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Hardware devices have been widely used in our world. For example, most of the people have smart phones which
contain high-performance processors and various types of sensors. Motor vehicles are equipped with numerous
numbers of hardware devices to perform advanced driver-assistance system. As for the industry field, the foundries
producing semiconductors are highly automated with industrial robots. To describe the highly-automated industries
by smart devices, the term ‘Industry 4.0’ is introduced by German government. Japanese government also
promotes ‘Society 5.0’ where people resolve various society challenges by incorporating the technological
innovations of the fourth industrial innovation. As exemplified above, people no longer lead highly convenient
lives without hardware devices, and aim to develop information-oriented society more than ever before.

There exist potential risks at any steps on hardware design and manufacturing. The production process of
hardware devices is roughly divided into two steps: the design step and manufacturing step. Hardware specification
and circuit designs are determined at the design step. Due to the rapid and low-cost production, third-party
intellectual properties (3PIPs) are often integrated to products. Since recent integrated circuits (ICs) are highly
integrated and contain billions of gates, the modification by an attacker may be easily hidden inside the products.
As for the manufacturing step, circuit designs are often fabricated and assembled at the overseas fabrications
because the hardware market becomes globalized. Several fabrications may be untrusted, and a backdoor may be
inserted into their products. As discussed above, there exist potential risks at any steps on hardware design and
manufacturing. A malicious function inserted at a hardware circuit is often call as a ‘hardware Trojan (HT).” How
to detect hardware Trojans is a serious concern. Note that, existing hardware design and manufacturing processes
typically include test steps, but the test processes just check the functionality and validity of the products. Since
typical test processes do not take the threats of hardware Trojans into account, we have to develop a hardware-
Trojan detection scheme. In this dissertation, we aim to find out how to tackle the threats of hardware Trojans.

Under the circumstances, security threats to the hardware devices have been pointed out. Threats on hardware
devices are now raising and becoming reality. How to tackle the problem is a major concern in the IoT era.

The methodologies defeating hardware Trojans have been studied recent years. The methodologies can be
classified into two categories: a prevention methodology and a detection methodology. With the prevention
methodology, hardware designs are altered to be difficult to insert or further modify the circuit by third parties.
Hardware logic encryption approaches thwart insertion of hardware Trojans by encrypting hardware designs.
Physical unclonable functions (PUF) are often used to generate secret keys for logic encryption. Camouflaging (or
obfuscating) approaches are also applied to protect hardware designs. The prevention methodology is effective to
protect hardware designs so as not to modify them by third parties. On the other hand, the detection methodology
aims to catch hardware Trojan circuits.

The detection approaches are further classified into two categories: a destructive approach and a non-
destructive approach. The destructive approach generally adopts destructive reverse-engineering techniques to
depackage an IC and performs optical analysis. Though this approach is useful to physically analyze the
manufactured ICs, the tested ICs cannot be shipped anymore. Meanwhile, the non-destructive approach does not

destruct ICs. Since the non-destructive approach just analyzes the design or manufactured ICs without destruction,
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this approach can be easily integrated to existing design and manufacturing process. In this dissertation, we focus
on the non-destructive approaches to defeat hardware Trojans.

As discussed above, we aim to defeat hardware Trojans adopting non-destructive approaches. Several non-
destructive methods can be taken on the design or manufacturing step. The non-destructive methods on the design
step analyze hardware designs including 3PIPs. Formal verification and code analysis are often taken. The non-
destructive methods on the manufacturing step analyze manufactured hardware products. Functional tests and side-
channel analysis are often taken. Most of the existing methods take model-based approaches, and therefore
detectability of unknown threats has to be discussed.

Recently, machine learning has attracted the interest of researchers as a breakthrough in data mining, and it
is expected to overcome security-related challenges. In fact, existing methods demonstrate that machine learning
can be used to find out malicious behaviors. However, existing machine-learning-based methods require ‘Golden
model’” where no hardware Trojan is definitely inserted. Developing a sophisticated machine-learning-based
hardware-Trojan detection method is not only a challenging problem but also a promising research to realize highly
automated society. The major problems to leverage machine learning for hardware Trojan detection are how to
extract effective features to identify Trojan nets and normal nets, and how to detect hardware Trojans without
Golden models.

In this dissertation, we leverage machine learning algorithms to the non-destructive hardware-Trojan
detection methods. First, in Chapters 2, and 3, we aim to detect hardware Trojans at gate-level netlists utilizing
machine learning algorithms such as support vector machine (SVM), neural networks (NNs), and random forests
with extracting effective features from a net in gate-level netlists. This is the first work to leverage machine learning
at gate-level netlists. Next, in Chapter 4, we aim to detect malicious behaviors based on power analysis utilizing
one of the unsupervised machine learning algorithms. This is the first discussion on how to detect malicious
behavior based on power analysis by anomaly detection algorithm.

In this dissertation, we propose machine-learning-based hardware-Trojan detection methods based on
hardware-specific feature values. This dissertation is organized according to the following chapters.

Chapter 1 [Introduction] describes the backgrounds and overview of this dissertation.

Chapter 2 [Hardware Trojan Classification Utilizing Machine Learning] proposes a hardware-Trojan
classification method at gate-level netlists to identify hardware-Trojan infected nets (or Trojan nets). In this chapter,
we have a preliminary discussion on how to apply machine learning to hardware Trojan detection, and then we
evaluate the effective feature values for hardware Trojan detection. As a preliminary discussion on the hardware
Trojan detection at a gate-level netlist, we extract the five hardware-Trojan features from each net in a netlist.
These feature values are complicated so that we cannot give the simple and fixed threshold values to them. Hence,
we secondly represent them to be a five-dimensional vector and learn them by using SVM or NN. The experimental
results with Trust-HUB benchmarks demonstrate that our method increases the true positive rate compared to the
existing state-of-the-art results in most of the cases. Based on the preliminary discussion, we propose effective

Trojan-net features for supervised machine-learning-based hardware-Trojan detection and their application to a
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random forest classifier. We first propose 51 Trojan-net features which describe well Trojan nets. After that, we
pick up random forest as one of the best candidates for machine learning and optimize it to apply to hardware-
Trojan detection. Based on the importance values obtained from the optimized random forest classifier, we extract
the best set of 11 Trojan-net features out of the 51 features which can effectively classify the nets into Trojan ones
and normal ones, maximizing the F-measures. By using the 11 Trojan-net features extracted, our optimized random
forest classifier has achieved at most 100% true positive rate as well as 100% true negative rate in several Trust-
HUB benchmarks and obtained the average F-measure of 79.3% and the accuracy of 99.2%, which realize the best
values among existing machine-learning-based hardware-Trojan detection methods.

Chapter 3 [Application of the Hardware-Trojan Detection Utilizing Machine Learning] proposes three
applications of machine-learning-based hardware-Trojan detection. First, we propose a machine-learning-based
hardware-Trojan detection method for gate-level netlists using multi-layer neural networks. We classify the nets
in an unknown netlist into a set of Trojan nets and that of normal nets using multi-layer neural networks based on
the 11 Trojan-net features proposed in Chapter 2. By experimentally optimizing the structure of multi-layer neural
networks, we can obtain an average of 84.8% true positive rate and an average of 70.1% true negative rate while
we can obtain 100% true positive rate in some of the benchmarks, which outperforms the existing methods in most
of the cases. Second, we propose a Trojan-invalidating circuit, and implement it on an FPGA board. The
implementation results demonstrate that the implemented Trojan-invalidating circuit successfully prevent from
activating a hardware Trojan. Third, we propose a reinforcement of the hardware-Trojan detection utilizing
machine learning. Since existing machine-learning-based hardware-Trojan detection methods are performed in the
feature spaces, the proposed method considers boundary net structures between normal nets and Trojan nets and
compensates the first machine-learning-based detection results based on them. The experimental results
demonstrate that our proposed method successfully improve the detection results compared to the existing method.

Chapter 4 [Malicious Behavior Detection Based on Power Analysis] proposes an anomaly behavior detection
method utilizing power analysis for low-cost micro-controllers. Our method accurately measures power
consumption of the target device, and then classifies its waveform into the sleep-mode part, in which a micro-
controller saves power, and into the active-mode part, in which a micro-controller works in a normal operation.
After that, we obtain the duration time and consumed power from each active-mode period as feature values.
Finally, we detect abnormal behavior based on the obtained feature values utilizing an outlier detection method
without Golden models. We empirically evaluate the proposed method utilizing two micro-controllers, and the
experimental results demonstrate that our proposed method successfully detects abnormal behaviors.

Chapter 5 [Conclusion] summarizes this dissertation and gives several future directions on machine-learning-
based hardware-Trojan detection. In conclusion, we find out that hardware Trojan detection utilizing machine
learning based on hardware-specific features has a future prospect. However, there still remain several tasks to be
done. Enhancing the classification performance of hardware Trojan detection and implementation to the real world

are our future works.
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