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Abstract

Most of the modern multicore processors use a hardware-based mechanism to main-

tain cache coherency. However, on a larger scale multicore, a hardware-based cache

coherency circuitry gets exceedingly complex, thus generating more heat and chal-

lenging to verify. The complexity also drives the development cost and time up. A

hardware-based cache coherence may not scale well to a large number of cores ex-

pected to be found on future SMP machines. On the other side of the spectrum,

adding a hardware-based mechanism sometimes cannot be justified due to limited

resources or specific requirements, such as in a real-time embedded system or soft

processor cores implemented in FPGA Without a hardware-based cache coherency

mechanism, writing a program for such a system is overwhelmingly difficult. There-

fore, in this thesis, a compiler controlled cache coherency based on OSCAR Compiler

is proposed. The compiler parallelizes the coarse grain task, then analyzes for true-

sharing and false-sharing in the program. The compiler then solves true-sharing

problems with self-invalidation and data synchronization. Likewise, it avoids false-

sharing problems with simple data restructuring. Ten benchmark programs from

SPEC2000, SPEC2006, NAS Parallel Benchmark, and MediaBenchII are compiled

with the proposed method. The compiled binaries then are run on Renesas RP2, an

8-cores SH-4A processor, a custom 8-cores Altera Nios II SoC, and 8-core RISC-V

SoC on Altera Arria 10 FPGA. The proposed method successfully runs benchmark

programs on those multicores and achieve similar performance as the hardware-based

coherence mechanism. For example, NAS Parallel Benchmark “cg” obtains 3.71 times

speedup on RP2 without hardware coherence support versus 3.34 times speedup with

hardware coherence turned on. Also, the same benchmark program runs with 5.66

times speedup on 8-cores RP2, 5.89 times on 8-cores Nios II SoC, and 3.68 times
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on 4-cores RISC-V SoC, which all are otherwise impossible to run without hardware

cache coherency.
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Introduction
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1.1 Background

Nowadays, processor clock speed increase has been slowing down, marking the im-

minent end of Moore’s law[31]. As a result, instead of pursuing a higher frequency

single-core processor, the industry has shifted towards a multicore processor. The

multicore processors do not have run as fast as the single-core processor, but they

perform more works through parallelism.[12].

Figure 1-1: The Future of Computing. Image from [31]

Most modern multicore processors today are based on a shared memory system.

Shared memory is a low-level communication paradigm that allows multiple proces-

sor cores to work and communicate through shared memory space. Shared memory

multiprocessor is easier to program compared to other multiprocessing paradigms,

such as distributed memory systems, and due to this fact, shared memory machines

are ubiquitous[5], from tiny IoT microcontrollers, smartphones, industrial and auto-

motive realtime embedded systems, gaming PCs, to cloud servers. Even nowadays,

most distributed memory systems in TOP-500 Supercomputers consist of a massive

array of shared memory machines.

In a shared memory system, processor cores are usually equipped with a smaller
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but faster memory, which is called a cache, to improve the read and write performance

to the shared memory. If the processor requires some data from the main memory,

the data will be fetched from the main memory and then stored in the cache for

further use. If the processor requires more of that data, it will search for the cached

content first before searching the main memory. For every change or update to the

cached data, the cache controller is responsible for flushing the data back to the main

memory. Frequently or recently used data typically reside in the cache, effectively

hiding the latency of the slower and larger shared main memory. This way, the cache

creates an illusion of large but fast shared memory[14].

In a multicore processor, the cache can be organized in many ways. The cache

can be private for each core, shared between multiple cores or a combination of both.

Private cache is better in terms of latency, especially when multiple cores share the

same data. Meanwhile, a shared cache offers a better hit rate as there is no duplicate

data stored in multiple caches belong to different cores. Multiple levels of caches are

also commonly found. Usually, for a performance reason, a multicore processor has a

private cache for each core, and if necessary, another level of caches shared between

multiple cores[22].

Fundamentally, a private cache in a multicore processor has a cache inconsistency

problem. It happens as multiple cores keep a copy of the same shared data in their

private cache. If a core updates the value of the shared variable in its cache, the

newly updated value will not be seen by other cores until the new value is written-

back to the shared memory, and all other cores are notified of the change. Different

processor cores may see a different value for the same variable on its private cache, thus

causing a problem called cache inconsistency. In order to avoid such inconsistency,

a cache coherency control mechanism is required. Most modern multicore processors

utilize a hardware-based mechanism, either a snooping-based mechanism found in

older multicore with a low core count or a more elaborate directory-based mechanism

found in a larger multicore processor[26].

The hardware-based cache coherency currently dominates the market. It is rare

for a modern processor relies on a software-based coherency outside the few specific

applications. The main reason is, the hardware-based cache coherence is commonly
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believed to provide better performance than the software-based approach. Another

reason is compatibility, as the hardware-based approach is software transparent, thus

writing a program for a hardware-based cache coherence multicore system is trivial

compared to manually controlling cache coherency by hand. No intricate software

layer or compiler is required, effectively maintaining compatibility with older single-

core processor[26].

On a larger scale multicore, a hardware-based cache coherency circuitry gets ex-

ceedingly complex, thus generating more heat and reducing efficiency[10]. It is also

challenging to verify[30]. The complexity also drives the development cost and time

up. A hardware-based cache coherence may not scale well to a large number of

cores expected to be found on future SMP machines [15]. On the other side of the

spectrum, some applications require the software-based mechanism, for example, a

realtime system, in which the hardware cache coherency mechanism may introduce

undesired uncertainty[28][33] or soft processor cores implemented in FPGA. A mul-

ticore implemented in FPGA with a hardware cache coherence utilizes about 50%

more logic area compared to their NCC counterpart[4].

Without a hardware-based cache coherency mechanism, writing a program for

such a Non-Cache Coherent (NCC) system is overwhelmingly complex, as the pro-

grammer has to maintain the cache coherency manually. Improper manual cache

coherency optimization may even lead to degraded performance compared to single-

core application[13].

There are two fundamental problems in the NCC system that must be taken care

of by the compiler. First, the true-sharing or stale-data problem. This problem

occurs when multiple cores share the same data in their cache. The second is the

false-sharing problem. This problem happens when independent data shares a cache

line, thus treated as a single entity by the cache update mechanism.

1.2 Related Works & Proposal

Researchers have long known the scalability and complexity problems of the hardware-

based coherence. Therefore, the research on non-coherent cache shared memory sys-
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tem has been started since the late ’80s through the ’90s, although less research can be

found from the late ’90s through the 2000s due to the supremacy of hardware-based

cache coherence[26]. From the late 2000s onward, the focus of the research shifted to-

ward software cache coherency on massively parallel processors, distributed systems,

processors to accelerators, and soft processor core on FPGA. Most of the research

listed here successfully solved the stale-data problem, but almost none handles the

false sharing problem, which may degrade the system performance.

The researches in the late ’80s and early ’90s tried to eliminate or reduce the

complexity of hardware cache coherence by using a software approach, but a little to

none of those research made their way to a real production processor. One of the

pioneering research is [22], which proposed a fast-selective invalidation scheme and

version control scheme for compiler directed cache coherence. It proposed a rule for

cache coherency violations and used a dependency graph to detect the violation and

to issue invalidation instruction. It required no communication between processors.

The correctness of the proposed method was proven, but it was not implemented on

hardware. The research was latter continued [9], which proposed the fast-selective

invalidation scheme and version control scheme for compiler directed cache coherence.

Furthermore, they showed that their proposal was capable of maintaining comparable

performance to a directory-based scheme [7].

Another interesting early research is [39], which proposes a timestamp-based

method to allow simpler hardware cache coherence to be implemented in a processor.

At that time, hardware coherence was very well known and broadly implemented.

However, for some multiprocessor architecture, namely, Dance-hall architecture, both

snoopy based and directory-based scheme could not be employed due to lack of broad-

cast mechanism between processors.

The research by [25] emulated directory-based coherence in software. It proposed

a mechanism to maintain and propagate directory information between processors.

The information includes the list of page readers and writers, and also the state of the

page. This structure, which is called the coherent map, is stored at the home node.

This structure is uncached, and the latency for accessing this structure is hidden with

each lock operation.
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Another alternative approach was by using the data-flow algorithm to detect stale

data reference[8], and subsequent work to improve temporal and spatial locality [11].

It improved the task locality by using an epoch timer, and each cache data has a tag

of its creation time. It then proposed a set of rules based on an epoch-flow graph to

mark if a particular entry is stale or not. The catches are the following; it required

a special epoch counter, and it treated an array as a single entity, which means an

entire array is invalidated even if only part of it is modified.

One of the latest research on NCC [36] utilized the polyhedral model to identify the

read-write pattern at cache line granularity precisely. Moreover, for non-regular pro-

grams, it employed an inspector-executor paradigm to maintain coherency. It showed

a comparable performance against the hardware-based cache coherence scheme on

simulator. This research handles false sharing well. However, the polyhedral method

employed only considers a single loop nest at a time.

Based on the previous research above, none of the research handles the two prob-

lems in NCC architecture well and implemented in hardware. This thesis explains

the work to extend the capability of the OSCAR Compiler to generate parallel code

for a non-cache-coherent SMP system automatically. Several elemental compilation

techniques are integrated into OSCAR Compiler in order to solve two main problems

in a non-cache coherent multicore architecture. The stale data problem is solved

by self-invalidation and synchronization; meanwhile, false sharing is avoided by data

alignment, array expansion, array padding, and non-cacheable buffer and stale data

by self-invalidation and synchronization. A new compiler module is created for this

purpose. The new module utilizes the parallelized-sections data and def-use data

from the OSCAR Compiler framework to solve both fundamental non-cache-coherent

architecture problems.

The concept of this research was granted a US patent[21]. The idea and the early

evaluation of the proposed method were presented in IEEE COMPSAC 2017[20]. In

LCPC 2017[2], the algorithm was elaborated further, and additional analysis was

done. In this thesis, more hardware platforms are developed, namely, the Nios II

and RISC-V based softcore SoC on FPGA in addition to the Renesas RP2 multi-

core. The newly developed hardware platform was designed without a cache coher-
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ence mechanism yet still providing a respectable speed up. An additional test on

the Intel machine was done to investigate the impact of the proposed method on a

cache-coherent system. Several benchmark programs were run, and the result shows

that the proposed method obtains better or comparable performances compared to

the hardware-based approach. In conclusion, this research enables automatic paral-

lelization with a simple, easy to program and efficient Non-Cache-Coherent (NCC)

manycore processor. Right now the effort starts from a simple embedded multicore

and soft processor core for FPGA, but the same principle could be applied to a larger

system more cores.

1.3 Thesis Organization

This thesis is organized as follows:

Chapter 1, “Introduction”, this current chapter. It provides the background and

explains the objectives of this research. This chapter also outlines the significance of

this research by comparing related works.

Chapter 2, “OSCAR Compiler and OSCAR API”, introduces the OSCAR Com-

piler and OSCAR API. The OSCAR Compiler is a source to source automatic par-

allelizing compiler. The compiler takes a C program, and then it decomposes the

program into coarse-grain tasks. It then analyzes the control flow and the data de-

pendency between those tasks. Based on this information, the compiler parallelizes

the task and, later on, inserts the cache manipulation code for the coherency control

and finally outputs a parallelized code with API directives annotation. The OSCAR

Compiler is supplemented with the OSCAR API that consists of many directives for

different purposes, like platform-specific functions, power management, and cache op-

eration. The OSCAR API converts directives in the annotated code into the correct

functions or driver calls.

Chapter 3, “Compiler-Controlled Cache Coherence for Multicore processor”, dis-

cusses two fundamental problems in NCC systems, “stale data/true sharing” and “false

sharing”. Stale data is a state when a processor core updates a shared data in its cache,

but other processor core cannot get the updated value until the data is flushed back
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to the main shared memory. In order to handle this problem, as one of the cores

updates a variable in its cache, the compiler then inserts self-invalidation instruction

into the code segment in which other cores access the variable. The self-invalidate is

an instruction for invalidating a specific line in the cache, which forces other cores to

get the latest value from shared memory, thus eliminating inconsistency. The second

problem, “false sharing”, happens when two or more independent data reside in a

single cache line. If one of those data is changed, inconsistency may occur; this is

because the granularity of the cache writeback mechanism is at the line level instead

of a single byte or word. The compiler performs several elemental data restructur-

ing operations to prevent unrelated variables from sharing a single cache line. For a

scalar or small-sized one-dimensional array, usually, cache alignment is sufficient. In

the case of a multi-dimensional array, the compiler performs array expansion or array

padding, and for the case in which all other methods are inapplicable, the compiler

uses a non-cacheable buffer. Later on, this chapter discusses the necessary changes

to implement the coherency control in the OSCAR Compiler and the OSCAR API.

Chapter 4, “Development of Non-Cache Coherent Architecture Evaluation Plat-

form”, explains three different test platforms used in this research, the RP2 multicore

processor and two custom SoC based on Nios II and RISC-V. The Renesas RP2 is an

8-core embedded processor which comprises of two 4-core SH-4A SMP clusters, with

each cluster has its hardware coherency domain. A regular program can run with up

to four cores, but a software approach is necessary for cache coherency beyond the

4-core cluster. This research was also partially motivated by this RP2 limitation. The

“Nios II-based SoC” is a simple SoC generated entirely in Altera Platform Designer.

Nios II is a soft processor core which is intended for single-core operation in Altera

FPGA without any multicore or hardware cache coherency support. Designing mul-

ticore Nios II SoC is relatively easy, but writing a program for it is difficult without

any coherency mechanism. RISC-V is a relatively new and promising open-source

hardware instruction sets architecture. There are a lot of available RISC-V proces-

sor implementations in the market, but unfortunately, there is no synthesizable and

functional multicore RISC-V SoC with hardware cache coherence in the market.

Chapter 5, “Performance Evaluation of Compiler-Controlled Cache Coherence”,
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explains the performance evaluation of the Compiler Controlled Cache Coherency.

Ten benchmark programs from three benchmark suites, NAS Parallel Benchmark,

SPEC, and MediaBench, are compiled by the OSCAR Compiler with NCC support.

The proposed method achieves similar performance as the hardware-based coherence

mechanism. The proposed method also allows us to parallelize automatically and run

the benchmark program on NCC 8-cores Nios II SoC and 4-cores RISC-V SoC as

if they are a cache-coherent SMP machine. For example, NAS Parallel Benchmark

“cg” obtains 3.71 times speedup on RP2 without hardware coherence support versus

3.34 times speedup with hardware coherence turned on. Also, the same benchmark

program runs with 5.66 times speedup on 8-cores RP2, 5.89 times on 8-cores Nios II

SoC, and 3.68 times on 4-cores RISC-V SoC, which all are otherwise impossible to

run without hardware cache coherency.

Chapter 6, “Conclusion”, concludes the thesis and discusses the future of this

research.
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Chapter 2

OSCAR Compiler and OSCAR API
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This chapter provides an overview of the OSCAR Compiler and OSCAR API.

The whole work described in this thesis is based on and built on top of the OSCAR

Compiler.

OSCAR Compiler is a source-to-source multigrain parallelizing compiler[18]. It

takes sequential C or Fortran programs, and then it generates a parallelized program

with OSCAR API directives[23]. The OSCAR API converts directives in the an-

notated code into the correct functions or driver calls. Then the resulting code is

compiled with any standard compiler to generate machine code. This way allows us

to generate parallel multicore codes just using a sequential compiler for any shared-

memory multicore available in the market.

2.1 OSCAR Compiler

OSCAR Compiler is a multigrain parallelizing compiler. It parallelizes sequential C

or Fortran program in multiple levels of graininess: coarse-grain task parallelization

between loops and function calls, near-fine-grain parallelization between statements

inside the basic blocks, and the loop-level parallelization.

The compiler starts the compilation process by decomposing the source program

into three types of coarse-grain tasks, or Macro Tasks (MTs), i.e., Basic Blocks (BBs),

Repetition Blocks (RBs), and Subroutine Blocks (SBs). BBs are a straight line of

codes that usually consist of simple assignments without any branch, RBs are loops,

and SBs are function calls. The compiler will then hierarchically decompose RBs and

SBs into simpler MTs if any coarse-grain task still exists within those tasks.

As all MTs for the source program are generated, the compiler generates a Macro

Flow Graph (MFG). MFG is a variant of a control flow graph that explicitly represents

both control flow and data dependencies among MTs. Figure 2-1 is an example of

MFG. In this MFG(𝑁,𝐸,𝐶), a set of nodes 𝑁 contains all MTs. Edges 𝐸 has two

kinds of edges, i.e., 𝐸𝐶𝐹 represents control flow shown as dotted edges, and 𝐸𝐷

represents data dependence shown as solid edges. The set of 𝐶 represents conditional

branch inside each MT shown as a small circle inside MTs. The direction of the graph

is always top to bottom.

20



Figure 2-1: Macro Flow Graph and Macro Task Graph Example. Image from [18]

21



In order to extract maximum parallelization from the program, both control flow

and data dependence must be taken into account. The Earliest Execution Condition

(EEC) of an MT is a condition in which all preceding constraints caused by both

control flow and data dependence are satisfied. A macro task 𝑖 (MT𝑖) can be executed

if the following conditions are satisfied: If MT𝑖 has a data dependency on macro task

𝑗 (MT𝑗), then MT𝑖 can only be executed after MT𝑗 finishes. If MT𝑖 is on a control

dependence on MT𝑗, then MT𝑖 can be executed as soon as the branch direction on

MT𝑗 is known. This is possible because both MT𝑖 and MT𝑗 are executed on different

cores. In general, ECC can be formulated as follows: (MT𝑗, on which MT𝑖 has

data-dependences, branches to MT𝑖) ∧ (( every macro task on which MT𝑖 has data

dependencies, MT𝑘 : 0 ≤ 𝑘 ≤ |𝑁 | are completed ) ∨ (MT𝑘 will not be executed )).

As the EECs for all MTs are known, the compiler schedules all MTs either by

static or dynamic scheduling. Typically MTs are statically scheduled to avoid run-

time overheads caused by the scheduler. If the MTG has run-time uncertainty, i.e.,

conditional branching, I/O wait, or varying MT execution time, the MTs in it are

dynamically scheduled. For this NCC research, OSCAR Compiler generates static

scheduling to preserve the order of memory operation among all MTs, which will

be further discussed in the next chapter[20]. Profiling data from each different pro-

cessor architecture are also taken into account to improve the static scheduling per-

formance. For most of the cases, the OSCAR Compiler adopts Critical Path/Data

Transfer/Most Immediate Successors First (CP/DT/MISF) scheduling for its static

scheduling mechanism. In addition to that, the compiler may choose CP/ETF/MISF,

ETF/CP/MISF, and DT/CP/MISF scheduling[19]. The compiler then put together

the codes for all MTs based on the scheduling result. It also inserts data transfer and

synchronization to the required places. This way ensures the memory state is consis-

tent at the end of each MT execution. Based on the scheduling result, the compiler

then optimizes the code further, for example, by grouping execution of task working

on the same data sets on one processor core, managing power gating for least used

CPU cores, the NCC module, and many other purposes. In the end, the compiler

generates the code for each processor core.
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Table 2.1: List of OSCAR API Directives
List of Directives in OSCAR API

Parallel Execution API Data Transfer API Power Control API Accelerator API Cache Control API
parallel sections dma_transfer fvcontrol accelerator_task_entry cache_writeback
flush dma_contiguous_parameter get_fvstatus cache_seflinvalidate
critical dma_stride_parameter Synchronization API

Hint directives for
OSCAR Compiler complete_memop

execution dma_flag_check groupbarrier accelerator_task noncacheable
Memory Mapping API dma_flag_send Timer API oscar_comment aligncache

threadprivate get_current_time
distributedshared
onchipshared

2.2 The OSCAR API

OSCAR API is designed to support OSCAR Compiler’s operation. The API is de-

signed based on the OpenMP subset to provide portability over many kinds of shared

memory multicore systems[23]. The early version of OSCAR API (v 1.0) was de-

signed for the OSCAR Architecture but worked with any shared memory system.

The OSCAR Architecture consists of several multicore chips with external/off-chip

Chip Shared Memory (CSM), and each chip also has an on-chip CSM. Each core has

its own Local Program Memory, Local Data Memory (LDM) for private data, and

Distributed Shared Memory (DSM) for flags and shared data. The architecture is

depicted in Figure 2-2.

The OSCAR API v1.0 takes three directives from OpenMP, namely “parallel

sections”, “flush”, and “critical”. These directives allow single-level parallel

thread execution with OSCAR API. In addition to those, one OpenMP directive

was extended, and 12 new directives were created. The new directives control the

memory mapping, DMA transfer, power control, synchronization, and timer.

OSCAR API v2.0 added accelerator directives, which included heterogeneous mul-

ticore and NCC architecture support. The NCC support comprises of 5 new directives:

∙ cache_writeback: This directive forces a writeback of a cache line to the main

shared memory.

∙ cache_selfinvalidate: This directive changes the state of the current cache

line in a local core to invalid.

∙ complete_memop: This directive generates a “memory fence” like instruction to

preserve the order of the memory operation.
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∙ noncacheable: This directive indicates that a variable must not be stored in

the cache.

∙ aligncache: This directive indicates that a variable must be aligned to the

beginning of the cache line.

The full list of API can be seen in Table 2.1. The implementation details of the API

are discussed in the next chapter.

The OSCAR Compiler takes a sequential C program as input. Then the compiler

analyzes the program and generates a parallelized C program annotated with OSCAR

API directives. The API translator then converts those directives into the appropriate

run-time library or driver calls. In some cases, the translator directly converts the

directives into specific in-line assembly instructions for the required functionality.

Depending on the target architecture, for platforms with OpenMP support, the API

translator converts the directives directly to OpenMP directives, which is essentially

the same, differing only in the prefix, or to other parallel execution techniques for

platforms without OpenMP support. Finally, the translated code can be compiled

with any available C compiler for the target platform.
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Figure 2-2: OSCAR Architecture. Image from [23]
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Chapter 3

Compiler-Controlled Cache

Coherence for Multicore CPU
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This chapter discusses the cache coherency, problems in an NCC system, and

changes made to the OSCAR Compiler to support the NCC architecture.

3.1 Cache Coherency

In a shared-memory multicore with a private cache, multiple copies of a shared vari-

able may exist in the caches of several different cores. Cache coherency is a state

which guarantees that any changes made to one of the copies are propagated to all

other copies in the correct order.

One of the most commonly implemented cache coherence protocol is the MESI

protocol[29] or any of its variants. It is invalidation-based, and it supports writeback

cache. The acronym MESI represents four states of a cache line.

∙ “Modified” state represents a particular cache line that is dirty or modified by

a local core and different from the value in the main memory. This cache line

must be written back at one point in the future before other cores to read the

outdate value in the main memory.

∙ “Exclusive” state represents a particular cache line that is exclusively only

present in that local core’s cache, and it is in a clean state. It will be changed

to “Modified” if the core makes any change to it.

∙ “Shared” state represents a particular cache line that is stored in multiple

cores’ caches, and it is in a clean state. If another copy in other core’s cache is

modified, then it will be changed to “Invalid”.

∙ “Invalid” state represents a particular cache line that is no longer valid because

another core modifies its own copy of the same cache line.

Typically, a hardware mechanism maintains all those states transparently from

the software point of view. Such a mechanism ensures every change made to the

data in one of the CPU core’s cache line is propagated to other cores and each copy

of this data in other cores are then invalidated. The process of notifying the other

processor in a snooping-based cache coherence may impact the performance of the
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processor[32]. With a directory-based mechanism, the complexity of the design in-

creases significantly for the many-cores processor[30]. Meanwhile, without any hard-

ware cache coherence, these bottlenecks do not exist, but the compiler must manage

access to stale data.

While most multicore processors in the market have a dedicated hardware cache

coherency mechanism, a hardware-based cache coherence mechanism has its own

drawbacks, as explained in Chapter 1. Without such a mechanism, the programmer is

responsible for maintaining cache coherency. While it is doable for a small embedded

application, but with any nontrivial program, writing a correctly executing program

for a non-cache-coherent machine by hand is close to impossible.

3.2 Stale Data Problem

Stale data problem is a state in which an old value of shared data exists in one

core cache. Assuming the MESI protocol[29] is supported by the cache, whenever a

particular processor core writes to a cached data, the state of the data should become

“Modified”. Then, the cache coherence mechanism is responsible for notifying other

cores with the same piece of data in their cache to mark that particular data as

“Invalid”. In the absence of such a mechanism, stale data reference should be avoided.

Figure 3-1 is a trivial example of a stale data problem. Assume there are three

global integers in the main memory, namely, a, b, and c stored in a single memory

line. All those three variables are shared by both core 0 and core 1. Core 1 reads

the value of a then write it into b. As core 1 reads the value of a, the entire cache

line is copied to core 1’s cache. As variable a is 0, after the operation b becomes 0

too. After that, for example, core 0 writes to variable a, so the entire cache line is

copied to core 0’s cache, and the value of a is updated to 20. At this point, in a

cache-coherent system, a hardware-based mechanism notifies core 1 that its copy of

the same memory line is now invalid. Without such a mechanism, core 1 is unaware

of the change made by core 0. Whenever core 1 executes the last statement c = a;

then the old values of a is used causing the result to be incorrect. Therefore, the

compiler should provide a mechanism to prevent stale data from continuing to exist
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Global Variable

Declara"on

int a = 0;

int  b = 0;

int c = 10;

a = 20;

b = a;

PE0 PE1 a = 0;

b = 0;

c = a;

a = 20;

0 0 10 ‐

Shared

Memory

20 0 10 ‐

PE0 Cache

0 0 10 ‐

PE1 Cache

a b c

Time

0 0 0 ‐Correct result with coherency control

20 0 20 ‐

PE1 Cache

A=20 is updated by core 0. Core 1 is not aware of the

change by core 0, core 1 calculate different value instead.

a = 0;

c = 0;

If a data on a cache

con"nues To exist

The values are not coherent

Wrong result in core 1

Wrong result in core 0

Figure 3-1: The stale data problem. Image from [20]

on other processors core.

3.2.1 Stale Data Handling

As explained in chapter two, the compiler decomposes the program into MTs, and

then it analyzes the data dependency of each MT. Then it statically schedules those

MTs according to their EEC on multiple cores. This way, the compiler keeps track

of which part of the memory location that each MT reads and writes. In order to

prevent stale data, first, the compiler tries to schedule all MTs which share the same

data on the same core. Nevertheless, most of the time, data sharing between cores

is unavoidable. After an MT makes a change to a shared variable, the compiler then

inserts a writeback command followed by a synchronization mechanism on the writer

core before continuing to the next MT. As the MTs are statically scheduled, the

compiler keeps track of which cores that still have the data in its cache, and then

it inserts self-invalidate instruction on those cores before starting a task that will

consume the modified data.

Similar to the MESI protocol, the compiler manages the four states of MESI

protocol. Figure 3-3 shows the compiler controlled coherency protocol. The red

arrows show compiler induced action. The compiler inserts “writeback” and “self-
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Figure 3-2: Cache control code inserted by the compiler to prevent reference to stale
data. Image from [20]
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invalidate” command to the cache to maintain the appropriate state for each cache

line. The blue line is an automatic response from the caching mechanism.

Figure 3-3: Coherency Protocol Managed by the Compiler

Figure 3-2 is an example of the code inserted by the compiler. A task SB1 running

in core 0 modifies the value of A. At the end of the MT, the compiler inserts a writeback

instruction for variable A to make sure the changes are written to the main memory.

The compiler then updates a flag, which indicates that a writeback for variable A has

been done. It again issues a writeback after updating the flag. Meanwhile, on core

1, a task SB3 uses variable A. In order to prevent core 1 from using a stale copy of

variable A, the compiler inserts a busy loop synchronization point waiting for the flag

value to be updated by core 0. If the flag is set, then the local copy of variable A

is self-invalidated, effectively forcing core 1 to fetch the updated value of A from the

main memory. Finally, task SB3 may run and use variable A. Notice that in the busy

loop, for each iteration, core 1 also self-invalidates its copy of the flag.

The compiler also priorities the schedule to minimize the synchronization delay.

Likewise, if multiple cores have the same copy of data at the same time, tasks working

with those copies will not be scheduled at the same time because there is output

dependency among these tasks, effectively preventing the particular cache line from

being simultaneously updated. In other words, it prevents multiple processors from

entering the “Modified” state at the same time, mimicking the behavior of a MESI

coherence protocol. The compiler also forbids load/store operation during the “Stale”
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state before the stale data is self-invalidated.

The compiler inserts this stale data prevention mechanism for both Read-after-

Write and Write-after-Write type data dependency. Meanwhile, for the case of Write-

after-Read data dependency, the compiler only inserts synchronization instruction.

This way, the OSCAR Compiler guarantees the memory consistency at the end of

each macro task, while also preventing stale data problem.

The proposed approach is more efficient compared to the snooping protocol, as

there is no broadcast of the cache update packet flooding the shared bus.

3.2.2 Selective Cache Operation in Loop Parallelization

OSCAR Compiler supports several kinds of loop parallelizing techniques. In DOALL

loops and reduction loops, which do not have any loop carried dependency, typically

stale data is not a problem. However, with DOACROSS loops, it inherently has a

loop-carried dependency in each of its iterations[34].

In an NCC architecture, while inserting the stale data problem handling mech-

anism described in the previous subsection solves the problem, but it may lead to

an excessive number of synchronization. The cache invalidation instruction needs to

be inserted on every iteration, effectively disabling the cache function. In order to

reduce the impact of this problem, the compiler only inserts the stale data handling

mechanism if the array element accessed by parallelized iteration shares the same

cache line[24].

3.3 False Sharing Problem

False sharing is commonly overlooked in software-based cache coherence. Meanwhile,

it is one of the most important factors in the performance of NCC architecture.

Typically cache replacement mechanism works with line-level granularity. It cannot

updates or replace an individual byte or word. False sharing happens when multiple

cores share independent data stored in the same memory line. Whenever one of those

data is updated, cache inconsistency may occur. Some of the previous approach

[8][11], treated false sharing in an array as a true sharing that requires invalidating
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the entire array. In this approach, several simple data restructuring methods are

utilized to avoid false sharing without a significant performance impact.

Figure 3-5 is a trivial example of a false sharing problem. Let us assume there

are two independent global integers stored in main memory, namely, a and b. As

their size is smaller than the memory line, they are stored next to each other, sharing

a single line. Then core 0 updates the value of a. This action results in the whole

memory line copied into core 0’s cache and the value of a in core 0’s cache updated

to 10. At the same time, core 1 updates the value of b, which again causes the entire

memory line containing both a and b copied to core 1’s cache and core 1 change the

value of b in its cache. Core 0 only updates variable a, and core 1 only updates

variable b; however, core 0 is not aware of the change made by core 1 on b and vice

versa. Whenever both cache lines are replaced, inconsistency may occur. The final

result in the main memory depends on the sequence of the line replacement.

If the arrays are not aligned to the cache line, false sharing will occur in all parts

of the array. With all the beginning of each array is aligned to the boundary of the

cache line, the compiler must also detect whether false sharing occurs inside of the

array itself. False sharing can be detected after the compiler performs the memory

access range analysis of each task in the MTG after the task division for parallel

execution, especially for loops subjected to loop-division for parallel executions.

To understand the detection process, consider a sample program with several loops

depicted in Figure 3-4 (a) and its MTG in Figure 3-4 (b). A single line indicates data

dependence, and a double line indicates a portion that is likely to cause false sharing.

The simple example program consists of four tasks: three DOALL loops and one

sequential loop. In order to parallelize the program, each task is subjected to a loop

division. Figure 3-4 (b) shows an MTG before the loop division. The loop is then

divided into several partial tasks in which each of the tasks is executed in different

processor cores, as shown in Figure 3-4 (c). Then, the compiler will analyze the access

range based on the array and its index used by each partial task.

If the memory access range of each task does not overlap, and no cache line crosses

the boundary of those access ranges, it can be guaranteed that false sharing will not

occur. Meanwhile, false sharing is likely to occur if the lowest dimension of the array
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Figure 3-4: False Sharing Detection Process. Image from [21]
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used by the above-mentioned partial task could not be fully divided by the cache line

size. In that case, false sharing is likely to occur between partial tasks that write into

the same array (write-after-write) or between different partial tasks that write into

and other tasks that read from the same array (read-after-write). One possibility of

false sharing can be observed in the DOALL1 loop. For the purpose of analyzing the

possibility of false sharing, which occurred by dividing the loop in arbitrary size, the

task is divided into the maximum possible number, which is the number of the loop

iteration with one processor core handles exactly one iteration. Dividing the DOALL1

loop at one iteration per processor may cause Write-after-Write false sharing. The

data written by a one-iteration partial task will likely take less space than the cache

line size; therefore, more than one processors may write into the same memory address

at the same time; hence, false sharing occurs. This is also reflected in the example.

When the compiler analyzes the memory access range of DOALL1-1 and DOALL1-2

and DOALL1-3, the same cache line may be updated by multiple processor cores in

each task at that time. False sharing is detected within the DOALL1 loop.

The other possibility of false sharing may occur between different tasks. When the

compiler analyzes the memory access range of DOALL2-2 and LOOP3-1, the same

cache line may be updated by multiple processor cores in each task at the same time;

hence, false sharing occurs in this part. LOOP3-1 also updates the cache line read

by DOALL2-2, so, an inverse dependency or Write-after-Read dependency due to

false sharing occurs between LOOP3-1 and DOALL2-2. Furthermore, the cache line

read by DOALL4-1 is updated by LOOP3-2, so, between LOOP3-2 and DOALL4-1,

so, a flow dependency (Read after Write) due to false sharing also occurs between

LOOP3-2 and DOALL4-1.

The compiler must apply data restructuring techniques to prevent false sharing.

A simple variable alignment works well for most cases but is inefficient for specific

cases. Several different data restructuring methods are required to prevent false

sharing problem for each use case. If all effort failed, then the array will be processed

sequentially.
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Global Variable Declara#on

int a = 0;

int b = 0;

a = 10; b = 20;

PE0 PE1

a and b are different elements

on the same cache line

Memory

Line replacement Line replacement

The final value of a and b may be different depending on

the write sequence. Both of them are incorrect.

0 0 ‐ ‐

a b
Shared

Memory

10 0 ‐ ‐ 0 20 ‐ ‐

PE0 Cache PE1 Cache

? ? ‐ ‐

a b

line line
Time

Correct result with cache coherency

control.
10 20 ‐ ‐

Figure 3-5: The false sharing problem. Image from [20]
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3.3.1 Variable Alignment and Array Expansion

Aligning each variable to the beginning of each cache line prevents false sharing

effectively. The same method works for small one-dimensional arrays with the number

of elements less than the number of cache lines in all available processor cores. The

array is expanded, so there is only one element stored in every cache line. For larger

arrays, however, this method is not practical due to cache space wasting. This method

is also the default behavior if the compiler cannot determine the access pattern of the

array.

3.3.2 Cache Aligned Loop Decomposition

Oscar Compiler, in addition to the coarse-grain parallelization, also employs loop

parallelization. One of the conventional methods is loop decomposition. Loop de-

composition splits a loop in a task to several smaller tasks run on different cores.

Usually, the compiler splits the loops equally by the number of available cores. How-

ever, to prevent multiple cores from sharing a cache line, the compiler splits the loop

along the cache line, as seen in Figure 3-6(A).

3.3.3 Array Padding

It is not always possible to split a two-dimensional array cleanly along the cache line,

especially if the innermost dimension is not an integer multiple of the cache line size.

In this case, the compiler pads the innermost array to match the size of the cache

line. This method is illustrated in Figure 3-6(B). This method also potentially waste

some cache space.

3.3.4 Data Transfer Using Non-cacheable Buffer

Sometimes, due to the structure of the program, it is not always possible to apply any

of the previous methods without a significant performance penalty. For example, in

extreme cases, the cache aligned decomposition might introduce a significant imbal-

ance, or the array padding wastes too much cache space, a non-cacheable buffer can
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A B

Figure 3-6: (A)Cache aligned loop decomposition is applied to a one-dimension matrix
to avoid false sharing. (B)Array padding is applied to a two-dimensional matrix to
avoid false sharing. Images from [20]
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be used. Non-cacheable buffer is a small memory window in which the cache is by-

passed. The buffer is used for cache writes along the border between area modified by

different processor cores. Instead of the conflicting core writes directly to the shared

line, the data are stored in the non-cacheable buffer, and then the cache line owner

copies the data from the buffer to the appropriate location. Figure 3-7 describes the

usage of the non-cacheable buffer.

3.4 Software Cache Coherent Control by OSCAR

Compiler

In order to support NCC architecture on OSCAR Compiler, a new compiler module

is created. The new NCC module leverages the OSCAR Compiler framework to

handle both stale data and false sharing problems. Figure 3-8 depicts the proposed

compilation process. The grayed boxes are new steps introduced to handle cache

coherency.

As explained in Chapter 2, the OSCAR Compiler starts the compilation process

by hierarchically decomposing the program into coarse-grain tasks. Then the compiler

analyzes the control flow and data dependency between tasks. Based on these data,

the compiler then determines the EEC for all tasks, generates the coarse-grain sched-

ule, and automatically creates parallel sections. At this time, the compiler has enough

information on which task run on which core and their def-use pattern. Moreover,

it also collects an array access pattern and employs a pointer analysis to supplement

the def-use pattern from the coarse-grain task scheduling. The new compiler mod-

ule utilizes these data to generate cache control instructions for avoiding stale data

problem and restructure the array to avoid false sharing.

In order to take care of the stale data problem, as explained in Section 3.2.1, the

new compiler modules inserts required data transfer and synchronization in addition

to self-invalidate instructions in between the tasks.

Meanwhile, in order to handle false sharing, the NCC module marks variables

or arrays shared between two or more parallel sections at the same time. A simple
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Figure 3-7: Non-cacheable buffer is used to avoid false sharing. Image from [20]
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decision tree, which described in Figure 3-9, decides the compiler actions depending

on the kind of those shared arrays. Several different approaches are taken to avoid

false sharing: Scalar variables are aligned to the cache line. Small 1-dimensional

arrays are aligned and expanded. The decomposition of the loop considers the size

of the array to prevent false sharing. For two-dimensional arrays, depending on its

innermost dimension, it is padded to fit into the cache line. If all effort fails, non-

cacheable buffers may be used. After these data restructuring methods are taken, the

compiler continues the normal compilation process.

Figure 3-8: Proposed compilation sequence. Image from [21]

As the compilation process completed, the OSCAR API translates the NCC di-

rectives into the proper driver/run-time API call or appropriate in-line assembly

instructions. Since the API implementation differs from platform to platform, it will

be discussed more in the next chapter.
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Figure 3-9: Pseudocode for detecting and mitigating stale data and false sharing.
Image from [1]
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Chapter 4

Development of Non-Cache Coherent

Architecture Evaluation Platforms
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This research aims to provide automatic parallelization for the NCC multicore sys-

tem using the OSCAR Compiler. Therefore, the system should be at least targetable

by the OSCAR API. Currently, most multicore processor systems are targetable by

OSCAR API. However, there are some requirements imposed by the API and also

the NCC extension of the OSCAR Compiler. The target platform is illustrated in

Figure 4-1.

In order to use the NCC support on the OSCAR Compiler, the multicore system

must have:

∙ Shared memory accessible by all cores.

∙ Private cache with each cache line has at least two flags, “Valid” and “Dirty”.

∙ Software-controllable cache operation for at least “invalidate” and “writeback”.

∙ Atomic store instruction or “fence” like instruction for architecture with weaker

memory consistency.

The OSCAR API mandates the multicore system to have at least a shared memory

accessible by all cores, which is just like an ordinary multicore processor available

on the market. Furthermore, not only limited to off-the-shelf multicore processors,

but the API also supports manycore processors, soft processor cores on FPGA, or

industrial real-time multicore microcontroller without cache coherency mechanism.

The proposed method can be applied to almost any kind of inter-processor networking

as our method uses the main shared memory for synchronization and does not rely

on communication between CPU cores.

The second requirement is a private cache with at least two flags. The NCC

module does not require a full MESI protocol support, but a two-state cache line is

sufficient as the compiler is responsible for maintaining the cache state. Tag support

is also optional at the cost of lower performance due to the necessity of flushing the

entire cache instead of line-by-line flush/writeback.

The next requirement is software controllable cache operation. This requirement

is fundamental as the compiler has to control the cache by software. The NCC module

at least needs two instructions, “Flush” or “Writeback”, and “Self-Invalidate”. Most
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architectures support this kind of cache operation instructions. RISC-V is one of a

notable architecture which mandates for a software transparent cache architecture.

In other words, the cache is not software-controllable. This limitation means the

vanilla version of the RISC-V processor cannot be used with the OSCAR Compiler.

Required hardware modification on RISC-V will be discussed later in this chapter.

The last requirement is atomic write or fence like instruction to preserve the order

of write to the memory. On architecture with a firmer memory consistency model,

this is not an issue, but other architectures with weaker memory consistency need

to those instructions to ensure the synchronization flag is not set before the data it

guards are fully written. This is important because some out-of-order RISC-based

soft processor cores are designed only for a single-core operation and do not support

atomic write instructions.

In order to evaluate the performance of the proposed method, four different plat-

forms are used, i.e., Renesas RP2, Nios II SoC, RISC-V SoC, and Intel Xeon. The

following sections detail each of the evaluation platforms.

4.1 The RP2 Processor

The Renesas RP2 is an 8-core embedded processor configured as two 4-core SH-4A

SMP clusters, with each cluster having snooping-based hardware cache coherency. It

was jointly developed by Renesas Electronics, Hitachi Ltd., Waseda University, and

supported by METI/NEDO Multicore Processors for Real-time Consumer Electronics

Project in 2007[17].

Each processor core has a private cache with hardware coherence support for

up to four cores, as seen in Figure 4-2. However, there is no hardware coherence

controller between the clusters. A software-based cache coherency must be employed

to utilize more than four cores across the cluster. For hard-real-time applications, the

MESI hardware coherence mechanism can be disabled completely. The RP2 board, as

configured, has 16KB of data cache with 32-byte line size and 128MB shared memory.

The local memory, which was provided for hard real-time control applications, was

not used in this evaluation.
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Figure 4-1: Target Architecture. Image from [20]

48



The RP2 processor supports several native instructions in NCC mode: write-

back operation (OCBWB instruction), cache invalidate (OCBBI instruction), cache flush

(OCBP instruction). The OSCAR API directly translates the NCC directives to these

instructions.

4.2 Eight-Core Nios II System on FPGA

A custom multicore system based on Altera Nios II soft CPU[16] core was created for

testing the scalability of the proposed method.

The Altera (now Intel) Nios II processor is a 32-bit embedded processor archi-

tecture for Altera FPGA. It is has a RISC based design. In this research, the Nios

II/f core is chosen. This variant has six pipeline stages, hardware-based single-cycle

multiplier and divider, dynamic branch prediction, and a custom instruction port,

which is used to connect an external FPU module. The Nios processor does not come

with hardware-based cache coherence support. However, it has several instructions

for cache manipulation, providing support for software-based cache coherence.

Figure 4-3 shows a block diagram of the multicore system. The system consists

of up to eight Nios II CPUs with 16kB data cache for each core. The caches are

configured as a direct-mapped, 32 bytes wide, writeback cache. All eight cores share

two banks of 1 GB DDR4 1066 MHz main memory connected over an Altera External

Memory Controller through the Arria 10 Hard Processor System (HPS) memory

window. The system is designed in regards to OSCAR Architecture. The system is

configured as 8 CPU modules. Each CPU module has its own timer, JTAG, and an

on-chip memory acting as both DSM for synchronization flag, and LDM for private

data. The CPU modules are connected to the main memory and peripherals through

a series of Avalon bus, adapter, clock bridge, and Altera Platform Designer generated

interconnect. Each of the CPU module also has its own boot memory to run the

bootloader and Altera HAL, which provides necessary C library support. Meanwhile,

the benchmark programs and data were loaded and run from the main shared memory.

An additional external reset sequencer is added to control the booting process of the

system. The system has no hardware-based cache coherence mechanism. The system
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Figure 4-2: Renesas RP2 8-core Embedded Multicore Processor. Image from [38]

50



is designed and synthesized entirely on Altera Quartus II 18.1 and implemented on

Altera Arria 10 SoC Board Development Kit.

The Nios II CPU has several native instructions to manage its data cache manu-

ally; cache flush (flushd instruction) and cache invalidate (initd instruction). The

Altera HAL API[16] wraps some of the cache management functionality into several

easy-to-use functions. The OSCAR API directly translates the directives into the

appropriate Altera HAL API call.

The Nios II platform does not have native parallel execution support. Therefore,

the OSCAR API Translator must convert the OpenMP parallel sections into separate

code for each Nios II core to run. As explained in Chapter 2, OSCAR Compiler

generates an OpenMP-like single-level parallel thread execution. On this multicore

implementation, each Nios II core is assigned a unique CPUID. Instead of generating

OpenMP Parallel sections, the API Translator generates a giant switch case wrapping

each core’s code with the CPUID of each processor as the selector. This way, all

CPU cores can share a reset vector while executing their respective sections. The

API Translator then assigns the memory segments for each thread private variable,

synchronization flags, and shared data to appropriate segments. It also aligns the

data according to the cache line size.

4.3 Quadcore RISC-V Based Non-Cache Coherent

SoC

RISC-V[37] is the only open Instruction Set Architecture (ISA), which was first

introduced in 2010 and is currently maintained by the RISC-V Foundation. The

foundation members come from both academic institutions and industries, including

software, systems, semiconductor, and IP. The ISA, especially the base instructions

and approved extensions, has been frozen since 2017. Being an open ISA, every-

one can optimize its design for power consumption, performance, security, and other

specific requirements. It also supports custom instructions for applications that re-

quire particular acceleration or specialty functions. The RISC-V ISA has a BSD
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Figure 4-3: Diagram of the 8-core Nios II SoC. Image from [24]
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license[6]; therefore, now there are several implementations of the RISC-V processor,

both opensource and commercial licensed.

A RISC-V multicore, which is based on VexRISCV[35] by SpinalHDL, is devel-

oped specifically for this research. The implementation is written in Scala, and it

uses a plugin system for writing CPU extension, which makes writing CPU exten-

sions relatively easier. SpinalHDL framework compiles Scala code to either VHDL

or Verilog. The generated HDL is also FPGA friendly and does not use any vendor-

specific primitives. Also, as the target FPGA is an Altera’s Arria 10 FPGA, it is very

convenient that SpinalHDL can generate Tcl scripts for easy integration with Altera

Platform Designer.

The first iteration of SoC used VexRISC Briey SoC reference design as the base

model. It used RV32IM core without floating-point support. VexRISCV is a five-

pipeline-staged single-issue in-order CPU. The CPU core itself was later changed to

a more capable CPU core with floating-point support. The data cache subsystem is a

custom design, based on VexRISCV DBusCachedPlugin configured as a single level 4

way 16kb private cache for each core. Each processor core is organized as a processor

module consists of an RV32IM core, an on-chip boot memory, a timer, and a series of

bridges for external AvalonMM interfaces. Each processor module has access to the

external memory controller and a shared UART. A NiosII-based subsystem is used to

help with the boot process and IO as the JTAG and UART drivers were not working

correctly. The overall arrangement of the multicore is very similar to the Nios II

multicore explained in Section 4.2.

The latest RISC-V ISA specification, version 2.1, was revised in December 2019[37].

Unfortunately, as the document states, cache management instructions are not part

of standard instructions but may be expanded in the future revision. Therefore, a

mechanism for cache management is required. For this research purpose, a custom

cache controller plugin is developed based on VexRISCV’s DBusCachedPlugin plug-

ins. The plugin has an interface that can be controlled from user-level CSRs using

CSRRW/CSRRWI instruction, as seen in Table 4.1. The CSR interface is based on

the VexRISCV CSR module. The flush and invalidate operation can be initiated for

a single memory pointer or the whole cache area. The memory argument sent to
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Table 4.1: Custom CSR for Interacting with the Cache Subsystem
Address Format Description

0x800 32 bit address writeback/flush
an address

0x801 000000000000000000000000000000ib
flush status/read only
i = 1 if request received
b = 1 if busy/not done

0x802 0000000000000000000000000000000f set f bit for flushing
the whole cache

0x810 32 bit address invalidate
an address

0x811 000000000000000000000000000000ib
invalidate status/read only
i = 1 if request received
b = 1 if busy/not done

0x812 0000000000000000000000000000000f set f bit for invalidating
the whole cache

the CSR must be cache aligned address; otherwise, the cache controller may fail to

determine the exact cache line number. The typical delay for a writeback and inval-

idate delay is about 13 cycles more than a regular cache miss in both directions. A

simple driver is implemented to wrap the CSR write and a busy loop to check if the

operation is accomplished. The OSCAR API Translator converts the NCC directives

to this driver call.

RISC-V specification mandates weak memory ordering, but the current implemen-

tation of VexRISCV is strictly in-order; hence no memory fence or atomic operations

are necessary. Also, all memory access and writes generated by OSCAR compiler

with NCC option are always aligned, effectively preventing the VexRISCV write back

module from generating multiple writes for miss-aligned variables.

The VexRISCV platform also does not have native parallel execution support.

Similar to the Nios II platform, the OSCAR API Translator must convert the OpenMP

parallel sections into a suitable format. Similar to other implementation platforms,

the OSCAR Compiler generates a specific code for each core. Each of these codes

is then compiled with the RISC-V toolchain. Then a custom phyton script is used

to prepare the generated hex files and merge them into a single memory image file

with respect to the start vector of each core. Due to incomplete JTAG driver im-

plementation, a Nios-II-based subsystem helps the bootstrapping process by copying
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the generated code to the main memory and starting all the VexRISCV cores. This

subsystem also handles the serial input-output of the multicore system.

Similar to the Nios II platform, the API Translator also assigns the memory

segments for each thread private variable, synchronization flags, and shared data to

appropriate segments. It also aligns the data accordingly.
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Figure 4-4: Diagram of the 4-core RISV-V SoC showing only the data connections
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Chapter 5

Performance Evaluation
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Table 5.1: List of Benchmark Programs
Benchmarks Programs
SPEC2000 equake NAS Parallel Benchmark cg

art mg
SPEC2006 lbm bt

hmmer lu
MediaBenchII MPEG2 Encoder sp

The hardware-based cache coherence scheme has been considered to have a bet-

ter performance than a software-based approach. In this chapter, the performance

of the compiler controlled cache coherency scheme is tested and compared against

the hardware-based mechanism. Most of the previous acts evaluated their proposed

software coherence scheme on simulator [8][11][36]. In this research, however, real

benchmark applications are tested on practical hardware implementation.

5.1 Benchmark Applications

There are several factors in deciding the benchmark programs to be used here. Unfor-

tunately, the selection of the benchmark program is somewhat limited due to several

limitations. One of the main factors is the absence of the Operating System (OS)

support. Most OSes in the market are designed for the Symmetric Multi-Processing

(SMP) shared memory system. Therefore, most OSes cannot run correctly on all of

our evaluation platforms, and as a result, all benchmarks are run bare-metal without

any operating system. The lack of OS also complicates the usage of file systems,

which limits further the benchmark selection.

Ten benchmark programs from SPEC2000, SPEC2006, NAS Parallel Benchmark

(NPB), and Mediabench II were run to test the performance of the proposed method

on the Renesas RP2 platform. And, due to the lack of file system support on Nios II

and RISC-V SoC implementation, both SPEC benchmarks and Mediabench cannot

run correctly. Therefore, only NPB successfully on all four architectures.

All benchmark programs are written in C. In order to allow for a more efficient

parallelization, some SPEC benchmark programs, namely “lbm” and “hmmer”, and

MediaBench MPEG II Encoder were converted to Parallelizable C[27] by hand. Par-
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allelizable C is a guideline to write a C program that allows a parallelizing compiler

to extract the full potential of parallelization and data locality optimization, mainly

targeting arrays and loops. It is similar to MISRA-C[3], which is commonly used in

the embedded system. Conversion to Parallelizable C is trivial and straight forward.

As an example, the “lbm” benchmark requires only three lines of pointer related mod-

ification, and the rest of the code can be parallelized automatically. Minor changes

are also necessary for “art”. Aside from those, most other benchmark program does

not require any changes.

The converted benchmark programs were then compiled using OSCAR Compiler

and processed by the OSCAR API translator. The parallelized programs are then fed

to the backend compiler for each platform. For the RP2 platform, Renesas SuperH C

Compiler (SH C) is used. For the Nios II SoC, the benchmark programs are compiled

with nios2-elf-gcc v7.3.1 against Altera HAL 18.1. For the RISC-V platform, riscv-gcc

v8.3 included in the RISC-V toolchain is used. Meanwhile, for the Intel platform, gcc

v7.4 is used.

The SPEC benchmark programs were run in their default configuration and datasets

except for lbm, which were run with 100 × 100 × 15 matrix. All NPB benchmarks

were configured with CLASS S data size considering the size of the RP2 processor

off-chip main shared memory size, which is only 128 MB.

5.2 Experimental Results and Analysis

As the benchmark programs are successfully compiled, the performance data on each

platform is measured. Figure 5-1, 5-2, and 5-3 show the speedups by multiple cores

of the proposed method on RP2 Processor, Nios II, and RISC-V multicore system.
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Figure 5-1: The performance of the proposed method on RP2 Processor for SPEC Benchmark and MediaBench. Image from [1]
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Figure 5-2: The performance of the proposed method on RP2 Processor system for NAS Benchmark. Image from [1]
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Figure 5-3: The performance comparison of RP2 Processor, Nios II and RISC-V multicore for NAS Benchmark.
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5.2.1 Relative Speedup

Figure 5-1 and 5-2 show the speedup of the RP2 based system, for both hardware-

based coherence and the proposed compiler controlled cache coherence. On these

figures, the single-core performance with hardware-based coherence was selected as

the baseline. All Nios II system performances are measured relative to their respective

single-thread performance. Meanwhile, Figure 5-3 compares all three platforms except

the Intel Xeon based machine.

Figure 5-1 and 5-2 show that the software-based coherence provides a compara-

ble speedup compared to hardware-based coherence for up to four cores. Beyond

four cores, the software-based coherence enables eight-core executions with a good

speedup, which was initially impossible due to the lack of hardware coherence mech-

anism.

The performance of the proposed software-based approach gives us about 4% -

14% better performance compared to the hardware-based mechanism. For example,

SPEC2006 “lbm” has 1.76 times speedup with hardware cache coherence and 1.9 times

speedup with the proposed method on two cores. The proposed method is 7% faster

than hardware-based coherence. The same benchmark, on four cores, scores 2.9 times

speedup and 3.28 times speedup for the hardware-based coherence and the proposed

method, respectively, which means 13% performance gain with the proposed method.

Furthermore, the proposed method allows eight-cores execution with respectable 4.76

times speedup, which was previously unattainable due to the lack of a hardware-based

mechanism for more than four cores execution. The performance gain is attributed to

the reduction of bus activity in the RP2 platform. The RP2 platform has a snooping-

based hardware cache coherence mechanism, which means each writes to the cache

costs overhead for the invalidation packet sent to other cores on the bus. Meanwhile,

the software-based approach does not require the transmission of such a packet as the

compiler will insert self-invalidate instruction to the appropriate core. Therefore, the

performance gain can be observed. The SPEC Benchmark “art”, “quake”, “lbm” , and

“hmmer” are positively affected by software-based coherence as shown in Figure 5-1.

In Figure 5-2, albeit not as strong as for the SPEC benchmark, similar perfor-
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mance gain for NPB is also observed on most benchmarks. Similar or slightly better

performance is measured on NPB “cg”, “mg”, and “bt”. Meanwhile, on NPB “lu” and

“sp” benchmark, the performance of the software-based approach suffers due to the

cache-space wasting for stale data handling. Array padding and expansions reduce

the amount of usable cache space in the system. On the other hand, NPB “cg” is a

conjugate-gradient calculation with many DOACROSS loops. Selective cache opera-

tion allows a better performance by reducing the number of self-invalidation.

In Figure 5-3, both the Nios II and RISC-V based soft multicore could run the

benchmark with respectable speed up for up to eight and four cores, respectively.

Both systems do not have have any hardware-based cache coherence mechanism. The

Nios II SoC is very simple and generated entirely by the Altera Platform Designer

with minimum glue logic. Without the compiler support, writing a parallel program

with a good speedup for this platform is close to impossible. The proposed method

successfully provides an automatic speedup for this platform.

5.2.2 Performance Impact of the Proposed Method

Both the stale data handling method and false sharing handling method impose some

overhead to the overall performance. The stale data handling mechanism inserts extra

instructions, and the false sharing method reduces the effective cache space. On an

SMP machine equipped with a hardware cache coherence mechanism, both methods

are typically not activated. But, in order to understand the performance penalty of

both methods, some SPEC benchmark programs were run on the RP2 platform with

several different combinations of the methods.

Figure 5-4 shows the relative performance impact of each proposed method com-

pared to the hardware-based mechanism:

∙ SMP is a standard shared memory architecture with the hardware-based co-

herence mechanism turned on. This is the baseline of the measurement.

∙ Stale Data Handling + False Sharing without Hardware Coherence:

this is the performance of the proposed method with hardware coherence control

turned off. As explained above, software-based coherence eliminates the amount
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Figure 5-4: The performance impact of software cache coherence. Image from: [1]

of invalidate packets sent through the bus, thus providing a better performance

compared to the hardware-based approach.

∙ Stale Data Handling with Hardware Coherence: stale data handling

method with hardware-based coherence mechanism still turned on. The perfor-

mance is negatively impacted. This is expected since the stale data handling

method inserts unnecessary self invalidate instructions for every iteration of the

busy loop, adding more delay to the program without any purpose.

∙ False Sharing with Hardware Coherence: this shows the impact of false

sharing handling methods, which comprise of data alignment, cache line aligned

data decomposition, and other layout transformation with hardware coherence

control still turned on. This kind of combination provides various results. In

“equake” and “hmmer”, the cache line wasting effect is insignificant, thus re-

sulting in a similar performance to the SMP machine. In “lbm”, this approach

improves performance. This is to be expected since false sharing is also bad even

for hardware-based cache coherence control. Removing false sharing problems

will improve the performance of a hardware-based coherence control. Mean-

while, for “art”, false sharing wastes too much cache space resulting in poor

performance.

∙ Stale data Handling + False Sharing with Hardware Coherence: this

graph shows the overhead of both proposed methods for handling stale data and
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false sharing turned on with hardware coherence still active. The combination of

both methods turned on is usually very similar to Stale Data Handling with

Hardware Coherence except for “art” in which the false sharing avoidance

method lowers the performance even more.
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Figure 5-5: The performance benefit of false sharing avoidance in Intel SMP cache coherent machine on NAS Parallel Benchmark
class A data size. Image from [1]
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Figure 5-6: The performance benefit of false sharing avoidance in Intel SMP cache coherent machine on NAS Parallel Benchmark
class B data size. Image from [1]
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5.2.3 Performance Benefits of False Sharing Avoidance on SMP

Machine

To further investigate the performance impact of the proposed false sharing mitigation

on an SMP cache coherent system, the same OSCAR Compiler parallelized benchmark

applications are executed on such a system. The self invalidation method is turned

off. The SMP system used is Intel Xeon E5-2699 v3 CPU with 128 GB of DDR4

memory running a standard Linux OS. On this platform, as it is much faster and has

significantly larger memory compared to the previous embedded platform, the NPB

benchmark uses Class A and Class B data sizes to measure the running time reliably.

In the previous sub-section, false sharing avoidance methods sometimes improves

performance. But, most often, it also lowers the performance due to cache space

wasting. The RP2 platform is very sensitive to cache-space wasting due to its small

size. For a better understanding of this effect, some NPB benchmark programs are

compiled with false sharing avoidance mechanism turned on. The result in Figure 5-5

and 5-6 shows that on an SMP cache-coherent machine, while the self invalidation

scheme is not useful, the false sharing prevention still helps to improve the perfor-

mance. However, there is a slowdown on class B data size due to a reduction in

effective cache size.
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Chapter 6

Conclusions
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6.1 Summary of Works

This thesis describes a method to manage cache coherency by OSCAR Compiler,

an automatic parallelizing compiler, for a Non-Coherent Cache (NCC) system. The

OSCAR Compiler decomposes an input program into the coarse grain task, then

analyzes control flow and data dependence between the task. After the compiler

figures out the earliest executable condition for each task, creates a static parallel

execution schedule, then it analyses stale data and false sharing problem between

the tasks. The compiler solves the stale-data problem by self-invalidation and syn-

chronization. It also prevents false sharing problems with simple data restructuring,

i.e., cache alignment, array expansion, array padding, and non-cacheable buffer. This

part of the work was jointly developed with Mase, M. and Kishimoto, Y. on Kasahara

laboratory, Waseda University[18].

For evaluating the performance of the method above, in addition to the existing

Renesas RP2 platform, two new multicore systems are developed, namely the 8-core

Nios II multicore, and the quadcore RISC-V multicore, both without hardware-based

cache coherence mechanism. The Nios II multicore is very simple and generated

entirely in the Altera Platform Designer. Meanwhile, the RISC-V is an emerging

new popular opensource platform that originally does not support software cache

manipulation. A new software-controllable cache is created and integrated into the

system.

The proposed compilation method is then evaluated using ten benchmark pro-

grams from SPEC2000, SPEC2006, NAS Parallel Benchmark (NPB), and Media-

Bench II on Renesas RP2 8 core multicore processor. Due to the limitation of the

evaluation platform, only NPB is used for both the 8-core Nios II multicore and the

quadcore RISC-V multicore on Altera FPGA.

The performance of the NCC architecture with the proposed method is comparable

or better than the hardware-based coherence scheme. For example, the RP2 platform

with a hardware-based coherence mechanism gave 3.34 times speedup on four core for

NPB “cg” while without any hardware-based cache coherence, the proposed method

provided 3.71 times speedup on four cores. Moreover, the proposed method allowed
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execution on all eight cores, which was originally not supported by the hardware cache

coherence mechanism, with 5.66 times speedup. For the same benchmark program,

the proposed method gave 3.68 times speedup on four cores RISC-V multicore and

3.57 and 5.89 times speedup on four and eight cores Nios II multicore. The proposed

method also allows us to parallelize automatically and easily run the benchmark

program on 8-cores Nios II multicore and four cores RISC-V multicore, which both

are not designed for cache-coherent operation.

The results above show that the proposed method provides competitive perfor-

mance advantages against the traditional hardware-based coherence control mech-

anism for the same number of processor cores. Furthermore, it gives a respectable

speedup automatically for any number of processor cores without the hardware coher-

ent control mechanism regardless of the processor architecture. Meanwhile, usually,

programmers had to spend much effort to develop an application for the NCC plat-

form.

The novelty of this research are:

∙ The first compiler controlled cache coherency that handles both true sharing

and false sharing with automatic parallelization, which was successfully tested

on practical hardware platforms.

∙ The first implementation of software cache control for RISC-V in FPGA.

6.2 Future Works

In the near future, wafer-level massively parallel multicore will become prominent.

On such level of integration, a thousands-cores processor supported by on-chip mem-

ory with a supercomputer-level-memory bandwidth becomes possible. Relying on

hardware cache coherence may not be feasible due to its complexity. This research

provides an alternative to such a mechanism, freeing more silicon area for actual

computational logic.

Likewise, this research also allows us an easy way to create a multicore SoC on

FPGA with an automatic SoC builder currently available in the market. Most of the
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SoC builders do not support generating a cache coherency mechanism automatically.

Automatically generated SoC paired with an automatic parallelizing compiler with

NCC support will provide a simple solution to speed up the execution of a complex

algorithm.

Currently, support for multiple levels of cache and a more complex out-of-order 64-

bit RISC-V core are under development. The algorithm needs further development

to support multiple levels of private and cluster level cache. Compiler controlled

processor-accelerator cache coherency is also considered. This allows better support

for automatic accelerator code generation with OSCAR Compiler.
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