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1

Abstract

Artificial intelligence (AI) used to be widely perceived as the field that studies intelligent
agent (IA) [1–4]. After the deep learning (DL) breakthrough of AlexNet in 2012 [5], the termAI
was frequently used by media, marketers, and academia alike in a much broader sense. In the
annual report, the Stanford University’s Institute for Human­Centered Artificial Intelligence
(HAI) includes computer vision (CV), Pattern Recognition, Computational Linguistics (CL),
Robotics, as the subcategories of AI [6]. In point of fact, AI is generally defined as intelligence
demonstrated by machines. As such, machine learning and its deep learning subcategory are
also parts of IA in computer science.

Since the publication ofAlexNet in 2012, DL has been adopted bymany branches of science.
However, DL sees the most success in the fields of natural language processing (NLP), CV, and
IA. In the field of CV, human­level performance in the task of image classification has been
achieved by multiple convolutional neural network (CNN) models in 2016. As a result, the
ImageNet [7] challenge discontinued in 2017. The end of the ImageNet challenge marks the
new chapter in the field. The focus of the research community was shifted to more challenging
topics. Some of the notable topics include generative network, semantic segmentation, activity
recognition, and visual question answering (VQA). As a whole, the targets of DL researches
have become highly semantic.

Significant progress is made among all of the fields in recent years [6]. However, the pen­
etration of AI in everyday life is still limited. Like any other technology, the adoption of DL
based AI in the general consumer market lags behind the adoption speed of the industrial mar­
ket. Not to mention that the adaption speed of the industrial market itself is also lagging behind
the research a considerable amount of time.

To be adopted by the industrial and general consumer market, further research must be
done to adapt and improve the technology. For example, one of the obstacles that need to be
overcome is the hardware limitation. Cloud computing can not satisfy the requirement of real­
time processing. And, consumer hardware is still not powerful enough. This limitation leads to
the rising trend of edge AI research and development in recent years.



Motivated by the recent success of DL, taking into account the above mentioned low pen­
etration, we aim to enhance the semantic performance and practicality of AI with the two fol­
lowing works:

Scalable Vector Graphic AI (SvgAI) [8] is an IA that can draw semantical Scalable Vec­
tor Graphics (SVG) images. Instead of storing visual information pixel­by­pixel, SVG
image is a document that describes the visual information. Different from natural lan­
guage, SVG is an Extensible Markup Language (XML) based language. Therefore, SVG
is highly semantic and structured hierarchically. Image processing based raster to vec­
tor (R2V) converts raster images into SVG without retaining semantic data. With DL,
our preliminarily experiments and a related work [9] show the limited performance of
networks that shares a similar design to [10] in the task. Rather than tackling the con­
ventional end­to­end model design, we take an alternative approach. We train an IA to
perform the task on an SVG editor. The trained IA can create SVG images that are signif­
icantly smaller and more accurate compared to the available solutions. Though SvgAI,
we show that IA can be used to solve the problem that challenges the conventional end­
to­end model. SvgAI is a novel approach to solving the R2V problem.

Street Fashion Semantic Segmentation (SFSS) [11] is a light­weight deep neural network
(DNN) that performs semantic segmentation on street fashion photos. Introduced just
after the release of ModaNet [12], SFSS is a pioneer work on semantic segmentation for
street fashion photos. Semantic segmentation can be an essential part of the fashion rec­
ommender pipeline. In this work, firstly, we propose a unique and compact DNN design.
This network offers state­of­the­art semantic segmentation performance. Furthermore,
it requires less computational resources compared to the related works. Secondly, we
propose the novel label pooling process, which creates lossless versions of the label in
different scales. As the labels for auxiliary training objective, these label pool features
significantly improve the context­awareness property of the network.

This thesis is divided into five chapters. Chapter 3 and Chapter 4 are dedicated to the works
of SvgAI and SFSS, respectively. Commons to both works are the introduction in Chapter 1,
DL background in Chapter 2, and conclusion in Chapter 5. The content of each chapter in this
thesis is as follows:

Chapter 1 overviews the history of AI, the contribution of DL into AI development, the
achievement of DL, and the impact of this new development on the research trends and
business interest. This chapter concludes with the motivation, objectives of the research,
and the relative position of this research in the contemporary landscape.
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Chapter 2 introduces the technical background of DL and IA. It includes the milestones of
DL and explains popular components of DNN, such as convolutional layer and back­
propagation. It also reviews notable DNN models in the DL era, such as AlexNet [5],
Inception Net [13–16]. Section 2.3 describes IA and the two popular algorithms to train
an IA, including Q­Learning and policy gradient. Important concepts related to the train­
ing process, including experience memory replay (EMR) and exploration policy, are also
addressed in this chapter.

Chapter 3 is dedicated to the work of SvgAI. This chapter starts with an introduction to the
R2V problem. The introduction also includes reviews on previous works, and the chal­
lenges need to be resolved. Different from the previous works on the topic, we proposed
a novel framework for R2V.

In our new framework, an IA is trained to draw vector images using an SVG editor.
In order to train the IA, a complete training environment is needed. The design and
implementation of our SVG editor environment are explained in Section 3.3.4.

The latter half of the chapter describes the experimental setting and evaluation result
of SvgAI using both deep Q­Learning and gradient­policy. Dual ϵ–greedy exploration
strategy and a unique training strategy are proposed to overcome the difficulties. The
chapter is concluded by a comparison between SVG images produced by SvgAI with
popular free and commercial R2V software.

Chapter 4 is dedicated to the work of SFSS. This chapter begins with the introduction to se­
mantic segmentation. Then, we review related works on the topic, including SegNet [17],
DeepLabv3+ [18], and PSPNet [19].

Different from the previous works, we focus on the semantic segmentation task for fash­
ion apparel. To produce the most efficient model for the task, we propose two novel
contributions. They are: 1) a high­performance semantic segmentation DNN that fol­
lows the encoder­decoder structure, and 2) the 2D max­pooling­based scaling operation.

We train and evaluate our proposed network using the ModaNet data set. To better eval­
uate the network performance, the Intersection over Union Plus (IoU+) metric is also
proposed. This metric is taking noise into account for better evaluation. An ablation
study is conducted to analyze the effect of different auxiliary training losses.

Chapter 5 concludes this dissertation with possible directions for future works.
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CHAPTER 1

Introduction

This thesis describes semantic processing for object shape processing using deep learning.
While the semantic object shape processing goal is broad, we especially emphasize on object
shape description and recognition via two works below.

Scalable Vector Graphic AI (SvgAI) In this work, we present an intelligent agent (IA) that
can draw Scalable Vector Graphics (SVG) image. This work is a pioneer work in using
IA in raster to vector (R2V) problem.

Street Fashion Semantic Segmentation (SFSS) In this work, we propose a state­of­the­art,
end­to­end deep neural network (DNN) for semantic segmentation on street fashion
photo. We also propose a constrained training process using features generated by a
novel label pooling process.

In this chapter, we present the background of the research, which includes the overview of
deep learning (DL) and artificial intelligence (AI) development in recent years. We then discuss
the current direction of DL research as a whole. Finally, we present the background and research
objective of each work.

1.1 Deep Learning Era

The time after 2010 is usually depicted as the DL era in media and literature. Conceivably,
the name is originated by the absolute dominant in performance and popularity of deep learning
in all branches of research during this time. Figure 1.1 show some of the achievements of DL
in the 2010s. Nevertheless, the figure is not an exhaustive list. Other remarkable achievements
are: word2vec [20], generative adversarial nets (GAN) [21, 22], style transfer [23–26], to name
a few.

In 2012, Krizhevsky et al. released AlexNet [5] and win the first prize in ImageNet Large
ScaleVisual Recognition Challenge (ILSVRC) 2012. AlexNet is a CNNwith five convolutional



(a) Atari AI (b) Image Description (c) Self­Driving (d) Drug Discovery

(e) Dissaster Damage assertment (f) Sequence to Sequence

FIGURE 1.1 Notable Achievements of Deep Learning in the 2010s. (a) IA that play Atari games well
above the skill of humans created by DeepMind. The IA was trained using AI Gym [27]. (b) Automatic
image description made possible by cross­training language and visual model [10]. (c) End­to­end neu­
ral network training for self­driving car [28]. (d) Drug discovery by using RNN [29–31] to generate
molecular structure [32]. (e) Disaster damage assessment using aerial image using CNN and 3D point
cloud [33]. (f) Sequence­to­sequence language model being used for translation [34].

Figures taken from corresponding cited references.

layers, followed by a two­layer classifier. It reduces the error rate by further 10% compared to
the best model in ILSVRC 2011. The astounding result resurrects the interest in DL. This new
wave of interest started the DL era.

1.1.1 Artificial Intelligent Milestones

Figure 1.2 shows the milestones of AI developments and the hierarchical relation between
AI, machine learning (ML), and DL. The progress of AI development is marked by the moment
when AI achieved humans performance in specific tasks.

As shown in the figure, this progress has been rapid in recent years. The number of mile­
stones in 2018 alone surpasses the number of milestones in 30 years from 1980 until 2010 [6].
Moreover, all of these milestones were achieved using DL. Following is the list of notable
milestones.

Othello The program named BILL [35] that can play the board game named ”Othello” was
created by Lee and Mahajan. In 1989, this program beat the highest­ranked US player,
Brian Rose, by the score 56—8.

Checkers Chinook [36], a program that can play checkers built by Schaeffer et al., beat the
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FIGURE 1.2 Milestones of Artificial Intelligence

world champion in 1995.

Chess In 1997, IBM’s DeepBlue [37] system beat the chess champion, Gary Kasparov.

Jeopardy! In 2011, IBM’s Watson computer system defeated the former winners of Jeopardy!
TV show and won the first prize.

Atari Games In 2015, Mnih et al. at Google DeepMind released a DNN that can play Atari
Games at human­level performance [38].

ImageNet In 2016, the error rates of various CNN models in the ILSVRC challenge were less
than 3%. This error rate is even lower than the 5% error rate of humans.

AlphaGo In 2016, the IA named AlphaGo [39], developed by Silver et al. at Google Deep­
Mind, beat the world’s best Go player.

Skin Cancer Classifier In 2017, Esteva et al. described an AI system that can classifying skin
cancer images in the same level with a dermatologist.

Speech Recognition In 2017, research groups fromMicrosoft [41] and IBM [42] both achieved
human­level speech recognition for switchboard applications.

Poker In 2017, both Libratus [43] made by MCU and DeepStack [44] made by the University
of Alberta achieved poker playing skill on par with professionals.

Chinese­English Translation In 2018, Microsoft achieved human­level quality in Chinese to
English translation [45].

Alphastar was developed by Google’s DeepMind [46] in 2019. It was reported to defeat pro­
fessional players in the StarCraft II game.
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1.1.2 General Purpose Graphic Processing Unit

The first modern CNN, LeNet [47], was released in 1989. However, due to the high demand
for computational power, they are forgotten in favor of faster, model­design techniques.

Nvidia popularized the use of graphic processing unit (GPU) for general­purpose (i.e., gen­
eral purpose graphic processing unit (GPGPU)) with the first version of Nvidia CUDA released
in 2007. Computational power­wise, GPGPU is vastly cheaper compared to CPU. As in spring
2020, a 16 cores CPU Ryzen 9–3950X and an Nvidia RTX­2080 Super are priced the same at
around 750USD. However, the RTX­2080 Super has theoretical performance at 11.1 TFLOPS,
and the 3950X performance is 0.97 TFLOPS.

The cheap computational cost of GPGPU allows training the DNN cheaply and effectively.
DNN and deep convolutional neural network (DCNN), with many more layers, have an excep­
tional ability to generalize data.

1.1.3 The Renewed Interest in AI

The success of CNN rekindled the interest in AI from media, academia, and business, This
wave of interest in DL is the third wave since the birth of AI. Figure 1.2 shows the milestones
of AI development. The three waves of interest of AI can be observed in this figure. The first
wave started with the birth of AI itself. The second wave started with ML. ML distinguished
from the previous works by the ability to learn of a model without explicit coding. The third
wave started the current DL era.
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FIGURE 1.3 Attendances at Large AI Conferences (1984–2019) [6]

Figure 1.3 shows the number of attendees at large AI conferences from 1984 to 2019. We
can observe the second wave of interest faded gradually every year after 1986. After 2012,
the number of attendees in these large conferences grown exponentially. It clearly reflect the
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unprecedented level of excitement of the research community towards DL as well as AI in
general.

The new excitement in AI leads to an equally impressive amount of investment into new
AI tech. According to [6], in 2010, the total amount of investment in new AI startups was only
$1.3B. However, in 2018 alone, this number was $40.4B, more than thirty times compared to
the investment made in 2010. Thus, the average annual growth rate of investment in AI startups
was 48%.
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FIGURE 1.4 Global top AI tech by number of startups received funding in 2018–2019 [6]

Figure 1.4 shows the global top category of AI technology by the number of startups that
received funding in 2018–2019. Interestingly, the top categories are Data Tool (5.5%), Fashion
and Retail Tech (4.7%), and Industrial Automation (4.3%). Even though many different factors
drive the research trend, we believe that business investment is one of the most significant
influences. Therefore, we expect these aforementioned top categories will continue to be the
prominent trends for AI research.

1.1.4 General Trend

After various CNN models achieved the human­level in image classification task in 2016,
the ImageNet [7] challenge discontinued in 2017. The end of the ImageNet challenge marks
the new chapter in AI development. The focus of the research community shifted to more
challenging andmore semantical tasks. This shift of focus can be seen through the milestones of
AI (Section 1.1.1). Most of the milestones after 2017 focus on IAs, natural language processing
(NLP), and medical image semantic segmentation.
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This trend is still ongoing in 2020, as the research community continues to try to achieve
human performance in new tasks [6]. However, the penetration of AI in everyday life is still
limited. Like any other technology, the adoption of DL based AI in the general consumer market
lags behind the adoption speed of the industrial market. Not to mention that the adaption speed
of the industrial market itself is also lagging behind the research a considerable amount of time.

To be adopted by the industrial and general consumer market, further research needs to be
done to adapt and improve the technology. For example, one of the obstacles that need to be
overcome is the hardware limitation. Cloud computing can not satisfy the requirement of real­
time processing. And, consumer hardware is still not powerful enough. This limitation leads to
the rising trend of edge AI research and development in recent years.

Another reason for the low impact of AI is because of data interpretation. Modern DNN
heavily relies on convolutional layers. As a result, modern DNN performs best on spatial,
sequence, or time­series data. However, a large amount of data we generated is not in such a
format. Some examples of such kind of data include social connections, street maps, electric
grid.

 

FIGURE 1.5 Relative Position of the Research

1.2 Background

In this section, we introduce the background of our works and then conclude the chapter by
our research objective.
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1.2.1 Motivation

Figure 1.5 shows the relative position of the research concerning the trends of AI research
and market adoption. In general, the market can be divided into two segments, business and
general consumer. Like any other technology, the adoption of the market is usually lagging
behind the research progress. This lag is also happening in the adoption trend. The business
is the first segment to adopt new technologies. The general consumer market usually adopts a
technology once it robust enough.

 

FIGURE 1.6 Research Objectives

Our research interest places on the top right corner of Figure 1.5. In this region, technology
not only needs to be highly semantic but also needs to be practical. We classify works in this
region based on their semantic category, as in Figure 1.6. As shown in the figure, our two
works of SvgAI and SFSS belongs to the object shape processing category. There are notable
topics in other categories in this area, such as motion GAN in motion processing category, text
summarization in text processing category, and speech translation in language processing, to
name a few.

1.2.2 Scalable Vector Graphic AI (SvgAI)

Despite being a mature branch of research, image processing based R2V conversion is not
yet reliable [48]. Major problems include difficulties of color quantization, aliasing effects,
shift, superposition effects, and miss­identification of texture and text [49].

There are numerous works to try to solve the above­mentioned problems. For example,
Kansal and Kumar propose a framework to reproduce the linear filled gradient [50]. Vector
representation of halftone dots in binary images is presented by Kawamura et al. [51]. How­
ever, the human operator still needs to identify the type of problems and perform appropriate

11



parameter tweaking. Thus, for example, well­known conversion tools such as Potrace [52] still
require humans intervention to achieve desirable results [53].

As a result, conventional R2V conversion usually produces SVG images using path ele­
ments exclusively because this element is flexible and can be used to form any shape. It not
only inflate the size of the SVG but also poses a high demand for computational resources for
image rendering. Furthermore, using fundamental shape elements, such as rectangle, circle, and
arc, not only requires a higher level of visual understanding but also coming with none trivial
challenges.

The topic of R2V, unfortunately, is not well investigated in deep learning. Vector image
fundamentally is a text document based on Extensible Markup Language (XML) [54]. Though
RNN sees much success with translation and text writing. XML is a highly hierarchical struc­
tured text document with open and closing tags. For this reason, there is no natural method for
a neural network (NN) to output XML documents directly. Beltramelli proposes Pix2Code [9],
an end­to­end DNN that generates XML based graphical user interface (GUI) code from mock­
up images. Even though similar to [10] in general design, the visual model used in Pix2Code
is a plain CNN block while the language model is handled by a Long­Short Term Memory
(LSTM) network [55] block. Another LSTM block is used to decode the network’s output into
code tokens. This work can be understood as a rigid version of automated image annotation.
However, the model is not flexible because the visual presentations of all the GUI elements in
this work are predefined templates. Thus, it only works with GUI images based on the fixed
templates.

1.2.3 Street Fashion Semantic Segmentation (SFSS)

Semantic segmentation has been a challenge in the field of computer vision (CV). Clas­
sic object detection and classification requires only bounding boxes and classification of the
object. Semantic segmentation needs each pixel in the input image to be assigned to a class of
objects. Figure 1.7 shows examples of inputs and corresponding ground­truth labels in semantic
segmentation problem for street fashion photos.

Before the deep learning era, the state­of­the­art works have been based on Texton For­
est [56] and conditional random field (CRF) [57]. CRF is still being used as a post­process
method to refine the segmentation output [19, 58–62].

Early DL works on this topic mostly adopt the straight network design. Fully convolu­
tional neural network (FCN) [58] has laid the foundation for applying CNN into dense seg­
mentation. It can be implemented on top of the ever­proposed classification models such as
GoogLeNet [13], VGG [63], and ResNet [64].

PSPNet [19] introduces a spatial pyramid pooling scheme, which results in better context­
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awareness in the final result. In this pyramid pooling scheme, features maps from different
layers of the base network are resized and concatenated. The concatenated feature map is then
used as input for a point­wise CNN to produce segmentation results.

Later works on the topic mostly utilize the encoder­decoder structure. Models following
this approach is usually yielding better performance. Popular models in this category include
SegNet [17] and U­Net [65]. In [59], Yu and Koltun propose both dilated CNN for semantic
segmentation and a reference network design. Dilated CNN allows the deeper layers of the
network to capture the context without losing resolution. The main drawback of this design is
the high demand for computational resources because the feature map is rarely down­sampled.
DeepLabv3+ [18] combines all of the above approaches and achieves state­of­the­art perfor­
mance in many benchmarks.

MSCOCO [66], CityScapes [67], and ADE20K [68] are popular datasets for training and
benchmarking semantic segmentation works.

(c) SVG document

(d) Raster v.s. Vector(b) Segmentation Output(a) Segmentation Input

FIGURE 1.7 Illustration of Research Objectives. In SFSS task, we design a light­weight model that ac­
cepts photo as an input (a) and output segmentation result as in (b). In R2V task, we train an IA to use
SVG editor to convert raster image to SVG image as in (d). SVG image is an XML based document as
shown in (c).

Image (d) courtesy of Wikipedia.

1.3 Objectives

Both of our works align with the trajectory of CV research: to improve network perfor­
mance, reaching closer to human­performance. At the same time, we would like to explore the
capability of DNN in new domains that could potentially benefit the everyday user. Figure 1.6
illustrates the research objectives and mote notable contributions of each work.
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1.3.1 Scalable Vector Graphic AI (SvgAI)

In the work of SvgAI, inspired by the work of Karpathy and Fei­Fei on image annota­
tion [10], we ought to study a DNN that can convert raster images to SVG format. Most impor­
tantly, this new systemmust retain the semantic structure of the image and reflect it into the SVG
output. In [10], the authors utilized an end­to­end cross­modal design DNN. However, prelim­
inary experiments on the end­to­end model showed unfavorable results. We took an alternative
route and proposed a novel framework for R2V that uses IA to compose SVG. Ultimately, this
new system must produce lighter, more semantical SVG compared to the available solutions.

1.3.2 Street Fashion Semantic Segmentation (SFSS)

With the newly released ModaNet [12], we tasked to propose a light­weight state­of­the­art
model for street fashion photo semantic segmentation. This model is an end­to­end network
that can correctly identify the categories of apparels on the subject. It is expected to cost not
only a less computational resource but also achieve higher segmentation performance.

1.4 Structure of this Thesis

This thesis is organized into five chapters in which this is the first chapter. In this chapter, we
provided an overview of the DL era. Then, we described the research background and objective
of both SvgAI and SFSS. Figure 1.8 illustrates the structure as well as the content overview of
this thesis. The following chapters are organized as follows:

Chapter 2 introduces the technical background of DL and IA. It includes the milestones of
DL and explains popular components of DNN, such as convolutional layer and back­
propagation. It also reviews notable DNN models in the DL era, such as AlexNet [5],
Inception Net [13–16]. Section 2.3 describes IA and the two popular algorithms to train
an IA, including Q­Learning and policy gradient. Important concepts related to the train­
ing process, including experience memory replay (EMR) and exploration policy, are also
addressed in this chapter.

Chapter 3 is dedicated to the work of SvgAI. This chapter starts with an introduction to the
R2V problem. The introduction also includes reviews on previous works, and the chal­
lenges need to be resolved. Different from the previous works on the topic, we proposed
a novel framework for R2V.

In our new framework, an IA is trained to draw vector images using an SVG editor.
In order to train the IA, a complete training environment is needed. The design and
implementation of our SVG editor environment are explained in Section 3.3.4.

14



The latter half of the chapter describes the experimental setting and evaluation result
of SvgAI using both deep Q­Learning and gradient­policy. Dual ϵ–greedy exploration
strategy and a unique training strategy are proposed to overcome the difficulties. The
chapter is concluded by a comparison between SVG images produced by SvgAI with
popular free and commercial R2V software.

Chapter 4 is dedicated to the work of SFSS. This chapter begins with the introduction to se­
mantic segmentation. Then, we review related works on the topic, including SegNet [17],
DeepLabv3+ [18], and PSPNet [19].

Different from the previous works, we focus on the semantic segmentation task for fash­
ion apparel. To produce the most efficient model for the task, we propose two novel
contributions. They are: 1) a high­performance semantic segmentation DNN that fol­
lows the encoder­decoder structure, and 2) the 2D max­pooling­based scaling operation.

We train and evaluate our proposed network using the ModaNet data set. To better eval­
uate the network performance, the Intersection over Union Plus (IoU+) metric is also
proposed. This metric is taking noise into account for better evaluation. An ablation
study is conducted to analyze the effect of different auxiliary training losses.

Chapter 5 concludes this dissertation with possible directions for future works.
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FIGURE 1.8 Structure of This Thesis
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CHAPTER 2

Deep Learning

The majority of computer vision (CV) models, or machine learning (ML) models in general,
consist of two parts. The first part (i.e., head) is feature extraction, and the second part (i.e., tail)
is a classifier or a regressor. In conventional Feature extraction usually requires a high degree
of domain knowledge to be designed. In conventional CV, popular extractors are SIFT [69],
SURF [70], ORB [71]. Popular classifiers and regressors are SVM [72], Random Forest [73,
74], Bayesian network, and Logistic model. Even with artificial neural networks (ANN), the
two parts structure is holding true.

(a) SIFT Keypoints
 

(b) Stemming

FIGURE 2.1 SIFT [69] Keypoints and Word Stemming.
Raster image in (a) courtesy of OpenCV.

Figure 2.1 shows the scale­invariant feature transform (SIFT) [69] keypoints andword stem­
ming. Stemming is the process of reducing all words into their root form. This process is nearly
mandatory in conventional natural language processing (NLP). SIFT keypoints are popular in
CV research. Applications such as image­stitching are still robust and still being used.

An ANN is an interconnected group of artificial neuron nodes. The most simple form of an
artificial neuron node receives multiple inputs to produce an output. Mathematically, the output
of a neuron can be described as a non­linear transformation y = activation(Wx + b). Multiple
nodes that have the same input form a layer. It is called a fully connected (FC) layer because
every output is connected to all of the inputs.



 

FIGURE 2.2 Typical Structure of a Feed Forward Artificial Neural Network.

The most common form of ANN is the feed­forward neural network (FFNN). FFNN usually
comprises of several layers of neurons, as shown in Figure 2.2. As shown in the figure, an ANN
can receive input and produce output directly. Thus, forming an end­to­end model in which the
boundary between head and tail in becomes blurry.

An ANN with a large number of layers of neural network forms a deep neural network
(DNN). Though, there is no official number of layers for an ANN to be defined as a DNN.
LeNet5, with five layers of neurons, is considered as a DNN. Thus, it is sufficient to classify an
ANN with more than five layers as a DNN based on that standard. The study of DNNs is called
deep learning (DL).

2.1 Milestones of Deep Neural Network (DNN)

The 2010s have witnessed many technological advancements enabled by DL. The history
of DL and neural network (NN) can be traced back to several decades. However, not until early
of the 2010s, DNNs had achieved notable success in the field of CV. This success promoted the
use of DNN into many different fields, as we have seen nowadays. In this section, we introduce
a brief history of DNN.

Conceivably, it not easy to trace the lineage of DNN development correctly. However, there
are typical works that frequently mentioned as such as shown in Table 2.1.

2.1.1 McCulloch and Pitts (MCP) Model

McCulloch and Pitts (MCP) [75] model proposed by McCulloch and Pitts in 1943. This
model was designed for the electrical circuit. It is usually mentioned as McCulloch Pitts Neu­
rons in literature. It also is considered the first artificial neurons in many articles. The model
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TABLE 2.1 Historical Milestones of Deep Learning

Year Contributor Contribution Note

1943 McCulloch and Pitts MCP model [75] designed for electrical circuits

1949 Hebb and Hebb Hebbian learning rule [76] unstable is the main drawback [77]

1958 Rosenblatt Perceptron [78] origin of a modern dense NN cell

1974 Werbos back propagation (BP) [79] it is not gradient descent (GD)

1980 Fukushima Neocognitron [80] inspiration of the modern CNN

1982 Hopfield Hopfield Network [81] i.e. ”fully connected” network

1985 Ackley et al. Boltzmann Machine (BM) [82] Hopfield network with hidden units

1986 Smolensky Restricted BM [83] originally known as Hormonium

1990 LeCun et al. LeNet [84] modern CNN

mathematically described as follows.

y =

1,
∑

i wixi ≥ θ AND zj = 0,∀j

0, otherwise
(2.1)

Where y stands for output, xi stands for input, wi stands for the corresponding weights, and
zj stands for inhibitory input. Hence, the model resembling a modern artificial neuron unit with
a binary step as an activation function. However, the MCP unit has inhibitory input, which
is the main difference from an ordinary modern artificial neuron. Also, MCP does not have a
bias term compared to a modern neuron unit. Because this model is proposed for the electrical
circuit, the weight of the network has to be predetermined based on the application.

2.1.2 Hebbian Learning Rule

Hebbian learning rule [76] has proposed byHebb and Hebb in 1949. Consider a typical
linear neural y = ∑

i wixi. The Hebbian learning rule is usually generalized as follows.

∆wi = ηxiy (2.2)

Where ∆wi stands for the change of synaptic weights wi of Neuron i, of which the input
signal is xi, y denotes the post­synaptic response, and η denotes learning rate. However, be­
ing one of the first learning theories, Hebbian learning rule is suffered from the unstableness
problem [77]. This lead to many later works adopted other theories such as Oja rules [85] or
Generalized Hebbian Algorithm (GHA) [86].
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2.1.3 Perceptron

Perceptron [78] is an artificial neuron unit proposed by Rosenblatt in 1958. A perceptron is
mathematically described as follows.

y =

1,
∑

i wixi + b > 0

0, otherwise
(2.3)

Where wi, xi are the weight and input of neuron i, and b is the decision threshold. The
only difference between a perception and a modern artificial neuron unit is the activation func­
tion. Modern artificial neuron units have numerous different activation functions. However,
perceptron only uses the binary step as the activation function.

A shallow network comprised of only one hidden layer of perceptron units can describe any
bounded continuous function. This property is called universal approximation [87]. However,
universal approximation with shallow networks comes at the price of an exponential number of
neuron units. Thus, demanding an unpractical amount of computational resource.

Compared to the MCP model, the perceptron has a closer resemblance with a modern ar­
tificial neuron unit. Therefore, the perceptron is sometimes mentioned in literature as the first
modern artificial neuron unit. Perceptron eventually evolved into the modern artificial neuron
unit, starting with the use of sigmoid as activation function [88].

2.1.4 Back Propagation (BP)

First introduced by Werbos in his Ph.D. thesis in 1974, as its name suggested, BP is the
process of propagating error back to each original value. The process is done by utilizing the
chain rule to compute partial derivative (i.e., gradient) of a variable. For example, consider the
following function. 1

f(x, y, z) = (x + y)z (2.4)

Given q(x, y) = x + y, we have f(x, y, z) = f(q, z) and following partial derivatives:

f(q, z) = qz =⇒ ∂f(q, z)
∂q

= z ,
∂f(q, z)

∂z
= q (2.5)

q(x, y) = x + y =⇒ ∂q(x, y)
∂x

= 1 ,
∂q(x, y)

∂y
= 1 (2.6)

With q already computed, the gradient of f in respect to z (i.e., ∂f
∂z
) is obtained as in Equa­

1The example in this subsection is adapted and carried over from an online tutorial [89] written by Karpathy.
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tion (2.5). However, the gradient of f with respect to x and y need to be computed following
the chain rule as follows.

∂f(q, z)
∂x

= ∂q(x, y)
∂x

∂f(q, z)
∂q

= 1z = z (2.7)

∂f(q, z)
∂y

= ∂q(x, y)
∂y

∂f(q, z)
∂q

= 1z = z (2.8)

In the end, by multiplying the gradient of each variable by the error of the function f , we
obtained the ’error’ of each variable x, y, and z.

Note that the term BP and GD are two different terms. GD [90] is the process of updating
the weight of the network so that the error is descent in hyperspace. In other words, BP and GD
are the two processes that make up a single training step. Stochastic gradient descent (SGD)
[91, 92] is the most popular variant of GD algorithms being used contemporary.

Besides the work of Werbos, there are reports of multiple independence discover of BP
around the same time [93–97]. The term BP and its use for NN are coined and popularized by
Rumelhart et al. [98, 99].

The classic SGD algorithm is difficult and slow to train. Even with batch normalization, the
learning rate has to be set cautiously to achieve optimal training results. A series of adaptive op­
timizers have been proposed to mitigate the complication of the training process. Popular algo­
rithms includes Momentum [100], Nesterov accelerated gradient (NAG) [101], Adagrad [102],
AdaDelta [103], RMSProp [104], Adam [105], Nadam [106], AMSGrad [107]. These optimiz­
ers monitor the gradient of each parameter and tweak the learning rate of the individual param­
eter accordingly. Thus, they are not as sensitive to global learning rate changes compared to
vanilla SGD.

2.1.5 Neocognitron

Neocognitron is a pioneer work on ANN published in 1980 by Fukushima. In this work,
the author proposed a hierarchical, multilayer ANN that strikingly resemblance the nowadays
convolutional neural networks (CNNs).

The structure of Neocognitron is shown in Figure 2.3. As shown in the figure, Neocognitron
mainly consists of two different kinds of layers. S­layer as a feature extractor and C­layer as
structured connections to organize the extracted features.

Fukushima conducted experiments on text recognition and reported positive results. How­
ever, given the constrain of computational resources at the time, the full simulation was not
feasible. Neocognitron, later on, became an inspiration for subsequence works on CNNs such
as LeNet [84]. Due to high computational demands, Neocognitron or CNN did not attract much
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FIGURE 2.3 Structure of Neocognitron [80].

attention until the computational problem solved with general purpose graphic processing unit
(GPGPU).

2.1.6 Hopfield Network

Hopfield network is proposed in 1982 by Hopfield. It is a form of recurrent neural network
(RNN). It is designed to work with binary input and output. Hopfield network also called Fully
Connected Network and widely recognized because of its content­addressable memory (CAM)
property.

 

FIGURE 2.4 Structure of Hopfield Network [81].
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Figure 2.4 shows the structure of the six nodes Hopfield network. Each node served as an
input and an output. Formally, Hopfield network can be defined as a graphG = ⟨W, S⟩. Where,
W is the set of edge weights and S is the set of vertexes. Hopfield networks typically has two
restrictions: wii = 0,∀i and wij = wji,∀i, j. Where wij is the edge weight between vertex si

and sj . Thus, W is symmetric, and a neuron (i.e., vertex) is not connected to itself.

To store a pattern, a Hopfield network is trained using Hebbian learning wji = yjyi. In
short, it is setting the edge value to the product of the two values (vertex) it is trying to store.
The inference process of the Hopfield network is done by multiple iterations. In each iteration,
the network is updated as follows.

si ←


+1 if

∑
j wijsj ≥ θi,

−1 otherwise.
(2.9)

Where θi is the threshold of node i. The typical use of the Hopfield network is to error­
correct a signal. i.e., given a set of signals, a Hopfield network is then trained to memorize all
of the signals. A corrupted signal is then fed into the network, and the error­corrected signal is
the expected output of the network.

The limitation of the Hopfield network is that it cannot keep the memory very efficient. A
network of N units can only store memory up to 0.15N2 bits.

2.1.7 Boltzmann Machine (BM)

BM [82] proposed by Ackley et al. in 1985. It is a Hopfield network with hidden units, as
shown in Figure 2.5.

As shown in the figure, by having hidden units, BM can somewhat bypass the memory
restriction Hopfield network. In BM, only the normal (i.e., visible) nodes are used for input and
output purposes. Hidden nodes are merely used to increase the capacity of the network.

Besides introducing hidden nodes, BM different from the Hopfield network in the updating
process. Instead of using binary step as activation function, BM utilize probability.

pi=on = 1
1 + exp(−∆Ei

T
)

(2.10)

Where T is a scalar referred to the temperature of the system, and ∆Ei is the difference of
energies of the two states at node i.

∆Ei = Ei=off − Ei=on (2.11)
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FIGURE 2.5 Structure of Boltzmann Machine [82]. Filled nodes ( ) are normal units. Unfilled nodes
( ) are hidden units. The red dashed line divides normal and hidden units.

=
∑
j>i

wij sj +
∑
j<i

wji sj + θi (2.12)

Where θi is the bias of node i in the global energy. The name ’Boltzmann’ is derived from the
fact that Equation (2.10) is the result of substituting the energy at each state in Equation (2.11)
with its relative probability according to Boltzmann factor [108]2.

2.1.8 Restricted Boltzmann Machine (RBM)

Originally known as Hormonium [83] proposed by Smolensky in 1986. Compared to the
BoltzmannMachine, there is no connection between visible nodes and invisible nodes, as shown
in Figure 2.6.

The energy of the network is as follows.

E(v, h) = −
∑

i

aivi −
∑

j

bjhj −
∑

i

∑
j

viwi,jhj (2.13)

Where h is hidden node, v is visible node, a is bias for visible node, b is bias for hidden
node, and wij is the weight of vertex that connect vi and hj . Restricted Boltzmann Machine
(RBM) raised to popularity in mid­2000 with the invention of Deep Belief Nets (DBN) and fast
training algorithm [109].

Figure 2.7 shows the structure of DBN [109] and Deep Boltzmann Machine (DBM) [110].
They are the two most popular variances of RBM in mid­2000. As shown in the figure, both

2Original article published in 1909 in German. The citation is the translated version published in 2015
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FIGURE 2.6 Structure of Restricted BoltzmannMachine [83]. Filled nodes ( ) are normal units. Unfilled
nodes ( ) are hidden units. The red dashed line divides regular and hidden units. Different from BM,
hidden node and visible node are not connected to each others.

  

FIGURE 2.7 Deep Belief Nets (DBN) on the left and Deep Boltzmann Machine (DBM) on the right. In
DBN, the connection between visible node and hidden node are not bi­directional.

DBN and DBM are quite similar to modern DNN. DBN and DBM are similar. However, in
DBN, the connections between the visible nodes and hidden nodes are one direction.

In [109], Hinton et al. showed that DBN can be stacked and trained greedily. This layer­wise
training technique is still being used in popular nowadays. Moreover, the term deep appear to
be used first in DBN. The deep autoencoder is popularized around this time [111]. Therefore,
many researchers consider DBN is the beginning of the nowadays DL era.

2.1.9 LeNet

LeNet in general refers to Lenet5 [47, 84, 112, 113], a five layers CNN first proposed by
LeCun et al. in 1989. LeNet5 is heavily inspired by Neocognitron [80], and it was one of the
first CNN ever developed. As shown in [84], LeNet5 outperforms its previous works in many
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aspects. It is also known for the ability to handle scale, position, rotation variation, and certain
types of affine transformations. LeNet5 achieves a 0.95% error rate on MNIST [114] data set
and has 60 thousand parameters.

OUTPUT
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F6: layer
84

C5: layer
120

S4: f.maps
16@5×5

C3: f.maps
16@10×10

S2: f.maps
6@14×14

C1: feature maps
6@28×28INPUT

32×32

Convolutions Convolutions
Subsampling Subsampling

Full connection
Subsampling

Gaussian connections

FIGURE 2.8 Structure of LeNet5 for character recognition [84].

The structure of LeNet5 is shown in Figure 2.8. Compared to traditional ANN, LeNet5
introduces convolutional layers and subsample layers. As shown in the figure, LeNet5 consists
of two convolutional layers and two subsampling layers, followed by conventional ANN. Dif­
ferent from ordinary convolution operation, convolutional layers employ activation functions
for non­linear transformation. Both convolutional layers in LeNet5 have a kernel size of 5× 5
pixels and utilize Sigmoid as the activation function.

The two subsampling layers gradually reduce the size of the feature maps by taking an
average out of 2×2 pixels areas. Thus, compared to modern DNN, LeNet5 is very lightweight.
However, its computational resource requirement was still significant at the time. Therefore,
CNN, ANN, or DNN in general are still out of favor until cheap computational resource from
GPGPU available.

2.1.10 Other Related Works

In literature, associationism of Plato (424/423–348/347 BC) and Aristotle (384–­322 BC),
Neural Grouping [115] of Bain, and Self Organizing Graph [116] of Kohonen are usually con­
sidered milestones of the DL development. However, the authors find that the relationship
between the above­mentioned works and DL’s line of works is not significant.

2.2 Deep Learning Era

After a decade long since the final paper on LeNet5 published [84], GPGPU has resurrected
the interest in CNN and DNN in general. GPGPU allows DNN with many more layers to be
trained. As a result, the deeper underlying feature of a given data can be generalized by the
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DNN. Countless works on DL have been done in the 2010s. Nonetheless, general consensus
agrees that the current DL era started with the publication of AlexNet [5].

2.2.1 AlexNet

Compared to LeNet5, AlexNet has eight convolutional layers with 60 million parameters.
Hence, it not only has three more layers and 100 times more parameters.

FIGURE 2.9 Structure of Original AlexNet [5]. The network consist of two branches. Each branch is
trained on a GPU.

As shown in Figure 2.9, AlexNet consists of two branches except for the output layer. The
two branches are structurally identical with three cross­concatenation links in layers 3, 7, and
8. However, once trained, the parameters of the two branches are different. In the original
paper, Krizhevsky et al. shows that the two branches learned to detect different features. At the
first convolutional layer, one of them learned to detect edges. Another learned to detect color
features. This design was driven by the technical limitations at the time rather than any model
performance advantage. AlexNet was originally trained on two GTX 580 graphic processing
units (GPUs). Each of these GPUs was equipped with 3GB of memory.

In the newer implementation of AlexNet on later generations of GPUs, the two branches are
replaced by only one. The single branch design technically different from the original AlexNet
design and consumes more memory. Nonetheless, evaluations show that the performance of
the single branch implementation is compatible with the original implementation. Figure 2.10
illustrates the new single­branch AlexNet design.

Comewith AlexNet is the re­introduction of CNN and pooling layers. Compared to LeNet5,
AlexNet or modern DNN in general stills heavily relies on these layers, especially in the field
of CV and digital signal processing (DSP).
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FIGURE 2.10 Structure of Single Branch AlexNet [5].

Convolutional layer is a crucial part of modern DNN. Figure 2.11 illustrates a convolutional
operation. This convolution operation essentially is a filtering process. Thus, it responds
to the pattern that similar to the filter itself. A convolutional layer usually made up of
multiple filters like this. Different from the figure, a filter in practice also operates in a
multi­channel input.

 

FIGURE 2.11 Visualization of a Convolution Operation.

Pooling layer is another essential ANN layer. Figure 2.12 illustrates the max and average
pooling operations. Similar to the convolutional layer, pooling also has a kernel. How­
ever, instead of performing dot products, pooling kernels perform either max or average
computation, which is computationally inexpensive. In practice, max pooling is more
popular and mostly used to reduce the size of the input.

2.2.2 VGG Neural Networks

Visual Geometry Group (VGG) is a special interest group of Oxford University, United
Kingdom. Simonyan and Zisserman proposed the VGG net [63] in 2015. VGG net achieves
state of the art performance by increasing the number of convolutional layers up to 19. VGG
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FIGURE 2.12 Visualization of Pooling Operations.

net is characterized by its simplicity in design. The network uses only 3× 3 pixel filter size for
CNN layers. Subsampling is done by only max pooling.

FIGURE 2.13 Structure of VGG16 [63].

In [63], the authors proposed two designs: VGG16 and VGG19. VGG16 and VGG19 have
16 and 19 layers correspondingly. Figure 2.13 shows the structure of VGG16. To train VGG,
the authors employed a technique named pre­training. Training the full­length network would
require a shorter version of it to be trained. The weight of the short trained network is then used
to initialize the longer version of the network.

Therefore, the main criticisms for VGG nets also include training time. At the time of
its publication, VGG is considered a large network. The pre­trained weights of VGG16 and
VGG19 are approximately 530MB and 570MB. However, it still owns a fair share of popularity
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due to the simplicity in design. Pre­trained VGG nets are frequently used to extract image
features as in 2020.

2.2.3 Inception Net

Inception Net first introduced in 2015 by Szegedy et al. as GoogLeNet. Inception­v1 (i.e.,
GoogLeNet) was the winner of the ILSVRC challenge in 2014. Inception­v1 comprise of mul­
tiple inception modules, in which different size filters are used to extract features at the same
time. Figure 2.14 shows the structure of inception module.

 

(a) Naive Version
 

(b) Proposed Version

FIGURE 2.14 Inception Modules [13]

As shown in Figure 2.14a, the outputs of all the branches of filter are concatenated. Hence,
the output of the module is unrealistically large for the next module to process. To overcome
the difficulty, 1 × 1 CNN blocks are used to reduce the dimension of the feature. The better
version of this inception module is shown in Figure 2.14b.

Inception­v2 [14] was published in 2015 by Ioffe and Szegedy. However, the main focus
of this paper was batch normalization (BN). Therefore, inception­v2 is also known as BN­
Inception. BN improves the training speed as well as the stability of the training process. BN
normalizes the input of a layer by ensuring the mean and variance of each batch of input is
fixed. The reason for the effectiveness of BN is the mitigation of internal covariant shifts [14].
Thus, eliminate the effect of vanishing or exploding gradient [117, 118]. However, a more
recent study shows that BN rather smoothen objective function [119]. Another recent study
claimed that batch normalization achieves length­direction decoupling instead [120]. Overall,
inception­v2 was able to reduce the top­1 error rate by nearly 4% on ImageNet challenge.

Inception­v3 [15] was published in 2016 by Szegedy et al.. Inception­v3 introduces fac­
torization convolutions. The purpose of factorization convolution is to reduce the number of
parameters without reducing the efficiency of the network. Shown in Figure 2.14, inception net
uses 3 × 3 and 5 × 5 CNN layers. Both of the two filter are replaced by a factorized version,
as shown in Figure 2.15. 5× 5 CNN filters are replaced by two 3× 3 filters as in Figure 2.15a.
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(a) 5× 5 Filter
 

(b) 3× 3 Filter

FIGURE 2.15 Factorization Convolution [15]

Similarly, 3 × 3 filters are replaced by 3 × 1 and 1 × 3 filters. In such a way, the number of
connections is reduced by approximately 28%.

 

FIGURE 2.16 Structure of Inception­v3 [15].

Figure 2.16 shows the structure of Inception­v3. Can be seen on the figure, 3 × 3 filters
have been replaced by two convolutional filters. As mentioned, 5× 5 filters can be replaced by
two 3 × 3. In turn, each 3 × 3 filter can be replaced by another two filters. Thus, each 5 × 5
filters can be replaced by four other filters. Hence, the number of connections can be reduced
by 35.85%.

Inception­v4 [16] in released in 2017 further improves the performance of the network.
Compared to inception­v3, inception­v4 reduce the top­4 error rate by 0.48%. This was done by
implementing skip connection (will be mentioned in Section 2.2.4) and architecture refinement.

2.2.4 Residual Neural Network (ResNet)

First introduced in 2016 by He et al., Residual Neural Network (ResNet) [64, 121] is a 152
layers network. Hence, it is about ten times deeper than any other network ever introduced at
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the time.

FIGURE 2.17 Structure of ResNet [64].

Figure 2.17 shows the structure of a 34 layers ResNet. Popular configurations of ResNet are
34, 50, 101 and 152 layers. The deeper versions of ResNet share the same design with ResNet­
34, with the only difference is the number of layers. ResNet adopts simple filter designs that
similar to VGG.

FIGURE 2.18 Structure of A Residual Block [64].

As shown by the work on VGG [122], deep networks are difficult to train. To overcome this
difficulty, ResNet introduces Residual Block. Residual Block essentially is a block of several
CNN layers with an identity connection passing the input to the output. Figure 2.18 shows the
structure of a Residual Block.

Identity connection, as known as skip connection, is popular in more recent models. Similar
to real brain structures [123–125], skip connections pass outputs directly from a layer to distance
layers by skipping their intermediate layers. Because it mitigates the negative effect of vanishing
gradient, offers more comprehensive input for deeper layers, and speeds up the training process.
Most recent success, such as HighwayNets [122, 126], Densely Connected CNN [127], or U­
Net [65] are all utilizing skip connections.

2.2.5 Multi-GPU Training

With the success of DL, new data sets tend to be larger and higher in quality. Moreover,
DNN models are also getting more sophisticated. Therefore, it is commons to train DNN in
distributed settings.
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FIGURE 2.19 The Distributed Training Race: in just one and a half years, the time required to train
ResNet50 [64] has fallen from one hour down to only 84 seconds width distributed training.

Distributed training in a broad sense also includes the multi­nodes (machines) setting. For
business, having a model trained in a short time is critical because it needs to be updated to
fit new data better. Therefore, distributed training received much more attention from private
businesses and cloud service providers. Around the time the ImageNet challenge discontinued
in 2017, there was an unofficial competition for shorter DNN training time.

In June 2017, Goyal et al. from Facebook reports they have trained ResNet50 in one hour
using 256 Nvidia Tesla P100 GPU [128]. In September of the same year, You et al. from
UC Berkeley university reported 24 minutes training time using 2048 Intel Knight Landing
chipsets [129]. Two months later, Akiba et al. from Preferred Network reported 15 minutes
training time using 1024 Nvidia Tesla P100 GPU [130]. In July 2018, Jia et al. from Tencent
reported 6 minutes 36 seconds training time using 2048 Nvidia Tesla P40 GPU [131]. Beside
distributed training, the authors also employ new technical called mixed­precision training to
reduce the computation cost (see Section 2.4.1). In November 2018, Mikami et al. from Sony
reported 3 minutes and 44 seconds training time with 2176 Nvidia Tesla V100 GPU [132]. And
finally, in March 2019, Yamazaki et al. from Fujitsu reported only 84 seconds training time
using 2048 Nvidia Tesla V100 GPU [133]. Thus, in just one and a half years, the time required
to train the ResNet50 on ImageNet has reduced to 2.33%.

On the one hand, this technical achievement is impressive. On the other hand, such a level
of optimization requires extra effort. Therefore, it is only meant for the business’s deployment.
The dominant setting for the research activity is single­node, multi­GPUs. There are two main
strategies for parallel training:

Model parallelism is the strategy where the model is designed to works on multiple GPUs. A
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classic example of this strategy is AlexNet [5].

 

FIGURE 2.20 Data Parallelism Multi­GPU Training.

Data parallelism In this strategy, the model is cloned to each GPU, and input data is split into
each GPU. As shown in Figure 2.20, each GPU receives a chunk of input each iteration.
After calculating, the gradients from all the GPUs are sent to the parameter device for
updating. The new parameter values are then cloned to all the GPUs before the new
training iteration.

Algorithm 1Multi­GPU Training with Data Parallelism
1: given Learning Rate α
2: initialize x1 ← Random() ▷ Initialize x1 on GPU­1
3: repeat
4: x2 ← x1 ▷ Copy parameter from GPU­1 to GPU­2
5: x3 ← x1 ▷ Copy parameter from GPU­1 to GPU­3
6: b← GetNewTrainingBatch() ▷ Get new training mini­batch
7: b1, b2, b3 ← Split (b) ▷ Split the mini­batch and send to each GPU
8: ∆x1 = BackProp (x1 (b1)) ▷ Compute gradient of batch 1 on GPU­1
9: ∆x2 = BackProp (x2 (b2)) ▷ Compute gradient of batch 2 on GPU­2
10: ∆x3 = BackProp (x3 (b3)) ▷ Compute gradient of batch 3 on GPU­3
11: ∆x1 = ReduceAverage (∆x1, ∆x2, ∆x3) ▷ Average the gradient to GPU­1
12: x1 ← x1 + α∆x1 ▷ Update parameters on GPU­1
13: until stopping criterion is met
14: return optimized parameters x1

In some newer generations of consumer­grade GPUs, one of the GPUs can act as a param­
eter device. With GPU make by Nvidia, NVIDIA Collective Communications Library
(NCCL) allows efficient cross­device reduction operations through NV­Link. Thus, it
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allows for more accessible multi­GPU training compared to the previous generation of
GPUs. Algorithm 1 shows the multi­GPU training routine with data parallelism.

2.3 Intelligent Agent

An intelligent agent (IA) is an autonomous entity within an environment. IA acts, directing
towards achieving goals. Figure 2.21 shows the structure of a general IA and its interaction with
the environment. In practice, the agent can be as simple as condition­action rules. Russell and
Norvig classify agents into five classes [134]: a) simple reflex agents b) model­based reflex
agents c) goal­based agents d) utility­based agents e) learning agents. Thus, the interaction
between the agent and the environment over time toward a goal is the main difference between
an IA and a plain deep ANN. We find this scenario is useful, especially when an end­to­end
solution is not possible.

 

FIGURE 2.21 A General intelligent agent.

The goal that needs to be achieved by the IA is typically an NP­hard problem. Therefore,
there is no ground truth for training except the observations from the environment over time.
This leads to the use of reinforcement learning (RL). Instead of fitting a model to a set of given
ground­truth, RL improves the performance of the IA through numerous trials. In the context
of RL, a trial is called an episode. Each episode comprises multiple steps along the timeline.
At every step, the IA observe the environment and perform an action.

With the rise of DNN, the field of RL also achieved notable success recently. Mnih et al.
introduced deep Q­network (DQN) [27] that plays Atari 2600 games well above the skill of
a human player or any ever proposed linear models. Subsequently, the works on prioritized
experience replay [135], double Q­network [136], duel Q­network [137], and asynchronous
actor­critic method [38] further enhance the efficiency of the training process. AlphaGo [39],
an IA developed by Silver et al. defeated the world best human player in Go [138]. Lample
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and Chaplot proposed an IA that achieved human­level in playing Doom [140], a first person
shooter (FPS) game [139].

There are two major categories of RL algorithms. Algorithms in the first category decide
an action to act based on the estimated scores given for each action. Algorithms in the second
category estimate the probabilities that it should take on each action. This probability is called
advantage. Mathematically, given action i, the value­based algorithms estimate the score Qi.
The probability action i will be performed is pi = f(Qi). Where f(·) is the function to convert
a score to the probability. This function is hand­designed. On the other hand, the advantage
based algorithms estimate pi directly.

2.3.1 Q-Learning

In the typical setting of Q­learning, a reward rt is given to the IA after every time step
t. Because different actions lead to different consequences, an accurate metric to measure the
performance of the IAwould be the sum of discounted rewards (SDR). Given the episode length
is T , the SDR is calculated as follows:

Rt =
T∑

i=t

γi−tri (2.14)

Where Rt is the SDR at time step t and 0 ≤ γ ≤ 1 is the discount factor. The higher
this value, the more important the future reward. Thus, tweaking γ would affect how the IA
prioritize each action for long or short term gains. Since Rt can’t be given to the IA during
inference, it has to estimate this value as follows:

Qπ (s, a) = E [ Rt | st = s, at = a ] (2.15)

WhereQπ (s, a) is the estimated value ofRt given the observation (i.e. state) s and the action
performed is a according to policy π. The optimal policy π̄ is achieved when the estimated Q

value for each action is maximized.

Qπ̄ (s, a) = max
π

Qπ (s, a) = max
π

E [ Rt | st = s, at = a ] (2.16)

With (2.14) and (2.15), (2.16) can be written as follows:

Qπ̄ (s, a) = E
[

r + γ max
a′

[
Qπ̄ (s′, a′)

]
| s, a

]
(2.17)

Where s′ and a′ are the state and the action of subsequent time step, respectively, and r is the
immediate reward for action a given in state s. In deep Q­learning, this value is approximated
by an DNN parameterized by θ.
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Qθ (s, a) ≈ Qπ̄ (s, a) (2.18)

Assume that the model θ is trained, at time step t, the Q value of the action at must be close
to the sum of the immediate reward rt and the discounted maximum of the SDRs of all the
possible actions in the subsequence time step.

Qθ (st, at) ≈ rt + γ max
a

[
Qθ (st+1, a)

]
(2.19)

Given that yt = rt + γ maxa

[
Qθ (st+1, a)

]
, the loss function is defined as follows:

Lt = |yt −Qθ (st, at)|
2 (2.20)

Where Lt is the loss value at time step t. Notice that yt is the right hand side of equa­
tion (2.19). Thus, (2.19) can be rewritten as Qθ (st, at) = δ + yt where δ is the approximation
error. In consequence, equation (2.20) can be written as Lt = |δ|2.

Hence, training the model is actually making the model improve the Q value estimation
without contradicting itself. For example, action at at time step t results in the change of the
environment from st to st+1 and reward rt. Given a model at any stage, all the components in
equation (2.19) are already given or can be obtained effortlessly. Therefore, the model can be
trained to minimize the difference between the two sides of the equation.

2.3.2 Policy Gradient

 

FIGURE 2.22 Comparison Between Q­Learning and Policy Gradient.

Figure 2.22 shows the comparison between Q­Learning and policy gradient learning. IAs
trained by the Q­learning method predicts the state­action values of all the action in the ac­
tion space. Then action is chosen deterministically based on the highest value. Thus, it heavily
depends on the value function in every step to result in better policy approximation. On the con­
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trary, with the policy­gradient method, the IAs is trained to output the action directly. Formally,
policy­gradient optimizes policy θ to maximize the expected SDR Rt:

θ = arg max
θ

E [ Rt ] (2.21)

To optimize the policy θ, the gradient of policy is given by:

∇θE [ Rt ] = E [∇θ log P (at)Rt ] (2.22)

Where P (at) is the probability of action at at time step t. Thus, actions that lead to better
SDR Rt are encouraged. In order to train an agent using policy­gradient, Rt must be known or
has to be approximated.

2.3.3 Intelligent Agent (IA) Training Loop

A naive IA training strategy is alternatively letting the IA interacts with the environment
for one step and train the IA with the collected experience. It is easy for the IA to be biased to
a small set of actions. Thus, trapping itself into a sub­optimal solution. Therefore, this naive
strategy would mostly lead to failure.

 

FIGURE 2.23 The IA Training Loop

Figure 2.23 shows a typical IA training loop. Compared to the standard setting, there are
two additional components: memory replay and exploration policy. There are three major steps
in this loop. Step 1 and 2 are similar to the above­mentioned naive strategy. However, in step
1, the observation is sent to memory replay and IA at the same time. The IA is periodically
trained after repeating steps 1 and 2 for a predefined number of times.
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2.3.4 Experience Memory Replay

One of the most significant difficulties in training an IA is the strong correlation between the
network policy and the action­outcome of subsequent time steps. This difficulty makes online
training impossible. To break the strong correlation, experience memory replay (EMR) [135]
is used.

Regardless of the algorithms used, data is crucial for the training process. To bootstrap
this data, the IA is used to unroll a certain amount of episodes. The result of the episode as a
whole is trivial since it is not required for training. Thus, at every time step t, the experience
(st, at, rt, st+1) of the IA is stored in the replay memory. This memory is a queue with a large
capacity. In popular works like DQN [27], this memory is set to store 1× 106 samples of such
experience. Because this memory is a queue, old experiences are discarded to accommodate
new ones when it is full. Mini batches of random experiences are used to train the IA.

2.3.5 Exploration and Exploitation

Training an IA in RL requires a right balance between exploitation and exploration. Ex­
ploitation is relying on the learned policy to improve the prediction accuracy while exploration
allows the IA to seek for potentially better solutions (i.e., avoiding sub­optimal trap). A popular
exploration policy being used in RL is ϵ–greedy [141]. Under this policy, the output of the IA
has an ϵ chance of being random.

There are other exploration policies based on randomization, such as Thompson sam­
pling [142] and Bayesian sampling [143]. However, a variance of ϵ–greedy policy named re­
ducing ϵ–greedy is commonly used. With this policy, the IA starts with high exploration rate,
and then gradually reduces it towards the end of the training process. Thus, it allows the agent
to explore more (and avoiding extreme bias) in the beginning, and to focus more on exploitation
in the later phase of the training process.

2.4 Model-Design v.s. End-to-end network

The achievements obtained in the decade are truly remarkable. In the field of CV, the objec­
tive was constantly elevated. DL started with feed­forward networks with simple objectives like
image classification. By the end of the decade, researchers are working on complex problems
such as semantic segmentation or real­time image generation.

Toward the end of the decades, the end­to­end model design is highly desirable because it
reduces the complexity of the model as a whole [144]. Furthermore, it can avoid sub­optimal
results because of hand­designed components. In end­to­end design, the model takes input and
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(a)

(b) (c)

FIGURE 2.24 SoCs with Accelerated Computation Capability. (a) Nvidia Jetson AGX Xavier module.
As in 2020, the newest version of this module has power rating at 10W. It delivers up to 32 TOPs in
performance. (b) Qualcomm Snapdragon 860 SoC released in early 2020. It can deliver up to 15 TOPs
in performance. The whole SoC itself has power rating at 7W. (c) Tesla’s FSD computer board manu­
factured by Samsung. The board’s TDP is 36W. It deliver 600 GFLOPS and 74 TOPs in performance.

Image (a) and (c) courtesy of Nvidia. Image (b) courtesy of Qualcomm.

gives the output as the final result. As opposed to the end­to­end model, traditional models take
the output of a DNN as one of its inputs.

For example, in the traditional model­design self­driving system, deep convolutional neural
network (DCNN) can be used to recognize the surrounding objects. The model of the surround­
ing environment is then be built using the recognition output. The final decisions to the steering
wheel of the vehicle are then issued based on the model of the environment. On the other hand,
recent researches on the end­to­end self­driving model show more success [28]. End­to­end
networks take sensory input as it is and output commands to the steering wheel directly. Thus,
simplify the model structure and achieve better training results via back­propagation.

Nonetheless, end­to­end is not possible (or very difficult) in numbers of applications.

2.4.1 The Edge-Computing Trend

Cloud computing has been a trend since the late 2000s. In the CV community, it is commons
to see the use of cloud services for model training. For business, cloud computing allows state­
of­the­art CV products to be delivered to the end customer.

Nevertheless, because of the increase in raw data size, there is a growing interest (again) in
the edge computing concept [145–150]. By definition, edge computing brings computation and
data storage closer to the location where it is needed to improve latency and optimize bandwidth.
For example, it is more relevant to have a CV computational unit locally to process data from
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a multi­cameras surveillant system. Transmitting data from such systems to the cloud is just
technically inefficient. In more critical systems like self­driving, it is not feasible to utilize
cloud computing to provide low latency response.

On the technical end, new SoC from leading manufactures like Apple, Qualcomm started
to embed specialized processor cores for accelerated computation. Figure 2.24 shows vari­
ous SoCs with accelerated computational capability. As shown in the figure, the smallest SoC
is Snapdragon 865. It consumes 7W of power and can deliver 15 TOPs. For comparison,
LeNet5 [84] was published in 1998. Around that time, the fastest supercomputer in the world
delivered around 1000 GFLOPS in performance. Hence, the Snapdragon 860 as in (b) is rela­
tively faster than the top supercomputer at that time.3

Conventionally, this type of processor works only with 32­bit numbers. These processors
are capable of working with the short­bit number by zeros padding the input number. This
leads to negative gains in performance as a whole. The newer generation of GPUs and DSP
units have become more efficient. For example, Nvidia’s Turning architecture offers a linear
gain in working with short­bit numbers. Thus, working with 16 bits number is about two times
faster than working with 32 bits number and so on.

It leads to the growing interest in mixed precision DNN [131, 151–154]. In the mixed­
precision model, most parts of the model are working with small numbers while the rest are
still working with 32 bits number. It results in significant gains in performance with minimal
loss in model accuracy. Mixed precision models are popular on mobile devices.

3The new processors are rated in TOPs. It doesn’t mean that they can only compute the integer number. Most
of the new processors support multiple types of numbers.
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CHAPTER 3

SvgAI1

3.1 Vector Image

Figure 3.1 shows the comparison between raster and vector versions of the same image. As
shown in the figure, the raster version is comprised of individual pixels. On the other hand, the
vector version is crisper with all the detail preserved. A higher resolution of the raster version
can be extracted. However, the size of the photo would inflate rapidly. Thus, the vector image
is simply more versatile and compact. Therefore, even though a raster image is straight forward
and easy to edit, raster to vector (R2V) conversion is a well­investigated topic.

FIGURE 3.1 Raster and Vector Images Comparison.
Image courtesy of Wikimedia Commons.

There are countless number of format for both raster and vector images. Popular format
for raster images includes Joint Photographic Experts Group (JPG), Windows bitmap (BMP),
Portable Network Graphics (PNG). However, for raster image, Scalable Vector Graphics (SVG)
appears to be the only popular format since others such as Adobe Illustrator Artwork (*.ai),
CorelDRAW (CDR), Vector Markup Language (VML) are either proprietary or too unpopular.

1This chapter refers to the author’s publication [8].



 

FIGURE 3.2 Comparison Between SvgAI and Previous Works

For that reason, SVG is an synonym to vector image most of the time. In this research, we use
the SVG format.

Not storing pixel by pixel information like raster images, SVG is an Extensible Markup
Language (XML) based text document. The SVG standard defines numbers of elements divided
into 14 functional feature sets, including paths, basic shapes, text, colors. Thus, the structure of
an SVG is highly semantic. Creating an optimal vector image requires a high degree of semantic
image understanding.

3.2 Previous Works

As mentioned in Section 1.2.2, the related works includes conventional image processing
method and a convolutional neural network (CNN)­Long­Short Term Memory (LSTM) cross
model method [9]. However, both of the previous works are not producing semantic output.

Figure 3.2 compares between Scalable Vector Graphic AI (SvgAI) the the previous works.
The conventional image processing methods do not handle visual and SVG language at the
semantic level. As a result, it does not produce semantic SVG output. [9] handles visual and
language model using cross modal framework as seen in [10]. However, the accuracy and
semantic property of this model is limited because LSTM does not handle hierarchical structure
language well. Compared to the previous works, SvgAI does not handle the language model.
Instead of generating SVG document, it sends commands to an SVG editor to draw the desired
image. Thus, it simplified the model design and allowed the model to focus only on visual
structure.
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3.3 SVG Editor Environment

We propose a framework to train an intelligent agent (IA) to use SVG editor (hereafter
referred as editor) with reinforcement learning (RL). The objective of this IA is to draw an
SVG image that is similar to as much as possible to a given target raster image. It can be
considered a new paradigm to solve the R2V problem A custom editor is created for carrying
out the research, which has modeled after OpenAI Gym [155] environment due to its robustness
in interface design

 

FIGURE 3.3 The proposed framework of SvgAI. The editor is playing the role of the environment

As seen in common in RL settings, the proposed framework consists of two parts: the IA
and the environment. As shown in Figure 3.3, the editor is playing the role of the environment
in this research. For every time step, the IA observes the state of the editor (step 1). Then,
the IA processes the observed state and sends a new action to the editor (step 2). The editor
executes the action as requested and sends a reward back to the agent (step 3). And, the process
goes back to step 1.

3.3.1 SVG Construction

In this research, our environment supports two fundamental shape elements (and with their
transformations) that are square element and circle element for SVG image construction. Fig­
ure 3.4 shows the process of SVG composition, where every episode starts with a blank canvas.
During the process, the IA is either adding a new element into the working image or editing
the most recently added element. The newly added element has a default presentation when
it’s firstly added. The default presentations of the circle and square elements are shown in sub­
figure (a) and (g) of Figure 3.11. As the agent keeps editing, the presentation of the element is
to be updated. For example, sub­figure (l) in Figure 3.11 is the presentation of a circle element
after 400 steps of editing.
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FIGURE 3.4 The process of SVG composition: the IA keeps adding and editing new elements until the
desired result is achieved. ai is action given by the IA at time step t. T is the last time step in the episode.

3.3.2 Action Space

With the above­explained process, once a new element is added to the working SVG docu­
ment, the old element is no longer editable. Thus, the consequence of adding new elements is
more significant compared to editing them. Therefore, for Q­learning based training, it is crucial
to distinguish the two sets of actions, set A and set B, and apply separated exploration policies
during the training process. Otherwise, the model cannot converge. Table 3.1 lists all the ac­
tions of set A and B supported by the editor. Set A consists of actions that add new elements
into the working SVG document, while set B consists of editing actions, i.e., element­shape
manipulation actions.

TABLE 3.1 List of Actions Supported By The SVG Editor.

Set Action Id. Description

A 0, 1 Add circle/square element

B

2, 3, 4, 5 Move element left/right/up/down
6, 7, 8, 9 Compress/expand element horizontally/vertically
10, 11 Rotate the element clockwise/counter clockwise
12, 13 Reduce/increase the line thickness
14, .., 21 Increase/decrease value of each channel of the line color (RGBα)
22, .., 29 Increase/decrease value of each channel of the fill color (RGBα)
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3.3.3 State Observation

The state of the editor at any time step t consists of four components:

• Raster version of the SVG image being edited It.

• Target image Y , i.e. the image which the IA attempting to compose.

• Raster image of the element being edited I∗
t .

• An auxiliary vector that describes the state of the SVG element being edited. This auxil­
iary vector consists of parameters such as orientation, position, line thickness, line color,
and fill color. All raster images are in the RGBα format with the resolution of 128× 128
pixels.

The first three components are stacked along channels dimension to form the image stack.

3.3.4 Implementation

3.3.4.1 Back-end

The codebase of the research is in the Python programming language. There are numerous
graphic libraries can be used as the rendering engine such as Python Imaging Library (PIL) [156]
or Open source computer vision (OpenCV) [157]. However, Cairo [156] is used as the core
library to implement the SVG editor due to the following advantages:

• It is an open­source programming application programming interface (API). It leads to
cross­platform availability and continuous development support.

• Cairo is appealing technically with high­performance code and hardware acceleration.

• A large number of language binding available, including Python.

• Multiple back­ends support, including SVG and image buffers. Thus, it allows quick in­
memory rendering during the drawing process and SVG image exporting when finished.

• The drawing model of Cairo naturally fits the purpose. It can be seen as a full­featured
image editor without a graphical user interface (GUI). However, it does not provide func­
tionality for modifying a drawn element. Hence, the implementation of the SVG editor
must include abstraction layers that allowmodification and communication interface with
the IA.

47



Cairo API

Abstractions API

Circle Square …

Editor

Interface

layer 1

layer 2

layer 3

layer 4

FIGURE 3.5 SVG Editor Environment Diagram

3.3.4.2 Structure

Figure 3.5 shows the diagram of the SVG editor environment. Built on top of Cairo API,
the structure of the environment can be grouped into four layers.

Layer 1 abstracts the necessary components of the API. One crucial component is called a
Stepper. This component provides binary action to increase or decrease the continuous
parameters of a shape object (layer 2 below). All numeric parameters of a shape are
created from single or multiple Stepper components. Those parameters are angle, stroke
thickness, color, gradient, coordinate, horizontal scale, to name a few.

The number of steps of each Stepper needs to be set based on the type of parameter and
the domain of the parameter’s value. For example, as shown in Listing 3.1, in our imple­
mentation, each channel of color is divided into 50 steps. A larger number of steps would
lead to more difficulty in training since the change between each step is insignificant vi­
sually. However, too few numbers of steps also lead to poor performance due to value
overshooting.

Layer 2 abstracts the basic shapes supported by SVG schematic. These basic shapes abstrac­
tion essentially consists of multiple steppers. Each stepper record a parameter of the
shape. For example, as shown in Listing 3.2, the circle element is abstracted by the Cir­
cle class. This class stores all basic parameters of a circle, including the coordinate of the
center and the radius.

Layer 3 abstracts the SVG editor. The objective of this editor is to manage multiple shapes
object and providing a drawing API. All the shape objects are stored in a stack. The
object positioned lower in the stack is overlayed by objects that are staying in a higher
position.
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LISTING 3.1 Color Parameter Class Abstraction

1 class Color(MultiActors ):
2 def __init__(self , name: str = ”Color”,
3 r: int = 25, g: int = 25, b: int = 25, a: int = 49):
4 self.r = Stepper(name=’R’, _min=_0., _max=1.,
5 step=r, min_step=0, max_step =49, loop=False)
6 self.g = Stepper(name=’G’, _min=_0., _max=1.,
7 step=g, min_step=0, max_step =49, loop=False)
8 self.b = Stepper(name=’B’, _min=_0., _max=1.,
9 step=b, min_step=0, max_step =49, loop=False)
10 self.a = Stepper(name=’A’, _min=_0., _max=1.,
11 step=a, min_step=0, max_step =49, loop=False)
12

13 MultiActors.__init__(self , name , [self.r, self.g, self.b, self.a])

Layer 4 interfaces with the IA by providing an action space that can be described by a one­hot
vector. This action space is described in Section 3.3.2. Because this action space is fixed,
there are cases that a part of the action space results in no change to the editor status. For
example, when an episode just started, because there is no shape element added to the
image. Therefore, all action in action set B, as shown in table 3.1, will not result in any
change.

To make the environment complete, it provides additional functionality, such as setting
the target image and reset the SVG editor in layer 3. The similarity between the target
image and the image being edited is reported to the IA after every editing action.

3.3.4.3 Drawing Operation

Even­though built on top of Cairo; the Cairo API is not used until the rendering process is
initialized. Cairo abstracts a canvas by context object. This context is sequentially drawn by all
shapes (layer 2 in Section 3.3.4.2) stored in the SVG editor (layer 3 in Section 3.3.4.2).

Algorithm 2 describes this drawing operation. The drawing function shown on line 4 is
corresponding to draw function on line 7 and line 19 of Listing 3.2. These draw functions, in

Algorithm 2 Drawing Operation on Cairo’s Context
1: procedure Draw(ctx) ▷ Draw all shape on blank context ctx
2: for i← 0, n do ▷ n shape objects in the stack
3: shape← s [i] ▷ Get i­th shape object in stack s
4: shape draws on ctx
5: end for
6: return ctx
7: end procedure
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LISTING 3.2 Circle and Square Element Code Excerpt

1 class Circle(Elem):
2

3 def __init__(self , name: str = ”Circle”, radius: float = DEF.CIR.R):
4 Elem.__init__(self , name=name)
5 self.r = radius # Radius is fixed , no change
6

7 def draw_by(self , ctx: cairo.Context ):
8 self._draw(ctx , ctx.arc , (0., 0., self.r, 0., 2 * math.pi))
9 # centerX , centerY , radius , startAngle , endAngle
10

11

12 class Square(Elem):
13 _S = DEF.Square
14

15 def __init__(self , name: str = ”Square”, edge: float = _S.edge):
16 Elem.__init__(self , name=name)
17 self.edge = edge # Edge is fixed , no change
18

19 def draw_by(self , ctx: cairo.Context ):
20 self._draw(ctx , ctx.rectangle , (-1. * self.edge / 2,
21 -1. * self.edge / 2,
22 self.edge , self.edge))
23 # centerX , centerY , width , height

turn, called the draw function of the generic element that they are inherited from. The draw
function of this generic element is shown in Listing 3.3.

As shown in Listing 3.3, this draw function also performs gradient filling, which is a com­
mons among circle and square shape. The relative start and stop position of the gradient (lines
27 and 28) are fixed for the sake of simplicity.

The final context is then exported into an in­memory buffer bitmap or SVG document. The
in­memory bitmap is used during the training process for input as well as comparison. SVG
document is used to evaluate other quality of the result, including size and number of elements.

In Cairo API, to export an image to a specific format, an appropriate context needs to be
created. For reference, cairo.Context(cairo.ImageSurface(cairo.FORMAT_ARGB32, w, h))

is used to export bitmap image and cairo.Context(cairo.SVGSurface(path, w, h)) is used
for SVG exporting in our implementation.

3.4 Model and Algorithms

3.4.1 Network Architecture

Figure 3.6 shows the architecture of the proposed IA. The above­mentioned image stack
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FIGURE 3.6 The architecture of the IA. The stacked image explained in Section 3.3.3 is processed by the
convolution layers. Auxiliary vector is concatenated with the output of the convolution layers before
feeding to fully connected blocks at the end of the network.

is processed by the CNN blocks. These blocks produce a feature map with around 27 × 103

parameters. The combination of this feature map and the auxiliary vector is then processed by
a fully connected (FC) block to produce a score or probability for each action supported by the
environment.

3.4.2 Error and Reward

With every action received from the agent, the score is calculated as follows:

gt = exp
(
−|It − Y |2

σ2

)
(3.1)

Where gt is the score at time step t, which describes the similarity between the raster version
It of the working SVG document at time step t and the target image Y , and σ is the scaling factor.
In our experiments, σ is set to 1. Thus, the domain of the score gt is from 0 to 1, where 1 means
perfect matching. Base on the score gt, the reward is given to the IA as follows:

rt =

1 + gt, if gt > gt−1.

0, otherwise.
(3.2)

Where rt is the immediate reward at time step t. Thus, the environment returns 0 reward
when the action results in no improvement and returns a small reward ranging from 1 to 2
depending on the similarity between the result and the target image. Given vt which is the
number of SVG elements at time step t, the penalty pt is given as follows:
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pt =

−1, if vt > vt−1.

0, otherwise.
(3.3)

Hence, the sum of discounted rewards (SDR) Rt at time step t is calculated as follows:

Rt =
T∑

i=t

(ri + pi) γi−t (3.4)

Where γ is the discount factor, and T is the length of the episode. By giving a penalty for
adding elements more than necessary, the IA is discouraged from performing actions in set A.
However, this technique is only feasible with a controlled environment in which the structure
of a state is known. The training process is expected to be slower without this penalty.

3.4.3 Q-learning and Exploration Policy

 

FIGURE 3.7 The ϵ–greedy exploration policy.

In our early attempts, the conventional ϵ–greedy policy, as shown in Figure 3.7, was used.
On average, with the action sets explained in Section 3.3.2, there was a new element added into
the image for every 14 adjustments during the exploration process. It means, regardless of the
value set to the exploration rate ϵ, actions in set A were explored more than necessary. This bad
exploration is most likely making the network to be trapped in sub­optimal solution [158]. The
simplest solution is to apply lower weight for the actions in set A during the random exploration
process. The probability for an action being performed randomly by the ϵ–greedy policy is:

P (ai) =

ϵωA, if ai ∈ A.

ϵωB, if ai ∈ B.
(3.5)

Where ωA and ωB are weights for the actions of set A and B. Figure 3.8 illustrates this
weighted ϵ–greedy policy.
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FIGURE 3.8 The weighted ϵ–greedy policy.

However, we observe that the agent trained by using this weighted ϵ–greedy policy often
inserts the incorrect element into the working image. A possible explanation for this problem
is that the ϵ value is already saturated when the agent does not learn the long­term reward of
adding the right element yet.

Prolonging the exploration phase does not improve the result because the agent has to keep
exploring more on element editing (i.e., action set B) in order to discover a better solution. Our
approach to solving this problem is to apply the different reducing ϵ–greedy policies (hereafter
referred to as dual ϵ–greedy policy) on each action set. In this setting, there are two independent
reducing ϵ–greedy polices applied for each action set:

P (ai) =

ϵAωA, if ai ∈ A.

ϵBωB, if ai ∈ B.
(3.6)

Where ϵA and ϵB are weight values of two ϵ–greedy policies for the action set A and action
set B, respectively. In this way, the action set A and B can be independently explored. Figure 3.9
illustrates this dual ϵ–greedy policy.

 

FIGURE 3.9 The dual ϵ–greedy policy.

Algorithm 3 shows the pseudo­code to train the agent using the Q­learning paradigm with
dual ϵ–greedy policy, where the random function has several forms (analogous to C++’s function
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Algorithm 3 Q­Learning Based Training Algorithm
1: procedure Train(θ) ▷ Optimize policy θ
2: Y ← random target image Y with random k ▷ k is the difficulty of target
3: for t← 0, tmax do ▷ Maximum time step tmax
4: gt← gt + 1 ▷ Global counter gt
5: aA ← Rnd (A)
6: aB ← Rnd (B)
7: aQ ← maxa (Qθ (st, a))
8: at ← Rnd (aA, aB, aQ | p (aA) , p (aB) , q (aQ))
9: Unroll episode with at

10: M ← new episode
11: if gt mod L = 0 then ▷ L is the training interval
12: train mini batch taken from M
13: end if
14: if episode end then
15: break
16: end if
17: end for
18: end procedure

overloading). The function Rnd(A) and Rnd(B) randomly select an action in set A and B.
Rnd(X|W ) picks element from X with weight W . The difficulty k is the minimum number of
steps to compose the target image from a blank canvas, as explained in Section 3.4.4.

3.4.4 Policy-Gradient

As mentioned in Section 2.3.2, in order to train the IA using policy­gradient, Rt has to be
known. This value can be approximated for training. Thus, it makes the efficiency of the train­
ing process again depend on an external function. Another solution is to unroll the episodes
fully. Monte Carlo method is commonly used for this purpose. However, this method is in­
tractable in the environment with a large action space, as it requires an immerse computational
resource.

Blank canvas Target image

StepsCurrent image

k

d

t

FIGURE 3.10 The process of SVG composition: the IA keeps adding and editing new elements until the
desired result is achieved. ai is action given by the IA at time step t. T is the last time step in the episode.
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To overcome this difficulty, we unroll the episode and train the IA reversibly. As shown
in Figure 3.10, supposing that k is the minimum number of steps to compose the target image
from a blank canvas, if an IA is trained to perform last d step from time step t, action at time
step t− 1 can be unrolled in a brute force way:

P (ai | st−1) =

[
D
(
st|aj

, Y
)

= d
]

∑
j

[
D
(
st|aj

, Y
)

= d
] (3.7)

Where P (ai | st−1) is the probability of action ai given the state st−1 at time step t − 1,
D
(
st|aj

, Y
)
is the minimum number of steps for the agent to finish the episode given in the

state st|aj
at time step t which is the result from action aj from the last time step.

Algorithm 4 Policy­Gradient Based Training Algorithm
1: procedure Train(θ) ▷ Optimize policy θ
2: for d← 1, kmax do ▷ Upper limit kmax
3: while θd is not converged do ▷ Train θ to handle increasing difficulty
4: k ← U ([d..kmax]) ▷ Get random difficulty k in range [d..kmax]
5: t← k − d
6: episode← Unroll(k) ▷ Random episode at difficulty k
7: for i← 0, n do ▷ Number of actions supported by editor n

8: if D
(
sst|ai

, Y
)

= d then
9: M ← (st−1, ai) ▷ Memory replay M
10: gt← gt + 1 ▷ Global counter gt
11: if gt mod L = 0 then
12: train mini batch taken from M
13: end if
14: end if
15: end for
16: end while
17: end for
18: end procedure

Algorithm 4 shows the pseudo­code of policy­gradient based training. The agent is trained
to work on incrementally difficult states. The difficulty of a state is measured by distance d.
Once the policy network θd for distance d is converged, it is then trained with more difficult
distance d + 1. U (·) is an uniform sampling function.

The primary disadvantage of this method is that it is only feasible with a controlled environ­
ment where the difficulty of the state can be calculated. However, it is useful in combination
with techniques such as transfer learning when applying it for more complex data.
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3.5 IA Setting and Evaluation

We train the IA by using both Q­leaning based and policy­gradient based methods. We eval­
uate the IA performance by comparing the similarity between generated SVG images and target
images. Finally, we compare the quality between the SVG image produced by the proposed IA
with that produced by popular R2V software. For more stable training process, we use Huber
loss as follows:

L (α) =


1
2α2, if |α| ≤ δ.

δ
(
|α| − 1

2δ
)

, otherwise.
(3.8)

Where α is the loss value, δ is set to 1 in all of our experiments.

3.5.1 Setting

3.5.1.1 Data Set

Works on image­processing based R2V conversion have many diverse objectives. As a
result, they mostly use relatively plain and small data sets. The diversity in research objectives
also leads to a lack of unified evaluation data set [49]. While the complexity of these data sets
is suitable for this research, their modest size and heterogeneous properties are not adequate to
be used to train deep neural network (DNN).

FIGURE 3.11 Examples of target images generated for training and evaluation. The caption under each
image shows the name of the element and the minimum number of steps (k as in Figure 3.10) required
to compose that image from a blank canvas by using the editor.
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With the above reasons, the training and the evaluation of the IA have been done on a
randomly generated data set. It not only helps in avoiding the above­mentioned problems but
also provides a controlled level of difficulty and the uniformity of the dataset. Target images
are created by randomly generated SVG documents. These documents contain a single shape
element with difficulty k. Figure 3.11 shows examples of target images in format <element>­
<k>.

3.5.1.2 Episode Termination

The episode is terminated if one of the following conditions is met:

• After a fixed time step tmax. Since there is no further step after the termination, for Q­
learning, the Q value as mentioned in (6) at the final step tmax is Qθ (stmax , atmax) = rtmax

• When gt in 3.1 is greater than a certain threshold.

3.5.1.3 Frame Skip

Due to the computational demand of the IA, it is inefficient to let the IA perform an action
at every time step. The popular solution is the frame skip [155], where the IA only interacts
with the environment in every r steps. Therefore, once an action is decided by IA, it repeats
r steps. A popular value of r in many tasks is 4, as it is usually a good trade­off between the
performance and the training speed.

In this research, dismissing frameskip improves the performance of the IA because one
action repeated several times makes the IA miss its target due to overshooting.

3.5.1.4 Parameter Update

The IA does not update its parameter at every time step, but once for every L experiences
added in the replay memory. Thus, given the batch size of N , one experience is learned by the
IA N

L
times on average.

3.5.1.5 Parameter Settings

We have implemented the IA using the model proposed in Section 3.4. We evaluate the
performance of the IA trained by different training schemes:

• Policy­gradient

• Q­learning under different exploration policies
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– Conventional ϵ–greedy policy.

– Weighted ϵ–greedy policy.

– Dual ϵ–greedy policy.

TABLE 3.2 Hyper­Parameter Setting for Experiments.

Conventional Weighted Dual

Mini batch size 32 32 32
Upper limit kmax 400 400 400
Train interval L 16 16 16
Discount factor γ 0.999 0.999 0.999
Memory replay size 1e6 1e6 1e6

ϵ­greedy
max­min 1− 0.1 1− 0.1 ­
start­end 0− 1e6 0− 1e6 ­

ϵA­greedy
max­min ­ ­ 1e3− 0
start­end ­ ­ 5e6− 1e7

ϵB­greedy
max­min ­ ­ 0.999− 0.1
start­end ­ ­ 0− 1e6

WA 1 1e− 3 1
WB 1 999e− 3 1

Table 3.2 shows the hyper­parameters used for the experiments. Policy­gradient training
experiments share the first 5 parameters with other experiments.

3.5.2 Evaluation

3.5.2.1 Performance

Figure 3.12 shows the distribution of the evaluation scores of the IA under different train­
ing schemes. Similar to the training configuration, the target images used for evaluation are
generated with random difficulty k given that k ≤ 400. The box plot describes the distribution
of evaluation scores by 5 × 104 iterations interval from 0 to 40 × 104. For each scheme, we
train the IA 5 times. Each time, we evaluate the IA after every 100 training iteration and collect
evaluation score calculated using equation 3.1. Thus, each box describes the distribution of
500 evaluation scores. The colored box indicates interquartile range (IQR). The horizontal line
within the box indicates the median score, and the extended bar indicates the maximum and
minimum scores. Dots indicate outliers. Our proposed dual ϵ–greedy policy shows not only
significant performance gain but also highly stable compared to conventional ϵ–greedy policy
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FIGURE 3.12 Evaluation score distribution of the IA throughout the training process under different train­
ing scheme.

and weighted ϵ–greedy policy during the training process. The IA trained by policy­gradient
achieves the best result and the high stability when the number of iterations is more than or
equal to 15× 104.

3.5.2.2 Accuracy

With dual ϵ–greedypolicy, our trained IA favors adding circle elements and achieves higher
scores by editing circle elements in general. To further analyze this observation, we evaluate
each trained IAs for 500 episodes with the same setting used in Section 3.5.2.1 and drill down
the evaluation results. In general, evaluation results can be divided into two sets:

Circle set consists of episodes with target images that contain circle elements only (250
episodes for each IA).

Square set consists of episodes with target images that contain the square elements only (250
episodes for each IA).

With each set, we analyze the performance of the IA on action set A and set B separately.
The IA’s performance on action set A is measured by the number of episodes where a correct
shape element inserted into the working SVG document over the total number of episodes in the
set. Correctly inserting a shape is important because further editing the incorrect element results
in a large number of bad experiences that negatively affects the IA’s policy network. Table 3.3
shows the performance on action set A of the IAs trained under different training schemes.
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TABLE 3.3 IA Performance on Action Set A

Circle set Square set

Policy­gradient 0.99 0.95
Q­learning

Dual ϵ–greedy 0.94 0.76
Weighted ϵ–greedy 0.67 0.58
Conventional ϵ–greedy 0.53 0.61

To evaluate the IA’s performance on action set B, we again evaluate each IA for 500 episodes
with an element already inserted. The evaluation results are divided into two sets:

Set 1 consists of episodeswith target images that contain the same element with the pre­inserted
element (250 episodes each IA).

Set 2 consists of episodes with target images that contain an element that is different from the
pre­inserted element (250 episodes for each IA).

TABLE 3.4 IA Performance on Action Set B

IA Pre­inserted
Target Image
Circle Square

Policy­gradient
Circle 0.97 0.65
Square 0.71 0.94

Q
­le
ar
ni
ng

Dual ϵ–greedy
Circle 0.93 0.78
Square 0.72 0.89

Weighted ϵ–greedy
Circle 0.81 0.76
Square 0.67 0.79

Conventional ϵ–greedy
Circle 0.59 0.66
Square 0.61 0.73

Table 3.4 shows the IA’s performance on action set B. The evaluation scores of set 1 are in
the gray background. For this set, the performance of IAs trained by policy­gradient is better
than the IAs trained by Q­learning. The evaluation scores of set 2 are in white background.
Interestingly, for set 2, even with the wrong element pre­inserted, the performance of all the
trained IAs is over 0.5. This reflects the fact that all the IAs are trained with a sustainable
amount of episodes in which the wrong element is inserted. This result is also correlated to
action set A performance shown in Table 3.3: Because the IAs trained by policy­gradient have
high accuracy for action set A, they rarely experience the training episodes where the wrong
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element is added. Thus, on set 2, their performance is even lower than the performance of IAs
trained by dual ϵ–greedy policy (bold italic v.s. italic on Table 3.4).

3.5.2.3 SVG Quality

FIGURE 3.13 Comparison between SVG images produced by SvgAI, Portrace and AutoTrace. SvgAI
trained by Q­learning and policy­gradient produces identical result for this example.

We visually compare the SVG image produced by our trained IA with two popular open
source and commercial R2V solutions: Potrace and AutoTrace [159]. Figure 3.13 shows the
comparison between the outputs. As shown in the figure, Potrace not only has a problem with
color quantization but also results in a distorted circle. On the other hand, AutoTrace produces
a much better result. However, the linear gradient fill has been converted into color blobs.
Without any manual configurations before the conversion/drawing process, our IA produces a
significantly better result.

TABLE 3.5 Average SVG Size Comparison

Target SvgAI Potrace AutoTrace

File Size 5.8KB 852B 1.4KB 15.5KB
Node Count ­ 1.4 2.7 174

Color ≥ 16× 106 ≥ 16× 106 2 10

Not only visually better but the SVG images produced by our IA are also smaller both in
file size and node counts. As shown in Table 3.5, SVG images produced by our IA are 40%

61



smaller in size and 63% smaller in node counts than the second­best solution in average over
100 images where each one contains a single element, i.e., a circle or a square.
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LISTING 3.3 Code Excerpt of Generic Element’s Drawing

1 class Elem(MultiActors ):
2 def __init__(self , name: str = ”Elem”):
3 ””” Initiate SVG Element instance
4

5 ”””
6 self.center = Point(’Center ’)
7 self.scale = Scale()
8 self.angle = Angle()
9 self.lineWidth = LineWidth ()
10 self.lineColor = Color(’LineColor ’)
11 self.fill = Gradient(”FillGradient”)
12

13 attrs = [self.center , self.scale , self.angle ,
14 self.lineWidth , self.lineColor , self.fill]
15 MultiActors.__init__(self , name , attrs)
16

17 def transform(self , ctx: cairo.Context ):
18 ctx.translate (*self.center.tuple)
19 ctx.rotate(self.angle.value)
20 ctx.scale(*self.scale.tuple)
21 return self
22

23 def _draw(self , ctx , func , arg):
24 ctx.save()
25 self.transform(ctx)
26 func(*arg) # Rect , act , etc..
27 ctx.restore ()
28

29 # RENDER FILL GRADIENT
30

31 rad = self.fill.angle.value
32 points = np.array ([[0., 0.],
33 [1., 0.]])
34 rot = np.array ([[ math.cos(rad), -math.sin(rad)],
35 [math.sin(rad), math.cos(rad )]])
36 points = np.dot(points , rot)
37 points[:, 0] = points[:, 0] - points[:, 0]. mean() + 0.5
38 points[:, 1] = points[:, 1] - points[:, 1]. mean() + 0.5
39

40 grad = cairo.LinearGradient(points[0, 0], points[0, 1],
41 points[1, 0], points[1, 1])
42

43 grad.add_color_stop_rgba (0., *self.fill.startColor.tuple)
44 grad.add_color_stop_rgba (1., *self.fill.endColor.tuple)
45

46 # END RENDER FILL GRADIENT
47

48 ctx.set_source(grad)
49 ctx.fill_preserve ()
50 ctx.set_source_rgba (*self.lineColor.tuple)
51 ctx.set_line_width(self.lineWidth.value)
52 ctx.stroke ()
53 return self
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CHAPTER 4

Semantic Segmentation for Street
Fashion Photos1

4.1 Introduction

4.1.1 Semantic Segmentation

Semantic segmentation has been a challenge in the field of computer vision (CV) even prior
to the deep learning (DL) era. Classic object detection and classification requires only bounding
boxes and classification of the object. Semantic segmentation requires individual pixels to be
mapped into a predefined class.

 

FIGURE 4.1 Sample of VOC2007 dataset on semantic segmentation [160]. The first row shows input pho­
tos. The second row shows object segmentation ground truth. The third row shows class segmentation
ground truth.

1This chapter refers to the author’s publication [11].



Figure 4.1 shows semantic segmentation samples from Pascal VOC2007 dataset [160]. As
shown in the figure, besides class segmentation, there is also object segmentation. In object
segmentation, each pixel required not only to be assigned into a class but also to an object
instance of a class.

Recently, in 2019, Kirillov et al. proposed a new class of semantic segmentation called
panoptic segmentation [161]. In this new class of semantic segmentation, both foreground and
background of the photo are required to be segmented. For background segmentation, only
class segmentation is required. However, object segmentation level is required for foreground
segmentation.

FIGURE 4.2 Class semantic segmentation outputs of deeplabv3+ [18].

Prior to the deep learning era, the state­of­the­art works have been based on Texton For­
est [56] and conditional random field (CRF) [57]. Like other branches of CV, the performances
of the classic models are limited compared to new deep neural network (DNN) models. Fig­
ure 4.2 shows the output of Deeplabv3+ [18] on Pascal VOC2012 dataset. Deeplabv3+ [18],
together with SegNet [17], U­Net [65], and PSPNet [19] are popular and considered to be state­
of­the­art. MSCOCO [66], CityScapes [67] and ADE20K [68] are popular dataset for training
and benchmarking semantic segmentation works.

4.1.2 Semantic Segmentation for Street Fashion Photos

In 2018, Zheng et al. publishedModaNet [12]. ModaNet is the first large­scale street fashion
data set with pixel­level annotation. This data set consists of 55,176 fully annotated images,
where 52,377 images are for training, and the remaining 2,799 images are used for validation.
With such a large dataset, it is possible to retrain ever­proposed architectures using ModaNet.

Figure 4.3 shows samples from our custom street fashion data set. This set of samples is
highly resemblance to the samples from ModaNet. The color for each class in this figure is
shown in Table 4.2 together with other related statistics.

We interested in a semantic segmentation system for street fashion photos because of its
practicality. This system is crucial for a fashion recommender system. Moreover, such a rec­
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FIGURE 4.3 Samples from our custom street fashion data set. In the top row, original images are shown,
and in the bottom row, corresponding segmentation ground truths are shown. The class names for each
color are shown in Table 4.2. Photos are public domain works downloaded from Pexels.com, and labels
are manually annotated by the authors.

ommender system has long been an interest of the general consumer. This interest is also re­
flected by the number of investments in the field. According to [6], fashion and retailing was
the second most popular AI startup investment in the United States in 2019. In Europe, it was
the most popular investment category.

A semantic segmentation system for street fashion photos is more meaningful to be run
on mobile devices. However, ever­proposed networks such as deeplabv3+ are computational
demanding. In this chapter, we propose a lightweight yet high­performance semantic segmen­
tation model.

4.2 Related Works

4.2.1 Fully Convolutional Neural Network
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FIGURE 4.4 Structure of Fully Convolutional Neural Network [58].
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Early works on this topicmostly adopt the straight network design. The first proposedmodel
is Fully convolutional neural network (FCN) [58]. Figure 4.4 shows the structure of FCN. The
most important contribution of FCN is converting the fully connected classification layers of
image classification networks into a 1 × 1 (i.e., point­wise) convolutional layers to produce
pixel­level segmentation prediction. Hence, it can be implemented on top of the ever­proposed
classification models such as GoogLeNet [13], VGG [63] and ResNet [64]. The authors of FCN
have found that their proposal works best by using VGG­16 as the network base.

4.2.2 PSPNet

FIGURE 4.5 Structure of PSPNet [19].

Figure 4.5 shows the structure of PSPNet [19]. PSPNet introduces a spatial pyramid pooling
scheme, which results in better context­awareness in the final result. In this pyramid pooling
scheme, features maps from different layers of the base network are resized and concatenated.
The concatenated feature map is then used as an input for a point­wise CNN to produce seg­
mentation result.

4.2.3 SegNet

Convolutional Encoder-Decoder

Pooling Indices

Input

Segmentation

Output

Conv + Batch Normalisation + ReLU
Pooling Upsampling Softmax

RGB Image

FIGURE 4.6 Structure of SegNet [17].
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Later works on the topic mostly utilize the encoder­decoder structure. Models following
this approach is usually yielding better performance. Popular models in this category include
SegNet [17]. SegNet is a CNN based autoencoder. Figure 4.6 shows the structure of SegNet. It
utilizes the indices from 2D max­pooling layers in the encoder to upscale the feature map using
unpool layers in the decoder.

4.2.4 U-Net
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FIGURE 4.7 Structure of U­Net [65].

Figure 4.7 shows the structure of U­Net [65]. As shown in the figure, the structure of U­Net
is similar to the structure of SegNet. However, U­Net implements skip connections between
the corresponding encoder and decoder blocks. Introduced in 2015, U­Net is one of the earliest
works on this topic. Nevertheless, its simplicity in design and high performance keep it popular
even in 2020.

4.2.5 DeepLabv3+

In [59], Yu and Koltun propose both dilated convolutional neural network (CNN) for seman­
tic segmentation and a reference network design. Dilated CNN allows the deeper layers of the
network to capture the context without losing resolution. The main drawback of this design is
the high demand for computational resources because the feature map is rarely down­sampled.

DeepLabv3+ [18] combines all of the above approaches and achieves state­of­the­art per­
formance in many benchmarks. Figure 4.8 shows the structure of DeepLabv3+.
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FIGURE 4.8 Structure of DeepLabv3+ [18].

4.2.6 Auxiliary Losses

As networks become deeper, new challenges arise. One of the most challenging problems
is vanishing gradient [162]. In this problem, the gradient becomes too small in the layers being
far away from the training loss function.

At first, auxiliary losses are commonly used to overcome the problem. For example, in
GoogLeNet [13], besides the main softmax classification loss at the end of the network, another
two similar classification losses are added into the middle of the network. Thus, the weights
of early blocks are learned mostly by gradient propagated from auxiliary losses. In research on
GANs [163], besides the usual real or fake discrimination, Chen et al. propose an auxiliary loss
to discriminate the orientation of the input and output pairs to produce a more robust model.
Undoubtedly, selecting the type of auxiliary objectives and their position greatly influences the
performance of the network. The auxiliary training objectives also depict the type of features
learned by the network. Thus, it does not guarantee that the best feature would be learned.

Another solution to the gradient vanishing problem is using skip connections [121, 127].
In [164], skip connections are used to patch feature maps from early blocks to deeper blocks of
the encoder. In [165], ResBlocks [64] are used to replace the conventional CNN blocks in both
encoder and decoder, resulting in a very deep encoder­decoder based network.

Even though skip connection has become more popular due to its simplicity, it is not the
replacement for auxiliary loss. Perhaps, they can be complements to each other. In [19], Zhao
et al. conduct an ablation study for auxiliary loss on ResNet [64] based FCN [58]. By adding
an auxiliary loss after the res4b22 residue block and weighted it appropriately, the network
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performance is gained by 0.94% on pixel accuracy. In [166], multiple spatially scaled versions
of training labels are used as auxiliary training objectives.

4.3 Proposals

The work of Street Fashion Semantic Segmentation (SFSS) is done with three main contri­
butions. Firstly, the network structure with a unique lightweight design that enables high seg­
mentation performance. Secondly, the label pooling feature to be used as an auxiliary training
objective. And lastly, a guided training process with multiple training objectives that enhances
training effectiveness.

4.3.1 Network Design

4.3.1.1 Problems

Two common problems of semantic segmentation are category confusion and inconspic­
uous segmentation [19]. Despite efforts to tackle the problems in previous researches such
as [18] and [19], the problems still occur on street fashion photos as shown in Figure 4.18 in
Section 4.4.6.

In category confusion, the models fail to identify the correct class of the whole segment. For
example, PSPNet fails to identify the outer­wear in image (n). Moreover, with image (a) and
(b), all the models recognize boots as ordinary footwear. Another example of this problem is
the segmentation of image (k) by DeepLabv3+. We observe that this problem usually happens
with networks that have high context­awareness.

When the above­mentioned problem is limited to local areas, it creates inconspicuous seg­
mentation. For example, with input image (i), SegNet detects parts of the dress as top­wear
and outer­wear. With image (f), PSPNet frequently confuses between pants and skirts. Thus, it
results in segmentation with a considerable amount of noise.

PSPNet [19] deliberately addresses this problem by proposing the spatial pyramid pooling
module (PPM). This module is expected to increase the size of the receptive field of the network.
PPM is also adopted in [18]. However, it appears that the receptive field is still limited to
the street fashion problem. A possible reason is that the PPM operates on the feature map
produced by aCNNhead. Thus, information is already lost during the process, and the important
information may not be produced simply by pooling the feature map.
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TABLE 4.1 Network Parameters

Block Output Filters Kernel St.a Pd.b Ac./Op.c

224× 224
32 5× 5 1 2 ReLu
64 3× 3 1 1 ReLuA

32 1× 1 1 0 ReLu

112× 112 64 3× 3 1 1 ReLu
B1 3 3× 3 1 1 Sigmoid
B2 56× 56 – ” – – ” – – ” – – ” – – ” –
B3 28× 28 – ” – – ” – – ” – – ” – – ” –
B4 14× 14 – ” – – ” – – ” – – ” – – ” –

112× 112
64 4× 4 2 1 ReLu
128 3× 3 1 1 ReLuE0

64 1× 1 1 0 ReLu
E1 56× 56 128 – ” – – ” – – ” – – ” –
E2 28× 28 256 – ” – – ” – – ” – – ” –
E3 14× 14 512 – ” – – ” – – ” – – ” –
E4 7× 7 1024 – ” – – ” – – ” – – ” –

3× 3
1024 3× 3 3 1 ReLu
2048 3× 3 1 1 ReLuE5

1024 1× 1 1 0 ReLu

1× 1
1024 3× 3 1 0 ReLu
2048 1× 1 1 0 ReLuE6

1024 1× 1 1 0 ReLu

112× 112 128 3× 3 1 1 ReLu
C0 224× 224 1 2× 2 2 0 UnPool
C1 112× 112 – ” – – ” – – ” – – ” – – ” –
C2 56× 56 – ” – – ” – – ” – – ” – – ” –
C3 28× 28 – ” – – ” – – ” – – ” – – ” –
C4 14× 14 – ” – – ” – – ” – – ” – – ” –
C5 3× 3 128 3× 3 1 1 ReLu

Block Output Filters Kernel St.a Pd.b Ac./Op.c

C5 7× 7 1 3× 3 3 1 UnPool
1× 1 128 1× 1 1 0 ReLu

C6 3× 3 1 3× 3 3 0 UnPool

112× 112 128 3× 3 1 1 ReLu
14 3× 3 1 1 SigmoidD0

224× 224 1 2× 2 2 0 UnPool
D1 112× 112 – ” – – ” – – ” – – ” – – ” –
D2 56× 56 – ” – – ” – – ” – – ” – – ” –
D3 28× 28 – ” – – ” – – ” – – ” – – ” –
D4 14× 14 – ” – – ” – – ” – – ” – – ” –

3× 3 128 3× 3 1 1 ReLu
14 3× 3 1 1 SigmoidD5

7× 7 1 3× 3 3 1 UnPool

1× 1 128 1× 1 1 0 ReLu
14 1× 1 1 0 SigmoidD6

3× 3 1 3× 3 1 0 UnPool

P0 56× 56 1 2× 2 2 0 MaxPool
P1 28× 28 – ” – – ” – – ” – – ” – – ” –
P2 14× 14 – ” – – ” – – ” – – ” – – ” –
P3 7× 7 – ” – – ” – – ” – – ” – – ” –
P4 3× 3 – ” – 3× 3 3 1 – ” –
P5 1× 1 – ” – 3× 3 1 1 – ” –

224× 224 128 3× 3 1 1 ReLu
L0 14 3× 3 1 1 Softmax
L1 112× 112 – ” – – ” – – ” – – ” – – ” –
L2 56× 56 – ” – – ” – – ” – – ” – – ” –
L3 28× 28 – ” – – ” – – ” – – ” – – ” –
L4 14× 14 – ” – – ” – – ” – – ” – – ” –

aStride, bPadding, cActivation/Operation

4.3.1.2 Direction

We observe that, for street fashion photos, the above­mentioned problems can be eliminated
by knowing whatever a type of apparels is presented in the whole image. For example, in image
(d) as shown in Figure 4.18, there are only two types of apparels presented in the image that are
dress and pants (a small dark gray area under the model’s left arm as in the ground truth image).
Thus, if a network only considers dress and pants for segmentation result, the problem of class
confusion and inconspicuous would greatly be reduced.

On the one hand, it is uncomplicated to create a separated model to detect whatever the type
of clothes is presented in an image. On the other hand, it is not efficient to create and train
separated networks to solve a single problem. Therefore, we merge two types of networks into
one and further extend the concept of apparel detector to all of the scales.
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4.3.1.3 Implementation

Based on the encoder­decoder structure, we first set the length of the network so that the
feature map at the end of the decoder is 1× 1. It is to ensure the high context awareness of the
network. Secondly, at every scale of the decoder, we expect the network to produce a prediction
to indicate whatever the type of clothes is presented in the receptive field of the corresponding
pixel of the feature map, i.e., the network first detects the presence of apparel type over the
whole image, and then refines it until reaching the required resolution. Ground truth for such
prediction can be produced by applying 2D max­pooling on the one­hot vector form of the
original ground truth. This process is explained in detail in Section 4.3.2.

4.3.1.4 Network Structure
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FIGURE 4.9 Overview of the Proposed Network Structure with all three auxiliary losses. The three aux­
iliary losses are explained in detail in Section 4.3.3. Ground truth for Image Pyramid Loss and Seg­
mentation Pyramid Loss are scaled versions of the image and the ground truth segmentation. However,
in Label Pooling Loss, the initial ground truth on the bottom right of the figure is the one­hot vector
version of the ground truth segmentation. This one­hot version of segmentation is then progressively
scaled down by P[0..5]. This label pool feature is explained in detail in Section 4.3.2. Moreover, in Label
Pooling Lost, constrains ( ) are made only between label pool feature maps ( ) and output of decoders
( ). Network connections that are not necessary to generate output from input are ignored during
inference. The detailed configuration of the whole network is described in Table 4.1.

Figure 4.9 shows the structure of our proposed network. It comprises two main parts: en­
coder and decoder. Both the encoder and decoder parts consist of 7 CNN blocks (Ei and Di

blocks where i ∈ [0..6]). Feature map is downscaled every time it is processed by an encoder
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block, and correspondingly upscaled every time it is processed by a decoder block. We organize
this network into 7 different levels based on 7 different scales of the feature maps.

Similar to U­Net, skip connections with identity function are implemented between encoder
and decoder blocks of the same level (black arrows as in Figure 4.9). However, in our
proposal, the feature map produced by an encoder also leaks into the next level of the decoder.
To adapt the feature map into the larger scale, we employ CNN ­ 2D unpooling blocks Ci. In
our network, encoder blocks scale down the feature map by utilizing CNN with stride 2 instead
of using 2D max­pooling operations. Thus, different from SegNet [17], the 2D unpool layers
in our network do not utilize the pooling indices.

As mentioned, in this network, we expect decoder blocks to produce the prediction on the
presence of a class within the whole image and then gradually refine the prediction result.
Therefore, all the decoder blocks have the same design that output only 14 channels feature
map, which is the number of segmentation classes of ModaNet (13 classes plus background as
shown in Table 4.1).

Element­wise sigmoid function is used as activation function for Di blocks as follows.

di = 1
1 + exp(−d′

i)
(4.1)

Where di is the output of Di block, and d′
i is the pre­activation value of Di.

Segmentation prediction is produced by L0 block. In this network, besides L0, there are
another 4 Li blocks where i ∈ [1..4]. These blocks produce smaller­scale versions of the seg­
mentation prediction. In general, the scale of the prediction produced by Li block is 2−i. The
input of Li block is the concatenation of feature maps output from Ci, Di and Ei blocks. Pixel­
wise softmax is used to produce the output of Li blocks as follows.

lij =
exp

(
l′
ij

)
∑K

k=1 exp (l′
ik)

(4.2)

Where lij denotes the value of channel j of the feature map produced by Li, l′
ij denotes the

pre­activation value of lij , andK denotes the total number of channels which also is the number
of segmentation classes.

From level 1 to level 4, different scales of the input image are reconstructed by Bi blocks
where i is the level number. The input of Bi block is the feature map ei−1 produced by Ei−1

block. All the Bi blocks reconstruct the input at the scale of 2−i. Thus, all the outputs from Bi

blocks create a spatial scale pyramid of the input image. Element­wise sigmoid as in (4.1) is
used as activation function for Bi layers. Thus, different from works such as [166] and [167],
we are not using the image pyramid as an input but as auxiliary training objective.
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FIGURE 4.10 Comparison between proposed 2D max­pooling­based label scaling and conventional label
scaling. With conventional label scaling, the label is progressively scaled down using nearest neighbor
interpolation (blue arrows ). In our proposal, the original label (bottom left) is first converted to one­
hot vectors (top left) and then progressively scaled down by 2D max­pooling operation (red arrows ).
The segmentation color codes in the label are described in Table 4.2. On the top row, classes rather than
footwear, sunglasses, top and shorts are ignored.

4.3.2 Label Pooling

Previous works involving multiple­scale inputs or outputs only consider spatial scaling.
In [166], they are used as an auxiliary training objective. In [167], they are used to create
multi­scale fusion features. In [19] and [18], the network is trained with different spatial scaled
versions of input and output to produce more robust features.

However, with spatial scaling, details from the original input eventually are lost at smaller
scales. To avoid such a problem, instead of spatially scaling the label, we use max­pooling
operation on one­hot label vectors to produce multiple scales of labels. As such, the existence
of a segment is preserved even in the smallest scale. This process is illustrated in Figure 4.10.

In Figure 4.10, the spatial scaling operation makes the existence of segmentation vanished.
After the first scale down operation, the segmentation of sunglass has vanished. From the scale
of 4 × 4 to 2 × 2, the top segment has vanished. By the time of scaling down to 1 × 1 pixel,
all the segmentations vanished. On the other hand, the proposed label pool features retain all of
the segmentation even at the smallest scale.

Shown in Figure 4.9,Di blocks is guide­trained by the result of Pi blocks where i is the level
number, and Pi blocks are 2D max­pooling operation on the input label. Their configuration is
shown in Table 4.1. This is to avoid the detail loss when scaling down the label. Also shown
in Table 4.1, the stride of Pi are matched with the stride of Di and Ei blocks. Furthermore, the
kernel size of Pi is also matched with the kernel size of Di.
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4.3.3 Training Objectives

With the segmentation prediction l0 coming from L0, we utilize pixel­wise cross­entropy as
a training objective.

H (t, l0) = 1
N

N−1∑
i=0

K−1∑
j=0

tij log (l0ij) (4.3)

Where t is the ground­truth, tij is the j­th channel of the i­th pixel of t, l0ij is the j­th
channel of the i­th pixel of l0, K is the number of segmentation class, and N is the total number
of pixel in the output. Besides the conventional training criteria, we introduce the three auxiliary
training objectives as follows.

4.3.3.1 Image Pyramid Loss (IPL)

Different from popular works, we do not utilize multi­scaled input to reinforce the training
process. Instead, we expect the network to reconstruct scaled versions of the input using fea­
ture maps produced by encoder blocks. Thus, additional scaled inputs and processing are not
required during the inference process. We penalize the difference between output bi from Bi

block and the input image xi by binary cross­entropy loss as follows.

H (xi, bi) = − 1
N

N−1∑
j=0

(
xij · log (bij) + (1− xij) · log (1− bij)

)
(4.4)

Where xi and bi are input image and reconstructed image at scale 2−i with i ∈ [1..4], xij

and bij are the j­th element of xi and bi, N is the total number of elements in xi and bi (i.e.
number of pixel× number of color channels). We use binary cross­entropy (i.e., log loss) as an
error function. Then, the image pyramid loss is calculated by:

IPL = 1
4

4∑
i=1

H(xi, bi) (4.5)

4.3.3.2 Segmentation Pyramid Loss (SPL)

It is the average of the cross­entropy between segmentation and ground truth across different
scales.

SPL = 1
4

4∑
i=1

H(ti, li) (4.6)

Where H(·) is binary cross­entropy loss similar to (4.4), ti and li are ground truth and pre­
dicted segmentation at scale 2−i with i ∈ [1..4].
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4.3.3.3 Label Pooling Loss (LPL)

It is the average of binary cross­entropy loss between label pool features and output of
decoders across different scales as follows.

LPL = 1
6

6∑
i=1

H(pi, di) (4.7)

Where H(·) is binary cross­entropy loss similar to (4.4), pi and di are ground truth and
prediction of label pool feature at scale 2−i.

The final loss is calculated by taking average all the above­mentioned losses as follows:

loss = 1
4

(H (t, l0) + IPL + SPL + LPL) (4.8)

4.4 Setting and Evaluation

Using the ModaNet data set, we compare our model with U­Net [65], PSPNet [19], Seg­
Net [17] and DeepLabv3+ [18].
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FIGURE 4.11 Illustration of segmentation results. Photos are public domain works downloaded from
Pexels.com. Label are manually annotated by the authors.
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4.4.1 Data Set

We split the original training set into new training and evaluation sets. The new evaluation
set consists of 2,400 images, and the new training set consists of the remaining 49,977 images.

TABLE 4.2 ModaNet Data Set Statistic

Inst. Count Avg Inst. Size
Id. Color Class Train Val Train Val

0 Background – – – –
1 Bag 19,603 948 2.46% 2.53%
2 Belt 13,081 636 0.46% 0.44%
3 Boots 6,719 365 2.40% 2.36%
4 Footwear 37,468 1,753 0.94% 0.93%
5 Outer 22,597 1,093 7.43% 7.42%
6 Dress 13,764 662 10.46% 10.52%
7 Sunglasses 8,340 411 0.30% 0.30%
8 Pants 21,950 1,064 5.65% 5.47%
9 Top 33,131 1,544 4.79% 5.04%
10 Shorts 6,709 322 2.75% 2.83%
11 Skirts 12,953 622 6.37% 6.23%
12 Headwear 5,164 281 1.22% 1.21%
13 Scarf & Tie 4,711 284 2.85% 3.20%

The randomized splitting process is constrained so that there are at least 280 instances of
each class available in the evaluation set to ensure the quality of evaluation. The statistic of
training and validation data sets are shown in Table 4.2.

4.4.2 Data Augmentation

We train and evaluate all the networks with input and output sizes of 224 × 224. To make
the networks more robust, the following pipeline is used for data augmentation:

1) Random horizontal flipping

2) Random expanding with a max expansion ratio of 1.5. In this step, black bars of ran­
dom size t, b, l and r are padded into the original image so that l + r ≤ 0.5 × w and
t + b ≤ 0.5 × h, where w and h are width and height of the input of this step, t and b

are the sizes of black bars padded on the top and bottom of the image, and l and r are the
sizes of black bars padded on the left and right side of the image.
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FIGURE 4.12 Illustration of image augmentation used for the training process. Photos are public domain
works downloaded from Pexels.com.

3) Randomly cropping the image with scale ratio range (0.5, 1] and aspect ratio range [3
4 , 4

3 ].
Thus, width w and height h of the cropping window are randomized so that:

• w ≤ w0 and h ≤ h0

• 3
4 ≤

w
h
≤ 4

3

• 0.5× (w0 × h0) < w × h ≤ w0 × h0

Where w0 and h0 are the width and height of the input of this step. Hence, the top left
corner of the cropping window (x, y) must satisfy the following conditions:

• 0 ≤ x ≤ w0 − w

• 0 ≤ y ≤ h0 − h

4) Adding Gaussian noise with mean µ = 0 and standard deviation σ = 25.5 . Thus,
the output image is x = min (255, max (0, x + G (µ, σ)) where G(·) is the Gaussian
function.

5) Resize to 224× 224× 3

Figure 4.12 illustrates the augmentation process. As illustrated, the output images could
have some details cropped away. However, with the augmentation parameter as described
above, we find that majority of the subject in the ModaNet data set is preserved.

We then normalize the input image by scaling pixel value into [0, 1] range. Since the label is
an image containing pixel­level segmentation of the input image, it also needs to be augmented
correspondingly, except for the step 4. Furthermore, nearest­neighbor sampling must be used
in all the steps that involve interpolation to preserve class information.
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4.4.3 Metrics

4.4.3.1 mean Intersection over Union (mIoU)

We utilize Intersection over Union (IoU), i.e., Jaccard distance as the performance metric.
We first compute the IoU of individual class as follows.

IoUi = 1
N

N−1∑
j=0

|Tij ∩ Lij|
|Tij ∪ Lij|

(4.9)

Where IoUi is the IoU score of class i, N is the total number of photos in the data set, Tij is
the set of all the pixels belongs to the i­th class in j­th ground truth, Lij is the set of all pixels
predicted as i­th class in the j­th prediction, and | · | is the cardinality of a set. Thus, the mIoU
metric is calculated as follows.

mIoU = 1
M

M−1∑
i=0

IoUi (4.10)

Overlapping = 81%
IoU = 0.68

Overlapping = 90%
IoU = 0.82

Overlapping = 95%
IoU = 0.91

FIGURE 4.13 Illustration of IoU Metric

Where M is the total number of segmentation classes. Figure 4.13 illustrates the IoU score
in three different cases. The score is calculated by dividing the overlapping area by the union
area between the gray square and the red square. To addmore clarity, the union area is calculated
by the sum of both squares minus the overlapping area. As shown in the figure, the IoU metric
is quite severe compared to the intersection percentage metric.

4.4.3.2 mean Intersection over Union Plus (mIoU+)

Because the mIoUmetric favors the total number of accurately classified pixels, a prediction
with noise frequently results in higher mIoU compared to a prediction with no noise. Depend­
ing on the application, prediction with low noise may be favored over absolutely high mIoU
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prediction.

mIoU 0.47
mIoU+ 0.47

mIoU 0.47
mIoU+ 0.29

mIoU 0.47
mIoU+ 0.18

FIGURE 4.14 Comparison between mIoU and mIoU+ metric.

Therefore, we propose Intersection over Union Plus (IoU+) metric in which noise is taken
into account. This metric is not based on individual pixels but connected components (i.e.,
individual segments). Figure 4.14 shows the comparison between mIoU and mIoU+ metrics.
As shown in the figure, although all the samples have the same mIoU score, their mIoU+ scores
are different.

Given a prediction and a ground truth segmentation, the connected component based seg­
mentation score of a class is calculated as follows.

CCSSi(U, V ) = 1
|Ui|

∑
u∈Ui

max
v∈Vi

IoU (u, v) (4.11)

WhereCCSSi is segmentation score of the i­th class between predicted segmentationU and
ground truth V , Ui is the set of all connected components of i­th class in the prediction, Vi is the
set of all connected components of i­th class in the ground truth. However, because this score
is not symmetric, i.e. CCSSi(U, V ) ̸= CCSSi(V, U), the segmentation score is calculated as
follows.

SSi(U, V ) = CCSSi(U, V ) ∧ CCSSi(V, U) (4.12)

Where SSi(U, V ) is the segmentation score of the i­th class between two segmentations U

and V . Similar to the conventional IoU, IoU+ of each class is computed as follow.

IoU+i = 1
N

N−1∑
j=0

SSi(Uj, Vj) (4.13)

Where IoU+i is IoU+ score of the i­th class,N is the total number of samples,Uj is the set of
connected components from the j­th prediction, and Vj is the set of connected components from
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the j­th ground truth. The score for a whole segmentation with multiple connected components
is calculated as follows.

mIoU+ = 1
K

K−1∑
i=0

IoU+i (4.14)

Where K is the total number of segmentation classes. Figure 4.15 illustrates the IoU+
metric. All the coordinates of all the bounding boxes are provided. v1 and v2 are two connected
components of segmentation set V . u1 is the only one member of segmentation set U .

(u1)

(v1) (v2)
(0, 0)

(0.4, 0.4)

(2.1, 4.4)
(4.4, 4.4)

(2.3, 4.4)

Overlapping = 0.765%
Intersection = 12.24
Union = 18.96
IoU = 0.65
IoU+ = 0.35

FIGURE 4.15 Illustration of IoU+ Metric

As shown in the figure, the IoU score is 0.65 and can be considered as good. However, the
IoU+ score is only 0.35, significantly lower than the conventional IoU metric. It is due to the
fragmentation of the red area. To calculate the IoU+ score, following IoU scores need to be
calculated.

IoU(u1, v1) = IoU(v1, u1) = u1 ∩ v1

u1 ∪ v1
= 6.12

16.68
= 0.37

IoU(u1, v2) = IoU(v2, u1) = u1 ∩ v2

u1 ∪ v2
= 6.12

18.28
= 0.33

Thus, the connected component segmentation scores are calculated as follows.

CCSS(U, V ) = 1
|U |

∑
u∈U

max
v∈V

IoU (u, v)

= 1
1

max
v∈V

IoU (u1, v)

= max {IoU (u1, v1) , IoU (u1, v2)}

= max {0.37, 0.33}

= 0.37
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CCSS(V, U) = 1
|V |

∑
v∈V

max
u∈U

IoU (v, U)

= 1
2

(
max
u∈U

IoU (u, v1) + max
u∈U

IoU (u, v2)
)

= 0.5 (max {IoU (u1, v1)}+ max {IoU (u1, v2)})

= 0.5× (IoU (u1, v1) + IoU (u1, v2))

= 0.35

Finally, mIoU+ is calculated as follows:

IoU+(U, V ) = CCSS(U, V ) ∧ CCSS(V, U) = 0.35

4.4.4 Ablation Study on Effect of Auxiliary Training Objectives

We investigate more into the effect of auxiliary training objective on themodel performance.
We retrain our network with different training objective configurations. The loss function used
in this experiment is as follows.

loss = H (t0, l0) + αIPL + βSPL + γLPL

1 + α + β + γ
(4.15)

Where α, β, γ ∈ {0, 1}. In practice, when α = 0, bi computations are ignored. Similarly,
when β = 0, l[1..4] computations are ignored. However, when γ = 0, di still need to be computed
because it is an integrated part of the model.

TABLE 4.3 Different Auxiliary Configurations

A B C D E F G H

α 1 1 1 1 0 0 0 0
β 1 1 0 0 1 1 0 0
γ 1 0 1 0 1 0 1 0

There are 8 different configurations of the loss function. We annotate them as configuration
A to configuration H, as shown in Table 4.3.

4.4.5 Settings

We implement all the networks using Chainer deep learning framework [168]. LeCun nor­
mal weight initializer [169] is used. The models are trained by an improved version of Adam
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optimizer [105] called AdamW [170]. For reference, Algorithm 5 describes the algorithm of
both Adam and AdamW. Where t is the training time step, x is the parameter vector, m is the
first­moment vector, v is the second­moment vector, and η is the schedule multiplier. The pink
and green highlights indicate the parts that only available in Adam and AdamW, respectively.

Algorithm 5 Adam and AdamW
1: given αt = 0.001, β1 = 0.9, β2 = 0.999, ϵ = 10−8, w ∈ R
2: initialize t← 0, mt=0 ← 0, vt=0 ← 0, xt=0 ∈ Rn, ηt=0 ∈ R
3: repeat
4: t← t + 1
5: ∇ft (xt−1)← SelectBatch (xt−1) ▷ select batch and return the gradient
6: gt ← ∇ft (xt−1) +wtxt−1

7: mt ← β1mt−1 + (1− β1) gt

8: vt ← β2vt−1 + (1− β2) g2
t

9: m̂t ←mt/ (1− βt
1) ▷ β1 is taken to the power of t

10: v̂t ← vt/ (1− βt
2) ▷ β2 is taken to the power of t

11: ηt ← SetScheduleMultiplier (t)
12: xt ← xt−1 − ηt

(
αtm̂t/

(√
v̂t + ϵ

)
+wtxt−1

)
13: until stopping criterion is met
14: return optimized parameters xt

In our implementation, all the parameters are set to default values, as in Algorithm 5. How­
ever, the weight decay rate w is set to 0.99. This weight decay rate is constant throughout the
training process; i.e., wt is always equal to 0.99. Furthermore, ηt always equals to 1.

The machine used to carry out the experiment is a Linux box equipped with three Nvidia
Pascal GPUs. We train each configuration for three times with 100 epochs each and take aver­
ages of the best mIoU and mIoU+.

4.4.6 Result

Figure 4.16 compares the networks’ performance under mIoU metric. The detailed experi­
ment result is shown in Table 4.4 and Figure 4.16. Our proposed network configured with three
different auxiliary losses, outperforms all the ever­proposed models in terms of performance.
Among all the auxiliary loss configurations, configuration B achieves the highest mIoU score.
This configuration consists of only image pyramid loss and segmentation pyramid loss. Among
the ever­proposed networks, PSPNet achieves the highest mIoU score. Moreover, our top pro­
posed network takes only 2/3 of the time for training as well as inference compared to PSPNet.

As shown in Figure 4.16, the performance of the model is worsened when combining label
pooling loss with the other two auxiliary training losses. In fact, configuration B, D, and F
achieve higher mIoU compared to configuration A, C, and E.
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FIGURE 4.16 Network Performance under mIoU metric

Figure 4.17 compares the networks’ performance using mIoU+ metric. The detailed exper­
imental results are shown in Table 4.5. The training and inference time in Table 4.5 are carried
over from Table 4.4. We observe that all the models achieve their best mIoU and mIoU+ in the
same epoch. Furthermore, mIoU and mIoU+ are loosely proportional to each other during the
training process.

As shown in Figure 4.17, the proposed model with configuration E achieves the highest
mIoU+ score. Configuration E consists of segmentation pyramid loss and label pooling loss.
Configuration Awith all the auxiliary loss functions is the runner­up. Among the ever­proposed
model, PSPNet also achieves the highest mIoU+ score.

The proposed model used to generate samples in Figure 4.11 and Figure 4.18 is trained with
configuration A.
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CHAPTER 5

Conclusion

This thesis described our two works on deep learning (DL): Scalable Vector Graphic AI
(SvgAI) and Street Fashion Semantic Segmentation (SFSS). Both of the works involved in ex­
tracting semantic meta from visual information. Thus, they are both aligned to the general trend
of DL research that mentioned in Chapter 1. Moreover, the high degree of the practicality of the
works positioned themselves into our zone of research interest. Though SvgAI and SFSS, we
showed that artificial intelligence (AI) could penetrate more into daily life with an appropriate
strategy.

5.1 SvgAI

In SvgAI, we introduced an intelligent agent (IA) that can draw semantic Scalable Vector
Graphics (SVG) image. We proposed a framework to train the agent to use SVG editor by using
Q­learning and policy­gradient. To successfully train the agent by using Q­learning, we divide
the action space into two sets and apply independent exploration policies on each action set.
Evaluation results show the efficiency of the proposed dual ϵ–greedy policy and policy­gradient.
The detail evaluation of SvgAI is described in Section 3.5.2. The SVG image produced by the
proposed agent not only retains the semantic structure but also higher in visual quality compared
to the conventional image processing methods.

Ultimately, a semantical SVG is not only about using the correct shape and fine gradient.
A completed SVG might only contains paths elements. However, SVG created by humans are
mostly semantically organized by using group elements. For example, all the paths elements
that constitute the wheel on an image of a car should go to a group named wheel.

By organizing the image elements semantically, it is easier for multiple artists to collaborate
on the same project. This semantic grouping not only valid in composing vector images but
also in the raster images. Popular raster image editing software mostly allows the user to divide
an image into layers, and within a layer, it is possible to have a hierarchical grouping scheme.
Even in works like programming, programmers likewise need to divide a program into different



modules, class corresponding to their semantic function.
Thus, having an ability to organize an SVG document semantically is essential for human

and AI collaboration. Therefore, semantic SVG in group level would be a longer term target for
SvgAI. In this level, besides synthetic data, the AI can also be trained using publicly available
SVG files.

5.2 SFSS

In SFSS, we propose a high­performance semantic segmentation model for street fashion
photos. We also propose a new label pool feature that greatly performance of the proposed
network. For better evaluation, we propose the mIoU+ metric in which noises are taken into
account. The experiment shows that our network requires less time to train and infer while
achieves the highest segmentation performance in both mean Intersection over Union (mIoU)
and mIoU+ metrics. The detailed evaluation of this work is described in Section 4.4.6.

With label pooling training objective, the network outputs feature pooling features at dif­
ferent scales in the decoder side. Thus, the network infers the existence of the classes over the
whole image. Then, through multiple layers of decoders, it progressively refines the result up
to the desired resolution. However, in the case of a large number of classes, the current design
of label pooling requires the size of the decoder to be increased. Embedding this feature into
a smaller feature space seems to be a linear solution. This leads to a more general view of the
label pool training scheme. In this view, the network is guided to learn the described features.
Hence, it narrows down the descent path of the network and leads to the desired property.

5.3 Related Issues

The direction of AI development in the last decade was depicted by the availability of
datasets and toolboxes. It was the ImageNet [7] that leads to renewed interest in convolutional
neural network (CNN). Similarly, OpenAI Gym [155] that leads to a series of AI milestones
after 2015. Other notable datasets are CityScape [67], COCO [66], LFW [171].

These datasets and toolboxes waived the burden of collecting and distilling raw data from
the research community. Therefore, it boosts the research output as a whole. However, the
number of datasets and toolboxes are still limited. Creating a dataset is tedious and expensive.
Therefore the lack of dataset prevents an individual and small organization from pursuing a
specific research target.

There are efforts in developing AI that learn with fewer data such as Omniglot Chal­
lenge [172]. However, this direction is not received much attention it deserved compared to
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other trending topics such as natural language processing (NLP) [173, 174]. More importantly,
even a small dataset is still expensive. While data is out of reach for individual and small or­
ganization, large corporation such as Google, Facebook, Amazon own massive amount of data.
This leads to a new concern in AI fairness and privacy. According to [6], the total number of
AI mentions in the legislation of the 2017–2018 US congress in increased tenfold compared to
the previous congress. This trend is expected to continue with the 2019–2020 congress.

Thus, to make AI more accessible to the mass, more progress need to be done in multiple
fronts: (1) better legislation to combat privacy and fairness concern, (2) more datasets and tool­
boxes, (3) better AI model and implementation strategy. Out of the three fronts, SvgAI, and
SFSS offers a better model and implementation strategy and achieved state­of­the­art perfor­
mance in their domain.
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