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Introduction

In algebraic number theory, the class number of an algebraic number field
is one of the most important and fundamental objects. It is still an open
problem whether there exist infinitely many algebraic number fields with
class number one. In order to approach this problem, we study Weber’s class
number problem. The aim of this thesis is to generalize Weber’s class number
problem for the cases of real quadratic fields. This study can be said to be
unprecedented.

Let p be a prime number. We denote by Bp,n the n-th layer of the cyclo-
tomic Zp-extension of Q. We also denote by hp,n the class number of Bp,n.
Then we consider the following problem:

Weber’s class number problem. Is the class number hp,n equal to 1 for
any prime number p and any positive integer n ?

In the case of p = 2, Weber [43] showed that h2,n is odd for any posi-
tive integer n. He also showed that h2,1 = h2,2 = h2,3 = 1. Though We-
ber conjectured that h2,4 is not equal to 1, it was shown that h2,4 = 1 by
Cohn [6], Bauer [3] and Masley [25]. Moreover, van der Linden [24] showed
that h2,5 = 1. Linden also showed that h2,6 = 1 holds under the assump-
tion of generalized Riemann hypothesis. In 2014, Miller [28] showed that
h2,6 = 1 holds without the assumption. He also showed that h2,7 = 1 under
generalized Riemann hypothesis.

In the case of p ̸= 2, on the other hand, it is known that hp,n = 1 for
(p, n) ∈ {(3, 1), (3, 2), (3, 3), (5, 1), (7, 1)} by [3] and [24]. Linden also showed
that, if we assume generalized Riemann hypothesis, then we have hp,n = 1 for
(p, n) ∈ {(3, 4), (5, 2), (11, 1), (13, 1)}. Recently, Miller showed that hp,n = 1
for (p, n) ∈ {(5, 2), (11, 1), (13, 1)} without the assumption.

In 2012, Coates [5] asked the generalized version of Weber’s class number
problem. Let F be a totally real number field and F (cyc) the composite of the
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cyclotomic Zp-extension for all prime number p. For each positive integer m,
we denote by F (m) the unique intermediate field of F (cyc)/F which satisfies
[F (m) : F ] = m. Let h(F (m)) be the class number of F (m). Then Coates
asked the following question:

Problem. Does there exist a number C(F ) > 0, which is not depending on
m, such that h(F (m)) is at most C(F ) for all positive integer m ?

This problem is so difficult because, even in the case of F = Q andm = pn

for a prime number p and a positive integer n, it is too difficult for large pn

to calculate h(Q(pn)) = hp,n directly. Therefore, we study the ℓ-divisibility
of h(F (m)) for a prime number ℓ:

Problem. Does there exist a prime number ℓ dividing h(F (m)) for a totally
real number field F and positive integer m ?

The ℓ-indivisibility of hp,n has been studied actively. In the case of ℓ = p,
Iwasawa [23] proved that p does not divide hp,n for any positive integer n.
For each prime number ℓ ̸= p, Washington [41] showed that the ℓ-part of hp,n
is bounded as n tends to ∞.

K. Horie [13, 14, 15, 16] and K. Horie and M. Horie [18, 19, 20, 21, 22]
gave an effective breakthrough for proving ℓ-indivisibility of hp,n. We shall
cite a part of their results:

Theorem 0.1 (K. Horie, K Horie and M. Horie).
(i) Assume that 3 ≤ p ≤ 23 and a prime number ℓ is a primitive root

modulo p2. Then ℓ does not divide hp,n for any positive integer n.
(ii) Assume that p = 2 and a prime number ℓ satisfies that ℓ ≡ ±1

(mod 8). Then ℓ does not divide h2,n for any positive integer n.
(iii) Assume that p ≤ 101 and a prime number ℓ does not exceed 13. Then

ℓ does not divide hp,n for any positive integer.

In the case of p = 2, Fukuda and Komatsu [7, 8, 9] studied ℓ-indivisibility
of h2,n deeply:

Theorem 0.2 (Fukuda and Komatsu). Let ℓ be an odd prime number. If ℓ
is less than 109 or satisfies ℓ ̸≡ ±1 (mod 32), then ℓ does not divide h2,n for
any positive integer.

Recently, Morisawa and Okazaki [33] showed that ℓ does not divide h2,n
for any positive integer n if ℓ ̸≡ ±1 (mod 64).

In the case of p = 3, Morisawa [30, 31] showed the following:
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Theorem 0.3 (Morisawa). Let ℓ be a prime integer. If ℓ is less than 109

or satisfies ℓ ̸≡ ±1 (mod 27), then ℓ does not divide h3,n for any positive
integer n.

In this thesis, we study the class numbers of the intermediate fields of
the cyclotomic Z2-extension of Q(

√
5). The reason why we treat Q(

√
5) is

because Q(
√
5) has the minimal discriminant in those of all real quadratic

fields. This case can be said to be a most accessible one as a generalization
of Weber’s class number problem to real quadratic extensions.

Through this thesis, we put

Kn := Q
(√

5, 2 cos
2π

2n+2

)
(0.0.1)

for each non-negative integer n. Then Kn is the n-th layer of the cyclotomic
Z2-extension of K0 = Q(

√
5). We also denote by hn the class number of Kn.

For an odd prime number ℓ, let δℓ be 0 or 1 according as ℓ ≡ 1 (mod 4) or
not and 2cℓ the exact power of 2 dividing ℓδℓ+1 − 1. For a real number x, we
denote by ⌊x⌋ the greatest integer not exceeding x.

Now we describe our results:

Theorem 0.4. Let ℓ be an odd prime. Put

mℓ :=

{
2cℓ + ⌊log2(5ℓ− 1)⌋ − δℓ − 2 if ℓ ̸= 5,

4 if ℓ = 5.

Then ℓ does not divide hn/hmℓ for any n ≥ mℓ.

Theorem 0.5. Let ℓ be an odd prime number less than 6 · 104. Then ℓ does
not divide hn for any positive integer n.

Theorem 0.6. The class number of K5 is at most 133.

Theorem 0.7. The class numbers of K4 and K5 are 1.

In chapter 1, we recall fundamental facts of an algebraic number field, that
is, the class number, the integral basis, the discriminant, the root discrim-
inant and the cyclotomic Zp-extension. In particular, the explicit integral
basis and the value of discriminant of Kn play important role in chapter 5.
So we study them precisely.
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In chapter 2, we shall prove theorem 0.4. mℓ, given in theorem 0.4, is an
explicit bound of Washington’s theorem for the cyclotomic Z2-extension of
Q(

√
5).

In chapter 3, we shall explain how to obtain theorem 0.5 by using the
result in chapter 2 and a computer.

In chapter 4, we shall study Miller’s method to establish an upper bound
of the class number of a totally real field with large root discriminant by
using Poitou version of Weil’s explicit formula and class field theory. The
result of this chapter plays an important role in the next chapter.

In chapter 5, we shall prove theorems 0.6 and 0.7. In order to apply
Miller’s result in chapter 4, we need to construct a large set of prime numbers
each of which splits completely into a product of principal prime ideals of
K5. We also explain the algorithm to find such prime numbers.

In chaper 6, we shall describe perspectives of our research by referring to
previous researches for Weber’s class number problem.
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Chapter 1

Fundamental Facts of Algebraic
Number Fields

In this chapter, we recall fundamental facts of an algebraic number field K,
that is, the ideal class group, the discriminant and the root discriminant of
K. Next, we also recall the definition of the cyclotomic Zp-extension Kp,∞
of K and some properties of the class number of Kp,n, where Kp,n is the n-th
layer of Kp,∞/K.

If we do not remark anything, we shall give proofs in this chapter following
Washington [42].

1.1 Ideal Class Groups of Algebraic Number

Fields

Let K be an algebraic number field with finite degree over Q. We denote by
Cl(K) the ideal class group of K. We also denote by h(K) the cardinal of
Cl(K), which is finite. We call h(K) the class number of K. Then we have
the following:

Lemma 1.1. Let L/K be an extension of algebraic number fields which con-
tains no nontrivial unramified abelian subextension. Then the norm map
from Cl(L) to Cl(K) is surjective.

Proof. We denote by H(L) and H(K) the Hilbert class field of L and K,
respectively. By the class field theory, we have the following commutative
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diagram (cf. Washington [42, Appendix § 3]):

Cl(L)
∼−−−→ Gal(H(L)/L)

norm

y yrestrection

Cl(K)
∼−−−→ Gal(H(K)/K),

(1.1.1)

where both of horizontal maps are the Artin maps. By the assumption, we
have H(K) ∩ L = K. Since H(K)L/L is an unramified abelian extension,
we have H(K)L ⊂ H(L) and

Gal(H(L)/L) ↠ Gal(H(K)L/L) ∼= Gal(H(K)/K),

which implies that the restriction from Gal(H(L)/L) to Gal(H(K)/K) is
surjective. By (1.1.1), the norm map from Cl(L) to Cl(K) is surjective.

For a prime number ℓ, we denote by A(K) the ℓ-Sylow subgroup of Cl(K).
We define D(L/K) the kernel of the norm map from A(L) to A(K):

Lemma 1.2. Let L/K be an extension of algebraic number fields with degree
prime to ℓ. Then the natural map from A(K) to A(L) is injective and we
have

A(L) ∼= A(K)⊕D(L/K). (1.1.2)

Proof. We put m := [L : K]. Since m is prime to ℓ, the composite map

A(K)
natural map−−−−−−−→ A(L)

norm map−−−−−→ A(K)
m−1

−−→ A(K)

is the identity of A(K). Therefore, the natural map form A(K) to A(L) is
injective and the sequence

1 → D(L/K) → A(L) → A(K) → 1

is split. This completes the proof.
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1.2 Integral Basis and Discriminants of Alge-

braic Number Fields

Let ζm be a primitive m-th root of unity in C for a positive integer m. For
an algebraic number field K with n := [K : Q] <∞, let

{ω1, ω2, · · · , ωn}

be an integral basis of K. As well-known results, we give two examples of
integral basis.

Example 1.3. For a quadratic field Q(
√
d) with square free rational integer

d ̸= 1, the set

B =

{
{1,

√
d} if d ̸≡ 1 (mod 4),{

1, 1+
√
d

2

}
if d ≡ 1 (mod 4)

forms an integral basis of Q(
√
d).

Example 1.4. For a cyclotomic field Q(ζm) with positive integer m ̸≡ 2
(mod 4), the set

{1, ζm, ζ2m, · · · , ζϕ(m)−1
m },

forms an integral basis of Q(ζm), where ϕ : Z≥1 → Z≥1 is the Euler function.

For the maximal real subfield Q(ζm)
+ := Q(ζm + ζ−1

m ) of Q(ζm), we can
also obtain an integral basis of Q(ζm)

+ explicitly:

Proposition 1.5. The set

{1, ζm + ζ−1
m , (ζm + ζ−1

m )2, · · · , (ζm + ζ−1
m )ϕ(m)/2−1}

forms an integral basis of Q(ζm)
+.

Proof. Since the minimal polynomial of ζm + ζ−1
m has degree ϕ(m)/2, it is

enough to show that the integer ring of Q(ζm)
+ is Z[ζm + ζ−1

m ]. We assume
that α ∈ Q(ζm)

+ is an algebraic integer and put

α = a0 + a1(ζm + ζ−1
m ) + · · · aN(ζm + ζ−1

m )N

11



with N ≤ ϕ(m)/2− 1 and ai ∈ Q. Multiplying ζNm and expanding the result
as a polynomial in ζm, we have

ζNmα = aN + · · ·+ aNζ
2N
m .

Since {1, ζm, ζ2m, · · · , ζ
ϕ(m)−1
m } is an integral basis and 2N ≤ ϕ(m)− 2,

{1, ζm, · · · , ζ2Nm }

is a subset of an integral basis of Q(ζm). Since ζ
N
mα is an algebraic integer of

Q(ζm), we have aN ∈ Z. Therefore, it is true that

α− aN(ζm + ζ−1
m )N = a0 + a1(ζm + ζ−1

m ) + · · · aN−1(ζm + ζ−1
m )N−1

is an algebraic integer of Q(ζm)
+. By induction, we have ai ∈ Z for all integer

i with 0 ≤ i ≤ N . This completes the proof.

let d(K) be the discriminant of K, i.e.,

d(K) :=

det


σ1(ω1) σ2(ω1) · · · σn(ω1)
σ1(ω2) σ2(ω2) · · · σn(ω2)

...
...

. . .
...

σ1(ωn) σ2(ωn) · · · σn(ωn)




2

,

where {σ1, σ2, · · · , σn} is the set of all embeddings of K into C. Denoting by
TrK/Q the trace mapping from K to Q, we obtain

d(K) = det



σ1(ω1) · · · σn(ω1)
σ1(ω2) · · · σn(ω2)

...
. . .

...
σ1(ωn) · · · σn(ωn)

 ·


σ1(ω1) · · · σ1(ωn)
σ2(ω1) · · · σ2(ωn)

...
. . .

...
σn(ω1) · · · σn(ωn)




= det


TrK/Q(ω1ω1) · · · TrK/Q(ω1ωn)
TrK/Q(ω2ω1) · · · TrK/Q(ω2ωn)

...
. . .

...
TrK/Q(ωnω1) · · · TrK/Q(ωnωn)

 (1.2.1)

It is well known that d(K) is a rational integer and the absolute value of
d(K) is greater than 1 if K ̸= Q.

Odlyzko [38] gave lower bounds for discriminants of totally real number
fields:
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Theorem 1.6 (Odlyzko). There exist pairings of non-negative real numbers
(A,E) satisfying

d(K) > Ane−E (1.2.2)

for any totally real number field K with n = [K : Q].

Table 1.1: the pairing of (A,E) in Odlyzko’s theorem1

A E A E

18.916 5.3334 54.333 26.667
21.512 6.0001 55.335 29.334
24.016 6.6667 56.129 32.001
28.668 8.0001 57.286 37.334
36.347 10.667 58.070 42.667
42.018 13.334 58.624 48.001
46.138 16.001 59.028 53.334
51.371 21.334 59.896 74.667
53.047 24.001 60.704 200.01

The table 1.1 is an abstract from the table in Odlyzko [39]. Odlyzko cal-
culated these pairings analytically (cf. [36, Theorem 1] or [37, Theorem 1]).

Finally, we introduce the following proposition to determine the discrimi-
nant and an integral basis of a composite field of two algebraic number fields
(cf. Neukirch [35]):

Proposition 1.7. Let K, resp. K ′, be a Galois extension over Q with degree
n, resp. n′. We denote by {ω1, ω2, · · · , ωn}, resp. {ω′

1, ω
′
2, · · · , ω′

n′}, an
integral basis of K, resp. K ′. If K ∩ K ′ = Q and d(K) and d(K ′) are
coprime, then

B := {ωiω′
j | 1 ≤ i ≤ n, 1 ≤ j ≤ n′}

is an integral basis of KK ′ and

d(KK ′) = d(K)n
′
d(K ′)n.

1abstracted from Odlyzko [39]
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Proof. Since K is a Galois extension over Q and K ∩ K ′ = Q, we have
[KK ′ : Q] = nn′. Thus B is a basis of KK ′/Q. Let α be an algebraic integer
of KK ′ and write

α =

n2∑
j=1

n1∑
i=1

ai,jωiω
′
j

with ai,j ∈ Q. We put

βj =

n1∑
i=1

ai,jωi ∈ K.

Let Gal(KK ′/K ′) = {σ1, σ2, · · · , σn} and Gal(KK ′/K) = {σ′
1, σ

′
2, · · · , σ′

n′}.
Then we have

Gal(KK ′/Q) = {σkσ′
l | k = 1, 2, · · · , n, l = 1, 2, · · · , n′}.

Putting

X =

σ′
1(ω

′
1) · · · σ′

n′(ω′
1)

...
. . .

...
σ′
1(ω

′
n′) · · · σ′

n′(ω′
n′)

 , a =

σ′
1(α)
...

σ′
n′(α)

 , b =

β1
...
βn′

 ,

we have det(X)2 = d(K ′) and

a = Xb.

We denote by X̃ the adjoint matrix of X. Then we obtain

det(X)b = X̃a.

Since all the elements of X̃a are algebraic integers of KK ′, all the elements
of d(K ′)b, d(K ′)βj =

∑n1

i=1 d(K
′)ai,jωi, are algebraic integers of K. Thus

we have d(K ′)ai,j ∈ Z. Changing the roles of ωi’s and ω′
j’s, we also have

d(K)ai,j ∈ Z. Since there exist x, x′ ∈ Z satisfying

xd(K) + x′d(K ′) = 1,

we have

ai,j = xd(K)ai,j + x′d(K ′)ai,j ∈ Z.
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Therefore, B is an integral basis of KK ′.

In order to compute d(KK ′), we calculate the determinant of the nn′ ×
nn′-matrix

M :=
(
σkσ

′
l(ωiω

′
j)
)
=
(
σk(ωi)σ

′
l(ω

′
j)
)
.

Since we can regardM as a n′×n′-matrix whose (j, l)-element is n×n-matrix
Qσ′

l(ω
′
j) with Q := (σk(ωi)), we have

M =


Q On · · · On

On Q · · · On
...

. . . . . .
...

On · · · On Q



Enσ

′
1(ω

′
1) Enσ2(ω

′
1) · · · Enσn′(ω′

1)
Enσ

′
1(ω

′
2) Enσ

′
2(ω

′
2) · · · Enσ

′
n′(ω′

2)
...

. . . . . .
...

Enσ
′
1(ω

′
n′) Enσ

′
2(ω

′
n′) · · · Enσ

′
n′(ω′

n′)

 ,

where On is the n×n-zero matrix and En is the n×n-unit matrix. Therefore,
we have

det(M) = det(Q)n
′
det(σ′

l(ω
′
j))

n = d(K)n
′
d(K ′)n,

which completes the proof.

1.3 Root Discriminants of Algebraic Number

Fields

For an algebraic number field K with degree n over Q, the root discriminant
rd(K) of K is defined by

rd(K) := |d(K)|1/n, (1.3.1)

that is, the positive real number whose n-th power is equal to the absolute
value of d(K). Then Masley [25] proved the following proposition:

Proposition 1.8 (Masley). Let L/K be an extension of algebraic number
fields with finite degrees over Q. Then we have rd(K) ≤ rd(L). Moreover,
the equality holds if and only if L/K is an unramified extension at all finite
primes.
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Proof. Let d(L/K) be the absolute norm of the relative discriminant ideal
for L/K. Then we have

|d(L)| = d(L/K)|d(K)|[L:K].

It is true that d(L/K) ≥ 1 and the equality holds if and only if L/K is an
unramified extension at all finite primes. This completes the proof.

Proposition 1.8 implies that for an algebraic number field K and its
Hilbert class field H(K), we have

rd(H(K)) = rd(K). (1.3.2)

Using the equation (1.3.2), we can establish an upper bound of the class
number h(K) of a totally real algebraic number field K with small root
discriminant, which is used in Masley [25] or Linden [24]:

Proposition 1.9. Let K be a totally real field with degree n and (A,E)
a pairing of real numbers which appears in the table of Odlyzko [39]. If
rd(K) < A, then we have

h(K) <
E

n(logA− log rd(K))
. (1.3.3)

Proof. SinceK is totally real, the Hilbert class field H(K) ofK is also totally
real. By theorem 1.6, we have

d(H(K)) > Ah(K)ne−E

for each pairing in the table of Odlyzko [39]. By the equation (1.3.2), we
have

d(H(K)) = rd(H(K))h(K)n = rd(K)h(K)n.

Therefore, we have

h(K)n(logA− log rd(K)) < E.

If rd(K) < A, then we obtain logA− log rd(K) > 0. Therefore, we have

h(K) <
E

n(logA− log rd(K))
,

which completes the proof.
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Remark 1.10. The maximal of A in the table of Odlyzko [39] is 60.704 (cf.
tabel 1.1). Therefore, if the root discriminant of an algebraic number field
K exceeds 60.704, then we cannot use the class number upper bound given
in (1.3.3).

In order to calculate root discriminants, we have the following lemma by
proposition 1.7:

Lemma 1.11. Let K and K ′ be algebraic number fields given in proposi-
tion 1.7. Then we have

rd(KK ′) = rd(K)rd(K ′).

1.4 Cyclotomic Zp-extensions of Algebraic Num-

ber Fields

We recall that ζm is a primitive m-th root of unity in C for a positive integer
m. By Galois theory, the extension Q(ζ2pn+1)/Q has an unique real extension
Bp,n with degree pn over Q for a prime integer p and a non-negative integer
n. Since Bp,n ⊂ Bp,n+1 for each non-negative integer n,

Bp,∞ :=
∞∪
n=0

Bp,n

is a field, which is called the cyclotomic Zp-extension of Q. We note that
Bp,∞/Q is a Galois extension and the Galois group of Bp,∞/Q is isomorphic
to Zp as topological groups.

For an arbitrary algebraic number field K, We put Kp,∞ := KBp,∞. Then
Kp,∞/K is a Galois extension and

Gal(Kp,∞/K) ∼= Gal(Bp,∞/Bp,∞ ∩K) ∼= Zp

as topological groups. We call Kp,∞ the cyclotomic Zp-extension of K.
By Galois theory, there exists an unique intermediate fieldKp,n ofKp,∞/K

with degree pn over K for each non-negative integer n, which is called the
n-th layer of the cyclotomic Zp-extension of K.
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In the case of p = 2 and K = Q(
√
5), we have

K2,n = Kn

for each non-negative integer n, where Kn is defined in (0.0.1). Using the
upper bound given in (1.3.3), Linden [24] proved the following:

Theorem 1.12 (cf. Linden). The class numbers of K1, K2 and K3 are 1.

Since lemma 1.11 implies that

rd(Kn) = rd(Q(
√
5))rd(Bn)

for each positive integer n, we have

rd(Kn) =
√
5
·
2(n+1)− 1

2n > 68.520

for n ≥ 4. So we cannot use the class number upper bound given in (1.3.3)
for Kn with n ≥ 4.

Then we are interested in ℓ-divisibility of hn, the class number of Kn, for
a prime number ℓ. In the case of ℓ = 2, since the class number of K0 is 1, we
have the following by applying the result of Iwasawa [23]:

Theorem 1.13 (cf. Iwasawa). The prime number 2 does not divide hn for
any positive integer n.

In the case of ℓ ̸= 2, we can apply the result of Washington [41]:

Theorem 1.14 (cf. Washington). For an odd prime number ℓ, let ℓen be the
exact power of ℓ dividing hn. Then en is bounded as n tends to ∞.
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Chapter 2

Explicit Bound of
ℓ-indivisibility

In this chapter, we shall recall theorem 0.4 and prove the theorem. For each
odd prime number ℓ, theorem 0.4 gives an explicit bound mℓ of Washington’s
theorem for the cyclotomic Z2-extension for Q(

√
5). Since ℓ = 5 divides the

discriminant of Q(
√
5), we deal with the case of ℓ = 5 separately.

We recall our notations. For an odd prime number ℓ, let δℓ be 0 or 1
according as ℓ ≡ 1 (mod 4) or not and 2cℓ the exact power of 2 dividing
ℓδℓ+1 − 1. For a real number x, we denote by ⌊x⌋ the greatest integer not
exceeding x. Then we prove the following:

Theorem 2.1 (Theorem 0.4). Let ℓ be an odd prime. Put

mℓ :=

{
2cℓ + ⌊log2(5ℓ− 1)⌋ − δℓ − 2 if ℓ ̸= 5,

4 if ℓ = 5.

Then ℓ does not divide hn/hmℓ for any n ≥ mℓ.

Remark 2.2. For ℓ = 5, mℓ is derived from

mℓ = 2cℓ + ⌊log2(ℓ− 1)⌋ − δℓ − 2.

Remark 2.3. Since the prime ideal of K0 lying above 2 is totally ramified
in Kn/K0 for any positive integer n, we have hn/hn−1 is a rational integer.
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2.1 The ℓ-parts of the generalized Bernoulli

Numbers

Toward the theorem 2.1, we first study the ℓ-parts of the generalized Bernoulli
numbers. For an odd prime number ℓ, let vℓ be the additive ℓ-adic valuation
normalized by vℓ(ℓ) = 1. For a non-negative integer n, we put K ′

n := Kn(ζℓ).
We denote by Gn and G′

n the Galois group of Kn/Q and K ′
n/Q, respectively.

We also denote by ∆ℓ the Galois group of Q(ζℓ)/Q. We define the character

ωℓ : ∆ℓ → Zℓ by ζδℓ = ζ
ωℓ(δ)
ℓ for all δ ∈ ∆ℓ , which is called the Teichimüller

character. Then ω2
5 generates the character group of Gal(K0/Q). We remark

that there are canonical isomorphisms

G′
n
∼=
{
Gn ×∆ℓ if ℓ ̸= 5, (2.1.1)

Γn ×∆ℓ if ℓ = 5, (2.1.2)

where Γn denotes the Galois group of Bn/Q. We denote by ψn a character
modulo 2n+2 whose order is 2n.

Let fℓ be 5 or 5ℓ according as ℓ = 5 or not and χ a character modulo fℓ
with χ(−1) = −1. Then we define the generalized Bernoulli number B1,χψn

by

B1,χψn =
1

fℓ · 2n+2

fℓ·2n+2∑
b=1

χψn(b)b.

We remark that we can regard χψn as a character χψn : G′
n → Zℓ. Then we

can define the idempotent eχψn by

eχψn :=
1

|G′
n|
∑
σ∈G′

n

Tr(χ−1ψ−1
n (σ))σ ∈ Zℓ[G′

n],

where Tr is the trace mapping from Qℓ(χψn(Gn)) to Qℓ. Since we can act
eχψn on A′

n, we put A′
n,χψn

= eχψnA
′
n. The following theorem is a direct

consequence of Mazur and Wiles [26, p.216, Theorem 2]:

Theorem 2.4 (Mazur and Wiles). We have

vℓ(|A′
n,χψn |) = (Zℓ[χψn(G′

n)] : Zℓ)vℓ(B1,χ−1ψ−1
n
). (2.1.3)
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Theorem 2.4 implies that vℓ(B1,χψn) ≥ 0 for each χ. For χ, we also define
f1,χ(T ) ∈ Qℓ(T ) by

f1,χ(T ) :=

 ∑
b≡1 (mod 2cℓ )

0<b<fℓ·2
cℓ+1

χ−1(b)T b

(T fℓ·2cℓ+1 − 1
)−1

. (2.1.4)

Then we have the following by [42, pp.386-387]:

Lemma 2.5. Let n ≥ 2cℓ − 1. If f1,χ(η) ̸≡ 0 (mod ℓ) for any primitive
2n+2-th root of unity η in Qℓ, then B1,χ−1ψ−j

n
̸≡ 0 (mod ℓ) for any odd integer

j, where ℓ is the ideal of Zℓ[η] generated by ℓ.

Lemma 2.6. If n ≥ mℓ + 1, then f1,χ(η) ̸≡ 0 (mod ℓ) for any primitive
2n+2-th root of unity η in Qℓ.

Proof. We put

g(T ) = f1,χ(T )(T
fℓ·2cℓ − 1)T−1. (2.1.5)

Since χ is a character modulo fℓ, we have

g(T ) =
∑

b≡1 (mod 2cℓ )
0<b≤1+(fℓ−1)·2cℓ

χ−1(b)T b−1 ∈ Zℓ[T ].

We denote by deg(g) the degree of g(T ). For all n ≥ mℓ+1 and any primitive
2n+2-th root of unity η in Qℓ, we have

[Qℓ(η) : Qℓ] = 2n+2−cℓ+δℓ

≥ 2cℓ+⌊log2(fℓ−1)⌋+1

> 2cℓ(fℓ − 1) ≥ deg(g).

Hence we have g(η) ̸≡ 0 (mod ℓ) for any primitive 2n+2-th root of unity η in
Qℓ. Thus we have f1,χ(η) ̸≡ 0 (mod ℓ) for any η.

Therefore, we obtain the following proposition by lemmas 2.5 and 2.6:

Proposition 2.7. If n ≥ mℓ + 1, then we have vℓ(B1,χ−1ψ−j
n
) = 0 for all odd

integer j with 0 ≤ j ≤ 2n − 1.
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2.2 Isomorphisms between Zℓ[∆ℓ]-modules

This section is devoted to the proof of proposition 2.8, which is proved uni-
formly for the cases of ℓ ̸= 5 and ℓ = 5. Proposition 2.8 plays an important
role for our proof of theorem 2.1.

For an integer i with 0 ≤ i ≤ ℓ− 2, we define the idempotent ei by

ei :=
1

ℓ− 1

∑
δ∈∆ℓ

ω−i
ℓ (δ)δ ∈ Zℓ[∆ℓ]. (2.2.1)

Let An and A′
n be the ℓ-Sylow subgroup of Cl(Kn) and Cl(K

′
n), respec-

tively. Since natural mappings An−1 → An and A′
n−1 → A′

n are injective
by lemma 1.2, we can regard An−1 and A′

n−1 as Gn-submodule of An and
G′
n-submodule of A′

n, respectively. Let Dn and D′
n be the kernels of the

norm mappings An → An−1 and A′
n → A′

n−1, respectively. Then we have
An = An−1 ⊕Dn and A′

n = A′
n−1 ⊕D′

n again by lemma 1.2.
Let L′

n be the maximal unramified elementary abelian ℓ-extension of K ′
n,

that is, the maximal unramified abelian extension over K ′
n whose Galois

group over K ′
n is isomorphic to a direct sum of Z/ℓZ. Note that L′

n/Q is a
Galois extension since K ′

n/Q is a Galois extension. Since Gal(L′
n/K

′
n) is a

normal abelian subgroup of Gal(L′
n/Q), we can act G′

n on Gal(L′
n/K

′
n) by

σg := g̃σg̃−1,

where σ ∈ Gal(L′
n/K

′
n) and g̃ ∈ Gal(L′

n/Q) such that the restriction of g̃ to
K ′
n is equal to g. Therefore, Gal(L′

n/K
′
n) is isomorphic to A′

n/ℓA
′
n as G′

n-
module by the Artin mapping. By class field theory, we have Gal(L′

n/L
′
n−1K

′
n)

∼=
D′
n/ℓD

′
n. Since

Gal(L′
n/K

′
n)

∼= A′
n/ℓA

′
n
∼= A′

n−1/ℓA
′
n−1 ⊕D′

n/ℓD
′
n,

there exists an intermediate field M ′
n of L′

n/K
′
n such that Gal(L′

n/M
′
n)

∼=
A′
n−1/ℓA

′
n−1 by the Artin mapping. Note that D′

n is a G′
n-submodule of A′

n.
Then we have the following:

L′
n =M ′

nL
′
n−1, (2.2.2)

L′
n−1K

′
n ∩M ′

n = K ′
n, (2.2.3)

Gal(M ′
n/K

′
n)

∼= D′
n/ℓD

′
n, (2.2.4)

M ′
n/Q is a Galois extension. (2.2.5)
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Since ζℓ ∈ K ′
n,M

′
n/K

′
n is a Kummer extension. Then there exists a subgroup

V of K ′×
n /(K

′×
n )ℓ such that M ′

n = K ′
n(

ℓ
√
V ) in the obvious notation. Since

M ′
n/Q is a Galois extension, we can act G′

n on V by

b̃g = g(b)(K ′×
n )ℓ,

where b̃ = b(K ′×
n )ℓ for b ∈ K ′×

n . Let W be the subgroup in C× generated by
ζℓ. Then there is a non-degenerate pairing

Gal(M ′
n/K

′
n)× V → W ; (h, b̃) 7→ ⟨h, b̃⟩,

which is defined by

⟨h, b̃⟩ := h( ℓ
√
b)

ℓ
√
b

for all h ∈ Gal(M ′
n/K

′
n) and b̃ = b(K ′×

n )ℓ and satisfies ⟨hg, b̃g⟩ = ⟨h, b̃⟩g for
all g ∈ G′

n. Then the reflection theorem (cf. Gras [11, pp.18-19]) says the
following:

Proposition 2.8. As abelian groups, we have

ejV ∼= eiGal(M ′
n/K

′
n) (2.2.6)

for integers i, j with i+ j ≡ 1 (mod ℓ− 1).

2.3 The case of ℓ ̸= 5

For ℓ ̸= 5, we prove the following:

Lemma 2.9. If e1(A
′
n/A

′
n−1) = 0, then An = An−1.

Proof. By (2.2.6), we have

e1V ∼= e0Gal(M ′
n/K

′
n)

∼= e0 (D
′
n/ℓD

′
n)

= Dn/ℓDn
∼= (An/An−1)/ℓ(An/An−1). (2.3.1)
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We assume that An ̸= An−1. Then e1V is not trivial by (2.3.1). Therefore,
there exists b(K ′×

n )ℓ ∈ e1V such that the extension K ′
n(

ℓ
√
b)/K ′

n is non-trivial.
Since K ′

n(
ℓ
√
b) ⊂M ′

n, we have

L′
n−1K

′
n ∩K ′

n(
ℓ
√
b) = K ′

n. (2.3.2)

by (2.2.3). Then there exists an ideal b ofK ′
n whose ideal class belongs to e1V

and satisfying bℓ = (b), the ideal generated by b in K ′
n. Since e1(A

′
n/A

′
n−1) =

e1A
′
n/e1A

′
n−1, there exists d ∈ K ′

n−1 such that bℓ = (d). Hence there exists a
unit u of K ′

n satisfying b = du. This implies that

b(K ′×
n )ℓ = e1(b(K

′×
n )ℓ) = (e1(d(K

′×
n )ℓ))(e1(u(K

′×
n )ℓ)).

Since e1(u(K
′×
n )ℓ) = ζ(K ′×

n )ℓ for some ζ ∈ W , we have K ′
n(

ℓ
√
b) ⊂ L′

n−1K
′
n.

Therefore, by (2.3.2), we have K ′
n(

ℓ
√
b) = K ′

n, which contradicts to the choice
of b(K ′×

n )ℓ.

Then we study e1(A
′
n/A

′
n−1)

∼= e1A
′
n/e1A

′
n−1. By (2.1.3) and decomposing

e1A
′
n using ψjn and ω2

5ψ
j
n (cf. Gras [11, Section 3 in Chaper 2]), we can

describe the difference between the ℓ-parts of |e1A′
n| and |e1A′

n−1| as follows:

Proposition 2.10. We have

vℓ(|e1A′
n|)− vℓ(|e1A′

n−1|) =
2n−1∑
j=1:odd

(
vℓ(B1,ω−1

ℓ ψ−j
n
) + vℓ(B1,ω−1

ℓ ω−2
5 ψ−j

n
)
)
.

So we study the ℓ-parts of B1,ω−1
ℓ ψ−j

n
and B1,ω−1

ℓ ω−2
5 ψ−j

n
for odd integer j

with 1 ≤ j ≤ 2n − 1. We can obtain the following condition for vanishing
the ℓ-parts of B1,ω−1

ℓ ψ−j
n

(cf. Fukuda and Komatsu [7, Section 4]):

Proposition 2.11 (Fukuda and Komatsu). Let n ≥ 2cℓ + ⌊1
2
log2 ℓ⌋. Then

we have vℓ(B1,ω−1
ℓ ψ−j

n
) = 0 for all odd integer j with 1 ≤ j ≤ 2n − 1.

We remark that since mℓ+1 ≥ 2cℓ+ ⌊1
2
log2 ℓ⌋ for all odd prime mumber

ℓ, proposition 2.11 implies that if n ≥ mℓ + 1, we have vℓ(B1,ω−1
ℓ ψ−j

n
) = 0 for

all odd integer j with 1 ≤ j ≤ 2n − 1.
By putting χ = ωℓω

2
5, proposition 2.7 is reformulated as follows:
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Proposition 2.12. If n ≥ mℓ +1, then we have vℓ(B1,ω−1
ℓ ω−2

5 ψ−j
n
) = 0 for all

odd integer j with 0 ≤ j ≤ 2n − 1.

Then the following proposition is immediately obtained by propositions 2.10
thorough 2.12:

Proposition 2.13. If n ≥ mℓ + 1, then we have e1A
′
n = e1A

′
n−1.

We assume that n ≥ mℓ. Then we have e1A
′
n = e1A

′
n−1 = · · · = e1A

′
mℓ

by
proposition 2.13. Therefore, lemma 2.9 says that An = An−1 = · · · = Amℓ .
This completes the proof of theorem 2.1 for the case of ℓ ̸= 5.

2.4 The Case of ℓ = 5

In the case of ℓ = 5, we cannot obtain the isomorphism (2.3.1) because we
have

Gal(Q(ζ5)/Q) ∼= Gal(K ′
n/Bn).

In order to obtain an isomorphism similar to (2.3.1), we use e2. Let α ∈ A′
n.

Since the 5-part of Cl(Bn) is trivial for all positive integer n (cf. K. Horie [16,
Proposition 3] or Fukuda and Komatsu [7, Corollary 1.3]), we have

e2(α) =
1

4

 ∑
σ∈Gal(K′

n/Kn)

σ −
∑

τ∈Gal(K′
n/Bn)\Gal(K′

n/Kn)

τ

α

=
1

2

 ∑
σ∈Gal(K′

n/Kn)

σ

α

for all α ∈ A′
n. Therefore, we can regard e2 as the norm map from A′

n to An
and (2.2.6) says that

e3V ∼= e2Gal(M ′
n/K

′
n)

∼= e2(D
′
n/ℓD

′
n)

= Dn/ℓDn
∼= (An/An−1)/ℓ(An/An−1),

which allows us to prove the following by a similar argument in the proof of
lemma 2.9:
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Lemma 2.14. If e3(A
′
n/A

′
n−1) = 0, then An = An−1.

To describe the difference between the 5-parts of |e3A′
n| and |e3A′

n−1|, we
repeat a similar argument in the proof of proposition 2.12:

Proposition 2.15. We have

v5(|e3A′
n|)− v5(|e3A′

n−1|) =
2n−1∑
j=1:odd

v5(B1,ω−3
5 ψ−j

n
).

By putting χ = ω3
5, proposition 2.7 is reformulated as follows:

Proposition 2.16. If n ≥ mℓ + 1, then we have v5(B1,ω−3
5 ψ−j

n
) = 0 for all

odd integer j with 0 ≤ j ≤ 2n − 1.

Propositions 2.15 and 2.16 allow us to obtain the following:

Proposition 2.17. If n ≥ mℓ + 1, then we have e3A
′
n = e3A

′
n−1.

By proposition 2.17 and lemma 2.14, we have An = An−1 = · · · = Amℓ
for n ≥ mℓ, which completes the proof of theorem 2.1 for the case of ℓ = 5.
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Chapter 3

Numerical Result

In this chapter, we shall recall theorem 0.5. This theorem is derived from
theorem 2.1 by a computer calculation. So we give the algorithm to calculate
ℓ-indivisibility of hn.

We recall our result:

Theorem 3.1 (Theorem 0.5). Let ℓ be an odd prime number less than 6 ·104.
Then ℓ does not divide hn for any positive integer n.

3.1 General Setting

Let ℓ be an odd prime number less than 109. For a character χ : Gn → Zℓ,
we define the idempotent eχ by

eχ :=
1

|Gn|
∑
σ∈Gn

Tr(χ−1(σ))σ ∈ Zℓ[Gn], (3.1.1)

where Tr is the trace mapping from Qℓ(χ(Gn)) to Qℓ. Since we can act eχ
on An, we put An,χ := eχAn, which is called the χ-part of An. Then we have

An =
⊕
χ′

An,χ′ , (3.1.2)

where χ′ runs over all representatives of Qℓ-conjugacy classes of the character
group of Gn. Let Kχ be the subfield of Kn corresponding to Kerχ and Aχ the
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χ-part of the ℓ-Sylow subgroup of Cl(Kχ). Then there is a canonical group
isomorphism

An,χ ∼= Aχ. (3.1.3)

We rewrite (3.1.2) more concretely. Let ρ be the generator of Γn induced
by ζ2n+2 7→ ζ52n+2 , σ the generator of Gal(K/Q) induced by ζ5 7→ ζ25 , and ψ
the generator of the character group of Γn. We abbreviate ω5 as ω. We put
Fn = KKerω2ψ

n and Hn = Gal(Fn/Q). We define X ⊂ Z to make {ψj|j ∈ X}
be a set of representatives of injective characters of Γn. Then {ω2ψj|j ∈ X}
is a set of representatives of injective characters of Hn.

Noting the isomorphism (3.1.3), we can rewrite (3.1.2) as follows:

An = An−1 ⊕
⊕
j∈X

An,ψj ⊕
⊕
j∈X

An,ω2ψj . (3.1.4)

For each j ∈ X, we have |An,ψj | = 1 if ℓ < 109 by [9]. Therefore, if it is true
that |An,ω2ψj | = 1 for all j ∈ X, we have An = An−1, which implies that ℓ
does not divide hn/hn−1. Since h1 = 1, we may assume that n ≥ 2.

In order to prove that ℓ does not divide

hmℓ = h1

mℓ∏
n=2

hn
hn−1

,

we define a cyclotomic unit ξn of Kn. For non-negative integer n, let ζ5·2n+2

be a primitive 5 · 2n+2-th root of unity in C. We put ζ2n+2 = ζ55·2n+2 and

ζ5 = ζ2
n+2

5·2n+2 . We also put

ξn = (ζ5ζ2n+2 − 1)(ζ5ζ
−1
2n+2 − 1)(ζ−1

5 ζ2n+2 − 1)(ζ−1
5 ζ−1

2n+2 − 1) ∈ Kn.

For χ = ω2ψj with j ∈ X, we define a truncation eχ,ℓ ∈ Z[Gn] of eχ by

eχ,ℓ ≡ eχ (mod ℓ).

Then we can act eχ,ℓ on ξn. The following is the special case of [2, Lemma 1]:

Lemma 3.2. If there exists a prime number p congruent to 1 modulo 5ℓ·2n+2

and satisfies

(ξ
eχ,ℓ
n )

p−1
ℓ ̸≡ 1 (mod p) (3.1.5)

for some prime ideal p of Kn lying above p, then we have |An,χ| = 1.
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Let s = cℓ − δℓ. Then 2s is the exact power of 2 dividing ℓ − 1 or ℓ + 1
according as ℓ ≡ 1 (mod 4) or not.

Owing to Lemma 3.2, we may regard χ as a character of Gn into Fℓ,
where Fℓ is the algebraic closure of Fℓ = Z/ℓZ. Let ηn be a primitive 2n-th
root of unity in Fℓ and

L = Fℓ(ηn).

Wemay also define eχ to be an element of Fℓ[Gn] and assume that ψ(ρ) = η−1
n .

Then we have

eω2ψj =
1

2n+1

2n−1∑
i=0

TrL/Fℓ(η
ij
n )
(
ρi − σρi

)
. (3.1.6)

Now, let p be a prime number satisfying p ≡ 1 (mod 5ℓ · 2n+2) and gp
a primitive root modulo p. Since p is totally decomposed in Q(ζ5·2n+2)/Q,
there exists a prime ideal P in Q(ζ5·2n+2) lying above p which satisfies

ζ5·2n+2 ≡ g
p−1

5·2n+2
p (mod P).

To consider (3.1.5), we can ignore 1/2n+1 in (3.1.6). Therefore, we put
2n+1eω2ψj ,ℓ =

∑2n−1
i=0 aij(ρ

i − σρi), that is,

aij ≡ TrL/Fℓ(η
ij
n ).

We fix non-negative integers z1, z2, z3, z4 satisfying

z1 ≡ g
p−1
5

p (mod p), z2z1 ≡ 1 (mod p),

z3 ≡ g
p−1

2n+2
p (mod p), z4z3 ≡ 1 (mod p).

Then we have

ξ
2n+1e

ω2ψj,ℓ
n =

2n−1∏
i=0

(
(ζ5ζ

5i

2n+2 − 1)(ζ5ζ
−5i

2n+2 − 1)(ζ−1
5 ζ5

i

2n+2 − 1)(ζ−1
5 ζ−5i

2n+2 − 1)

(ζ25ζ
5i

2n+2 − 1)(ζ25ζ
−5i

2n+2 − 1)(ζ−2
5 ζ5

i

2n+2 − 1)(ζ−2
5 ζ−5i

2n+2 − 1)

)aij

≡
2n−1∏
i=0

(
(z1z

5i

3 − 1)(z1z
5i

4 − 1)(z2z
5i

3 − 1)(z2z
5i

4 − 1)

(z21z
5i
3 − 1)(z21z

5i
4 − 1)(z22z

5i
3 − 1)(z22z

5i
4 − 1)

)aij

(mod p)
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with p = P∩Kn. For convenience, we fix ζ(b
i) ∈ Z satisfying 0 ≤ ζ(bi) ≤ p−1

and

ζ(bi) ≡ (z1z
bi

3 − 1)(z1z
bi

4 − 1)(z2z
bi

3 − 1)(z2z
bi

4 − 1)

(z21z
bi
3 − 1)(z21z

bi
4 − 1)(z22z

bi
3 − 1)(z22z

bi
4 − 1)

(mod p)

for each integer b ≥ 1 and i ≥ 0.
We need to determine X, aij for each positive integer i and j ∈ X and b

explicitly. We treat 4 cases for this purpose.

3.2 The case ℓ ≡ 1 (mod 4) and 2 ≤ n ≤ s

In this case, we have L = Fℓ. Hence TrL/Fℓ(ηn) = ηn. Since the choice of ηn
is arbitrary, we may assume that

ηn ≡ g
ℓ−1
2n

ℓ (mod ℓ),

where gℓ is a primitive root modulo ℓ. Since there are 2n−1 non-conjugate
primitive 2n-th roots of unity in Fℓ, there are also 2n−1 Fℓ-conjugacy classes
of injective characters of Hn. We put

X = {j ∈ Z|1 ≤ j ≤ 2n − 1, j is odd}.

Then {ω2ψj|j ∈ X} is a set of representatives of the Fℓ-conjugacy classes of
injective characters of Hn. We fix non-negative integers aij’s by

aij ≡ g
ℓ−1
2n

ij

ℓ (mod ℓ)

for each 0 ≤ i ≤ 2n − 1 and j ∈ X. Then we have the following criterion:

Lemma 3.3. If for each j ∈ X, there exists a prime number p congruent to
1 modulo 5ℓ · 2n+2 satisfying(

2n−1∏
i=0

ζ(5i)aij

) p−1
ℓ

̸≡ 1 (mod p),

then ℓ does not divide hn/hn−1.
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3.3 The case ℓ ≡ 1 (mod 4) and s + 1 ≤ n.

In this case, we have [L : Fℓ] = 2n−s. So the minimal polynomial of ηn over
Fℓ is

T 2n−s − η2
n−s

n .

Therefore, if 2n−s does not divide i, then TrL/Fℓ(η
i
n) = 0. So we have

eω2ψj =
1

2n+1

2s−1∑
i=0

TrL/Fℓ(η
2n−sij
n )

(
ρ2

n−si − σρ2
n−si
)

=
1

2n+1

2s−1∑
i=0

TrL/Fℓ(η
ij
s )
(
ρ2

n−si − σρ2
n−si
)

=
1

2s+1

2s−1∑
i=0

ηijs

(
ρ2

n−si − σρ2
n−si
)
.

Since there are 2s−1 non-conjugate primitive 2n-th roots of unity in Fℓ, there
are also 2s−1 Fℓ-conjugacy classes of injective characters of Hn. We put

X = {j ∈ Z|1 ≤ j ≤ 2s − 1, j is odd}.

Then {ω2ψj|j ∈ X} is a set of representatives of the Fℓ-conjugacy classes of
injective characters of Hn. We fix non-negative integers aij’s satisfying

aij ≡ g
p−1
2s

ij

ℓ (mod ℓ)

for each 0 ≤ i ≤ 2s − 1 and j ∈ X. Then we have the following criterion:

Lemma 3.4. If for each j ∈ X, there exists a prime number p congruent to
1 modulo 5ℓ · 2n+2 satisfying

(
2s−1∏
i=0

ζ(52
n−si)aij

) p−1
ℓ

̸≡ 1 (mod p),

then ℓ does not divide hn/hn−1.
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3.4 The case ℓ ≡ 3 (mod 4) and 2 ≤ n ≤ s

In this case, we have [L : Fℓ] = 2. Hence we obtain

TrL/Fℓ(ηn) = ηn + ηℓn.

Since there are 2n−2 non-conjugate primitive 2n-th roots of unity in Fℓ, there
are also 2n−2 Fℓ-conjugacy classes of injective characters of Hn. We put

X = {j ∈ Z|1 ≤ j ≤ 2n−1 − 1, j is odd}.

Then {ω2ψj|j ∈ X} is a set of representatives of the Fℓ-conjugacy classes of
injective characters of Hn. We fix non-negative integers aij’s satisfying

aij ≡ t2s+1−nij (mod ℓ)

for each 0 ≤ i ≤ 2n − 1 and j ∈ X, where ti’s are elements in Fℓ defined in
(3.5.1) in section 3.5. Then we have the following criterion:

Lemma 3.5. If for each j ∈ X, there exists a prime number p congruent to
1 modulo 5ℓ · 2n+2 satisfying(

2n−1∏
i=0

ζ(5i)aij

) p−1
ℓ

̸≡ 1 (mod p),

then ℓ does not divide hn/hn−1.

3.5 The case ℓ ≡ 3 (mod 4) and s + 1 ≤ n

In this case, we have [L : Fℓ] = 2n−s. Let

T 2 − aT − 1

be the minimal polynomial of ηs+1 over Fℓ. Then the minimal polynomial of
ηn over Fℓ is

T 2n−s − aT 2n−s−1 − 1.
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Thus if 2n−s−1 does not divide i, then TrL/Fℓ(η
i
n) = 0. Therefore, we have

eω2ψj =
1

2n+1

2s+1−1∑
i=0

TrL/Fℓ(η
2n−s−1ij
n )

(
ρ2

n−s−1i − σρ2
n−s−1i

)
=

1

2n+1

2s+1−1∑
i=0

TrL/Fℓ(η
ij
s+1)

(
ρ2

n−s−1i − σρ2
n−s−1i

)
=

1

2s+2

2s+1−1∑
i=0

TrFℓ(ηs+1)/Fℓ(η
ij
s+1)

(
ρ2

n−s−1i − σρ2
n−s−1i

)
.

We put

ti = TrFℓ(ηs+1)/Fℓ(η
i
s+1). (3.5.1)

We need to calculate ti’s. Fukuda and Komatsu showed the following two
lemmas in [7, Lemmas 3.3 and 3.6]:

Lemma 3.6 (Fukuda and Komatsu). Put a2 = 0 ∈ Fℓ and define ai ∈ Fℓ
for all 3 ≤ i ≤ s+ 1 by the recursive formula

ai =
√
2 + ai−1 (3 ≤ i ≤ s),

as+1 =
√
−2 + as.

Then we have t1 = as+1.

Proof. We recall that

ti = ηis+1 + ηiℓs+1

for all integer i. Noting that ηℓ+1
s+1 = −1, we obtain

t2 = η2s+1 + η2ℓs+1

= (ηs+1 + ηℓs+1)
2 − 2η

(ℓ+1)
s+1

= (ηs+1 + ηℓs+1)
2 + 2

= t21 + 2
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and

t2k = η2
k

s+1 + η2
kℓ
s+1

= (η2
k−1

s+1 + η2
k−1ℓ
s+1 )2 − 2η

2k−1(ℓ+1)
s+1

= (η2
k−1

s+1 + η2
k−1ℓ
s+1 )2 − 2

= t22k−1 − 2

for all integer k with 2 ≤ k ≤ s− 1. Since

t2s−1 = t22s−2 − 2 = 0,

we obtain the lemma by reversing the above procedure.

Remark 3.7. For each step, we have two square roots. So we have just 2s−1

instances of t1. Since they correspond to the 2s−1 non-conjugate primitive
2s+1-th roots of unity in Fℓ, we fix an arbitrary one.

Lemma 3.8 (Fukuda and Komatsu). We have ti+2 = t1ti+1+ti for all i ≥ 0.

Proof. A straightforward calculation gives

t1ti+1 = (ηs+1 + ηℓs+1)(η
i+1
s+1 + η

(i+1)ℓ
s+1 )

= (ηi+2
s+1 + η

(i+2)ℓ
s+1 ) + ηℓ+1

s+1(η
i
s+1 + ηiℓs+1)

= ti+2 − ti,

which completes the proof.

Since there are 2s−1 non-conjugate primitive 2n-th roots of unity in Fℓ,
there are also 2s−1 Fℓ-conjugacy classes of injective characters of Hn. We put

X = {j ∈ Z : odd|1 ≤ j ≤ 2s−1 or 2s + 1 ≤ j ≤ 2s + 2s−1 − 1}.
Then {ω2ψj|j ∈ X} is a set of representatives of the Fℓ-conjugacy classes of
injective characters of Hn. We fix non-negative integers aij’s satisfying

aij ≡ tij (mod ℓ)

for each 0 ≤ i ≤ 2s+1 − 1 and j ∈ X. Then we have the following criterion:

Lemma 3.9. If for each j ∈ X, there exists a prime number p congruent to
1 modulo 5ℓ · 2n+2 satisfying(

2s+1−1∏
i=0

ζ(52
n−s−1i)aij

) p−1
ℓ

̸≡ 1 (mod p),

then ℓ does not divide hn/hn−1.
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3.6 The Logarithmic Algorithm

It takes too much time to verify that an odd prime number ℓ with large s
does not divide hmℓ with the previous criteria. For example, it takes more
than 3 weeks with a computer calculation by Mathematica 9 to verify that
6143 = 3 · 211 − 1 does not divide h35.

To obtain theorem 3.1, we need to verify that 8191 = 213 − 1 does not
divide h40. Thus we are led to a logarithmic version of the previous criteria
(cf. Aoki [1, Theorem 13]).

For x ∈ F×
p , let νp(x) be the unique non-negative integer less than p

satisfying

x = gνp(x)p .

The calculation of νp(x) is considered hard for large p. But νp(x) modulo ℓ
is enough for our purpose. Let νp(x) = i + jℓ with 0 ≤ i < ℓ. Then we can
determine i by

x
p−1
ℓ =

(
gi+jℓp

) p−1
ℓ =

(
g
p−1
ℓ

p

)i
.

Hence we can fix xi ∈ Z satisfying 0 ≤ xi < ℓ and

xi ≡ νp(ζ(b
i)) (mod ℓ),

where b is defined by

b =

{
5 if 2 ≤ n ≤ s,

52
n−cℓ if s+ 1 ≤ n.

We also put r by

r =

{
n if 2 ≤ n ≤ s,

cℓ if s+ 1 ≤ n.

Then we obtain the following criterion as the logarithmic version of lem-
mas 3.3 through 3.5 and 3.9:

Lemma 3.10. If for each j ∈ X, there exists a prime number p congruent
to 1 modulo 5ℓ · 2n+2 satisfying

2r−1∑
i=0

aijxi ̸≡ 0 (mod ℓ),

then ℓ does not divide hn/hn−1.
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Lemma 3.10 allows us to verify that if an odd prime number ℓ satisfies
that ℓ = 8191 or 104 < ℓ < 6 · 104, then ℓ does not divide hn for any positive
integer n.
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Chapter 4

Establishing an Upper Bound
of Class numbers

In this chapter, we explain Miller’s method in [28] to establish an upper
bound of class numbers of totally real algebraic number fields with large
root discriminants. The root discriminant of an algebraic number field is
defined by (1.3.1). Without knowledge of prime ideals or non-trivial zeros
of the Dedekind zeta functions, we cannot obtain any upper bound of class
numbers of algebraic number fields with large root discriminants. In order to
establish an upper bound of class numbers of those algebraic number fields,
we need to study prime ideals of totally real algebraic number fields.

4.1 Another Unconditional Upper Bound of

Class Numbers

In this section, we shall show another upper bound of class numbers of totally
real number fields except that given in section 1.3. Let K be an algebraic
number field with degree n and r1 real embeddings into C. We denote by
NK the absolute norm map of the ideal group of K. We define γ by

γ = lim
m→∞

(
m∑
k=1

1

k
− logm

)
,

the Euler constant. Then we have the following by Poitou [40]:
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Theorem 4.1 (Poitou). Let F : R → R be a Schwarz function satisfying
F (0) = 1 and F (−x) = F (x) for all x ∈ R. For each s ∈ C, the transforma-
tion Φ of F is defined by

Φ(s) :=

∫ ∞

−∞
F (x)e(s−

1
2
)xdx.

Then we have

log |d(K)| = r1
π

2
+ n(γ + log 8π)− n

∫ ∞

0

1− F (x)

2 sinh x
2

dx

−r1
∫ ∞

0

1− F (x)

2 cosh x
2

dx− 4

∫ ∞

0

F (x) cosh
x

2
dx

+
∑
ρ

Φ(ρ) + 2
∑
p

∞∑
m=1

logNKp

NKpm/2
F (m logNKp), (4.1.1)

where ρ runs over all non-trivial zeros of the Dedekind zeta function of K
which satisfies that 0 < Re(ρ) < 1 and p runs over all finite prime ideals of
K.

Remark 4.2. In theorem 4.1, the choice of F does not depend on a totally
real field K.

First, following Miller [28], we shall establish an unconditional upper
bound of class numbers of totally real algebraic number fields:

Proposition 4.3 (Miller). Let K be a totally real number field with degree
n. We define Fc : R → R by

Fc(x) :=
e−(x/c)2

cosh x
2

(4.1.2)

for each c ∈ R>0. We put

C =
π

2
+ γ + log 8π, (4.1.3)

g(c) =

∫ ∞

0

1− Fc(x)

2

(
1

sinh x
2

+
1

cosh x
2

)
dx. (4.1.4)

If it is true that

C− g(c)− log rd(K) > 0, (4.1.5)
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then we have

h(K) <
2c
√
π

n (C− g(c)− log rd(K))
.

Proof. For a totally real field K with degree n, we note that d(K) > 0. Then
the equation (4.1.1) is rewritten as follows:

log d(K) = nC− n

∫ ∞

0

1− F (x)

2

(
1

sinh x
2

+
1

cosh x
2

)
dx

−4

∫ ∞

0

F (x) cosh
x

2
dx+

∑
ρ

Φ(ρ)

+2
∑
p

∞∑
m=1

logNKp

NKpm/2
F (m logNKp). (4.1.6)

Let H(K) be the Hilbert class field of K. Since K is totally real, H(K) is
also totally real. Putting F = Fc with positive real number c, we have∫ ∞

0

Fc(x) cosh
x

2
dx =

∫ ∞

0

e−(x/c)2dx =
c
√
π

2
.

Then we obtain

log d(H(K)) = h(K)nC− h(K)ng(c)− 2c
√
π +

∑
ρ′

Φ(ρ′)

+2
∑
P

∞∑
m=1

logNH(K)P

NH(K)Pm/2
F (m logNH(K)P), (4.1.7)

where ρ′ runs over all non-trivial zeros of the Dedekind zeta function of H(K)
which satisfies that 0 < Re(ρ′) < 1 and P runs over all finite prime ideals of
H(K). By (1.3.2), we obtain

log d(H(K)) = h(K)n log rd(K).

Since ∑
ρ′

Φ(ρ′) > 0 and 2
∑
P

∞∑
m=1

logNH(K)P

NH(K)Pm/2
Fc(m logNH(K)P) > 0
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for F = Fc, we have an inequality

h(K)n (C− g(c)− log rd(K)) < 2c
√
π

If the inequality (4.1.5) holds, then we have

h(K) <
2c
√
π

n (C− g(c)− log rd(K))
,

which completes the proof.

Remark 4.4. If a totally real field K has the root discriminant greater
than 4πeγ+1 = 60.839, then we cannot establish an upper bound of the class
number of K by proposition 4.3.

4.2 Miller’s Upper Bound of Class Numbers

As we mentioned in section 1.4, the root discriminant of Kn is greater than
68.520 if n ≥ 4. So we cannot establish an upper bound of the class numbers
of either K4 or K5 by proposition 4.3.

To establish an upper bound of class numbers of algebraic number fields
with large discriminant, we shall follow Miller’s work in [28] to study

2
∑
P

∞∑
m=1

logNH(K)P

NH(K)Pm/2
Fc(m logNH(K)P) (4.2.1)

more precisely.
Let K be a totally real field with degree n. We denote by S(K) the set of

all prime numbers each of which splits completely into a product of principal
prime ideals of K. By class field theory, we have following:

Proposition 4.5. Let H(K) be the Hilbert class field of K. A prime ideal p
of K splits completely in H(K)/K if and only if p is a principal ideal.

We assume that q ∈ S(K). Then q splits completely in H(K)/Q by
proposition 4.5, which implies that the number of prime ideals in H(K)
lying above q is h(K)n. Since we have

NH(K)Q = q
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for each prime ideal Q in H(K) lying above q, we obtain

2
∑
P

∞∑
m=1

logNH(K)P

NH(K)Pm/2
Fc(m logNH(K)P)

≥ 2
∑

q∈S(K)

∑
Q|q

∞∑
m=1

log q

qm/2
Fc(m log q)

= 2h(K)n
∑

q∈S(K)

∞∑
m=1

log q

qm/2
Fc(m log q).

Using the above inequality, we obtain a generalization of proposition 4.3 as
follows:

Proposition 4.6 (Miller). Let K be a totally real algebraic number field with
degree n. For a subset T of S(K) and real number c, we put

B(c, T ) = C− g(c)− log rd(K) + 2
∑
q∈T

∞∑
m=1

log q

qm/2
Fc(m log q). (4.2.2)

If it is true that

B(c, T ) > 0 (4.2.3)

for some c and T , then we have

h(K) <
2c
√
π

B(c, T )
. (4.2.4)
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Chapter 5

An Upper bound of the Class
number of K5

In this chapter, we shall establish an upper bound for the class number of
K5 using Miller’s method introduced in the previous chapter.

We recall our results:

Theorem 5.1 (Theorem 0.6). The class number of K5 is at most 133.

Considering that h5 has no prime factor ℓ less than 60000 by theorem 3.1,
we have h5 = 1. Moreover, remark 2.3 says that h5 = 1 implies h4 = 1. Thus
we obtain the following result:

Theorem 5.2 (Theorem 0.7). The class numbers of K4 and K5 are 1.

In section 5.2, we shall prove that h4 is at most 518 without the knowledge
of theorem 5.1.

5.1 Integral Bases of Kn

In order to prove theorem 5.1, we need to construct a subset of S(Kn) which
contains many small prime numbers. We recall that S(Kn) is the set of all
prime numbers each of which splits completely into a product of principal
prime ideals of Kn . To verify whether a prime number p is in S(Kn), we use
the following lemma:
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Lemma 5.3. A prime number p is contained in S(Kn) if and only if there
exists an algebraic integer α of Kn which satisfies that

p = |NKn/Q(α)|, (5.1.1)

the absolute value of the norm map of α form Kn to Q.

Proof. Let p ∈ S(Kn) and p a prime ideal in Kn lying above p. Then there
exists an algebraic integer α of Kn satisfying

p = (α).

Therefore, we have

|NKn/Q(α)| = NKnp = p.

Conversely, we assume that there exists an algebraic integer α in Kn which
satisfies (5.1.1) for a prime number p. Then the ideal p = (α) is a prime
ideal of Kn lying above p. Since Kn/Q is a Galois extension, all prime ideals
of Kn lying above p is principal. For p = 2 or p = 5, it is not possible to
satisfy the equation (5.1.1) for any algebraic integer α. Thus p is unramified
in Kn/Q.

Therefore, p spilts completely into a product of principal prime ideals of
Kn, which implies that p ∈ S(Kn). This completes the proof.

In order to apply lemma 5.3, we need to give an integral basis of Kn. We
put

ω =
1 +

√
5

2
.

Then {1, ω} is an integral basis of Q(
√
5) (cf. example 1.3). Since Kn =

Bn · Q(
√
5) and the discriminants of Bn and Q(

√
5) are coprime, we obtain

an integral basis of Kn by propositions 1.5 and 1.7 as follows:

Lemma 5.4. For each rational integer j with 0 ≤ j ≤ 2n+1 − 1, we put

uj =

{(
2 cos 2π

2n+2

)j
if 0 ≤ j < 2n,

ωuj−2n if 2n ≤ j < 2n+1.

Then the set

B1 := {u0, u1, u2, · · · , u2n+1−1} (5.1.2)

forms an integral basis of Kn.
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Though we obtain an integral basis of Kn, B1 is not enough for our
purpose. We recall that we need to establish a subset T of S(Kn) which
satisifies that

B(c, T ) = C− g(c)− log rd(Kn) + 2
∑
q∈T

∞∑
m=1

log q

qm/2
Fc(m log q) > 0

with some real number c. Since Fc is a Schwarz function, we need T to
contain many small prime numbers. If we obtain an algebraic integer α of
Kn by

α = a0u0 + a1u1 + · · ·+ a2n+1−1u2n+1−1

with rational integers ai’s each of which satisfies that |ai| ≤ 2, then it is very
hard to find α with small absolute value of NKn/Q(α).

In order to find an algebraic integer α of Kn with small absolute value of
NKn/Q(α), we cite Cerri’s work in [4]:

Theorem 5.5 (Cerri). Let n be a positive integer. For each rational integer
j with 0 ≤ j < 2n, we put

ej =

{
1 if j = 0,

2 cos 2jπ
2n+2 if 1 ≤ j < 2n.

Then

{e0, e1, · · · , e2n−1}

is an integral basis of Bn and satisfies the follwing;
(i) TrBn/Q(e0) = TrBn/Q(e

2
0) = 2n and TrBn/Q(ej) = 0 for j ̸= 0.

(ii) TrBn/Q(e
2
j) = 2n+1 for j ̸= 0 and TrBn/Q(eiej) = 0 for i ̸= j.

Proof. For convenience, we put

ζ = ζ2n+2 .

Then we recall that

{1, ζ + ζ−1, (ζ + ζ−1)2, · · · , (ζ + ζ−1)2
n−1}
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is an integral basis of Bn by proposition 1.5. Since

ej = ζj + ζ−j

for each integer 1 ≤ j ≤ 2n − 1, we have

wj := (ζ + ζ−1)j =

j∑
k=0

(
j

k

)
ζ2k−j =

⌊ j
2
⌋∑

k=0

(
j

k

)
ej−2k.

Therefore, there exists a 2n × 2n-matrix M such that
1
w1

w2
...

w2n−1

 =M


e0
e1
e2
...

e2n−1


and whose all components are rational integers. SinceM is a lower triangular
matrix and each diagonal component of M is 1, we have M ∈ GL(2n,Z).
Thus

{e0, e1, · · · , e2n−1}

is an integral basis of Bn.
(i) Trivially, we have

TrBn/Q(e0) = TrBn/Q(e
2
0) = TrBn/Q(1) = 2n

We assume that j ̸= 0. We denote by Γn the Galois group of Bn/Q. Then
we have

TrBn/Q(ej) =
∑
σ∈Γn

σ(ej) =
2n−1∑
k=0

(ζj(2k+1) − ζ−j(2k+1))

= 2
2n−1∑
k=0

Re(ζj(2k+1)) = 2Re

(
ζj

2n−1∑
k=0

ζ2jk

)

= 2Re

(
ζj
1− ζ2

n+1j

1− ζ2j

)
= 2Re

(
1− ζ2

n+1j

ζ−j − ζj

)
.
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If j is even, we have

1− ζ2
n+1j

ζ−j − ζj
= 0.

If j is odd, we have

1− ζ2
n+1j

ζ−j − ζj
=

2

ζ−j − ζj
,

which is a pure imaginary number. Therefore, we have TrBn/Q(ej) = 0.
(ii) We assume that j = 0 and i ̸= 0. Then the property of (ii) is obvious

by (i). So we assume that ij ̸= 0. Then we have

eiej = (ζ i+j + ζ−(i+j)) + (ζ i−j + ζ−(i−j)).

We remark that 2 ≤ i+j < 2n+1. If i+j = 2n, then we have ζ i+j+ζ−(i+j) = 0.
By a similar argument in (i), we can show

TrBn/Q(ζ
i+j + ζ−(i+j)) = 0

for each i and j with 1 ≤ i, j ≤ 2n − 1. If i ̸= j, we have

TrBn/Q(ζ
i−j + ζ−(i−j)) = 0

again by (i). If i = j, we have ζ i−j + ζ−(i−j) = 2 and

TrBn/Q(e
2
j) = TrBn/Q(2) = 2n+1.

This completes the proof.

Remark 5.6. The properties of the integral basis of Bn given in theorem 5.5
are important to calculate the discriminant of Bn. As a cororally of theo-
rem 5.5, we have the following (cf. Cerri [4] or equation (1.2.1)):

d(Bn) = 2(n+1)2n−1.

We put

vj =

{
ej if 0 ≤ j < 2n,

ωej−2n if 2n ≤ j < 2n+1.

Then we have another integral basis of Kn except that given in lemma 5.4:
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Lemma 5.7. The following subset of Kn is an integral basis of Kn ;

B := {v0, v1, v2, · · · , v2n+1−1}.

Remark 5.8. For each element v of B, there exists a element v′ of B such
that v and v′ are Galois conjugate. An integral basis of B1 does not have
such a property. Owing to this property, an algebraic integer obtained by
a linear combination of B over Z tends to have small absolute value of the
norm.

5.2 Construction of a Subset of S(K4)

As an easy example, we calculate norms of algebraic integers of K4 and
construct an upper bound of the class number of K4 without the knowledge
of theorem 5.1. The integral basis of K4 given in lemma 5.7 is as follows:

vj =


1 (j = 0),

ζj64 + ζ−j64 = 2 cos(2jπ
64

) (1 ≤ j < 16),

ωvj−16 (16 ≤ j < 32).

Using a computer, we can verify the following:

Lemma 5.9. Put

γ1 := v1 + v3 + v5 + v9 − v16,

γ2 := v5 + v15 − v16.

Then we have

|NK4/Q(γ1)| = 191,

|NK4/Q(γ2)| = 449.

Remark 5.10. 191 and 449 are the first two smallest prime numbers each
of which splits completely in K4.
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We put T := {191, 449} and c = 210. Then we have

2
∑
p∈T

∞∑
m=1

log p

pm/2
F210(m log p) > 0.1643.

Therefore, we have

C− g(c)− log rd(K4) + 2
∑
p∈T

∞∑
m=1

log p

pm/2
F210(m log p) > 0.1643− 0.1193

= 0.0449,

which implies that

h(K4) ≤
⌊

420
√
π

32 · 0.0449

⌋
= 518 (5.2.1)

by lemma 4.6. Therefore, we have the following:

Proposition 5.11. The class number of K4 is at most 518.

5.3 Construction of a Subset of S(K5)

To establish an upper bound of the class number of K5, we construct a subset
T0 of S(K5) to apply lemma 4.6. The case of K5 is much more complicated
than that of K4 because we need to verify that a large number of small
prime numbers are in S(K5) for our result. For each rational integer j with
0 ≤ j < 64, we put

vj :=


1 (j = 0),

ζj128 + ζ−j128 = 2 cos(2jπ
128

) (1 ≤ j < 32),

ωvj−32 (32 ≤ j < 64).

Then

{vj | j is an integer with 0 ≤ j < 64}

is an integral basis of K5 by lemma 5.7.

49



We consider an algebraic integer α in K5 of the form

α =
8∑

k=1

akvjk , (5.3.1)

where jk’s are integers with 0 ≤ j1 < · · · < j6 < 32 ≤ j7 < j8 < 64 and ak’s
are integers with −2 ≤ ak ≤ 2. We denote by A the set of α ∈ OK5 of the
form (5.3.1). For convenience, we put

N(α) := |NK5/Q(α)|

for all algebraic integer α in K5. We also put

U := {N(α) | α ∈ A} ,
U1 :=

{
m ∈ U | all prime factors of m are less than 109

}
,

T1 := {p ∈ U1 | p is a prime number} .

Then we have T1 ⊂ S(K5). However, T1 is not enough to give an upper
bound of h(K5). So we use the following lemma.

Lemma 5.12. Let p, q be distinct prime numbers and assume that p ∈ S(K5).
If there exists an algebraic integer α in K5 satisfying N(α) = pq, then it is
also true that q ∈ S(K5).

Proof. We denote the prime ideal factorization of (α) in K5 by

(α) = pq,

where p is a prime ideal lying above p and q is a prime ideal lying above q.
Since p ∈ S(K5), there exists an algebraic integer β in K5 such that p = (β).
Therefore we have

(α/β) = q.

Since α/β is an algebraic integer in K5 satisfying

N(α/β) = NK5q = q,

we conclude q ∈ S(K5) by lemma 5.3.
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We define Un+1 and Tn+1 recursively by

Un+1 :=

{
m

p
|m ∈

n∪
k=1

Uk, p ∈
n∪
k=1

Tk and
m

p
is an integer

}
,

Tn+1 := {q ∈ Un+1 | q is a prime}

for all positive integer n. Lemma 5.12 implies that Tn ⊂ S(K5) for all positive
integer n.

We define T0 by

T0 :=
∞∪
k=1

Tk. (5.3.2)

This T0 is what we want to obtain the upper bound given in theorem 5.1.

Remark 5.13. Since A is a finite set, there exists some integer M which
satisfies that Tn = ∅ for all integer n ≥ M . In our case, we have Tn = ∅ if
n ≥ 5.

5.4 Proof of Theorem 5.1

We prove theorem 5.1 using the subset T0 of S(K5) constructed in section 5.3.
For c = 210, we have

C− g(210)− log rd(K5) > −0.8341

and

2
∑
p∈T0

∞∑
m=1

log p

pm/2
F210(m log p) > 0.9212.

Therefore we have

C− g(210)− log rd(K5) + 2
∑
p∈T0

∞∑
m=1

log p

pm/2
F210(m log p) > −0.8341 + 0.9212

= 0.0871.

Proposition 4.6 says that

h(K5) ≤
⌊

420
√
π

64 · 0.0871

⌋
= 133.

This completes the proof of theorem 5.1.
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5.5 Examples of the Elements of T0

Finally, we give several examples of prime numbers contained in T0. The set
of the ten smallest primes which split completely in K5/Q is

P := {641, 769, 1151, 1279, 1409, 2689, 3329, 4481, 5119, 6271}.

We can verify that P ⊂ T0. For positive integer i with i ≤ 10, we define an
algebraic integer αi in K5 by

α1 := −v13 − v14 + v16 + v17 + v32,

α2 := v7 + v8 − v10 − v11 + v13 + v14 + v32,

α3 := v4 + v5 + v9 + v32,

α4 := −v21 + v22 + v23 − v24 + v26 + v32,

α5 := v10 + v11 + v12 + v13 + v14 + v32,

α6 := v12 + v13 + v32,

α7 := v25 − v26 + v27 − v28 + v29 − v30 + v32,

α8 := −v4 − v5 + v9 + v32,

α9 := v10 − v12 + v13 + v32,

α10 := v19 + v21 + v32.

Then we have

N(α1) = 641, N(α2) = 769, N(α3) = 1279,

N(α4) = 3329, N(α5) = 4481, N(α6) = 5119,

N(α7) = 2689 · 3329, N(α8) = 1151 · 2689,
N(α9) = 1151 · 1409, N(α10) = 641 · 6271.

The above equations imply that there exist algebraic integers γ1, γ2, γ3, γ4 of
K5 which satisfy that

N(γ1) = 6271, (5.5.1)

N(γ2) = 2689, (5.5.2)

N(γ3) = 1151, (5.5.3)

N(γ4) = 1409 (5.5.4)
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by lemma 5.12. Indeed, we can determine γj’s which satisfy the equations
(5.5.1) through (5.5.4) explicitly as follows.

We assume that for distinct prime numbers p and q, there exist algebraic
integers α, β in K5 which satisfy that N(α) = pq and N(β) = p. Let σ be
the generator of the Galois group of Q(

√
5)/Q induced by ζ5 7→ ζ25 and ρ a

generator of the Galois group of B5/Q induced by ζ128 7→ ζ5128. Then for all
τ ∈ Gal(K5/Q), there exist some rational integers k, l which satisfy

τ = σkρl.

For integer 0 ≤ i < 64, we chose rational integers i1, i2 which satisfy

i = 32i1 + i2

with 0 ≤ i2 < 32. Then we put τi := σi1ρi2 . We also put

V =


τ0(v0) τ0(v1) · · · τ0(v63)
τ1(v0) τ1(v1) · · · τ1(v63)

...
...

. . .
...

τ63(v0) τ63(v1) · · · τ63(v63)

 .

Then det(V )2 = d(K5), which implies that V ∈ GL(64, K5). For each integer

0 ≤ k < 64, we put γk = α/βτk . Then there exist rationals x
(k)
j which satisfy

that

x
(k)
0 v0 + x

(k)
1 v1 + · · ·+ x

(k)
63 v63 = γk.

Operating τi for each integer 0 ≤ i < 64, we have

x
(k)
0 τi(v0) + x

(k)
1 τi(v1) + · · ·+ x

(k)
63 τi(v63) = τi(γk).

Therefore we have the following equation:

V


x
(k)
0

x
(k)
1
...

x
(k)
63

 =


τ0(γk)
τ1(γk)

...
τ63(γk)

 ,
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which implies 
x
(k)
0

x
(k)
1
...

x
(k)
63

 = V −1


τ0(γk)
τ1(γk)

...
τ63(γk)

 . (5.5.5)

Thus we have the following:

Lemma 5.14. For some k0, if it is true that x
(k0)
j given in equation (5.5.5)

is rational integer for all 0 ≤ j < 64, then we can conclude that γk0 is an
algebraic integer of K5 which satisfies that N(γk0) = q.

Using lemma 5.14, we can give algebraic integers γ1, γ2, γ3, γ4 in K5 which
satisfy equations (5.5.1) through (5.5.4) explicitly. For convenience, we de-
note γ =

∑63
j=0 xjvj by γ = [x0, x1, · · · , x63].

Example 5.15.

1. The following γ1 satisfies that N(γ1) = 6271:

γ1 = [93,−38,−55, 90,−17,−70, 81, 6,−82, 67, 28,−90, 50, 47,−93, 31, 61,−87,

7, 74,−76,−17, 85,−63,−37, 90,−45,−55, 89,−24,−69, 81,−57, 21, 34,−55, 8,

46,−51,−3, 53,−43,−13, 54,−30,−27, 54,−16,−41, 54,−4,−50, 50, 7,−52, 40,

21,−52, 26, 36,−53, 13, 46,−51].

2. The following γ2 satisfies that N(γ2) = 2689:

γ2 = [−17, 14,−10, 6, 1,−3, 7,−7, 6,−6, 3,−3, 4,−4, 9,−10, 12,−12, 9,−4,−3,

10,−15, 19,−19, 16,−13, 8,−3, 1, 2,−1, 15,−12, 12,−7, 3,−1,−2, 3,−2, 3,−2,

3,−3, 5,−6, 9,−10, 11,−8, 6,−2,−3, 5,−7, 8,−7, 5,−1, 0, 2,−2, 1].

3. The following γ3 satisfies that N(γ3) = 1151:

γ3 = [27, 25, 20, 20, 23, 25, 22, 22, 20, 21, 22, 22, 16, 16, 19, 20, 18, 15, 11, 11, 15, 15,

10, 8, 9, 10, 8, 5, 1, 3, 5, 4,−12,−13,−16,−20,−12,−7,−12,−17,−17,−14,−9,

− 8,−15,−17,−11,−8,−7,−11,−13,−10,−2,−4,−9,−10,−8,−4, 0,−2,−8,

− 3, 3, 3].
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4. The following γ4 satisfies that N(γ4) = 1409:

γ4 = [−2, 2,−11, 20, 8,−39, 23, 7,−8, 15,−30, 11, 24,−21,−3, 8, 2,−11, 20,

− 5,−34, 42,−3,−24, 23,−26, 19, 21,−42, 11, 17,−11, 1, 0, 7,−13,−4, 26,−15,

− 5, 7,−9, 18,−6,−14, 12, 2,−3,−1, 5,−11, 4, 20,−26, 3, 14,−14, 18,−14,−13,

28,−7,−13, 9].

Furthermore, we can also verify that γ1 = α10/α
τ40
1 , γ2 = α7/α

τ62
4 , γ3 =

α8/γ
τ63
2 and γ4 = α9/γ

τ41
3 .

The subset T0 of S(K5) we construct consists of 741,766 elements.
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Chapter 6

Perspectives of the Research

In this chapter, we shall describe perspectives of our research by comparing
to known results on Weber’s class number problem.

6.1 Lower Bounds for ℓ-indivisibility

An explicit lower bounds for ℓ-indivisibility of hp,n plays a very important
role. Let p, ℓ be distinct prime numbers, q be 4 or p according as p = 2 or
not, fp(ℓ) the order of ℓ modulo q and sp(ℓ) the exact power of p dividing
ℓfp(ℓ)−1. Then for a prime number p and positive rational integers s, f , the
set of prime numbers D(p, s, f) is defined by

D(p, s, f) := {ℓ ̸= p | fp(ℓ) = f, sp(ℓ) = s}.

As an improved version of K. Horie and M. Horie [20], Morisawa and Okazaki [34]
proved the following:

Theorem 6.1 (Morisawa and Okazaki). Let p, ℓ be distinct prime numbers,
q be 4 or p according as p = 2 or not, s a positive integer and f a positive
divisor of ϕ(q) with the Euler function ϕ. We put c = (p− 1)ps−1 and

G(p, s, f) =


(
2
( √

π√
2 log (2+

√
5)

)c
c+2
2
!

)1/f

if p = 2,((
√
2π

33/4 log ((340/81+
√

380/81+4)/2)

)c
c+2
2
!

)1/f

if p = 3.

If ℓ ∈ D(p, s, f) and ℓ > G(p, s, f), then ℓ does not divide hp,n for any
non-negative integer n.
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Remark 6.2. They also provided the constant G(p, f, s) for general prime
number p ≥ 5.

As a corollary of theorem 6.1, we have following:

Theorem 6.3 (Morisawa and Okazaki). If a prime number ℓ satisfies that
ℓ ̸≡ ±1 (mod 64), then ℓ does not divide h2,n for any positive integer n.

So the following is a natural question:

Problem. Can we provide an explicit lower bound for ℓ-indivisibility of the
cyclotomic Zp-extension of Q(

√
5) ?

6.2 The Zp1 × · · · × Zps-extension
In order to approach the conjecture of Coates, it is natural to study the
Zp1×· · ·×Zps-extension with distinct prime numbers p1, · · · , ps. K. Horie [17]
and Morisawa [32] also gave explicit lower bounds for ℓ-indivisibility of the
class numbers of the Zp1 × · · · × Zps-extension of Q.

On the other hand, K. Horie [12] found examples of prime numbers which
divide class numbers of intermediate fields of Zp × Zq-extension. We denote
by h(pn · qm) the class number of Bp,nBq,m for distinct prime numbers p, q
and positive integers n,m. We shall cite some of known results:

Example 6.4.
(i) 31 divides h(2 · 31) (proved by K. Horie [12]).
(ii) 1546463 divides h(2 · 1546463) (proved by Fukuda and Komatsu,

cf. [10]).
(iii) 114689 divides h(210 · 114689) (proved by Fukuda, Komatsu and

Morisawa [10]).
(iv) 107 divides h(2 · 53) (proved by Fukuda; cf. [2] and [10]).

So the following is an interesting question:

Problem. Fix a prime number ℓ. Does there exist an intermediate field F
of Zp1 × · · · × Zps-extension of Q(

√
5) such that the class number of F is

divisible by F ?
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(√

2 +
√
2 +

√
2

)
et Q

(√
2 +

√
2
)
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