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Abstract.

In this doctoral thesis, we study on the stationary incompressible Navier-Stokes
equations in the whole space Rn for n ≥ 3. In particular, we discuss here the well-
posedness problem of that equation, that is, the problem on the uniquely existence of
solutions continuously dependent on given small external forces.

We first review the previous result by Kaneko-Kozono-Shimizu [11] on the well-

posedness in the scaling invariant Besov space, from the space Ḃ
−3+n

p
p,q (Rn) of given

external forces to the solution space Ḃ
−1+n

p
p,q (Rn) with 1 ≤ p < n and 1 ≤ q ≤ ∞.

We then show the well-posedness in the homogeneous Triebel-Lizorkin space similarly.
Our method is inspired by the Kaneko-Kozono-Shimizu’s one, which is based on the
boundedness of the Riesz transform, the para-product estimate, and the embedding
theorem in homogeneous Besov and Triebel-Lizorkin spaces. Moreover, we can see
some advantages for the regularity of solutions in the case of Triebel-Lizorkin spaces
compared to Besov spaces.

We next consider the ill-posedness of the stationary Navier-Stokes equations in
weaker Besov spaces. It is proved that a sequence of bounded smooth external forces
whose Ḃ−3

∞,1 norms converge to zero can produce a sequence of bounded smooth solutions

whose Ḃ−1
∞,∞ norms never converge to zero. Such a discontinuity of the solution map

is shown by constructing the sequence of external forces, as similar to those of initial
data proposed by Bourgain-Pavlović [5] in the non-stationary problem. This method
proves to be applicable for the Besov spaces on the torus Tn for n ≥ 3, and we can also

show the ill-posedness for the space Ḃ
−3+n

p
p,q (Tn) of external forces when n < p < ∞,

1 ≤ q ≤ ∞ and p = n, 2 < q ≤ ∞.

Finally, we show the ill-posedness for the space Ḃ
−3+n

p
p,q (Rn) of external forces when

n < p < ∞, 1 ≤ q ≤ ∞ and p = n, 2 < q ≤ ∞. In this case, we should apply not only
the method of Bourgain-Pavlović [5], but also that of Bejenaru-Tao [2] which studied on
the ill-posedness of the quadratic Schrödinger equation. In this way, together with the
well-posedness result by Kaneko-Kozono-Shimizu [11], our result may be regarded as
showing the borderline case between well-posedness and ill-posedness of the stationary
Navier-Stokes equations in scaling invariant Besov spaces.

As by-products of our study on the ill-posedness of the stationary Navier-Stokes
equations, we can construct counter-examples of the bilinear estimates of the Hölder
type inequality in homogeneous Besov spaces showed by Bony [4], which has an impor-
tant role for the boundedness of the bilinear term in the Navier-Stokes equations. It is
proved that if we change the condition of indices denoting differential orders, then we
can find examples of functions that never satisfy the bilinear estimates. Such examples
can be constructed due to those used in the ill-posedness problem of the stationary
Navier-Stokes equations. This existence of counter-examples of this inequality seems to
explain not only our ill-posedness results, but also the ill-posedness of other nonlinear
equations in similar cases.
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Chapter 1

Introduction

In this doctoral thesis, we consider the stationary Navier-Stokes equations, which
describe the incompressible viscous fluid independent of the time development, in the
whole n-dimensional Euclid space Rn with n ≥ 3;{

−∆u+ u · ∇u+∇Π = f,

div u = 0.
(SNS)

Here u = u(x) = (u1(x), u2(x), . . . , un(x)) and Π = Π(x) denote the unknown velocity
vector field and the unknown pressure of the fluid at the point x ∈ Rn, respectively,
while f = f(x) = (f1(x), f2(x), . . . , fn(x)) is the given external force. In (SNS), −∆u
denotes the viscosity term, and u · ∇u ≡

∑n
j=1 uj

∂u
∂xj

denotes the derivative of u in the

direction along itself.
For this stationary problem, there have been various studies on existence, unique-

ness, and regularity of weak and strong solutions to (SNS). For instance, Leray [15]
and Ladyzhenskaya [14] showed the existence of solutions to (SNS), and later on, Hey-
wood [8] constructed the solution of (SNS) as a limit of solutions of the non-stationary
Navier-Stokes equations having the same external force. Then Secchi [20] investigated
existence and regularity of solutions to (SNS) in Ln ∩ Lp, p > n. Moreover, Chen [6]
proved that for every smooth external force which is small in Ḣ−1,n

2 yields a unique
solution of (SNS) in Ln∩ Ḣ1,n

2 . Here Ḣs,r denotes the homogeneous Sobolev space with
the norm ∥f∥Ḣs,r ≡ ∥(−∆)

s
2f∥Lr . In this way, it has been important to find more gen-

eral spaces such that every small external force in these spaces yields a unique solution
of (SNS), and to find more regularity of solutions.

In this thesis, we focus on the well-posedness and ill-posedness problems on (SNS).
Roughly speaking, the well-posedness means the uniquely existence of solutions to
(SNS) continuously depending on given external forces. The precise definition of the
well-posedness is as follows:

Definition 1.1. Let (D, ∥ · ∥D) and (S, ∥ · ∥S) be two Banach spaces (here D and S
indirectly denote the spaces of data (external forces) and of solutions, respectively). We
say that (SNS) is well-posed from D to S if there exist two constants ε, δ > 0 such that

7
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(i) For any f ∈ BD(ε), there exist a solution u ∈ BS(δ) of (SNS),

(ii) If there exist two solutions u1, u2 ∈ BS(δ) of (SNS) for one external force f ∈
BD(ε), then it holds that u1 ≡ u2 in S,

(iii) The solution map f ∈ (BD(ε), ∥ · ∥D) 7→ u ∈ (BS(δ), ∥ · ∥S), which is well-defined
by (i) and (ii), is continuous,

where BD(ε) ≡ {f ∈ D; ∥f∥D < ε} and BS(δ) ≡ {u ∈ S; ∥u∥S < δ}. In addition,
(SNS) is ill-posed from D to S if (SNS) is not well-posed from D to S.

This notion of well-posedness corresponds to that of the global well-posedness with small
initial data in the Cauchy problem of time-evolution partial differential equations, such
as the non-stationary Navier-Stokes equations:

∂tu−∆u+ u · ∇u+∇Π = 0 in x ∈ Rn, t ∈ (0,∞),

div u = 0 in x ∈ Rn, t ∈ (0,∞),

u|t=0 = a, in x ∈ Rn.

(NNS)

In this case, D is the space of initial data a and we often let S ≡ C([0,∞);D). Until
now, the global well-posedness of (NNS) has been studied intensively. For example,
Koch-Tataru [12] showed the global well-posedness in the case D = BMO−1. On the
other hand, Bourgain-Pavlović [5] showed the ill-posedness in the caseD = Ḃ−1

∞,∞ (which
includes BMO−1). In fact, they proved the ill-posedness by showing the discontinuity
of the solution map. Later on, the ill-posedness in the case D = Ḃ−1

∞,q, 1 ≤ q <∞ was
also showed by Yoneda [27] (2 < q <∞) and Wang [28] (1 ≤ q ≤ 2). These spaces play
a crucial role since these are scaling invariant for the initial data a in (NNS). In fact,
it is easily seen that if (u,Π) is a solution to (NNS) with an initial datum a = a(x),
then so is (uλ,Πλ) = (λu(λx, λ2t), λ2Π(λx, λ2t)) with an initial datum aλ = λa(λx) for
every λ > 0. We call the normed space (X, ∥ · ∥X) scaling invariant for the initial data
if ∥aλ∥X ∼= ∥a∥X . Together with (NNS), it seems to be an important problem to find
more general spaces D and S where (SNS) is well-posed.

We now deal with this problem in homogeneous Besov spaces Ḃs
p,q = Ḃs

p,q(Rn) for
s ∈ R, 1 ≤ p, q ≤ ∞. Actually, in numerous present papers, the Navier-Stokes equations
have been handled in such spaces as above. In fact, we see some similarities between
Ḃs
p,q and homogeneous Sobolev spaces Ḣs,p. Indeed, s and p denote differentiability

and Lp-integrability of functions, respectively. Furthermore, q denotes the interpolation
exponent which enlarges the structure of Sobolev spaces. Namely, it holds that Ḃs

p,1 ↪→
Ḣs,p ↪→ Ḃs

p,∞ for all s ∈ R and 1 ≤ p ≤ ∞. In this way, the study in the Besov spaces
is expected to generalize the previous studies in Sobolev spaces.

Recently, the well-posedness of (SNS) in homogeneous Besov spaces was well studied
by Kaneko-Kozono-Shimizu [11]. They showed that (SNS) is well-posed from D =

Ḃ
−3+n

p
p,q to S = Ḃ

−1+n
p

p,q for all 1 ≤ p < n and 1 ≤ q ≤ ∞. These spaces D and S
are scaling invariant for the external force f and the velocity u in (SNS) respectively.
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Indeed, if a triple {u,Π, f} solves (SNS), so does {uλ,Πλ, fλ} for every λ > 0, with
uλ(x) ≡ λu(λx), Πλ(x) ≡ λ2Π(λx), fλ(x) ≡ λ3f(λx). Then we see that

∥fλ∥D ∼= ∥f∥D, ∥uλ∥S ∼= ∥u∥S, ∀λ > 0.

Actually, their study in homogeneous Besov spaces enables us handle a larger class
of functions which never belong to the usual Sobolev space. For instance, in three
dimension case, we can solve (SNS) with a singular external force like the Dirac delta

function, which belongs to Ḃ
−n+n

p
p,∞ (Rn) for 1 ≤ p ≤ ∞.

In Chapter 3, we will review the study by Kaneko-Kozono-Shimizu [11], and will also
consider a similar problem in homogeneous Triebel-Lizorkin spaces Ḟ s

p,q for comparison,

which are also generalization of Sobolev spaces. Actually, even in the case ofD = Ḟ
−3+n

p
p,q

and S = Ḟ
−1+n

p
p,q , we can prove the well-posedness of (SNS), provided 1 < p < n and

1 ≤ q ≤ ∞, and provided p = n and 1 ≤ q ≤ 2, by similar methods to Kaneko-
Kozono-Shimizu [11]. Indeed, we make use of the boundedness of the Riesz transform,
the product estimate, and the embedding theorem in homogeneous Besov and Triebel-
Lizorkin spaces. Furthermore, in the case of Triebel-Lizorkin space, we can see some
advantages in the sense of the regularity of solutions. More precisely, we will prove that

if a small external force in the above scaling invariant Triebel-Lizorkin spaces Ḟ
−1+n

p
p,q

with 1 < p < n also belongs to Ḣs−2,r with s > 0 and 1 < r < ∞, or with s = 0
and n/(n− 1) < r <∞, then the solution belongs to Ḣs,r. Although Kaneko-Kozono-
Shimizu [11] showed a similar result, some additional restrictions for s, r are required
in the case of Besov spaces. Such difference seems to stem from the facts as follows.
First, the Triebel-Lizorkin space can be identified with the usual Sobolev space, namely,
Ḟ s
p,2 = Ḣs,p (1 < p < ∞), while in the Besov space, it is only known for the inclusion

relation, i.e., Ḃs
p,1 ⊂ Ḣs,p ⊂ Ḃs

p,∞. Second, there holds

Ḟ s1
p1,q

↪→ Ḟ s2
p2,r

, 1 ≤ p1 < p2 <∞, 1 ≤ q, r ≤ ∞, s1 − n/p1 = s2 − n/p2.

We take the above q and r arbitrarily, while in the Besov space, a similar embedding
holds only if q ≤ r.

Now our main purpose in this thesis is to show that the well-posedness result by
Kaneko-Kozono-Shimizu [11] is almost optimal in the scaling invariant Besov spaces.

In other words, we will prove that (SNS) is ill-posed from D = Ḃ
−3+n

p
p,q to S = Ḃ

−1+n
p

p,q

for n < p ≤ ∞ and 1 ≤ q ≤ ∞, and for p = n, 2 < q ≤ ∞.
In Chapter 4, we will first prove the ill-posedness in the extreme case p = ∞, i.e.,

we will show that (SNS) is ill-posed from Ḃ−3
∞,q to Ḃ

−1
∞,q for all 1 ≤ q ≤ ∞ in the sense

that it occurs a lack of continuity of the solution map f 7→ u. More precisely, we
will construct a sequence {fN}N∈N of external forces with fN → 0 in Ḃ−3

∞,1 such that

there exists a solution uN of (SNS) for each fN , which never converges to zero in Ḃ−1
∞,q

(and even in Ḃ−1
∞,∞). For the proof, we apply the sequence of initial data used in the

study on the ill-posedness of (NNS) by Bourgain-Pavlović [5], to (SNS) as the external
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force f with some modifications. Actually, we can construct such a sequence by using
trigonometric functions. Making use of the method of Sawada [17] (which may be
regarded as a refinement of the original proof by Bourgain-Pavlović [5]), we construct
the solution by the successive approximation, and show that the second approximation
causes the inflation of the norm ∥u∥Ḃ−1

∞,∞
. In fact, such norm inflation is caused by a

superposition of waves. For instance, let s < 0 and

wh1 ≡ sin(hx1 + x2), wh2 ≡ cos(hx1)

be two high frequency waves, where h is a large number. In this case, both of ∥wh1∥Ḃs
∞,q

and ∥wh2∥Ḃs
∞,q

converge to zero as h goes to infinity. However, for the product

wh3 ≡ wh1 · wh2 =
1

2
sin(2hx1 + x2) +

1

2
sin x2,

the Besov norm ∥wh3∥Ḃs
∞,q

has a positive lower bound, since the second term of wh3 is

independent of h. We apply this fact to the nonlinear term of (SNS), and construct
examples causing the ill-posedness. On the other hand, it turns out that the limit of the
successive approximation can be constructed as a bounded uniformly smooth function.
Based on this fact with the aid of the theorem of termwise differentiation, we can prove
that this limit function yields a smooth solution of (SNS) with a pressure Π such that
∇Π = 0.

The above method by Bourgain-Pavlović [5] is, however, not applicable for the case

n ≤ p < ∞, since trigonometric functions used above are not in Ḃ
−3+n

p
p,q for such p

by the lack of integrability in the whole space Rn. Hence, considering the fact that
such functions are spacial periodic, we will also discuss (SNS) in the n-dimensional
torus space Tn ≡ [−π, π]n for the moment. In fact, it is also useful to deal with the
Navier-Stokes equations in Tn. Usually, it is natural to consider the Navier-Stokes
equations in Rn for seeking the general fluid without any boundaries. On the other
hand, for instance, in the computational fluid dynamics, we need to discretize the
domain periodically to find a numerical solution. In particular, the asymptotic behavior
of solutions in Tnλ ≡ [−λπ, λπ]n as λ → ∞ is quite important to investigate the exact
solutions in Rn.

Actually, the inhomogeneous toroidal Besov spaceBs
p,q(Tn) was defined by Schmeisser-

Triebel [19]. They defined such spaces using classical Littlewood-Paley theory and the
Fourier series instead of the Fourier transform. Following their idea, we first define
the homogeneous space Ḃs

p,q(Tn) so that we can discuss similar problems on (SNS)
to Kaneko-Kozono-Shimizu [11]. In addition, we should also define such spaces on
Tnλ ≡ [−λπ, λπ]n for each λ > 0, since for the functions u,Π, f on Tn, the above scaling
ones uλ,Πλ, fλ are on Tnλ. In fact, we see that Ḃs

p,q(Tnλ) also has the same properties as

Ḃs
p,q(Tn), and that

∥uλ∥
Ḃ

−1+n
p

p,q (Tn
λ)

∼= ∥u∥
Ḃ

−1+n
p

p,q (Tn)
, ∥fλ∥

Ḃ
−3+n

p
p,q (Tn

λ)

∼= ∥f∥
Ḃ

−3+n
p

p,q (Tn)
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for any λ > 0 and 1 ≤ p, q ≤ ∞.
In Chapter 5, we will first check that the well-posedness of (SNS) from D =

Ḃ
−3+n

p
p,q (Tn) to S = Ḃ

−1+n
p

p,q (Tn) also holds for 1 ≤ p < n and 1 ≤ q ≤ ∞, by us-
ing similar methods to Kaneko-Kozono-Shimizu [11]. Moreover, we show that (SNS)

is ill-posed from Ḃ
−3+n

p
p,q (Tn) to Ḃ

−1+n
p

p,q (Tn) if p = n, 2 < q ≤ ∞ and n < p ≤ ∞,
1 ≤ q ≤ ∞, by discontinuity of the solution map. According to the same method in the
case of Rn, we will also construct a sequence of external forces by using trigonometric

functions, which are now included in Ḃ
−3+n

p
p,q (Tn) even for p <∞. In particular, for the

case p = n, i.e., S = Ḃ0
n,q(Tn), we will multiply such a sequence by the inverse of the

harmonic number
(∑N

k=1 k
−1
)−1

. This idea is inspired by Yoneda [27], which advanced

the study on the ill-posedness of (NNS) by Bourgain-Pavlović [5].
In Chapter 6, we will return to the problem on the whole space Rn. We will now

prove the ill-posedness from D = Ḃ
−3+n

p
p,q to S = Ḃ

−1+n
p

p,q when p = n, 2 < q ≤ ∞ and
n < p ≤ ∞, 1 ≤ q ≤ ∞ using another method proposed by Bejenaru-Tao [2], which
studied on the ill-posedness of the quadratic nonlinear Schrödinger equation. This
method is based on the well-posedness of (SNS) from Ḃ−2

n,q to L
n for 1 ≤ q ≤ 2, which

can be shown by a similar method as that of Kaneko-Kozono-Shimizu [11]. Actually,
we can construct a sequence of external forces which is included in a small ball of Ḃ−2

n,q

with 1 ≤ q ≤ 2 and converges to zero in the weaker norm Ḃ−2
∞,q̃ for q̃ > 2, such that the

corresponding sequence of solutions in Ln does not converge to zero even in the weakest
norm Ḃ−1

∞,∞. Although smooth solutions cannot be expected in this method, we can
apply a sequence inspired by Bourgain-Pavlović [5] and Yoneda [27] by multiplying some
appropriate cut functions. In this method, we have only to check the norm inflation
of the second approximation of a solution, while in the Bourgain-Pavlović method, we
should also check the norm convergence of all of the other approximations.

From the above studies, it seems that the above ill-posedness results are caused by
unboundedness of the bilinear form (u, v) 7→ B(u, v) ≡ (−∆)−1P (u · ∇v), where P is
the Leray projection to the solenoidal vector space. In fact, Kaneko-Kozono-Shimizu

[11] showed the boundedness of B on the space Ḃ
−1+n

p
p,q when 1 ≤ p < n using the

paraproduct estimate by Bony [4] as follows:

Proposition 1.2. Let n ≥ 1, 1 ≤ p, q ≤ ∞, s > 0, α > 0 and β > 0. Suppose
that 1 ≤ p1, p2, p̃1, p̃2 ≤ ∞ satisfy 1/p = 1/p1 + 1/p2 = 1/p̃1 + 1/p̃2. Then for every
f ∈ Ḃs+α

p̃1,q
∩ Ḃ−β

p̃1,∞ and g ∈ Ḃ−α
p2,∞ ∩ Ḃs+β

p̃2,q
, it holds that f · g ∈ Ḃs

p,q with the estimate

∥f · g∥Ḃs
p,q

≤ C
(
∥f∥Ḃs+α

p1,q
∥g∥Ḃ−α

p2,∞
+ ∥f∥Ḃ−β

p̃1,∞
∥g∥Ḃs+β

p̃2,q

)
,

where C = C(n, p, q, s, p̃1, p̃2) is a constant.

Indeed, for the well-posedness of (SNS) from D = Ḃ
−3+n

p
p,q to S = Ḃ

−1+n
p

p,q , the restriction
of p, 1 ≤ p < n, stems from that of s, s > 0 in Proposition 1.2 (we should note here
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that −1+n/p > 0 when 1 ≤ p < n). On the other hand, as seen in Chapter 4-6, we can
show the discontinuity of the solution map f 7→ u of (SNS) when p = n, 2 < q ≤ ∞
and n < p ≤ ∞, 1 ≤ q ≤ ∞. Hence, it seems natural to expect that Proposition 1.2
should fail necessarily for s ≤ 0.

In Chapter 7, we will show that if s < 0, then we can construct concrete counter-
examples of the above paraproduct estimate. On the other hand, by restricting the
ranges of p or q appropriately, we can also find a counter-example when s = α = β = 0.
For construction of such examples, we can apply similar functions as the above sequence
of external forces causing the ill-posedness of (SNS). This result can explain not only
the ill-posedness of (SNS) above, but also that of the quadratic nonlinear Schrödinger
equation in Hs(R) when s < −1, which was showed by Bejenaru-Tao [2]. Indeed,
similar negative result of bilinear estimates also holds in Sobolev spaces.

In this way, our study on (SNS) gives a clear borderline between the well-posedness
and ill-posedness in Besov spaces, and a new knowledge on the structure of such spaces
concerning the product estimate of functions. Moreover, it is expected that our method
by mixture of Bourgain-Pavlović [5] and Bejenaru-Tao [2] may be applicable for other
stationary equations.



Chapter 2

Preliminary

In this chapter, we prepare some theories on harmonic analysis and partial differ-
ential equations required for our studies.

2.1 Definitions and properties of function spaces

First of all, let us define some spaces of functions and distributions. Before start-
ing discussion, we review here some fundamental notation on multi-indices: If α =
(α1, α2, . . . , αn) ∈ Nn is a multi-index and f is a function, then

∂αf ≡ ∂|α|f

∂xα1
1 ∂x

α2
2 · · · ∂xαn

n

, xα ≡ xα1
1 x

α2
2 · · · xαn

n ,

where |α| ≡ α1 + α2 + · · · + αn. In what follows, we shall denote by C the constants
which may change from line to line.

2.1.1 Smooth function spaces and distributions

We denote by S = S(Rn) the space of rapidly decreasing functions on Rn, which
is usually called the Schwartz class. More precisely, a function f belongs to S if f is
infinitely differentiable (f ∈ C∞) and satisfies

ρα,β ≡ sup
x∈Rn

|xαDβf(x)| <∞

for any two indices α, β ∈ Nn. It is known that this space S is complete and metrizable
with a family {ρα,β}α,β∈Nn of semi-norms. Clearly, the space C∞

0 = C∞
0 (Rn) of compact

supported smooth functions is densely embedded in S. Furthermore, the space S is
densely included in the Lebesgue space Lp for 1 ≤ p < ∞, and hence we can define
the Fourier transform on S. On the other hand, f(x) = e−|x|2 , which is often used as a
normal distribution in statistics, is a well-known example in S\C∞

0 .
Moreover, we denote by S ′ the dual space (the space of bounded linear functionals)

on S, which is called the space of tempered distributions. For example, for every

13
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1 ≤ p ≤ ∞, the space Lp is included in S ′ (to see this, we identify f ∈ Lp with a
functional

ϕ→ ⟨f, ϕ⟩ ≡
∫
Rn

f(x)ϕ(x)dx

for ϕ ∈ S). On the other hand, the Dirac delta function ϕ 7→ δ(ϕ) ≡ ϕ(0) is a well-
known distribution which is never written as a usual function.

In addition, we define S0 = S0(Rn) to be the space of all φ ∈ S such that∫
Rn

xαφ(x)dx = 0, for any α ∈ Nn, (2.1)

and define S ′
0 as the dual space of S0. It is known that S0 is a closed subspace of S,

and that there holds the topological isomorphism

S ′
0
∼= S ′/P ,

where S ′/P denotes the quotient space with the polynomials space P . (Here we omit
the proof of the isomorphism. However, it is directly seen from (2.1) that all constants
and polynomials are regarded as zero in S ′

0. For the detail, see Grafakos [7, Proposition
1.1.3])

For f ∈ S, we define the Fourier transform f 7→ Ff from S onto itself and its
inverse F−1 as

Ff(ξ) ≡
∫
Rn

f(x)e−ix·ξdx,

F−1f(x) ≡
∫
Rn

f(x)eix·ξdξ,

and for a distribution f ∈ S ′, we define F : S ′ → S ′ and its inverse F−1 as

⟨Ff, φ⟩ ≡ ⟨f,Fφ⟩ , φ ∈ S,⟨
F−1f, φ

⟩
≡
⟨
f,F−1φ

⟩
, φ ∈ S.

It is known that each Fourier transform as above is isomorphic. For example, we see
the boundedness of F on S from

|ξαDβFf(ξ)| = C|F [Dαxβf ](ξ)| ≤ C∥Dαxβf∥L1

and the embedding S ↪→ L1.

2.1.2 Riesz potentials and homogeneous Sobolev spaces

Next, let us define the Riesz potential (−∆)
s
2 , which has an important role for our

discussion on the stationary Navier-Stokes equations and homogeneous Besov spaces
later. For f ∈ S ′/P and s ∈ R, we define

(−∆)
s
2f ≡ F−1 [|ξ|sFf ] ,
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where
⟨|ξ|sFf, φ⟩ ≡ ⟨f, |ξ|sFφ⟩ , φ ∈ S0.

Actually, this operator is well-defined even for s < 0, since the singularity at the origin
is negligible as for f ∈ S ′

0. More precisely, we can roughly show it as follows: Let us
take φ ∈ S0. We should notice that (2.1) is equivalent to the condition as

Dα(Fφ)(0) = 0, for any α ∈ Nn. (2.2)

Now we take an integer N > 1− s. Considering the Taylor expansion of Fφ to degree
N and (2.2), we see |Fφ(ξ)| ≤ C|ξ|N with some constant C = C(N). Hence there holds
the boundedness of |ξ|sFφ at the origin as

|ξ|s|Fφ(ξ)| ≤ C|ξ|s+N ≤ C on {ξ ∈ Rn; |ξ| ≤ 1},

which yields that |ξ|sFφ is a rapidly decreasing function. This shows that we can define
(−∆)

s
2φ for every φ ∈ S0 and s ∈ R. By a similar discussion, we can show that we also

define (−∆)
s
2f even for f ∈ S ′

0 = S ′/P . For the detail of the proof, see Grafakos [7,
page 3-4].

Then we define the homogeneous Sobolev space Ḣs,r = Ḣs,r(Rn) for s ∈ R and
1 < p <∞ as

Ḣs,r ≡
{
f ∈ S ′/P ; ∥f∥Ḣs,p ≡ ∥(−∆)

s
2f∥Lp <∞

}
.

It is known that this is complete as a subspace of S ′/P .

2.1.3 Homogeneous Besov and Triebel-Lizorkin spaces

We next introduce the Littlewood-Paley decomposition. First, we take ϕ ∈ S such
that

0 ≤ ϕ ≤ 1, supp ϕ =

{
ξ ∈ Rn;

1

2
≤ |ξ| ≤ 2

}
,
∑
j∈Z

ϕ(2−jξ) = 1 (ξ ̸= 0). (2.3)

We can actually choose such a function ϕ. For example, by taking a non-negative
smooth function ψ ∈ C∞(RN) such that

ψ(ξ1) = ψ(ξ2) if |ξ1| = |ξ2|, ψ(ξ) =

{
0, |ξ| ≤ 1

2
,

1, |ξ| ≥ 1,

we can construct ϕ satisfying (2.3) as

ϕ(ξ) ≡ ψ(ξ)− ψ

(
ξ

2

)
.

Then, we define a family {φj}j∈Z ⊂ S of functions as

Fφj(ξ) = ϕ(2−jξ), j ∈ Z. (2.4)
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By (2.3), (2.4), and boundedness of F and F−1 in S ′, we see that every f ∈ S ′ can be
decomposed in S ′/P as

f =
∑
j∈Z

φj ∗ f.

We should note here that this decomposition is not necessary valid in S ′. For example,
if we take f ≡ 1, then we see for any j ∈ Z that

φj ∗ f(x) =

∫
Rn

φj(x)dx

= Fφj(0) = 0,

which is implied by 0 /∈ supp ϕ. Hence we have
∑

j∈Z φj ∗ f = 0. We can justify this
decomposition if we regard constants and polynomials as zero.

Associated with {φj}j∈Z above, we define the homogeneous Besov spaces Ḃs
p,q =

Ḃs
p,q(Rn) by

Ḃs
p,q ≡

{
f ∈ S ′/P ; ∥f∥Ḃs

p,q
<∞

}
for s ∈ R, 1 ≤ p, q ≤ ∞ with the norms

∥f∥Ḃs
p,q

≡


(∑
j∈Z

(2sj∥φj ∗ f∥Lp)q

) 1
q

, q <∞,

sup
j∈Z

(2sj∥φj ∗ f∥Lp), q = ∞.

It is known that each homogeneous Besov space is complete. Moreover, this definition
is independent of choice of a function ϕ satisfying (2.3). Indeed, we take such two
functions ϕ, ϕ′, and according to (2.4), we define {φj}j∈Z and {φ′

j}j∈Z respectively.
Since it holds from (2.3) and (2.4) that

supp Fφj ⊂ {ξ ∈ Rn; 2j−1 ≤ |ξ| ≤ 2j+1},

we see for every j ∈ Z that

supp Fφj ∩ supp Fφk = ∅ ∀k s.t. |j − k| ≥ 2,

which yields

φ′
j ∗ f =

∑
k∈Z

φk ∗ (φ′
j ∗ f) = φ̃j ∗ φ′

j ∗ f, where φ̃j ≡ φj−1 + φj + φj+1 (2.5)

for any f ∈ S ′/P . Moreover, it holds for every j ∈ Z that

∥φ′
j∥L1 =

∫
Rn

∣∣∣∣∫
Rn

ϕ′(2−jξ)eix·ξdξ

∣∣∣∣ dx
=

∫
Rn

∣∣∣∣∫
Rn

ϕ′(η)eiy·ηdη

∣∣∣∣ dy ≤ C
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with some constant C = C(n, ϕ′). Therefore, we see from the Young inequality that

∥φ′
j ∗ f∥Lp = ∥φ̃j ∗ φ′

j ∗ f∥Lp

≤ ∥φ′
j∥L1∥φ̃j ∗ f∥Lp

≤ C∥φj ∗ f∥Lp . (2.6)

It is easily seen that (2.6) also holds conversely. Considering that the last constant C
in (2.6) does not depend on j, we have the equivalence between the Besov norms from
ϕ and those from ϕ′.

Next, we define the homogeneous Triebel-Lizorkin spaces Ḟ s
p,q by

Ḟ s
p,q ≡

{
f ∈ S ′/P ; ∥f∥Ḟ s

p,q
<∞

}
for s ∈ R, 1 ≤ p, q ≤ ∞ with the norms

∥f∥Ḟ s
p,q

≡



∥∥∥∥∥∥
{

∞∑
j=1

(2sj|φj ∗ f(·)|)q
} 1

q

∥∥∥∥∥∥
Lp

, 1 ≤ p, q <∞,∥∥∥∥sup
j∈Z

2js|φj ∗ f(·)|
∥∥∥∥
Lp

, 1 ≤ p ≤ ∞, q = ∞,

sup
Q∈Q

{
1
|Q|

∫
Q

∞∑
j=−[log2 l(Q)]

(2sj|φj ∗ f(x)|)qdx

} 1
q

, p = ∞, 1 ≤ q <∞,

where
Q ≡

∪
k∈Z,m∈Zn

{
x ∈ Rn; 2−kmi ≤ xi ≤ 2−k(mi + 1), i = 1, 2, . . . , n

}
denotes a family of dyadic cube, and |Q| and l(Q) denote volume and side length of Q,
respectively. These are also Banach spaces, and this definition is also independent of
choice of ϕ. To show the equivalence of norms with different ϕ, we should use the fact
(2.5), and apply the vector valued multiplier theorem (see Sawano [18, Theorem 1.5.3],
for example).

2.1.4 Properties of homogeneous Besov and Triebel-Lizorkin
spaces

The above function spaces, homogeneous Sobolev, Besov, and Triebel-Lizorkin spaces,
have properties with regard to the embedding and the boundedness of important oper-
ators. Here we review some of them required for our studies:

Proposition 2.1. (1) Let s ∈ R, and let 1 ≤ p ≤ ∞, 1 ≤ q1 ≤ q2 ≤ ∞. Then there
holds

Ḃs
p,q1

↪→ Ḃs
p,q2
, Ḟ s

p,q1
↪→ Ḟ s

p,q2
. (2.7)
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(2) Let s1 > s2, and let 1 ≤ p1 < p2 < ∞, 1 ≤ q, r ≤ ∞. If s1 − n/p1 = s2 − n/p2,
then there holds

Ḃs1
p1,q

↪→ Ḃs2
p2,q

, Ḟ s1
p1,q

↪→ Ḟ s2
p2,r

. (2.8)

(3) Let s ∈ R, and let 1 < p <∞. Then there holds

Ḟ s
p,2

∼= Ḣs,p. (2.9)

On the other hand, there hold Ḟ 0
1,2

∼= H1 (Hardy space) and Ḟ 0
∞,2

∼= BMO.
(4) Let s ∈ R, and let 1 ≤ p, q ≤ ∞. Then there holds

Ḃs
p,min(p,q) ↪→ Ḟ s

p,q ↪→ Ḃs
p,max(p,q). (2.10)

(5) Let s, s0 ∈ R, and let 1 ≤ p, q ≤ ∞. Then the Riesz potential (−∆)
s
2 is

isomorphic from Ḃs0
p,q onto Ḃ

s0−s
p,q , and from Ḟ s0

p,q onto Ḟ
s0−s
p,q .

(6) Let s ∈ R, and let 1 ≤ p, q ≤ ∞. Moreover, we define the dilation of a function
v as vλ(x) ≡ v(λx) with λ > 0. If v belongs to Ḃs

p,q, then so does vλ for every λ > 0
and there holds

∥vλ∥Ḃs
p,q

∼= λs−
n
p ∥v∥Ḃs

p,q
. (2.11)

This claim also holds similarly for Ḟ s
p,q.

Remark 2.2. (i) In Proposition 2.1, (1) means that for fixed s and p, the spaces Ḃs
p,q

and Ḟ s
p,q become wider if q becomes larger.

(ii) The claim (2) is similar one to the Sobolev embedding theorem. We should note
in (2) that in the case of Triebel-Lizorkin spaces, we can take q and r independently
(for example, we can take q = ∞ and r = 1). Moreover, as seen in (3), Triebel-Lizorkin
spaces have strong relationship with Sobolev spaces, while for Besov spaces, it is only
known for the inclusion relation, i.e., Ḃs

p,1 ⊂ Ḣs,p ⊂ Ḃs
p,∞ (see also (4)).

(iii) From the claim (5), the Riesz potential (−∆)
s
2 is also called as a lift operator

in Besov and Triebel-Lizorkin spaces. In the later discussion, we will often calculate
the Ḃ0

p,q norm of (−∆)
s
2f instead of ∥f∥Ḃs

p,q
.

(iv) The claim (6) shows the reason why the spaces Ḃs
p,q and Ḟ

s
p,q are called “homo-

geneous”. Moreover, the equivalence (2.11) explains the scaling invariance of the spaces
of external forces and solutions to the equation (SNS), which is mentioned later.

Outline of the proof of Proposition 2.1. Here we do not consider the space Ḟ s
∞,q for

the simplicity. For the detail of each proof, we refer to Triebel [21], Jawerth [10], and
Sawano [18].

(1) We can easily see the claim by the embedding of sequence spaces

lq1 ↪→ lq2 , if 1 ≤ q1 ≤ q2 ≤ ∞,

where lq ≡ {{an}n∈R;
∑∞

n=1 |an|q <∞}.
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(2), (5) First, we consider in Besov spaces. Since

(−∆)
s
2φj = F−1

{
F
(
(−∆)

s
2φj
)}

=

∫
Rn

|ξ|sϕ(2−jξ)eix·ξdξ

= 2(s+n)j
∫
Rn

|ξ|sϕ(ξ)e2jix·ξdξ,

it holds for 1 ≤ r <∞ that

∥(−∆)
s
2φj∥Lr = 2(s+n)j

{∫
Rn

∣∣∣∣∫
Rn

|ξ|sϕ(ξ)e2jix·ξdξ
∣∣∣∣r dx} 1

r

≤ C2{s+n(1−
1
r )}j,

which is also valid for r = ∞. From this estimate, (2.5), and the Hausdorff-Young
inequality, we obtain important estimates for 1 ≤ p ≤ q ≤ ∞ such that

∥φj ∗ (−∆)
s
2f∥Lq = ∥(−∆)

s
2 φ̃j ∗ φj ∗ f∥Lq

≤ ∥(−∆)
s
2 φ̃j∥Lr∥φj ∗ f∥Lp (1/q + 1 = 1/r + 1/p)

≤ C2{s+n(
1
p
− 1

q )}j∥φj ∗ f∥Lp . (2.12)

Hence it holds from (2.12) with p = q that

∥(−∆)
s
2f∥q

Ḃ
s0−s
p,q

≤ C
∑
j∈Z

2j(s0−s)q2jsq∥φj ∗ f∥qLp = C∥f∥q
Ḃ

s0
p,q
,

which yields the boundedness of (−∆)
s
2 from Ḃs0

p,q to Ḃ
s0−s
p,q . By considering the inverse

(−∆)−
s
2 similarly, we obtain the isomorphism (5) in Besov spaces. Moreover, under the

assumption of (2), we also see from (2.12) that

∥φj ∗ (−∆)
s2
2 f∥Lp2 ≤ C2

{
s2+n

(
1
p1

− 1
p2

)}
j∥φj ∗ f∥Lp1 = C2s1j∥φj ∗ f∥Lp1 .

Hence from this and (5), we have

∥f∥q
Ḃ

s2
p2,q

∼= ∥(−∆)
s2
2 f∥q

Ḃ0
p2,q

=
∑
j∈Z

∥φj ∗ (−∆)
s2
2 f∥qLp2

≤ C
∑
j∈Z

2s1jq∥φj ∗ f∥qLp1 = ∥f∥q
Ḃ

s2
p2,q
,

which yields (2) in Besov spaces.
We can also show (5) in Triebel-Lizorkin spaces by the equality

φj ∗ (−∆)
s
2f = (−∆)

s
2 φ̃j ∗ φj ∗ f

= 2sj · 2njF−1[|ξ|sϕ](2j·) ∗ φj ∗ f
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and the vector-valued multiplier theorem (see Sawano [18, Theorem 1.5.3], for example).
Here let us show (2) in Triebel-Lizorkin spaces according to Jawerth [10]. From (1) and
(5), it suffices to show

Ḟ 0
p1,∞ ↪→ Ḟ s

p2,1
(2.13)

under the assumption

1 ≤ p1 < p2 <∞, s = −n
(

1

p1
− 1

p2

)
< 0.

Let f ∈ Ḟ 0
p1,∞. We can assume that ∥f∥Ḟ 0

p1,∞
= 1. From (2.12) with s = 0, p = p1 and

q = ∞, we see that

∥φj ∗ f∥L∞ ≤ C2
n
p1
j∥φj ∗ f∥Lp1

≤ C2
n
p1
j∥f∥Ḟ 0

p1,∞
= C2

n
p1
j
,

Therefore, for any integer M ∈ Z, we have

M∑
j=−∞

2sj|(φj ∗ f(x))| ≤ C
M∑

j=−∞

2
n
p2
j ≤ C2

n
p2
M ≡ CtM ,

where tM = 2
M
p2
j
. On the other hand, there holds

∞∑
j=M

2sj|(φj ∗ f(x))| ≤ C2sM sup
j∈Z

|(φj ∗ f)(x)|

≤ Ct
1− p2

p1
M sup

j∈Z
|(φj ∗ f)(x)|,

which is implied by s < 0. Hence, considering the equality

∥g∥pLp =

∫
Rn

{∫ |g(x)|

0

ptp−1dt

}
dx

= p

∫ ∞

0

tp−1

{∫
Rn

χ[0,|g(x)|](t)dx

}
dt

= p

∫ ∞

0

tp−1|{x ∈ Rn; |g(x)| > t}|dt

and taking t ∼ tM , we obtain

∥f∥p2F s
p2,1

= p2

∫ ∞

0

tp2−1

∣∣∣∣∣
{
x ∈ Rn;

∑
j∈Z

2sj|φj ∗ f(x)| > t

}∣∣∣∣∣ dt
≤ p2

∫ ∞

0

tp2−1

∣∣∣∣{x ∈ Rn; sup
j∈Z

|φj ∗ f(x)| > Ct
p2
p1

}∣∣∣∣ dt
≤ C

∫ ∞

0

tp1−1

∣∣∣∣{x ∈ Rn; sup
j∈Z

|φj ∗ f(x)| > t

}∣∣∣∣ dt = C∥f∥p2
Ḟ 0
p1,∞

,
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which implies (2.13).
(3) We see the isomorphism (2.9) directly by (5) and the Littlewood-Paley theorem

as

∥f∥Lp ∼=

∥∥∥∥∥∥
(∑
j∈Z

|φj ∗ f(·)|2
) 1

2

∥∥∥∥∥∥
Lp

, 1 < p <∞.

The proof of this theorem is so complicated that we omit it here (see Triebel [21, section
2.5.8], for example).

(4) Since it is clear from the definition that Ḃs
p,p

∼= Ḟ s
p,p, it suffices to show the

followings:
Ḃs
p,q ↪→ Ḟ s

p,q, if 1 ≤ q ≤ p ≤ ∞, (2.14)

Ḟ s
p,q ↪→ Ḃs

p,q, if 1 ≤ p < q ≤ ∞. (2.15)

For the case q ≤ p, we use the Minkowski inequality on L
p
q and see that

∥f∥q
Ḟ s
p,q

=


∫
Rn

(∑
j∈Z

2sjq|φj ∗ f(x)|q
) p

q

dx


q
p

≤
∑
j∈Z

2sjq
{∫

Rn

|φj ∗ f(x)|pdx
} q

p

= ∥f∥q
Ḃs

p,q
,

which yields (2.14). On the other hand, if p < q, then it holds from the reverse

Minkowski inequality on L
p
q that

∥f∥q
Ḃs

p,q
=

∑
j∈Z

2sjq
{∫

Rn

|φj ∗ f(x)|pdx
} q

p

=
∑
j∈Z

{∫
Rn

(
2sjq|φj ∗ f(x)|q

) p
q dx

} q
p

≤


∫
Rn

(∑
j∈Z

2sjq|φj ∗ f(x)|q
) p

q

dx


q
p

= ∥f∥q
Ḟ s
p,q
,

which yields (2.15).
(6) Here we consider only in Besov spaces. Let λ > 0 and vλ(x) ≡ v(λx). Since

Fvλ(ξ) = λ−nFv(λ−1ξ), it is seen for every j ∈ Z that

(φj ∗ vλ)(x) = λ−n
∫
Rn

ϕ(2−jξ)Fv(λ−1ξ)eix·ξdξ

=

∫
Rn

ϕ(2−jλη)Fv(η)eix·ληdη

= (φj−log2 λ ∗ v)(λx),
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where φj−log2 λ ∈ S0 is a function satisfying

Fφj−log2 λ(ξ) = ϕ(2−j+log2 λξ) = ϕ(2−jλξ).

Hence there holds

2sj∥φj ∗ vλ∥Lp = 2sj
{∫

Rn

|(φj−log2 λ ∗ v)(λx)|
pdx

} 1
p

= 2sjλ−
n
p ∥φj−log2 λ ∗ v∥Lp

= λs−
n
p 2s(j−log2 λ)∥φj−log2 λ ∗ v∥Lp .

Therefore, it suffices to show that∑
j∈Z

(
2s(j−log2 λ)∥φj−log2 λ ∗ v∥Lp

)q ∼=∑
j∈Z

(
2sj∥φj ∗ v∥Lp

)q
. (2.16)

To see this, we let log2 λ = [log2 λ] + α(λ), where [log2 λ] and α(λ) denote the integer
and fractional parts of log2 λ, respectively. In a similar way to (2.5), we see that

φj−log2 λ ∗ v = φ̃j−[log2 λ] ∗ φj−log2 λ ∗ v,

where we should take φ̃j−[log2 λ] as

φ̃j−[log2 λ] =
2∑

k=−2

φj−[log2 λ]+k.

Hence, by a similar discussion to (2.6), we obtain the equivalence

2s(j−log2 λ)∥φj−log2 λ ∗ v∥Lp ∼= 2s(j−[log2 λ])∥φj−[log2 λ] ∗ v∥Lp

By summing up both sides of the above on j ∈ Z (or taking the supremum if q = ∞),
we obtain (2.16).

Proposition 2.3. Let s, s0 ∈ R, and let 1 ≤ p, q ≤ ∞. Then for each j = 1, 2, . . . , n,
the Riesz transform Rj ≡ ∂

∂xj
(−∆)−

1
2 is bounded from Ḃs

p,q to itself. This boundedness

also holds similarly for Ḟ s
p,q.

Proposition 2.3 was showed by Kaneko-Kozono-Shimizu [11] (in Besov spaces) and
Iwabuchi-Nakamura [9] (in Triebel-Lizorkin spaces). Here let us prove Proposition 2.3
in Besov spaces according to [11].

Proof of Proposition 2.3 in Besov spaces. By (2.5), we have

φj ∗Rkf = Rkφ̃j ∗ φj ∗ f
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for every k = 1, 2, . . . , n. Moreover, each Rkφj can be expressed as

Rkφj(x) =

∫
Rn

iξk
|ξ|
ϕ(2−jξ)eix·ξdξ

= 2nj
∫
Rn

iηk
|η|
ϕ(η)eix·2

jηdη,

and we have

∥Rkφj∥L1 = 2nj
∫
Rn
x

∣∣∣∣∣
∫
Rn
η

iηk
|η|
ϕ(η)eix·2

jηdη

∣∣∣∣∣ dx
=

∫
Rn
y

∣∣∣∣∣
∫

1
2
≤|η|≤2

iηk
|η|
ϕ(η)eiy·ηdη

∣∣∣∣∣ dy,
which has a global upper bound independent of j and k. Hence by the Young inequality,
we obtain the estimate

∥φj ∗Rkf∥Lp ≤ ∥Rkφ̃j∥L1∥φj ∗ f∥Lp

≤ C∥φj ∗ f∥Lp

for every 1 ≤ p ≤ ∞, where C denotes a constant independent of j and k. From this
estimate and the definition of homogeneous Besov spaces, we have

∥Rkf∥Ḃs
p,q

≤ C∥f∥Ḃs
p,q

for every s ∈ R and 1 ≤ p, q ≤ ∞, which proves Proposition 2.3.

2.2 Definitions of well-posedness and ill-posedness

In this subsection, we define the concept of the well-posedness of abstract equations.
Let (D, ∥ · ∥D) and (S, ∥ · ∥S) be two Banach spaces, the space of given data and of
solutions, respectively. In addition, we let L : D → S be a densely defined linear
operator, and let B : S × S → S be a densely defined bilinear form. Then we consider
an abstract equation

u = Lf +B(u, u), (E)

where f ∈ D is a given data, and u ∈ S is an unknown solution.

Remark 2.4. Actually, the abstract equation (E) appears in various integral equa-
tions. For example, the Cauchy problem of non-stationary Navier-Stokes equations

∂tu−∆u+ u · ∇u+∇Π = 0 in x ∈ Rn, t ∈ (0, T ),

div u = 0 in x ∈ Rn, t ∈ (0, T ),

u|t=0 = a, in x ∈ Rn

(NNS)
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can be rewritten as (E), where we assume

La(t) ≡ e−Ata, B(u, v)(t) ≡ −
∫ t

0

e−A(t−s)P (u · ∇v)(s)ds, 0 < t < T

with the Leray projection P : Lp → Lpσ ≡ {f ∈ C∞
0 ; div f = 0}

∥·∥Lp

and the Stokes
operator A ≡ −P∆.

Now we define the well-posedness and ill-posedness of (E) as follows:

Definition 2.5. We call that the equation (E) is well-posed from (D, ∥·∥D) to (S, ∥·∥S)
if there exist two constants ε, δ > 0 such that

(i) For any f ∈ BD(ε), there exist a solution u ∈ BS(δ) of (E),

(ii) If there exist two solutions u1, u2 ∈ BS(δ) of (E) for one external force f ∈ BD(ε),
then it holds that u1 ≡ u2 in S,

(iii) The map f ∈ (BD(ε), ∥ · ∥D) 7→ u ∈ (BS(δ), ∥ · ∥S), which is well-defined by (i)
and (ii), is continuous with regard to each topology,

where BD(ε) ≡ {f ∈ D; ∥f∥D < ε} and BS(δ) ≡ {u ∈ S; ∥u∥S < δ}. In addition, (E)
is ill-posed from D to S if (E) is not well-posed from D to S.

Furthermore, we define the quantitatively well-posedness of (E) as follows:

Definition 2.6. We call that the equation (E) is quantitatively well-posed from the
data space (D, ∥ · ∥D) to the solution space (S, ∥ · ∥S) if there hold two estimates as
follows:

∥Lf∥S ≤ C1∥f∥D, ∀f ∈ D, (2.17)

∥B(u, v)∥S ≤ C2∥u∥S∥v∥S, ∀u, v ∈ S, (2.18)

where C1 and C2 are two positive constants depending only on D and S.

Now let us show that the quantitatively well-posedness in Definition 2.6 is stronger
than the well-posedness in Definition 2.5:

Proposition 2.7. Suppose that the equation (E) is quantitatively well-posed from
(D, ∥ · ∥D) to (S, ∥ · ∥S). Then (E) is well-posed from (D, ∥ · ∥D) to (S, ∥ · ∥S) in the
sense of Definition 2.5.

Proof of Proposition 2.7. We define the approximative sequence {uj}j∈N to the solution
of (E) as {

u1 ≡ Lf,

uj+1 ≡ u1 +B(uj, uj), j ≥ 1.
(2.19)
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By (2.17), we see that u1 ∈ S for any f ∈ D. Moreover, if uj ∈ S, then uj+1 ∈ S with
the estimate

∥uj+1∥S ≤ C1∥f∥D + C2∥uj∥2S, (2.20)

which is implied by (2.17) and (2.18). Hence uj ∈ S for all j ≥ 1 by induction. We
should notice from this estimate that if

∥f∥D < ε ≡ 1

4C1C2

, (2.21)

then the following quadratic equation

λ = C1∥f∥D + C2λ
2

has a real solution as

λ = δ1 ≡
1±

√
1− 4C1C2∥f∥D

2C2

.

Under such a condition , we see from (2.17) and (2.20) that

∥u1∥S = ∥Lf∥S ≤ C1∥f∥D
≤ C1∥f∥D + C2δ

2
1

= δ1,

and if ∥uj∥S ≤ δ1 for some j ∈ Z, then

∥uj+1∥S ≤ C1∥f∥D + C2∥uj∥2S
≤ C1∥f∥D + C2δ

2
1

= δ1.

Therefore, by induction, we see that the sequence {∥uj∥S}j∈N is bounded with the
estimate

∥uj∥S ≤ δ1 ≡
1−

√
1− 4C1C2∥f∥D

2C2

, j ≥ 1, (2.22)

provided (2.21) holds. On the other hand, there holds

uj+1 − uj = B(uj, uj)−B(uj−1, uj−1)

= B(uj, uj − uj−1) + B(uj − uj−1, uj−1), j ≥ 2.

Hence, if f satisfies (2.21), we have by (2.17), (2.18) and (2.22) that

∥uj+1 − uj∥S ≤ 2C2δ1∥uj − uj−1∥S
≤ (2C2δ1)

j−1∥u2 − u1∥S
= (2C2δ1)

j−1∥B(u1, u1)∥S
≤ (2C2δ1)

j−1 · C2C
2
1∥f∥2D
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for all j ≥ 2. Since 2C2δ1 < 1 by (2.22), we have

∞∑
j=1

∥uj+1 − uj∥S <∞, (2.23)

which means that {uj}j∈N is a Cauchy sequence in S. Therefore, by completeness, uj
converges to some u∗ ∈ S under the condition (2.21). This limit u∗ satisfies ∥u∗∥S ≤ δ1
by (2.22) and there holds

∥B(u∗, u∗)−B(uj, uj)∥S ≤ 2C2M∥u∗ − uj∥S → 0 as j → ∞.

Therefore, letting j → ∞ in (2.19), we see that u∗ is a solution of (E).
We next consider the uniqueness. Let u, v ∈ S be two solutions of (E) for the same

external force f satisfying (2.21). By (2.18), we have

∥u− v∥S = ∥B(u, u)−B(v, v)∥S
= ∥B(u, u)−B(u, v) +B(u, v)−B(v, v)∥S
= ∥B(u, u− v) +B(u− v, v)∥S
≤ C2(∥u∥S + ∥v∥S)∥u− v∥S.

Hence, if

∥u∥S, ∥v∥S < δ2 ≡
1

2C2

,

then
C2(∥u∥S + ∥v∥S) < 1,

which yields that u = v in S. Hence we obtain (i) and (ii) in Definition 2.5 by taking
ε as (2.21) and δ such that δ1 < δ < δ2.

Finally, we prove the continuity of the solution map f ∈ (BD(ε), ∥ · ∥D) to u ∈
(BS(δ), ∥ · ∥S). Take an arbitrary sequence {gN}N∈N ⊂ BS(δ) of data which converges
to g0 ∈ BS(δ), and let vj ∈ BS(δ), j ∈ N, be an unique solution of (E) with a datum
gj, and v0 be a solution with g0. Then we have

∥vj − v0∥S ≤ ∥L(gj − g0)∥S + ∥B(vj, vj)−B(v0, v0)∥S
≤ C1∥gj − g0∥D + C2(∥v0∥S + ∥vj∥S)∥v0 − vj∥S.

Since C2(∥v0∥S + ∥vj∥S) < 1, we see that vj converges v0. This completes the proof of
Proposition 2.7.

Next we rewrite the stationary Navier-Stokes equations (SNS) to the generalized
form like (E) so that we can apply the above discussion. First of all, we apply the
Leray projection P , which is abstractly defined by

Pv ≡ v +∇(−∆)−1div v.
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for a vector-valued function v. As can be seen from this form, we see that

div (Pv) = 0, P (∇v) = 0

and if div v = 0, then Pv = v. In Rn, the Leray projection P is defined as a matrix-
valued operator P = (Pjk)1≤j,k≤n with Pjk ≡ δjk +RjRk, where

δjk =

{
1, if j = k,

0, if j ̸= k

denotes the Kronecker delta, and Rj =
∂
∂xj

(−∆)−
1
2 , j = 1, 2, . . . , n denotes the Riesz

transform. Indeed, by using the Fourier transform, we see

F [Rjf ](ξ) =
iξj
|ξ|

F [f ](ξ)

and hence we have

F [Pv](ξ) = F [v](ξ) + F [∇(−∆)−1div v](ξ)

= F [v](ξ)− iF [(−∆)−1div v](ξ)ξ

= F [v](ξ)− i

|ξ|2
F [div v](ξ)ξ

= F [v](ξ)− 1

|ξ|2
(ξjξk)1≤j,k≤nF [v](ξ)

= F [(δjk +RjRk)1≤j,k≤nv])(ξ),

where (ajk)1≤j,k≤n denotes a n-th square matrix whose (j, k) component is ajk. Applying
P to (SNS), we obtain

−∆u+ P (u · ∇u) = Pf,

implied by P (∇Π) = 0 and Pu = u, since div u = 0. Hence, the solution u of (SNS)
can be expressed as

u = (−∆)−1Pf − (−∆)−1P (u · ∇u)
≡ Lf +B(u, u). (rSNS)

Here and in what follows entirely, we let

Lf ≡ (−∆)−1Pf, B(u, v) ≡ −(−∆)−1P (u · ∇v),

which are linear and bilinear operators, respectively. We should note here that for any
vectors u and v with div u = 0, there holds

u · ∇v =
n∑
i=1

ui
∂v

∂xi

=
n∑
i=1

∂

∂xi
(uiv) ≡ ∇ · (u⊗ v),
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where u⊗v denotes the tensor product with (u⊗v)ij ≡ uivj, 1 ≤ i, j ≤ n. Hence under
our condition, the above bilinear form B can be also written as

B(u, v) = −(−∆)−1P∇ · (u⊗ v) ≡ K(u⊗ v). (2.24)

From the next chapter, we will consider the (quantitatively) well-posedness and
ill-posedness of this abstract equation (rSNS) with a solenoidal solution space S.



Chapter 3

Well-posedness in Besov and
Triebel-Lizorkin spaces

3.1 Well-posedness in Besov spaces

In the beginning of our discussion, we review the previous well-posedness result
shown by Kaneko-Kozono-Shimizu [11].

Proposition 3.1. (Kaneko-Kozono-Shimizu [11]) Let n ≥ 3, and let 1 ≤ p < n and
1 ≤ q ≤ ∞. Then there hold the followings (1) and (2) :

(1) (rSNS) is quantitatively well-posed from D = Ḃ
−3+n

p
p,q to S = PḂ

−1+n
p

p,q , where

PḂ
−1+n

p
p,q ≡

{
Pv; v ∈ Ḃ

−1+n
p

p,q

}
.

(2) Let D and S be as (1), and let ε > 0 be a constant in Definition 2.5 which
guarantees the well-posedness of (rSNS) from D to S. Suppose that 1 < r < ∞ and
s ≥ 0 satisfy

q ≤ r <∞,
n

r
− n+ 1 < s < min

{
n

p
,
n

r

}
.

Then there exists a positive constant ε′ = ε′(n, p, q, r, s) ≤ ε such that for every f ∈
BD(ε

′) ∩ Ḣs−2,r, the solution u obtained by (1) has an additional regularity such as
u ∈ S ∩ Ḣs,r.

Remark 3.2. From the condition (iii) of continuity of the solution map in Definition
2.5 and the estimates in Definition 2.6, We see that not only the spaces D and S but
also those norms (topologies) ∥ · ∥D and ∥ · ∥S have an important role for the well-
posedness and quantitatively well-posedness. Hence when we state the (quantitatively)
well-posedness of equations, it is desirable to write not only concerned spaces but also
norms, such as “(D, ∥ · ∥D) to (S, ∥ · ∥S)”. However, only in the case that the concerned
norms directly define the spaces, we omit such a norm in what follows, like the above.

29
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Remark 3.3. The above space PḂ
−1+n

p
p,q is well-defined. Indeed, since the projection

P can be written as a matrix P = (Pjk)1≤j,k≤n with Pjk ≡ δjk +RjRk (see Chapter 2),

we see the boundedness of P from Ḃ
−1+n

p
p,q to itself by Proposition 2.3.

Remark 3.4. We should note here that the space Ḃ
−3+n

p
p,q (1 ≤ p, q ≤ ∞) for the

external force f and the space Ḃ
−1+n

p
p,q for the solution u are both scaling invariant with

respect to (SNS), respectively. Indeed, if a triple {u,Π, f} satisfies (SNS), then for any
λ > 0, so does {uλ,Πλ, fλ} defined as

uλ(x) ≡ λu(λx), Πλ(x) ≡ λ2Π(λx), fλ(x) ≡ λ3f(λx).

Hence by Proposition 2.1 (6), we see that

∥fλ∥
Ḃ

−3+n
p

p,q

= ∥f∥
Ḃ

−3+n
p

p,q

, ∥uλ∥
Ḃ

−1+n
p

p,q

= ∥u∥
Ḃ

−1+n
p

p,q

.

Moreover, it is seen from Proposition 2.1 (2) that

Ḃ
−3+ n

p1
p1,q ↪→ Ḃ

−3+ n
p2

p2,q , Ḃ
−1+ n

p1
p1,q ↪→ Ḃ

−1+ n
p2

p2,q

for any 1 ≤ p1 ≤ p2 ≤ ∞.

Remark 3.5. Proposition 3.1 (1) enables us handle a larger class of functions which
never belong to the usual Sobolev space. For example, in three dimension case, we may
solve (SNS) with a singular external force like the Dirac delta function δ. Indeed, since

φj(x) =

∫
Rn

ϕ(2−jξ)eix·ξdξ

= 2nj
∫
Rn

ϕ(η)eix·2
jηdη = 2njF−1ϕ(2jx), (3.1)

we see for each j ∈ Rn that

2sj∥φj ∗ δ∥Lp = 2sj∥φj∥Lp

= 2s+nj∥F−1ϕ(2j·)∥Lp

= 2(s+n−
n
p )j∥F−1ϕ∥Lp ,

which yields δ ∈ Ḃ
−n+n

p
p,∞ (Rn) for 1 ≤ p ≤ ∞. Hence we solve (SNS) for an external

force f = δa with a sufficiently small constant vector a ∈ Rn if n = 3.

Remark 3.6. In Proposition 3.1 (2), we need smallness of f only on the scaling

invariant norm, i.e., in D = Ḃ
−3+n

p
p,q . Hence, a smallness assumption for f in the Sobolev

norm Ḣs−2,r is not required. Previously, Chen [6] proved that for every smooth external
force which is small in Ḣ−1,n

2 , there exists a unique solution of (SNS) in Ln ∩ Ḣ1,n
2
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which is small in Ḣ1,n
2 . Using the embedding Ḣ−1,n

2 ↪→ Ḃ
−3+n

p

p,n
2

for n/2 < p < n, we

can see that Proposition 3.1 includes the result by Chen [6], by taking n/2 < p < n,
q = r = n/2, and s = 1.

In the next subsection, we will show the quantitatively well-posedness of (rSNS) in
Triebel-Lizorkin spaces using a similar method to Kaneko-Kozono-Shimizu [11]. Hence
we state here only the outline of the proof of Proposition 3.1.

Outline of the proof of Proposition 3.1. As for (1), it suffices to show (2.17) and (2.18)
for

Lf ≡ (−∆)−1Pf, B(u, v) ≡ −(−∆)−1P (u · ∇v).

In fact, we can easily see from Proposition 2.3 that the estimate (2.17) of L holds for
any 1 ≤ p, q ≤ ∞. On the other hand, we can show the estimate (2.18) of B by using
the properties in Proposition 2.1 and the following proposition on Hölder type estimates
in homogeneous Besov spaces as follows:

Proposition 3.7. Let n ≥ 1, s > 0, α > 0, β > 0, and 1 ≤ p, q ≤ ∞. Suppose that
the exponents 1 ≤ p1, p2, p3, p4 ≤ ∞ satisfy 1/p = 1/p1 + 1/p2 = 1/p3 + 1/p4.

(1) There exists a constant C = C(n, s, α, β, p, q, p1, p2, p3, p4) such that for every
f ∈ Ḃs+α

p1,q
∩ Ḃ−β

p3,∞ and g ∈ Ḃ−α
p2,∞ ∩ Ḃs+β

p4,q
, there holds fg ∈ Ḃs

p,q with the estimate

∥fg∥Ḃs
p,q

≤ C
(
∥f∥Ḃs+α

p1,q
∥g∥Ḃ−α

p2,∞
+ ∥f∥Ḃ−β

p3,∞
∥g∥Ḃs+β

p4,q

)
. (3.2)

(2) There exists a constant C = C(n, s, p, q, p1, p2, p3, p4) such that for every f ∈
Ḃs
p1,q

∩ Lp3 and g ∈ Lp2 ∩ Ḃs
p4,q

, there holds fg ∈ Ḃs
p,q with the estimate

∥fg∥Ḃs
p,q

≤ C
(
∥f∥Ḃs

p1,q
∥g∥Lp2 + ∥f∥Lp3∥g∥Ḃs

p4,q

)
. (3.3)

For the proof of this estimates, see Appendix A.
In order to show Proposition 3.1 (2), we use the lemma as follows, which can be

also proved by Proposition 2.1 and Proposition 3.7:

Lemma 3.8. Let n, p, q, r and s be as assumption of Proposition 3.1, and let D′ ≡
Ḣs−2,r, S ′ ≡ Ḣs,r. Then there hold

∥Lf∥S′ ≤ C ′
1∥f∥D′ , ∀f ∈ D′ (3.4)

and

∥B(u, v)∥S′ ≤ C ′
2 (∥u∥S∥v∥S′ + ∥u∥S′∥v∥S) , ∀u, v ∈ S ∩ S ′, (3.5)

where C ′
1 = C ′

1(n, s, r), C
′
2 = C ′

2(n, s, p, q, r) are positive constants.
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Let us return the abstract discussion in Chapter 2 and consider again the approximative
sequence {uj}j∈N defined by (2.19). By (2.17) and (3.4), we see that u1 ∈ S ∩ S ′ for
any f ∈ D ∩D′. Moreover, if uj ∈ S ∩ S ′, then uj+1 ∈ S ∩ S ′ with the estimates (2.20)
and

∥uj+1∥S′ ≤ C ′
1∥f∥D′ + 2C ′

2δ1∥uj∥S′ , (3.6)

implied by (3.4), (3.5) and the boundedness of {uj}j∈N in S as (2.22). Hence uj ∈ S∩S ′

for all j ≥ 1 by induction. We see from this estimate that if

δ1 <
1

2C ′
2

, (3.7)

then there holds

∥uj∥S′ ≤ δ′1 ≡
C ′

1∥f∥D′

1− 2C ′
2δ1

, j ≥ 1. (3.8)

Since it is seen from (2.22) that δ1 → 0 as ∥f∥D → 0, there is a constant 0 < ε′ < ε
such that if ∥f∥D < ε′, then (3.8) holds. Under this condition, it holds by (2.22), (3.5),
and (3.8) that

∥uj+1 − uj∥S′ = ∥B(uj, uj − uj−1) +B(uj − uj−1, uj−1)∥S′

≤ C ′
2 (∥uj∥S∥uj − uj−1∥S′ + ∥uj∥S′∥uj − uj−1∥S)
+C ′

2 (∥uj − uj−1∥S∥uj−1∥S′ + ∥uj − uj−1∥S′∥uj−1∥S)
≤ 2C ′

2δ1∥uj − uj−1∥S′ + 2C ′
2δ

′
1∥uj − uj−1∥S

for all j ≥ 2. Since 2C ′
2δ1 < 1 by (3.7) and since (2.23) holds, we have

∞∑
j=1

∥uj+1 − uj∥S′ <∞.

Hence there holds uj → u in S ′, which proves (2) of Proposition 3.1.

3.2 Well-posedness in Triebel-Lizorkin spaces

Using a similar method to Kaneko-Kozono-Shimizu, we can show the well-posedness
of (rSNS) in Triebel-Lizorkin spaces as follows:

Theorem 3.9. (Tsurumi [24]) (1) Let n ≥ 3, and suppose that the exponents p and q
satisfy the following either (i) or (ii);

(i) 1 < p < n, 1 ≤ q ≤ ∞,

(ii) p = n, 1 ≤ q ≤ 2.
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Then (rSNS) is quantitatively well-posed from D = Ḟ
−3+n

p
p,q to S = PḞ

−1+n
p

p,q , where

S = PḞ
−1+n

p
p,q ≡

{
Pv; v ∈ Ḟ

−1+n
p

p,q

}
,

which is well-defined by Proposition 2.3.
(2) Let n ≥ 3, and suppose that the exponents p, q, r, and s satisfy the following

either (i), (ii), or (iii);

(i) s > 0, 1 < r <∞, p and q satisfy either (i) or (ii) of (1),

(ii) s = 0, n/(n− 1) < r <∞, p and q satisfy (i) of (1),

(iii) s = 0, r = n, p and q satisfy (ii) of (1).

Moreover, let D and S be as (1) and let ε > 0 be in Definition 2.5 which guarantees
the well-posedness of (rSNS) from D to S. Then there exists a positive constant ε′ =
ε′(n, p, q, r, s) ≤ ε such that for every f ∈ BD(ε

′) ∩ Ḣs−2,r, the solution u obtained by
Theorem 3.9 has an additional regularity such as u ∈ S ∩ Ḣs,r.

Remark 3.10. In Theorem 3.9, the spaces Ḟ
−1+n

p
p,q for solutions u and Ḟ

−3+n
p

p,q for
external forces f are both scaling invariant with respect to (SNS).

Remark 3.11. Theorem 3.9 (2) means that a smooth external force whose scaling
invariant Triebel-Lizorkin norm is small enough yields a smooth solution of (rSNS).
We should note that the Ḣs−2,r norm of an external force do not have to be small.
Moreover, in the case (i) of (2), we can take s ≥ 0 arbitrary large, while in Besov
spaces, there is a restriction on the exponent s (compare with Proposition 3.1).

In particular, it is seen from Theorem 3.9 (1) with p = n, q = 2 that a small external
force f in Ḣ−2,n ∼= Ḟ−2

n,2 yields an unique solution u ∈ Ln ∼= Ḟ 0
n,2 of (E). Moreover, if this

f also belongs to Ln, then it holds from (2) with s = 2 and r = n that u also belongs
to Ḣ2,n. Hence u belongs to the inhomogeneous Sobolev space H2,n = Ln∩ Ḣ2,n, which
implies that u satisfies the original equation (SNS) almost everywhere in Rn.

Remark 3.12. If we let p > n/2 and 1 ≤ q ≤ ∞, then we have Ḣ−1,n
2 ↪→ Ḟ

−3+n
p

p,q .
Therefore, Theorem 3.9 includes the result by Chen [6], provided p > n/2, 1 ≤ q ≤ ∞,
s = 1, and r = n/2.

Proof of Theorem 3.9. For the proof of our main theorems, it suffices to show four
lemmata as follows.

Lemma 3.13. Let n ≥ 2, s ∈ R and let 1 ≤ p < ∞, 1 ≤ q ≤ ∞. Then the operator
L ≡ (−∆)−1P is bounded from Ḟ s−2

p,q to PḞ s
p,q with the estimate

∥Lf∥Ḟ s
p,q

≤ C∥f∥Ḟ s−2
p,q
,
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where C = C(n, s, p, q) is a constant.

Lemma 3.14. Let n ≥ 2, s ∈ R, and let 1 ≤ p < ∞, 1 ≤ q ≤ ∞. Then the operator
K ≡ −(−∆)−1P∇· (see (2.24)) is bounded from Ḟ s−1

p,q to PḞ s
p,q with the estimate

∥Kg∥Ḟ s
p,q

≤ C∥g∥Ḟ s−1
p,q
,

where C = C(n, s, p, q) is a constant.

Lemma 3.15. Let n ≥ 3, and let 1 < p < n, 1 ≤ q, q̃ ≤ ∞. Then for u, v ∈ Ḟ
−1+n

p
p,q ,

we have u⊗ v ∈ Ḟ
−2+n

p

p,q̃ with the estimate

∥u⊗ v∥
Ḟ

−2+n
p

p,q̃

≤ C∥u∥
Ḟ

−1+n
p

p,q

∥v∥
Ḟ

−1+n
p

p,q

,

where C = C(n, p, q, q̃) is a constant. Moreover, this claim is true if p = n, 1 ≤ q ≤ 2
and 1 ≤ q̃ ≤ ∞.

Lemma 3.16. Let n ≥ 2, and suppose that p, q, r, and s satisfy either (i), (ii), or (iii)

of Theorem 3.9 (2). Then for u, v ∈ Ḟ
−1+n

p
p,q ∩ Ḣs,r, we have u ⊗ v ∈ Ḣs−1,r with the

estimate

∥u⊗ v∥Ḣs−1,r ≤ C

(
∥u∥

Ḟ
−1+n

p
p,q

∥v∥Ḣs,r + ∥u∥Ḣs,r∥v∥
Ḟ

−1+n
p

p,q

)
,

where C = C(n, s, p, q, r) is a constant.

For the moment, let us assume these lemmata. Under the assumption of Theorem 3.9

(1), let D ≡ Ḟ
−3+n

p
p,q and S ≡ PḞ

−1+n
p

p,q . By Lemma 3.13, we see that Lf ∈ S for any
f ∈ D with the estimate

∥Lf∥S ≤ C1∥f∥D.

Moreover, by Lemma 3.14-3.15 and (2.24), B(u, v) ≡ K(u ⊗ v) ∈ S for any u, v ∈ S
with the estimate

∥B(u, v)∥S ≤ C ′
2∥u⊗ v∥

Ḟ
−2+n

p
p,q

≤ C2∥u∥S∥v∥S,

where C1, C
′
2 and C2 are constants depending only on n, p, and q. Therefore, we see

that (rSNS) is quantitative well-posed from D to S, which proves (1) of Theorem 3.9.
On the other hand, under the assumption of Theorem 3.9 (2), let D′ ≡ Ḣs−2,r and
S ′ ≡ Ḣs,r. By Proposition 2.1 (3) and Lemma 3.13, there holds

∥Lf∥S′ = ∥Lf∥Ḟ s
r,2

≤ C3∥f∥Ḟ s−2
r,2

= C3∥f∥D′
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for any f ∈ D′. Moreover, by Lemma 3.14 and Lemma 3.16, it holds that

∥B(u, v)∥S′ = ∥K(u⊗ v)∥Ḟ s
r,2

≤ C ′
4∥u⊗ v∥Ḟ s−1

r,2

= C ′
4∥u⊗ v∥Ḣs−1,r

≤ C4 (∥u∥S∥v∥S′ + ∥u∥S′∥v∥S)

for any u, v ∈ S ∩ S ′. Here C3 = C3(n, s, r), C
′
4 = C ′

4(n, s, r), and C4 = C4(n, s, p, q, r)
are constants. Hence by the same discussion as the case of Besov spaces (see Lemma
3.8 and the proof of Proposition 3.1 (2)), we obtain (2) of Theorem 3.9.

Now let us show Lemmata 3.13-3.16.

Proof of Lemma 3.13. Since the projection P is defined as a matrix-valued operator
P = (Pjk)1≤j,k≤n with Pjk ≡ δjk +RjRk, P has the same boundedness as that of Riesz
transforms in Proposition 2.2. Together with Proposition 2.1 (5), we can see that

∥(−∆)−1Pf∥Ḟ s
p,q

≤ C∥Pf∥Ḟ s−2
p,q

≤ C∥f∥Ḟ s−2
p,q
,

for every s ∈ R, 1 ≤ p <∞, 1 ≤ q ≤ ∞ and f ∈ Ḟ s−2
p,q .

Proof of Lemma 3.14. Let g = (gij)1≤i,j≤n be a matrix-valued function. By commu-
tativity of P and (−∆)

s
2 , Kg = ((Kg)1, (Kg)2, . . . , (Kg)n) can be written as

(Kg)j = −(−∆)−1P
n∑
i=1

∂

∂xi
gij

= −(−∆)−
1
2P

n∑
i=1

(−∆)−
1
2
∂

∂xi
gij

= −(−∆)−
1
2P

n∑
i=1

Rigij. (3.9)

Hence we see from Proposition 2.1 (5) and Proposition 2.2 that there holds

∥Kg∥Ḟ s
p,q

≤ C∥g∥Ḟ s−1
p,q

for every s ∈ R, 1 ≤ p <∞, 1 ≤ q ≤ ∞ and g ∈ Ḟ s−1
p,q .

Proof of Lemma 3.15. We first consider the case p = n, 1 ≤ q ≤ 2 and 1 ≤ q̃ ≤ ∞.
Since it is seen from Proposition 2.1 (2) and (3) that there holds L

n
2 ∼= Ḟ 0

n
2
,2 ↪→ Ḟ−1

n,q̃ ,
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we see by Hölder inequality that

∥u⊗ v∥Ḟ−1
n,q̃

≤ C∥u⊗ v∥
L

n
2

≤ C∥u∥Ln∥v∥Ln

= C∥u∥Ḟ 0
n,2
∥v∥Ḟ 0

n,2

≤ C∥u∥Ḟ 0
n,q
∥v∥Ḟ 0

n,q
.

We next consider the case 1 < p < n and 1 ≤ q, q̃ ≤ ∞. Here we use the following
proposition, which is an alternative to Proposition 3.7:

Proposition 3.17. (Kozono-Shimada [13]) Let s, α > 0, 1 < p < ∞, and let us take
1 < p1, p2 <∞ so that 1/p = 1/p1+1/p2. Then there is a constant C = C(s, α, p, p1, p2)
such that for every f, g ∈ Ḟ s+α

p1,∞ ∩ Ḟ−α
p2,∞, there holds f · g ∈ Ḟ s

p,∞ with the estimate

∥f · g∥Ḟ s
p,∞

≤ C
(
∥f∥Ḟ s+α

p1,∞
∥g∥Ḟ−α

p2,∞
+ ∥f∥Ḟ−α

p2,∞
∥g∥Ḟ s+α

p1,∞

)
.

Since n ≥ 3, we can take p0 satisfying 1 < p0 < min{p, n/2}. Moreover, since p < n,
we can choose p1 and p2 as

1

p0
=

1

p1
+

1

p2
, p1 > p, p2 > n

by choosing p0 properly. Indeed, if p < n/2, then we should let p0 = p/(1 + ε) with
small 0 < ε < p/n so that p0 > 1 and

1

p0
=

1

p
+
ε

p
<

1

p
+

1

n
.

On the other hand, if n/2 ≤ p, then we should let p0 = n/(2 + ε) with small 0 < ε <
(n/p)− 1 so that p0 > 1 and

1

p0
=

1 + ε

n
+

1

n
<

1

p
+

1

n
.

From Proposition 2.1 (2) and Proposition 3.17 with s = −2 + (n/p0) > 0 and α =
1− (n/p2) > 0, we have

∥u⊗ v∥
Ḟ

−2+n
p

p,q̃

≤ C∥u⊗ v∥
Ḟ

−2+ n
p0

p0,∞

≤ C

(
∥u∥

Ḟ
−2+ n

p0
+1− n

p2
p1,∞

∥v∥
Ḟ

−1+ n
p2

p2,∞
+ ∥u∥

Ḟ
−1+ n

p2
p2,∞

∥v∥
Ḟ

−2+ n
p0

+1− n
p2

p1,∞

)
≤ C∥u∥

Ḟ
−1+n

p
p,q

∥v∥
Ḟ

−1+n
p

p,q

,

which proves Lemma 3.15.
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Proof of Lemma 3.16.
For the case of the condition (iii) in Theorem 3.9 (2), we can show this lemma in a

similar way to the first paragraph in the proof of Lemma 3.15. Indeed, it is seen that

∥u⊗ v∥Ḣ−1,n ≤ C∥u⊗ v∥
L

n
2

≤ C (∥u∥Ln∥v∥Ln + ∥u∥Ln∥v∥Ln)

≤ C
(
∥u∥Ḟ 0

n,q
∥v∥Ḣ0,n + ∥u∥Ḣ0,n∥v∥Ḟ 0

n,q

)
.

In what follows, we consider the cases (i) and (ii) in Theorem 3.9 (2).

Case 1: Under the condition (i) in Theorem 3.9 (2).
Since s > 0 and r > 1, we can choose s0 > 0, α > 0 as

max
{
0, 1− n+

n

r

}
< α = s− s0 < 1.

We next choose r0, r̃ such that

1

r0
=

1

r
+

1

r̃
, r̃ =

n

1− α
.

By this definition, we have

s0 > s− 1, r0 < r, s0 −
n

r0
= s− 1− n

r
,

and

−1 +
n

p
> −α, p ≤ n < r̃, −1 +

n

p
− n

p
= −α− n

r̃
.

Hence, by Proposition 2.1 (2) and (3), we see that

Ḟ s0
r0,∞ ↪→ Ḟ s−1

r,2
∼= Ḣs−1,r (3.10)

and

Ḟ
−1+n

p
p,q ↪→ Ḟ−α

r̃,∞. (3.11)

On the other hand, there holds r0 > 1, since

1

r0
=

1

r
+

1− α

n
<

1

r
+

1−
(
1− n+ n

r

)
n

= 1.

Therefore, by (3.10) and Proposition 3.17, we obtain

∥u⊗ v∥Ḣs−1,r ≤ C∥u⊗ v∥Ḟ s0
r0,∞

≤ C
(
∥u∥

Ḟ
s0+α
r,∞

∥v∥Ḟ−α
r̃,∞

+ ∥u∥Ḟ−α
r̃,∞

∥v∥
Ḟ

s0+α
r,∞

)
.
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Moreover, by (3.11) and the embedding

Ḣs,r ∼= Ḟ s
r,2 ↪→ Ḟ s

r,∞ = Ḟ s0+α
r,∞ ,

we obtain the estimate

∥u⊗ v∥Ḣs−1,r ≤ C

(
∥u∥

Ḟ
−1+n

p
p,q

∥v∥Ḣs,r + ∥u∥Ḣs,r∥v∥
Ḟ

−1+n
p

p,q

)
.

Case 2: Under the condition (ii) in Theorem 3.9 (2).
Since p < n, we can take s0 > 0 and α > 0 satisfying

s0 + α = −1 +
n

p
, 0 < α <

n

r
, (3.12)

whose specific values will be decided later on. Then we define r0, r1 and r2 as

1

r0
=

1

r1
+

1

r2
, r1 = p,

1

r2
=

1

r
− α

n
. (3.13)

By taking appropriate α > 0, we have r0 > 1. Indeed, if

n

n− 1
< r <

np

n− p
,

(
−1 +

n

p
<
n

r

)
then we take γ > 1 such that n/(n − 1) < n/(n − γ) < r, and decide α > 0 as
α = −1 + (n/p)− (γ − 1) so that

1

r0
=

1

p
+

1

r
− 1

n

{
−1 +

n

p
− (γ − 1)

}
<

n− γ

n
+

1

n
+
γ − 1

n
= 1.

On the other hand, if

np

n− p
≤ r <∞,

(
n

r
≤ −1 +

n

p

)
then we take ε > 0 such that (1/p) + (ε/n) < 1, and decide α > 0 as α = (n/r)− ε so
that

1

r0
=

1

p
+

1

r
− 1

n

(n
r
− ε
)
=

1

p
+
ε

n
< 1.

Therefore, we can choose s0, α, r0, r1, and r2 satisfying (3.12), (3.13), and r0 > 1.
Since s0 > −1, r0 < r (because of α < n/p), and

s0 −
n

r0
= s0 −

n

p
− n

(
1

r
− α

n

)
= −1− n

r
,
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it is seen by Proposition 2.1 (2) and (3) that Ḟ s0
r0,∞ ↪→ Ḟ−1

r,2
∼= Ḣ−1,r. Therefore, by

Proposition 3.17, we obtain

∥u⊗ v∥Ḣ−1,r ≤ C∥u⊗ v∥Ḟ s0
r0,∞

≤ C
(
∥u∥

Ḟ
s0+α
r1,∞

∥v∥Ḟ−α
r2,∞

+ ∥u∥Ḟ−α
r2,∞

∥v∥
Ḟ

s0+α
r1,∞

)
.

Moreover, since Ḟ
−1+n

p
p,q = Ḟ s0+α

r1,q
↪→ Ḟ s0+α

r1,∞ , and since Ḣ0,r ∼= Ḟ 0
r,2 ↪→ Ḟ 0

r,∞ ↪→ Ḟ−α
r2,∞

because of −n/r = −α− (n/r2), we obtain

∥u⊗ v∥Ḣ−1,r ≤ C

(
∥u∥

Ḟ
−1+n

p
p,q

∥v∥Ḣ0,r + ∥u∥Ḣ0,r∥v∥
Ḟ

−1+n
p

p,q

)
.

This proves Lemma 3.16.

By the foregoing, we have proved Lemmata 3.13-3.16, which completes the proof of
Theorem 3.9.

As can be seen in the above proof, the restrictions on the dimension n and the
integral exponent p such as n ≥ 3 and 1 ≤ p < n seem to be due to the validity of
Proposition 3.17 (in Besov spaces, of Proposition 3.7), which has an important role for
the boundedness of the bilinear form B. This problem is also true of the case in Besov
spaces as well. From the next section, we will treat the case n ≤ p ≤ ∞ from the
negative approach, that is, we will show that in such a case, (rSNS) is ill-posed from

D = Ḃ
−3+n

p
p,q to S = PḂ

−1+n
p

p,q .





Chapter 4

Ill-posedness by the Bourgain-Pavlović
method

In this chapter, we show the ill-posedness of (rSNS) from Ḃ
−3+n

p
p,q to PḂ

−1+n
p

p,q when
p = ∞. Our claim is as follows:

Theorem 4.1. (Tsurumi [23]) Let n ≥ 3. For any δ > 0, there exists a sequence
{fN}N∈N of external forces in BUC2 ∩ Ḃ−3

∞,1 with div fN = 0 such that

(i) ∥fN∥Ḃ−3
∞,1

→ 0 as N → ∞,

(ii) For each fN , there exists a solution uN of (rSNS) in PL∞ and PḂ−1
∞,1 senses.

Moreover, each uN satisfies{
−∆uN(x) + (uN · ∇uN)(x) +∇Π(x) = fN(x),

div uN(x) = 0

for all x ∈ Rn with a constant pressure Π, i.e., ∇Π = 0.

(iii) There exists another constant 0 < κ < 1 independent of δ such that

κδ < ∥uN∥Ḃ−1
∞,∞

≤ ∥uN∥Ḃ−1
∞,1

< δ

for any N ∈ N.

Here BUC2 denotes the space of bounded uniformly continuous functions up to the
second order derivatives.

Remark 4.2. This result shows the ill-posedness of (SNS) from Ḃ−3
∞,q to PḂ

−1
∞,q for

all 1 ≤ q ≤ ∞ (see also Proposition 2.1 (1)). Indeed, Theorem 4.1 means that for
any constants ε and δ, the solution map f ∈ BḂ−3

∞,q
(ε) 7→ u ∈ BḂ−1

∞,q
(δ) is, even if it

is well-defined, not continuous at zero in each norm. We should note here that each
solution uN above is a strong solution of the original equation (SNS) with a constant
pressure Π and is not necessarily unique one.

41
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It is also seen from Theorem 4.1 that there is a external force which is arbitrary
small in Ḃ−3

∞,1 can admit a solution which is arbitrary large in Ḃ−1
∞,∞. In order to see

this phenomenon, take a huge δ > 0, choose a sequence of external forces in Theorem
4.1, and fix a number N sufficiently large.

Remark 4.3. Theorem 4.1 also holds for the homogeneous Triebel-Lizorkin spaces
with the same exponents. In fact, since it holds from Proposition 2.1 (4) that

Ḃ−3
∞,q ↪→ Ḟ−3

∞,q, Ḃ−1
∞,∞

∼= Ḟ−1
∞,∞,

we can show the ill-posedness by using the same sequence {fN}N∈N of external forces.

In the proof of our result, trigonometric functions and their linear sum will appear
frequently. Indeed, Bourgain-Pavlović [5] showed the ill-posedness of non-stationary
Navier-Stokes equations by using a sequence of initial data composed of trigonometric
functions. Therefore, in order to apply their method to stationary equations, we note
here some important properties of such functions in harmonic analysis. In what follows,
we write ∂

∂xi
as ∂i, i = 1, 2, . . . , n for simplicity.

We now take a trigonometric function

g(x) ≡ cos(a · x), x ∈ Rn

with a constant vector a = (a1, a2, . . . , an) ∈ Rn\{0}. Since

g(x) =
eia·x + e−ia·x

2

by the Euler’s formula, we can see that

Fg(ξ) =
1

2

{∫
Rn

eia·x · e−ix·ξdx+
∫
Rn

e−ia·x · e−ix·ξdx
}

=
1

2
(F [1](ξ − a) + F [1](ξ + a))

=
1

2
(δ(ξ − a) + δ(ξ + a)),

where δ denotes the Dirac measure on Rn having a unit mass at the origin. Therefore,

(−∆)
s
2 g(x) = F−1[|ξ|sFg(ξ)](x)

= F−1

[
1

2
|ξ|s(δ(ξ − a) + δ(ξ + a))

]
= |a|s cos(a · x).

We should note that if s = 2, we have

−∆g(x) =

(
−

n∑
i=1

∂2i

)
g(x)
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and

(−∆)(−∆)−1g(x) = (−∆)−1(−∆)g(x)

= g(x).

Moreover, by assuming that ϕ in the definition of Littlewood-Paley decomposition,
(2.3), is spherical symmetric, it holds that

(φj ∗ g)(x) = F−1[Fφj(ξ)Fg(ξ)](x)

= F−1

[
1

2
ϕ(2−jξ)(δ(ξ − a) + δ(ξ + a))

]
= ϕ(2−ja) cos(a · x), ∀j ∈ Z. (4.1)

Hence, based on (2.3), (2.4), and the fact ∥ cos(a·)∥L∞ = 1, we obtain the following two
key estimates for our main result;

∥g∥Ḃ−m
∞,1

≤ Cm
# ∥(−∆)−

m
2 g∥Ḃ0

∞,1

=

(
C#

|a|

)m∑
j∈Z

ϕ(2−ja)

=

(
C#

|a|

)m
, m ∈ N, (4.2)

∥g∥Ḃ−1
∞,∞

≥ 1

C#|a|
sup
j∈Z

ϕ(2−ja)

≥ 1

2C#|a|
, (4.3)

where C# denotes a constant dependent only on the dimension n satisfying

1

C#

∥(−∆)−
1
2f∥Ḃs+1

p,q
≤ ∥f∥Ḃs

p,q
≤ C#∥(−∆)−

1
2f∥Ḃs+1

p,q
(4.4)

for any s ∈ R and 1 ≤ p, q ≤ ∞ (see Proposition 2.1 (5) ). In what follows, we suppose
that every constant C# appearing below denotes this constant entirely. In addition, let
us prepare the L∞ estimate as follows for the sake of the proof of the main theorem:

∥(−∆)−1g∥L∞ ≤ ∥∂i(−∆)−1g∥L∞

≤ ∥∂i∂j(−∆)−1g∥L∞

≤ ∥g∥L∞ for 1 ≤ i, j ≤ n, if |ai|, |aj| ≥ 1. (4.5)

It can be easily seen that the above estimates are valid as it is to the case g(x) = sin(a·x).
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Proof of Theorem 4.1. Here we take the parametrized external force as

fQ,r(x) ≡ Qr2 {e2 cos(rx1) + e3 cos(rx1 − x2)} , x = (x1, x2, . . . , xn) ∈ Rn,

where e2 ≡ (0, 1, 0, 0, . . . , 0) and e3 ≡ (0, 0, 1, 0, . . . , 0) are unit vectors in Rn, while
Q > 0 and r ∈ N are parameters. Actually, this external force is inspired by the study
of Bourgain-Pavlović [5], who showed the ill-posedness of the non-stationary Navier-
Stokes equations in Ḃ−1

∞,∞. In fact, they used the parametrized initial data as

u0(x) =
Q√
r

r∑
s=1

hs {e2 cos(hsx1) + e3 cos(hsx1 − x2)} ,

where hs ≡ 2
s(s−1)

2 γs−1η and Q, r, s, γ, and η are parameters (see also Sawada [17], who
refined the study by Bourgain-Pavlović [5]).

We now define the approximative sequence {uj}j∈N to the solution u of (rSNS) such
as (2.19): {

u1 ≡ LfQ,r,

uj ≡ u1 +B(uj−1, uj−1), j ≥ 2.

Moreover, we rewrite these uj as forms of series in accordance with Sawada [17]. Let
v1 ≡ u1,

v2 ≡ B(u1, u1) = B(v1, v1),

vk ≡ B(uk−1, uk−1)−B(uk−2, uk−2), k ≥ 3.

(4.6)

Obviously, it holds

uj =

j∑
k=1

vk, j ≥ 1. (4.7)

As for fQ,r and {vk}k∈N, we can show the following key lemma.

Lemma 4.4. Let {vk}k∈N be as (4.6). Then it holds that vk ∈ BUC2 ∩ Ḃ−1
∞,1 and

div vk = 0 for all k ≥ 1. Moreover, we have the following estimates;

∥fQ,r∥Ḃ−3
∞,1

≤ 2C3
#

Q

r
, ∥v1∥Ḃ−1

∞,1
≤ 2C#

Q

r
for all Q > 0, r ∈ N, (4.8)

Q2

16C#

≤ ∥v2∥Ḃ−1
∞,∞

≤ ∥v2∥Ḃ−1
∞,1

≤ C#Q
2, if r > C#, (4.9)

∥vk∥L∞ ≤ Q2

(
Q

r

)k−2

, ∥vk∥Ḃ−1
∞,1

≤ C#Q
2

(
Q

r

)k−2

for all k ≥ 3, if r > Q. (4.10)
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For the moment, let us assume this lemma. Once we fix Q and r with Q/r < 1,
then there hold

∞∑
k=1

∥vk∥L∞ <∞,

∞∑
k=1

∥vk∥Ḃ−1
∞,1

<∞.

Hence there exist u∗Q,r ∈ BUC and ũ∗Q,r ∈ Ḃ−1
∞,1 such that

u∗Q,r = lim
j→∞

uj in L∞, ∥u∗Q,r∥L∞ ≤
∞∑
k=1

∥vk∥L∞ , (4.11)

ũ∗Q,r = lim
j→∞

uj in Ḃ−1
∞,1, ∥ũ∗Q,r∥Ḃ−1

∞,1
≤

∞∑
k=1

∥vk∥Ḃ−1
∞,1
.

Actually, u∗Q,r = ũ∗Q,r in the sense of S ′
0. Indeed, since u∗Q,r is a tempered distribution,

it holds that
⟨uj, φ⟩ →

⟨
u∗Q,r, φ

⟩
as j → ∞ for all φ ∈ S0.

On the other hand, since uj → ũ∗Q,r as j → ∞ in Ḃ−1
∞,2 in particular, there holds

⟨uj, φ⟩ →
⟨
ũ∗Q,r, φ

⟩
as j → ∞ for all φ ∈ Ḃ1

1,2,

because the dual space of Ḃ1
1,2 is Ḃ−1

∞,2 (see Triebel [21, Theorem 2.11.2 and Section

5.2.5], for example). From this convergence and the embedding S0 ⊂ Ḃ1
1,2, we have

u∗Q,r = ũ∗Q,r in S ′
0. Therefore, u

∗
Q,r also belongs to Ḃ−1

∞,1 with the estimate

∥u∗Q,r∥Ḃ−1
∞,1

= ∥ũ∗Q,r∥Ḃ−1
∞,1

≤
∞∑
k=1

∥vk∥Ḃ−1
∞,1
. (4.12)

Considering the convergence of the bilinear formB(uj, uj), we have the following lemma,
which will be shown later.

Lemma 4.5. Let Q < r and let u∗Q,r be a function defined by (4.11). Then we have

that u∗Q,r ∈ BUC2 ∩ Ḃ−1
∞,1, div u

∗
Q,r = 0, and it holds that

lim
j→∞

B(uj, uj) = B(u∗Q,r, u
∗
Q,r) in L∞ and Ḃ−1

∞,1. (4.13)

Moreover, u = u∗Q,r satisfies (SNS) for all x ∈ Rn in the pointwise sense, with f = fQ,r
and ∇Π = 0.

Hence, u∗Q,r is a solution not only of (rSNS) in L∞ or Ḃ−1
∞,1 sense, but also (SNS) with

respect to f = fQ,r in pointwise sense.

Proof of Theorem 4.1. We first take Q0 > 0 so that

δ

4C#

< Q2
0 <

δ

2C#

,
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and let r0 ∈ N be such that

Q0

r0
< min

{
δ

256C3
#

,
1

2

}
.

Then by Lemma 4.4, it holds for every r ≥ r0 that

∥u∗Q0,r
∥Ḃ−1

∞,1
≤

∞∑
k=1

∥vk∥Ḃ−1
∞,1

≤ 2C#
Q0

r
+
C#Q

2
0

1− Q0

r

< δ.

On the other hand, we have

∥u∗Q0,r
∥Ḃ−1

∞,∞
≥ ∥v2∥Ḃ−1

∞,∞
− ∥v1∥Ḃ−1

∞,1
−

∞∑
k=3

∥vk∥Ḃ−1
∞,1

≥ Q2
0

16C#

− 2C#
Q0

r
− C#Q

2
0

Q0

r

1− Q0

r

>
δ

64C2
#

− δ

128C2
#

− δ

256C2
#

=
δ

256C2
#

for every r ≥ r0. Moreover, we can easily see from (4.8) that ∥fQ0,r∥Ḃ−3
∞,1

→ 0 as r → ∞.

Hence, by the above argument from Lemma 4.4 to Lemma 4.5, we obtain the claim of
Theorem 4.1 by taking a sequence {fN}N∈N of external forces as fN ≡ fQ0,r0+N and
letting κ ≡ 1/256C2

0 .

Now let us prove Lemma 4.4 and Lemma 4.5.

Proof of Lemma 4.4. Using (4.2), we have

∥fQ,r∥Ḃ−3
∞,1

≤ Qr2 · 2
(
C#

r

)3

= 2C3
#

Q

r
,

Since div fQ,r = 0, we obtain v1 as

v1(x) = (−∆)−1PfQ,r(x)

= (−∆)−1fQ,r(x)

= Q

{
e2 cos(rx1) + e3

r2

r2 + 1
cos(rx1 − x2)

}
,
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which also satisfies div v1 = 0 and

∥v1∥Ḃ−1
∞,1

≤ Q · 2C#

r
= 2C#

Q

r
.

Next we deal with v2. Let us write the i-th component of v as v(i), and we have

(v1 · ∇v1)(x) =
n∑

m=1

v
(m)
1 ∂mv1

= v
(2)
1 ∂2v1

= Q cos(rx1) · e3Q
r2

r2 + 1
sin(rx1 − x2)

= e3
1

2
Q2 r2

r2 + 1
{− sin x2 + sin(2rx1 − x2)} .

Hence, it holds that

v2(x) = −(−∆)−1(v1 · ∇v1)(x)

= e3
1

2
Q2 r2

r2 + 1
sin x2 − e3

1

2
Q2 r2

r2 + 1

1

4r2 + 1
sin(2rx1 − x2)

≡ N1 +N2.

By virtue of (4.2) and (4.3), we have

∥N1∥Ḃ−1
∞,1

≤ 1

2
C#Q

2

and

∥N1∥Ḃ−1
∞,∞

≥ 1

2
Q2 · 1

2
· 1

2C#

=
Q2

8C#

,

while

∥N2∥Ḃ−1
∞,1

≤ C#
Q2

16r3
.

Therefore, if r > C#, there holds

∥v2∥Ḃ−1
∞,1

≤ C#Q
2

and

∥v2∥Ḃ−1
∞,∞

≥ ∥N1∥Ḃ−1
∞,∞

− ∥N2∥Ḃ−1
∞,1

>
Q2

16C#

.

For the estimate of vk with k ≥ 3, we need the following proposition.
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Proposition 4.6. For k ≥ 3, vk has an explicit representation as

vk = B(v1, vk−1) = −(−∆)−1(v
(2)
1 ∂2vk−1)(x) = −e3v(3)k (x1, x2). (4.14)

Moreover, there holds div vk = 0 for all k ≥ 1.

Proof of Proposition 4.6. First, notice that (4.14) is valid for k = 2. Suppose that this
is true in the cases 2 ≤ k ≤ l for some l ≥ 2. Then we have

vl+1 = B(ul, ul)−B(ul−1, ul−1)

= B

(
l∑

k=1

vk,
l∑

k=1

vk

)
−

(
l−1∑
k=1

vk,
l−1∑
k=1

vk

)

= B(v1, vl) + B

(
l−1∑
k=2

vk, vl

)
+B

(
vl,

l∑
k=1

vk

)
.

Since vk = e3v
(3)
k (x1, x2) for all 2 ≤ k ≤ l and since vk does not depend on x3 for all

1 ≤ k ≤ l, we see that(
l−1∑
k=2

vk

)
· ∇vl = 0, vl · ∇

(
l∑

k=1

vk

)
= 0.

Moreover, it holds that

(v1 · ∇vl)(x) = v
(2)
1 (x1) · ∂2(e3v(3)l (x1, x2))

= e3

{
v
(2)
1 (x1) · ∂2v(3)l (x1, x2)

}
.

Hence, we obtain (4.14) for k = l + 1. By induction, we see that (4.14) holds for all
k ≥ 3. This proves Proposition 4.6.

Let us return to the proof of Lemma 4.4. According to Proposition 4.6, we may
identify vk with v

(3)
k for k ≥ 2. Moreover, we rewrite v1 and v2 as follows:

v1(x) = Q
[
e2 cos(rx1) + e3M1(r

0) cos(rx1 − x2)
]
, (4.15)

v2(x) =
1

2
Q2
[
M1(r

0) sin x2 −M2(r
−2) sin(2rx1 − x2)

]
. (4.16)

Here and in what follows, for j ∈ N, we denote by Mj(r
α) the positive functions of r

which may change from line to line, and satisfy the estimate

Mj(r
α) ≤ rα for all r > 1.

Let us handle v3 and v4. Since

(v1 · ∇v2)(x) =
1

2
Q3 cos(rx1)

[
M1(r

0) cos x2 +M2(r
−2) cos(2rx1 − x2)

]
=

1

4
Q3
[
M1(r

0) {cos(rx1 + x2) + cos(rx1 − x2)}

+M2(r
−2){cos(3rx1 − x2) + cos(−rx1 + x2)}

]
,
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we see that v3 is expressed as

v3(x) = −(−∆)−1(v1 · ∇v2)(x)

= −1

4
Q3
[
M1(r

−2) {cos(rx1 + x2) + cos(rx1 − x2)}

+M2(r
−4) cos(3rx1 − x2) +M3(r

−4) cos(−rx1 + x2)
]
.

Moreover, since

(v1 · ∇v3)(x) =
1

4
Q4 cos(rx1)

·
[
M1(r

−2) {sin(rx1 + x2)− sin(rx1 − x2)}

−M2(r
−4) sin(3rx1 − x2) +M3(r

−4) sin(−rx1 + x2)
]

=
1

8
Q4
[
M1(r

−2) {2 sin x2 + sin(2rx1 + x2)− sin(2rx1 − x2)}

−M2(r
−4) {sin(4rx1 − x2) + sin(2rx1 − x2)}

+M3(r
−4) {sin x2 + sin(2rx1 − x2)}

]
,

we see that v3 has an expression as

v4(x) = −(−∆)−1(v1 · ∇v3)(x)

=
1

8
Q4
[
−2M1(r

−2) sinx2

+M2(r
−4) {− sin(2rx1 + x2) + sin(2rx1 − x2)}
+M3(r

−6) {sin(4rx1 − x2) + sin(2rx1 − x2)}

−M4(r
−4) sin x2 −M5(r

−6) sin(2rx1 − x2)
]
,

Repeating such a procedure, we see that

v2l+1(x) =
Q2l+1

22l

[
−M1(r

−2l) · (−2)l−1 {cos(rx1 + x2) + cos(rx1 − x2)} (4.17)

+
22l−2l∑
i=1

Mi+1(r
−2) cos(al,i · x)

]
,

v2l+2(x) =
Q2l+2

22l+1

[
M1(r

−2l) · (−2)l sin x2 +
22l+1−2l∑
i=1

Mi+1(r
−2) sin(bl,i · x)

]
(4.18)

for l ≥ 1, where al,i = (a
(1)
l,i , a

(2)
l,i , . . . , a

(n)
l,i ), bl,i = (b

(1)
l,i , b

(2)
l,i , . . . , b

(n)
l,i ) ∈ Rn are vectors

depending only on r with

|a(2)l,i |, |b
(2)
l,i | = 1, a

(j)
l,i = b

(j)
l,i = 0 for 3 ≤ j ≤ n.
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Hence we obtain the following estimates.

∥v2l+1∥L∞ ≤ Q2l+1

22l
1

r2l
· 22l = Q

(
Q

r

)2l

, ∥v2l+1∥Ḃ−1
∞,1

≤ C#Q

(
Q

r

)2l

,

∥v2l+2∥L∞ ≤ Q2l+2

22l+1

1

r2l
· 22l+1 = Q2

(
Q

r

)2l

, ∥v2l+2∥Ḃ−1
∞,1

≤ C#Q
2

(
Q

r

)2l

.

This completes the proof of Lemma 4.4.

Proof of Lemma 4.5. Let us first show smoothness of u∗Q,r. It is easily seen that each
vk, k ≥ 1, is twice continuously differentiable, and that each of their partial derivatives
is uniformly bounded. In particular, since each second component of ak,i in (4.17) and
(4.18) is 1 or −1, we can obtain the same estimates of ∥∂2vk∥L∞ and ∥∂22vk∥L∞ as
those of ∥vk∥L∞ in (4.10) in the same as in the proof of Lemma 4.4. Moreover, since

∥v(2)1 ∥L∞ = Q, we have by (4.5) and (4.14) that

∥∂1vk∥L∞ , ∥∂21vk∥L∞ , ∥∂1∂2vk∥L∞ ≤ Q3

(
Q

r

)k−3

, k ≥ 3.

Therefore, by the theorem of termwise differentiation, we see that u∗Q,r =
∑∞

k=1 vk
belongs to C2 and is termwise differentiable provided Q < r.

Since the series
∑∞

k=1 vk is termwise differentiable, and since the identity

∞∑
k=1

v
(2)
1 ∂2vk = −∆

(
∞∑
k=1

(−∆)−1v
(2)
1 ∂2vk

)
(4.19)

holds, we have by (4.14) that

∥B(u∗Q,r, u
∗)Q,r −B(uj, uj)∥L∞ =

∥∥∥∥∥−(−∆)−1v
(2)
1 ∂2

(
∞∑

k=j+1

vk

)∥∥∥∥∥
L∞

=

∥∥∥∥∥
∞∑

k=j+1

{
−(−∆)−1

(
v
(2)
1 ∂2vk

)}∥∥∥∥∥
L∞

≤
∞∑

k=j+1

∥vk+1∥L∞ → 0, as j → ∞.

In the same way, it is also easily shown that B(uj, uj) → B(u∗Q,r, u
∗
Q,r) in Ḃ−1

∞,1 as
j → ∞.

Finally, let us show that u = u∗Q,r =
∑∞

k=1 vk actually satisfies (SNS) with f = fQ,r
and ∇Π = 0 for all x ∈ Rn. Indeed, by termwise differentiation, we see from (4.14) and
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(4.19) that div v∗Q,r(x) = 0 and

−∆u∗Q,r(x) = −∆v1(x)−∆

(
∞∑
k=2

−(−∆)−1v1(x)∂2vk−1(x)

)

= fQ,r(x)−
∞∑
k=1

v1(x)∂2vk(x),

(u∗Q,r · ∇u∗Q,r)(x) = v1(x) · ∂2
∞∑
k=1

vk(x) =
∞∑
k=1

v1(x)∂2vk(x).

Hence we obtain

−∆u∗Q,r(x) + (u∗ · ∇u∗Q,r)(x) = fQ,r(x), x ∈ Rn.

This completes the proof of Lemma 4.5, and we have proved Theorem 4.1.

Until now, we have seen that fromD = Ḃ
−3+n

p
p,q to S = PḂ

−1+n
p

p,q , (rSNS) is well-posed
when 1 ≤ p < n and 1 ≤ q ≤ ∞, and ill-posed when p = ∞ and 1 ≤ q ≤ ∞. Therefore,
the rest of case is when n ≤ p < ∞. Actually, in the case n ≤ p < ∞, we cannot
apply the method above. Indeed, for every trigonometric function g(x) ≡ cos(a · x),
φj ∗ g is not integrable in the whole space Rn, which means that g is not included in
Ḃs
p,q = Ḃs

p,q(Rn) for 1 ≤ p < ∞. Hence, in the next chapter, we reconsider (rSNS) in
the torus Tn, taking into account the fact that a function g is spacial periodic.





Chapter 5

The study in toroidal Besov spaces

In this chapter, we consider the well-posedness and ill-posedness problems of (rSNS)
on the n-dimensional torus Tn ≡ [−π, π]n. Before stating our main results, we should
define some function spaces on tori.

5.1 Definition and properties of toroidal Besov spaces

We denote by Tnλ ≡ [−λπ, λπ]n the n-dimensional 2πλ-periodic torus for λ > 0, and
let Tn ≡ Tn1 = [−π, π]n in particular. We define the spaces D(Tnλ), D0(Tnλ) and Sλ(Zn)
by

D(Tnλ) ≡ {f ∈ C∞(Rn); f is 2πλ−periodic on each component x1, . . . , xn} ,

D0(Tnλ) ≡
{
f ∈ D(Tnλ);

∫
[−πλ,πλ]n

f(x)dx = 0

}
,

Sλ(Zn) ≡
{
g : Zn → Rn; ∀s ≥ 0,∃c = c(g, s) > 0 s.t. sup

m∈Zn

(1 + |λ−1m|2)
s
2 |g(m)| < c

}
,

and let D′(Tnλ), D′
0(Tnλ) and S ′

λ(Zn) be dual spaces of D(Tnλ) D0(Tnλ) and Sλ(Zn), re-
spectively. We define the toroidal Fourier transform (the Fourier series) FTn

λ
: D(Tnλ) →

Sλ(Zn) by

FTn
λ
f(m) ≡ 1

(2πλ)n

∫
[−πλ,πλ]n

f(x)e−iλ
−1m·xdx, f ∈ D(Tnλ), m ∈ Zn,

and the inversion F−1
Tn
λ
: Sλ(Zn) → D(Tnλ) by

F−1
Tn
λ
g(x) ≡

∑
m∈Zn

g(m)eiλ
−1m·x, g ∈ Sλ(Zn), x ∈ Tnλ.

We can also define these transforms in dual spaces, FTn
λ

: D′
0(Tnλ) → S ′

λ(Zn) and

F−1
Tn
λ
: S ′

λ(Zn) → D′(Tnλ), by⟨
FTn

λ
f, φ

⟩
≡
⟨
f,F−1

Tn
λ
φ(−·)

⟩
, f ∈ D′

0(Tnλ), φ ∈ Sλ(Zn),

53
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⟨
F−1

Tn
λ
g, ψ

⟩
≡
⟨
g,FTn

λ
ψ(−·)

⟩
, g ∈ S ′

λ(Zn), ψ ∈ D(Tnλ).

In addition, we define the convolution of f, g ∈ D(Tnλ) by

(f ∗ g)(x) ≡
∫
[−πλ,πλ]n

f(x− y)g(y)dy, x ∈ Tnλ.

We also define the convolution of (h, f) ∈ D(Tnλ)×D′(Tnλ) by

⟨h ∗ f, φ⟩ ≡ ⟨f, h(−·) ∗ φ⟩ =
∫
[−πλ,πλ]n

⟨f, h(y − ·)⟩φ(y)dy, φ ∈ D(Tnλ),

and it is seen that h ∗ f is actually in D(Tnλ). We can also define that of (h, f) ∈
D0(Tnλ)×D′

0(Tnλ) by a similar way.
Now let us define some important operators and spaces related to D0(Tnλ) and

D′
0(Tnλ). Since FTn

λ
f(0) = 0 for every f ∈ D0(Tnλ), we can define the toroidal Riesz

potential Isλ with s ∈ R and Riesz transform Rk with k = 1, . . . , n on D′
0(Tnλ) by

Isλf ≡ F−1
Tn
λ

[
|λ−1m|sFTn

λ
f(m)

]
,

Rkf ≡ F−1
Tn
λ

[
imk|m|−1FTn

λ
f(m)

]
.

Secondly, we define the homogeneous toroidal Besov spaces. We take a non-negative
smooth function ϕ ∈ C∞(Rn) such that

0 ≤ ϕ ≤ 1, supp ϕ ⊂
{
x ∈ Rn;

1

2
< |ξ| < 2

}
,

∞∑
j=−∞

ϕ(2−jξ) = 1 ∀ξ ∈ Rn\{0}. (5.1)

Then we define

ϕj(ξ) ≡ ϕ(2−jξ), φλ,j ≡ F−1
Tn
λ

[
ϕj(λ

−1·)
]
, j ∈ Z. (5.2)

We can easily see that each φλ,j belongs to D0(Tnλ). Moreover, since FTn
λ
f(0) = 0 for

every f ∈ D0(Tnλ), it is seen from (5.1) and (5.2) that

∞∑
j=−∞

φλ,j ∗ f = f, ∀f ∈ D′
0(Tnλ).

According to the above family {φλ,j}j∈Z, we define the homogeneous toroidal Besov
space Ḃs

p,q(Tnλ) for s ∈ R, 1 ≤ p, q ≤ ∞ by

Ḃs
p,q(Tnλ) ≡

{
f ∈ D′

0(Tnλ); ∥f∥Ḃs
p,q(Tn

λ)
<∞

}
with the norm

∥f∥Ḃs
p,q(Tn

λ)
≡


{

∞∑
j=−∞

(2sj∥φλ,j ∗ f∥Lp(Tn
λ)
)q

} 1
q

, 1 ≤ q <∞,

sup
j∈Z

2sj∥φλ,j ∗ f∥Lp(Tn
λ)
, q = ∞,
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where Lp(Tnλ) is the space of 2πλ-periodic measurable functions with the norm

∥f∥Lp(Tn
λ)

≡


(∫

[−πλ,πλ]n |f(x)|
pdx
) 1

p
, 1 ≤ p <∞,

esssupx∈Tn
λ
|f(x)|, p = ∞.

　

Remark 5.1. For classical concepts and definitions of (non-homogeneous) toroidal
Besov spaces Bs

p,q(Tn), we refer to Schmeisser-Triebel [19] and Xiong-Xu-Yin [29] for ex-
ample. By following similar methods to [19], [29], and classical theories of homogeneous
Besov spaces on Rn, we can see that the above homogeneous space are also complete
(for the completeness, we should define the space in D′

0(Tnλ)), and that a definition of
homogeneous Besov spaces is independent of the choice of ϕ.

Now we prepare some important properties of toroidal Besov spaces to prove our
results. Here we only consider the case λ = 1 for simplicity. In what follows, σ[T ]
denotes formally the multiplier on D′

0(Tn) with a symbol T : Rn → R (or Zn → R)
defined by

σ[T ]f ≡ F−1
Tn [TFTnf ] =

∑
m∈Zn

T (m)FTnf(m)eim·x.

Let φj ≡ φ1.j implied by (5.2). Since supp ϕj ⊂ {2j−1 < |ξ| < 2j+1} by (5.1), we see
that

φj ∗ f = σ [(ϕj−1 + ϕj + ϕj+1)ϕj] f

= φ̃j ∗ φj ∗ f, (5.3)

where φ̃j ≡ φj−1 + φj + φj+1. Moreover, for T ∈ FRnL1(Rn) (FRn denotes the Fourier
transform in Rn), there holds for any f ∈ D(Tn) that

σ[T ]f(x) =
∑
m∈Zn

T (m)FTnf(m)eim·x

=
∑
m∈Zn

(∫
Rn

F−1
Rn T (y)e−im·ydy

)
FTnf(m)eim·x

=

∫
Rn

F−1
Rn T (y)

(∑
m∈Zn

FTnf(m)eim·(x−y)

)
dy

=

∫
Rn

F−1
Rn T (y)f(x− y)dy, x ∈ Tn.

Hence, it is seen from the Young inequality (and its proof) that

∥σ[T ]f∥Lp(Tn) ≤ ∥F−1
Rn T∥L1(Rn)∥f∥Lp(Tn), f ∈ D(Tn), 1 ≤ p ≤ ∞. (5.4)
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On the other hand, since φj ∗ f is a trigonometric polynomial of degree 2j+1, it is seen
from the Nikolski’s inequality that

∥φj ∗ f∥Lp(Tn) ≤ C2jn(
1
q
− 1

p)∥φj ∗ f∥Lq(Tn), 1 ≤ q ≤ p ≤ ∞, (5.5)

where C denotes a constant dependent only on p, q, and n. The above (5.3), (5.4), and
(5.5) yield the followings which are alternative to Proposition 2.1 and Proposition 3.7:

Proposition 5.2. (1) Let s ∈ R, and let 1 ≤ p ≤ ∞, 1 ≤ q1 ≤ q2 ≤ ∞. Then there
holds

Ḃs
p,q1

(Tn) ↪→ Ḃs
p,q2

(Tn). (5.6)

(2) Let s1 > s2, and let 1 ≤ p1 < p2 < ∞, 1 ≤ q, r ≤ ∞. If s1 − n/p1 = s2 − n/p2,
then there holds

Ḃs1
p1,q

(Tn) ↪→ Ḃs2
p2,q

(Tn). (5.7)

(3) Let s, s0 ∈ R, and let 1 ≤ p, q ≤ ∞. Then the Riesz potential (−∆)
s
2 is

isomorphic from Ḃs0
p,q(Tn) onto Ḃs0−s

p,q (Tn).
(4) Let s ∈ R and let 1 ≤ p, q ≤ ∞. Then for each j = 1, 2, . . . , n, the Riesz

transform Rj ≡ ∂
∂xj

(−∆)−
1
2 is bounded from Ḃs

p,q(Tn) to itself.

Proposition 5.3. (Para-product estimate) Let n ≥ 2, 1 ≤ p, q ≤ ∞, s > 0, α > 0
and β > 0. Suppose that 1 ≤ p1, p2, p̃1, p̃2 ≤ ∞ satisfy 1/p = 1/p1+1/p2 = 1/p̃1+1/p̃2.
Then for every f ∈ Ḃs+α

p̃1,q
(Tn)∩ Ḃ−β

p̃1,∞(Tn) and g ∈ Ḃ−α
p2,∞(Tn)∩ Ḃs+β

p̃2,q
(Tn), it holds that

f · g ∈ Ḃs
p,q(Tn) with the estimate

∥f · g∥Ḃs
p,q(Tn) ≤ C

(
∥f∥Ḃs+α

p̃1,q
(Tn)∥g∥Ḃ−α

p2,∞(Tn) + ∥f∥Ḃ−β
p̃1,∞

(Tn)∥g∥Ḃs+β
p̃2,q

(Tn)

)
, (5.8)

where C = C(n, p, q, s, p̃1, p̃2) is a constant.

Proof of Proposition 5.2. (1) is easily seen from the well-known embedding of sequence
spaces lq1 ↪→ lq2 for 1 ≤ q1 ≤ q2 ≤ ∞. On the other hand, it is seen from (5.3) that

φj ∗ (−∆)
s
2f = σ

[
ϕ̃j(m)ϕj(m)|m|s

]
f

= σ
[
|m|sϕ̃j(m)

]
(φj ∗ f),

where ϕ̃j ≡ ϕj−1 + ϕj + ϕj−1. Since 0 /∈ supp ϕ, it holds that∫
Rn

∣∣∣∣∫
Rn

|ξ|sϕj(ξ)eiξ·xdξ
∣∣∣∣ dx = 2js

∫
Rn

∣∣∣∣∫
Rn

|ξ|sϕ(ξ)eiξ·xdξ
∣∣∣∣ dx

≤ C2js,

with a constant C > 0 which does not depend on j ∈ Z. Hence, it is found by (5.4)
that

2j(s0−s)∥φj ∗ (−∆)
s
2f∥Lp(Tn) ≤ C2js0∥φj ∗ f∥Lp(Tn),
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which yields the boundedness (−∆)
s
2 : Ḃs0

p,q(Tn) → Ḃs0−s
p,q (Tn). The boundedness of

the inverse (−∆)−
s
2 can be seen by the same way. Hence we obtain the isomorphism

(3). By using this morphism and (5.5), we can also show (5.7). Furthermore, since

φj ∗Rkf = σ
[
imk

|m| ϕ̃j(m)
]
(φj ∗ f) and since∫

Rn

∣∣∣∣∫
Rn

iξk
|ξ|
ϕj(ξ)e

iξ·xdξ

∣∣∣∣ dx =

∫
Rn

∣∣∣∣∫
Rn

iξk
|ξ|
ϕ(ξ)eiξ·xdξ

∣∣∣∣ dx ≤ C, ∀j ∈ Z,

(4) also holds by (5.4). This completes the proof of Proposition 5.2.

On the other hand, we can prove Proposition 5.3 by a similar way to Proposition
3.7 (see also Kaneko-Kozono-Shimizu [11]), using (5.3) and (5.4).

5.2 Well-posedness and ill-posedness

Our main theorems in this chapter now read as follows. First, we state the well-
posedness of (rSNS) for 1 ≤ p ≤ ∞.

Theorem 5.4. (Tsurumi [25]) Let n ≥ 3, 1 ≤ p < n, 1 ≤ q ≤ ∞. Then (rSNS) is

quantitatively well-posed from D = Ḃ
−3+n

p
p,q (Tn) to S = PḂ

−1+n
p

p,q (Tn).

We should note here that {u,Π, f} satisfy the equation (SNS) on Tn, then {uλ,Πλ, fλ}
with uλ(x) ≡ λ−1u(λ−1x), Πλ(x) ≡ λ−2Π(λ−1x), fλ(x) ≡ λ−3(λ−1x) (λ > 0) also satisfy
(SNS) on Tnλ. On the other hand, we can see that

∥u∥
Ḃ

−1+n
p

p,q (Tn)
= ∥uλ∥

Ḃ
−1+n

p
p,q (Tn

λ)
, ∥f∥

Ḃ
−3+n

p
p,q (Tn)

= ∥fλ∥
Ḃ

−3+n
p

p,q (Tn
λ)

for any λ > 0 and 1 ≤ p, q ≤ ∞. This fact can be regarded as alternative to the concept
of scaling invariant with respect to the scaling transform {u, f} 7→ {uλ, fλ}.

On the other hand, the following result on the ill-posedness holds.

Theorem 5.5. (Tsurumi [25]) Let n ≥ 3. Suppose that p and q satisfy either of
following conditions:

(1) p = n, 2 < q ≤ ∞,

(2) n < p ≤ ∞, 1 ≤ q ≤ ∞.

Let D = Ḃ
−3+n

p
p,q (Tn) and S = PḂ

−1+n
p

p,q (Tn). Then for every δ > 0, there exists a
sequence {fN}∞N=1 ⊂ D0(Tn) of external forces satisfying the following (i), (ii), and (iii)
as follows:

(i) ∥fN∥D → 0 as N → ∞,
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(ii) For each fN , there exists a solution uN of (rSNS) in D0(Tn)∩ S. Moreover, each
uN satisfies {

−∆uN(x) + (uN · ∇uN)(x) +∇Π(x) = fN(x),

div uN(x) = 0

for all x ∈ Rn with a constant pressure Π, i.e., ∇Π = 0.

(iii) There exists another constant 0 < κ < 1 independent of δ such that

κδ < ∥uN∥Ḃ−1
∞,∞(Tn) ≤ ∥uN∥S < δ.

for any N ∈ N.

　

Remark 5.6. Since Ḃ
−1+n

p
p,q (Tn) ↪→ Ḃ−1

∞,∞(Tn) for any 1 ≤ p, q ≤ ∞, it is seen
that (SNS) is ill-posed from D to S with such exponents p and q as in (1) and (2) of
Theorem 5.5 by the lack of continuity of the solution map. Moreover, since it holds
that ∥f∥L∞(Tn) = ∥f∥L∞(Rn) for any f ∈ D(Tn), Theorem 5.5 also holds on Rn instead
of Tn provided p = ∞.

Remark 5.7. It is still unknown whether (SNS) is well-posed or ill-posed from
Ḃ−2
n,q(Tn) to PḂ0

n,q(Tn) when 1 ≤ q ≤ 2. However, since Ḃ0
n,2(Tn) ↪→ Ln(Tn) (see Xiong-

Xu-Yin[29]), we can show the well-posedness of (SNS) from Ḃ−2
n,q(Tn) to PLn(Tn), using

Hölder inequality instead of Proposition 5.3 in the proof of Theorem 5.4.

Only in this chapter, we let D0 ≡ D0(Tn) and Ḃs
p,q ≡ Ḃs

p,q(Tn) for simplicity .

5.2.1 Proof of the well-posedness

By the second section in this thesis, it suffices to show the lemma as follows in order
to prove Theorem 5.4.

Lemma 5.8. (1) Let n ≥ 2, s ∈ R and let 1 ≤ p, q ≤ ∞. Then the operator
L ≡ (−∆)−1P is bounded from Ḃs−2

p,q onto PḂs
p,q with the estimate

∥Lf∥Ḃs
p,q

≤ C∥f∥Ḃs−2
p,q
,

where C = C(n, s, p, q) is a constant.
(2) Let n ≥ 2, s ∈ R, and let 1 ≤ p, q ≤ ∞. Then the operator K ≡ −(−∆)−1P∇·

is bounded from Ḃs−1
p,q onto PḂs

p,q with the estimate

∥Kg∥Ḃs
p,q

≤ C∥g∥Ḃs−1
p,q
,
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where C = C(n, s, p, q) is a constant.

(3) Let n ≥ 3, and let 1 ≤ p < n, 1 ≤ q ≤ ∞. Then for u, v ∈ Ḃ
−1+n

p
p,q , we have

u⊗ v ∈ Ḃ
−2+n

p
p,q with the estimate

∥u⊗ v∥
Ḃ

−2+n
p

p,q

≤ C∥u∥
Ḃ

−1+n
p

p,q

∥v∥
Ḃ

−1+n
p

p,q

,

where C = C(n, p, q) is a constant.

Proof of Lemma 5.8. Since the projection P is defined as a matrix-valued operator
P = (Pjk)1≤j,k≤n with Pjk ≡ δjk + RjRk and the bilinear form K can be written as
(3.9), we can prove (1) and (2) of Lemma 5.8 by the boundedness of the Riesz potential
and Riesz transforms. Now let us show (3).

Since n ≥ 3, we can take p0 satisfying 1 < p0 < min{p, n/2}. Moreover, since p < n,
we can choose p1 and p2 as

1

p0
=

1

p1
+

1

p2
, p1 > p, p2 > n

by choosing p0 properly. Indeed, if p < n/2, then we should let p0 = p/(1 + ε) with
small 0 < ε < p/n so that p0 > 1 and

1

p0
=

1

p
+
ε

p
<

1

p
+

1

n
.

On the other hand, if n/2 ≤ p, then we should let p0 = n/(2 + ε) with small 0 < ε <
(n/p)− 1 so that p0 > 1 and

1

p0
=

1 + ε

n
+

1

n
<

1

p
+

1

n
.

From Proposition 5.2, Proposition 5.3 with s = −2+(n/p0) > 0 and α = 1−(n/p2) > 0,
and (5.6), we have

∥u⊗ v∥
Ḃ

−2+n
p

p,q

≤ C∥u⊗ v∥
Ḃ

−2+ n
p0

p0,q

≤ C

(
∥u∥

Ḃ
−2+n

p +1− n
p2

p1,q

∥v∥
Ḃ

−1+ n
p2

p2,∞
+ ∥u∥

Ḃ
−1+ n

p2
p2,∞

∥v∥
Ḃ

−2+n
p +1− n

p2
p1,q

)
≤ C∥u∥

Ḃ
−1+n

p
p,q

∥v∥
Ḃ

−1+n
p

p,q

,

which proves (3) of Lemma 5.8.

Remark 5.9. We can show that Theorem 5.4 also holds for D = Ḃ−2
n,q and S = PLn

when 1 ≤ q ≤ 2. Indeed, since Ḃ0
n,q ↪→ Ln (see Xiong-Xu-Yin[29] for example), we have

∥Lf∥Ln ≤ C∥(−∆)−1Pf∥Ḃ0
n,q

≤ C∥f∥Ḃ−2
n,q
.
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Moreover, by Hölder inequality, we obtain

∥K(u⊗ v)∥Ln ≤ C∥u⊗ v∥Ḣ−1,n

≤ C∥u⊗ v∥
L

n
2

≤ C∥u∥Ln∥v∥Ln ,

where
Ḣs,p = Ḣs,p(Tn) ≡ {f ∈ D′

0; ∥f∥Hs,p ≡ ∥(−∆)
s
2∥Lp(Tn) <∞}

denotes the homogeneous toroidal potential space and we have used the boundedness
of the Riesz transform on there.

5.2.2 Proof of the ill-posedness

For the proof of Theorem 5.5, we use a parameterized function defined by

fQ,r(x) ≡
Q√
Γ(r)

r∑
s=1

s−
1
2h2s {cos(hsx1)e2 + cos(hsx1 − x2)e3} , x = (x1, . . . , xn) ∈ Tn,

where Q > 0 and r ∈ N are parameters, hs ≡ 2s
2
, and

Γ(r) ≡
r∑
s=1

s−1

denotes a partial harmonic series. We should note here that Γ(r) → ∞ as r → ∞.
This function fQ,r is similar to the parameterized initial data proposed by Yoneda [27]
on the topic of ill-posedness of non-stationary Navier-Stokes equations in Rn.

Now let us construct a solution of (rSNS) with an external force f = fQ,r. As similar
to (2.19), we define again the approximative sequence {uj}j∈N to the solution of (rSNS)
with f = fQ,r as {

u1 ≡ LfQ,r,

uj ≡ u1 +B(uj−1, uj−1), j ≥ 2.

Moreover, we rewrite these uj as forms of series in accordance with Sawada [17]. Let
v1 ≡ u1,

v2 ≡ B(u1, u1) = B(v1, v1),

vk ≡ B(uk−1, uk−1)−B(uk−2, uk−2), k ≥ 3.

(5.9)

Obviously, it holds

uj =

j∑
k=1

vk, j ≥ 1. (5.10)

As for fQ,r and {vk}k∈N, we can show the following key lemma.
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Lemma 5.10. Let {vk}k∈N be as (5.9), and suppose that n < p̃ ≤ ∞ and 2 < q̃ ≤ ∞.
Then it holds that div vk = 0 for all k ≥ 1. In addition, we have the following estimates.

∥fQ,r∥Ḃ−2
n,q̃
, ∥fQ,r∥

Ḃ
−3+n

p̃
p̃,1

≤ C
Q√
Γ(r)

, for all r, Q > 1, (5.11)

∥v1∥Ḃ0
n,q̃
, ∥v1∥

Ḃ
−1+n

p̃
p̃,1

≤ C
Q√
Γ(r)

for all r,Q > 1, (5.12)

C−1Q2 ≤ ∥v2∥Ḃ−1
∞,∞

≤ ∥v2∥Ḃ0
n,1

≤ CQ2 if r ≫ Q, (5.13)

∥vk∥Ḃ0
n,1
, ∥vk∥L∞ ≤ CQ2

(
Q√
Γ(r)

)k−2

for all k ≥ 3, if r ≫ Q, (5.14)

where C > 0 denotes a global constant which depends only on n, p̃, and q̃.
For the moment, let us assume this lemma. Once we fix Q and r with

Q√
Γ(r)

< 1,

then by (5.14), there hold

∞∑
k=1

∥vk∥L∞ <∞,
∞∑
k=1

∥vk∥Ḃ0
n,1
<∞.

Hence, there exists u∗Q,r ∈ C(Tn) ∩ Ḃ0
n,1 such that

u∗Q,r = lim
j→∞

uj =
∞∑
k=1

vk in L∞ and Ḃ0
n,1 (5.15)

and div u∗Q,r = 0. Actually, this function u∗Q,r becomes a solution of (rSNS), which is
implied by the convergence of the bilinear form B(uj, uj) as the following lemma.

Lemma 5.11. Let r ≫ Q and let u∗ be a function defined by (5.15). Then it holds
that

lim
j→∞

B(uj, uj) = B(u∗Q,r, u
∗
Q,r) in L∞ and Ḃ0

n,1. (5.16)

Moreover, u = u∗Q,r satisfies the original equation (SNS) for all x ∈ Rn in the pointwise
sense, with f = fQ,r and a constant pressure Π.

By the above two lemmata, we can easily show Theorem 5.5 by the same method
as Theorem 4.1 in the last chapter. Here we should note that by (5.6), it suffices to
show Theorem 5.5 in the cases

(D,S) = (Ḃ−2
n,q̃, P Ḃ

0
n,q̃), (Ḃ

−3+n
p̃

p̃,1 , P Ḃ
−1+n

p̃

p̃,1 ), n < p̃ ≤ ∞, 2 < q̃ ≤ ∞.
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Now let us show Lemma 5.10-5.11. First of all, we prepare some properties about
the Riesz potential and the toroidal Besov norm of trigonometric functions as follows.

Proposition 5.12. (1) Let a ∈ Zn\{0} and let g1(x) ≡ cos(a · x), x ∈ Tn. Then

(−∆)
s
2 g1 = |a|sg1, s ∈ R, (5.17)

and for any 1 ≤ p, q ≤ ∞, we have

∥g1∥Ḃ0
p,q

≤ C, (5.18)

where C = C(p, q, n) is a constant.
(2) Let r ∈ N, α1, . . . , αr ∈ R, a1, . . . , ar ∈ Zn\{0}, and let

g2(x) ≡
r∑
s=1

αs cos(as · x), x ∈ Tn.

Suppose that the vectors a1, . . . , ar satisfy

|as| ̸= |at|,
|as|
|at|

/∈ {x ∈ R; 2−2 < |x| < 22}, if s ̸= t. (5.19)

Then for any 1 ≤ p, q ≤ ∞, we have

∥g2∥Ḃ0
p,q

≤

C
{

r∑
s=1

|αs|q
} 1

q

, 1 ≤ q <∞,

C max
1≤s≤r

|αs|, q = ∞,

where C = C(p, q, n) is a constant.

Proof of Proposition 5.12. (1) Since g(x) = (eia·x + e−ia·x)/2, it holds that

FTng1(m) =

{
1
2
, m = ±a,

0, otherwise.

Therefore, considering the definition of the Riesz potential (−∆)
s
2 , we see

(−∆)
s
2 g1(x) =

∑
m∈Zn

|m|sFTng1(m)eim·x

= |a|s cos(a · x),

which implies (5.17). On the other hand, we can assume that ϕ in the definition of Ḃs
p,q

(see (5.1)) is a radial function. Then we have

(φj ∗ g1)(x) =
∑
m∈Zn

ϕj(m)FTng1(m)eim·x

= ϕj(a) cos(a · x), j ∈ Z.
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Since supp ϕj = {x ∈ Rn; 2j−1 < |x| < 2j+1}, there exist at most two indices j ∈ Z
such that ϕj(a) ̸≡ 0. Let j1 and j2 be such indices. Then since |ϕj| ≤ 1 uniformly, we
see that

∥g1∥Ḃ0
p,q

= (∥ϕj1(a) cos(a·))∥
q
Lp(Tn) + ∥ϕj2(a) cos(a·))∥

q
Lp(Tn))

1
q < C.

(2) For each s = 1, . . . , r, there exist at most two indices j ∈ Z such that

(φj ∗ cos(as·)(x) = ϕj(as) cos(as · x) ̸≡ 0.

Let j(s) and j′(s) be such indices. On the other hand, it is seen from the assumption
(5.19) that there exist at most one vector as for each j ∈ Z such that ϕj(as) ̸≡ 0. Hence,
since |ϕj| ≤ 1 uniformly, we can see that

∥g2∥qḂ0
p,q

=
∑
j∈Z

∥φj ∗ g2∥qLp(Tn)

=
r∑
s=1

(
|αsϕj(s)|q∥ cos(as·)∥qLp(Tn) + |αsϕj′(s)|q∥ cos(as·)∥qLp(Tn)

)
≤ C

r∑
s=1

|αs|q

for any 1 ≤ q <∞, and that

∥g2∥Ḃ0
p,∞

= sup
j∈Z

∥φj ∗ g2∥L∞(Tn)

≤ max
1≤s≤r

|αs|.

This completes the proof of Proposition 5.12.

We should note here that the above proposition also holds for sin(·) instead of cos(·).

Proof of Lemma 5.10. We prove Lemma 5.10 by three steps.

Step 1. Estimates of fQ,r and v1. It is clear that fQ,r ∈ D0 and div fQ,r = 0. Hence,
it is seen from Proposition 5.12 (1) that

v1 = (−∆)−1fQ,r

=
Q√
Γ(r)

r∑
s=1

s−
1
2 {cos(hsx1)e2 + ks cos(hsx1 − x2)e3} ,

where ks ≡ h2s/(h
2
s + 1), and that div v1 = 0. Since hs > ht and hs/ht ≥ 22 for any
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s > t, we obtain the estimates from Proposition 5.2 (3) and Proposition 5.12 (2) as

∥fQ,r∥Ḃ−2
n,q̃

= ∥v1∥Ḃ0
n,q̃

≤ C
Q√
Γ(r)

(
r∑
s=1

s−
q̃
2

) 1
q

≤ C
Q√
Γ(r)

and

∥fQ,r∥
Ḃ

−3+n
p̃

p̃,1

= ∥v1∥
Ḃ

−1+n
p̃

p̃,1

= ∥(−∆)
1
2
(−1+n

p̃
)v1∥Ḃ0

p̃,1

≤ C
Q√
Γ(r)

r∑
s=1

|hs|
1
2
(−1+n

p̃
)

≤ C
Q√
Γ(r)

,

which prove (5.11) and (5.12).

Step 2. Estimates of v2. In what follows, let v
(i)
k be the i-th component of vk. It is

easily seen that

v1 · ∇v1 = v
(2)
1 · ∂2v1

=

(
Q√
Γ(r)

r∑
s=1

s−
1
2 cos(hsx1)

)
Q√
Γ(r)

r∑
t=1

t−
1
2kt sin(htx1 − x2)e3

=
Q2

Γ(r)

r∑
s=1

s−1ks

(
−1

2
sinx2

)
e3

+
Q2

Γ(r)

r∑
s=1

s−1ks

(
1

2
sin(2hsx1 − x2)

)
e3

+
Q2

Γ(r)

r∑
s,t=1
s ̸=t

s−
1
2 t−

1
2kt

1

2
{sin((hs + ht)x1 − x2)− sin((hs − ht)x1 + x2)} e3,
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Therefore, ∇ · (v1 · ∇v1) = 0, and

v2 = −(−∆)−1(v1 · ∇v1)

=
Q2

Γ(r)

r∑
s=1

s−1ks

(
1

2
sinx2

)
e3

+
Q2

Γ(r)

r∑
s=1

s−1ks
1

4h2s + 1

(
−1

2
sin(2hsx1 − x2)

)
e3

+
Q2

Γ(r)

r∑
s,t=1
s ̸=t

s−
1
2 t−

1
2kt

1

2

{
−ls,t sin((hs + ht)x1 − x2) + l̃s,t sin((hs − ht)x1 + x2)

}
e3

≡ N1 +N2 +N3,

where

ls,t ≡
1

(hs + ht)2 + 1
, l̃s,t ≡

1

(hs − ht)2 + 1
.

Since 1/2 < ks < 1 for every s = 1, . . . , r, we have

∥N1∥Ḃ0
n,1

≤ 1

2

Q2

Γ(r)

(
r∑
s=1

s−1

)
∥ϕ(e2) sin x2∥Ln(Tn)

≤ CQ2,

while

∥N1∥Ḃ−1
∞,∞

≥ 1

4

Q2

Γ(r)

(
r∑
s=1

s−1

)
∥ϕ(e2) sin x2∥L∞(Tn)

≥ CQ2.

Moreover, by Proposition 5.12 (1), we have

∥N2∥Ḃ0
n,1

≤ 1

2

Q2

Γ(r)

r∑
s=1

(4h2s + 1)−1

≤ C
Q2

Γ(r)
.

In order to estimate N3, it suffices to estimate

Ñ3 ≡
Q2

Γ(r)

r∑
s=2

s−1∑
t=1

s−
1
2 t−

1
2
1

2

{
ls,t sin((hs + ht)x1 − x2)− l̃s,t sin((hs − ht)x1 + x2)

}
e3

by the symmetry of s and t. Since

ls,t ≤ h−2
s , l̃s,t ≤

1

hs(hs − 2ht)
≤ 2h−2

s , ∀t < s,
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we can see from Proposition 5.12 (1) that

∥Ñ3∥Ḃ0
n,1

≤ C
Q2

Γ(r)

r∑
s=2

s−
1
2h−2

s (s− 1)

≤ C
Q2

Γ(r)
.

Therefore, if r ≫ Q, then there hold from the estimates of N1, N2, and N3 that

∥v2∥Ḃ0
n,1

≤
∑
i=1,2,3

∥Ni∥Ḃ0
n,1

≤ CQ2,

and that

∥v2∥Ḃ−1
∞,∞

≥ ∥v2∥Ḃ−1
∞,∞

−
∑
i=2,3

∥Ni∥Ḃ0
n,1

≥ CQ2,

which implies (5.13).

Step 3. Estimates of vk, k ≥ 3. By the induction, we can see that

vk ∈ D0, div vk = 0, ∀k ≥ 1, (5.20)

vk = B(v1, vk−1) = θke3, ∀k ≥ 2, (5.21)

where
θk ≡ −(−∆)−1

(
v
(2)
1 ∂2v

(3)
k−1

)
(5.22)

denotes a scalar-valued function depend only on x1 and x2. Indeed, we can see all of
the above (5.20)-(5.22) in a similar way to Proposition 4.6.

Now let us estimate v3. By (5.21), It suffices to estimate θ3. Since

v
(2)
1 ∂2N

(3)
1 =

(
Q√
Γ(r)

)3( r∑
s=1

s−
1
2 cos(hsx1)

)
r∑
t=1

t−1kt

(
−1

2
cosx2

)

= −1

4

(
Q√
Γ(r)

)3( r∑
t=1

t−1kt

)
r∑
s=1

s−
1
2 {cos(hsx1 + x2) + cos(hsx1 − x2)} ,

we have

θ3 = −(−∆)−1
(
v
(2)
1 ∂2(N

(3)
1 +N

(3)
2 +N

(3)
3 )
)

=
1

4

(
Q√
Γ(r)

)3( r∑
t=1

t−1kt

)
r∑
s=1

s−
1
2

1

h2s + 1
{cos(hsx1 + x2) + cos(hsx1 − x2)}+R3

≡ M3 +R3,
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where R3 ≡ −(−∆)−1
(
v
(2)
1 ∂2(N

(3)
2 +N

(3)
3 )
)
is a reminder term. ForM3, it is seen from

Proposition 5.12 (1) that

∥M3∥Ḃ0
n,1

≤ 1

4
C

Q3√
Γ(r)

r∑
s=1

h−2
s

≤ 1

4
C

Q3√
Γ(r)

and

∥M3∥L∞ ≤ 1

4
C

Q3√
Γ(r)

.

Moreover, it is easily seen by a similar calculation that R3 is small compared with the
main term M3. Hence, we have the estimate (5.14) for k = 3.

We next estimate v4 (θ4). It holds that

v
(2)
1 ∂2M3 =

1

4

(
Q√
Γ(r)

)4( r∑
s=1

s−
1
2 cos(hsx1)

)

×

(
r∑
l=1

l−1kl

)
r∑
t=1

t−
1
2

1

h2t + 1
{− sin(htx1 + x2) + sin(htx1 − x2)}

= −1

4

(
Q√
Γ(r)

)4( r∑
l=1

l−1kl

)
r∑
s=1

s−1 1

h2s + 1
sin x2

−1

8

(
Q√
Γ(r)

)4( r∑
l=1

l−1kl

)
r∑
s=1

s−1 1

h2s + 1
{sin(2hsx1 + x2)− sin(2hsx1 − x2)}

+R′
4,

where R′
4 is a reminder. Hence we have

θ4 = −(−∆)−1
(
v
(2)
1 ∂2(M3 +R3)

)
=

1

4

(
Q√
Γ(r)

)4( r∑
l=1

l−1kl

)
r∑
s=1

s−1 1

h2s + 1
sin x2

−1

8

(
Q√
Γ(r)

)4( r∑
l=1

l−1kl

)
r∑
s=1

s−1 1

h2s + 1

1

4h2s + 1
{sin(2hsx1 + x2)− sin(2hsx1 − x2)}

+R4

≡ M4 +R4,

where R4 ≡ −(−∆)−1(R′
4 + v

(2)
1 ∂2R3) is another reminder. Therefore, by a similar

calculation on v3, the norms of M4 are estimated as

∥M4∥Ḃ0
n,1

≤ 1

4
C

Q4

Γ(r)2
, ∥M4∥L∞ ≤ 1

4
C

Q4

Γ(r)2
,
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and so are that of R4. These estimates show (5.14) for k = 4.
From (5.17), (5.21), (5.22), and a similar calculation on trigonometric functions as

above, we see by induction that

θk =

(
1

2

)[ k+1
2 ]
(

Q√
Γ(r)

)k( r∑
l=1

l−1kl

)
M̃k(x) +Rk(x), k ≥ 3,

where [q] ≡ max {m ∈ N;m ≤ q}, each Rk denotes a small reminder, and M̃k has a
form as

M̃k(x) =


∑

s∈N:finite
γks cos(H

k
s · x) k is odd,∑

s∈N:finite
γ′ks sin x2 k is even,

with some coefficients γks , γ
′k
s and vectors Hk

s such that

Hk
σ = lkhse1 + σke2, lk ∈ N, σk ∈ {−1, 1},

|γks |, |γ′
k
s | ≤

1

h2s
, ∀k ≥ 3.

Hence we see that (5.14) holds for any k ≥ 3. This completes the proof of Lemma
5.10.
　

Proof of Lemma 5.11. From the calculation in the proof of Lemma 5.1, it is seen that
∂m2 vk can be estimated the same as (5.14) for any order m = 1, 2, . . .. Moreover, it
is also seen that for every order m = 1, 2, . . ., ∂m1 vk can be estimated as (5.14) if k is
large enough. Therefore, we see that u∗Q,r =

∑∞
k=1 vk belongs to D0 and is termwise

differentiable provided r ≫ Q. In addition, from the identity
∞∑
k=1

v
(2)
1 ∂2vk = −(−∆)

(
∞∑
k=1

−(−∆)−1v
(2)
1 ∂2vk

)

= (−∆)
∞∑
k=1

vk+1,

there holds

∥B(u∗Q,r, u
∗
Q,r)−B(uj, uj)∥L∞ =

∥∥∥∥∥B
(
v1,

∞∑
k=j+1

vk

)∥∥∥∥∥
L∞

=

∥∥∥∥∥−(−∆)−1v
(2)
1 ∂2

(
∞∑

k=j+1

vk

)∥∥∥∥∥
L∞

=

∥∥∥∥∥
∞∑

k=j+1

{
−(−∆)−1

(
v
(2)
1 ∂2vk

)}∥∥∥∥∥
L∞

≤
∞∑

k=j+1

∥vk+1∥L∞ → 0, as j → ∞.
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In the same way, it is also easily shown that B(uj, uj) → B(u∗Q,r, u
∗
Q,r) in Ḃ

−1
n,1 as j → ∞.

Finally, let us show that u = u∗Q,r =
∑∞

k=1 vk actually satisfies (SNS) with f = fQ,r
and ∇Π = 0 for all x ∈ Tn. Indeed, by termwise differentiation, we see that

−∆u∗Q,r(x) = −∆v1(x)−∆

(
∞∑
k=2

−(−∆)−1v1(x)∂2vk−1(x)

)

= fQ,r(x)−
∞∑
k=1

v1(x)∂2vk(x),

(u∗Q,r · ∇u∗Q,r)(x) = v1(x) · ∂2
∞∑
k=1

vk(x)

=
∞∑
k=1

v1(x)∂2vk(x).

Hence we obtain

−∆u∗Q,r(x) + (u∗Q,r · ∇u∗Q,r)(x) = fQ,r(x), x ∈ Tn.

This completes the proof of Lemma 5.11.





Chapter 6

Ill-posedness by Bejenaru-Tao method

From this chapter, we return to the problem on the well-posedness of (SNS) from

D = Ḃ
−3+n

p
p,q = Ḃ

−3+n
p

p,q (Rn) to S = Ḃ
−1+n

p
p,q = Ḃ

−1+n
p

p,q (Rn) in the whole space. As seen in
Chapter 4, the Bourgain-Pavlović method for the ill-posedness is applicable only when
p = ∞. Hence in this chapter, we approach this problem in the case n ≤ p < ∞ using
another method proposed by Bejenaru-Tao [2].

6.1 The important proposition by Bejenaru-Tao

Bejenaru-Tao [2] showed the following important proposition. Here we return to the
abstract problem on the equation (E) in Chapter 2.

Proposition 6.1. (Bejenaru-Tao[2]) Suppose that (E) is quantitatively well-posed
from (D, ∥ · ∥D) to (S, ∥ · ∥S). We define the nonlinear maps Am : D → S for m ∈ N byA1f ≡ Lf,

Amf ≡
∑

k,l≥1,k+l=m

B(Akf,Alf), n ≥ 2.

(1) Each Amf belongs to S and there exists a constant C > 0 such that

∥Amf∥S ≤ Cm∥f∥mD , ∀m ∈ N.

Moreover, a solution u ∈ BS(δ) of (E) for f ∈ BD(ε), which is obtained by the well-
posedness defined in Definition 2.5, is expressed as

u = u(f) =
∞∑
m=1

Amf in S.

(2) Suppose that D and S are given other norms ∥ ·∥D̃ and ∥ ·∥S̃, respectively, which
are weaker than D and S in the sense that

∥f∥D̃ ≤ C∥f∥D, ∥u∥S̃ ≤ C∥u∥S.

71
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Assume that the solution map f 7→ u of (E) given by Definition 2.5 is continuous from
(BD(ε), ∥ ·∥D̃) to (BS(δ), ∥ ·∥S̃). Then for every m ∈ N, Am : D → S is also continuous
from (BD(ε), ∥ · ∥D̃) to (BS(δ), ∥ · ∥S̃).

In the above, for example, (BD(ε), ∥ · ∥D̃) denotes the ball {f ∈ D; ∥f∥D < δ} equipped
with the weak norm ∥ · ∥D̃.

Remark 6.2 Suppose that the equation (E) is quantitatively well-posed from D to
S, and (D̃, ∥·∥D̃) and (S̃, ∥·∥S̃) are Banach spaces such that there hold the embeddings
D ↪→ D̃ and S ↪→ S̃. Then Proposition 6.1 means that if at least one of Am is
discontinuous from D̃ to S̃ for any small ε > 0, then the solution map of (E) becomes
discontinuous in such weaker spaces, which implies that the equation (E) is ill-posed
from D̃ to S̃. For the proof of Proposition 6.1, see Appendix B.

In order to apply this proposition for showing the ill-posedness of (rSNS), we re-
quire appropriate spaces D and S which guarantee the quantitatively well-posedness
of (rSNS). Actually, the well-posedness result stated in Proposition 3.1 by Kaneko-
Kozono-Shimizu [11] does not seem to be satisfactory for showing the ill-posedness in
the case n ≤ p < ∞ by Proposition 6.1. Hence, before stating our new ill-posedness
result, we should show the following:

Proposition 6.3. (Quantitatively well-posedness when p = n and 1 ≤ q ≤ 2) Let
n ≥ 3. Then (rSNS) is quantitatively well-posed from Ḣ−2,n to PLn, and in particular,
from Ḃ−2

n,q to PL
n if 1 ≤ q ≤ 2.

Indeed, by the boundedness of P (or Riesz transforms) in homogeneous Sobolev spaces,
we have

∥(−∆)−1Pf∥Ln = ∥Pf∥Ḣ−2,n ≤ C∥f∥Ḣ−2,n .

for all f ∈ Ḣ−2,n. Moreover, by the embedding L
n
2 ↪→ Ḣ−1,n and the Hölder inequality,

it holds that

∥(−∆)−1P∇ · (u⊗ v)∥Ln ≤ C∥u⊗ v∥Ḣ−1,n

≤ C∥u∥Ln∥v∥Ln

for all u, v ∈ PLn, which completes the proof of Proposition 6.3.

Remark 6.4 Actually, there are other previous results on the well-posedness in the
case p = n. For example, Bjorland-Brandolese-Iftimie-Schonbek [3] showed the well-
posedness with more general space of external forces. In fact, they proved that there
are constants ε, δ > 0 such that if f ∈ S ′ satisfies ∥(−∆)−1f∥Ln,∞ < ε (Ln,∞ denotes
the weak Ln space), then there exists a unique solution u ∈ BPLn,∞(δ) to (rSNS), which
belongs to Ln if and only if Pf ∈ Ḣ−2,n. In addition, Phan-Phuc [16] showed the
well-posedness in the largest critical space of external forces including Ḣ−2,n. However,
in this thesis, it suffices to consider Proposition 6.3 for our main purpose.
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6.2 Ill-posedness in the remaining cases

Our result now reads as follows:

Theorem 6.5. (Tsurumi [26]) Let n ≥ 3. Suppose that D and D̃ are two Banach
spaces with D ↪→ D̃ as either (1) or (2):

(1) D = Ḃ−2
n,1, D̃ = Ḃ

−3+n
p

p,q with n < p ≤ ∞ and 1 ≤ q ≤ ∞,

(2) D = Ḃ−2
n,2, D̃ = Ḃ−2

n,q with 2 < q ≤ ∞.

Let ε, δ > 0 be constants appearing in Definition 2.5 which guarantee the well-posedness
of (rSNS) from D to PLn (see Proposition 6.3), and take 0 < η < ε arbitrarily. Then
the solution map

f ∈ (BD(η), ∥ · ∥D̃) 7→ u ∈ (BPLn(δ), ∥ · ∥Ḃ−1
∞,∞

)

is discontinuous, where (BD(η), ∥ · ∥D̃) and (BPLn(δ), ∥ · ∥Ḃ−1
∞,∞

) denote the ball BD(η)

equipped with the D̃ topology and BPLn(δ) with the Ḃ−1
∞,∞ topology, respectively. In other

words, (rSNS) is ill-posed from D̃ to PḂ−1
∞,∞.

Remark 6.6. Suppose that D and D̃ are as the above theorem. We now arbitrarily
choose a sequence {gN}N∈N such that supN∈N ∥gN∥D < ε. Then by Proposition 6.3,
there exists a unique solution vN ∈ PLn for each gN . In addition, if gN → 0 in D, then
we see vN → 0 in PLn by the well-posedness (continuity of the solution map). Theorem
6.5 means, however, that the weaker convergence gN → 0 in D̃ cannot sufficiently
guarantee vN → 0 even in the weakest scaling invariant norm Ḃ−1

∞,∞.

Remark 6.7. Actually, as seen in Lemma 6.9, we will show Theorem 6.5 by construct-
ing a sequence {fN}N∈N of external forces with ∥fN∥D̃ → 0 such that the corresponding
sequence {uN}N∈N of solutions does not converges to zero in Ḃ−1

∞,∞. Hence we can eas-
ily see by Proposition 2.1 (4) that we can also show Theorem 6.5 for the homogeneous
Triebel-Lizorkin spaces with the same exponents. Indeed, in the case (1), we consider
the embedding

Ḃ
−3+n

p

p,1 ↪→ Ḟ
−3+n

p
p,q

for n < p ≤ ∞ and 1 ≤ q ≤ ∞, while in the case (2) with 2 < q ≤ ∞, take
2 < r < min{n, q} and consider the embedding

Ḃ−2
n,r ↪→ Ḟ−2

n,q .

Then together with the isomorphism Ḃ−1
∞,∞

∼= Ḟ−1
∞,∞, we see that there holds Theorem

6.5 with Besov spaces replaced by Triebel-Lizorkin ones.
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Remark 6.8. It is still unknown whether or not Theorem 6.5 would hold in the case
n = 2. Actually, in R2, even Proposition 6.3 has not been proved for any indices p and
q. Indeed, for the well-posedness, it is hard to show the bilinear estimate

∥(−∆)−1P∇ · (u⊗ v)∥
Ḃ

−1+ 2
p

p,q (R2)
≤ C∥u∥

Ḃ
−1+ 2

p
p,q (R2)

∥v∥
Ḃ

−1+ 2
p

p,q (R2)
.

On the other hand, to show the ill-posedness, we require external forces having at least
three components (see the proof in the next section).

Proof of Theorem 6.5. By Proposition 6.1 and Proposition 6.3, it suffices to show the
following lemma in order to prove Theorem 6.5.

Lemma 6.9. Let n ≥ 3. Suppose that D and D̃ are two spaces with D ↪→ D̃ as either
(1) or (2) of Theorem 6.5, and η > 0 is a constant given in that theorem. Then there
exists a sequence {fN}N∈N of external forces and a constant C = C(η) > 0 satisfying
the following (i), (ii) and (iii):

(i) supN∈N ∥fN∥D < η,

(ii) ∥fN∥D̃ → 0 as N → ∞,

(iii) infN∈N ∥A2(fN)∥Ḃ−1
∞,∞

= infN∈N ∥B(LfN , LfN)∥Ḃ−1
∞,∞

> C.

　

Proof of Lemma 6.9. We first take ψ ∈ S as

supp(Fψ) = {ξ ∈ Rn; |ξ| ≤ 1}, Fψ(ξ) > 0 in {ξ ∈ Rn; |ξ| < 1}, (6.1)

and we define
Ψ(j)
m ≡ (−∆)

{
ψxj cos(mx1)

}
, j = 2, 3, m ∈ N,

where ψxj ≡
∂ψ
∂xj

. Using this function, we construct {fN}N∈N differently in the case (1)

and (2) of Theorem 6.5.

Step 1. The case (1) : D = Ḃ−2
n,1, D̃ = Ḃ

−3+n
p

p,q with n < p ≤ ∞ and 1 ≤ q ≤ ∞. We
define a parametrized vector-valued function as

gλ,M ≡ λ{e2Ψ(3)
M − e3Ψ

(2)
M }, λ > 0, M ≥ 100,

This function is inspired by a initial data sequence proposed by Bourgain-Pavlović [5].
It is clearly seen that div gλ,M = 0 and hence Pgλ,M = gλ,M . Therefore, we have

Lgλ,M = (−∆)−1gλ,M

= λ cos(Mx1){e2ψx3(x)− e3ψx2(x)}.
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Now let us consider the estimate of gλ,M . We recall {φj}j∈Z in the definition of Besov
spaces (see (2.3)-(2.4)). Since

F [ψxj cos(Mx1)](ξ) = −1

2
iξj{Fψ(ξ −Me1) + Fψ(ξ +Me1)}, j = 2, 3,

we see that there exist at most three indices j ∈ Z such that φj ∗ Lgλ,M ̸≡ 0. Indeed,
such indices must satisfy

{ξ ∈ Rn; 2j−1 ≤ |ξ| ≤ 2j+1} ∩ {ξ ∈ Rn;M − 1 ≤ |ξ| ≤M + 1} ≠ ∅,
that is,

M − 1

2
≤ 2j ≤ 2(M + 1).

Therefore, we obtain the estimates

∥gλ,M∥D = ∥gλ,M∥Ḃ−2
n,1

= ∥(−∆)−1gλ,M∥Ḃ0
n,1

=
∑
j∈Z

∥φj ∗ Lgλ,M∥Ln

≤ Cλ (6.2)

and

∥gλ,M∥D̃ = ∥gλ,M∥
Ḃ

−3+n
p

p,q

≤ ∥(−∆)−1gλ,M∥
Ḃ

−1+n
p

p,1

=
∑
j∈Z

2j(−1+n
p
)∥φj ∗ Lgλ,M∥Lp

≤ CλM−1+n
p → 0 as M → ∞ (6.3)

for any M ≥ 100, implied by −1 + n/p < 0. Here we have used the Young inequality,
the equality

∥φj∥L1 = ∥2njφ0(2
j·)∥L1

= ∥φ0∥L1 , ∀j ∈ Z, (6.4)

and the estimate

∥Lgλ,M∥Lp ≤ C∥∇ψ∥Lp , ∀λ > 0, ∀M ≥ 100, 1 ≤ ∀p ≤ ∞. (6.5)

We next calculate B(Lgλ,M , Lgλ,M). Since Lgλ,M has only two non-trivial components,
it is seen that

(Lgλ,M) · ∇(Lgλ,M) = (Lgλ,M)2
∂

∂x2
(Lgλ,M) + (Lgλ,M)3

∂

∂x3
(Lgλ,M)

= λ2 cos2(Mx1){e2(ψx3ψx2x3 − ψx2ψx23) + e3(−ψx3ψx22 + ψx2ψx2x3)}

≡ 1

2
λ2(e2Φ1 + e3Φ2) +

1

2
λ2(e2Φ1 cos(2Mx1) + e3Φ2 cos(2Mx1))

≡ I1 + I2.
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Here ψxα2 x
β
3
≡ ∂(α+β)

∂xα2 x
β
3

ψ and

Φ1 ≡ ψx3ψx2x3 − ψx2ψx23 , Φ2 ≡ −ψx3ψx22 + ψx2ψx2x3 . (6.6)

We note here that B(Lgλ,M , Lgλ,M) = −(−∆)−1P (I1+I2) belongs to PL
n (in particular,

to PḂ−1
∞,∞) by Proposition 6.3. We can show that PI1 ̸≡ 0 (see Appendix C), and that

(−∆)−1PI1 is not constant. Furthermore, since

supp(FI1) ⊂ supp(Fψ ∗ Fψ)
⊂ {ξ ∈ Rn; |ξ| ≤ 2}, (6.7)

we have

|((−∆)−1PI1)(x)| =

∣∣∣∣∣
∫
Rn

1

|ξ|2

(
δjk −

ξjξk
|ξ|2

)
1≤j,k≤n

FI1(ξ)e−ix·ξdξ

∣∣∣∣∣ ≤ C, ∀x ∈ Rn

for some constant C > 0 (where δjk denotes the Kronecker delta), which yields that
(−∆)−1PI1 does not belong to the polynomial space P . From this fact and (6.7), we
see that

∥(−∆)−1PI1∥Ḃ−1
∞,∞

= sup
j∈Z,j≤2

2−j∥φj ∗ (−∆)−1PI1∥L∞

≥ Cλ2 > 0

for some constant C > 0. On the other hand, it is seen that

supp(FI2) ⊂ supp((Fψ ∗ Fψ)(· ± 2Me1))

⊂ {ξ ∈ Rn; 2M − 2 ≤ |ξ| ≤ 2M + 2},

which yields φj ∗ ((−∆)−1PI2) ≡ 0 for any j ≥ 2. Therefore, we obtain the estimate
that

∥B(Lgλ,M , Lgλ,M)∥B−1
∞,∞

= sup
j∈Z

2−j∥φj ∗ (−∆)−1P (I1 + I2)∥L∞ (6.8)

≥ sup
j∈Z,j≤2

2−j∥φj ∗ (−∆)−1PI1∥L∞

≥ Cλ2

for any M ≥ 100.
Now for given η > 0, we can fix λ = λ0 so that

sup
M≥100

∥gλ0,M∥D < η

from (6.2). In addition, from (6.3) and (6.8), we see that a sequence {fN}N∈N defined
by

fN ≡ gλ0,N+100, N = 1, 2, 3, . . .
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satisfies (i), (ii), and (iii) of Lemma 6.9. This proves Lemma 6.9 in the case (1) of
Theorem 6.5.
　

Step 2. The case (2) : D = Ḃ−2
n,2, D̃ = Ḃ−2

n,q with 2 < q ≤ ∞. We define another
parametrized vector-valued function as

hλ,M ≡ λ√
Γ(M)

M∑
k=10

k−
1
2{e2Ψ(3)

2k
2 − e3Ψ

(2)

2k
2}, λ > 0, M ≥ 100,

where

Γ(M) ≡
M∑
k=10

k−1.

This function is inspired by a initial data sequence proposed by Yoneda [27]. As similar
to gλ,M , we see that div hλ,M = 0 and

Lhλ,M = (−∆)−1hλ,M

=
λ√
Γ(M)

M∑
k=10

k−
1
2 cos(2k

2

x1){e2ψx3(x)− e3ψx2(x)}

Let us consider the estimate of hλ,M . By a similar way to Step 1, we see that for each
k, there exist at most three indices j ∈ Z such that φj ∗ (ψxl cos(2k

2
x1)) ̸≡ 0 (l = 2, 3),

which must satisfy
2k

2 − 1

2
≤ 2j ≤ 2(2k

2

+ 1).

Moreover, the set {2k2}k≥10 is so discrete that we see

{j ∈ Z;φj ∗ (ψxl cos(2k
2
1x1)) ̸≡ 0} ∩ {j ∈ Z;φj ∗ (ψxl cos(2k

2
2x1)) ̸≡ 0} = ∅

for any k1, k2 ≥ 10 with k1 ̸= k2. Hence we obtain the estimate

∥hλ,M∥Ḃ−2
n,q

= ∥(−∆)−1hλ,M∥Ḃ0
n,q

=

{∑
j∈Z

∥φj ∗ (−∆)−1hλ,M∥qLn

} 1
q

≤ Cλ√
Γ(M)

{
M∑
k=10

k−
q
2

} 1
q

≤

{
Cλ, q = 2,
Cλ√
Γ(M)

, 2 < q ≤ ∞.
(6.9)

Here we have used the Young inequality, (6.4), and (6.5), and should notice that

lim
M→∞

M∑
k=10

k−
q
2 <∞, if 2 < q ≤ ∞.
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Since Γ(M) → ∞ as M → ∞, we see from (6.9) that

∥hλ,M∥Ḃ−2
n,q

→ 0 as M → ∞, if 2 < q ≤ ∞. (6.10)

We next calculate B(Lhλ,M , Lhλ,M). It is seen that

(Lhλ,M) · ∇(Lhλ,M)

= (Lhλ,M)2
∂

∂x2
(Lhλ,M) + (Lhλ,M)3

∂

∂x3
(Lhλ,M)

=
λ2

Γ(M)
(e2Φ1 + e3Φ2)

N∑
k,l=10

k−
1
2 l−

1
2 cos(2k

2

x1) cos(2
l2x1)

=
λ2

Γ(M)
(e2Φ1 + e3Φ2)


M∑
k=10

k−1 cos2(2k
2

x1) +
∑

10≤k,l≤M
k ̸=l

k−
1
2 l−

1
2 cos(2k

2

x1) cos(2
l2x1)


=
λ2

2
(e2Φ1 + e3Φ2)

+
λ2

2Γ(M)
(e2Φ1 + e3Φ2)

M∑
k=10

k−1 cos(2k
2+1x1)

+
λ2

2Γ(M)
(e2Φ1 + e3Φ2)


∑

10≤k,l≤M
k ̸=l

k−
1
2 l−

1
2 cos((2k

2

+ 2l
2

)x1) + cos((2k
2 − 2l

2

)x1)


≡ J1 + J2 + J3,

where Φ1 and Φ2 are as (6.6). Since the above coefficients 2k
2+1, 2k

2
+2l

2
and |2k2 −2l

2 |
are large enough, we see

φj ∗ (−∆)−1P (J1 + J2) ≡ φj ∗ (−∆)−1PJ1, ∀j ≤ 2.

Hence, by a similar way to the argument on I1 and I2 in Step 1, we obtain

∥B(Lhλ,M , Lhλ,M)∥Ḃ−1
∞,∞

≥ ∥(−∆)−1PJ1∥Ḃ−1
∞,∞

≥ Cλ2 > 0. (6.11)

Now for given η > 0, we can fix λ = λ0 so that

sup
M≥100

∥hλ0,M∥Ḃ0
n,2
< η

from (6.9). In addition, from (6.10) and (6.11), we see that a sequence {fN}N∈N defined
by

fN ≡ hλ0,N+100, N = 1, 2, 3, . . .
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satisfies
sup
N∈N

∥fN∥Ḃ0
n,2
< η, lim

N→∞
∥fN∥Ḃ0

n,q
= 0 if 2 < q ≤ ∞,

and
inf
N∈N

∥B(LfN , LfN)∥Ḃ−1
∞,∞

≥ Cλ20.

This proves Lemma 6.9 in the case (2) of Theorem 6.5, and hence the proof of Lemma
6.9 is completed.

By the foregoing, the whole proof of Theorem 6.5 has been completed.





Chapter 7

Counter-example for the product estimate

In this chapter, we treat some by-products produced by our studies in Chapter 2-6.

Here we reconsider the factor causing the ill-posedness of (rSNS). Let D = Ḃ
−3+n

p
p,q

and S = PḂ
−1+n

p
p,q again. As seen in Chapter 2, to see the well-posedness, it suffices to

show (2.17) and (2.18) with

Lf ≡ (−∆)−1Pf, B(u, v) ≡ −(−∆)−1P (u · ∇v).

Among these, the estimate (2.17) of L : D → S always holds for any 1 ≤ p, q ≤ ∞
by Proposition 2.1. On the other hand, in order to show (2.18), we should use the
paraproduct estimate in Proposition 3.7. In fact, for the well-posedness, the restriction
of p, 1 ≤ p < n stems from that of s, s > 0 in Proposition 3.7 (we should note here that
−1 + n/p > 0 when 1 ≤ p < n). On the other hand, we have showed the discontinuity

of the solution map f ∈ Ḃ
−3+n

p
p,q 7→ u ∈ PḂ

−1+n
p

p,q of (SNS) when p = n, 2 < q ≤ ∞
and n < p ≤ ∞, 1 ≤ q ≤ ∞ in the last chapter, which implies that (2.18) does not
necessary hold in such conditions of p and q. Hence, it seems natural to expect that
Proposition 3.7 should fail necessarily for s ≤ 0.

Our result on counter-examples of the paraproduct estimate is as follows:

Theorem 7.1. (Tsurumi [22]) Let n ≥ 1, s ∈ R, and 1 ≤ p, p1, p2, p3, p4 ≤ ∞.
(1) Suppose that the exponents s1, s2, s3, s4 ∈ R satisfy s1 + s2 < 0 and s3 + s4 < 0.

Then for any M > 0, there exist functions f, g ∈ S0 such that fg ∈ S0(Rn) and

∥fg∥Ḃs
p,∞

≥M
(
∥f∥Ḃs1

p1,1
∥g∥Ḃs2

p2,1
+ ∥f∥Ḃs3

p3,1
∥g∥Ḃs4

p4,1

)
. (7.1)

(2) Suppose that the exponents 1 ≤ q1, q2, q3, q4 ≤ ∞ satisfy

2 ≤ q1, q2, q3, q4 ≤ ∞, max{q1, q2} > 2, max{q3, q4} > 2.

Then for any M > 0, there exist functions f, g ∈ S0 such that fg ∈ S0(Rn) and

∥fg∥Ḃs
p,∞

≥M
(
∥f∥Ḃ0

p1,q1
∥g∥Ḃ0

p2,q2
+ ∥f∥Ḃ0

p3,q3
∥g∥Ḃ0

p4,q4

)
. (7.2)
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As can be seen in the assumption of Theorem 7.1, we can choose s ∈ R and 1 ≤
p, p1, p2, p3, p4 ≤ ∞ independently. In particular, those indices do not have to satisfy
1/p = 1/p1 + 1/p2 = 1/p3 + 1/p4.

Corollary 7.2. (1) The inequality (3.2) is invalid in the case (i) or (ii) as follows.

(i) s < 0, α ∈ R, β ∈ R, 1 ≤ p, q ≤ ∞,

(ii) s = α = β = 0, 1 ≤ p ≤ ∞, 2 ≤ q ≤ ∞.

(2) The inequality (3.3) is invalid in the case (i) or (ii) as follows.

(i) s < 0, 1 ≤ p, q ≤ ∞,

(ii) s = 0, 2 ≤ p <∞, 2 < q ≤ ∞.

　

Proof of Corollary 7.2 from Theorem 7.1. (1) In Theorem 7.1, take

s1 = s+ α, s2 = −α, s3 = −β, s4 = s+ β,

and take p1, p2, p3, p4 as 1/p = 1/p1+1/p2 = 1/p3+1/p4. Then by using the embedding
in Proposition 2.1, we have the claim in the case (i) from (1) of Theorem 7.1, and in
the case (ii) from (2) of Theorem 7.1.

(2) In (1) of Theorem 7.1, take

s1 = s4 = s, s2 = s3 = 0,

and p1, p2, p3, p4 as 1/p = 1/p1 + 1/p2 = 1/p3 + 1/p4. Then by using the embedding in
Proposition 2.1, we have the claim in the case (i) from (1) of Theorem 7.1. To see (2)
of Corollary 7.2 in the case (ii), we should let

q1 = q4 = q > 2, q2 = q3 = 2,

and let p1, p2, p3, p4 as above in Theorem 7.1 (2). Since p2, p3 ≥ p ≥ 2, it is seen from
Proposition 2.1 that

Ḃ0
p2,2

↪→ Lp2 , Ḃ0
p3,2

↪→ Lp3 ,

which yields (2) of Corollary 7.2 in the case (ii).

Remark 6.3. Our result can be applied to the bilinear estimates in homogeneous
Triebel-Lizorkin spaces. In fact, under the condition s, α, β > 0, Kozono-Shimada [13]
showed the estimates

∥fg∥Ḟ s
p,q

≤ C
(
∥f∥Ḟ s+α

p1,q
∥g∥Ḟ−α

p2,∞
+ ∥f∥Ḟ−β

p3,∞
∥g∥Ḟ s+β

p4,q

)
(7.3)
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when 1 < p, q < ∞, 1 < p1, p4 < ∞, and 1 < p2, p3 ≤ ∞ so that 1/p = 1/p1 + 1/p2 =
1/p3 + 1/p4. Moreover, Iwabuchi-Nakamura [9] also showed (7.3) in the case p = ∞.

By Proposition 2.1 (4), Theorem 7.1 (1) gives counter examples of (7.3) when s < 0
and α, β ∈ R. Moreover, we see that Theorem 7.1 (2) also gives counter examples of
(7.3) when s = α = 0 provided 2 ≤ q ≤ p ≤ ∞, which is implied by Ḃs

p,q ↪→ Ḟ s
p,q if

q ≤ p. In addition, by the isomorphism

Ḣs,p ≃ Ḟ s
p,2, s ∈ R, 1 < p <∞,

our negative result can be applied to bilinear estimates in the homogeneous Sobolev
spaces Ḣs,p = {f ∈ S ′/P ; ∥f∥Ḣs,p ≡ ∥(−∆)

s
2f∥Lp <∞}.

Proof of Theorem 7.1. First of all, we choose Φ1,Φ2 ∈ S0 so that

supp(FΦ1) = {ξ ∈ Rn; 1 ≤ |ξ| ≤ 2}, FΦ1 > 0 in {ξ ∈ Rn; 1 < |ξ| < 2},

supp(FΦ2) = {ξ ∈ Rn; 3 ≤ |ξ| ≤ 4}, FΦ2 > 0 in {ξ ∈ Rn; 3 < |ξ| < 4}.

We define
Φ3(x) ≡ Φ1(x)Φ2(x).

Since

supp(FΦ1(η − ·)) = {ξ ∈ Rn; 1 ≤ |η − ξ| ≤ 2}
⊂ {ξ ∈ Rn; |η| − 2 ≤ |ξ| ≤ |η|+ 2},

for each η ∈ Rn, it is seen that FΦ1(η − ξ)FΦ2(ξ) = 0 for all ξ ∈ Rn if η satisfies

{ξ ∈ Rn; |η| − 2 ≤ |ξ| ≤ |η|+ 2} ∩ {ξ ∈ Rn; 3 ≤ |ξ| ≤ 4} = ∅,

that is, 0 ≤ |η| < 1 or |η| > 6. Hence we see that Φ3 ∈ S0 and

supp(FΦ3) = supp(FΦ1 ∗ FΦ2)

⊂ {ξ ∈ Rn; 1 ≤ |ξ| ≤ 6}.

Let s ∈ R, and 1 ≤ p, p1, p2, p3, p4 ≤ ∞. We prove Theorem 7.1 by two steps.

Step 1. (1) of Theorem 7.1. We choose parametrized functions fr, gr as

fr(x) ≡ Φ1(x) cos(rx1), gr(x) ≡ Φ2(x) cos(rx1)

for r > 100. We should note again here that the Fourier transform of cv(x) ≡ cos(v · x)
(v ∈ Rn\{0}) can be written as

Fcv(ξ) =
1

2
{δ(ξ − v) + δ(ξ + v)} ,
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where δ denotes the Dirac measure at the origin. Hence, we have

Ffr(ξ) = (FΦ1 ∗ Fcre1)(ξ)

=
1

2
{FΦ1(ξ − re1) + FΦ1(ξ + re1)} ,

and

Fgr(ξ) = (FΦ2 ∗ Fcre1)(ξ)

=
1

2
{FΦ2(ξ − re1) + FΦ2(ξ + re1)} ,

where e1 ≡ (1, 0, . . . , 0). Since

supp(FΦ1(· ± re1)) ⊂ {ξ ∈ Rn; r − 2 ≤ |ξ| ≤ r + 2},

there are at most 3 indices j ∈ Z such that φj ∗ fr ̸≡ 0, where φj are defined in (2.4).
Such indices should satisfy{

ξ ∈ Rn; 2j−1 ≤ |ξ| ≤ 2j+1
}
∩ {ξ ∈ Rn; r − 2 ≤ |ξ| ≤ r + 2} ≠ ∅

(recall also (2.3). Roughly, there should be 2j ∼ r). Moreover, by the Hausdorff-Young
inequality, it holds that

∥φj ∗ fr∥Lp ≤ ∥φj∥L1∥fr∥Lp

≤ ∥φ0∥L1∥Φ1∥Lp

for every 1 ≤ p ≤ ∞ and j ∈ Z. Here we have used the fact that ∥φj∥L1 = ∥φ0∥L1 for
every j ∈ Z, which is implied by φj(x) = 2njφ0(2

jx). Therefore, we have

∥fr∥Ḃsi
pi,1

=
∑
j∈Z

2jsi∥φj ∗ fr∥Lpi

≤ Crsi , i = 1, 3

with some constant C = C(n, s, pi). By a similar way, we can also see that

∥gr∥Ḃsi
pi,1

≤ Crsi , i = 2, 4.

Hence, we obtain the estimate

∥fr∥Ḃs1
p1,1

∥gr∥Ḃs2
p2,1

+ ∥fr∥Ḃs3
p3,1

∥gr∥Ḃs4
p4,1

≤ C(rs1+s2 + rs3+s4). (7.4)

On the other hand, we have

fr(x)gr(x) = Φ3(x) cos
2(rx1)

=
1

2
Φ3(x) +

1

2
Φ3(x) cos(2rx1)

≡ 1

2
Φ3(x) +

1

2
R(x),
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where R(x) ≡ Φ3(x) cos(2rx1). From the similar argument as above, it is seen that

supp(FR) ⊂ {ξ ∈ Rn; 2r − 6 ≤ |ξ| ≤ 2r + 6},

which implies φ0 ∗R ≡ 0 for r > 100. Therefore, we have

∥frgr∥Ḃs
p,∞

= sup
j∈Z

2sj∥φj ∗ frgr∥Lp

≥ 1

2
∥φ0 ∗ Φ3∥Lp . (7.5)

We should note here that ∥φ0 ∗ Φ3∥Lp > 0. Indeed, let ξ0 ≡ 3
2
e1. Then FΦ1(ξ0 −

η)FΦ2(η) > 0 in some neighborhood of η = 13
4
e1, which yields FΦ3(ξ0) > 0. Therefore,

ϕ(ξ)FΦ3(ξ) > 0 in some neighborhood of ξ = ξ0, which yields φ0 ∗ Φ3 ̸≡ 0.
Since s1+s2 < 0 and s3+s4 < 0, it is seen from (7.4) and (7.5) that for anyM > 0,

fr and gr satisfy (7.1) if we take r large enough so that the right hand side becomes
smaller than 1

2
∥φ0 ∗ Φ3∥Lp . This proves (1) of Theorem 7.1.

Step 2. (2) of Theorem 7.1. We choose parametrized functions f̃r, g̃r as

f̃r(x) ≡ Φ1(x)Kr(x), g̃r(x) ≡ Φ2(x)Kr(x)

for r > 100, where

Kr(x) ≡
1√
Γ(r)

r∑
l=10

l−
1
2 cos(2l

2

x1), Γ(r) =
r∑

l=10

l−1.

Let
Ψl(x) ≡ Φ1(x) cos(2

l2x1).

By a similar argument to that in Step 1, there are at most 3 indices j ∈ Z such that
φj ∗Ψl ̸≡ 0 for each l, which satisfy j ∼ 2l

2
. Moreover, since

supp(FΨl) = {ξ ∈ Rn; 2l
2 − 2 ≤ |ξ| ≤ 2l

2

+ 2},

it holds that

{j ∈ Z;φj ∗Ψl ̸≡ 0} ∩ {j ∈ Z;φj ∗Ψk ̸≡ 0} = ∅, if l ̸= k.

Hence, we have

∥f̃r∥Ḃ0
pi,qi

=
1√
Γ(r)

{∑
j∈Z

∥∥∥∥∥
r∑

l=10

l−
1
2 (φj ∗Ψl)

∥∥∥∥∥
qi

Lpi

} 1
qi

≤ C
1√
Γ(r)

{
r∑

l=10

l−
qi
2

} 1
qi

≤

{
C, if qi = 2,

C 1√
Γ(r)

, if 2 < qi ≤ ∞,
i = 1, 3,
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which is implied by
∥φj ∗Ψl∥Lpi ≤ ∥φ0∥L1∥Φ1∥Lpi

for all j ∈ Z and 10 ≤ l ≤ r. In a similar way, we also have

∥g̃r∥Ḃ0
pi,qi

≤

{
C, if qi = 2,

C 1√
Γ(r)

, if 2 < qi ≤ ∞,
i = 2, 4.

Since max{q1, q2} > 2, max{q3, q4} > 2, it is seen that

∥f̃r∥Ḃ0
p1,q1

∥g̃r∥Ḃ0
p2,q2

+ ∥f̃r∥Ḃ0
p3,q3

∥g̃r∥Ḃ0
p4,q4

≤ C
1√
Γ(r)

. (7.6)

We should note here that

lim
r→∞

1√
Γ(r)

= 0.

On the other hand, we have

f̃r(x)g̃r(x) = Φ3(x)K
2
r (x)

=
1

Γ(r)
Φ3(x)


r∑

l=10

l−1 cos2(2l
2

x1) +
∑

10≤l,k≤r
l ̸=k

l−
1
2k−

1
2 cos(2l

2

x1) cos(2
k2x1)


=

1

2
Φ3(x)

+
1

2
Φ3(x)

r∑
l=10

l−1 cos(2l
2+1x1)

+
1

2
Φ3(x)

∑
10≤l,k≤r
l ̸=k

l−
1
2k−

1
2

{
cos((2l

2

+ 2k
2

)x1) + cos((2l
2 − 2k

2

)x1)
}

≡ 1

2
Φ3(x) + R̃(x).

Since 2l
2+1, 2l

2
+2k

2
and |2l2 − 2k

2 | are large enough, there holds φ0 ∗ R̃(x) ≡ 0. Hence,
we have

∥f̃rg̃r∥Ḃs
p,∞

= sup
j∈Z

2sj∥φj ∗ f̃rg̃r∥Lp

≥ 1

2
∥φ0 ∗ Φ3∥Lp > 0. (7.7)

Therefore, it is seen from (7.6) and (7.7) that for any M > 0, f̃r and g̃r satisfy (7.2) if
we take r large enough. This proves (2) of Theorem 7.1.
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Appendix

For self-containment of this thesis, we prove here some propositions which we have
admitted in the main parts without proves for simplicity.

Appendix A

Here we state the proof of Proposition 3.7, the paraproduct estimates in homoge-
neous Besov spaces, according to Kaneko-Kozono-Shimizu [11].

Proof. (1) By method by Bony [4], a product of functions in S ′/P can be decomposed
as

f · g =
∑
k∈Z

(φk ∗ f)(Pkg) +
∑
k∈Z

(Pkf)(φk ∗ g) +
∑
k∈Z

∑
|l−k|≤2

(φk ∗ f)(φl ∗ g)

≡ h1 + h2 + h3, (A.1)

where Pkg ≡
∑k−3

l=−∞ φl ∗ g. First, we consider the case 1 ≤ q < ∞. From (2.3), (2.4),
and

supp F [(φk ∗ f)(Pkg)] ⊂ {ξ ∈ Rn; 2k−2 ≤ |ξ| ≤ 2k+2},

we have an equality that

∥h1∥Ḃs
p,q

=

{∑
j∈Z

(
2sj ∥φj ∗ h1∥Lp1

)q} 1
q

=

{∑
j∈Z

(
2sj

∥∥∥∥∥∑
k∈Z

φj ∗ ((φk ∗ f)(Pkg))

∥∥∥∥∥
Lp1

)q} 1
q

=

∑
j∈Z

2sj

∥∥∥∥∥∥
∑

|k−j|≤2

φj ∗ ((φk ∗ f)(Pkg))

∥∥∥∥∥∥
Lp

q
1
q

.
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From (3.1), the Young inequality, and the Hölder inequality we see that

∥φj ∗ ((φk ∗ f)(Pkg))∥Lp ≤ ∥F−1ϕ∥L1∥φk ∗ f∥Lp1∥Pkg∥Lp2

for every j, k ∈ Z. Therefore, by using the Minkowski inequality, we obtain that

∥h1∥Ḃs
p,q

≤ C

∑
j∈Z

2sj
∑

|k−j|≤2

∥φk ∗ f∥Lp1∥Pkg∥Lp2

q
1
q

= C

∑
j∈Z

2sj
∑
|l|≤2

∥φj+l ∗ f∥Lp1∥Pj+lg∥Lp2

q
1
q

≤ C
∑
|l|≤2

{∑
j∈Z

(
2sj∥φj+l ∗ f∥Lp1∥Pj+lg∥Lp2

)q} 1
q

= C
∑
|l|≤2

{∑
m∈Z

(
2sm2−sl∥φm ∗ f∥Lp1∥Pmg∥Lp2

)q} 1
q

= C
∑
|l|≤2

2−sl

{∑
m∈Z

(
2(s+α)m∥φm ∗ f∥Lp12−αm

∥∥∥∥∥
m−3∑
k=−∞

φk ∗ g

∥∥∥∥∥
Lp2

)q} 1
q

≤ C

{∑
m∈Z

(
2(s+α)m∥φm ∗ f∥Lp1

m−3∑
k=−∞

2−αk ∥φk ∗ g∥Lp2 2
−α(m−k)

)q} 1
q

≤ C sup
k∈Z

2−αk∥φk ∗ g∥Lp2

{∑
m∈Z

(
2(s+α)m∥φm ∗ f∥Lp1

∞∑
l=3

2−αl

)q} 1
q

≤ C∥g∥Ḃ−α
p2,∞

∥f∥Ḃs+α
p1,q

, (A.2)

where C = C(n, p, p1, p2, q, s, α). Here we should note that the final estimate in (A.2)
is valid since α > 0. For the case q = ∞, we see by a similar calculation to (A.2) that

∥h1∥Ḃs
p,∞

≤ C sup
k∈Z

2−αk∥φk ∗ g∥Lp2 sup
m∈Z

2(s+α)m∥φm ∗ f∥Lp1

∞∑
l=3

2−αl

≤ C∥g∥Ḃ−α
p2,∞

∥f∥Ḃs+α
p1,∞

,

with a constant C = C(n, p, p1, p2, s, α). Hence we have

∥h1∥Ḃs
p,q

≤ C∥g∥Ḃ−α
p2,∞

∥f∥Ḃs+α
p1,q

(A.3)

for every 1 ≤ q ≤ ∞ with C = C(n, p, p1, p2, q, s, α). Moreover, by the symmetry with
regard to f and g, we also have

∥h2∥Ḃs
p,q

≤ C∥f∥Ḃ−β
p3,∞

∥g∥Ḃs+β
p4,q

(A.4)
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for every 1 ≤ q ≤ ∞ with C = C(n, p, p3, p4, q, s, β).
Next, we estimate h3 in Ḃs

p,q. First we consider the case 1 ≤ q <∞. Since

supp F((φk ∗ f)(φl ∗ g)) ⊂
{
ξ ∈ Rn; |ξ| ≤ 2max{k,l}+2

}
,

we have

∥h3∥Ḃs
p,q

=

{∑
j∈Z

(
2sj ∥φj ∗ h3∥Lp

)q} 1
q

=

∑
j∈Z

2sj

∥∥∥∥∥∥
∑
k∈Z

∑
|l−k|≤2

φj ∗ ((φk ∗ f)(φl ∗ g))

∥∥∥∥∥∥
Lp

q
1
q

=

∑
j∈Z

2sj

∥∥∥∥∥∥
∑

max{k,l}≥j−2

∑
|l−k|≤2

φj ∗ ((φk ∗ f)(φl ∗ g))

∥∥∥∥∥∥
Lp

q
1
q

=

∑
j∈Z

2sj

∥∥∥∥∥∥
∑
r≥−4

∑
|t|≤2

φj ∗ ((φj+r ∗ f)(φj+r+t ∗ g))

∥∥∥∥∥∥
Lp

q
1
q

≤

∑
j∈Z

2sj
∑
r≥−4

∑
|t|≤2

∥φj ∗ ((φj+r ∗ f)(φj+r+t ∗ g))∥Lp

q
1
q

.

From (3.1), the Young inequality, and the Hölder inequality we see that

∥φj ∗ ((φj+r ∗ f)(φj+r+t ∗ g))∥Lp ≤ ∥F−1ϕ∥L1∥φj+r ∗ f∥Lp1∥φj+r+t ∗ g∥Lp2

for every j, r, t ∈ Z. Therefore, by using the Minkowski inequality, we obtain that

∥h3∥Ḃs
p,q

≤ C

∑
j∈Z

2sj
∑
r≥−4

∑
|t|≤2

∥φj+r ∗ f∥Lp1∥φj+r+t ∗ g∥Lp2

q
1
q

≤ C
∑
r≥−4

∑
|t|≤2

{∑
j∈Z

(
2sj∥φj+r ∗ f∥Lp1∥φj+r+t ∗ g∥Lp2

)q} 1
q

= C
∑
r≥−4

2−sr
∑
|t|≤2

2αt

{∑
j∈Z

(
2(s+α)(j+r)∥φj+r ∗ f∥Lp12−α(j+r+t)∥φj+r+t ∗ g∥Lp2

)q} 1
q

≤ C sup
l∈Z

2−αl∥φl ∗ g∥Lp2

∑
r≥−4

2−sr
∑
|t|≤2

2αt

{∑
k∈Z

(
2(s+α)k∥φk ∗ f∥Lp1

)q} 1
q

≤ C∥g∥Ḃ−α
p2,∞

∥f∥Ḃs+α
p1,q

, (A.5)
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where C = C(n, p, p1, p2, q, s, α). Here we should note that the final estimate in (A.5)
is valid since s > 0. For the case q = ∞, we see by a similar calculation to (A.5) that

∥h3∥Ḃs
p,∞

≤ C sup
l∈Z

2−αl∥φl ∗ g∥Lp2

∑
r≥−4

2−sr
∑
|t|≤2

2αt sup
k∈Z

2(s+α)k∥φk ∗ f∥Lp1

≤ C∥g∥Ḃ−α
p2,∞

∥f∥Ḃs+α
p1,∞

,

with a constant C = C(n, p, p1, p2, s, α). Hence we have

∥h3∥Ḃs
p,q

≤ C∥g∥Ḃ−α
p2,∞

∥f∥Ḃs+α
p1,q

(A.6)

for every 1 ≤ q ≤ ∞ with C = C(n, p, p1, p2, q, s, α).
From (A.3), (A.4), and (A.6), we obtain (1) of Proposition 3.7.

(2) We also use the paraproduct formula (A.1). We first consider the case 1 ≤ q <
∞. By a similar calculation in (A.2), we obtain

∥h1∥Ḃs
p,q

≤ C
∑
|l|≤2

2−sl

{∑
m∈Z

(2sm∥φm ∗ f∥Lp1∥Pmg∥Lp2 )q

} 1
q

≤ C sup
m∈Z

∥Pmg∥Lp2∥f∥Ḃs
p1,q
. (A.7)

Let ψ be as Fψ(ξ) = 1−
∑∞

j=1 ϕ(2
−jξ). We should note here that there holds

k∑
l=∞

φl(x) = 2knψ(2kx) ≡ ψ2−k(x)

for every k ∈ Z, where ψλ ≡ λ−nψ(λ−1·) for λ > 0. Therefore, we see∥∥∥∥∥
k∑

l=−∞

φl

∥∥∥∥∥
L1

= ∥ψ∥L1

and hence

∥Pmg∥Lp2 =

∥∥∥∥∥
m−3∑
l=−∞

φl ∗ g

∥∥∥∥∥
Lp2

= ∥ψ2m−3 ∗ g∥Lp2

≤ ∥ψ∥L1∥g∥Lp2

for every m ∈ Z. From this estimate and (A.7), we obtain the estimate

∥h1∥Ḃs
p,q

≤ C∥g∥Lp2∥f∥Ḃs
p1,q
, (A.8)
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where C = C(n, p, p1, p2, q, s). We can easily see that this is also true for the case
q = ∞. Moreover, by the symmetry, we have

∥h2∥Ḃs
p,q

≤ C∥f∥Lp3∥g∥Ḃs
p4,q
, (A.9)

where C = C(n, p, p3, p4, q, s).
For the estimate of h3 in Ḃs

p,q with 1 ≤ q < ∞, we have by a similar calculation to
(A.5) that

∥h3∥Ḃs
p,q

≤ C
∑
r≥−4

2−sr
∑
|t|≤2

{∑
j∈Z

(
2s(j+r)∥φj+r ∗ f∥Lp1∥φj+r+t ∗ g∥Lp2

)q} 1
q

≤ C sup
l∈Z

∥φl ∗ g∥Lp2

∑
r≥−4

2−sr

{∑
k∈Z

(2sk∥φk ∗ f∥Lp1 )q

} 1
q

≤ C∥g∥Lp2∥f∥p1,q (A.10)

where C = C(n, p, p1, p2, q, s), which is also valid for q = ∞.
From (A.8)-(A.10), we obtain (2) of Proposition 3.7.
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Appendix B

Here we sketch the proof of Proposition 6.1 (2) by Bejenaru-Tao [2]. First of all, we
should show the following estimate:

∥Amf − Amg∥S ≤ ∥f − g∥DCn(∥f∥D + ∥g∥D)m−1, ∀f, g ∈ D, ∀n ≥ 1, (B.1)

where C > 0 is a constant independent of f, g and m.

Proof of (B.1). By the symmetry and the equality

Am(λf) = λmAmf ∀f ∈ D, ∀λ ∈ R (B.2)

which is seen by induction, we can assume

f ̸= g, ∥f∥D ≤ ∥g∥D ≤ 1.

Indeed, if (B.1) holds under such an assumption, then for general f and g with ∥f∥D ≤
∥g∥D, we see that

∥g∥−mD ∥Amf − Amg∥S =

∥∥∥∥Am( f

∥g∥D

)
− Am

(
g

∥g∥D

)∥∥∥∥
S

≤ Cm

∥∥∥∥ f

∥g∥D
− g

∥g∥D

∥∥∥∥
D

≤ Cm∥g∥−1
D ∥f − g∥D

and hence we have (B.1) for f and g by considering ∥g∥D ≤ ∥f∥D + ∥g∥D. Moreover,
let t ≡ ∥f − g∥D. Then we see that

f = g + th, where h ≡ f − g

∥f − g∥D
, 0 < t ≤ 2.

Hence, it suffices to show

∥Am(g + th)− Am(g)∥S ≤ tCm. (B.3)

Now let us fix g and h. Then the function s 7→ Am(g+ sh)−Am(g) is a polynomial
of degree at most m having no constant. Therefore, this can be written as

Am(g + sh)− Am(g) =
m∑
j=1

Fjs
j (B.4)

with some F1, F2, . . . , Fn ∈ S. By the estimate in (1) of Proposition 6.1 (which is shown
by induction), we have

∥Am(g + th)− Am(g)∥S ≤ Cm(∥g∥D + s∥h∥D)m

≤ (4C)m
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for every 0 < s ≤ 2. Together with (B.4), it is seen that∥∥∥∥∥
m∑
j=1

Fjs
j

∥∥∥∥∥
S

≤ (4C)m. (B.5)

Since each Fj can be written as linear summation of {
∑m

j=1 Fjs
j
k}mk=1 ({sk}mk=1 ⊂ (0, 2]

are m-different data), we see that

∥Fj∥S ≤ Cm, ∀j = 1, 2, . . . ,m.

From this and (B.4), we conclude that

∥Am(g + sh)− Am(g)∥S ≤ s

∥∥∥∥∥
m∑
j=1

Fjs
j−1

∥∥∥∥∥
S

≤ sCm,

which yields (B.3).

Proof of Proposition 6.1 (2). Let us prove the claim by induction on m. More
precisely, we assume that Am′ : D → S is continuous from (BD(ε), ∥·∥D̃) to (BS(δ), ∥·∥S̃)
for every 1 ≤ m′ ≤ m− 1.

We take a sequence {fk}∞k=1 ⊂ BD(ε) such that fk → 0 in the norm ∥ · ∥D̃ and a
parameter 0 < λ ≤ 1 arbitrarily. Considering that the solution u can be written as
u = u(f) =

∑∞
m=1Amf , we see that

lim
k→∞

∥u(λfk)− u(λf)∥S̃ = 0,

and hence

lim
k→∞

∥∥∥∥∥
∞∑

m′=1

λm
′
(Am′fk − Am′f)

∥∥∥∥∥
S̃

= 0

by the equality (B.2). On the other hand, by the assumption of induction, there holds

lim
k→∞

∥∥∥∥∥
m−1∑
m′=1

λm
′
(Am′fk − Am′f)

∥∥∥∥∥
S̃

= 0.

Therefore, we see that

lim
k→∞

∥∥∥∥∥
∞∑

m′=m

λm
′−m(Am′fk − Am′f)

∥∥∥∥∥
S̃

= 0.
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Then by the triangle inequality and (B.1), we have

lim
k→∞

∥Amfk − Amf∥S̃ ≤
∞∑

m′=m+1

λm
′−m sup

k∈N
∥Am′fk − Am′f∥S̃

≤
∞∑

m′=m+1

λm
′−mCm′

sup
k∈N

(∥fk∥D + ∥f∥D)m
′

≤
∞∑

m′=m+1

λm
′−m(2Cε)m

′

Taking λ→ 0, we obtain
lim
k→∞

∥Amfk − Amf∥S̃ = 0,

which yields a continuity of Am from (BD(ε), ∥ · ∥D̃) to (BS(δ), ∥ · ∥S̃).
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Appendix C

Here let us prove PI1 ̸≡ 0 in Step 1 of the proof of Lemma 6.9, that is,

P (e2Φ1 + e3Φ2) ̸≡ 0 (C.1)

with Φ1 and Φ2 in (6.6), and ψ characterized by (6.1). We can assume here that ψ is
radial symmetric, i.e.,

ψ(x) = ψ(y), x, y ∈ Rn with |x| = |y|,

which implies that we can write ψ = ψ(r), r = r(x) = |x|.
Let us show (C.1) with a proof by contradiction. Suppose that

P (e2Φ1 + e3Φ2) ≡ 0, (C.2)

which yields that there exists some distribution F such that

e2Φ1 + e3Φ2 = ∇F.

Hence it must hold that
∇× (e2Φ1 + e3Φ2) ≡ 0.

Therefore, all of its components should vanish, and especially we have

∂Φ1

∂x1
≡ 0.

Actually, this yields Φ1 ≡ 0, i.e.,

ψx3ψx2x3 ≡ ψx2ψx23 (C.3)

Indeed, if not, there exists a point x∗ ∈ Rn such that Φ1(x
∗) ̸= 0 Then by ∂Φ1

∂x1
≡ 0,

we see that Φ1(x) = Φ1(x
∗) on the line {x ∈ Rn; xj = x∗j , ∀j = 2, 3, . . . , n}, which

contradicts Φ1 ∈ S. Now we let ψrα ≡ ∂αψ
∂rα

and rxα2 x
β
3
≡ ∂(α+β)

∂xα2 x
β
3

r. By a chain rule of

differentiation, we can rewrite (C.3) as

ψrrx3(ψr2rx2rx3 + ψrrx2x3) ≡ ψrrx2(ψr2rx2rx3 + ψrrx33).

Since ψ ∈ S\{0}, we have
rx3rx2x3 ≡ rx2rx33 .

On the other hand,

rx3rx2x3 =
x3
r

(
−x2x3

r3

)
, rx2rx33 =

x2
r

(
1

r
− x23
r3

)
,

which yields x2
r2

= 0 for any x ∈ Rn and it is not true. Therefore, we see that the
assumption (C.2) is false and hence (C.1) holds.
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