
Hardware-Trojan Detection Methods Utilizing

Machine Learning Based on Hardware-Specific Features

February 2020

Kento HASEGAWA





Hardware-Trojan Detection Methods Utilizing

Machine Learning Based on Hardware-Specific Features

February 2020

Waseda University

Graduate School of Fundamental Science and Engineering

Department of Computer Science and Communications Engineering,

Research on Information System Design

Kento HASEGAWA





Contents

1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Dissertation Overview . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Hardware Trojan Classification Utilizing Machine Learning 8
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Preliminary Evaluation on Machine-Learning-Based Hardware-Trojan

Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3.1 Feature Extraction . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3.2 Hardware Trojan Classification Utilizing Machine Learning . . 15

2.3.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . 21

2.3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.4 Feature Extraction for Machine-Learning-Based Hardware Trojan De-

tection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.4.1 Backgrounds . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.4.2 Trojan-Net Extraction for Hardware Trojan Detection . . . . . . 36

2.4.3 Feature Selection Utilizing Random Forest . . . . . . . . . . . 44

2.4.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . 48

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3 Application of the Hardware-Trojan Detection Utilizing Machine Learning 59
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.2 Hardware Trojan Classification Utilizing Multi-Layer Neural Networks . 60

3.2.1 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.2.2 Algorithm for Hardware Trojan Classification Utilizing Multi-

Layer Neural Networks . . . . . . . . . . . . . . . . . . . . . . 63

3.2.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . 66

3.3 Refinement of Classification Results Based on Boundary Net Structures 74

3.3.1 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . 74

i



ii CONTENTS

3.3.2 Analysis of Mistakenly-Identified Nets . . . . . . . . . . . . . . 77

3.3.3 Proposed Method and Experimental Results . . . . . . . . . . . 82

3.4 Trojan-Net Invalidation Based on Classification Results . . . . . . . . . 84

3.4.1 Backgrounds . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.4.2 Designs of Trojan-Infected Cryptographic Circuit and

Trojan-Invalidating Circuit . . . . . . . . . . . . . . . . . . . . 86

3.4.3 Implementation and Evaluation . . . . . . . . . . . . . . . . . 90

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4 Malicious Behavior Detection Based on Power Analysis 95
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.2 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.3 Threat Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.3.1 Malicious Function Inserted into a Micro-Controller . . . . . . 98

4.3.2 Operation Modes of Micro-Controllers . . . . . . . . . . . . . 99

4.4 Malicious Behavior Detection Algorithm Based on Power Analysis . . . 100

4.4.1 Power Measurement . . . . . . . . . . . . . . . . . . . . . . . 101

4.4.2 Waveform Smoothing . . . . . . . . . . . . . . . . . . . . . . 102

4.4.3 Active and Sleep Mode Distinction . . . . . . . . . . . . . . . 102

4.4.4 Feature Value Acquisition . . . . . . . . . . . . . . . . . . . . 102

4.4.5 Malicious Behavior Detection . . . . . . . . . . . . . . . . . . 102

4.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.5.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . 103

4.5.2 Target Devices . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.5.3 Target Application . . . . . . . . . . . . . . . . . . . . . . . . 105

4.5.4 Malicious Behavior Detection Results . . . . . . . . . . . . . . 106

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5 Conclusion 112

Acknowledgment 115

List of Publications 124



List of Figures

1.1 The overview of a typical hardware supply chain. . . . . . . . . . . . . 2

1.2 The example of a typical hardware Trojan circuit. . . . . . . . . . . . . 3

2.1 The histogram of LGFi for Trojan nets. . . . . . . . . . . . . . . . . . . 12

2.2 The histogram of LGFi for normal nets. . . . . . . . . . . . . . . . . . 13

2.3 The example of the Trojan feature values extracted from a netlist. . . . . 13

2.4 The flowchart of learning and classification. . . . . . . . . . . . . . . . 16

2.5 The proposed NN structure. . . . . . . . . . . . . . . . . . . . . . . . . 20

2.6 The unit in each layer in NN. . . . . . . . . . . . . . . . . . . . . . . . 20

2.7 TPR and TNR for s35932-T200 by our method using NN varying the

threshold value. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.8 The example of Trojan-net features for logic-gate fanins. . . . . . . . . 38

2.9 The example of Trojan-net features for flip-flops. . . . . . . . . . . . . 39

2.10 The example of Trojan-net features for multiplexers. . . . . . . . . . . . 40

2.11 The example of a loop in a netlist (in_loop_3 for the net n). . . . . . . . 40

2.12 The example of Trojan-net features for constants. . . . . . . . . . . . . 41

2.13 The example of Trojan-net features for primary inputs and outputs. . . . 41

3.1 The examples of Trojan-net features. . . . . . . . . . . . . . . . . . . . 62

3.2 The structure of multi-layer neural networks. . . . . . . . . . . . . . . . 65

3.3 The FN nets obtained in RS232-T1100. . . . . . . . . . . . . . . . . . 79

3.4 The FN nets obtained in RS232-T1200. . . . . . . . . . . . . . . . . . 80

3.5 The FP nets obtained in RS232-T1600. . . . . . . . . . . . . . . . . . . 82

3.6 An example of a trigger circuit. . . . . . . . . . . . . . . . . . . . . . . 83

3.7 An example of a circuit with a flip-flop. . . . . . . . . . . . . . . . . . 83

3.8 The signal transition of the monitored net (normal net). . . . . . . . . . 86

3.9 The signal transition of the monitored net (Trojan net). . . . . . . . . . 86

3.10 The block diagram of the AES cryptographic circuit. . . . . . . . . . . 87

3.11 The block diagram of the Trojan-infected AES cryptographic circuit. . . 88

iii



iv LIST OF FIGURES

3.12 The block diagram of the Trojan-infected AES cryptographic circuit with

a Trojan-invalidating circuit. . . . . . . . . . . . . . . . . . . . . . . . 89

3.13 The overview of the PYNQ-Z1 board. . . . . . . . . . . . . . . . . . . 90

3.14 Experimental environments. . . . . . . . . . . . . . . . . . . . . . . . 91

3.15 Output results of [a]. . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

3.16 Output results of [b]. . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

3.17 Output results of [c]. . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.1 The model of consumed power in the sleep mode and the active mode. . 99

4.2 The operation modes in our threat model. . . . . . . . . . . . . . . . . 99

4.3 The procedure of our proposed method. . . . . . . . . . . . . . . . . . 101

4.4 The connection diagram. . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.5 Measurement setup. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.6 The overview of the sensor-logging application and the malicious func-

tion implemented into the target devices. . . . . . . . . . . . . . . . . . 106

4.7 Measured power consumption for Arduino UNO. . . . . . . . . . . . . 107

4.9 Measured power consumption for Nucleo L476RG. . . . . . . . . . . . 107

4.8 The plot of the obtained samples for Arduino UNO. . . . . . . . . . . . 110

4.10 The plot of the obtained samples for Nucleo L476RG. . . . . . . . . . . 111



List of Tables

2.1 Five gate-level netlists from Trust-HUB. . . . . . . . . . . . . . . . . . 12

2.2 Average values of FFi, FFo, PI, and PO. . . . . . . . . . . . . . . . . . 14

2.3 Examples of the five feature values. . . . . . . . . . . . . . . . . . . . 15

2.4 The Trust-HUB benchmarks [1] used in the experiments. . . . . . . . . 22

2.5 Learned normal nets and Trojan nets. . . . . . . . . . . . . . . . . . . . 23

2.6 Experimental results of the SVM classifier. . . . . . . . . . . . . . . . 25

2.7 Experimental results of the NN classifier. . . . . . . . . . . . . . . . . 27

2.8 Examples of the parameter values of the output unit in our NN classifier. 28

2.9 Comparison between SVM classifier and NN classifier. . . . . . . . . . 29

2.10 Comparison between [2] and our proposed methods (with dynamic

weighting). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.11 Classification matrix. . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.12 The number of classified nets as Trojan nets (s35932-T200). . . . . . . 33

2.13 The number of classified nets as normal nets (s35932-T200). . . . . . . 33

2.14 Prediction and answer (s35932-T200). . . . . . . . . . . . . . . . . . . 33

2.15 The number of classified nets as Trojans nets (RS232-T1000). . . . . . 34

2.16 The number of classified nets as normal nets (RS232-T1000). . . . . . . 34

2.17 Prediction and answer (RS232-T1000). . . . . . . . . . . . . . . . . . . 34

2.18 The examples of Trojan-net features. . . . . . . . . . . . . . . . . . . . 36

2.19 The Trust-HUB benchmarks [1] used in the experiments. . . . . . . . . 37

2.20 The extracted features from a netlist (1 ≤ x ≤ 5). . . . . . . . . . . . . 43

2.21 The number of trees and F-measures . . . . . . . . . . . . . . . . . . . 47

2.22 Selecting the best set of features (Step 2-1). . . . . . . . . . . . . . . . 48

2.23 Selecting the best set of features (Step 2-2). . . . . . . . . . . . . . . . 48

2.24 The best set of 11 Trojan-net features and their importance values. . . . 48

2.25 The classification results utilizing the extracted 11 features. . . . . . . . 49

2.26 The comparison to existing methods. . . . . . . . . . . . . . . . . . . . 52

2.27 False positive rates in cited from [3]. . . . . . . . . . . . . . . . . . . . 53

2.28 False positive rates in ours. . . . . . . . . . . . . . . . . . . . . . . . . 53

v



vi LIST OF TABLES

2.29 Comparison of RS232-T1000 and RS232-T1100 between our proposed

method and [4] with 11 features. . . . . . . . . . . . . . . . . . . . . . 56

3.1 The best set of 11 Trojan features and their descriptions extracted in [5]. 62

3.2 The Trust-HUB benchmarks [1] used in the experiments. . . . . . . . . 66

3.3 Experimental results (One middle layer). . . . . . . . . . . . . . . . . . 68

3.4 Experimental results (Two middle layers). . . . . . . . . . . . . . . . . 68

3.5 Experimental results (Three middle layers). . . . . . . . . . . . . . . . 69

3.6 Experimental results (Four middle layers). . . . . . . . . . . . . . . . . 71

3.7 Total average TPR and TNR values of the experimental results. . . . . . 72

3.8 Comparison to the existing method [4]. . . . . . . . . . . . . . . . . . . 73

3.9 Comparison to the existing method [2]. . . . . . . . . . . . . . . . . . . 74

3.10 The classification results in the previous works using machine-learning-

based approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.11 The classification results using the random-forest-based hardware-Trojan

detection method in [5]. . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.12 The FN nets and their profiles. . . . . . . . . . . . . . . . . . . . . . . 78

3.13 The FP nets and their profiles. . . . . . . . . . . . . . . . . . . . . . . 81

3.14 The experimental results of our method. . . . . . . . . . . . . . . . . . 84

3.15 The comparison between our method and [5]. . . . . . . . . . . . . . . 84

3.16 Input/output ports of the AES cryptographic circuit. . . . . . . . . . . . 87

3.17 FPGA implementation results. . . . . . . . . . . . . . . . . . . . . . . 91

4.1 Flexibility and performance of ASIC, FPGA, and Microcontroller. . . . 97

4.2 Experimental results for Arduino UNO. . . . . . . . . . . . . . . . . . 110

4.3 Experimental results for Nucleo L476RG. . . . . . . . . . . . . . . . . 111



Chapter 1

Introduction

1.1 Background
Hardware devices have widely been used in our daily lives. For example, most of

the people have smart phones which contain high-performance processors and various

types of sensors. Motor vehicles are equipped with numerous numbers of hardware

devices to perform advanced driver-assistance system such as lane centering and parking

assistance. Regarding the industry field, the foundries producing semiconductors are

highly automated with industrial robots. To describe the highly-automated industries

by smart devices, the term ’Industry 4.0’ is introduced by German government [6].

Companies all over the world have now aimed to realize the ’Industry 4.0’. Japanese

government promotes ‘Society 5.0’ where people resolve various society challenges

by incorporating the technological innovations of the fourth industrial innovation [7].

As exemplified above, people no longer lead highly convenient lives without hardware

devices.

As the prevalence of Internet of Things (IoTs), which are the hardware devices

connected to the Internet, the number of hardware deices is rapidly increased. According

to the survey by Cisco, 28.5 billions of IoT devices will be connected to the Internet, which

is drastically increased from 18 billion devices in 2017 [8]. The number of hardware

devices is much larger than the population all over the world. Therefore, it is difficult

to strictly manage all the hardware devices by their appropriate owners. In addition,

novel technologies have been developed by hardware vendors. For example, ZYNQ

SoC by Xilinx, Inc. is a low-cost and highly-integrated SoC product that integrates

software programmability of an ARM-based processor with hardware programmability

of an FPGA core1. Therefore, we can develop high-functioning hardware devices more

1The author and his colleagues have developed ZYNQ-based puzzle solver systems for the “Algorithm

Design Contest” as in 〈22〉, 〈28〉, 〈33〉, and 〈36〉, and won the prizes as in 〈41〉, 〈42〉, 〈46〉, 〈51〉, and 〈52〉.

1
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Figure 1.1: The overview of a typical hardware supply chain.

easily than ever.

Under the circumstances, security threats at hardware devices have been pointed out.

An article [9] reports that a military weapon is maliciously modified by an attacker. If

an attacker would successfully modified a military weapon, it might hurt or kill people.

The threats on hardware devices are now raising and becoming reality. How to tackle

the problem is a major concern in the IoT era.

There exist potential risks at any steps on hardware design and manufacturing. Fig-

ure 1.1 shows the overview of hardware design and manufacturing steps. The production

process of hardware devices is roughly divided into two steps: the design step and

manufacturing step. Hardware specification and circuit design are determined at the

design step. Due to the rapid and low-cost production, third-party intellectual proper-

ties (3PIPs) are often integrated to products. Since recent integrated circuits (ICs) are

highly integrated and contain millions of gates, attackers can easily modify the circuits

with malicious intent. If 3PIP providers insert malicious functions into their products,
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Figure 1.2: The example of a typical hardware Trojan circuit.

their user vendors would integrate them to their hardware products. As for the manufac-

turing step, circuit designs are often fabricated and assembled at the overseas fabrications

because the hardware market becomes globalized. As discussed above, there exist po-

tential risks at any steps on hardware design and manufacturing because of globalization

and low-cost production. A malicious function inserted at a hardware circuit is often

call as a ‘hardware Trojan (HT).’ How to detect hardware Trojans is a serious concern.

Note that, existing hardware design and manufacturing processes typically include test

process, but the test processes just check the functionality and validity of the products.

Since typical test processes do not take the threats of hardware Trojans into account,

we have to develop a hardware-Trojan detection scheme. In this dissertation, we aim to

find out how to tackle the threats of hardware Trojans. The most important goal of this

dissertation is to establish effective hardware-Trojan detection methods which will

protect hardware products from the threats of hardware Trojans.

Figure 1.2 illustrates the structure of a typical hardware Trojan circuit. A hardware

Trojan circuit is inserted into a normal circuit. The hardware Trojan circuit is composed

of two components: a trigger circuit and a payload circuit. In order to conceal hardware

Trojan circuits, attackers often set trigger conditions to their hardware Trojans. Note

that, some of the hardware Trojans have no trigger conditions (such hardware Trojans

are called as ‘always-on hardware Trojans’), and these hardware Trojans should be

detected at existing test processes because any Trojan payloads must affects the original

functionality and electrical specification. In this dissertation, we assume that a hardware

Trojan has a certain trigger conditions. The trigger circuit receives several signals from

the normal circuit as a trigger condition. When the values of the received signals satisfies

the conditions determined by an attacker beforehand, the trigger circuit outputs an enable

signal to the payload circuit. When the payload circuit receives the enable signal, the

payload circuit performs malicious functions such as leakage of internal information of

the normal circuit and/or denial of service. Since attackers set rare conditions to their

hardware Trojans, hardware vendors cannot catch the hardware Trojan circuits in a test

process.
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The methodologies defeating hardware Trojans have been studied recent years [10,

11]. The methodologies can be classified into two categories: a prevention methodology

and a detection methodology. With the prevention methodology, hardware designs are

altered to be difficult for third parties to insert or further modify the circuit. Hardware

logic encryption approaches thwart insertion of hardware Trojans by encrypting hardware

designs [12, 13]. Physical unclonable functions (PUF) [14, 15] are often used to generate

secret keys for logic encryption. Camouflaging (or obfuscating) approaches [16, 17] are

also applied to protect hardware designs. The prevention methodology is effective to

protect hardware designs so as not to be unintentionally modified by third parties. On

the other hand, the detection methodology aims to catch hardware Trojan circuits. The

detection approaches are further classified into two categories: a destructive approach

and a non-destructive approach. The destructive approach generally adopts destructive

reverse-engineering techniques to depackage an IC and performs optical analysis [18].

Though this approach is useful to physically analyze the manufactured ICs, the tested ICs

cannot be shipped anymore. Meanwhile, the non-destructive approach does not destruct

ICs. Since the non-destructive approach just analyzes the design or manufactured ICs

itself without destruction, this approach can be easily integrated to existing design and

manufacturing process. In this dissertation, we focus on the non-destructive approaches

to defeat hardware Trojans.

As discussed above, we aim to defeat hardware Trojans adopting non-destructive ap-

proaches. Several non-destructive methods can be taken on the design or manufacturing

step. The non-destructive methods on the design step analyze hardware designs includ-

ing 3PIPs. Formal verification and code analysis are often taken. The non-destructive

methods on the manufacturing step analyze manufactured hardware products. Func-

tional tests and side-channel analysis are often taken. Most of the existing methods take

model-based approaches, and therefore detectability of unknown threats has to be dis-

cussed. Moreover, due to the rapid development in hardware industries, a large variety

of hardware devices are developed. In order to follow the rapid development, we must

detect hardware Trojans effectively.

Recently, machine learning has attracted the interest of researchers as a breakthrough

in data mining, and it is expected to overcome security-related challenges. Machine

learning helps us to analyze a number of datasets and to observe the trend of the datasets.

Machine learning can be used to find out malicious behaviors such as in [19, 20].

[19] focuses on run-time malicious behavior detection for the multi-core platforms. [20]

focuses on run-time malicious behavior detection by analyzing the power consumption of

the hardware products. However, as far as we know, there have been no hardware-Trojan

detection methods using machine learning at gate-level netlists focusing on design step

of IC production process proposed so far. Developing a sophisticated machine-learning-

based hardware-Trojan detection method is a challenging problem, but also a promising
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technology to realize highly automated society. The major problems to leverage machine

learning for hardware Trojan detection are how to extract effective features to identify

Trojan nets (the nets that consist of a hardware Trojan circuit) and normal nets, and how

to detect hardware Trojans without Golden models.

In this dissertation, we leverage machine learning algorithms to the non-destructive

hardware-Trojan detection methods.

First, we aim to detect hardware Trojans at gate-level netlists in the design step. As

discussed above, we take the non-destructive approach to detect hardware Trojans in

a design information which is going to be a product. The major concern on the non-

destructive approach in the design step is to follow the rapid development of hardware

production. In order to rapidly update the hardware Trojan database and to effectively

apply hardware Trojan detection to a number of hardware products, machine-learning-

based approaches are quite useful. To realize the methodology above, our objective is

to explore how to apply machine learning algorithms to hardware Trojan detection in

the design step. In Chapter 2, we utilize machine learning algorithms such as support

vector machine (SVM), random forest, and neural networks (NNs) for hardware Trojan

detection with extracting effective features from a net in gate-level netlists. This study

breaks new ground in the field of hardware Trojan detection in the design step. The

main contributions of Chapter 2 are; to extract effective features from gate-level netlists

for machine learning algorithms, and to implement machine-learning-based hardware-

Trojan detection methods. In addition to the first study on machine-learning-based

hardware-Trojan detection in the design step, we further discuss their applications in

Chapter 3. The main contribution of Chapter 3 is to propose applications utilizing

machine-learning-based hardware-Trojan detection methods in the design step.

Next, we aim to detect malicious behaviors based on power analysis utilizing one

of the unsupervised machine learning algorithms after the manufacturing step or when

using a hardware product. As discussed above, side-channel analysis is often taken in

the manufacturing step. How to detect abnormal behavior without the Golden model

is a major concern for the hardware Trojan detection based on side-channel analysis.

In this point, our objective is to develop abnormal behavior detection method without

the Golden model. Unsupervised machine learning algorithms can be applied to this

scenario. In Chapter 4, we first obtain power profile identifying between active and

sleep modes of a target micro-controller, and then extract feature values. Based on

the extracted feature values, we apply an abnormal detection method which is one of

the unsupervised machine learning algorithms. The concept of referencing the target

micro-controller itself has not been discussed well. Our proposed method establishes

a new methodology to detect abnormal behavior based on power analysis. The main

contributions of Chapter 4 are; to extract feature values based on power profile of a

hardware device using a micro-controller, and to apply an abnormal detection algorithm
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to detect malicious behaviors.

Throughout this dissertation, we aim to overcome the hardware-security issues by

utilizing machine learning with hardware-specific features.

1.2 Dissertation Overview
In this dissertation, we propose machine-learning-based hardware-Trojan detection meth-

ods based on effective feature values. This dissertation is organized according to the

following chapters.

Chapter 2 [Hardware Trojan Classification Utilizing Machine Learning] pro-

poses a hardware-Trojan classification method at gate-level netlists to identify hardware-

Trojan infected nets (or Trojan nets). In this chapter, we have a preliminary discussion on

how to apply machine learning to hardware Trojan detection, and then we evaluate the

effective feature values for hardware Trojan detection. As a preliminary discussion on

the hardware Trojan detection at gate-level netlist, we extract the five hardware-Trojan
features from each net in a netlist. These feature values are complicated so that we cannot

give the simple and fixed threshold values to them. Hence, we secondly represent them

to be a five-dimensional vector and learn them by using SVM or NN. Finally, we can

successfully classify all the nets in an unknown netlist into Trojan ones and normal ones

based on the learned classifiers. The experimental results with Trust-HUB benchmarks

demonstrate that our method increases the true positive rate compared to the existing

state-of-the-art results in most of the cases. Based on the preliminary discussion, we

propose effective Trojan-net features for supervised machine-learning-based hardware-

Trojan detection and their application to a random forest classifier. We propose 51

Trojan-net features which describe well Trojan nets. After that, we pick up random forest

as one of the best candidates for machine learning and optimize it to apply to hardware-

Trojan detection. Based on the importance values obtained from the optimized random

forest classifier, we extract the best set of 11 Trojan-net features out of the 51 features

which can effectively classify the nets into Trojan ones and normal ones, maximizing the

F-measures. By using the 11 Trojan-net features extracted, our optimized random forest

classifier has achieved at most 100% true positive rate as well as 100% true negative rate

in several Trust-HUB benchmarks and obtained the average F-measure of 79.3% and the

accuracy of 99.2%, which realize the best values among existing machine-learning-based

hardware-Trojan detection methods.

Chapter 3 [Application of the Hardware-Trojan Detection Utilizing Machine
Learning] proposes three applications of machine-learning-based hardware-Trojan de-

tection. First, we propose a machine-learning-based hardware-Trojan detection method

for gate-level netlists using multi-layer neural networks. We classify the nets in an un-
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known netlist into a set of Trojan nets and that of normal nets using multi-layer neural

networks based on 11 Trojan-net features proposed in Chapter 2. By experimentally

optimizing the structure of multi-layer neural networks, we can obtain an average of

84.8% true positive rate and an average of 70.1% true negative rate while we can obtain

100% true positive rate in some of the benchmarks, which outperforms the existing

methods in most of the cases. Second, we propose a Trojan-invalidating circuit, and

implement it on an FPGA board. The implementation results demonstrate that the im-

plemented Trojan-invalidating circuit successfully prevent from activating a hardware

Trojan. Third, we propose a reinforcement of the hardware-Trojan detection utilizing

machine learning. Since existing machine-learning-based hardware-Trojan detection

methods are performed in the feature spaces, the proposed method considers boundary

net structures between normal nets and Trojan nets and compensates the first machine-

learning-based detection results based on them. The experimental results demonstrate

that our proposed method successfully improve the detection results compared to the

existing method.

Chapter 4 [Malicious Behavior Detection Based on Power Analysis] proposes

an anomaly behavior detection method utilizing power analysis for low-cost micro-

controllers. Our method accurately measures power consumption of the target device,

and then classifies its waveform into the sleep-mode part, in which a micro-controller

saves power, and into the active-mode part, in which a micro-controller works in a

normal operation. After that, we obtain the duration time and consumed power from

each active-mode period as feature values. Finally, we detect abnormal behavior based

on the obtained feature values utilizing an outlier detection method. In our experiments,

we empirically evaluate the proposed method utilizing two types of micro-controllers,

and the experimental results demonstrate that our proposed method successfully detects

abnormal behaviors.

Chapter 5 [Conclusion] summarizes this dissertation and gives several future direc-

tions on machine-learning-based hardware-Trojan detection.



Chapter 2

Hardware Trojan Classification
Utilizing Machine Learning1

2.1 Introduction
As the semiconductor processes technology has continuously advanced over the years,

there have been introduced low-cost and high-performance embedded hardware products

in our daily lives. In order to meet such hardware product demands, IC vendors often

outsource their products to third-party IC vendors. However, third-party IC vendors are

not always reliable and some of them may embed or insert hardware Trojans into their

IC products intentionally.

Hardware Trojans are malicious functions inserted to IC products, which is unin-

tended for IC vendors. Hardware Trojans may cause malfunctions, destroy IC products,

and/or leak secret information. The manufacturing process of IC products comprises

many steps and every step has the risks that malicious vendors may insert hardware

Trojans into IC products [10]. In particular, hardware Trojans are most likely inserted in

the design step since inserting hardware Trojans is very easy in this step. In the design

step, IC designers use electrical files which describe IC designs and malicious vendors

just need to modify these files electrically to insert hardware Trojans. Even these files

can be modified remotely via the networks. In this chapter, we focus on hardware Trojan

inserted in the design step of the IC production process.

Several hardware Trojan detection methods have been proposed so far, but malicious

vendors can develop new hardware Trojans which defeat existing hardware Trojan detec-

tion methods as described in [21]. A new approach to tackle hardware Trojans is highly

expected.

Here we clarify our goal for hardware-Trojan detection at the design step. There are

1Technical contents in this chapter have been presented in the publications 〈2〉, 〈3〉, 〈16〉, and 〈17〉.

8



2.1. INTRODUCTION 9

roughly two goals for hardware-Trojan detection:

• Goal 1 [Partial detection]: We detect any part of hardware Trojans in a chip

and we no longer use the entire chip. In this case, we have to detect any part of

hardware Trojans [2, 3, 22];

• Goal 2 [Complete detection]: We detect all parts of hardware Trojans in a chip

and eliminate them. We can use the chip after eliminating hardware Trojans. In

this case, we have to detect all the hardware Trojans in the chip somehow [23, 24].

Since the Goal 2 includes the Goal 1, we focus on Goal 2 in this chapter.

Even if new hardware Trojan detection methods are proposed, new types of hardware

Trojans can be developed very soon. For example, hardware Trojans called DeTrust

[21] are proposed, just after the static hardware Trojan detection method FANCI [3] is

developed. As one of the effective solutions to solve this problem, we can utilize machine

learning and detect unknown hardware Trojans based on the learned classifier.

Machine learning can be used to find out malicious behaviors such as in [19, 20].

[19] focuses on run-time malicious behavior detection for the multi-core platforms. [20]

focuses on run-time malicious behavior detection by analyzing the power consumption of

the hardware products. However, as far as we know, there have been no hardware-Trojan

detection methods using machine learning at gate-level netlists focusing on design step

of IC production process proposed so far.

Based on the discussions above, we propose a static machine-learning-based hardware-

Trojan classification method at gate-level netlists. The proposed method classifies a set

of the nets in a given unknown netlist into Trojan nets and normal nets without using

logic simulations nor functional simulations.

The Goal 2 discussed above can be achieved by the following two phases: In Phase 1,

we first try to detect all possible Trojan nets by using our method. After that, in Phase 2,

we apply any existing hardware-Trojan detection methods such as [3, 22] to the nets

identified to be Trojans by Phase 1 and refine the classification results even though they

include false positives. Among them, Phase 1 is the most important since it is the first

step to classify between Trojan nets and normal nets, where the number of Trojan nets

identified mistakenly to be normal nets should be as small as possible, in other words,

the false negative value should be as small as possible. Our method is targeted to Phase 1

of this approach.

In order to achieve that, this chapter discusses how to apply machine learning to

hardware Trojan detection. This is the first work to apply machine learning algorithms

to hardware Trojan detection and to extract effective features from Trojan nets.

To start with, we preliminary discuss how to effectively apply machine learning to

hardware Trojan detection. We first discuss the Trojan net feature values that frequently
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appear in the Trojan nets, and extract the five hardware-Trojan features, or Trojan features,
of each net based on the several known hardware-Trojan infected netlists. Then, we apply

machine learning to the extracted features of every net in netlists. We consider the five

Trojan features to be a five-dimensional vector and learn many five-dimensional vectors

with machine learning. In this step, we use a support vector machine (SVM) or a neural

network (NN). Finally, we can successfully classify a set of nets in a given unknown

netlist into Trojan one and normal one by using the learned classifier. Machine learning

enables us to classify hardware Trojans automatically without simulating a given circuit

nor actually running it.

After the preliminary discussion on how to apply machine learning to hardware

Trojan detection, we propose effective feature values that can be best applied to machine-

learning-based hardware-Trojan detection. First, we propose 51 gate-level Trojan-net

features from given gate-level netlists which describe well Trojan nets very well. At that

time, we utilize the random forest classifier [25], one of the strong machine-learning

methods, and optimize it to apply to hardware-Trojan detection. Since random forest

gives the importance value for every Trojan-net feature, we can effectively know which

one contributes more than the others to detect hardware Trojans. We select the most

effective 11 Trojan-net features which maximize the average F-measures.

The contributions of this chapter are summarized as follows:

1. First, we propose a static machine-learning-based hardware-Trojan classification

method by learning the five Trojan features to classify a set of unknown nets into

Trojan nets and normal nets. As far as we know, this is the world-first approach

which successfully applies machine learning to detect hardware Trojans at gate-

level netlists;

2. When applying our machine-learning-based hardware-Trojan classification method

to Trust-HUB benchmarks, our method can much increase the true positive rate

compared to the existing state-of-the-art results in most of the cases even though

our method is completely static;

3. After that, we propose 51 gate-level Trojan-net features which describe Trojan nets

from many sets of known netlists, and then select the best 11 Trojan-net features

to maximize F-measures for hardware Trojan classification;

4. By using the optimized random forest classifier based on the 11 Trojan-net features,

we have obtained 100% true positive rate and 100% true negative rate in several

Trust-HUB benchmarks [1] and obtained the best values in average F-measure

compared to conventional methods. Moreover, we achieve classification results of

94.9% average precision and 99.2% average accuracy.
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2.2 Related Works
Now we classify hardware-Trojan detection methods into the two types: the dynamic

detection methods and the static detection methods.

The dynamic detection methods detect hardware Trojans based on simulating the

circuits and/or actually running them including hardware Trojans. In these methods, it is

necessary to find out the trigger states to active hardware Trojans and see their behaviors.

Since we require too much time to know the trigger states, we have to find out beforehand

which part of the circuit includes hardware Trojans and set up test patterns very carefully

[23, 24]. Hence the hardware-Trojan detection results must be much dependent on input

patterns and/or simulation results. Very recently, a pattern-matching-based dynamic

method [22] and a clustering-based dynamic method [2] have been proposed.

The static detection methods check whether a given circuit includes hardware Trojans

or not, without simulating the circuits nor actually running them, but by just using

hardware-Trojan related information. Since these methods do not actually run the circuits

nor simulate them, we do not have to generate input test patterns and thus the detection

results are not dependent on simulation results. Recently, a static hardware Trojan

detection method [3] and a statistical technique for foundry identification [26] have been

proposed. However, they are hard to apply to sequential circuits and large systems. For

example, FANCI [3] first calculates truth tables and gives the suspicious flags to the gates

whose output is rare to transit. After that, hardware-Trojan infected nets (or Trojan nets)
are identified using these suspicious flags. Since this detection method uses truth tables,

it can be applied only to combinational-triggered hardware Trojans. In other words,

detecting sequential-triggered hardware Trojans is difficult by using this method.

Overall, static approaches are robust and effective to hardware Trojans, if we can

successfully develop these approaches.

2.3 Preliminary Evaluation on Machine-Learning-Based
Hardware-Trojan Detection

2.3.1 Feature Extraction
As in [27], assume that hardware Trojans have several trigger conditions and they are

activated when primary inputs and/or internal states of a given circuit satisfy the trigger

conditions. Now we try to classify a set of nets in a given netlist into a set of Trojan nets

and a set of normal nets. We focus on a static hardware-Trojan detection approach not

using circuit simulation.

In this section, we first pick up hardware-Trojan infected gate-level netlists from
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Table 2.1: Five gate-level netlists from Trust-HUB.

Number of Number of

Netlist Name all the nets Trojan nets

RS232-T1300 307 9

RS232-T1500 314 12

s35932-T200 6435 16

s38584-T100 7399 9

s38584-T300 9110 1730
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Figure 2.1: The histogram of LGFi for Trojan nets.

Trust-HUB benchmark suites [1] and find out several features which must be strongly

related to hardware Trojans. Here we randomly pick up five hardware-Trojan infected

netlists as listed in Table 2.1. Note that, the original circuits in the Trust-HUB benchmark

suites are often used to evaluate circuit designing in research context and Trust-HUB

gives which net is a Trojan net and which net is a normal net in every netlist benchmark.

Now we focus on a target net n in a given netlist and extract its several Trojan features.

Logic-Gate Fanins (LGFi)

Since hardware Trojans are activated only when the primary inputs and/or internal states

of the given circuit satisfy the trigger conditions, we expect that the transitive fanins of

Trojan nets become large enough.

Figures 2.1 and 2.2 summarize the breakdown of the fanin counts (logic-gate fanins,

LGFi in short) in Trojan nets and normal nets in the five netlists of Table 2.1, where LGFi

here means the number of the inputs of the logic gates two-level away from the target net
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Figure 2.2: The histogram of LGFi for normal nets.
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Figure 2.3: The example of the Trojan feature values extracted from a netlist.

n (see LGFi in Figure 2.3).2 As in Figure 2.1, some of the Trojan nets have very large

fanin counts compared to other Trojan nets. Those nets having large fanin counts are

very likely to be Trojan nets and LGFi can be a large hint to classify between Trojan nets

and normal nets.

However, some normal nets also have large fanin counts as in Figure 2.2. The number

of fanins itself is not enough to classify between Trojan nets and normal nets.

FFi, FFo, PI, and PO

Since some hardware Trojans have to memorize the internal states of a circuit to trigger

Trojans, flip-flops are expected to be located near Trojan nets. Then we define FFi to be

2In designing LGFi, how many logic-levels away from the target net n we should see becomes a

problem. Here we simply define LGFi to be the number of the inputs of the logic gates two-level away

from n because we want to see the transitive fanins of n which are not so far from n and not so close to n.
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Table 2.2: Average values of FFi, FFo, PI, and PO.

Trojan/Normal FFi FFo PI PO

Trojan nets 0.98 0.98 3.36 4.26

Normal nets 1.67 1.45 4.45 4.41

the minimum gate level to any flip-flop inputs from the target net n. We can also define

FFo to be the minimum gate level from any flip-flop outputs to the target net n.

Some hardware Trojans give particular outputs from the chip and then the primary

outputs are expected to be located near Trojan nets. Also, some hardware Trojans use

primary inputs to activate hardware Trojans and then the primary inputs are expected to

be located near Trojan nets. We define PI to be the minimum gate level from any primary

input to the target net n. We can also define PO to be the minimum gate level to any

primary output from the target net n.

In order to confirm that the assumptions above are true, Table 2.2 summarizes the

average values of FFi, FFo, PI, and PO in the five netlists of Table 2.1. As in Table 2.2,

those values in Trojan nets are definitely smaller than those in normal nets. We expect

that we can effectively classify between Trojan nets and normal nets by using FFi, FFo,

PI, and PO values.

Trojan Features

Overall, we can consider the five Trojan feature values below for every target net n in a

netlist to classify between Trojan nets and normal nets:

1. LGFi (Logic Gate Fan-ins): The number of inputs of the logic gates two-level

away from the net n.

2. FFi (FlipFlop Input): The number of logic levels to the nearest flip-flop input

from the net n.

3. FFo (FlipFlop Output): The number of logic levels to the nearest flip-flop output

from the net n.

4. PI (Primary Input): The minimum logic level from any primary input to the net

n.

5. PO (Primary Output): The minimum logic level to any primary output from the

net n.
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Table 2.3: Examples of the five feature values.

LGFi FFi FFo PI PO Trojan/Normal

3 4 1 2 3 Trojan net

7 0 2 5 7 Trojan net

9 0 2 5 9 Trojan net

16 0 0 3 5 Trojan net

6 0 2 5 6 Trojan net

8 2 4 5 3 Normal net

3 2 1 2 3 Normal net

6 1 0 7 4 Normal net

2 3 0 2 7 Normal net

5 1 5 7 5 Normal net

Figure 2.3 shows the example of the five feature values above extracted from a netlist.

In this figure, we focus on the bold net n. Since n has the four transitive fanins two-level

gates away from n as depicted in dotted lines in the figure, LGFi = 4. Since the logic

level from the flip-flop A to the net n is two, then FFi = 2. Since the logic level from

the net n to the flip-flop B is one, then FFo = 1. In the same way, we have PI = 2 and

PO = 1.

The Trojan features extracted above must be strong clues to detect hardware Trojans.

In the next section, we discuss how to classify between Trojan nets and normal nets using

these Trojan feature values extracted from an unknown netlist.

2.3.2 Hardware Trojan Classification Utilizing Machine Learning
In Section 2.3.1, we extract the five Trojan feature values for every net n in a given netlist,

which must be strongly related to hardware Trojans. However, we cannot set up simple

and fixed threshold values for them to classify between Trojan nets and normal nets.

For example, Table 2.3 shows the five Trojan feature values of several Trojan nets

and normal nets from Trust-HUB benchmarks. As seen in this table, some Trojan nets

have very large LGFi values but some of the normal nets have also large LGFi values.

FFi, FFo, PI, and PO values in Trojan nets tend to become small but we cannot set up

the particular threshold values to classify between Trojan nets and normal nets, even in

this table. In addition to that, we have to manually update these threshold values even

though we can successfully set up the threshold values, every time new hardware Trojans

are developed.

Based on the discussion above, we propose a machine-learning-based hardware-
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Learning flow Classification flow

Known
gate-level netlists

Unknown
gate-level netlists

Extract feature values 
from the known netlists

Extract feature values 
from the unknown netlists

Set up the parameters
of a classifier

Classify the unknown netlists 
using the learned classifier

Learned
classifier

Step L1

Step L2

Step C1

Step C2

Figure 2.4: The flowchart of learning and classification.

Trojan classification method, where it automatically learns Trojan nets and normal nets

using the five Trojan feature values and classifies an unknown netlist into a set of Trojan

nets and a set of normal nets by using the learned classifier. We utilize the two major

classifiers: a support vector machine (SVM) and a neural network (NN).

As discussed before, new types of hardware Trojans can be developed very soon

even if new types of hardware-Trojan detection methods are proposed. We expect that a

machine-learning-based approach can detect even unknown hardware Trojans based on

the learned classifier.

The Flow of the Proposed Method

Figure 2.4 shows the flow of the proposed method. The proposed method is composed

of the two parts: the learning flow and the classification flow.

In the learning flow, we learn many known Trojan nets and normal nets by using

the five Trojan feature values. The five Trojan feature values can be considered to be a

five-dimensional feature vector xn for every net n. We first extract the five-dimensional

feature vector for every net in known netlists (Step L1). After that, we learn the extracted

five-dimensional feature vectors (Step L2). In Step L2, we set up the parameters of the

classifier so that the true positive rate (TPR) is maximized where TPR is defined by the

ratio of the true positives (TP) over the number of all the Trojan nets.

In order to realize Phase 1 of the Goal 2 as discussed in Section 2.1, TPR is the most

important because identifying all the Trojan nets in a given unknown netlist is the most

important. If a large number of Trojan nets remain unidentified, they may much affect

the manufactured products using them. However, if we can identify almost all the real
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Trojan nets to be Trojan nets, we just need to examine the identified ones carefully, even

though some of the normal nets are identified mistakenly to be Trojan nets. Overall, we

set our goal to maximize TPR firstly and we optimize our classifier using the TPR value.3

In the classification flow, we classify a given unknown netlist into a set of Trojan nets

and a set of normal nets using the learned classifier. We first extract the five-dimensional

feature vector for each net from the unknown netlist (Step C1). After that, we identify

each net in the unknown netlist to be a Trojan net or not by using the learned classifier

(Step C2).

We consider SVM and NN as classifiers, and describe how to learn them in the rest

of this section.

Classification Algorithms

Classification using SVM First, we use SVM [29] to learn Trojan nets and normal

nets. For each net n, we give the label yn which shows a net n is a normal net or Trojan

net as an integer. If a net n is a normal net, yn = −1, and if a net n is a Trojan net, yn = 1.

Between a linear SVM and a non-linear SVM, we utilize a non-linear one because

it has obtained a better result through preliminary experiments.4 In a non-linear SVM, a

net k is classified into a normal net or a Trojan net by Eq. (2.1):

f (xk) = sign

(
N∑

i=1

yiλiK(xi, xk) + b

)
(2.1)

where N is the number of learned nets in known netlists, λi is the Lagrange multiplier,

K(u, v) is the kernel function for vectors u and v, b is a bias term, and sign(u) is the sign

function which returns 1 when u ≥ 0, and returns −1 when u < 0. f (xk) = 1 means

that the net k is identified to be a Trojan net, and f (xk) = −1 means that the net k is

identified to be a normal net.

Now we briefly describe how to set up the parameters in Eq. (2.1) according to [29].

In Eq. (2.1), b is a bias term, which is given by Eq. (2.2) using any one of the net i

3In machine learning, there are many other metrics such as recall and precision [28]. For example, if

we achieve 100% precision, it means that the nets identified to be Trojans are truly Trojan nets but it does

not mean that all of Trojan nets in a netlist are detected. If some Trojan nets are not detected, we have to

examine again all the nets identified to be normal nets. Since a target gate-level netlist usually includes a

few Trojan nets and thus includes so many normal nets, it must be very hard to do that. Hence, we try to

maximize TPR firstly in SVM and NN, while maximizing TNR secondly in NN.

4In fact, we have tried a linear SVM and a non-linear SVM as preliminary experiments and obtained

good results when we have used a non-linear SVM. For example, TPR becomes 88% when we use a linear

SVM with dynamic weighting for s35932-T200 but it improves to 100% when we use a non-linear SVM

with dynamic weighting.
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satisfying λi > 0:

b = yi −
N∑

j=1

λ j y jK(xi, x j) (2.2)

As in [30], we use the radial basis function (RBF) kernel for the SVM classifier. The

RBF kernel is given by K(u, v) = e−γ |u−v |
2

where γ is a parameter of the SVM classifier.

To obtain λi for Eq. (2.1), we maximize L(λ) by Eq. (2.3) where λ = (λ1, λ2, . . . , λN ):

L(λ) =
N∑

i=1

λi − 1

2

N∑
i,j=1

λiλ j yiy jK(xi, x j) (2.3)

Eq. (2.3) is constrained by

N∑
i=1

λiyi = 0 (0 ≤ λi ≤ C) where C is a parameter of the SVM

classifier.

Overall, the parameter values γ and C determine the complete form of Eq. (2.1) and

we decide them using learning data so that the TPR value over all the learned netlists is

maximized.

In Step L2, we use random search and grid search to determine the γ and C values

[30]. Firstly, we give the rough range 0.0001 ≤ γ ≤ 0.01 and 1 ≤ C ≤ 1000 for the

parameters γ and C. Then we execute machine leaning using the randomly selected γ

and C values 100 times. At that time, we randomly divide a set of all the nets over

all the known netlists into the two sets: we assume that the first half set is known data

and the other half set is unknown data and calculate the TPR value. As a result, we

obtain the best values γb and Cb which maximize the TPR value. Now we pick up the

parameter range γb − 0.001 ≤ γ ≤ γb + 0.001 and Cb − 10 ≤ C ≤ Cb + 10 and perform

more detailed search in this region by using the grid search. Finally, we can obtain the

parameter values γopt and Copt .

In Step C2, we classify the unknown netlist into a set of Trojan nets and a set of

normal nets using the parameters γopt and Copt .

Classification using NN A neural network [31] is composed of an input layer, middle

layers and an output layer. The input layer receives a vector input to NN. The middle

layers are composed of one or more layers and compute internal vectors between the

input layer and the output layer. The output layer sends out the calculated data as an

output of NN. Each layer is further composed of units which receive the output values

as inputs from the units in the previous layer and compute an output value using these

inputs.

Every unit has a type of calculation model. Since the sigmoid function is very widely

used as in [32, 33], we also use this function in our NN. Let us focus on a particular unit.
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Let o be an output of the unit, K be a set of units in the previous layer, xk be an input from

a unit k ∈ K , and wk be a weight for each input value xk . Then we define z =
∑
k∈K

wk xk+b

where b is a bias term. Then the sigmoid function is given by σ(z) = 1/(1 + e−z).

NN Structure Now we consider how to construct the NN structure for hardware Trojan

detection. Firstly, it is natural that we set the number of units in the first layer to be five,

each of which corresponds to each of the five Trojan feature values. Next, we set the

number of units in the output layer to be one, which just outputs a value ranging from 0

to 1. If the output is larger than or equal to 0.55 , its input five-dimensional vector xn is

identified to be Trojan. Otherwise, it is identified to be normal.

The problem here is how to construct the middle layers in NN. The middle layers

have the two important parameters: the number of layers and the number of the units in

each layer.

The number of layers in the middle layers: We use a simple single-layered middle

layer, since our proposed method requires to classify the five-dimension feature

vectors into a set of Trojan nets and a set of of normal nets. This classification is

not so complicated and we just use a single-layered middle layer for simplicity.

The number of units in the single-layered middle layer: Let Nmid be the number of

units in the single-layered middle layer. We perform several experiments and

determine the best Nmid value. First we set Nmid = 5, which is the same number

of units in the input layer. We increase the Nmid gradually and find out that,

the average TPR value over all the known netlists is continuously increased until

Nmid = 7. When Nmid = 8, the average TPR value is not increased but the average

true negative rate (TNR) defined by Section 4 is dramatically decreased. Then we

finally set Nmid = 7.6

Figure 2.5 shows the NN structure used in our proposed method, and Figure 2.6

shows the j-th unit in the middle layer where w j k is the weight for the k-th input xk and

bj is the bias term.

How to Perform (Step L2) and (Step C2) According to [32], we briefly describe how

to set up the NN classifiers’ parameters: the weight value wk and bias value b in every

unit in NN.

5We set the threshold value to be 0.5 based on [3].

6When we set Nmid to be 8 or larger, TNR continues to decrease but TPR is not improved and hence

we consider that our learning process is adequately converged when we use seven units in the middle layer.
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Figure 2.5: The proposed NN structure.
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Figure 2.6: The unit in each layer in NN.

Firstly, we set wk = 1 and b = 0 in all the units in the input layer, since they just

receive the input five-dimensional vector. Next, we initially set wk and b to be the random

values (following the normal distribution, where its mean μ is 0 and its standard deviation

σ is 1) in all the units in the middle and output layers of Figure 2.5 and update them as

follows:

We give the five-dimensional vector xn of a known net n to NN. Every net n has the

true value yn showing whether n is a normal net or Trojan net. If a net n is a normal net,

yn = 0, and if a net n is a Trojan net, yn = 1. Then we calculate the error Eout between

the NN output oout
1

and the true value yn of the net n:

Eout =
1

2
(yn − oout

1 )2 (2.4)
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Based on [32], the weight wout
k (k = 1,2, · · · ,7) of the output unit is updated as

follows:

wout
k ← wout

k − η · δ · oout
1 · (1 − oout

1 ) · omid
k (2.5)

where δ = ∂Eout/∂oout
1

, η is the learning rate, which is the parameter of NN, and omid
k

is the input value of the output unit (see Figures 2.5 and 2.6). In this chapter, we set

η = 0.01 which is the default value in PyBrain [34].

In the same way, the bias value bout of the output unit is updated as follows:

bout ← bout − η · δ · oout
1 · (1 − oout

1 ) (2.6)

After all the parameters in the output unit are updated, those in every unit in the

middle layer will be updated in the same way.

In Step L2, every time we input a five-dimensional vector xn of the known net n into

NN, the parameters in all the units in NN are updated. We can finally have a learned NN

classifier when we give all the known nets.

In Step C2, we classify the unknown netlist into a set of Trojan nets and a set of

normal nets using the learned NN classifier. If the NN output is larger than 0.5, the input

five feature values are identified to be a Trojan net. Otherwise, the input five feature

values are identified to be a normal net.

2.3.3 Experimental Results
In this section, we apply our proposed method to the several gate-level netlists in Trust-

HUB benchmark suite [1]. We use an Intel Xeon E7-4870 computer environment. In

our method, Step L1 and Step C1 are written in the C language and Step L2 and Step C2

are written in Python. We use Python machine learning library scikit-learn [35] for the

SVM classifier and PyBrain [34] for the NN classifier.

Table 2.4 summarizes the 17 gate-level netlists from Trust-HUB. Note that these data

include very small number of Trojan nets and detecting them must be very difficult.

Classification by Support Vector Machine

We classify a netlist listed in Table 2.4 into a set of Trojan nets and a set of normal

nets using SVM. Since we have 17 benchmarks that is too small to split into the train,

validation and test datasets, the machine learning is performed with the leave-one-out

cross validation [36], where one of the netlists in Table 2.4 is considered to be an unknown

netlist and the others are considered to be known netlists. For example, when RS232-

T1000 is considered to be an unknown netlist, all the other 16 netlists are considered to be

known netlists. After learning known netlists and setting up the learned SVM classifier,

we classify an unknown netlist into a set of Trojan nets and a set of normal nets.
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Table 2.4: The Trust-HUB benchmarks [1] used in the experiments.

Number of Number of Number of Number of

Netlist Name normal nets Trojan nets Netlist Name normal nets Trojan nets

RS232-T1000 266 45 s35932-T200 6,419 16

RS232-T1100 300 12 s35932-T300 6,423 37

RS232-T1200 305 10 s38417-T100 5,807 12

RS232-T1300 298 9 s38417-T200 5,807 15

RS232-T1400 299 12 s38417-T300 5,807 44

RS232-T1500 302 12 s38584-T100 7,390 9

RS232-T1600 298 9 s38584-T200 7,380 200

s15850-T100 2,429 27 s38584-T300 7,380 1,730

s35932-T100 6,423 15

The number of Trojan nets is relatively small compared to the total number of nets

in a given netlist. For example, the number of Trojan nets is just 0.1%–19% in the

netlists as listed in Table 2.4. This is because malicious third-party vendors tend to hide

their presence in IC and try to pass the IC tests. Learning data for Trojan nets in our

SVM-based hardware-Trojan classification method may be much smaller than those for

normal nets. It is very important to balance the learning data between Trojan nets and

normal nets.

Based on this discussion, we have performed the three types of experiments as

follows:

1. No weighting:
We have just used original data for learning. For example, if some known netlist

has Nn normal nets and Nt Trojan nets, SVM has learned Nn normal nets and Nt

Trojan nets.

2. Static weighting (W = 20):
Every Trojan net is learned by SVM W times. For example, if some known netlist

has Nn normal nets and Nt Trojan nets, SVM has learned Nn normal nets and

W × Nt Trojan nets.

The ratio of the number of Trojan nets and that of normal nets is different in the

benchmarks used for machine learning. In this chapter, we use (Trojan nets/normal

nets) ratio for RS232 benchmarks (RS232-T1000 – RS232-T1600). For RS232

benchmarks, the total number of normal nets is 2,068 and that of Trojan nets is 109.

Therefore the ratio of the number of Trojan nets and that of normal nets becomes

2,068/109 ≈ 18.97. Based on this value, we set the static weight W = 20. This is

just an example of static weighting.
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Table 2.5: Learned normal nets and Trojan nets.

No weighting Static weighting Dynamic weighting

Unknown Learned Learned Learned Learned Learned Learned

Data normal nets Trojan nets normal nets Trojan nets normal nets Trojan nets

RS232-T1000 63,067 2,169 63,067 43,380 7,225 7,175

RS232-T1100 63,033 2,202 63,033 44,040 7,191 7,038

RS232-T1200 63,028 2,204 63,028 44,080 7,204 7,153

RS232-T1300 63,035 2,205 63,035 44,100 7,202 7,130

RS232-T1400 63,034 2,202 63,034 44,040 7,218 7,130

RS232-T1500 63,031 2,202 63,031 44,040 7,215 7,176

RS232-T1600 63,035 2,205 63,035 44,100 7,205 7,130

s15850-T100 60,904 2,187 60,904 43,740 6,664 6,490

s35932-T100 56,910 2,199 56,910 43,980 7,155 6,969

s35932-T200 56,914 2,198 56,914 43,960 7,219 6,923

s35932-T300 56,910 2,177 56,910 43,540 7,215 6,975

s38417-T100 57,526 2,202 57,526 44,040 7,209 6,992

s38417-T200 57,526 2,199 57,526 43,980 7,213 6,946

s38417-T300 57,526 2,170 57,526 43,400 7,204 7,072

s38584-T100 55,943 2,205 55,943 44,100 6,663 6,426

s38584-T200 55,953 2,014 55,953 40,280 7,225 7,200

s38584-T300 55,953 484 55,953 9,680 7,225 7,068

3. Dynamic weighting:
We balance the number of learned normal nets and the number of learned Trojan

nets in every benchmark netlist. At first, we find out the nets which have the

identical feature vector in normal nets, leave one of them and delete the rest of

them. We also find out the nets which have the identical feature vector in Trojan

nets, leave one of them and delete the rest of them. For example, if the feature

vector (1,2,1,2,2) appears three times in normal nets, we delete two of them and

leave one of them.

After that, we balance the number of learned normal nets and the number of

learned Trojan nets as follows: Assume that we now have N′
n normal nets and N′

t
Trojan nets. Then SVM has learned every normal nets once but every Trojan net

(N′
n/N′

t ) times. Totally, SVM has learned N′
n normal nets and N′

n Trojan nets.

Table 2.5 summarizes the number of learned normal nets (“learned normal nets”)

and the number of learned Trojan nets (“learned Trojan nets”) in each experiment type

when classifying every unknown data. For example, in case of RS232-T1000 at “No

weighting”, the SVM classifier learns 63,067 normal nets and 2,169 Trojan nets from the

other 16 netlists. Since “Dynamic weighting” deletes several feature vectors, the number

of learned normal nets and the number of learned Trojan nets are reduced compared to
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the other two experiments but, as shown below, the accuracy of the SVM classifier in this

case is much increased by balancing normal nets and Trojan nets and deleting ambiguous

Trojan feature vectors.
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Table 2.6 shows the classification results. In this table, TN shows the number of

normal nets identified to be normal nets correctly. FP shows the number of normal nets

identified to be Trojan nets mistakenly. FN shows the number of Trojan nets identified to

be normal nets mistakenly. TP shows the number of Trojan nets identified to be Trojan

nets. TPR shows the true positive rate. TNR shows the true negative rate which is defined

by the the number of the true negatives over the number of total normal nets, where the

true negatives here mean the normal nets which are identified to be the normal nets.

As in the table, if we just use original data by giving no weights (“No weights”),

TPR becomes 0 which shows that all the Trojan nets are identified to be normal nets

mistakenly. By giving a static weight (W = 20) to every Trojan net (“Static weight”),

TPR values are improved. By giving a dynamic weight and balancing the learned

normal nets and Trojan nets (“Dynamic weight”), we can have the best TPR values. By

using our method with dynamic weighting, we can achieve 80% or more TPR values

in most of the cases. In some cases, we can achieve 100% TPR values. As discussed

in Section 2.3.2, it is important to maximize TPR. The results clearly demonstrate that

our method with dynamic weighting can successfully find out almost all the Trojan nets

in a given unknown netlist by just using learning data. TNR in dynamic weighting

is relatively small compared to static weighting. However, we believe that identifying

Trojan nets to be Trojan nets is the most important in Trojan detection, since we can

examine all the Trojan nets and gates around the identified Trojan nets.

The parameter values γ and C are changed depending on the learned known netlists

but their values are almost the same in our experiments, which means that we can use

almost the same SVM classifier in all the cases. Even if we are given a new unknown

netlist, we can just re-use the same SVM classifier and classify it into Trojan nets and

normal nets.

In all the cases, Step L1 and Step L2 require three to ten hours and Step C1 and Step

C2 require one to two hours.

Classification by Neural Networks

As in the discussion in the previous subsection, dynamic weighting is efficient for

hardware Trojan detection. Hence we have experimented the NN-based hardware-Trojan

classification method using dynamic weighting.

We have used 17 benchmarks summarized in Table 2.4. Since we have 17 benchmarks

that is too small to split into the train, validation and test datasets, the experiments are

performed with the leave-one-out cross validation. Table 2.7 shows the classification

results by NN. Table 2.7 shows that the six benchmarks obtained the TPR value of 100%.

This means that the NN classifier has successfully identified all the Trojan nets for these

benchmarks.



2.3. PRELIMINARY EVALUATION ON ML-BASED HT DETECTION 27

Table 2.7: Experimental results of the NN classifier.

Netlist name TN FP FN TP TPR TNR

RS232-T1000 178 88 26 19 42% 67%

RS232-T1100 187 113 0 12 100% 62%

RS232-T1200 159 146 3 7 70% 52%

RS232-T1300 218 80 7 2 22% 73%

RS232-T1400 153 146 0 12 100% 51%

RS232-T1500 199 103 4 8 67% 66%

RS232-T1600 190 108 2 7 78% 64%

s15850-T100 1,835 594 3 24 89% 76%

s35932-T100 5,431 992 0 15 100% 85%

s35932-T200 5,577 842 2 14 88% 87%

s35932-T300 3,763 2,660 0 37 100% 59%

s38417-T100 4,194 1,613 0 12 100% 72%

s38417-T200 3,893 1,914 4 11 73% 67%

s38417-T300 4,419 1,388 11 33 75% 76%

s38584-T100 4,125 3,265 0 9 100% 56%

s38584-T200 6,103 1,277 15 185 93% 83%

s38584-T300 5,630 1,750 194 1,536 89% 76%

Table 2.8 shows the examples of parameter values of the output unit in our NN

classifier. As shown in Table 2.8, these values are dependent on learned data and we

cannot set up the identical NN classifier which can be applied to all the netlists. We have

to set up the optimized NN classifier in each of the cases.

Table 2.9 shows the comparison between the results of the SVM classifier and those

of the NN classifier. The bottom row in this table shows the average value of each column

in this table. The average TPR value of the SVM classifier is 2% higher than that of

the NN classifier. On the other hand, the average TNR value of the NN classifier is

20% higher than that of the SVM classifier. We have to select an appropriate classifier

depending on the situations. How to develop an identical and best classifier is one of our

important future works.

In all the cases, Step L1 and Step L2 require three to ten hours and Step C1 and Step

C2 require one to two hours.
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Table 2.8: Examples of the parameter values of the output unit in our NN classifier.

Netlist name wout
1

wout
2

wout
3

wout
4

wout
5

wout
6

wout
7

RS232-T1000 -0.79 0.89 -0.91 0.12 0.98 0.33 -0.64

RS232-T1100 -0.27 -0.67 0.12 0.26 0.89 0.33 1.13

RS232-T1200 1.09 -0.76 -0.24 1.28 -0.29 -0.84 -0.97

RS232-T1300 -0.47 0.19 1.07 -0.26 -0.76 0.54 0.83

RS232-T1400 1.44 0.41 -1.52 0.99 -0.66 1.09 -0.87

RS232-T1500 0.67 0.63 0.73 -0.75 0.92 0.68 0.95

RS232-T1600 -0.89 -1.05 -0.61 -0.23 0.28 -1.02 1.13

s15850-T100 0.33 0.63 -0.45 0.48 -1.04 -0.17 -0.31

s35932-T100 0.38 -0.27 0.99 0.83 -0.80 -0.31 0.78

s35932-T200 -0.83 0.85 1.19 0.84 1.37 0.91 0.22

s35932-T300 0.90 1.19 -0.75 -0.37 -0.34 -1.06 -1.43

s38417-T100 0.43 0.29 0.79 1.01 0.50 -0.55 0.81

s38417-T200 1.27 0.57 -1.35 -0.49 0.95 1.39 1.56

s38417-T300 0.18 0.92 -0.94 -0.83 -0.01 -1.02 1.14

s38584-T100 -0.69 -0.86 0.56 -0.39 -0.84 -0.87 0.42

s38584-T200 -1.03 -0.66 -0.41 0.81 -0.54 0.76 -0.77

s38584-T300 -1.00 0.96 -0.53 -0.93 0.62 -0.98 0.91

Comparison to the Existing Methods

As far as we know, [3] is the only method for static hardware-Trojan detection. However,

TPR values are not shown there and hence we cannot compare our TPR values directly

to them. In [3], truth tables are calculated for a given gate-level netlist and the suspicious

flags are given to the gates whose output is rare to transit. Since this method is based

on truth tables, it can be applied to combinational-triggered hardware Trojans and it is

very hard to apply to sequential-triggered hardware Trojans. On the other hand, our

proposed method only focuses on gate-level net features and hence it can be applied to

both combinational-triggered and sequential-triggered hardware Trojans. In fact, RS232-

T1200 includes sequential-triggered hardware Trojans [1] and our method realizes TPR

of 80% as in Table 2.6 with dynamic weighting. In this point, we consider that our

method is superior to [3]. In [26], a statistical technique for foundry identification is

proposed, which is a static approach but not a hardware-Trojan detection method. We

cannot compare our proposed method to [26] directly.

Now we pick up the method in [2], which gives one of the most recent results, for

comparison purpose. Table 2.10 shows the comparison results between the method
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Table 2.9: Comparison between SVM classifier and NN classifier.

TPR TNR

Netlist name SVM NN SVM NN

RS232-T1000 53% 42% 31% 67%

RS232-T1100 58% 100% 27% 62%

RS232-T1200 80% 70% 26% 52%

RS232-T1300 89% 22% 26% 73%

RS232-T1400 83% 100% 22% 51%

RS232-T1500 83% 67% 24% 66%

RS232-T1600 89% 78% 26% 64%

s15850-T100 93% 89% 66% 76%

s35932-T100 93% 100% 60% 85%

s35932-T200 100% 88% 59% 87%

s35932-T300 27% 100% 58% 59%

s38417-T100 100% 100% 76% 72%

s38417-T200 73% 73% 76% 67%

s38417-T300 100% 75% 72% 76%

s38584-T100 100% 100% 62% 56%

s38584-T200 94% 93% 64% 83%

s38584-T300 89% 89% 66% 76%

Average 83% 81% 49% 69%

proposed in [2] and our proposed method with dynamic weighting. We pick up the

results in [2] since they give most recent results in hardware-Trojan detection in gate-

level netlists, which are just cited from [2]. The method in [2] uses signal correlation

between Trojan nets and normal circuits and identify whether each net in an unknown

netlist is Trojan or not, which is one of the most strong hardware-Trojan detection methods

proposed so far. Table 2.10 shows that our method with dynamic weighting outperforms

the method in [2] in most of the cases in terms of the TPR.

We further compare our proposed method to [2] using the detailed experimental

results. In [2], the detailed experimental results for s35932-T200 are shown varying

the threshold value. In [2], TPR becomes 27% and TNR becomes 99% as shown in

Table 2.10 when its threshold value is fixed to 1.0 according to [2]. However, TPR

becomes 100% and TNR becomes approximately 75% by changing the threshold value

appropriately in [2], which is one of the best possible results. Our method using NN

also uses the threshold value, which is fixed to 0.5, as described in Section 2.3.2. If the

NN output value is equal to or larger than 0.5, the net is identified to be a Trojan net.
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Table 2.10: Comparison between [2] and our proposed methods (with dynamic weight-

ing).

TPR TNR

Netlist name [2] Ours (SVM) Ours (NN) [2] Ours (SVM) Ours (NN)

s15850-T100 61% 93% 89% 99% 66% 76%

s35932-T200 27% 100% 88% 99% 59% 87%

s38417-T100 100% 100% 100% 99% 76% 72%

s38584-T200 99% 94% 93% 98% 64% 83%

If the NN output value is smaller than 0.5, the net is identified to be a normal net. If

this threshold value can be changed, the TPR-TNR trade-off curves vary in our method

depending on the threshold value.

We have performed the experiments and obtained the detailed results for s35932-

T200 by our method using NN varying the threshold value from 0.0 to 1.0. Figure 2.7

shows the detailed results. In Figure 2.7a, the x-axis shows the threshold value to identify

the net to be a Trojan net and the y-axis shows the TPR value7. In Figure 2.7b, the x-axis

shows the threshold value to identify the net to be a normal net and the y-axis shows

the TNR value. For example, when the threshold value is set to be 0.4 in our method

using NN, TPR becomes 100% and TNR becomes approximately 80%. These results

outperform the results of [2], where TPR = 100% and TNR ≈ 75% when its threshold

value is set to be 0.3 for s35932-T200 in [2]. As shown above, the values of TPR and

TNR vary by changing the threshold value and our results can outperform the results of

[2] by appropriately setting the threshold value.

In a practical use, it is not useful to change the threshold value for an unknown test

set, since we do not know its correct classification result beforehand. Furthermore, [2]

uses another parameter which must be optimized for every benchmark circuit. On the

other hand, our proposed method uses the static threshold value which is fixed to 0.5.

Our method using NN does not use any other parameters and hence our method is strong

in this point.

Furthermore, since the method in [2] is based on functional simulation, its TPR and

TNR values can be much dependent on the functional simulation as well as input patterns.

Particularly in large netlists, it is almost impossible to run functional simulation by giving

all the possible input patterns. On the other hand, our proposed method does not require

functional simulation nor logic simulation. The results obtained by our method are very

static and thus, even if a large circuit is given, our method can identify a Trojan net just

7Since an NN output value sometimes becomes more than 1.0 or less than 0.0, TPR does not reach 0%

even if the threshold value is 1.0. In the same way, TNR does not reach 0% even if the threshold value is

0.0.
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Figure 2.7: TPR and TNR for s35932-T200 by our method using NN varying the

threshold value.
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Table 2.11: Classification matrix.

NN

Normal Trojan

SVM
Normal 3,706 93

Trojan 1,873 763

based on the learned SVM or NN classifier.

2.3.4 Discussion
As discussed in Section 2.1, our final goal for hardware-Trojan detection is that we detect

all parts of hardware Trojans in a chip and eliminate them.

For a practical use, we need to combine our method with the other existing methods.

For example, s35932-T100 has 6,438 (= 6,423 + 15) nets and we have to examine all

of them to detect hardware Trojans originally. After our proposed method using NN is

applied to them, the number of suspicious Trojan nets is decreased to 1,007 (= 992+15)
as in Table 2.7. Since TPR = 100% is realized for s35932-T100 by our method using

NN, we have to only examine these 1,007 nets by using other existing methods. At that

time, our proposed method takes up to several tens of minutes to classify the gate-level

netlist using the learned classifier. We believe that decreasing the number of examined

nets to just 16% (1,007/6,438 ≈ 0.156) must be effective in complete hardware-Trojan

detection. In this sense, our method must be utilized in a practical use.

Since TPR does not always become 100% in our method, the example above is an

ideal case. Improving TPR values furthermore is an important future work.

The results of SVM and NN are not so similar to each other. For example, Table 2.11

shows the classification results of our method using SVM and NN for s35932-T200. This

table shows that 1,873 nets are identified to be Trojan nets by SVM, but identified to be

normal nets by NN. On the other hand, 93 nets are identified to be normal nets by SVM,

but identified to be Trojan nets by NN. The other nets are classified into Trojan nets or

normal nets by both of SVM and NN.

Now we combine the results. For example, assume that we identify the nets to be

Trojan nets when both SVM and NN identify the nets to be Trojan nets, and we identify

the other nets to be normal nets. In this case, the classification results are shown in

Tables 2.12 and 2.13. Table 2.12 shows how true Trojan nets are classified by SVM and

NN, where s35932-T200 includes 16 true Trojan nets. Table 2.13 shows how true normal

nets are classified by SVM and NN, where s35932-T200 includes 6,419 true normal nets.

Table 2.14 shows the results when the results of Table 2.12 and Table 2.13 are combined



2.3. PRELIMINARY EVALUATION ON ML-BASED HT DETECTION 33

Table 2.12: The number of classified nets

as Trojan nets (s35932-T200).

NN

Normal Trojan

SVM
Normal 0 0

Trojan 2 14

Table 2.13: The number of classified nets

as normal nets (s35932-T200).

NN

Normal Trojan

SVM
Normal 3,706 93

Trojan 1,871 749

Table 2.14: Prediction and answer (s35932-T200).

Prediction

Normal Trojan

Answer
Normal 5,610 749

Trojan 2 14

under the assumption above.

As shown in Table 2.14, we have TN=5,610, FP=749, FN=2, and TP=14. In this

case, TPR becomes 88% and TNR becomes 88%. The original results of our method

using NN are: TN=5,577; FP=842; FN=2; and TP=14, whose TPR and TNR are 88%

and 87%, respectively. If the results are combined, TNR is increased but TPR is not

increased.

Tables 2.15–2.17 show the results of RS232-T1000. As shown in Table 2.17, we

have TN=180, FP=86, FN=34, and TP=11. In this case, TPR becomes 24% and TNR

becomes 68%. The original results of our method using NN are: TN=178; FP=88;

FN=26; and TP=19, whose TPR and TNR are 42% and 67%, respectively. If the results

are combined, TNR is increased but TPR is decreased.

As shown in the examples above, we may have better TNR values, when we identify

the nets to be Trojan nets only if both SVM and NN identify the nets to be Trojan nets.

But TPR value may be worsened. Just combining the results does not directly lead to

better results. How to effectively combine the results must be one of the future works.

In the section, we have proposed a machine-learning-based hardware-Trojan classifi-

cation method for gate-level netlists based on Trojan features. The experimental results

demonstrate that the true positive rate of the proposed method is increased to up to 100%.

Even if the proposed method is completely static not using any logic/functional simula-

tions, the results are better than those obtained by the existing state-of-the-art dynamic

detection method in terms of TPR in most cases.

As discussed in Section 2.1, we focus on maximizing TPR in this chapter. However,

there is still room for improvement in terms of TNR and other machine learning metrics.
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Table 2.15: The number of classified nets

as Trojans nets (RS232-T1000).

NN

Normal Trojan

SVM
Normal 13 8

Trojan 13 11

Table 2.16: The number of classified nets

as normal nets (RS232-T1000).

NN

Normal Trojan

SVM
Normal 80 2

Trojan 98 86

Table 2.17: Prediction and answer (RS232-T1000).

Prediction

Normal Trojan

Answer
Normal 180 86

Trojan 34 11

For practical use, we can further apply existing hardware-Trojan detection methods

after utilizing our proposed method. Since the TPR values of our proposed method

are high compared to the existing method, our proposed method successfully pick up

suspicious nets. In this sense, even if the TNR is low compared to existing methods,

our proposed method can be utilized to screen test nets. In the next section, we discuss

on the features that can be best applied to the machine-learning-based hardware-Trojan

detection methods utilizing random forests.

2.4 Feature Extraction for Machine-Learning-Based Hard-
ware Trojan Detection

2.4.1 Backgrounds
The purpose of hardware-Trojan detection is to prevent hardware-Trojan infected devices

from being released to users. As the aforementioned discussion in Section 2.1, there are

two goals for hardware-Trojan detection in IC design step. Since Goal 2 above tries to

detect all parts of hardware Trojans, it includes Goal 1 and hence we focus on Goal 2,

i.e., our goal in this chapter is that, given a netlist, we try to detect all the Trojan nets in

it.

Supervised machine-learning-based hardware-Trojan detection is one the best ways

to realize Goal 2 and solves the vicious circle problem in hardware-Trojan detection. By

effectively using machine learning, we can update the hardware-Trojan database for new
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types of hardware Trojans and detect them with the updated classifier. As discussed in

Section 2.3.2, a supervised machine-learning-based hardware-Trojan detection method

is proposed to realize Goal 2, in which the Trojan-net features proposed in [22] are used.

However, there must exist many other possible features which describe Trojan nets and

we do not know which ones are effective for machine learning. Machine-learning-based

hardware-Trojan detection will be much improved if effective Trojan-net features are

extracted from many sets of known netlists.

In this section, we extract effective Trojan-net features for supervised machine-

learning-based hardware-Trojan detection and apply them to a random forest classifier.

Then we classify a set of nets from a given gate-level netlist into Trojan nets and normal

nets using the optimized random forest classifier.

Here we focus on hardware-Trojan detection using supervised machine learning in

IC design step. First, we propose 51 gate-level Trojan-net features from given gate-level

netlists which describe well Trojan nets very well. At that time, we utilize the random

forest classifier [25], one of the strong machine-learning methods, and optimize it to

apply to hardware-Trojan detection. Since random forest gives the importance value for

every Trojan-net feature, we can effectively know which one contributes more than the

others to detect hardware Trojans. We select the most effective 11 Trojan-net features

which maximize the average F-measures.

The optimized random forest classifier using these 11 Trojan-net features achieves

100% true positive rate and 100% true negative rate in some cases and the best F-measures

compared to existing machine-learning-based hardware Trojan detection methods.

Related Works

In machine learning, we have to extract the appropriate set of features appeared in Trojan

nets. If it is too small, we cannot classify the nets in a given netlist correctly. If it is

too large, we require many data for classification and much time to learn them. We

cannot even classify the given nets correctly using all of these large number of Trojan-net

features, which is known as the curse of dimensionality [37]. In this section, using

a motivational example, we demonstrate that we should extract an appropriate set of

Trojan-net features from a given netlist.

Table 2.18 shows several sample Trojan-net features from benchmarks in Trust-HUB.

Let us focus on a net n in a given netlist from Trust-HUB. The feature “fan_in_5” ( f1)

shows the number of fanins five-level away from the net n. The feature “out_nearest_pout”

( f2) shows the minimum level from n to any primary output. The feature “in_nearest_flipflop”

( f3) shows the minimum level to any flip-flop from the input side of the net n. In Ta-

ble 2.18, the nets of (A)–(C) are Trojan nets and (D) and (E) are normal nets. Now

we try to classify the nets (A)–(E) in Table 2.18 into Trojan nets and normal nets. For
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Table 2.18: The examples of Trojan-net features.

# Benchmark Net name
fan_in_5

( f1)

out_nearest_pout

( f2)

in_nearest_flipflop

( f3)

Trojan /

Normal

(A) RS232-T1000 iXMIT_state_1 59 2
��
4 Trojan

(B) s35932-T100 Tj_OUT1 24 6 29 Trojan

(C) s35932-T100 Trojan_SE 28 3
��
1 Trojan

(D) RS232-T1600 n84 36 8
��
2 Normal

(E) s35932-T100 n8403 7 6 38 Normal

simplicity, we give a single threshold value to every Trojan-net feature.

First, we assume that we classify the nets using f1 only. When we set the threshold

value of f1 to 20, we consider that the nets of f1 > 20 are Trojan nets and the others are

normal nets. The underlined part in Table 2.18 shows f1 > 20. In this case, the net

(D) is identified to be a Trojan net and this is an incorrect classification. Therefore we

cannot classify the nets correctly using f1 only.

Next, we assume that we classify the nets using f1 and f2. When we set the threshold

values of f1 to 20 and that of f2 to 7, we consider that the nets satisfying f1 > 20 and

f2 < 7 are Trojan nets, and the others are normal nets. The underlined part in Table 2.18

shows f2 < 7. In this case, we classify all the nets (A)–(E) correctly into Trojan ones

((A)–(C)) and normal ones ((D) and (E)).

Finally, we assume that we classify the nets using f1, f2, and f3. When we set the

threshold values of f1, f2, and f3 to 20, 7, and 10, respectively, we consider that the nets

satisfying f1 > 20, f2 < 7, and f3 < 10 are Trojan nets, and the others are normal nets.

The underlined part
�

in Table 2.18 shows f3 < 10. In this case, the net (B) is identified

to be a normal net and this is an incorrect classification. We cannot classify the nets

correctly if we set the threshold values such that f1 > 20, f2 < 7, and f3 < 10. Even

though we set another threshold value to f3, we cannot correctly classify them using all

of f1, f2, and f3, either.

This simple example shows that it is better to use only f1 and f2 as Trojan-net feature

values in case of Table 2.18, not to use all the Trojan-net features f1, f2, and f3. We

should extract an appropriate set of Trojan-net features for effective Trojan classification.

2.4.2 Trojan-Net Extraction for Hardware Trojan Detection
In this section, we refer to the first 12 benchmarks listed in Table 2.19 which is published

at Trust-HUB for training sets and propose effective Trojan-net features to detect hard-

ware Trojans. The benchmarks are gate-level netlists written in Verilog-HDL. In these

benchmarks, we know beforehand which net is a Trojan net and which net is a normal
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Table 2.19: The Trust-HUB benchmarks [1] used in the experiments.

Number of Number of

Data name normal nets Trojan nets

RS232-T1000 283 36

RS232-T1200 289 34

RS232-T1300 287 29

RS232-T1400 273 45

RS232-T1500 283 39

s15850-T100 2,419 27

s35932-T100 6,407 15

s35932-T300 6,405 37

s38417-T100 5,798 12

s38417-T200 5,798 15

s38417-T300 5,801 44

s38584-T100 7343 19

RS232-T1100 284 36

RS232-T1600 292 29

s35932-T200 6,405 12

s38484-T200 7,343 127

s38484-T300 7,344 1,144

s35932-free 6,405 0

s38417-free 5,798 0

s38584-free 7,343 0

net. Then we propose several gate-level Trojan-net features which are likely to be related

to Trojan nets.

Logic-gate fanins

As in RS232-T1000, some hardware Trojans are activated only when trigger conditions

are satisfied. This is because hardware Trojans should be non-activated during IC test

and/or normal conditions, where neither hardware vendors nor users can know that there

are hardware Trojans in their ICs.

In the case of combinational-circuit triggers, trigger circuits require multiple logic

gates since they have to implement complex trigger conditions. If the trigger has a very

rare condition, the number of logic-gate fanins tends to become large. Since hardware

Trojans tend to have very rare trigger conditions, the number of logic-gate fanins in
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Figure 2.8: The example of Trojan-net features for logic-gate fanins.

Trojan nets must be large compared to that of normal nets.

Let n be a net in a given netlist throughout this section. From the discussion above,

we extract the number of logic-gate fanins x-level away from every net n (fan_in_x) as a

Trojan-net feature. In this chapter, we set x = 1,2,3,4,5, since the fanins which are 6 or

more-level away from the net n are too far from n and they become less related to n.

For example, when we focus on the net n in Figure 2.8, its fan_in_1 becomes 2 and

fan_in_3 becomes 6.

Flip-flops

As in RS232-T1200, some hardware Trojans have a sequential-trigger circuit. Since the

hardware Trojans circuit is always so small, it is placed very locally. Hence the logic

levels to/from flip-flops in the sequential-trigger circuit must be small enough.

From the discussion above, we extract the numbers of flip-flops up to x-level away

from the input side and output side of the net n (in_flipflop_x and out_flipflop_x,

respectively), and the level of the nearest flip-flops from the input side and output side

of the net n (in_nearest_flipflop and out_nearest_flipflop, respectively) as Trojan-net

features. In this chapter, we set x = 1,2,3,4,5 in the same way.

For example, when we focus on the net n in Figure 2.9, its in_flipflop_2 becomes 1

and out_nearest_flipflop becomes 3.
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Figure 2.9: The example of Trojan-net features for flip-flops.

Multiplexers

As in s15850-T100, some hardware Trojans have multiplexers which receive trigger

signals from trigger circuits and switch output signals to activate malfunctions. For

example, secret internal signals are leaked through primary outputs by hardware Trojans.

For this type of hardware Trojans, multiplexers connect internal signals to primary

outputs when malfunctions are activated.

As discussed above, we extract the number of multiplexers up to x-level away from

the input side and output side of the net n (in_multiplexer_x and out_multiplexer_x,

respectively), and the level of the nearest multiplexers from the input side and output

side of the net n (in_nearest_multiplexer and out_nearest_multiplexer respectively) as

Trojan-net features. In this chapter, we set x = 1,2,3,4,5 in the same way.

For example, when we focus on the net n in Figure 2.10, its in_multiplexer_2 becomes

1 and out_nearest_multiplexer becomes 2.

Loops in a netlist

As in RS232-T1200, some hardware Trojans have sequential circuits for triggers. Sequential-

trigger circuits often use looped flip-flops. We define an m-level loop as follows: the

gate A connected to the input side or output side of the net n appears again at m-level

away from the net n. A loop can be found not only in sequential-trigger circuits but also

in ring-oscillator-type hardware Trojans.

Figure 2.11 shows an example of a loop in a netlist. The gate A is directly connected

to the net n. At the same time, the gate A is also reachable from n when we focus on the

bottom path in this figure, where the gate A is three-level away from n. We can find out

a three-level loop (m = 3) for n in this example.

From the discussion above, we extract the numbers of up to x-level loops for the input
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Figure 2.10: The example of Trojan-net features for multiplexers.
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Figure 2.11: The example of a loop in a netlist (in_loop_3 for the net n).

side and output side of the net n (in_loop_x and out_loop_x, respectively) as Trojan-net

features. In this chapter, we consider x = 1,2,3,4,5 in the same way.

Constants

In [22], it is reported that the net connecting a constant (i.e., one side of a net is fixed at

0 or 1) to the input of a flip-flop is likely to be a Trojan net. The net including constants

becomes the efficient flag to detect hardware Trojans.

From the discussion above, we extract the numbers of constants up to x-level away

from the input side and output side of the net n (in_const_x and out_const_x, respectively)

as Trojan-net features. In this chapter, we consider x = 1,2,3,4,5 in the same way.

For example, when we focus on the net n in Figure 2.12, its in_const_2 becomes 1.
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Figure 2.12: The example of Trojan-net features for constants.
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Figure 2.13: The example of Trojan-net features for primary inputs and outputs.

Levels to primary input and output

As in RS232-T1200, the primary inputs of ICs are often used as a trigger of hardware

Trojans. Hardware Trojans are likely to be placed close to the primary inputs. The

primary outputs of ICs are often used as the output ports of internal signals for malfunc-

tions. Trojan nets must be connected close to the primary outputs to leak these internal

signals.

From the discussion above, we extract the minimum levels from the net n to any

primary input and output (in_nearest_pin and out_nearest_pout, respectively) as Trojan-

net features.

For example, when we focus on the net n in Figure 2.13, its in_nearest_pin becomes

3 and out_nearest_pout becomes 2.
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Trojan-net features extracted from a netlist

Based on all the discussions in this section, we finally propose the 51 gate-level Trojan-net

features which must be related to hardware Trojans, as summarized in Table 2.20.

In Section 2.4.3, we carefully select a small set of the Trojan-net features out of these

51 features to effectively detect hardware Trojans.
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2.4.3 Feature Selection Utilizing Random Forest
In this section, we firstly summarize several supervised machine-learning approaches and

find out that random forest [25] is best applied to hardware-Trojan detection. After that,

we carefully select the Trojan-net features to detect hardware Trojans from the 51 Trojan-

net features extracted in Section 2.4.2 using some of the Trust-HUB benchmarks [1] for

training sets and the optimized random forest classifier.

Machine Learning Approach Best Applied to Hardware-Trojan Detection

Firstly, we pick up several supervised machine-learning approaches and discuss which

one is the best to apply to hardware-Trojan detection.

Support vector machine (SVM) [29] is one of the supervised machine-learning ap-

proaches which classifies input data into two groups. In [4], an SVM-based hardware-

Trojan classification method is proposed which successfully detects Trojan nets from an

unknown netlist in some cases. However, their results show that the method sometimes

has many false positives and hence true negative rate does not become so high. As in

the discussion in Section 2.4.2 as well as [22, 38], Trojan nets may have many features

which are independent of each other and these features are distributed intricately. Hence

SVM cannot separate them accurately in some cases.

Neural networks [31] are also one of the supervised machine-learning approaches.

Recently, this approach has been applied to image recognition [39] and natural language

processing [40] and leads to very good results. However, in hardware-Trojan detection,

we have to detect a set of Trojan nets whose number is much smaller than the total

number of normal nets as shown in Table 2.19. In this sense, hardware-Trojan detection

is completely different from image recognition and natural language processing.

Random forest [25] is one of the supervised machine-learning method using several

decision trees. Each decision tree uses a subset of features randomly sampled from a

set of entire input features. As described above, we have to deal with many independent

Trojan-net features effectively in hardware-Trojan detection and every decision tree in the

random forest can be applied to an effective subset of those of many Trojan-net features.

Even though a given netlist includes a very small number of Trojan nets, classification

based on decision trees can lead to good results.

While there are other supervised machine-learning approaches, we believe that no

approaches other than random forest can lead to good results since a given unknown netlist

has a very small number of Trojan nets and these Trojan nets have many independent

features.

Based on this discussion, we pick up random forest and apply it to hardware-Trojan

detection. Moreover, random forest can calculate the importance of every feature and

we can know which ones contribute to lead good results the best. By using random



2.4. FEATURE EXTRACTION FOR ML-BASED HT DETECTION 45

forest, we expect that we select the best set of Trojan-net features among many features

extracted in Section 2.4.2.

Selection of the Best Possible Trojan-Net Features

Although we have extracted the 51 features which must be related to hardware Trojans, It

must be impractical to use all the 51 Trojan-net features for hardware-Trojan classification,

as discussed in Section 2.4.1. We have to select the best set of Trojan-net features which

most effectively detects hardware Trojans among the 51 Trojan-net features. Based on

the discussion in Section 2.4.3, we apply a random forest classifier to select the best set

of Trojan-net features. In random forest, we can obtain the importance value [25] of

every Trojan-net feature used which describes how much important every feature is to

classify the nets into Trojan ones and normal ones. We use these importance values to

select the best set of Trojan-net features to effectively classify the nets into Trojan ones

and normal ones.

We employ the two-step approach as follows: In Step 1, we first extract the Trojan-net

feature values from given netlists; In Step 2, we select the best set of Trojan-net features

based on the importance values obtained by the optimized random forest classifier.

Step 1: Extract Trojan-net feature values from a netlist In Step 1, we first extract

the Trojan-net feature values of each net n from every given netlist. As in Section 2.4.2,

we also use the first 12 Trust-HUB benchmarks in Table 2.19 as given netlists. We use

the 51 Trojan-net features here as listed in Table 2.20.

Step 2: Select the best set of Trojan-net features In Step 2, we select the best set

of Trojan-net features based on the extracted feature values in Step 1 using the random

forest classifier optimized to hardware-Trojan detection.

Evaluation indexes of machine learning for hardware-Trojan detection

In case of binary classification, there are four values to evaluate the classification

results: the true negative value (TN), the false positive value (FP), the true positive value

(TP) and the false negative value (FN); TN shows the number of normal nets identified

to be normal nets; FP shows the number of normal nets identified to be Trojan nets

mistakenly; TP shows the number of Trojan nets identified to be Trojan nets; FN shows

the number of Trojan nets identified to be normal nets mistakenly.

Based on the values of TN, FP, TP and FN, we can have five more values to evaluate

the classification results: the true positive rate (TPR), the true negative rate (TNR),

the precision, the F-measure, and the accuracy; TPR is defined by TP/(TP+FN), and
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also known to be the recall (R); TNR is defined by TN/(TN+FP); The precision, P,

is defined by P = TP/(FP + TP); The F-measure, F, is the harmonic mean of the

precision and the recall, and represented by F = 2PR/(P + R); The accuracy is defined

by (TP+TN)/(TP+TN+FP+FN).

All of the values above are important but, specifically, the F-measure is the best to

measure the classification results well [41]. In this chapter, we focus on the F-measure

to evaluate the classification results for machine learning.

Optimizing a random forest classifier applied to hardware-Trojan detection

In order to construct random forest, we have to optimize several parameters best

applied to hardware Trojan detection. Random forest has the three parameters: 1) the

number of maximum features in each decision tree, 2) the depth of each decision tree,

and 3) the number of decision trees used in a random forest classifier.

1. The number of maximum features in each decision tree: It is generally set to be√
n, where n is the number of all the features used [42]. Firstly, we set the number

of maximum features to
√

n as well.

2. The depth of each decision tree: We set no specific depth for each decision tree.

Every decision tree grows until all its leaf nodes reach the identical classification

result and we may have the best classification result in this sense. Note that,

as the experiments in Section 2.4.4 demonstrates, the learning process just takes

approximately several minutes even if we do not set a specific depth value and

hence we consider that setting no specific depth in hardware-Trojan detection is

reasonable.

3. The number of decision trees: We have determined how many decision trees

are constructed in a random forest classifier by performing the preliminary exper-

iments.

We have set it to 2, 5, and 8. All the 51 Trojan-net features have been used here.

The experimental setup was the same as the one described below. Table 2.21 shows

the results of the preliminary experiments. As shown in Table 2.21, we can obtain

the best F-measure value when we construct five decision trees and hence we set

the number of decision trees to five.

Based on the discussion above, we can appropriately set the parameters in random forest

for hardware-Trojan detection.

Hardware-Trojan detection using the optimized random forest classifier
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Table 2.21: The number of trees and F-measures

# of trees F-measure

2 60.0%

5 66.9%

8 64.7%

Now we classify all the nets in a given netlist from the first 12 Trust-HUB benchmarks

in Table 2.19 into Trojan ones and normal ones based on the 51 features listed in Table 2.20

using the optimized random forest classifier. We use the leave-one-out cross-validation

method [36] to validate classification results, where each one of the benchmarks is

considered to be a test set (unknown data set) and the others are considered to be training

sets (known data sets).

Since the number of Trojan nets (Nt) is much smaller than that of normal nets (Nn) in

hardware-Trojan classification, we learn Trojan nets (Nn/Nt) times. As a result, we can

obtain the F-measure for each of the benchmarks. We calculate the average F-measure

values over these 12 benchmarks as the measure of the classification performance.

Selecting the best set of Trojan-net features

Step 2-1: First, we repeatedly halves the number of Trojan-net features. At first, as a

learning result of the random forest classification above, it gives the importance

value to each one of the 51 Trojan-net features. For every benchmark, we have

51 importance values and then we can have an average importance value over 12

benchmarks for each of 51 Trojan-net features. Then we select the first half of

Trojan-net features whose average importance values are higher than those of the

second half. Then, we also classify the given netlists using the selected Trojan-

net features and obtain the average F-measure value. We repeatedly perform this

process until the average F-measure value decreases the previous one.

Table 2.22 shows the average F-measure values when we gradually decrease the

number of Trojan-net features from 51 to 6. From this table, the 12 Trojan-net

features give the best value in terms of F-measure.

Step 2-2: Next, we carefully examine the 12 Trojan-net features selected above. We

pick up one of the 12 Trojan-net features and discard it. We classify the given

netlists using the remaining Trojan-net features and obtain the average F-measure

value. We try this process for each of the 12 Trojan-net features and really discard

the one when the best average F-measure value is obtained. We repeat this process

until no further improvement is seen.
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Table 2.22: Selecting the best

set of features (Step 2-1).

# of features F-measure

51 66.9%

25 75.7%

12 75.9%

6 57.2%

Table 2.23: Selecting the best

set of features (Step 2-2).

# of features F-measure

12 75.9%

11 79.3%

10 74.0%

Table 2.24: The best set of 11 Trojan-net features and their importance values.

Average

No. Trojan-net feature importance value

1 fan_in_4 0.056

2 fan_in_5 0.070

3 in_flipflop_4 0.084

4 out_flipflop_3 0.115

5 out_flipflop_4 0.070

6 in_loop_4 0.056

7 out_loop_5 0.133

8 in_nearest_pin 0.043

9 out_nearest_pout 0.200

10 out_nearest_flipflop 0.124

11 out_nearest_multiplexer 0.048

Table 2.23 shows the results. When we select the 11 Trojan-net features, we can

have the best average F-measure value.

Table 2.24 summarizes the resultant best set of the 11 gate-level Trojan-net features

and their average importance values.

From these results, the best set of Trojan-net features is composed of the number

of fanins, the number of flip-flops, the number of loops, the minimum level to primary

inputs and outputs, the minimum level to flip-flops from output side, and the minimum

level to multiplexers from output side.

2.4.4 Experimental Results
In this section, we demonstrate the results of hardware-Trojan classification using the

11 gate-level Trojan-net features obtained in Section 2.4.3. We use the random forest
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Table 2.25: The classification results utilizing the extracted 11 features.

Test data TN FP FN TP TPR TNR Precision F-measure Accuracy

RS232-T1000 278 5 0 36 100.0% 98.2% 87.8% 93.5% 98.4%

RS232-T1200 289 0 2 32 94.1% 100.0% 100.0% 97.0% 99.4%

RS232-T1300 287 0 0 29 100.0% 100.0% 100.0% 100.0% 100.0%

RS232-T1400 273 0 0 45 100.0% 100.0% 100.0% 100.0% 100.0%

RS232-T1500 282 1 1 38 97.4% 99.6% 97.4% 97.4% 99.4%

s15850-T100 2,418 1 3 24 88.9% 100.0% 96.0% 92.3% 99.8%

s35932-T100 6,407 0 4 11 73.3% 100.0% 100.0% 84.6% 99.9%

s35932-T300 6,405 0 2 35 94.6% 100.0% 100.0% 97.2% 100.0%

s38417-T100 5,798 0 7 5 41.7% 100.0% 100.0% 58.8% 99.9%

s38417-T200 5,798 0 9 6 40.0% 100.0% 100.0% 57.1% 99.8%

s38417-T300 5,801 0 1 43 97.7% 100.0% 100.0% 98.9% 100.0%

s38584-T100 7,342 1 16 3 15.8% 100.0% 75.0% 26.1% 99.8%

RS232-T1100 280 4 17 19 52.8% 98.6% 82.6% 64.4% 93.4%

RS232-T1600 288 4 1 28 96.6% 98.6% 87.5% 91.8% 98.4%

s35932-T200 6,405 0 11 1 8.3% 100.0% 100.0% 15.4% 99.8%

s38584-T200 7,332 11 45 82 64.6% 99.9% 88.2% 74.5% 99.3%

s38584-T300 7,335 9 29 1,115 97.5% 99.9% 99.2% 98.3% 99.6%

RS232-free 298 8 0 0 100.0% 97.4% 0.0% 0.0% 97.4%

s15850-free 2,417 2 0 0 100.0% 99.9% 0.0% 0.0% 99.9%

s35932-free 6,405 0 0 0 100.0% 100.0% 100.0% 100.0% 100.0%

s38417-free 5,798 0 0 0 100.0% 100.0% 100.0% 100.0% 100.0%

s38584-free 7,343 0 0 0 100.0% 100.0% 100.0% 100.0% 100.0%

classifier optimized as in the previous section implemented in Python using the scikit-

learn machine-learning library [35]. The experiments are performed using an Intel Xeon

E7-4870 computer environment with 300GB memory.

We use all the 22 netlists in Table 2.19 for the experiments, where the last ten

netlists are newly added to evaluate whether the selected 11 Trojan-net features can

be effectively applied to them. The last five netlists are Trojan-free netlists. Since

the datasets are too small to split into train, validation, and test datasets, we apply the

leave-one-out cross-validation method [36] to evaluate Trojan-included netlists, where

each one of the Trojan-included netlists is considered to be a test set (unknown data set)

and the other 16 Trojan-included netlists are considered to be training sets (known data

sets). In evaluating the Trojan-free netlist, we consider the 17 Trojan-included netlists

to be training sets and the Trojan-free netlists to be test sets and then we evaluate the

classification result in the Trojan-free netlists.
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Classification Results

Table 2.25 shows the classification results. We have obtained 100% TPR in RS232-

T1000, RS232-T1300, and RS232-T1400, i.e., all the Trojan nets in these netlists are

correctly identified to be Trojan nets in these cases. All the benchmarks realized 98% or

more TNR values.

Since we have obtained 100% precision in more than half of benchmarks, all the nets

identified to be Trojan nets are actually Trojan nets in these benchmarks, even if they

have a large number of nets. As the FP values in almost all the netlists become less than

five, the normal nets in these benchmarks are also correctly identified to be normal nets.

In terms of accuracy, most benchmarks realized more than 99% or more. This means

that most nets are correctly classified into a set of Trojan nets and a set of normal nets.

Goal 2 described in Section 2.1 is mostly realized, although we still have several false

positives and false negatives.

Note that, Table 2.25 demonstrates that we find out at least one Trojan net in Trojan-

included netlists while we find out no Trojan nets in the three Trojan-free netlists. These

results simply imply that we can successfully classify almost the given netlists into

Trojan-included netlists and Trojan-free netlists, i.e., Goal 1 described in Section 2.1 is

also mostly realized.

However, we obtained several FP nets8 in RS232-free and s15850-free. In RS232-

free, all of the nets identified to be Trojan nets mistakenly are around the border between

normal nets and Trojan nets in other Trojan-inserted netlists RS232-T1000–RS232-

T1600. The nets around the border between normal nets and Trojan nets have similar

feature values and thus the random forest classifier identifies these nets to be Trojan nets

mistakenly. In s15850-free, two nets are identified to be Trojan nets mistakenly. For

s15850 series, we learn only one benchmark s15850-T100 and thus we obtained several

FP nets in s15850-free. Actually two FP nets have similar feature values to Trojan nets in

s15850-T100. Since the ratios of FP nets over all the nets are less than 3% in RS232-free

and s15850-free, we can re-inspect the FP nets in them again and see if they are really

Trojan nets or normal nets carefully. However, it is better for us to correctly identify

the Trojan-free netlists to be Trojan free for the practical use of machine-learning-based

hardware-Trojan detection. This is our important future work.

In the experiments, it takes 10 minutes to learn 16 netlists with random forest and it

takes 10 seconds to classify an unknown netlist.

8FP nets refer to the normal nets identified to be Trojan nets mistakenly. Similarly, we can define TN

nets, FN nets and TP nets.
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Comparison to Existing Methods

Comparison to machine-learning-based hardware-Trojan detection methods An

SVM-based hardware-Trojan detection method is proposed in [4], which classifies a set

of nets in a gate-level netlist into normal nets and Trojan nets. In [4], the five Trojan-net

features are used. For comparison purpose, we gave the proposed 11 Trojan-net features

to [4] and obtained the classification results (“[4] with 11 features” in Table 2.26).

Table 2.26 summarizes the comparison results in terms of precision, F-measure,

and accuracy compared to [4] and “[4] with 11 features”. As in Table 2.26, the average

precision, F-measure, and accuracy using our proposed Trojan-net features become larger

than those of the existing methods. Even if the proposed 11 Trojan-net features are given

to [4], its classification results do not outperform our results. This is because the 11

Trojan-net features from given netlists are independent of each other and these features

are distributed intricately, as discussed in Section 2.4.3. SVM-based approach cannot

separate them accurately.

Overall, the proposed 11 Trojan-net features give one of the best sets of Trojan-net

features to detect hardware Trojans. Note that F-measure of 79.3% is a quite good value

in machine learning [43]. The average accuracy of 99.2% is also a quite good value in

hardware-Trojan classification.

As discussed in Section 2.4.3, a neural network is another machine-learning-based

approach. Neural networks can also be applied to hardware-Trojan detection. An

example structure of the neural networks appears in [44] which uses the same 11 features

in a given netlist as our proposed method.

However, as shown in [44], when we apply the neural networks to hardware-Trojan

detection, the average TPR value becomes 85% while the average TNR value becomes

70%, and thus the average F-measure value becomes only 25%. In Table 2.26, the

average F-measure of [4] with 11 features is 49.4% and that of our proposed method

is 79.3%, and therefore both of them are larger than that of [44]. In this sense, the

random forest classifier is superior to the neural networks. Neural networks can be very

effectively applied to image recognition and natural language processing as discussed

in Section 2.4.3, but they cannot be well applied in a simple way to hardware-Trojan

detection compared to the optimized random forest classifier in terms of F-measures.
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Table 2.27: False positive rates in cited from [3].

Benchmark categories [3]

RS232 about 8%

s15850 less than 1%

s35932 less than 1%

s38417 less than 1%

Table 2.28: False positive rates in ours.

Benchmark categories Ours

RS232 0.70%

s15850 0.04%

s35932 0.00%

s38417 0.00%

Comparison to a static hardware-Trojan detection method Our proposed method

focuses on static hardware-Trojan detection which just uses hardware-Trojan related

information without simulating the circuits nor actually running them. Though many

hardware-Trojan detection methods have been proposed, most of them are dynamic
hardware-Trojan detection methods such as in [24] and [21] which require to simulate

the circuits or actually run them. One of the most effective static method for hardware-

Trojan detection is FANCI [3] and thus we have compared our method to it. Table 2.27

shows the results in [3] from the viewpoint of false positive rate (FPR) which is defined

by the number of FP nets over the number of normal nets.

Since the benchmarks used are not explicitly specified in [3], we cannot compare our

results to [3] on a one-to-one basis. Now we compare our results to [3] in an equivalent

way.

In [3], the benchmarks used are not specified but the benchmarks RS232 series,

s15850 series, s35932 series, and s38417 series are grouped into RS232, s15850, s35932,

and s38417, respectively, and Table 2.27 summarizes the results. In the same way, we

group our benchmarks and summarize the results in Table 2.28. For example, when

we focus on RS232 series in Table 2.25, the total number of normal nets in RS232-

T1000–RS232-T1600 becomes 1,991 while the total FP becomes 14, then the FPR can

be calculated by 14/1991 � 0.70%. As shown in Tables 2.27 and 2.28, our method

outperforms [3] from the view point of FPR in all benchmark categories.

Note that, as far as we know, since none of other static hardware-Trojan detection

methods describes the statistical data such as the number of nets, TN, FP, FN and TP, we

cannot compare our method to them directly.
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Discussion

Analysis of FN nets To realize complete detection discussed in Section 2.1, we have

to minimize FN and FP values. FN shows the number of Trojan nets identified to be

normal nets mistakenly and thus we should minimize FN with the highest priority. Now

we focus on the ratio of FN over TP which is defined by FN/TP in Table 2.25. The

netlists s35932-T200 and s38584-T100 have the first and second largest FN/TP values

and therefore we focus on them. Additionally, we focus on FN especially in s38584-T200,

which obtained the largest FN in Table 2.25. We also focus on FN in RS232-T1100,

which obtained the largest FN other than s38584 series.

Each Trojan circuit in s35932-T200 and s38584-T100 is composed of a trigger circuit

and a payload circuit. The trigger circuit is a comparator and the payload circuit changes

the functionality of the original circuit [1]. All FN nets are included in the trigger circuit.

Since the trigger circuits in s35932-T200 and s38584-T100 have small number of logic

gates and levels, the nets in the trigger circuits have similar feature values to those of

normal nets. In this sense, the random forest classifier identified Trojan nets to be normal

nets mistakenly.

The Trojan circuit in s38584-T200 is composed of a trigger circuit and a payload

circuit. The trigger circuit is a counter of a rare-vector and the payload circuit leaks

the value of one internal signal [1]. Most FN nets are included in the trigger circuit,

especially in the counter circuit. A counter circuit is a generally used in a normal circuit

and thus the random forest classifier identified these nets to be normal nets mistakenly.

The Trojan circuit in RS232-T1100 is also composed of a trigger circuit and a

payload circuit. The trigger circuit is a sequential comparator and the payload circuit

gains control over one internal signal [1]. All of the FN nets are included in the trigger

circuit, especially near the border between Trojan nets and normal nets. Other RS232

benchmarks also obtained FN nets around the border between Trojan nets and normal

nets. Thus the random forest classifier identified these nets to be normal nets mistakenly.

As discussed above, FN nets occur (1) when the trigger circuits have small number

of gates and their logic-levels are small, (2) when the nets are frequently used in normal

nets, and (3) when the nets are around the border between Trojan nets and normal nets.

To detect these FN nets, we can apply other hardware-Trojan detection method such as

[3] and/or [23]. As shown in Table 2.25, when we obtain Trojan-identified nets, we can

further examine the nets themselves and their nearby nets using [3] and/or [23]. However,

our goal is to realize complete detection with a machine-learning-based hardware-Trojan

detection method and thus optimizing the classifier furthermore is our important future

work.
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Low precision, F-measure, and accuracy results In Table 2.26, RS232-T1000 and

RS232-T1100 obtained low precision, low F-measure, and low accuracy compared to

“[4] with 11 features”. Table 2.29 shows the comparison results of RS232-T1000 and

RS232-T1100 between our proposed method and “[4] with 11 features”.
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In RS232-T1000, “[4] with 11 features” obtained 3 FP nets while the proposed method

obtained 5 FP nets. In RS232-T1100,“[4] with 11 features” obtained only one FN net

while the proposed method obtained 17 FN nets.

According to Table 2.26, “[4] with 11 features” tends to identify normal nets to be

Trojan nets and thus the average precision becomes lower than our proposed method. On

the other hand, our proposed method tends to identify Trojan nets to be normal nets and

thus FN is larger than FP in most of the netlists listed in Table 2.25. Mistakenly-identified

nets in our method are placed near the border between Trojan nets and normal nets, and

thus the features are similar to each other. Whether the net near the border between

Trojan nets and normal nets is identified to be a normal net or Trojan net depends on

the classifier applied. The property of the classifier that we apply to hardware-Trojan

detection decides whether the nets with ambiguous feature values are classified into

Trojan nets or normal nets.

In RS232-T1000, the FP in our proposed method is larger than that in “[4] with 11

features”. Three FP nets in both of the methods are the same nets. The other two FP

nets in our proposed method can be mistakenly identified to be Trojan nets due to the

randomness of random forest classifier. This is because these nets are also placed near

the border between Trojan nets and normal nets. Note that in order to demonstrate the

randomness of the random forest classifier, we have applied our method to RS232-T1000

with another random seed. The experimental results show that we have also obtained

three FP nets in RS232-T1000, which are the same as the ones in “[4] with 11 features”.

In RS232-T1100, “[4] with 11 features” obtained only one FN net while the proposed

method obtained 17 FN nets. This is because the classifier in our method identifies

Trojan nets around the border to be normal nets mistakenly. In RS232-T1100, 4 FP nets

are also obtained in the proposed method while “[4] with 11 features” obtained 3 FP nets.

Because of the randomness of the random forest classifier, one extra FP net is obtained

in the proposed method. Note that, we have applied our method to RS232-T1100 with

another random seed and the experimental results show that we have also obtained three

FP nets in RS232-T1100, which are the same as the ones in “[4] with 11 features”.

In the future, we work for maximizing TPR and TNR values in individual benchmarks

by considering around the Trojan-identified nets.

2.5 Conclusion
In the chapter, we have proposed a machine-learning-based hardware-Trojan classifica-

tion method for gate-level netlists based on Trojan features.

In order to realize it, we first discuss on how to apply machine learning to hardware

Trojan detection (Section 2.3). The experimental results demonstrate that the true positive
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rate of the proposed method is increased to up to 100%. Even if the proposed method

is completely static not using any logic/functional simulations, the results are better than

those obtained by the existing state-of-the-art dynamic detection method in terms of TPR

in most cases. As discussed in Section 2.1, we focus on maximizing TPR in this chapter.

This approach has not been proposed as far as we know, hence these results provide

us the meaningful suggestion that machine learning can be applied to hardware Trojan

detection.

After the discussion on how to apply machine learning to hardware Trojan detection,

we discuss on the Trojan features that can be best applied to machine-learning-based

hardware-Trojan detection. In Section 2.4, we have first proposed the 51 Trojan-net

features which well describe Trojan nets from netlists. Next, we have selected the

best set of 11 Trojan-net features which maximize the average F-measures using the

optimized random forest classifier. The experimental results show that the maximum

TPR and TNR realize 100% in several benchmarks and the F-measure becomes larger

than existing state-of-the-art methods.

As summarized above, this chapter shows that machine learning will effectively

detect hardware Trojans. In particular, the extracted feature values suggest that typical

Trojan nets have identical features, for example of a large number of fan-ins because of

a rare-trigger circuit. These features can be important clues to detect hardware Trojans.

However, there still remains to be improved in terms of TPR and TNR. The next chapter

proposes several approaches to enhance the machine-learning-based hardware-Trojan

detection methods and to leverage their results to the hardware products.



Chapter 3

Application of the Hardware-Trojan
Detection Utilizing Machine Learning1

3.1 Introduction
The purpose of hardware-Trojan detection is to prevent hardware-Trojan infected netlists

from being released to users. As discussed in Section 2.1, there are the two goals for

hardware-Trojan detection for gate-level netlists: partial detection (Goal 1) and complete

detection (Goal 2). In this chapter, we focus on the Goal 2.

In [38], a hardware-Trojan detection method for gate-level netlists is proposed tar-

geting the Goal 1 above. In [38], hardware-Trojan-specific netlist features are extracted

manually from the netlists in [1] and hardware-Trojan infected netlists are distinguished

from hardware-Trojan free netlists. Since this method is based on manually extracting

hardware-Trojan-specific netlist features, it must take much time. Further, it is impracti-

cal to manually extract Trojan-net features whenever new types of hardware Trojans are

found.

Chapter 2 proposes the first method to apply machine learning to hardware Trojan

detection at gate-level netlists, and extract feature values best applied to the machine-

learning-based hardware-Trojan detection.

In this chapter, we propose three applications of machine-learning-based hardware-

Trojan detection. Based on Charpter 2, we further discuss how to enhance the perfor-

mance and how to utilize their results.

First, we propose a hardware-Trojan detection method based on multi-layer neural

networks for gate-level netlists through experimental evaluations. Our proposed method

classifies the nets in a netlist into a set of Trojan nets and that of normal nets. First,

1Technical contents in this chapter have been presented in the publications 〈1〉, 〈10〉, 〈12〉, 〈13〉, and

〈15〉.

59
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we extract several Trojan-net feature values from each net in a netlist. Here we use the

11 Trojan-net features proposed in Chapter 2. Next, we construct a set of training data

which includes the 11 Trojan-net feature values and the label which denotes whether the

net is a Trojan one or a normal one for each net. After that, we learn the set of training

data using multi-layer neural networks. Finally, we classify the unknown nets into a set

of Trojan ones and that of normal ones using the learned multi-layer neural networks.

Second, we propose a Trojan-invalidating circuit that prevents a hardware Trojan

circuit from working. The implementation evaluation on an FPGA board demonstrates

that the implemented Trojan-invalidating successfully disable a hardware Trojan circuit

inserted into a cryptographic circuit.

Third, we discuss on refinement of classification performance and invalidation of

the detected hardware Trojan circuit. Since existing machine-learning-based hardware-

Trojan detection methods take care of the features extracted from the nets in a netlist,

they does not consider the nearby nets from a net. Therefore, even if the nearby nets are

all Trojan nets, a machine learning algorithm may misclassify a Trojan net as a normal

net whose feature is like a normal net. In particular, the boundary nets between Trojan

nets and normal nets is likely to be misclassified. This method considers the boundary

net structures, and correct the misclassified results.

The contributions of this chapter are summarized as follows:

1. We propose an effective multi-layer neural networks for hardware-Trojan detection.

By experimentally optimizing the structure of multi-layer neural networks, we can

obtain an average of 84.8% true positive rate and an average of 70.1% true negative

rate while we can obtain 100% true positive rate in some of the benchmarks, which

outperforms the existing methods in most of the cases.

2. We propose a Trojan-invalidating circuit that can be inserted at the nets based on

the results of a machine-learning-based hardware-Trojan detection method;

3. Based on a machine-learning-based hardware-Trojan detection results, we further

improve the results by considering the features of nearby nets.

3.2 Hardware Trojan Classification Utilizing Multi-Layer
Neural Networks

3.2.1 Related Works
In this section, we show the related works of machine-learning-based hardware-Trojan

detection and clarify their problems.
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Machine-Learning-Based Hardware-Trojan Detection Method Using Support Vec-
tor Machines

In [4], a machine-learning-based hardware-Trojan detection method using support vector

machines (SVMs) is proposed. The five Trojan-net features regarding the primary

input/output and fan-in counts are used for hardware-Trojan detection, and they are

firstly extracted from nets in a netlist based on the several known hardware-Trojan

infected netlists. Then the five feature values are considered to be a five-dimensional

vector and it is learned by an SVM classifier. Finally, an unknown netlist is classified

into a Trojan one and a normal one.

This method has obtained at most 100% true positive rate (TPR), which is the ratio

of detected Trojan nets divided by the number of true Trojan nets. However, the true

negative rate (TNR), which is the ratio of detected normal nets divided by the number of

true normal nets, is not always high enough in this method.

Trojan-Feature Extraction for Machine-Learning-Based Hardware-Trojan Detec-
tion

In [5], the 51 Trojan-net features are firstly extracted from known netlists published at

Trust-HUB [1]. After that, the 11 effective Trojan-net features are extracted for hardware-

Trojan detection using random forest, which is one of the supervised machine-learning

algorithms. Table 3.1 shows the extracted 11 Trojan-net features in [5]. Figure 3.1 depicts

the examples of Trojan-net features for a small circuit. Now we show several examples

for the Trojan-net feature values using the small circuit in Figure 3.1. First, we extract the

feature #1 ‘fan_in_4’ in Table 3.1 which shows the number of logic-gate fanins 4-level

away from the net n. In Figure 3.1, the number of logic-gate fanins 4-level away from

the net n, which is shown in the dotted rectangle, becomes 6, and therefore we obtain

fan_in_4 = 6. Similarly, we can obtain the feature #2 ‘fan_in_5’. As a next example, we

extract the feature #8 ‘in_nearest_pin’ in Table 3.1 which shows the minimum level to

the primary input from the net n. In Figure 3.1, there are two primary inputs “Primary

input A” and “Primary input B” in the input side of the net n. “Primary input B” is the

nearest from the net n and this is 2-level away from the net n, and therefore we obtain

in_nearest_pin = 2. We extract the 11 Trojan-net feature values in Table 3.1 from the

structure of nets around each net n in the same way as above. See [5] in detail.

This method has obtained 100% TPR in several benchmarks and their TNRs are quite

good in most benchmarks. However, the average TPR value becomes smaller than that

obtained by [4].
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Table 3.1: The best set of 11 Trojan features and their descriptions extracted in [5].

# Feature Description

1 fan_in_4 The number of logic-gate fanins 4-level away from the net n.

2 fan_in_5 The number of logic-gate fanins 5-level away from the net n.

3 in_flipflop_4 The number of flip-flops up to 4-level away from the input side of the net n.

4 out_flipflop_3 The number of flip-flops up to 3-level away from the output side of the net n.

5 out_flipflop_4 The number of flip-flops up to 4-level away from the output side of the net n.

6 in_loop_4 The number of up to 4-level loops from the input side of the net n.

7 out_loop_5 The number of up to 5-level loops from the output side of the net n.

8 in_nearest_pin The minimum level to the primary input from the net n.

9 out_nearest_pout The minimum level to the primary output from the net n.

10 out_nearest_flipflop The minimum level to any flip-flop from the output side of the net n.

11 out_nearest_multiplexer The minimum level to any multiplexer from the output side of the net n.
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Figure 3.1: The examples of Trojan-net features.

Points of Our Proposed Method

In machine learning, there is a trade-off between TPR and TNR and how to maximize

both of TPR and TNR is a serious concern. In order to realize the goal 2) discussed in

Section 3.1, we focus on the following points:

1. Multi-layer neural networks: A multi-layer neural network is one of the supervised

machine-learning algorithms, which is very effectively used in image recognition [39] and

natural language processing [40]. We utilize multi-layer neural networks for hardware-

Trojan detection;

2. 11 Trojan-net features: In [5], the 11 Trojan-net features are proposed which are

expected to effectively classify the nets into Trojan ones and normal ones using machine

learning. We expect that we can effectively use them in multi-layer neural networks;

3. Evaluation criteria: We consider both the TPR and TNR as the criteria to evaluate

classification results.
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3.2.2 Algorithm for Hardware Trojan Classification Utilizing Multi-
Layer Neural Networks

We propose a hardware-Trojan detection method using multi-layer neural networks in

this section. In this chapter, “multi-layer neural networks” refer to the neural networks

which have one or more middle layers.

The proposed method works as follows:

In the learning phase, (Step L1) we firstly extract the 11 Trojan-net feature values

in Table 3.1 from every net in a known netlist. Note that we also know whether each

net is Trojan or not in the learning phase; (Step L2) After that, we learn the extracted

11 features using multi-layer neural networks and construct a learned multi-layer neural

network.

In the classification phase, (Step C1) we firstly extract the 11 Trojan-net feature values

in Table 3.1 from every net in an unknown netlist; (Step C2) After that, we classify every

net into a Trojan net or a normal net using a learned multi-layer neural network.

In the proposed method, how to design a multi-layer neural network structure is a

major concern and then we propose it hereafter.

Structures of Neural Networks

For multi-layer neural networks, how to decide their parameters is a serious concern.

There are several parameters in multi-layer neural networks such as the number of middle

layers and the number of units in each layer. The classification results depend on the

structure of the networks and thus we have to decide these parameters carefully.

In this subsection, we propose the structure of 1) the input and output layer and 2)

the middle layers.

Structure of the input and output layer The number of units in the input layer and

that of the output layer are dependent on the structure of input data and the type of output,

respectively.

The number of units in the input layer is determined by the number of features in

input data. In this chapter, we use the 11 Trojan-net features and thus we use 11 units for

it. To learn or classify the input data, we input each feature to the corresponding unit in

the input layer.

The number of units in the output layer is one or two for the binary classification.

When we use one unit in the output layer, we set a threshold value to the output value.

For the binary classification, the output value ranges 0.0 to 1.0 and 0.5 is frequently used

as a threshold value [33]. For example, we set the threshold value to 0.5, and then if

the output value is larger than 0.5, we classify the net to be a Trojan net. Otherwise
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we classify the net to be a normal net. When we use two units in the output layer, we

compare the output values of the two units. One unit corresponds to the normal net,

and the other corresponds to the Trojan net. When the output value of the first unit is

larger than that of the second one, we identify the net to be a normal net. Otherwise, we

identify the net to be a Trojan net.

When we use one output unit, we can obtain only one output value and how to set its

threshold value becomes another serious concern. On the other hand, when we use two

output units, we require no threshold value but we just compare the two output values

relatively. Based on this discussion, we use two output units in our proposed method.

In summary, Figure 3.2 shows the basic structure of the proposed neural networks.

The input layer has 11 units, and the output layer has two units. The structure of middle

layers is experimentally determined as described later.

The number of middle layers and the number of units Generally, it is known that

the number of middle layers and the number of units in each middle layer affect the

classification results. It is also known that we can flexibly learn datasets when the

number of middle layers and the number of units in each middle layer are large. On the

other hand, a vanishing gradient problem [45] may occur when we use a large number of

middle layers. However, the structure of middle layers cannot be determined theoretically

[46].

In this chapter, we try the various numbers of middle layers and the various numbers

of units in each layer experimentally as follows and optimize the structure of middle

layers based on these results (the optimization results are shown in Section 3.2.3):

1. We set the number of middle layers to one and we set the number of the units in

the layer to 10, 12, 15, 20, 50, 100, 200, or 500.

2. We set the number of middle layers to two. For the first layer, we set the number

of the units to 20, 50, 100, or 200. For the second layer, we set the number of the

units to 10, 12, 15, 20, 50, 100, 200, or 500.

3. We set the number of middle layers to three. For the first and third layer, we set the

number of the units to 50, 100, or 200. For the second layer, we set the number of

the units to 20, 50, 100, or 200.

4. We set the number of middle layers to four. For each layer, we set the number of

the units to 50, 100, or 200.
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Figure 3.2: The structure of multi-layer neural networks.

Weighting using a loss function The number of Trojan nets is much smaller than that

of normal nets as summarized in Table 3.2. As shown in Table 3.2, RS232-T1000 has

283 normal nets and 36 Trojan nets. Generally, a training dataset should be balanced for

machine learning.

In our proposed method, we apply weighting to the loss function used in neural

networks. We apply a weighted-cross-entropy loss function to neural networks [47].

According to [47], the weighted-cross-entropy loss function E is expressed as E =

−
2∑

k=1

wk · tk ln yk , where tk is the output value of k-th unit in neural networks, yk is the

answer value, and wk is the weight value.

In our proposed method, we set the weighting vector w = (w1, w2) to the ratio of

the number of normal nets to the number of the Trojan nets. For example, the ratio for

RS232-T1000 is 1 : 7.86 and thus we set (w1, w2) to (1,7.86).

Evaluation on the Structure of Multi-Layer Neural Networks

In this subsection, we discuss how to evaluate the classification results of neural networks.

For the evaluations, we use the 17 Trust-HUB benchmarks [1] listed in Table 3.2.

In the benchmarks, Trojan nets and normal nets are clearly stated and then we know

which nets are Trojan ones and which nets are normal ones beforehand. We apply a

leave-one-out cross-validation [36] to the benchmarks in the experiments, where each

one of the netlists is considered to be a test set (unknown data set) and the other 16 netlists

are considered to be training sets (known data set), and obtain classification results.

In the machine learning, there are several evaluation indices. In case of binary

classification, there are four values to evaluate the classification results: the true negative

value (TN); the false positive value (FP); the true positive value (TP); and the false

negative value (FN). TN shows the number of normal nets identified to be normal nets;
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Table 3.2: The Trust-HUB benchmarks [1] used in the experiments.

Data name # of normal nets # of Trojan nets

RS232-T1000 283 36

RS232-T1100 284 36

RS232-T1200 289 34

RS232-T1300 287 29

RS232-T1400 273 45

RS232-T1500 283 39

RS232-T1600 292 29

s15850-T100 2,429 27

s35932-T100 6,407 15

s35932-T200 6,405 12

s35932-T300 6,405 37

s38417-T100 5,798 12

s38417-T200 5,798 15

s38417-T300 5,801 44

s38584-T100 7,343 19

s38584-T200 7,373 97

s38584-T300 7,614 874

FP shows the number of normal nets identified to be Trojan nets mistakenly; TP shows

the number of Trojan nets identified to be Trojan nets; FN shows the number of Trojan

nets identified to be normal nets mistakenly. Based on the values of TN, FP, TP and FN,

we can define the true positive rate (TPR) and the true negative rate (TNR), where TPR

is defined by TP/(TP+FN) and TNR is defined by TN/(TN+FP).

In order to realize the goal 2) in Section 3.1, maximizing TPR must be the first

priority. However, only maximizing TPR may be insufficient. For example, if we

identify all the nets in a netlist to be Trojan nets, the TPR becomes 100%, although they

definitely include many normal nets. Thus we also focus on maximizing TNR next.

3.2.3 Experimental Results
In this section, we show the optimized neural network structure through experimental

evaluations and its comparison to existing methods. In the experiments, we use 17 Trust-

hub [1] benchmarks. Table 3.2 shows the benchmarks used as training data and test data

in the experiments. We applied leave-one-out cross-validation where one benchmark is

used as a test data and the other benchmarks are used as training data to the experiments.
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We use an Intel Xeon E5-2695 computer environment with a 256GB memory. The

program is written in Python3 using Chainer [48] as a library for machine learning.

Classification Results

Experiment 1: One middle layer Table 3.3 shows the results when we used one-

middle-layer neural networks. In Table 3.3, we show the average TPR and TNR values

where the numbers of units listed in the left column are applied to the neural network.

The underlined parts are the maximum TPR and TNR values.

We obtained the maximum TPR when we applied 20 units, and the maximum TNR

when we applied 50 units. When the number of units in the first middle layer is 20, 200,

and 500, TPR becomes more than 86%. When the number of units in the first middle

layer is 50, 100, and 200, TNR becomes more than 60%. When the number of units is

500, neither the TPR nor the TNR is maximized. Just increasing the number of units

does not always lead to improving the classification results.

Experiment 2: Two middle layers Table 3.4 shows the results when we used two-

middle-layer neural networks. We set the number of the units in the second middle layer

to 10, 12, 15, 20, 50, 100, 200, and 500. In Table 3.4, we show the average TPR and

TNR values where the numbers of units listed in the columns of “# of units” are applied

to the neural network. The underlined parts are the maximum TPR and TNR values.

In this experiment, we obtained the maximum average TNR when we used the 200-

50 neural network, where we use 200 units for the first middle layer and 50 units for

the second middle layer. From the viewpoint of average TPRs, they are decreased

compared to single-middle-layer neural networks. However, the neural networks whose

first middle layer has 200 units obtained 63.1% of average TNR and this result is better

than the average TNR of single-middle-layer neural networks.

Experiment 3: Three middle layers Table 3.5 shows the results when we used three-

middle-layer neural networks. We set the number of the units in the first middle layer

to 50, 100, and 200, the number of the units in the second one to 20, 50, 100, and 200,

and the number of the third one to 50, 100, and 200. In Table 3.5, we show the average

TPR and TNR values where the numbers of units listed in the columns of “# of units”

are applied to the neural network. The underlined parts are the maximum TPR and TNR

values.

In this experiment, we obtained the maximum average TPR when we used the 100-20-

50 neural network where we use 100, 20, and 50 units in the first, second, and third middle

layer, respectively, and the maximum average TNR when we used the 200-200-100 neural

network. The maximum average TPR value becomes 86.2%, where its average TNR
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Table 3.3: Experimental results (One middle layer).

# of units Average values # of units Average values

1st layer TPR TNR 1st layer TPR TNR

10 85.9% 59.7% 50 84.2% 62.9%

12 85.7% 58.5% 100 83.4% 60.1%

15 82.7% 59.5% 200 86.8% 62.3%

20 87.4% 59.4% 500 86.7% 53.3%

Table 3.4: Experimental results (Two middle layers).

# of units Average values # of units Average values

1st layer 2nd layer TPR TNR 1st layer 2nd layer TPR TNR

20

10 87.4% 58.4%

100

10 79.1% 61.4%

12 83.5% 61.2% 12 85.8% 57.3%

15 84.7% 56.4% 15 82.1% 61.4%

20 88.0% 59.6% 20 87.7% 58.6%

50 83.7% 59.9% 50 81.9% 61.1%

100 83.9% 57.5% 100 83.7% 59.8%

200 82.5% 65.7% 200 79.1% 66.6%

500 77.9% 59.9% 500 85.4% 60.6%

50

10 84.1% 59.5%

200

10 85.7% 61.8%

12 83.3% 57.2% 12 82.6% 58.6%

15 85.0% 62.0% 15 77.1% 62.4%

20 83.9% 59.9% 20 79.3% 66.7%

50 86.0% 60.2% 50 84.7% 66.8%

100 88.9% 59.2% 100 84.8% 60.2%

200 84.2% 57.6% 200 78.2% 62.3%

500 82.2% 58.6% 500 83.6% 66.0%

value becomes 60.4% but this value seems to be small. As in the prior hardware-Trojan

classification method using single-middle-layer neural networks [49], the average TNR

becomes 68.7%. Then, from the viewpoint of average TNR in Table 3.5, more than 70%

of average TNR value is expected. Consequently, the 200-100-50 neural network seems

to be the most effective structure for hardware-Trojan classification, where average TPR

becomes 84.8% and TNR becomes 70.1% (the wave-underlined ones in Table 3.5).
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Experiment 4: Four middle layers Table 3.6 shows the results when we used four-

middle-layer neural networks. We set the number of the units in each middle layer to

50, 100, and 200. In Table 3.6, we show the average TPR and TNR values where the

numbers of units listed in the columns of “# of units” are applied to the neural network.

The underlined parts are the maximum TPR and TNR values.

In this experiment, we obtained the maximum average TPR when we used the 100-

200-200-200 neural network where we use 100, 200, 200, and 200 units in the first,

second, third, and fourth middle layer, respectively, and the maximum average TNR

when we used the 200-50-100-200 neural network.



3.2. HT CLASSIFICATION UTILIZING MULTI-LAYER NEURAL NETWORKS 71

T
ab

le
3
.6

:
E

x
p
er

im
en

ta
l
re

su
lt
s

(F
o
u
r

m
id

d
le

la
y
er

s)
.

#
o
f

u
n
it
s

in
1
st

la
y
er

=
5
0

#
o
f

u
n
it
s

in
1
st

la
y
er

=
1
0
0

#
o
f

u
n
it
s

in
1
st

la
y
er

=
2
0
0

#
o
f

u
n
it
s

A
v
er

ag
e

v
al

u
es

#
o
f

u
n
it
s

A
v
er

ag
e

v
al

u
es

#
o
f

u
n
it
s

A
v
er

ag
e

v
al

u
es

2
n
d

la
y
er

3
rd

la
y
er

4
th

la
y
er

T
P
R

T
N

R
2
n
d

la
y
er

3
rd

la
y
er

4
th

la
y
er

T
P
R

T
N

R
2
n
d

la
y
er

3
rd

la
y
er

4
th

la
y
er

T
P
R

T
N

R

5
0

5
0

5
0

7
7
.9

%
6
6
.3

%

5
0

5
0

5
0

8
4
.6

%
6
3
.8

%

5
0

5
0

5
0

7
8
.6

%
6
8
.0

%

1
0
0

7
4
.3

%
6
8
.1

%
1
0
0

8
1
.2

%
6
2
.3

%
1
0
0

8
0
.9

%
7
1
.8

%

2
0
0

8
1
.2

%
5
9
.2

%
2
0
0

7
6
.2

%
6
1
.9

%
2
0
0

7
5
.7

%
7
1
.6

%

1
0
0

5
0

7
7
.9

%
6
1
.0

%

1
0
0

5
0

8
2
.7

%
6
6
.4

%

1
0
0

5
0

8
3
.6

%
7
1
.4

%

1
0
0

8
4
.3

%
6
1
.3

%
1
0
0

8
3
.2

%
6
4
.6

%
1
0
0

8
2
.0

%
6
9
.4

%

2
0
0

7
8
.2

%
5
8
.7

%
2
0
0

8
1
.2

%
6
1
.9

%
2
0
0

7
5
.5

%
7
9
.2

%

2
0
0

5
0

7
8
.0

%
5
9
.3

%

2
0
0

5
0

8
2
.2

%
6
1
.2

%

2
0
0

5
0

8
2
.9

%
6
2
.6

%

1
0
0

8
1
.4

%
6
5
.5

%
1
0
0

7
3
.3

%
7
4
.2

%
1
0
0

7
7
.0

%
6
6
.4

%

2
0
0

8
0
.4

%
6
4
.1

%
2
0
0

8
3
.7

%
6
4
.2

%
2
0
0

8
1
.4

%
6
5
.5

%

1
0
0

5
0

5
0

7
6
.6

%
6
5
.5

%

1
0
0

5
0

5
0

8
5
.4

%
6
4
.7

%

1
0
0

5
0

5
0

6
9
.2

%
7
0
.6

%

1
0
0

7
6
.4

%
6
0
.5

%
1
0
0

8
2
.2

%
6
4
.0

%
1
0
0

8
1
.5

%
6
6
.7

%

2
0
0

7
6
.5

%
6
3
.3

%
2
0
0

8
1
.7

%
6
9
.4

%
2
0
0

8
3
.5

%
6
6
.9

%

1
0
0

5
0

7
6
.6

%
6
0
.6

%

1
0
0

5
0

7
8
.4

%
6
5
.0

%

1
0
0

5
0

7
1
.4

%
6
8
.3

%

1
0
0

8
2
.6

%
6
8
.1

%
1
0
0

8
0
.6

%
6
5
.1

%
1
0
0

7
6
.0

%
7
1
.9

%

2
0
0

8
1
.3

%
5
4
.6

%
2
0
0

7
6
.7

%
6
4
.1

%
2
0
0

7
1
.9

%
6
8
.7

%

2
0
0

5
0

7
7
.0

%
6
4
.9

%

2
0
0

5
0

8
0
.1

%
6
7
.8

%

2
0
0

5
0

7
6
.2

%
6
5
.8

%

1
0
0

7
5
.4

%
6
2
.9

%
1
0
0

8
0
.9

%
6
3
.1

%
1
0
0

7
4
.1

%
7
2
.0

%

2
0
0

8
0
.0

%
6
2
.9

%
2
0
0

8
3
.7

%
6
4
.8

%
2
0
0

7
4
.9

%
7
9
.2

%

2
0
0

5
0

5
0

7
6
.1

%
6
5
.1

%

2
0
0

5
0

5
0

7
9
.9

%
5
4
.1

%

2
0
0

5
0

5
0

7
9
.0

%
7
7
.1

%

1
0
0

7
5
.0

%
7
3
.2

%
1
0
0

8
2
.0

%
6
0
.1

%
1
0
0

8
1
.3

%
7
8
.5

%

2
0
0

8
4
.4

%
5
7
.3

%
2
0
0

8
4
.0

%
6
3
.7

%
2
0
0

8
1
.8

%
6
3
.0

%

1
0
0

5
0

8
1
.3

%
6
8
.0

%

1
0
0

5
0

8
1
.0

%
6
8
.1

%

1
0
0

5
0

7
3
.8

%
7
1
.9

%

1
0
0

7
7
.2

%
7
4
.6

%
1
0
0

7
9
.6

%
6
8
.0

%
1
0
0

6
6
.7

%
7
8
.5

%

2
0
0

7
9
.5

%
6
4
.1

%
2
0
0

7
8
.0

%
6
0
.0

%
2
0
0

7
8
.4

%
7
2
.7

%

2
0
0

5
0

7
4
.4

%
7
1
.4

%

2
0
0

5
0

6
9
.5

%
7
6
.2

%

2
0
0

5
0

7
1
.1

%
7
8
.5

%

1
0
0

8
2
.9

%
6
4
.7

%
1
0
0

7
9
.5

%
6
6
.4

%
1
0
0

7
4
.1

%
7
5
.6

%

2
0
0

7
9
.6

%
6
7
.4

%
2
0
0

8
6
.1

%
6
7
.3

%
2
0
0

8
4
.4

%
7
1
.3

%



72 CHAPTER 3. APPLICATION OF HT DETECTION UTILIZING ML

Table 3.7: Total average TPR and TNR values of the experimental results.

# of middle Total average values

layers TPR TNR

1 85.7% 59.6%

2 83.6% 61.2%

3 80.3% 64.3%

4 78.9% 66.8%

Overview of the experimental results Table 3.7 shows the total average TPR and TNR

values for Experiments 1–4 above. As shown in Table 3.7, the one-middle-layer neural

networks obtained the largest total average TPR value in the experiments, where the

total average TNR value is the smallest. On the other hand, the four-middle-layer neural

networks obtained the largest total average TNR value in the experiments. These results

suggest that the neural networks with many layers and units do not always improve the

classification results in terms of TPR. Considering the balance between TPR and TNR,

three-or-less-layer neural networks are appropriate for hardware-Trojan classification.

In all the average TPR and TNR values obtained in the experiments, their third

quartiles become 83.5% and 68.0%, respectively. Only the three neural networks, the

200-100-50, the 200-50-100-50, and the 200-200-200-200 neural networks, obtained

larger than 83.5% average TPR value and 68.0% average TNR value. Among the three

neural networks, the 200-100-50 neural network obtained the largest average TPR value,

and therefore, as mentioned in Experiment 3, the 200-100-50 neural network seems to

be the most effective structure for hardware-Trojan classification.

Comparison to Existing Methods

We compare the results to existing methods. For the comparison, we use the 200-

100-50 neural network, which is one of the best results in the experiments above. In

[4], a machine-learning-based hardware-Trojan classification method using an SVM is

proposed. In [2], a clustering-based hardware-Trojan classification method using signal

correlations is proposed, which is one of the most state-of-the-art methods proposed

recently. We have compared our experimental results to these existing methods from the

viewpoints of TPR and TNR.

Table 3.8 shows the comparison to [4] and Table 3.9 shows the comparison to [2].

From the viewpoint of average TPR, our method outperforms both of existing methods.

Though [4] is also one of the hardware-Trojan detection methods using supervised

machine learning, the average results using neural networks are quite good in terms of

TPR and TNR. In the comparison to [2], our results have a better TPR value in the two
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Table 3.8: Comparison to the existing method [4].

TPR TNR

Test data [4] Ours [4] Ours

RS232-T1000 53% 100% 31% 24%

RS232-T1100 58% 78% 27% 25%

RS232-T1200 80% 91% 26% 55%

RS232-T1300 89% 86% 26% 65%

RS232-T1400 83% 100% 22% 15%

RS232-T1500 83% 82% 24% 47%

RS232-T1600 89% 97% 26% 28%

s15850-T100 93% 81% 66% 96%

s35932-T100 93% 80% 60% 99%

s35932-T200 100% 67% 59% 88%

s35932-T300 27% 100% 58% 97%

s38417-T100 100% 83% 76% 98%

s38417-T200 73% 93% 76% 74%

s38417-T300 100% 100% 72% 94%

s38584-T100 100% 16% 62% 99%

s38584-T200 94% 91% 64% 93%

s38584-T300 89% 97% 66% 93%

Average 83% 85% 49% 70%

benchmarks out of four benchmarks outperform from and our average TPR value is better

than [2], though average TNR is not improved compared to [2].

Discussions on Experimental Results

The relationship between the number of middle layers and the results In this

chapter, we examined our method using one, two, three, and four middle layers for neural

networks. Since there is no limit for the number of middle layers, we can set more than

four middle layers for neural networks. However, four or more middle layers are not

suitable for the hardware-Trojan detection. As shown in Table 3.7, the average TPR

values tend to be decreased when the number of middle layers is increased. On the

other hand, the average TNR values are increased when the number of middle layers is

increased. Though increasing TNR values improves the accuracy of neural networks,

decreasing TPR too much is not appropriate for hardware-Trojan detection because we

have to avoid mistakenly identifying Trojan nets to be normal nets.
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Table 3.9: Comparison to the existing method [2].

TPR TNR

Test data [2] Ours [2] Ours

s15850-T100 61% 81% 99% 96%

s35932-T200 27% 67% 99% 88%

s38417-T100 100% 83% 99% 98%

s38584-T200 99% 91% 98% 93%

Average 72% 81% 99% 94%

Comparison results In Section 3.2.3, we compared our results to [2]. As shown in

Table 3.9, our method outperforms [2] in two benchmarks from the viewpoint of TPR and

our average TPR value is better than [2]. To realize the Goal 2 mentioned in Section 2.1,

maximizing TPR is the most important and we believe that it is meaningful to outperform

an existing method from the viewpoint of TPR.

Although our TPR values of two benchmarks are better than those of [2], our TPR

values of the other two benchmarks and the TNR values should be further improved.

This is an important future work.

3.3 Refinement of Classification Results Based on Bound-
ary Net Structures

3.3.1 Related Works
Based on Trojan features, several machine-learning-based hardware-Trojan detection

methods have been proposed [5, 50]. These methods can identify whether the net in a

netlist is Trojan net or normal net. In [50], the five Trojan features are extracted from

each net in a gate-level netlist. After that we learn the extracted features using a classifier

such as a support vector machine (SVM) or a neural network (NN). Then, we extract

the features from an unknown netlist and classify them using the learned classifier. The

experimental results show that the classifier identify most of the Trojan nets to be Trojan

nets correctly. In [5], the 51 Trojan features are extracted from each net in a gate-level

netlist at first. After that the eleven Trojan features are selected using a random forest

classifier with maximizing F-measures. Table 3.10 shows the results of the previous

works [5, 50] in terms of the average true positive rate (TPR)2, the average true negative

2Trojan nets identified to be Trojan nets correctly is called true positives. TP shows the number of

true positives. Normal nets identified to be Trojan nets mistakenly is called false negatives. FN shows
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Table 3.10: The classification results in the previous works using machine-learning-based

approaches

Approach Ave. TPR Ave. TNR Ave. Accuracy

SVM [50] 83% 49% 51%

NN [50] 81% 69% 70%

Random forest [5] 68% 99.7% 99%

rate (TNR), and the average accuracy. In Table 3.10, we use the leave-one-out evaluation

to obtain each of the results. In Table 3.10, the SVM-based approach in [50] obtained

the maximum average TPR in the three approaches listed. On the other hand, the average

TNR becomes less than 50% and the average accuracy becomes only 51% in the SVM-

based approach. In the NN-based approach, the average TPR is the second largest in

the three approaches, but the average TNR becomes 69%. The average accuracy of the

NN-based approach becomes 70%. Finally in the random-forest-based approach, though

the average TPR is low, the average TNR becomes almost 100% and the average accuracy

becomes 99%.

In hardware-Trojan detection, it is important to identify Trojan nets to be Trojan nets

correctly. We have to avoid identifying Trojan nets to be normal nets mistakenly (they

are called false negatives. FN shows the number of false negatives). Therefore, it is

important for us to minimize FN and maximize TPR at first, and secondly to maximize

TNR. Based on the priority discussed above, the SVM-based approach is the best for

hardware-Trojan detection in Table 3.10. However, it is impractical because the average

accuracy is only 51%, which means that about half of the nets are identified to be Trojan

nets or normal nets mistakenly. If we try to refine the classification results, we have

to re-investigate many nets identified to be Trojan nets because the set of Trojan nets

includes many truely normal nets. In order to increase the TPR and TNR, it is efficient

to re-investigate the results of the random-forest-based approach because the average

accuracy becomes 99%, which means that almost all of the nets are classified into a set

of Trojan nets and that of normal nets correctly. In this chapter, we focuses on the results

obtained from the random-forest-based approach proposed in [5], and try to refine the

classification results.

the number of false negatives. TN and FP are defined similarly. Based on the definitions above, the

true positive rate (TPR) is defined by TP/(TP + FN), and the true negative rate (TNR) is defined by

TN/(TN + FP).
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Table 3.11: The classification results using the random-forest-based hardware-Trojan

detection method in [5].

Benchmark TN FP FN TP TPR TNR Accuracy

RS232-T1000 280 3 0 36 100.0% 98.9% 99.1%

RS232-T1100 279 5 18 18 50.0% 98.2% 92.8%

RS232-T1200 289 0 4 30 88.2% 100.0% 98.8%

RS232-T1300 287 0 0 29 100.0% 100.0% 100.0%

RS232-T1400 273 0 1 44 97.8% 100.0% 99.7%

RS232-T1500 282 1 2 37 94.9% 99.6% 99.1%

RS232-T1600 289 3 2 27 93.1% 99.0% 98.4%

s15850-T100 2,418 1 6 21 77.8% 100.0% 99.7%

s35932-T100 6,407 0 4 11 73.3% 100.0% 99.9%

s35932-T200 6,405 0 11 1 8.3% 100.0% 99.8%

s35932-T300 6,404 1 7 30 81.1% 100.0% 99.9%

s38417-T100 5,798 0 8 4 33.3% 100.0% 99.9%

s38417-T200 5,798 0 8 7 46.7% 100.0% 99.9%

s38417-T300 5,801 0 11 33 75.0% 100.0% 99.8%

s38584-T100 7,341 2 18 1 5.3% 100.0% 99.7%

The hardware-Trojan detection based on the random forest classifier and its limi-
tation

Based on the discussion above, the random-forest-based approach is applicable for

hardware-Trojan detection. Table 3.11 demonstrates the classification results based

on the random-forest-based approach [5]. In Table 3.11, both of FP and FN in all of the

benchmarks are less than 20, and this number is much smaller than the number of normal

nets (TN + TP). Especially in RS232-T1300, since both FP and FN are 0, the classifier

completely classify all of the nets in the netlist into a set of normal nets and Trojan nets.

On the other hand, in RS232-T1200, several Trojan nets are mistakenly identified to be

normal nets while all of the normal nets are identified to be normal nets correctly.

As discussed above, we have to maximize TPR at first, and secondly we have to

maximize TNR as high as possible. In this chapter, we focus on RS232 series bench-

marks (RS232-T1000–RS322-T1600) to carefully investigate the netlists. To begin with,

we investigate RS232-T1100, RS232-T1200, RS232-T1400, RS232-T1500, and RS232-

T1600 benchmarks since their FNs are one or more. After that we investigate RS232-

T1000, RS232-T1100, RS232-T1500, and RS232-T1600 since their FPs are one or more.
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The limitation of feature-based machine-learning method

In the machine-learning-based hardware-Trojan detection methods such as [50, 5], the

learning procedure is shown as below:

1. We extract several Trojan feature values from each net in a given netlist, and we

make a Trojan feature vector for each net.

2. We give a label, which shows whether the net is a Trojan net or a normal net, to its

Trojan feature vector.

3. We learn the Trojan feature vectors and their labels using a machine learning

algorithm.

When we learn the Trojan feature vectors of nets, we do not know where the net is

placed or which nets are connected with. However, since Trojan nets are placed close

to each other in most cases, investigating the nearby nets around Trojan-identified nets

must be good hints to detect all the Trojan nets and thus increases TPR. In this chapter,

by considering the boundary nets of Trojan-identified nets, we increase the TPRs of the

machine-learning-based hardware-Trojan detection method.

3.3.2 Analysis of Mistakenly-Identified Nets
In this section, we analyze the classification results obtained in [5], and extract the features

of mistakenly-identified nets and their nearby nets. We have focused on the RS232 series

benchmarks which can be obtained in [1], listed in the top seven benchmarks of Table 3.11.

To begin with, we investigate the Trojan nets identified to be normal nets mistakenly (we

define the net as “FN net”). After that, we investigate the normal nets identified to be

Trojan nets mistakenly (we define the net as “FP net”).

The FN nets and their nearby nets

Table 3.12 shows the details of the 27 FN nets in [5], and the number of Trojan nets and

normal nets connected to/from up to 2-level away from the net. In Table 3.12, “Trojan

net” means the net identified to be Trojan net by the classifier, and “normal net” means

the net identified to be normal net by the classifier. As shown in Table 3.12, most of the

nets have no Trojan nets 2-level away to them. This means that their nets are placed near

the boundary between Trojan nets and normal nets.
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Figure 3.3: The FN nets obtained in RS232-T1100.

In order to simplify the analysis, we pick up the netlists whose FNs are the first and

second largest in Table 3.12: RS232-T1100 and RS232-T1200.

Figure 3.3 shows the FN nets in RS232-T1100. The hardware Trojan inserted into

RS232-T1100 has a three-logic-level combinational circuit. In the classification result,

the classifier could not identify the nets, which are around the boundary between Trojan

nets and normal nets, to be Trojan nets. However, their succeeding nets are identified to

be Trojan nets correctly. We can identify the FN nets to be Trojan nets correctly if we

investigate their succeeding nets.

Figure 3.4 shows the FN nets in RS232-T1200. As shown in Figure 3.4, all the FN

nets in RS232-T1200 are placed around the boundary between Trojan nets and normal

nets. The three FN nets are connected to the trigger circuit of the hardware-Trojan

circuit. The other one FN net is connected to a scan-input signal of the flip-flop in

the Trojan nets. The nets connected to/from the flip-flop, which is connected from

the net iRECEIVER_rec_datH, are identified to be Trojan nets except for the net iRE-
CEIVER_rec_datH, and thus we can guess that the net iRECEIVER_rec_datH is a Tro-

jan net. The NAND gate connected to the nets iXMIT_next_state_2_, iXMIT_state_1_,

iXMIT_state_0_ has a fan-out which is identified to be a Trojan net, and it has four

fan-ins, and therefore we can guess that the nets iXMIT_next_state_2_, iXMIT_state_1_,
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Figure 3.4: The FN nets obtained in RS232-T1200.

iXMIT_state_0_ are the trigger-condition signals for the hardware Trojan. These fea-

tures can be found in the net iRECEIVER_rec_datSyncH of RS232-T1400 and the net

iXMIT_bitCell_cntrH_1_ of RS232-T1500. The above discussion can be applied to other

FN nets in RS232-T1500 and RS232-T1600.

From the discussion above, the FN nets are placed around the boundary between

Trojan nets and normal nets.

The FP nets and their nearby nets

Table 3.13 shows the details of the 12 FP nets in [5], and the number of Trojan nets and

normal nets connected to/from up to 2-level away from the net. As shown in Table 3.13,

each FP nets is connected to several Trojan nets up to 2-level away to/from it.
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Figure 3.5: The FP nets obtained in RS232-T1600.

Now we focus on RS232-T1600. Figure 3.5 shows the FP nets in RS232-T1600. As

shown in Figure 3.5, all the three FP nets in RS232-T1600 are connected to the filp-flops

which are placed near the Trojan nets. The net iXMIT_state_1_ is used as a part of

Trojan nets, and thus the classifier identified the net in RS232-T1600 to be Trojan net

mistakenly.

3.3.3 Proposed Method and Experimental Results
The boundary net structures

Based on the classification results obtained from the method in [5], we add the following

procedures to the machine-learning-based hardware-Trojan detection:

1. Detect a trigger circuit
If the target normal net n is connected to a logic gate g which has at least one

Trojan net as a fan-in or fan-out, we identify the normal net n to be a Trojan net.

For example, in Figure 3.6, the net n will be identified to be a Trojan net even if n
is mistakenly identified to be a normal net by [5].

2. Detect a flip-flop near the Trojan net
If the target normal net n is connected to a flip-flop f , and the flip-flop is also

connected only to a logic gate g, which has four or more fan-ins and its fan-out

is a Trojan net, we identify the normal net n to be a Trojan net. For example, in

Figure 3.7, the net n will be identified to be a Trojan net even if n is mistakenly

identified to be a normal net by [5].

The experimental results

Table 3.14 shows the experimental results of our proposed method. The experimental

results demonstrate that four benchmarks obtained 100% TPRs. All of the accuracies
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Figure 3.6: An example of a trigger circuit.

Figure 3.7: An example of a circuit with a flip-flop.

become more than 93%. As discussed in Section 3.3.1, it is important to maximize

TPR in hardware-Trojan detection. In this sense, our method increases the TPR, which

definitely leads to a good result.

Table 3.15 shows the comparisons between our proposed method and [5]. Our

proposed method decrease FNs, and thus the average TPR is increased. These results

mean that our proposed method can effectively identify most of the Trojan nets to be

Trojan nets correctly. On the other hand, the average TNR is decreased, which means

that several benchmarks obtained more FPs in our method than [5]. The reasons why the

average TNR is decreased are shown below:

1. The normal nets between Trojan nets and normal nets are identified to be Trojan

nets.

2. In several benchmarks, several nets are used as trigger signals of the hardware

Trojan, while in the other benchmarks they are used as genuine normal nets. Then,

some nets are defined as Trojan nets in a netlist, while the same nets are defined

as normal nets in another netlist. This definition causes the confusion in the

classification results.

Though several normal nets are identified to be Trojan nets mistakenly, all of the FPs

are less than 12. If we carefully investigate the nets identified to be Trojan nets using

existing method such as [3] and [24], we can classify the nets more accurately without

taking much time. However, combing with other method is impractical. To solve the

problems is our future work.
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Table 3.14: The experimental results of our method.

Benchmark TN FP FN TP TPR TNR Accuracy

RS232-T1000 278 5 0 36 100.0% 98.2% 98.4%

RS232-T1100 275 9 11 25 69.4% 96.8% 93.8%

RS232-T1200 277 12 0 34 100.0% 95.8% 96.3%

RS232-T1300 286 1 0 29 100.0% 99.7% 99.7%

RS232-T1400 265 8 0 45 100.0% 97.1% 97.5%

RS232-T1500 276 7 1 38 97.4% 97.5% 97.5%

RS232-T1600 287 5 1 28 96.6% 98.3% 98.1%

Table 3.15: The comparison between our method and [5].

Method Ave. TPR Ave. TNR Ave. Accuracy

[5] 89.1% 99.4% 98.3%

Ours 94.8% 97.6% 97.3%

3.4 Trojan-Net Invalidation Based on Classification Re-
sults

3.4.1 Backgrounds
We have discussed on how to detect hardware Trojans at a gate-level netlist. However,

even if we can establish a machine-learning-based hardware-Trojan detection scheme,

some hardware Trojans may avoid the detection. Typically, detecting sequential-triggered

hardware Trojans where the trigger circuits contain sequential circuits is difficult because

the trigger condition is more complicated than combinational-triggered hardware Trojans

whose trigger are combinational circuits. In order to defeat hardware Trojans after the

design step, defeating hardware Trojans during normal operation is an important issue.

In addition to the problems above, reconfigurable devices such as FPGAs and

CPLDs (Complex Programmable Logic Devices) have been widely used in final pro-

ductions. These devices can be easily reconfigured after the hardware products are

released. In [51] and [52], the risks of hardware Trojans inserted into FPGA devices

have been reported. We have to take the Trojan-infected FPGA issues into account.

Hardware Trojans are often composed of two parts: a trigger part and a payload part.

The trigger part checks whether the trigger condition is met or not. The trigger condition

often uses the internal signals and/or the internal states of the chip. When the trigger

condition is met, the trigger signal becomes 1 and the signal propagates to the payload

part. The payload part is for the malfunction of the hardware Trojan. There are several

types of malfunctions such as leakage of internal information and disabling the entire
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chip. When the trigger signal of the trigger part becomes 1, the malfunction works.

In this subsection, we assume that the hardware Trojan has a trigger condition and the

malfunction works only when the trigger condition is met. Considering the features of

hardware Trojans, a net which holds the same value for a long time should be a Trojan

net.

Several on-time hardware-Trojan detection methods have also been proposed in recent

years. In [53], a hardware-Trojan detection method focusing on the supply voltage has

been proposed. When a hardware Trojan works, the distribution of the supply voltage in

the chip slightly change. By checking the change using on-chip voltage sensors which

compares the voltage distribution to that of a golden chip (the chip guaranteed to be

Trojan-free), this method successfully observed the activation of the hardware Trojan.

However, this method needs a golden chip though it is difficult to guarantee a chip to

be Trojan-free. In [54], an authentication method for suspicious Trojan nets in a circuit

has been proposed. This method monitors suspicious Trojan nets which are extracted by

existing hardware-Trojan detection method. When the suspicious Trojan net behaves like

a normal net, the net is authenticated and the signal will pass through the gate. When

the suspicious Trojan net behaves like a Trojan net, the net is not authenticated and the

signal will be blocked by the gate. This method is applied to an AES encryption module

and correctly blocks the Trojan nets.

Though on-chip hardware-Trojan detection is effective since it overcomes the difficul-

ties of the design-time detection, there are several problems in on-chip hardware-Trojan

detection.

In [54], an authentication circuit monitors a net in a chip, and authenticate the net if

the signal transition count is large enough. In this method, a chip has two modes: the

authentication mode and the normal mode. The authentication mode and the normal

mode work as follows:

1. To begin with, the authentication circuit monitors a suspicious Trojan net in the

authentication mode. If the signal of the net transits few times, the net will be

deactivated and its value will be fixed to 0.

2. After that, the chip works normally in the normal mode.

Figure 3.8 shows the signal transitions of the net Signal A and a clock signal. In

Figure 3.8, the transition count of Signal A becomes 4 before the 8th clock. When we

consider that the transition count of 4 out of 8 clock cycles is large enough, we regard

the net to be a normal net and authenticate it. Then, at the 8th clock, the authentication

circuit authenticates Signal A. Figure 3.9 shows the signal transitions of the net (Signal

B) and a clock signal. In Figure 3.9, the transition count of Signal B becomes 2, which is

too few to regard the net to be a normal net. Therefore, at the 8th clock, the authentication

circuit does not authenticate Signal B.
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Figure 3.8: The signal transition of the monitored net (normal net).

Figure 3.9: The signal transition of the monitored net (Trojan net).

In this subsection, we design a Trojan-invalidating circuit which includes an authen-

tication circuit based on [54].

3.4.2 Designs of Trojan-Infected Cryptographic Circuit and
Trojan-Invalidating Circuit

In this section, we design three parts of circuits: (i) the cryptographic part, (ii) the

hardware Trojan part, and (iii) the Trojan-invalidating part.

We apply the AES algorithm to the cryptographic circuit. Firstly, we design an AES

cryptographic circuit (i), which is called [a] in this subsection. Secondly, we design a

hardware Trojan circuit (ii) and insert it into [a], which is called [b]. Finally, we design
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Figure 3.10: The block diagram of the AES cryptographic circuit.

Table 3.16: Input/output ports of the AES cryptographic circuit.

Port name Direction Width Description

clk In 1 System clock.

rstn In 1 Reset signal. When the signal is 0, reset the internal state and registers.

vld In 1 When 1, the circuit starts to encrypt or decrypt data.

kvld In 1 When 1, the circuit obtain the cipher key to the internal register.

sel In 1 When 0, the circuit encrypts data. When 1, the circuit decrypts data.

busy Out 1 Output 1 while the circuit works.

krdy Out 1 Output 1 when the cipher key is set.

key In 128 128-bit cipher key.

text_in In 128 128-bit data (plain text for encryption, coded text for decryption).

text_out Out 128 128-bit output data (coded text for encryption, plain text for decryption).

a Trojan-invalidating circuit (iii) and insert it into [b], which is called [c].

We design the parts (i)–(iii) as the following subsections.

(i) The cryptographic part The AES is a symmetric block cipher algorithm. The

AES is standardized by the National Institute of Standards and Technology (NIST) and

it has been widely used recently. The length of a cryptographic key is 128, 192 or 256

bits. The length of encryption and decryption data block is 128 bits [55].

Figure 3.10 shows the block diagram of the AES cryptographic circuit. Table 3.16

shows the input/output ports of the AES cryptographic circuit. Input ports are ‘clk’,

‘rstn’, ‘vld’, ‘kvld’, ‘sel’, ‘key’, and ‘text_in’. The signal ‘clk’ is a system clock and

the signal ‘rstn’ is a reset signal. The signal ‘vld’ starts the process of encryption or

decryption. When it become 0, a plain text or a coded text is obtained from the port
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Figure 3.11: The block diagram of the Trojan-infected AES cryptographic circuit.

‘text_in’ and the encryption or decryption starts. The signal ‘kvld’ starts to obtain the

cipher key from the port ‘key’. The signal ‘sel’ selects encryption or decryption. The

port ‘key’ obtains the 128-bit cipher key. The port ‘text_in’ obtains the 128-bit data to

encrypt or decrypt. Output ports are ‘busy’, ‘krdy’, and ‘text_out’. The signal ‘busy’

becomes 1 while the circuit is processing. The signal ‘krdy’ becomes 1 when the cipher

key is set from ‘key’. The port ‘text_out’ outputs the result of encryption or decryption.

(ii) The hardware Trojan part In this subsection, we design a hardware Trojan which

leaks the cipher key set in the register of the AES cryptographic circuit. The designed

hardware Trojan is composed of two parts: the trigger part and the payload part. The

trigger part checks whether the trigger condition is satisfied. In this subsection, we set

the trigger condition as that the input data ‘text_it’ is equal to the specific data. The

payload part leaks the cipher key to the output port ‘text_out’ when the trigger condition

is satisfied. After we design the hardware Trojan part, we insert the part into the AES

cryptographic circuit and make a Trojan-infected AES cryptographic circuit.

Fig 3.11 shows the block diagram of the Trojan-infected AES cryptographic circuit.

The shaded area in Fig 3.11 is the hardware Trojan part.

(iii) The Trojan-invalidating part In this section, we design a Trojan-invalidating

circuit. The Trojan-invalidating circuit is composed of two parts: the authentication

circuit and the gating circuit. The authentication circuit monitors a suspicious Trojan net
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Figure 3.12: The block diagram of the Trojan-infected AES cryptographic circuit with a

Trojan-invalidating circuit.

which is extracted by the existing design-time hardware-Trojan detection method such

as [3] or [22]. In this subsection, we assume that the trigger signal in Figure 3.11 is

picked up as a suspicious Trojan net by an existing design-time hardware-Trojan detection

method. If the authentication circuit judges that the net should be Trojan net, the gating

circuit blocks the signal of the net.

After we design the Trojan-invalidating circuit, we insert the circuit into the Trojan-

infected AES cryptographic circuit. Figure 3.12 shows the whole circuit. The shaded

area in Figure 3.12 is the Trojan-invalidating circuit. The Trojan-invalidating circuit

works in the authentication mode at first (e.g. for the test in the production). After that,

it works in the normal mode. The authentication mode and the normal mode work as

follows:

• Authentication mode: The Trojan-inserted AES cryptographic circuit with the

Trojan-invalidating circuit runs for a long time. At first, the monitoring circuit

monitors the transition of a net, while the gating circuit does not work. If the

transition count becomes more than 1 in each 8 clock cycles, the authentication

circuit authorizes the net and the authentication signal becomes 1. If the transition

count becomes less than or equal to 1 in each 8 clock cycles, the authentication
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Figure 3.13: The overview of the PYNQ-Z1 board.

circuit considers the net as a Trojan net and the authentication signal becomes 0.

• Normal mode: The circuit works depending on the value of the authentication

signal. When the value of the authentication signal is 0, the net is blocked. When

not, the signal of the net propagates to the subsequent nets. If we can invalidate

the trigger signal of the hardware Trojan, we can invalidate the whole hardware

Trojan and we can run the chip normally.

3.4.3 Implementation and Evaluation
In this section, we implement the designs [a]–[c] described in Section 3.4.2 into an FPGA

device.

FPGA board and environments

We use a Xilinx PYNQ-Z1 board as an FPGA device. Figure 3.13 shows the overview

of the PYNQ-Z1 board. The PYNQ-Z1 board has a ZYNQ XC7Z020-1CLG400C SoC.

This SoC has two parts: the Processing System (PS) and the Programmable Logic (PL).

PS and PL are connected by a shared memory and bus lines, and we can exchange any

data between PS and PL. PS has an ARM Cortex-A9 processor. In this experiment,

Linux OS, Ubuntu 15.10 runs on PS. PL is an FPGA and we can program any logic

circuit.
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Figure 3.14: Experimental environments.

Table 3.17: FPGA implementation results.

Circuit # of LUTs # of FFs # of BRAMs WNS[ns]

[a] 2010 (3.78%) 2260 (2.12%) 12 (8.57%) 1.422

[b] 2058 (3.87%) 2259 (2.12%) 12 (8.57%) 1.363

[c] 2062 (3.88%) 2268 (2.13%) 12 (8.57%) 1.523

Figure 3.14 shows the experimental environment. We connect the PYNQ-Z1 board,

a development PC, and a host PC through the network. The bitstream to configure to the

PL is compiled on the development PC, and it is transferred from the development PC

to PL on the PYNQ-Z1 board through the network. The host PC control the PYNQ-Z1

board through ssh connection.

FPGA implementation results

We used the development PC with Xilinx Vivado 2016.1. We applied default settings

for the optimization options of the synthesis and the implementation. We utilized a

OpenCores [56] project for the AES cryptographic circuit design. The PL clock fre-

quency is set to 100MHz, which is the default setting of the PYNQ-Z1 board. Table 3.17

shows the number of LUTs, FFs, and BRAMs, and WNS (worst negative slack) for the

implemented designs. The numbers in parentheses are the resource usage rates.

In Table 3.17, [b] uses 48 more LUTs than [a]. A hardware Trojan circuit is inserted

into [b], and thus the increased LUTs are used in the hardware Trojan circuit. The ratio

of increased LUTs is 48/2010 � 2.4% and thus the designed hardware Trojan is small.
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[c] uses 4 more LUTs and 9 more FFs than [b]. A Trojan-invalidating circuit is inserted

in [c], and thus the increased LUTs and FFs are used for the Trojan-invalidating circuit.

Since this overhead is small, the Trojan-invalidating circuit is small compared to [a].

Experimental results

In this section, we demonstrate the experimental results using the implemented designs.

We control the circuit from the host PC. In this experiment, we give a cipher key to

the AES cryptographic circuit at first. After that, we give two plain text and encrypt

them using the given cipher key. Figure 3.15, 3.16, and 3.17 shows the results of the

experiments using the designs of [a], [b], and [c], respectively.

In Figure 3.15, the 32 characters in the first line are the cipher key in hexadecimal.

‘Test 1’ block shows the first encryption. ‘Plain text’ shows the plain text to encrypt,

and ‘Result’ shows the coded text using the cipher key. ‘Test 2’ block shows the second

encryption. ‘Plain text’ is different from ‘Test 1’ and thus the result is also different from

‘Test 1’. In Figure 3.15, the AES encryption is successfully done in both of ‘Test 1’ and

‘Test 2’.

In Figure 3.16, the result in ‘Test 2’ is different from that of Figure 3.15. Since [b] is

infected by the hardware Trojan, the result of ‘Test 2’ is changed by the hardware Trojan,

and therefore the cipher key is leaked.

In Figure 3.17, both the hardware Trojan and the Trojan-invalidating circuit work.

To begin with, the circuit works in the authentication mode and the Trojan invalidating

circuit monitors the behavior of the trigger net in the hardware Trojan. As a result,

the trigger net is successfully invalidated. After that, the circuit works in the normal

mode. As a result, the AES encryption successfully works and the result of ‘Test 2’

in Figure 3.17 is correct. Note that we assumed that the trigger net is picked up by an

existing design-time hardware-Trojan detection method such as [4] or [22].

3.5 Conclusion
In this chapter, we proposed three applications of machine-learning-based hardware

Trojan detection.

First, we propose a hardware-Trojan classification method using multi-layer neural

networks. The experimental results demonstrate that our proposed method outperforms

several existing methods.

Second, we propose a Trojan-invalidating circuit that prevents a hardware Trojan

circuit from activating. The implementation evaluation on an FPGA board demonstrate

that the implemented circuit successfully disable the hardware Trojan circuit.
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Third, we propose an approach to correct detection results by a machine-learning-

based hardware-Trojan detection method. The experimental results demonstrate that our

proposed method successfully correct mistakenly identified Trojan nets to be Trojan nets.

In Chapters 2 and 3, machine-learning-based hardware-Trojan detection methods and

their applications are proposed. By leveraging the proposed methods, we can effectively

detect hardware Trojans at gate-level netlists. Although the proposed methods still have

remaining problems in terms of TPR and TNR, these methods provide us with a great

meaningful clues from the viewpoint of the detection of hardware Trojans at the design

step.

In the future, we can further develop the extended-version of machine-learning-

based hardware-Trojan detection. Identifying the types of hardware Trojans by utilizing

multi-class classification and targeting obfuscated designs are our future works.
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Figure 3.15: Output results of [a].

Figure 3.16: Output results of [b].

Figure 3.17: Output results of [c].



Chapter 4

Malicious Behavior Detection Based on
Power Analysis1

4.1 Introduction
The more critical threats have been reported as the more high-functioning IoT devices

have been embedded into the heart of mission-critical devices connected to the Internet.

Since hardware/software vendors produce their IoT products easily and inexpensively,

they often outsource their designs to third-party vendors where malicious third-party

vendors can have a chance to insert software Trojans as well as "hardware Trojans" into

their IoT devices [10]. Here we focus on hardware-oriented security issues embedded

into IoT devices.

Chapters 2–4 focus on hardware Trojan detection at the design step. However,

hardware Trojans inserted at the manufacturing step have also threatened hardware

production. In this chapter, we focus on the threats after the design step.

Monitoring completely a large amount of main-channel data from/to a large amount

of IoT devices in a "cloud level" is impractical. In contrast, edge-level monitoring is

the idea to monitor the individual IoT device, or edge device. Once this method is

established, almost all the malicious behaviors in IoT devices can be detected locally,

leading to reduce the burden to monitor the remaining main-channel data.

Since every IoT device has its unique embedded micro-controllers, operating system,

and embedded software and hardware, it is very difficult to establish the general edge

monitoring method. This could be solved simply by not directly monitoring the main-

channel communications but effectively utilizing side-channel signals, such as voltages,

currents, and power signals of the target IoT device.

In [57], a side-channel-based hardware-Trojan detection method has been proposed.

1Technical contents in this chapter have been presented in the publications 〈7〉 and 〈11〉.

95
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Its detection method effectively utilizes side-channel information in the experiment,

but this method requires the ‘Golden’ circuit where no hardware Trojan is inserted.

Therefore, in this chapter, we learn the normal behavior of the target device based on

side-channel signals and detect abnormal behavior. In [58], based on the assumption that

a malicious function is rarely triggered, power waveform in a normal process is learned

beforehand and the abnormal behavior is detected. If we can extend this approach

and empirically demonstrate its effectiveness utilizing more high-functioning micro-

controllers, this approach can be applied to a wide range of IoT devices to detect their

abnormal behaviors

In this chapter, we propose an anomaly behavior detection method in a low-cost

micro-controller by effectively utilizing an outlier detection algorithm based on accurate

power analysis. We learn the normal behaviors as well as several abnormal behaviors of

a target IoT device based on the abnormal scenarios prepared beforehand. Based on the

learned classifier, we can effectively distinguish between normal and abnormal behaviors

in micro-controllers.

The contributions of this chapter are summarized as follows:

1. We propose an anomaly behavior detection method for low-cost micro-controllers

utilizing accurate power analysis based on an outlier detection method. Our

proposed method does not require Golden model or detailed preliminary analysis.

2. We empirically evaluate the proposed method and successfully detect the abnormal

behaviors inserted into micro-controllers.

4.2 Related Works
This section introduces several existing works on hardware-Trojan detection based on

side-chanenel analysis, and clarify the problems of them.

Hardware devices contain many parts, and especially ASIC, FPGA, and microcon-

troller handle complicated processes. ASICs, FPGAs, and microcontrollers are attractive

targets for malicious vendors to insert malfunctions because circuits are packed in pack-

ages where attackers can hide malicious circuits. For ASICs and FPGAs, how to deal

with the threat is widely discussed by researchers. The malfunctions inserted into ASICs

and/or FPGAs are called ‘hardware Trojan’ and their detection methods have been pro-

posed in recent years. An ASIC has a circuit for a specific application, and an FPGA has

a programmable circuit which can be configured after manufacturing. Both an ASIC and

an FPGA have a common point that they have a physical circuit for a specific application.

A path-delay based method [59] for these ASIC devices and a feature-based method [22]

for the hardware design have been proposed, and these studies demonstrate good re-

sults. On the other hand, malfunction detection for microcontrollers are not discussed
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Table 4.1: Flexibility and performance of ASIC, FPGA, and Microcontroller.

Platform Flexibility Performance

ASIC Poor Excellent

FPGA Good Good

Microcontroller Excellent Poor

enough as far as we know. They are widely used in small systems like the controller of

a game console and the touch pad of a laptop computer, and therefore this issue must be

considered. As shown in Table 4.1, microcontrollers have more flexibility than ASICs

and FPGAs. Unlike ASICs and FPGAs, microcontrollers interpret binary commands in

program memories which do not use specific circuits. Thus the existing hardware-Trojan

detection methods for ASICs and FPGAs cannot be applied to microcontrollers. The

programs in microcontrollers are written in general programming languages such as

C and C++ languages, but expert knowledges are required to implement programs on

microcontrollers. Since typical small systems have no operating systems, programmers

required to directly access memories and peripherals. Because of these points, anti-virus

softwares cannot be applied to the programs on microcontrollers. Detecting malfunc-

tions inserted into microcontrollers requires a different approach from hardware-Trojan

detection methods and anti-virus softwares.

Several methods for detecting malicious behaviors in integrated circuits (ICs) uti-

lizing power analysis have recently been proposed. For example, [57] and [60] are the

malicious behavior detection methods based on power analysis. According to them,

these methods have successfully detected malicious behaviors in field-programmable

gate arrays (FPGAs). However, the key idea of these methods is to compare a device

under test (DUT) to its Golden model and analyze difference between them. In order to

effectively employ these methods, how to prepare a Golden model is a critical problem.

Considering the practical supply chain, preparing a Golden model is difficult because we

have no methods to check whether an IC is Golden or not.

Other approaches targeting a micro-controller such as in [61] and [62] have also been

proposed. These approaches analyze the relationship between power consumption and

instruction sets. Applying these approaches to a micro-controller, we can predict what

instruction is executed there. Based on the analysis, we can detect whether the behavior

is malicious or not. However, these methods need to preliminarily analyze the instruction

sets of the target device in detail. Since the number of IoT devices is rapidly increasing,

we have no time for the detailed preliminary analysis.

In order to develop a malicious behavior detection method, the following two points

are required: to use no Golden model, and not to require preliminary analysis. Therefore,

we develop a malicious function detection method based on unsupervised machine
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learning utilizing accurate power analysis.

In this chapter, we try to detect the existence of malfunctions for microcontrollers

using power analysis. Power analysis has been utilized for hardware-Trojan detection [57],

however, this method requires the golden circuit which is guaranteed to be Trojan-free.

Here we focus on a tiny IoT system like a sensor logger. Such a tiny IoT system is required

to save power because it is driven by a battery. The tiny system does not always work,

but it intermittently works and sleeps. When the system works normally (active mode),

it consumes several mW power. When the system sleeps (sleep mode), it consumes little

power (approximately several μW). Our proposed method distinguishes the active mode

and the sleep mode using power analysis. Calculating the total power consumption and

the total time of the active mode, we utilize unsupervised machine learning and identify

whether a malfunction expresses or not.

Several side-channel-based methods such as [61] and [63] have also been proposed

very recently, but they are too specific to the target micro-controllers. Moreover, our goal

is not to disassemble the executing code but to detect abnormal behavior of the target

micro-controller utilizing side-channel signals. Therefore, in this chapter, we learn the

normal behavior of the target device based on side-channel signals and detect abnormal

behavior.

4.3 Threat Model
This section elaborates the threat model of micro-controllers and the characteristics of

them in terms of operation modes.

4.3.1 Malicious Function Inserted into a Micro-Controller
Since a micro-controller runs an application on its central processing unit (CPU), the

application can be configured to the micro-controller by using a computer through wired

or wireless communication connection. In addition, recent IoT devices utilizing micro-

controllers have been connected to the Internet and they automatically check the update

by themselves. When they find the available update application, they download and

apply it themselves. Though the automatic update is useful, there is a risk that attackers

may replace genuine binary codes with malicious ones abusing this automatic updating

system. The malicious function inserted into the target micro-controller will leak its

internal information such as a secret key or stored data, or disable its function. Detecting

malicious functions inserted into micro-controllers must require a different approach

from hardware-Trojan detection methods and anti-virus softwares.

In order to conceal the malicious function, attackers often set a trigger condition to



4.3. THREAT MODEL 99

Time

Po
w

er
z

z
z z

z
z

Sleep mode Active mode Sleep mode

Figure 4.1: The model of consumed power in the sleep mode and the active mode.
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Figure 4.2: The operation modes in our threat model.

activate the malicious function. In this chapter, we focus on the triggered-type malicious

functions, and we learn the behaviors including several abnormal behaviors of an IoT

device based on the abnormal scenarios prepared beforehand.

4.3.2 Operation Modes of Micro-Controllers
In this chapter, we assume that a tiny IoT system utilizes a low-cost micro-controller.

Such a low-cost micro-controller often has a power-saving function because a tiny IoT

system is typically required to save power to run for a long time with a small-capacity
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battery. In this section, we call the power-saving mode as ‘sleep mode.’ In contrast, we

call the normal mode as ‘active mode.’ Figure 4.1 depicts the consumed power of the

microcontroller. The consumed power slightly changes every moment, but the difference

between the consumed power in the active mode and that in the sleep mode should be

distinguishable. In the active mode, the micro-controller runs normally. For an instance

of a sensor-logging system, a micro-controller obtains sensor values from the connected

sensors, and transmits the obtained values to a host computer. This operation consumes

several mW power. On the other hand, in the sleep mode, the micro-controller saves

power. Several components in the micro-controller are powered off by power gating

except for the minimally required components. The consumed power in the sleep mode

is quite less compared to in the active mode. The consumed power slightly changes

every moment, but the consumed power in the active mode and in the sleep mode should

be distinguishable. This chapter utilizes its difference to classify the waveform into

active-mode parts and sleep-mode parts, and we focus on the active-mode parts.

Now we consider that a micro-controller is infected with a malicious function. Now

we consider that a malicious function is inserted into a micro-controller by an attacker.

Figure 4.2 shows the assumed operation of the target micro-controller. In the sleep

mode, a micro-controller cannot do anything because only the minimal components in

the micro-controller work and the others are powered off. In the active mode, a micro-

controller works normally. However, under the rare condition during the active mode, a

malicious function is activated. When the malicious function is activated, side-channel

signals must reflect its existence.

In this chapter, we focus on power consumption and detect abnormal behavior based

on a outlier detection method. According to [58], an anomaly behavior detection method

for a micro-controller has been proposed, but it focuses on a low-cost micro-controller

and just one experiment is carried out. In this chapter, we propose an anomaly behavior

detection method utilizing accurate power analysis.

4.4 Malicious Behavior Detection Algorithm Based on
Power Analysis

In this section, we propose an anomaly behavior detection method utilizing accurate

power analysis. The procedure of the proposed anomaly behavior detection method is

summarized as follows:

1. Power measurement: Measure consumed power from a target device.

2. Waveform smoothing: Smooth the waveform of the measured power.
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Figure 4.3: The procedure of our proposed method.

3. Active and sleep mode distinction: Distinguish between the active mode and the

sleep mode using an unsupervised machine learning algorithm.

4. Feature value acquisition: Acquire feature values from the waveform in the

active-mode.

5. Anomaly behavior detection: Detect abnormal behavior from the acquired feature

values using an anomaly detection algorithm.

Figure 4.3 illustrates how to process measured waveform form ‘power measurement’

to ‘feature value acquisition’. The details in each step are elaborated in the following

subsections.

4.4.1 Power Measurement
First, we measure time-domain consumed power waveform for a target IoT device,

separately measuring the voltage V and current I, and then obtaining P = V × I. In

general, a clamp-on type AC/DC current probe may be used for this purpose. However,

the performance is not enough in repeatability, sensitivity, and dynamic range and it is not

always suitable for measuring the power rail current in IoT devices [64]. Furthermore, the

clock frequency of a low-cost micro-controller sometimes exceeds 100MHz these days,

therefore we have to prepare an instrument having precise current sensing capability as

well as enough bandwidth. Based on the discussion above, we leverage a current sensor

which accurately measures current flow.
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4.4.2 Waveform Smoothing
The measured power itself is noisy, and we have to smooth it before analyzing it. A

simple moving average, which is frequently used to find the trend of time-series data, is

used in our proposed method. Let x be the time-series data, and let x[n] be the value at

time n. N-data moving average at time n is represented as y[n] and it is expressed by

y[n] = 1
N
∑N−1

i=0 x[n − i]. We set N to be 5 in this chapter.

4.4.3 Active and Sleep Mode Distinction
In this step, we classify the waveform into a part of active mode and a part of sleep mode.

An unsupervised clustering method, k-means method is applied to this step. k-means in

one of the unsupervised clustering algorithm which is a simple unsupervised clustering

algorithm [65].

In our proposed method, we set the number of clusters to two because we classify the

waveform into a part of active mode and a part of sleep mode. Since k-means method

requires no threshold values, parameter tuning for numerous types of IoT devices is

unnecessary.

4.4.4 Feature Value Acquisition
Now we focus on the active-mode part because malicious behavior should appear in the

active mode. In this step, we extract feature values from the waveform in the active

mode. As discussed in Section 4.3, a malicious behavior should appear in the active

mode under a rare condition. When a malicious behavior such as denial-of-service or

leakage of internal information appears, the duration time and consumed power in the

active-mode period must be different from ones in the normal situation. Based on the

discussion above, we extract the two following feature values:

1. the duration time of the active-mode period;

2. the consumed energy over the active-mode period.

In the following anomaly detection step, we give these feature values to the anomaly

detection method and detect the abnormal behavior.

4.4.5 Malicious Behavior Detection
In order to detect abnormal behaviors based on the given feature values, the local outlier

factor (LOF) [66] is adopted in our proposed method. The LOF method regards the

given samples which have low density compared to their neighbor samples as outliers.
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The duration time and consumed power in the active mode will differ from time to time

in the anomaly behavior detection. However, if a malicious function works, the feature

values will quite different from those in normal behavior. The LOF method is expected

to effectively detect such a abnormal behavior.

Before we apply the LOF method to the obtained feature values in the anomaly

detection step, we must standardize the data. Since the LOF method is based on density

of feature values in the feature space, the scale of each axis affects its result. In order to

standardize the data, we first calculate the average and variance values for each features.

Assume that we have N two-dimensional data (xi, yi) ∈ {(x1, y1), (x2, y2), . . . , (xN, yN )}.
Let μx and μy be the average values for x and y, respectively. In the same way, let

σx and σy be the variance values for x and y, respectively. The standardized feature

value for x, x′i becomes (xi − μx)/σx . Similarly, the standardized feature value for y, y′i
becomes (yi − μy)/σy . The standardization is effective when the scale of features are

quite different. In this chapter, since we utilize the duration time and consumed power

whose scales are quite different, we apply standardization to the obtained data before the

anomaly detection step.

After standardization, we apply the LOF method to the standardized feature values of

the active-mode periods. Finally, we obtain the LOF values for each active-mode period.

When a LOF value is clearly different from the others, we identify the period to be the

abnormal behavior, that is, a malicious function appears in that period.

4.5 Experimental Results
In this section, we demonstrate the empirical evaluation and its results of the proposed

method.

4.5.1 Experimental Setup
Figure 4.4 illustrates the connection diagram of the measurement devices and Figure 4.5

shows the measurement setup. Keithley 2280S-32-6 [67] is used as a power supply

device, and it supplies power to the target device. In the experiment, the output voltage

is set to 5V and the maximum current is set to 0.4A. Keysight CX3324A [68] is used

to measure the voltage and current flow of the target device. Keysight CX3324A [69]

is used to measure the voltage and current flow of the target device. The voltage is

measured by a general passive probe and the current flow is measured using a current

sensor Keysight CX1101A.

As described in [64], a clamp-on current probe’s minimum measurable current is

1-3mA. On the contrary, CX1101A covers up to 1A and has lower minimum measurable
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Figure 4.4: The connection diagram.

current as small as 3uA with bandwidth of 100 MHz at small input insertion resistance

of 0.41Ω [69]. This low level measurement at high bandwidth is made possible utilizing

new current sensing scheme combining sense resistor and current transformer described

in [70]. Due to the small insertion resistance, we can avoid large voltage drop in power-

rail and brown-out of target devices even when large current spike is observed. Therefore,

with using this type of current sensors, we can precisely capture dynamic current flow

in power rail of the target device repeating steep active and sleep transition.

After the acquisition of the power waveform using the measurement devices above, we

save the data in comma-separated values (CSV) format and analyze it using a computer.

The analysis procedure is written in Python 3 language and used scikit-learn [35], a

data-mining library, for k-means classification and LOF detection. Unless otherwise

noted, the default parameters of scikit-learn is applied to k-means classification and LOF

calculation.

4.5.2 Target Devices
In this experiments, we utilized two types of micro-controller development boards,

Arduino UNO [71] and Nucleo L476RG [72]. They are widely used in research fields

and several low-cost IoT products use them.

Arduino UNO: Arduino UNO uses a Microchip ATmega328P chip, which is an AVR

8-bit RISC micro-controller. The operation frequency of ATmega328P can be set up

to 20MHz, but the default setting for Arduino UNO is 16MHz. In this experiment, we

implemented the application described below into the micro-controller with Arduino
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Figure 4.5: Measurement setup.

libraries, and the micro-controller is clocked at 16MHz. We set the trigger duration time

to wake the micro-controller up from the sleep mode to 32ms utilizing the watch dog

timer.

Nucleo L476RG: Nucleo L476RG uses a STMicroellectronics STM32L476RG chip,

which is an ARM Cortex-M4 32-bit micro-controller. The operation frequency of

STM32L476RG can be set up to 80MHz, and therefore the micro-controller is clocked

at 80MHz in this experiment. Nucleo L476RG is more high-performance compared to

Arduino UNO. We set the trigger duration time to wake the micro-controller up from the

sleep mode to 50ms utilizing an internal timer.

4.5.3 Target Application

For the experiments, we implemented a sensor-logging application. The overview of the

application is illustrated in Figure 4.6. First, the micro-controller reads the voltage of an

analog input port, and convert the voltage to a digital value at the analog-to-digital (A/D)

conversion step. Second, the micro-controller encrypts the obtained data using Advanced

Encryption Standard (AES) at the AES encryption step. For the implementation of the

AES encryption, we used an AES encryption library [73]. After that, the micro-controller

transmits the encrypted data to a host computer through a serial interface at the serial
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Figure 4.6: The overview of the sensor-logging application and the malicious function

implemented into the target devices.

output step. The three steps are processed as an active mode. After the active-mode

process is completed, the micro-controller goes into the sleep mode to save power. This

process is repeated every 32ms on Arduino UNO and every 50ms on Nucleo L476RG.

In order to implement a malicious behavior, we disable the AES encryption of the

A/D conversion results once every five times. When the malicious function is triggered,

the AES encryption is disabled and the A/D conversion results are transmitted without

encryption.

4.5.4 Malicious Behavior Detection Results
Experimental Results for Arduino UNO

Figure 4.7 shows the obtained power consumption of Arduino UNO. Figure 4.8 and

Table 4.2 show the results of anomaly behavior detection for Arduino UNO. In Figure 4.8,

the x-axis shows the duration time and the y-axis shows the consumed energy in each

active-mode period. The background shade in the plot shows the degree of LOF. The

deep shade shows the low LOF value and the light shade shows the high LOF value as

shown in the right side of the plot. As shown in Figure 4.8, there are two clusters in

the top right side and bottom left side. The samples in the cluster of the top right side

show that their duration time is longer and their consumed energy is higher than the

other cluster. The cluster of the top right side is identified to be normal by the proposed

method. On the other hand, the cluster of the bottom left side is identified to be abnormal

because they are quite different in feature values from the normal cluster and the number
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Figure 4.7: Measured power consumption for Arduino UNO.

Figure 4.9: Measured power consumption for Nucleo L476RG.

of samples in this cluster is less than in the normal cluster. In Table 4.2, each row shows

the feature values (duration time and consumed energy) and LOF value in each active-

mode period. The underlined values in the LOF column show that they are identified to

be abnormal behaviors. As shown in Table 4.2, the LOF values of normal and abnormal

behaviors are clearly different. Based on the results, we can set a LOF threshold value

to -100 to identify whether the period is normal or abnormal. By utilizing the threshold

value, we can completely detect all abnormal behavior periods out of 29 periods in this

experiment. Because the operation frequency of Arduino UNO is low, we can easily

observe the behavior through power analysis in this case. Arduino UNO employs low

operation frequency and the power rail current noise due to the CMOS switching noise

is low, these make the power analysis easy in this case.
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Experimental Results for Nucleo L476RG

Figure 4.9 shows the obtained power consumption of Nucleo L476RG. As shown in

Figure 4.9, the duration time of the active mode is quite short compared to the duration

time shown in Figure 4.7. Figure 4.10 and Table 4.3 show the results of abnormal behavior

detection for Nucleo L476RG. In Figure 4.10, the x-axis, y-axis, and the background

shade show the duration time, consumed energy, and degree of LOF, respectively in the

same way as in Figure 4.8. In Table 4.3, the underlined values in the LOF column show

that they are identified to be abnormal behaviors. As shown in Table 4.3, we can set the

LOF threshold value to -1 to identify whether the period is normal or abnormal. In this

case, the difference of LOF values between normal and abnormal is slight compared to the

results of Arduino UNO. Moreover, we cannot detect abnormal behavior just utilizing the

energy consumption. For example, the consumed energy values of the fifth and seventh

active-mode part in Table 4.3 are almost the same, but the fifth period is normal and the

seventh one is abnormal because the duration time is short in the seventh period. By

leveraging our proposed method, we can completely detect all abnormal behavior periods

out of 20 periods in this experiment even if the difference between normal and abnormal

periods is slight. Therefore, combining duration time with consumed energy obtained

by accurate power analysis enables us to successfully identify whether the behavior is

normal or abnormal, even if the micro-controller is clocked at 80MHz which is a fast

clock speed for a low-cost micro-controller.

The difference in consumed energy between normal and abnormal in Table 4.3 is

quite slight compared to that in Table 4.2. Because of the slight difference in consumed

energy, we cannot detect abnormal behavior in Nucleo L476RG by just analyzing energy

consumption. Our proposed method with LOF effectively detects abnormal behavior

utilizing accurate power analysis.

4.6 Conclusion
In this chapter, we propose an anomaly behavior detection method utilizing accurate

power analysis. In our experiment, we implemented a sensor-logging application into

two types of micro-controllers, and empirically evaluate the anomaly behavior detection

method utilizing accurate power analysis. The experimental results demonstrate that

the proposed method successfully detects the abnormal behavior of low-cost micro-

controllers which are clocked at up to 80MHz utilizing accurate power analysis. Even if

the difference of the duration time and consumed power between normal behavior and

abnormal behavior is quite slight, our proposed method successfully detect abnormal

behaviors.

Although the proposed method is successfully applied to the model application such
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as a sensor logger or a frequently-driven device in this chapter, the application to the

real-world devices is still remained to be studied. In the future, we will target high-

functioning micro-controllers and complicated applications which are more difficult to

obtain power profile.
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Figure 4.8: The plot of the obtained samples for Arduino UNO.

Table 4.2: Experimental results for Arduino UNO.

Active mode Duration Consumed energy LOF

period [s] [mW · s]
1 0.01461 3.74 -1.01

2 0.01457 3.76 -1.02

3 0.01457 3.76 -1.00

4 0.01459 3.74 -1.10

5 0.00782 2.02 -109.57

6 0.01457 3.77 -1.07

7 0.01458 3.75 -0.94

8 0.01461 3.74 -1.09

9 0.01458 3.75 -0.94

10 0.00782 2.01 -109.67

11 0.01459 3.75 -0.98

12 0.01461 3.74 -1.06

13 0.01458 3.75 -0.94

14 0.01457 3.76 -1.01

15 0.00780 1.98 -110.45

16 0.01460 3.74 -0.99

17 0.01457 3.76 -1.02

18 0.01457 3.76 -0.99

19 0.01460 3.74 -1.10

20 0.00782 2.02 -109.57

21 0.01456 3.76 -1.02

22 0.01459 3.75 -0.90

23 0.01460 3.74 -1.14

24 0.01459 3.76 -0.94

25 0.00782 2.01 -109.69

26 0.01459 3.75 -0.98

27 0.01460 3.74 -1.09

28 0.01458 3.76 -0.99

29 0.01455 3.76 -1.01
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Figure 4.10: The plot of the obtained samples for Nucleo L476RG.

Table 4.3: Experimental results for Nucleo L476RG.

Active mode Duration Consumed energy LOF

period [s] [mW · s]
1 0.002868 0.9087 -0.99

2 0.002839 0.8987 -1.35

3 0.002870 0.9094 -0.99

4 0.002869 0.9086 -0.99

5 0.002867 0.9000 -0.99

6 0.002868 0.9093 -0.99

7 0.002839 0.8992 -1.34

8 0.002869 0.9080 -0.99

9 0.002870 0.9092 -0.99

10 0.002869 0.9086 -0.99

11 0.002870 0.9085 -0.99

12 0.002839 0.8992 -1.34

13 0.002867 0.9054 -0.99

14 0.002867 0.8994 -0.99

15 0.002869 0.9079 -0.99

16 0.002869 0.9079 -0.99

17 0.002840 0.8993 -1.31

18 0.002868 0.9002 -0.99

19 0.002870 0.9086 -0.99

20 0.002868 0.8998 -0.99
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Conclusion

In this dissertation, we have proposed machine-learning-based hardware-Trojan detection

methods based on effective feature values. The most important goal of this dissertation

is to establish effective hardware-Trojan detection methods which will protect hard-

ware products from the threats of hardware Trojans. Overall, this dissertation proposes

machine-learning-based hardware-Trojan detection methods which adequately detect

hardware Trojans in the experiments. In this point, this dissertation has successfully

achieved the goal.

As discussed in Section 1, hardware devices have widely been used in our daily lives,

and security threats at hardware devices have been pointed out. The threats of hardware

Trojans have risen and researchers have studied very recently. Machine learning is one of

the powerful strategies to tackle the problem. However, how to apply machine learning

to hardware Trojan detection has not been studied so far. This dissertation proposes

effective feature values to apply machine learning to hardware Trojan detection, and

empirically demonstrates machine-learning-based hardware-Trojan detection methods.

The proposed methods are divided into two types in terms of hardware production steps:

the design step and the production step.

First, we focus on the hardware-Trojan detection method in the design step. Most

of the existing methods take model-based approaches, and therefore detectability of un-

known threats has to be discussed. Moreover, due to the rapid development in hardware

industries, a large variety of hardware devices are developed. Machine learning is an

effective approach to tackle the above problem. However, how to apply a machine lean-

ing algorithm to hardware-Trojan detection has not been discussed yet. Our proposed

methods in Chapter 2 extract effective feature values from hardware design information

written in hardware description language, and learn the extracted feature values utilizing

machine learning algorithms. Furthermore, by proposing application methods in Chap-

ter 3, we enhance the machine-learning-based hardware-Trojan detection methods and

bring them closer to practical use. This dissertation hereby breaks new ground in the
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field of hardware Trojan detection in the design step from the viewpoint of proposing a

machine-learning-based methodology and its applications.

Second, we focus on the hardware-Trojan detection method in the manufacturing

step. Existing hardware-Trojan detection methods utilizing side-channel information

often refer to the Golden model. However, preparing the Golden model is unrealistic in

the real-world hardware production process. Our proposed method in Chapter 4 detects

abnormal behavior on a micro-controller based on power analysis without the Golden

model. In Chapter 4, we extract feature values based on power profile of a hardware

device using a micro-controller, and successfully apply an abnormal detection algorithm

to detect malicious behaviors. This dissertation here establishes a new methodology to

detect abnormal behavior based on power analysis.

Throughout this dissertation, we have overcome the hardware-security issues by

utilizing machine learning with hardware-specific features.

The chapters in this dissertation are summarized as follows.

In Chapter 2, a hardware-Trojan classification method at gate-level netlists utilizing

a support vector machine (SVM) or a neural network (NN) is proposed. First, the five
hardware-Trojan features are extracted from each net in a netlist. These feature values are

complicated so that we cannot give the simple and fixed threshold values to them. Hence

we secondly represent them to be a five-dimensional vector and learn them by using SVM

or NN. Finally, we can successfully classify all the nets in an unknown netlist into Trojan

ones and normal ones based on the learned classifiers. We have applied our machine-

learning-based hardware-Trojan classification method to Trust-HUB benchmarks. The

results demonstrate that our method increases the true positive rate compared to the

existing state-of-the-art results in most of the cases. In some cases, our method can

achieve the true positive rate of 100%, which shows that all the Trojan nets in an

unknown netlist are completely detected by our method. After that, effective Trojan-

net features for supervised machine-learning-based hardware-Trojan detection and their

application to a random forest classifier are proposed. We first propose 51 Trojan-net

features which describe well Trojan nets. After that, we pick up random forest as one

of the best candidates for machine learning and optimize it to apply to hardware-Trojan

detection. Based on the importance values obtained from the optimized random forest

classifier, we extract the best set of 11 Trojan-net features out of the 51 features which

can effectively classify the nets into Trojan ones and normal ones, maximizing the F-

measures. By using the 11 Trojan-net features extracted, our optimized random forest

classifier has achieved at most 100% true positive rate as well as 100% true negative rate

in several Trust-HUB benchmarks and obtained the average F-measure of 79.3% and the

accuracy of 99.2%, which realize the best values among existing machine-learning-based

hardware-Trojan detection methods.

In Chapter 3, three applications of machine-learning-based hardware-Trojan detec-
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tion are proposed. First, we propose a machine-learning-based hardware-Trojan detection

method for gate-level netlists using multi-layer neural networks. We classify the nets in

an unknown netlist into a set of Trojan nets and that of normal nets using multi-layer

neural networks based on 11 Trojan-net features proposed in Chapter 2. By experimen-

tally optimizing the structure of multi-layer neural networks, we can obtain an average

of 84.8% true positive rate and an average of 70.1% true negative rate while we can

obtain 100% true positive rate in some of the benchmarks, which outperforms the ex-

isting methods in most of the cases. Second, we propose a Trojan-invalidating circuit,

and implement it on an FPGA board. The implementation results demonstrate that the

implemented Trojan-invalidating circuit successfully prevent from activating a hardware

Trojan. Third, we propose a reinforcement of the hardware-Trojan detection utilizing

machine learning. Since existing machine-learning-based hardware-Trojan detection

methods are performed in the feature spaces, the proposed method considers boundary

net structures between normal nets and Trojan nets and compensates the first machine-

learning-based detection results based on them. The experimental results demonstrate

that our proposed method successfully improve the detection results compared to the

existing method.

In Chapter 4, an anomaly behavior detection method utilizing power analysis for low-

cost micro-controllers is proposed. Our method accurately measures power consumption

of the target device, and then classifies its waveform into the sleep-mode part, in which a

micro-controller saves power, and into the active-mode part, in which a micro-controller

works in a normal operation. After that, we obtain the duration time and consumed

power from each active-mode period as feature values. Finally, we detect abnormal

behavior based on the obtained feature values utilizing an outlier detection method. In

our experiments, we empirically evaluate the proposed method utilizing two types of

micro-controllers, and the experimental results demonstrate that our proposed method

successfully detects abnormal behaviors.

In conclusion, we find out that hardware Trojan detection utilizing machine learning

based on hardware-specific features has future prospect. However, there still remain

several tasks to be done. Our future works are summarized as follows:

• Enhance the classification performance of hardware-Trojan detection methods utiliz-

ing machine learning algorithms.

• Evaluate the proposed methods utilizing real-world devices.

• Put the proposed methods into practical use.

First, we aim to enhance the classification performance of hardware Trojan detection so

that the TPR and TNR are sufficiently increased. Second, we aim to utilize the real-

world datasets to evaluate the machine-learning-based hardware-Trojan detection and to

implement the detection to the real-world IC design and production steps. Finally, we

would like to work on putting the proposed methods into practical use.
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