in the proof of Proposition 4.1.20. Moreover, we have ti−1 ≤

R[t1(Pi − x),b] ≤ b+ ti − ti−1 by Corollary 4.1.24. Therefore, the lemma follows concerning

q− p = kb, ni = kti, and ni−1 = kti−1. Q.E.D.

Definition 4.2.12. For each c ∈ mZ>0, we define

λc :=
(
q− p−ωmin

(0,c),c,ω
min
(0,c)− q+ p

)
∈ Λ(

q−p−ωmin
(0,c)

,0
),

which coincides with the image of

(
0,

qc−ωmin
(0,c)

q−p
+1,

pc−ωmin
(0,c)

q−p
+1

)
∈ Z3

≥0
under the map µ.
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By a direct calculation, we have fλc = X

qc−ωmin
(0,c)

q−p
+1

1
X

pc−ωmin
(0,c)

q−p
+1

3
. Also, by applying Lemma

4.2.10 (ii) with n = q− p−ωmin
(0,c)

, we see that ωmin
(0,c)

− q+ p = ωmin(
q−p−ωmin

(0,c)
,c
) holds. Therefore,

we have λc =

(
q− p−ωmin

(0,c)
,c,ωmin

(q−p−ωmin
(0,c)

,c)

)
.

Example 4.2.13. By Example 4.1.10, Lemmas 4.1.16 (i), and 4.2.10 (i), (ii), we haveωmin
(0,mPi)

=

ωmin
(ni,mPi)

+ q− p = −ni + q− p. Therefore, we see that λmPi
=

(
ni,mPi,ω

min
(ni,mPi)

)
and fλmPi

=

X
ei
1

X
li
3

hold.

Lemma 4.2.14. Let c,c′ ∈ mZ>0. Then we have fλc′ ∈ ( fλc ) if and only if c′ ≥ c.

Proof. We may assume that c′ = c+m . Then, by (3.1) (see §3.2.1) and Lemma 4.2.10, we have

fλc′ = Xα+m+1
1

Xα+1
3

fλc if ωmin
(0,c)

≥ q− p− β; otherwise, we have fλc′ = Xα+m
1

Xα
3

fλc . Q.E.D.

Lemma 4.2.15. Let λ =
(
n,c,ωmin

(n,c)

)
∈ Λ(n,0). Assume that c > 0, and that 0 ≤ n < q− p. Then

we have the following.

(i) If ωmin
(0,c)
+n < q− p, then we have fλ ∈ K̃ .

(ii) If ωmin
(0,c)
+n ≥ q− p, then we have fλ = X

n+ωmin
(n,c)

0
fλc = X

n+ωmin
(0,c)

−q+p

0
fλc .

Proof. Item (i) follows from Lemmas 4.1.16 (i), 4.2.9, and 4.2.10 (i). Item (ii) is a consequence

of Lemma 4.2.10 (ii) and the definition of λc. Q.E.D.

Lemma 4.2.16. Let 0 ≤ n < q− p, and let λ =
(
n,c,ωmin

(n,c)

)
∈ Λ(n,0). Then, c can be written as

c =mx with some x ≥ 0 by Example 4.1.4. Under this assumption and notation, the following

properties are true for any 1 ≤ i ≤ r .

(i) If 0 < x < Pi and if 0 ≤ n < ni−1, then we have fλ ∈ K̃ .

(ii) If x = Pi and if 0 ≤ n < ni, then we have fλ ∈ K̃ .

(iii) If x = Pi and if ni ≤ n < q− p, then we have fλ ∈ (X
ei
1

X
li
3
).

(iv) If x > Pi and if 0 ≤ n < q− p, then we have fλ ∈ (X
ei
1

X
li
3
)+ K̃ .
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(v) If x > Pi and if 0 ≤ n < ni, then we have fλ ∈ L̃i
1
.

(vi) Let x > Pi, and let ni ≤ n < ni−1.

(vi-1) If x is not a multiple of Pi, then we have fλ ∈ L̃i
1
.

(vi-2) If x is a multiple of Pi, then we have fλ − f(
n,c−mPi,ω

min
(n,c−mPi )

) ∈ L̃i
1
.

Proof. Item (i) follows from Lemmas 4.2.11 and 4.2.15 (i). Item (ii) is a consequence of

Example 4.2.13 and Lemma 4.2.15 (i). We get item (iii) by applying Lemma 4.2.15 (ii)

with c = mPi and taking into account Example 4.2.13. If x > Pi, then we have fλc ∈ ( fλmPi
)

by Lemma 4.2.14. Thus, item (iv) follows from Lemma 4.2.15. Next we show (v). If

n+ωmin
(0,c)

< q− p, then we have fλ ∈ K̃ by Lemma 4.2.15 (i), and hence fλ ∈ L̃i
1
. Suppose that

n+ωmin
(0,c)

≥ q− p, and set n′ = n+ωmin
(0,c)

− q+ p. Then, we have fλ = Xn′

0
fλc . Also, by Lemma

4.2.14, we see that fλc can be written as fλc = fλmPi
f = X

ei
1

X
li
3

f with some f ∈ Rc′

n−n′−ni
,

where we set c′ = c−mPi. Therefore, we can write fλ as fλ = X
n′
+ni

0
f − Xn′

0
f (X

ni
0
− X

ei
1

X
li
3
).

Since X
n′
+ni

0
f ∈ Rc′

n , we have X
n′
+ni

0
f = fλ′ with some λ′ = (n,c′,ω′) ∈ Λ(n,0): we have fλ =

fλ′ − Xn′

0
f (X

ni
0
− X

ei
1

X
li
3
). Therefore, it suffices to show that fλ′ ∈ L̃i

1
. If ω′ > ωmin

(n,c′)
, then we

have fλ′ ∈ (X
ni−1

0
) by Lemma 4.1.11. Hence we get fλ ∈ L̃i

1
. Now we are left to consider

the case where ω′
= ωmin

(n,c′)
. If 0 < c′ ≤ mPi, then we have fλ′ ∈ K̃ by (i) and (ii), and hence

fλ ∈ L̃i
1
. Suppose that c′ > mPi. Then, by applying the above discussion to fλ′ and continuing

in this way, one finally obtains fλ ∈ L̃i
1
. (vi) is a consequence of the proof of (v). Q.E.D.

Lemma 4.2.17. Let λ =
(
n,c,ωmin

(n,c)

)
∈ Λ(n,0) with c = mx. Suppose that Pj < x < Pi, n j ≤ n <

n j−1, and n− n j < ni−1 hold for some 1 ≤ j < i ≤ r + 1. Then, we have fλ = X
n−nj

0
fλmPj

fλ′,

where λ′ =
(
0,c−mPj,ω

min
(0,c−mPj )

)
∈ Λ(0,0). In particular, fλ ∈ K̃ .

Proof. Set λ′′ = (n−n j,0,0). Then, we have λ′′+λmPj
+λ′ =

(
n,c,ωmin

(0,c−mPj )
−n j

)
and fλ′′ =

X
n−nj

0
. Since 0 < x−Pj < Pi, we have n+ωmin

(0,c−mPj )
−n j < q− p by Lemma 4.2.11, and hence

ωmin
(0,c−mPj )

− n j = ω
min
(n,c)

by Lemma 4.1.9. It follows that λ′′+ λmPj
+ λ′ = λ, and thus we get

fλ = X
n−nj

0
fλmPj

fλ′. Taking Remark 4.1.2.2 and the definition of K̃ into account, we see that

fλ′ ∈ K̃ . Q.E.D.
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Proof of Theorem 4.2.7. Set L = L̃i
0
. In view of the proof of Theorem 4.2.3, it suffices to show

that dimVn,d ≤ 1 holds if 0 ≤ n < q− p and if d = 0, where we set Vn,d =
⊕

λ=

(
n,c,ωmin

(n,c)

) Rλ/(L∩

Rλ). Let λ =
(
n,c,ωmin

(n,c)

)
∈ Λ(n,0). Note that we have c =mx for some x ≥ 0 by Example 4.1.4.

Case 1. Let 0 ≤ n < ni−1. By Lemma 4.2.16 (i), (ii), (ii), (iv), we see that fλ ∈ L holds if

x > 0. This implies dimVn,0 ≤ 1.

Case 2. Let ni−1 ≤ n < q− p. By Lemma 3.2.5, there is a unique integer j1 that satisfies

1 ≤ j1 ≤ i − 1 and n j1 ≤ n < n j1−1. If n− n j1 ≥ ni−1, then we can take an integer j2 uniquely

to satisfy 1 ≤ j2 ≤ i − 1 and n j2 ≤ n− n j1 < n j2−1. By continuing in this way, we finally get

n−(n j1 +n j2 + · · ·+n jun−1
+n jun

) < ni−1 for some 1 ≤ j1, j2, . . ., jun ≤ i−1. Namely, we have{
n j1 ≤ n < n j1−1

n−n j1 ≥ ni−1{
n j2 ≤ n−n j1 < n j2−1

n−(n j1 +n j2) ≥ ni−1

. . . . . .{
n jun−1

≤ n−(n j1 + · · ·+n jun−2
) < n jun−1−1

n−(n j1 + · · ·+n jun−2
+n jun−1

) ≥ ni−1{
n jun

≤ n−(n j1 + · · ·+n jun−1
) < n jun−1

n−(n j1 + · · ·+n jun−1
+n jun

) < ni−1

In the following, we show dimVn,0 ≤ 1 by induction on un. Set u= un, and set P = Pj1+ · · ·+Pju .

First suppose that u = 1. Since j1 < i, we have P < Pi. We show that fλ ∈ L holds if x , P. If

x = 0, then fλ = Xn
0

by Example 4.1.4. Therefore, fλ ∈ L. If 0 < x < P, then we have fλ ∈ K̃

by applying Lemma 4.2.16 (i) with i = j1. If P < x < Pi, then by applying Lemma 4.2.17

with j = j1 we see that fλ ∈ K̃ holds. If x ≥ Pi, then we have fλ ∈ (X
ei
1

X
li
3
)+ K̃ by Lemma

4.2.16 (iii), (iv). Therefore, we see that dimVn,0 ≤ 1 holds if u = 1. Next suppose that u > 1.

If x = 0, then we have fλ ∈ (X
ni−1

0
). Also, we see as above that fλ ∈ K̃ holds if 0 < x < Pj1 .

Let x > Pj1 , and set P′
= P−Pj1 , set n′ = n−n j1 , set c′ = c−mPj1 , and set λ′ =

(
n′,c′,ωmin

(n′,c′)

)
.

Since we have ωmin
(nj1

,mPj1
)
+ωmin

(n′,c′)
+n j1 +n′ =ωmin

(n′,c′)
+n′ < q− p by Example 4.1.10, it follows

from Lemma 4.1.16 that ωmin
(n,c)
= ωmin

(nj1
,mPj1

)
+ωmin

(n′,c′)
. Thus we get λ = λmPj1

+ λ′, and hence

fλ = fλmPj1
fλ′ by Lemma 4.1.5. Since we have un′ = u − 1, it follows from the induction

hypothesis and the relation fλ = fλmPj1
fλ′ that dimVn,0 ≤ 1 holds. Q.E.D.
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Remark 4.2.17.1. Let 0 ≤ n < q− p, and let λ = (n,c,ω) ∈ Λ(n,0). By the proof of Theorem

4.2.7, we deduce the following.

• Let 0 ≤ n ≤ ni−1. Then, we have fλ ∈ L̃i
0

if λ ,
(
n,0,ωmin

(n,0)

)
.

• Let ni−1 ≤ n < q− p. Then, we have fλ ∈ L̃i
0

if λ ,
(
n,mP,ωmin

(n,mP)

)
, where P = Pj1 +

· · ·+Pju as in the proof of Theorem 4.2.7.

Proof of Theorem 4.2.8. Set L′
= L̃i

1
, and set V ′

n,d
=

⊕
λ=

(
n,c,ωmin

(n,c)

)
∈Λ(n,d)

Rλ/(L
′∩ Rλ). As in

the proof of Theorem 4.2.7, it suffices to show that dimV ′
n,d

≤ 1 holds if 0 ≤ n < q− p and if

d = 0. Let λ =
(
n,c,ωmin

(n,c)

)
∈ Λ(n,0).

Case 1. Let 0 ≤ n < ni. By Lemma 4.2.16 (i), (ii), (v), we see that fλ ∈ L′ holds if c > 0.

Therefore, we get dimV ′
n,0

≤ 1.

Case 2. Let ni ≤ n < ni−1. By Lemma 4.2.16 (i), we have fλ ∈ L′ if 0 < x < Pi. If x ≥ Pi,

then taking f(
n,mPi,ω

min
(n,mPi )

) − f(
n,0,ωmin

(n,0)

)
= X

n−ni
0

(X
ei
1

X
li
3
−X

ni
0
) ∈ L′ into account, we deduce from

Lemma 4.2.16 (vi) that either of the following holds: fλ ∈ L′; or fλ − f(
n,c−mPi,ω

min
(n,c−mPi )

) ∈ L′.

This implies that dimV ′
n,0

≤ 1.

Case 3. Let ni−1 ≤ n < q− p. We follow similar lines to Case 2 of the proof of Theorem

4.2.7: we define u and P in the same way and proceed by induction on u. Let u = 1. In a similar

way, we see that fλ ∈ L′ holds if 0 ≤ c < mP. Let c ≥ mP. Then we can write fλ = fλ′ fλmP
,

where λ′ =
(
n−n j1,c−mP,ωmin

(n−nj1
,c−mP)

)
. If 0 ≤ n−n j1 < ni, then we have fλ′ ∈ L′ by Lemma

4.2.16 (i), (ii), (v), which tells us that dimV ′
n,0

≤ 1 holds in this case. If ni ≤ n− n j1 < ni−1,

then we can show that dimV ′
n,0

≤ 1 is true by following a similar argument to the one in Case

2. Q.E.D.

Remark 4.2.17.2. Let us define Fj = f(
0,mj,ωmin

(0,mj)

) for each 1 ≤ j ≤ b− 1. We claim that

Li
0

coincides with (X
ni−1

0
, X2, X4, X

ei
1

X
li
3
, F1, . . ., Fb−1) for any 1 ≤ i ≤ r . To see this,

let (u1,u2) ∈ M+
l,m

\ {(0,0)}, and set c = u1 − u2, and set ω = pu1 − qu2. Then, we have

X
pu1−qu2

0
X

u1

1
X

u2

3
= f(0,c,ω). Also, we can write c = mx with some x > 0 by the definition of

M+
l,m

. Concerning the definition of Li
0
, it suffices to check that f(0,c,ω) is contained in the ideal

(X
ni−1

0
, X

ei
1

X
li
3
, F1, . . ., Fb−1) ⊂ R. Ifω > ωmin

(0,c)
, then we get f(0,c,ω) ∈ (X

ni−1

0
) by Lemma 4.1.11.

Suppose that ω = ωmin
(0,c)

. If x = b, then we have f(0,c,ω) = X
aq

1
X

ap

3
= X

er+1

1
X

lr+1

3
∈ (X

ei
1

X
li
3
). If
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x > b, then we see that f(0,c,ω) ∈ (X
aq

1
X

ap

3
) holds. Therefore, the two ideals coincide. In a

similar manner, we see that J0 coincides with (X
nr
0
, X2, X4, X

er+1

1
X

lr+1

3
, F1, . . ., Fb−1).
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Chapter 5

Invariant Hilbert schemes and resolutions

of singularities of affine normal

quasihomogeneous SL(2)-varieties III:

proof of the main results

5.1 Morphism to the fiber product

Let us consider the diagonal SL(2) ×C∗-action on the fiber product E−
l,m

×El,m
E+

l,m
. Then we

have the following equivariant commutative diagram:

E′
l,m

%%

��

yy

E−
l,m

×El,m
E+

l,m

++ss
E−

l,m

++

// E+
l,m

ss
El,m

In this section, we construct a morphism from the main component Hmain
= γ−1(U) to

E−
l,m

×El,m
E+

l,m
, which is in equivariant bijection with the weighted blow-up E′

l,m
. We have

seen in Lemma 4.1.1 that F−p,−1 = ⟨X1,X2⟩ (resp. Fq,1 = ⟨X3,X4⟩) generates S(−p,−1) (resp.

S(q,1)) as a module over the invariant ring SG0×Gm . Therefore, taking §2.1.6 into account, we
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can construct the following equivariant morphisms:

η−p,−1 : H −→ Gr(h(−p,−1),F∨
−p,−1) � P

1, ηq,1 : H −→ Gr(h(q,1),F∨
q,1) � P

1,

where the isomorphisms Gr(h(−p,−1),F∨
−p,−1

) � P1 and Gr(h(q,1),F∨
q,1
) � P1 are given by

⟨x1X∨
1
+ x2X∨

2
⟩ 7→ [x1 : x2] and ⟨x3X∨

3
+ x4X∨

4
⟩ 7→ [x3 : x4], respectively. Since X2, X3 ∈ I1,

it follows from Lemma 4.1.1 that (S/I1)(−p,−1) � ⟨X1⟩ and (S/I1)(q,1) � ⟨X4⟩. Therefore, we

have η−p,−1([I1]) = [1 : 0] and ηq,1([I1]) = [0 : 1]. Set

ψ := γ×η−p,−1 ×ηq,1 : H −→ El,m ×P1 ×P1.

Since γ([I1]) = π(x) by Corollary 4.2.5, we see that ψ([I1]) = (π(x), [1 : 0], [0 : 1]). Similarly,

we have ψ([J1]) = (π(x′), [1 : 0], [1 : 0]). In what follows, we show that the image of Hmain

under ψ is isomorphic to E−
l,m

×El,m
E+

l,m
.

Lemma 5.1.1. The equivariant morphism E′
l,m

−→ E−
l,m

×El,m
E+

l,m
induced by the universal

property of the fiber product is bijective and birational.

Proof. It follows from the description of the surjective morphisms E′
l,m

−→ E−
l,m

and E′
l,m

−→

E+
l,m

given in Remark 2.3.9.2 that E′
l,m

−→ E−
l,m

×El,m
E+

l,m
is bijective. Therefore, the fiber

product E−
l,m

×El,m
E+

l,m
is irreducible. Since E−

l,m
×El,m

E+
l,m

contains an open orbit isomorphic

to U, we deduce that E′
l,m

−→ E−
l,m

×El,m
E+

l,m
is birational. Q.E.D.

Lemma 5.1.2. There are SL(2)×C∗-equivariant embeddings:

E+l,m ֒→ El,m ×Gr(h(−p,−1),F∨
−p,−1) � El,m ×P1;

E−
l,m ֒→ El,m ×Gr(h(q,1),F∨

q,1) � El,m ×P1.

Proof. We have the following equivariant morphism (this morphism was first constructed in

the proof of [BH08, Theorem 3.10]):

U+ −→ Gr(h(−p,−1),F∨
−p,−1) � P

1, (Y0,X1,X2,X3,X4) 7→ [X1 : X2].

Also, we have an equivariant morphism U+ −→ El,m as a composition of the inclusion

U+ ֒→ Hb and the quotient morphism Hb −→ El,m. Therefore, we get a G′
0
×Ga-invariant
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morphism U+ −→ El,m × P1, which factors through E+
l,m

by the universal property of the

categorical quotient:

U+ //

��

El,m ×P1

U+//(G′
0
×Ga) = E+

l,m

α+

66

Let [T1 : T2] be the coordinate of Gr(h(−p,−1),F∨
−p,−1

) � P1. Then, for each i ∈ {1,2}, we have

the following commutative diagram:

U+∩ {Xi , 0} = Hb ∩ {Xi , 0} //

��

Spec
(
C[El,m]

[
T1

Ti
,

T2

Ti

] )

(Hb ∩ {Xi , 0})//(G′
0
×Ga)

α+ |{Xi,0}

44

We see that (C[Hb]Xi
)G

′
0
×Ga
= C[Hb]

G′
0
×Ga

[
X1

Xi
,

X2

Xi

]
holds as a subring of C[Hb]Xi

. There-

fore, α+ is a closed immersion. Analogously, we have an equivariant morphism U− −→

Gr(h(q,1),F∨
q,1
) � P1, (Y0,X1,X2,X3,X4) 7→ [X3 : X4], which induces an equivariant morphism

α− : E−
l,m

−→ El,m ×P1. In a similar way, we see that α− is a closed immersion. Q.E.D.

By Lemmas 5.1.1 and 5.1.2, we get an equivariant closed embedding followed by an

equivariant bijection:

φ : E′
l,m

// E−
l,m

×El,m
E+

l,m

�

�

/ El,m ×P1 ×P1.

Corollary 5.1.3. We have ψ(Hmain) = φ(E′
l,m
) � E−

l,m
×El,m

E+
l,m

.

Proof. Since γ−1(U) is the SL(2) ×C∗-orbit of [I1], and since ψ(Hmain) = ψ(γ−1(U)), we

see that ψ(Hmain) is the SL(2) ×C∗-orbit closure of ψ([I1]). On the other hand, consider

the blow-up morphism f : E′
l,m

−→ El,m, and let y ∈ E′
l,m

be a point such that f (y) = π(x).

Then, it follows from the construction of φ that φ(y) = ψ([I1]). Therefore, one obtains

ψ(Hmain) = φ(E′
l,m
), which is isomorphic to E−

l,m
×El,m

E+
l,m

. Q.E.D.

In view of Remark 2.3.9.2, E′
l,m

contains four orbitsU,D, C, and C′, and they are described
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as follows under E′
l,m

−→ φ(E′
l,m
) ⊂ El,m ×P1 ×P1:

U � φ(U) = (SL(2)×C∗) · (π(x), [1 : 0], [0 : 1]),

D � φ(D) = (SL(2)×C∗) · (π(x′), [1 : 0], [1 : 0]),

φ(C) = (SL(2)×C∗) · (O, [1 : 0], [1 : 0]),

φ(C′) = (SL(2)×C∗) · (O, [1 : 0], [0 : 1]).

Lemma 5.1.4. ψ |Hmain : Hmain −→ φ(E′
l,m
) is bijective outside φ(C).

Proof. Since ψ |Hmain is an isomorphism over U ∪D, it suffices to show the bijectivity of

ψ |Hmain over φ(C′). By the construction of ψ, we see that the set-theoretical fiber of (O, [1 :

0], [0 : 1]) consists of closed points [I] ∈ Hmain that satisfies X2,X3 ∈ I and γ([I]) = O. In

view of the proof of Theorem 4.2.2, we have I0 ⊂ I. Since A/I0 has Hilbert function h by

Theorem 4.2.2, it follows that I = I0. Therefore, ψ |Hmain is bijective over φ(C′). Q.E.D.

5.2 Morphism to the minimal resolution

The goal of this section is to construct an equivariant morphism Ψ : Hmain −→ Ẽ′
l,m

in two

steps. First, we realize Ẽ′
l,m

as a closed subscheme of a projective space El,m×P(V∨) over El,m.

Next, we construct a morphism Ψ : H −→ El,m ×P(V∨) and show that the image Ψ(Hmain)

is isomorphic to Ẽ′
l,m

. In the next section, we will see that Ψ|Hmain is an isomorphism, which

completes the proof of Theorem 3.2.4.

5.2.1 Equivariant embedding of the minimal resolution

In this subsection, we construct an equivariant morphism Ẽ′
l,m

−→ P(V∨) defined by a base-

point-free V ⊂ Γ(Ẽ′
l,m
,O(δ)), where δ is an SL(2) ×C∗-stable Cartier divisor on Ẽ′

l,m
, and

show that the natural morphism Φ : Ẽ′
l,m

−→ El,m ×P(V∨) is a closed immersion (Proposition

5.2.7). In below, we use notations introduced in §2.2 and in §3.2. Let Di (0 ≤ i ≤ r + 1) be

an SL(2) ×C∗-stable prime divisor on Ẽ′
l,m

corresponding to the extremal ray Q≥0ρi. Note

that we have D0 = D′ and Dr+1 = D (see Remark 3.2.4.1 (i)). Then, the set of B̃-stable prime

divisors on Ẽ′
l,m

is given as

D(Ẽ′
l,m
) = {D0, . . ., Dr+1, S̃+, S̃−},

57



where S̃+ (resp. S̃−) is a non-SL(2)×C∗-stable prime divisor on Ẽ′
l,m

such that its image under

the resolution of singularities Ẽ′
l,m

−→ El,m is the B̃-stable divisor S+ (resp. S−) on El,m. By

definition, we have vDi
( f ) = ρvDi

(χ f ) = ρi(χ f ) for any f ∈ C(U)B̃ ⊂ C(X,Y, Z,W). For each

0 ≤ i ≤ r +1, we define σi, fi ∈ C(U)
B̃ to be

σi := ZeiW li
= (ZW)(α+1)Pi−Qi (Zm)Pi, fi :=

∏
0≤ j≤i

σj,

where ei = (α+1+m)Pi −Qi and li = (α+1)Pi −Qi as defined in §3.2.2.

Lemma 5.2.2. With the preceding notation, the following properties are true.

(i) Let 0 ≤ i, j ≤ r + 1. Then we have: vDj
(σi) > 0 if i > j; vDj

(σi) = 0 if i = j; and

vDj
(σi) < 0 if i < j. In particular, we have vDj

(σj+1) = 1 and vDj
(σj−1) = −1.

(ii) We have vDi
( fi) = vDi

( fi−1).

Proof. A direct calculation shows vDj
(σi) = ρ j(χσi ) = −Pj{(α + 1)Pi −Qi} + {(α + 1)Pj −

Q j}Pi = PjQi − PiQ j . Therefore, we get (i) by Theorem 3.2.3. Item (ii) follows from the

definition of fi and (i). Q.E.D.

Let Ẽi (0 ≤ i ≤ r) be the simple spherical open subvariety of Ẽ′
l,m

corresponding to the

colored cone (Ci, ∅), and let Yi be the unique closed orbit of Ẽi. Then we have

D(Ẽi) = {Di |Ẽi
, Di+1 |Ẽi

, S̃+ |
Ẽi
, S̃− |

Ẽi
}, DYi (Ẽi) = {Di |Ẽi

, Di+1 |Ẽi
}.

Moreover, let us consider the following SL(2)×C∗-stable divisor on Ẽ′
l,m

:

δ :=
∑

1≤i≤r+1

vDi
( f −1

i )Di .

Though the Cartierness of δ follows immediately from the smoothness of Ẽ′
l,m

, we check the

criterion for a Weil divisor to be Cartier given in Theorem 2.2.11 as a preparation for the

proof of Lemma 5.2.3: with the notation used in Theorem 2.2.11, we see by Lemma 5.2.2 (ii)

and vD0
( f −1

0
) = 0 that fYi = f −1

i
(0 ≤ i ≤ r) satisfy the required condition.

Lemma 5.2.3. The Cartier divisor δ is generated by global sections.
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Proof. Taking Theorem 2.2.13 and the fact that the cone Cj is spanned by ρ j and ρ j+1 into

account, it is enough to show the following two conditions:

(C1) vDj
( fYi ) ≤ vDj

( fYj
) and vDj+1

( fYi ) ≤ vDj+1
( fYj

) hold for any 0 ≤ i, j ≤ r; and

(C2) v
S̃+
( fYi ) ≤ 0 and v

S̃−( fYi ) ≤ 0 hold for any 0 ≤ i ≤ r .

Condition (C1) follows from Lemma 5.2.2. Moreover, by a direct calculation, we have

v
S̃+
( fi) =

∑
0≤ j≤i e j ≥ 0 and v

S̃−( fi) =
∑

0≤ j≤i l j ≥ 0. This shows (C2). Q.E.D.

Remark 5.2.3.1. Since δ is SL(2)×C∗-stable, there is a linearization of the action of SL(2)×C∗

with respect to the line bundle O(δ) such that the induced action on Γ(Ẽ′
l,m
, O(δ)) coincides

with that on the function field C(Ẽ′
l,m
) (see [ADHL15]).

We denote by V(n) the irreducible SL(2)-representation of highest weight n. Set

V := ⟨(SL(2)×C∗) · fi : 1 ≤ i ≤ r⟩.

Then, we see that V is isomorphic to
⊕

1≤i≤r V(e0+ e1+ · · ·+ ei) ⊗V(l0+ l1+ · · ·+ li). Also,

we can take the following as a basis of V :

A :=




Xe0+e1+···+ei−eZeY l0+l1+···+li−lW l ∈ C(U) :

1 ≤ i ≤ r;

0 ≤ e ≤ e0+ e1+ · · ·+ ei;

0 ≤ l ≤ l0+ l1+ · · ·+ li



.

Lemma 5.2.4. The vector space V is an SL(2)×C∗-submodule of Γ(Ẽ′
l,m
,O(δ)).

Proof. Let 1 ≤ i ≤ r . For any 0 ≤ j ≤ r , we have:

div( fi)|Ẽj
= v

S̃+
( fi)S̃+ |Ẽj

+ v
S̃−( fi)S̃− |

Ẽj
+ vDj

( fi)D j |Ẽj
+ vDj+1

( fi)D j+1 |Ẽj
;

δ |
Ẽj
= vDj

( fYj
)D j |Ẽj

+ vDj+1
( fYj+1

)D j+1 |Ẽj
.

Therefore, we get div( fi)|Ẽj
+ δ |

Ẽj
≥ 0 by comparing each coefficient using the condition (C1)

in the proof of Lemma 5.2.3. This shows fi ∈ Γ(Ẽ
′
l,m
,O(δ)). Q.E.D.

As a consequence, one obtains a natural equivariant morphism

Φ : Ẽ′
l,m

−→ El,m ×P(V∨).
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We show that Φ is a closed immersion. Recall that Ẽ′
l,m

is covered by simple open subembed-

dings Ẽ0, . . ., Ẽr , and that we have Ẽi = (SL(2)×C∗)(Ẽi)0, where

(Ẽi)0 = Ẽi \
∪

D∈D(Ẽi)\DYi
(Ẽi)

D = Ẽi \ (S̃+ |Ẽi
∪ S̃− |

Ẽi
)

with the notation of §2.2. Also, we have (Ẽi)1 =U∩{ZW , 0}, (El,m)0 = El,m, and (El,m)1 =U.

Therefore, we get the following by Remark 2.2.2.1:

C[(Ẽi)0] =
{
F ∈ C[U]ZW : vDi−1

(F) ≥ 0, vDi
(F) ≥ 0

}
;

C[El,m] =
{
F ∈ C[U] : vDr+1

(F) ≥ 0
}
.

Let L be the subring of C(U) defined as L := {F ∈ C[U]ZW : vDr+1
(F) ≥ 0}. For each 0 ≤ i ≤ r ,

we consider an open subset Ui := Spec
(
L

[
f ∨/ f ∨

i
: f ∈ A

] )
of El,m×P(V∨), where f ∨ denotes

the dual basis of f . We also consider a homomorphism

Φ#
i : L

[
f ∨/ f ∨i : f ∈ A

]
−→ C[(Ẽi)0] (0 ≤ i ≤ r)

defined by sending F
f ∨

f ∨
i

, where F ∈ L, to F
f

fi
.

Lemma 5.2.5. The homomorphism Φ#
i

is well-defined for any 0 ≤ i ≤ r .

Proof. Let F ∈ L. We may assume that F is of the form F = ZdzWdw

(ZW)d
∈ L, where dz,dw,d ∈ Z≥0.

Moreover, since F is Gm-invariant, we have dz − dw = cm for some c ∈ Z. Therefore, F can

be written as (ZW)dw−d(Zm)c. Since vDr+1
(F) ≥ 0, we get

(α+1)b−t

b
c ≥ dw − d by a direct

calculation. This implies that c ≥ 0, since otherwise we get c < 0 and dw − d < 0, which

contradicts to F ∈ L. Therefore, we have

vDj
(F) = −Pj(dw − d)+ {(α+1)Pj −Q j}c

≥

(
b

t
Pj −Q j

)
c =

1

b
(tPj − bQ j)c =

n j

bk
c =

n j

q− p
c ≥ 0 (0 ≤ ∀ j ≤ r +1)

by Lemma 3.2.5, and this shows L ⊂ C[(Ẽi)0]. Moreover, we have f j/ fi ∈ C[(Ẽi)0] by

the condition (C1) in the proof of Lemma 5.2.3, and hence f / fi ∈ C[(Ẽi)0] holds for any

f ∈ A. Q.E.D.

Lemma 5.2.6. The homomorphism Φ#
i

is surjective for any 0 ≤ i ≤ r .
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Proof. Let F ∈ C[(Ẽi)0]. Concerning the proof of Lemma 5.2.5, we may assume that F < C

and that F is of the form F = (ZW)d(Zm)c for some d, c ∈ Z. Notice that vDr+1
(F) ≥ 0 if and

only if
(α+1)b−t

b
c ≥ d. If vDr+1

(F) ≥ 0, then we have F = Φ#
i
(F). Suppose that vDr+1

(F) < 0,

and set F′
= F/σi+1. Then, as an element of C(U), F can be written as F = F′ fi+1

fi
. We claim

that the following two conditions hold: (I) vDr+1
(F′) > vDr+1

(F); (II) F′ ∈ C[(Ẽi)0]. Indeed, (I)

follows from Lemma 5.2.2. Since we have vDi
(σi+1)= 1 and vDi+1

(σi+1)= 0 by Lemma 5.2.2, it

suffices to show that vDi
(F) ≥ 1 holds to get (II). Suppose that vDi

(F) < 1. Since F ∈ C[(Ẽi)0],

this implies that vDi
(F) = 0. Namely, we get 0 = −dPi + {(α+1)Pi −Qi} c. If i = 0, then we

obtain c = 0. It follows that 0 ≤ vD1
(F)=−d, which contradicts to vDr+1

(F) < 0. Next, let i ≥ 1.

Since we see that vDi+1
(F) = civDi

(F) − vDi−1
(F) by (3.3), the condition vDi+1

(F) ≥ 0 implies

that 0 ≥ vDi−1
(F). Let i = 1. Then, we have 0 ≥ vD0

(F) = c and 0 = vD1
(F) = −d + (α+1)c.

If c < 0, then vDr+1
(F) < 0 implies that (α + 1)b− t > (α + 1)b. Thus, c = d = 0, which

contradicts to F < C. If i > 1, then we have c
Qi

Pi
≤ c

Qi−1

Pi−1
by vDi

(F) = 0 and 0 ≥ vDi−1
(F). It

follows that c = 0 concerning Theorem 3.2.3. In the same manner, we see that this contradicts

to vDr+1
(F) < 0. Thus, F′ ∈ C[(Ẽi)0]. The conditions (I), (II) and F = F′ fi+1

fi
yield that there is

an F′′ ∈ C[(Ẽi)0] with vDr+1
(F′′) ≥ 0 such that F = F′′

(
fi+1

fi1

) t

holds for some t > 0. Q.E.D.

Proposition 5.2.7. The morphism Φ : Ẽ′
l,m

−→ El,m ×P(V∨) is a closed immersion.

Proof. This follows from Lemmas 5.2.5 and 5.2.6. Q.E.D.

5.2.8 Morphism to the minimal resolution

In this subsection, we construct an equivariant morphismΨ : H −→ El,m×P(V∨) that satisfies

Ψ(Hmain) = Φ(Ẽ′
l,m
) � Ẽ′

l,m
(Proposition 5.2.11). First, by §2.1.6 and Proposition 4.1.2 , we

can construct an equivariant morphism ηni,0 : H −→ Gr(h(ni,0),F
∨
ni,0

) for each 0 ≤ i ≤ r .

Remark 5.2.8.1. If i = 0, then F∨
n0,0
= ⟨(X2X4)

∨, (X1X4)
∨, (X2X3)

∨, (X1X3)
∨⟩. For later use, we

fix an isomorphism Gr(h(ni,0),F
∨
n0,0

) � P(F∨
n0,0

) given by the following:

t
(0)

0,0
(X2X4)

∨
+ t

(0)

e0,0
(X1X4)

∨
+ t

(0)

0,l0
(X2X3)

∨
+ t

(0)

e0,l0
(X1X3)

∨ 7→ [t
(0)

0,0
: t

(0)

e0,0
: t

(0)

0,l0
: t

(0)

e0,l0
],

where t
(0)

0,0
, t

(0)

e0,0
, t

(0)

0,l0
, t

(0)

e0,l0
∈ C. If i ≥ 1 (this happens only if El,m is non-toric), then

F∨
ni,0 = ⟨(X

ni
0
)∨, (X

ei
2

X
li
4
)∨, . . ., (X

ei−e

2
Xe

1 X
li−l

4
X l

3)
∨, . . ., (X

ei
1

X
li
3
)∨⟩.
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As above, we fix an isomorphism Gr(h(ni,0),F
∨
ni,0

) � P(F∨
ni,0

) given by sending

u(i)(X
ni
0
)∨+ t

(i)

0,0
(X

ei
2

X
li
4
)∨+ · · ·+ t

(i)

e,l
(X

ei−e

2
Xe

1 X
li−l

4
X l

3)
∨
+ · · ·+ t

(i)

ei,li
(X

ei
1

X
li
3
)∨

to [u(i) : t
(i)

0,0
: · · · : t

(i)

e,l
: · · · : t

(i)

ei,li
], where u(i), t

(i)

0,0
, . . ., t

(i)

ei,li
∈ C. In below, we denote the

composition H −→ Gr(h(ni,0),F
∨
ni,0

) � P(F∨
ni,0

) by the same ηni,0 (0 ≤ i ≤ r).

Remark 5.2.8.2. As in Remark 2.3.3.3, we denote by V(n)= Symn⟨X,Y⟩ the irreducible SL(2)-

representation of highest weight n. For any partition n= µ1+ · · ·+ µs, the tensor representation

V(µ1) ⊗ · · · ⊗V(µs) contains an irreducible representation V(µ1, . . ., µs) isomorphic to V(n)

by the Clebsch–Gordan theorem. For each 0 ≤ i ≤ n, set

ϕi :=
1(
n

i

) ∑
i1+···+is=i
0≤i1≤µ1

...
0≤is≤µs

(
µ1

i1

)
. . .

(
µs

is

)
X µ1−i1Y i1 ⊗ · · · ⊗ X µs−isY is ∈ V(µ1) ⊗ · · · ⊗V(µs).

Then, {ϕ0, . . ., ϕn} forms a basis of V(µ1, . . ., µs). On the other hand, we can take {Xn−iY i :

0 ≤ i ≤ n} as a basis of V(n), and the linear map V(n) −→ V(µ1, . . ., µs) that sends Xn−iY i to

ϕi is an SL(2)-equivariant isomorphism.

Let V ′ := Fn0,0 ⊗ Fn1,0 ⊗ · · · ⊗ Fnr,0. We see that V ′ coincides with⊕
A(e0) ⊗ B(l0) ⊗ A(ei1) ⊗ B(li1) ⊗ . . . A(eis ) ⊗ B(lis ) ⊗C(n j1) ⊗ · · · ⊗C(n ju ),

where the sum runs over {i1, . . ., is, j1, . . ., ju} = {1, . . ., r} such that i1 < · · · < is and

j1 < · · · < ju. In order to describe a submodule of V ′ isomorphic to V , let us denote by

A(e0, e1, . . ., ei) the irreducible representation of highest weight e0 + e1 + · · ·+ ei contained

in A(e0) ⊗ A(e1) ⊗ · · · ⊗ A(ei) in the sense of Remark 5.2.8.2. Namely, A(e0, e1, . . ., ei) �

V(e0, e1, . . ., ei) � V(eo + e1 + · · ·+ ei). Likewise, we denote by B(l0, l1, . . ., li) the irreducible

representation of highest weight l0+ l1+ · · ·+ li in B(l0)⊗B(l1)⊗ · · ·⊗B(li), i.e., B(l0, l1, . . ., li) �

V(l0, l1, . . ., li), which is isomorphic to V(l0+ l1+ · · ·+ li). Let Ṽ be the submodule of V ′ defined

as follows:

Ṽ :=
⊕
1≤i≤r

A(e0, e1, . . ., ei) ⊗ B(l0, l1, . . ., li) ⊗C(ni+1) ⊗ · · · ⊗C(nr).

Since V ⊂ Γ(Ẽ′
l,m
,O(δ)) coincides with⊕

1≤i≤r

A(e0+ e1+ · · ·+ ei) ⊗ B(l0+ l1+ · · ·+ li) ⊗C(−(n0+n1+ · · ·+ni)),
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we see that V � Ṽ , where the isomorphism

C(−(n0+n1+ · · ·+ni)) � C(ni+1+ · · ·+nr) � C(ni+1) ⊗ · · · ⊗C(nr)

is given by multiplying X
n0+n1+···+nr
0

.

Example 5.2.9. Let l = p/q = 1/4, and let m = 2. Then, we have k = 1, a = 2, b = 3,

α = 0, β = 2, and t = 1. Therefore, the Hirzebruch–Jung continued fraction expansion of

b/t is b/t = c1 = 3, and we have P0 = 0, Q0 = −1, P1 = 1, Q1 = 0, P2 = c1 = 3, and Q2 = 1.

Thus, we get ρ0 = u2, ρ1 = −u1 +u2, and ρ2 = −3u1 + 2u2, and the maximal cones of the

colored fan of Ẽ′
1
4
,2

are C1 = Q≥0ρ0 +Q≥0ρ1 and C2 = Q≥0ρ1 +Q≥0ρ2. Also, we have

(e0, l0,n0) = (1,1,3), (e1, l1,n1) = (3,1,1), and (e2, l2,n2) = (8,2,0). Thus we get f0 = ZW ,

f1 = Z4W2, and f2 = Z12W4 by definition, and therefore

V = ⟨(SL(2)×C∗) · ZW⟩ ⊕ ⟨(SL(2)×C∗) · Z4W2⟩

� ⟨X, Z⟩ ⊗ ⟨Y,W⟩ ⊕ ⟨X4,X3Z,X2Z2,X Z3, Z4⟩ ⊗ ⟨Y2,YW,W2⟩

� V(1) ⊗V(1) ⊕V(4) ⊗V(2).

We have V ′
= Fn0,0 ⊗ Fn1,0, where Fn0,0 = A(1) ⊗ B(1) = ⟨X1,X2⟩ ⊗ ⟨X3,X4⟩ and

Fn1,0 = A(3) ⊗ B(1) ⊕C(1) = ⟨X3
1 ,X

2
1 X2,X1X2

2 ,X
3
2 ⟩ ⊗ ⟨X3,X4⟩ ⊕ ⟨X0⟩.

Furthermore, we have Ṽ = A(1,3) ⊗ B(1,1) ⊕ A(1) ⊗ B(1), where A(1,3) is a subrepresentation

of A(1) ⊗ A(3) spanned by X1 ⊗ X3
1
, 1

4
(X2 ⊗ X3

1
+ 3X1 ⊗ X2

1
X2),

1
2
(X2 ⊗ X2

1
X2 + X1 ⊗ X1X2

2
),

1
4
(3X2 ⊗ X1X2

2
+ X1 ⊗ X3

2
), and X2 ⊗ X3

2
. Also, B(1,1) is a subrepresentation of B(1) ⊗ B(1)

spanned by X3 ⊗ X3, 1
2
(X3 ⊗ X4+ X4 ⊗ X3), and X4 ⊗ X4.

We define Ψ′ to be the composition of

γ×
∏

0≤i≤r

ηni,0 : H −→ El,m ×
∏

0≤i≤r

P(F∨
ni,0

)

and idEl,m
×ι, where ι denotes the Segre embedding ι :

∏
0≤i≤r P(F

∨
ni,0

) ֒→ P(V ′∨). Namely,

Ψ′ : H −→ El,m ×P(V ′∨).

Let us consider the projection pr : El,m ×P(V ′∨) −→ El,m ×P(Ṽ∨).
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Proposition 5.2.10. The restriction pr |Ψ′(H) of the rational map pr to the image of Ψ′ is a

morphism.

Proof. Suppose that there is a point [I] ∈ H such that pr is not defined at Ψ′([I]). Let

ηn0,0([I]) = [t
(0)

0,0
: t

(0)

e0,0
: t

(0)

0,l0
: t

(0)

e0,l0
], and let ηni,0([I]) = [u

(i) : t
(i)

0,0
: · · · : t

(i)

e,l
: · · · : t

(i)

ei,li
] (1 ≤ i ≤ r)

following the notation of Remark 5.2.8.1. By Remark 4.1.1.1, we have s1X1 + s2X2 ∈ I for

some (s1, s2) , 0. Since Ψ′ is SL(2)-equivariant, we may assume that X2 ∈ I. Note that

the subrepresentation A(e0, e1, . . ., er) ⊗ B(l0, l1, . . ., lr) of Ṽ contains X
e0

1
⊗ X

e1

1
⊗ · · · ⊗ X

er
1

⊗

X
l0
3
⊗ X

l1
3
⊗ · · · ⊗ X

lr
3

. Therefore, we have t
(0)

e0,l0
t
(1)

e1,l1
· · · t

(r)

er,lr
= 0 by the assumption on I. Let

j = min{i : t
(i)

ei,li
= 0, 0 ≤ i ≤ r}. Then we have X

ej

1
X

lj

3
∈ I by the construction of ηnj,0,

which implies that X
ei
1

X
li
3
∈ I holds for any i ≥ j. Next, again by Remark 4.1.1.1, we have

s3X3+ s4X4 ∈ I for some (s3, s4) , 0. Therefore, one of the following holds: (I) s3 , 0, s4 , 0;

(II) s3 = 0, s4 , 0; (III) s3 , 0, s4 = 0. Suppose that we are in the case (I). Then, by multiplying

X
ej

1
X

lj−1

3
to s3X3 + s4X4, we get X

ej

1
X

lj−1

3
X4 ∈ I. By continuing in this way, we see that

X
ej−e

1
Xe

2
X

lj−l

3
X l

4
∈ I holds for any 0 ≤ e ≤ e j and for any 0 ≤ l ≤ l j concerning X2 ∈ I. Lastly, we

pay attention to the vector X
e0

1
⊗X

e1

1
⊗ · · ·⊗X

ej−1

1
⊗X

l0
3
⊗X

l1
3
⊗ · · ·⊗X

lj−1

3
⊗X

nj

0
⊗ · · ·⊗X

nr
0

in the

subrepresentation A(e0, e1, . . ., e j−1)⊗B(l0, l1, . . ., l j−1)⊗C(n j)⊗ · · ·⊗C(nr) of Ṽ . Likewise, we

have t
(0)

e0,l0
t
(1)

e1,l1
· · · t

( j−1)

ej−1,lj−1
u( j) · · ·u(r) = 0 by the assumption on I. This implies that u( j) · · ·u(r) = 0

by the minimality of j. In particular, we have u( j ′)
= 0 for some j ≤ j′ ≤ r . It follows that

X
nj ′

0
∈ I by the construction of ηnj ′,0. Therefore, X

nj

0
∈ I. Consequently, we get Fnj,0 ⊂ I,

and it follows from Proposition 4.1.2 that dim(S/I)(nj,0) = 0 , h(n j,0), which contradicts to

[I] ∈ H. If we are in the case (II) or (III), we can show that the assumption on the ideal I

leads to a contradiction by following a similar line as above. Q.E.D.

Combining the above discussion, we obtain the following equivariant morphism:

Ψ : H
Ψ′

// El,m ×P(V ′∨)
pr

// El,m ×P(Ṽ∨)
∼ // El,m ×P(V∨).

Proposition 5.2.11. We have Ψ(Hmain) = Φ(Ẽ′
l,m
). In particular, Ψ(Hmain) � Ẽ′

l,m
.

Proof. Let f : Ẽ′
l,m

−→ El,m be the resolution of singularities, and let y ∈ Ẽ′
l,m

be a point such

that f (y) = π(x). Then, concerning Remark 2.3.5.1, we have Φ(y) = (π(x),v), where v is a

point of P(V∨) whose coordinates are all 0 except for the ones corresponding to the bases

{(Xe0+e1+···+eiW l0+l1+···+li )∨ : 1 ≤ i ≤ r}. On the other hand, we see by the definition of I1 and
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the construction of ηni,0 that ηn0,0([I1]) = ⟨(X1X4)
∨⟩, and that ηni,0([I1]) = ⟨(X

ni
0
)
∨
+ (X

ei
1

X
li
4
)∨⟩

(1 ≤ i ≤ r). Taking the relations X = X
p

0
X1 and W = X

−q

0
X4 into account, we deduce that

Ψ([I1]) =Φ(y). This shows the proposition, since Ψ(Hmain) and Φ(Ẽ′
l,m
) are SL(2)×C∗-orbit

closures of Ψ([I1]) and Φ(y), respectively. Q.E.D.

Summarizing, we get the following equivariant commutative diagram:

H
Ψ // El,m ×P(V∨)

⊂ ⊂

Hmain

γ |
Hmain

%%

ψ |
Hmain

))

Ψ|
Hmain

// Φ(Ẽ′
l,m
) � Ẽ′

l,m

t t

yy

φ(E′
l,m
)

!!

E′
l,m

��

φ
oo

El,m

5.3 Proof of Theorem 3.2.4

We have seen in Proposition 5.2.11 that Ψ(Hmain) � Ẽ′
l,m

. Therefore, in order to complete

the proof of Theorem 3.2.4, we are left to show that Ψ|Hmain is injective. Indeed, it follows

from the Zariski’s Main Theorem that Ψ|Hmain being injective implies Ψ|Hmain being a closed

immersion.

Proof of Theorem 3.2.4. Let τ : Ẽ′
l,m

−→ E′
l,m

be the resolution of singularities. We first show

the injectivity of Ψ|Ψ−1(τ−1(C)) : Ψ−1(τ−1(C)) −→ τ−1(C) orbit-wise. By Remark 3.2.4.2, we

see that τ−1(C) contains 2r +1 orbits Yi (0 ≤ i ≤ r) and Oi (1 ≤ i ≤ r). Let us elaborate on this.

Recall that we have constructed an equivariant closed immersion Φ : Ẽ′
l,m
֒→ El,m ×P(V∨).

We denote by yi (0 ≤ i ≤ r) the point of P(V∨) whose coordinates are all 0 except for

the one corresponding to the basis g · f ∨
i

, where g =

(
0 −1

1 0

)
∈ SL(2). Then, we have

Φ(Yi) = (SL(2)×C∗) · vi, where we set vi = (O, yi). Similarly, we denote by y
′
i
(1 ≤ i ≤ r) the

point of P(V∨)whose coordinates are all 0 except for the ones corresponding to the bases g · f ∨
i

and g · f ∨
i+1

. Then, we have Φ(Oi) = (SL(2)×C∗) · v′
i
, where v

′
i
= (O, y′

i
). In the following, we

show that each of the set-theoretical fibers of vi and v
′
i

consists of one point. More precisely,
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we show that Ψ−1(vi) = {[Li+1
0

]} and Ψ−1(v′
i
) = {[Li

1
]} hold, where we set Lr+1

0
:= J0 for the

sake of convenience.

First, we show thatΨ−1(vi) = {[L
i+1
0

]} holds for any 0 ≤ i ≤ r . Let [L] ∈ Ψ−1(vi). As in the

proof of Proposition 5.2.10, write ηn0,0([L]) = [t
(0)

0,0
: t

(0)

e0,0
: t

(0)

0,l0
: t

(0)

e0,l0
], and ηnj,0([L]) = [u( j) :

t
( j)

0,0
: · · · : t

( j)

ej,lj
] (1 ≤ j ≤ r). It follows from γ([L]) = O that K ⊂ L, since the ideal K ⊂ A is

generated by G0 ×Gm-invariants. We see that

g · fi = Xe0+e1+···+eiY l0+l1+···+li
= X

−(n0+n1+···+ni)

0
X

e0+e1+···+ei
1

X
l0+l1+···+li
3

maps to

X
e0

1
⊗ X

e1

1
⊗ · · · ⊗ X

ei
1
⊗ X

l0
3
⊗ X

l1
3
⊗ · · · ⊗ X

li
3
⊗ X

ni+1

0
⊗ · · · ⊗ X

nr
0

∈ A(e0, e1, . . ., ei) ⊗ B(l0, l1, . . ., li) ⊗C(ni+1) ⊗ · · · ⊗C(nr)

under the isomorphism V � Ṽ . Therefore, by the definition of yi,

t
(0)

e0,l0
t
(1)

e1,l1
· · · t

(i)

ei,li
u(i+1) · · ·u(r) = s (5.1)

holds for some s ∈ C∗. Similarly, by paying attention to g · fi+1, we have

t
(0)

e0,l0
t
(1)

e1,l1
· · · t

(i)

ei,li
t
(i+1)

ei+1,li+1
u(i+2) · · ·u(r) = 0. (5.2)

By (5.1) and (5.2), we get t
(i+1)

ei+1,li+1
= 0, which implies that X

ei+1

1
X

li+1

3
∈ L. Next, we see that

Ze0 Xe1+···+eiW l0Y l1+···+li = X
−(n0+n1+···+ni)

0
X

e0

2
X

e1+···+ei
1

X
l0
4

X
l1+···+li
3

maps to

X
e0

2
⊗ X

l0
4
⊗ X

e1

1
⊗ X

l1
3
⊗ · · · ⊗ X

ei
1
⊗ X

li
3
⊗ X

ni+1

0
· · · ⊗ X

nr
0

∈ A(e0) ⊗ B(l0) ⊗ A(e1) ⊗ B(l1) ⊗ · · · ⊗ A(ei) ⊗ B(li) ⊗C(ni+1) ⊗ · · · ⊗C(nr)

under V � Ṽ ⊂ V ′, which yields that t
(0)

0,0
t
(1)

e1,l1
· · · t

(i)

ei,li
u(i+1) · · ·u(r) = 0. By comparing this

equation with (5.1), we have t
(0)

0,0
= 0, which tells us that X

e0

2
X

l0
4
= X2X4 ∈ L. In a similar

way, we see that X2X3, X1X4 ∈ L holds as well. Concerning Remark 4.1.1.1, it follows

that (X2,X4) ⊂ L . Therefore, we get (X
q−p

0
,X2,X4,X

ei+1

1
X

li+1

3
)+K ⊂ L. If i = 0, then we

have L1
0
⊂ L since n0 = q− p. It follows that dim(A/L1

0
)(n,d) ≥ dim(A/L)(n,d) = h(n,d) holds

for any weight (n,d) ∈ Z×Z/mZ. On the other hand, we have seen in Theorem 4.2.8 that

dim(A/L1
0
)(n,d) ≤ h(n,d). Consequently, we get L1

0
= L. Next, suppose that i > 0. Since the

vector

Xe0+e1+···+ei−1Y l0+l1+···+li−1
= X

−(n0+n1+···+ni−1)

0
X

e0+e1+···+ei−1

1
X

l0+l1+···+li−1

3
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maps to X
e0

1
⊗ X

l0
3
⊗ X

e1

1
⊗ X

l1
3
⊗ · · · ⊗ X

ei−1

1
X

li−1

3
⊗ X

ni
0
⊗ · · · ⊗ X

nr
0

under the isomorphism V �

Ṽ ⊂ V ′, we see that t
(0)

e0,l0
t
(1)

e1,l1
· · · t

(i−1)

ei−1,li−1
u(i) · · ·u(r) = 0. Again by comparing this equation with

(5.1), we get u(i) = 0, which implies that X
ni
0
∈ L. Therefore, one obtains Li+1

0
⊂ L. As above,

we deduce that Li+1
0
= L.

Next, we show that Ψ−1(v′
i
) = {[Li

1
]} holds for any 1 ≤ i ≤ r . Let [L′] ∈ Ψ−1(v′

i
), and write

ηn0,0([L
′]) = [t

(0)

0,0
: t

(0)

e0,0
: t

(0)

0,l0
: t

(0)

e0,l0
] and ηnj,0([L

′]) = [u( j) : t
( j)

0,0
: · · · : t

( j)

ej,lj
] (1 ≤ j ≤ r) as above.

In a similar manner, we can show that (X
ni−1

0
, X2, X4)+K ⊂ L′. The conditions X2, X4 ∈ L′

imply that t
(i)

0,0
= · · · = t

(i)

ei−1,li−1
= 0. Moreover, we see that t

(0)

e0,l0
t
(1)

e1,l1
· · · t

(i−1)

ei−1,li−1
u(i)u(i+1) · · ·u(r) = s

and t
(0)

e0,l0
t
(1)

e1,l1
· · · t

(i−1)

ei−1,li−1
t
(i)

ei,li
u(i+1) · · ·u(r) = s hold for some s ∈ C∗. Therefore, we get u(i) = t

(i)

ei,li
,

and hence we have ηni,0([L
′]) = [1 : 0 : · · · : 0 : 1]. It follows that X

ni
0
− X

ei
1

X
li
3
∈ L′ concerning

the construction of ηni,0 and the fixed isomorphism Gr(h(ni,0),F
∨
ni,0

) � P(F∨
ni,0

) (see Remark

5.2.8.1). As a consequence, we get Li
1
⊂ L′, and hence Li

1
= L′.

Lastly, we show that Ψ|Ψ−1(τ−1(C ′)) : Ψ−1(τ−1(C′)) −→ τ−1(C′) � C′ is bijective. Taking

into account Lemma 5.1.4, it suffices to show that ψ−1(φ(C′)) coincides with Ψ−1(τ−1(C′)) as

subsets of Hmain. By the proof of Lemma 5.1.4, ψ−1(φ(C′)) is the SL(2)-orbit of [I0], where

I0 = (X
q−p

0
− X1X4,X2,X3,X

mp

0
Xm

1
) (see §4.1). With the notation of Remark 5.2.8.1, we have

ηn0,0([I0])= [0 : 1 : 0 : 0]. If 1 ≤ i ≤ r , we have (X
q−p

0
−X1X4)

li X
mPi

1
= X

ni
0
(X

mp

0
Xm

1
)Pi −X

ei
1

X
li
4
=

−X
ei
1

X
li
4

modulo the ideal I0, since (q − p)li = ni + p(ei − li) and ei = li +mPi (see §3.2.2).

Therefore, X
ei
1

X
li
4
∈ I0. It follows that ηni,0([I0]) = [1 : 0 : . . . : 0], i.e., u(i) = 1, t

(i)

0,0
= · · · =

t
(i)

ei,li
= 0 with the notation of Remark 5.2.8.1. This shows Ψ([I0]) < τ

−1(C), since there is no

g ∈ SL(2) that translates X1 to X1, and X4 to X3. Therefore, Ψ([I0]) ∈ τ
−1(C′). Q.E.D.

Corollary 5.3.1. For any s ∈ C and for any 1 ≤ i ≤ r , A/Li
s has Hilbert function h.

Proof. By the proof of Theorem 3.2.4, the quotient rings A/Li
0

and A/Li
1

have Hilbert function

h for any 1 ≤ i ≤ r . Therefore, the corollary follows concerning Remark 4.1.0.1. Q.E.D.

Remark 5.3.1.1. Let 0 ≤ n < q− p, and let λ = (n,c,ω) ∈ Λ(n,0). Taking into account Remark

4.2.17.1 and Corollary 5.3.1, we see that the following properties are true.

• Let 0 ≤ n ≤ ni−1. Then, we have fλ ∈ L̃i
0

if and only if λ ,
(
n,0,ωmin

(n,0)

)
.

• Let ni−1 ≤ n < q− p. Then, we have fλ ∈ L̃i
0

if and only if λ ,
(
n,mP,ωmin

(n,mP)

)
.
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Let us denote by HB̃ the set of B̃-fixed points of H. Recall that we have set Lr+1
0

:= J0 in

the proof of Theorem 3.2.4.

Corollary 5.3.2. We have HB̃
= {[Li

0
] : 1 ≤ i ≤ r +1}.

Proof. Let [L] ∈ HB̃. Then, s1X1 + s2X2, s3X3 + s4X4 ∈ L hold for some (s1, s2) , 0 and

(s3, s4) , 0 by Remark 4.1.1.1. Since L is stable under the action of B̃, we have X2,X4 ∈ L.

Therefore, since γ([L]) = O, we get (X2,X4)+K ⊂ L. Concerning the conditions X2,X4 ∈ L

and h(n j,0) = 1, we deduce from Proposition 4.1.2 that either X
nj

0
∈ L or X

ej

1
X

lj

3
∈ L holds for

any 1 ≤ j ≤ r +1. Let i =min{ j : X
ej

1
X

lj

3
∈ L}. Then, we have (X

ni−1

0
, X

ei
1

X
li
3
) ⊂ L, and hence

Li
0
⊂ L. This implies that Li

0
= L, since both Li

0
and L have Hilbert function h. Q.E.D.

Corollary 5.3.3. The invariant Hilbert scheme H is irreducible and reduced.

Proof. By [Ter14a, Lemma 1.6], every closed subset of H contains at least one fixed point

for the action of B̃. It yields that H is connected, since Corollary 5.3.2 implies that every

B̃-fixed point is contained in Hmain. Therefore, we are left to show that H is smooth.

Concerning Theorem 2.1.4 and the proof of [Ter14a, Lemma 1.7], it suffices to show that

dimHom
G0×Gm

S
(Li

0
, A/Li

0
) = dimHmain

= 3 holds for any 1 ≤ i ≤ r + 1, where S = C[Hq−p]

as in §4.1. Let R be the subring C[X0,X1,X3] of A, i.e., let j = 3 in (4.1) (see §4.1),

and we use notations of §4.1 and §4.2. Recall that we have seen in Remark 4.2.17.2 that

Li
0
= (X

ni−1

0
, X2, X4, X

ei
1

X
li
3
, F1, . . ., Fb−1). Let ϕ ∈ Hom

G0×Gm

S
(Li

0
, A/Li

0
). Since ϕ is G0×Gm-

equivariant, we see that ϕ(X
ni−1

0
) = α1X

ei−1

1
X

li−1

3
, ϕ(X2) = α2X1, ϕ(X4) = α3X3, ϕ(X

ei
1

X
li
3
) =

α4X
ni
0

, and ϕ(Fj) = β j (1 ≤ j ≤ b−1) hold for some α1, α2, α3, α4, β j ∈ C. Moreover, since

ϕ is a homomorphism of S-modules, we have

0 = ϕ(X
q−p

0
− X1X4+ X2X3) = α1X

q−p−ni−1

0
X

ei−1

1
X

li−1

3
−α3X1X3+α2X1X3.

If i = 1, then we have X
q−p−ni−1

0
X

ei−1

1
X

li−1

3
= X1X3, and hence α1+α2 −α3 = 0. If i > 1, then

we have ei−1, li−1 ≥ 1, and thus we can write X
q−p−ni−1

0
X

ei−1

1
X

li−1

3
= X1X3 f with a monomial

f ∈ A. On the other hand, we have X
q−p−ni−1

0
X

ei−1

1
X

li−1

3
= f(

q−p,mPi−1,ω
min
(q−p,mPi−1)

) and X1X3 =

f(
q−p,0,ωmin

(q−p,0)

) by Lemmas 4.1.5 and 4.1.9, which tells us that f = f(
0,mPi−1,ω

min
(0,mPi−1)

)
= FPi−1

.

Therefore, one obtains α2 −α3 = 0 if i > 1.

In the following, we show that β j = 0 holds for any 1 ≤ j ≤ b− 1. Set d1 =
qmj−ωmin

(0,mj)

q−p
,

and set d3 =
pmj−ωmin

(0,mj)

q−p
. Then, we have Fj = X

ωmin
(0,mj)

0
X

d1

1
X

d3

3
and fλmj

= X
d1+1

1
X

d3+1

3
by Lemma
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4.1.5 and Definition 4.2.12, respectively. If j = Pi, then we have fλmPi
= X

ei
1

X
li
3

(see Example

4.2.13).

Case 1. Let j > Pi. Then, d1+1 > ei and d3+1 > li hold by Lemma 4.2.14. By setting

f = X
ωmin
(0,mj)

0
X

d1+1−ei
1

X
d3+1−li
3

, we have

0 = X1X3ϕ(Fj)− f ϕ(X
ei
1

X
li
3
) = β j X1X3 −α4X

ni
0

f .

Here we have X
ni
0

f = X1X3 f ′, where f ′ = X
ωmin
(0,mj)

+ni

0
X

d1−ei
1

X
d3−li
3

. Since both X
ni
0

f and X1X3

are homogeneous elements of G0 ×Gm-weight (q− p,0), it follows that f ′ ∈ K . Therefore,

one has X
ni
0

f ∈ Li
0
. On the other hand, we see that X1X3 < Li

0
, since otherwise we get

dim(A/Li
0
)(q−p,0) = 0 by Proposition 4.1.19, which contradicts to Corollary 5.3.1. Therefore,

we have β j = 0.

Case 2. Let j = Pi. Then, we have

0 = X1X3ϕ(FPi
)− X

q−p−ni
0

ϕ(X
ei
1

X
li
3
) = βPi

X1X3 −α4X
q−p

0
.

Since we have X1X3 < Li
0

and X
q−p

0
∈ Li

0
, it follows that βPi

= 0.

Case 3. Let 1 ≤ j < Pi. As above, we see that the condition j < Pi implies that d1 < ei

and d3 < li. Then we have

0 = X
ei−d1

1
X

li−d3

3
ϕ(Fj)− X

ωmin
(0,mj)

0
ϕ(X

ei
1

X
li
3
) = β j fλc −α4Xn

0 ,

where we set n = ωmin
(0,mj)

+ ni, and c = m(Pi − j). Since we have ni−1 ≤ n < q− p by Lemma

4.2.11, it follows that Xn
0
∈ Li

0
. Therefore, we are left to show that fλc < Li

0
. As in Case 2 of the

proof of Theorem 4.2.7, we have n−(n j1 + · · ·+ n jun
) < ni−1 for some 1 ≤ j1, . . ., jun ≤ i−1.

Set P = Pj1 + · · ·+ Pjun
, and set λ =

(
n,mP,ωmin

(n,mP)

)
. We show that fλc coincides with fλ.

First, we have fλc < (X
ei
1

X
li
3
) by Lemma 4.2.14. If fλc ∈ K , then we have fλc ∈ (F1, . . ., Fb−1)

since c ≤ b−1. On the other hand, we see that the degree of Fj ′ with respect to X0 is greater

than 0 for any 1 ≤ j′ ≤ b− 1. This is a contradiction since fλc < (X0). Therefore, we have

fλc < K , and hence c = mP concerning the proof of Theorem 4.2.7. It follows from Remark

5.3.1.1 that fλc < Li
0
, and thus we get β j = 0.

Consequently, we get dimHom
G0×Gm

S
(Li

0
, A/Li

0
) ≤ 3, and hence the equality. Q.E.D.
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5.4 Minimality of the invariant Hilbert scheme

We have seen that the invariant Hilbert scheme H = Hilb
G0×Gm

h
(Hq−p) is isomorphic to the

minimal resolution of the weighted blow-up E′
l,m

in the cases where l = p/q < 1. It is then

natural to ask if H is minimal over the SL(2)-variety El,m; in other words, if the Hilbert–Chow

morphism γ is a minimal resolution of singularities. The following gives an answer to this

question.

Theorem 5.4.1. The Hilbert–Chow morphism γ is a minimal resolution of El,m if and only if

1+ b ≤ ap.

Recall from the previous sections that the invariant Hilbert scheme H fits into the following

equivariant commutative diagram:

H

ψ

��

E′
l,mγ−

tt

γ+

**
f

��

E−
l,m

**

E+
l,m

tt
El,m

Since ψ is a minimal resolution, it suffices to show that KE ′
l,m

is f -nef if and only if 1+b ≤ ap,

where the former condition is equivalent to KE ′
l,m

being γ−-nef and γ+-nef. We start by

expressing the canonical divisor KE ′
l,m

in two ways with some α, β ∈ Q:

KE ′
l,m
= (γ−)∗KE−

l,m
+αD′

= (γ+)∗KE+
l,m
+ βD′.

Lemma 5.4.2. Let C̃− and C̃+ be curves in E′
l,m

that are contracted to a point under γ+ and

γ−, respectively. Then the canonical divisor KE ′
l,m

has the following intersection numbers with

C̃− and C̃+:

KE ′
l,m

· C̃−
=

β(1+ b)k

(α− β)aq2
, KE ′

l,m
· C̃+ =

α(1+ b)k

(α− β)ap2
.

Proof. By the projection formula, we have

KE ′
l,m

· C̃−
= KE−

l,m
·C−
+αD′ · C̃−

= βD′ · C̃−
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and

KE ′
l,m

· C̃+ = αD′ · C̃+ = KE+
l,m

·C++ βD′ · C̃+,

so that the lemma follows from Theorem 2.3.10. Q.E.D.

Below we compute the coefficients α and β by using combinatorial data of the colored

cones of E−
l,m

, E+
l,m

, and E′
l,m

. Denote by X(B̃) the group of characters of B̃. The lattice

M = {Z iW j ∈ C(U)∗ : m|(i− j)} of rational B̃-eigenfunctions on the dense orbitU is generated

by ZW and Zm, and the natural homomorphism f : M −→ X(B̃) � Z2 is given by Z iW j 7→

(i+ j, i− j). We denote the image of f by Γ. Set v1 := f (ZW)= (2,0), and v2 := f (Zm)= (m,m).

We remark that v1 is a simple root of SL(2) ×C∗. If we denote the dual basis of {v1,v2} by

{u1,u2}, the lattice vectors ρvD, ρvS−, ρvS+ , and ρvD′ in Γ∨ ⊂ Q := Hom(Γ,Q) defined by the

B̃-stable divisors D, S−, S+, and D′ are given as follows:

ρvD = −bu1+ apu2, ρvS− = u1, ρvS+ = u1+mu2, ρvD′ = u2.

The valuation cone V ⊂ Q can be described as V = {xu1 + yu2 ∈ Q : x ≤ 0}, and −V∨ is

generated by v1, which turns out that v1 is a spherical root. Moreover, the colored cones of

E−
l,m

, E+
l,m

, and E′
l,m

are descried as follows:

C
−
= C(E−

l,m) = Q≥0ρvD +Q≥0ρvS+, F
−
=F(E−

l,m) = {ρvS+ }

C
+
= C(E+l,m) = Q≥0ρvD +Q≥0ρvS−, F

+
=F(E+l,m) = {ρvS− }

C
′
= C(E′

l,m) = Q≥0ρvD +Q≥0ρvD′, F
′
=F(E′

l,m) = ∅.

Remark 5.4.2.1. Colored cones of E−
l,m

, E+
l,m

, and E′
l,m

have already been given in §2.3.12 and

§3.2.1. However, we have included the calculation above to specify the basis of the lattice Γ,

which is different from the one chosen in §2.3.12 and more convenient for our later discussion.

Lemma 5.4.3. Let h C− and h C+ be linear functions corresponding to the colored cones

(C−,F−) and (C+,F+), respectively, in the sense of Remark 2.2.14.2. Then, one has

h C− =

p− k

q
v1+

1+ b

aq
v2, h C+ = v1+

1+ b

ap
v2.

Proof. The anticanonical divisor of E−
l,m

(and hence of E+
l,m

) can be described as −KE−
l,m
=

D+ aS−S−
+ aS+S+ for some aS−, aS+ ∈ Q. Taking into account that the parabolic subgroup

corresponding to v1 is SL(2)×C∗, and that (SL(2)×C∗) ·S−
, S− and (SL(2)×C∗) ·S+ , S+, it
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follows from Remark 2.2.14.1 that aS− = aS+ = 1. Therefore, we have h C−(ρvD )= 1= h C−(ρvS+ )

and h C+(ρvD ) = 1 = h C+(ρvS− ), and hence the lemma. Q.E.D.

Proof of Theorem 5.4.1. By Remark 2.2.14.3, one has

α = h C−(ρvD′ )−1 =
1+ b

aq
−1, β = h C+(ρvD′ )−1 =

1+ b

ap
−1.

In particular, α − β < 0. Therefore, in view of Lemma 5.4.2, we have KE−
l,m

· C̃− ≥ 0 and

KE+
l,m

· C̃+ ≥ 0 if and only if 1+ b ≤ ap. Q.E.D.

Remark 5.4.3.1. The existence of the minimal resolution W of El,m was proved by Panyushev

[Pan88], and he constructed it as the minimal resolution of E+
l,m
� SL(2) ×B S+, which is

described by the Hirzebruch–Jung continued fraction arising from the cone σ of the toric

surface S+ (see also [BH08]). It follows that the Hilbert–Chow morphism γ factors as

H −→ W −→ E+l,m −→ El,m.

Therefore, Theorem 5.4.1 implies that the invariant Hilbert scheme H and the minimal

resolution W coincide if and only if 1+ b ≤ ap. Consider the subdivision of σ obtained by

adding a new ray R≥0e1. This defines the morphism E′
l,m

−→ E+
l,m

. If 1+ b ≤ ap, then the

subdivision coincides with the first step of that defined by the Hirzebruch–Jung continued

fraction for constructing the minimal resolution W, concerning that the cone σ is in the

normal form in the sense of [CLS11, §10.1] if and only if 1+ b ≤ ap.
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Chapter 6

Further discussions

6.1 The Cox ring and the associated invariant Hilbert scheme

Given an affine normal variety, there would be several ways to describe it as an affine quotient.

One of them, on which we elaborate below, is to consider its Cox ring equipped with a

natural action of a quasitorus. By definition, a quasitorus is an affine algebraic group whose

coordinate ring is generated by characters as aC-vector space ([ADHL15, Definition 1.2.1.1]).

Below we recall the construction of the Cox ring following [BH08, Definition 2.1] (see also

[ADHL15, §1.4]).

Let Y be a normal variety with the field of rational functions C(Y ). For a divisor D on Y ,

we put L(D) := { f ∈ C(Y ) : ( f )+D ≥ 0}. Assume that every invertible regular function on

Y is constant, and that the divisor class group Cl(Y ) is finitely generated, so that there is an

isomorphism Cl(Y ) � Zn ⊕Z/m1Z⊕ · · ·⊕Z/msZ. We fix divisors E1, . . ., En inY that generate

the free part Zn. We also fix a divisor W j (1 ≤ j ≤ s) in Y whose class generates Z/m jZ and

choose a rational function f j such that m jW j = ( f j). For each tuple k = (k1, . . ., kn+s) ∈ Z
n+s,

we set D(k) :=
∑

1≤i≤n kiEi +
∑

1≤ j≤s kn+ jW j . Then we have the following isomorphism for

any 1 ≤ j ≤ s:

α j : L(D(k)) −→ L(D(k)+m jW j), f 7→
f

f j

.

We denote by S theZn+s-graded ring
⊕

k∈Zn+s L(D(k)), and consider the ideal I of S generated
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by f −α j( f ) for every f ∈ L(D(k)), k ∈ Zn+s, and j ∈ {1, . . ., s}. Then,

Cox(Y ) := S/I

is called the Cox ring of Y . It is uniquely defined up to isomorphism and does not depend on

the choice of Ei, W j , and f j . Moreover, it has a natural structure of a Cl(Y )-graded ring:

Cox(Y ) = S/I �
⊕

[D]∈Cl(Y )

Γ(Y,OY (D)).

The Cl(Y )-grading on Cox(Y ) defines an action of the quasitorus G = Spec(C[Cl(Y )]) on

X = Spec(Cox(Y )). We consider the quotient X//G := Spec(C[X]G), which comes with the

quotient morphism π : X −→ X//G.

Theorem 6.1.1 ([ADHL15, Corollary 1.6.3.4]). If Y is affine, then X//G is isomorphic to Y .

Theorem 6.1.2 ([ADHL15, Remark 1.6.4.2]). Keep the above notation.

(i) Let Yreg ⊂ Y be the set of smooth points. Then, π−1(Yreg) ⊂ X is smooth, and G acts

freely on π−1(Yreg).

(ii) For any x ∈ π−1(Yreg), the orbit G · x is closed in X .

Remark 6.1.2.1. By Theorem 6.1.2, the Hilbert function of a general fiber of π coincides with

that of the regular representation C[G].

We will use the following theorems in the forthcoming sections.

Theorem 6.1.3 ([ADHL15, Lemma 1.5.1.2]). Let Y be as above, and let U be an open subset

of Y such that codim(Y \U) ≥ 2. Then, Cox(Y ) −→ Cox(U), f 7→ f |U is an isomorphism.

Theorem 6.1.4 ([ADHL15, Theorem 4.5.1.8]). Let H be a connected affine algebraic group

with trivial Picard group Pic(H) and trivial character group X(H), and let F ⊂ H be a closed

subgroup. Define F1 :=
∩

χ∈X(F)Ker(χ) ⊂ F, and G := Spec(C[X(F)]). Then, G is isomorphic

to the quasitorus Spec(C[Cl(H/F)]), and the Cox ring of H/F is given as follows:

Cox(H/F) � C[H/F1] � C[H]F1 �

⊕
χ∈X(F)

C[H]
F1
χ .
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Remark 6.1.4.1. In the situation of Theorem 6.1.4, the H-action on the homogeneous space

H/F lifts to the Cox ring Cox(H/F) via the isomorphism Cox(H/F) � C[H/F1]. A more gen-

eral statement about lifting of a given action of an affine algebraic group on Y to Spec(Cox(Y ))

can be found in [ADHL15, Theorem 4.2.3.2]. See also [Gaı̆08, Proposition 2].

Given an affine normal varietyY with only constant invertible regular functions and finitely

generated divisor class group, Theorem 6.1.1 tells us that Y can be restored from its Cox ring

Cox(Y ). This motivates us to consider the associated invariant Hilbert scheme and ask the

following question: if we describe Y as an affine quotient of X = Spec(Cox(Y )) by the action

of G = Spec(C[Cl(Y )]) and if we take h to be the Hilbert function of a general fiber of the

quotient morphism π : X −→ Y , does the associated invariant Hilbert scheme HilbG
h
(X) give

a resolution of singularities of Y via the Hilbert–Chow morphism γ : HilbG
h
(X) −→ Y?

In the forthcoming sections, we consider the case where Y is a closure of the maximal

nilpotent orbit in the Lie algebra sln and ask if the corresponding Hilbert–Chow morphism

coincide with the Springer’s resolution. As we will see below, the case n = 2 is classical and

known to give a positive answer (Example 6.2.2). The case n = 3 will be discussed in the last

section.

6.2 Closures of nilpotent orbits in sln

We first review the one to one correspondence between nilpotent orbits in sln and partitions

of n. Given a partition d = [d1, . . ., dk] of n, i.e., d1, . . ., dk are integers that satisfy d1 ≥

· · · ≥ dk > 0 and d1 + · · ·+ dk = n, we can define a nilpotent element Ad in sln according to

the partition d as follows:

Ad =
©­­«

Jd1

. . .

Jdk

ª®®¬
,

where

Jdi =

©­­­­­«

0 1

0
. . .
. . .

. . .
0 1

0

ª®®®®®¬
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is the Jordan block of size di. The orbit of Ad under the conjugate action of SL(n) is denoted

by Od. Since any nilpotent element A ∈ sln is conjugate to a unique Ad for some partition d

of n, the correspondence d 7→ Od is bijective ([CM93, Proposition 3.1.7]). An order relation

is defined on the set of nilpotent orbits in sln by inclusion of closures. The maximal orbit

corresponds to the partition d = [n]. According to [Fu03, FN04], the closure O[n] of the

maximal nilpotent orbit admits a unique symplectic resolution of singularities, the Springer’s

resolution:

SL(n)×B n −→ O[n], (X, A) 7→ X AX−1,

where n = {A= (ai, j) ∈ sln : ai, j = 0 (i ≥ j)}, and SL(n)×Bn denotes the quotient (SL(n)×n)/B

under the action of the Borel subgroup B = {b = (bi, j) ∈ SL(n) : bi, j = 0 (i > j)} defined by

b · (X, A) = (Xb−1,bAb−1).

A natural question that arises is whether the Springer’s resolution of O[n] can be obtained

as the invariant Hilbert scheme associated with the Cox ring Cox(O[n]) in the sense of the

previous section. We first remark that codim(O[n] \O[n]) = 2, so that the Cox ring of O[n] is

isomorphic to that of O[n] by Theorem 6.1.3. Following the notation of Theorem 6.1.4, F

denotes the stabilizer of A[n]:

F = {X = (xi, j) ∈ SL(n) : xi, j = xi+1, j+1 (i ≤ j), xi, j = 0 (i > j)}.

Also, we have F1 = {X = (xi, j) ∈ F : xi,i = 1}. The Cox ring of the maximal orbit O[n] is

isomorphic to the invariant ring

R := C[SL(n)]F1 �

⊕
χ∈X(F)�Z/nZ

C[SL(n)]
F1
χ ,

and the quotient of Spec(R) by the action of Spec(C[X(F)]) � µn is isomorphic to O[n].

We denote by H[n] the invariant Hilbert scheme Hilb
µn
h
(Spec(R)) associated with the triple

(µn,Spec(R), h), where h is the Hilbert function of a general fiber of the quotient morphism

π : Spec(R) −→ O[n]. As mentioned in Remark 6.1.2.1, h coincides with the Hilbert function

of the regular representation C[µn]. The corresponding Hilbert–Chow morphism

γ : H[n] −→ O[n]

is an isomorphism over the maximal orbit O[n], so that the main component is Hmain
=

γ−1(O[n]). We pose the following question.
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Question 6.2.1. Does the Hilbert–Chow morphism γ (or its restriction to the main component

Hmain) give a resolution of singularities of O[n]? And if it does, does it coincide with the

Springer’s resolution?

Example 6.2.2. When n= 2, we have F =

{(
ξ a

0 ξ

)
: ξ2
= 1, a ∈ C

}
, and the subgroup F1 ⊂ F

coincides with the unipotent radical of the Borel subgroup B ⊂ SL(2). The Cox ring of O[2] is

isomorphic to a polynomial ring in two variables C[t1, t2], and the quasitorus SpecC[X(F)] �

µ2 acts onC[t1, t2] via multiplication on each variable. Therefore, the invariant Hilbert scheme

H[2] is isomorphic to the µ2-Hilbert scheme µ2-Hilb(C2), which is known to give the minimal

(hence crepant) resolution of singularities ofC2/µ2 via the Hilbert–Chow morphism ([IN96]).

Since the notion of crepant resolutions coincides with symplectic resolutions for symplectic

varieties, we see that the case n = 2 gives a positive answer to Question 6.2.1.

6.3 The case n = 3

In this subsection, we consider the case where n = 3 and show the following.

Theorem 6.3.1. The Hilbert–Chow morphism γ : H[3] −→O[3] is a resolution of singularities.

Moreover, the invariant Hilbert scheme H[3] is isomorphic to SL(3) ×B n, and under this

isomorphism, γ coincides with the Springer’s resolution.

Remark 6.3.1.1. The nilpotent matrix corresponding to the partition d = [3] is

A[3] =
©­«
0 1 0

0 0 1

0 0 0

ª®¬
.

The closure O[3] is a 6-dimensional subvariety of sl3, and it has three SL(3)-orbits: O[3],

O[2,1], and the origin O = O[13]. Also, the closed subgroups F1 ⊂ F ⊂ SL(3) are given as

follows:

F =



©­«
ω a b

0 ω a

0 0 ω

ª®¬
: ω3

= 1, a,b ∈ C



⊃ F1 =



©­«
1 a b

0 1 a

0 0 1

ª®¬
: a,b ∈ C



.

Let X = (xi, j)1≤i, j≤3 be the coordinate of SL(3), and R = C[SL(3)]F1 . The action of F on

R gives it a natural structure of a Z/3Z-graded ring, and for each 0 ≤ i ≤ 2, the component
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R(i) of weight i is an SL(3)-submodule of R. The F-invariant ring RF
= R(0) � C[SL(3)/F] is

generated by yi, j (1 ≤ i, j ≤ 3), where yi, j denotes the (i, j)-entry of the matrix Y = X A[3]X
−1.

Since O[3] is normal and codim(O[3] \O[3]) = 2, the regular functions yi, j on SL(3)/F � O[3]

extend to those on O[3], which we denote by the same symbol yi, j . Set

g3,1 =

����x2,1 x2,2

x3,1 x3,2

����, g3,2 = −

����x1,1 x1,2

x3,1 x3,2

����, g3,3 =

����x1,1 x1,2

x2,1 x2,2

����,
and

f1 = y1,1+ y2,2+ y3,3,

f2 = y2,2y3,3 − y2,3y3,2+ y1,1y3,3 − y1,3y3,1+ y1,1y2,2 − y1,2y2,1,

f3 = y1,1g3,1+ y2,1g3,2+ y3,1g3,3,

f4 = y1,2g3,1+ y2,2g3,2+ y3,2g3,3,

f5 = y1,3g3,1+ y2,3g3,2+ y3,3g3,3,

f6 = y1,1x1,1+ y1,2x2,1+ y1,3x3,1,

f7 = y2,1x1,1+ y2,2x2,1+ y2,3x3,1,

f8 = y3,1x1,1+ y3,2x2,1+ y3,3x3,1,

f9 = g
2
3,1
+ y2,1x3,1 − y3,1x2,1,

f10 = g3,1g3,2+ y2,2x3,1 − y3,2x2,1,

f11 = g3,1g3,3+ y2,3x3,1 − y3,3x2,1,

f12 = g
2
3,2

− y1,2x3,1+ y3,2x1,1,

f13 = g3,2g3,3 − y1,3x3,1+ y3,3x1,1,

f14 = g
2
3,3
+ y1,3x2,1 − y2,3x1,1,

f15 = x2
1,1

− y1,2g3,3+ y1,3g3,2,

f16 = x1,1x2,1 − y2,2g3,3+ y2,3g3,2,

f17 = x1,1x3,1 − y3,2g3,3+ y3,3g3,2,

f18 = x2
2,1
+ y2,1g3,3 − y2,3g3,1,

f19 = x2,1x3,1+ y3,1g3,3 − y3,3g3,1,

f20 = x2
3,1

− y3,1g3,2+ y3,2g3,1,

f21 = x1,1g3,1 − y2,2y3,3+ y2,3y3,3,

f22 = x1,1g3,2+ y1,2y3,3 − y1,3y3,2,

f23 = x1,1g3,3 − y1,2y2,3+ y1,3y2,2,

f24 = x2,1g3,1 − y2,1y3,3+ y2,3y3,1,

f25 = x2,1g3,2 − y1,1y3,3+ y1,3y3,1,

f26 = x2,1g3,3+ y1,1y2,3 − y1,3y2,1,

f27 = x3,1g3,1 − y2,1y3,2+ y2,2y3,1,

f28 = x3,1g3,2+ y1,1y3,2 − y1,2y3,1,

f29 = x3,1g3,3 − y1,1y2,2+ y1,2y2,1.

We can check that the following lemma actually holds, by a brute-force calculation on the
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computer algebra system Macaulay2 [GS].

Lemma 6.3.2. The F1-invariant ring R = C[SL(3)]F1 is generated by x1,1, x2,1, x3,1, g3,1, g3,2,

g3,3, and yi, j (1 ≤ i, j ≤ 3), and the ideal of relations among these generators is generated by

f1, . . ., f29. Moreover, the weight space R(1) (resp. R(2)) is generated by x1,1, x2,1, and x3,1

(resp. g3,1, g3,2, and g3,3) as a module over the F-invariant ring RF
= R(0).

Remark 6.3.2.1. Let V1 = ⟨x1,1, x2,1, x3,1⟩, and let V2 = ⟨g3,1,g3,2,g3,3⟩. Then, V1 and V2 are

SL(3)-submodules of R(1) and R(2), respectively. Moreover, V1 is isomorphic to the standard

representation V of SL(3), and x1,1 is the highest weight vector with respect to the Borel

subgroup B ⊂ SL(3). Also, V2 is isomorphic to
∧2 V � V∨, and g3,3 is the highest weight

vector.

Recall that the Hilbert–Chow morphism γ : H[3] −→ O[3] is an isomorphism over the

maximal orbit O[3]. The next lemma gives the ideal corresponding to the closed point which

is mapped to A[3] under the isomorphism.

Lemma 6.3.3. Let I[3] be the ideal of R generated by the entries of the matrix

©­«
y1,1 y1,2 −1 y1,3

y2,1 y2,2 y2,3 −1

y3,1 y3,2 y3,3

ª®¬
and x2,1, x3,1, g3,1, g3,2, x2

1,1
− g3,3, x1,1 − g

2
3,3
, x1,1g3,3 − 1. Then, I[3] defines a point in H[3]

and γ([I[3]]) = A[3].

Proof. Let I ⊂ R be the unique µ3-stable ideal such that γ([I]) = A[3]. Since the image of

the zero set of I under the quotient morphism π : Spec R −→ O[3] is A[3], we get (y1,1, y1,2 −

1, y1,3, y2,1, y2,2, y2,3 − 1, y3,1, y3,2, y3,3) ⊂ I. Taking into account that f4, f5, f6, f7, f14,

f15, f23 ∈ I, one obtains (g3,1, g3,2, x2,1, x3,1, x2
1,1

− g3,3, g
2
3,3

− x1,1, x1,1g3,3 − 1) ⊂ I. Namely,

I[3] ⊂ I. On the other hand, we have R/I[3] � C[x1,1]/(x
3
1,1

− 1), which implies that the

closed subscheme of Spec R associated with the ideal I[3] defines a point in H[3]. Therefore,

I[3] = I. Q.E.D.

We consider the set H[3]
B of fixed points in H[3] for the action of the Borel subgroup B.

The lemma below shows that H[3] contains a unique B-fixed point.
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Lemma 6.3.4. Let I0 be the ideal of R generated by the entries of the matrix

©­«
y1,1 y1,2 y1,3

y2,1 y2,2 y2,3

y3,1 y3,2 y3,3

ª®¬
and x2,1, x3,1, g3,1, g3,2, x2

1,1
, x1,1g3,3, g

2
3,3

. Then, H[3]
B
= {[I0]}. In particular, H[3] is

connected.

Proof. Take any [I] ∈ HB. Then, we have γ([I]) = O since the origin O ∈ O[3] is the unique

B-fixed point. Therefore, yi, j ∈ I for any 1 ≤ i, j ≤ 3. Since I ⊂ R is B-stable, we see

by Remark 6.3.2.1 that the weight spaces (R/I)(1) and (R/I)(2) of µ3-weight 1 and 2 are

spanned by x1,1 and g3,3, respectively. Therefore, (x2,1, x3,1, g3,1, g3,2) ⊂ I. Moreover, we get

(x2
1,1
, g2

3,3
, x1,1g3,3) ⊂ I by the conditions f15, f14, f23 ∈ I. Thus, I0 ⊂ I. Since I0 is of colength

3, one obtains I0 = I. The connectedness of H[3] follows from Theorem 2.1.7. Q.E.D.

Lemma 6.3.5. dimHom
µ3

R
(I0,R/I0) = 6 (= dimHmain).

Proof. Let ϕ ∈ Hom
µ3

R
(I0,R/I0). Since R/I0 � C[x1,1,g3,3]/(x

2
1,1
, g2

3,3
, x1,1g3,3) and ϕ preserves

the action of µ3, we have

ϕ(x2,1) = α1x1,1, ϕ(x3,1) = α2x1,1, ϕ(g3,1) = α3g3,3, ϕ(g3,2) = α4g3,3

ϕ(x2
1,1
) = α5g3,3, ϕ(x1,1g3,3) = α6, ϕ(g2

3,3
) = α7x1,1, ϕ(yi, j) = βi, j

for some a1, . . ., α7, βi j ∈ C. On the other hand, since ϕ is a homomorphism of R-modules,

we get β1,1 = β2,1 = β3,1 = β3,2 = β3,3 = 0 by f3, f4, f5, f6, f7, f8 ∈ I. Also, by f14, f15 ∈ I, we

have α7 − β2,3 = α5 − β1,2 = 0. Moreover, we have β2,2 = α6 = 0 by f16, f23 ∈ I. Therefore,

dimHom
µ3

R
(I0,R/I0) ≤ 6, and hence the equality. Q.E.D.

Corollary 6.3.6. The invariant Hilbert scheme H[3] is smooth and coincides with the main

component Hmain.

Proof. This is an immediate consequence of Theorem 2.1.7. Q.E.D.

Proof of Theorem 6.3.1. Taking into account the discussions above, it remains to show that γ

coincides with the Springer’s resolution. For each i ∈ {1,2}, we define

ηi : H[3] −→ Gr(1,V∨
i ) � P2, I 7→ Vi/Ker fI,
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where fI is the composition of the natural inclusion Fi ֒→ R(i) and the surjection R(i) −→

(R/I)(i) (see §2.1.6 for details). The isomorphism Gr(1,V∨
1
) � P2 is given by sending s0x1,1

∨
+

s1x2,1
∨
+ s2x3,1

∨ to [s0 : s1 : s2], where xi,1
∨ denote the dual basis of xi,1 (1 ≤ i ≤ 3). Similarly,

the isomorphism Gr(1,V∨
2
) � P2 is given by t0g3,1

∨
+ t1g3,2

∨
+ t2g3,3

∨ 7→ [t0 : t1 : t2], where

g3, j
∨ denotes the dual basis of g3, j (1 ≤ j ≤ 3). Set η = η1 × η2 : H[3] −→ P

2 ×P2. Then we

have η([I[3]]) = ([1 : 0 : 0], [0 : 0 : 1]). The stabilizer of η([I[3]]) is the Borel subgroup B, and

hence we get a surjective morphism η : H[3] −→ SL(3)/B. Let N = η−1(1), where 1 stands

for the identity matrix. Then, we have H[3] � SL(3)×B N . We claim that N � n, where

n =



©­«
0 y1,2 y1,3

0 0 y2,3

0 0 0

ª®¬
: y1,2, y1,3, y2,3 ∈ C



.

Let [I] ∈ N , and let γ([I]) = (ai, j)1≤i, j≤3 ∈ O[3] ⊂ sl3. By the construction of η, we have

x2,1, x3,1, g3,1, g3,2 ∈ I. Then it follows that a1,1 = a2,1 = a3,1 = a2,2 = a3,2 = a3,3 = 0 by the

conditions f3, f4, f5, f6, f7, f8, f16 ∈ I. This implies that N � n. Q.E.D.

Remark 6.3.6.1. One would be able to show that the answers to Question 6.2.1 is also positive

for the cases where n ≥ 4 by using theorems from [Gra92].
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