
A Study on Hierarchical Cache System Control

based on Access Pattern Analysis

for Chip Multiprocessor Systems

Huatao ZHAO



A Study on Hierarchical Cache System Control

based on Access Pattern Analysis

for Chip Multiprocessor Systems

Huatao ZHAO





Abstract

Multilevel hierarchical cache is used to buffer the huge gap on processing speed

between on-chip multi-core processor level and off-chip large-scale memory

level. As the number of cores integrated on a single chip die recently tends to

be dozens or even hundreds, the hierarchical cache loses its ability to cover over

the speed gap and fails to optimally interconnect across on-chip components.

More seriously, stacked multi-layer systems which have high integration density

require a hierarchical cache with higher throughput to fully meet cache access

demands among many concurrent threads, and also require more efficient

method to guarantee data coherence in hierarchical cache.

To meet the throughput requirement in hierarchical cache, multi-level and

private-shared cache structures are used in the recent chip multiprocessor

systems (CMPs). Those cache hierarchies can even take a half of overall on-

chip area and energy consumption of CMPs. However, many components of a

hierarchical cache rarely contribute access hits in the most of execution time,

but they waste too much energy for standby. Moreover, shared data which serve

to concurrent threads are existing in a hierarchical cache, and coherence

maintenances on those data waste too many clock cycles. As a consequence, the

current hierarchical cache induces serious issues as follows: (1) Power issue on

misallocating cache resources and (2) Data sharing issue. In the issue (1), On-

chip caches suffer from high energy consumption overhead and a chip area

overhead while such hierarchical cache is failed to satisfy cache resource

demands of many threads in a large scope. In the issue (2), cache accesses to

shared data among concurrent threads cause extremely expensive coherence

maintenance.

The power issue (1) is caused by two reasons. First, increasing of cores

requires a large scale of hierarchical cache for ensuring enough spare resources.

Second, a demand for cache resource during runtime is locally changed along

with processing at cores, which leads to allocation inequality that some threads

tend to be in rush traffic but some threads are uncrowded with redundant cache

I



resources. Rawlins, M. [IEEE T COMPUT, 2013] and Chen, G.

[Microproc.Microsyst., 2016] proposed cache tuning based methods to explore

optimal allocations on cache resources for each length-fixed interval of

instructions, where during runtime, the energy-lowest cache size is explored for

the next intervals once behavior changed (i.e., miss rate changed). Adegbija, T.

[IEEE T VLSI SYST, 2018] and Wei, W [ACM T ARCHIT CODE OP, 2017]

proposed a phase based exploration method on cache resources to save access

energy, where firstly a number of phases are classified for each application, and

then the optimal phase is explored if miss rate is larger than threshold. However,

a demand for the cache resource in any executing period and in any thread could

not be optimally satisfied with allocated cache resources appropriately. Thus,

the first objective of this thesis is to dynamically allocate cache resources to

meet each demand for cache resource for each thread in any executing period,

in other words, tune cache bank supply to concurrent threads’ demand

dynamically in intervals of selected subroutine calls, thereby saving energy by

making the utmost of cache utilization.

The data sharing issue (2) is highly related to the fact that some kinds of

cache access patterns (i.e., write accesses to shared data) cause expensive

maintaining operations among many cores. Shared accesses generated in many

concurrent threads may result in serious data inconsistency, and crossed

accesses whose target data are existing in other threads will lead to access misses.

The access pattern analysis shows that distributions on those harmful patterns

can possess a considerable percent of total accesses. Lotfikamran, P. [IEEE

HPCA, 2017] proposed a proactive resource allocation method to improve

system performance based on shared data traffic profiling, which firstly predict

that hot threads require more resources, and then allocate required resources to

the threads in each time interval, thereby reducing router stall time and

improving performance. Gupta, S. [ICPP, 2015] proposed a spatial locality-

based cache partitioning method, which firstly exploits spatial locality in

partitioned shared cache, and then, for memory-intensive thread, increases its

block size to enlarge shared data re-usage, and save some capacity to other
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threads. However, it is still difficult in conventional access paths to detect and

deliver shared data, as those paths waste plenty of clock cycles to handle

harmful cache accesses. Thus, the second objective of this thesis is to efficiently

handle those harmful cache accesses in the proposed concurrent path, which acts

as a shortcut path on data sharing accesses among private caches to detect and

route shared data in advance.

This thesis is organized as follows:

Chapter 1 [Introduction] introduces the research background of hierarchical

cache designs and previous works on the cache optimization, and then describes

the outline of the proposed methods.

Chapter 2 [Access Pattern Analysis] represents the detailed experiments on

cache access patterns and statistically classifies cache access distributions. Then,

those patterns are analyzed to reveal the internal relationships among cache

resource demands, locality features and access distributions.

Chapter 3 [Controllable Cache Resource Allocation] proposes a low-power

hierarchical cache scheme applying the control theory to give a hardware-based

solution for an optimal cache resource allocation in some interval granularity.

Firstly, an effective bank allocation policy is proposed for adaptive cache

resource allocation. Secondly, preferable intervals which mean proper timing to

change resource allocation are designed in fine granularity of per-subroutine.

Finally, the controllable cache resource allocation policy is proposed combining

the discrete control theory by the PID based controller and cache resource

allocation at subroutine-based interval. Experimental results using SPEC

benchmark data and Gem5 simulator show that energy consumption on shared

cache can be saved by 39.7% on average compared with the conventional equi-

interval method, and saved by 11.6% and 18.2% compared with Chen’s method

[Microproc. Microsyst., 2016] and Adegbija’s method [IEEE T VLSI SYST.,

2018], respectively.

Chapter 4 [Stacked 3D On-chip Cache Network] proposes a stacked 3D

three-layer on-chip architecture consisted of enhanced global- and local- router
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networks. The router is improved in cache access detection, sharing data

replacement and target data delivery functions. The proposed interaction path in

the network can support fast shared data, in which “crossed read” can achieve

target data by routing from other caches and both “shared write” and “crossed

write” can directly update all copies in virtue of the routing network. Moreover,

VLSI layout design of the proposed router architecture is implemented to verify

the placement & routing details. And the on-chip design of a stacked 3D

structure is evaluated from the viewpoint of thermal affection and estimated

chip size. Simulation results indicate that the proposed router-integrated

hierarchical cache design of a CMP system improves the system performance

by 31.9% and on-chip energy by 17.6%, compared with the base system without

a cache network.

Chapter 5 [Conclusion and Future Work] sums up this thesis on

achievements and contributions, that is, much energy savings is achieved by the

proposed self-adapting cache resource allocation method, and both performance

and energy consumption are improved by the proposed router-integrated cache

optimization method. Finally, further optimizations on proposed designs are

expected in future work.

As a consequence, this thesis represents optimization techniques on

hierarchical cache including shared cache level and private cache level. For

power issue on misallocating cache resources, a discrete PID based controller is

integrated to form a self-adaptive cache allocation method in a novel granularity

of per-subroutine based interval. For data sharing issue, a shortcut path on

harmful accesses is designed to improve coherence-maintenance efficiency by

integrating enhanced router networks. The experimental results show the

substantial improvements on both performance and energy consumption.
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Chapter
1

1.1 Research Background on Hierarchical Cache

1.1.1 Speed Gap between Cores and Memories

In the last decade, on-chip integration density varies from single-core, millions

of transistors to dozens of cores, billions of transistors. For example, from Intel

Pentium 4 to Xeon Phi [58]. Even though clock frequencies of those processors

are almost remaining same (i.e., 2.0 GHz), processing capacities of modern

processors behave to be unmatched with their integration scales, where there

only have several times of performance improvement rather than expected

dozens of times. To look inside of the processor, the highly improved core

usually needs to wait for many clock cycles for achieving instructions and datum

from hierarchical cache, because the hierarchical cache is much slower than the

core, while caches cannot meet the speed demand of linked cores. So that the

key reason for such undesired improvement is caused by the speed gap between

cores and memories (including on-chip caches and off-chip memory), while

such gap has been enlarging since modern computer architecture was proposed.

In Fig. 1-1, transistor scales of some mainstream processor products and

private caches are shown from the 1970s to this day. As shown in the figure, the

scales of Intel on-chip processors are varying similarly as the description of



Moore's law: transistor scales turn to be four times every three years. Meanwhile,

linked private cache scales vary in much small amplification (about triple in

every four years), in other words, the performance of those processors are much

faster than their linked cache hierarchies in the modern system on a chip.

In recently released chip multi-processors (CMP), the number of integrated

cores in a chip tends to be 64 or even more. For example, AMD EPYC Rome

processor (2019.8) and HUAWEI KP920 processor (2019.10) use have 64-core

on chip architecture. To serve so many cores concurrently, large and complex

hierarchical cache is employed although it consumes a large portion of on-chip

energy. Typically in so-called ‘chiplet’ architecture, many cores require many

caches for buffering, and data interaction method tends to shift from traditional

‘Processor to Processor’ to ‘Cache to Cache’ as throughput requirement among

threads are greatly increasing. Hence, chip developers try to optimize

hierarchical cache in purpose of both low energy consumption and high

performance. In this thesis, a lot of efforts have been done on such topic.

1.1.2 Hierarchical Cache Issues

The hierarchical cache usually consists of multi-level caches which can be

Figure 1-1. On-chip integration scale statistics [29, 58, 63]. The integrated

scales on both microprocessor and first level cache transistor are counted

among Intel processor series from 1971 to 2018. On-chip transistor scale

values are not drown in equidistance.



classified into two types: private cache and shared cache. Those two cache types

form a pyramidal shape in size, energy consumption, and hit rate, while form an

inverted-pyramid shape in speed and access frequency. As the integration scales

of first-level instruction cache and data cache are limited by speed and cost

requests, their sizes are the smallest over other cache levels. Meanwhile, from

top to bottom in the pyramid, larger cache sizes make sure the better hit rate, but

are enduring with low speed and high energy consumption due to their

integration scales. Typically in shared last level cache, it serves many private

paths concurrently and acts as the last line of defense on on-chip access misses,

while it is criticized for its large size, low speed, and high energy consumption.

Ideally, cache hierarchies are desired to just satisfy the hardware demand for

maximal access hits while their integration scales are minimally activated for

energy saving. Hence, there has a trade-off on cache combinations that are

needed to balance performance and energy consumption.

As there have only several kinds of applications executed in embedded

systems, those applications can be classified based on runtime characteristics

for fully adapting to current system combinations. For example, a behavior-

stable application such as bzip2 benchmark may only need a small quantity of

hierarchical cache while redundant cache accesses can be repeatedly hit on

limited cache entries, however, a behavior-unstable application such as soplex

benchmark may need a much larger hierarchical cache to cover up the cache

access distance, otherwise many cache miss accesses will happen and result in

serious access delay and energy consumption.

In the first level of hierarchical cache (L1 cache), caches are designed as

small size, low associativity, and small line size for the purpose of high access

speed, which is almost same as the speed of processor unit. Hence, the L1 cache

has very few access entries to cover up application locality or reusing distance

and then dozens of percent of all L1 cache accesses tend to be miss accesses,

which will be handled in the next level of hierarchical cache. In the last level of

hierarchical cache, last-level cache (LLC) is acting as the last line of defense on

on-chip cache accesses. Therefore, LLC is designed with large size, high



associativity, and large line size for the purpose of high hit rate. Moreover, each

LLC serves with many threads of multi-processor cores concurrently, and plenty

of LLC accesses will be occurring in parallel. Inevitably, data coherence in LLC

acts as one of the most important issues, because each modification on shared

data will cause serious coherence issue among existing copies and brings about

difficulty on writing back to off-chip memory. Furthermore, LLCs are designed

to satisfy diverse workloads with large enough integrated scale since many

processor cores need a number of parts of LLC. Note that each workload has

particular features on LLC demands including cache size, associativity, and line

size and so on. The demand variations reacted in hit rate or miss rate of LLC

accesses are shown out with diverse values. In other words, each workload has

its favorite hardware combinations on LLC. To sum up, the cache hierarchies in

modern chip multiprocessor systems have the following issues which are aimed

at this thesis.

(1) Cache resource demand issue. This issue is generated because the diverse

hardware demands of each workload are encountering with fixed and

superfluous cache scales. If allocated hardware scales exceed the hardware

demands of one workload, extra energy consumption and access latency will be

consumed, on the contrary, if allocated hardware scales are insufficient, many

miss accesses will occur and waste many clock cycles for off-chip memory

access.

(2) LLC partition issue. The LLC should serve with many threads of multi-

processor cores, and its components will be partitioned to each thread for the

purpose of data pollution prevention. The partitioned scales from LLC need to

be dynamically adapted to the hardware demands of current threads.

(3) LLC access sharing issue. Each access request from any thread may have

the existing contents in other partitioned parts of LLC, thereby data coherence

among copies of target data acts as the access sharing issue which will largely

degrade LLC performance to maintain shared data across the entire LLC.



1.2 Related Works on Hierarchical Cache Optimization

In recent years, hierarchical cache optimization is one of the most active topics

as the hierarchical cache of commercial mainstream processors can take even

half of the on-chip area and energy consumption. Many pieces of research were

proposed to improve hierarchical cache in several angles: cache resource re-

allocation [1, 6, 8, 9], shared cache partition [11, 12, 18], and parallel accessing

[13, 19, 20].

Initially, C. Zhang, et al. [7] proposed the self-tuning method to support

hardware-based tuning on cache size, line size and associativity of both private

and shared cache, thereby redundant cache components can be shut down in

purpose of energy consumption saving. To trace the application variety on cache

components, researches in [11, 18] proposed the trace-driven simulation method

for efficient management in a multi-thread system. However, count in cache

parameters and hierarchical cache, the optimal combination corresponding to

one application should be explored from the set which has thousands of

combinations. Thus, exploration methods are acclaimed to achieve the target

combination rapidly through off-line or runtime exploring. W. Wang, et al. [9,

12] had described the scales of cache combinations for LLC tuning, which tend

to be millions of combinations according to a short runtime interval (a runtime

period with some dynamic instructions), however, the ideal status is to explore

the optimal combination from the large combination set within several or dozens

of clock cycles, which seems very difficult to implement. Hence, research in [6]

proposed an off-line searching algorithm to explore each combination

corresponding to each interval, and then apply all searching results on runtime

hierarchical cache allocation. Furthermore, A. Gordon-ross, et al. [24, 25]

presented a dynamic allocation mechanism based on phase information of each

application interval to achieve the approximate optimal combinations, which

showed some energy saving in a two-level hierarchical cache. Moreover, M.

Qureshi, et al. [26] integrated the utility theory of economics into cache resource

allocation for the purpose of maximizing the total utility of allocated resource



on hit rate or miss rate, thereby hierarchical cache can be apportioned as thread

demands. Research in [27] employed analysis models to statically explore the

optimal cache combinations of LLC and then the LLC can be partitioned

according to evaluation results. H. Cook, et al. [28] proposed the hardware

evaluation based LLC partition mechanism to dynamically control partitioning

signals for the purpose of LLC resource availability and low energy

consumption. Researches in [29] and [30] tried to partition the LLC in the

granularity of each cache way with less hardware overhead. And further

research in [61] proposed a cache block-based partition method for subtly LLC

allocation. To ensure partitioning fairness, researches in [14] and [62] proposed

the coordinated allocation methods through evaluating the runtime fairness of

partitioned LLC resources. Meanwhile, A. Herdrich et al. [63] proposed the QoS

based cache partition method to endow priority for some hot threads for the

purpose of high availability. Researches in [64] and [65] saved a large amount

of both static and dynamic energy through partitioning LLC based on efficiency

criterion.

However, those cache reconfiguration methods and cache partition methods

failed to trace the real cache resource demands of processing threads, and their

cache allocating operations were done in improper fixed-length based intervals

such as ten million dynamic instructions per interval, thereby limiting their

efficiencies. Thus, the controllable cache resource allocation method is

proposed in chapter 3 for better cache tuning efficiency.

To maintain cache coherence, many recent pieces of research aim to

improve coherence mechanisms for the purpose of high scalability, low energy

overhead, and high performance. The non-uniform cache architecture (NUCA)

[66] allows fast accesses to private or partitioned cache units and cache line

migratory is supported in such architecture. Hence, research in [67] proposed a

prediction-based coherence communication mechanism to improve shared data

communication. Research in [33] designed the hardware of predictor to trace

the data sharing. In recent many-core processors, directory-based coherence

mechanisms are adopted due to their high scalability [68]. As the majority of



accesses are private rather than shared ones, sparse directory and coarse vector-

based directory are proposed to largely decrease directory items, so as to

hardware scales [69]. To identify shared or private data, research in [18]

proposed a trace-driven reorganization mechanism for the purpose of filtering

out shared data for further focused execution. Research in [70] proposed the hot-

region based coherence mechanism to allocate the hot region of a directory to

the particular core dynamically.

However, those conventional methods neglected the ‘cache to cache’

interaction requirements under many-core situation. And their solutions needed

complex hardware supports while few improvements can be achieved by

modifying coherence maintaining paths only. Thus, inspired by network on a

chip (NoC) concept, the stacked 3D cache network method is proposed in

chapter 4 for much performance improvement.

1.3 Motivations and Proposals

1.3.1 Motivations in this thesis

In order to improve the efficiency of hierarchical cache, both energy

consumption and performance metrics should be considered as follows.

(1) For improving energy consumption, the large-scale LLC acted as the

major heat source is naturally under-optimized in hierarchical cache. The key

design difficulty is how to allocate large LLC for serving so many cores

efficiently. In other words, it is difficult to trace the demands of allocated LLC

parts for concurrent threads during runtime, and also apply the demands to

allocating process dynamically. Thus, one of key motivations in this thesis is to

do dynamical shared cache allocation for low power consumption. Ideally,

measures to allocate more resources to desired threads, to reduce surplus

resources when threads are under idle state, and to set spare resources under low

power mode can save many LLC energy consumption.

(2) For improving performance, complex and costly coherence maintenance

has great potential to do optimizations. In traditional ‘Processor to Processor’



data interaction method, some data sharing related cache accesses can cause

dozens of time access latency for updating new data to all old data copies or

borrowing target data across entire hierarchical cache. Thus, the other key

motivation in this thesis is to build a shortcut coherence maintaining path for

actualizing fast ‘Cache to Cache’ data interaction, thereby improving system

performance greatly.

1.3.2 Proposals and contributions

In this thesis, aiming at LLC access issues including resource allocation,

partitioning, and access pattern optimization, novel hardware-based

mechanisms are proposed to allocate LLC resources efficiently and further

extend from chip multiprocessor systems to multi-layer stacked systems. In

order to make full usage of LLC banks, a dynamic allocation method that is

integrated with the discrete control theory is proposed to control runtime cache

bank allocation among novel and refined control intervals. To look through state

of the art in LLC allocation techniques, this is the first hardware-based

achievement which is integrated with discrete Proportion-Integration-

Differentiation controllers on runtime LLC allocation. To sum up, the key

concept of this controllable LLC allocation mechanism is to tune bank supply

of shared cache to each thread’s demand by using online PID control in intervals

of selected subroutine calls. And contributions of such design are described as

follows.

(1) A novel evaluative criterion on allocating LLC resource is proposed

based on the combined metric which counts in both hit rate tendency and energy

per access tendency along with cache parameter varying, and then energy

consumptions can form a concave curve, which is applicable in feedback based

discrete control. And the searching complexity of combination exploring can be

greatly reduced by focusing on the extreme points of each curve.

(2) The relationship of application locality and influenced dynamic

instruction flow period is discovered to establish the behave-stable control

periods. Through sampling the runtime flow on frequently used subroutines, the



relationship can be described that repeated calls on the same subroutine behave

in an approximately stable locality and calls shifting on other subroutines may

lead to locality change as the internal architectures of subroutines have various

characteristics.

(3) A feedback based allocation mechanism is firstly implemented into the

LLC for the purpose of dynamic runtime combination control. Based on

dynamic energy and latency counting, all discretized results are designed to

connect with LLC resource allocation, thereby the difference of energy or

latency change can be employed as the feedback value of a controlled variable

for further reflexing to the difference of allocated LLC resource. Moreover, an

off-line sampling method is designed to explore each control parameter set

corresponding to each control interval, and then the controllable mechanism is

implemented to dynamically allocate LLC resources for the purpose of quite a

number of energy-saving.

To further improve performance of hierarchical cache, the allocation

mechanism should consider the issue of reusing previous hits in the granularity

of per access. Moreover, as the throughput capacity of hierarchical cache is

imperative in the many-core system, information interaction among partitioned

LLC parts should be ensured to transport vast amounts of data in the same

parallel layer and upper/lower layers. Thus, aiming at relieving the

interconnection traffic to LLC and optimize the data stream of coherence

maintenance requests, a filter-based router network is proposed to integrate into

multi-layer three-dimensional stacked system structure for the purpose of

filtering large amounts of data shared based accesses, and further interact shared

data in virtue of routing network. To sum up, the key concept of proposed cache

network design is to build shortcut path on data sharing accesses among private

caches by using a dedicated network for detecting and routing shared data in

advance. And such cache network design contains innovative contributions as

follows.

(1) A novel classification method is proposed to make differences among



cache accesses including repeated accesses, shared accesses and crossed

accesses, and further those accesses are classified into read situation and write

situation, counted together, six kinds of access types are marked to represent

particular requirements, thereby each access type is endowed with enhanced and

efficient access path for latency reduction.

(2) The proposed router architecture is firstly integrated with three

functional modules to support target access capturing on characteristic accesses,

maintaining on shared data coherence and access transporting among entire

network, and then many accesses which are existing in other partitioned banks

or have stored in partitioned banks can be directly handled in virtue of enhanced

router network. Furthermore, a great deal of data sharing based accesses can be

maintained by enhanced coherence logic in the router network rather than in the

LLC coherence controller, hence access latency of proposed cache network

design shows much more reduction over conventional LLC access pipeline.

(3) The proposed router architecture is implemented in IC Compiler to

represent the hardware overhead including energy consumption, integration

area and access path latency. Meanwhile, the router network is firstly integrated

into the first layer for improving access throughput traffic and access latency.



Chapter
2

2.1 Overview on Cache Access Patterns Analysis

Access pattern in this thesis is defined as the cache access set, which represents

specific characteristics under certain evaluation matrixes (i.e., access latency,

energy, hit rate). And one set can be classified in different profiling granularities,

for example, fixed number of dynamic instructions acts as one profiling interval.

Thus, application features of SPEC-cpu-2006 benchmark suite [16] and

PARSEC benchmark suite [45] can be profiled to show internal locality features

in detail. In order to study the features of those benchmarks, seven kinds of

target features are analyzed including access reusing distance features, access

locality features, parallel processing features on shared data [54], hierarchy

traffic features, access distribution features, access hit features and

comprehensive evaluation features. All those features are highly related to cache

resource demand of particular application and particular clock period, and the

final target is to dynamically match the resource allocation with resource

demand in the granularity of per-application, per-interval, and further per-access.

Moreover, the tendencies of overall energy consumption, up-down

interconnecting traffic, and throughput performance are precisely explored

along with allocated resource scale increasing, consequently, the much more

reasonable searching algorithm on the optimal LLC combinations can be



proposed with far less searching space and far improved fast searching speed

which is suitable for implementing on dynamic LLC allocation.

In this chapter, firstly, Ch. 2.2 describes the pre-experiment setups. Ch. 2.3

and 2.4 discuss cache access patterns to explore the hierarchical cache

optimization methods proposed in Ch. 3 and Ch. 4, respectively. That is, based

on those access pattern analysis results, the optimization method for cache bank

allocation at shared-level cache and the solutions for cache coherence problem

in private/shared-levels are described.

2.2 Pre-experiment Setups

In order to represent above-mentioned seven features clearly, each feature type

will be tested in particular system setups, including a single-core-multi-cache

level setup, multi-core-shared hierarchical cache setup. The simulator platform

employs the Gem5 [53] simulator for a trace-driven detailed and precise module

on-chip multi-processors and an event-driven Ruby module on hierarchical

cache which consists of cache levels, interconnecting networks, and off-chip

memory. Moreover, a cache power and area scale modeling tool CACTIv6.5

[55] is integrated into the test platform for replenishing hierarchical cache

simulation, which supports energy, latency and area simulations on hierarchical

cache. And this tool can support to simulate static non-uniform cache

architecture (SNUCA) [38] which is applied on cache allocation proposal, and

also supports to simulate dynamic non-uniform cache architecture (DNUCA)

[15] which is applied on cache process optimization proposal. As to instruction

flow analysis, a customized application analysis tool named PIN [17] is

employed for detailed monitoring runtime status of hierarchical cache accesses.

Thus, seven target features are desired to represent as follows.

(1) Access reusing distance features: Use large enough record directory to

count the time period between the first access and the next hit on the same data

which is stored at a particular cache level. Hence, distance feature is the crucial



adjective behavior on allocating cache entry number, which should cover the

majority of access distances in the purpose of access reusing.

(2) Access locality feature: The locality feature is expected to show the

runtime change tendency of dynamic instruction flow, and further make a

thorough inquiry on when there is a steady period or a locality-changed period

and what factors are related to locality steady or changed. Thus, such a feature

can help to design suitable allocating intervals.

(3) Parallel processing features on shared data: In the LLC, the on-chip

system benefits from highly-parallel arithmetic, while the percentage of data

sharing acts as a key factor in system efficiency. Furthermore, copies of shared

data across the entire LLC will lead to serious coherence problems. Thus, those

features are desired in designing the degree of parallel operation and

maintaining LLC coherence.

(4) Hierarchy traffic features: The access traffic from upper to lower is

regarded as the access demand which requests hardware support with plenty of

access entries. Moreover, traffic of a particular hierarchy level is fluctuant in

dynamic instruction flow corresponding to each application or even each

interval, which acts as the working task set on LLC resource allocation.

(5) Access distribution features: To analyze all LLC accesses in the

granularity of per access, the distribution of each access is counted together for

representing the target locations in LLC, which can be employed to allocate

suitable resources and help to modify or enhance the conventional access path.

(6) Access hit features: The hit rate along with allocated LLC resource

increasing will vary to form a particular curve corresponding to each application,

and such feature acts as one criterion on the allocated amounts of LLC resource.

Moreover, hit distribution in small granularity (i.e., per interval) is symbolized

to indicate the access traffic and locality status precisely.

(7) Comprehensive evaluation features: Instead of counting on typical

hierarchical cache, the energy consumptions of top-bottom system are firstly

calculated into the pattern of overall energy consumption per access, which is



benefited to represent the tendency of energy consumption along with allocated

LLC resource varying. And further such pattern is adaptive in playing the part

of controlled quantity.

2.2.1 Simulation Platform Architecture

Based on the key purpose of each pre-experimental analysis, two kinds of

simulation platforms which can be combined with reconfigurable combinations

of processors and cache hierarchies are designed to adapt to diverse simulation

targets.

(1) Single-processor-multi-level-cache based platform (SP-MLC).

To explore the features of a particular application, the SP-MLC platform

shows high veracity and simplicity on revealing typical features in a particular

Figure 2-1. Proposed architecture example. Each 3D on-chip

component is stacked into different layers, where private core units

and global routers are stacked into the first layer, local router and

shared cache are stacked into the middle layer, and the DDR4

memory is stacked into the bottom layer. The shared cache is

partitioned into bank groups.



application [75]. For example, each cache resource combination can be

simulated in this platform for filtering interference from other threads. Hence,

this platform is designed with same setups just as the ones of multi-processor

platform including both processor setups and hierarchical cache setups.

(2) Multi-processor-shared-cache based platform (MP-SC).

As shown in Fig. 2-1, a stacked 3D on-chip architecture is shown as an

example to represent the multi-processor-shared-cache based platform. In the

MP-SC platform, each private processor unit links to one router, and then each

router is interconnected with each partitioned shared cache bank group through

TSVs. And the partition lines averagely allocate shared cache banks to each

processing thread, where each bank group is one-to-one correspondence with

each router, and each group stretches out to the other router network, and further

links to the off-chip memory in the bottom layer.

For feature profiling purpose, the SP-MLC architecture is employed to avoid

access disturbances from other parallel threads. But for data sharing

experiments, the MP-SC architecture is employed to study distributing features

of shared accesses. As shown in Table 2-1, the setup details of the SP-MLC and

MP-SC platforms are listed. To reduce the number of variable LLC

combinations and simplify exploration workload, each processor only contains

a single thread and hierarchical cache is designed to simulate level one cache as

the private cache and level two cache as the shared cache, and all parameters of



both processors and caches are contrivable as the ones of the commercial

mainstream chips.

2.2.2 Performance and Energy Parameter Modeling

According to the process of executing a cache access request, the overall energy

consumption is calculated as static and dynamic power of hierarchical cache,

routers, crossbars, and off-chip memory during executing period of some

numbers of access requests (Nrequest) [74]. The period is defined as clock cycles

from the clock cycle of the first cache access request arriving at the clock cycle

of the last cache access result returned. As shown in Eq. 2-1, the average value

named energy consumption per access (Eaccess) can be calculated by using

overall energy to divide request number. Similarly, the performance of all tests

are normalized as the average instruction per clock (IPC, stands for dynamic

instruction numbers Ndyn-ins divided overall cycle numbers Ncycle), while cycle

numbers are counted in the period from the clock cycle of first cache access

request arriving at the clock cycle of last cache access result returned.

Furthermore, the IPC in the MP-SC platform represents that all dynamic

instructions executed in all processors are dividing by the unified clock cycles

of the platform rather than cycles of all processors.

= { }/ Nrequest

(2-1)

IPC = Ndyn-ins / Ncycle (2-2)

Where Ecache, Erouter, Ecrossbar and Eoff-chip-memory stand for the average energy

of cache, router, crossbar and off-chip memory during a cache access,

respectively. Based on the detailed cache modeling tool CACTIv6.5 [55], the

static and dynamic power of hierarchical cache are accumulated with selected

cache components including tag array, data array, output logic, and pre-charge



logic. And further counting in the of-chip memory accesses, the access latency

of one cache request (Lrequest) can be calculated by Eq. 2-3.

= * * (2-3)

Where Rhit and Rmiss represent the hit rate and miss rate in current cache, and

and stand for the latency of cache access hit and miss,

respectively, which can be represented as follows.

= + + (2-4)

(2-5)

Where all access latency values on cache components and off-chip memory

are set by cache model analysis which counts the access path latency based on

transistor level integration with the aid of CACTI tool, in like manner, both

static power and dynamic power of all cache components and off-chip memory

can be accumulated on their integrated and activated transistors. Hence, the

of any cache level is defined as Eq. 2-6.

=

* *{ }

(2-6)

= * *{

} (2-7)

Where P stands for the corresponding power, a (0 , )

represent the rate sets of cache resource activation in the access path.

Moreover, the energy consumption in crossbars can be directly contained in

the simulator. The static power ( ) and dynamic power

( ) of proposed router architecture are generated by IC Compiler

(details see Chapter 5), and the energy consumption of a router is described as

Eq. 2-8.

*{ } (2-8)



Where (0 ) stands for hardware activation rate in the router.

2.3 Analysis on Hierarchical Cache Demands

2.3.1 Cache Resource Demand

To analyze the resource demand corresponding to a particular workload, two

key parameters are employed for representing demand change along with

allocated cache bank varying. The first parameter is the hit rate, and the other

one is the average energy consumption which is calculated in the granularity of

each LLC access. All tests are implemented in the SP-MLC platform.

As shown in Fig. 2-2, the hit rate of gcc benchmark displays a rising curve

along with allocated cache bank increasing [73]. With one bank allocated, hit

rate is about 51%, which means that almost half of all LLC accesses will be

access miss and further off-chip memory accesses are required with far longer

access latency than access hit. Correspondingly, energy consumption tends to

be very large as those LLC accesses are last for a long time in handling access

misses and a large hardware scale of off-chip memory is activated to support

miss restoration. Hence, cache resource demand is not satisfied with the

Figure 2-2. Energy sampling with different cache banks. All tests are

simulated on 403.gcc benchmark, where operational cache bank number is

sampled from one to sixteen.



allocation of one bank, which will result in low hit rate and high energy

consumption. If one more bank is allocated, hit rate can be greatly improved by

about 16%, and such improvement on hit rate continues along with allocated

bank number increasing. However, the amplification of such improvement tends

to be decreasing progressively, where there are very few improvements in the

hit rate achieved after allocating more banks to the 6-bank situation. And the

new allocated banks in this situation contribute a bit of hit rate improvement, on

the contrary, their hardware scale wastes some energy, resulting in an increment

of energy per access value. Typically, there is the lowest value of energy per

access in the situation of allocating five banks, where the hardware overhead of

all allocated banks seems to generate the resultant force with energy

consumption saving due to hit rate improvement, thereby the rise and fall in

energy consumption are balanced at the energy lowest trade-off situation.

In a similar manifestation, the hit rate of bzip2 benchmark form a trend curve

that improvement in allocating first several banks grows rapidly and then

remains stable along with allocated bank number increasing. As shown in Fig.

2-3, the hit rate in allocating one bank situation is only about 42%, however, hit

rate is greatly improved by 89% as there are two more banks allocated. In other

Figure 2-3. Energy sampling on 401.bzip2 benchmark. Operational cache

bank number is sampled from one to sixteen.



words, hit rate curve will become stable rapidly along with allocated bank

number increasing, and allocating more banks just wastes some cache resource

while energy consumption is increased due to that activated hardware.

Moreover, there are several benchmarks that show quite different

characteristics on the value varying tendency of hit rate and energy consumption.

For example, the hit rate of soplex benchmark will be improved very few in

allocating first several banks until allocated bank number exceeds a threshold,

while exceeding such threshold can bring extra hit rate improvement and then

hit rate remains stable again at a much larger value. As shown in Fig. 2-4, hit

rate in allocating the first seven banks is increasing gently, meanwhile,

allocating two extra banks will bring about more than 25% hit rate improvement.

And then, hit rate remains stable even with extra banks allocated. Relatively,

the lowest energy consumption will be screened out at the situation of just

exceeding the threshold.

2.3.2 Discussions on Demand Variation

To sum up, all benchmarks can be classified into three patterns while each

pattern represents a particular amplitude of improvement variation along with

allocated bank increasing. As shown in three examples, gcc benchmark behaves

Figure 2-4. Energy sampling on 450.soplex benchmark. Operational cache

bank number is sampled from one to sixteen.



a little insensitivity with bank allocation, bzip2 benchmark is sensitive with

extra bank allocation and access pattern on soplex benchmark shows a phase-

step based curve characteristic. As a result, both hit rate and energy

consumptions are highly related on cache resource allocation, and two

appearances can be observed as follows.

(1) There exists an optimal bank allocation point for each benchmark from

the viewpoint of energy consumption, that is, energy consumption tends to be

the lowest one while the hit rate tends to be remaining stable at the approximate

maximum value.

(2) As to allocating bank number from one to the optimal number

incrementally, hit rate is increasing rapidly and energy consumptions follow to

be decreasing in case of gcc and bzip2 benchmarks while the soplex benchmark

behaves similar but it ranges from several banks later to the optimal one.

Moreover, the hit rate of all three patterns almost remain stable from the optimal

bank number to all bank allocated, and energy consumptions are increasing as

the hardware overhead scale.

Thus, the cache resource demand can be described as the optimal cache

allocation to achieve both low energy consumption and access latency. In other

words, more banks are needed in case that allocated bank number is less than

the resource demand, and in case of exceeding the resource demand, redundant

banks should be removed off the current allocation. Moreover, the profiling

curve of energy consumption based on resource allocation shows an analogous

concave parabolic, which behaves similar as the reversed feedback-based

controller, where output response of controlled parameter will be convergent to

the steady-state value and a disturbance can be handled in the negative feedback

control path. As to LLC allocation, each disturbance on energy consumption

will generate feedback to bank allocator for the purpose of converging to

optimal cache allocation, thereby satisfying current cache resource demand.



2.3.3 Access Locality Analysis in Fine Granularity

In order to represent locality features more accurately, the successive

approximation method is applied for exploring fine granularity for the purpose

of LLC allocation. Firstly, entire dynamic instruction flow with some number

of bank allocation is treated as one candidate for the optimal cache allocation.

Thus, there are sixteen candidates existing in the case of sixteen available LLC

banks, and the quasi-optimal cache allocation can be selected by comparing

Figure 2-5. Energy sampling curves. (a) 403.gcc benchmark. (b) 401.bzip2

benchmark. (c) 450.soplex benchmark. Each sampling point in X-axis stands

for a set of twenty million dynamic instructions.



energy consumptions of all sixteen candidates. As a result, quasi-optimal bank

numbers for gcc, bzip2, and soplex benchmarks are selected as five banks, four

banks and eleven banks as known from Figs. 2-2, 2-3 and 2-4, respectively.

Secondly, the operating granularity of LLC allocation is further reduced as each

small period partitioned on dynamic instruction flow. For example, twenty

million dynamic instructions per period are adopted. As shown in Fig. 2-5, five

hundred sampling periods are selected to calculate the energy consumptions in

each period, and then all energy values together form the tendency curves of

energy consumption per access values while a fixed number of quasi-optimal

bank allocation is allocated in the platform corresponding to each benchmark.

Thus, sampled curves can show the locality change features along with executed

dynamic instruction scale increasing.

As shown in Fig. 2-5, energy values of sampling periods vary acutely with

a large variation range. Two key appearances are emphasized as follows.

(1) Energy consumption changes sharply in some periods. For example, the

energy consumption in the 200-th period around varies roughly from three to

four as shown in Fig. 2-5(a). And such variation must be caused by locality

change, as a result, allocated bank number may be unsuitable for the current

period.

(2) Energy consumption may have an approximately stable locality in some

periods and those energy consumptions of sampling periods tend to be little

difference. For example in Fig. 2-5(a), the energy values between the 210-th

period and 230-th period around are almost same. In those periods, locality

change seems to be very slight, and also energy consumptions remain stable.

To further analyze why locality behaves alike with those appearances, the

application architecture should be fully considered as three key reasons as

follows.

(1) The proportion of cache-access related instructions counted from the

entire instruction set acts as a key influence factor on the throughput of dynamic



instruction flow. If all instructions are classified into cache-related instructions

and cache-irrelevant instructions, cache-related instructions typically in load

and store instructions will occupy the majority of execution time and also

consume the majority of energy debit, even the proportion of those instructions

usually takes less than half of total instructions. For example, a load instruction

will be executed within several cycles if such access encounters a cache hit,

however, if such access encounters a cache miss, dozens of cycles or even

hundreds of cycles are needed to conduct off-chip memory access. Although

access latency of this access can be partly hidden in the pipelined execution path,

such latency is far larger than the latency of executing a cache-irrelevant

instruction.

To achieve the distribution of dynamic instruction statistics, three counters

are set in the platform to record the total number of dynamic instructions, load

instructions, and store instructions. Thus, the distribution of load and store

instructions are defined by the ratios of load or store instructions, which are

described as Eq. 2-9.

(2-9)



During each statistic, dynamic instructions are counted in the SP-MLC

platform. As shown in Table 2-2, all the benchmarks from the SPEC benchmark

suite are analyzed, and the average values of the load instruction and store

instruction distributions are 37.24% and 12.08%, respectively. As it is almost

impossible to trace the lifetime of counting load and store instructions in the

pipelined instruction execution sequence, the possible lifetimes of single load

and store instruction executing paths are analyzed to represent their latency

impacts. For example, the lifetime of a write hit on LLC may hold twenty cycles,

the lifetime of a write miss on LLC may hold two hundred cycles, however, the

lifetime of a cache-irrelevant instruction is usually handled in a single cycle.

(2) The reuse distance distribution of instruction architecture will affect the

access time in a decisive manner. Typically in reusing previous cache-related

data, if allocated LLC banks have enough entries to cover up the reuse distance,

few off-chip memory-based accesses are generated, otherwise, hundreds of

cycles will be consumed to handle a single LLC miss. Thus, it is crucial to

allocate sufficient LLC entries for the purpose of reusing the majority of

previous data.

(3) Some kinds of instruction clusters are repeatedly executed in an

execution period, and then such a period shows stable locality in both energy

consumption and performance. For example, if there is a length of static

instructions which is executed hundreds of times to form an execution period,

the energy consumption and performance values in this period will be stable as

each executed time has a similar or even same dynamic instruction sequence.

Note that each call on same subroutine may have a highly similar dynamic

instruction sequence and also executing sequence, thereby their cache resource

demands are similar and so as to the energy consumption and performance. Thus,

subroutines of a benchmark are expected to act as more suitable allocation

intervals rather than intervals based on equalizing the dynamic instruction

sequence.



To apply subroutine based intervals in LLC allocation, the proportion of

dynamic instructions in subroutine calls over all dynamic instructions needs to

be explored because that ideal allocation interval should cover up the majority

of dynamic instruction sequences. Thus, two markers are assigned in the front

Figure 2-6. Sampling curves of selected subroutine distribution. (a) 403.gcc

benchmark. (b) 401.bzip2 benchmark. (c) 450.soplex benchmark.



and back positions of each subroutine for the purpose of tracing every calls and

further doing statistics on the proportion of dynamic instructions scale. With the

help of the PIN tool [17], the first sixteen subroutines are selected to reveal their

proportion over the overall dynamic instruction scale, while those proportions

counting together will account for most of the entire dynamic instruction flow.

As shown in Fig. 2-6, dynamic instructions counting in sixteen most-frequent-

invoked subroutines from gcc, bzip2 and soplex benchmarks can take the

proportion of total dynamic instructions in the percentage of 67.3, 99.9 and 97.5,

respectively. Moreover, it can be observed that those selected subroutines are

invoked by many times and the top several subroutines can nearly form the

particular locality features in the current benchmark. Thus, calls on those so-

called hot subroutines are naturally suitable for acting as cache allocation

intervals rather than equal-division-based intervals.

To sum up, cache resource demands of any application are analyzed from

different angles. Firstly, in the granularity of per-application based simulations,

the pre-experimental results show that each application behaves with a

particular locality feature and further has particular cache resource demand. And

there is a tradeoff on allocating cache resources for such demand, in which

allocating more cache resources over its demand leads to energy waste and

allocating fewer cache resources over its demand leads to many access misses.

Secondly, in the granularity of per-interval based simulations, locality within a

dynamic instruction flow varies acutely, where locality change points separate

locality stable periods into different energy consumptions. Thus, those locality

features infer that each selected subroutine has the optimal cache resource

demand and further cache allocation method can refine in the granularity of each

subroutine call. Moreover, the statistical results of selected subroutine calls

show that the majority of dynamic instruction flow can be covered up in those

subroutine calls.



2.4 Analysis on Shared Cache Access Pattern

2.4.1 Overview on Shared Cache Access Pattern

To further analyze the shared cache access distributions in granularity of each

instruction, we employ one benchmark from PARSEC benchmark suite ( dedup)

as an example, and this benchmark is scheduled to a test platform which has two

(a) Access distributions on requests from Core0.

(b) Access distributions on requests from Core1.

Figure 2-7. Distributions of shared accesses. The test platform consists of

two processing cores and thirty-two shared cache banks, where banks in y0,

y1, y2 and y3 axes are allocated to Core0 and rest banks are allocated to

Core1.



cores in the first layer, thirty-two DNUCA banks in the second layer

(interconnected with 2D mesh routers) and two TSVs for linking each core to

their partitioned banks respectively (other details see Section 4). Then, all

shared cache accesses from two processing cores to all the banks are counted,

and those accesses are classified into their destination banks, thereby those

accesses from each core can be drawn into frequency-based access distributions

on each bank. Moreover, each access is classified into several types based on

where the access request comes from and which banks will be the destination of

this access request. And further, each access distribution is considered that its

effect degree of current access type affects the energy consumption and

performance of this application.

2.4.2 Results of Access Pattern Distribution

As shown in Fig. 2-7, shared accesses are spreading on banks with proportions

from 0.27% (Bank[x0,y6]) to 1.03% (Bank[x1,y2]), while the average shared

accesses take about 19.76 % of all accesses. Meanwhile, read access proportions

range from 0.29% (Bank[x0,y7]) to 4.62% (Bank[x1,y0]), while all read

accesses take about 45.96% of total accesses. As to write accesses, the

proportions range from 0.67% (Bank[x0,y6]) to 2.86% (Bank[x1,y0]), while all

write accesses take average 34.28% of total accesses. Corresponding with three

issues, we can confirm: 1) Almost 19.76% of accesses may potentially overlap

their access duration which may cause a long pause duration. 2) From bank

serial y4 to y7, about 21.53% of total accesses hit at partitioned banks of Core

1, mean that those accesses will cause long interconnecting latency. 3) Read

accesses are dispersed at fringe banks (i.e., Bank[x3,y2]), resulting in more

routing traffic. And even more serious, continuous writes may occur frequently

in Bank[x0,y3] because write accesses even take a half proportion of total

accesses in this bank, result that many cycles are wasted on dealing with those

write congestions.

The above appearances of shared cache access distributions indicate that

many potential improvements on both access latency and throughput can be



achieved if some of those accesses can be handled in an efficient access path

(access path in this thesis is defined as the processing path from emit an cache

access to receive an echo). So that we are motivated to manage all those accesses

to each bank for reasonable allocation strategies as follows.

Ideally, shared data should adequately supply for cores, read accesses should

be convergent to some key banks, and some write accesses should be dispersed

to idle banks for preventing congestions. To actualize those strategies, a novel

router network is proposed in Ch. 4 for fast tracing potential harmful accesses

on the shared cache and handling them in a concurrent path.

Furthermore, the access distributions are counted in six access types (each

access type is divided into read access and write access), which are classified as

follows [72].

Figure 2-8. Access pattern distributions. (a) Access hit distributions of each

access pattern with different benchmarks, where miss accesses are ignored;

(b) Reuse distance sampling with different record entries allocated, where the

recorded contents are replaced with first-in-first-out algorithm.



(1) Shared accesses: Stand that current shared cache access has objective

data in both cache bank groups of two processing cores.

(2) Crossed accesses: Stand that current shared cache access only has

objective data in the cache bank group of the other processing core.

(3) Repeated accesses: Stand that current shared cache access only has

objective data in the cache bank group of current processing core.

Thus, sixteen record counters for a bank group composed of 16 banks are

employed to trace every shared cache accesses which are requested from two

processing cores. All the benchmarks from PARSEC benchmark suite are

simulated to account runtime accesses in a test platform that has two processing

cores, sixteen shared cache banks. Fig. 2-8(a) displays that shared write accesses

can take the proportion of percentage from the lowest 1.8 ( swaptions) up to the

highest 12.4 (x264), while the average value is 5.1 %. The hit distributions of

shared read accesses take the proportion of percentage from the lowest 9.7

(facesim) up to the highest 32.2 (x264), while the average value is 18.7 %. The

hit distributions of crossed write accesses take the proportion of percentage from

the lowest 2.1 (streamcluster) up to the highest 4.7 (blackscholes), while the

average value is 3.1 %. The hit distributions of crossed read accesses take the

proportion of percentage from the lowest 6.8 ( facesim) up to the highest 13.4

(freqmine), while the average value is 9.6 %. The hit distributions of repeated

write accesses take the proportion of percentage from the lowest 11.2

(streamcluster) up to the highest 28.1 (blackscholes), while the average value is

19.2 %. The hit distributions of repeated read accesses take the proportion of

percentage from the lowest 31.7 (x264) up to the highest 54.8 (ferret), while the

average value is 44.3 %. Based on the above results, three appearances can be

revealed as follows.

(1) Shared accesses take the proportion of 23.8% overall accesses, typically

in shared write accesses, which may cause serious access conflictions in shared

data.



(2) Crossed accesses take about 12.7% of overall accesses, and those

accesses will encounter misses in their partitioned bank group but hit at the other

group.

(3) Repeated accesses take about 63.5% of overall accesses, and those

accesses will quite frequently hit at the partitioned bank group.

The above appearances indicate that a great deal of improvement on access

latency can be achieved if shared accesses can be linked cross bank groups,

crossed accesses can get target data from the other bank group and repeated

accesses can be filtered into a recording table for data reusing. Thus, the upper-

layer router network acts as a suitable operation object to bridge across bank

groups, because all data and requests are interconnected by the router network.

Meanwhile, shared cache accesses can be relayed in a concurrent access path,

and some selected cache accesses are recorded and further handled for efficient

bypassing. However, the efficiency of access filtering is highly related to the

reuse distance of those accesses, so that counted reuse percentages of each

application should be identified for exploring the suitable record entry numbers.

Thus, several first-in-first-out replacement policies based record directories are

employed to analyze the reuse percentage over all accesses along with record

directory entry increasing. As shown in Fig. 2-8(b), only 7.2% of overall

accesses can be recorded with 32 record directory entries in case of dedup

benchmark. With 512 record directory entries, the proportion of reused accesses

is 79.3%, and even with doubled entries number, the proportion value only gets

a 5.8% improvement. Hence, there is a tradeoff on determining the integrated

scale of record entry.

2.4.3 Discussions on Access Pattern Features

Since the access patterns are explored in the granularity of each shared cache

access, experimental results show that three different access types represent

diverse features on distributions among overall accesses, which are highly

related to the hit rate and energy consumption of one application. Firstly,

distribution percentages of shared accesses represent the possibility of data



inconsistency which requests complex hardware and wastes plenty of clock

cycles to maintain data coherence. Secondly, distribution percentages of crossed

accesses show the great opportunity on improving access latency, where crossed

accesses can employ the previous target data from the other partitioned bank

group in the purpose of access hits rather than shared cache misses in current

partitioned bank group. In other words, the previous data in other bank groups

are desired to deliverer from those groups to the current group, and further return

to current processing core with limited latency, otherwise, access misses happen

to cost large access latency on an access to off-chip memory. Thirdly, repeated

accesses take the largest proportion over other access types, and such proportion

value indicates that many shared cache accesses will occur again in limited reuse

distance and once the record entry number exceeds the reuse distance, current

access can be handled by the record entries very fast rather than shared cache

access. Furthermore, continuous writes on same cache block will lead to write

congestion if the former write has not finished, however, continuous writes on

record entries can be buffered that the second write can temporarily write on the

record entries instead of waiting for finishing the first write access.

Moreover, access distributions on each bank are represented to infer the

cache resource utilization in the granularity of per access level, while all shared

Figure 2-9. Trace statistic of access distributions. All shared cache accesses

are classified into each processing core.



cache accesses generated by two processing cores are counted with the aid of

the PIN tool.

As shown in Fig. 2-9, in case of target data existing in both bank groups,

such kind of shared cache accesses are counted in a proportion of 7.6%. In the

case of target data existing in its own bank group which means ‘non-shared write

access’, they take the proportion values of 17.3 and 14.9, respectively. And non-

shared read accesses take the proportion values of 24.7 and 28.1, respectively.

It can be observed that there are a few difference quantities between two

processing cores. However, those accesses hit at shared cache banks, and reveal

quite diverse distributions among banks. Under the least-recently-used based

cache replacement policy, frequently invoked banks tend to record many access

hits and some banks are rarely employed to contribute some access hits. As a

result, some shared cache banks are redundant and can be re-allocated to other

needful threads.

In the view of another angle on access pattern features, each access type

including shared, crossed and repeated accesses has different processing

pipeline path, and so as to access latency. For example, a repeated read access

only needs several clock cycles, but a crossed read access needs to get the target

data from off-chip memory, obviously, the access latency of the crossed read

access is far larger than the one of the repeated read access. Although some

latency can be partly concealed into pipelined execution sequence, the rest parts

of access latency will retard the on-chip execution speed greatly. Moreover,

some access types such as crossed read and write take the largish proportions of

overall accesses, so that the system performance is largely decreased due to

resultant effect of those costly shared cache accesses. Reasonably, some

instruction clusters show particular energy consumption and performance

values, which are highly related to the proportions of those costly accesses.



2.5 Summary on Access Pattern Analysis

In this chapter, access patterns are analyzed in the granularity of per-application

based intervals, per-subroutine-call based intervals, and single shared cache

access. Based on experimental results, locality features are explored along with

cache resource varying, thereby achieving the runtime cache resource demand

under the current application. Furthermore, evaluation metric of energy

consumption is employed to represent the relationship between energy

consumption and allocated cache resource and reveal that there is an

approximately optimal cache resource allocation point for each application,

while exceeding this point only results in resource wasting and lack of this point

will result in many access misses and enlarged access latency. Thus, all

benchmarks can be pre-classified for further employment in controllable cache

allocation design.

The locality features are also analyzed in a much precise granularity to

explain the internal reasons for locality change and stable. Firstly, subroutines

of one application are analyzed to describe that dynamic instructions that come

from subroutine calls will take the most proportion of overall dynamic

instruction scale. And the same subroutine is repeated invoked to form a locality

stable period, but different subroutines are invoked severally, which may lead

to locality change on the point of subroutine calls converting. Secondly, calls

on same subroutine show very similar behavior on energy consumption and

performance appearances, so that subroutine calls act as the optimal intervals to

dynamically allocate cache resources. Moreover, the concept of balancing

between supply and demand on cache resource is analyzed to be integrated into

cache resource allocation: if the supply of cache resource is less than demand,

allocate more resources, and if the supply is more than demand, then remove

the redundant resource. Similarly, such co-ordination of supply and demand acts

as the same process of feedback-based control process. Thus, the analyzed

pattern features can be fully employed in the next chapter to propose a self-

controlled dynamic cache allocation method.



To analyze the access pattern in the minimum granularity of each shared

cache access, those accesses are classified into several access pattern types for

the purpose of representing proportions among access types and features on the

pipelined path of processing those access types. Thus, repeated access type takes

the largest proportion of overall accesses and shows two potential improvable

points that some hottest data can be filtered out to a fast record router for the

purpose of fast request responding and continuous write can be buffered in the

record router also. As to crossed accesses, there is a great opportunity to reduce

many off-chip memory accesses through bridging the target data to current

partitioned bank group. For shared accesses, data coherence issue can be

potentially handled in case that all bank groups can be interconnected with the

aid of the router network. Thus, those features in access types are desired to be

employed for proposing an enhanced router network to improve access latency

greatly.

To sum up, access pattern features are employed by two proposal chapters,

respectively. Features on hierarchical cache demands represent the energy and

hit rate characteristics in per interval granularity, which inspire to conduct

controllable cache resource allocation design in chapter 3 by dynamic meeting

cache resources to current resource demands, thereby saving some on-chip

energy. As to distribution features of access patterns in single access granularity,

some number of data sharing accesses need to be handled in complex and costly

processing paths, which inspire to establish ‘cache to cache’ interaction network

in chapter 4 for fast shared data routing among threads, thereby reducing access

Quantity Contents in Section 2.3 Contents in Section 2.4

Applying proposal
Ch.3 Controllable

cache resource allocation
Ch.4 Stacked 3D on-chip

cache network

Profiling granularity Per interval Single cache access

Characteristics Energy and hit rate Access latency

Applying cache level Shared cache Shared or private cache



latency greatly. As shown in Table 2-3, contents in this chapter are classified

into two applying proposals.



Chapter
3

3.1 Introduction on Cache Resource Optimization Design

On-chip system architectures tend to integrate more and more large scale of both

processing cores and hierarchical cache. And the integrated processing core

number is increasing as dozens or even hundreds. As a result, the shared cache

which is used for bridging the speed gap of processing cores and off-chip

memory is desired to have a large enough size for the purpose of providing

sufficient interconnecting bandwidth to serve so many processing cores.

However, the shared cache will consume about half of on-chip energy and

occupy about half of the on-chip implementation area also. Actually, only a part

of cache resources will be employed during runtime and in the very rare case

that all cache resources are fully used at the same time. Thus, there is an

opportunity that some shared cache resources can be re-allocated to other

threads which desire more cache resources, thereby both energy consumption

and performance will be improved.

Many pieces of research focus on the shared cache allocation in purpose to

get the utmost out of cache resources, based on the observation that most of

cache resources only contribute very few access hits during their entire lifetime



[1, 8], on the contrary, those resources waste a large quantity of energy to keep

themselves activated. To prevent energy waste on those resources, research in

[9] proposed a shut-down based method to put some resources at minimal

activated status, which consumes a small amount of energy but can be fast

activated in case of resource reusing. Nevertheless, the number of redundant

cache resources or scarce cache resources should be accurately explored

because that removing too many resources will lead to many access misses and

adding too many resources will result in extra energy consumption also. Hence,

some previous researches try to reconfigure operational cache resource by

searching for the optimal cache resource allocation corresponding to every

benchmarks [6, 20], but such reconfigurable cache method needs to alter used

cache parts frequently, leading to unnecessary data erasure. Some researches try

to identify the requested cache resources based on locality features and further

propose the access-phase-aware based cache architectures [11, 18], but their

tuning intervals by equally dividing dynamic instruction flow or executing time

(length-fixed intervals) are unable to classify phases precisely. And some

researchers proposed exploration algorithms to support the software-based OS-

level cache allocation [13, 19], or to achieve the optimal resource allocation

combinations [12], but their exploration processes are very costly and some

explored results are outdated after long exploration time. Therefore, novel

intervals are needed to fit phase variation rather than length-fixed intervals, and

also fast tuning method is desired to replace costly exploration method.

In this chapter, a novel cache resource allocation method [73] is proposed to

dynamically allocate cache resources during runtime and accurate resource

demand can be explored based on locality analysis, and further the cache

resource allocation process is working in the granularity of interval level, which

can provide much more precise locality tracing. Firstly, according to pre-

experimental analysis on access distributions discussed in chapter 2.4, energy

consumption will vary closely with allocated cache resources increasing and

there is an approximately optimal amount of allocated cache resources. Thus,

the cache allocation process is shifting to find every approximately optimal



amount of allocated cache resource corresponding to each benchmark. Secondly,

based on locality analysis in granularity of per subroutine call, some most-

frequently-used subroutines can be selected as suitable instruction clusters that

repeated calls on those subroutines can take a majority of entire instruction set

and the appearances of subroutine calls form the behaviors of locality, thereby

those calls can be the prefect intervals on cache resource allocation. Finally,

since the control loop and control intervals are proposed, the self-controllable

cache resource allocation method can be actualized in purpose of maximizing

resource utilization. Note that there are few kinds of workloads executed in

embedded systems, so that it is realizable to explore control parameters used in

each benchmark. Thus, the discrete Proportion-Integration-Differentiation (PID)

control method can be integrated with the runtime cache resource allocation

process. As a result, each thread can always be allocated the optimal amount of

cache resource in the granularity of per subroutine call dynamically, thereby

saving plenty of on-chip energy consumption without any performance

degradation.

In the rest of this chapter, motivations of this design are firstly described.

And then the controllable cache resource allocation method is proposed in detail

including control interval design, PID parameters setting and controllable cache

resource allocation path design.

3.2 Motivations Applied from Hierarchical Cache Demands

As described in chapter 2.3, two key appearances are emphasized to represent

the motivations of proposed cache resource allocation method as follows. (1)

There is an approximately optimal demand existing among different allocated

cache resource scales on one benchmark. (2) Locality stable and locality change

affect the cache resource demand.

In the first appearance, the approximately optimal demand is explored by

comparing energy consumptions in case of allocated shared cache banks

increasing. If there is only one bank allocated, many access misses are



happening to enlarge the overall latency due to off-chip memory accesses. In

pace with allocated banks rising, increment of hit rate is becoming smaller and

further remains almost stable. Suppose that there is a balance point, in which

the benefit of energy consumption from hit rate improvement is equal to the

energy cost of extra allocated cache bank. Similar to the steady-state value in

control theory [23], extra allocated banks will bring out more energy

consumption and then feedback output will generate negative bank number to

further reduce some banks in the next interval until the balance point is achieved.

Hence, the cache resource allocation process can integrate the control theory as

the appearance follows the same process of feedback-based allocation loop, and

the objective of cache allocation is to converge at the balance point. In case of

locality change (similar to a disturbance in control loop), the cache allocation

tends to converge at a new balance point.

In the second appearance, the cache resource demand is varying along with

dynamic instruction flow and any selected instruction cluster will behave in

different energy consumptions. Furthermore, this cluster may have its own

optimal cache resource allocation corresponding to the current period. As

described in chapter 2.3, the sampled results on different periods show quite

various energy consumptions and there are two appearances including many

locality-change points and locality-stable periods exciting. However, the

traditional partition method which divides entire dynamic instruction sequence

into isometric intervals or partitions the execution time into isometric intervals

cannot trace locality variation and obviously, little improvement can be

achieved. Hence, a novel interval is proposed based on subroutine calls. Since

the pre-experimental results have shown that dynamic instructions counted from

subroutine calls can take the majority of whole instruction amount and different

calls on the same subroutine will behave in similar execution sequence and so

as to energy consumption and performance. Thus, it is suitable to employ

subroutine calls for allocating cache resources.

Moreover, those two appearances on locality can be reflected from a

different perspective that the locality change or stable can be shown as the



variation of energy consumptions. In other words, the energy consumptions will

be reduced if allocated extra cache resources can satisfy the current resource

demand. Thus, similar to the approximately optimal cache allocation on per-

application granularity, each subroutine may have an approximately optimal

cache allocation value, and once this value is explored, it can be shared with all

the calls on this subroutine. Corresponding to the sampling intervals of control

theory, each call of particular subroutine can act as a sampling interval

felicitously.

Since the control loop and control intervals are realizable on cache resource

allocation, the motivations of this thesis are to integrate control theory into cache

resource allocation and to implement such design into SLLC for sufficient cache

resource utilization.

3.3 Controllable Hierarchical Cache Design

3.3.1 Control Loop Based Architecture

As shown in Fig. 3-1, the shared cache banks serve to plenty of processing cores

and are partitioned to many processing threads during the runtime. Note that

static non-uniform cache architecture (SNUCA) supports bank-level allocation

Figure 3-1. Controllable shared cache architecture. A feedback based control

loop is formed into shared cache bank co-scheduler for dynamically

allocating banks to private processing cores.



with quite limited overhead. Thus, a traditional SNUCA model [38] is employed

to propose cache architecture. To implement the control loop into the shared

cache, several components should be designed to support the following three

rules:

(1) Capture the energy consumption and hit rate information in the latency

and energy evaluator units, and further to compare with the previous data stored

in record table, and finally generate the difference values.

(2) Calculate the feedback value in the form of cache bank increment which

is operated on the difference of energy consumptions. And combine the

increment with previously allocated banks in the intensive cache controller.

(3) Re-allocate shared cache banks based on the output of intensive cache

controller, and further implement it to target thread in the cache co-scheduler.

Note that each core conducts one control loop in asynchronous manner, in

other words, the control loop in a core can be trigged only when a control

interval of current thread appears. And free banks are allocated to cores based

on physical distance evaluations, where co-scheduler will first allocate short-

distance free banks or first retire long-distance occupied banks.

For each interval, the control loop will modify the bank allocation once until

the locality is stable. Note that conventional intervals are designed with fixed

number of execution time or counted dynamic instructions. For example, an

interval holds in a period of ten million clock cycles or an interval contain ten

million dynamic instructions. If there is an interval detected, the energy

consumption of this interval can be compared with one of previous intervals.

And then such difference value can be transformed from energy consumption

difference into linked cache bank increment. Finally, the bank increment is

delivered to shared cache co-scheduler for the purpose of allocating cache

resource based on current demand. Along with instruction flow, most of

intervals can work in optimal cache allocation, thereby saving plenty of on-chip

energy consumption.



3.3.2 Energy Consumption and Latency Models

In order to trace energy consumption and latency values in each interval,

minimal hardware scale is the first design principle to count runtime information

because it is costly to directly measure those values. Alternatively, those values

can be quantized by doing statistics on some basic information such as hit rate

instead. And then, the energy consumption and latency values can be calculated

with the aid of cache model in CACTIv6.5 [55], which has already counted the

transistor-level energy consumption and latency together to form the precise

energy and latency formulas as follows.

LPer-Access = Rhit ( Max(Ltag, Ldata) + Loutdriver + LPre-Charge )+

Rmis (Ltag + Loff-chip memory) (3-1)

EPer-Access =Rhit (Edyn hit + Eleakage hit) + Rmis (Edyn mis

+ Eleakage mis) (3-2)

The cache model contains four key components including tag array, data

array, output driver logic, and pre-charge logic. Each cache access will follow

the standard access path uniformly. For example, an access miss follows the

path of tag comparison, output miss signal and then access the off-chip memory.

Hence, the energy consumption and latency values can be accumulated with the

values of every cache accesses. As shown in Eq. 3-1 and 3-2, the latency and

energy consumptions of single access can be achieved from the cache model

named L with subscripts as tag, data, output-driver, pre-charge, and off-chip

memory respectively, and energy named E with subscripts as dyn-hit, leakage-

hit, dyn-mis, and leakage-mis respectively. And Rhit and Rmis stand for the

probability of hit access and miss access, that is hit-rate and miss-rate, over all

cache accesses within current interval, which can be calculated based on runtime

statistic. As those parameters can be easily achieved from cache model and

runtime counting, there are few calculation quantities needed during runtime,

thereby causing few hardware and latency overhead.



3.3.3 Intensive Cache Controller Design

In this subchapter, the intensive cache controller is proposed to represent the

flow of transforming control quantities. Assume that there is a dynamic

instruction sequence named S, where S is equally divided by N to form an

interval set as {1, 2, … N} and n represents the n-th interval (n {1, 2,. . . N}).

Assume that the energy consumption of a benchmark named at the n-th

interval is E [n]. Here, energy consumptions are the mean values that are

normalized to per-access granularity in current interval. Hence, integrating with

control theory, the discrete increment-Proportional-Integral-Derivative based

intensive control formula can be written into the following form.

e [n] = E [n] E [n 1] n {2, 3, … N} (3-3)

where e [n] stands for the difference value of energy consumption between

the n-th and the (n 1)-th intervals. Suppose that there is a disturbance happened

at the n-th interval, and such disturbance leads to energy value change. For

example, the n-th interval belongs to subroutine call of another selected

subroutine. Thus, the locality change also happens and previous cache bank

allocation is not optimal anymore. That is to say, the new cache allocation

should be generated based on the difference value. Corresponding to sampling

points and feedback quantity in control theory, the cache bank increment can be

generated by calculating with recent three difference values to form the negative

feedback-based control loop. And the cache allocation increment named C

can be written as the form of discrete increment-Proportional-Integral-

Derivative (Increment PID) based control model as follows.

C =KP (e [n] e [n 1]) + KI e [n] + KD (3-4)

(e [n] 2e [n 1] + e [n 2])

Where KP, KI and KD represent setting parameters of proportional ratio,

integral ratio, and derivative ratio, respectively.

In order to tune KP, KI and KD properly, the characteristics of cache resource

allocation should be considered as key constraints. Firstly, the defined intervals



are treated as control sampling points while the energy consumptions in those

intervals are assumed as the control volumes similar to control theory. Moreover,

each interval only generates one energy consumption, expanding to whole

dynamic instruction sequence, N control volumes values can be achieved from

N intervals. Secondly, as the locality change is accompanied with allocated bank

scale in a concave sampling curve, difference values of intervals on energy

consumption can be reflected with allocated cache bank increment. Furthermore,

the output parameter C is in the granularity of per cache bank, so that the

cache bank increment should be large enough to trigger bank co-scheduling

operation. And each control interval that may contain millions of dynamic

instructions only generates control output once. As a result, the control process

is inclined to work in low control frequency while minimal hardware and

latency overheads are consumed by proposed extra control components. That is

to say, there exists an alternative trade-off on control output accuracy and design

overhead. Actually, the control output in per-bank based granularity acts as a

rough control result, thus, minimal overhead is much more suitable rather than

an accurate result. Consequently, the traditional control parameter tuning

methods such as the self-adapting method and approximation method are not

applicative to proposed control loop due to above considerations [3, 23].

Fortunately, each benchmark behaves similar runtime characteristics among

repeated runtime sequences, in other words, a single benchmark can be

simulated in the platform with similar results among many time simulations.

Thus, such a repeatability feature can be employed to tune the control

parameters with successive approximation method step by step.

In this first step, set proportional ratio KP and derivative ratio KD as zero,

then do the simulation on current benchmark where integral ratio KI is set in the

range from zero to the experimental number (set as 5.0 in this thesis) with the

cut and try increment value of 0.05. After running the benchmark with one

hundred times, corresponding one hundred energy consumptions are compared

to achieve the energy minimal one, and then set the relevant integral ratio as the

approximate KI.



In the second step, set KI as the approximate integral ratio achieved in the

first step and set derivative ratio KD as zero, then simulate the benchmark with

the proportional ratio KP varying from zero to the experimental number (set as

5.0 in this thesis) in granularity of 0.01, then do the comparisons among five

hundred energy consumptions to achieve the lowest one, and then determine the

relevant integral ratio as the tuned proportional ratio KP.

In the third step, set KP as the tuned value and set derivative ratio KD as zero,

then repeat the simulations with integral ratio KI ranging from zero to five in the

granularity of 0.05, and finally, determine the tuned integral ratio KP through

energy comparisons.

In the final step, set KP and KI as the tuned values, then do the simulations

with derivative ratio KD ranging from zero to five in the granularity of 0.05, and

finally determine the tuned derivative ratio KD through energy comparisons.

Hence, three control parameters are achieved and further, the tuning method

can be expanded to the rest benchmarks. As each simulation only is executed in

several seconds and there are eight hundred simulations for one benchmark of

total 29 benchmarks, the total work of tuning control parameters can be finished

with ten hours. Thus, it is a practical proposal for tuning control parameters on

all benchmarks.

As it is acceptable to employ minimal calculation logic on proposed control

loop, the energy consumption and latency overhead of extra control components

are ignorable, because that those control components only work once in an

interval (contains millions of dynamic instructions). Moreover, the bank

increment is only related to one current energy consumption and two previous

energy values, thereby control loop has strong robustness on confronting steady-

state error.

3.3.4 Cache Bank Allocating

In this subchapter, the processes of classifying benchmarks are represented by

the proposed bank allocation method which takes take full advantage of hit rate



features. As the locality or cache allocation is changed, the direct effect appears

at hit rate variation. Thus, extra cache resources should be allocated to suitable

threads for the purpose of achieving the most improvements on hit rate, and all

benchmarks have their own characteristics so that they should be classified into

several types in order to co-schedule the cache resources for many threads

efficiently, thereby guaranteeing the fairness on each thread. Note that fairness

in other researches [14, 62] is employed to mean cache resources for each thread

to solve thread starving in case that busy threads will take all cache resources

under least recently used (LRU) algorithm and rest threads will be starving

without any cache resources allocated. But, even though cache resources are

allocated fairly, some threads which need more cache resources may work in

low efficiency and some threads which need fewer cache resources may lead to

resource wasting. Thus, it is suitable to employ cache resource demand instead

of fairness because the demands of each thread act as the true efficiency if those

demands are supplied. As the demands of cache resources are highly related to

allocated banks and further those demands are reflected by hit rate curves, hit

rate tendencies also represent the tendencies of optimal cache resource

allocation. As shown in Fig. 3-2, hit rate curves show quite different tendencies

along with allocated cache bank increasing. In the first several banks, hit rates

Figure 3-2. Tendency sampling curves on hit rate. Three benchmarks are

selected as examples to stand for each access type. The allocated SLLC

bank number range from one to sixteen.



tend to be improved greatly, and then keep stable in the last several banks. And

the amounts of variation on each hit rate curves show different features, and

other benchmarks behave in the scope of those three tendencies. Hence, it is

inspired that all benchmarks can be classified as several tendency types as

follows.

(1) Rapid increasing benchmark (R-app).

(2) Gradual increasing benchmark (G-app).

(3) Sharp increasing benchmark (S-app).

Where those tendency types are determined by pre-experimental analysis as

follows.

Define a benchmark , then do the simulations under the condition of

allocated banks arraying from one to N banks, repeatedly, and then get the hit

rate curve as shown in Fig. 3-2. Here, set the hit rate curve to be represented

with hit access numbers per thousand accesses (HNTA), named Hn where n

{1, 2, . . . N} stands for the allocated bank number. Note that the only changed

parameter in the platform is the allocated bank number and then hit rate variation

is also only related to allocated bank number. Thus, the allocated one bank is

changed and then leads to the hit rate variation, which can be represented by

HNTA difference (h) as follows.

hn = Hn where H0 = 0, n {1, 2, … N} (3-5)

Figure 3-3. Sampling on HNTA difference values. The bank allocating order

is set from allocating 1st bank to 16th bank in X-axis.



Where hn stands for the HNTA difference of hit rate variation with allocating

n-th bank. That is to say, each hn represents the access hit contributions of the

n-th cache bank, and such value can act as the potential hit increment if one

bank is allocated to (n-1)-th bank situation. Thus, all differences are counted

into hit rate curves for the purpose of analyzing bank allocation features.

As shown in Fig. 3-3, the first several banks in the curve of bzip2 benchmark

supply the most access hits, and the rest banks are rarely contributed some

access hits. Many banks in the curve of gcc benchmark can contribute some

access hits although the amounts of hit rate variations are smaller than the ones

in the first several banks. And the first several banks in the curve of soplex

benchmark supply some access hits, and if allocated bank number is exceeded

the reuse distance of some key instruction clusters, many access hits can be

achieved [21]. As the middle side values of hit rate curves show different

behaviors, a new evaluation metric M is proposed to classify all benchmarks,

which can be defined as follows.

(3-6)

Where = . Moreover, two thresholds named and are

introduced to identify each benchmark type as follows ( ).

(1) M satisfies Eq. 3-7, the benchmark is classified as the sharp

increasing benchmark (S-app).

(3-7)

(2) M satisfies Eq. 3-8, the benchmark is classified as the gradual

increasing benchmark (G-app).

(3-8)

(3) M satisfies Eq. 3-9, the benchmark is classified as the rapid

increasing benchmark (R-app).

(3-9)



Furthermore, exhaustive experiments are set based on benchmark analysis

for the purpose of identifying two thresholds, and and are set

as 0.27 and 0.06 to classify all SPEC benchmarks into S-app, G-app or R-app

clearly.

Based on appearances of each benchmark type, the demands of each

benchmark can be obviously identified that the first several cache banks in R-

app benchmark should be ensured and then extra banks are useless, and the

allocated cache banks for S-app benchmark should exceed the reuse distance,

and allocated cache banks for G-app benchmark have the lowest priority. Thus,

all threads with different benchmarks can be supplied with allocated cache

banks just as their cache resource demand and the rest cache banks can be set

into low-power mode, thereby saving plenty of energy consumption.

3.3.5 Locality-aware Control Interval Design

In the previous cache allocation methods [6, 9], intervals are achieved by

partitioning on dynamic instruction flow or dividing execution time into many

Figure 3-4. Example of tuning interval methods. (a) Length fixed intervals; (b)

Subroutine call based intervals. Where the dynamic instruction flow is set as

100 million dynamic instructions in total, and one length fixed interval is set

as 10 million dynamic instructions.



uniformed intervals. Although those methods are much simpler to implement

into the platform, the arbitrary segmentation of those methods will lose the

ability to tracing runtime locality change for the purpose of saving more energy

consumption. Based on the distribution appearances of subroutines analyzed in

subchapter 2.3, hot subroutine calls act as the prefect intervals, which are highly

related to demand variation and calls on same subroutine behave similar demand

also. As a result, subroutine-call based intervals are in accordance with runtime

energy features rather than equally partitioned methods. As shown in Fig. 3-4(a),

the fixed-length based intervals are generated by equally partitioning dynamic

instruction flow into intervals with same amount of dynamic instructions.

Obviously, this method cannot trace cache resource demand variation. As

shown in Fig. 3-4(b), subroutine-call based intervals are used to partition the

dynamic instruction flow by subroutine calls. As dynamic instructions in

selected subroutine calls take the majority proportion of overall dynamic

execution sequence, the dynamic instructions which are counted from the start

instruction of a subroutine call to the start instruction of the next subroutine call

can be treated as one subroutine-call based interval. Note that formed intervals

will have different dynamic instruction numbers inside because each interval

length is only related to the period between two start instructions. Thus, repeated

calls on same subroutine can be treated as demand stable intervals and optimal

cache resource allocation can be explored within those intervals corresponding

to current subroutine, and further explored results can be directly employed by

later calls on this subroutine. For example, interval 1 and 3 share a similar cache

resource demand. Based on the statistic distributions of each subroutine in a

benchmark shown in subchapter 2.3, all subroutines in a benchmark can be

ordered into a queue based on the distribution of each subroutine, and then some

hot subroutines are selected while some tiny subroutines or not commonly used

subroutines are filtered out. As shown in Table 3-1, selected subroutine numbers

of all benchmarks are experimentally analyzed to form control intervals.





3.3.6 Discrete PID-based Control Algorithm

As the traditional PID based control loop cannot be directly employed in our

proposed design, several modifications should be done to integrate control

theory into cache resource allocation method. Firstly, the difference values of

energy consumption among intervals should mark with corresponding

subroutine calls, so that calls on same subroutine are considered as a series of



intervals, which have similar cache resource demand. Secondly, control outputs

should be normalized into an integer number of banks as the cache co-

scheduling operation is done in the granularity of per cache bank. Finally, the

cache co-scheduling operation should comply with the allocation priority of

each benchmark type. As described in Algorithm , the modified PID-based

cache resource allocation process is represented in the form of pseudo-code as

follows.

In the beginning, the control interval in the n-th order is defined as counted

dynamic instructions between the start instruction to the start instruction of the

(n+1)-th interval. Thus, the energy consumption and hit rate

can be calculated based on runtime counting in the n-th interval. Moreover, the

cache bank allocation value in the granularity of per application is named as

, which can act as the initial allocated bank number to current

benchmark. Hence, for each sequential interval, energy consumption difference

values and are calculated as shown in line 4, then previous two

difference values and are set into control formula for

calculating the bank increment in the line 5, and such value is normalized into

integer number for the purpose of per bank based allocation. In the line 7 and 8,

the negative feedback-based control output is ensured for bank increasing in

case of hit rate rising. From line 12 to line 19, the priority of bank co-scheduling

for many threads is set as R-app type first, S-app type second and G-app last.

And finally, return the target amount of bank number to co-scheduler.

To theoretically analyze the controllable cache allocation algorithm, three

cases are assumed to explain the process of cache allocation based on the control

output as follows.

(1) Case 1: control output is equal to zero, which means that cache

resource demands in current interval and previous two intervals are similar, or

current cache resource demand variation is not large enough to trigger the integral

number of bank allocation.



(2) Case 2: control output is a negative integral number, which means

that the cache resource demand in current interval is changed and some of previous

allocated banks are superfluous for current interval because that the locality of n-th

interval has changed to desire fewer cache banks than previous intervals. Thus, the

returned bank number is smaller than Capp( )[n].

(3) Case 3: control output is a positive integral number, which means

that the cache resource demand in current interval is changed and some of previous

allocated banks are insufficient for current interval because that the locality of the

n-th interval has changed to desire more cache banks than previous intervals. Thus,

the returned bank number is larger than Capp( )[n].

Corresponding to allocated bank positions in Fig. 2-2 as an example, case 1

will happen if the demands in the current interval and previous two intervals are

five banks (assume five is the optimal bank number). If the allocated bank

number in previous two intervals is six and locality is changed as five in current

interval, case 2 happens to remove one superfluous bank. And if the allocated

bank number in the previous two intervals is four, and locality demand is

Figure 3-5. Flow charts of two tuning methods. (a) Proposed controllable

tuning method with subroutine-based intervals; (b) Exploring method with

length-fixed intervals.



changed as five in the current interval, case 3 happens to add one more bank to

cache co-scheduler. As a consequence, the locality change can be quickly traced

and then generate the optimal cache resource allocation in the granularity of per

interval dynamically, thereby cache resource demands are always self-

controlled to supply with plenty of energy consumption saved.

Figure 3-5(a) shows the flow chart of proposed controllable tuning method

with subroutine-based intervals. For each interval start, the controller can

generate the bank increment quickly, and then determine the direction of such

bank increment by using hit rate variation, and if desired banks are lacking,

adjust allocation based on application priority. Proposed method only needs few

intervals to achieve accurate tuning results, so that those results can be applied

to the next interval in time. As shown in Figure 3-5(b), previous exploring

method with length-fixed intervals needs to explore the energy-lowest cache

size once miss rate exceeds the threshold. However, such exploring process

costs expensive latency overhead, and its tuning results are usually outdated

after long exploring time.

In order to represent the efficiency of PID based cache tuning method,

example flow in Figure 3-6 shows tuning effects of fixed length method and

proposed control method. In the end of second interval, locality change will

trigger an exploring process for next 12 intervals (8 free + 4 occupied banks),

Figure 3-6. An example of runtime tuning effects on fixed-length based

method and PID-based method. Assume (1) 20 equal-length intervals in total;

(2) 8 free banks available; (3) Initial allocated bank number in call of

subroutine A is 4, and in call of subroutine B is 7.



and then apply the explored result 4 banks to fifteenth interval. If it is not

suitable, do exploring process again. In control method, locality change in third

interval will generate a bank increment to apply for the fourth interval, and

remain stable within few intervals. And locality change in sixth, eleventh,

fifteenth and nineteenth interval can be handled rapidly. As a consequence, the

PID based cache tuning method has advantages as follows.

(1) PID tuning results are adaptive to all calls on same selected subroutine.

As tuning intervals are classified by calls of selected subroutines, locality can

be easily traced based on jumps from a call of one subroutine to another. In other

words, proposed tuning method can be naturally adaptive to locality changes.

(2) High tuning speed and Accurate tuning results. The bank increment is

generated directly based on energy difference values of past three intervals, so

that each tuning result represents current bank demand (approach to ideal), and

remains steady in few intervals rather than long exploring time of fixed length

method.

(3) Sensitive to disturbances. Any disturbance can be imported to controller

by caused energy variation, however, tuning results of fixed length method can

be affected only if energy variation caused by the disturbance is larger than the

threshold. So that proposed method is much sensitive to disturbances.

As a consequence, PID control is suitable for cache tuning process with

above advantages.

3.4 Evaluation Strategy

3.4.1 Experimental Platform Setups

To evaluate our proposed method, experimental setups are described including

platform model, benchmarks, comparisons and evaluation metrics as follows.

Platform model: the instruction-tracing driven based full system simulator

Gem5 [53] is employed for constituting a multi-level multi-core on-chip system

model, which consists of private cache level, shared cache level, main memory,

and multi-core processors, and each component of the simulation platform is set



as listed in Table 3-2. Note that the hierarchical cache modules are represented

by extended CACTIv6.5 cache area, energy and integration analysis model,

where the first cache level is set as the private cache and the second cache level

is set as the shared cache.

Benchmarks: during verifying the cache allocation method in the granularity

of both per-application and per-subroutine-call intervals, the SPEC benchmark

suite is employed to fully evaluate the efficiency of proposed method. And

Table 3-3 lists the setups on selected benchmark groups, which are mixed into

co-executed runtime processes.

Comparisons: the proposed cache allocation method is compared with the

other two allocation methods, one is to simulate in the granularity of per-

application intervals and the other one is to simulate with approximately optimal

bank allocated and the rest banks are set in sleep mode [10].

Evaluation Metrics: To unify the performance and energy consumption

metrics, the total evaluated values are normalized by the cache request numbers

to form the normalized energy consumption per access. And the performance is

represented by IPC values which are counted from the IPC values in all threads

simultaneously. In all evaluation tests, the counting period is uniformly set as

the period of executing five-billion-dynamic-instructions.

Component Configurations

Processor Unit

2.0 GHz, 4 cores, single thread per core, 1.1 V supply voltage,

128 IW entries, 32 nm technology library, 30 cycle TLB miss

latency.

L1I/L1D Cache
32 KB instruction cache, 32 KB data cache for a core (private),

4-way, 64 B line size, 4 cycle latency.

Shared L2 Cache
4 MB total size, 256 KB for a core (private), 8-way, 64 B

line size, 8 cycle latency,

Main Memory
4 GB Double Data Tate (DDR4 2133MHz, 1.2V), 8KB

page size, 95 cycle latency.



3.4.2 Simulation Workload Setups

As there are four threads existing in four processing cores, each core is allocated

with a single thread to execute a working set copy from a particular benchmark.

Thus, those threads are isolated into each private processing unit and partition

lines in shared cache averagely allocate shared cache banks to each processing

thread. During runtime, free banks can be re-allocated to imperative threads

based on control outputs. Hence, eight groups are formed by mixing different

four benchmarks, as shown in Table. 3-3, each benchmark is allocated to one

thread for parallel simulation.

3.5 Controllable Cache Resource Optimizing Results

Firstly, three benchmarks where each one stands for a classified locality type

(G-app, S-app or R-app) are selected as examples to represent the runtime

allocated bank variations along with executing flow. The gcc benchmark is

initially allocated with five banks as the approximately optimal bank allocation

Table 3-3. Statistics on selected hot subroutines.

Selected Benchmarks Group Type Capp(x)[0]

gcc-gcc-gcc-gcc all gcc G-G-G-G-app 20

bzip2-bzip2-bzip2-bzip2- all bzip2 R-R-R-R-app 16

gcc-namd-bzip2-zeusmp gnbz G-G-R-R-app 20

namd-gobmk-soplex-mcf ngsm G-G-S-S-app 38

astar-zeusmp-soplex-mcf azsm R-R-S-S-app 33

mcf-sphinx3-gobmk-zeusmp msgz S-S-G-G-app 34

astar-zeusmp-soplex-gobnk azsg R-R-S-G-app 27

namd-gobmk-bzip2-mcf ngbm G-G-R-S-app 31

soplex-mcf-sphinx3-gobmk smsg S-S-S-G-app 40

bzip2-astar-zeusmp-gcc bazg R-R-R-G-app 18



number in the granularity of per application, which shows the runtime features

of a gradual increasing application. And then nineteen hot subroutines of gcc

benchmark are selected to apply their calls as control intervals, and further, the

Figure 3-7. Sampling on energy consumptions. Where each sampling point

in X-axis stands for a set of twenty million dynamic instructions, and fixed

Capp(x)[0] allocation method and proposed controllable method are profiled.



cache is dynamically allocated with the outputs of cache allocation control.

Similarly, the bzip2 benchmark is initially allocated with four banks as the

approximately optimal bank allocation number to shows the runtime features of

the rapidly increasing application, and six hot subroutines of this benchmark are

selected to apply their calls as control intervals and further the runtime cache is

Figure 3-8. Runtime controlled bank allocation. Three benchmark gcc, bzip2

and soplex are selected to profile runtime control outputs. Each sampling

point in X-axis stands for a set of twenty million dynamic instructions.



dynamically allocated with the outputs of cache allocation control. And the

soplex benchmark is initially allocated with eleven banks as the approximately

optimal bank allocation number to shows the runtime features of the sharp
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increasing application, and eight hot subroutines of this benchmark are selected

to apply their calls as control intervals and further, the runtime cache is

dynamically allocated with the outputs of cache allocation control. As shown in

Fig. 3-7, the energy consumptions in both fixed bank and controlled bank

allocation methods are represented. The results in gcc benchmark are shown that

energy consumptions

energy values in the period between 210 th sampling point to 230 th point reach

the maximum energy consumption th

sampling point to 125th point the energy consumptions are the minimum one as

energy consumptions with controlled bank

210th sampling point to 230th

110th sampling point to 125th point the energy consumption

The above particular appearances on curves indicate that those profiled energy

consumptions in controlled bank allocation are always smaller than the ones of

fixed bank allocation and its curve is also much more stable than the one of fixed

bank scenario. Moreover, the energy values in bzip2 benchmark are averaged as

the soplex benchmark, energy values in

Furthermore, the controlled bank allocation results during runtime are

profiled as shown in Fig. 3-8. It can be affirmed that the runtime outputs of

controlled bank processes are varying along with locality change, and the

allocated bank number is controlled to change just as such locality and further

meet the cache allocation demands dynamically. As a result, the energy

consumptions with controlled bank allocation can be saved because the runtime

cache bank demands are always supplied with controlled outputs.

As shown in Fig. 3-9, the energy consumptions of all SPEC benchmarks are

represented with three cache allocation methods applied. In the results of fixed

bank allocation scenario, the average energy consumption of all benchmarks is



With controlled bank

allocation, the average energy consumption

proposed method can save on average of 17.3% and 13.6% energy consumption

over fixed bank allocation and fixed bank allocation with sleep mode,

respectively.

In order to evaluate the efficiency of proposed method in parallel execution

situation, eight benchmark groups where each group contains four benchmarks

are employed to co-run in the four threads concurrently. As some integer

Figure 3-11. Controlled bank allocation statistics. All values are averaged by

profiling runtime occupancy on all control intervals.

Figure 3-10. Energy sampling on mixed workloads. Where full bank allocation

method is set as base ones.



benchmarks are not suitable in the multi-processor executing situation, each

thread is allocated with the same working set copy from some benchmarks

during runtime to form a single thread situation, and the simulation results are

calculated as the real parallel executing situation.

As shown in Fig. 3-10, the energy consumptions with all 64 banks allocated

method, the energy consumptions

groups of all bzip2 and smsg, the energy consumptions can be saved as the most

Figure 3-12. Performance comparisons on three methods. Where all

methods are simulated under conditions.

Figure 3-13. Energy comparisons on three methods. The controllable SLLC

method is simulated with same simulation conditions of R-SLLC and P-SLLC

methods.



47.92% and the least of 31.86%, respectively. Meanwhile, the average energy

saving can be 39.71%. Correspondingly, the occupied bank numbers are

profiled into Fig. 3-11 during runtime. Clearly, the cache bank demands are

varying along with execution sequence and the variation ranges tend to be very

large. For example, the occupied bank numbers vary from 19 to 43 on ngbm

benchmark group. As a consequence, at most 46 banks are redundant with no

benefits but wasting energy consumption and delaying cache accesses.

Fig. 3-12 and Fig. 3-13 show energy consumptions and performance values

in three design methods, respectively, where R-SLLC stands for the

reconfigurable SLLC method [6, 9, 20], the P-SLLC stands for phase-based

partitioning SLLC method [2, 11, 18]. The energy consumptions of R-SLLC, P-

respectively. And IPC values of R-SLLC, P-SLLC and controlled SLLC are on

average of 2.33, 2.38 and 2.42, respectively. It can confirm that the proposed

cache allocation method can save on average of 11.6% (value of R-SLLC as

base value) and 18.2% (value of P-SLLC as base value) energy consumption

over R-SLLC method and S-SLLC method, respectively. And the IPC of

controlled SLLC has a few improvements over R-SLLC and P-SLLC on

average of 3.9% and 1.7%, respectively.

3.6 Summary

In per-application granularity, an approximately optimal cache allocation can

be easily achieved by exhausting all simulation results of the benchmark with

different bank numbers allocated. Along with executing sequence, the profiled

energy per access values in five hundred sampling periods show drastic

variation in values. Similarly, runtime cache resource demands in per-interval

granularity also behave diverse features, and fixed bank allocation method is

verified that such a method cannot be adapted in all intervals. In other words,

each interval has its own cache resource demand. Based on particular amplitude

of improvement variation along with allocated bank increasing, all benchmarks

can be classified into three patterns. As shown in three examples, gcc



benchmark behaves a little insensitivity with bank allocation, bzip2 benchmark

is sensitive with extra bank allocation and access pattern on soplex benchmark

shows a phase-step based curve characteristic. As a result, both hit rate and

energy consumptions are highly related on cache resource allocation, and two

appearances are verified that there exists one optimal bank allocation point for

each benchmark while at this point, energy consumption tends to be the lowest

one while the hit rate tends to be remaining stable at the approximate maximum

value. Furthermore, such optimal value can be evolved to applying for all

intervals. The other appearance is that allocating bank number from one to the

optimal number incrementally, hit rates are increasing rapidly and energy

consumptions follow to be decreasing greatly, and in case of allocating banks

from the optimal bank number to all bank allocated, the hit rates of all three

patterns almost remain stable and energy consumptions are increasing as the

hardware overhead scale. Obviously, those appearances confirm to the

feedback-based control process.

Hence, the cache resource demands are described as the optimal cache

allocation which represents the true requirement on achieving both low energy

consumption and access latency in the granularity of per subroutine call. In other

words, more banks are needed in case that allocated bank number is less than

the resource demand, and in case of exceeding the resource demand, redundant

banks should be removed off the current allocation dynamically during runtime,

thereby optimal cache allocation is supplied for each subroutine call. And the

output responses of controlled cache co-scheduling will be convergent to the

steady-state value and any disturbance (locality change) can be handled in

negative feedback control path. As a consequence, it is verified that plenty of

energy consumption can be saved with controlled outputs over the fixed bank

allocation, and also the energy consumptions behave much stable.

Moreover, proposed interval design actuates as the internal factor on the

improvement of applying controllable cache allocation, because that subroutine

calls have similar locality behaviors and also cache resource demands, thus, the

optimal allocation on a subroutine call can be successive to other intervals,



thereby achieving precise cache allocation with minimum allocation overhead.

As to previous intervals, the exploring process should be always running with

plenty of energy overhead. However, the proposed control loop only generates

one output corresponding to one selected subroutine and the rest thousands of

calls on this subroutine are mostly allocated with the same cache allocation

output. Hence, the energy consumptions of controlled cache allocation are far

less than both reconfigurable allocation method and partitioned allocation

method.



Chapter
4

4.1 Introduction on Cache Access Optimization

In modern CMP systems, shared caches serve concurrently with many cores,

and they act as the key devices for bridging shared interconnecting traffic.

However, those processing cores are concurrently accessing the only shared last

level cache, and all those units are crowded at a two-dimensional chip area,

which may cause serious congestions among so many devices. Moreover, the

crossbars and interconnecting wires between many on-chip devices are forced

to link each other with extreme long physical distance, thereby interconnecting

latency is unbearable in efficient on-chip platform design. Furthermore, the

complex on-chip cache hierarchies can take even more than half of both the on-

chip area and energy consumption [46, 50].

To ease on-chip interconnecting traffic, recent researches try to reduce the

physical distance of on-chip devices by extending the multi-layer architecture

to the third dimension so that processing cores, cache hierarchies, and off-chip

memory can be stacked together into three-dimensional architecture. Thus, each

processing core can directly link to its private cache parts, shared cache parts,

and off-chip memory to form a closely interconnected processing path, while

the physical wires linking upper and lower layers are replaced with Through



Silicon Vias (TSVs). Hence, the interconnecting latency of stacked architecture

is far less than that of traditional two-dimensional architecture.

Since the stacked architecture is recently employed as the key technology to

optimize on-chip integrating distribution, some concomitant issues arise to limit

the efficiency of such architecture, typically in tracing locality behaviors and

managing concurrent accesses, which are highly related with the output traffic

among upper and lower layers. Moreover, the shared last-level cache needs to

serve many threads with a vast amount of shared data flows, which may cause

runtime congestions and data coherence problems as many shared data will be

existing in multiple partitioned shared cache bank groups [37, 59]. Hence, some

researches tend to solve the defects of stacked architecture by shared cache

partitioning methods [2, 31], shared data management methods [13, 14, 52] or

OS-based allocation methods [63], which can partly ease the on-chip shared data

traffic among threads.

In this chapter, novel shared data management methods are proposed to form

the dedicated cache routing networks on private cache level [71] or shared cache

level [72] under another angles, which focus on the access paths in the

granularity of the per-shared-data-access level. Firstly, detailed pre-

experimental simulations are set to analyze the characteristics of shared cache

accesses, and further all shared cache accesses are classified based on particular

characteristics of processing path and access distributions in each access type.

Thus, six kinds of access types are selected to cover up all shared access hits,

and the potential improvements on the processing path of each type are analyzed

for the purpose of filtering and further optimizing those processing paths.

Secondly, conventional router structure is enhanced to support data interaction

by a cache to cache network that bridges the vast amount of data interconnecting

traffic in the manner of parallel transportation. The proposed router is enhanced

with three functions as access type recognition, a consistency processing

module and a data multi-direction delivering module corresponding to the steps

of shared data processing path. And the enhanced modules work in a concurrent

path, thereby causing very few latency overheads. Thus, many shared data



accesses can be filtered and further be handled in proposed concurrent paths,

and the latency of handling each filtered access is much lower than that of a

shared cache access. Moreover, this work uses IC compiler tool to actualize the

router implementation for the purpose of generating the layout details. And

further, cache network design is integrated within on-chip system model for

verifying the efficiency of such a network on both energy consumption and

performance improvement. Finally, simulation results show that the

performance represented by IPC can be improved on an average of twenty-six

percent and the energy consumption can be saved on average of ten percent over

the baseline platform.

4.2 Access Issue Description and Motivation

As shown in Fig. 4-1, a stacked 3D on-chip architecture is represented as an

example to motivate the shared cache network design. In this architecture, the

first layer is stacked with processing cores and private caches, where each

private cache is linking with one enhanced router, and further those routers are

linking to their partitioned cache bank groups through TSVs. And those routers

can consist of a data interaction network that transports shared data among

private caches or among shared cache. Meanwhile, the shared cache is stacked

in the middle layer and each partitioned bank group is linking to one

conventional router, which stretches out to the bottom layer for linking to

memory.

4.2.1 Access Issue Classifying

To classify cache accesses into different patterns, the PIN [17] analysis tool is

employed for recognizing each access and further counting them into

proportions. Based on the pre-experimental analysis of shared access features,

the access patterns are identified as follows.

As shown in Fig. 4-1, assume that Core0 wishes to load DataX from Bank1

which has a copy of DataX from off-chip memory. Concurrently, another thread

of CoreN is desiring to load DataX also. Based on the conventional processing



path on shared data, all shared cache banks are partitioned to each private

processing core unit in the form of cache bank groups, and the data in current

bank group cannot be accessed by other private processing core units. Hence,
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there will be a miss access in CoreN if its cache bank group has not contained

the DataX in its partitioned bank group, and then DataX should be loaded from

off-chip memory to the partitioned bank group, thereby consuming polyploidy

access latency. Moreover, after the cache bank group of CoreN has loaded the

DataX, such data is shared by two threads and any write access on this data will

cause data incoherence, and many clock cycles are needed to maintain those

data. For example, a write to DataX should be updating to all its old copies (or

write invalidate). However, conventional maintaining methods require complex

processes and devices to monitor all shared data, and maintaining latency is

unacceptably large. Hence, a new interconnecting repeater should be proposed

for bridging among any two cache bank groups or any two private caches for

routing shared data in parallel.

Based on observations from Fig. 4-1, the shared data can only be

interconnected in the path which is routing among different layers. However,

the shared data is not allowed to interconnect among partitioned cache bank

groups. And the routers in the upper layer work much faster than the off-chip

memory on the shared data which exists in other bank groups if those routers

are enhanced to route shared data across bank groups in parallel. Hence, the

novel router is proposed in this thesis to bridge the shared data among

partitioned bank groups. For example, CoreN can load DataX in a processing

path as the steps: lookup for DataX in Bank1, then deliver the DataX from

Router0 to RouterN, and then return the DataX to the thread of CoreN, thereby

avoiding the previous miss access. Furthermore, how many shared accesses can

be filtered out is highly high correlated in the proposal efficiency, and the

proportions of filtered shared cache accesses are represented in the following

subchapter.

4.2.2 Access Issue Distribution

In order to classify each shared cache accesses into several types, the PARSEC

benchmark suite [54] is employed in the simulation environment which is

consisted of two processing core units, two eight-bank-partitioned bank groups,



and other interconnecting logics. Thus, each shared cache hit is compared with

real-time previous contents of shared cache, and thereby each hit type is counted

into its access distribution amount. Hence, the access distributions are counted

into different access types, which can be defined based on three access path

features as follows.

(1) If current shared cache access has objective data in both shared cache

bank groups of two processing cores, such access is classified as shared accesses.

As shown in Fig. 4-2(c), the copies of previous target data are existing in two

executing threads. Thus, a write access to the target data will cost plenty of clock

cycles to update all old data in the conventional path. However, the new data

can bypass to private cache of sharer thread in the proposed path.

(2) If current shared cache access only has objective data in the cache bank

group of the other processing core, such access is classified as crossed accesses.

As shown in Fig. 4-2(b), the copies of previous target data are existing in other

executing threads. Thus, the requester will encounter a private cache miss and

further load target data from the next layer in case of the conventional executing

path. Meanwhile, the new target data from the requester should be delivered to

Figure 4-2. Schematic diagram of cache access classifications. (a) Repeated

access patterns; (b) Crossed access patterns and (c) Shared access

patterns.



update old copies in sharer threads. In the proposed path, the target data copies

of other threads will be sent to requester in virtue of enhanced cache network,

thereby saving many clock cycles.

(3) If current shared cache access only has objective data in the cache bank

group of current processing core, such access is classified into repeated accesses,

including repeated read accesses and repeated write accesses. As shown in Fig.

4-2(a), target data can be echoed by private cache (conventional path) or record

entries of the router (proposed path).

As a result, there exists six kind of accesses, that is, write and read access

for each type of three, and they are classified to further count access

distributions except for pure miss accesses (target data are not existing in current

cache). After integrating the PIN analysis tool into the simulation platform,

sixteen record counters are employed to trace all shared cache accesses which

are requested from two processing cores. All the benchmarks from PARSEC

benchmark suite are simulated to account runtime accesses in the platform

which has two processing cores, sixteen shared cache banks.

As shown in Fig. 4-3, two benchmarks, dedup and bodytrack, are used as

examples to show the hit distributions of six access types. The shared write

accesses take the proportion of 10.5% (dedup) and 6.1% (bodytrack), which

Figure 4-3. Distributions of hits on access patterns. Where dedup and

bodytrack benchmarks are employed as examples.



may cause coherence problem. And the hit distributions of shared read

accesses take the proportion of 21.1% (dedup) and 17.6% (bodytrack), which

can be filtered for short access latency. The hit distributions of crossed write

accesses take the proportion of 3.4% (dedup) and 2.7% (bodytrack), which may

be shifted to shared write access. The hit distributions of crossed read accesses

take the proportion of 8.4% (dedup) and 10.2% (bodytrack), which can be

passing across the bank group of other processing core unit rather than off-chip

memory. The hit distributions of repeated write accesses take the proportion of

15.8% (dedup) and 20.4% (bodytrack), which may be a continuous write on the

same data. The hit distributions of repeated read accesses take the proportion of

40.7% (dedup) and 42.9% (bodytrack), which can be reused with previous hit

information.

Figure 4-4. Hit distribution and reuse distance of each access patterns, where

valid accesses are counted from the pattern set of hit numbers at each

partitioned bank groups. (a) Statistics of hit distributions among all

benchmarks; (b) Reuse distance along with reuse entries varying.



Fig. 4-4(a) shows access distributions of all benchmarks, three appearances

can be revealed as follows.

(1) Shared read and write accesses take a proportion of average 18.6% and

5.2%, respectively, which may cause serious access conflictions in shared data.

(2) Crossed read and write accesses take about 9.7% and 3.6%, respectively,

and those accesses will encounter misses in their partitioned bank group but hit

at the other group.

(3) Repeated read and write accesses take about 43.8% and 19.1%,

respectively, and those accesses will quite frequently hit at the partitioned bank

group.

Those access distribution values are counted by using large enough record

entry set only for simulation purpose, in which all cache accesses can be

captured. However, it is too costly to use large record entry set in real CMP

systems due to large hardware overhead. Thus, reuse distance features along

with record entry set varying should be explored to find the suitable record entry

scale. As shown in Fig. 4-4(b), the record entry set with only 32 entries can

count an average of 10.1% of all accesses as reuse accesses (accesses hit at

record entry set). If cache accesses are counted by 256 record entries, about 72.6%

(accumulated from 0 to 256) of all accesses can be classified as reuse accesses.

Even adding record entry set from 256 to 2K, only an extra 4.73% of reuse

accesses can be achieved over that of 256 record entry set. Thus, there is a

tradeoff on selecting suitable record entry set.

As a consequence, above features on access distributions indicate that the

potential improvement in reducing access latency and saving energy

consumption can be achieved if shared accesses can be linked across bank

groups, crossed accesses can get target data from the other bank group and

repeated accesses can be filtered into a recording table for data reuse. Thus, the

upper layer router network acts as a suitable operation object to bridge across

bank groups, because all data and requests are interconnected by the router

network. Meanwhile, shared cache accesses can be relayed in a concurrent



access path, and some selected cache accesses are recorded and further handled

for efficient bypassing. In the next subchapter, the proposed router network is

represented in detail.

As to access patterns in private cache level, hit distributions of private cache

accesses are listed in Fig. 4-5, where seven access patterns are behaving various

hit distribution values among benchmarks. Typically in crossed read (CR-A),

crossed write (CW-A) and shared write (SW-A) accesses, those access patterns

can hold the percentage of 2.98, 1.31 and 0.95, respectively. Although the

proportions of the above three patterns are small over repeated accesses (RR-A,

RW-A) and pure miss (PM-A) accesses, their coherence maintaining processes

are so expensive that each access costs the access latency for dozens of times

over common accesses, thereby causing serious performance degradation. Thus,

a novel solution is proposed to ease those harmful accesses in this thesis.

4.3 Three-dimensional Cache Network on SLLC Level

4.3.1 Stacked Multi-layer System Architecture

Fig. 4-6(a) shows the three-layer baseline architecture, in which each private

core unit only can link to partitioned banks in the middle layer by a core bus

port and there is no inter-connection among private core units. As shown in Fig.

Figure 4-5. Distributions of hits on private cache access patterns, where valid

accesses are counted from the pattern set of hit numbers at each private

caches. RR-A and RW-A stand for repeated read and write accesses, SR-A

and SW-A stand for shared read and write accesses, CR-A and CW-A stand

for crossed read and write accesses, and PM-A stands for pure miss

accesses, respectively.



4-6(b), proposed architecture is built based baseline architecture. The first layer

of proposed architecture is stacked with private core unit including private cache

and processing core, and for each private core unit, it is allocated with a router

to connect with other routers of the corresponding private core unit. Thus, a

router network is formed to ensure data interaction among threads. Moreover,

each router interlinks with one bank group which is partitioned from shared last

level cache, and each bank group is managed with cache controller and directory

controller logics, and also is connected with a router and further interlink to the

off-chip memory. Note that each private core unit contains one processing

thread and is allocated with one shared bank group which is equally partitioned

from the shared cache, meanwhile, each bank group owns one cache controller

(a) Baseline architecture (b) Proposed architecture

Figure 4-6. Stacked 3D architecture design. (a) Baseline architecture; (b)

Proposed architecture. Where all on-chip components and off-chip memory

are stacked into three layers and each layer is linked by TSVs.



and one directory controller. As a consequence, the proposed router architecture

is modified based on the baseline architecture which is enhanced with several

functions and is implemented on the routers of the first layer.

4.3.2 Access Path Design in the Stacked System

To well describe the access path of dealing with access issues, Fig. 4-7

represents the usage of first-layer-set router network (global router) and middle-

layer-set router network (local router) in the system [76]. In the first layer, the

core sends out access requests and those requests in present virtual address (VA)

mode can be converted as the physical address (PA) mode in virtue of a

translation look-aside buffer (TLB) unit. If a request to private cache encounters

a miss, this request will be sent to the linked global router, and then triggers two

concomitant access processing mechanisms: 1) Send shared data package from

top layer to middle layer. 2) Spread the request in a global router network for

exploring parallel accessed requests which come from other private core units,

and then reschedule the shared data request in the global router. Thus, latency

overhead of proposed mechanism can be fully covered and save some cycles.

Meanwhile, a hit in rescheduling mechanism will expend very few cycles, but

also avoids queuing up at shared data accessing procedure.

4.3.3 Enhanced Router Hardware Design

To support data interaction among cache, proposed design consists of three

important components over conventional router. Firstly, a new component is

Figure 4-7. Access path of proposed stacked multi-layer system.



designed to find shared data copies rapidly, and one component is needed to

generate coherence state, and also one component is employed to interact shared

data. Those components are described as follows.

1) Target accesses exploration (TE logic).

2) Data replacement (DR logic).

3) Data deliverer (DD logic).

Fig. 4-8 represents the structural diagram with above enhanced components

[72]. In spite of the conventional router pipeline marked in the dotted box, the

proposed components are designed to form a concurrent processing pipeline.

Note that the concurrent pipeline works with conventional pipeline since each

shared cache access arrives in the input ports, and once the target data has

achieved in the concurrent pipeline, such shared cache access can be handled

directly.

As shown in Fig. 4-9, the conventional router pipeline processes four states

to deal with every package. If there is a package existing at the router ports, it

will be loaded into write buffers first, and then be allocated with output ports in

the switch allocation logic and an unoccupied virtual channel also. And then

Figure 4-8. Proposed router architecture. Where both conventional routing

pipeline and enhanced concurrent routing pipeline are concurrently dealing

with five-port inputs.



such package is loaded with traversal switch control and further is loaded by

link traversal. Concurrently, the proposed pipeline is ordered in the sequence as

follows. Firstly, the accesses are explored in the lookup buffer to identify which

access type it belongs to, and further can be stored or loaded to the record logics

in the state of target explorer. And next, this access is checked to ensure data

coherence in the replacement coherence logic. At last, data deliverer can

Figure 4-10. Proposed target explorer component (TE) including lookup

buffers, record entries and table.

Figure 4-9. Routing pipeline stages on proposed concurrent pipeline (three

states) and conventional routing pipeline (four states).



transport target data to processing core unit in case of access hit on record logics,

or such access is handled in conventional pipeline.

As shown in Fig. 4-10, the internal design details of target explorer are

represented. For the accesses from other routers, a bypass unit is employed to

quick explore among the record entries for the purpose of locating previous

target data. If there is a hit, the target data can be checked in the next state,

otherwise bypassing the current router. In case shared cache access is requested

from the private core unit, the address of current request will trigger a lookup to

identify whether there is a previous hit existing or not, and further such request

is bypassing to the target explorers for checking data sharing. Moreover, all

shared data should be checked data coherence first before such data is delivered

to data deliverer logic. And the data record entries only hold some pervious hits

while all entries are maintained with the LRU replacement policy. Meanwhile,

the data record table will hold the target data of recorded previous hits

corresponding to the contents of data record entries. Furthermore, the retired

data from data record entries and tables should be checked the data coherence

with the data stored in other routers, and then those data will be retired to shared

cache bank group. In case that target data is delivered from other routers, such

data will be stored into data record entries and tables.

Fig. 4-11 depicts the design details of DR component, which is designed

for checking the consistency and marking directory state. It has two input ports,

where one port receives data from lookup buffer into full bit vector based

Figure 4-11. Proposed data replacement coherence component (DR)

including a full bit vector based directory and data replacement unit.



coherence algorithm and the other port is linked with data record entries and

table. Moreover, the state controller dri0vers three kinds of operation as follows.

Firstly, if target data will be stored into record logic, the coherence check

process will be triggered to ensure that previous target data is same as the current

target data. Secondly, each retired data from record logic to shared cache bank

group will be checked first to ensure that the retired data is same as the one in

the linked bank group. Finally, such data should be checked to ensure that such

data is same as one of other routers.

As shown in Fig. 4-12, data deliverer (DD) is represented to receive three

kinds of transporting requests from coherence logic, bypass unit, record entry

table and linked data block. All those requests are selected in the mux array and

further driven by output driver logic, and finally delivered to crossbar switch

logic to four directions as record entry table and linked data block, linked

partitioned bank group, bypassing to other routers, and private core unit.

4.4 Three-dimensional Cache Network on Private Cache

Level

4.4.1 Modified Router Architecture

Data sharing in private cache level can cause much larger recovery latency

because that those data are existing in high-speed private cache level and any

data inconsistency will lead to expensive thread interruption. Thus, proposed

router design is suitable to apply in private cache level for interconnecting

threads. As shown in Fig. 4-13, a modified router is designed to work with

Figure 4-12. Proposed data deliverer component (DD) including selecting

muxes, output driver and crossbar logics.



private cache in parallel [71]. If there is a hit at any thread, target data can be

delivered to the requester or updated to sharer. And previous router structure is

modified to meet routing requirements on private cache as follows.

(1) Each private access should be bypassed to the lookup buffers of all

routers rapidly. Thus, a dedicated channel is employed to spread new requests

in the router network.

Figure 4-13. Modified router architecture, which is integrated into private

cache level.

(a) Latency evaluation on TE logic. (b) Latency evaluation on DR logic.

(c) Latency evaluation on DD logic.

Figure 4-14. Latency evaluations on three components. (a) TE logic, (b) DR

logic, and (c) DD logic.



(2) The virtual channel (VC) allocator is re-designed with two VC tables:

free table and reserved table.

(3) Input and output buffers are greatly reduced for the dapper buffer scale,

where the input buffered routing method is applied to this router.

(4) Both the history tag and data array are maintained with a new updating

algorithm, which supports data replacement from other routers and shared cache.

(5) The replacement logic is integrated with MOESI_directory based

coherence protocol, which is interlinking to the coherence logic of shared cache.

As a consequence, the modified router can support high-speed data

interaction among executing threads in the proposed concurrent path. And

routing paths of key access patterns are described in the next subsection.

4.4.2 Routing Paths of Four Patterns

Based on layout reports of router components in Table 4-1, access latency of

each routing path can be evaluated by measuring the latency between source-

CLK to the sink point. As shown in Fig. 4-14, access latency values in three key

components are represented in detail. For access path in TE logic, tag bits can

be bypassed with 25 ps and exploration in lookup buffer costs 58 ps. Data output

process needs 104 ps including write or read decoding and bit line selecting. For

access path in DR logic, the full bit vector needs 47 ps to decide data category

and further endows data state within 31 ps, and finally, exports marked data in

15 ps. For access path in DD logic, output driver costs 23 ps to load target data

from previous logic to crossbar unit, and crossbar selection costs 68 ps in latency,

and finally exports data within 15 ps.

As shown in Fig. 4-15, latency savings of four access patterns are

represented. Compared to access latency of conventional private cache path

(assume 2000 ps), shared accesses and crossed accesses are flowing in proposed

router network as follows.

(1) Shared read saving: If there is a request to target data of shared read

access, the decoded tag information will be explored to find previous access



within 162 ps. And this access is marked with coherence state, and at last, output

data to requester with the aid of DD logic. Thus, the overall latency of shared

read access is about 363 ps.

(2) Shared write saving: If there is a write request from the requester to

previous target data, the decoded tag information will be bypassing to the rest

routers at the same time. Then, target data copies in router network can be

located for further updating. The new target data will replace old target data in

TE logic, and then coherence state is marked. At last, the new shared data is

bypassed to any related routers for updating their old data. Next, the coherence

state will be marked and further write new data back to update all copies existing

in shared cache. Thus, the overall latency of shared write access is about

(564+42n) ps.

(3) Crossed read saving: If there is a request to target data of crossed read

access, the decoded tag information will be bypassing to the rest routers at the

same time. Then, target data copies in router network can be located for further

exporting, and this access is marked with coherence state. At last, output new

data from the router of any sharer to the current router of requester. However,

there is a cache miss in conventional access path as the target data are not

existing in private cache. Thus, the overall latency of a crossed read access is

about (471+42n) ps.

Figure 4-15. Latency savings on each access pattern. Where 42n stands for

the latency of bypassing n routers and n

network.



(4) Crossed write saving: If there is a write request from the requester to

previous target data, the decoded tag information will be bypassing to the rest

routers at same time. Then, target data copies in router network can be located

for further updating. The new target data will replace old target data, and at last,

bypass new data to any related routers for updating their old data. Next,

coherence state will be marked, and further write new data back to update copies

existing in shared cache. Thus, the overall latency of a crossed write access is

about (471+42n) ps.

To sum up, processing latency of conventional path in above cases can be

33.3~37.9, 5.5, 16.6~23.4 and 31.8~44.8 times (Calculate from n=6 to n=1) over

the ones of proposed path, respectively. Moreover, those access patterns take up

about 0.95%, 3.82%, 2.98% and 1.31% as shown in Fig. 4-5, respectively.

Theoretically, overall performance employed with proposed router can be

improved greatly.

4.5 VLSI layout verifications

4.5.1 Layout Setups

In order to evaluate the energy and latency of enhanced router architecture, the

proposed router is implemented by the VLSI development process of hardware

language description in Modisim tool, static timing analysis, synthesis and

layout in Synopsys IC Compiler tool [77]. Cache model is built by CACTIv6.5

tool [55], where SLLC is set as 16MB size, 128 banks.

The pseudo-code of enhanced router logic is represented .

For each shared cache access, it will be checked in the lookup buffer to explore

the previous target data (from line 5 to 8). If such access hits in the target

explorer, the data can be transported to data deliverer and further return to

private core unit, and if such access misses in current target explorer, a

bypassing process is triggered to explore among other routers to locate same

kind of accesses (from line 9 to 15). If such access hits at other routers, the target

data is transported to current router expect that the access is detected as a



continuous write (from line 16 to 19). In case of a continuous write, this access

should write to record entries and table first, and the previous write is retired to

write at partitioned bank group, thereby continuous write is handled (from line

20 to 25).



Moreover, the router bypassing is employed to transmit target data of crossed

access in the router network. And all shared data should be checked for data

coherence, and the retired data will be checked and then should be delivered to

current partitioned bank group (from line 26 to 28). Hence, some shared cache

accesses can be filtered and further be handled in concurrent pipeline with very

low latency.

4.5.2 Implementation Results and Overhead Analysis

As shown in Fig. 4-16, the layout diagram is represented on the design area

Addr_Bus_In_port Router_Mesh_Out_port Router_Mesh_In_port
45 315 315

Router_Passby_In_port Router_Passby_Out_port
315 315

Request_data
301
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Virtual Channel

Input Buffer

Output Buffer

Buffer R&W

Routing Computation Logic

Crossbar Unit
Meshed Routing

Driver

Crossbar Switch

Output Driverer

Figure 4-16. Router layout details. Ports to four transmission directions (N,

S, E, W) are omitted.



setup of 1.3*1.3 mm2. Note that each component is highlighted to draw their

probable occupied area, and details are marked with white frames. Moreover,

the layout report is listed in Table 4-1, and the five-level logic hardware is

counted with 165594 gates while the design area is about 1.5 mm 2 and the total

dynamic power is about 56.9 mW. Thus, the total area of proposed router

network which contains sixteen routers can be counted as 16*1.69=27.04 mm 2,

and the total power is counted as 16*(total dynamic power + leakage

power)=1.09 W. Moreover, layout reports for stacking private cache level are

listed in Table 4-1. Single router hardware is counted with 113944 gates while

the design area is about 0.68 mm2 and the total dynamic power is about 48.6

mW. Thus, the total area of proposed router network which contains sixteen

routers can be counted as 10.9 mm2, and the total power is counted as 16*(total

dynamic power + leakage power)=0.86 W.

Firstly, design differences of router structures between shared cache level

and private cache level should be declared with three parts: (1) Path latency



requirements are very different as several nanosecond level in shared cache but

several hundred picosecond level in private cache; (2) On-chip locations are

very different as lying after private cache or in parallel with private cache; (3)

Router architectures are very different as router in private cache level is

redesigned including router model (input-buffered architecture), three

additional components and data maintaining path for supporting several times

fast access speed.

To compare additional hardware over conventional cache network, we take

the router network and shared cache together into account to compare with the

hardware scale of our proposed router. To compare with a standard 16 MB size

shared cache (gate scale is counted in CACTIv6.5), the design area of proposed

router only takes up 1.5 mm2 area. To compare with Intel Xeon E7-4850

processor, which possesses 16 processing cores, 115 W power and 45 mm *

52.5 mm=2362.5 mm2 package area, the hardware overhead of our proposed

router network is about 1.14% of the Intel Xeon chip, and the power overhead

only takes up 0.95%.

Figure 4-17. Potential latency saving of modified paths. Where the latency of

each state is not represented in scale. TE: Target Explorer, RC: Replacement

Coherence logic, DD: Data Deliverer.



As to the latency of each access type, the pipeline states of each type are

represented in Fig. 4-17. For each hit on the proposed pipeline, the latency of

such access is classified into six situations as follows. For repeated read access,

it only needs to explore the target data in TE state and then the target data is

delivered to processing thread, thereby saving plenty of latency. For repeated

write access, it needs to explore the target data in TE state, and then the target

data is checked with data coherence in RC state for saving some latency. For a

share read access, it only needs to explore the target data in TE state and then

the target data is delivered to private core unit in DD state, thereby saving plenty

of latency, which has a similar process as the one of repeated read access. For a

shared write access, it needs to explore the target data in TE state, and then the

target data is checked with data coherence in RC state, and then the target data

is delivered to private core unit in DD state, and further such access is bypassing

to the routers which have the previous target data, and then the data will be

checked with data coherence again, and further deliver the new target data to

replace the ones of other routers, thereby saving plenty of latency rather than

Figure 4-18. Chip design of a 16-core 3-layer stacked architecture, where the

first layer is stacked with cores and private caches, the second layer is

stacked with shared cache, and the third layer is stacked with multi-laminated

memory.



the latency on both shared cache access and coherence check. Any crossed read

needs to be explored with shared data existing in other threads, and then

transport shared data to current router and further return the data to private core

unit, thereby avoiding a shared cache miss. For a crossed write access, it will be

explored with previous target data in other routers and then the data can be

written to current record entries and table after this data is checked with the

target data of other routers to ensure data coherence. And if data incoherence

happens, the new target data is delivered to replace previous data in other routers,

thereby saving plenty of latency rather than the latency of both a shared cache

write access and data coherence checking.

4.5.3 Evaluations on 3D Stacked Chip

As shown in Fig. 4-18, the stacked chip diagram shows that three layers are

embedded into a heat sink for purpose of heat dissipation, and 16 cores and

private caches are stacked in the core die while each thread processes a TSV

array stretching out to interlink the layer of shared cache die. Table 4-2 shows

key parameter setups on the proposed 3D chip. The heat sink is far larger than

chip thickness, as a result, heat generated from three layers can be dissipated

greatly. And the heat sink has a thermal conductivity value of 350 W/(m-K).

The memory layer is stacked with a multi-laminated structure, where the

number of stacked data pages can reach to 128 layers or more. In this thesis,

four data pages are stacked in the third dimension acting as a page group, and

sixteen page groups are placed in a two-dimensional area. And each page group

processes a TSV array for data transmission.



The HotSpot tool (version 6.0) [78] is employed to conduct thermal

verification in this thesis. As shown in Fig. 4-19, 3D stacked chip architecture

is simulated with eleven hours to achieve a steady temperature state. And each

layer is partitioned into 32 32 grids for modeling the average temperature in

each grid. The temperature values range from 337.8 K to 359.3 K in three layers.

Typically in the first layer, processing cores generate many heats to push up die

temperature, which results in local overheating at core die. With the aid of heat

sink, the maximal temperature of each grid is lower than 363.15 K (temperature

threshold). Consequently, proposed 3D chip architecture is practicable under

thermal constraint.

Figure 4- . Steady thermal simulation on three stacked layers, where

the units for the three-dimensional coordinates are Meters (m), and the

unit of temperature is Kelvin (K).

Figure 4- . TSV placement example, where each TSV array contains

325 TSVs.



As the data length spreading among routers is 325 bits, Each TSV array is

designed to transport one data once in parallel. In this thesis, a 325-bit-long data

address is packed as one routing package, and each package consists of five flits

while the flit length is 65 bits. Thus, the TSV array is designed as a group of

5 65 TSVs. The placement of a TSV array is represented as shown in Fig. 4-20,

where the overall area of a TSV array can be calculated as 0.59 mm 2. Fig. 4-21

shows a placement example of the first layer, where one router is interlinked

with nearby routers to build a 4 4 network, and a TSV array is used to interact

with the middle layer.

Table 4-3 summarizes area evaluations on three layers, where the area details

on key components are listed to represent approximated integrating area values.

Figure 4-21. Placement example of the first layer, including a router, a

processing core, a private cache and a TSV array.



In the first layer, key components consist of core die, L1 instruction cache and

data cache, enhanced router and TSV array. Thus, the overall area of 16-core

stacked layer can be calculated as 16 (9.29+3.47+4.16+1.27)=291.04 mm2. In

the second layer, the overall area of shared cache including cache controller and

directory logic can be calculated as 153.61 mm 2. And in the third layer, sixteen

page groups and interconnection logic together can take up 214.34 mm 2. Thus,

area values normalized to the third layer can be calculated as 1.36, 0.72 over 1.

As a consequence, it is suitable for arranging those on-chip components stacked

in the proposed area.

4.6 Evaluation Strategy

4.6.1 Experimental Platform Setups

Platform model: the instruction-tracing driven based full system simulator

Gem5 [53] is employed for constituting a multi-level multi-core on-chip system

model, which consists of private cache level, shared cache level, main memory,

and multi-core processors, and each component of the simulation platform is set

as listed in Table 4-4. Note that the hierarchical cache modules are represented

by extended CACTIv6.5 cache area, energy and integration analysis model,

Processor Unit

2.0 GHz, 16 cores, single thread per core, 1.1 V supply voltage,

128 IW entries, 45 nm technology library, 30 cycle TLB miss

latency.

L1I/L1D Cache
32 KB instruction cache, 32 KB data cache for a core (private),

4-way, 64 B line size, 4 cycle latency.

Shared L2 Cache
16 MB total size D-NUCA, 128 banks, 1MB partitioned for

a core (shared), 8-way, 128 B line size, 20 cycle latency.

Main Memory
4 GB Double Data Tate (DDR4 2133MHz, 1.2V), 8KB page

size, 120 cycle latency.

Router Network
Mesh_XY Topology, 5 ports per router, 3 VCs per port, 15 flits

per port.



where the first cache level is set as the private cache and the second cache level

is set as the shared cache.

Router model: based on conventional router architecture in [49], the router

layout reports are integrated within the router estimation tool for the purpose of

latency and power evaluation, and those evaluated results are sent into the

platform to drive the routing module which is meshed with mesh_XY topology

[42].

Benchmarks: During verifying the proposed cache network, the PARSEC

benchmark suite is much more suitable as it can private the per-instruction level

simulation on the characteristics of data sharing and traffic modeling.

Comparisons: The proposed cache allocation method is compared with four

methods including [10].

As to the cache network based proposal, both baseline platform and the

proactive resource allocation [36] methods are compared under the same

platform setups.

4.6.2 Evaluation Metrics

To unify the performance and energy consumption metrics, the total evaluated

values are normalized by the cache request numbers to form the normalized

energy consumption per access. And the performance is represented by IPC

(instructions per clock) values which are counted from the IPC values in all

threads simultaneously. In all evaluation tests, the counting period is uniformly

set as skip first 1 billion, collect next 5 billion instructions, availably.

4.7 Stacked 3D Cache Network Verification

To evaluate the improvement of applying the proposed cache network, eight

setup combinations are employed into runtime experiments as follows. The base

platform which contains a conventional cache network is simulated for

comparisons, and the platform which contains the proposed cache network is



simulated while the record entry size ranges from 32 to 2K, thereby seven setup

combinations are achieved.



4.7.1 Performance and Energy Improvements

As shown in Fig. 4-22, the IPC values of proposed method with different record

entry sizes are normalized to the value of base combination. In the combination

of 32 record entries scenario, the IPC can be improved by on average of 4.2%,

and in the combination of 256 record entries scenario, the value can be improved

by on average of 26.1%. However, the IPC will be improved by on average of

24.3% in the combination of 2K record entries scenario. It can be observed that

there is an optimal record entry number existing among all benchmarks.

Typically, the lowest value of maximum improvement of all benchmarks is

about 17.4 with swaptions benchmark in the combination of 512 record entries,

and the highest value of maximum improvement of all benchmarks is about 39.5%

with x264 benchmark in the combination of 256 record entries.

As to energy consumption, Fig. 4-23 represents the normalized energy

values of all benchmarks. Although there are some extra hardware added into

cache network, the proposed architecture employed by simulation platform can

improve the IPC greatly, so that the energy consumptions with proposed cache

Figure 4-24. On-chip energy comparisons on mixed workloads. Proposed

system is set as allocating 256 record entries.



network in the combination of 256 record entries can be improved by 9.7% on

average over the base combination. However, in the case of 32 record entries

combinations, the energy consumptions of all benchmarks are a little larger than

the ones of base combinations, in which there is 0.6% energy overhead on

average.

Moreover, the system applied with proposed cache network (256 record

entries uniformly) is compared with base system and proactive resource

allocation (PRA) based system [36]. As shown in Fig. 4-24, the IPC values of

all benchmarks are averaged as 6.82, 7.45 and 7.83, respectively on three

designs. Clearly, proposed design outperforms the PRA based system by 5.1%

on IPC, but in some benchmarks, energy consumption of PRA based design is

less than that of proposed system, where the average energy consumption of

PRA based system is less than that of proposed system by 1.2%.

In the setup combinations of executing mixed benchmark groups, as shown

in Fig. 4-25 and Fig. 4-26, the IPC values of three designs for mixed benchmark

groups are averaged as 6.51, 7.64 and 8.02, respectively on three designs. And

the on-chip energy consumptions of them for mixed benchmark groups are

averaged as 52.5, 44.9 and 45.1, respectively.

Figure 4-25. Energy and performance comparisons. Proposed system is set

as allocating 256 record entries.



4.7.2 Result Analysis

Based on experimental results in the minimum granularity of each shared cache

access, all access patterns which are classified for the purpose of latency

reduction can be modified with a novel pipelined path, and plenty of clock

cycles are reduced in this path. There are two features observed which lead to

such latency improvement as follows. The first feature is that shared accesses,

crossed accesses and repeated accesses together can take the majority proportion

of all shared cache accesses, thus operating space of latency reduction is large

enough for great improvement. The other feature is that each filtered access can

be handled with minimum latency rather than that of previous access process,

which can be confirmed as follows.

(1) Repeated accesses: For repeated read access, it quite possibly hits on

the previous access result stored in record entries, and then the latency of

modified path only sustains a period of locating previous access results.

Otherwise, such an access request will be routed into the middle layer for

exploring target data in the shared cache. Obviously, the previous access path is

far longer than the modified path, in which a redundancy of shared cache access

can be saved by the proposed method. For repeated write access, it may cause a

Figure 4-26. IPC comparisons on mixed workloads. Proposed system is set

as allocating 256 record entries.



continuous write operation in the previous path, which will lead to coverage on

current data. However, in the modified path, the write access is directly written

into the record entries and then the previous target data is retired into shared

cache. As a consequence, both repeated write and read can be fast handled in

the first layer rather than access to shared cache in the second layer.

(2) Crossed accesses: It will miss on both record entries in the first layer and

the partitioned bank group in the middle layer, and then off-chip memory access

is needed to handle such miss, and costs hundreds of clock cycles. In the

modified path, it allows to send shared data from the crossed routers to the

current router within several clock cycles through the router network. Similarly,

the crossed write access can be delivered from the current router to the crossed

routers for renewing the target data in crossed routers. Thus, data incoherence

is directly handled in modified path rather than the previous directory-based

repairing path with many clock cycles.

(3) Shared accesses: For shared read access, it may be handled in the first

layer with the modified path or hits on partitioned bank group as conventional

manner, where some improvement on latency can be achieved. For shared write

access, each modification on target data will trigger a coherence check process

in the conventional path, which will waste plenty of latency. However, with the

aid of router network, such modification on target data can be easily spread to

routers that contain target data, thereby data coherence can be ensured with few

clock cycles.

As a consequence, the proposed path can deal with those accesses much

faster than the conventional path, which should access shared cache in the

second layer or even to off-chip memory in the bottom layer with multiple scales

of access latency. Corresponding to simulation results, the proposed path can

improve performance by 26% over the conventional path.



4.8 Results on Applying Modified Router for Private Cache

The modified router is employed for interconnecting data accesses in the private

cache level, and the router supports runtime access recognition on crossed and

shared accesses and further matched accesses can be fast executed for the

proposed processing path. Firstly, the throughput bandwidths of data flow

between routers are evaluated with the history buffer scale changing. And the

optimal buffer scale is selected as 32 entries, where throughput can reach to

117.9 Gbps.

As shown in Fig. 4-27, performance are compared among different record

entries. The average values of 16 entries, 32 entries, 64 entries, and 1K entries

are improved about 23.91%, 31.85%, 30.56% and 12.61% compared to the base

system, respectively. Fig. 4-28 shows normalized energy values under different

entry scales. The average values of 16 entries, 32 entries, 64 entries, and 1K

entries are improved about 15.52%, 17.61%, 15.93% and 7.85% compared to

base system, respectively. Fig. 4-29 shows the comparisons on normalized IPC

values among two base system methods, PRA method and proposed method.

The base method with large private cache is inferior to the base method by 0.82%

on IPC. PRA based method can outperform the base method by 11.62%, and the

proposed method behaves the best IPC about 31.85% compared to the base

system. Fig. 4-30 shows the comparisons on normalized energy consumptions

among four methods. The base method with large private cache is inferior to

base method by 0.95% on energy consumption. Compared to base system,

proposed design and PRA design show 17.61% and 10.93% energy saving over

base system, respectively.
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4.9 Summary

In the proposed system design, there are two trade-offs to choose buffer entry

and private cache scales. For private cache, applying small cache size leads to a

high miss rate, but the latency of each access hit is small. On the contrary,

applying a large cache size can achieve a low miss rate, while access latency on

each hit is large. Thus, the private cache size is experimentally explored as 32

KB for proposed system under the principle of performance first. Similarly,

there is a trade-off on selecting record entry scale. Applying a small record entry

scale leads to few detected accesses, but the latency of detecting process is small.

On the contrary, applying a large record entry scale can achieve many detected

accesses, while processing latency on each access is large. And both IPC and

on-chip energy values under different record entries are according to such trade-

off analysis.

Similar to analysis on applying router for shared cache level, the modified

router network can detect crossed read, crossed write, shared read, and shared

write, and each pattern takes up about 2.98%, 1.31%, 3.82% and 0.95%

compared to overall accesses. And processing latency values of handling each

access in the proposed path will cost about (471+42 n), (471+42n), 363 and

(564+42n) ps, respectively. Thus, IPC values of proposed system should be far

larger than that of base system, and simulation results are according to this

inference. As the proposed system can work fast even with some hardware

overhead (total power is slightly increased), overall energy consumptions can

be reduced with the same amount of workload, and simulation results on energy

consumption are according to this inference.



Chapter
5

In this thesis, the shared cache resource demands during runtime are

analyzed in detail in the granularity of per application based intervals, per

subroutine call based intervals and per shared cache access based intervals. The

pre-experimental results show that there is an approximate-optimal share cache

allocation existing for each benchmark in per application based intervals, and

the subroutine calls on same subroutine behave in similar locality features while

total calls on several hot subroutines can take a majority of entire dynamic

instruction scale, thereby those subroutine calls act as the perfect control

intervals on shared cache allocation. Based on runtime curves on both hit rate

and energy consumptions, a control loop is proposed to integrate self-control

theory into a dynamic shared cache allocation method. And such design is

integrated into a multi-processor based evaluation model, which can

dynamically allocate shared cache resources to supply runtime cache resource

demand in the granularity of per subroutine call. As a consequence, the proposed

method applied to the platform can save plenty of energy consumption over the

baseline system, reconfigurable design, and partitioned design methods.

Moreover, the access features are analyzed in per share cache access

granularity, where the shared cache accesses can be classified into several types

including repeated accesses, crossed accesses and shared accesses. For each

access type, the executing processes of both read access and write access are



taken fully considerations on the potential improvements of modified pipelines.

Consequently, executing processes of all six access types are optimized by

means of enhanced router network, where the repeated accesses can be fast

handled after matching previous hits, crossed accesses can be fast handled with

the aid of target data in other routers rather than the data in off-chip memory

and the shared accesses can be easily maintained in virtue of routing network

rather than complex maintenance logics. Hence, such cache to cache network

can interact many shared data accesses with far smaller access latency than the

latency of shared data access, while the enhanced router is implemented with

layout reports on IC compiler tool and the layout results show that the proposed

router network only has about one percent of power and area overhead over an

Intel chip. But the experimental results with proposed router network show an

average of twenty-six percent performance improvement compared to base

system.

In the future, controllable cache allocation design should be improved to fit

the control situation of many concurrent threads. Furthermore, on-line PID

parameter tuning design and cache allocation design under unknown workloads

and common CMP system scenarios are needed to do explorations. And, current

stacked multi-layer proposals are needed to extend both order of stacked layer

magnitudes and integrated core scales for the purpose of high-level parallel

computing. Also, more efficient routing algorithms are desired to handle large

cache network.
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