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Abstract.

In this doctoral thesis, we study on the stationary incompressible Navier-Stokes
equations in the whole space R™ for n > 3. In particular, we discuss here the well-
posedness problem of that equation, that is, the problem on the uniquely existence of
solutions continuously dependent on given small external forces.

We first review the previous result by Kaneko-Kozono-Shimizu [11] on the well-

. —342 .
posedness in the scaling invariant Besov space, from the space Bp, *(R™) of given

external forces to the solution space B;;JFE(R") with 1 < p <mnand 1l < ¢q < oo.
We then show the well-posedness in the homogeneous Triebel-Lizorkin space similarly.
Our method is inspired by the Kaneko-Kozono-Shimizu’s one, which is based on the
boundedness of the Riesz transform, the para-product estimate, and the embedding
theorem in homogeneous Besov and Triebel-Lizorkin spaces. Moreover, we can see
some advantages for the regularity of solutions in the case of Triebel-Lizorkin spaces
compared to Besov spaces.

We next consider the ill-posedness of the stationary Navier-Stokes equations in
weaker Besov spaces. It is proved that a sequence of bounded smooth external forces
whose B;O?:l norms converge to zero can produce a sequence of bounded smooth solutions

whose B;{OO norms never converge to zero. Such a discontinuity of the solution map
is shown by constructing the sequence of external forces, as similar to those of initial
data proposed by Bourgain-Pavlovi¢ [5] in the non-stationary problem. This method
proves to be applicable for the Besov spaces on the torus T" for n > 3, and we can also

show the ill-posedness for the space B; 2+;(T") of external forces when n < p < oo,
l1<g¢g<owandp=n,2<q< . .

Finally, we show the ill-posedness for the space B,, 3+;(R”) of external forces when
n<p<oo,1<qg<ooand p=n,2<qg<oo. In this case, we should apply not only
the method of Bourgain-Pavlovi¢ [5], but also that of Bejenaru-Tao [2] which studied on
the ill-posedness of the quadratic Schrodinger equation. In this way, together with the
well-posedness result by Kaneko-Kozono-Shimizu [11], our result may be regarded as
showing the borderline case between well-posedness and ill-posedness of the stationary
Navier-Stokes equations in scaling invariant Besov spaces.

As by-products of our study on the ill-posedness of the stationary Navier-Stokes
equations, we can construct counter-examples of the bilinear estimates of the Holder
type inequality in homogeneous Besov spaces showed by Bony [4], which has an impor-
tant role for the boundedness of the bilinear term in the Navier-Stokes equations. It is
proved that if we change the condition of indices denoting differential orders, then we
can find examples of functions that never satisfy the bilinear estimates. Such examples
can be constructed due to those used in the ill-posedness problem of the stationary
Navier-Stokes equations. This existence of counter-examples of this inequality seems to
explain not only our ill-posedness results, but also the ill-posedness of other nonlinear
equations in similar cases.
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Chapter 1

Introduction

In this doctoral thesis, we consider the stationary Navier-Stokes equations, which
describe the incompressible viscous fluid independent of the time development, in the
whole n-dimensional Euclid space R™ with n > 3;

_A . I =
. u+u-Vu+V 1, (SNS)
div u = 0.
Here u = u(z) = (ui(x),uz(x), ..., u,(z)) and II = II(x) denote the unknown velocity

vector field and the unknown pressure of the fluid at the point x € R", respectively,
while f = f(z) = (fi(z), fo(x), ..., fu(x)) is the given external force. In (SNS), —Au
denotes the viscosity term, and u - Vu = Z?Zl ujg—;j denotes the derivative of u in the
direction along itself.

For this stationary problem, there have been various studies on existence, unique-
ness, and regularity of weak and strong solutions to (SNS). For instance, Leray [15]
and Ladyzhenskaya [14] showed the existence of solutions to (SNS), and later on, Hey-
wood [8] constructed the solution of (SNS) as a limit of solutions of the non-stationary
Navier-Stokes equations having the same external force. Then Secchi [20] investigated
existence and regularity of solutions to (SNS) in L™ N L”, p > n. Moreover, Chen [6]
proved that for every smooth external force which is small in H~b% yields a unique
solution of (SNS) in LN H"%. Here H*" denotes the homogeneous Sobolev space with
the norm || f|| o = [[(—=A)2 f||z-. In this way, it has been important to find more gen-
eral spaces such that every small external force in these spaces yields a unique solution
of (SNS), and to find more regularity of solutions.

In this thesis, we focus on the well-posedness and ill-posedness problems on (SNS).
Roughly speaking, the well-posedness means the uniquely existence of solutions to
(SNS) continuously depending on given external forces. The precise definition of the
well-posedness is as follows:

Definition 1.1. Let (D, || - ||p) and (S,|| - ||s) be two Banach spaces (here D and S
indirectly denote the spaces of data (external forces) and of solutions, respectively). We
say that (SNS) is well-posed from D to S if there exist two constants £,6 > 0 such that
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(i) For any f € Bp(e), there exist a solution u € Bg(0) of (SNS),

(ii) If there exist two solutions uy,us € Bg(d) of (SNS) for one external force f €
Bp(e), then it holds that uy = ug in S,

(iii) The solution map f € (Bp(e),| - ||p) — w € (Bs(0), ] - |ls), which is well-defined
by (i) and (ii), is continuous,

where Bp(e) = {f € D; ||fllp <&} and Bs(d) = {u € S; ||ulls <d}. In addition,
(SNS) is ill-posed from D to S if (SNS) is not well-posed from D to S.

This notion of well-posedness corresponds to that of the global well-posedness with small
initial data in the Cauchy problem of time-evolution partial differential equations, such
as the non-stationary Navier-Stokes equations:

Oou—Au+u-Vu+VII=0 inzeR” te(0,00),
divu =0 inzeR™ te(0,00), (NNS)

uli=0 = a, in z € R".

In this case, D is the space of initial data a and we often let S = C([0,00); D). Until
now, the global well-posedness of (NNS) has been studied intensively. For example,
Koch-Tataru [12] showed the global well-posedness in the case D = BMO™'. On the
other hand, Bourgain-Pavlovié [5] showed the ill-posedness in the case D = Bo’ofoo (which
includes BMO™1). In fact, they proved the ill-posedness by showing the discontinuity
of the solution map. Later on, the ill-posedness in the case D = Bo_ofq, 1 <q < oo was
also showed by Yoneda [27] (2 < ¢ < 00) and Wang [28] (1 < ¢ < 2). These spaces play
a crucial role since these are scaling invariant for the initial data a in (NNS). In fact,
it is easily seen that if (u,II) is a solution to (NNS) with an initial datum a = a(z),
then so is (uy, Iy) = (Au(Az, \?t), \X>TI(Ax, A*t)) with an initial datum ay = Aa(A\z) for
every A > 0. We call the normed space (X, || - || x) scaling invariant for the initial data
if [|ax||x = ||a|lx. Together with (NNS), it seems to be an important problem to find
more general spaces D and S where (SNS) is well-posed.

We now deal with this problem in homogeneous Besov spaces B;’q = B;7Q(R") for
s € R, 1<p,qg<oo. Actually, in numerous present papers, the Navier-Stokes equations
have been handled in such spaces as above. In fact, we see some similarities between
B;q and homogeneous Sobolev spaces H5P. Indeed, s and p denote differentiability
and LP-integrability of functions, respectively. Furthermore, ¢ denotes the interpolation
exponent which enlarges the structure of Sobolev spaces. Namely, it holds that B;l —

HsP < B;OO for all s € R and 1 < p < oco. In this way, the study in the Besov spaces
is expected to generalize the previous studies in Sobolev spaces.

Recently, the well-posedness of (SNS) in homogeneous Besov spaces was well studied

by Kaneko-Kozono-Shimizu [11]. They showed that (SNS) is well-posed from D =
B;§+5 to S = B;;Jr; forall 1 < p <nand 1 < ¢ < oco. These spaces D and S

are scaling invariant for the external force f and the velocity u in (SNS) respectively.
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Indeed, if a triple {u,II, f} solves (SNS), so does {uy, Iy, fi} for every A > 0, with
ur(z) = Au(Az), Hy(z) = NII(Az), fa(x) = A f(Ax). Then we see that

[l = ([ fllp,  [lualls = flulls, ¥A>0.

Actually, their study in homogeneous Besov spaces enables us handle a larger class
of functions which never belong to the usual Sobolev space. For instance, in three
dimension case, we can solve (SNS) with a singular external force like the Dirac delta

function, which belongs to By, ZOJFE(R”) for 1 <p < 0.
In Chapter 3, we will review the study by Kaneko-Kozono-Shimizu [11], and will also

consider a similar problem in homogeneous Triebel-Lizorkin spaces F;  for comparison,

. 341
which are also generalization of Sobolev spaces. Actually, even in the case of D = Fp, 4

n

and S = ij; T , we can prove the well-posedness of (SNS), provided 1 < p < n and
1 < ¢q < o0, and provided p = n and 1 < ¢ < 2, by similar methods to Kaneko-
Kozono-Shimizu [11]. Indeed, we make use of the boundedness of the Riesz transform,
the product estimate, and the embedding theorem in homogeneous Besov and Triebel-
Lizorkin spaces. Furthermore, in the case of Triebel-Lizorkin space, we can see some
advantages in the sense of the regularity of solutions. More precisely, we will prove that

-1+

if a small external force in the above scaling invariant Triebel-Lizorkin spaces Fp, *
with 1 < p < n also belongs to H* 2" with s > 0 and 1 < r < 00, or with s = 0
and n/(n — 1) < r < co, then the solution belongs to H*". Although Kaneko-Kozono-
Shimizu [11] showed a similar result, some additional restrictions for s, r are required
in the case of Besov spaces. Such difference seems to stem from the facts as follows.
First, the Triebel-Lizorkin space can be identified with the usual Sobolev space, namely,
F’;Q =H" (1<p< o0), while in the Besov space, it is only known for the inclusion

relation, i.e., By, C Hs? C B;,oo‘ Second, there holds

Fo oy 52

o ey 1< pr<pys<oo, 1<q,r <00, 851 —n/pr=s3—n/ps.

We take the above ¢ and r arbitrarily, while in the Besov space, a similar embedding
holds only if ¢ < 7.
Now our main purpose in this thesis is to show that the well-posedness result by

Kaneko-Kozono-Shimizu [11] is almost optimal in the scaling invariant Besov spaces.
.34 PR
In other words, we will prove that (SNS) is ill-posed from D = Bp,qu” to S = Bp7q+p

forn<p<ooand 1< ¢g<o00,and for p=mn, 2 < q < .

In Chapter 4, we will first prove the ill-posedness in the extreme case p = oo, i.e.,
we will show that (SNS) is ill-posed from B2, to By}, for all 1 < ¢ < oo in the sense
that it occurs a lack of continuity of the solution map f +— u. More precisely, we
will construct a sequence {fy}nen of external forces with fy — 0 in B;o?l such that
there exists a solution uy of (SNS) for each fy, which never converges to zero in Bo_o{q

(and even in Bgoloo) For the proof, we apply the sequence of initial data used in the
study on the ill-posedness of (NNS) by Bourgain-Pavlovié¢ [5], to (SNS) as the external
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force f with some modifications. Actually, we can construct such a sequence by using
trigonometric functions. Making use of the method of Sawada [17] (which may be
regarded as a refinement of the original proof by Bourgain-Pavlovié¢ [5]), we construct
the solution by the successive approximation, and show that the second approximation
causes the inflation of the norm [[u[|z-1_. In fact, such norm inflation is caused by a
superposition of waves. For instance, let s < 0 and

wh = sin(haxy + x5), wh = cos(hx;)

i

be two high frequency waves, where h is a large number. In this case, both of ||w|| z
0,9

and ||wh| Bs,, converge to zero as h goes to infinity. However, for the product

1 1
wh = wl - wh = 5 sin(2hxy + z2) + 3 sin z,

the Besov norm ||w!||z.  has a positive lower bound, since the second term of w} is
0,49

independent of h. We apply this fact to the nonlinear term of (SNS), and construct
examples causing the ill-posedness. On the other hand, it turns out that the limit of the
successive approximation can be constructed as a bounded uniformly smooth function.
Based on this fact with the aid of the theorem of termwise differentiation, we can prove
that this limit function yields a smooth solution of (SNS) with a pressure II such that
VII = 0.

The above method by Bourgain-Pavlovi¢ [5] is, however, not applicable for the case

n < p < 00, since trigonometric functions used above are not in B; 2+; for such p
by the lack of integrability in the whole space R". Hence, considering the fact that
such functions are spacial periodic, we will also discuss (SNS) in the n-dimensional
torus space T" = [—m, 7|" for the moment. In fact, it is also useful to deal with the
Navier-Stokes equations in T". Usually, it is natural to consider the Navier-Stokes
equations in R"™ for seeking the general fluid without any boundaries. On the other
hand, for instance, in the computational fluid dynamics, we need to discretize the
domain periodically to find a numerical solution. In particular, the asymptotic behavior
of solutions in T% = [—Am, A7]" as A — oo is quite important to investigate the exact
solutions in R™.

Actually, the inhomogeneous toroidal Besov space B; (T") was defined by Schmeisser-
Triebel [19]. They defined such spaces using classical Littlewood-Paley theory and the
Fourier series instead of the Fourier transform. Following their idea, we first define
the homogeneous space B;q('ﬂ‘”) so that we can discuss similar problems on (SNS)
to Kaneko-Kozono-Shimizu [11]. In addition, we should also define such spaces on

" = [—Am, Anr]™ for each A > 0, since for the functions w, II, f on T", the above scaling
ones uy, I, f\ are on TY. In fact, we see that B;q(']l";‘) also has the same properties as

By (T"), and that

~
leaall g8 gy = el

) ||f>\|

~
|B;2+%(T*;> =W e )
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forany A >0 and 1 < p,q < oo.
In Chapter 5, we will first check that the well-posedness of (SNS) from D =

.34 J— )

Bp,q+”(']I‘”) to S = Bp,qu”(T") also holds for 1 < p < n and 1 < g < oo, by us-

ing similar methods to Kaneko-Kozono-Shimizu [11]. Moreover, we show that (SNS)
.34 PR .

is ill-posed from Bp,qup(T”) to Bp7q+p(']I‘”) ifp=mn,2<qg<ooandn < p < oo,

1 < g < 00, by discontinuity of the solution map. According to the same method in the

case of R™, we will also construct a sequence of external forces by using trigonometric

. . . R .
functions, which are now included in By *(T") even for p < co. In particular, for the
case p = n, ie., S = Bqu(T”), we will multiply such a sequence by the inverse of the

-1
harmonic number (Z]kvzl k:*1> . This idea is inspired by Yoneda [27], which advanced

the study on the ill-posedness of (NNS) by Bourgain-Pavlovi¢ [5].
In Chapter 6, we will return to the problem on the whole space R™. We will now

n

prove the ill-posedness from D = B;SJFE to S = Bp_,;Jr” when p =n, 2 < ¢ < oo and
n <p<oo, 1< g < oo using another method proposed by Bejenaru-Tao [2], which
studied on the ill-posedness of the quadratic nonlinear Schrodinger equation. This
method is based on the well-posedness of (SNS) from ng to L" for 1 < ¢ < 2, which
can be shown by a similar method as that of Kaneko-Kozono-Shimizu [11]. Actually,
we can construct a sequence of external forces which is included in a small ball of B;, 3

with 1 < ¢ < 2 and converges to zero in the weaker norm Bo_o?q for ¢ > 2, such that the
corresponding sequence of solutions in L™ does not converge to zero even in the weakest
norm Bo_ofoo. Although smooth solutions cannot be expected in this method, we can
apply a sequence inspired by Bourgain-Pavlovié¢ [5] and Yoneda [27] by multiplying some
appropriate cut functions. In this method, we have only to check the norm inflation
of the second approximation of a solution, while in the Bourgain-Pavlovi¢ method, we
should also check the norm convergence of all of the other approximations.

From the above studies, it seems that the above ill-posedness results are caused by
unboundedness of the bilinear form (u,v) — B(u,v) = (=A)"'P(u - Vv), where P is
the Leray projection to the solenoidal vector space. In fact, Kaneko-Kozono-Shimizu

[11] showed the boundedness of B on the space B, q+” when 1 < p < n using the
paraproduct estimate by Bony [4] as follows:

Proposition 1.2. Letn > 1,1 < p,qg <00, s >0, a >0 and > 0. Suppose

that 1 < py, pg,pl,pQ < o0 satzsfy 1/p=1/p1 + 1/ps = 1/p1 + 1/py. Then for every
feBtNB:P and ge B N B it holds that f - g € BS, with the estimate

P1,9 p1,00 p2,00 P2,q’ Pq

, <€ (Il ol 22)

p2,00

1 fl1g-s_llg

where C'= C(n,p,q, s,p1,D2) is a constant.

Indeed, for the well-posedness of (SNS) from D = B,, ZﬁL; to S = Bp q 7 the restriction
of p, 1 < p < n, stems from that of s, s > 0 in Proposition 1.2 (We should note here
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that —1+n/p > 0 when 1 < p < n). On the other hand, as seen in Chapter 4-6, we can
show the discontinuity of the solution map f — u of (SNS) when p =n, 2 < ¢ < 00
and n < p < oo, 1 < g < oo. Hence, it seems natural to expect that Proposition 1.2
should fail necessarily for s < 0.

In Chapter 7, we will show that if s < 0, then we can construct concrete counter-
examples of the above paraproduct estimate. On the other hand, by restricting the
ranges of p or g appropriately, we can also find a counter-example when s = a = 3 = 0.
For construction of such examples, we can apply similar functions as the above sequence
of external forces causing the ill-posedness of (SNS). This result can explain not only
the ill-posedness of (SNS) above, but also that of the quadratic nonlinear Schrodinger
equation in H*(R) when s < —1, which was showed by Bejenaru-Tao [2]. Indeed,
similar negative result of bilinear estimates also holds in Sobolev spaces.

In this way, our study on (SNS) gives a clear borderline between the well-posedness
and ill-posedness in Besov spaces, and a new knowledge on the structure of such spaces
concerning the product estimate of functions. Moreover, it is expected that our method
by mixture of Bourgain-Pavlovié¢ [5] and Bejenaru-Tao [2] may be applicable for other
stationary equations.



Chapter 2

Preliminary

In this chapter, we prepare some theories on harmonic analysis and partial differ-
ential equations required for our studies.

2.1 Definitions and properties of function spaces

First of all, let us define some spaces of functions and distributions. Before start-
ing discussion, we review here some fundamental notation on multi-indices: If o =

(o, g, ..., a,) € N is a multi-index and f is a function, then
olelf
o p o o a1 Q2 an
a.f: LT" =Ty Log™ Ty,

A HpE2 L Hpon’
0x " 0 Oxon

where || = ag + ag + -+ + a,. In what follows, we shall denote by C' the constants
which may change from line to line.

2.1.1 Smooth function spaces and distributions

We denote by & = S(R") the space of rapidly decreasing functions on R", which
is usually called the Schwartz class. More precisely, a function f belongs to S if f is
infinitely differentiable (f € C*°) and satisfies

Pas = sup |2*DP f(x)] < oo
zeR”

for any two indices «, € N". It is known that this space S is complete and metrizable
with a family {pa.g}a,genn of semi-norms. Clearly, the space C§° = C§°(R™) of compact
supported smooth functions is densely embedded in S. Furthermore, the space § is
densely included in the Lebesgue space LP for 1 < p < oo, and hence we can define
the Fourier transform on S. On the other hand, f(z) = e~ *I°, which is often used as a
normal distribution in statistics, is a well-known example in S\C§°.

Moreover, we denote by S’ the dual space (the space of bounded linear functionals)
on S, which is called the space of tempered distributions. For example, for every

13



14 2.1. Definitions and properties of function spaces

1 < p < o0, the space LP is included in & (to see this, we identify f € LP with a
functional

o (f.0) = [ f)ofa)ds
for ¢ € §). On the other hand, the Dirac delta function ¢ — d(¢) = ¢(0) is a well-

known distribution which is never written as a usual function.
In addition, we define Sy = Sy(R™) to be the space of all ¢ € S such that

/ x%p(x)dr =0, for any a € N", (2.1)

and define §) as the dual space of Sp. It is known that Sy is a closed subspace of S,
and that there holds the topological isomorphism

Sy 8'/P,

where §’/P denotes the quotient space with the polynomials space P. (Here we omit
the proof of the isomorphism. However, it is directly seen from (2.1) that all constants
and polynomials are regarded as zero in S). For the detail, see Grafakos [7, Proposition

1.1.3])
For f € S, we define the Fourier transform f +— Ff from S onto itself and its
inverse F ! as

Ff( = . f(z)e ™4du,

Flf) = | retd,

R"l
and for a distribution f € &', we define F : &’ — &' and its inverse F ! as

(Ff,o)=(f,Fo), ¢S,
(F'fe)=(f,.F o), ¢€S8S.

It is known that each Fourier transform as above is isomorphic. For example, we see
the boundedness of F on § from

€ DPFf (&) = CIFID 2" f](€)| < C|ID% f]| 1

and the embedding S < L*.

2.1.2 Riesz potentials and homogeneous Sobolev spaces

Next, let us define the Riesz potential (—A)2, which has an important role for our
discussion on the stationary Navier-Stokes equations and homogeneous Besov spaces
later. For f € §'/P and s € R, we define

(=A)zf=FHIEPF S,
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where
([EPFfo) = (L IE1PFe), ¢ € So.

Actually, this operator is well-defined even for s < 0, since the singularity at the origin
is negligible as for f € §). More precisely, we can roughly show it as follows: Let us
take ¢ € Sy. We should notice that (2.1) is equivalent to the condition as

D*(Fe)(0) =0, for any a € N". (2.2)

Now we take an integer N > 1 — s. Considering the Taylor expansion of Fp to degree
N and (2.2), we see |Fo(€)| < C|€[N with some constant C' = C(N). Hence there holds
the boundedness of |[£|*Fp at the origin as

[E11Fe()] < Clgl™™ < C on {¢ € R [¢] < 1},

which yields that |£]|° Fy is a rapidly decreasing function. This shows that we can define
(—A)3¢p for every ¢ € Sy and s € R. By a similar discussion, we can show that we also
define (—A)z f even for f € S} = S’/P. For the detail of the proof, see Grafakos [7,
page 3-4].

Then we define the homogeneous Sobolev space H*" = H*"(R") for s € R and
1l <p<ooas

B ={feS/P; |/l

i = (=8)2 fllr < 00}
It is known that this is complete as a subspace of S'/P.

2.1.3 Homogeneous Besov and Triebel-Lizorkin spaces

We next introduce the Littlewood-Paley decomposition. First, we take ¢ € S such
that

0sos1 swpo-feern Jslg<a]. SoUg-1640. @)

JEZ

We can actually choose such a function ¢. For example, by taking a non-negative
smooth function ¢ € C*°(RY) such that

0, ¢

(&) = ¥(&) if |&] =&l v(§) = {1 €

we can construct ¢ satisfying (2.3) as
o) =00 - §).

Then, we define a family {¢;},., C S of functions as

Foi(€) = 6(27°¢), jeL (2.4)
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By (2.3), (2.4), and boundedness of F and F~! in &', we see that every f € S’ can be
decomposed in §’'/P as
F=>Y @i=f

JEL
We should note here that this decomposition is not necessary valid in S’. For example,
if we take f =1, then we see for any j € Z that

pref@) = [ o
= F;(0) =0,
which is implied by 0 ¢ supp ¢. Hence we have >, ¢; * f = 0. We can justify this

decomposition if we regard constants and polynomials as zero. '
Associated with {gpj}jez above, we define the homogeneous Besov spaces B, , =

B;yq(]R”) by '
B, ={res/p; s
for s € R, 1 < p,q < oo with the norms

5s < OO
Bpaq }

1
q
_ (Z<2Sj|lsoj*f||m)q> , <00,
B, = | V&

/1

sup(2%|p; * fll»), q = 0.
JEZ

It is known that each homogeneous Besov space is complete. Moreover, this definition
is independent of choice of a function ¢ satisfying (2.3). Indeed, we take such two
functions ¢, ¢, and according to (2.4), we define {¢;}, , and {¢}};ez respectively.
Since it holds from (2.3) and (2.4) that

supp Fp; C {€ € R 2771 < [¢] < 2741,
we see for every j € Z that
supp Fo; Nsupp Fop =0 VEkst. [j — k[ > 2,

which yields

Py f = prx (g f) =@ xy* f, where @; = 01+ @ + @i (2.5)
keZ

for any f € S'/P. Moreover, it holds for every j € Z that

Il = |

¢ (279€)e ™ de| dx

]Rn

¢’(n)6iy'”dn‘ dy <C

Rn
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with some constant C' = C(n, ¢'). Therefore, we see from the Young inequality that

gy * flle = 15 % & fllew
1511211l @5 * fll v

<
< Cllgy * fllun- (2.6)

It is easily seen that (2.6) also holds conversely. Considering that the last constant C'
in (2.6) does not depend on j, we have the equivalence between the Besov norms from
¢ and those from ¢'.

Next, we define the homogeneous Triebel-Lizorkin spaces F}f g DY

b = {1 e8P Il

hs < OO
Foa }

for s e R, 1 < p,q < oo with the norms

{i@sﬂ%*f(')l)q}q : 1 <p,q < o0,

7j=1
Lp

1f 15, = 9 ||sup 27e; = FOI| 1<p<o0, q=o0,

jEZ . 1

[e%s) ) q
supd & fo > (2@ x f@))idrp , p=oo, 1< g <o,

(@<Q j=—log; I(Q)]
where

Q= U {wGRn;Q_kmiSxi§2_k(mi+1)ai:1>27-"’n}
keZ,meZn

denotes a family of dyadic cube, and |@Q] and [(Q) denote volume and side length of @,
respectively. These are also Banach spaces, and this definition is also independent of
choice of ¢. To show the equivalence of norms with different ¢, we should use the fact
(2.5), and apply the vector valued multiplier theorem (see Sawano [18, Theorem 1.5.3],
for example).

2.1.4 Properties of homogeneous Besov and Triebel-Lizorkin
spaces

The above function spaces, homogeneous Sobolev, Besov, and Triebel-Lizorkin spaces,
have properties with regard to the embedding and the boundedness of important oper-
ators. Here we review some of them required for our studies:

Proposition 2.1. (1) Let s e R, and let 1 <p < o0, 1 < ¢q < gy < 00. Then there
holds ' . _ _
B — B’ E°— F

p,q1 P,q2? p,q1 Pq2°

(2.7)
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(2) Let s1 > s9, and let 1 < p; < py <00, 1 <q,r <oo. If s —n/p1 = s — n/ps,
then there holds ' ' _ '
B« B2 | F s [ (2.8)

P1,9 p2,q° p1,9 p2,r’

(3) Let s € R, and let 1 < p < oo. Then there holds

ES, > HP. (2.9)
On the other hand, there hold [0, = H' (Hardy space) and IS, , = BMO.
(4) Let s € R, and let 1 < p,q < co. Then there holds
Bs

nk o%}
pmin(p,g) ' Fp,q — B

p,max(p,q)°

(2.10)

(5) Let s,50 € R, and let 1 < p,q < oo. Then the Riesz potential (—A)2 is
isomorphic from B;?q onto B;?q_s, and from F;’% onto F;%_S.

(6) Let s € R, and let 1 < p,q < co. Moreover, we define the dilation of a function
v as vx(z) = v(Ax) with A > 0. If v belongs to BS, then so does vy for every A\ > 0

p.q’
and there holds

ol 2 X5l . (2.11)

This claim also holds similarly for F;,q.

Remark 2.2. (i) In Proposition 2.1, (1) means that for fixed s and p, the spaces B;,q

and F;q become wider if ¢ becomes larger.

(ii) The claim (2) is similar one to the Sobolev embedding theorem. We should note
in (2) that in the case of Triebel-Lizorkin spaces, we can take ¢ and r independently
(for example, we can take ¢ = oo and r = 1). Moreover, as seen in (3), Triebel-Lizorkin
spaces have strong relationship with Sobolev spaces, while for Besov spaces, it is only
known for the inclusion relation, i.e., B;}l C H*? C B;oo (see also (4)).

(iii) From the claim (5), the Riesz potential (—A)2 is also called as a lift operator
in Besov and Triebel-Lizorkin spaces. In the later discussion, we will often calculate
the Bqu norm of (—A)z f instead of || f|

(iv) The claim (6) shows the reason why the spaces B;’q and F;’q are called “homo-
geneous”. Moreover, the equivalence (2.11) explains the scaling invariance of the spaces
of external forces and solutions to the equation (SNS), which is mentioned later.

hs .
Bqu

Outline of the proof of Proposition 2.1. Here we do not consider the space Fcfo’q for
the simplicity. For the detail of each proof, we refer to Triebel [21], Jawerth [10], and
Sawano [18].

(1) We can easily see the claim by the embedding of sequence spaces

lQl(_>lq27 1f1§Q1§Q2§OO,

where 17 = {{a, }ner; 2211 |an|? < oo}
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2), (5) First, we consider in Besov spaces. Since
(2), (5)

(—A)2p; = FHF (L))}

= €l p(277€)e ™ 4 dE
]Rn
263 [ g ()™ de,
Rn
it holds for 1 < r < oo that
€[ (€)e” i 4de

I(=A)igyllr = 2(5+")j{/ .
< ools+n(-3)},

dx}r

which is also valid for » = oco. From this estimate, (2.5), and the Hausdorff-Young
inequality, we obtain important estimates for 1 < p < ¢ < oo such that

s (=A)2 fllpe = ||(—A)S%¢5j * % [ La
< (=22l lls * flle  (1/g+1=1/r+1/p)
< 02U G 1) o) x £l (2.12)

Hence it holds from (2.12) with p = ¢ that

[(=A)Efl, o < € P2 s £, = |

jEZ.

q
350 9
By

which yields the boundedness of (—A)2 from B;f’q to B;?q_s. By considering the inverse

(—A)~2 similarly, we obtain the isomorphism (5) in Besov spaces. Moreover, under the
assumption of (2), we also see from (2.12) that

52 sotn(Lt—L j s1J
los % () E fllme < €20 G330,k fll o = 02|y % fllum.
Hence from this and (5), we have
P [N T
52
= Y g+ (=) F ||
JEZ

< 03299y # fll%s = |1 /]

=

q
252
Bpg,q

which yields (2) in Besov spaces.
We can also show (5) in Triebel-Lizorkin spaces by the equality

pj*(—A)2f = (fﬁ)%@j*SDj*f |
= 29 2VFMEP () % 0y % f
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and the vector-valued multiplier theorem (see Sawano [18, Theorem 1.5.3], for example).
Here let us show (2) in Triebel-Lizorkin spaces according to Jawerth [10]. From (1) and
(5), it suffices to show

) = FS

p1,00 p2,1

(2.13)

under the assumption

1 1
1 <p1 <py < o0, S:—n<———><0.
P1 D2

Let f € Fl?l - We can assume that ||f||zec = 1. From (2.12) with s =0, p = p; and
) pP1,0©

q = 0o, we see that
C22 || % fl|m

s * fllze <
< C2|flyy = C2,

Therefore, for any integer M € Z, we have

M M
> 2llgx f) <€ 3T 2 < CoRM = Cu,

j:—oo j:—OO

where ty; = 9 On the other hand, there holds

JEZ

Z 29|(j * f(2))] < C2Msup|(yp; * f)(2)|

_ P2

< Cty " supl (o * (@),
JEZ

which is implied by s < 0. Hence, considering the equality

lg(z)]
lglz = / { / ptp_ldt}dx
n 0
= p/ tpl{/ X[0|gx>|()dx}dt
0 Rn

— / Uz € R [g(x)| > t}|dt
0

and taking t ~ t,;, we obtain

(o]
= PQ/ 2t
0

< / tpzl
0
o0
C/ tpr—t

dt

{x € R";22$j|goj x f(x)] > t}

o
{

x € R"sup |p; * f(x)| > C’tif}' dt
jez

IN

xeR”;suplgoj*f(xN>t}’dt=0||f|’§o |
JEZL p1,00
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which implies (2.13).
(3) We see the isomorphism (2.9) directly by (5) and the Littlewood-Paley theorem
as

1
2
1fllze = <Z|90j*f(')|2) , 1<p<oo.

JEZ .
The proof of this theorem is so complicated that we omit it here (see Triebel [21, section
2.5.8], for example).

(4) Since it is clear from the definition that B;p = inp? it suffices to show the
followings:

B;,q%pziw if 1 <g<p<oo, (2.14)
Foy = By, ifl1<p<q<oo. (2.15)

For the case ¢ < p, we use the Minkowski inequality on L and see that

p

Hf”qﬁq = / (ZQqu\ﬁpj*f(x)\q) dx
R™ \jez
< Soo{ [ e s@pa} =11,

JET

q
P

which yields (2.14). On the other hand, if p < ¢, then it holds from the reverse
Minkowski inequality on L that

i1, = Sond [ 1oy« sapae)’

JEZ

= S{ [ @y st i)

JEZ

P

IN

q
” I
Foa

/Rn (Z 2], *f(x)|q> dw o =]

JEZ
which yields (2.15).

(6) Here we consider only in Besov spaces. Let A > 0 and v)(z) = v(Ax). Since
Fur(&) = X" Fo(A7LE), it is seen for every j € Z that

(prem)la) = X7 | oIOFUNTOe e

= d(277 An) Fo(n)e™ dn
Rn

= (Spj—logz 2K U)()\.ﬁlﬁ),
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where ©;_jog, x € Sp is a function satisfying

Fpjmtog, A(6) = 927718 2¢) = p(277X8).

Hence there holds

1
. . p
29||ip; * vally = 2{/ l<soj_1owv><xx>|”df}

sjy—2
= 29X 7| 10g, A ¥ V|| L

_ )\s—%QS(jflogz A) H%.ilog2A " U”LP-

Therefore, it suffices to show that

D @0V iy o,y w0llie) 2 D (2 x 0lle) (2.16)
JEL jez
To see this, we let logy A = [logy A] + (), where [log, A\| and «()) denote the integer
and fractional parts of log, A, respectively. In a similar way to (2.5), we see that

Pj—logy A *U= Pj—[loga Al * Pj—logy A * U,

where we should take Q;_jg, 7 as

—[logy A] = E Pj—[logy A +k-
k=—2

Hence, by a similar discussion to (2.6), we obtain the equivalence

9s(j—logs ) & 9oG-loga )|

|07 -10g, A * V|| o flogy A * V|| L

By summing up both sides of the above on j € Z (or taking the supremum if ¢ = c0),
we obtain (2.16). O

Proposition 2.3. Lets,so € R, andlet1 < p,q < oo. Then foreachj=1,2,...,n,

the Riesz transform R; = 82 (— A)_% s bounded from B;’q to itself. This boundedness

also holds similarly for F
Proposition 2.3 was showed by Kaneko-Kozono-Shimizu [11] (in Besov spaces) and
Iwabuchi-Nakamura [9] (in Triebel-Lizorkin spaces). Here let us prove Proposition 2.3

in Besov spaces according to [11].

Proof of Proposition 2.3 in Besov spaces. By (2.5), we have

©; * Rif = Ryp; * @ * f
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for every k =1,2,...,n. Moreover, each Ryp; can be expressed as

Rigia) = [ Torgesas

= 2 [ o an,
e |7

and we have

[ Pkotme2an) ds
R

n yl

/ T s(m)evdn
1epp<2 |7]

2

[ Repjllce = an/
Ry

-,

which has a global upper bound independent of 5 and k. Hence by the Young inequality,
we obtain the estimate

dy,

n
Y

;% Ry flle | Rr@jll s * flle

<
< Cllgg * fllze

for every 1 < p < oo, where C' denotes a constant independent of 7 and k. From this
estimate and the definition of homogeneous Besov spaces, we have

|Ref 5, < CIIf|

for every s € R and 1 < p, g < oo, which proves Proposition 2.3. O

: S
B

2.2 Definitions of well-posedness and ill-posedness

In this subsection, we define the concept of the well-posedness of abstract equations.
Let (D, | - |lp) and (S,] - ||s) be two Banach spaces, the space of given data and of
solutions, respectively. In addition, we let L : D — S be a densely defined linear
operator, and let B : S x S — S be a densely defined bilinear form. Then we consider
an abstract equation

uw=Lf+ B(u,u), (E)

where f € D is a given data, and u € S is an unknown solution.

Remark 2.4. Actually, the abstract equation (E) appears in various integral equa-
tions. For example, the Cauchy problem of non-stationary Navier-Stokes equations

ou—Au+u-Vu+VII=0 inzeR” te(0,7T),
divu =0 inzeR" te(0,7), (NNS)

Uli—o = a, inzeR"



24 2.2. Definitions of well-posedness and ill-posedness

can be rewritten as (E), where we assume

La(t)

t
e a, B(u,v)(t) = —/ e APy - Vo) (s)ds, 0<t<T
0

with the Leray projection P : LP — [P = {f € C5°; div f = O}HIHLP and the Stokes
operator A = —PA.

Now we define the well-posedness and ill-posedness of (E) as follows:

Definition 2.5. We call that the equation (E) is well-posed from (D, ||-||p) to (S, ||s)
if there exist two constants €,6 > 0 such that

(i) For any f € Bp(e), there exist a solution uw € Bs(9) of (E),

(ii) If there exist two solutions uy,us € Bs(0) of (E) for one external force f € Bp(e),
then it holds that u1 = us in S,

(iii) The map f € (Bp(e),|| - |lp) — u € (Bs(d),] - |ls), which is well-defined by (i)

and (ii), is continuous with regard to each topology,

where Bp(e) = {f € D; ||fllp <&} and Bs(§) = {u € S; ||ulls < 0}. In addition, (E)
is ill-posed from D to S if (E) is not well-posed from D to S.

Furthermore, we define the quantitatively well-posedness of (E) as follows:

Definition 2.6. We call that the equation (E) is quantitatively well-posed from the

data space (D, || - ||p) to the solution space (S, | - ||s) if there hold two estimates as
follows:

ILflls < Cillfllp, Vf € D, (2.17)

[1B(u, v)|[s < Collulls|vlls, Yu,v €S, (2.18)

where C7 and Cy are two positive constants depending only on D and S.

Now let us show that the quantitatively well-posedness in Definition 2.6 is stronger
than the well-posedness in Definition 2.5:

Proposition 2.7.  Suppose that the equation (E) is quantitatively well-posed from
(D1l 1) to (S, | - lls). Then (E) is well-posed from (D, | - |Ip) to (S, || - ||s) in the
sense of Definition 2.5.

Proof of Proposition 2.7. We define the approximative sequence {u;};en to the solution

of (E) as
{”1 =L (2.19)

ujy1 = w + B(uj,u;), j>1.
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By (2.17), we see that uy € S for any f € D. Moreover, if u; € S, then u;;; € S with
the estimate

lujalls < Cill fllp + Colluy|2, (2.20)

which is implied by (2.17) and (2.18). Hence u; € S for all j > 1 by induction. We
should notice from this estimate that if

1
Ifllp <e= 6.0y (2.21)

then the following quadratic equation
A=Cil|fllp+ CoN?

has a real solution as

_1+/1-4CG|fllp
= 2, :

Under such a condition , we see from (2.17) and (2.20) that

)\:51

uills = [ILflls < Cilfllp
< G| fllp + C26%
517

and if ||u;||s < 0y for some j € Z, then

Cill fllp + Callusl%

ujpalls <
< Ci||fllp + Co6%

- (51.
Therefore, by induction, we see that the sequence {||u;l|s};cy is bounded with the
estimate
1—+/1—-4C,C
lujlls < 61 = v 1Gallflo 55 (2.22)

20, -
provided (2.21) holds. On the other hand, there holds

ujir —u; = B(uj,uj) — B(uj—1,uj-1)
= B(uj,uj —uj_1) + B(uj —uj_1,uj_1), Jj=>2.

Hence, if f satisfies (2.21), we have by (2.17), (2.18) and (2.22) that

ujrr —ujlls < 20960 |luj — wja|ls
(2C2601)" Hug — ualls
= (2056,) 7| B(u1, u1)]ls
< (205671 GO £

IA
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for all j > 2. Since 2C%0, < 1 by (2.22), we have

Z 1 — ujl[s < oo, (2.23)

Jj=1

which means that {u; }j cy 18 a Cauchy sequence in S. Therefore, by completeness, u;
converges to some u* € S under the condition (2.21). This limit u* satisfies ||u*||s < 0y
by (2.22) and there holds

|B(u",u*) = Bluy,u)ls < 2C:M|Ju” — s — 0 as j - oc.

Therefore, letting j — oo in (2.19), we see that u* is a solution of (E).
We next consider the uniqueness. Let u,v € S be two solutions of (E) for the same
external force f satisfying (2.21). By (2.18), we have

lu—vlls = [|B(u,u) — B(v,v)lls
= ||B(u,u) — B(u,v) + B(u,v) — B(v,v)||s
= ||B(u,u —v) + B(u —v,v)||s

< Collulls + [lolls)llu —vls.

Hence, if
1

, <Oy = —,
HUHS HU”S 2 QCE
then

Co([lulls + llvlls) <1,

which yields that v = v in S. Hence we obtain (i) and (ii) in Definition 2.5 by taking
e as (2.21) and ¢ such that 6; < 6 < ds.

Finally, we prove the continuity of the solution map f € (Bp(e),| - |lp) to u €
(Bs(9),] - ls)- Take an arbitrary sequence {gn}nen C Bs(d) of data which converges
to go € Bg(6), and let v; € Bg(d), j € N, be an unique solution of (E) with a datum
gj, and vy be a solution with go. Then we have

1L(g5 — 90)lls + [|B(vj,v;) — B(vo, vo)lls

|v; —wolls <
< Cillg; — gollp + Ca(l|volls + vl s)l|ve — vj]|s-

Since Ca(||volls + ||vjlls) < 1, we see that v; converges vg. This completes the proof of
Proposition 2.7. O

Next we rewrite the stationary Navier-Stokes equations (SNS) to the generalized
form like (E) so that we can apply the above discussion. First of all, we apply the
Leray projection P, which is abstractly defined by

Py =v+ V(-A)"ldiv v.
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for a vector-valued function v. As can be seen from this form, we see that
div (Pv) =0, P(Vv)=0

and if div v = 0, then Pv = v. In R"”, the Leray projection P is defined as a matrix-
valued operator P = (Pj)1<;r<n With Pj; = d;; + R; Ry, where

1, if j =k,
Ojk = L
0, if j#k

denotes the Kronecker delta, and R; = -2 (—A)_%, j =1,2,...,n denotes the Riesz

Oz
transform. Indeed, by using the Fourier transform, we see

FIR(E) = %F[f](f)

and hence we have
FPvl(€) = Flul(§) + FIV(=A)" div v](
= Flul() — iF(~) div e
= FE) - pFldiv ()

= FQ]() - #(ﬁjik)ls;yk@f [0](£)

— f[(5]k + Rij)lgj,kSnv])(f)’

where (a;i)1<jk<n denotes a n-th square matrix whose (j, k) component is a;,. Applying
P to (SNS), we obtain

£)
IS

—Au+ P(u-Vu) = Pf,

implied by P(VII) = 0 and Pu = u, since div v = 0. Hence, the solution u of (SNS)
can be expressed as

u=(=A)"'Pf — (=A)"'P(u- Vu)
= Lf+ B(u,u). (rSNS)

Here and in what follows entirely, we let
Lf = (=A)'Pf, Bu,v) = —(=A)"'P(u-Vv),

which are linear and bilinear operators, respectively. We should note here that for any
vectors u and v with div u = 0, there holds

u ov
u-Vuv = Zzlu,a—ml

= ; 81(1%11) =V (u®v),
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where u® v denotes the tensor product with (v ®wv);; = uvj, 1 <1i,j < n. Hence under
our condition, the above bilinear form B can be also written as

B(u,v) = —(=A)'PV - (u®v) = K(u®wv). (2.24)

From the next chapter, we will consider the (quantitatively) well-posedness and
ill-posedness of this abstract equation (rSNS) with a solenoidal solution space S.



Chapter 3

Well-posedness in Besov and
Triebel-Lizorkin spaces

3.1 Well-posedness in Besov spaces

In the beginning of our discussion, we review the previous well-posedness result
shown by Kaneko-Kozono-Shimizu [11].

Proposition 3.1. (Kaneko-Kozono-Shimizu [11]) Let n > 3, and let 1 < p < n and
1 < g < oo. Then there hold the followings (1) and (2) :

(1) (rSNS) is quantitatively well-posed from D = Bp_,?r; to S = PBP_,;JFP, where
PB;;Jrg = {Pv; v e Bp_;rg} .

(2) Let D and S be as (1), and let € > 0 be a constant in Definition 2.5 which
guarantees the well-posedness of (rSNS) from D to S. Suppose that 1 < r < oo and
s > 0 satisfy

n _[nn
qg <r <oo, ——n+1<s<mln{—,—}.
r pr
Then there exists a positive constant € = €'(n,p,q,r,s) < & such that for every f €

Bp(g) ﬂ_Hs_Q”", the solution u obtained by (1) has an additional regularity such as
ueSNH.

Remark 3.2. From the condition (iii) of continuity of the solution map in Definition
2.5 and the estimates in Definition 2.6, We see that not only the spaces D and S but
also those norms (topologies) || - ||p and || - ||s have an important role for the well-
posedness and quantitatively well-posedness. Hence when we state the (quantitatively)
well-posedness of equations, it is desirable to write not only concerned spaces but also
norms, such as “(D, || -||p) to (S, -|ls)”. However, only in the case that the concerned
norms directly define the spaces, we omit such a norm in what follows, like the above.
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n

Remark 3.3. The above space PBp_, ;er is well-defined. Indeed, since the projection
P can be written as a matrix P = (Pji)1<jk<n With Pj; = ;5 + R; Ry, (see Chapter 2),

.
we see the boundedness of P from BM+p to itself by Proposition 2.3.

n

Remark 3.4. We should note here that the space Bp_,jﬂ’ (1 < p,qg < o0) for the

external force f and the space B,, ;Jr; for the solution u are both scaling invariant with
respect to (SNS), respectively. Indeed, if a triple {u,II, f} satisfies (SNS), then for any
A > 0, so does {uy, Iy, f} defined as

un(r) = Mu(Az), (z) = N(\x), fHL(z) =\ f).
Hence by Proposition 2.1 (6), we see that
HfA”B;2+% = ||f||B;2+%> ||UA||B—’1+% = ”UHB—H%-

Moreover, it is seen from Proposition 2.1 (2) that

3+ 3L T 1+
Bpig ™t Bpog 5 Bpig "t Bpayg

for any 1 < p; < py < c0.

Remark 3.5. Proposition 3.1 (1) enables us handle a larger class of functions which
never belong to the usual Sobolev space. For example, in three dimension case, we may
solve (SNS) with a singular external force like the Dirac delta function §. Indeed, since

o) = [ oTgeas
= 20 [ ol =2 F o), B
we see for each j € R" that
2| pj % 6le = 2%|ll1o

= 2| F (2
245 F 1) 1,

which yields § € B; ;LOJF;(R") for 1 < p < co. Hence we solve (SNS) for an external
force f = da with a sufficiently small constant vector a € R™ if n = 3.

Remark 3.6. In Proposition 3.1 (2), we need smallness of f only on the scaling

. . . . s =3+ . .

invariant norm, i.e., in D = B, 4 ”. Hence, a smallness assumption for f in the Sobolev
norm H*™2" is not required. Previously, Chen [6] proved that for every smooth external
force which is small in H~%2, there exists a unique solution of (SNS) in L" N Hb2
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which is small in H%2. Using the embedding H™ b2 —» Bp—i’;; for n/2 < p < n, we
)

can see that Proposition 3.1 includes the result by Chen [6], by taking n/2 < p < n,

g=r=n/2 and s = 1.

In the next subsection, we will show the quantitatively well-posedness of (rSNS) in
Triebel-Lizorkin spaces using a similar method to Kaneko-Kozono-Shimizu [11]. Hence
we state here only the outline of the proof of Proposition 3.1.

Outline of the proof of Proposition 3.1. As for (1), it suffices to show (2.17) and (2.18)
for
Lf = (-A)"'Pf, B(u,v) = —(—A)"'P(u-Vv).

In fact, we can easily see from Proposition 2.3 that the estimate (2.17) of L holds for
any 1 < p,q < oo. On the other hand, we can show the estimate (2.18) of B by using
the properties in Proposition 2.1 and the following proposition on Holder type estimates
in homogeneous Besov spaces as follows:

Proposition 3.7. Letn>1,s>0,a>0,>0, and 1 <p,q < oo. Suppose that
the exponents 1 < py, pa, ps3, pa < 00 satisfy 1/p=1/p1 +1/ps = 1/ps + 1/ps.

(1) There exists a constant C = C(n, s, a, B,p,q, p1, P2, P3,Pa) Such that for every
feBt*NB A _ andge B;* NBP, there holds fg € B, with the estimate

p1,9 p3,00 p2,00 P4,9 7’ Pq

55, < C (I ggesglloll s, + 1 sz Nollsgea) - (3.2)

p2,00

1f9]

~ (2) There exists a constant C' = C(n, s,p, q,P1, P2, P3,pa) such that for every f €
B, ,NLP and g € L N B, , there holds fg € B, , with the estimate

P1,9 pq

/9]

53, < C (171

B) . (3.3)

55, Nlgllzes + 1 £llzes g

For the proof of this estimates, see Appendix A.
In order to show Proposition 3.1 (2), we use the lemma as follows, which can be
also proved by Proposition 2.1 and Proposition 3.7:

Lemma 3.8. Let n,p,q,r and s be as assumption of Proposition 3.1, and let D" =
Hs=27 §"= H*". Then there hold

1L s < Clllfllr, W € D (3.4)

and
1B (u,v)lls < Cy (ullsllvlls + [lullsl[v]ls), Yu,v e SNS, (3.5)

where C = Ci(n,s,r), C4, = Ch(n,s,p,q,r) are positive constants.
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Let us return the abstract discussion in Chapter 2 and consider again the approximative
sequence {u;}jen defined by (2.19). By (2.17) and (3.4), we see that u; € SN.S for
any f € DN D'. Moreover, if u; € SN Y’ then u;41 € SN .S with the estimates (2.20)
and

w1 lls < CL fllpr 4 2C501 w5, (3.6)

implied by (3.4), (3.5) and the boundedness of {u;} ey in S as (2.22). Hence u; € SNS’
for all j > 1 by induction. We see from this estimate that if

1
01 < 2—@, (37)
then there holds m
Cillfllor .
Ne < ¢ = L1202 > 1. 3.8
ulls <8 = {2555 i 2 (33)

Since it is seen from (2.22) that §; — 0 as || f||p — 0, there is a constant 0 < &’ < ¢
such that if || f||p < £, then (3.8) holds. Under this condition, it holds by (2.22), (3.5),
and (3.8) that

lwjr —wills = 1By, uj — uj—1) + Bluy — wj1, uj—1)||s
Cy (llullsllug — wjalls + lJullsllug — wjalls)

+C ([[uj — wjal[slluj-1lls + lJuj — ujallsluj-1lls)
< 20501 [luy — wj-alls + 20501 [|uj — ujalls

IA

for all j > 2. Since 2C%0; < 1 by (3.7) and since (2.23) holds, we have
Z [tj1 — ujl[s < o0
j=1

Hence there holds u; — w in S’, which proves (2) of Proposition 3.1.

3.2 Well-posedness in Triebel-Lizorkin spaces

Using a similar method to Kaneko-Kozono-Shimizu, we can show the well-posedness
of (rSNS) in Triebel-Lizorkin spaces as follows:

Theorem 3.9. (Tsurumi [24]) (1) Let n > 3, and suppose that the exponents p and q
satisfy the following either (i) or (ii);

i) 1<p<n,1<qg<oo,

(i) p=n,1<g¢g<2.
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n

Then (rSNS) is quantitatively well-posed from D = Fp_,;Jrg to S = PFP_,;JF”, where
S = PFp_,;Jr; = {P’U; ONS ij;+;} :

which is well-defined by Proposition 2.3.
(2) Let n > 3, and suppose that the exponents p,q,r, and s satisfy the following
either (i), (ii), or (iii);

(i) s>0,1<r <oo,pandq satisfy either (i) or (ii) of (1),
(i) s=0,n/(n—1) <r < oo, p and q satisfy (i) of (1),
(i) s =0, r =n, p and q satisfy (ii) of (1).

Moreover, let D and S be as (1) and let € > 0 be in Definition 2.5 which guarantees
the well-posedness of (rfSNS) from D to S. Then there exists a positive constant €’ =
£'(n,p,q,r,s) < e such that for every f € Bp(e') N H*™2", the solution u obtained by
Theorem 3.9 has an additional reqularity such as u € S N H".

Remark 3.10. In Theorem 3.9, the spaces Fp_,; " for solutions u and Fp_,; ? for
external forces f are both scaling invariant with respect to (SNS).

Remark 3.11. Theorem 3.9 (2) means that a smooth external force whose scaling
invariant Triebel-Lizorkin norm is small enough yields a smooth solution of (rSNS).
We should note that the H*2" norm of an external force do not have to be small.
Moreover, in the case (i) of (2), we can take s > 0 arbitrary large, while in Besov
spaces, there is a restriction on the exponent s (compare with Proposition 3.1).

In particular, it is seen from Theorem 3.9 (1) with p = n, ¢ = 2 that a small external
force f in H=2" = [, yields an unique solution u € L™ & [, of (E). Moreover, if this
f also belongs to L™, then it holds from (2) with s = 2 and r = n that u also belongs
to H2™. Hence u belongs to the inhomogeneous Sobolev space H2" = L™ H>", which

implies that u satisfies the original equation (SNS) almost everywhere in R".

Remark 3.12. If welet p > n/2 and 1 < ¢ < 0o, then we have H~ b3 — FpT;Jr;

Therefore, Theorem 3.9 includes the result by Chen [6], provided p > n/2, 1 < ¢ < oo,
s=1,and r =n/2.

Proof of Theorem 3.9. For the proof of our main theorems, it suffices to show four
lemmata as follows.

Lemma 3.13. Letn >2, s€ Randlet 1 <p <oo,1<q<oo. Then the operator
L = (—=A)"'P is bounded from sz’gz to PF;  with the estimale

ILA Ny, < CIIS|

s —2
Fpq™
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where C'= C(n, s,p,q) is a constant.

Lemma 3.14. Letn >2, s € R, andlet1 <p < oo, 1 <¢q< o0 Then the operator
K = —(=A)"'PV- (see (2.24)) is bounded from F3 ' to PF?  with the estimate

Es. < CHgl

Fpgh
where C'= C(n, s,p,q) is a constant.

Lemma 3.15. Letn >3, andlet 1 <p<n, 1 <q,q < oo. ThenforquFp7q+7,

n

+
we have u @ v € Fp,q P with the estimate

lu @l -2+n < Cllull sz lo]l -1vz,

pq Pq pq

where C'= C'(n,p,q,q) is a constant. Moreover, this claim is true if p=mn, 1 < q¢ <2
and 1 < q < 0.

Lemma 3.16. Letn > 2, and suppose that tp,q.r, and s satisfy either (i), (i), or (iii)

of Theorem 3.9 (2). Then for u,v € qu t N H>", we have u ® v € HY" with the
estimate

lu @ v

Hsr —I'_ ||u| Hs'r

e ol vt )
pq pq
where C'= C(n, s,p,q,r) is a constant.

For the moment, let us assume these lemmata. Under the assumption of Theorem 3.9
(1), let D = Fp_,;Jr; and S = PquH”. By Lemma 3.13, we see that Lf € S for any

f € D with the estimate
ILflls < Cillfllp.

Moreover, by Lemma 3.14-3.15 and (2.24), B(u,v) = K(u ® v) € S for any u,v € S
with the estimate
1Buv)lls < Collu@u] -y

< Collullslvlls,
where C, C) and Cy are constants depending only on n, p, and ¢q. Therefore, we see
that (rSNS) is quantitative well-posed from D to S, which proves (1) of Theorem 3.9.
On the other hand, under the assumption of Theorem 3.9 (2), let D" = H*™%" and
S" = H*". By Proposition 2.1 (3) and Lemma 3.13, there holds

I Lflls =

Ey, < Cs /1 B2 Csl[ fll o
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for any f € D’. Moreover, by Lemma 3.14 and Lemma 3.16, it holds that

B o)ls = K@),
Cillu@ ol
Cillu @ vll e,

< Cy(lulslvlls + llulls olls)

IN

hs—1
Fr,2

for any u,v € SNS’". Here C3 = Cs(n, s,r), Cy = Cy(n,s,r), and Cy = Cy(n, s,p,q,r)
are constants. Hence by the same discussion as the case of Besov spaces (see Lemma
3.8 and the proof of Proposition 3.1 (2)), we obtain (2) of Theorem 3.9.

Now let us show Lemmata 3.13-3.16.
Proof of Lemma 3.13.  Since the projection P is defined as a matrix-valued operator

P = (Pjy)1<jk<n With Pj; = 0, + R; Ry, P has the same boundedness as that of Riesz
transforms in Proposition 2.2. Together with Proposition 2.1 (5), we can see that

I(=4)"

< C|Pf]
< Clifi

s —2
Fpaq

Fpg®s
for every s e R, 1 <p < oo, 1 <g<ooand f €32

Proof of Lemma 3.14.  Let g = (gij)1<i j<n be a matrix-valued function. By commu-
tativity of P and (—=A)2, Kg = ((Kg)1,(Kg)s,.- ., (Kg),) can be written as

)
-1
(Kg); = —(=4) PZ%QU
- PZ 531- Yij

= —(—A)7%PZRZ‘Q¢]’. (3.9)

Hence we see from Proposition 2.1 (5) and Proposition 2.2 that there holds

|Kgllz,, < Cllg

Pt
for every s e R, 1 < p < o0, 1§q§ooandg€F,i;1-

Proof of Lemma 3.15.  We first consider the case p=n,1 <g<2and 1 < ¢ <
Since it is seen from Proposition 2.1 (2) and (3) that there holds Lz = [9 no F

'8
»Qx»—i
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we see by Holder inequality that

IN

lu@vlsr < Clu@ull,y

IN

Cllullzn flvfl o

= Cllullgo Iz,

IN

C||U||Fn0,q||v||p,cqu-

We next consider the case 1 < p <n and 1 < ¢,q < co. Here we use the following
proposition, which is an alternative to Proposition 3.7:

Proposition 3.17. (Kozono-Shimada [13]) Let s,a >0, 1 < p < o0, and let us take
1 < p1,p2 <00 so0that 1/p =1/pi1+1/py. Then there is a constant C = C(s, «, p, p1, p2)
such that for every f,g € F3*5 N E % there holds f - g € F; . with the estimate

Pp1,00 p2,007

1f -9l

i <C(If

zﬁﬁ&HgHE@%o*‘HfHFﬂ’”g‘ﬂﬁ&>'

p2,00

Since n > 3, we can take py satisfying 1 < py < min{p,n/2}. Moreover, since p < n,
we can choose p; and p, as
1 1 1
_:_+_7 p1>Dp, p2>n
Po P1 D2
by choosing py properly. Indeed, if p < n/2, then we should let py = p/(1 + €) with
small 0 < & < p/n so that pg > 1 and
1 1 e 1 1
— =<+
Po P P P N
On the other hand, if n/2 < p, then we should let py = n/(2 + &) with small 0 < ¢ <
(n/p) — 1 so that py > 1 and
1 l+4e 1 1 1

+ o<+
Po non o p on

From Proposition 2.1 (2) and Proposition 3.17 with s = —2 4+ (n/py) > 0 and a =
1 —(n/ps) > 0, we have

|lu ® UHF_2+% < Cllue UHF_2+%

P,q P,

< 0 (lul oo ol + oo ol o
< Ol -sep ol o3,

which proves Lemma 3.15.
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Proof of Lemma 3.16.
For the case of the condition (iii) in Theorem 3.9 (2), we can show this lemma in a
similar way to the first paragraph in the proof of Lemma 3.15. Indeed, it is seen that

lu@ ol < Clu@ull,y
C (el o + el ool 2)

C (ull g, ol om + Nl gonlivl g, ) -

VANVAN

IA

In what follows, we consider the cases (i) and (ii) in Theorem 3.9 (2).

Case 1: Under the condition (i) in Theorem 3.9 (2).
Since s > 0 and r > 1, we can choose sy > 0, a > 0 as

max{O,l—n+E}<a:s—so<1.
r

We next choose rg, 7 such that

By this definition, we have

n n
So>s—1, ro<r, s ——=s8—1——,
To T
and
n _ n o n n
—14+—=>-a, p<n<r, -14+—-———-—=—-a——.
p p D r
Hence, by Proposition 2.1 (2) and (3), we see that
Fpo e Byt gL (3.10)
and
14 .
Fpg 7 = F7 3 (3.11)
On the other hand, there holds ry > 1, since
1 1 1- 1 1—-(1—m+2
— =%y ( D) _ 1.

To r n T n

Therefore, by (3.10) and Proposition 3.17, we obtain

lu @ v

Hsfl,r S CHu®U|

=50
Fro,oo

< (lullgasellollie + el ol oz ) -
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Moreover, by (3.11) and the embedding
fe =y e B, = oo

r,00 )

we obtain the estimate

l|lu® vl

e <€ (Il g Il + ol
p,q

Case 2: Under the condition (i) in Theorem 3.9 (2).
Since p < n, we can take sy > 0 and a > 0 satisfying

so—l—a:—1+ﬁ, O<a<ﬁ, (3.12)
P T

whose specific values will be decided later on. Then we define rq, v and ry as

1 1 1 1 1 «
To T ) T2 r n

By taking appropriate a > 0, we have ry > 1. Indeed, if

<r< np (—1+E<E)

n—1 n— p T

p?
then we take v > 1 such that n/(n — 1) < n/(n —~) < r, and decide @ > 0 as
a= -1+ (n/p) — (v —1) so that

1111 n
L)
To P T n P
1yt
< 1o
n n n

On the other hand, if

np <r<oo, (E§—1+Q>
n—p r p

then we take € > 0 such that (1/p) + (¢/n) < 1, and decide @ > 0 as = (n/r) — € so
that

1 1 1 1/n 1 e

L O T

o p T n\r p n

Therefore, we can choose sg, «, ro, r1, and ry satisfying (3.12), (3.13), and r¢ > 1.
Since sg > —1, ro < r (because of & < n/p), and
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it is seen by Proposition 2.1 (2) and (3) that F,foooo — Frjzl >~ [, Therefore, by
Proposition 3.17, we obtain

lu@oll-1r < Cllu@ ol

< C (el g Mol + el e 0l )
. _]an . . .
Moreover, since Fy * = Fpote oy [oote and since HO = FO) — F0 — F7%
because of —n/r = —a — (n/rs), we obtain

lu @ vl g1 < C{lull ez 0]l gor + lullgor 0l -1es ) -
vaq prq
This proves Lemma 3.16.

By the foregoing, we have proved Lemmata 3.13-3.16, which completes the proof of
Theorem 3.9. O

As can be seen in the above proof, the restrictions on the dimension n and the
integral exponent p such as n > 3 and 1 < p < n seem to be due to the validity of
Proposition 3.17 (in Besov spaces, of Proposition 3.7), which has an important role for
the boundedness of the bilinear form B. This problem is also true of the case in Besov
spaces as well. From the next section, we will treat the case n < p < oo from the

negative approach that is, we will show that in such a case, (rSNS) is ill-posed from

D=8, to 5= PB,,Q*’






Chapter 4

Il1l-posedness by the Bourgain-Pavlovic
method

n

In this chapter, we show the ill-posedness of (rSNS) from B,:;Hr; to PB;,;JF” when
p = oo. Our claim is as follows:

Theorem 4.1. (Tsurumi [23]) Let n > 3. For any § > 0, there exists a sequence
{/n}nen of external forces in BUC? N B2 with div fy =0 such that

(i) Ifwllgs — 0 as N — oo,

(ii) For each fy, there ezists a solution uy of (rSNS) in PL*® and PB;jl senses.
Moreover, each uy satisfies

—AUN(Q3> + (uN : VUN)(JJ) + VH(SC) = fN(LU),
div un(z) =0
for all x € R™ with a constant pressure 11, i.e., VII = 0.
(iii) There exists another constant 0 < k < 1 independent of § such that

R0 < lunllpg, < llunllzz, <0

for any N € N.

Here BUC? denotes the space of bounded uniformly continuous functions up to the
second order derivatives.

Remark 4.2.  This result shows the ill-posedness of (SNS) from B33, to PBZ!, for
all 1 < ¢ < oo (see also Proposition 2.1 (1)). Indeed, Theorem 4.1 means that for
any constants € and 4, the solution map f € By_s (¢) = u € By () is, even if it
is well-defined, not continuous at zero in each norm. We should note here that each
solution uy above is a strong solution of the original equation (SNS) with a constant
pressure II and is not necessarily unique one.

41



42

It is also seen from Theorem 4.1 that there is a external force which is arbitrary
small in B;jl can admit a solution which is arbitrary large in Bc;ol,oo' In order to see
this phenomenon, take a huge 0 > 0, choose a sequence of external forces in Theorem
4.1, and fix a number N sufficiently large.

Remark 4.3. Theorem 4.1 also holds for the homogeneous Triebel-Lizorkin spaces
with the same exponents. In fact, since it holds from Proposition 2.1 (4) that

B <—>F3 Bl =~[p!

00,q? 00,00 00,007

we can show the ill-posedness by using the same sequence { fy}yen of external forces.

In the proof of our result, trigonometric functions and their linear sum will appear
frequently. Indeed, Bourgain-Pavlovi¢ [5] showed the ill-posedness of non-stationary
Navier-Stokes equations by using a sequence of initial data composed of trigonometric
functions. Therefore, in order to apply their method to stationary equations, we note
here some important properties of such functions in harmonic analysis. In what follows,
we write 57— as 0;, i =1,2,...,n for simplicity.

We now “take a trlgonometric function

g(x) =cos(a-z), x€R"
with a constant vector a = (aq, as,...,a,) € R"\{0}. Since

61(1’27 + e—l(l'.'l!

g(r) = 5

by the Euler’s formula, we can see that

1 . | | |
.Fg(f) — 5 {/ e’“"f-e_”fder/ e—m-x_e_m.gda;}

= (PN~ )+ FIE +a)
= S0~ )+ (e +a),

where 0 denotes the Dirac measure on R” having a unit mass at the origin. Therefore,
(=A)2g(x) = FUEPFgE)](@)
= | jlePate - )+ ale+ )
= |al®cos(a - x).

We should note that if s = 2, we have

-



Chapter 4. Ill-posedness by the Bourgain-Pavlovi¢ method 43

and
(—A)(=A)Yg(z) = (A)(=A)g(x)
= g(z).

Moreover, by assuming that ¢ in the definition of Littlewood-Paley decomposition,
(2.3), is spherical symmetric, it holds that

(pjxg)(x) = F'Fp;i(&)Fg(©)l(x)
= F|56@IO6(E — o)+ 6(E +a)
= ¢(277a)cos(a-x), VjEZ. (4.1)

Hence, based on (2.3), (2.4), and the fact || cos(a-)||L~ = 1, we obtain the following two
key estimates for our main result;

lollson < CI=A)%glls
(%) S 6(277a)
o) 2

(%)m, m e N, (4.2)

lal

1

gllp=r > sup p(27a
lollsr. > s o2a)
1
> — 4.3
= 3G, )
where C'y denotes a constant dependent only on the dimension n satisfying
1 _1 _1
C—#H(—A) gy < S llsg, < Coll(=2)72 fll a1 (4.4)

for any s € R and 1 < p,q < oo (see Proposition 2.1 (5) ). In what follows, we suppose
that every constant C'y appearing below denotes this constant entirely. In addition, let
us prepare the L estimate as follows for the sake of the proof of the main theorem:

I(=2)""gl L~ 10:(=2) gl

10:0;(=A) " gl
lgllpee for 1 <i,j<n, if|a]l,l|a;| > 1. (4.5)

IA A IA

It can be easily seen that the above estimates are valid as it is to the case g(z) = sin(a-x).
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Proof of Theorem 4.1. Here we take the parametrized external force as
for(x) = Qr*{eycos(rzy) + egcos(ray — x9)}, == (11,79,...,7,) € R,

where e; = (0,1,0,0,...,0) and e3 = (0,0,1,0,...,0) are unit vectors in R", while
@ > 0 and r € N are parameters. Actually, this external force is inspired by the study
of Bourgain-Pavlovi¢ [5], who showed the ill-posedness of the non-stationary Navier-
Stokes equations in B;ol’oo. In fact, they used the parametrized initial data as

up(x) = % Z hs {ea cos(hsz1) + e3 cos(hsxy — x2)},
s=1

where hy, = 28(551>75_177 and Q,r,s,v, and 7 are parameters (see also Sawada [17], who

refined the study by Bourgain-Pavlovié¢ [5]).
We now define the approximative sequence {u; }j oy to the solution u of (rSNS) such
as (2.19):

{ul = LfQ,Ta

uj = uy + B(uj_1,u;-1), j>2.

Moreover, we rewrite these u; as forms of series in accordance with Sawada [17]. Let

U1 = Uy,
vy = B(ur,u1) = B(vy, v1), (4.6)
v = B(ug—1,up—1) — B(ug—2, up—2), k> 3.

Obviously, it holds
J
u; = ka, j>1 (4.7)
k=1
As for fq, and {v},cy, Wwe can show the following key lemma.

Lemma 4.4. Let {v3}, .y be as (4.6). Then it holds that v, € BUC? N Bofol’l and
div vy = 0 for all k > 1. Moreover, we have the following estimates;

| forllg—s < ZCiQ, o1 g1 < 20#9 for all @ >0, r € N, (4.8)
oco,1 r oo,1 r
Q° 2
16C, <lvallpor, < llvallpy, < CQ75 if 7> Cy, (4.9)

0\ 2 0\ 2
vk |l e < Q2 <?) : HU’“”B;IJ < 0uQ? <?) forall k>3, if r>@Q. (4.10)
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For the moment, let us assume this lemma. Once we fix Q and r with Q/r < 1,

then there hold
o o
D lvellze < o0, Z ol g1, < oo
k=1 =

Hence there exist ug,,, € BUC and ug,,. € B, 11 such that

9]
uh, = lmuy in L%, g, o~ < Z [[ok]| Lo, (4.11)
ﬁz),r = ]li)m u] n Boo 1 uQTHB_l < Z HkaB_

Actually, ug), = g, . in the sense of §j. Indeed, since ug), is a tempered distribution,
it holds that
(uj, ) — <u227r,<p> as j — oo for all p € Sp.

On the other hand, since u; — g, as j — 00 in Bo_olg in particular, there holds
(uj, ) = (UG, p) as j— oo for allngBlz,

because the dual space of Bll’2 is B;ol,z (see Triebel [21, Theorem 2.11.2 and Section
5.2.5], for example). From this convergence and the embedding Sy C Bllg, we have
up, = g, in . Therefore, ug, . also belongs to B;oh with the estimate

o
lug sz, = lag.lls, < > lorll 2, (4.12)
k=

Considering the convergence of the bilinear form B(u;, u;), we have the following lemma,
which will be shown later.

Lemma 4.5. Let Q <1 and let ug,, be a function defined by (4.11). Then we have
that uf,, € BUC? N B, div up, =0, and it holds that

00,17

lim B(u;,u;) = B(ug,,ug,) in L™ and B;oh' (4.13)

]—}OO

Moreover, u = uy, . satisfies (SNS) for all x € R™ in the pointwise sense, with f = fq,,
and VII = 0.

Hence, ug, . is a solution not only of (rSNS) in L or Bo_ol,l sense, but also (SNS) with
respect to f = fo, in pointwise sense.

Proof of Theorem 4.1. We first take )y > 0 so that

J

< QO O#a

icy
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and let ro € N be such that

Then by Lemma 4.4, it holds for every r > ry that

o0
gy rllsr, < D lowllgor,
k=1

Qo | CxQf

< 20—+ 0 <.
1— %o

On the other hand, we have

lagprllsmre > loallser, — lonllsz, =S ol

Qo
> fi 200 -G g
R B
64CZ ~ 128C%  256C2
_ 9
256C2

for every r > 1. Moreover, we can easily see from (4.8) that || fo,.r|| B3, = 0 asr — oo.

Hence, by the above argument from Lemma 4.4 to Lemma 4.5, we obtaln the claim of
Theorem 4.1 by taking a sequence {fn}nyen of external forces as fy = fo,r+n and
letting k = 1/256C%. O

Now let us prove Lemma 4.4 and Lemma 4.5.

Proof of Lemma 4.4. Using (4.2), we have

Cy\’ Q
2 # _ 3

I forllpp, <@ -2 (T) =203
Since div fg, = 0, we obtain v; as

—A)" P fo(x)
—A) " fou (@)

(
(
= Q {62 cos(rxy) + es r2T+ 1 cos(ray — x2)} :

vi(z) =
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which also satisfies div v; = 0 and

Cy Q
1 < Q-2 =204—.
Jorll g, < Q2% =20,

Next we deal with v,. Let us write the i-th component of v as v, and we have

n

(vy - Vo) (z) = Z v§m)8mvl

m=1
= U§2)82U1
2
= Qcos(rxy) - €3Qr2 1 sin(rax; — )
1@2 7"2 { . + . (2 )}
= e3— —sinxy + sin(2rx; — x2)} .
52 r2 41 2 Lo
Hence, it holds that
va(z) = —(=A)"Huy - Vuy)(z)
1, r 1, r? 1 .

= 63§Q 2y SinTz - 63562 I sin(2rzy — )
= Nl =+ NQ.

By virtue of (4.2) and (4.3), we have

M]3z, < 5C4@
and )
Millsz > 5@ 5 55 = s
while )
INollsr, < g

Therefore, if r > Cy, there holds
sl o1, < C4Q°
and

Q2
160

lv2ll i, 2 1Nl g, — IN2ll g, >

For the estimate of vy with k > 3, we need the following proposition.
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Proposition 4.6. For k > 3, v; has an explicit representation as
vk = B(uy,vp_1) = —(—A) " 0P 0pve_1) (2) = —es0'? (21, ). (4.14)
Moreover, there holds div v, = 0 for all k > 1.

Proof of Proposition 4.6. First, notice that (4.14) is valid for £ = 2. Suppose that this
is true in the cases 2 < k <[ for some [ > 2. Then we have

v = Blu,w) — Bu—1,w-1)

_ p (ZZ) . (ZZ)

k=1 k=1 k=1 k=1
-1 l

= B(vl,vl) + B (Z Uk,l)l) + B (Ul, ka> .
k=2 k=1

Since v, = 63’1)](:)) (x1,29) for all 2 < k < [ and since vy, does not depend on z3 for all
1 <k <, we see that

-1 !
(ka> 'VUZZO, vl-V<ka) =0.
k=2 k=1
Moreover, it holds that
(- Vo) (@) = v (@) - dalesvf” (w1, 72)
= e3 {v@(wl) : 82111(3) (21, :L'g)} .

Hence, we obtain (4.14) for k = [ + 1. By induction, we see that (4.14) holds for all
k > 3. This proves Proposition 4.6.

Let us return to the proof of Lemma 4.4. According to Proposition 4.6, we may
identify v, with v,(f’) for k > 2. Moreover, we rewrite v; and vy as follows:

vi(z) = Q ez cos(ra1) + es My (r°) cos(raq — )] (4.15)
vo(x) = %QQ [ My (r%) sinzy — My (r—?) sin(2razy — zo)] . (4.16)
Here and in what follows, for j € N, we denote by M,(r*) the positive functions of r
which may change from line to line, and satisfy the estimate
M;(r®) <r® for all r > 1.

Let us handle v and v4. Since

(v1 - Vo) (z) = %Q?’ cos(ray) [My(r°) cosza + M (r~?) cos(2ray — x5)]
- iQ?) [Ml (r%) {cos(rxy + m9) + cos(ra; — x5)}

+ My (r~*){cos(3ray — ) + cos(—rz; + xQ)}} ,
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we see that vs is expressed as
vs(@) = —(=A)" (v Vur)(x)
1
= _ZQS M,y (r72) {cos(roy + x3) + cos(ra; — x2)}

+Ms(r~*) cos(3ray — x3) + Ms(r~*) cos(—rz; + 332)] )

Moreover, since

(0 Vo)) = Q" cos(rm)
: [Ml (r~2) {sin(ra, + 22) — sin(ra, — z2)}
— My(r) sin(3ray — x2) + Ms(r—*) sin(—ra; + @)}
= é@‘* | M3(r2) {25in2; + sin(2ray + 2) — sin(2re; — 3)}
—My(r~*) {sin(4ra; — x9) + sin(2rz; — x5)}

+Ms(r~*) {sin z + sin(2rz; — .Z‘Q)}i| :

we see that vs has an expression as
v(z) = —(=A)" (v~ Vus)(2)
1
= §Q4 —2M, (r~?) sin 29

+Mo(r~*) {—sin(2rzy + o) + sin(2ra; — 25)}
+M;(r~%) {sin(dray — x2) + sin(2rz; — x2)}
—My(r~*)sinzy — Ms(r~%)sin(2rz; — x5)|,

Repeating such a procedure, we see that

20+1
vyy1(2) = QQT [—Ml(r’zl) - (=2)" {cos(ray + x9) + cos(rzy — x9)}  (4.17)
221 2l
+ Z M1 (r~?) cos(ay; - :1:')}
Q2l+2 921+1_gl
vaea(2) = Sy [Ml( ) (=2) sinza b Y Mi+1(r—2)sin(bl,i-x)} (4.18)
=1

for [ > 1, where a;; = (al(z),al( ),.. a“ ) b = (b(l.) b

i 1i 1 Vi 7"'7bl(:;l)) € R" are vectors
depending only on r with

o], b2 =1, o) =07 =0 for 3<j<n.

Y2
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Hence we obtain the following estimates.

Q2l+1 1 o Q 21 Q 21
||U21+1HL°° < Wﬁ 27 =Q ? ) ||v2l+1“1_f}o—o{1 < C#Q ? )

QQH_Q Q 21 Q 21
loarszllze < < 22+ = o vl g, < CRQ° gl B

This completes the proof of Lemma 4.4.

Proof of Lemma 4.5. Let us first show smoothness of ug, .. It is easily seen that each
vk, k > 1, is twice continuously differentiable, and that each of their partial derivatives
is umformly bounded. In particular, since each second component of ay; in (4.17) and
(4.18) is 1 or —1, we can obtain the same estimates of ||Oyvy|/z~ and ||OFvg|/r= as
those of ||vg|/z~ in (4.10) in the same as in the proof of Lemma 4.4. Moreover, since

||/U§2)||Loo = @, we have by (4.5) and (4.14) that

k—3
010 | Lo, HankHLoo, 01050k e < Q° (%) ) k= 3.

Therefore, by the theorem of termwise differentiation, we see that ug, = > 77, vk
belongs to C? and is termwise differentiable provided Q < r.
Since the series ), , vy is termwise differentiable, and since the identity

ng )0y, = —A (Z( A)1v§2)821)k> (4.19)

= k=1

holds, we have by (4.14) that

1Bl )gr = Blug,up)lle = —<—A>-1v§2>az<2 )

k=j+1

5 s )

IN

Z ||Uk+1||Loo — O, as ] — OQ.
k=j+1

In the same way, it is also easily shown that B(uj,u;) — B(ugp,,ug,) in B;O{l as
Jj — oc.

Finally, let us show that u = ug,, = Y ", v actually satisfies (SNS) with f = fq,
and VII = 0 for all x € R". Indeed, by termwise differentiation, we see from (4.14) and



Chapter 4. Ill-posedness by the Bourgain-Pavlovi¢ method 51

(4.19) that div v, ,.(z) = 0 and

—Aug () = —Av(z <Z () Opvp—1 (x ))

k=2

= fQ,T(x)—Z 1(2)Oqug (),
k=1
(- Vi )(&) = oa(2) 33 () = 3 on(e) Oyl
k=1 k=1

Hence we obtain

—Aua’r(x) + (u*- VU*QT)(.I‘) = for(2), r e R"™
This completes the proof of Lemma 4.5, and we have proved Theorem 4.1. O]
. ._34n . ) .

Until now, we have seen that from D = B, ” toS = PBpq *, (rSNS) is well-posed
when 1 <p <nand1 < g < oo, and ill-posed when p = oo and 1 < ¢ < co. Therefore,
the rest of case is when n < p < oo. Actually, in the case n < p < oo, we cannot
apply the method above. Indeed, for every trigonometric function g(x) = cos(a - x),
©j * g is not integrable in the whole space R", which means that g is not included in
By, = Bﬁ (R™) for 1 < p < co. Hence, in the next chapter, we reconsider (rSNS) in
the torus T", taking into account the fact that a function g is spacial periodic.






Chapter 5

The study in toroidal Besov spaces

In this chapter, we consider the well-posedness and ill-posedness problems of (rSNS)
on the n-dimensional torus T" = [—m, 7]". Before stating our main results, we should
define some function spaces on tori.

5.1 Definition and properties of toroidal Besov spaces

We denote by T% = [—Am, An]™ the n-dimensional 27 A-periodic torus for A > 0, and
let T" = T} = [—n, w]" in particular. We define the spaces D(T%), Dy(T%) and S\(Z")
by

D(TY) = {f € C(R"); f is 2rA—periodic on each component z1,...,z,},

purp={renmy [ jwi-of,

[, 7]
S\(Z") = {g 2" — R™Vs > 0,3c=c(g,s) > 0 s.t. sup (1+ |A"m|?)2[g(m)| < c} :
mEZ”

and let D'(T%), D(T%) and S5(Z") be dual spaces of D(TY) Dy(T%) and Sy(Z"), re-
spectively. We define the toroidal Fourier transform (the Fourier series) Frn : D(TY) —
SA(Z") by

1
(2w

Frgfm) = s [ fla)e s, feD(TY), me 2
[ A
and the inversion Fﬁ} : S\(Z™) — D(T%) by

f@lg(a:) = Z g(m)e™ ™ g e S\(Z"), x e T2

meZ’ll

We can also define these transforms in dual spaces, Frp : Dy(Ty) — Si(Z") and
Fpy « SM(2Z") = D'(T3), by

(Frpfo0) = (FFrie(=)), f € DT, ¢ €S2,

93
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(Flo.v) = (9. Fru(—)), g €SHZ"), veD(TY).
In addition, we define the convolution of f, g € D(T%) by
Feow)=[ Iy, reTs

We also define the convolution of (h, f) € D(T%) x D'(T}) by
(s 5.9y = Fb(=) b= [ (b= ) ey, o € DTY)
[—7, A

and it is seen that h x f is actually in D(T%). We can also define that of (h, f) €
Do(T%) x Dj(T%) by a similar way.

Now let us define some important operators and spaces related to Dy(T%) and
Dy(Ty). Since Fry f(0) = 0 for every f € Dy(T}), we can define the toroidal Riesz
potential I§ with s € R and Riesz transform R, with £ = 1,...,n on Dy(T%) by

13 = Fod [N 'l Fy fm)]
Rpf = .7-"7; [imy|m| ™! Frp f(m)] .

Secondly, we define the homogeneous toroidal Besov spaces. We take a non-negative
smooth function ¢ € C*°(R™) such that

0<¢p<1, suppo C {x € R";% < €] < 2}, Z $(277€) =1 V&€ € R™\{0}. (5.1)
Then we define
6;(6) = ¢(2778), on; = Fpe [0;(A)], JEZ. (5.2)

We can easily see that each ¢, ; belongs to Dy(T%). Moreover, since Frr f(0) = 0 for
every f € Do(T%), it is seen from (5.1) and (5.2) that

Y paixf=f VfeDYT).

j=—o00

According to the above family {¢rj}jez, we define the homogeneous toroidal Besov
space By (T%) for s € R, 1 < p,q < oo by

B3 (T2 = { € DUTR): 15135, < 0}

with the norm

0o 4 a
- {Z (2%]|pa,5 * f||Lp<1r§))q} , 1<g<oo,
Bjo(T%) = =

sup 2sj||30/\’j * fHLp(T?), q = 00,
JEZ

/]
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where LP(T?) is the space of 2w A-periodic measurable functions with the norm

1
<‘[l[—7T)\,7r)\]" |f(l')|pdl') ’ ) 1 S p <00,

1Al ryy =
esssup et | f(2)], p = 0.

Remark 5.1. For classical concepts and definitions of (non-homogeneous) toroidal
Besov spaces B (T"), we refer to Schmeisser-Triebel [19] and Xiong-Xu-Yin [29] for ex-
ample. By following similar methods to [19], [29], and classical theories of homogeneous
Besov spaces on R", we can see that the above homogeneous space are also complete
(for the completeness, we should define the space in Dj(T%)), and that a definition of
homogeneous Besov spaces is independent of the choice of ¢.

Now we prepare some important properties of toroidal Besov spaces to prove our
results. Here we only consider the case A = 1 for simplicity. In what follows, o[T]]
denotes formally the multiplier on Dy(T") with a symbol 7" : R* — R (or Z" — R)
defined by

o[T)f = Fpl [TFpnf] = ) T(m)Fpe f(m)e™ .

mezZm™

Let ¢; = ¢1; implied by (5.2). Since supp ¢; C {2771 < [¢] < 2771} by (5.1), we see
that

pixf = ol(¢j-1+ &+ dj41) 9] f
= @jxpj*f, (5.3)

where ¢; = ;-1 + ¢; + p;j11. Moreover, for T € Fgn L'(R™) (Fgn denotes the Fourier
transform in R™), there holds for any f € D(T™) that

olT]f(x) = Y T(m)Fmf(m)e™

mezZm™

= Z ( n]-"an(y)eim'ydy> Frn f(m)e™*

mezZm"

= | FTG) (Z fwﬂm)eim'(z—w) y

R mezm"

= FalT(y) f(x —y)dy, x € T"

R

Hence, it is seen from the Young inequality (and its proof) that

o [T fllzorny < N Fn Tllr@n | fllecemy,  f€D(T"), 1<p<oo.  (54)
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On the other hand, since ¢; * f is a trigonometric polynomial of degree 27t1 it is seen
from the Nikolski’s inequality that

(L1
llo; * flloerny < C27 & p)HSDj * fllraerny, 1< q<p< oo, (5.5)

where C' denotes a constant dependent only on p, ¢, and n. The above (5.3), (5.4), and
(5.5) yield the followings which are alternative to Proposition 2.1 and Proposition 3.7:

Proposition 5.2. (1) Let s € R, and let 1 < p < o0, 1 < ¢ < go < 00. Then there
holds
B? (T") — B? (T™). (5.6)

p,q1 p,q2

(2) Let s1 > s9, and let 1 < p; < py <00, 1 <q,r <oo. If s —n/p; = s —n/ps,
then there holds

B (T") — B (T™). (

1. P2,q )
(3) Let s,50 € R, and let 1 < p,q < oo. Then the Riesz potential (—A)2 is
isomorphic from Bs0 ,(T™) onto Bs0 5(T™).
(4) Let s € R éznd let 1 < p,q < oo. Then for each j = 1,2,...,n, the Riesz
transform R; = %(—A)_% is bounded from B;Q(T") to itself.

ot

Proposition 5.3. (Para-product estimate) Letn>2,1<p,qg<o0,s>0,a>0

and 3 > 0. Suppose that 1 < pl,pg,pl,pQ < 00 satzsfy 1/p= 1/p1+1/p2 = 1/p1+1/p2
Then for every f € BSH(T™) N B~ ' (T™) and g € B;*_(T")N BS+ (T™), it holds that

p1,9 p2,00

f g€ B, (T") with the estimate

1f -9l

33,5 < C (11

Bite(m HQHBP;OO

o+ 1= @llallpssomn ), (5:9)

where C' = C(n,p,q, s, D1,D2) is a constant.

Proof of Proposition 5.2. (1) is easily seen from the well-known embedding of sequence
spaces [7 < [ for 1 < ¢; < g2 < 00. On the other hand, it is seen from (5.3) that

S

pix (=A)Ef = o |d(m)og(m)ml*] f
o [Iml*g5(m)| (95 £).

where ggj = ¢j_1+ ¢; + ¢j_1. Since 0 ¢ supp ¢, it holds that
/ dr = 2j5/

< 027,
with a constant C' > 0 which does not depend on j € Z. Hence, it is found by (5.4)
that

[€]°¢;(€)e™ 7 dE €17 p(€)e’ " dg | d

R”

R

70 o5 5 (—A)2 f| pogrny < C27% |l % fll oy,
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which yields the boundedness (—A)z : B;f’q(’ﬂ"") — B;?q_S(T”). The boundedness of
the inverse (—A)~2 can be seen by the same way. Hence we obtain the isomorphism
(3). By using this morphism and (5.5), we can also show (5.7). Furthermore, since

pj* Rf =0 [Zm—k@(m)} (¢; * f) and since

m|
/ /R ZéT #()edE| du = /R /R % (§)e’wde

(4) also holds by (5.4). This completes the proof of Proposition 5.2. O

der < C, VjeZ,

On the other hand, we can prove Proposition 5.3 by a similar way to Proposition
3.7 (see also Kaneko-Kozono-Shimizu [11]), using (5.3) and (5.4).

5.2 Well-posedness and ill-posedness

Our main theorems in this chapter now read as follows. First, we state the well-
posedness of (rSNS) for 1 < p < occ.

Theorem 5.4. (Tsurumi [25]) Let n > 3, 1<p<mn,l1 < q < 00. Then (rSNS) is
quantitatively well-posed from D = qu (']T") to S = Pqu ?(T™).

We should note here that {u,II, f} satisfy the equation (SNS) on T™, then {uy, II,, f1}
with uy(z) = A lu(A 1), I (2) = A 2I(A 1), falz) = A3(A7tr) (A > 0) also satisfy
(SNS) on T%. On the other hand, we can see that

= 1A,

lull -res = lluall —aey o L ~s+3 B o)

Bp,q P (T7) Bp,q 7 (T}) P (Tm)

for any A > 0 and 1 < p,q < oo. This fact can be regarded as alternative to the concept
of scaling invariant with respect to the scaling transform {u, f} — {uy, fo}.
On the other hand, the following result on the ill-posedness holds.

Theorem 5.5. (Tsurumi [25]) Let n > 3. Suppose that p and q satisfy either of
following conditions:

(1) p=n, 2<qg<o0o,

(2) n<p<oo, 1<qg< 0.

Let D = B;SJFE(T”) and S = PBP_,;JFE(’]I‘”). Then for every 6 > 0, there exists a
sequence { fn}¥_1 C Do(T™) of external forces satisfying the following (i), (ii), and (iii)
as follows:

(i) If~llp = 0 as N — oo,
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(ii) For each fy, there exists a solution uy of (rSNS) in Do(T™) N.S. Moreover, each
uy satisfies

—A’LLN(LC) + (UN . VUN)(.%) + VH(SL’) = fN(Ll'),
div un(z) =0
for all x € R™ with a constant pressure 11, i.e., VII = 0.

(iii) There exists another constant 0 < k < 1 independent of 6 such that
R0 < Jlunllpr my < llunlls <9,

for any N € N.

Remark 5.6.  Since B;;JFE(T”) — Bl (T") for any 1 < p,q < oo, it is seen
that (SNS) is ill-posed from D to S with such exponents p and ¢ as in (1) and (2) of
Theorem 5.5 by the lack of continuity of the solution map. Moreover, since it holds
that || f||zee(rny = || fl| oo mny for any f € D(T™), Theorem 5.5 also holds on R" instead
of T" provided p = c.

Remark 5.7. It is still unknown whether (SNS) is well-posed or ill-posed from
B;2(T") to PBY (T") when 1 < ¢ < 2. However, since BY ,(T") < L"(T") (see Xiong-
Xu-Yin[29]), we can show the well-posedness of (SNS) from BT: 2(T") to PL™(T"), using
Holder inequality instead of Proposition 5.3 in the proof of Theorem 5.4.

Only in this chapter, we let Dy = Dy(T") and B;q = B;’Q(T”) for simplicity .

5.2.1 Proof of the well-posedness

By the second section in this thesis, it suffices to show the lemma as follows in order
to prove Theorem 5.4.

Lemma 5.8. (1) Let n > 2, s € R and let 1 < p,q < oo. Then the operator
L = (=A)""'P is bounded from B} * onto PB; , with the estimate

ILf

gy, < Cllfll g2,

where C'= C(n, s,p,q) is a constant.
(2) Let n > 2, s € R, and let 1 < p,q < co. Then the operator K = —(—A)"'PV-

is bounded from B;fql onto PB;,q with the estimate

|Kalls, < Cllgllss-r.
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where C'= C(n, s,p,q) is a constant.

n

(3) Let n > 3, and let 1 < p <mn, 1 <q < oo. Then for u,v € B,,_,;Jr;, we have

.24
u®uv € By © with the estimate

lu@oll, 2y < Cllull1vp

UH -1+
d Y
B P
P.q P.q

p,q

where C'= C(n,p,q) is a constant.

Proof of Lemma 5.8.  Since the projection P is defined as a matrix-valued operator
P = (Pjk)1<jk<n With Pjy = 6, + R;R), and the bilinear form K can be written as
(3.9), we can prove (1) and (2) of Lemma 5.8 by the boundedness of the Riesz potential
and Riesz transforms. Now let us show (3).
Since n > 3, we can take pg satisfying 1 < py < min{p, n/2}. Moreover, since p < n,

we can choose p; and p, as

1 1 1

—=—+—, P1>p, P2>"N

Po P1 D2
by choosing pg properly. Indeed, if p < n/2, then we should let py = p/(1 + €) with
small 0 < & < p/n so that py > 1 and

1 1 ¢ 1 1

pwop P P on
On the other hand, if n/2 < p, then we should let py = n/(2 + ¢) with small 0 < € <
(n/p) — 1 so that pg > 1 and
1 14e 1 1 1

+—-< -4+ -
Po n n p n

From Proposition 5.2, Proposition 5.3 with s = —2+(n/py) > 0 and a = 1—(n/ps) > 0,
and (5.6), we have

U vl aep < Cludul g

= ¢ (”“”B;i:g“‘p’%”””s;;;p"z * ”“”B;;i;f%”””B;f‘,:?“‘*”%)
< Olull-reg ol -oep
which proves (3) of Lemma 5.8. O

Remark 5.9. We can show that Theorem 5.4 also holds for D = B; 2and S = PL"
when 1 < ¢ < 2. Indeed, since ng — L™ (see Xiong-Xu-Yin[29] for example), we have

ILf]

o < CN-2)"PS gy,
< O”fHB;?Z'
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Moreover, by Holder inequality, we obtain

K@)l < Clu® vy,
< Cllu®vl,s
<

Cllullznllvllzn,

where

H*? = H**(T") = {f € Dy; | fllmrer = [|(=2)2

denotes the homogeneous toroidal potential space and we have used the boundedness
of the Riesz transform on there.

)<OO}

5.2.2 Proof of the ill-posedness

For the proof of Theorem 5.5, we use a parameterized function defined by

{cos(hsx1)es + cos(hsxy — x0)es}, x = (x1,...,2,) € T",

er —\/—ZS 2h2

where () > 0 and r € N are parameters, hy, = 2“527 and

T
= E st
s=1

denotes a partial harmonic series. We should note here that I'(r) — oo as r — oo.
This function fg, is similar to the parameterized initial data proposed by Yoneda [27]
on the topic of ill-posedness of non-stationary Navier-Stokes equations in R”.

Now let us construct a solution of (rSNS) with an external force f = fq . As similar
to (2.19), we define again the approximative sequence {u;};en to the solution of (rSNS)
with f = fo, as

LfQ T
Uj =u; + B(Uj_l, uj—l); j Z 2.
Moreover, we rewrite these u; as forms of series in accordance with Sawada [17]. Let

V1 = Uy,
vy = B(uy,u1) = B(vy,v1), (5.9)
v = B(up—1,up—1) — B(up—2,up—2), k=>3.

Obviously, it holds
J
uj=>Y v, j=1 (5.10)
k=1

As for fq, and {vi},cy, we can show the following key lemma.



Chapter 5. The study in toroidal Besov spaces 61

Lemma 5.10. Let {vg},oy be as (5.9), and suppose that n < p < oo and 2 < § < oo.
Then it holds that div vy, = 0 for all k > 1. In addition, we have the following estimates.

[ forlls 2 ||er|| sty < C \/—— for all r,Q > 1, (5.11)
||U1HBO ,Hvlﬂ —1rz < C’L for all r,@Q > 1, (5.12)
pl \/F(T)
CTQ* < wallpz, < llvallpe, <CQ* if r>Q, (5.13)
k—2
lorll g, ol < CQ ( ?(ﬂ) forall k>3, if r>Q, (5.14)

where C' > 0 denotes a global constant which depends only on n, p, and q.
For the moment, let us assume this lemma. Once we fix ) and r with

Q
()

<1,

then by (5.14), there hold

o oo
S foello= <00, S el < 0.
k=1 k=1 ’

Hence, there exists ug,, € C(T") N 3271 such that

[e.9]

up, = lim u; = ka in L™ and 32,1 (5.15)

—00
] k=1

and div ug), = 0. Actually, this function ug,, becomes a solution of (rSNS), which is
implied by the convergence of the bilinear form B(u;,u;) as the following lemma.

Lemma 5.11. Let v > @ and let u* be a function defined by (5.15). Then it holds
that
* * . 0o 50
]lggo B(uj,u;) = B(ug ., ug,) in L™ and B, ;. (5.16)
Moreover, u = ug,, satisfies the original equation (SNS) for all x € R™ in the pointwise
sense, with f = fo, and a constant pressure 11.

By the above two lemmata, we can easily show Theorem 5.5 by the same method
as Theorem 4.1 in the last chapter. Here we should note that by (5.6), it suffices to
show Theorem 5.5 in the cases

(D,S) = (B2, PBY.), (B, ", PB,, "), n<p<oo, 2<{< oo,

n,q’
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Now let us show Lemma 5.10-5.11. First of all, we prepare some properties about
the Riesz potential and the toroidal Besov norm of trigonometric functions as follows.

Proposition 5.12. (1) Let a € Z™"\{0} and let ¢,(x) = cos(a - x), x € T". Then
(=A)2g, = |a*q1, s €R, (5.17)
and for any 1 < p,q < oo, we have

91l 50, < C, (5.18)

where C'= C(p,q,n) is a constant.
(2) Letr e N, ay,...,a, € R, aq,...,a, € Z"\{0}, and let

,
= Zas cos(as - x), xe€T".

Suppose that the vectors ay, ..., a, satisfy

las| # |a, ||ZS|| ¢{reR;272<|z| < 2%}, if s#¢t. (5.19)
¢

Then for any 1 < p,q < oo, we have

1
T q
c{zrasw} Cl<g<n
loallzg, <

C max |agl, q=00
1<s<r

where C'= C(p,q,n) is a constant.

Proof of Proposition 5.12. (1) Since g(z) = (e"*® + ¢~**)/2, it holds that

1

Frngi(m) = {5’

m = =*a,

0, otherwise.

Therefore, considering the definition of the Riesz potential (—A)2, we see

(=A)q(x) = Y [m[Frngi(m)e™
mezn
= |al’cos(a - x),

which implies (5.17). On the other hand, we can assume that ¢ in the definition of B;,q
(see (5.1)) is a radial function. Then we have

(pj *g1)(x) = Z ¢;(m)Fragi(m)e™”

mezZm"

= ¢j(a)cos(a-x), j€ L.
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Since supp ¢; = {z € R™; 277! < |z < 277} there exist at most two indices j € Z
such that ¢;(a) # 0. Let j; and j2 be such indices. Then since |¢;| < 1 uniformly, we
see that

1
lg1llz,, = (165 (a) cos(a ) gny + 192 (@) cos(a-) [ Lppny) s < C.
(2) For each s = 1,...,r, there exist at most two indices j € Z such that

(p; * cos(as-)(x) = ¢j(as) cos(as - x) # 0.

Let j(s) and j'(s) be such indices. On the other hand, it is seen from the assumption
(5.19) that there exist at most one vector a, for each j € Z such that ¢;(a,s) # 0. Hence,
since |¢;] < 1 uniformly, we can see that

loallly = S s * gall o

JEZ.

= 3 (lsdyo 1l cos(ae )1y + letstrye 7l co5(as) [

s=1
r
< ) laf?
s=1

for any 1 < ¢ < oo, and that

||92||Bgoo = SUPH% *92||L°°(’£[‘")
: ez

< max |ogl.
1<s<r

This completes the proof of Proposition 5.12. m
We should note here that the above proposition also holds for sin(-) instead of cos(-).
Proof of Lemma 5.10. We prove Lemma 5.10 by three steps.

Step 1. Estimates of fo, and vi. It is clear that fg, € Dy and div fg, = 0. Hence,
it is seen from Proposition 5.12 (1) that

v = <_A)_1fQ T

= Zs 2 {cos(hsxy)es + kg cos(hsry — x2)es},

\/_

where k, = h?/(h? + 1), and that div v; = 0. Since h, > h; and hy/h; > 22 for any
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s > t, we obtain the estimates from Proposition 5.2 (3) and Proposition 5.12 (2) as

orlse = Il
1
Q < T _q)q
>~ S
['(r) ;
< C @
I'(r)
and
li—142
HfQ,r||Bf?+%:‘|U1||Bj+% = [I(=A)3 1+1")Ul||B§,~),1
P, p,

which prove (5.11) and (5.12).

Step 2. FEstimates of vo.  In what follows, let v,(:) be the i-th component of v,. It is
easily seen that

v - Vo = U§2) - Oy
- Q ~— _1 Q ~—, 1, .
— (m ; s 2 cos(hsx1)> m ;t 2ky sin(hyry — x9)es
Qo (L
— o0 Zs ks <—§ smx2) es

s=1
2 r 1 ‘
+ FC?T) Z sk, <§ sin(2hsxy — ;EQ)) es
Q? K~ 11,1 )
T > smet kg {sin((hs + he)y = w2) = sin((hs — he)ay + 22)} es,
s,t=1

s#t
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Therefore, V - (vy - Vuy) = 0, and
Vg = —(—A)_l(vl . V’U1>

@y (1
_F(r);S ks 28111:62 es

Q — o, 1 1
+m;8 ksm —ism(thxl—xg) e

T

Q? 111 ) .
+ () Stzls 2t 2/6,52 {—ZS,t sin((hs + he)xy — x2) + lsesin((hs — he)xy + 1’2)} es

st
= Nl + N2 + Ng,

where

L, = 1 = 1

st — <h5+ht)2—|—1, st — (hs—ht)2—|—1
Since 1/2 < kg < 1 for every s =1,...,r, we have

1 Q? U _
HNl”Bg1 < 5% (ZS 1> |p(e2) sin za|| ()
s=1
< 0@

while

1 Q? - _
||N1HE';0—01’(><> > Z% (;51> | (e2) sin xa]| Lo (Tm)
> CQ~

Moreover, by Proposition 5.12 (1), we have

T

1@ _
INa[go < 2T(r) > i+

Q2
CF(T)'

<

In order to estimate N3, it suffices to estimate

) r s—1
~ 111 . = .
N3 = % Z 1 8_575_55 {l&t sin((hs + he)xr — x9) — lsesin((hs — hy)xg + 1‘2)} €3

s=2 t=
by the symmetry of s and ¢. Since

. 1
Lo <h72 1

s

< 2n7?

< —  Vi<s,
U= ho(hy — 2k = N
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we can see from Proposition 5.12 (1) that

~ Q2 1
S0 < _— 2
[Nallgg, < Cpig 257
Q?
< —_—.
< CF(T)

Therefore, if r > (@, then there hold from the estimates of N;, Ny, and N3 that

[vall g0, < > [INill o,

1=1,2,3
< 0@
and that
ol > lloallpa, — > [Nl g0
i=2,3
> CQ%,

which implies (5.13).

Step 3. Estimates of vk, k > 3. By the induction, we can see that

vy € Dy, divu, =0, Vk>1, (5.20)
vp = B(vy,vk_1) = Ores, Yk > 2, (5.21)

where
0= —(-2)" (o002, ) (5.22)

denotes a scalar-valued function depend only on z; and xs. Indeed, we can see all of
the above (5.20)-(5.22) in a similar way to Proposition 4.6.
Now let us estimate v3. By (5.21), It suffices to estimate 65. Since

3 T
v§2)62N1(3) = (%) (Zs 2 cos(hszy > Zt Yoy (——cosxg)

=1
— _411 (%) (Zt 1kt> ;s 2 {cos(hsxy + x2) + cos(hsw1 — x2)} ,

we have

05 = —(=0)" (oo + N+ Né?’)))

1 o\ i )
T4 < r(m) (Z kt) ZS : {COS(h x1 + x3) + cos(hsxy — x2)} + Rs

t=1
= M3+R3,
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where Ry = —(—A)~! <U§2)82(N2(3) + N3(3))> is a reminder term. For Mjs, it is seen from
Proposition 5.12 (1) that

1 S -
M| £ < . h2
|| 3||B%1 = 4 m; s
3
< 1o @
4 \/T(r)
and
| Myl < ~C

Moreover, it is easily seen by a similar calculation that R3 is small compared with the
main term M;. Hence, we have the estimate (5.14) for k = 3.
We next estimate vy (64). It holds that

ot - ) (o)

s=1

X (Z l—lk;l> Z ¢z hQi : {—=sin(hyzy + 22) + sin(hyxy — x2)}
=1 t=1 t
e\ (v
s
2

HENED

+R),

SlIl )

FJJ[\D

where R is a reminder. Hence we have

b = —(=8)7" (o0u(Ms + Ry))

B 1 Q 4 r ) r B 1
- 1( m)) (Zl ‘”)?flhiﬂ

sin xo

{sm(2h x1 + x9) — sin(2hsr) — x9) }

4
1 Q ~ 1 1 , _
>\ T /== ™k 2h — 2h _
8( F(T)) (Z l);s a1 ein(Zhee £ 2) = sin@har — w2}

1=1
+Ry
= M, + Ry,
where Ry = —(—A)"YR, + /U§2)82R3) is another reminder. Therefore, by a similar
calculation on vz, the norms of M, are estimated as

4
I¥illg, < {0

Q4
o <
IMill= < 1O
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and so are that of Ry. These estimates show (5.14) for k = 4.
From (5.17), (5.21), (5.22), and a similar calculation on trigonometric functions as
above, we see by induction that

(1 0 0 \' (< ) -
ek_<§) (W) <Zz k,) M, (x) + Rp(z), k>3,

=1

where [¢q] = max{m € N;m < ¢}, each Ry denotes a small reminder, and M, has a
form as

S° AFcos(HF-x) ks odd,

Y o seN: finite
My(z) = ko .
> ASsinzy ks even,
seN: finite

with some coefficients v¥, 7'* and vectors H* such that

Hj = lkhsel + ogeo, lk € N, o € {—1, 1},

1

k

sl WS < 550 k23,

Hence we see that (5.14) holds for any & > 3. This completes the proof of Lemma
5.10. =

Proof of Lemma 5.11. From the calculation in the proof of Lemma 5.1, it is seen that
Oy, can be estimated the same as (5.14) for any order m = 1,2,.... Moreover, it
is also seen that for every order m = 1,2,..., 0{"v can be estimated as (5.14) if & is
large enough. Therefore, we see that ug,, = Y pe; Uk belongs to Dy and is termwise
differentiable provided r > ). In addition, from the identity

2052)82% = —(—-A) (Z—(—A)_lvf)@gvk>
k=1

k=1

== (_A) Z Vk+1,
k=1
there holds

1B(ugy r ugy,) — Bluj, wy)ll= = || B <U17 Z Uk)

k=j+1

LOO

= —(—A)flvg)@ ( i Uk)

k=j+1

Loo
[e.e]

= | 3 {-a) (o) )

k=j+1

LOO

IN

oo
Z |vgs1]lL= — 0, as j— oc.
k=j+1
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In the same way, it is also easily shown that B(u;, u;) — B(ug,., ug,) in Brj} as j — 00.
Finally, let us show that u = ug, = Y~ v actually satisfies (SNS) with f = fq,
and VII = 0 for all z € T". Indeed, by termwise differentiation, we see that

—Au*Q’r(x) = —Auvu(z) - A <I§; —(—A)_lvl(x)ﬁgvk_l(x)>
= Jorla) - kf;vl(m@zvk(x),
(vl - Vg, (&) = m(x)-aalf;vk(x)

Hence we obtain

—Aug,(z) + (ug, - Vug,) () = for(e),  zeT"

This completes the proof of Lemma 5.11. O






Chapter 6

Ill-posedness by Bejenaru-Tao method

From this chapter, we return to the problem on the well-posedness of (SNS) from

. 341 ._34m .14 . _14n
D = Bp,qu” = Bp,q+p (R™) to S = Bp,qup = Bp,qup (R™) in the whole space. As seen in

Chapter 4, the Bourgain-Pavlovi¢ method for the ill-posedness is applicable only when
p = o0o. Hence in this chapter, we approach this problem in the case n < p < co using
another method proposed by Bejenaru-Tao [2].

6.1 The important proposition by Bejenaru-Tao

Bejenaru-Tao [2] showed the following important proposition. Here we return to the
abstract problem on the equation (E) in Chapter 2.

Proposition 6.1. (Bejenaru-Tao[2])  Suppose that (E) is quantitatively well-posed
from (D, ||-||p) to (S,||-|ls). We define the nonlinear maps A, : D — S form € N by

AleLfv

ke I>1 kHl=m
(1) Each A, f belongs to S and there exists a constant C' > 0 such that
|Amflls <C™IfII5, YmeN.

Moreover, a solution uw € Bg(0) of (E) for f € Bp(e), which is obtained by the well-
posedness defined in Definition 2.5, is expressed as

u:u(f):iAmf in S.
m=1

(2) Suppose that D and S are given other norms |- || p and || - || g, respectively, which
are weaker than D and S in the sense that

1l < Cllfllp,  lulls < Cllulls-

71
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Assume that the solution map f — u of (E) given by Definition 2.5 is continuous from
(Bp(e), || 1lp) to (Bs(9),||-llg).- Then for everym € N, A,, : D — S is also continuous

from (Bp(e), | - | 5) to (Bs(9), - ll5)-

In the above, for example, (Bp(¢), || -||5) denotes the ball {f € D; || f||p < 6} equipped
with the weak norm || - || 5.

Remark 6.2 Suppose that the equation (E) is quantitatively well-posed from D to
S,and (D, |-||5) and (S, || -||5) are Banach spaces such that there hold the embeddings
D < D and S < S. Then Proposition 6.1 means that if at least one of A,, is
discontinuous from D to S for any small ¢ > 0, then the solution map of (E) becomes
discontinuous in such weaker spaces, which implies that the equation (E) is ill-posed

from D to S. For the proof of Proposition 6.1, see Appendix B.

In order to apply this proposition for showing the ill-posedness of (rSNS), we re-
quire appropriate spaces D and S which guarantee the quantitatively well-posedness
of (rSNS). Actually, the well-posedness result stated in Proposition 3.1 by Kaneko-
Kozono-Shimizu [11] does not seem to be satisfactory for showing the ill-posedness in
the case n < p < oo by Proposition 6.1. Hence, before stating our new ill-posedness
result, we should show the following:

Proposition 6.3. (Quantitatively well-posedness when p =n and 1 < ¢ < 2) Let
n > 3. Then (rSNS) is quantitatively well-posed from H=2" to PL", and in particular,
from B> to PL™ if 1 < q < 2.

Indeed, by the boundedness of P (or Riesz transforms) in homogeneous Sobolev spaces,
we have

I(=2)7 P fllee = 1P fll -2 < Cllfll -2
for all f € H=2". Moreover, by the embedding Lz < H~'" and the Holder inequality,
it holds that

I(=2)"PV - (u@v)|r < Clu®vl|gr.

< Cllullzfloflz»

for all u,v € PL"™, which completes the proof of Proposition 6.3.

Remark 6.4 Actually, there are other previous results on the well-posedness in the
case p = n. For example, Bjorland-Brandolese-Iftimie-Schonbek [3] showed the well-
posedness with more general space of external forces. In fact, they proved that there
are constants £, > 0 such that if f € &' satisfies ||(—=A)7!f||pne < & (L™ denotes
the weak L™ space), then there exists a unique solution u € Bppn.(d) to (rSNS), which
belongs to L™ if and only if Pf € H2". In addition, Phan-Phuc [16] showed the

well-posedness in the largest critical space of external forces including H~2". However,
in this thesis, it suffices to consider Proposition 6.3 for our main purpose.
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6.2 Ill-posedness in the remaining cases

Our result now reads as follows:

Theorem 6.5. (Tsurumi [26]) Le
1

n > 3. Suppose that D and D are two Banach
spaces with D < D as either (1) or (2):

14
(2
(1) D= Bn%,D By ;wz’thn<p§ooand1§q§oo,

(2) D= B,3, D= DB;2 with2 < q < co.

Let £,0 > 0 be constants appearing in Definition 2.5 which guarantee the well-posedness
of (rSNS) from D to PL"™ (see Proposition 6.3), and take 0 < n < e arbitrarily. Then
the solution map

feBom), |- 1p) = uwe (Bpen(d), |l 52..)

is discontinuous, where (Bp(n), || - [|5) and (Bprn(0), || - |31 ) denote the ball Bp(n)
equipped with the D topology and Bprn(9) with the Bo_o{oo topology, respectively. In other
words, (rSNS) is ill-posed from D to PBO_O%OO

Remark 6.6. Suppose that D and D are as the above theorem. We now arbitrarily
choose a sequence {gn}nen such that supyey|lgn||p < €. Then by Proposition 6.3,
there exists a unique solution vy € PL" for each gy. In addition, if gy — 0 in D, then
we see vy — 0in PL™ by the well-posedness (continuity of the solution map). Theorem
6.5 means, however, that the weaker convergence gy — 0 in D cannot sufficiently
guarantee vy — 0 even in the weakest scaling invariant norm Bgofoo

Remark 6.7.  Actually, as seen in Lemma 6.9, we will show Theorem 6.5 by construct-
ing a sequence { fy }yen of external forces with || fn||5 — 0 such that the corresponding
sequence {uy }nen of solutions does not converges to zero in B'._. Hence we can eas-
ily see by Proposition 2.1 (4) that we can also show Theorem 6 5 for the homogeneous
Triebel-Lizorkin spaces with the same exponents. Indeed, in the case (1), we consider

the embedding

. —342 . —3+2
B,, " = Fpq "
for n < p < o0 and 1 < ¢ < oo, while in the case (2) with 2 < ¢ < oo, take

2 < r < min{n, ¢} and consider the embedding
B2 — 2.

Then together with the isomorphism Bl = FiZL | we see that there holds Theorem

00,007

6.5 with Besov spaces replaced by Triebel-Lizorkin ones.
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Remark 6.8. It is still unknown whether or not Theorem 6.5 would hold in the case
n = 2. Actually, in R?, even Proposition 6.3 has not been proved for any indices p and
q. Indeed, for the well-posedness, it is hard to show the bilinear estimate

~A)'PY - (u@v)|| .2 < COllu|| _.2 ol| .2 .
[(=A) ( ”'B,,jﬁﬁ(w)— | IIBP;@(RQ)H ”B,,,;*Z(Rz)

On the other hand, to show the ill-posedness, we require external forces having at least
three components (see the proof in the next section).

Proof of Theorem 6.5. By Proposition 6.1 and Proposition 6.3, it suffices to show the
following lemma in order to prove Theorem 6.5.

Lemma 6.9. Letn > 3. Suppose that D and D are two spaces with D < D as either
(1) or (2) of Theorem 6.5, and n > 0 is a constant given in that theorem. Then there
exists a sequence { fn}nen of external forces and a constant C = C(n) > 0 satisfying
the following (i), (ii) and (iii):

(i) supyen fnllD <m,

(i) ||fnllp = 0 as N — oo,

(iil) infyen |’A2(fN)||Bgo{oo = infyen || B(Lfw, LfN)”B;O{OO >C.

Proof of Lemma 6.9. We first take ¢ € S as

supp(Fy) = {§ € R™; [¢] <1}, F(§) > 0in {§ € R €] < 1}, (6.1)

and we define
WY = (-) (i, cotme)} , 5 =28 meN

where 1), = (%i. Using this function, we construct {fy}yen differently in the case (1)

and (2) of Theorem 6.5.

n

. ~ . 341
Step 1. The case (1) : D = Bﬁ, D = Bp,q+" withn <p<ooand1 <q<oo. We

define a parametrized vector-valued function as
— (3) _ 2
oo = MeaVy, —es¥y/t, A>0, M > 100,

This function is inspired by a initial data sequence proposed by Bourgain-Pavlovié¢ [5].
It is clearly seen that div g a = 0 and hence Pgy p = gaa. Therefore, we have

Lopv = (=8)"'gam
= ACOS(M$1){€2¢953(37) — €3y, (x)}
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Now let us consider the estimate of gy . We recall {¢;};ez in the definition of Besov
spaces (see (2.3)-(2.4)). Since

Fli, cos(M)](€) = —%igj{m(g ~ Mey) + F(E+ M)}, j=2.3,

we see that there exist at most three indices j € Z such that ¢; * Lgy p # 0. Indeed,
such indices must satisfy

{€eRMPTI < <2 N{EeR M 1< [§[ < M+ 1} #0,

that is,
M—1

<2 <2(M +1).
Therefore, we obtain the estimates
lgxmllp = HQA,MHB;}’%;
S [N
= Z lpj * Lga,nllzn

JEZ
and
loamllp = ||9A,M||B—3+%
P,q
< H(_A)_lg)\,MHB—F—%
p,
- Z 2j(_1+%)H90j x Lgxarl e
JEZ
< CAM % =0 as M — (6.3)

for any M > 100, implied by —1 4+ n/p < 0. Here we have used the Young inequality,
the equality

lejller = 112"¢0(27:)|| 11
= |lollr, Vi€Z, (6.4)

and the estimate

HLg,\,MHLp < CHVIbHLp, VA >0, VM > 100, 1 <Vp < . (6.5)
We next calculate B(Lgx ar, Lga ). Since Lgy ar has only two non-trivial components,
it is seen that

0 0
(Lgxm) - V(Lgyv) = (Lganr)e=—(Lganr) + (Lgan)s=—(Lgamr)
(9952 8273
= )\2 COSQ(M$1){€2(¢x3’QZ)x2x3 - ¢x2¢m§) + 63(—’9/15,;3’9/135% + ¢$2¢x2x3)}

1 1
= 5)\2(62<I>1 + e3dy) + 5)\2(62@1 cos(2Mz1) 4 e3Py cos(2M zy))

= Il —FIQ
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— 9lath)
Here %gzg = axgxgd) and

o, = ¢$3¢$21‘3 - ¢x2¢:p§7 ¢y = —%3%3 + %2%21:3- (66)

We note here that B(Lgxar, Lgan) = —(—=A) "' P(I1+15) belongs to PL™ (in particular,
to PB;{OO) by Proposition 6.3. We can show that PI; # 0 (see Appendix C), and that
(—A)~'PI is not constant. Furthermore, since

supp(F11) C supp(Fy * F)
C {£eRM|¢] <2}, (6.7)

we have

|((—A)1P1'1)(x)|:/]R 1 <5~ %> ) ]—"Il(g)e*”'ﬁdg <C, VreR"
1<j,k<n

SEEANATIE

for some constant C' > 0 (where J;;, denotes the Kronecker delta), which yields that
(—A)7!PI; does not belong to the polynomial space P. From this fact and (6.7), we
see that

I(=A)""PhLlp. = sup 27|@;* (—A) 7 PL 1

jEZ,j<2
> CN >0

for some constant C' > 0. On the other hand, it is seen that

supp(Fly) C supp((Fv x Fu)(- £ 2Mey))
C {€eR™2M -2 <|[{| <2M + 2},

which yields ¢, * ((—=A)"'PIy) = 0 for any j > 2. Therefore, we obtain the estimate
that

1B(Lgsas Lonlpzr, = sup27llgsx (“A) ' P(L+ )= (63)
j€
> sup 27|, * (=A) 1P || 1
JE€Z,j<2
> (O\2

for any M > 100.
Now for given 1 > 0, we can fix A = Ag so that

sup [[gag,nrllp <1
M>100

from (6.2). In addition, from (6.3) and (6.8), we see that a sequence {fx}nen defined
by
IN = groN+100, N =1,2,3,...
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satisfies (i), (ii), and (iii) of Lemma 6.9. This proves Lemma 6.9 in the case (1) of
Theorem 6.5.

Step 2. The case (2) : D = B;%2, D = B2

n,2’
parametrized vector-valued function as

h with 2 < ¢ < oo.  We define another

Z F 2 {05 — esU0L}, A >0, M > 100,

\% k10

where
M
= Z kL.
k=10
This function is inspired by a initial data sequence proposed by Yoneda [27]. As similar
to gx.am, we see that div hy = 0 and

Lhyy = (—A)—lhw

= \/_Zk: cos(2F xl){eﬂbm( ) — €3, ()}

k=10

Let us consider the estimate of hy j;. By a similar way to Step 1, we see that for each
k, there exist at most three indices j € Z such that o; (1, cos(2¥°z)) # 0 (1 = 2,3),
which must satisfy
2k — 1
2
Moreover, the set {2¥° },>10 is so discrete that we see

{J € Z; @) * (g, cos(2521)) 2 0} N {j € Zip; # (b, cos(2a1)) £ 0} =0
for any ky, ko > 10 with k; # ky. Hence we obtain the estimate

<2 < 202" 4+1).

Ihaallpz = 1(=2)" Pl
= {Z [epj * (—A)_lhA,MHan}
j€z
u 1
< syl
L(M) iz
{CA, q=2, (69)
< (o3 :
Jron’ 2 < q < oo
Here we have used the Young inequality, (6.4), and (6.5), and should notice that
M
lim k™% < oo, if2<q<oo.

M—oco
k=10
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Since I'(M) — oo as M — oo, we see from (6.9) that
||h,\7M||B;% —0 as M — o0, if 2 < g < o0. (6.10)
We next calculate B(Lhy a, Lhy ). It is seen that

(Lhyar) - V(Lhy )

0 0
= (LhA,M)2a_x2(Lh/\,M) + (LhA,M)?)a—xB(LhA,M)

2

N
A
= TO0) (e2®1 + e3Py) Z k2072 cos(2¥ 21) cos (28 21)
k=10

2

M
A
= Tf (ea®q + e3P) Z k' cos? (2 xy) + Z T cos(2" z1) cos(2" z1)

(M) k=10 10<k,I<M
leAl
)\2
= ?(62‘131 + e3®P9)
) M
+ (e2®y + e3Dy) k! cos(28 )
3E ) 2

)\2
g (201 + esda) N kT cos((25 + 2%)a) + cos((2F — 2%)ay)
( ) 10<k,I<M
k£l
= J1 + JQ + Jg,

where ®; and ®, are as (6.6). Since the above coefficients 28°+1, 25* 19 and |2+ — 2|
are large enough, we see

pix (“A) T P(Ji + Ja) = gk (“A)T Py, V<2,
Hence, by a similar way to the argument on I; and Iy in Step 1, we obtain
IB(Lh v, Lhoad) g, > [(FA) Pl g > CA? > 0. (6.11)
Now for given 1 > 0, we can fix A = \g so that

sup [hagllgo, <n
M>100 )

from (6.9). In addition, from (6.10) and (6.11), we see that a sequence { fy } yen defined
by
In = hygnt100, N =1,2,3,...
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satisfies
sup [[fnllgo, <m, lim |[fyllg =0 if 2<g< oo,
NeN m, N—oo n,q

and
inf | B(Lfx, L)l > N

This proves Lemma 6.9 in the case (2) of Theorem 6.5, and hence the proof of Lemma

6.9 is completed.
By the foregoing, the whole proof of Theorem 6.5 has been completed. [






Chapter 7

Counter-example for the product estimate

In this chapter, we treat some by-products produced by our studies in Chapter 2-6.
: : : o342
Here we reconsider the factor causing the ill-posedness of (rSNS). Let D = Bp4 ©

n

and S = PB,, ;er again. As seen in Chapter 2, to see the well-posedness, it suffices to
show (2.17) and (2.18) with

Lf = (—=A)"'Pf, B(u,v) = —(=A)"'P(u-Vv).

Among these, the estimate (2.17) of L : D — S always holds for any 1 < p,q < o0
by Proposition 2.1. On the other hand, in order to show (2.18), we should use the
paraproduct estimate in Proposition 3.7. In fact, for the well-posedness, the restriction
of p, 1 < p < n stems from that of s, s > 0 in Proposition 3.7 (we should note here that
—1+n/p >0 when 1 <p<n). On the other hand, we have showed the discontinuity
of the solution map f € Bp_,er; = ou € PBP_,;JFE of (SNS) when p =n, 2 < ¢ <
and n < p < 0o, 1 < ¢ < oo in the last chapter, which implies that (2.18) does not
necessary hold in such conditions of p and ¢. Hence, it seems natural to expect that
Proposition 3.7 should fail necessarily for s < 0.
Our result on counter-examples of the paraproduct estimate is as follows:

Theorem 7.1. (Tsurumi [22]) Letn>1,s€R, and 1 < p,p1,p2,p3,ps < 0.

(1) Suppose that the exponents sy, Sa, S3, 54 € R satisfy sy + s2 < 0 and sz + s4 < 0.
Then for any M > 0, there exist functions f,g € Sy such that fg € So(R™) and

Bii,1> . (7.1)

I£glls,.. > M (Ifllsn Nl + 17153 Nl

(2) Suppose that the exponents 1 < q1,q2,q3,qs < 00 satisfy

2 S q1,492,43, 44 S o0, maX{QlyQQ} > 27 HlaX{Q37Q4} > 2.

Then for any M > 0, there exist functions f,g € Sy such that fg € So(R™) and

1Flle; . = M (Ifllsy, , glly, .+ fllsy ollag,,.)- (7.2)

P4,94
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As can be seen in the assumption of Theorem 7.1, we can choose s € R and 1 <
D, P1, P2, P3, P4 < 0o independently. In particular, those indices do not have to satisfy

1/p=1/p1+1/p2=1/ps+ 1/pa.

Corollary 7.2. (1) The inequality (3.2) is invalid in the case (1) or (ii) as follows.

(i) s<0,a€eR, BeR, 1<p,q< o0,

(i

s=a=08=0,1<p<oo,2<q<o0.

(i

(ii)) s=0,2<p< o0, 2<q< 0.

i)
(2) The inequality (3.3) is invalid in the case (i) or (ii) as follows.
) $<0,1<p,q<o0,

)

Proof of Corollary 7.2 from Theorem 7.1. (1) In Theorem 7.1, take
S1=8+aq, sy = —q, 83:_/67 84:S+/87

and take py,po,p3,psas 1/p = 1/p1+1/py = 1/ps+1/ps. Then by using the embedding
in Proposition 2.1, we have the claim in the case (i) from (1) of Theorem 7.1, and in
the case (ii) from (2) of Theorem 7.1.

(2) In (1) of Theorem 7.1, take

S1=8=258, Sy =53=0,

and py,p2,p3,ps as 1/p=1/p1 + 1/pas = 1/p3 + 1/ps. Then by using the embedding in
Proposition 2.1, we have the claim in the case (i) from (1) of Theorem 7.1. To see (2)
of Corollary 7.2 in the case (ii), we should let

Qh=Qu=qg>2, @=qg=2,

and let py, pa, p3, p4 as above in Theorem 7.1 (2). Since py, p3 > p > 2, it is seen from
Proposition 2.1 that . _
B o= L7, B , < L,

which yields (2) of Corollary 7.2 in the case (ii). O
Remark 6.3. Our result can be applied to the bilinear estimates in homogeneous

Triebel-Lizorkin spaces. In fact, under the condition s, «, 5 > 0, Kozono-Shimada [13]
showed the estimates

< C (Ifhigsg ol e (73)

P1,9 p2,00

11155l
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when 1 < p,qg <00, 1 <p1,ps < oo, and 1 < pg,p3 < oo so that 1/p=1/p; +1/ps =
1/ps + 1/ps. Moreover, Iwabuchi-Nakamura [9] also showed (7.3) in the case p = oco.
By Proposition 2.1 (4), Theorem 7.1 (1) gives counter examples of (7.3) when s < 0
and «, 5 € R. Moreover, we see that Theorem 7.1 (2) also gives counter examples of
(7.3) when s = a = 0 provided 2 < ¢ < p < oo, which is implied by B]‘;q — F]iq if
q < p. In addition, by the isomorphism
[~ f

par SER 1T <p<oo,

our negative result can be applied to bilinear estimates in the homogeneous Sobolev
spaces H*? = {f € S'/P; || fll gsw = [[(=A)2 f|lr < 00}.

Proof of Theorem 7.1.  First of all, we choose @1, ®5 € Sy so that
supp(F @) ={{ € R\ 1< [§] <2}, FP, >0 in{{ € R 1 <[] <2},

supp(F®,) = {{ e R 3 < [¢] <4}, FP, >0 in {€ € R";3 <[] <4}

We define
D3(x) = Oy (2)Po(x).

Since

supp(FPi1(n—-)) = {{€eR"1<|np—¢ <2}
C {£eRYn—2<L (€] < [n|+2},

for each n € R", it is seen that F®(n — £)FPy(£) = 0 for all £ € R™ if 7 satisfies
{eR%In[—2< ¢l <l +2}n{E e R"3<[¢] <4} =0,
that is, 0 < |n| < 1 or |n| > 6. Hence we see that &3 € Sy and

supp(F®3) = supp(FP; « Fdy)
C {£eRM1< (¢ <6}

Let s € R, and 1 < p, p1, p2, p3, ps < 00. We prove Theorem 7.1 by two steps.

Step 1. (1) of Theorem 7.1. We choose parametrized functions f,, g, as
fr(x) = ®1(x) cos(rzy), gr(x) = Pa(x) cos(rzy)

for r > 100. We should note again here that the Fourier transform of ¢,(z) = cos(v - x)
(v € R"™\{0}) can be written as

Feu(€) = 5 15(6 ) +6(6 + )}
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where § denotes the Dirac measure at the origin. Hence, we have

Ff(&) = (FOrxFepe,)(€)
= % {FO,(§ —rey) + FO1(§E+1e1)},

and

Fale) = (Fax Foru)(©)
= % {F®o(§ —rer) + FPo(€ +rer)},

where e; = (1,0,...,0). Since
supp(FP1(-trep)) C{€ e R r—2 < |¢] <r+2},

there are at most 3 indices j € Z such that ¢; * f, # 0, where ¢; are defined in (2.4).
Such indices should satisfy

{€eR, 27T <P N{EeRr—2<[§|<r+2}#0

(recall also (2.3). Roughly, there should be 2/ ~ r). Moreover, by the Hausdorff-Young
inequality, it holds that

s * frllee < sl [ frllze
< leollpt||®1] v

for every 1 < p < oo and j € Z. Here we have used the fact that ||¢;||.1 = [|¢ollr1 for
every j € Z, which is implied by ¢;(z) = 2" ¢g(2z). Therefore, we have

Ifellgs:, = D2
JEZ
< Cr*, i=1,3

©j * frllLes

with some constant C' = C(n, s, p;). By a similar way, we can also see that
lgrllgee ) < Cr, i =24

Hence, we obtain the estimate

Vfollges Ngellzen, + 15

On the other hand, we have

fr(@)ge(x) = ®3(z)cos’(r)

B 1 S C(Tsl+s2 + 7,83+S4>‘ (74)

35 [|gr|
Bp3,1 P4

1 1
= 5(133(3;) + §<I>3(a:) cos(2rx)
1 1

§<I>3($) + §R(x),
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where R(z) = ®3(z) cos(2rzy). From the similar argument as above, it is seen that
supp(FR) C {{ e R";2r — 6 < |¢] < 2r + 6},
which implies ¢g * R = 0 for » > 100. Therefore, we have

1 frgrl

Bjoe = ?2528j||%*fr9r||m

1
> o Dl (75)

We should note here that [|pg * ®s)[z» > 0. Indeed, let & = 3e;. Then F®y(& —
n)F®2(n) > 0 in some neighborhood of n = e, which yields F®5(&) > 0. Therefore,
d(§)FP3(£) > 0 in some neighborhood of £ = &, which yields ¢q * &3 Z 0.

Since s+ s < 0 and s3+s4 < 0, it is seen from (7.4) and (7.5) that for any M > 0,
f- and g, satisfy (7.1) if we take r large enough so that the right hand side becomes

smaller than 1 ||¢o * ®5||». This proves (1) of Theorem 7.1.

Step 2. (2) of Theorem 7.1. We choose parametrized functions fr, Gr as
.]Er(x) = @1($)Kr($), gr<x) = (I)2<‘T)Kr<x>

for r > 100, where

1 Lo 12 _ . -1
K, (x) ml_zwl 2 cos(2" 1), F(T)—Z_Zwl :

Let .
() = &y (z) cos(2" xy).

By a similar argument to that in Step 1, there are at most 3 indices 7 € Z such that
@, * ¥ # 0 for each [, which satisfy j ~ 21 Moreover, since

supp(FP,) = {€ e R 2" —2 < [¢] < 2" + 2},
it holds that
{J€Zipj* U £0}N{j €ZL;p; ¥y £0} =0, if [ #k.

Hence, we have
oL
qi }qi
LPi

- 1 —
1fell g, = W{Z D (e x W)

jez |li=10
1
< CL{il—qﬁ}qi
Llr) iz
{C, if q; = 2,
S 1 : . = ]-a37
C’m, if 2 < ¢q; < o0,
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which is implied by
;% Wil < lol o || Py | e

for all j € Z and 10 <[ < r. In a similar way, we also have

C, lf q; = 2,

1911 5g . < {Cﬁ’ if 2 < ¢; < o0,

i =2,4.

Since max{qi, g2} > 2, max{qs, ¢4} > 2, it is seen that

1
L(r)

1Fellsg, , NGl 4 1fllsg  Mgrllsg, , < C

We should note here that ]

=0
L(r)

lim
T—00
On the other hand, we have

fo(@)gr(z) = D3(x) K] ()

1 - L
= W<I>5(x) 21_10052(212;151)4— Z 172k cos(2" 1) cos(2F z1)

I=10 10<Lk<r
Ik
1
= -0
9 3()
1 s
—|—§<I>3(:1:) Z I~ cos(2°H zy)
I=10
1
+§<I>3(33) Z "2k 2 {cos((QZ2 +2")a1) 4 cos((2" — 2k2).9:1)}
10<L,k<r
Ik

%(I)g(m) + R(z).

Since 281 2" 4+ 9% and |2 — 2°| are large enough, there holds ¢o * R(z) = 0. Hence,
we have

1£r9r|

By = sup27lle; * figeller
’ JEZ
1
> o= gl > 0, (7.7)

Therefore, it is seen from (7.6) and (7.7) that for any M > 0, f, and §, satisfy (7.2) if
we take r large enough. This proves (2) of Theorem 7.1. ]
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Appendix

For self-containment of this thesis, we prove here some propositions which we have
admitted in the main parts without proves for simplicity.

Appendix A

Here we state the proof of Proposition 3.7, the paraproduct estimates in homoge-
neous Besov spaces, according to Kaneko-Kozono-Shimizu [11].

Proof. (1) By method by Bony [4], a product of functions in &’ /P can be decomposed
as

Frg=> (o )(Peg) + Y _(Pef)erx9)+ > > (prx )i *g)

keZ keZ kEZ |1—k|<2

= h1 +h2+h3, (Al)

where Prg = Zf:foo @1 * g. First, we consider the case 1 < ¢ < oo. From (2.3), (2.4),
and

supp Fl(on # f)(Peg)] C {€ € R™; 2872 < g < 242,

we have an equality that

|71

B, = {Z(Tjﬂ%*hlﬂm)q}

JEZ

- {z(

=AY 2] T e axnrg)

JEZ lk—j|<2

> o (o * )(Peg))

kEZ

1
>q}q
LP1

1
7Y ¢

Lp

87
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From (3.1), the Young inequality, and the Holder inequality we see that

ls * (o P o < NF 7 Dllrllon * fllzon | Prgllrs

for every j, k € Z. Therefore, by using the Minkowski inequality, we obtain that

1
7y g
Il < C 4D (29 D0 llew* flloml|Pegllor
JEL lk—j]<2
ay 3
=C 0> 29 o * flle | Praagl oo
JEL [7]<2
1
q
<C), {Z (2l j41 % fllzm Hmlgum)q}
[1<2 \jeZ
1
q
- CZ {Z (28m27SlH90m * fHLPI HngHLPQ)q}
[1]1<2 \m€eZ
m—3 q %
—ox il s (e | 5 s )]

1
m—3 ay &
<ol 3 (2 hou lin 3 2 ool o0 ) |

mezZ k=—o00
1
00 ay ¢
< Csup 2-*[|ipy * gl|re {Z (2(s+a’m||<pm % fllm 2‘al> }
keZ -~ —
< C||9||B;2%Oo||f| Byre (A.2)

where C' = C(n, p,p1,p2,q, s, «). Here we should note that the final estimate in (A.2)
is valid since a > 0. For the case ¢ = oo, we see by a similar calculation to (A.2) that

1hallg, < Csup2 =¥l gl e sup 2070 oo, 5 flpm Y 27
pree kez meZ

1=3
< Cligllgze N llsste
with a constant C' = C(n, p, p1, p2, s, «). Hence we have
alls, < Cllgllaa 17 Lgsts (A3

for every 1 < ¢ < oo with C = C(n, p, p1,p2,q, S, a). Moreover, by the symmetry with
regard to f and g, we also have

2]

By, < Ol Naop Nlgll s A
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for every 1 < g < oo with C' = C(n, p, p3, ps, ¢, 5, ).
Next, we estimate hy in By . First we consider the case 1 < ¢ < co. Since

supp F((or * f) (o1 % g)) € {€ € R |¢| < 2maxthlit2y

we have
1
q
sJ q
1hsll s, = {Z (2 llps * hall ) }
JEZ
q
= 0> [271D0 > i (b= N *9))
JEZ kEZ |I—k|<2 .
ay 7
= o> (27 >0 D eixerxNHlpixg)
JEZ max{k,[}>j—2 |l—k|<2 Ip
ay 7
= I 270D D v (@ar + Hpsirse + 9)
jez r>—4|t]<2 Ip
7Y ¢
< S 29 D0 D lles # ((@er D (@rse + 9))l 1o

jEz r>—4|t|<2
From (3.1), the Young inequality, and the Holder inequality we see that

0 % (i * F)(@jarst * 9 o < NF Dl 2 ll@jar * fllLonl|@jrrre * gllLre

for every j,r,t € Z. Therefore, by using the Minkowski inequality, we obtain that

1

7Y 9
Hh3H35,q =C Z 27 Z Z [0 % fllor 954040 * gll L2
Jez r>—4 |t|<2
1
q
=C Z Z {Z (27 l@r * flloos [|@jre * gHLP2)q}
r>—4t|<2 \ jEZ

=0y Yy e {Z (2 o1 w Fllom 2T o *gnm)q}

r>—4 jt]<2 jez

Q|

< Csup2 al”@l *QHLW Z 9= STZQM {Z( (s+a kHSD *fHLPl) }

r>—4 [t]|<2 keZ
< Cligllgze N pzre (A.5)

P1,9

Q=
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where C = C(n, p,p1,p2,q, s, «). Here we should note that the final estimate in (A.5)
is valid since s > 0. For the case ¢ = 0o, we see by a similar calculation to (A.5) that

A3l 5

< CSUP2 e gllze Y 27 2% sup 2650w f]| 1
r>—d <2 FEZ

< Cliglse I gre,

p2,00 P11,

with a constant C' = C(n, p, p1, p2, S, ). Hence we have

Iollss . < Clgllze_ | Fllsgrs (A.6)
for every 1 < g < oo with C' = C(n,p, p1,p2, 9, S, @).

From (A.3), (A.4), and (A.6), we obtain (1) of Proposition 3.7.

(2) We also use the paraproduct formula (A.1). We first consider the case 1 < ¢ <
oo. By a similar calculation in (A.2), we obtain

1
5, SC D 27" {Z 28’”H<pm*f||Lm||ngHm)q}

1Pl 5
[1]<2 meZ
< Csup || Byl (A7)
meZ
Let ¢ be as Fi(§) = 1 — 377, ¢(277¢). We should note here that there holds
ZSDZ = 25p(2%x) = Pyn (@)
for every k € Z, where 1y = A™")(A7!) for A > 0. Therefore, we see
k
Yowf =l
l=—00 Il
and hence
1Pngllor = Z P g
l=—0 i)
= [hem—s % g”LP2
< #leligllze
for every m € Z. From this estimate and (A.7), we obtain the estimate
1]l 5 (A-8)

)
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where C' = C(n,p,p1,p2,q,5). We can easily see that this is also true for the case
q = 0o. Moreover, by the symmetry, we have

[ he] (A.9)

5., S Clflleesllgl

N ,
BP47Q

where C' = C<n7p7p37p47 q, S)' .
For the estimate of h3 in B, , with 1 < ¢ < oo, we have by a similar calculation to
(A.5) that

[1725]

1
q
By, <C Z? > {Z (20|94 # Fllims [ @5mre g||m>q}

ltj<2 \jez

1
q
SCSIUEHW*QHLW E 2_”{5 (25k||s0k*f||m1)q}
S

r>—4 keZ

< Cllgllzez [1£1lp1.q (A.10)

where C' = C(n, p, p1,p2, q, ), which is also valid for ¢ = oc.
From (A.8)-(A.10), we obtain (2) of Proposition 3.7. O
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Appendix B

Here we sketch the proof of Proposition 6.1 (2) by Bejenaru-Tao [2]. First of all, we
should show the following estimate:

[Anf = Amglls < I|f = glloC"(Ifllp + lgllp)""", ¥f,g€ D, ¥n>1,  (B.1)

where C' > 0 is a constant independent of f, g and m.

Proof of (B.1). By the symmetry and the equality
An(Nf) =A"A,f YfeD, VAeR (B.2)
which is seen by induction, we can assume

f#g, Iflp<lgllp < 1.

Indeed, if (B.1) holds under such an assumption, then for general f and g with ||f||p <

llgllp, we see that
SCORNER
lgllp lgllo

f o9
lgllo llgllp
< C™gllp N f = 9glp

and hence we have (B.1) for f and g by considering ||g|lp < ||fllp + |lg9][p. Moreover,
let t = ||f — g|]|p- Then we see that

Wl 1A f — Amglls — \

S

m

D

f=g+th, Wherehzﬁ, 0<t<2.
1f —gllp
Hence, it suffices to show
[Am(g +th) — Anm(g)lls < tC™. (B.3)

Now let us fix g and h. Then the function s — A,,(g+ sh) — A,,(g) is a polynomial
of degree at most m having no constant. Therefore, this can be written as

Anlg + sh) = An(g) = Y Fys (B.4)

with some Fy, Iy, ..., F,, € S. By the estimate in (1) of Proposition 6.1 (which is shown
by induction), we have

[Am(g +th) = Am(g)lls < C™(llgllp + sllhllp)™

<
< (o)
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for every 0 < s < 2. Together with (B.4), it is seen that

< (40)™. (B.5)

m

oJ
E Fjs
j=1

S

Since each Fj can be written as linear summation of {} 7", Eisiym ({siyi, € (0,2]
are m-different data), we see that

IFjlls <C™, ¥j=1,2,...,m.

From this and (B.4), we conclude that

HAm<g + Sh) - Am(g)HS <s < sC™,

m

oIl
E Fjs
j=1

S

which yields (B.3). O

Proof of Proposition 6.1 (2). Let us prove the claim by induction on m. More
precisely, we assume that A,,, : D — S is continuous from (Bp(e), ||-|| 5) to (Bs(6), |||/ 5)
for every 1 <m/ <m — 1.

We take a sequence {fx}32,; C Bp(e) such that fp — 0 in the norm || - ||5 and a
parameter 0 < A < 1 arbitrarily. Considering that the solution uw can be written as

u=u(f)=>_ A,f, we see that
i [lu(Afe) — u(A)s =0,

and hence

=0

S

lim
k—o0

DN (A fi = Aue f)
=1

by the equality (B.2). On the other hand, by the assumption of induction, there holds

m—1
Jim || 50 07 (A = Awef)| =0
= S
Therefore, we see that
Jim || 37 X o A )| =0
m’'=m S
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Then by the triangle inequality and (B.1), we have

[e.9]

—_— - L < m’'—m , _ , -
T Anfe = Anflls < 3 X7 suplldw fi = Awflls

m/'=m+1
oo

< D e sw(ifilo + 1/ lp)™
S

m/'=m+1
00

< Y e

m/=m+1

Taking A — 0, we obtain .
I<:h—>nolo | Am fr — Amf”é‘ =0,

which yields a continuity of A, from (Bp(e), | - ||5) to (Bs(d), ]| - ||5)-
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Appendix C
Here let us prove PI; # 0 in Step 1 of the proof of Lemma 6.9, that is,
P(egfbl + 63(132) 7_é 0 (Cl)

with ®; and ®, in (6.6), and ¢ characterized by (6.1). We can assume here that 1) is
radial symmetric, i.e.,

Y(x) =(y), =,y €R" with |z| = |y|,

which implies that we can write ¢ = (r), r = r(z) = |x|.
Let us show (C.1) with a proof by contradiction. Suppose that

P(egq)l + 63(1)2> = O, (C2)
which yields that there exists some distribution F' such that
62(131 + 63(1)2 =VF.

Hence it must hold that
V x (62@1 + 63@2) =0.

Therefore, all of its components should vanish, and especially we have

0P,

8:1:1_ ’

Actually, this yields ®; = 0, i.e.,
wxgllbxgxg = wIwag <C3)

Indeed, if not, there exists a point z* € R™ such that ®;(z*) # 0 Then by % =0,
we see that ®;(z) = ®;(z*) on the line {z € R";x; = z}, Vj = 2,3,...,n}, which

. — 0% — glath)
contradicts ®; € §. Now we let 1.« = 5= and Tugal = Al

By a chain rule of

differentiation, we can rewrite (C.3) as

’l/}'l’rwg (%27”:1:2%3 + wTszrs) = %T:cz (%2%2%3 + wTrx:Z’,)'
Since ¢ € S\{0}, we have

TosTagzs = TugTad-

On the other hand,

XT3 Tol3 . ) 1 LE%
TagTages = — | — ) rxzrxg =—\-——=1>

r r3 r

which yields %3 = 0 for any x € R" and it is not true. Therefore, we see that the
assumption (C.2) is false and hence (C.1) holds.
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