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Chapter 1

Introduction

1.1 Background
With the spread of smartphones and internet of things (IoT), the number of devices
connected to the Internet reached 22 billion at the end of 2018 [1]. Modern Internet
devices with rich features store privacy data including user identity, activity logs,
location, video, and audio. This means more opportunities for users’ data to be
exposed. In light of these increasing privacy risks, efforts to protect privacy have
become a global trend. Previous research on capturing and analyzing attacker
behavior [2–8] has resulted in beneficial countermeasures to protect user privacy. In
addition, laws that strongly restrict privacy access, such as General Data Protection
Regulation (GDPR) [9] and California Consumer Privacy Act (CCPA) [10], have
been enforced in many countries.
Unfortunately, privacy threats to Internet users are intensifying daily. Typical

attacks by which an attacker exploits application security holes, or vulnerabilities,
remain active. In 2018, Facebook, the largest social network, revealed that infor-
mation of 50 million users was leaked due to a bug in which one user was given
another user’s access token [11]. In addition, the latest attackers are no longer limited
to behavior of computer systems. A side-channel indirectly estimates confidential
information by measuring the side-effects of computer systems on physical space.
Horn et al. discovered Meltdown [12] and Spectre [13], which cause timing attacks
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on CPUs, and showed that most CPUs released in the last 25 years have a potential
risk of data leakage. Phishing attacks exploit human psychological weaknesses such
as fear and curiosity. In just three months from April to June 2019, Kaspersky [14]
detected 129.9 million phishing attacks.
As these examples show, attackers attempt to exploit information outside computer

system, i.e., beyond the layers. Such attacks and defenses across layers are new
areas of research that should be highlighted to ensure user privacy. To protect users
from modern cyber attacks, it is necessary to understand the interaction between
applications, physical space, networks, and human factors. This thesis focuses on
the following new threat scenarios that exploit resources outside computer systems.
Exploiting Side Channel on Physical World. The latest mobile and IoT devices

are equipped with sensors to provide users with rich experiences linked to the real
world. These sensors collect data such as acceleration and magnetic fields on the
device. These data reflect the physical behavior of the device’s user and may leak
his/her privacy. Access to physical sensors on most devices are not protected by
permission mechanisms.
Exploiting Side Channel on Network. With higher quality communication lines,
network noise no longer has a significant effect on communication speed. The
communication time mainly varies depending on the state of the server side. In
other words, an attacker can estimate the state of a remote application by observing
the communication time. By combining several application states, it may be possible
to estimate more specific user data. Countermeasures that conceal communication
time are not common.
Exploiting Human Perception. Users decide what changes to make to computer
systems based on their expectations. Metadata, such as text description describing
the behavior of an application, are useful for users to decide whether to install an
application. The user can be misled by the text description to install an application
that accesses sensitive data against the user’s expectation. There is no guideline in
app markets to ensure that the correct description is written.
To measure the impact of attacks beyond the layers, we adopt both a conceptual

approach that demonstrates potential threats by building novel attacks (Chapter 2, 3)

2



1.2 Thesis Contributions

Table 1.1 Summary of the layers that each chapter focuses on.

Approach Layer Exploited Channel

Chapter 2 conceptual physical user activity in the real world captured by motion sensors
Chapter 3 conceptual network time required for communication and server processing
Chapter 4 empirical human text description that shows behavior of applications

and an empirical approach that reveals how pervasive the threat is through large-scale
analysis in the wild (Chapter 4).

1.2 Thesis Contributions
The goal of this thesis is to identify novel privacy threats for Internet users that
exploit information beyond the layers. We explore three attack surfaces on the lower
and upper layers that impact major Internet usages of modern consumers. The layers
that each chapter focuses on are summarized in Table 1.1. This thesis is organized
as follows:
Sensor-based user location tracking is presented in Chapter 2. In this chapter,

we demonstrate the sensor data that collects the user’s behavior leaks real-world
location information of the user. We developed proof-of-concept framework called
RouteDetector, which identifies a route for a train trip by simply reading smart device
sensors: an accelerometer, magnetometer, and gyroscope. All these sensors are
commonly used by many apps without requiring any permissions. The key technical
components of RouteDetector can be summarized as follows. First, by applying
a machine-learning technique to the data collected from sensors, RouteDetector
detects the activity of a user, i.e., “walking,” “in moving vehicle,” or “other.” Next,
it extracts departure/arrival times of vehicles from the sequence of the detected
human activities. Finally, by correlating the detected departure/arrival times of
the vehicle with timetables/route maps collected from all the railway companies
in the rider’s country, it identifies potential routes that can be used for a trip. We
demonstrate that the strategy is feasible through field experiments and extensive
simulation experiments using timetables and route maps for 9,090 railway stations

3
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of 172 railway companies.
Web side-channel attack to identify social account of a visitor is presented

in Chapter 3. In this chapter, we demonstrate if an attacker observes data that
the application leaks into the physical world, the Internet user’s real-world identity
will be leaked. Our attack leverages the widely adopted user-blocking mechanism,
abusing its inherent property that certain pages return different web content de-
pending on whether a user is blocked from another user. Our key insight is that
an account prepared by an attacker can hold an attacker-controllable binary state of
blocking/non-blocking with respect to an arbitrary user on the same service; pro-
vided that the user is logged in to the service, this state can be retrieved as one-bit
data through the conventional timing attack when a user visits the attacker’s website.
We generalize and refer to such a property as visibility control, which we consider as
the fundamental assumption of our attack. Building on this primitive, we show that
an attacker with a set of controlled accounts can gain a complete and flexible control
over the data leaked through the side channel. Using this mechanism, we show that
it is possible to design and implement a robust, large-scale user identification attack
on a wide variety of social web services. To verify the feasibility of our attack,
we perform an extensive empirical study using 16 popular social web services and
demonstrate that at least 12 of these are vulnerable to our attack. We have suc-
cessfully addressed this attack by collaborative working with service providers and
browser vendors.
Analyzing the inconsistency between behaviors and descriptions of mobile

apps is presented in Chapter 4. In this chapter, we analyze applications that access
privacy-sensitive data against human expectations. We focused on text descrip-
tion, which is written by a developer who has an incentive to attract user attention.
Specifically, this chapter aims to address the following research question: What are
the primary reasons that text descriptions of mobile apps fail to refer to the use of
privacy-sensitive resources? To answer the research question, we performed em-
pirical large-scale study using a huge volume of apps with our ACODE framework,
which combines static code analysis and text analysis. We developed lightweight
techniques so that we can handle hundred of thousands of distinct text descrip-
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tions. We note that our text analysis technique does not require manually labeled
descriptions; hence, it enables us to conduct a large-scale measurement study with-
out requiring expensive labeling tasks. Our analysis of 210,000 apps, including
free and paid, and multilingual text descriptions collected from official and third-
party Android marketplaces revealed four primary factors that are associated with
the inconsistencies between text descriptions and the use of privacy-sensitive re-
sources: (1) existence of app building services/frameworks that tend to add API
permissions/code unnecessarily, (2) existence of prolific developers who publish
many applications that unnecessarily install permissions and code, (3) existence of
secondary functions that tend to be unmentioned, and (4) existence of third party
libraries that access to the privacy-sensitive resources. We believe that these find-
ings will be useful for improving users’ awareness of privacy on mobile software
distribution platforms.
Finally, Chapter 5 presents the conclusions of this thesis.
Our research gives the research community a general insight into what to do to

protect consumer privacy. Specifically, we provide important guidance on how to
design secure sensor devices, web services, and app markets. Another aspect of our
contribution is to implement countermeasures to real-world services. In fact, the
countermeasures against a new threat we discovered have been adopted by global
web services and web browsers. The privacy of hundreds of millions of users who
use them is better protected than before.
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Chapter 2

Sensor-based user location

tracking

2.1 Introduction
Modern smart devices, such as smartphones, smart watches, and smart glasses, have
powerful embedded sensors such as accelerometers, magnetometers, gyroscopes,
ambient light sensors, and heart rate monitors. While these sensors are used to
provide new user experiences, they also bring the new line of side-channel attacks
[15–22].
Let us consider a new side-channel attack called SPS (sensor-based positioning

system), which also exploits sensors of smart devices. The ultimate goal of an SPS
attack is to estimate the location of a user by reading sensors but without using
conventional geolocation methodologies such as GPS, cell tower signals, or WiFi.
Clearly, achieving the goal is difficult, primarily due to the high degree of freedom
of user mobility.
The goal of this work is to make the SPS attack feasible. To this end, we exploit

the spatio-temporal regularity of human mobility patterns [23]; e.g., a person may
use a fixed route on a transportation system for her/his commuting. Also, vehicles of
transportation systems are generally expected to exhibit a temporal regularity unless
they encounter operation problems such as natural disasters or rail accidents. We
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expect that exploiting the regularity enables us to reduce the degree of freedom of
human mobility.
With this approach in mind, we develop a novel proof-of-concept attack frame-

work called RouteDetector, which targets the location of passengers of transport
service. It aims to identify the route of your train trip (i.e., the sequence of train
stations) by simply reading three hardware sensors – accelerometer, magnetome-
ter, and gyroscope – which are all accessible from any apps without requiring any
permissions. A unique technical concept of RouteDetector is that it makes use of
not only data collected from multiple sensors embedded in a smart device, but it
also leverages external data that can extract privacy information by correlating with
collected sensor data.
The key technical components of RouteDetector can be summarized as follows:

First, by applying a machine-learning technique to the data collected from sensors,
RouteDetector classifies the activity of a user, e.g., walking, riding on a moving
vehicle, or other status such as still. Next, using the sequences of the detected
activities, RouteDetector extracts departure/arrival times of vehicle(s). Finally,
RouteDetector correlates the extracted departure/arrival times of vehicle(s) with
timetables/route maps of all vehicles and searches the potential mobility paths.
The key findings of this work are summarized as follows:

• Our field experiments using smart devices demonstrate that theRouteDetector
framework can detect departure/arrival times of vehicles with errors smaller
than six seconds on average.

• Our extensive simulation experiments using timetables and route maps for
9,090 railway stations of 172 railway companies demonstrate that given a
sequence of departure/arrival times, RouteDetector can identify routes used
for a trip by train, and the average number of identified routes becomes close
to one if the number of stations used on a trip is more than six.

These findings support that the attack is feasible.
The rest of this chapter is organized as follows. Section 3.3 describes the threat

models we assume for RouteDetector In section 2.3, we present the details of the
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RouteDetector framework. Section 2.4 shows the results of performance evaluation.
Section 4.6 discusses the limitations ofRouteDetector and future research directions.
We also discuss the possible counter measures against RouteDetector. Section 4.7
summarizes the related work. We conclude this chapter in section 4.8.

2.2 Threat models
The phase of side-channel attacks on mobile devices usually consists of three
steps [24]. (1) A malicious application is spread through popular app markets.
After installation, (2) it observes the leaking side-channel information. Based on
the gathered information, (3) it uses the previously established model or templates
to infer secret information. Similarly, our threat model assumes that a malicious
software, which requires only a permission of Internet connection, is installed on
the victim’s device. We note that the malicious software does not require any
other permissions, e.g. ACCESS_∗_LOCATION , ACCESS_WIFI_STATE , and
ACTIV ITY_RECOGNIT ION .
Namely, the application does not access location data resources such as GPS,

identity of cellular base stations, and SSID of WiFi networks. The software keeps
collecting sensor values and estimating the activities of the owner of the device; i.e.,
walking (running), moving on a vehicle, or other. Sequences of detected activities are
periodically sent to the adversary’s computer. The adversary’s computer estimates
the route of transportation by analyzing the sequences. Note that it is also possible
that the user device computes the estimation of routes and sends the estimated
results to the adversary. It is easy for an adversary to know the hardware model
of the smart device; for instance, in the Android platform, by accessing the fields
of Android.os.Build class, he/she can obtain the hardware information, such as
brand, manufacturer, and/or model. He/she can also know whether a smart device
is being held in someone’s hand or is inside a bag by reading the ambient light
sensor or proximity sensor. Because the threat model targets passengers on public
transportation systems, it is not useful where no public transportation system is
available. We also assume that the adversary knows the list of public transportation

9
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Table 2.1 Summary of sensors. All sensors do not require permission for access.

Sensor Type unit Description

accelerometer physical m/s2 Acceleration applied to a device including the gravity.
linear acceleration virtual m/s2 Acceleration applied to a device excluding the gravity.
magnetometer physical µT Strength of geomagnetic field.
gyroscope physical rad/s A device’s rate of rotation.

systems that would likely be used by the victim. For instance, if a victim lives in a
particular country, the adversary assumes that the victim may use any of railways
available in that country. We also need to assume that the transportation system
operates punctually; otherwise, RouteDetector’s estimation may be inaccurate. We
will study the issue in Sec. 2.4. Other limitations will be discussed in Sec. 4.6.

2.3 RouteDetector Framework
In this section, we present an overview of the RouteDetector framework (Sec. 2.3.1).
Then, we describe the sensors we used for our analysis (Sec. 2.3.2). We then describe
the key technical components of the RouteDetector framework; the detection of user
activities in Sec. 2.3.3, detection of departure/arrive time sequences of vehicles in
Sec. 2.3.4, and the extraction of candidate routes in Sec. 2.3.5.

2.3.1 Goal and Overview

The goal of the RouteDetector framework is to identify the route of a vehicle used
by an owner of a smart device by reading the device’s sensors. If a vehicle is a
passenger train, a route is defined as a set of stations along a path. Figure 2.1
depicts the high-level overview that achieves the goal, together with the number of
corresponding subsections that describe the technical details.
First, it reads values from sensors. As sensors, we picked up accelerometer,

linear acceleration, magnetometer, and rotation vector. Details of data collection are
described in Sec. 2.3.2. Next, we extract user activities from the collected sensor
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Fig. 2.1 High-level overview of the RouteDetector framework.

data. The user activities are defined as a set of three classes, walking, riding on a
moving vehicle (vehicle in short), and others, which includes various activities such
as standing, sitting, or sleeping. To this end, we pre-process raw sensor data so
that we can apply a supervised machine-learning (ML) approach. As a supervised
ML algorithm, we adopt random forest, which is known to achieve robust and good
performance for multi-class classification tasks. Details of data pre-processing and
ML application are described in Sec. 2.3.3. From the extracted user activities, we
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can identify sequences of vehicle departure/arrival times. For instance, if we find
a consecutive pairs of vehicle and others, it is likely that a user was on a vehicle.
We can also consider cases in which a user made a transit. Details of detecting
vehicle departure/arrival time sequence are described in Sec. 2.3.4. Finally, from
an extracted vehicle departure/arrival time sequence, we search candidate routes,
using timetables and railway route maps that cover the potential residential area of
the victim, e.g., a country. We develop a fast algorithm that works in a breadth-first
search manner. Details of extracting departure/arrival time sequence are described
in Sec. 2.3.4.

2.3.2 Sensor Data

Of the available sensors embedded into a smart device, we adopt four sensors;
accelerometer, linear acceleration, magnetometer, and rotation vector. Table 2.1
summarizes the sensors we used. Although we tested other sensors, such as an
ambient light sensor, the data was not effective in detecting user activities. Note
that the four sensors can be divided into two classes: physical sensors and virtual
sensors. While the accelerometer, magnetometer, and gyroscope are physical sensors
that read raw values, the remaining sensor, linear acceleration, is a virtual sensor
whose values are computed based on physical sensors.
We developed an Android app that collects the sensor data. All the values are

collected at a rate of 10 Hz, i.e., read 10 values per second. The app also has a
function to generate labels that are used for supervised ML.

2.3.3 Detection of User Activities

Using the collected sensor data, we classify user activities into three distinct classes,
walk, vehicle, and others. Note that vehicle refers to the status when a user is on a
moving vehicle. If n user is standing on a vehicle, which is stopping at a station,
his/her status is likely classified as others. We first pre-process raw sensor data in
Sec. 2.3.3. Next, we apply a supervised machine-learning (ML) approach to the
pre-processed data to detect user activities in Sec. 2.3.3.

12
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Raw
sensor data	


Feature 
extraction	


Feature
vector	
Scalarization 

Pre-processing

Fig. 2.2 Overview of data pre-processing.

Data Pre-processing
We apply several data pre-processing techniques to the raw sensor data. Figure 2.2
summarizes the data pre-processing scheme. First, to eliminate the effect of dif-
ferences in the directions in 3D space, we compute a norm for each 3D vector;
i.e., a =

√
a2x + a2y + a2z . Figures 2.3 (a) and (b) are examples of scalarized

data. We then divide time series data into a set of blocks. A block consists of
N samples for each sensor data; i.e., for each sensor data, a block bi has data:
D(i)(a) = {a(i)1 ,a

(i)
2 , . . . ,a

(i)
N }. We experimentally set N as N = 20, which corre-

sponds to 2 seconds length with the 10-Hz rate of sensor data sampling. For each
block, we extract features that can be used to characterize the patterns of temporal
variability for the three classes. To this end, we adopted simple metrics; i.e., mean,
standard deviation, minimum, and maximum. Finally, we normalize the data by
subtracting means and dividing by standard deviations. In summary, the time series
data is divided into blocks, and each block consists of four features for four sensors,
resulting in feature vectors with 4 × 4 = 16 dimensions.

Classifying User Activities
Using the pre-processed sensor data, we classify activities into three classes; walk,
vehicle, and others. Walk represents the activity that of a person moving on foot;
e.g., walking and running. Vehicle represents the activity that of a person riding
in a moving vehicle; e.g., train and car. Others includes any other activities; e.g.,
standing, sitting, and sleeping. Although others can be further classified into sub-
classes, we did not need to do that because using these three classes are sufficient to
achieve our attack.

As a classification scheme, we adopt the Random forest algorithm, which is an
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ensemble learning algorithm used for classification or regression. In the training
phase, the Random forest algorithm constructs multiple decision trees using ran-
domly sampled data. In the classification phase, it predicts the most plausible class
by taking the majority votes of the multiple decision trees. The good feature of
Random forest is that it naturally achieves multi-class classification with a measure
of score. We note that we also tested other supervised machine learning algorithms,
such as SVM or logistic regression. It turned out that the differences in performance
among the algorithms were not significant, but the Random forest algorithm worked
best.

2.3.4 Detection of Departure/Arrival Time Sequences of Vehicles

Using the detected user activities, we extract sequences of vehicle departure/arrival
times. Among the user activities, we are most interested in vehicle activity because
the start/end of the activity corresponds with the departure/arrival, respectively.
However, as shown in Fig. 2.3 (c), the predicted activities include some noise due
to the inevitable classification errors. To reduce the effect of classification errors,
we leverage the temporal correlation of the activities; i.e., once a user gets on a
vehicle, it is likely that he/she stays on the vehicle for several minutes. Namely, we
use the exponentially weighted moving average (EWMA) to account for temporal
correlation of data.
Let An be the classified activity at block n, andW,V, and O be the set of blocks

that are classified as walk, vehicle, and others, respectively. We defineWn, Vn, and
On as

Wn = 1W(An)

Vn = 1V(An)

On = 1O(An),

where 1Y (x) is an indicator function that is defined as

1Y (x) =

1 if x ∈ Y

0 if x < Y .
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Fig. 2.3 (a): pre-processed sensor data, (b) magnification of (a) in Y-axis, (c) predicted

user activities, (d) smoothened user activities, and (e) corrected user activities and depar-

ture/arrival times. In panels (a) and (b), A, L, M, and G represents accelerometer, linear

acceleration, magnetometer, and gyroscope, respectively. In panel (e), circles/squares are

detected departure/arrival times, respectively.
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Fig. 2.4 Diagram of the route detection algorithm.

First, we compute the EWMA of Vn; i.e.,

Vn = λVn + (1 − λ)Vn−1,

where Vn is EWMA and 0 ≤ λ ≤ 1 is a constant parameter that determines the
smoothing factor. If λ is close to one/zero, the EWMA has a larger weight on the
last observation/past observations. The parameter λ is empirically configured, as we
will show later. Although the EWMA introduces a certain time lag to the original
data, the size of the lag was negligible, as we will show later. Using the EWMA,
the classified activities are corrected, as

V̂n =

1 if Vn ≥ 0.5

0 if Vn < 0.5.

Figure 2.3 (d) shows smoothened user activities with the EWMA.
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Next, using the corrected activities V̂n, we extract departure/arrival time sequences
using the following algorithm, where τ is a threshold that determines the minimum
length of time for a trip between two stations. In this calculation, we set τ = 60
(seconds).

Algorithm 1 Vehicle DEP./ARR. time sequences detection algorithm.
1: D =false ▷ Initial state
2: for all n = 1, 2, . . . do
3: if V̂n = 0 AND �Vn+1 = 1 then
4: Td = tn+1 ▷ tn is time at block n.
5: D =true ▷ A vehicle has been departured.

6: if V̂n = 1 AND �Vn+1 = 0 AND D = 1 then
7: Ta = tn+1

8: D =false
9: if Ta −Td > τ then
10: return Ta ,Td

We note that using blocks that were not classified as vehicles, i.e., {n; V̂n = 0}, Wn

and On can be corrected using the similar procedure. TrackingWn and On is useful
for detecting transferring lines; i.e., if we observe a sequence of classified activities
such as vehicle (3 mins), walk (2 mins), others (4 mins), and vehicle (5 mins), it is
likely that a person changed lines. Figure 2.3 (e) shows such an example. The victim
first got on a train and got off the train after three stations. He/she then changed
lines (see the area “transfer” shown in the graph of Ŵn), and got on the next train.
As we shall see later, the activity of riding an escalator could be misclassified

as being on a vehicle, although a person may be using it for transferring lines.
Such a misclassification can be safely removed with this heuristic. Figure 2.3 (d)
and (e) show such an example where all the ground-truth escalator points, which
were misclassified as “vehicle” by random forest, are successfully eliminated in the
corrected user activities. The heuristics are also useful for eliminating other errors
regarding activity detection.
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2.3.5 Extracting Candidate Routes

Finally, using the extracted sequences of departure/arrival times, we estimate can-
didate routes. We formulate the estimation task as follows. Using railway route
maps, we first create a single graph that consists of nodes (stations) connected by
links (railroads). Next, using timetables corresponding to the railway route maps,
we extend the graph so that it expresses temporal structure. Let us call the extended
graph a “train graph.” In a train graph, a link l(A,B,Td,Ta, L) expresses a vehicle
that departures station A at time Td and arrives at station B at time Ta; A and B

are adjacent stations on line L. Note that we do not need to build/keep an entire
train graph beforehand. Instead, we compile a set of all links and dynamically build
subgraphs by applying our search algorithm to the set of links.
We use Fig. 2.4 to demonstrate how the algorithm of searching candidate

routes works. In the example, we have the input departure/arrival time sequence
of {Td j,Ta j} ( j = 1,2,3). Given the input, we first extract a set of links
that satisfies l(∗,∗,Td1,Ta1,∗) (Q1: query 1). In the example, we found four
links; (S1,S4,Td1,Ta1, L1), (S1,S5,Td1,Ta1, L2), (S2,S6,Td1,Ta1, L3), and
(S3,S7,Td1,Ta1, L4). For each link above, we recursively search the succeeding
links. For instance, to find a link (vehicle) that departs station S4 at time Td2
and arrives at station X at time Ta2 on line L1, we search a link that satisfies
l(S4,∗,Td1,Ta1, L1) (see Q2) and found S8 is the destination station. If we do not
find any links that satisfy the given condition, we remove the paths from the search
(see Q5, Q6). By continuing the above procedure, we can enumerate paths that
satisfy the input departure/arrival time sequences; i.e., routes {S1,S4,S8,S11} and
{S3,S7,S10,S12} in the example.
Finally, when we get multiple routes for a given time sequence, it is useful that we

can sort them according to some metrics. To this end, we compute the popularity of
routes, as follows: For each link consisting of a route, we compute the number of
other links that share the same pair of origin/destination stations with that link. We
then sum up the numbers along the links of a route and define the result as a score.
If a route has a larger score, it means that a larger number of trains run on that route.
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Table 2.2 Smart devices used for our analysis.

Device name (abbreviation) Type OS

HTC J Butterfly (HTC) Smartphone Android 4.1.1
Nexus 7 (Nexus) Smart Tablet Android 4.4.4

We adopt this score as a metric that expresses the popularity of a route.

2.4 Evaluation
In this section, we evaluate the performance of the RouteDetector framework. We
first summarize the datasets we used for our analysis. Second, we evaluate the
accuracy of the user activities detection scheme. We then evaluate the accuracy of
departure/arrival time sequence detection. Finally, we evaluate the effectiveness of
the candidate routes detection scheme.

2.4.1 Data

The data we collected for evaluation is broadly classified into two datasets. The first
set consists of sensor data used for detecting departure/arrival time sequences. The
second set consists of timetables and railway route maps that are used for building a
train map, which is then used to search candidate routes for a given time sequence.

Sensor Data
Table 2.2 presents the two smart devices used for our analysis. As we shall see later,
different hardware sensors generally exhibit different values when given the same
input. Therefore, we need to train each classification model for each device. Details
regarding to the differences in device hardware will be discussed in Section 4.6.
Table 2.3 summarizes the sensor data we collected. These data were measured

across seven lines, operated by two railway companies. Four lines, Yamanote Line,
ChuoLine, Keihin-TohokuLine, and SaikyoLine, are operated by East Japan railway
company. Three subway lines, Fukutoshin Line, Marunouchi Line, and Nanboku
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Table 2.3 Sensor data collected for our analysis.

Data name Device Type # stations # lines # blocks

HTC_H HTC H 57 5 12,007
HTC_B HTC B 29 1 2,561
Nexus_H Nexus H 29 1 2,543
Nexus_B Nexus B 54 5 8,576

Table 2.4 Statistics of the trainmap built from railway routemaps and timetables.
Number of links is taken from timetables for weekdays.

# railway companies # lines # stations # links

172 597 9,090 2,277,397

Table 2.5 Numbers of labeled blocks used for evaluating performance of activity
detection. All the labeled blocks are collected at the stations of Yamanote Line.

Data vehicle walk others

HTC_H 609 1,327 510
HTC_B 691 1,360 510
Nexus_H 686 1,352 505
Nexus_B 602 1,304 505

Line are operated by Tokyo Metro. Of these lines, Yamanote Line is one of the
busiest and most important lines that connect major stations in Tokyo. As shown in
the table, we distinguish between two measurement types: a device held by hand (H)
or located inside a still bag (B), which could be placed on the knee or on a rack. As
we mentioned in Section 3.3, an adversary can distinguish the hardware of devices.
He/she can also know whether a smart device is being held in someone’s hand or is
inside a bag by reading the ambient light sensor or proximity sensor.

Railway Route Maps and Timetables
While the coverage of collected sensor data is limited to a certain location, we use
entire train services operated in Japan for building a trainmap. Table 2.4 summarizes
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Table 2.6 Performance of detecting vehicle activity. ACC, FNR, and FPR are
accuracy, false negative rate, and false positive rate, respectively.

Data ACC (mean/std) FNR (mean/std) FPR (mean/std)

HTC_H 0.941/0.011 0.042/0.022 0.078/0.013
HTC_B 0.965/0.009 0.024/0.012 0.047/0.014
Nexus_H 0.943/0.013 0.041/0.014 0.074/0.021
Nexus_B 0.969/0.009 0.023/0.012 0.041/0.016

the data we collected. Note that a link l(A,B,Td,Ta, L) is defined in Section 2.3.5.
We also note that if we can further specify the residential location of a victime, e.g.,
Kyoto area, the amount of data and candidate routes can be further reduced.

2.4.2 User activities detection

We applied our user activities detection scheme to the data shown in Table 2.5. The
parameters of random forest were empirically optimized as n = 50 andm = 4, where
n is the number of trees and m is the number of features used for each tree. To assess
the generalization of the result, we employed 10-times, 10-fold cross-validation
tests. We focused on the accuracy of detecting vehicles because it plays a crucial
role in determining the departure/arrival time sequence. If a block of vehicle was
incorrectly classified as walk or others, we defined it as a false negative. If a block
of walk or others was classified as vehicle, we define it was false positive.
Table 2.6 summarizes the results. We noticed that classification accuracies are

generally good in all the cases. We also noticed that measurement types of H, i.e., a
device was inside a still bag, gave better accuracies. The result is intuitively natural
because holding a smart device by hand may introduce motion noise.

2.4.3 Departure/Arrival Time Sequences Detection

Next, we applied our departure/arrival time sequence detection algorithm to the
extracted user activities. For each dataset, we picked up departure/arrival time
sequences of 30 stations. The 30 samples are divided into a training set and
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Table 2.7 Absolute errors between detected times and observed (ground truth)
times; departure (top) and arrival (bottom). m and σ are mean and standard
deviation, respectively.

absolute errors of detected departure times.
Data min (sec) max (sec) m (sec) σ

HTC_H 1.97 3.54 2.79 0.46
HTC_B 2.04 3.06 2.53 0.23
Nexus_H 2.33 7.94 4.60 1.84
Nexus_B 1.55 2.76 2.17 0.24

absolute errors of detected arrival times.
Data min (sec) max (sec) m (sec) σ

HTC_H 2.52 6.75 4.13 1.18
HTC_B 1.71 4.63 3.21 0.77
Nexus_H 3.07 10.78 6.03 2.22
Nexus_B 2.22 5.16 3.43 0.80

a test set. Using the training set, the parameter of EWMA, λ, was optimized
so that the difference between the detected departure/arrival time and observed
departure/arrival time is minimized. Note that “detected” times are derived from
sensors, “observed” times are manually labeled ones, and “scheduled” times are
derived from a timetable corresponding to a train. To evaluate the performance,
we employed 10-times, 3-fold cross-validation tests; i.e., 30 samples are randomly
divided into 20 samples for a training set and 10 samples for a testing set, using
different random seeds. Table 2.7 summarizes the absolute errors between detected
and observed departure/arrival times. Note that observed departure/arrival times
are not necessarily the scheduled times listed in timetables. The difference between
the observed and scheduled times is shown in Fig. 2.5.
As we see, the detected departure/arrival times are close to the observed depar-

ture/arrival times. Maximal time differences are less than 3-11 seconds. On average,
time differences are roughly smaller than 6 seconds. This amount of error has little
impact on the overall estimation accuracy because our route detection, which makes
use of train timetable, can allow up to 30 seconds of difference between the detected
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Fig. 2.5 Distributions of difference between observed and scheduled times. De-
parture times (top) and arrival times (bottom).

time and scheduled time.
In addition, the observed departure/arrival times are also close to the scheduled

times. Roughly 85% of trains depart within 60 seconds after the scheduled time
has passed. Roughly 75% of trains arrived within 30 seconds around the scheduled
time.
In summary, the detected departure/arrival times by the RouteDetector framework

are close to the observed departure/arrival times, which are close to the scheduled
times. In the next subsection, we show how we search routes given the detected
departure/arrival time sequences. We also present several case studies in Sec. 2.5.

2.4.4 Candidate Routes Detection

While the evaluation of departure/arrival time detection scheme required empirical
data, the evaluation of the candidate routes detection algorithm can be generalized
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Fig. 2.6 Number of links vs. number of candidate routes.
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by exploring paths on a train graph*1. Using the train graph constructed from the
data shown in Table 2.4, we study the relationship between the number of links
and the number of corresponding candidate routes. Figure 2.6 shows the results.
(a) includes no line change, (b) includes one line change, and (c) includes two line
changes, respectively. In (a), we can see that average number of identified routes
becomes close to one if the number of stations used on a trip is more than six; i.e.,
if we observe more stations, the sequence of departure/arrival times become more
unique. Even if the number of links is one, roughly 50% of time sequences Td,Ta
have less than four candidate routes. In addition, as shown in the panels (b) and (c),
the RouteDetector can cope with a train trip with multiple line changes. We also see
that if a train trip includes line change(s), the number of candidate routes becomes
smaller, indicating line changes allows us to further narrow down the number of
candidate routes.
Next, we study how quickly the search algorithm works. From the entire train

graph, we first enumerate the routes whose lengths are less than 15 links, where
we allowed, at most, two line changes. The number of enumerated routes was
6,404,455,757. Using the C++ implementation of the algorithm that runs on a
commodity PC, all these routes were searched within 74 mins. On average, a route
was searched within 7.1 microseconds. Thus, the candidate routes detection worked
quickly even though the scale of the train graph was huge.

2.5 Case study
In this section, we demonstrate the feasibility of the RouteDetector framework
through the field experiments. Using sensor data collected from smartphone or
tablet, we try to identify a route used for a trip. For brevity, we present three typical
cases below. Figure 2.7 presents a map of lines used for the case study.

■Case 1 In this case, the train trip involved two lines, Yamanote line and
Marunouchi line as shown in Fig. 2.7. Figure 2.3 presents the measured/derived

*1Because enumerating all the possible paths on a train graph could cause an explosion of states, we
limit our search to the paths with lengths less than 15 stations.
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Fig. 2.7 Map of lines used for case study analysis.

data for the case 1. From Fig. 2.3 (e), we detected departure/arrival time
sequence. The results are summarized in Table 2.8. As we see, all the detected
departure/arrival times were correctly detected. Next, given this time sequence, we
search the corresponding routes. The result is shown in Table 2.9, which shows two
routes are identified. Of the identified two routes, the route #1 had higher score and
was identical to the ground truth. Thus, the RouteDetector successfully detected a
route used for a train trip from sensor data.

■Case 2 The case 2 was measured at Yamanote line. There was no transferring
lines. The origin/destination stations were Tabata station and Kanda station, respec-
tively. The trip involved 8 stations. Figure 2.8 presents the detected activities and
departure/arrival time sequence. In this case, the detected departure/arrival times
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Table 2.8 Detected/observed/scheduled times for case 1. Detected and observed
times are rounded.

activities detected observed scheduled

walking etc. –
departure 10:56 10:56 10:56
arrival 10:58 10:58 10:58
departure 10:58 10:58 10:58
arrival 11:00 11:00 11:00
departure 11:00 11:00 11:00
arrival 11:03 11:03 11:03
walking etc. –
departure 11:10 11:10 11:10
arrival 11:12 11:12 11:12
departure 11:12 11:12 11:12
arrival 11:14 11:14 11:14
walking etc. –

Table 2.9 Two identified routes for case 1.

No. ground truth route #1 route #2

1 Kokkai-gijido-mae Kokkai-gijido Edogawabashi
2 Kasumigaseki Kasumigaseki Gokokuji
3 Ginza Ginza Higashi Ikebukuro
4 Tokyo Tokyo Ikebukuro

transfer
4 Tokyo Tokyo Ikebukuro
5 Kanda Kanda Kanamecho
6 Akihabara Akihabara Sengawa

score – 2,664 2,277

were correctly detected. Given the time sequence, a unique route was identified.
The identified route was identical to the ground truth.

■Case 3 The case 3 was measured at Fukutoshin Line. Again, there was no
transferring lines. The origin/destination stations were Nishi Waseda station and
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Fig. 2.8 Detected activities of the case 2.
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Fig. 2.9 Detected activities of the case 3.

Shibuya station, respectively. In this case, while the detected departure/arrival times
were identical to the observed times, they were slightly different from the scheduled
time; i.e., the train was delayed at the time of measurement. We will discuss the
issue of train operation in the next section. Given the detected time sequence, no
train route was identified from the train graph.

2.6 Discussion
In this section, we discuss several limitations of the RouteDetector framework. We
also discuss countermeasures against the new threat brought by the RouteDetector
framework.
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Table 2.10 Detected/observed/scheduled times for case 3.

activities detected observed scheduled

walking etc. –
departure 21:27 21:27 21:26
arrival 21:29 21:29 21:28
departure 21:30 21:30 21:28
arrival 21:32 21:32 21:32
departure 21:33 21:33 21:32
arrival 21:35 21:35 21:35
departure 21:35 21:35 21:35
arrival 21:37 21:37 21:37
departure 21:37 21:37 21:37
arrival 21:39 21:39 21:39
walking etc. –

2.6.1 Limitations

■Types of Vehicles While the target of this work was passenger trains, there are
other types of transportation services, such as monorails or airplanes. If we can
assume that vehicles are operated accurately according to timetable schedules, we
may have a good chance to detect a route used for a trip.
We conjecture that the RouteDetector will not work well for automobile transport

services such as public bus transportation because an automobile makes a stop
irregularly on the street, e.g., a traffic light. Figure 2.10 shows the vehicle activity
which we detected with the field experiment of the bus trip. We also marked the
times waiting for traffic lights and stopping at bus stops. Hence we could not find a
difference between them from their interval times, the RouteDetector failed to detect
accurate timeswhich the busmade a stop at bus stops. It may become distinguishable
by using other hints such as the audio announcement for passengers. We leave the
issue for future work.
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Fig. 2.10 Detected vehicle activities for a bus trip. The intervals marked with
diamonds represent the waiting time for a red traffic light; the intervals marked
with circles represent the waiting time at a bus stop.

■Train Operation Clearly, the success of the RouteDetector framework relies on
the accuracy of the train operation. The detection accuracy may be limited in an
environment where many trains tend to be delayed. For such a case, we need to
study up to what amount of delay the attack works. To this end, we could artificially
add a random delay and see how the framework reacts. We leave the analysis for our
future work. We note that even in case of delay, some transportation systems provide
information in real-time. Such information could be used to make the system more
tolerant to delay.
We also note that by continuously targeting a victim, an adversary can obtain

multiple observations, which likely include the correct estimations; e.g., commuting
routes. Thus, by collecting many candidate routes used by a target, an adversary can
figure out locations frequently visited by the target in a statistical way.

■Cross-Device Differences Our threadmodel assumes that an adversary knows the
type of hardware to be attacked; i.e., he/she needs to have training data for detecting
user activities for each device. In fact, we found that a random forest classifier trained
to work with smartphone data did not work well for detecting the activities of tablet
users. This observation suggests that a difference in hardware sensors is sensitive
to the user activity detection scheme. One approach to this problem is to prepare
training models for various devices. Another possible approach is to apply some
data-processing techniques that can absorb the differences in the measurements of
sensor values. We leave the issue for our future work.
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2.6.2 Countermeasures

Let us discuss some ways to mitigate or eliminate the risk caused by the attacks
using the RouteDetector framework. Michalevsky et al., presented Gyrophone [20],
which is an attack that recognizes speech by reading gyroscope. They mentioned
countermeasures in their paper that apply low-pass filtering to the raw samples pro-
vided by sensors. If certain pass frequencies are enough for most of the applications,
the filtering can be done without negative effects. In addition, they mentioned that it
should be controlled by permission mechanisms or certain explicit authorization by
the user when certain applications require an unusually high sampling rate. In the
same way, restricting access to raw sensor data and building some filtration mecha-
nism that can remove sensitive information without sacrificing other functions would
be promising approaches as countermeasures against the attack with RouteDetector.
For instance, to build a pedometer app, a developer can use a specific API that can
retrieve step counts, instead of reading row sensor values of accelerometer. Thus,
building wrapper APIs that provide many useful functions, while hiding raw data,
is a promising approach to thwart sensor-based side-channel attacks.

2.7 Related work
Techniques of sensor data analysis on mobile devices are mainly used for extending
the range of application of mobile services, e.g., activity recognition and location-
based services. On the contrary, attackers can expose user’s privacy by using above
similar techniques analyzing sensor data. We introduce techniques for both benign
and malicious uses.

■Location inference and route tracing techniques There exist some studies which
aim to identify user’s position without GPS. An indoor positioning system (IPS) is
presented as a solution to detect/navigate objects or people inside a building [25].
Instead of using GPS, IPS techniques make use of other information sources such
as radio wave, acoustic signals, and optical signals. As an example of malicious use
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of the positioning technique, Michalevsky et al. demonstrated that their developed
PowerSpy application enables the attacker to infer the target device’s location over
those routes or areas by simply analyzing the target device’s power consumption [22].
Also, a few works have focused on location identification by using the hardware-

based sensors on mobile devices. Hua et al. demonstrate that user’s location
in subway systems can be tracked by using an accelerometer and information of
interval of stations [26]. They use an ensemble interval classier built from supervised
learning to infer the riding intervals of the user. On the other hand, the RouteDetector
does not require training data for each station interval. Note that building the training
data requires time-consuming manual effort because it requires collecting data along
all possible paths. Our approach requires only railway route maps and timetables,
which are both accessible open data. Thus, our approach can cover nation-wide
locationswithout requiring large effort in building training data. Narain et al. showed
that Android app can infer routes of automobile travel without any permissions [27].
They modeled this problem as a maximum likelihood route identification on a
graph which is generated from a street map. What is common in these studies is
that the accuracy of location identification may decrease when the targeted area is
expanded. To demonstrate the feasibility in large scale, we evaluated a candidate
route detection algorithmwith a large railwaymap. Using timetables and route maps
for 9,090 stations, we showed that the number of candidate routes greatly decreases.
In addition, there is a work that aims to extract more privacy sensitive information

from GPS data. Tsoukaneri et al. developed Comber [28], which estimate user
paths from anonymized mobility data. Comber is a system that identifies users and
their corresponding paths given the completely anonymized GPS data as input.

■Device fingerprinting A device fingerprinting is other positive usage of sensors to
identify and authenticate physical devices. Many studies reported that various IDs on
a smartphone, e.g., IMEI (device ID), are easily stolen by malicious apps. To thwart
ID-theft, Dey presented AccelPrint, which is a system that fingerprints based on the
accelerometer, in order to identify devices without any specific ID or cookie [19].
Das et al. also discussed the feasibility of using sensors embedded in smartphones,
i.e., microphones and speakers, to uniquely identify individual devices [21].
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■Activity Recognition TheCenceMe system developed byMiluzzo et al. [29] com-
bines the inference of individuals’ activity using sensors’ information with sharing
of it through social networking services. To classify activities (sitting, standing,
walking, running) of individuals, the preprocessor of CenceMe calculates the mean,
standard deviation, and number of peaks of the accelerometer readings along the
three axes of the accelerometer. RouteDetector’s activity detection scheme is similar
to this one, but it is extended to capture the motion of vehicles. RouteDetector also
uses other hardware sensors, such as a magnetometer and gyroscope, which also
play a key role in improving detection accuracy.
The accelerometer sensor provides an attacker with other opportunities to build

new attacks. Many attacks targeting motion sensors, i.e., accelerometers and gyro-
scopes, that are embedded in smartphones are inferring user inputs, e.g., passwords
on touch-screens by monitoring readings collected from motion sensors [15–18].

■Sensor Access Control Although various kinds of sensor information contribute
to extend and improve mobile computing and services, privacy issues have already
been exposed as mentioned above. One of the most practical defenses is access
control to sensor data. Unnecessary access by apps to sensor data should be con-
trolled by OS or middleware on a device. FlaskDroid [30] and ipShield [31] are
implemented as middleware on Android OS and provide fine-grain access control
mechanism to resources including sensor information.

2.8 Conclusion
A novel, proof-of-concept side-channel attack framework called RouteDetector was
introduced. The key idea behind the framework is to leverage spatio-temporal
regularity of human mobility; i.e., we targeted passengers of train systems. Our
field experiments demonstrated that the RouteDetector framework detected depar-
ture/arrival times of vehicles with errors less than 6 seconds on average. Our
extensive simulation experiments using timetables and route maps for 9,090 railway
stations of 172 railway companies demonstrated that the RouteDetector successfully
identified routes used for a trip by train, and the average number of identified routes
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became close to one if the number of stations used on a trip was more than six.
These results quantitatively support that the attack is feasible.
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Chapter 3

Web side-channel attack to

identify social account

3.1 Introduction
The Social web has become ubiquitous in our daily lives. It includes not only popular
social networking services such as Facebook and Twitter but also other forms of web
services with social features, e.g., online services for video games such as XBox
Live and online auction/shopping sites such as eBay. Social web services facilitate
interactions between people with similar interests. The widespread adoption of
social webs has increased not only the number of users per service but also the
number of services used by each user. Mander [32] reports that Internet users have
an average of almost seven social accounts.
Like many other web services, social webs have security and privacy concerns.

What distinguishes social webs from other web services is that they have an intrinsic
privacy risk; users are encouraged to share large amounts of personal/sensitive infor-
mation on these services, e.g., personal photos, health information, home addresses,
employment status, and sexual preferences. An attacker can collate various data
from social web services to infer individuals’ personal information. For example, as
Minkus et al. [33] revealed, an attacker can recover a target’s purchase history if s/he
knows the target’s eBay account. The purchases may include potentially sensitive
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items, e.g., gun-related items or medical tests. To protect privacy, an eBay user may
use a pseudonym for his/her account name; even in such a case, however, an attacker
who can link an eBay account with an account on Facebook, which encourages users
to disclose their real name, can infer the identity of the actual person who purchased
the sensitive items on eBay.
In this study, we introduce a side-channel attack that identifies the social account(s)

of a website visitor. The key idea behind our approach is to leverage user blocking,
which is an indispensable mechanism to thwart various types of harassment in social
webs, e.g., trolling, unwanted sexual solicitation, or cyber bullying. Because user
blocking is a generic function commonly adopted by a wide range of social web
services, an attacker can target various social web services. In fact, our attack is ap-
plicable to at least the following various social web services: AshleyMadison, eBay,
Facebook, Google+, Instagram, Medium, Pornhub, Roblox, Tumblr, Twitter, Xbox
Live, and Xvideos. Because having an account with some of the services included
on this list could involve privacy-sensitive information, any account identification
can directly lead to privacy risks.
Our attack leverages the user-blocking mechanism as a means of generating the

leaking signals used for the side-channel attack*1. More specifically, we leverage
the mechanism’s inherent property that certain pages return different web content
depending on whether or not a user is blocked from another user. Our key insight
is that an account prepared by an attacker can hold an attacker-controllable binary
state of blocking/non-blocking, with respect to an arbitrary user on the service, and
this state can be retrieved as one-bit data through cross-site request forgery and a
timing side channel when a user visits the attacker’s website. We specifically refer
to the property that enables this key action as visibility control, as an attacker is
forcing another user to change how they see certain things in the system. Building
on this primitive, we show that an attacker can use a set of controlled accounts
to construct a controllable side channel, i.e, leaked data is completely under the
attacker’s control. Using this mechanism, we show that it is possible to design

*1More precisely, our side-channel attack is classified as a cross-site timing attack that will be
described in Section 3.3.1.
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and implement a robust, large-scale user identification attack mechanism on a wide
variety of social web services. We note that the number of accounts required has
a theoretically logarithmic relation to the number of users to be targeted, e.g., 20
attacker-prepared accounts are needed to cover 1 million users. The novelty of our
attack is discussed further in Section 3.3.3.
We note that disabling our side channel, i.e., user blocking, requires careful

assessment as it is a crucial function that is widely used on social webs. In Sec-
tion 3.2.2, we discuss our analysis of the data for measuring the blocking behavior
of more than 200,000 Twitter users [34] and revealed that 3,770 users have blocked
more than 1,000 accounts. Our online survey also revealed that 52.3%/41.4% of
Twitter/Facebook users have responded they have used the blocking mechanism
before, and 92.4%/93.9% responded there should not be a limit on the number of
blocks. These results suggest that neither disabling blocking nor posing a limit on
it, is desirable from the viewpoints of the actual usage of the service and users’
expectations. Furthermore, as we show in Section 3.5.3, limiting the number of user
blocks per account would not be an effective countermeasure owing to our additional
technique, user-space partitioning.
To verify the feasibility of our attack, we performed extensive empirical studies

using 16 existing social web services. We found that 12 of these services are
vulnerable to the attack. Using 20 actual accounts, we found that the attack succeeds
with nearly 100% accuracy under a practical setting.
Our contributions can be summarized as follows:

• We demonstrate that the user-blockingmechanism, which is an indispensable
function widely adopted in various social web services, can be exploited as
the leaking signals for a side-channel attack that identifies user accounts.

• In addition to the side-channel attack, we develop several techniques to ac-
curately identify users’ accounts. We also reveal that this attack is applicable
to many currently existing services. The attack has a high success rate of
nearly 100%, and is high-speed, taking as short as 4–8 seconds in a preferable
setting, or 20–98 seconds even in a crude environment with a large amount
of delay.
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• We discuss the principles, the practical aspects, and the limitations of this
study, as well as some defenses against the attack.

• We have successfully addressed this attack by collaborative working with
service providers and browser vendors.

3.2 Background: User Blocking
In this section, we first provide a technical overview of user blocking, which serves
as a side channel used for the user identification attack. Next, we demonstrate that
simply disabling/limiting this side channel is not a desirable solution against the
attack from the viewpoints of actual usage and user expectations.

3.2.1 Technical Overview

User blocking is a means of blocking communication between two users. Note that
some “blocking” mechanisms adopted by social web services are not user blocking
per se but message blocking, e.g., “muting” or “ignoring". While user blocking
rejects a person access to your account, message blocking filters out all the messages
(or notifications) originating from that person. Even if a person is blocked with
message blocking, this does not necessarily mean that they do not have access to
your online activities. In this chapter, we will not focus on message blocking unless
otherwise noted.
Social web services with user-blockingmechanisms have intrinsic web pages that

change content depending on the status of the visitor, i.e., whether or not a visitor is
blocked from another person. A typical example is a user profile data page, which
provides information on a person such as a photograph (icon), a self-introduction,
affiliation, recent posts/updates, etc. Figure 3.1 shows screenshots of some Facebook
profile pages. In the non-blocked state, the user profile information is fully available;
in the blocked state, these pieces of information are hidden. In addition to a user
profile page, some social web services provide pages that reflect similar differences.
A summary of such techniques is presented in Section 3.4.
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Fig. 3.1 Differences of appearance between non-blocking (left) and blocking
(right) pages on Facebook.

To execute user blocking, a user typically clicks the “block” button set on the
profile page of the person to be blocked or enters the account ID of the person
in a text box shown on a dedicated page for user blocking. Even though official
application programming interfaces (APIs) for performing user blocking are not
necessarily provided on all social web services, to the best of our knowledge no
services adopt a special mechanism, such as CAPTCHA, to prevent automated user-
blocking requests. Therefore, it is currently easy to perform the large-scale user
blocking necessary to implement our user identification attack by using a script that
emulates authentic requests or a headless browser.

3.2.2 Usage and Expectations

In this subsection, we discuss how many accounts do people block on social web
services and why they do so. To answer the “how many” question, we first present
statistics derived from the data collected at “Blocked By Me” [34], a web service
that displays a list of users a person has blocked on Twitter *1. The data, comprising
the number of blocked users for 223,487 unique accounts, were collected from

*1The dataset was provided courtesy of Gerry Mulvenna on August 14, 2017. Thus, there are
negligible differences from the figures listed on his webpage archived on August 20 [34]. Note that the
entire set was anonymized to protect user privacy.
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Fig. 3.2 Log-log CCDF of the number of user blocks per account on Twitter.
Y-axis shows the fractions of accounts who are blocking n (X-axis) or more users.
Mean value of the number of user blocks is 154.21.

March 2011 to August 2017. As an individual may have used the web service for
several times during the measurement period, we adopt the maximum value of the
numbers of blocked users measured for each person. Figure 3.2 shows the log-log
complementary cumulative distribution function (CCDF) of the number of blocked
users per account. It is seen that the distribution is heavy-tailed, indicating that,
although the majority of users blocked a small number of other accounts (median =
15), a non-negligible number of users had to block a large number of other accounts.
For instance, 3,770 users blocked more than 1,000 accounts. Note that the rate-limit
of access to Twitter API truncates the number of blocked users at 75,000; thus, users
indicated in the figure as having blocked 75,000 users are likely to have actually
blocked more. Besides this upper bound, there were several groups of accounts
having the same large number of blocked accounts. They may be using a shared
block list to evade various harassments. As checking the content of such lists is
not feasible, some users may have simply cumulatively added new accounts to their
block lists. These insights account for the reason why several users have a large
number of blocked users.
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Table 3.1 Demography of the expectations survey.

# respondents Gender Age (Years)
10–29 / 30–49 / 50–

Facebook 198 F:54 M:46 (%) 31 / 60 / 9 (%)
Twitter 170 F:56 M:44 (%) 41 / 51 / 8 (%)

Next, to answer the “why” question we recruited participants to take an online sur-
vey. As summarized in Table 3.1, the demography of the respondents shows that re-
sponses represent a diverse, cross-section of respondents. Key findings derived from
the closed-ended questions are as follows: (1) 52.3%/41.4% of Twitter/Facebook
users responded that they have used the blocking mechanism; (2) 92.4%/93.9% of
Twitter/Facebook users responded that social web service should not limit the num-
ber of accounts a person can block on the service. This result indicates that users do
not expect to have limitations on the number of blockable users. We also included
the open-ended questions: “why do you block other users?” and “why do you think
that there should be no limitation on the number of blocked users?” Typical answers
to the first question include “do not want to read the unwanted messages/posts” and
“not to be tracked by strangers/trolls/ex-friends/coworkers, etc.” Typical answers to
the second question include “there are a huge number of spam/bogus accounts” and
“just adding unwanted users to the blocklist is easy to maintain.”
The observations derived from the web service log analysis and the online survey

imply that simply disabling our side channel, user-blocking, is not a desirable coun-
termeasure against the threat from the viewpoints of actual usage of a service and
users’ expectations.

3.3 Attack Overview
In this section, we give a brief overview of the attack. We present the threat model
and the attack flow with a concrete example. We also elaborate on the novelty of the
attack and how it compares to some of the existing works in this area.
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3.3.1 Threat Model

In this attack, the attacker’s goal is to determine the social account of the visitors
to her/his website. We present two possible attack scenarios under this goal. In the
first, the attacker targets unspecified mass users in order to determine who visited
the attacker’s website, for the purpose of, e.g., marketing. In the second scenario
the attacker targets a limited number of users with already known identities, such as
their names or email addresses, and wants to determine their anonymous accounts
which cannot be searched for using such identities. In both scenarios, the visitor’s
privacy is obviously breached, as the identity of the user or their private activity is
revealed to the attacker without their consent. We further discuss the feasibility of
building a target list in Section 3.7.
Our attack employs a cross-site timing attack, which is an attack that combines

cross-site request forgery (CSRF) and a timing attack [35]. Cross-site timing attacks
bypass the same-origin policy and enable an attacker to obtain information using
the target’s view of another site, i.e., in our context, the attacker can know whether
or not the target user is blocked by the attacker-prepared signaling accounts. As we
detail in Section 3.4, the status of blocked/non-blocked can be estimated from the
time a web server of a social web takes to load a web content, or the round-trip time
(RTT), of the profile page of a signaling account. As such, we make the following
assumptions, which we will discuss in additional detail in Section 3.7.

AttackTrigger. We assume that the attacker can somehow induce their target to visit
a malicious website. For example, the attacker uses malvertising techniques [36] or
simply sends out email messages, in which case they can also link e-mail addresses
to social accounts. Further details on this are discussed in Section 3.7.
Log-in Status. We assume that a target person has logged into the social web

services, i.e., that cookies are enabled on the person’s web browser. This assumption
plays a vital role in the success of the attack because the logged-in status triggers
the difference between views of profiles of blocking and non-blocking accounts.
Because the majority of web services, e.g., Facebook, have an automatic sign-in
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option, we consider this assumption to be reasonable.
User Device. We assume that the target person uses a PC when accessing the

malicious website. This premise covers more than 70% of social web service
users [37]. Users of mobile platforms typically access social web services through
dedicated mobile apps instead of the web interface provided for mobile browsers.
Therefore, we cannot easily apply the attack to a mobile device.

3.3.2 Attack Flow and Example

As illustrated in Figure 3.3, our attack has two separate phases: the side-channel
control phase and the side-channel retrieval phase. Below, we describe the steps
in each phase with a concrete example. Note that some details are omitted for
simplicity but will be described in later sections.

I. Side-Channel Control Phase

The purpose of the side-channel control phase is to construct user-identifiable
side-channel data through user blocking. This phase is required just once before
performing the attack.

Step 1. Target Enumeration: For a social web service of interest, the attacker
first enumerates the users who will be the target of the attack. Let N be the number
of targets. The attacker can target either mass (randomly sampled or even all) user
accounts or a limited set of selected users (e.g., celebrities, high-level corporate
officers) according to the attacker’s purpose. Note that because this attack leverages
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CSRF, whether the account is closed (e.g., private, protected) is not a concern as
long as the account is blockable.
In the example, the attacker lists a small set of N = 8 users who will be the target of
the attack. If the attack succeeds, the attacker will be able to identify the accounts
of these eight users whenever they visit the attacker’s website while logged onto the
social web services.

Step 2. Bit Assignment: The attacker prepares m accounts on the social web
service where m is a number satisfying 2m ≥ N; these accounts are referred to as
“signaling accounts” and denoted as Si , i = 1 . . .m. The attacker encodes a set of
target users into bit arrays with length m, with the value of the i-th bit of each array
corresponding to “block” (1) or “do not block” (0) by account Si . The attacker can
express a maximum of 2m distinct target users, but at the cost of increase in m, the
attacker can further add redundant bits to produce an error-correcting code.
In the example, the attacker prepares m = 3 signaling accounts, S1, S2, and S3, with
each target user is mapped into distinct bit arrays of length m, as shown in the table.
All possible bit patterns are mapped to the users and there are no redundant bits.

Step 3. Target Blocking: The attacker controls the signaling accounts to block
each target user according to the bit array. Note that the number of blocking that
must be performed per signaling account is approximately half of the total number
of targets, as shown in the figure. It is not difficult to see that this requirement
can be controlled at the cost of adding more redundant signaling accounts, i.e., the
block/non-block table in the figure will become more sparse.
In the example, S1 is configured to block Erin, Frank, Grace, and Heidi, with the
remaining four users left non-blocked (default). S2 and S3 are configured in a similar
manner.

II. Side-Channel Retrieval Phase

The purpose of the side-channel retrieval phase is to identify the user utilizing the
data retrieved through the timing side channel. This phase is executed every time a
user accesses the attacker’s website.

Step 1. User’s Visit: When a user visits the web server under the control of the
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attacker, JavaScript code is downloaded and is executed on the user’s browser.

Step 2. RTT Measurement: The JavaScript code (as detailed in Bortz [35])
measures the time taken to load the profile of the signaling accounts by sending
HTTP requests to each of these accounts. Note that, as this is a CSRF, the request
is issued on behalf of the user’s account. Special RTT measurements are also
performed to determine the threshold value used in the next step, but we omit the
details here.
In the example, the script issues HTTP requests to the profile page of each of the
signaling accounts — S1, S2, and S3 — and receives the measurements of 214, 128,
and 223 ms, respectively.

Step 3. User Identification: The attacker then tries to identify the user from the
measurements acquired in the preceding step. Because the time needed to load the
profile of a blocking account exhibits a statistical difference from that needed to load
the profile of a non-blocking account, the sequence of measured time samples can
be used to build a bit array of “blocked” and “non-blocked” states. Once the bit
array is recovered, the attacker does a lookup on the bit array map and identifies the
user.
In the example, themeasurements, 214, 128, 223msare compared against a threshold
value of, say, 150 ms, and are determined to be non-blocked, blocked, and non-
blocked, respectively. This result is represented as a bit array {010}, enabling the
attacker to infer from the table that the user who visited the malicious site is Carol*1.

3.3.3 Novelty of the Attack

While our attack is certainly novel overall, its conceptual novelty lies primarily
in the side-channel control phase rather than in the side-channel retrieval phase,
which can be implemented using many different existing approaches in addition to
that adopted in our implementation [35]. The side-channel control phase is made
particularly novel by its use of the underlying concept of visibility control, which

*1As we will detail in Section 3.5, when {000} is observed, it is still possible to distinguish Alice
from non-target users by using two special accounts that do/don’t block all the target users.
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allows for the encoding and retrieving of arbitrary bits of data independent of what
the side channel is. This flexibility inherently enables the attack to achieve account
identification in a generic manner. By contrast, most similar methods that exploit
browser side channels focus on stealing the content of a specific resource, limiting
the acquirable data to that related to the targeted resource. Rather than studying
such resource-specific side-channel acquisition methodologies, we questioned and
exploited the design of general systems equippedwith visibility-control features, e.g.,
user blocking. To the best of our knowledge, this concept has not been previously
discussed in the literature despite its significant potential impact on nearly all major
social web services currently operating.
We now compare our work to two of the major recent studies in this area. The

goal of the first study was to retrieve various user data (e.g., age, contacts, search
history) through several browser side-channel techniques [38]. The major difference
between this work and ours is that it was somewhat focused on the development
of individual techniques to acquire resource-specific side channels. Although this
makes their methodology more powerful in the sense that it can even reveal a user’s
private information (e.g., search history), their methodology and goals were more
service- and resource-specific. By contrast, the purpose of our work is to find user
accounts and then link these with all available public information to which they are
tied independent of the target resource used for sending side-channel data. Another
similar study involved an attack based on browser history stealing [39], which,
in the authors’ words, shared a goal similar to ours of user identification or de-
anonymization. This approach exploited the (now eliminated) mechanism allowing
an attacker to infer a user’s browser history to determine if the user belongs to certain
groups based on the presence of access history to certain pages. Methodology-wise,
the concept of repetitively identifying the groups to which a target user belongs,
until to the point where the target can be uniquely identified, is conceptually similar
to our approach. The main difference, however, is that our method allows for the
construction of such groups in advance in an arbitrary manner. Thus, while our
approach requires some initial setup effort, it has the advantage of being much more
reliable in assuring identification (i.e., no ambiguity remains due to a lack of groups)
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as long as the side channel can be correctly retrieved.

3.4 User-blocking Side Channel
This section aims to demonstrate that the differences between the time to load profile
pages of blocked and non-blocked users can be used to perform a timing attack. In
the following, we first look at the characteristics of the RTTs measured for blocked
and non-blocked accounts. Next, we present several techniques that can increase the
distinguishability of RTTs. Finally, after applying the RTT expansion techniques,
we test whether the RTTs are statistically distinguishable using various social web
services, which include popular social media such as Twitter and Facebook and other
web services such as eBay and XBox Live.

3.4.1 Characteristics of RTTs

Here, we briefly describe the setup for our experiments. We executed a simple
JavaScript code on a browser logged-in to a service with account A. The JavaScript
issues GET requests to a page associated with an account which blocks A, and
another page associated with an account that does not block A. Our objective is to
see whether we can see the differences in the RTT measurements associated with
these two types of accounts: blocking and non-blocking.
In the following, we characterize the measured RTTs using three social web ser-

vices, Facebook, Twitter, and Tumblr as the representative examples. We study
other services in the next subsection. Figure 3.4 shows the distributions of the mea-
sured RTTs*1. For Facebook, there is a clear gap between the RTT distributions for
blocking and non-blocking accounts. For Tumblr, even though two distributions are
closer, we see the difference between the distributions. We study whether or not this
slight differences can be used as the timing side channel in Section 3.6. For Twitter,
the distributions suggest that there is no sufficient difference to distinguish their

*1The results of this section were measured in early 2017. As we will explain later in Section 3.8.3,
this attack is no longer work for the services that have adopted countermeasures through cooperation
with us.
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Fig. 3.4 Distributions of RTTs for blocking and non-blocking accounts.

RTT difference. Nevertheless, we have discovered that it is possible to intentionally
amplify their RTT difference by posting more content to the profile page. More
details on this will be described in the next subsection.
Note that, while we see longer RTTs for non-blocking accounts on Tumblr, we

see longer RTTs for blocking accounts on Facebook. It is natural that the profile
pages of blocking accounts are loaded quickly because the content of these pages
may be lighter than those of the profile pages of non-blocking accounts. While not
conclusive, we conjecture that this could be because Facebook does not utilize its
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Fig. 3.5 Distributions of RTTs for blocking and non-blocking accounts, after
filling the Twitter user profile page with content

server-side on-memory cache at all when generating content for the case of blocked.
In either case, we can distinguish between the blocked and non-blocked states using
the RTT measurements.

3.4.2 Improving RTT Distinguishability

We present three techniques that can make the differences in the RTTs more promi-
nent, i.e., these are the ways to make the timing attack more successful.

Change of content size. The first technique is to place as much information as
possible on the user profile pages of the signaling accounts. This technique can
increase the time to load the profile page when the signaling account of the page
is visible to the target, i.e., the signaling account does not block the target. We
performed a simple experiment using Twitter. We prepared two Twitter accounts,
one with the default setting and another with the maximum amount of content
(texts and URL links) that appears on the profile page. Figure 3.5 shows the RTT
distributions after filling the profile page with large amounts of content. Comparing
this with Figure 3.4 (b) which shows the RTT distributions before adding the content,
we now have a clear difference between blocked and non-blocked RTTs, suggesting
that this technique can dramatically improve their distinguishability.

Use of different pages. Another technique is to make use of various pages other
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than the user profile page. In many cases, the page subject to blocking is the user
profile page, which displays the user’s basic information or recent posts. However,
depending on the service or their implementation, there are cases where observable
differences do not appear on the profile page but do appear on other pages. For
example, on eBay, a user cannot prohibit another user from accessing their profile
page; however, a user can prohibit another user from bidding on the items they list.
In other words, the content on the item page would yield a difference depending
on whether the viewing user is blocked by the owner of the item. Leveraging this
fact, by preparing an item beforehand and making the victim send requests to the
item page instead of the profile page, the attacker would be able to observe the RTT
difference required for the attack.
Similarly, Flickr does not prohibit a blocked user from viewing the blocker’s

profile page, but it does prohibit the blocked user from sending a message to the
blocker. More specifically, there is a page for sending a messages to other users
and, if the sender is not blocked from the receiver, a text area and a submit button
are displayed on the page; however, if blocked, these objects are not shown and a
warning message is displayed. Such a difference may also yield the RTT difference
necessary for our attack.
In addition, some pages with AJAX-based implementation have a structure where

after requesting and rendering the initial HTML content, they request additional con-
tent, e.g., a JSON content, from another URL using JavaScript’s XMLHttpRequest.
In some services, the blocked/non-blocked difference is only present in the JSON
data that is acquired afterwards, instead of in the HTML content acquired first. The
problem with this situation is that the RTT measurement script used for cross-site
timing attacks does not actually render the acquired page content; therefore, the
RTT of the content acquired afterward from JavaScript cannot be measured. In such
cases, the attacker must directly send requests to the URL for the JSON data. In our
investigation, we found that Tumblr and Xbox.com had this structure, but we were
able to make the attack feasible by switching the request destination to the JSON
URL instead of the HTML URL.
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Table 3.2 Social web services with user-blocking mechanism. ∆0.05 shows the
difference in 5-percent tile values for blocked/non-blocked RTT measurements. Dist. is the
distinguishablity showing Y when the p-value less than 0.01. # of users are from various
web resources as of May 2017

Service Category # users ∆0.05 p-value Dist.

Facebook Social 1.96B 212 ms <0.0001 Y
Instagram Photo 700M 29 ms <0.0001 Y
Tumblr Microblog 550M 43 ms <0.0001 Y
Google+ Social 540M 1,080 ms <0.0001 Y
Twitter Microblog 328M 312 ms <0.0001 Y
eBay Shopping 167M 589 ms <0.0001 Y
PornHub Porn 75M 9 ms 0.0034 Y
Medium Forum 60M 332 ms <0.0001 Y
Xbox Live Game 52M 110 ms <0.0001 Y
Ashley Madison Dating 52M 8 ms 0.0097 Y
Roblox Game 48M 98 ms <0.0001 Y
Xvideos Porn 47M 16 ms <0.0001 Y
Quora Forum 190M 5 ms 0.4561 N
Flickr Photo 122M 1 ms 0.2678 N
DeviantArt Art 65M 11 ms 0.0674 N
Meetup Social 30M 9 ms 0.3878 N

3.4.3 Distinguishability of RTTs

We testedwhether theRTTs for blocking and non-blocking accountswere statistically
distinguishable. To this end, we leveraged the Mann-Whitney U test, which is a
nonparametric statistical test used to compare differences between two independent
samples; it tests whether a randomly selected value from one sample is less than or
greater than a randomly selected value from another sample. For our experiments,
we picked 16 popular social web services. For each service, we measured the RTTs
between blocking/non-blocking accounts and the blocked account. We applied the
Mann-Whitney U test and computed the p-values. The results are summarized in
Table 3.2. The results show that all services have low p-values and imply that the
distributions are distinguishable in 12 out of 16 services when the significance level
is 0.01.
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3.5 User Identification Attack
In this section, we first formulate the user identification attack, which works on the
basis of the two building blocks, user-blocking and cross-site timing attack. The
attack introduces two functions, encoding and decoding, which are the functions
an attacker can arbitrarily set to map target users and leaking information (RTTs).
Next, we describe the techniques we developed for the timing attack. Finally, we
present two extensions of the attack. These extensions aim to make the attack more
successful.

3.5.1 Formulation

Let m and N denote the numbers of the signaling and target accounts, respectively.
We configure m as the minimum integer value that satisfies 2m ≥ N . If an attacker
wants to target one million of accounts, m is configured to m = 20.
In the setup phase, an attacker creates a table that maps target user accounts to

bit arrays with a length of m. Let Ui (i = 1, . . . ,N) be the target user accounts.
For each Ui , the table has a bit array entry, Bi = {b1b2 . . . bm}, where bj ∈ {0,1}
corresponds to a bit. We refer to the rule that maps Ui into Bi as encoding, i.e.,

Bi = encode(Ui).

Next, we configure the signaling accounts, Sj ( j = 1, . . . ,m) as follows. Let
θi j ∈ {0,1} (i = 1, . . . ,N, j = 1, . . . ,m) be an indicator function that satisfies

θi j =


1 if bi j = 1 ,

0 else,

where bi j is the j-th bit of the bit array Bi . Then, for each signaling account, Sj ,
the account is configured to block the user Ui if θi j = 1. Because each bit takes
the value bi j = 1 with a probability of 0.5, each signaling account needs to block
approximately N/2 target accounts. One may instantly come up with a defense that
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poses a limit on the number of user-blocks an account can have. To thwart such a
countermeasure, we propose a technique described in Section 3.5.3.
In the attack phase, the attacker sets up a malicious website and lets target users

access it, following our threat model. As described in the previous section, using
the timing attack, the website can secretly measure RTTs for the m of signaling
accounts. Note that measurements can be parallelized to speed up the process. Let
Rj = {R1,R2, . . .} be the sequence of RTT measurements obtained for the signaling
account Sj . Using the techniques that will be described in the next subsection, we
estimate whether or not the target user is blocked by Sj . Let b̂j ∈ {0,1} denote the
estimate of the blocked/non-blocked (1/0) from the RTT measurements, i.e.,

b̂j = est(Rj).

Using the entire estimates, we have the estimate of B as B̂ = {b̂1 . . . b̂m}. Finally,
we identify the target user using the table created in the setup phase; i.e.,

Û = decode(B̂).

In the next subsection, the estimation, b̂j = est(Rj), is described in detail.

3.5.2 Estimating Blocked/Non-blocked Status

Prior to the actual attack, we determine whether or not a visitor of the website has
been included in the target list, i.e., we employ a membership test. To this end, we
prepare the following two reference accounts: a closed account, which blocks all
users included in the list of target users, and an open account, which does not block
any users at all. We first measure the RTTs for each of the closed and open accounts.
The measurements consist of k0 trials for each account, where we use multiple trials
because the decision based on a one-shot measurement may have errors due to jitter
in the RTTs. The idea is to compare the measured RTTs for closed/open accounts
to see if they are significantly different. If we observe a significant difference, we
can conclude that the visitor has been listed and continue the attack; otherwise, the
visitor has not been listed and the attack procedure is terminated.
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To determine if the measured RTTs are for the closed or open accounts, we again
leverage the Mann-Whitney U test. Because the computation of the U test is simple
and lightweight, the membership test can be completed immediately after we collect
the RTTs. In this study, we adopted a significance level of α = 0.01. We also need
to configure the parameter k0. As shown in the next section, we empirically derived
a conservative value of k0 as k0 = 30, which worked for various social web services.
After the attacker determines that the visitor is likely listed, the attacker moves to

the next step. Let C0.05 andO0.05 be the 5th-percentiles of the RTT values measured
for the closed and open accounts, respectively. We adopt the 5th-percentile as the
threshold to eliminate outliers. Note that, even though we could use the minimum
values for the RTTs as does the pathchar algorithm does [40], we observed that the
RTTs could include small outliers, which could be caused by server-sidemechanisms
such as data caching or load balancing. These values are used as the thresholds to
estimate the blocked / non-blocked state, i.e., for a measured RTT sequence for a
signaling account Sj , we compute the 5th-percentile of Rj as R0.05j . We do not
necessarily make k, the number of trials Sj , equal to k0. An attacker can adjust the k
according to the his/her requirements for the trade-offs between accuracy and speed.
If the obtained R0.05j is closer to C0.05, the attacker estimates the visitor has been
blocked by the signaling account Sj . Otherwise, s/he estimates the visitor has not
been blocked by the signaling account; i.e.,

b̂j =

1 if |R0.05j − C0.05 | < |R0.05j −O0.05 |,

0 else.

By continuing this process for all j ∈ {1, . . . ,m}, the attacker can estimate the
bit array of the visitor as B̂ = {b̂1 . . . b̂m}. Finally, the bit array can be decoded
into a user ID, Û = decode(B̂), using the procedure we have shown in the previous
subsection. Despite the simplicity of the procedure shown above, as we show later,
it can estimate the closed/open states very accurately.
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3.5.3 Extensions

Here, we introduce two extensions of the attack, error-correction coding and user-
space partitioning, which aim to further improve the accuracy in noisy environments
and to enhance the size of the target when the number of blocks per account is limited,
respectively.

Error-correction Coding. Under a stable environment, accurately classifying a bit
is not difficult since sufficient significant difference between blocked/non-blocked is
present. This will also be shown later in Section 3.6. On the other hand, abnormal
RTTs due to some irregular factors such as temporary server overload may lead to a
bit-error. Needless to say, the infrastructures used in services such as those listed in
Table 3.2 which host 30 million to 2 billion users tend to be quite resilient against
such failures; nevertheless, we can still apply error-correction algorithm in order to
eliminate even the slight possibility of identification failure due to noise.
In this chapter, we adopt a Reed-Solomon code, which has a high error-correction

capability and is relatively easy to implement. In fact, as we will demonstrate
later, the use of the Reed-Solomon algorithm actually contributes to improving
the estimation accuracy in a noisy environment. Note that other error-correction
algorithms could be used for this purpose. To select themost suitable error-correction
algorithm, one must take into account several factors such as the error probability
distribution, the error characteristics such as bursts, and the requirements of the
available computing resources. In this chapter, we are focused on the proof of
concept; therefore, we consider choosing the best error-correction algorithm to be
out of the scope of this study.
The Reed-Solomon algorithm can correct up to K/2 symbol errors, where K is

the number of redundant symbols and r (bits) is the size of the symbol. Because
the number of bits initially allocated to each user is m, the number of signaling
accounts that needs to be prepared by the attacker is m + rK , i.e., the attacker needs
to prepare an additional rK extra signaling accounts. In the setup phase, the attacker
first encodes the bit arrays allocated to each user using a Reed-Solomon encoder, and
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then blocks the accounts from the signaling accounts according to the bit values of
the newly encoded bit array. In the attack phase, by decoding the bit arrays obtained
via the cross-site timing attack using the Reed-Solomon decoder, the attacker can
obtain an error-corrected bit array.

User-space Partitioning.
As described in Section 3.2.2, simply enforcing a limit on the number of blocks

would violate a user’s right to block and may result in a serious degradation of the
service quality. For services that still enforce a limit despite this negative impact, the
technique shown below would be effective. Letting this limit to be L, the number of
candidate target users covered for identification is also limited to L when using the
procedures we have introduced up to this point. To lift this limitation, we can employ
a technique we call user-space partitioning, which in this case splits candidate users
into S user spaces each containing L users, allowing us to cover up to LS users in
total.
In the setup phase, for each user space j ∈ {1, . . . ,S}, an attacker prepares a

reference account that blocks all users belonging to the j-th user space and the
⌈log2 L⌉ of signaling accounts that are used to map the targets in the space. We also
prepare the two reference accounts, the closed and open accounts, which are used as
the basis of the RTT-based blocking/non-blocking estimation. In total, the number
of signaling/reference accounts required is S⌈log2 L⌉ and S + 1, respectively.
In the attack phase, the attacker (1) identifies which user space the target user

belongs to and then (2) identifies the target in the user space. In step (1), as in
the procedures described in the previous subsection, for each of reference account,
k requests are launched to determine the user space to which the target belongs.
Note that the RTT values obtained here can be reused as the training data in step
(2). In step (2), for each of the L users in the user space found in step (1), the
same identification process is performed as explained earlier. Note that, because we
use a different set of signaling accounts for each user space, the request URL for
the cross-site timing attack must be changed depending on the outcome of step (1);
however, this can be handled with conditional branches in the JavaScript code.
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3.6 Field Experiments
In this section, we perform the field experiments. We first evaluate the key success
factor of the attack – RTT measurement, which plays a vital role in classifying
blocked/non-blocked status using the cross-site timing attack (Section 4.4.3). Next,
we evaluate the feasibility of our user identification attack; namely, we study the
identification success rate (Section 3.6.2) and time to complete the attack (Sec-
tion 3.6.3).

3.6.1 Accuracy of Bit Array Estimation

Due to space and time constraints, we evaluated the accuracy using RTT values
experimentally measured for the following three services: Facebook, Twitter, and
Tumblr. As shown in Table 3.2, these services have the top number of users and,
at the same time, had no limitations such as the limit on the number of blockable
users at the time of the experiment. In addition, as mentioned in Section 3.4, each
of these three services had different characteristics in the blocked/non-blocked RTT
difference: relatively large, medium, and small, respectively.
The experiment was conducted by executing the JavaScript on a consumer laptop

PC and measuring the RTT.
We argue that the user’s environment, i.e., network conditions and web browser

engines, does not affect the success or failure of our attack. More precisely, our attack
implementation absorbs the differences in the processing time caused by network
jitters or the performance of the rendering engines. To demonstrate the assumption,
we used the following three different network environments: wired LAN, Wi-Fi,
and tethering. The wired LAN and Wi-Fi were connected to a commercial Internet
service provider, and we assumed that this is the environment of PC users who are
the main targets of our attack. To prove that our attack is feasible even in crude
environmental conditions, we also used a tethering network hosted on an Android
device connected to a 4G network provided by a mobile network carrier. In addition,
we installed three of the most used browsers in the world, Google Chrome (v58),
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Mozilla Firefox (v53), and Microsoft Internet Explorer (v11). Note that trying all
combinations was difficult due to space limitations. Unless otherwise noted, we
used Google Chrome with a wired LAN.

Membership Test. We first tested the accuracy of the membership test. We
measured the RTT for each of the closed and open accounts. As mentioned earlier,
the measured RTT values are used for (1) the membership test and (2) deriving
the thresholds for the bit classification, which will be described later. Note that an
attacker needs to calibrate the thresholds before launching the attack because the
RTT values depend on the geographical location and network environment.
We repeated the following experiment 100 times. While logged on to a target and

non-target account, we launched k0 trials for each account and decided whether or
not the account was included on the list by applying the Mann-Whitney U test. We
refer to the true positive rate (TPR) as the ratio of correctly deciding that the target
was included in the target, and the true negative rate (TNR) as the ratio of correctly
deciding that the target was not included on the target list.
Figure 3.6 shows the relationship between k0 and TPR/TNR. When k0 is small,

we have a small number of samples to estimate the states. Nevertheless, thanks to
the strong distinguishability of the RTT distributions, TNR was 0.97 for all k0, i.e.,
there were very few false negatives, which are events where the target account was
estimated as not being listed. Second, for TPR, we saw degradation in the accuracy
when k0 was small, especially for Tumblr. As k0 increases, however, the TPR
approaches 1.0. When choosing the value of k0, it is preferable that the accuracy
is consistent and that we see a sufficient difference in the samples. If k0 is large,
the accuracy will increase but the number of trials will also increase and the time
needed for an attack would become too long. In this experiment, we empirically
chose k0 = 30, which achieved perfect estimations for all the services. We will use
the values of C0.05 and O0.05 calculated from this k0 as the thresholds used in the
next step.
The measured RTT values can be affected by various external factors such as

network latencies or the type of browser. We studied how these factors affected the
TPR/TNR. Table 3.3 shows the results. The number of trials was set to k0 = 30.
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Fig. 3.6 Relationship between the number of trials (k0), and TPR/TNR.

Table 3.3 TPR and TNR for under various conditions.

Facebook Twitter Tumblr
TPR TNR TPR TNR TPR TNR

Chrome/Wired 1.00 0.99 1.00 0.98 1.00 0.99
Wireless 1.00 0.98 1.00 0.98 1.00 0.99
Tethering 1.00 0.98 1.00 0.97 1.00 1.00
Firefox 1.00 0.98 1.00 1.00 1.00 1.00
IE 1.00 0.98 1.00 0.98 1.00 1.00

Single Bit Classification. Next, we evaluated the accuracy of classifying a single bit
into blocking or non-blocking. Again, we used three social web services, Facebook,
Twitter, and Tumblr. For each service, we performed k trials of RTT measurements
for each of two signal accounts with blocked/non-blocked states. We continued
this process for 100 times and took the mean values of the following metrics.
We refer to the true blocking rate(TBR)/true non-blocking rate(TNBR) as the rate

59



Chapter 3 Web side-channel attack to identify social account

Table 3.4 Accuracy of classifying a single bit forWired(top), Wi-fi(middle), and
Tethering(bottom)

Facebook Twitter Tumblr
k TBR TNBR TBR TNBR TBR TNBR

1 1.00 0.98 0.99 0.99 0.67 0.99
3 1.00 1.00 1.00 0.99 0.89 0.99
5 1.00 1.00 1.00 0.97 0.95 0.98
10 1.00 1.00 1.00 1.00 0.98 1.00
20 1.00 1.00 1.00 1.00 1.00 1.00
30 1.00 1.00 1.00 1.00 1.00 1.00
1 1.00 0.98 0.98 0.99 0.84 0.99
3 1.00 1.00 1.00 0.99 0.98 1.00
5 1.00 1.00 1.00 0.99 1.00 1.00
10 1.00 1.00 1.00 1.00 1.00 1.00
20 1.00 1.00 1.00 1.00 1.00 1.00
30 1.00 1.00 1.00 1.00 1.00 1.00
1 1.00 0.97 0.98 0.99 0.68 0.99
3 1.00 0.99 1.00 0.98 0.92 0.99
5 1.00 0.98 1.00 0.97 0.98 1.00
10 1.00 1.00 1.00 1.00 1.00 1.00
20 1.00 1.00 1.00 1.00 1.00 1.00
30 1.00 1.00 1.00 1.00 1.00 1.00

of correctly detecting the blocking/non-blocking user as a blocking/non-blocking
user, respectively. Table 3.4 shows the results. When k ≥ 20, the detection
becomes perfect for all the three services. Moreover, in a stable environment such
as Facebook/Wired, the classification succeeds perfectly even with k = 3.

60



3.6 Field Experiments

3.6.2 Attack Success Rate in the Wild

We now show the result of our experiment conducted in an environment imitating an
actual attack scenario in the wild. We set the length of a bit array to m = 24, which
can cover over 16 million users. In addition, we applied a Reed-Solomon code with
a block length of 4 bits with eight redundant bits, which enables it to correct one
block of error. According to the above setting, we prepared 34 accounts in total,
which included 32 signaling accounts, a closed account, and an open account, with
the appropriate blocking done against the users on the target list.
Regarding the targets, we assigned a random bit array of length 24 to each of

the 10 social accounts we actually own. We encoded these bit arrays using the
Reed-Solomon code and calculated the bit arrays assigned as the redundant bits. We
prepared 10 additional accounts which are not included in the list. For each of the
10 accounts on the target list and the 10 accounts on the non-target list, we logged
in to and accessed the attacker’s website and evaluated if the account was correctly
identified. We repeated the visit two times per account, resulting in a total of 40
identification trials.
As the parameters for the number of trials, we selected k = 30, which we

experimentally determined yielded good accuracy. The service and network en-
vironment pairs we chose were Facebook/Wired LAN, Twitter/Wireless LAN, and
Tumblr/Tethering. We refer to the TPR as the rate of correctly identifying a target to
be included on the list, and the TNR as the rate of correctly identifying a non-target
to be not included on the list.
As mentioned above, we conducted the experiment twice with each account using

10 target accounts and 10 non-target accounts. Note that the denominators of TPR
and TNR are 20. In addition, of the users who were identified as being included on
the target list, we refer to the identified rate (IDR) as the rate of correctly identifying
the user without the error-correction code, and refer to the identified rate with error
correction (IDR/EC) as a similar figure but with error correction. In Table 3.5, we
show the classification accuracy we obtained in this experiment.
The result shows that the experiment succeeded with extremely high accuracy.
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Table 3.5 Accuracy of the User Identification Attack.

Facebook/wired Twitter/WiFi Tumblr/tethering

TNR 1.00 (20/20) 1.00 (20/20) 0.95 (19/20)
TPR 1.00 (20/20) 1.00 (20/20) 1.00 (20/20)
IDR 0.95 (19/20) 1.00 (20/20) 1.00 (20/20)
IDR/EC 1.00 (20/20) 1.00 (20/20) 1.00 (20/20)

This was expected from the good results we obtained from the experiments in
Section 3.6.1. For Facebook/Wired, there was one failure case which identified
the target as a wrong user. Examining the network log for this case revealed that
some requests to one of the signaling accounts had returned 502 response code due
to temporary server error. Our script measures the RTT even if an error code is
returned, but since no content is returned, the response time would not likely be the
one desired. This occurred with 3 of the requests over only 1 second of duration,
but the RTT value had dropped to about 1/5 of the true RTT which was enough to
cause a bit error. Nevertheless, applying the error-correction algorithm, we were
successfully able to correct this bit which resulted in the success of identification.
Note that, because we adopt the 5th-percentile, our attack is resilient to outliers
which are too late, but it is prone to those which are too early.
Another case of failure was for Tumblr/Tethering, where a non-target user was

incorrectly identified as a target. This is a rare case where a significant difference of
around p < 0.01 happened to occur when comparing the two sets of 30 non-blocked
requests. This example also benefited from the error-correction algorithm; without
error-correction this visitor would have been identified as another user, but with
Reed-Solomon code, although the error was not correctable due to too many errors,
the error was still detectable. In such a case, we can still prevent mis-identification
by concluding that the membership test failed and restarting the test.
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3.6.3 Time to Complete the Attack

The shorter the time required for the attack, the more feasible the threat is. While the
total number of requests can be calculated beforehand, the time required to complete
these trials is dependent on the actual RTT; therefore, it needs to be evaluated
experimentally. Figure 3.7 shows the relationship between the number of trials and
the required time for each service.
The “upper bound” value shown for each service assumes the request with

whichever has the larger of the blocked/non-blocked RTT values, that is, it as-
sumes the case with the longest time needed for identification; i.e., it is the worst
case. Conversely, the “lower bound” value assumes the request with whichever has
smaller value of the two, that is, it assumes the case with the shortest time needed for
identification; i.e., it is the most optimistic case. The number of trials issued in par-
allel was set to 6, which is the default maximum number of concurrent connections
allowed on major browsers such as Chrome, IE, and Firefox.
The total number of requests needed to make anm-bits decision, or in other words,

to identify the target within 2m users, is mk + 2 × 30 when k0 = 30. For example,
for m = 24, or targeting 16 million users, the total number of requests needed is
780 when k = 30. This would require 20–50 seconds for Facebook, 32–98 seconds
for Twitter, and 64–68 seconds for Tumblr. According to Table 3.4, in the case of
Twitter, we have sufficient accuracy even with k = 10. The number of necessary
trials is 300 with this setting, and the time required is 12–37 seconds. Moreover, we
can observe that we can achieve sufficient accuracy even with k = 3 on Facebook.
The total number of requests is 132 which only takes 4–8 seconds.

3.7 Discussion
In this section, we discuss the attack’s principle, practical aspects, known limitations,
and ethical considerations.
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3.7.1 Principle of the Attack

We argue that the most fundamental assumption of our attack is the presence of the
visibility control property in the system, that is, “given a multi-user web service,
there exists a way for a (rogue) user to control what other users see, individually
for each user”. To be more formal, the part “what other users see” can be replaced
with “any observable side-effect of the system caused by a certain action taken by a
user”. This assumption combined with a timing side-channel attack, which enables
the attacker to steal this information from outside the system, is our attack’s big
picture. Because closing a side channel completely is well-known to be difficult, we
believe that this visibility-control assumption is the main principle of this attack. In
the case of our scenario, the ability to build signaling accounts using user blocking
corresponds to this principle.
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We stress that other services under this assumption, even those without user
blocking but with a similar mechanism such as group invitations or file access
permissions, may also be subject to a similar class of attack. Still, the social
web/user-blocking example that we used in this chapter is by far the most practical
application. This is likely because it satisfies several additional conditions: (1) the
control can be done without the target’s approval or notification and (2) the control
can be done at a fine granularity, i.e., the different bits of information assignable per
user is large. More specifically in our case, condition (1) is almost always achieved
as an inherent nature of user blocking and condition (2) is achieved with unlimited
granularity, in theory, via the creation of an arbitrary number of signaling accounts.
Even though we omit further discussions concerning the presence of other such
properties or the exploitability of similar systems, we believe that there is a need for
further study concerning this subject.

3.7.2 Practical Aspects

Here we describe some of the applications and characteristics that extend and
strengthen our attack from a practical perspective.

Target List Building.
With our attack, it is assumed that an attacker knows the identity of a victim

account in advance, implying she/he has a list of identities for the target users.
Thus, building a target list is a crucial factor for attack success. A limited set of
selected accounts and unspecified large number of accounts are both attractive target
candidates for an attacker. The former will include famous people (e.g., politicians,
corporate officers, celebrities, YouTubers) or intimates of the attacker. In such cases,
the target list can be built based on the attacker’s knowledge or the existing open
list [41]. The latter*1 is realistic by using automation techniques, in particular,
chasing the chain of friends’ friends [42, 43]. Ugander et al. [44] revealed that

*1Even in the latter case, it is reasonable for the attacker to create subsets of all enumerated users
according to user attributes (nationality, age, school, company) and reduce the number of user blocks.
We discuss the limit of user blocking in Section 3.7.3.
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99.91% of Facebook users belong to a single huge relationship graph, and Dey et
al. [42] found that 82.73% of users publish their friend lists. Depending on the
service feature, user searches and user groups may be useful for user enumeration.
Some services, such as Twitter, can list all accounts simply by incrementing a
numerical user identifier.

Identity Linking. User identification is only threatening if the identity is linkedwith
another piece of information meaningful to the attacker. In the case of our attack,
the most basic form of linking can take the form of linking the user’s identity with
the fact that the user has visited the website prepared for the attack. In this case, if
the web content reflects the visitor’s preference in any way, it may become a privacy
concern. This is suitable not only for advertisement or access analyses, but also
for various social engineering attacks or for blackmailing those who have accessed
sites hosting pornographic content or illegal content such as pirated software. In
addition, our attack can be implemented to reveal accounts on multiple services
simultaneously and linking these accounts together could significantly worsen the
impact of a privacy leak.
Another form of linking occurs when a person is induced to access the web

server via an extra hop through another medium, resulting in a linking between the
target’s identity and the medium used. For example, on a social web service where
the target’s identity is already known, an attacker can send the target a message
containing the URL of the web server. Note that this would allow the attacker to
link even the web services which our attack cannot be applied to. Similarly, we can
link non-web services, such as email or mobile text messages, which would result
in linking an email address or phone number with a social account. Further, we
can also link the target’s physical identity, such as the target’s physical presence or
their residence, by placing or mailing a physical object, e.g., a poster or a flier, with
URL, QR code or NFC tags printed on them. Note that, even though it may appear
that revealing additional identities of a target when the target’s other identities are
already known is not so significant, it could lead to the identification of a target’s
anonymous account that cannot otherwise be discovered in a straightforward way.

Group Identification. Even though we have focused on the goal of user identifi-
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cation in this chapter, we can easily extend this goal to group identification, that is,
identifying not the user’s exact identity but more general properties such as gender,
nationality, or interests. The attacker could map each user to a bit array correspond-
ing to the target attribute collected from the structured information available on the
social web service. Note that this can be seen as a generalization of the user-space
partitioning described previously, where a user space corresponds to a group of
users with an arbitrary size mapped to a certain attribute. Group identification can
be used by advertisement providers to track the visitor’s attributes without unneces-
sarily revealing their user account. Note that the number of bits required for group
identification would typically be much lower than that for user identification, making
this attack significantly easier to execute than user identification.

Authentication-backed Identification. One major strength of our approach is that
it is backed by the identity information guaranteed by the authentication system of
the service, making it resilient against spoofing or misidentification, both of which
many other methodologies suffer from. To give a simple example, when using
an IP address for identification or even tracking, IP spoofing or ambiguity due to
NAT or dynamic IP would interfere with this process. Note that social web service
accounts are increasingly used as a building block in themodernweb’s authentication
infrastructure. It is still possible to perform spoofing and one way is to create an
account trying to mimic one’s identity; however, scrutinizing the account content
would usually easily reveal whether it is a spoofed account. Another way is to use
a stolen account, but in this case, the victim user should be worried about much
more serious problems than privacy leakage. In addition, because authentication
is independent of the environment, it enables cross-environment (e.g., cross-device
and cross-browser) identification and tracking, which is often difficult to achieve
using other approaches.

3.7.3 Limitations

Login State Persistence. Our attack relies heavily on the assumption that the target
user’s service login state is alive while the user browses other websites. This as-
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sumption is reliant on the web cookie mechanism; therefore, the cookie’s expiration
time or the user configuring the browser to clear cookies on closing the browser
may affect the availability of our attack. Social web services, fortunately, tend to
set a relatively long or even no expiration time, as seen in the commonly available
“keep me logged in” features [45]. This is likely due to the incentives to service
providers from a marketing perspective, e.g., tracking and advertisement, contrary
to security-critical services such as Internet banking that set a short expiration time.
In addition, users would lose the convenience of being able to access the service
without the need to login every time, which may be a disappointing trade-off, espe-
cially for social web services which often assumes constant usage. Note that, simply
determining whether a user is logged in to certain services can be accomplished in
much more lightweight ways [46], which can also be used in our attack to pre-select
the services to be targeted.

User Environment.
Our results from field experiments in Section 3.6 indicate that our attack is almost

completely successful with various network environments and browser engines.
However, we recognize that we could not consider all Internet user conditions.
Especially, a non-negligible portion of users today access social web services from
their mobile devices, so whether or not the attack is feasible in this realm is an
important question to explore. For recent mobile platforms such as Android and
iOS, the mechanics of most web browsers as well as the effective performance of the
hardware and network are not significantly different from those of a PC; therefore,
they are expected to yield sufficient RTT differences making our attack feasible. We
partially proved this in our experiment with the tethering environment. The primary
concern instead is the unique software ecosystem of mobile devices: many services
encourage users to use a service-dedicated app instead of a browser to access their
service. Even though some collaborative features such as social plug-ins or single
sign-on may still urge some mobile users to log on via a browser, this ecosystem
will surely limit the target coverage of our attack to a certain degree. We believe
that a possible attack vector for this scenario which may need an attention might
be an exploitation of a mobile platform-specific side channel, e.g., Android’s Intent

68



3.7 Discussion

and shared memory [47], to bypass the app sandbox, analogical to how our attack
exploited a browser timing side channel to bypass the same-origin policy, but we
leave further discussions on this for a future study.

Limits on Blocking. For most services, limitations on the total number of users
allowed to be blocked or the rate at which blocking requests can be issued from a
single account are not explicitly stated. We have experimentally confirmed that at
least ten million users on Twitter and three million users on Facebook and Tumblr
were actually blockable over five days using a single account, and only DeviantArt
and eBay seems to have had a limit on the maximum number of blocks per account.
Also, Instagram appears to have had a limitation on the rate, i.e, the number of
accounts that can be blocked per minute. As we have shown in Section 3.2.2,
neither disabling blocking nor posing a limit on it, is desirable from the viewpoints
of the actual usage of the service and users’ expectations. However, having limits
on the total number of users to be blocked blocking may interfere with the process
of building a high-coverage signaling account. Still, user-space partitioning would
help alleviate this limitation and much of the effort for building signaling accounts
is required just once, implying that attackers are not so exceedingly time-constrained
when performing this task.

Length of Visit. As shown in Section 3.6, the attack can be executed in a realistically
short time. In certain circumstances, however, such as when the RTT is high or when
there is a need to use user-space partitioning, which increases the number of requests,
it may be difficult to keep the user on the samewebpage long enough for the JavaScipt
code to finish. Even if the attack duration is short, because the behavior of a user is
often unpredictable, a shorter attack is always preferable. A trivial approach to this
problem is to prepare webpage content that is sufficiently “attractive” to cause the
users to stay longer, but this is very user specific. Another solution is to save and
restore the attack state between multiple attack sessions. By having the JavaScript
code send partial results to the server as it attacks, even if the attack terminates
before finishing, the attack can be resumed at another session from where it left off.
Training data may be reused or not depending on the “distance" between each attack
session, e.g., the time elapsed between sessions. Another solution is to open pop-up
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windows in the background or a tab and execute the attack there, hoping that the
user would not notice or care to close it immediately.

3.7.4 Research Ethics

In Section 3.2.2, all the data have been collected with user consent, and we followed
guidelines presented by the ethics committee of Waseda University. To evaluate the
feasibility and impact of the attack techniques on social web service users, experi-
menting with attacks on actual social web services cannot be avoided. All attacks
in our experiment were checked manually and only generated a restricted amount
of request. As a result, our experiment was carefully controlled and only generated
a restricted amount of traffic (requests), which did not increase the workload of the
sites and did not undermine the quality of their services. Furthermore, our experi-
ment performed against our own accounts. Therefore, actual users of the services
we examined were not directly involved in our attacks.

3.8 Defense
In this section, we discuss defensive measures that can be taken against our attack.
We also present several countermeasures adopted by today’s popular social web
services. These countermeasures were developed with our aid.

3.8.1 Server-side Defenses

Access Validation. Token-based defenses are widely adopted to prevent CSRF
attacks in general. The server appends a one-time random string, or token, to each
URL link generated and verifies it when the link is accessed. A defense mechanism
that validates a referrer is also effective because it can accept requests from the
whitelisted URLs while rejecting all other illicit requests. These prevent any third-
party from generating a valid link; therefore, the attacker will not be able to receive
valid responses containing information useful for the attack as long as the access
validation process is applied before the block checking at the server side. A major
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drawback of these defenses is that legitimate requests are also affected and result
in consequences such as breaking search engine results or prohibiting any means
of link sharing, including those on blog posts and emails. Promising approaches
which acquire user contents by using JavaScript’s XMLHttpRequest with a valid
token such as placeholder [38] and double-submit cookie [48] have been proposed,
but they still require a change in the system architecture design and also the delay
caused by the extra hop may negatively affect the user experience.

Response Time Control. The server could adjust the response time to minimize
the block/non-block RTT difference. One approach is to artificially equalize the
response times by adding delays to whichever has the shorter response time. Another
approach is to randomize the response time by injecting delays of random lengths.
However, either approach would impose a non-negligible performance degradation
experienced by the user. In general, this type of timing side-channel defense is
difficult to perfect; the profound study results in this area provide advanced attackers
with various ways to amplify such differences at the cost of some increased effort,
as we also have exemplified in this chapter. In addition, the network delay is often
uncontrollable from the service side so a perfect control is difficult to attain from the
server side. Note that such types of server-side defenses are often thwarted by other
timing side-channel approaches, such as those leveraging the content cache [38].

UsageRestriction. Our attack, when implemented in a straightforwardmanner, may
exhibit behavioral characteristics not usually seen in the normal usage of the service.
One case of such an anomaly would occur in the preparation process of a signaling
account, which requires a massive number of blocking requests to be issued within a
short time. Another is in the process of launching the attack from a browser, which
causes an abnormal number of GET requests to be issued. The service can either
restrict this in the form of the rate limit, CAPTCHA, or some means of heuristic
anomaly detection. However, these defenses are expected to function only as a mild
mitigation, because advanced attackers have historically been able to circumvent
these types of defenses. The most extreme form of restriction is to remove the user-
blocking capability from the service. All these types of restriction-based measures,
however, lead to an undermining of the ability to suppress those who truly needs to
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be blocked, which may result in a degradation of the service quality.

3.8.2 Client-side Defenses

User. Defenses that can be taken by a user alone are limited to quite trivial ones.
One approach is to isolate the browsing environment in which the web service is
used, from that used for other purposes. This can be done, for example, by using the
private browsing feature commonly available in modern browsers, logging out of the
service when not in use, or simply using a different browser. Another approach is
to restrict the execution of JavaScript using browser plug-ins such as NoScript [49],
which would severely impair the attacker’s capability to carry out such an attack.
Obviously, all of these measures greatly increase the user’s cost of not only using the
service but also web browsing in general. Further, it would deactivate some features
such as social plug-ins or advertisements that benefit both of the user and the service
provider.

Web Browser.
SameSite is a cookie attribute that allows flexible control of sending cookies in

cross-site requests. It is necessary for a browser to adopt this feature, and the web
service explicitly declares it in the HTTP header. Since browsers behave as if a
user is not logging in when they make cross-site requests from a third-party site
to a social web service, the difference in RTTs between blocking and non-blocking
states disappears in principle. A Web service that adopts SameSite has two options:
samesite=strict and samesite=lax. For the strict option, browsers remove
cookies from any cross-site request, including redirects and link clicks. As with
access validation, legitimate page transitions may be disturbed as well. For the
lax option, however, browsers do not prevent the sending of cookies for cross-
site requests with top-level navigation. Thus, the lax option can be used to defend
against variousCSRFs including timing attackswhile not sacrificing user experience.
However, samesite=lax still interferes with the functionality of some social plug-
ins that leverage cookies from the social web such as Facebook Comments.
Equalizing the response times, for example, by injecting delays to the processing
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time, is also a possible measure that can be taken on the browser side. Further, the
detection of anomalies such as frequent errors resulting from failed rendering may
be another option. However, these approaches are often only viable for a certain
class of timing side channels; they tend to be thwarted eventually by other newly
developed timing attacks using different approaches, as exemplified by the attack
using the browser cache mentioned in another study [38]. Cao et al. [50] proposed
Deterministic Browser, which prevents JavaScript program from accessing the phys-
ical clock when a secret event is running at the same time. Instead, they provide an
auxiliary clock that indicates virtual time to make timing attacks impossible. This
approach works against our attack, but it can hinder the browser rendering for some
websites.

3.8.3 Responsible Disclosure

Even though the attack technique in this chapter does not arise from a specific social
web service, according to the principle of responsible disclosure, we have reported
the details of our attacks and the experimental results to the relevant social web
service providers and browser vendors to mitigate the attacks and improve future
security design of social web.
Through these activities, Twitter has been able to prevent the threat of account

identification by changing their specifications [51] to improve their security mech-
anism. Their primary defense approach is using the SameSite attribute. This
is currently working for most users, as we and Twitter encourage major browser
vendors (including Microsoft and Mozilla) to adopt SameSite. For older browser
versions, Twitter’s other mitigation still prevents our attack. It is referrer-based ac-
cess validation, but a user with invalid referrers is not simply denied. Instead, such
a user is redirected to a stepping-stone page with no difference in RTT with only
minimal JavaScript code then redirected again to the destination page via JavaScript.
This works as a defense because the time taken to redirect via JavaScript cannot
be measured under the constraints of the same-origin policy. While this approach
slightly increases the number of requests, users coming from external links reach
the desired content on the social web. However, the user cannot use browsers (or
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browser extensions) that remove the referrer for privacy.
Although we refrain from disclosing the brand names, several other service

providers and browser vendors have already finished implementing defenses. Some
services have decided not to adopt countermeasures. They considered the cost
required for implementing defenses and the degradation of user experience due to
specification changes. We leave investigating these trade-offs between the feasibility
of defenses and the risk of user privacy for our future challenge.

3.9 Related Work
We present previous studies concerning timing attacks, which is the fundamental
technique of our method uses to compromise user’s privacy. In addition, we intro-
duce other side-channel leaks based on the browser functionality and methods to
identify and track users.

3.9.1 Web-based Timing Attacks

A timing attack is one type of side-channel attack that has been studied primarily in
cryptography for more than two decades. It typically exploits the execution time or
power consumption of a cryptosystem to infer secret key and private information [52,
53]. Studies of timing attacks have expanded to web-based systems regardless of
the cryptosystem that exploits the communication time and size of the web content.
Bortz et al. presented a pioneer work on web-based timing attacks; they classified
web-based timing attacks into direct timing and cross-site timing [35]. Our proposed
method is classified as a web-based cross-site timing attack.
A direct timing attack directly measures the response times from a system, e.g.,

a website, to extract private information from a system. Bortz et al. proposed a
method to expose valid user names and the number of private photos from a website
by measuring the response time of HTTP [35].
Cross-site timing attacks indirectly measure the response times or content size of

web on a browser to extract private information from a browser or website. It enables
a malicious website to obtain information about the target browser’s view of another
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website using cross-site content that often violates the same-origin policy [54].
Methods to break the same-origin policy and their countermeasures have been
presented since 2000 [55–58]; however, the many of cross-origin techniques are still
effective on modern web browsers. Liang et al. leveraged several CSS features to
indirectly monitor the rendering of a target resource [59]. Goethem et al. proposed
a cache-based timing attack using HTML5 functionalities, which can bypass the
same-origin policy, to estimate the size of a cross-origin resource [38]. Gelernter et
al. presented a cross-site search attack on well-known web services to distinguish
between the loading time of empty and full responses, which enables an attacker
to distinguish sensitive data of target users in the records of the web services [60].
Jia et al. demonstrated a geo-location inference attack on well-known web services,
by using the load time of location-sensitive resources left by geography-specific
websites (e.g., Google’s local domain) [61]. Our method is not new in the context
of cross-site attacks; however, the idea is unique in that user blocking, which is a
fundamental functionality of social webs, can be used to distinguish between the
blocked and non-blocked states, consequently, to identify their social accounts.

3.9.2 Side-channel Leaks on Browsers

A side-channel attack on a browser without timing features is another class of
privacy attack. To infer the status of a cross-origin resource, Lee et al. developed
a URL status identification attack using ApplicationCache that exploits cross-
origin resource caching [46] and they suggested advanced privacy threats using this
attack, e.g., login status determination and internal web server probing. A history-
stealing attack is a typical attack that extracts the browsing history of URLs [39,62].
This attack depends on the fact that a web browser handles CSS properties of URL
hyperlinks differently depending on whether the URL was previously accessed by
the web browser [63], which leads to allowing a client-side script to access such
properties. To fix this, Baron proposed a solution that blocks scripts from accessing
the CSS properties of hyperlinks, and all popular browsers (e.g., Firefox, Chrome,
Safari, and IE) have adopted this solution. As a result, this type of history stealing
attack no longer works in the latest versions of these browsers [64, 65].
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3.9.3 Social Account Identification

While various methods have been proposed to effectively track browsers on the
Internet (e.g., cookies, browser cache, and browser fingerprints [66–68]), these
tracking methods focus on identifying distinct browsers rather than the user of
the browsers. The goal of our proposed method is to identify the user (i.e., the
social account) which differs from the above browser tracking methods. Many of
the studies introduced in Sections 3.9.1 and 3.9.2 mentioned that their proposed
methods could be used for inferring the status of social account or identifying social
account [35, 39, 46]. The difference of response time of login page was used for
inferring account validity [35]. With a similarmotivation, conditional redirections of
the HTTP URLs was used for distinguishing whether a victim web browser is logged
in to the web service [46]. The combination of group membership information, e.g.,
group ID or group directory in browser’s access history, was used for identifying
a social account [39]. These differences are extracted from previously provided
pages, e.g., login pages and group membership pages. In contrast, our method is
unique in that an attacker can fully control the visibility of pages in order to create
discriminable differences.

3.10 Conclusion
This chapter presents a practical side-channel attack that identifies the social account
of a user visiting the attacker’s website. It exploits the user-blocking mechanism, or
the visibility control property, commonly available in most social web services today
to create a controllable side channel that provides the attacker with complete and
flexible control over the leaked information, be it informative enough to uniquely
identify the user or be it highly resilient to noise. With experiments, we demonstrated
that our attack is in fact applicable to current mainstream social web services today
and we argued that defending against this threat would not be easy without imposing
a negative impact on the relevant services. It is ironic that the blocking feature
designed to suppress harmful users can now be turned against harmless users; some
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form of mitigation is urgent and a reworking of the design of this feature is suggested
and major services and browsers adopted new security features.
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Chapter 4

Analyzing the Inconsistency

between Behaviors and

Descriptions of Mobile Apps

4.1 Introduction
Most applications for mobile devices are distributed through mobile software distri-
bution platforms that are usually operated by the mobile operating system vendors,
e.g., Google Play and Apple App Store. Third-party marketplaces also attract mo-
bile device users, offering additional features such as localization. According to a
recent report published by Statista [69], the number of mobile app store downloads
in 2017 are expected to exceed 197 billion. Mobile software distribution platforms
are the biggest distributors of mobile apps and should play a key role in securing
mobile users from threats, such as spyware, malware, and phishing scams.
As many previous studies have reported, privacy threats related to mobile apps

are becoming increasingly serious, and need to be addressed [70–73]. Some mobile
apps, which are not necessarily malware, can gather privacy-sensitive information,
such as contact list [74] or user location [75]. To protect users from such privacy
threats, many ofmobile app platforms offermechanisms such as permissionwarnings
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and privacy policies. However, in practice, these information channels have not been
fully effective in attracting user attention. For instance, Felt et al. revealed that only
17% of smartphone users paid attention to permissions during installation [72].
The Future of Privacy Forum revealed that only 48% of free apps and 32% of
paid apps provide in-app access to a privacy policy [76]. Further more, Chin
et al. reported that roughly 70-80% of end users ignored privacy policies during
installation process [77].
Let us turn our attention to a promising way of communicating with users about

apps and privacy. This information channel is the text descriptions provided for each
app in a marketplace. The text description is usually written in natural, user-friendly
language that is aimed to attract users’ attention; it is more easily understood than the
typical privacy policy. In addition, when a user searches for an app in a marketplace,
s/he create query keywords, which are generally searched on text descriptions. Then,
users review the search results, often by reading the text descriptions; i.e., text
descriptions can work as a proxy to the user expectations. In fact, text descriptions
have a higher presence than permission warnings or privacy policies, and therefore,
are a good channel for informing users about how individual apps gather and use
privacy-sensitive information.
With these observations in mind, this work aims to address the following research

question through the analysis of huge volume of Android applications:

RQ: What are the primary reasons that text descriptions of mobile apps fail
to refer to the use of privacy-sensitive resources?

The answers to the question will be useful for identifying sources of problems
that need to be fixed. To address the research question, we developed a framework
called ACODE (Analyzing COde and DEscription), which combines two technical
approaches: static code analysis and text analysis. Using the ACODE framework,
we aim to identifiy reasons for the absence of the text descriptions for a given
privacy-sensitive permission. Unlike the previous studies, which also focused on
analyzing the text descriptions of mobile apps [78–81], our work aims to tackle with
a huge volume of applications. To this end, we adopt light-weight approaches, static
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code analysis and keyword-based text analysis as described below.
Our static code analysis checks whether a given permission is declared. Then, it

investigates whether the code includes APIs or content provider URIs *1 that require
permission for accessing privacy-sensitive resources. Lastly, it traces function calls
to check that the APIs and/or URIs are actually callable to distinguish them from
apps with dead APIs/URIs that will never be used; e.g., reused code could include
chunks of unused code, in which privacy-sensitive APIs were used.
Our description analysis leverages techniques developed in the fields of informa-

tion retrieval (IR) and natural language processing (NLP) to automatically classify
apps into two primary categories: apps with text descriptions that refer to privacy-
sensitive resources, and apps without such descriptions. Here we present three
noteworthy features of our approach. First, since we adopt a simple keyword-based
approach, which is language-independent, we expect that it is straightforward to
apply our text analysis method to other spoken languages. In fact, our evaluation
through the multilingual datasets demonstrated that it worked for both languages,
English and Chinese. Second, although our approach is simple, it achieves a high
accuracy for nine distinct data sets. The accuracy is comparable to the existing
pioneering work, WHYPER [79], which makes use of the state-of-the-art NLP
techniques. The reason we developed the ACODE framework instead of using the
WHYPER framework was that we intended to extend our analysis to multiple natural
languages. The WHYPER framework leverages API documents to infer semantics.
As of today, Android API documents are not provided in Chinese. Accordingly,
we were not able to make use of the WHYPER framework to analyze Chinese text
descriptions. Finally, like the WHYPER framework, our text analysis technique
does not require manually labeled descriptions. Therefore, it enables us to enhance
the text analysis of descriptions to any permission APIs without requiring expensive
labeling tasks. It also enables us to reduce cost of text analysis significantly. The
key idea behind our approach is to leverage the results of code analysis as a useful

*1Content providers manage access to data resource with permission using Uniform Source Identifiers
(URIs); for instance, android.provider.ContactsContract.Contacts.CONTENT_URI is an URI
used to get all users registered in the contact list.
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hint to classify text descriptions.
To the best of our knowledge, only a few previous studies have focused on analyz-

ing the text descriptions of mobile apps [78–80]. A detailed technical comparison
between these studies and ours is given in section 4.7 (see Table 4.10 for a quick
summary), and here we note that this work is distinguishable from other studies by
being an extensive empirical study. The volume of our dataset is several orders of
magnitude larger than previous studies. In addition, because we wanted to extract
generic findings, we conducted our experiments in such a way as to incorporate
differences in the resources accessed, market, and natural language. Our analysis
considered access of 11 different resources taken from 4 categories, i.e., personal
data, SMS, hardware resources, and system resources (see Table 4.1). We chose the
resources because they are the most commonly abused or the potentially dangerous
ones. We collected 100,000 apps from Google Play and a further 100,000 apps
from third-party marketplaces. We also collected 10,000 paid apps from Google
Play for comparison. For the natural language analysis, we adopted English and
Chinese, because they are the two most widely-spoken languages worldwide [82].
Furthermore, to evaluate the performance of text analysis, we obtained a total of
6,000 text descriptions from 12 participants. Each description was labeled by three
distinct participants.
The key findings we derived through our extensive analysis are as follows:
The primary factors that are associated with the inconsistencies between text

descriptions and use of privacy-sensitive resources are broadly classified into the
following four categories.:

(1) App building services/frameworks: Apps developed with cloud-based app
building services or app building framework, which could unnecessarily
install many permissions, are less likely to have descriptions that refer to the
installed permissions.

(2) Prolific developers: There are a few prolific developers who publish a large
number of applications that unnecessarily install permissions and code.

(3) Secondary functions: There are some specific secondary functions that
require access to a permission, but tend to be unmentioned; e.g., 2D barcode
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reader (camera resource), game score sharing (contact list), and map apps
that directly turns on GPS (write setting), etc.

(4) Third-party libraries: There are some third-party libraries that requires
access to privacy-sensitive resources; e.g., task information (crash analysis)
and location (ad-library, access analysis).

The main contribution of our work is the derivation of these answers through the
extensive analysis of huge volume of datasets. We believe that these findings will be
useful for identifying sources of problems that need to be fixed to improve the users’
awareness of privacy on mobile software distribution platforms. For instance, as our
analysis revealed, there are several HTML5-based app-building framework services
that unnecessarily install permissions, which could render the system vulnerable
to additional threats of malicious JavaScript injection attacks. Therefore, an app
developer should not install unnecessary permissions. However, if a developer
used a rogue app-building framework service, he/she may likely not be aware of
unnecessary permissions installed. ACODE enables operators of mobile software
distribution platforms to pay attentions to these cases, which are invisible otherwise.
The rest of this chapter is organized as follows. Section 4.2 describes our the

ACODE framework in detail. In section 4.3, we show the details of the static code
analyzer. Section 4.4 contains details of the text description classifier. We present
our findings in section 4.5. Section 4.6 discusses the limitations of ACODE and
future research directions. Section 4.7 summarizes the related work. We conclude
our work in section 4.8.

4.2 ACODE framework
In this section, we provide an overview of the ACODE framework. We also connect
the components of the ACODE framework to the corresponding sections where we
will give their details.
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No (C4)

Input 210K apps

Apps that declare the permission (C0)

Apps with callable API 
functions/URIs (C2)

Yes (C3)

Static code 
analyzer (Sec. 4.3)

Text descriptions 
analyzer (Sec. 4.4)

Analysis 
(Sec. 4.5)

Apps with 
informative 
descriptions

What are 
these apps?

Apps with API functions/URIs (C1)

Does description of the app refer 
to the use of the permission?

Fig. 4.1 Overview of the ACODE framework.

4.2.1 Goal and overview

Figure 4.1 is an overview of the ACODE framework. As discussed previously,
we used a two-stage filter, employing a static code analyzer and text descriptions
analyzer. In the first stage, the first filter extracted apps that declare at least one per-
mission, e.g., location (C0). The second filter extracted apps with code that include
corresponding APIs/URIs (C1). The third filter checked whether the APIs/URIs
are callable from the apps by employing function call analysis (C2). In the second
stage, the text classifier determined whether the text descriptions refer to the use
of location explicitly or implicitly (C3), or not at all (C4). Note that we are not
considering apps that do not declare to use permission, but have descriptions that
indicate that permission is needed.
These filtration mechanisms enabled us to quantify the effectiveness of text de-

scriptions as a potential source of information about the use of privacy-sensitive

84



4.2 ACODE framework

Input

Permission 
filtration 

(Sec. 4.3.1)
APK

Description
Text preprocessing 

(Sec. 4.4.1)

Function call 
tree analysis 
(Sec. 4.3.3)

Text classification 
(Sec. 4.4.3)

Static code analyzer (Sec. 4.3)

Text descriptions Analyzer (Sec. 4.4)

Privacy-sensitive
Resource

{Location, Contact, 
camera}

Keyword extraction 
(Sec. 4.4.2)

Permission-API/URI map

Extract apps with 
callable API 
functions/URIs 
associated with the 
permission

Does a description 
refer to the use of 
permission?
 {Yes No}

API/URI 
filtration
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Fig. 4.2 Components of the ACODE framework.

resources. For instance, by counting the fraction of apps that are classified as C3
(see figure 4.1), we can quantify the fractions of apps with text descriptions that
successfully inform users about the use of privacy-sensitive resources for each re-
source. By examining the sources of apps that are classified as C4, we can answer
our research question, RQ. The detailed analysis will be shown in section 4.5.
Figure 4.2 illustrates the components used in the ACODE framework. For each

application, we had an application package file (APK) and a description. APK is
a format used to install Android application software. It contains code, a manifest
file, resources, assets, and certificates. The text descriptions of apps were collected
from mobile software distribution platforms. As shown in the figure, the APKs and
text descriptions were input to the static code analyzer and description classifier,
respectively.

4.2.2 Static code analyzer

The goal of the static code analyzer is to extract APK files whose code include
callableAPIs/URIs that are required to use permissions related to a privacy-sensitive
resource. For a given permission, first, we extracted apps that declare the use (C1, see
section 4.3.1). Then, we checked whether disassembled code of the app include the
APIs/URIs, which require the permission (C2, see section 4.3.2). If code included
at least one API or URI, then, we checked whether it was actually callable within
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the app by investigating the function call graph with some heuristics we developed
(C3, see section 4.3.3). It should be noted that the static code analysis has some
limitations that we will discuss in section 4.6.

4.2.3 Description classifier

The goal of the description classifier was to classify text descriptions into two
categories: those that refer to the use of a resource (C3), and those that do not
(C4). In other words, we wanted to determine automatically whether a user can, by
reading the text description, know that an app may use a privacy-sensitive resource.
To do this, we leveraged several text analysis techniques. We also make use of the
results of code analyzer to extract keywords associated with a resource. To extract
keywords that are useful in classifying text descriptions, we first present text data
preprocessing techniques in section 4.4.1. Next, in section 4.4.2, we present the
keyword extraction method that leverages techniques used in the field of information
retrieval. We also evaluate the accuracy of the description classifier in section 4.4.3.

4.3 Static Code Analysis
This section describes the static code analysis techniques used in the ACODE frame-
work. The purpose of static code analysis was to extract apps that include callable
APIs/URIs to use a given permission. Before applying function call analysis, which
is a process of checking whether given function is callable, we applied two filtration
mechanisms: (1) permission filtration and (2) API/URI filtration. These filtrations
are effective in reducing the computation overhead needed for function analysis.
We also note that permission filter is useful to prune apps that include callable
APIs/URIs, but will not actually use it.

4.3.1 Permission filtration

First, we applied permission filtration, which simply checks whether an app declares
a given permission. According to Zhou et al. [83], permission filtration is quite
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Table 4.1 List of permissions used for this work.

Category	
  	
 Permission	
 Defini1on*	
  

Personal	
  	
  
data	


ACCESS_FINE_	
  
LOCATION	


Allows	
  an	
  app	
  to	
  access	
  precise	
  loca9on	
  from	
  loca9on	
  sources	
  
such	
  as	
  GPS,	
  cell	
  towers,	
  and	
  Wi-­‐Fi.	
  

GET_ACCOUNTS	
 Allows	
  access	
  to	
  the	
  list	
  of	
  accounts	
  in	
  the	
  Accounts	
  Service.	
  

READ_CONTACTS	
 Allows	
  an	
  applica9on	
  to	
  read	
  the	
  user's	
  contacts	
  data.	
  

READ_CALENDAR	
 Allows	
  an	
  applica9on	
  to	
  read	
  the	
  user's	
  calendar	
  data.	
  

SMS	

READ_SMS	
 Allows	
  an	
  applica9on	
  to	
  read	
  SMS	
  messages.	
  

SEND_SMS	
 Allows	
  an	
  applica9on	
  to	
  send	
  SMS	
  messages.	


Hardware	
  
resources	


CAMERA	
 Required	
  to	
  be	
  able	
  to	
  access	
  the	
  camera	
  device.	


RECORD_AUDIO	
 Allows	
  an	
  applica9on	
  to	
  record	
  audio.	


System	
  
resources	


GET_TASKS	
 Allows	
  access	
  to	
  the	
  list	
  of	
  accounts	
  in	
  the	
  Accounts	
  Service	
  .	
  
(This	
  constant	
  was	
  deprecated	
  in	
  API	
  level	
  21)	


KILL_BACKGROUND_	
  
PROCESSES	
 Allows	
  an	
  applica9on	
  to	
  call	
  killBackgroundProcesses(String).	


WRITE_SETTINGS	
 Allows	
  an	
  applica9on	
  to	
  read	
  or	
  write	
  the	
  system	
  seVngs.	


*http://developer.android.com/reference/android/Manifest.permission.html	


effective in reducing the overhead of analyzing a huge amount of mobile apps. For
each app, we investigated its AndroidManifest.xml file to check whether it declares
permissions to access given resources. The process can be easily automated using
existing tools such as aapt [84]. To further accelerate the data processing, we
also leveraged multiprocessing techniques. Table 4.1 summarizes the 11 different
permissions we analyzed in this work. To perform generic analysis, we chose the
permissions from 4 categories, personal data, SMS, hardware resources, and system
resources. These resources were chosen because they are themost commonly abused
or the potentially dangerous ones.

4.3.2 API/URI filtration

Next, for each sample, we checked whether it includes APIs or content provider
URIs that require permissions to access privacy-sensitive resources. For this task,
we made use of the API calls for permission mappings extracted by a tool called
PScout [85], which was developed by Au et al. [86]. In addition to API-permission
mapping, the PScout database also includes URI-permission mapping. To check the
existence of APIs or URIs, first, using Android apktool [87], we extracted DEX code
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from APK files and disassembled them into smali format [88]. Then, we checked
whether a set of APIs is included in the code of an APK file.
We note that some apps may require permissions but not include any APIs or

URIs that request the permission. This may occur for several reasons. apps. If such
possibly overprivileged apps are simply overprivileged due to developer’s error,
they do not impact our study, because those apps may not need to use APIs or
URIs. However, as Felt et al. [71] reported, one of the common developer errors
that cause overprivilege is Intent. A sender application can send an Intent to a
receiver application, which uses permission API. In such cases, the sender of the
Intent does not need to have permissions for the API. We saw many such cases,
especially related to camera permissions. In fact, [71] reported that of the apps that
unnecessarily request camera permission, 81% send an Intent to open the already
installed camera applications (including the default camera) to take a picture. Our
observation is in agreement with their finding.
Thus, our API/URI filtration scheme may miss a non-negligible number of apps

that actually use the camera through Intent. However, note that our final analysis
will be applied to the apps in set C2 as shown in figure 4.1. Therefore, we are
confident that the removal of such apps should not affect our analysis, because we
do not expect to see significant differences between the descriptions of those apps
removed due to the Intent problem and the descriptions of apps included in C2.

4.3.3 Function call analysis

Now, we present the function call analysis of the ACODE framework. For con-
venience sake, let the term function include method, constructor execution, and
field initialization; i.e., we trace not only method calls, but also class initializations.
Figure 4.3 presents a pseudo-code of the algorithm we developed for function call
analysis. It checks whether APIs/URIs of a given permission are callable (true) or
not (false). The algorithm uses depth-first search to search the function call tree. If
it finds a path from the given function to a class of ORIGIN (line 4), it concludes
that the app has at least one API/URI that is callable, where ORIGIN is composed
of three classes: Application, App Components, and Layout. Application is
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  1:	
  	
  INPUT	
  
	
  2:	
  	
  p	
  :	
  a	
  permission	
  
	
  3:	
  	
  a	
  :	
  an	
  applica1on	
  (APK)	
  
	
  4:	
  	
  ORIGIN	
  =	
  	
  [Applica1on,	
  App	
  Components,	
  Layout]	
   
 5:	
  	
  list	
  =	
  getAU(p,a)	
  	
  #	
  list	
  of	
  APIs/URIs	
  associated	
  with	
  p	
  
	
  6:	
  	
  done	
  =	
  []	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  #	
  empty	
  list	
  
	
  7:	
   
 8:	
  	
  WHILE	
  list	
  is	
  not	
  empty	
  DO	
  
	
  9:	
  	
  	
  	
  	
  	
  	
  f	
  =	
  list.pop()	
  	
  	
  
10:	
  	
  	
  	
  	
  	
  	
  IF	
  f	
  is	
  in	
  done:	
  
11:	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  skip	
  the	
  func1on	
  
12:	
  	
  	
  	
  	
  	
  	
  ENDIF	
  
13:	
  	
  	
  	
  	
  	
  	
  IF	
  f.parentClass	
  is	
  in	
  ORIGIN:	
  
14:	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  RETURN	
  True	
  
15:	
  	
  	
  	
  	
  	
  	
  ENDIF	
  
16:	
  	
  	
  	
  	
  	
  	
  IF	
  (f.parentClass	
  inherits	
  Android	
  SDK)	
  
17:	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  AND	
  (f	
  is	
  not	
  init)	
  	
  
18:	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  AND	
  (f	
  is	
  not	
  a	
  sta1c	
  method):	
  
19:	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  list.append(f.parentClass.init)	
  
20:	
  	
  	
  	
  	
  	
  	
  ELSE	
  IF	
  (f	
  is	
  referenced):	
  	
  
21:	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  list.append(f.refFunc1ons)	
  
22:	
  	
  	
  	
  	
  	
  	
  ENDIF	
  
23:	
  	
  	
  	
  	
  	
  	
  done.append(f)	
  
24:	
  	
  ENDWHILE	
  
25:	
  	
  RETURN	
  False	
  	
  	
  

Fig. 4.3 Pseudo-code that checks the callability of APIs of a permission.
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a class that initiates an Android app. It is called when an app is launched. App
Components are the essential building blocks that define the overall behavior of
an Android app, including Activities, Services, Content providers, and
Broadcast receivers. While the Application and App Components classes
need to be specified in the manifest file of an app, the Layout class does not. It is
often used by ad libraries to incorporate ads using XML.
getAU (Line 5) is a function that returns a list of APIs/URIs for a given permission.

As an implementation of getAU, we adopted PScout [85]. refFunctions (line 21)
is a function that returns a list of functions that reference to the given function or
URI. As an implementation of refFunctions, we adopted androguard [89], which
we modified to handle URIs. If a function of a class, say Foo, implements a function
of the Android SDK class whose code is not included in the APK, we cannot trace
the path from the function in some cases. To deal with such cases, we made a
heuristic to trace the function that calls the init-method of class Foo (lines 16–19).
We note that the heuristics can handle several cases such as async tasks, OS message
handlers, or callbacks from framework APIs such as onClick(). A method is
callable if it is overridden in a subclass or an implementation of the Android SDK
and an instance of the class is created. Async tasks, the OS message handler, or
other callbacks implement their function by overriding the methods of the Android
SDK subclass. Therefore, it should be handled by the heuristics.

4.4 Text Description Analysis
This section describes the text description analysis used in the ACODE framework.
The aim of this analysis was to classify descriptions into two classes: (1) text
descriptions that reference a privacy-sensitive resource, and (2) text descriptions
that do not. To this end, we adopted a set of basic techniques used in both IR and
NLP fields. As we shall see shortly, our keyword-based approach is quite simple
and works accurately for our task. As Pandita et al. [79] reported, a keyword-
based approach could result in poor performance if it was designed naively. So, we
carefully constructed our keyword extraction processes. As a result, we achieved
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87-98% of accuracy for the combinations of 3 resources and two languages. Simple
and successful text description classification enabled us to automate the analysis of
more than 200,000 text descriptions.
Section 4.4.1 describes how we preprocessed the description data so that we

can extract keywords that are useful in classifying text descriptions. Section 4.4.2
presents the keyword extraction method that leverages techniques used in the field
of information retrieval. Section 4.4.3 describes our experiments to compare our
description classifier with the WHYPER framework in terms of accuracy.

4.4.1 Text Data Preprocessing

To analyze natural language text descriptions, we applied several text preprocessing
methods. These methods are broadly classified into four tasks; (1) generic text
processing, (2) domain-specific stop words removal, (3) feature vector creation, and
(4) deduplication. Especially the tasks (2) and (4) are crucial in extracting good
keywords that can accurately classify the text descriptions.

Generic text preprocessing
We first apply widely-used generic text preprocessing techniques: word segmenta-
tion, stemming, and generic stop words removal. Word segmentation is a process of
dividing text into words. This process is required for Chinese but not for English,
in which words are already segmented with spaces. We used KyTea [90] for this
task. For English, we applied stemming, which is a process of reducing derived
words to their stem. It is known to improve the performance of text classification
tasks. We used NLTK [91] for this task. Note that the concept of stemming is not
applicable to Chinese. Lastly, we applied generic stop words removal, which is a
process of removing a group of words that are thought to be useless for classification
tasks because they are commonly used in any documentation (e.g., determiners and
prepositions). As lists of stop words, we used the data in NLTK [91] for English and
the data in imdict [92] for Chinese.
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Domain-specific stop words removal
Next, we created domain-specific stop words list so that we can remove terms that
are not generic stop words but are commonly used in mobile app descriptions; e.g.,
“app” or “free”. To this end, we make use of the technique proposed in Ref. [93],
which is a term-based sampling approach based on the Kullback-Leibler divergence
measure. Since the technique measures how informative a term is, we can remove
the least weighted terms as the stop words. Number of sampling trial was set to
10,000. When we changed the threshold of extracting the top-L stop words; i.e.,
from L = 20 to L = 150, the following results are not affected at all. In the
followings, we use L = 100. The extracted domain-specific stop words for English
include “app”, “free”, “get”, “feature”, “android”, “like”, etc.

Feature vector creation
Using the preprocessed descriptions, we created a binary feature vector for each text
description as follows. Let W = {w1,w2, ...,wm} be a set of entire words after the
screening process shown above. A feature of vector of the ith text description is
denoted as xi = {xi(w1), xi(w2), ..., xi(wm)}, where xi(wj) = 1 if wj is present in the
ith text description. If wj is not present, xi(wj) = 0.

Deduplication
Because we adopt the keyword extraction approach based on relevance weights as
shown in the next subsection, the deduplication process plays a crucial role in elimi-
nating the effect of same or similar descriptions generated by a single developer. For
instance, if a developer produces thousands of apps with the same text description,
which is often the case we observe in our datasets, the words included in the apps
may cause unintended biases when computing the relevance weights of terms. To
deduplicate the descriptions, we remove the same or similar descriptions by using
the cosine similarity measure; i.e., for a given pair of feature vectors xi and xj , the
cosine similarity is computed as s = cos

(
xi · xj/|xi | |xj |

)
, and if s is larger than a

threshold, the duplicated description is removed. We note that the value of threshold
was not sensitive to the succeeding keyword extraction results if it is set between 0.5
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to 0.8.

4.4.2 Keyword Extraction

To extract keywords, we leverage the idea of relevance weights, which measures the
relation between the relevant and non-relevant document distributions for a term
modulated by its frequency [94]. Relevance weighting was developed in the IR
community as a means to produce optimal information retrieval queries. To make
use of the relevance weights for our problem, we need to have sets of relevant and
non-relevant documents. Since we do not have any labels that indicate whether a
document is relevant, i.e., it refers to a permission, or non-relevant, i.e., it does not
refer to a permission, we set the following assumption.
Assumption: For a given permission, descriptions of apps that declare the permis-
sion and have callable APIs can be regarded as “pseudo relevant document”, while
the descriptions of the remaining apps can be regarded as “pseudo non-relevant
document”.
Note that our research question contradicts with this assumption; i.e., we are

interested in the reason why an app with callable API for a permission does not
refer to the permission. Nevertheless, our performance analysis using multiple
permissions in two spoken languages empirically supports that our approach actually
works well in extracting effective keywords.
Under this assumption, we calculate the relevance weights for each word as

follows. For a word wi , the relevance weight (RW) is

RW(wi) = log
(ri + 0.5)(N − ni − R + ri + 0.5)
(ni − ri + 0.5)(R − ri + 0.5)

,

where ri is the number of relevant documents word wi occurs in, R is the number of
relevant documents, ni is the number of documents word wi occurs in, and N is the
number of documents, respectively.
Using the entire descriptions with code analysis outputs, we extracted the key-

words that have the largest relevance weights. Table 4.2 presents a subset of ex-
tracted keywords for each permission. For space limitation, we present only the
Top-3 English keywords. In most cases, the keywords look intuitively reasonable.
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Table 4.2 Extracted top-3 keywords for English descriptions.

Resources 1st 2nd 3rd

Location gps location map
Account grab google youtube
Contact sms call contact
Calendar calendar reminder meeting

SMS (read) sms message incoming
SMS (send) sms message sent

Camera camera scan photo
Audio recording voice record

Get tasks lock security task
Kill background process task kill manager
Write setting alarm ring bluetooth

Interestingly, some keywords such as “sms” are found in multiple resources; i.e.,
contact, SMS (read), and SMS (send). In fact, these resources tend to co-occur. In
the following, we will use these keywords to classify descriptions. Once we com-
piled the keywords, the text classification task is straightforward. If a text description
includes one of the extracted keywords for a permission, the description is classified
as positive, i.e., it refers to the permission. The problem is how we set the number of
keywords to be used. We will study the sensitivity of the threshold in Section 4.4.3.

4.4.3 Performance Evaluation

To evaluate the accuracy of our scheme, we use manually labeled data sets. We
first present the way how we compile the labeled data set. Next, we evaluate the
accuracy of our approach, using the labeled data. Finally, to validate the robustness
of our approach, we use the external dataset and compare the performance with
the existing state-of-the-art solution, the WHYPER framework. In the analysis of
accuracy (Section 4.4.3), we use 200,000 free apps, which will be described in
Section 4.5.1 as training sets; i.e., they are only used for keyword extraction. The
labeled test set is a subset of those, on which we measure accuracy. We note that
in the evaluation, our training set included test set; i.e., we extracted the keywords
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using the entire text descriptions, which is the training set, and applied the keywords
(i.e., classifier) to the labeled descriptions, which is the test set. In general, training
classifier using test set is not good because such setting could over-estimate the
accuracy of the model. However, the effect should be small because our classifier
was based on frequencies of terms and the test set accounted for only 0.6% of entire
samples.

Creation of labeled datasets
We created the labeled data sets with the aid of 12 international participants who are
from China, Korea, Thailand, and Indonesia. All the participants were university
students with different disciplines in science and engineering. 7 were female and
5 were male. 4 were native English speakers, and 8 were native Chinese speakers.
None of them had experience of developing Android applications. All the native
Chinese speakers were fluent in English (native level). Students who were native
speakers of Chinese labeled Chinese descriptions. In summary, six students labeled
English descriptions, and the other six labeled Chinese descriptions. Here, we
picked up three distinct resources, i.e., location, contact, and camera, out of the 11
resources we considered in this work.
Since a resource is used for various purposes, and referred to by various terms,

we wanted to avoid participants focusing too much on a particular keyword, such
as “camera”. Instead, we asked participants to identify whether an app will use
a camera, rather than whether it mentions a camera. This enabled us to identify
several interesting keywords, such as “QR” and “scan”. Also, we note that the
question should reflect users’ awareness of a resource.
Before asking participants to label text descriptions, we picked some descriptions

from our entire data set. If random sampling were applied to the entire set, there
would be a significant imbalance between the two classes. In particular, there would
be very fewpositive samples, i.e., text descriptions that reference a resource. To avoid
such an imbalance, we applied the access permission filter shown in section 4.3.1
so that the sampled text descriptions would include a certain number of positive
samples. Although this solution could create some bias toward the positive class,
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Table 4.3 Summary of labeled datasets.

English
Location Contact Camera

# of descriptions 1,000 1,000 1,000
# of labels 3,000 3,000 3,000

Chinese
Location Contact Camera

# of descriptions 1,000 1,000 1,000
# of labels 3,000 3,000 3,000

in fact it did not matter, as will be shown later in this chapter. From the set of apps
that declare access permissions for using resources, we randomly sampled 1,000
text descriptions. In total, we sampled 6,000 descriptions, as shown in table 4.3.
Having sampled text descriptions, we asked each participant to label 500 text

descriptions for each resource (e.g., 500 × 3 = 1,500 descriptions in total). A
participant labeled text descriptions in either English or Chinese. To increase
the quality of labels, each text description was labeled by three distinct, fixed
participants. We obtained a total of 18,000 labels for 6,000 text descriptions,
as shown in table 4.3.
Finally, we eliminate inconsistent labels to ensure that the quality of labels is

high; i.e., we used only the text descriptions upon which all three evaluators agreed.
Table 4.4 summarizes the text descriptions that met this criterion. We used these
labeled descriptions for evaluating accuracy of our approach, as described in the
next subsection.

Threshold Sensitivity Study
Using the labeled datasets, we empirically studied the relation between threshold
and classification accuracy. Here, the definition of the accuracy is the fraction of
correctly classified text descriptions, using the top-K keywords. Figure 4.4 presents
how the number of keywords, K is correlated with the classification accuracy. As
shown in the graph, across the 6 of labeled datasets, the accuracy is fairly stable
around K = 3. Also, we notice that K = 3 gives the highest accuracy with
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Table 4.4 Statistics of labeled descriptions to be used for performance evaluation.

English
Location Contact Camera

# of positive descriptions 128 208 276
# of negative descriptions 611 449 289

Chinese
Location Contact Camera

# of positive descriptions 38 102 157
# of negative descriptions 828 544 583

1 2 3 4 5 6 7 8 9
Top-K words

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Fig. 4.4 K vs. accuracy. The circles indicate median values and the bars indicate
maximum/minimum values, respectively.

the minimum variance. As we increase K , the accuracy is degraded; i.e., as K

increases, the less relevant the keywords become. Given these observations, in the
following analysis, we adopt K = 3 in classifying the document. We note that the
chosen threshold works nicely for the external dataset provided by the authors of
WHYPER [79]. We will report the results in Section 4.4.3.

Accuracy of Text Classification
We now evaluate the accuracy of our text classifier. To measure the accuracy,
we use several metrics. First, TP, TN, FP, and FN represents number of true
positives, number of true negatives, number of false positives, and number of false
negatives, respectively. We also use three derivative metrics: accuracy (ACC),
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Table 4.5 Accuracy of our approach (K = 3) for the 6 of labeled datasets.

Resource Lang TP TN FP FN ACC PPV NPV

Location
EN 118 591 20 10 0.959 0.855 0.983
CN 23 826 2 15 0.980 0.920 0.982

Contact
EN 177 396 53 31 0.872 0.770 0.927
CN 64 535 9 38 0.927 0.877 0.934

Camera
EN 206 284 5 74 0.867 0.976 0.802
CN 98 575 8 59 0.909 0.925 0.907

Positive predictive values (PPV), and Negative predictive values (NPV), which are
defined as

ACC =
TP + TN

TP + TN + FP + FN
,

PPV =
TP

TP + FP
, NPV =

TN
TN + FN

,

respectively. PPV and NPV measure how many of descriptions classified as pos-
itive/negative are actually positive/negative. These measures are suitable to our
requirements because we aim to derive the answers of our research question by
studying the characteristics of classified descriptions. Therefore, we expect that
these measures have high values.
Table 4.5 presents the results of performance evaluation. In both languages,

the observed accuracy was good for all categories; e.g., ACCs were 0.87–0.98.
Also, in most cases, NPVs were larger than 0.9. Since one of our objectives is to
understand the reasons why text descriptions fail to refer to access permissions, the
high number of NPVs is helpful, because it indicates that majority of descriptions
classified as negative are actually negative. In summary, our scheme was validated
to enable automatic classification of text descriptions into the two categories with
good accuracy. It works well for both languages, English and Chinese.

Robustness
To validate the robustness of our approach, we use the external labeled dataset [95],
which is provided by the authors of theWHYPER framework [79]. Since the dataset
also includes the outcomes of the WHYPER framework, we can directly compare
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Table 4.6 Statistics of the WHYPER datasets.

Contact Calendar Audio

# of positive samples 107 86 119
# of negative samples 83 110 81

Table 4.7 Comparison of accuracy of ACODE (K = 3), WHYPER semantic
analysis (WHYPER), and WHYPER keyword (WKW).

Resource method TP TN FP FN ACC PPV NPV

Contact
ACODE 96 63 20 11 0.837 0.828 0.851
WHYPER 92 77 6 15 0.889 0.939 0.837
WKW 95 46 37 12 0.742 0.720 0.793

Calendar
ACODE 77 98 12 9 0.893 0.865 0.916
WHYPER 81 99 11 5 0.918 0.880 0.952
WKW 84 60 50 2 0.735 0.627 0.968

Audio
ACODE 95 57 24 20 0.742 0.720 0.793
WHYPER 103 69 12 16 0.860 0.896 0.812
WKW 113 38 43 6 0.755 0.724 0.864

the performance of the two frameworks. Since the dataset consists of a set of labels
for each sentence, we reconstructed original descriptions from the sentenses and
assign labels to the descriptions; i.e., if a description consists of at least one sentence
that declares the use of a permission, the description is labeled as positive, otherwise
labeled as negative. Table 4.6 summarizes the dataset*1. All the descriptions are
written in English.
Table 4.7 shows the comparison of performance of the ACODE framework and

the WHYPER framework in classifying descriptions. Our results show that the
performance of the ACODE framework is comparable with that of the WHYPER
framework. Especially, the delta for NPV, which is the most important metrics
for our study, is less than 0.04 for all the three cases. We also notice that the
keyword-based approach used in the WHYPER paper (WKW in the table) had high
false positives. We conjecture that the high false positives are due to the nature

*1We derived these numbers by analyzing the dataset [95]
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of extracted keywords, which include some generic terms such as data, event, and
capture.
Notice that the WHYPER dataset consists of higher fractions of positive descrip-

tions, compared to ours. This may reflect the fact that the apps used for WHYPER
study were collected from the top-500 free apps; i.e., it is likely the top apps were
built by skilled developer and had informative descriptions. In contrast, our datasets
consist of larger fractions of negative samples. Since our datasets were collected
from entire app space, they consist of various apps, including the ones that failed to
add informative descriptions due to the reasons that will be described in the next sec-
tion. Despite this potential difference in the population of datasets, our framework
established good accuracy among all the datasets.
In summary, we evaluated the accuracy of the ACODE framework using 5 of

11 permissions we considered*1. In the following large-scale analysis, we assume
that the ACODE framework establishes good accuracy for the rest of permissions as
well. The potential effect of the assumption will be discussed in Section 4.5.5.

4.5 Analysis of Codes and Descriptions
Using the ACODE framework, we aim to answer our research question RQ shown
in Section 4.1. We first describe the details of the data sets we used for our analysis,
in section 4.5.1. Then, we apply our code analysis to the apps and extract apps
with callable APIs/URIs of permissions (C2, see figure 4.1) in section 4.5.2. Using
the extracted apps with callable APIs/URIs of permissions, section 4.5.3 aims to
quantify the fractions of apps with text descriptions that successfully inform users
about the use of privacy-sensitive resources for each resource. In section 4.5.4 we
aim to answer the research questionRQ. We discuss in-depth analysis to understand
the reasons of failures for text descriptions classified as C4 in informing users about
access permissions. Finally, Section 4.5.5 discusses the limitations of our analysis
and evaluation.

*1To be precise, we verified 5 of 11 permissions for English and 3 of 11 permissions for Chinese.
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Table 4.8 Summary of Android apps used for this work.

English Chinese Data collection periods

Official (Google Play, free) 100,000 0 Apr 2012 – Apr 2014
Official (Google Play, paid) 10,000 0 May 2016 – June 2016

Third-party (Anzhi) 0 74,506 Nov 2013 – Apr 2014
Third-party (Nduoa) 0 25,494 Jul 2012 – Apr 2014
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4.5.1 Data sets

We collected Android apps from the official marketplace [96] and two other third-
party marketplaces [97, 98]. All these marketplaces have huge user bases. After
collecting mobile apps, we first pruned samples that are corrupt or have zero length
text descriptions. From the rest of the samples, we randomly picked 100,000 free
apps for each type of markets. In addition, we also collected 10,000 paid apps, which
enable us to study whether the paid apps have more ”informative” text descriptions.
Table 4.8 summarizes the data sets we collected. To simplify the interpretation of
analyses, we assigned different languages, English and Chinese, to the official and
third-party marketplaces. Note that we have already shown that our text description
classification scheme works well for both languages.

4.5.2 Extracting apps with callable APIs/URIs of privacy-sensitive re-

sources

Table 4.9 presents the results of our code analysis. Overall, many applications
require permission of location. As we will detail later, many of these are apps that
use ad libraries. This observation agrees with the fact that paid apps contained fewer
location permissions/APIs than free apps. Interestingly, the popularity of personal
data resource requirements is almost identical across markets. The most popular
is location, second is contact, third is accounts, and fourth is calendar. Generally,
third-party markets tend to require/use more permissions than the official market.
This may correlate to the existence of defense mechanisms installed on the official
marketplace – Bouncer [99].
Another useful finding we can extract from the results is that over privilege

(C0−C1) is observed commonly across the categories. Also, there are non-negligible
numbers of apps that have code to use permissions but cannot be called (C1 − C2).
This often occurs when a developer incorporates an external library into an app; the
library has many functions, including APIs/URIs of permissions, but the app does
not actually call the APIs/URIs. Our code analysis can prune these applications
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Fig. 4.5 Fractions of descriptions that refer to a permission. Populations are
C2 apps shown in Table 4.9; e.g., of the 18,165 of official market free apps
with callable functions that request location permission, roughly 30% of them
mentioned the use of location in the description.

from further analysis.
Overprivilege ratios are especially high for account and contact permissions in

the third party marketplaces and for camera, calendar, and kill background processes
permissions in both markets. Careful manual inspection revealed that these cases
can be attributed to misconfiguration on the part of developers; i.e., the Intent issue
discussed in section 4.3.2. Such apps were pruned by the second filter. We also
note that these apps do not need to declare permissions because the permissions are
misconfigurations. These observations agree with the work performed by Felt et
al. [71]. Although our scheme pruned those applications, the pruning did not affect
the analysis because the pruned apps are unlikely to exhibit special characteristics
in their text descriptions.

4.5.3 Analysis of apps with callable APIs/URIs for a permission.

Using apps that include callable APIs/URIs for a permission (C2 in Table 4.9), we
analyzed their text descriptions. Figure 4.5 presents the results. We first notice that
fractions of positive text descriptions are higher for official market apps. This can
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be considered natural, given that official market is more restrictive. We also notice
that some resources such as CALENDAR for both markets and SMS permissions and
the KILL_BG_PROC (kill background process) permission for the official market are
well described in their descriptions.
For the free apps of officialmarket, GET_TASK andACCOUNTSwere the permissions

that were less described (15–20%). In contrast, READ_SMS and CALENDAR were the
permissions that were well described (70–80%). These results are consistent with
intuition that permissions that are directly associated with user actions tend to be
well described. Overall, our impression is that for the official market, the fractions
of proper descriptions are higher than expected. Especially, paid apps have the
informative text descriptions about the use of privacy sensitive resources, which
agrees with our general expectation that paid productsmay have higher quality/safety
than free products. If the descriptions of remaining apps were improved, the text
description could serve as a good source of information to let users know about
sensitive resources.
Finally, we note that the descriptions of apps collected from official market was

only English, while the descriptions of apps collected from third-party market was
only Chinese. Therefore, we cannot tell if the observed differences are due to the
market or the language. We leave the issue for future work.

4.5.4 Answers to the Research Question

To answer the research question RQ, we performed the manual inspection to the
extracted apps that fail to refer to use of permissions. The methodologies of the
manual inspection are described below. Given a permission, e.g., Camera, we fist
identify Java classes that include the APIs associated with the permission. From the
identified class, we can extract a package name such as /com/google/android/
foo/SampleCameraClass.java, which is segmented into a set of words, com,
google, android, foo, and SampleClass. By analyzing the package name words for
apps that fail to refer to use of the permission, we can find intrinsic words that
are associated with specific libraries such as “zxing” used for handling QR code or
service names such as “cordova”, which is an app building framework. In addition,

105



Chapter 4 Analyzing the Inconsistency between Behaviors and Descriptions of
Mobile Apps

we can analyze developer certificates included in app packages. We also apply
dynamic analysis of the apps when we need to check how the permission is used.
Using the methodologies, we classified such apps into the four categories. For each
category, we extracted reasons why text descriptions fail to refer to permissions.
(1) App building services/frameworks
Through the analysis of package names of apps, we noticed that many of apps

were developed with cloud-based app building services, which enable a developer
to create a multi-platform app without writing code for it. Examples of cloud-
based app building services are SeattleClouds, iBuildapp, Appsbar, appbuilder, and
biznessapps. Similarly, many of apps were developed with mobile app building
frameworks, which also enable a developer to create a multi-platform app easily.
Examples of such mobile app building frameworks are Apache Cordova (Phonegap)
and Sencha. These services/frameworks provide a simple and intuitive interface to
ease the processes of building a mobile app.
Among many such services/frameworks, we found a few services/frameworks

that generate apps that unnecessarily install many permissions, and put callable
APIs/URIs for the permissions into the code. Since a developer using such a
service/framework cannot change that setting, it is likely that even the developer is
not aware of the fact that app install the permissions with callable APIs/URIs; hence,
it is less likely the developer writes about the permissions in the description.
Figure 4.6 shows CDFs of number of permissions per application. First, apps

collected from the official market have small number of permissions among the 11
permissions; i.e., more than 80% of apps had zero permissions. They had other
generic permission such as Internet. Second, we considered an intrusive cloud-
based app building service and one of the popular app building frameworks. Both
cases tend to install a large number of permissions. Especially, roughly half of
the apps that were built with the intrusive cloud-based app building service had a
fixed number of permissions (4 out of 11). We carefully inspected these apps, and
found that many permissions such as record audio were unnecessarily installed by
the services/frameworks.
We revealed that the apps built by the intrusive cloud-based app building services
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Fig. 4.6 CDFs of number of permissions per application. The 11 permissions
listed in Table 4.1 are used.

are popular in official market, but not popular in third-party market. In the official
market, more than 65% of apps that failed to refer to use of record audio were
developed with these services. Similarly, more than 25% of apps that failed to refer
to use of contact list were developed with these services. We also observed
non-negligible number of such apps in other resources; i.e., 5% for location and
10% of camera. For app building frameworks, one of the frameworks accounted for
more than 28% of apps that failed to refer to use of record audio in the third-party
market. In fact the permission was not necessary for the apps.
We also note that unnecessarily installed permissions on a framework such as

phonegap, which is HTML5-based mobile app building framework, could bring
additional threats because such permission can be abused through various channels
of Cross-Site Scripting attacks [100].
(2) Prolific developers
Through the analysis of distributions of number of apps per developer certificate,

we noticed that a very few number of developers accounted for a large number of
descriptions without mention of privacy-sensitive resources. We call such devel-
opers “prolific developers”. For instance, five prolific developers published 47%
of third-party market apps that fail to refer to send SMS. We applied eleven popu-
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lar commercial anti-virus scanners to the apps with SMS permission, and checked
whether either of scanner detected the types of application. If at least one scanner
detected an app as malware/adware, we marked it as malware/adware. We found
that majority of the apps with unmentioned SMS permission were malware/adware
and have been removed from the market later. There are other cases. Three pro-
lific developers published 38% of third-party market apps that fail to use of kill
background processes. Another three prolific developers published 32% of
third-party market apps that fail to use of write setting. We carefully inspected
these apps, and found that they do not have any reasons to use the permissions. Al-
though not conclusive, we conjecture that these prolific developers likely reuse their
own code for building a large number of apps; i.e., they tend to include unnecessary
permissions/code.
(3) Secondary functions
Through the careful analysis of descriptions that failed to refer to permissions,

we found several secondary functions that tend to be unmentioned. For instance,
several apps have functions to share information with friends, e.g., scores of games.
In many cases, such functions require to access contact list. However, such activity
is often unmentioned in the descriptions because it is an optional function. Another
example is map-based apps that require to access the write setting permission
to enable location positioning service such as GPS or Wi-Fi. Such map-based apps
accounted for 44% of apps that failed to refer to write setting. Among several
cases, the most notable one was barcode reader, which requires access to camera
device. Although there are several barcode reader apps, majority of apps with
barcode reader function are shopping apps or social networking apps. Since the
barcode reader is not a primary function for those apps, it tends to be unmentioned
in their descriptions. To study the impact of such cases, we extracted apps that use
barcode libraries such as ZXing [101] or ZBar [102]. We found that in the official
market, more than 53% of apps that failed to refer to use of camera had barcode
reader libraries in their code. In the third-party market, more than 66% of such apps
had barcode libraries. Mobile application distribution platform providers may want
to support exposing the use of privacy-sensitive resources by functions that tend to
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be unmentioned.
(4) Third-party libraries
Just as the source of many vulnerabilities are in third-party libraries [103], un-

intentional use of privacy-sensitive resources can also be caused by the libraries.
For instance, it is well known that ad libraries make use of resources of location or
account information for establishing targeted advertisement [73]. Another example
of third-party libraries are log analysis libraries and crash analysis libraries. These
libraries make use of get task permission and location information. We analyzed
apps that have callable location APIs/URIs and text descriptions that do not refer to
the location permission. We found that in the official market, more than 62% of such
apps use ad libraries. In the third-party market, more than 80% of such apps used ad
libraries. Similarly, in the third-party market, more than 20% of apps that failed to
refer to location permission used access analysis libraries. Thus, if a developer uses
these third-party libraries, it is likely that the description of the app fails to refer to
the permission unless the developer explicitly expresses it.

4.5.5 Threats to Validity

This section discusses several limitations of our analysis and evaluation.

Static code analysis
Although we developed an algorithm to check whether privacy-sensitive APIs/URIs
are callable, we are aware of some limitations. First, although the algorithm can
detect the callability of APIs/URIs, we cannot precisely ensure that they are actually
called. Second, our static code analysis cannot dynamically track assigned program
code at run-time, such as reflection. Third, as Poeplau et al. [104] revealed, some
malware families have the ability to self-update; i.e., after installation, an app can
download the new version of itself and load the new version via DexClassLoad.
Employing dynamic code analysis could be a promising solution to these problems.
However, other challenges may include scalability and the creation of test patterns
for UI navigations [105, 106]. As we mentioned earlier, we adopted static analysis
because our empirical study required analysis of a huge volume of applications.
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On the other hand, we note that static code analysis has a chance to extract hidden
functions that cannot be explored by a dynamic analysis. We leave these challenges
for our future work.

Accuracy of the keyword-based approach
As wementioned earlier, we evaluated the accuracy of the ACODE framework using
5 of 11 permissions we considered. Our assumption is that the ACODE framework
establishes good accuracy for the rest of 6 permissions. However, there may be
a concern that the keyword-based approach works better for some permissions
more than others. We note that some of the results derived in Section 4.5.4 were
based on permissions for which we did not evaluate the accuracy; e.g., SEND_SMS,
KILL_BG_PROC, and GET_TASKS. Therefore, the results might have threats to va-
lidity. A simple solution to address the concern is to extend the labeled dataset,
however, we were not able to perform the additional experiments due to the high
cost of labeling descriptions written in two languages. Although not conclusive, we
note that we have validated that the descriptions were correctly classified through
the manual inspection, using randomly sampled apps; i.e., the obtained results were
partially validated.

4.6 Discussion
In this section, we discuss the feasibility and versatility of the ACODE framework.
We also outline several future research directions that are extensions of our work.

4.6.1 User experience

In this study, we asked participants to read whole sentences carefully, regardless of
the size of the text description. In a real-user setting, users might stop reading a
text description if it is very long. Studying how the length of text descriptions or
the placement of permission-related sentences affect user awareness is a topic for
future work. In addition to text descriptions, mobile software distribution platforms
provide other information channels, such as meta data or screenshots of an app. As
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users may also pay attention to these sources of information, studying how these
sources provide information about permissions is another research challenge we are
planning to address.

4.6.2 Cost of analysis

Because this work aims to tackle with a huge volume of applications, we adopt
light-weight approaches; static code analysis (instead of dynamic code analysis)
and keyword-based text analysis (instead of semantic analysis). In the followings,
we detail the cost of our approach. The cost of data analysis with the ACODE
framework can be divided into two parts: the static code analyzer and the text
descriptions analyzer. For the static code analyzer, the most expensive task is the
function call analysis because we first need to build function call trees to study
whether an API is callable. Our empirical study showed that the task of function
call analysis for an application took 6.05 seconds on average. We note that the
tasks can be easily parallelized. By parallelizing the tasks with 24 of processes on
a commodity PC, we were able to process 200 K apps within a single day. For the
text description analyzer, collecting label was the most expensive task. On average,
a single participant labeled 1,500 of descriptions within 10 hours. However, once
we get the performance evaluation of our approach, we do not need to employ the
task again because our work does not need manually-labeled samples. Since we
adopt keyword-based approach, analyzing hundred thousands of descriptions was
quite fast.
Overall, all the tasks can be completed within a single day, and we can further

accelerate the speed if this is desired. As our objective is not to perform the analysis
in real-time, we believe that the cost of performing analyses with the ACODE
framework is affordable.

4.6.3 Permissions that should or should not be mentioned.

Android OSmanages several permissions with a protection level defined as “danger-
ous,” whichmeans “a higher-risk permission that would give a requesting application
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access to private user data or control over the device that can negatively impact the
user [107].” Ideally, users should be aware of all these dangerous permissions. The
dangerous permissions can be broadly classified into two categories: for users and for
developers. Permissions for users include read/write contacts, access fine location,
read/write calendar, read/write user dictionary, camera, microphone, Bluetooth, and
send/read SMS. The resources analyzed in this chapter are the permissions aimed
at users. Permissions for developers include set debug app, set process limit, signal
persistent processes, reorder tasks, write setting, and persistent activity.
Permissions for users are intuitively understandable. Thus, they should be de-

scribed in the text descriptions. Permissions for developers are difficult for general
users to understand; thus, describing them may be confusing. As describing these
permissions could even distract users’ attention from the text descriptions, they
should not be mentioned in the text descriptions. For such dangerous permissions
aimed at developers, we need to develop another information channel that lets users
know about the potential threats in an intuitive way. We note that the ACODE
framework can be used to identify dangerous permissions that are least mentioned.
Knowledge of such permissions will be useful to develop a new information channel.

4.7 Related work
Researchers have studied mobile apps from various viewpoints, including issues
of privacy, permission, and user behavior. In this section, we review the previous
studies along four axes: system-level protection schemes, large-scale data analyses,
user confidence and user behavior, and text descriptions of mobile apps.

4.7.1 System-level protection schemes

As a means of protecting users from malicious software, several studies have pro-
posed install-time or runtime protection extensions that aim to achieve access con-
trol and application isolation mechanisms such as [108–112]. Kirin [108] performs
lightweight certification of applications to mitigate malware at install-time based
on a conservative security policy. With regard to install-time permission policies
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and runtime inter-application communication policies, SAINT [109] provides oper-
ational policies to expose the impact of security policies on application functionality,
and to manage dependencies between application interfaces. TaintDroid [110] mod-
ifies the operating system and conducts dynamic data tainting at runtime in order to
track the flow of sensitive data to detect when this data is exfiltrated. Quire [113]
is defense mechanisms against privilege escalation attacks with inter-component
communication (ICC). Finally, SEAndroid [112] brings flexible mandatory access
control (MAC) to Android by enabling the effective use of Security Enhanced Linux
(SELinux).
While the above studies improved the system-level security and privacy of smart-

phone, this work attempts to address the problem from a different perspective –
understanding the effectiveness of text description as a potential source of informa-
tion channel for improving users’ awareness of privacy.

4.7.2 Large-scale data analyses

Several researchers have conducted measurement studies to understand how many
mobile apps access to private resources and how they use permissions to do so [70–
73]. A survey report published by Bit9 [70] included a large-scale analysis of
Android apps using more than 410,000 of Android apps collected from the official
Google Play marketplace. Through the analysis, they revealed that roughly 26% of
apps access personal information such as contacts and e-mail, 42% of apps access
GPS, and 31% of apps access phone calls or phone numbers. Book et al. [73]
analyzed how the behavior of the Android ad library and permissions have changed
over time. Through the analysis of 114,000 apps collected from Google Play, they
found that the use of most permissions has increased over time, and concluded that
permissions required by ad libraries could expose a significant weakness in user
privacy and security. From the perspective of dynamic code loading, Poeplau et
al. [104] conducted an analysis of 1,632 popular apps, each with more than 1 million
installations, and revealed that 9.25% of them are vulnerable to code injection
attacks.
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4.7.3 User confidence and user behavior

Several works on user confidence and user behavior discuss users’ installation de-
cisions [77, 114–116]. Refs. [115, 116] studied user behavior in security warnings,
and revealed that most users continue through security warnings. Good et al. [114]
conducted an ecological study of computer users installing software, and found that
providing vague information in EULAs and providing short notices can create an
unwarranted impression of increased security. Chin et al. [77] studied security and
privacy implications of smartphone user’s behaviors based on a set of installation
factors, e.g., price, reviews, developer, and privacy. Their study implicates user
agreements and privacy policies as the lowest-ranked factors for the privacy. As
these studies on user confidence and behavior suggest, user agreements or privacy
policies are not effectively informing consumers about privacy issues with apps.
Centralized mobile software distribution platforms should provide mechanisms that
improve privacy awareness so users can use apps safely and confidently. We believe
that our findings obtained using the ACODE framework can be used to complement
these studies.

4.7.4 Text descriptions

As mentioned in section 4.1, only a few works have focused on text descriptions
of mobile apps [78–81]. The WHYPER framework [79] is the pioneering work
that attempted to bridge the semantic gap between application behaviors and user
expectations. They applied modern NLP techniques for semantic analysis of text
descriptions, and demonstrated that WHYPER can accurately detect text sentences
that refer to a permission. Qu et al. [81] indicated an inherent limitation of the
WHYPER framework, i.e., the derived semantic information is limited by the use
of a fixed vocabulary derived from Android API documents and synonyms of key-
words there. To overcome the issue, they proposed the AutoCog framework based
on modern NLP techniques extracting semantics from descriptions without using
API documents. The key idea behind their approach is to select noun-phrase based

114



4.7 Related work

governor-dependent pairs related to each permission. They demonstrated that the
AutoCog framework moderately improved performance as compared to the WHY-
PER framework. Gorla et al. [80] proposed the CHABADA framework, which can
identify anomalies automatically by applying an unsupervised clustering algorithm
to text descriptions and identifying API usage within each cluster. Like our work,
CHABADA uses API functions to identify outliers. On the other hand, the aim
of ACODE is not to find anomalies, but to quantify the effectiveness of text de-
scriptions as a means of making users aware of privacy threats. To this end, using
a simple keyword-based approach, the ACODE framework attempts to assess the
reasons why text descriptions do not refer to permissions. As we revealed, the
performance of our approach is comparable with that of the WHYPER framework.
We also note that the ACODE framework is more fine-grained than CHABADA
since ACODE checks whether API functions/URIs found in code are callable by
employing function call analysis. Finally, Lin et al. [78] studied users’ expectations
related to sensitive resources and mobile apps by using crowdsourcing. They asked
participants to read the provided screenshots and text description of an app, and
asked several questions to investigate users’ perceptions of the app as related to
privacy-sensitive resources. They concluded that users’ expectations and the pur-
pose for using sensitive resources have a major impact on users’ subjective feelings
and their trust decisions. This observation supports the importance of improving
users’ privacy awareness on mobile software distribution platforms.
We summarize the differences among the above three studies, and our own in

table 4.10. In addition to the technical differences, our work is distinguishable from
other studies in its large-scale empirical analysis, which spans across 11 of distinct
permissions, two market places, both free and paid, and more than 200K of text
descriptions written in two different natural languages.
Recently a few works [117,118] take an alternative approach to use a text descrip-

tion as an information channel of privacy threats. They aim to generate security-
centric text descriptions automatically by using the static analysis of app code. This
approach is useful to describe the potentially malicious behavior of apps. It can
also extract the secondary functions, which are not described in the text description
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Table 4.10 Comparison between related works.

ACODE WHYPER AutoCog CHABADA Lin et al. [10]

objective

Understanding 
inconsistency 
between codes 
and descriptions

Identifying 
sentences that 
refer to a 
permission

Assessing 
description-to-
permission fidelity 
of applications

Identifying 
outlier apps 

Understanding 
user expectation 
on sensitive 
resources

# of apps free 200,000
paid 10,000 581 83,656 32,308 134

# of studied 
permissions 11 3 11 N/A 4

markets Official,
Third-party Official Official Official Official

languages English, 
Chinese English English English English

code
analysis

Function call 
tree analysis

Permission 
check

Permission 
check API analysis Permission 

check
description 
analysis

Keyword-
based

Semantic 
analysis

Semantic
analysis Topic model N/A

written by a developer. The drawback of the approach is that they cannot cope
with the cases of app building services/frameworks and some third-party libraries
that often inject unnecessary APIs which are never called from the app; i.e, dead
code. For such cases, the automatically generated descriptions will not agree with
the actual behavior. Addressing the issue needs advanced program analysis such as
dynamic analysis.

4.8 Conclusion
By applying the ACODE framework to 200,000 free apps and 10,000 paid apps
collected from both official and third-party marketplaces, our analysis across the
11 distinct resources revealed four primary factors that are associated with the
inconsistencies between text descriptions and use of privacy-sensitive resources: (1)
existence of app building services/frameworks that tend to addAPI permissions/code
unnecessarily, (2) existence of prolific developers who publish many applications
that unnecessarily install permissions and code, (3) existence of secondary functions
that tend to be unmentioned, and (4) existence of third-party libraries that access to
the privacy-sensitive resources. We also found that paid apps generally have more
informative text descriptions than free apps, which probably reflects the developers’
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motivation to achieve a high number of downloads.
We believe that our work provides an important first step toward improving

users’ privacy awareness on mobile software distribution platforms. For instance,
developers of app building services/frameworks can use our findings to check the
behaviour and deployment of their products. Individual mobile app developers can
pay attention to our findings when they write text descriptions or use third-party
libraries. And mobile software distribution platform providers can pay attentions to
all the potential reasons that lead to the inconsistencies between user expectations
and developer intentions. Based on the findings revealed by the ACODE framework,
they may be able to come up with new information channels that effectively inform
users about the use of privacy-sensitive resources.
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Conclusion

5.1 Summary of Thesis
The explosive diffusion of Internet devices brings both enormous convenience and
novel risks to users. Modern attackers exploit information outside computer systems
beyond the layers, making traditional defense techniques difficult to apply. We aimed
to identify novel privacy threats for Internet users andmeasured their impact through
conceptual and empirical approaches.
The web, mobile, and IoT we have covered in this thesis are major ways for

consumers to access the Internet. To identify novel privacy threats beyond the
layers, this thesis presented attack and defense scenarios that extract information
from outside computer systems with physical, network, and human layers. We
discussed new methods of leaking real location information and identity of Internet
users and how to detect applications that access privacy-sensitive data against user
expectations and elucidate the cause. The web, mobile, and IoT we covered in this
thesis are major ways for consumers to access the Internet.
In Chapter 2, we introduced a novel attack framework called RouteDetector,

which leverages spatio-temporal regularity of human mobility by targeting train
trips of users. Our results quantitatively support that such as attack is feasible. This
contribution indicated that the hardware resources that leak privacy are not only
the typical ones such as GPS. The overlooked resource of physical sensors leaks
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human-location information.
In Chapter 3, we presented a practical side-channel attack to identify the social

account of a website visitor. By the precise designed of this attack, the 1-bit
rough application state estimated from the RTT restored the privacy data of the
specified username. Through our efforts, major services and browsers adopted new
security features. This contribution goes beyond just preventing such an attack. We
have identified a vulnerability in a universal feature in which one user controls the
visibility of another through observations from another layer.
In Chapter 4, we presented an analytical method for app markets and recom-

mendations to help non-malicious developers and users communicate. Our analysis
revealed the percentage of apps that access privacy-sensitive data against user expec-
tations and four primary factors that are associated with the inconsistencies between
text descriptions and use of privacy-sensitive resources. Regardless of how robust
a system is, user privacy is threatened when human perception is exploited. Our
research provides an important first step toward improving users’ privacy awareness
on mobile software distribution platforms.
The arms race in cyber security has intensified, expanding thewar fromcyberspace

to another space. Protecting only computer systems is no longer sufficient. Attacks
we identified and countermeasures we deployed helped protect users’ privacy from a
wide range of attacks beyond the layers. We shed light on the privacy-leaking channel
that has been overlooked by presenting the concept of new attacks beyond the layers
and revealed the actual impact of attacks by conducting large-scale empirical analysis
in the wild.
Themain contribution of this thesis is not only fixing each vulnerability of services

and applications. The countermeasures and guidelines we proposed enable service
providers to comprehensively defend against attacks that have a common attack
principle. However, there are still potential channels that attackers can exploit. In
the next section, we discuss the future directions of our research to reduce privacy
threats for Internet users.
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5.2 Future Directions
Finally, we present the following three directions for future research.
Expanding Attack Channels to Investigate. We recognize that there are other

potential privacy threats beyond the layers. Attackersmay be able to estimate privacy
data by measuring other physical phenomena such as measuring power consump-
tion, acoustic behavior, and electromagnetic waves. Privacy-protection mechanisms
become more comprehensive by expanding the attack channels to investigate. The
field of cryptography leading with side-channel attacks will provide insights into
our research.
Measuring the Effectiveness of Offensive Research. We published a procedure

to reproduce privacy attacks we found as an academic paper along with appropriate
countermeasures and guidelines. We believe this activity is beneficial to inform
service providers and users of risks and defenses, and is a common approach in the
security research community. However, we have not measured how many attacks
were actually prevented. We leave the measurement to understand both the positive
and negative effects of disclosure for future work.
Considering Useful Aspects of Attack Concepts. The attacks we have discussed

in Chapters 2 and 3 are practical for user profiling. Location data and attributes of
the user linked to the social account are useful for efficient marketing and improving
service quality. With user consent, our attacks can be useful for legitimate service
providers rather than as actual attacks. Considering the practical aspects of privacy
attacks is an issue for future.
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