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Abstract 
 
The impacts and needs of cellular communication have been increasing more than ever with the 
recent success of 5G system launches. Specifically, the application demands for vehicular 
communications can be recognized as the cross-industry needs. Various automotive-related 
industries have started to collaborate with the cellular industries with a target to make driving 
system much safer, much smarter toward the final goal of achieving machine-maneuvered 
autonomous driving. This thesis titled “Studies on Vehicular Communications in Cellular 
Systems Employing Machine Learnings” proposes an improved and smarter integrated 
communication system that target to harmonize the operation between cellular and vehicular 
networks. Cotemporary vehicles have begun to be equipped with various advanced sensors and 
monitors are now evolving into Smart Internet of Vehicles (SIV) with always-on connectivity to 
the Internet. These highly capable sensors monitoring visual and radio images are poised to 
replace humans in making decisions on driving maneuvers. Distributed computing over 
virtualized network systems gives a strong momentum to the realization of the above targets by 
providing spreading computational resources over the network as additional resources to 
vehicles in leveraging the virtualized network’s flexibility. As researchers in the related fields 
have also stated, without applying the power of Machine Learning (ML), the lofty target would 
not be realized in various aspects. 
 
With an aim to contribute to achieving such objectives, this work provides a set of studies on 
sophisticated Vehicular Ad Hoc Networks (VANET) clustering and dynamic network resource 
acquisition schemes employing the power of ML. A 3GPP-specified vehicular communication 
system called Cellular-V2X (C-V2X) is an additional powerful vehicular communication 
platform, which provides both short-ranged communication capability and long-ranged cellular 
communication capability simultaneously in a single communication system. We apply this C-
V2X platform in our study and propose an improved time-critical VANET clustering scheme by 
leveraging these capabilities.  
 
The next prime contribution of this thesis is to propose a sophisticated scheme for computational 
resource identification for nomadic mobile vehicles. However, the resources and status of 
network also dynamically change as resources are consumed and allocated for other requests as 
well. Therefore, how to find an appropriate resource acquisition is a complex question as it is 
dynamic and not static. In order to answer this question, especially in view of the dynamic status 
of network resources, we employed the power of ML through this work.  
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Having these objectives, Chapter 2 reviews related fundamentals of vehicular clustering schemes 
and ML theories. As a sophisticated object clustering algorithm, we introduce Affinity 
Propagation Clustering (APC) which bases on the factor-graph theory, of which concept was 
originally shown in Nature. We applied and enhanced the tool in our VANET clustering scheme. 
Gazis-Herman-Rothery (GHR) car following model is an additional theory we reviewed in the 
chapter, as we obtained real traffic data from an observation. The scheme has been quite useful 
for preparing a set of organized data for simulation analysis. We also conducted thoughtful 
review of variation of ML algorithms in this part. Specifically, Support Vector Machine 
Classification (SVMC), Gradient Boosting Machine Classification (GBMC) and eXtream 
Gradient Boosting Machine Classification (XGBC) are carefully explained in the chapter for 
foundation of understanding forthcoming proposal part. 
 
Chapter 3 introduces our first field of study, which focuses on an enhanced clustering proposal 
leveraging APC theory to VANET clustering. Our proposed scheme extends the original concept 
of APC and is designed to leverage the power of C-V2X wireless communication platform. This 
is a challenging task, as the cluster has to be formed while vehicles are in dynamic motion and 
need to meet the traffic characteristics. We carefully designed a key mechanism called similarity 
function in the APC process. This chapter includes extensive sets of simulation-analysis 
conducted to evaluate the proposed scheme. 
 
Chapter 4 extends the above study for finding an ideal VANET clustering granularity and 
autonomous formulation applying the power of ML. Finding an ideal clustering granularity has 
been an essential task and was the only remaining task in the previous study. We focused on the 
fundamental evaluation criteria, which are identified as three essential terms: traffic density, 
communication volume, and network congestion status. These selected criteria are used for the 
evaluation for ML decision making. We also designed a message sequence and procedure that 
fit into the C-V2X communication platform, targeting the ease of implementation. Our proposed 
scheme perfectly works in application-level enhancements and in a distributed controlled manner. 
This study applied Support Vector Machine Classification algorithm as the ML classification. 
We carefully analyzed the fundamental mechanism and examined the parameters with tuning in 
the simulation. Extensive clustering results were produced and reviewed during the simulation 
process. For the performance evaluation, ML prediction accuracy as well as contribution of 5G 
access latency were also displayed in the simulation. 
 
Chapter 5 shows the study results on dynamic server selection employing ML for 5G VANET. 
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The volume and size of vehicular computation has been increasing with the decision made by 
ML through the sensing data obtained from high-defined sensors. In order to replace human 
operation, various data have to be analyzed thorough ML enable decision-making on behalf of 
humans. As the computation power of a single vehicle is limited, having a distributed 
computation aid has become an essential approach. Therefore, we have introduced a study of 
distributed computation on the vehicular communication. There are a number of criteria that 
have to be evaluated, specifically in time critical dynamic environments. Hence, we applied the 
power of ML in this study as well. We selected an essential set of criteria for ML decision with 
a target to minimize computation load and improve prediction accuracies. We also proposed a 
mechanism that adapts to time criticality. ML needs a learning time to increase its prediction 
accuracy, their sampling volume and processing time are linearly related. In order to solve this 
dilemma, we proposed an isolation of the learning process from the execution process in the 
study. The work also proposed placing a ML agent on the network edge, which priorly acquires 
components of a necessary task vector in a distributed manner. Therefore, the ML execution 
process can be isolated from the lengthy learning process. With the simulation results, we 
examined the prediction performance of ML. We also examined a missing data scenario case in 
the ML prediction, as all sets of necessary data cannot be realistic, specifically in consideration 
of time-critical vehicular application scenarios. In this study, newly introduced ML algorithms 
GBMC and XGBC are examined in addition to SVMC. We carefully reviewed the mechanism 
and evaluated the performance over these algorithms. Latency contribution in our scheme and 
three server model were also evaluated in the simulation process. 
 
Finally, Chapter 6 concludes these studies by reflecting the observations from the outcomes. 
Throughout this thesis we learned quite a large number of identifications in theorical aspect as 
well as simulation aspects. We presume the results can be applicable to a wide span of moving 
machine type communication objects. This chapter also provides potential future work and on-
going activities of application of ML in 5GS and related communication fields.  
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Chapter 1 

 

1 Introduction 

 
The era of the 5th Generation cellular System (5GS) has opened, reflecting the significant efforts 
in the 3GPP standardizations [01]-[04] as well as the huge effort of in commercial 
implementations. As of October 2020, 5G was operated in more than 100 global commercial 
services and reached more than 5% of global population [05]. Having the highly demanding 
requirements [01], the 5GS has started to provide much higher speed, much lower latency and a 
much larger number of connections than human beings have ever made on cellular systems. 
Having various advanced features embedded, 5GS applications are spreading to various industries 
and extending the range of services on a scale never seen before. Some examples are as follows. 
Enhanced Mobile Broadband (eMBB) opens a door for displaying a hologram and 3D imaging 
on a high-resolution display. Ultra-Reliable and Low-Latency Communications (URLLC) will 
open up new services requiring time-critical and low-error communication, expected to support 
such applications as medical surgery by remotely located doctors. Massive Machine Type 
Communications (mMTC) enables large number of connecting objects such as those of MTC and 
Smart Internet of Things (SIoT) via the cellular system. Conventionally, a majority of cellular 
communications have been made through handsets operated by human beings. However, in the 
5G era and onwards such machine objects will be additional main users. 
 
Vehicular communication is one of the typical and predictable MTC examples which typically 
require all eMBB, URLLC and eMTC capabilities of 5GS. Level 5 autonomous driving allows 
complete machine operation of vehicular maneuver with spontaneous critical decision making in 
time-limited events in replacement of human beings who have ever maneuvered. This is a 
challenging target; however, it is not a dream but a strong industrial requirement. These messages 
can be seen from intensive, industry-wide collaborations such as 5GAA (5G Automobile Industry 
Association) [06]-[07]. This is a cross-industry consortia that typically takes a leading role in 
driving and solving industry-wide common objectives. Autonomous vehicle control will largely 
change our way of life as well as a way of product logistics, once it is realized. In addition, the 
applicability of our studies to vehicles is just an example. Another example of the forthcoming 
mobile MTC will be robots which can replace humans in carrying out labor-intensive work on 
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roads and in cities. Advanced drones will be another mobile MTC application, which transport 
objects and it is fair to imagine they will change the future of logistics via sky transportations. 
 
Intelligent decision making is an essential capability targeted at autonomous driving and those 
SIVs. As our conventional work has been shifted to the always-on style with the emergence of the 
Internet. Cloud services, web meetings, remote works are all realized by on-line connectivity to 
the Internet. Specifically, SIVs make their decision through communicating various remote 
entities located on the Internet. SIVs are equipped with a series of sensors for the sake of 
conducting autonomous maneuver. Quasi-Zenith Satellites [08] provide much finer precision of 
vehicular GPS while, Cellular-V2X PC5 [09]-[11] direct connection provides V2V high-speed 
connection. Laser imaging Detection Ranging (LIDAR) [12] senses proximity images in 3D 
environments with laser sensors as if human beings were sensing the visional information via 
visible light waves. Once information is sensed, they are processed and decision making are 
performed by ML intelligence, which tends to require large computational resources. 

 

Fig.1.1 Research Backgrounds and Related Technologies 

 
Distributed computing much flexibly allows such intensive computation spreading over the 
network and allows the required computation to be used in the best place. A platform of virtualized 
network opens the access to resources and also minimizes the operational cost. Figure 1.1 displays 
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the overall image of backgrounds and technologies related to this thesis. We explain each part in 
the following section. 
 

1.1 Research Background 

 

1.1.1  5G Mobile Communication System 

 
The first standardization sets for 5th Generation cellular system have been published from 3GPP 
in 2019 as Release 15. These sets are called 5G System (5GS) Phase 1 specification according to 
the report of GSMA. The fundamental mechanism of 5GS has been designed to meet industry 
demanded requirements with a target to support enhanced mobile broad band that provides large 
data rates, ultra-reliable low-latency communication that provides much lower error rates and 
massive machine type communication that allows a much larger number of connections compared 
to the previous generation cellular systems. 
 

1.1.2  Cellular V2X Communication System 

 
There have been various vehicular communication technologies studied. Cotemporary wireless 
technology for vehicular communication has been specified in 3GPP called Cellular-V2X [09]-
[11]. C-V2X represents performances that provide improved connectivity from vehicle to 
anything, including vehicles-to-vehicles (V2V), connectivity to infrastructures (V2I), as well as 
interworking to pedestrians (V2P). Therefore, C-V2X has communication capability not only for 
short-ranged wireless communication as the conventional IEEE 8.2.11p-based Dedicated Short 
Ranged Communication (DSRC) but also for long-ranged communication to a cellular network. 
 
The demand of improved vehicle radio technology has been increasing from a wide range of 
industrial needs, as the work in a single industry only will not be able to realize a complete set of 
implementable distributed vehicular communication system. Various sensing technologies, smart 
vehicle navigation systems and improved V2X communication technologies are needed as a set 
of a system. C-V2X is designed along with such a wide range of demands and requirements.   
 
eMBB, URLLC and eMTC are the key design targets of 5GS and advanced vehicular 
communication exactly needs their enhanced performance. Image processing and 3D Map 
analysis need a much wider data channel. Low latency capability is critical for real-time 
application in nomadic vehicular communication. mMTC represents a much large number of 
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moving MTC objects in the future. Therefore, 5GS and C-V2X can be considered to be an ideal 
combination and how to integrate their advanced use-cases should be further considered. We 
presumed that vehicle clustering and vehicle distributed computation in 5GS are best study 
subjects so, we set them as our study scope and pursued in this thesis. 
 

1.1.3  Vehicular Ad hoc Network and Clustering 

 
Clustered vehicles form a network called a vehicular ad hoc network (VANET), which connects 
its members through proximity wireless links. Such short-ranged inter vehicular wireless 
communication supports the formation of VANETs and the function has several advantages. First 
advantage is the isolation of local communication from global communication enabled by VANET 
inside communication via local short-range radio links. It largely contributes to improving system 
stability by segmenting local communications from global cellular communications. Next 
advantage is the creation of advanced services from inter-VANET short-range communications. 
Targeting to autonomous and advanced assisted driving, the driving speed, precise location, and 
vehicles’ maneuver information are essential data need to be exchanged for safer and accident-
free autonomous driving control. 
 

 
Fig.1.2 Vehicular Ad Hoc Networks (VANET) and Global communications 

 

1.1.4  Virtualized Cloud and Distributed System 

 
Network virtualization is a typical trend which can be seen in cotemporally network system-
design and in cellular network function as well. The main motivation for network virtualization 
is to maximize network resource utilization and best resource allocation among various users 
through virtualized systems. This functional example can be typically observed via the network 
slice capability in 5GS. As the network slice concept offers desired network capabilities in a 
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virtualized platform, it is not necessary to prepare an individual hardware system-set for each of 
the specific purposes, while conventional deployments have to do so. For example, an eMBB 
network can be prepared based on the requirements and the needs on demand. This is also 
applicable to URLLC as well as mMTC networks, which are formed on demand based on the 
needs. Their functional capability is made based on the request and can also be reformed once the 
need arises. From a cost perspective, this on-demand capability substantially reduces the 
operational cost of implementors. 
 
Operation and Maintenance (O&M) in cellular systems has greatly advanced by cooperating with 
power of virtualized system design. Network orchestration is designed to achieve zero-touch 
operation, which eliminates complex labor-intensive, human-manipulated network maintenances. 
This is realized with various collaborations such as ETSI Network Functions Virtualization (NFV) 
project as well as open-source activity in Open Network Automation Platform (ONAP). 
 
Distributed computing is a scheme of computation designed to integrate discrete computing 
powers into a single computational occasion through a unified process over the network entity via 
coordination message exchange [13]. In advanced vehicular communications such as SIV, this 
capability enables various new service offerings by performing a large-scale computation by 
utilizing additional resources. The URLLC capability in 5G largely contributes to achieving the 
above target as if the computational resources were located in the next hop. ML, object 
recognition, and natural language comprehension are examples of applications necessitating 
large-volume computational resources. Therefore, distributed learning mechanism and distributed 
computing capability are essential functionalities to achieve objectives of advanced vehicular 
services mentioned so far. 
 
Mobile Edge Computing (MEC) is a typical realization of distributed computing in cotemporally 
cellular systems. In MEC, required functions are located on the network edge with the intension 
to minimize access latency and provide additional resources to the mobile entities. In our proposed 
scheme, we also utilized this capability in placing ML agent onto the network edge.  
 

1.2 Challenges and Motivations 

In realizing vehicular communications in 5GS applying smart clustering and ML schemes, we 
have the following challenges with associated motivations.  
 

1.2.1  VANET Clustering Applying Affinity Propagation 
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The first challenge is to propose a scalable and sophisticated VANET cluster formation in 
conjunction with C-V2X. The first motivation for this challenge is to apply a sophisticated 
VANET clustering algorithm. While conventional studies have been proposing case-by-case 
clustering schemes and self-suitable approaches, we apply a mathematically well-stable and 
therefore extendable clustering approach, which is rooted in the Affinity Propagation Clustering 
(APC) concept. 
 
The second motivation is to propose a distributed and scalable system through the set of the 
proposals. As the motion of vehicles is nomadic and spontaneous, we designed and proposed the 
scheme that not oriented toward a centralized control approach, but in the way able to work 
according to a distributed and self-organized controlled principle. Additional advantage given 
from clustering formation is system scalability. One-to-many connectivity to a cellular system 
causes control congestion, as the numbers of connected MTC objects increases on the demand. 
Although the communication volume from such MTC has been known to be small however, the 
communication frequency tends to be large. Therefore, a VANET cluster largely contributes to 
system stability by using a Cluster Head (CH) as a network proxy.  
 
The third motivation is to design the proposed scheme adaptable to time critical and nomadic 
vehicular applications. Therefore, the proposed system needs to be carefully tuned for minimizing 
the communication latency and the communication frequency. 

 

1.2.2 Autonomous VANET Clustering Applying Machine 

Learning 

 
The next challenge is autonomous VANET cluster formulation applying ML. So far, our study 

 
Fig.1.3 Challenges on VANET Clustering 
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was not reached to find an ideal VANET granularity, the first motivation is to derive an ideal 
clustering size knowing vehicular dynamics. The second motivation in this challenge is targeted 
to design a scheme having the capability of autonomous clustering with the existing C-V2X 
procedure integrated to the maximum extent. This motivation widens the chance of implementing 
the proposed scheme and, the use of C-V2X procedure will make its realization quite stable. The 
third motivation is high adaptability and extendibility of the proposed scheme to other purpose, 
once we find further improvements and extensions. Remarkably, this can easily conduct as we are 
using a ML approach. It simply updates the algorithm and decision criteria, then we can achieve 
another application without not re-constructing entire mechanism. This reflects the ease of 
extendibility of the proposed approach. 

 

1.2.3 Dynamic Resource Acquisition Applying Machine Learning 

 
The third challenge we explore is dynamic network resource acquisition from mobile vehicles 
considering the network dynamics. As a network resource, we tried to find an appropriate 
computational resource i.e., server from alternatives. Conventionally, these server selections have 
been done in static circumstances, however these resources over the network are constantly 
changing as they are continuously consumed for various users. Therefore, selecting specific 
resources in a fixed scenario is unrealistic. As such resource identification must be a dynamic 
scenario in real a use case, and we leveraged the power of ML to solve the issue. 
 
This capability allows and eases future application of distributed vehicular computation. This is 
an essential demand as the computational power of vehicle communication will be extremely 
large in the future as we are motivating autonomous driving aiming to replace the current human 
maneuver. For realizing such a lofty goal, distributed vehicular computation is indispensable 
functionality in forthcoming vehicular networks. 
 

 

Fig.1.4 Challenges on Autonomous VANET Clustering 
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In providing such capability even aided by ML, time criticality is another consideration point as 
the target vehicles are dynamically mobile. Therefore, taking a specific approach must be essential. 
We considered an additional time minimization scheme in the proposal while applying ML. 

 

1.3 Contributions 

The key contributions of this thesis comprise three key components. The first contribution is to 
elaborate on a sophisticated VANET clustering applying the APC theory. The second contribution 
is to study autonomous VANET cluster formation applying a ML scheme. The third contribution 
is to study the discovery of desirable computational resources knowing network dynamics 
applying a ML scheme. Each of them is described in the following part. 
 
Chapter 3 studies VANET clustering applying APC. This study targets at designing a distributed 
clustering scheme and obtaining system scalability thorough the proxy and concentration effect 
via identified cluster heads. The proposed function has been designed to be applicable to time 
critical and monadic mobile targets. The main contributions on this part can be summarized as 
follows; 
 

⚫ The proposed mechanism is designed easy to implement yet adaptable to vehicles’ 

 

                       ☆ Vehicular computation on Distributed NW 

                       ☆ Machine Learning in Time Critical Scenario 

 

Fig.1.5 Challenges on Dynamic Cloud Server Selection 
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motion dynamism as they are nomadic in principle. 
⚫ The proposed scheme leverages the power of C-V2X communication property for 

improved performance in message exchanging frequency among the members. 
⚫ The scheme based on a reliable and mathematically well-defined procedure called 

affinity preparation in enhancing the similarity-function. 
⚫ It designed to fit distributed control in consideration of nomadic behavior of the 

targets and for avoiding a single point of failure. 
 
Chapter 4 studies autonomous VANET cluster formation applying ML. This study extends the 
previous work in applying ML for deducing ideal cluster granularity and the formation from the 
selected criteria. The scheme and procedure largely rely on the fundamental mechanism of C-
V2X. This makes the scheme highly adaptable to C-V2X application and greatly eases its 
implementation. The advantage of applying ML is its expendability in changing components of 
the task vector and the evaluation criteria where this mechanism can be easily extended to another 
needs. The main contributions on this part can be listed as follows: 
 

⚫ The proposed scheme called multi-dimensional affinity propagation enables 
autonomous formation of VANET clusters adaptable to vehicular motion dynamics. 

⚫ Specifically, we employed a scheme of ML for deducing clustering granularities 
based on the minimum essential criteria.  

⚫ For the evaluation criteria, we specifically incorporated the traffic density with the 
congestion status in Node-B in the decision flow of ML. 

⚫ Not only mathematical ideas but we proposed a fully functionable sequence and 
procedure in extending those of C-V2X in a distributed manner. 

 
Chapter 5 studies to find desirable computational resources from alternatives knowing network 
dynamics by applying ML. This study intends to realize various and extensive needs of vehicular 
computation in a distributed manner. Conventional server selection has been performed in static 
consideration in heuristic approach. In contrast to these static decision makings, this study can be 
applicable to a situation involving a changing real-time network status. The main contributions 
on this part can be summarized as follows: 
 

⚫ This work proposes a sophisticated server selection scheme employing ML taking 
into account the network dynamics with limited evaluation criteria. 

⚫ Variety of ML algorithms are applied to analyze the fundamental mechanism for 
extending the original idea.   
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⚫ For applying time critical targets, the learning process is designed in a way isolated 
from the execution process that directly impacts the computation length 
independent of the sampling numbers. 

⚫ Missing data handling procedures are also considered. This capability greatly 
improves the applicability of the proposed scheme as full data sets are not always 
obtained practically.        

 

1.4 Thesis Structure 

The rest of the thesis consists of the following structure. Chapter 2 explains related fundamentals 
of the key scheme that we apply, which includes the concept of affinity propagation, car following 
theory, ML and algorithms applied to understand the comprehensive context of the proposed 
section. Chapter 3 introduces the context of normalized multi-dimensional parameter based-APC 
in C-V2X. Chapter 4 proposes and explains an extension of the previous work specifically, by 
deducing an autonomous cluster and granularity via ML. Chapter 5 introduces a dynamic server 
selection scheme applying ML for 5G VANET. This specifically examines distributed VANET 
computation knowing system dynamics in consideration of ML evaluation criteria. Chapter 6 
concludes the entire study then, proposes findings and touches upon potential future research 
scopes. 
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Chapter 2 

 

2 Fundamentals of Vehicular 

Clustering and Machine Learning 

Theory 
 

2.1 Vehicular Clustering 

A vehicle cluster consists several members in the group and uses a cluster head as a 
communication proxy to an external network. The overall taxonomy of clustering techniques for 
various VANET applications in each category is provided in [14]. An extensive survey conducted 
on clustering techniques can also be seen in [15], which analyses a variety of VANET clustering 
techniques aiming to solve problems such as cluster head selection, cluster affiliation, and cluster 
management. 
 
In centralized clustering schemes, cluster formation is performed via a NB or Rode Side Unit 
(RSU) with periodical message exchanges to the target vehicles. Qi et al. [16] proposed an SDN-
based centralized clustering scheme by exploiting a social pattern, i.e., knowing the vehicles' 
traffic pattern to deduce an expected route, where the metrics of inter-vehicular distance, relative 
speed and vehicle attributes are used. In distributed clustering schemes, cluster formation and CH 
selection are performed only between the vehicles through message exchanges without involving 
the management of central node in a fully distributed manner. The centralized clustering approach 
is advantageous in that it has more computational resources and the managements available from 
a central entity. On the other hand, from the standpoint of nomadicity of vehicular mobility, the 
distributed clustering approach has advantages that it can avoid signaling concentration and a 
single point of failure; specifically, it allows autonomous decision making among widely spanned 
vehicular targets. 
 

2.1.1  Affinity Propagation Clustering 

 
In contrast to those conventional clustering schemes, an advanced, fully distributed VANET 
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clustering scheme was proposed [17] by Hassanabadi et al. [18] and by Shahwani et al. [19] based 
on a mathematically well-proven concept called Affinity Propagation, which was originally 
published in Science by Frey and Dueck [20]. 
 
The study applies AP to VANET clustering by assuming that each vehicle is communicating and 
exchanging messages via inter-vehicle dedicated wireless links. This mutual communication 
property is an essential condition for applying APC, because the scheme identifies clusters by 
iteratively passing messages among the nodes, i.e., vehicles. Fundamental idea of APC stems 
from the concept of factor graph. It tries to find a best set of clusters by recursively exchanging 
specific messages until a good set of CH (i.e., exemplar) is identified along with the members by 
measuring the similarities in a specific similarity function. The following outlines the fundamental 
process of how this scheme works. 
 
In AP, the similarity measured between a pair of data points k and l, denoted as s(k, l), is evaluated 
to identify exemplars which will emerge. The process allows any data point to be a possible 
exemplar that will exchange messages with other exemplars until another set of higher-quality 
exemplars emerges. In this process, two kinds of messages are exchanged between vehicles k and 
l. First, the responsibility message r(k,l) is designed to bet sent from vehicle k to vehicle l as a 
potential centering point, i.e., an exemplar, which represents a degree of adequateness of vehicle 
l as an exemplar relative to other potential candidate exemplars. The message called responsibility 
r(k,l) and the self-responsibly message r(l,l) in each iteration can be shown as 
 

𝑟(𝑘, 𝑙) ← 𝑠(𝑘, 𝑙)  − max
𝑙′≠𝑙

 {𝑎 (𝑘, 𝑙′) + 𝑠 (𝑘, 𝑙′)  }    ∀ 𝑘, 𝑙                     (2.1) 

𝑟(𝑙, 𝑙) ← 𝑠(𝑙, 𝑙)  − max
𝑙′≠𝑙

 { 𝑠 (𝑙, 𝑙′)  }                                    (2.2) 

 
Next message called availability a(k,l) is instead reversely sent from the candidate exemplar l 
back to source point k, showing k’s suitability of becoming an exemplar for k, considering the 
response from other candidate exemplars. The message of availability a(k,l) and the self-
availability message a(l,l) in each iterations can be provided by 
 

𝑎(𝑘, 𝑙) ← min
 

{0, 𝑟(𝑙, 𝑙) + ∑ max
 

 { 0, 𝑟(𝑘′, 𝑙) }
𝑙′∉{𝑘,𝑙}

}  ∀ 𝑘, 𝑙        (2.3) 

 
𝑎(𝑙, 𝑙) ←  ∑ max { 0, 𝑟(𝑘′, 𝑙) }𝑘′≠𝑙                              (2.4) 
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During the iteration process, these messages are tuned to avoid computational oscillations which 
would potentially impede convergence. This can be adjusted with the introduction of a tuning 
factor shown as 
 

𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑛𝑒𝑤 = 𝜆 ∙ 𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑜𝑙𝑑 + (1 − 𝜆) ∙ 𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑛𝑒𝑤            (2.5) 
 

where  is a damping factor whose assigned value is 0 ~ 1, while in our simulation,  = 0.5 is 
used as it is a default value [21]. When the message converges, the AP process comes to terminate 
its iteration. Eventually, a specific data point is identified as a CH within the member, and this is 
identified when the following condition can be met in the self-responsibility and self-availability 
messages as given by 
 
- In a condition k if r(k, k) + a(k, k) > 0, where point k is an exemplar, or 

- In a condition l if r(l, l) + a(l, l) > 0, where point l is an exemplar. 

 

From the results obtained in these responsibilities and availabilities iteration process, 

exemplars are identified. Upon convergence, each node k’s CH is identified by 

 

                          𝐶𝐻𝑖 = arg max
𝑙

{𝑎(𝑘, 𝑙) + 𝑟(𝑘, 𝑙)}                                               (2.6) 

 

Eventually, the identified CH acts as a gateway for other members in the cluster to the 

cellular network. 
  

2.1.2  Gazis-Herman-Rothery (GHR) car following model 

 
Review of traffic models is another field we tried to understand the behavior of real vehicle traffic 
dynamics. These studies have been performed extensively such as in civil engineering and traffic 
science for analyzing and designing safe and efficient traffic systems. We identified a well-studied 
and sufficiently proofed model called the GHR vehicle acceleration model, also known as the 
General Motor’s car following model [22]. We used a simulation scheme by referring to the 
mathematical explanation in [23]. The above-mentioned model is particularly useful as it enables 
us to obtain vehicles’ motion dynamics such as acceleration, velocity and position information. 
As data acquisition of dynamically moving targets is sometimes limited, we applied the 
aforementioned GHR car following model. A well-organized reference [23] explains how the 
GHR model predicts the follower’s acceleration a using the equation below: 
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𝑎𝑛+1
𝑡 = [

𝛼𝑙,𝑚(𝑣𝑛+1
𝑡 )

𝑚

(𝑥𝑛
𝑡 −𝑥𝑛−1

𝑡 )
𝑙 ] [𝑣𝑛

𝑡 − 𝑣𝑛+1
𝑡 ]                    (2.7) 

 
for the nth vehicle (n = 1, 2, ⋯ , N) 𝑁 ∈ ℕ  at discreet time t, where l represents a headway 
exponent, m represents a speed exponent and 𝛼𝑙,𝑚 is called a sensitivity coefficient of the GHR. 

This equation is the base of our traffic simulation model. From the derived acceleration, both 𝑣𝑛
𝑡  

and 𝑥𝑛
𝑡   are identified from the Newton’s law of motion. According to [22] and [23], we 

specifically applied the parameters: l = 1.0, m = 0 and 𝛼𝑙,𝑚= 18 in the GHR model in order to 

perform simulations. 
 

 

2.2 Machine Learnings 

 
ML enables computers to identify hidden insights through iterative learning of given data sets. 
Table 2.1 summarizes the variations of ML in terms of categories, objectives, algorithms and 
application examples in communication fields [24]. In a large perspective, each ML application 
is classified as either a supervised or unsupervised learning scheme. In this study, we chose a 
supervised scheme because the training data are fairly obtained, and it enables us to evaluate the 
prediction results by comparing with those given from the decision tree. In comparison with SVM, 
Neural Network (NN) is generally considered more applicable when the dimension of the 
explanatory variable is large. In addition, SVM is known to enables the tuning of prediction 
accuracy by the limited number of parameters, which areγand C parameters. Reflecting these 
properties, we decided to employ SVM to identify the clustering granularity in this study. In 
general, the process of supervised ML consists of two stages: training and testing. In the training 
stage, a model is learned based on a set of prepared training data. Once the function is educated 
by the training data, the trained function is applied for providing predictions in the testing stage. 

 

Fig.2.1 GHR Car Following Model 
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The next sub-section explains the details of the task vector and the decision tree we propose, both 
of which are the essential elements of SVM. 
 

 

2.2.1  Support Vector Machine Classification  

 

This section explains fundamentals of the SMV Classification scheme. 
1) Mechanism of soft-margin-based SVM 
The fundamental concept of SVM originates from a neural model applying a linear-threshold 
logical unit, which eventually provides class discrimination. When a set of training data is given 

in (𝑿𝑖, 𝑦𝑖), ⋯ , (𝑿𝑀 , 𝑦𝑀), 1 ≤ 𝑖 ≤ 𝑀, 𝑿 ∈ 𝑅𝑑 , 𝑦 ∈ {±1}, 𝑀 ∈ ℕ , with the corresponding 
correct class-labels 𝑦𝑀, the linear discriminate function can be denoted as 
 

𝑦 = 𝑓(𝑿) = 𝑠𝑖𝑔𝑛[(𝑾𝑇𝑿 − ℎ)]                        (2.8) 
 
𝑿 is a task-vector consisting of explanatory variables. W is the corresponding synapse weight-
factor, and h represent a threshold value. This model provides an output 𝑦 ∈  {±1}. It returns +1 
when the inner product of the task vector 𝑿 and weight-factor 𝑾𝑇 exceeds the threshold, and 
it returns -1 when it is less than the threshold. Geometrically, this concept is applicable as a 
classification system of input data, which segments data into two fields as depicted in Fig. 2.2(a). 
The figure shows two types of class-regions 𝑅1  and 𝑅2. They are distinguished by the 
corresponding hyper planes 𝐻1: 𝑾𝑇𝑿 − ℎ = 1 and 𝐻2: 𝑾𝑇𝑿 − ℎ = −1, which are formed by 
a limited number of double-circled support vectors. Notably, no data exists within the margin-
area formed by the two hyper planes. An optimal hyperplane 𝐻∗ can be identified by maximizing 
the margin between the hyperplanes, which can be provided in minimizing 1/∥ 𝑾 ∥, and which 

TABLE 2.1: Machine Learning Variation and Application Examples 
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is an equal to maximizing the part of ∥ 𝑾 ∥2. Therefore, this can be re-written to an optimized 
question given by 
 

𝑚𝑖𝑛  𝐿(𝑊) =  
1

2
∥ 𝑾 ∥2 

𝑠. 𝑡.      𝑦𝑖(𝑾𝑇𝑿𝑖 − ℎ) ≥ 1   (𝑖 = 1, 2, ⋯ , 𝑀)         (2.9) 
 

 
Although we assume the data are linearly separable, in practice it is often not the case. 
Furthermore, a too strict policy results in an excessive margin aimed at avoiding missing 
classification of some points. To cope with this problem, a concept of slack-variable 𝜉𝑖 has been 
introduced to allow some errors instead of having a too wide margin. This is given by replacing 
the above inequality constraints on to 
 

𝑦𝑖(𝑾𝑇𝑿𝑖 − ℎ) ≥ 1 − 𝜉𝑖     (𝑖 = 1, 2, ⋯ , 𝑀)           (2.10) 
 
where slack-variable 𝜉𝑖   allows those data to be in a margin when 0 ≤ 𝜉𝑖 ≤ 1  and 
misclassification can be given where holds 1 < 𝜉𝑖  . As input training data that tends to 
misclassify in the slack value is more than 1.0, 𝛴𝑖𝜉𝑖 represents a boundary number of the data in 
misclassification. The targeted maximization of the margin is equal to the minimization of 
1/2∥ 𝑾 ∥2, which can be shown as an argument to penalize the misclassification and margin error 
given by a term of 𝐶𝛴𝑖𝜉𝑖. Therefore, now the optimization problem can be shown as 
 

     𝑚𝑖𝑛  𝐿(𝑾, 𝜉) =  
1

2
∥ 𝑾 ∥2+ 𝐶 ∑ 𝜉𝑖

𝑀

𝑖=1
 

𝑠. 𝑡.    𝑦𝑖(𝑾𝑇𝑿𝑖 − ℎ) ≥ 1 − 𝜉𝑖  ,   𝜉𝑖  ≥ 0,  ∀𝑖                   (2.11) 

 

Fig.2.2 Support Vector Machine Operations 
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This formula has been called soft-margin SVM as it has a specific cost-parameter C. This 
parameter introduces additional control capability which enables adjustment of the balance 
between the amount of margin allocation and the amount of slack allowance [25]. In a graphical 
representation on Fig. 2.2(a), when a smaller C is assigned, the indicated margin becomes wider. 
It has been known that the solution of this optimization problem can be obtained by the saddle 
point of the Lagrangian [26]. Introducing two Lagrange multipliers 𝛼𝑖 ≥ 0  and 𝛽𝑖 ≥ 0 , we 
reformulate the objective function into 
 

       𝐿(𝑾, ℎ, 𝛼, 𝛽) =  
1

2
∥ 𝑾 ∥2+ 𝐶 ∑ 𝜉𝑖

𝑀

𝑖=1
 

− ∑ 𝛼𝑖{𝑦𝑖(𝑾𝑇𝑿𝑖 − ℎ) − (1 − 𝜉𝑖)}
𝑀

𝑖=1
− ∑ 𝛽𝑖𝜉𝑖

𝑀

𝑖=1
             (2.12) 

 
Lagrangian duality enables this primal problem to be transformed to the Wolfe-dual problem, 
which is given by: 
 

𝑚𝑎𝑥
𝛼,𝛽

𝑾(𝛼, 𝛽) = 𝑚𝑎𝑥
𝛼,𝛽

{𝑚𝑖𝑛
𝑊,ℎ,𝜉

𝐿(𝑾, ℎ, 𝜉, 𝛼, 𝛽)}                         (2.13) 

 
By minimization with respect to W, h, and 𝜉𝑖of the Lagrangian L, a partial derivative is taken on 
each them: 
 

          
𝜕𝐿

𝜕𝑾
= 0   ⇒     𝑾 = ∑ 𝛼𝑖𝑦𝑖

𝑀

𝑖=1
𝑿𝑖

𝑇                                         (2.14) 

          
𝜕𝐿

𝜕ℎ
= 0    ⇒     0 = ∑ 𝛼𝑖𝑦𝑖

𝑀

𝑖=1
                                                (2.15) 

          
𝜕𝐿

𝜕𝜉𝑖
= 0    ⇒  𝛼𝑖 + 𝛽𝑖 = 𝐶 ⇒   𝛼𝑖 ≤ 𝐶 (0 ≤ 𝛽𝑖)                 (2.16) 

 
By substituting them onto (2.12), eventually the optimization problem is transformed into the 
following dual Lagrangian formula [27]: 
 

max
𝛼

𝑾(𝛼)  =  𝑚𝑎𝑥
𝛼

[∑ 𝛼𝑖

𝑀

𝑖=1
−

1

2
∑ 𝛼𝑖

𝑀

𝑖,𝑗=1
𝛼𝑗𝑦𝑖𝑦𝑗𝑿𝑖

𝑇𝑿𝑗]                  (2.17) 
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𝑠. 𝑡.   {
∑ 𝛼𝑖

𝑀

𝑖=1
𝑦𝑖 = 0

0 ≤ 𝛼𝑖 ≤ 𝐶  (𝑖, 𝑗 = 1, ⋯ , 𝑀)

                                (2.18) 

 
Then, the optimal weight vector 𝑾∗ can be given by:  
 

𝑾∗ = ∑ 𝛼𝑖
∗

𝑀

𝑖=1
𝑦𝑖𝑿𝑖                                                               (2.19) 

 
Optimal threshold ℎ∗can be given by: 
 

ℎ∗ = 𝑦𝑗 − ∑ 𝛼𝑖
∗

𝑀

𝑖=1
𝑦𝑖(𝑿𝑖

𝑇𝐗𝑗)                                              (2.20) 

 
Finally, the decision function is provided by:  
 

𝑓(𝑿) = 𝑠𝑖𝑔𝑛 [∑ 𝛼𝑖
∗

𝑀

𝑖=1
𝑦𝑖(𝑿𝑖

𝑇𝑿) − ℎ∗]                            (2.21) 

 

2.2.2  Gradient Boosting Machine Classification  

 

This section explains fundamentals of the Gradient Boosting Machine Classification (GBMC) 
scheme. Fundamental idea of GBMC stems from a tree ensemble boosting classification [28], 
[29]. The tree ensemble algorithm starts using a weak tree decision model from a given n number 
of samplings from the entire data space. Then, it sequentially concatenates feedback from those 
outcomes to build a next improved model by capitalizing miss-classifications applying the weight 
factor 𝜔 as illustrated in Fig.2.3 (a). 
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(a) Sequential concatenation                (b) Tree structure and the nodes 

Fig.2.3 Gradient Boosting Machine Operations 

 
The sequentially repeated ensemble learning process is expressed as boosting and it greatly 
improves the classification performance [30], [31]. Eventually, the result forms nodes and the 
members as in Fig2.3(b), and GBMC finds a best tree structure with the members in minimizing 
the prediction loss and the tree structure complication. 
 
Having s dimension of explanatory variable 𝑿𝑖 and objective variable 𝑦𝑖, in n samples (𝑖 =

1, 2, ⋯ , 𝑁), let �̂�𝑖 be the prediction value from the set of 𝑿𝑖. Now, we express the error term of 

the first tree, which can be expressed as 𝜖𝑖
(1)

= 𝑦𝑖 − �̂�𝑖
(1). The boosting scheme sets the error as 

an objective variable for building a second tree. Then, the second prediction can be �̂�𝑖
(2)

= �̂�𝑖
(1)

+

𝜖�̂�
(1). The summation of error term till the second tree will be 𝜖�̂�

(2)
= 𝑦𝑖 − 𝜖�̂�

(1)
= 𝑦𝑖 − (�̂�𝑖

(1)
+

𝜖�̂�
(1)

). In a repetitive manner, the third tree is established having 𝜖�̂�
(2)as the objective variable, 

which can be shown as �̂�𝑖
(3)

= �̂�𝑖
(2)

+ 𝜖�̂�
(3)

= �̂�𝑖
(1)

+ 𝜖�̂�
(2)

+ 𝜖�̂�
(3) . The boosting algorithm 

constructs a newer decision tree in reflecting previous decision knowledge in minimizing 
compiled errors. For a given n samples from a data set 𝐷 = {(𝑿𝒊, 𝑦𝑖)} (|𝐷| = 𝑛, 𝑿𝒊 ∈ ℝ𝑠, 𝑦𝑖 ∈

ℝ), the ensemble model in K times boosting produces the prediction value in 
 

�̂�𝑖
(𝐾)

=  ∑ 𝑓𝑘(𝑿𝒊)
𝐾

𝑘=1
 

(2.22) 
The function 𝑓(⋅) can be expressed as a loss function 𝑙(𝑎, 𝑏) which counts the degree of loss 
in the prediction value �̂�𝑖 and the target value 𝑦𝑖. Then, the question is how to formulate a t-th 
tree structure knowing the information obtained from the tree structure so far. The best function 
𝑓(⋅) will be found in the form of minimizing the loss, then 
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𝑚𝑖𝑛
𝑓𝑡

∑ 𝑙 (𝑦𝑖 , �̂�𝑖
(𝑘)

)
𝑛

𝑖=1
 =             

 

                 ∑ 𝑙 (𝑦𝑖, {∑ 𝑓𝑘(𝑿𝑖)
𝑡

𝑘=1
}) 

𝑛

𝑖=1
= 

 

                                  ∑ 𝑙 (𝑦𝑖, {∑ 𝑓𝑘(𝑿𝑖)
𝑡−1

𝑘=1
+ 𝑓𝑡(𝑿𝑖)}) 

𝑛

𝑖=1
= 

 

                 ∑ 𝑙 (𝑦𝑖 , { �̂�𝑖
(𝑡−1)

+ 𝑓𝑡(𝑿𝑖)}) 
𝑛

𝑖=1
 

(2.23) 
 

2.2.3  Extreme Gradient Boosting Machine Classification  

 

This section explains fundamentals of XGB Classification scheme. However, the calculation 
above considers the evaluation loss only and not considering the complication of a given tree 
structure and future predictions. Therefore, it has been known to lead to an over-fitting problem. 
For improving these shortcomings, specifically XGBC introduces the following penalty term 𝛺 

into the above equation and then re-defines it to minimize the final objective function ℒ(𝑡)(𝑓𝑡), 
which is provided by 
 

ℒ(𝑡)(𝑓𝑡) = ∑ 𝑙 (𝑦𝑖 , �̂�𝑖
(𝑡−1)

+ 𝑓𝑡(𝑿𝑖))
𝑛

𝑖=1
+ 𝛺(𝑓𝑡) 

 

                                  = ∑ 𝑙 (𝑦𝑖, �̂�𝑖
(𝑡−1)

+ 𝑓𝑡(𝑿𝑖))
𝑛

𝑖=1
+ 𝛾𝑇 +

1

2
𝜆‖𝜔‖2 

(2.24) 
This function consists of three terms. The first term represents the prediction loss as shown l-term. 
The second term T represents the number of nodes of the tree structure with tuning variable 𝛾. 
The last term 𝜔 represents the weight of each node used to calculate the score on a corresponding 
tree associated with a tuning parameter 𝜆. Hence, the final objective function evaluates the degree 
of prediction loss, considering the degree of complexity in a given tree structure. 
 
1) Gradient Tree and the optimized structure 
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As �̂�𝑖
(𝑡)is the prediction of i-th instance at t-th iteration, we try to find a 𝑓𝑡(⋅) to minimize the 

objective function given in (2.24). For finding an optimal state in limited time, second-order 
approximation is applied for quickly finding the optimized objective function by taking Tylor-
expansion around zero. Then, (2.24) will be 
 

≈  ∑ [𝑙 (𝑦𝑖 , �̂�𝑖
(𝑡−1)

) + 𝑔𝑖𝑓𝑡(𝑿𝑖) +  
1

2
ℎ𝑖𝑓𝑡

2(𝑿𝑖)] 
𝑛

𝑖=1
+ 𝛺(𝑓𝑡) 

(2.25) 
where 

𝑔𝑖 =  𝜕
�̂�𝑖

(𝑡−1)𝑙 (𝑦𝑖 , �̂�𝑖
(𝑡−1)

) and ℎ𝑖 = 𝜕2
�̂�𝑖

(𝑡−1)𝑙 (𝑦𝑖 , �̂�𝑖
(𝑡−1)

) 

(2.26) 
are the first- and second-order gradients on the loss function. By removing the constant terms, the 
following simplified objective function is obtained at step t. 
 

ℒ̃(𝑡)(𝑓𝑡) = ∑ [𝑔𝑖𝑓𝑡(𝑿𝑖) +
1

2
ℎ𝑖𝑓𝑡

2(𝑿𝑖)]
𝑛

𝑖=1
+ 𝛺(𝑓𝑡) 

(2.27) 
For obtaining Quadratic form, this is re-written into the following form. 
 
 

                                                        = ∑ [𝑔𝑖𝑓𝑡(𝑿𝑖) +
1

2
ℎ𝑖𝑓𝑡
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1
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2

𝑇
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+
1

2
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𝑇
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                                                       = ∑[(∑ 𝑔𝑖

𝑖∈𝐼𝑗
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1
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(∑ ℎ𝑖
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𝑇
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(2.28) 
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Therefore, in a given tree structure 𝑞(𝑿), the optimal weight 𝜔𝑗

∗ of the node j can be derived 

from 𝑑ℒ̃(𝑡) 𝑑𝜔𝑗⁄ = 0 in 
 

𝜔𝑗
∗ = −

∑ 𝑔𝑖𝑖∈𝐼𝑗

∑ ℎ𝑖 + 𝜆𝑖∈𝐼𝑗

 

(2.29) 
Then, the corresponding optimal value in a given tree structure can be given by 
 

ℒ̃(𝑡)(𝑞) = −
1

2

(∑ 𝑔𝑖𝑖∈𝐼𝑗
)

2

∑ ℎ𝑖 + 𝜆𝑖∈𝐼𝑗

+ 𝛾𝑇. 

(2.30) 
This measures the scoring of the quality of tree structure at q, and the larger (∑ 𝑔𝑖)𝑖∈𝐼𝑗

2
/

∑ ℎ𝑖 + 𝜆𝑖∈𝐼𝑗
 is, it returns the lesser value of objective function ℒ̃(𝑡). 
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Chapter 3 

 

3 Affinity Propagation Clustering 

for Cellular V2X 

 

3.1 Introduction 

This section explains our first contribution on the VANET clustering scheme applying Affinity 
Propagation Clustering (APC) for C-V2X. The APC clustering based on well mathematically 
proofed concept hence, the extension is quite flexible as the fundamental idea uses similarity 
function to find homogeneous members in measuring it. This approach differs from conventional 
one-by-one oriented heuristic approach therefore its application widely expandable to tuning 
similarity function and the evaluation terms.  
 

3.1.1  Objectives  

 
The fundamental objective of forming vehicle cluster is obtaining system scalability, in 
considering 5GS is platform of a global communication system. One-to-N connectivity will cause 
various system un-stability such as signaling congestion, numbers of state information 
managements, and control and user-plane management in each of connectivity. These overheads 
have been typically known increased in the case of small but frequent MTC oriented 
communications. Therefore, clustering mechanism is strongly demanded from operators and 
those who provides the system. Having the requirements, we apply mathematically well proofed 
and extensible clustering algorithm called APC targeting to dynamically moving vehicles.   
 

3.1.2  Related Works  

 
This part explains related works on clustering schemes. A highly relevant paper which outlines a 
mechanism of VANET-UMTS integration is presented in [32]. This paper proposes VANET 
dynamic clustering mechanism, called Clustering-based Multi-metric adaptive Mobile Gateway 
Management mechanism (CMGM), using specific metrics for finding minimum number of 
vehicular gateways, i.e., Cluster Heads (CHs). According to our observation, although this 
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proposes a comprehensive mechanism in a dynamic mobility environment, its implementation is 
hardly to realize due to the proposed concept uses inclination angle θ toward eNodeB and another 
inclination angle between vehicles. Beacause the detection of these angles of inclination would 
associate substantial error components as individual vehicles are dynamically in motion. Another 
study of hybrid system integration between IEEE 802.11p based VANET clustering with 4G 
cellular system can be seen in [33] and [34]. In this proposal, Vehicular Multi-hop algorithm for 
Stable Clustering (VMaSC) scheme is introduced. For a CH selection, this scheme proposes 
relative mobility metric calculated from the averaged relative speed with respect to the 
neighboring vehicles with some theoretical analysis. Although, the proposed algorithm and 
procedure become light weight, it still spends large state-management effort using specific state 
transition matrix and communication messages. According to our observation, implementing such 
specific procedure and algorithm onto each vehicle is hardly achievable. 
 
In contrast to the aforementioned conventional VANET clustering schemes, contemporary 
VANET clustering come to emerge in [17], [35], and [19] based on mathematically well proofed 
concept called Affinity Propagation, which is originally published in Science [20]. Affinity 
PROpagation for VEhicular networks (APROVE) is presented in [17], then improved in [35], 
specifically by means of metrics for the similarity function of AP using vehicles distance and 
future prediction time τf. In the author’s simulation, the value of τf = 30sec is used, which means 
individual position of vehicles are forecasted 30sec later and it is obviously imagined that it 
associates large prediction error as vehicles change their position during the predicted time. The 
APROVE also uses a message which exchanges its information every second. In this study, 
preliminary iterations required around 10 times when the number of neighborhood vehicles is 40, 
which requires 10 sec for the Clustering Interval (CI). This value is not trivial as vehicles are in 
dynamic motion. They would change their location more than 200m during the elapsed time in a 
highway. 
 

3.1.3  Contributions  

 
This part explains our contribution on AP Clustering for C-V2X. This study aims to design a 
distributed VANET clustering scheme for providing system stability and scalability thorough the 
ideal CH working for group proxies the communications. The proposed function has been 
designed to be applicable in time critical and monadic mobile targets. The main contributions on 
this part can be described following paragraph. 
 

#1 We designed the proposed scheme to be light-weight, simple implementation and 
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effectively apply to motion dynamics vehicles which constantly changing the motion.  
#2 The scheme applied fundamental feature of Cellular V2X PC-5 radio performance 
and leveraged to fit inter-vehicle communication for the clustering message exchange.  
#3 It incorporated fundamental concept of Affinity Propagation (AP) which provides 
extending ability by modifying the similarity function to decide clustering formation.  
#4 The proposed scheme is targeting to provide distributed clustering control and fully 
leveraged by the C-V2X functionality. 

  

3.2 Proposed VANET Clustering Scheme 

This section explains the detail of our VANET clustering proposal employing the concept of APC. 
The proposed VANET clustering scheme uses the idea of APC, by enhancing its similarity 
function with Euclidian special distance, i.e., vehicle’s position information along with the 
velocity information by normalizing each part. Through message exchanges between vehicles the 
similarity function identifies vehicles similar motion dynamics that result in formation of clusters 
of those vehicles. 

 
Fig.3.1 shows the use of Cellular V2X technology for exchanging messages between vehicles. 
The cluster members use Cellular V2X PC5 interface which is direct vehicle to vehicle local 
connectivity with the neighbor nodes. The figure depicts after a specific cluster is formed from 
the APC process and specifically shows connectivity to the identified CH. Each of the vehicles 
has ability to connect and communicate surrounding vehicles as far as the Cellular V2X radio 
reaches. All the required messages for APC are sent in the application layer over the reliable radio 
interface. The improved data transmission frequency of C-V2X largely contributes to the 

 

Fig.3.1 C-V2X PC5 Interface for Inter Vehicle Messages 
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performance of APC as it requires frequent message exchange among the nodes. The similarity 
function of AP can be flexibly designed as far as it represents state of similarity of target object 
dynamics.  
 

3.2.1  NMDP-APC Clustering Scheme  

 
This section explains key idea on the proposed NMDP-APC Clustering scheme. Reviewing 
previous works, we identified the most essential metrics which represent VANET’s motion 
dynamics are the vehicles current position and velocity [32], [34]. Hence, we designed our 
similarity function by associating these key terms into a single formula as shown in (3.1). The 
similarity function can be obtained by a summation of the negative value of distance vector of the 
position of target vehicles with the negative difference of each vehicle’s current velocity. In order 
to compose two different terms in a single similarity function, each term has been normalized 
from 0 to +1, which denoted as “nor” in (3.1). We also assigned weighted parameter α and β on 
the normalized components for a control nob of each term. This approach provides significant 
extendibility, because it allows multiple dimensional terms into a single similarity function with 
adjusting the proportion by the weight parameters. According to our observation, no other study 
has yet proposed this level of flexibility on the similarity function on the APC. Eventually, our 
enhanced similarity function s(i,j) is shown as follows:  
 

𝑠(𝑖, 𝑗) = − (𝛼‖𝒙𝑖 −𝒙𝑗 ‖
𝑛𝑜𝑟 + 𝛽‖𝒗𝑖 −𝒗𝑗‖ 𝑛𝑜𝑟)               (3.1) 

 
where α+ β =1, α, β > 0  

 

𝒙𝑖 = [
𝑥𝑖

𝑦𝑖
],  𝒗𝑖 = [

𝑣𝑥,𝑖

𝑣𝑦,𝑖
]                      (3.2) 

 
Where 𝒙𝑖 represents current position in x and y coordinate of node i and 𝒗𝑖 represents current 
velocity in x and y coordinate of node i respectively. Note that in contrast to previous work [35], 
proposed similarity function of the NMDP-APC does not compose any future prediction value. 
This characteristic is a remarkable difference in our proposal comparing to the previous study. 
 

3.3 Simulation Results 
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3.3.1  Data Transmission Frequency & Velocity Components  

 
In order to confirm the validity of our proposed similarity function (3.1), we conducted this 
simulation using simple traffic scenario, which merely placed three vehicles in even distance of 
50m interval, with and without considering their velocities. The velocity is assigned to vehicle A 
= 90 km/h, then B and C= 100 km/h. Fig.3.2 (a) displays the original distribution of three vehicles 
in x and y coordinates. The second row Fig.3.2 (b) displays proposed NMDP-APC clustering 
result only considering current location, by assigning the value of α = 1.0 and β = 0. The third row 
Fig.3.2 (c) displays NMDP-APC clustering result considering both current location and velocity, 
where α = 0.8 and β = 0.2 are assigned. We also conducted this simulation by assigning different 
combination of velocities such as, A and B = 90km/h, then C = 100km/h. In addition, we changed 
the evenly spaced distance from 50m to 200m, in 50m steps. From these simulations, adequate 
vehicle clusters are formed when considering both location and velocity as shown in Fig.3.2 (c). 
However, in single dimensional clustering case which only taking into account location 
information did not show expected clustering formation. This simple demonstration indicates 
valid evidence that our multi-dimensional AP scheme works appropriately. 

 

3.3.2  NMDP-APC with Real Traffic Data  

 
This part explains the sets of simulation results of NMDP-APC outcomes on real traffics. For the 

 

Fig.3.2 NMDP-APC Clustering Result with and without Considering Velocity 
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real traffic data in this simulation, we captured one-minute traffic video on a four-lane Inter City 
highway (I-294) on Aug 8th 2017 in Chicago, Illinois, USA. From the real video traffics we 
obtained leading vehicles’ position and velocity information, then identified following vehicles’ 
traffic information via aforementioned GHR car following model. A leading vehicle is represented 
with sufficient distance from the vehicle in front, which eventually tends to drive at its own pace. 
Instead, following vehicle tends to follow leaders driving pace as it has limited headway distance. 
From the result of above process, every 5sec interval of each vehicle’s traffic data in four lanes is 
traced. The overall sample data length is one minute. Then, the data was fed into our NMDP-APC 
MatLab code to analyze how the proposed scheme identifies clusters with the CHs in the real 
traffic data. Fig.3.3 (a) shows original vehicles distribution of the sampled traffic data at t = 20sec. 
As previously mentioned, we have 12 sets of data with an interval of every 5sec, i.e., from 5 to 
60secs. We examined traffic data in each time interval, yet due to the paper space limitation only 
a single result is presented. The number of vehicles in the observed space is 19, shown as N = 19. 
Fig.3.3 (b) is the NMDP-APC result with simulation parameter used α = 0.8 and β = 0.2. In each 
of the cluster, it can be observed that CH is identified in mostly the central location by linked dot 
line with the member nodes. The px-value was -1.3188, where the value enables to control the 
number of clusters i.e., cluster granularity in the NMDP-APC. In this simulation, the default value 
is used which is the median value of the similarity function. This is an important parameter in the 
APC, we examine the clustering granularity by changing the px-value in the later section. The last 
row Fig.3.3(c) shows the Net Similarity value in the APC iteration process. The Net Similarity 
indicates value of given similarity function during the APC iteration process. From the figure, 
after 5 iterations the final configuration seems to be formed as the value reaches saturation in a 
maximum value. In the following simulation, we examine the minimum number of iterations 
required to identify stable clusters by changing number of target vehicles. 
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3.3.3  Minimum Numbers of Required Iterations  

 
As mentioned above, the APC identifies final cluster configuration by reaching saturation of the 
Net Similarity value. This implies no other best clustering configuration can be identified even 
the APC tries to find. The required number of iterations tends to increase by increasing the node 
numbers N. The computational complexity is generally observed in the order of O(N2) [36]. 
Having a dynamically moving VANET scenario the processing time is critical, so the shorter it is 
the better. Yet, insufficient number of iterations will not reach final cluster configuration. Hence 
here, we conducted the following simulations to identify minimum number of iterations required 
in aforementioned real traffic data. Fig.3.4 shows minimum number of iterations required to 
saturate the Net Similarity value in our NMDP-APC scheme. While time elapses, it is observed 
that more number of vehicles came into the observation space. The number of minimum required 
iteration is shown with triangle-mark, which is increasing as the number of processed vehicles 
increases. This tendency is reasonable because the necessary processed data points are increasing. 
In end, the simulation shows that at least 10 iterations are required for identifying stable clustering 
in N=60 which is a largest number of vehicles in this simulation. Considering real implementation 
scenario of APC, this degree of number of iterations is acceptable. If the number of cluster 
member goes too large, APC process will require more processing time by increasing the 
computational complexity. In the next section, we examine to control the cluster granularity by 

 

     Fig.3.3 NMDP-APC Clustering Result in Real Traffic Data 
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adjusting specific parameter called px-value. 

 

3.3.4  Cluster Granularity Changing by px-value   

 
This part evaluates the cluster granularity changing by px-value in the simulation. The number of 
clusters, or granularity of each clusters can be controlled by varying the px-value in our NMDP-
APC. When the cluster members are sending less transmission data, the cluster size could be large 
because the CH will not be a communication bottle neck. In contrary, when cluster members need 
to send relatively large amount of data, fewer members contribute to avoid their CH to be a 
communication bottle neck. Another angle of consideration is vehicles motion dynamics. When 
vehicles are moving at a faster pace and in a random direction, the cluster size should be small. 
Having these potential consideration points, we conducted this simulation for adjusting cluster 
granularity by changing the px-value in our obtained traffic data. Fig.3.5 shows a simulation 
outcome of number of clusters identified when the px-value has been changed between the ranges 
of 0.1 to 2.0 multipliers. The standard px-value is median value of the similarity function. We 
changed the original value by multiplying it with 0.1, 0.2, 0.5, 1.0, 1.5 and 2.0 respectively, and 
then observed the number of clusters made over the same real traffic data sampled in 5sec intervals 
as mentioned previously. At each sampling time, the processed numbers of vehicles correspond 

 

      Fig.3.4 NMDP-APC Minimum Number of Required Iteration with Number of Vehicles 
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to the numbers as shown in Fig.3.5. The result clearly indicates that by changing the px-value, 
NMDP-APC scheme clearly enables to control the clustering granularity. Where, smaller px-value 
produces the large number of clusters. In contrarily, larger px-value forms the smaller number of 
clusters. 

3.4 Summary 

 
This study proposed a novel NMDP-APC scheme which consists of normalized multi-
dimensional parameters in a similarity function targeting C-V2X VANET. Specifically, we 
introduced two dimensional parameters, which were vehicles’ current position and current 
velocity with weighted value α and β over the terms. The idea of this scheme infers further 
extensibility of input terms and dimensions. We also conducted extensive simulations in proposed 
scheme to evaluate and verify its capability in the simulation part. We used a well proofed Gazis-
Herman-Rothery (GHR) car following model in the process of simulations. This scheme greatly 
helped our simulations and contributed for obtaining various results in real traffic data. We applied 
C-V2X radio to improve the frequency of the data exchange, which significantly contributed 
minimizing APC clustering interval. In using simple vehicle formation, we tested the validity of 
proposed similarity function. This process clearly identified that velocity component is an 

 

Fig.3.5 NMDP-APC Number of Clusters Changing the px-value 
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essential term for the adequate clustering formation. We also applied the NMDC-APC to real 
traffic data and successfully clustered the live traffics in various conditions. The simulation result 
also identified that the number of minimum iterations increases when the number of target object 
increases. We demonstrated that controlling clustering granularity by changing the px-value, i.e., 
it is called preference value in the AP. We identified success control of clustering granularity by 
changing the value in our NMDP-APC. 
 
Application of APC to VANET is quite demanding. The results of this study further open up 
various fields of the NMDP-APC applications as our proposed similarity function enables to 
incorporate various metrics into the formula. The proposed scheme does not require specific 
implementation platform as it designed to exchange APC messages over an application layer. So 
far, realization of conventional proposals heavily depends on lower layers implementation such 
as MAC layer of DSRC. Instead, our scheme enables to realize in higher layer. This significantly 
contributes flexibility in its application to various demanded scenarios. 
 
  



33 

Chapter 4 

 

4 VANETs Clustering Formulation 

Applying Machine Learning 

 

4.1 Introduction 

This part introduces research background of proposed VANET clustering formulation applying a 
machine learning. In the previous work, we were able to successfully construct VANET clusters 
from NMDP-APC scheme. we also obtained the control scheme of desirable cluster size and the 
simulation result clearly indicated. By changing px-value, we can formulate desirable VANET 
cluster size depends of the needs. However, un-solved question only remains how the ideal 
granularity shall be determined. This is a remaining question after we obtained the clustering 
control mechanism. The ideal cluster size and granularity should be determined autonomously 
incorporating traffic situation. In order to resolve this question, we applied a machine learning 
scheme. This is an incredibly powerful and extensible approach we have not leant so far. Here we 
introduce the details from the following section.  
 

4.1.1  Objectives  

 
This section explains the objectives and target we pursue through this study. The first objective is 
to derive ideal clustering granularity knowing vehicular dynamics. The second objective is to 
design a system scheme having a capability of autonomous clustering in integrating C-V2X 
procedure. The third objective is to find a scheme which has high adaptability and extendibility 
once we find further improvements and extension onto the original scheme. Eventually, this 
scheme is easily implemented through using a platform of machine learning once fundamental 
part is developed.  
 

4.1.2  Related Works  

 
The metrics of VANET clustering scheme observed vary: some schemes use single-metric and 
others multi-metrics. Such variations can be seen in [36], [37]. Specifically, mobility-based 
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clustering which focuses on inter-vehicular mobility dynamics is identified as a key direction in 
contemporary study. A reference [32] outlines a mechanism of VANET-UMTS integration and 
proposes VANET dynamic clustering mechanism using specific multi-metrics for finding a 
minimum number of vehicular CHs. Although it proposes a comprehensive mechanism targeting 
a dynamic mobility environment, its realization would be challenging as it requires the inclination 
angles toward eNBs and between vehicles. Studies on a multi-hop clustering scheme with IEEE 
802.11p and 4G hybrid systems are introduced in [33], [34]. 
 
Generally, VANET clustering schemes can be categorized as either centralized- or distributed-
clustering schemes. In centralized clustering schemes, cluster formation is performed via a NB or 
Rode Side Unit (RSU) with periodical message exchanges to the target vehicles. W. Qi [16] 
proposed an SDN-based centralized clustering scheme by exploiting a social pattern, i.e., knowing 
the vehicles’ traffic pattern to deduce an expected route, where the metrics of inter-vehicular 
distance, relative speed and vehicle attributes are used. In distributed clustering schemes, cluster 
formation and CH selection are performed only between the vehicles through message exchanges 
without involving managements of central node in a fully distributed manner. The centralized 
clustering approach is advantageous in that it has more computational resources and managements 
available in the central entity. On the other hand, from the standpoint of nomadicity of vehicular 
mobility, the distributed clustering approach has advantages that it can avoid signaling 
concentration and a single point of failure; specifically, it allows autonomous decision making 
among widely spanned vehicular targets. 
 
In contrast to the conventional application of APC, our proposed NMDP-APC in C-V2X is 
designed to target the following three key advantages. Firstly, our proposed scheme uses the 
vehicle’s current position and velocity that are not associated with any predicted value. Secondly, 
our scheme autonomously deduces a desirable clustering granularity not only by knowing 
vehicles’ motion dynamics but also by incorporating the traffic density and access congestion 
status by applying ML. Thirdly, it leverages the power of C-V2X technology for more improved 
performance, i.e., a short uplink transmission interval of 0.1 sec [37] with higher reliability and 
lower latency. In a system-wide perspective, we designed our scheme by applying mobility-based 
metrics, specifically the position and velocity, in single-hop clustering formation, taking 
advantage of C-V2X wireless, which spans enough in one hop, and a distributed-clustering 
scheme, which totally fits vehicles’ nomadicity . 
 
Key salient features of vehicular communication to be applied to succeed in 5G systems are 
summarized by S. Shah et al. [39]. The importance and mechanism of 5G Mobile Edge 
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Computing (MEC) with VANETs are analyzed in [40] and Z. Ning, et al. [41]. Low latency is an 
essential key capability for VANET networks, especially when the target application involves 
unmanned vehicles that generally require ultra-low latency capabilities of the system. MEC can 
process and deliver data quite efficiently by pushing the computing resources to the Mobile 
Vehicular Cloud (MVC) located at the edge of the network as shown in [42] and X. Ma et al. [43]. 
It is also notable that a game theory for VANET clustering is employed by A. Khan et al. [44] to 
find a balance of total throughput capacity in consideration of the clustering granularity, i.e., 
population share. In [44], the RSU is used as a centralized controller to signal an overall 
observation, compute the average payoff of the entire population of clusters and then broadcast it 
to all clusters. 
 
Potential application of ML over vehicular networks was investigated by H. Ye et al. [24]. A 
framework for ML on vehicular networks was reviewed by L. Liang et al. [45]. D. Tian et al. 
proposed an application of a Hebb neural network, which intelligently learns the topology and 
forms vehicle clusters [46]. An application of Q-learning for cluster head identification is 
introduced by Z. Khan et al. in the proposal of two-level clustering [47]. Level-1 CHs are 
determined through fuzzy logic algorithm applying following metrics: relative velocity, multiple-
connectivity and link-reliability. Level-2 CHs are determined by an improved Q-learning theory 
which will be a gateway to a Node-B. However, no clear proposal has been presented as to how 
an identical number of clusters can be identified in these studies. 
 

4.1.3  Contributions  

 
This part summarizes our contribution on autonomous VANET cluster formation applying a 
machine learning. Our proposed scheme and procedure largely relied on fundamental mechanism 
of C-V2X. This makes highly adaptable and greatly ease the implementation. One of the 
advantages of applying a ML is its expendability, in changing of components of task vector and 
evaluation criteria original mechanism can be easily extending to another needs. The main 
contribution in this study can be listed as follow; 
 

#1 Vehicle clusters are autonomously formed through NMDP-APC process in consideration 
of real-time motion dynamics. 
#2 The cluster granularity is designed to be derived from a ML algorithm with minimum 
criteria. 
#3 Traffic density and cellular congestion states are specifically considered for granularity 
determination. 
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#4 A fully distributed system is designed with its entire procedure and sequence in line with 
5G C-V2X. 

 

4.2 Proposed VANETs Clustering Applying a ML 

 
Having the explanation of the motivation and review of related works this section shows the detail 
of our proposed of VANET clustering scheme applying a ML in the following section. As shown 
in Fig.4.1, cluster formation takes place at Time = t and at an interval of time later. At Time = t, a 
cluster is formed based on the APC clustering scheme and identified as a CH with the members 
denoted as vehicle-B and C in the diagram. Reflecting the vehicles’ motion dynamics, the 
associated members are updated at Time = t+n as in Fig.4.1(b). In this case, although the CH has 
not changed, some members have been changed: vehicle-C has disappeared from the original 
wireless coverage and vehicle-D has become a new member because of its similarity evaluated 
by the clustering scheme. In this diagram, vehicle-E stays independent from the cluster as it has 
an intention to be a stand-alone or the dynamics makes it less likely to be a member of the cluster. 
The proposed procedures are explained in the following subsection. 

 

4.2.1  Proposed Clustering Sequence over C-V2X  

 
Fig. 4.2 shows the enhanced signaling sequence exchanged in the above scenario. VE represents 
the Vehicle-UE that complies with 3GPP C-V2X scheme. Step 1 indicates the provisioning 
process for one-to-many and PC5-based communication between the VEs. The provisioning 
includes three important aspects: a) identifying authorization policies and parameters; b) setting 

 

Fig. 4.1 Clustering Formation in Traffic Dynamics 
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up V2X direct communication parameters; and c) setting up radio parameters for not-served by 
5G-RAN. The authorization policies and parameters include UE’s authorization parameter from 
a PLMN used to prevent malicious UEs from engaging. The V2X direct communication 
parameters include V2X-Layer2-ID, IPv4/v6 preferences and Application Layer IDs, which are 
used by the VEs to perform one-to-many communications. Radio parameters for VEs not-served 
by 5G-RAN provides the capability for one-to-many V2X communication in considering 
geographical dependencies of frequency bands. In Step 2, each VE starts to exchange messages 
to surrounding vehicles by looking at the destination and source V2X L2-IDs on a specific C-
V2X short-range communication link. Step 3 is the message exchange of NMDP-APC process 
using one-to-many PC5 direct communication among the neighbors. Clustering Request is a 
specific message sent from a VE intending to form a cluster. Such request message can be sent 
from any of the neighbors such as VE-A, B and C. Triggering reception of the Clustering Request 
message, these vehicles initiate the message exchange of NMDP-APC. Step 4 indicates the results 
of clustering formation and the CH identified after the APC process for the cluster indicated in 
Fig. 4.1(a). When a VE becomes a member of the cluster, the VE will enter In-Clustering State 
and then inform neighbors that it has becomes a member of the cluster. Sometime later as in Fig. 
4.1(b), VE-D initiates Step 6 and 7, which are identical to Step 1 and 2 respectively, and it also 
intends to form a cluster. After the provisioning process, an additional Clustering Request 
messages is sent from VE-D as shown in Step 8, and then an updated cluster is formed via 
additional NMDP-APC process considering the dynamics of the neighbors. Note that VE-E 
remains stand-alone as it has independent dynamics, or it has an intention to be in standalone 
communication mode. All parts shown colored in-red are the specific enhancements that we 
proposed over the C-V2X original sequence. The sequence in Fig. 4.2 covers most of the scenarios 
by which a new VE joins in and evacuates from a cluster. When CH needs to be changed or 
replaced, V2X-to-NW Relaying function can be applied to CH relocation process between the 
new and old VEs, which will be explained later section with its the procedures. 
 
We have so far explained the fundamental mechanism of NMDP-APC, referring to a scenario that 
takes account of VE’s motion dynamics. We have yet to offer explanation, however, for the 
question as to how the clustering granularity should be determined. We employed a ML scheme 
to challenge the question while vehicles are dynamically in motion. The following section will 
explain the ML scheme, starting from its concept. 
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4.2.2  Proposed Task Vector & Decision Tree  

 
This part explains the proposed task vector and decision tree for a proposed ML scheme. It is 
generally known that obtaining an applicable trained decision function 𝑓(𝑿) requires a certain 
volume of training data. In this study, a predefined decision-tree is applied for identifying the 
level of clustering granularity, i.e., an objective variable y from a set of explanatory variables, 
which consists of the task-vector 𝑿. SVM is known to be well applicable for its sufficient volume 
of data and a clear relation of explanatory variables to the objective variable. 
 
With the mapping decision of the task-vector 𝑿 to an objective variable y, the classification is 
provided as 𝐷 = {(𝑿, 𝑦) | 𝑦 = 𝑠𝑖𝑔𝑛[𝑓(𝑿)]}. In this study, we decided to classify the clusters in 
four levels based on the size: large, medium, small-medium, and small. In consideration of the 
obtained real traffic data and the span of C-V2X radio propagation, we set a four-level 
classification, although theoretically the number of levels can be changed to any. Numerically it 
can be shown as 𝐷 ∈ {0,1,2,3}  corresponding to the above four levels of cluster size. We 
designed the task-vector 𝑿 consisting of the following minimum set of explanatory variables for 
deciding the cluster size. We kept the number of elements to a minimum, otherwise it would have 
led to a longer computational time and potential deterioration of prediction performance because 
the target vehicles are in motion. 

 

Fig. 4.2 Enhanced Message Sequence over C-V2X 
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𝑿 = (𝐼𝑣,  𝐹𝑝,  𝑇𝑑 ,  𝑁𝑏𝑐)                          (4.1) 

 
In (4.1), 𝐼𝑣  is the communication volume, which we assumed to be 100 kbps uplink data 
randomly generated in a certain interval from each vehicle. 𝐹𝑝 represents an initial preference as 

to which mode is used to establish a session: clustered mode or individual mode, which can be 
denoted as 𝐹𝑝 ∈ {0,1}. The preference value of 𝐹𝑝 = 0 represents an intention of independent 

session establishment, in which case a session is established directly and connected to a cellular 
network. A broad-band data upload could be a use case. On the other hand, 𝐹𝑝 = 1 represents an 

intention to form a cluster, in which case a session will be established via a CH. The third attribute 
constituting the task vector is the traffic density of vehicles shown as 𝑇𝑑. We obtained real traffic 
data from a highway and applied them in our simulation. According to the obtained traffic data, 
the maximum number of observed vehicles in a 2 km span, i.e., in a 1 km radius in a single 
direction. The vehicle density was obtained from the number of vehicles in the observed range. 
The last attribute constituting the task vector is the congestion status of a PLMN access, denoted 
as 𝑁𝑏𝑐, the set of which can be denoted as 𝑁𝑏𝑐 ∈ {0,1}, where 𝑁𝑏𝑐 = 0 represents a normal 
access state and 𝑁𝑏𝑐 = 1 represents a congestion access state. When a particular access is in a 
congestion state, the number of clusters is made smaller, as aggregation effect contributes to 
reducing the number of the cellular access connections. This parameter is therefore factored in 
our task-vector. 

 

 

Fig. 4.3 Decision Tree for Clustering Granularity Determination 
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4.2.3  SVM Classification Mechanism  

 
The fundamental idea and our proposed NMDP-APC scheme have already explained in the 
previous chapter. Hence, we proceed the introduction of novel part of cluster granularity 
identification scheme in the following subsection. 
 

4.2.4  Procedure of NMDP-APC ML delivered granularity  

 
This part explains the proposed procedure of NMDP-APC with ML delivered granularity. Once a 
px value is given, NMDP-APC enables the control of the desired clustering granularity in the 
process. We employed a ML scheme to obtain the desired clustering size from the trained decision 
function 𝑓(𝑿) as this process identifies the desired px value. Table 4.1 explains how NMDP-
APC process uses the ML-deduced px-value segmenting three procedures parts. As Part-A has 
been mostly explained with the sequence in the previous section, let us focus on the procedure in 
Part-B and C for the sake of paper space. 
 
Part-B covers the procedure of an NMDP-APC re-clustering case for a member change. Step 06 
and 07 is the provisioning steps identical with step 01 and 02, respectively. Step 08 initiates re-
clustering process triggered by a Clustering Request Message (CRM) from a VE which has 
engaged in a clustered V2X wireless range. Step 09 starts another NMDP-APC process with a 
ML driven px-value to form a new cluster, aiming for cluster maintenance upon receiving the 
CRM. Step 10 is a process in staying original CH and the CH updates the associated members’ 
context information. Step 11 is a process triggered by a VE about to leave the cluster because of 
wireless range-out or re-clustering request reception from a member. Then, step 12 starts another 
NMDP-APC process with a ML-driven px-value to form a new cluster in the same manner as in 
step 09. The CH only maintain the context of updated cluster members. Part-C provides a set of 
procedures when initial CH replacement is required. In step 13, a CH receives a CRM from a VE. 
Step 14 initiates Cluster Maintenance by executing another NMPD-APC process. In step 15, an 
original CH is recognized to be replaced and 𝐶𝐻𝑁𝐸𝑊 is identified. Then in step 16, 𝐶𝐻𝑂𝐿𝐷 and 
𝐶𝐻𝑁𝐸𝑊 exchange the context of associated members’ information through the V2X-to-NW relay 
[48]. Step 17 is an annex procedure that enables a recovery from an abnormal state to a normal 
state. 

TABLE 4.1 

PROCEDURE OF NMDP-APC WITH MACHINE LEARNING DERIVED PX-VALUE 
Procedure of NMDP-APC with ML deduced px-value 
Step: Part-A, Initial Provisioning & Cluster Formation 

01. Initiate Provisioning request to V2X function in PLMN from those VE desired to cluster. 𝑉𝐸𝑑𝑒𝑠(des = 1⋯Z), des ∈  ∀ VE. 
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 (Authorization, DC parameters, Radio parameter configuration) 

02. Exchange neighbors in setting V2X L2 ID via C-V2X wireless link with those VEs are in the wireless rage. 𝑉𝐸𝑖𝑛𝑟,(inr =1⋯R), 

inr ∈  𝑍. 

03. if a Clustering Request Message is received from a neighbor. (any wireless propagation in-coverage 𝑉𝐸𝑑𝑒𝑠 are potential to 

initiate) 

04.    then initiate Cluster Establishment by executing NMDP-APC with trained f(x) provided a px-value. 𝐶𝐻𝑗 associated with 

the member 𝑉𝐸𝑢(u=1⋯U), j and u ∈ 𝑉𝐸𝑖𝑛𝑟 ∩ APC. (Determined CHs and the members enter In-cluster mode) 

05. Communicate with PLMN via identified CH. 

Step: Part-B, Re-clustering for Member Change 

06-07  Identical provisioning process as in step 01-02 respectively. 

08.   if a Clustering Request Message is received from a neighbor.  

(any wireless propagation in-coverage 𝑉𝐸𝑑𝑒𝑠 are potential to initiate) 

09.     then initiate Cluster Maintenance by executing NMDP-APC with trained f(x) provided a px-value, as in step 04. 

10.         if original CH stays, incoming VE becomes a cluster member. The CH updates the member, 𝑉𝐸𝑢 (u=1⋯U), u ∈ 

𝑉𝐸𝑖𝑛𝑟 ∩ APC, (The CH reflashes the member status and associated contexts.) 

11.    if an original member goes out the wireless range or received a Re-Clustering Request. 

12.        then initiate Cluster Maintenance by executing NMDP-APC with trained f(x) provided a px-value from the CH. 𝐶𝐻𝑗 

only has the context of revised member 𝑉𝐸𝑢 (u=1⋯U), u ∈ 𝑉𝐸𝑖𝑛𝑟 ∩ APC. 

Step: Part-C, CH change and its Context Transfer via V2X-to-NW Relay 

13.   if a CH received a Clustering Request Message from a VE. 

14.     then initiate Cluster Maintenance by executing NMDP-APC with trained f(x) provided a px-value. 

15.      if an original CH is recognized to be replaced and 𝐶𝐻𝑁𝐸𝑊 is identified from the APC. 

16.          then 𝐶𝐻𝑂𝐿𝐷 and 𝐶𝐻𝑁𝐸𝑊 exchange the contexts of associated members information via V2X-to-NW relay. 

𝐶𝐻𝑂𝐿𝐷 replaced by 𝐶𝐻𝑁𝐸𝑊 by transferring the context of 𝑉𝐸𝑘 (k=1⋯K), k ∈ 𝑉𝐸𝑖𝑛𝑟 ∩ new APC. 

17.   if this process failed, enters step 03 then restart initial clustering, evacuating from abnormal state and returning to normal 

procedure. 

 

4.3 Simulation Results 

 

4.3.1  Clustering Formation applying ML  

 
This sub-section shows the sets of results of NMDP-APC simulation conducted on Matlab to 
observe cluster formation for different granularity parameter px values which derived from the 
proposed ML scheme. With one-minute real traffic data available at hand, we evaluated the 
clustering performance based on the data collected at different time points. Fig. 4.4-9 display the 
clustering results we obtained until the observation field is filled by using the traffic data collected 
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at 35 sec, which is the middle part of the entire data. The reason we chose the data applied at 35 
sec is our consideration of the practical radio propagation span of C-V2X. We set the observation 
range to within 1 km, i.e., a 500 m radius, in this simulation as the reliable transmission range is 
considered to be a 500 m to 1 km radius [37].  
 
Fig. 4.4 provides the result at t = 15 sec, the snapshot data from the overall observation in 35 sec. 
The top row in Fig. 4.4(a) shows the original vehicle distribution with the number of vehicles 
being indicated as N = 16. Fig. 4.4(b) shows the NMDP-APC clustering result with px = 2.0, 
which was assigned to produce a large group of fewest clusters. The proportion of NMDP-APC 
weight parameter 𝜑 represents a position component and 𝜓 represents a velocity component, 
which are assigned as 𝜑  = 0.8 and 𝜓  = 0.2 respectively, and the same values were applied 
throughout this simulation. The number of clusters formed in this condition is Clusters = 3. CHs 
are located mostly in the middle of each group with the associated members linked by dotted lines. 
From the results, it is easy to understand that few large-sized clusters were produced because a 
large px-value has been assigned. In this granularity assignment, it can be observed that vehicles 
are forced to be clustered due to the extreme px-value applied. Fig. 4.4(c) shows the Net Similarity 
value in the APC iteration process. By reaching the stable net similarity value, the APC process 
identifies the final shape of stable sets of clusters. Fig. 4.4 and 4.6 provide the result sets applying 
the same px-value, then the NMDP-APC clustering status is observed at t = 25 and 35 sec 
respectively during the overall observation time of 35 sec. It can be observed that a higher number 
of vehicles come into the observed space, and the NMDP-APC is producing the same levels of 
granularity as the same px-value has been applied. 
 
Fig. 4.7(b) displays the NMDP-APC clustering result obtained with the granularity parameter px 
= 1.4 assigned to form medium sized clusters on the data at t = 35 sec where the observation space 
is filled. The number of clusters has increased to Clusters = 5 and it clearly shows that the number 
of members in a cluster tends to be smaller. Similarly, it is observed that CHs are located mostly 
at the center of the group and linked with the members in dotted lines. The rest of parameters are 
assigned in the same manner. Fig. 4.7(c) provides the evidence that the clusters have reached 
stability. Fig. 4.8(b) displays the clustering result obtained from assigning the granularity 
parameter px = 0.5, which is targeted at forming small-to-medium sized clusters on the same data 
at t = 35sec. As a smaller value of granularity parameter is assigned, the number of clusters has 
changed to Clusters = 6 and it is observed that members are more inclined to form independent 
clusters compared to Fig. 4.7(b). Fig. 4.9(b) displays the clustering result obtained by assigning 
the smallest granularity parameter value px = 0.1 at t = 35 sec on the same data used in Fig. 4.6-
8. Now, the number of clusters largely has increased to Clusters = 13 and it is easily observed that 
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the members are more isolated to other clusters as the extreme px value has been applied. 

Fig 4.4 NMDP-APC Clustering Result, px=2.0, t=@15sec 

Fig 4.5 NMDP-APC Clustering Result, px=2.0, t=@25sec 
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Fig 4.6 NMDP-APC Clustering Result, px=2.0, t=@35sec 

        Fig 4.7 NMDP-APC Clustering Result, px=1.4, t=@35sec 
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Fig 4.8 NMDP-APC Clustering Result, px=0.5, t=@35sec 

 

Fig 4.9 NMDP-APC Clustering Result, px=0.1, t=@35sec 
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4.3.2  Prediction Performance Evaluation  

 
This part explains the prediction performance of the proposed scheme. In this part, we 
present sets of simulation results on the prediction performance of the soft-margin-based SVM-
ML with GRBF kernel operation. We conducted these simulations in a Python coding 
environment as it has a series of well-prepared functions and libraries specifically for ML. As 
shown in Table-I, SVM and NN are the major candidate algorithms for classification. Simulation 
results obtained in using NN however provided an inferior performance compared to those in 
SVM in this simulation. We recognized that this is because our task vector 𝑿  has only four 
dimensions and that algorithms using NN would be more applicable to a large dimensional 
problem case. Thus, we conducted further simulation focusing on the SVM by varying the 
formerly explained C and 𝛾 parameters. 
 
Fig. 4.10 shows the prediction accuracy obtained by applying constant C = 1.0 and then varying 
two types of 𝛾 -parameters, which are SVM-default 𝛾  and SVM-scaled 𝛾 . The SVM-default 
uses 𝛾 = 1/feature number, i.e., 0.25 as our task vector is 4 dimensional features. The SVM-
scaled 𝛾  = 1/feature number multiplying by the variance of the task vector 𝑿 . As the result 
indicates, SVM-default 𝛾 provided better prediction performance compared to SVM-scaled 𝛾 
parameter. It is notable that reached 100% of production accuracy with the sampling data given 
around at 140. It is remarkable that such high performance was obtained even with the small 
number of training data. This is important specifically in a dynamic vehicular application scenario. 
We recognize that this is attributable to the compact structure of proposed decision tree, which 
only consists of essential criteria with a four-dimensional task vector. 
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Now in Fig. 4.11, we demonstrated prediction performance evaluation comparing default-𝛾 with 
C = 1.0 where best performance obtained in above, versus scaled-𝛾 by changing parameter-C to 
observe how the value influence the result. As the theoretical analysis reviewed, the cost-
parameter C controls the balance of margin allowance and miss-classifications. In this simulation, 
by increasing C value, improvements in the prediction performance have been observed in SVM 
scaled-𝛾. However, 100 % accuracy has not been reached in SVM scaled-𝛾 although increasing 
the C value and even large volume of training data applied. From these results, it can be noticed 
that applying combination of SCM default-𝛾 with C=1.0 potentially provides desirable prediction 
performance in the simulation condition. 
 

 

Fig 4.10 Prediction Accuracy in C = 1.0, with Applying Default-𝛾 and Scaled-𝛾 
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4.3.3  Statistical Average Access Latency  

 
We observed the statistical average access latency in 5G compared with LTE through a simulation, 
as in Fig. 4.12. The access latency was statistically measured from a CH to gNB and eNB, i.e., 
the Uu interface by assigning the target latency as the median value, i.e., 𝜇5𝐺  = 4 ms and 𝜇𝐿𝑇𝐸  = 
11.5 ms [49], [50]. The results are obtained by applying a truncated normal distribution [51] to 
avoid extreme and unrealistic values being produced. The simulation applied 10,000 times of 
sampling by changing different values of latency distribution variance 𝜎2 = 1.0, 5.0 and 10.0 
then, we observed how the system stability influenced the average access latency in this 
simulation. The outcomes showed that the average access latency observed in 5G was 3.9 ms at 
𝜎2 = 1.0, 5.8 ms at 𝜎2= 5.0 and 7.8 ms at 𝜎2= 10.0 respectively. In LTE access, the average 
access latency observed was 11.0 ms at 𝜎2 = 1.0, 12.0 ms at 𝜎2 = 5.0 and 15.4 ms at 𝜎2 = 
10.0 respectively. A clear tendency observed was that when a large variance is applied, i.e., the 
system is instable, the average access latency has deteriorated. The result can provide an 
understanding that the more stable access is provided, the less access latency can be achieved. 
Therefore, our objective of minimizing the number of accessing objects can also contribute to 
provide the reduction of access latency, contributing to the system scalability for avoiding access 
storms from individual vehicles and mobile MTC terminals potentially to be deployed in a large 
number in the future. 

 

Fig. 4.11 Prediction Accuracy in Default-𝛾 with C =1.0 Versus Scaled-𝛾 with C Value 
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4.4 Summary 

This study has proposed an advanced VANET clustering scheme called NMDP-APC to form 
stable single-hop clusters in a distributed control manner. Specifically, in consideration of the real 
time motion dynamics of vehicles, two parameters, i.e., inter-vehicular Euclidian distances and 
its velocities, are assigned as the metrics without associating them with any prediction values. In 
the NMDP-APC process, we controlled the clustering granularity level by adjusting the 
granularity parameter. Particularly, this study deduced the desirable clustering size, applying a 
ML scheme which employs soft-margin-based SVM-ML with Gaussian Radial Basis Kernel 
Function. 
 
As ML has been known as a powerful tool in decision making, we applied it to find an ideal 
VANET granularity incorporating minimum sets of decision criteria. Relative to the limited and 
essential criteria, the ML prediction performance achieved satisfactory results with fewer training 
data. In addition, we designed a message sequence and procedure of NMDP-APC by associating 
them with the ML deduced clustering granularity. The procedure and sequence are enhanced on 
the existing 3GPP C-V2X specifications. With the PC5 interface, therefore, the proposed scheme 
can be easily implemented with emerging 5G cellular systems. Especially, the proposed scheme 

 

Fig. 4.12 Statistical Average Access Latency in 5G and LTE 
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is designed through a distributed control approach to adapt nomadic vehicles’ mobility. Through 
the simulations, the cluster formation and granularity control has been clearly observed through 
different values of the px-parameter. For improving ML prediction performance, two key 
parameters C and 𝛾 were adjusted to tune the prediction performance. The simulation results 
indicated that a particular selection of parameters resulted in a better performance. We also 
observed the performance with lesser access latency in a stable PLMN system via the simulation, 
which explains that the clustering capability is contributing to providing aggregation effects and 
thus it provides a stable system even when a large number of objects are connecting to a PLMN. 
Although this study was originally targeted to vehicular applications, it has potential applicability 
to any machine type moving objects expected to increase reflecting the growing demand for such 
applications in 5G and beyond. Future work should focus on enhancing the proposed scheme by 
applying more complicated scenarios and/or using different types of ML algorithms. 
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Chapter 5 

 

5 Dynamic Server Selection 

Employing Machine Learning for 

5G VANET 

 

5.1 Introduction 

This part of study conducted targeting to propose dynamic server Selection in employing machine 
learning specifically targeting to 5G VANET. Distributed computation is a strong demand of 
cotemporally computation and specifically vehicular computation need of using external 
resources because of large machine learning applications. However, such computational resources, 
latency of the access, and remaining resources are changing time to time. Therefore, for expecting 
to use appropriate resources on-time these dynamics has to be considered during the target 
resource selection process. We pursued this question for finding an answer in applying a ML 
scheme. Extensive simulation also performed with analysis of fundamental mechanism of applied 
ML algorithms. For targeting to real application, we also observed prediction performance in 
missing data scenario. Eventually, the ML prediction performance of missing data and missing 
data handling capability of MLs also evaluated in the simulation.  
 

5.1.1  Objectives  

 
The objectives of this study targets to realize various and extensive application needs of vehicular 
computation in distributed manner. It has been known that the conventional server selection has 
been performed in static and heuristic approach. For novelty, this study employs a power of 
machine learning incorporating real time network status. Key contributions on this study can be 
summarized as follows; 
 
#1 Designed and proposed a distributed ML system for server selection in considering network 

dynamics with carefully selected essential evaluation criteria. 
#2 Applied conventionally well-known SVMC as well as newly introduced GMBC-based 



52 

classification algorithms and carefully examined prediction performance while varying the 
training data volume. 

#3 Isolated the learning offline process from the online ML execution process for enabling a time 
critical system regardless of its sampling volume. 

#4 Incorporated a missing data handling capability as un-obtained data cannot be excluded in 
practical usage and this causes stagnation. 

 

5.1.2  Related Works  

 
Amid the above circumstances, various research activities on vehicular communication with 5GS 
have been widely conducted. A well-organized article [39] summarizes an overview of salient 
features of vehicular communication with 5GS and indicates that proximity services, MEC and 
network slicing are key technical components. El-Sayed et al. emphasizes the importance of Edge 
Computing (EC) over central cloud architecture as EC pushes the computing capability to the 
network edge, contributing significantly to improving response time with resource optimization 
[40]. Ning et al. studies an efficient access management scheme and indicates MEC as an essential 
capability for minimize latency and handling a large number of SIVs [41]. A low latency 
networking feature has been specifically demanded more than ever, with various time-critical 
vehicular applications being envisioned. Mobile Vehicular Cloud (MVC) is a typical realization 
of vehicle communication with the MEC function placed in the radio access network [42], [43]. 
Focusing on task-offloading of Vehicular Edge Computing (VEC), [52] proposes a multi-access 

 

Fig. 5.1 Distributed Resource Selection from Vehicles 
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capability, introducing a three-level hierarchical framework consisting of the cloud-enabled 
control layer, MEC layer and multi-access connected cloud layer. A vehicular fog network is a 
realization of distributed computing over vehicles, and a study [53] applies ML to identify the 
target fog and predict task allocation over the fog vehicles, realizing interactions between the 
central cloud server and local fog entities. Although such studies have consistently addressed the 
importance and advantages of edge computing, a system-wide scheme addressing how to select a 
best target server among the candidates has been missing. 
 
Ye et al. investigates potential application of ML over vehicular communication in the era of 5G 
[24]. They summarize the variations of ML and introduced potential fields of applications while 
Data-driven decision making in vehicular networks and intelligent resource management are 
stated as potential ML application fields. An extensive study of ML application to VANET 
clustering can be seen in [54]. This considers vehicular dynamics in real traffic data and found 
best clusters using a ML classification scheme. In some more advanced manner, Liang et al. 
studied a ML flamework toward intelligent vehicular networks [52]. They categorize ML 
variations and shows areas where learning-based decision making is applicable in high-mobility 
vehicular networks. They also indicated brief architecture with ML agents through an example 
and implied that ML can be a promising tool to learn the network dynamics and intelligent 
decision making in vehicular networks. 
 
In more recent studies, the concept of federated ML scheme has been introduced in vehicular 
computing. This concept provides distributed and interactive learning process between the 
vehicles with external ML nodes such as one in a Road Side Unit (RSU) or in a central crowd 
server [45], [57]. With regard to federated ML in vehicular edge computing, D. Ye et al. [55] 
proposes a ML federation model where individual vehicles performed local deep neural network 
at local data, then aggregate a global neural model at a central server for image classification on 
captured video. This study also provides a valuable list of federated ML variations in a distributed 
network. However, it assumes a single central server and does not sufficiently mention how to 
select target servers. Instead, J. Cao et al. proposed a federated ML scheme between individual 
vehicles and RSUs in evaluating the learning cost and delay functions [56]. They apply a 
distributed Q-learning scheme to find near-optimal computation offload, avoiding an NP-hard 
problem, from vehicles to either an RSU or central cloud server [57]. This uses reinforcement 
learning with an agent possessing a specific policy for making an offloading selection by 
maximizing the reward feedback. Although it proposes offloading decision, they have not 
addressed how to evaluate the results as it is an unsupervised ML approach. No sufficient 
consideration has been given to network dynamism with merely static resources and latency 
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values assigned. According to our observation, these are constantly changing and therefore we 
need to take network dynamics into account. 
 
After reviewing these works, we decided to take into consideration network dynamics as well as 
vehicles’ mobility dynamics for appropriate server selection in our study. Therefore, we designed 
the proposed ML system able to minimize the learning time and to use less sampling data. As this 
requires a highly capable classification-engine and there are several alternatives. From the 
candidates, we applied the following ML algorithms as they are known specifically applicable for 
low dimensional tabular based data [28] and uses fundamentally different classification approach. 
Firstly, extensively studied and widely applied algorithm, Support Vector Machine Classification 
(SVMC). This finds a hyperplane for the classification and we also have some experiences on the 
extent of apply. Then relatively new algorithm called eXtream Gradient Boosting Classification 
(XGBC) [58], which is an extension of Gradient Boosting Machine Classification (GBMC) 
algorithm. The concept of boosting trains models in succession, in concatenate and feedback the 
result of weak model then, each new model being trained to correct the errors made by the 
previous steps. The fact that data analysis using XGBC were recently awarded a prize in the KDD 
contest also motivated us to select this as one of the candidate algorithms for our evaluation. 
 

5.1.3  Contributions  

 
This study proposes a novel ML-based scheme for selecting distributed computational resources, 
i.e., servers, giving consideration to network dynamics in reducing the leaning time and yet 
aiming to keep a high level of prediction performance for mobile SIV. We designed a system 
specially focusing on minimizing learning latency for adapting real time application of SIVs in 
5G C-V2X architecture. The contributions of this paper can be summarized as follows: 
 

1. Designed and proposed a distributed ML system for server selection in considering 
network dynamics with carefully selected essential evaluation criteria. 

2. Applied conventionally well-known SVMC and newly introduced GMBC-based 
classification algorithms and carefully examined prediction performance while varying 
training data volume. 

3. Isolated the learning offline process from the online ML execution process for enabling 
a time critical system regardless of its sampling volume. 

4. Incorporated a missing data handling capability as un-obtained data cannot be excluded 
in practical usage and this causes stagnation. 
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5.2 Proposed Decision Flow and Server Selection Scheme 

 

5.2.1  System Architecture in 5G C-V2X Server Selection  

 
This Fig.5.2 plots typical computational server locations onto 5GS architecture [59]. Vehicular 
networks have a potential to form VAC server in the VANET. MEC is co-located in the Next 
Generation-Radio Access Node (NG-RAN). RCC is placed in system depth beyond the cellular 
system as a Data Network (DN) at the end of the network. 
 
The far-end RCC is typically used for the tasks requiring large computation and for acquiring a 
wide-range of information, such as in 3D map data collection and/or central processing of pre-
processed results from edge servers [55]. MEC is typically placed near a network edge such as in 
a RAN. A scenario of collision avoidance at an intersection would be a typical example. As this 
scenario requires various types of information in low latency, not only on vehicles but also on 
assigned pedestrians and state of intersections. Instead Vehicular Ad hoc Cloud (VAC) is formed 
in a group of proximity vehicles and it expects extremely time-critical communication such as 
inter-vehicular waring notice, collision avoidance and vehicle clustering management [54]. The 
VAC will largely contribute to providing various inter-vehicular services and applications through 
flush data repository dedicated to the group. 
 

Table 5.1 Server Computing Characteristic Summary 

 
In this study, we assumed a 3-server scenario as a typical case, but this study is extendable and 
applicable to any number of candidate computational locations once necessary information set 
are prepared. This flexibility motivated us to apply ML for decision making. Table 5.1 summarizes 
the characteristics and properties of the above-mentioned three types of cloud computational 
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servers. The use cases and scenarios of server will vary depending on the service and the server 
will be selected at each session initiation. We will use these characteristics later in the ML decision 
flow in the following section. 
 

 

5.2.2  Proposed Task Vector and Decision Flow  

 
The issue of classification defines the relation of the objective variable y through a set of 
explanatory variables in task vector X. In this work, we used a deliberated decision flow to find a 
particular server, i.e., the objective variable y in considering the given decision criteria. The 
mapping relation can be denoted as 𝑿 → 𝑦, where 𝑦 = {−1,0,1} to distinguish three types of 
servers. The labeling of y = -1 represents VAC, y = 0 represents MEC and y = +1 represents RCC 
server. We designed the task vector 𝑿 with the following set of explanatory variables. 
 

𝑿 = (𝑥𝑖𝑛, 𝑝, 𝑢𝑟𝑞 , 𝑢𝑟𝑚, 𝑡𝑙𝑜, 𝑡𝑜𝑓 , 𝐿𝑙𝑜, 𝐿𝑜𝑓) 

(5.1) 
In (5.1), 𝑥𝑖𝑛 represents the input task size of a service from a vehicle, and 𝑝 allows potential 
initial preference of the server alternative. The value of 𝑝 = 0 indicates a local service execution 
preference, and 𝑝 = {1, 2, 3}  shows an offload service execution preference, which number 
indicates VAC, MEC, RCC respectively. Second attribute considers the status of required and 

 

Fig.5.2 5G Cellular and C-V2X System with Three Types of Servers 
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remaining resources, 𝑢𝑟𝑞  and 𝑢𝑟𝑚  respectively. The 𝑢𝑟𝑞  represents the required 

computational resource to execute a given task and 𝑢𝑟𝑚 represents the remaining resources of 
the server on the request. The third attribute considers the latency aspect by 𝑡𝑙𝑜 and 𝑡𝑜𝑓. The 
𝑡𝑙𝑜 represents the summation of overall latency in using a local server and 𝑡𝑜𝑓 represents the 

summation of the latencies in using an offloading server. The fourth attribute considers the 
signaling loads required for local execution and offload server execution, shown as 𝐿𝑙𝑜and 𝐿𝑜𝑓 

respectively. Having the above structure of explanatory variables, a server selection is executed 
using the decision flow shown in serial-offloading with a three-layer server hierarchy. Therefore, 
an offloading decision is considered either from VAC to MEC or MEC to RCC. However, in order 
to incorporate network dynamics, the above process needs to be performed with knowledge of 
up-to-date resource consumption and congestion status. Therefore, this study asked for the power 
of ML. The following part introduces theorical backgrounds of the algorithms applied. 
 
This section explains proposed decision flow of dynamic server selection scheme. We introduce 
a four-layer decision flow in associating essential attributes to deduce the target server as in 
Fig.5.3. This should be constructed as a concise one in consideration of the decision criteria, 
otherwise the performance will be impaired and more computational time will be required. 
The first attribute allows incorporation of an initial preference in choosing a specific server. For 
example, time-critical inter-vehicle proximity communication, e.g., emergency break information 
and trajectory information for collision avoidance will be executed locally, therefore VAC virtual 
server will be preferred. On the other hand, a centralized control system will be preferred in such 
cases as traffic light control and safer vehicle traffic control, which are executed with knowledge 
of vehicles’ motion dynamics with road-side pedestrians’ information at an intersection. In such 
a case, selecting a server located at the mobile network edge, i.e., MEC server will be a reasonable 
choice. In a wider scope, for obtaining street 3D map information required to collect a large 
amount of information into a single central server [56], RCC will be preferably used for a global 
perspective application. 
 
The second criterion of the decision flow is resource availability at the target server. This 
evaluation needs to evaluate if the local server resources are enough in consideration of the input 
volume. Hence, in the case of 𝑢𝑟𝑚 > 𝑢𝑟𝑞, a local server should be chosen; otherwise a third 

criterion should be considered. The third criterion evaluates the degree of latency at local and 
remote executions. In the case of 𝑡𝑟𝑚 >  𝑡𝑙𝑜, the local server should be chosen; otherwise the last 
attributes should be entered. The fourth criterion evaluates the volume of system loads, 
considering how much signaling is exchanged for selecting a particular server. If 𝐿𝑟𝑒 >  𝐿𝑙𝑜, the 
local server should be chosen; otherwise remote server should be selected for the task. 
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5.2.2  Offline Learning and Online ML Execution Process  

 
The prediction performance of a ML is proportionally improved when a larger volume of training 
data volume is given. However, this learning time is critical for vehicular application as vehicles 
are in motion. Therefore, we developed a learning scheme that isolates the execution phase from 
the learning phase as outlined in Fig.5.4. The scheme designed where the offline learning process 
should be performed on the network edge and the online execution process at the vehicle side. 
The trained decision function 𝑓(𝑿)  is deduced from a large amount of training data that 
composes network dynamics by explanatory variables in 𝑿𝑖 except 𝑥𝑖𝑛 and p. The statistical 
record of data size 𝑥𝑖𝑛  can be sent from vehicles to the leaning agent with location update 
messages that periodically inform the position of mobile terminals to the network. This is also 
applicable to the preference value p which simply consists of binary information. 
 
The online process is executed at the timing of a service execution for selecting a particular server 
by applying the trained decision function derived from the offline process. The concept behind 
this mechanism is similar to that of federated learning, and the proposed scheme fundamentally 
contributes to the reduction of learning time in the execution phase. The performance of the 
proposed scheme is carefully examined in the simulation part. The offline learning process of 

 

Fig.5.3 Decision Flow with the Criteria 
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Step1 collects a large number of explanatory variables of task vector 𝑿𝒊 . Step2 is a learning 
process to deduce a decision function 𝑓(𝑿) based on the given task vector so far provided. Step 
3 provides an occasion for updating the 𝑓(𝑿) associating additional new data of the explanatory 
variables. Step 4 evaluates the data updates of explanatory variables in task vector 𝑿𝒊 . We 
suppose this learning process is performed at an agent placed on the network edge, e.g., gNB or 
MEC located in the vicinity of vehicles. The online process is executed at the timing of actual 
service execution phase upon a session initiation. The server selection is performed based on the 
decision function 𝑓(𝑿) derived in Step 3. The online process also includes the evaluation step 
to check if the initial server selected meets the target criteria. Therefore, this scheme can identify 
a best server based on the trained function to meet the criteria in limited processing time. 

 

5.3 Simulation Results 

 

5.3.1  Parameter Setup and Preparation  

 
This section explains the parameter setup and preparation for the simulation. We applied a 
Python 3.0 simulation platform and executed these simulations on a PC with 2.6GHz CPU rate in 
16 GB onboard RAM. Through these simulations, we examined the following four aspects. The 

 

Fig.5.4 Proposed Server Selection Scheme in Online and Offline 
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first simulation examined the performance of prediction accuracy over the three types of ML 
algorithms. The second simulation observed the missing data handling performance over the 
algorithms. Third simulation evaluated latency contribution on the proposed system. Last 
simulation observed an advantage of a 3-server model versus a conventional 2-server model. 
 

Table 5.2 Simulation Parameters 

Parameter Mean Value 

Remaining & required resources at RCC 40 GHz 

Remaining & required resources at MEC 20 GHz 

Remaining & required resources at VAC 5 GHz 

Required latency for using RCC 100 mil-sec 

Required latency for using MEC 50 mil-sec 

Required latency for VAC 3 mil-sec 

Signaling volume for RCC  25 signals  

Signaling volume for MEC 15 signals 

Signaling volume for VAC 3 signals 

Variance of Gaussian distribution 1.0, 5.0, 10.0 

 
Table 5.2 summarizes the assigned simulation parameters we set by referring to several sources. 
For the resource values, we referred to [60] and, for the latency values to several internal 
information sources. We also counted the number of messages in the signaling volumes given in 
3GPP specifications [04], [48]. We applied 𝑥𝑖𝑛 500kbps and 𝑥𝑜𝑢 100kbps in each vehicle with 
1 sec interval. Other mean values assigned were the network transmission rate 𝑇𝑟 5 MB/s, CPU 
processing rates at VAC: 1 GB/s, at MEC: 5 GB/s and at RCC: 10 GB/s in referring to [60]. 
Randomly generated 15,000 Gaussian distributed synthetic data were prepared, with variances of 
1.0, 5.0 and 10.0 for each of the explanatory variables of 𝑿𝑖. We set a very low probability of 
assignment of p, which is 0.01% as the system more autonomously selects a server. For observing 
a wide-range of performance, up to 10,000 data were used for training data and 2,000 for test data 
for prediction evaluation. For observing the performance in a short range, up to 1,000 training 
data and 200 test data were assigned. The extensive results obtained are described below from 
different aspects 
 

5.3.2  Prediction Performance Evaluation  

 
This part explains the prediction performance evaluation from the proposed machine 

learning. Fig.5.5 displays the prediction accuracy on the three algorithms XGBC, GMBC and 
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SVMC observed for a wide range of the sampling volume from 1,000 to 10,000 in steps of 1,000. 
Each point of the result represents the average prediction accuracy obtained after data 
computation was repeated 100 times for excluding random variations. Hence, the graph shows a 
clear tendency of the result despite the use of synthetically generated data. There are sets of 
parameters for tuning on each algorithm, but we have touched them minimally. The default 
parameter setting is applied on XGBC and SVMC. The default SVMC uses a Radial Basis 
Function (RBF) kernel. GMBC applied the learning rate of 0.9, and the max features and max 
depth of 3 respectively. Over the observation range, a quite stable and constant performance is 
observed in each algorithm. XGBC keeps a better performance compared with the other two 
algorithms; the more training data are applied, the better performance is achieved. Note that the 
scale of y axis ranges from 0.8 to 1.0 in this figure, and the best performance of XGBC was shown 
as 0.963 in 10K samples. 

 
Fig.5.6 shows the result of downsized training data one-tenth the volume used in the previous 
simulation, as sampling numbers are linearly proportional to the learning time. The number of 
training data spans now from 100 to 1,000 in 100 steps and y-axis ranges from 0.5 to 1.0. In the 
same manner, a clear performance tendency is observed while XGBC keeps its superiority over 
the competing algorithms during the sampling span. The prediction performance of XGBC 
marked 0.903 at 400 sets of training data and 0.929 at 1,000 sets of training data. 

 

Fig. 5.5 Prediction Acracy over the Algorithms in Wide Range 
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5.3.3  Prediction Performance Evaluation with Missing Data  

 
Next, we conducted performance evaluation in a scenario associated with missing data in task 
vector 𝑿𝑖. This reflects a situation where missing data handling should be considered because 
obtaining all necessary information on time is unrealistic. Our training data were composed of 
large data sets, and the maximum volume of data has 8 times that of 10,000 tabular size. 
Furthermore, the data collection time in a vehicular application is critical as the vehicles are in 
dynamic motion. A reliable ML scheme has to be prepared to address these missing data scenarios, 
and this is what we observed in this simulation. Fig.5.7 shows the prediction performance in three 
ML algorithms with 10% contamination of NaN (Not a Number), i.e., missing data randomly 
distributed in the task vector 𝑿𝑖. The number of training data spans from 100 to 1,000 in 100 
steps and y-axis ranges from 0.5 to 1.0. The imputation represents the missing data handling 
scheme of a ML algorithm. In XGBC, a default missing data handling scheme is embedded, which 
uses a pre-assigned brunch direction. However, neither GMBC nor SVMC Python library has 
such an embedded default missing data handling scheme. Therefore, we applied KNN (K Nearest 
Neighbor) to impute the missing data. The figure still shows the superiority of XGBC across the 
overall sampling range. Interestingly, SVMC shows the lowest performance in the smaller 
training volumes but it overtakes GBMC around at the data size of 800 in this simulation. 

 

Fig.5.6 Prediction Acracy over the Algorithms in Short Range 
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Fig.5.8 displays prediction performance focusing on XGBC with 10% missing data contained and 
different types of missing data handling schemes applied. AUT imputation represents the default 
setting. SPL imputation takes a simple average of the column and replaces it with the missing 
data. KNN imputation is conducted as mentioned above. In this simulation, the performance of 
XGBC default missing data handling scheme shows better than the other two algorithms across 
all the sampling size. Hence, the embedded default missing data handling scheme is presumed to 
be a reliable one. The best performance of XGBC in 10% missing data was shown as 0.92 in 
1,000 samples. 

 

Fig.5.7 Prediction Acracy over the Algorithms in 10% Missing Data 
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5.3.4  Evaluation on Latency Contribution on Proposed Scheme   

 
This part explains latency contribution through proposed mechanism evaluating the execution 
time versus processing and learning time. Fig.5.9 shows the latency contribution derived from 
isolating the offline learning process from the online execution scheme as depicted in Fig.5.4. We 
observed the performance at the training data volume of 100, 1,000, 5,000 and 10,000. The offline 
process time includes the time for processing the given training volume of 𝑿𝒊, the learning time 
and the time for forming a learnt function 𝑓(𝑿) from the data set. The online process measures 
the executing time in calling the learnt function in the simulation code. All the data are made in a 
Gaussian-distributed synthetical manner. The left axis measures the latency component of the 
offline process shown as blue bars. According to this graph, the processing time clearly increases 
in proportional to the sampling data volume. ML can improve the performance as the sampling 
volume increases, and this reduces latency in the conventional scheme. However, as the proposed 
scheme isolates the learning process from the ML execution process, it only requires the time 
necessary for the part shown in red, which is remarkably constant despite the changing sampling 
volume. Numerically, the averaged execution time is around 13 mil-sec for the overall sampling 
range in the simulation. This result shows a prime advantage of the proposed scheme and an 

 

Fig.5.8 XGBC Accuracy Imputation Variations in 10% Missing Data 
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evidence of its applicability to time critical vehicular applications. 

 

5.3.5  Evaluation on Access Latency on Proposed Scheme   

 
This part evaluates the access latency contribution on the proposed scheme. Finally, Fig.5.10 
shows the averaged latency of the proposed 3-server model and conventional 2-server model 
obtained from synthetically generated 15,000 sets of data with variances applied at 1.0, 5.0 and 
10.0 respectively. The 3-server model consists VAC, MEC and RCC in the system components 
instead, 2-server model consists MEC and RCC only. The outcome clearly indicates that the 3-
server model shows better latency contribution compared to the conventional 2-server model i.e., 
a system without VAC, which contributes to shortening the access time. Numerically, the 
contribution of the 3-server model observed through this simulation was the reduction of latency 
up to 68% over the 2-server model at variance 1.0. 
 
 

 

 
 

 

Fig.5.9 Execution Time v.s. Processing & Learning Time 
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5.4 Summary 

This section indicated our study and a novel cloud resource selection scheme employing ML in 
5G VANETs taking into consideration network dynamism. The study applies the knowledge of 
the latest cellular system, distributed cloud computing, vehicular communication and machine 
learning. The potentiality of ML in communication system is uncountable. We examined three 
types of machine learning algorithms and extensively demonstrated the applicability to vehicular 
systems. Our proposed system separates the time-consuming learning process from the execution 
process, placing a ML agent at network edges.  
 
Substantial sets of simulations were thoroughly conducted to evaluate prediction performance 
over the algorithms, missing data handling performance, latency contribution of the proposed 
scheme, and we observed the performance in the proposed 3-server model. According to the 
simulation results, XGBC ML algorithm constantly demonstrated better prediction performance 
in both the short and long observation ranges. The best performance of XGBC shown was 0.963 
in 10K sampling volume. The simulation results also indicated that XGBC has stable missing data 
handling capability and thus this will ensure the system stability. The best performance of XGBC 
in 10% missing data was 0.92 in 1,000 sampling volume. The simulation also confirmed its 
advantage in latency contribution on the proposed learning agent system. Remarkably, it took 

 

Fig.5.10 Average Access Latency in 3 & 2 Server Model 
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only 13 mil-sec execution time on average irrespective of the sampling data volume on average. 
This implies a large set of training data can be applied because of the learning time isolation in a 
highly mobile vehicular scenario. The latency contribution was reduced by up to 68% on the 
proposed 3-server model with VAC accompanying the model. 
 
It also notable that the implementation of the proposed scheme is remarkably simple. As it can be 
realized by adding a software program which reflects this scheme onto the application layer 
without touching any low-layer mechanisms. If we add such application software onto the 
network edge and vehicles, this scheme will be realized from day-one. Furthermore, the function 
that has learnt the server selection in an agent at the network edge can be used for any vehicles’ 
request as this is not a specific function. The data collection schemes in a cellular system are in 
progress. They can be observed such as in advanced zero touch OAM management mechanisms 
[61], [62]. We have not touched upon any possibility of improving the performance of applied 
ML algorithms such as by changing depth of parameter adjustments. We believe however this is 
a room for performance improvements in this area. Extension of GBMC is also a part of up-to-
date study. Light GBM introduced by Microsoft is an improvement of GBM algorithms [63]. In 
addition, there is still a large potential in the application of ensemble learning onto a large 
dimensional data. There are still plenty of opportunities for further study on these subjects.  
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Chapter 6  

 

6 Conclusion and Discussion 

 
In this thesis, we pursued improved and innovative proposals on vehicular communications in 
conjunction with cellular systems specifically leveraging the power of machine learning (ML). 
Specifically, we are targeting to propose an advanced vehicular clustering scheme and an 
appropriate computational server selection scheme knowing dynamic network resource status 
applying several ML approaches. Throughout this research we held on two important policies, 
one is to stand on a mathematically well-proofed concept and understand it. The second policy is 
to evaluate the mathematically-designed concept considered over computational simulations. 
Finally, we were able to find quite interesting mathematical models and eventually able to 
implement them over several simulation platforms. The result provided us with uncountable 
findings and a significant potentiality of various fields of applications. This section concisely 
summarizes these our research findings and results throughout the activities. 
 

6.1 Conclusion 

Vehicular communications as well as moving MTC communications through a cellular network 
system have been motivated by strong industry needs. In view of the wide scope and countless 
number of applications, it is easy to imagine that there are a large number of expected use cases. 
Chapter 1 provided an overview of typical scenarios, starting with updating the standardization 
status and introducing C-V2X as an improved communication platform for advanced vehicular 
communications. Smart Internet Vehicles (SIV) equipped with various advanced sensors compute 
a huge volume of data while connecting to the cellular system. Such distributed vehicular 
computation will come to be realized for the sake of virtualized and distributed computing 
networks. Various mechanisms of ML support the complex decision making on behalf of human 
beings. 
 
For the realization of improved vehicular communications in conjunction with cellular systems, 
specifically this thesis studied two key research subjects: an advanced vehicular clustering scheme 
and a dynamic server selection scheme for nomadic vehicles. Their details were explained in 
Chapters 3 to 5. 
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Chapter 2 reviewed related fundamentals of vehicular clustering schemes and mainly ML theories. 
For a sophisticated object clustering algorithm, we introduced Affinity Propagation Clustering 
(APC) based on the factor-graph theory. Gazis-Herman-Rothery (GHR) car following model was 
introduces as an additional theory for processing real traffic data for simulation analysis. We 
reviewed the ML variations and algorithms applied in this thesis. Support Vector Machine 
Classification (SVMC), Gradient Boosting Machine Classification (GBMC) and eXtream 
Gradient Boosting Machine Classification (XGBC) were fully analyzed to be applied in our 
proposals. 
 
Chapter 3 introduced our first study, which is applied the Affinity Propagation Classification 
(APC) theory for VANET dynamic clustering. The proposal extended the original concept of APC 
and redesigned it to leverage the power of C-V2X wireless communication platform. Specifically, 
the study introduced two dimensional parameters: the vehicles’ current position and current 
velocity with weighted values α and β over the terms. The idea of this scheme infers further 
extensibility of input terms and dimensions. The study applied the Cellular V2X radio to improve 
the frequency of data exchange, which significantly contributed to minimizing the APC clustering 
interval. The study treated real traffic data with the GHR car following model and successfully 
clustered live traffic in various conditions. The simulation result identified that the number of 
minimum iterations increases when the number of target object increases. In addition, controlling 
the VANET clustering granularity by changing the px-value, i.e., the preference value of the AP, 
was demonstrated. The simulation indicated a successful control of the clustering granularity by 
changing the px-value in our NMDP-APC. 
 
Chapter 4, continuing the work as an extension of the previous work, studied how to control the 
cluster granularity by adjusting the granularity parameter. The study deduced the desirable 
clustering size, applying a ML scheme which employs soft-margin-based SVM-ML with 
Gaussian Radial Basis Kernel (GRBF) Function. We tried to find an ideal VANET granularity 
incorporating minimum sets of decision criteria. Relative to the limited and essential criteria, the 
ML prediction performance achieved satisfactory results with fewer training data. The procedure 
and sequence are enhanced on the existing 3GPP C-V2X specifications. The proposed scheme is 
also designed through a distributed control approach to adapt nomadic vehicles’ mobility. 
Through the simulations, the cluster formation and granularity control were clearly observed 
through different values of the px-parameter. For improving the ML prediction performance, two 
key parameters C and 𝛾 were adjusted to tune the prediction performance. We also observed the 
performance with lesser access latency in a stable PLMN system via the simulation, which 
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explains that the clustering capability is contributing to providing aggregation effects and thus it 
provides a stable system even when a large number of objects are connecting to a PLMN. 
 
Chapter 5 studied and proposed a novel cloud resource selection scheme employing ML in 5G 
VANETs taking into consideration network dynamism. The proposed system separates the time-
consuming learning process from the execution process, placing a ML agent on the network edge. 
Substantial sets of simulations were thoroughly conducted to evaluate prediction performance 
over the algorithms, missing data handling performance, latency contribution of the proposed 
scheme, and we observed the performance in the proposed 3-server model. According to the 
simulation results, XGBC ML algorithm constantly demonstrated better prediction performance 
in both the short and long observation ranges. The simulation results also indicated that XGBC 
has a stable missing data handling capability and thus this will ensure the performance stability. 
The simulation also confirmed its advantage in latency contribution on the proposed learning 
agent system. This implies the applicability of a large set of training data taking advantage of 
learning time isolation in a highly mobile vehicular scenario. The latency contribution was 
reduced by up to 68% on the proposed 3-server model with VAC accompanying the model. It is 
also notable that the implementation of the proposed scheme is remarkably simple. As it can be 
realized by adding a software program by which to reflect this scheme onto the application layer 
without touching any low-layer mechanisms. Furthermore, the function that has learnt the server 
selection in an agent on the network edge can be used for any vehicles’ request as this is not a 
specific function. Those studies on data collection schemes in a cellular system are in progress 
[61], [62]. Eventually in Chapter 6, we concluded the overall activity of this thesis. 
 

6.2 Discussion 

Studies of vehicular communications operating in conjunction with a cellular network are 
essential and highly demanded subjects reflecting the industry needs. It has been an honor that 
we are able to engage in such valuable and challenging work though this thesis. Specifically, 
employment of ML onto the study has been quite challenging, but at the same time very intriguing 
throughout the activities. Applications of ML to the communication field will continue to increase 
in number and variety. We have identified a quite large number of papers and contributions 
through this study. This field is surprisingly expanding and increasing with related researches 
underway in various application fields in the cellular communications. One of such initiatives can 
be seen in RISING (Cross-Field Research Association of Super-Intelligent Networking) project 
in IEICE. Activity of ITU is also making progress in a cross-country competitive project called 
5G AI Challenge, which is targeted at applying ML to 5GS in quite widely spreading fields. While 
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it has been challenging to compete with global experts of ML and AI (Artificial Interagency), this 
field is gaining momentum, opening up wider opportunities for many more players to come. 
 
Although the studies of this thesis were originally targeted at vehicular applications, it has a 
potential applicability to any machine type moving objects expected to increase reflecting the 
growing demand for their applications in 5G and the beyond. Our future work can include studies 
focusing on enhancing the proposed scheme by applying more complicated scenarios and/or using 
different types of ML algorithms. In addition, studies on data collection schemes in a cellular 
system are also in progress, such as for advanced zero touch OAM management mechanisms. As 
research on the application of intelligence to cellular systems is also ongoing, we should keep a 
close eye on these activities as well. 
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