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Since the last decade, processor clock speed has stopped increasing, marking the imminent end 

Moore's law. As a result, instead of pursuing a higher frequency single-core processor, the industry 

has shifted towards a multicore processor. The multicore processors do not have run as fast as the 

single-core processor, but they perform more works through parallelism. 

 

Most modern multicore processors today are based on a shared memory system. Shared memory is a 

low-level communication paradigm that allows multiple processor cores to work and communicate 

through a shared memory space. In such a system, the processor cores are usually equipped with 

caches to improve the read and write performance to the shared memory. Cache is a small but fast 

memory located between the larger and slower main shared memory and the processor core. 

Frequently or recently used data are stored in the cache, creating an illusion of a large but fast 

memory. The cache can be private for each core, shared between multiple cores or a combination of 

both. For a performance reason, a multicore CPU commonly has private caches for each CPU core, 

and if necessary, another level of caches shared between multiple cores. 

 

While beneficial, a private cache in a multicore processor introduces a cache inconsistency. If a 

particular processor core updates a value of a shared data in its cache, the new updated value cannot 

be seen by other processor cores until the new value is flushed back to the shared memory, thus 

causing cache inconsistency. In order to avoid such an inconsistency problem, a cache coherency 

control mechanism is necessary. Typically, a modern multicore processor has a hardware-based 

mechanism taking care of the coherency. 

 

Nowadays, we have processors with hundreds or even thousands of cores on a single chip. Most of 

them use a hardware-based mechanism to maintain cache coherency. However, on a larger scale 

multicore, a hardware-based cache coherency circuitry gets exceedingly complex, thus generating 

more heat and challenging to verify. The complexity also drives the development cost and time up. A 

hardware-based cache coherence may not scale well to a large number of cores expected to be found 

on future SMP machines. On the other side of the spectrum, adding a hardware-based mechanism 

sometimes cannot be justified due to limited resources or specific requirements, such as in a 

hard-real-time embedded system or soft processor cores implemented in FPGA. Without a 

hardware-based cache coherency mechanism, writing a program for such a Non-Cache Coherent 

(NCC) system is overwhelmingly complex, as the programmer has to maintain the cache coherency 

manually. 
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Therefore, we propose a compiler-controlled coherence scheme for shared-memory multicore systems 

without a hardware cache coherence mechanism. The cache coherency mechanism is built into the 

OSCAR automatic parallelizing compiler, providing an integrated solution for automatic parallelization 

and non-cache coherent system support. 

 

This thesis comprises of five chapters: 

 

Chapter 1 "Introduction" provides the background and explains the objectives of this research. This 

chapter also outlines the significance of this research by comparing related works.  

 

Chapter 2 "OSCAR Compiler and OSCAR API" introduces the OSCAR Compiler and OSCAR API. 

The OSCAR Compiler is a source to source automatic parallelizing compiler. The compiler takes a C 

program, and then it decomposes the program into coarse-grain tasks. It then analyzes the control 

flow and the data dependency between those tasks. Based on this information, the compiler 

parallelizes the task and, later on, inserts the cache manipulation code for the coherency control and 

finally outputs a parallelized code with API directives annotation. The OSCAR Compiler is 

supplemented with the OSCAR API that consists of many directives for different purposes, like 

platform-specific functions, power management, and cache operation. The OSCAR API converts 

directives in the annotated code into the correct functions or driver call.  

 

Chapter 3 "Compiler-Controlled Cache Coherence for Multicore processor" discusses two fundamental 

problems in NCC systems, "stale data/true sharing" and "false sharing". Stale data is a state when a 

processor core updates a shared data in its cache, but other processor core cannot get the updated 

value until the data is flushed back to the main shared memory. In order to handle this problem, as one 

of the cores updates a variable in its cache, the compiler then inserts self-invalidation instruction into 

the code segment in which other cores access the variable. The self-invalidate is an instruction for 

invalidating a specific line in the cache, which forces other cores to get the latest value from shared 

memory, thus eliminating inconsistency. The second problem, "false sharing", happens when two or 

more independent data reside in a single cache line. If one of those data is changed, inconsistency 

may occur; this is because the granularity of the cache writeback mechanism is at the line level 

instead of a single byte or word. The compiler performs several elemental data restructuring 

operations to prevent unrelated variables from sharing a single cache line. For a scalar or small-sized 

one-dimensional array, usually, cache alignment is sufficient. In the case of a multi-dimensional array, 

the compiler performs array expansion or array padding, and for the case in which all other methods 

are inapplicable, the compiler uses a non-cacheable buffer. Later on, this chapter discusses the 

necessary changes to implement the coherency control in the OSCAR Compiler and the OSCAR API. 
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Chapter 4 "Development of Non-Cache Coherent Architecture Evaluation Platform" explains three 

different test platforms used in this research, the RP2 multicore processor and two custom SoC based 

on Nios II and RISC-V. The Renesas RP2 is an 8-core embedded processor which comprises of two 

4-core SH-4A SMP clusters, with each cluster has its hardware coherency domain. A regular program 

can run with up to four cores, but a software approach is necessary for cache coherency beyond the 

4-core cluster. This research was also partially motivated by this RP2 limitation. The "Nios II-based 

SoC" is a simple SoC generated entirely in Altera Platform Designer. Nios II is a soft processor core 

which is intended for single-core operation in Altera FPGA without any multicore or hardware cache 

coherency support. Designing multicore Nios II SoC is relatively easy, but writing a program for it is 

difficult without any coherency mechanism. RISC-V is a relatively new and promising open-source 

hardware instruction sets architecture. There are a lot of available RISC-V processor implementation 

in the market, but unfortunately, there is no synthesizable and functional multicore RISC-V SoC with 

hardware cache coherence in the market.  

 

Chapter 5 "Performance Evaluation of Compiler-Controlled Cache Coherence" explains the 

performance evaluation of the Compiler Controlled Cache Coherency. Ten benchmark programs from 

three benchmark suites, NAS Parallel Benchmark, SPEC, and MediaBench, are compiled by the 

OSCAR Compiler with NCC support. The proposed method achieves similar performance as the 

hardware-based coherence mechanism. The proposed method also allows us to automatically 

parallelize and successfully run the benchmark program on NCC 8-cores Nios II SoC and 4-cores 

RISC-V SoC, as if they are a cache-coherent SMP machine. For example, with NAS Parallel 

Benchmark "cg", we can obtain 3.71 times speedup on RP2 without hardware coherence support 

versus 3.34 times speedup with hardware coherence turned on. Also, the same benchmark program 

runs with 5.66 times speedup on 8-cores RP2, 5.89 times on 8-cores Nios II SoC, and 3.68 times on 

4-cores RISC-V SoC, which all are otherwise impossible to run without hardware cache coherency. 

 

Chapter 6 "Conclusion" concludes the thesis and discuss the future of this research. 
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