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With the rapid popularization of Youtube, Amazon, Facebook and other online plat-
forms, recommendation system has become an essential service in daily life. Ac-
curate recommendation system can bring huge revenue for enterprises. Therefore,
how to make reasonable use of historical information to provide accurate recom-
mendation results has attracted more and more attention. The traditional collabo-
rative filtering recommendation systems which mainly based on user-item history
interactions often fall in with the data sparsity problem. For the purpose of overcom-
ing this trouble, social recommendation methods have become one of the successful
methods. Although the exited work has achieved success, there are still some lim-
itations. For example, most existed works directly utilized the features of friends
and ignore that the invalid feature will bring noise the model. This is due to the
fact that most existed works supposed that social neighbors share similar partiality.
In fact, users’ hobbies are diverse, and not all of their social neighbors’ hobbies will
have an impact on users. Another problem of the influence in social effect is that
the influence of social relations is not universally applicable to any context. We refer
to the user’s choice of different items as a context. When user faced with different
items, the social influence changes dynamically. Besides, few works focused on the
sparsity problem of social data. As real-world social networks are usually sparse,
the observed relationships in social networks were quite limited. The sparse social
data will degrade the performance of the existing social-based algorithms. To this
end, a novel deep learning-based framework was proposed to obtain useful user
representations. In particular, the contributions of the proposed approach could be
concluded as the followings: First, we use network embedding technology to obtain
more effective embeddings of users to promote the convergence speed of the pro-
posed model and improve the effectiveness of the recommendation system. Besides,
through the factor-level attention model, we can learn specific preference feature
of users to reduce the input noise. Also, we leverage attention neural networks to
model the social dynamic influences. Finally, we propose to use heterogeneous infor-
mation network to find users with similar preferences, and use these social relations
to enrich the users’ features. A two-layer attention structure model was proposed
to strengthen the interpretability for why such prediction results were provided. Fi-
nally, for the purpose of verifying the effectiveness of the proposed approach, a large
number of experiments were carried out on reliable data sets.
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Chapter 1

Introduction

1.1 Recommendation System

In general, a recommendation system is an algorithm that recommend rel-
evant items to users. Depending on the online platform, the item can be a
music to listen, a news to read, or a friend to follow. With the rapid popu-
larization of Youtube, Amazon, Facebook and other online platforms, recom-
mendation system has become an essential service in daily life. For example,
E-commerce platforms recommend items to the target users in line with their
preferences through the recommendation system. An accurate recommen-
dation system is important to both the enterprise and the user. An efficient
recommendation system can generate huge revenue for enterprises and help
them stand out from their competitors. Users can also save considerable time
to catch the information that they are satisfied with, and increase their trust
in that online platform. Therefore, how to boost the effectiveness of the rec-
ommendation system has become the focus referring to the industry.

Until now, the most generally practiced algorithm in recommendation
domain is the model-based Collaborative Filtering [1], also known as Ma-
trix Factorization(MF) [2]. MF generates new recommendations depended
on "user-item rating matrix" [3] which store the rating history of the users
given to the items. The core concept of MF lied in decomposing the high-
dimensional "user-item rating matrix" into different smaller low-dimensional
matrices: one is called user-factor matrix and another is factor-item matrix.
The row vectors in the user-feature matrix can represent users’ preference
feature, while the row vectors in the item-feature matrix can denote the at-
tributes of items. In this way, MF can learn the missing rating in the "user-
item rating matrix" through computing the dot product of these two matrices.

Although MF is successfully used in recommendation system, the data
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sparsity problem seriously affects its performance. In some large online plat-
forms like Amazon, the number of users are in millions the variety of items
are tens of thousands. In this case, the "user-item rating matrix" is extremely
sparse, which means that there are very few elements in the matrix whose
value is not 0. This will degrade the performance of recommendation sys-
tem. One extreme problem with data sparsity is the cold start problem.[4] It
refers to a situation where a new user or item has just entered the system.
Collaborative filtering are not able to generate useful recommendations for
that there is no interaction records for that user or item. Therefore, to miti-
gate the data sparsity problem, many studies have tried to supplement the
data of users and items through expoliting side informations such as social
networks, reviews.

1.2 Social Recommendation System

The recommendation system based on users’ social data provided an impor-
tant direction for solving the data sparsity problem. Nielsen, a well-known
third-party research agency in the United States, surveyed the causes that
affect users to believe in the results provided by the system. The outcomes
show that ninety percent of the users trust their friends’ suggestions and sev-
enty percent trust other online users’ comments on advertised products. It
can be seen from the survey that friends’ recommendations are certainly crit-
ical to escalation the users’ confidence to the results provided by the system.
The popularity of web-based social media has made it simpler for users to
express their preferences and develop social relations online. These social
relation information can effectively enrich the user’s personal characteristics
and provide important assistant for the recommendation system. The reason
why social recommendation is so important in many websites is due to the
following advantages: Social associates’ suggestion can raise the expectation
of the recommendation system; Besides, utilizing social relations can manage
the "cold start" issue. When a new client logs into the website via Facebook
account, we can get the list of friends of the user in the online media site, and
then recommend to the user the items that his social associates appreciated
on that online website. Thus, we can provide users with tremendous results
when there are no user behavior records, which partly solves the problem of
cold start of the recommendation system.
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Social scientists have found that the connected users in social network
will share similar preference.[5] Users’ preferences can spread through the
social relations and influence other users. Many studies have successfully
exploited users’ social information to recommendation systems to minigate
the data sparse issue. In the previous passage, we introduced the collabo-
rative filtering (CF) algorithm commonly employed in the recommendation
system. Unlike the CF model, social recommendation system has two inputs:
the user’s rating information and the user’s social data. Most of the existing
social recommendation systems choose CF model as the basic model to de-
velop their own framework, and integrate the user’s social information into
the CF model. Provided with the social relation data and a data set of user
behavior. The social network defines the relationship between users, while
the user behavior data set defines the historical behavior of users. The sim-
plest algorithm is to recommend the user a collection of items that friends
like. At present, social recommendation system has attracted wide attention
of researchers, and many algorithms have been proposed and achieved great
success.

1.3 Prior Works and Limitations

In the early attempts, most social recommendation systems tried to integrate
social information into matrix factorization. Their common theoretical basis
is based on the social homogeneity attribute: the preferences of users tend
to be related to or influenced by their friends. According to this theory, MF-
based social recommendation methods could be divided into the follwing
categories: co-factor decomposition methods [6, 7], integration methods [8,
9] and regularization methods [10]. The co-factor decomposition method as-
sumes that there is a rating latent space and a social latent space, in which
the users’ preference vectors are similar through the decomposition from rat-
ing matrix and social matrix. One of the representative method in co-factor
decomposition methods is SoRec [1], which can learn users’ preference vec-
tor from the rating matrix and social matrix at the same time. The essen-
tial theory of the integration methods is that the user should share similar
ratings with their friends. Then the missing ratings are learned through a
linear function where the variable is the rating matrix and the friend list of
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the users. The assumption of regularization methods is that the user’s pref-
erences need to be as close as his or her social relations’ preference. Regu-
larization means the strategy that forcing user’s latent representation vector
to be approximation to the preference of his/her social associates. SocialMF
[11] as one of the representative method of regularization methods forces the
user’s preference vector to approximate to the average preference vector of
his or her social associates.

However, part of researches have found that the strength of social rela-
tions also influence the prediction accuracy of the social recommendation
system. Users with strong associations are more likely to be real-life friends.
They are in a tendency to share similar interest with the target user com-
pared with the weak associations. Therefore, when exploit social relations
to the recommendation system, all social relations cannot be treated equally.
Otherwise, some weak social relations may become the social noise to rec-
ommendation system which will degrade the recommendation performance.
Many studies have attempted the evaluate this particular influence value of
different social relations. For example, [32] measured the social influence
value according to the similarity of user behaviors. SPF[33] proposed a social
Poisson Factorization Probabilistic model that estimate the "influence" value
in regard to different social relations and learn the missing rating through
different "influence" value factors.

Most of the above methods directly use the adjacency matrix, and com-
bine the adjacency matrix decomposition with the rating matrix decomposi-
tion to learn the user’s preference vector. The development of network em-
bedding brings new possibilities to the social recommendation system. By
combining social recommendation system with network embedding technol-
ogy, we can learn more information from social network to improve the accu-
racy of recommendation system. For example, while extending MF, CUNE[9]
utilized network embedding to learn the top-k semantic friends of users, and
makes recommendations to users with these reliable implicit social relations.
IF-BPR[15] utilized network embedding to learn from heterogeneous infor-
mation networks and identified users’ reliable social associates to reinforce
the recommendation system. Although the above methods can mitigate the
data sparsity dilemma, the social recommendation system still faces some
challenges. For example, not all social information can be directly applied
to a recommendation system. Poor quality links can make social networks
noisy. The indiscriminate adoption of these social relationships will affect
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the performance of the recommendation system. Besides, users’ relations are
also faced with the problem of data sparsity. These problems have not been
well addressed.

1.4 Objectives

Most existing studies failed to capture the complex influences of social rela-
tions on user preferences and detect the noises in some social relations. In
this research, we develop an advanced recommendation framework that in-
tegrate the user-item interactions and user-user interactions into the feature
learning process. To obtain a better representation of the user feature, we
designed several deep learning-based modules to generate meaningful em-
beddings from learning process. In particular, we introduced a social-aware
representation learning framework which exploit attention mechanism, and
propose the following methods to solve the above problems. As the neural
network embedding method has shown its powerful ability in numerous rec-
ommendation tasks as a result of its capability to distill the high-level seman-
tic characters from unprocessed input. We came up with utilizing network
embedding method to distill the latent semantic informations hidden in the
users’ social network structure. Through network embedding, a high-level
representation could be achieved depend on the users’ social connections.
This approach could be viewed as a pre-train strategy. Then, we put the
obtained user embeddings into the downstream framework to enhance the
representation learning of the user. To solve the problem that users are only
interested in certain aspects of social friends, we designed a factor-level at-
tention model, which refines users’ characteristics into different factors, and
improves the accuracy of the model by learning users’ preferences for specific
factors. Besides, although much work has been done to explore the influence
of different social neighbors on user preferences, unlike the above summa-
rized regularization methods and other methods based on user information
to mine the strong and weak relationship between users, we use the self-
learning ability of neural network to learn the influence of different users.
Especially, as attention network could assign different weights to different
factors to learn more informative features, we designed a module which de-
pendent on attention mechanism to learn the different contributions of differ-
ent social neighbors to user preferences. Another important feature is that the
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attention weight can vary from context to context. Based on this feature, the
influence value between users could be obtained adaptively. When giving a
different item, the attention neural network could help us learn a different
influence value for different social neighbors. To tackle the issue of social
data sparsity, heterogeneous information network (HIN) is proposed to find
users with similar preferences, and these social relationships are used to en-
rich the social information of users. To enhance the interpretability of the
recommended model, we also analyze and demonstrate how to improve the
interpretability of the system. To validate the effectiveness of our proposed
methods, extensive experiments were carried out on several public datasets.
We also carried out several experiments to verify the importance of several
modules for learning better user representations.

1.5 Outline

In this section, we gave an introduction of the structure in this paper. Chapter
1 gave a brief introduction about this work. Chapter 2 summarized the re-
lated works about recommendation system. Chapter 3 introduced some tech-
nical background about this paper. Chapter 4 presented the general prob-
lems and research methods of this paper. Chapter 5 introduced an adaptive
attentive model for Social Recommendation. Chapter 5 introduced a recom-
mendation system model based onHeterogeneous information Networks. Fi-
nally, Chapter 5 made a summary about this work and gave a conclusion for
the future work.
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Chapter 2

Existing Approaches in
Recommendation System

2.1 Social Recommendation

So far, data sparsity and cold start issues remain important factors that have
plagued the performance of collaborative filtering systems, which have con-
tributed to the emergence of social recommendation studies. Based on the
traditional recommendation system, social recommendations [10] are algo-
rithms that incorporate the user’s social information (such as friend relation-
ship and trust relationship) into the recommendation methods as an impor-
tant influencing factor to tackle the data sparsity issue. This research has
practical implications. In the real world, people’s lives are often strongly in-
fluenced by their friends, such as choosing new products. This theory has
also accelerated the study of social recommendations. Many studies [3, 11–
22] have tried to exploit social signals to reinforce the recommendation sys-
tem and have achieved success. All of these studies are dependent on the
same hypothesis that users tilt towards to share similar interests for their
social relationships. These studies can be divided into three categories[10]:
co-factorization [11, 12, 18, 22], ensemble [17] and regularization [23] meth-
ods. In particular, [18] proposed a probabilistic factorization model called
SoRec that co-factorize the "user-item rating matrix" and "user-user trust ma-
trix". In SoRec, Ma assumed that the users’ latent factor in social space is
the same with rating space. Therefore, the users’ rating matrix and trust ma-
trix can be decomposed simultaneously through the factor decomposition
model to learn the user’s latent features in the latent space. Different from
SoRec, [11] proposed another factorization-based model called SocialMF. So-
cialMF argues that a user’s latent feature is depended on the user’s social
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neighbors. Therefore, the weighted average sum of the user’s friends’ latent
vector should be as similar as possible to the user’s latent vector. Distinct
from co-factorization methods, ensemble methods argued that there are two
factors that influence a user’s decision on the given item, one is the user’s
inherent interest factor, the other is the influence factor given by their social
neighbors. According to this reason, [17] proposed a probabilistic framework
called RSTE that integrate the preference of users and their trusted friends
through an assemble parameter. The assemble parameter controlled how
much information the model should learn from these two factors. If the as-
semble parameter equals to 1, the method could be viewed as Matrix Factor-
ization. If the assemble parameter equals to 0, RSTE could be transformed to
SocialMF. However, the experiment results have proved that assemble these
two factors will perform better than only utilize either the user’s inherent in-
terest factor or the influence factor given by their social neighbors. The stud-
ies mentioned above are relied on a prevalent hypothesis that users have sim-
ilar interest to their social neighbors. However, this assumption may not con-
sistently appropriate to any social recommendation scenarios. Some friends
may have completely different interest with users. Therefore, [23] proposed a
regularization methods called SR. It could constrain the model based factor-
ization methods through a parameter called social regularization term. This
social regularization term could be viewed as a similarity function that imply
how much a user’s preference is related with his social neighbors.

The above works are based on explicit feedback, that is, the task of rec-
ommendation system concentrates on forecasting the missing rating between
the user and the item. Nevertheless, many websites cannot provide specific
rating. Therefore, some recommendation algorithms utilized BPR to improve
the rating-based model, so that the recommendation task can be applied to
the implicit rating. [20] proposed a ranking-based model called SBPR. The
basic idea of SBPR is that user tilt towards to give a higher rank to the item
that the user’s friends has bought or clicked. [24] proposed Expectation-
Maximization algorithm model called TBPR which extend the SBPR model.
In TBPR, the model first utilized neighborhood overlap algorithm to identify
the strong and weak connections in the users’ social network. Then, it uti-
lized the BPR idea to strengthen the objective functions. Other work has also
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attempted to examine the impact of social network connections on recom-
mendation systems. For example, [25] proposed a model called SocialMF-
TM. SocialMF-TM first calculated a trust score between users. Then, it uti-
lized this trust score to extend the SocialMF model. [26] attempted to as-
sign different weight to different users in a different way. These weights
are obtained by calculating the user’s similarity to other users. Similarity
is measured by the degree of overlap of the bought or clicked items of the
user, or the degree of overlap of the user’s social interactions. [27] proposed
a network embedding(NE)-based model called CUNE-BPR. The model first
calculate the similarities between users through network embedding. Then,
CUNE-BPR extend SBPR by assigning different regularization terms to dif-
ferent friends. However, while all of these works mentioned above have been
successful, they have not taken into account the fact that the regularization
term will change as the user facing with different given items. The proposed
approach focused on solving this limitation.

2.2 Deep Learning-based Recommendation System

Due to the rapid development of deep learning technology, research on deep
learning-based personalized recommendation technology has attracted the
attention of many scholars. Some recent research has shown that in personal-
ized recommendation, applying neural network has certain advantages. For
example, [28] has shown that the traditional collaborative filtering method
unable to manage huge data, and utilize the Restricted Boltzmann Machines(RBM’s)
in the recommended system. This paper also validate that it could realize a
better prediction result than the previous traditional methods(e.g., Matrix
Factorization). This is the first attempt to apply neural network to recom-
mendation system. Besides, compared with the traditional recommendation
technology, the application of deep learning technology can better under-
stand users’ preferences, items’ characteristics and users’ and items’ linear
and nonlinear interactions. It is of great significance to integrate deep learn-
ing into personalized recommendation system to optimizing the deficiencies
of the existing works and improve prediction quality of recommendation
system. Existing methods are mainly including two categories, which are
deep learning-based collaborative filtering and deep hybrid models for rec-
ommendation. The following section will give a summary of the relevant
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progress of the existing works in deep leaning-based recommendation sys-
tem.

2.2.1 Deep Learning-based Collaborative Filtering

The development of deep learning technology provides a new research di-
rection for the traditional collaborative filtering technology to alleviate the
problems of data scale and scalability. Many studies [29–38] has tried to in-
tegrate MLP, AutoEncoder, CNN, RNN, Attention Mechanism, RBM, and
other deep learning methods into the collaborative filtering model. For ex-
ample, Neural Collaborative Filtering(NCF) [39] is the representative work
that combine the matrix factorization with MLP to form a generic and ex-
tensible model. NCF overcame the problem that MF can only learn the lin-
ear interaction between users and items, and utilized MLP to enhance the
non-linear interaction learning between users and items to improve the rec-
ommendation quality. In collaborative filtering recommendation based on
Auto-Encoder, [40] is the representative work. It proposed a collaborative
noise reduction auto-encoder(CDAE), where the input is corrupted by Gaus-
sian noise and reconstruct the input by an auto-encoder. Taking the advan-
tage of CNN, many studies utilized CNN to learn feature representation of
unstructured data. For example, Wang et al. [41] proposed to adopt CNN to
learn the latent features of image and map them to the same space to calculate
the similarity and recommend them to target users who might be interested
in the image. It has obtained the good performance. [42] designed ConMF by
combining text representation which learned via CNN with MF to enhance
the recommendation performance. Since RNN is suitable for processing se-
quential data, it is appropriate for extracting useful features from user behav-
iors with temporal characteristics. In the real world, users’ interest change
over time. For example, a person’s interests after working may be different
from those of his school days. [43] designed a session-based recommenda-
tion system based on GRU to predict what item the user will interact next in a
time session. [44] proposed a LSTM-based model and compared it with stan-
dard nearest neighbor method and matrix factorization method. Experiment
results has shown that LSTM is much better than other methods in terms
of short-term prediction. The attention mechanism can be considered as a
feature extractor, which can effectively filter out the non-informational fea-
tures in the input data, which are generally considered as noise data and will
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have side effects on the model. The attention mechanism is an intuitive but
very effective technique that can be integrated into original models to deal
with the side effects of noise data. For example, [45] integrated the attention
mechanism into the LSTM model that enables the neural network to simul-
taneously process long time and noisy input data, which helps the model
to remember more effective information. The success of attention mecha-
nism in neural network also promotes the research of recommendation sys-
tem based on deep learning. The advantage of attention mechanism lies in
that it can help filter out unrelated information and has good attentive ability.
Therefore, there are many attempts to apply attention network to recommen-
dation system, among which [46] is the most representative one. In recent
two years, generative Adversarial Networks (GANs) [47] is considered as
the most successful technology in the field of deep learning, and has made
important progress in image recognition [48] and other fields. GAN is differ-
ent from other neural network structures, it is composed of two game neu-
ral networks, generator and discriminator, which played a minimax game.
The generator is mainly responsible for learning the distribution of real sam-
ples and generating fake samples to spoof the discriminator. At the same
time, the discriminator tries to distinguish whether the input sample is real
or not. This process will continue until the discriminator was unable to dis-
tinguish between the generated sample and the real sample. Now there have
been a number of works that applied GAN in the recommendation system
and made progress. Some works alleviates the problem of data sparsity by
generating user interaction information through GAN. [49] is the study that
attempted to apply the GAN to the domain of information retrieval. It pro-
posed a framework based on adversial learning, named IRGAN, to solve the
problem of information retrieval, and this model could also be applied to
the recommendation field. The main method of IRGAN is that, given a user,
let generator generate items that the user may purchase, and let discrimina-
tor distinguish the probability distribution of the generated item from the
probability distribution of the user’s actual purchase of products, until the
generator can finally capture the true probability distribution of the user’s
preference for items. However, the generator in IRGAN each time will gen-
erate a separate index value, which may be exactly the same as the real data,
thus affecting the training effect. Therefore, different from IRGAN, [50] pro-
posed a new gan-based framework called CFGAN. In CFGAN, the generator
generated the user’s possible purchase vector each time instead of a single
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item index, and the discriminator will distinguish the generated purchase
vector from the real purchase vector.

2.2.2 Deep Hybrid Models for Recommendation

Another advantage of using a deep neural network to build a recommenda-
tion system is that the neural network structure is highly extensible. Different
neural network modules can be integrated into the same system, which mak-
ing the learning ability of the model more powerful. Many studies have at-
tempted to integrate different neural network structures into a single model
to enhance the capability of the recommendation system. For example,[6]
proposed a model (CKE) that integrates CNN and auto-encoder to enhance
the representation learning. CKE can effectively utilize different input in-
formation sources. For instance, CNN-based embedding method is used to
learn the features form visual source, while auto-encoder is used to learn the
features contained in text information. Such a hybrid model is more expres-
sive than a model with a single structure.

2.2.3 Personalized Recommendation Based on Graph Neural
Network

Graph Neural Networks(GNN) [51] is a new type of deep neural networks
based on deep learning and graph analysis. It is a new expansion form
of deep learning theory and technology in the graph field. Graph neural
network allows non-Euclidean structure data directly be used as the input
of deep neural network, which has good representation ability and inter-
pretibility. In recent years, graph neural network has become a hot spot in
deep learning research. Graph Learning Based Recommendation System is
a new recommendation system based on Graph Learning, which uses the
ability of node representation learning in network embedding technology. In
the past few years, there have seen extensive research on Graph Learning
Based Recommendation System. Most of the data in recommendation sys-
tem has a graphical structure. In practice, learning the relationship between
such graph type data has important research significance for the recommen-
dation system. Learning the interaction between the user and the item is the
main purpose in a recommendation system. It is found that users and items
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can naturally form a user-item bipartite graph based on their interaction in-
formation. Each edge between the user and the item represents that the user
has bought or clicked the item. According to the structure of the bipartite
graph above, Li and Chen [52] proposed a method based on link prediction,
transforming the recommended task into link prediction, and predicting the
possible unknown links based on the known links in the user-item bipartite
graph, and thus find the unknown items that users may be interested in.
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Chapter 3

Technical Background

3.1 Model-based Recommendation System

The generally employed method in recommendation systems is called Col-
laborative filtering(CF) [53]. The core idea is utilizing the user-item interac-
tion matrix to find similarities between users or items and make recommen-
dation based on these similarities. At present, there existed mainly two types
of CF-based approaches in Recommendation System(RS): memory-based rec-
ommendation system [54] and model-based recommendation system [55]. In
this research, we focused on the model-based recommendation system, es-
pecially the proposed methods were built on the basis of the Matrix Factor-
ization(MF), which is commonly utilized in memory-based recommendation
system. Figure 3.1 give an example of the user-item interaction matrix used
in our paper, which denoted as R.

FIGURE 3.1: An example of the user-item interaction matrix.
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As shown in Figure 3.1, the user’s past behaviors were stored by this
sparse matrix. Each columns represents a user’s preference on different items.
The value here can be a score. Also, it can be 1 or 0, which representing that
whether the user has clicked or bought that product. What Matrix Factoriza-
tion(MF) do was tried to forecast undiscovered ratings in this rating matrix.
The core idea of MF assumes that there existed two low-dimensional feature
matrix U and I in a latent space that represent the users’ preferences and the
items’ characteristics, respectively. These two small matrices could be ob-
tained through decomposing the matrix mentioned above. This method is
also known as the Latent Factor Model (LFM) [56]. As shown in Figure 3.2,
the main idea is to link the user’s perference to the target item’s attributes
through the underlying factors.

FIGURE 3.2: An example of matrix factorization: decompose
the rating matrix R into two smaller matrices P and Q

Let a k dimension vector vu and vi represent the user’s and the item’s
feature, respectively. Each latent factor in this feature can be viewed as an
aspect that describes an item or a user’s interest. MF assumes that the user’s
predilection on the item was the sum of preferences for various aspects of an
item. It can be calculated using the dot product of the underlying factors as
following equation:

ru,i =
k

Â
f=1

vu, f ⇤ vi, f (3.1)
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To find such matrix U and I, the model first initializes two matrices and
then calculates the difference between the result of dot product between U
and I and the target value in user-item matrix. By this way, the recommenda-
tion problem could be viewed as an optimization problem with loss function
and constraints.

3.1.1 Learning Model of Matrix factorization

FIGURE 3.3: An example of machine learning process of MF.

Figure 3.3 showed an example of the learning process of a recommen-
dation system. The model here can be any models used in recommendation
system, for example, the matrix factorization model. As the recommendation
task is reformulated as an optimization problem, we can use least squares er-
ror as the optimization method to train this recommendation system, which
defines as:

argminL(q) = Â(rij �brij)
2 = Â(rij �

k

Â
f=1

vu, f ⇤ vi, f )
2 (3.2)

Usually, Stochastic Gradient Descent(SGD) [57] is commonly adopted al-
gorithm to optimize the above function to solve such constrained optimiza-
tion problem to help us quickly reach the optimal value.

3.1.2 Matrix Factorization using Bayesian Personalized Rank-
ing

In practice, there is usually the case that a user clicks to view an item, but
does not end up with a score, which is called explicit feedback. In fact, if
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the user clicks to view the item, it can be assumed that the user interested
in some aspect of the item. This is called implicit feedback. In fact, the ex-
plicit feedback data is quite rare in recommendation system with the implicit
feedback data accounting for most of it. The least squares error mentioned
above is not suitable for recommendation scenarios based on implicit feed-
back. Herein, we introduce an optimization criterion called Bayesian Per-
sonalized Ranking(BPR) [58] which usually used in implicit feedback-based
recommendation systems.

FIGURE 3.4: An example of user implicit feedback.

The purpose of BPR lies in providing users with a ranked list of items.
The method based on explicit feedback predicts a certain score for an item
to reflect the user’s preference for that item. As shown in Figure 3.4, all ob-
served interactions between users and items are marked as positive classes,
and the unobserved interactions are marked as negative classes in implicit
feedback-based methods. In BPR method, supposing that the user u clicked
item i when he was providing with the items i and j simultaneously, we will
get a triple pair denoted as < u, i, j >. It pointed out that user u goes for
item i more than item j. According to the above assumption, BPR criterion is
denoted as:

Â
(u,i,j)eDs

lns(x̂uij)� lQ||Q||2 (3.3)

wherein, (u, i, j)eDs denotes that user u prefer item i more than item j,
lQ are the regularization parameters used in the model. x̂uij could be deter-
mined as follows:

x̂uij = x̂ui � x̂uj (3.4)

x̂ui can be predicted by matrix factorization. Optimizing BPR criterion is
similar to other optimizing process in Machine Learning. Stochastic Gradi-
ent Descent(SGD) willed be employed during optimizing process to find the
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optimal hyper-parameters. The training process is shown in the following
algorithm:

Algorithm 1 BPR optimization.
Input: initialize Q

1: procedure LearnBPR(Ds,Q)
2: repeat
3: draw (u,i,j) from Ds

4: Q Q + a( e�x̂u,i,j

1+�x̂u,i,j
+ lQ ⇤Q)

5: until convergence
6: return Q̂;
7: end procedure

In our research, we will also utilize BPR method to optimize the proposed
model.

3.2 Deep Neural Network

Deep Learning [59] is a subset in Machine Learning domain, that mimicking
the way that our human brain works. To act like a human’s brain, deep learn-
ing algorithms develop a multi-layered structure called neural networks. First,
deep learning algorithms create a set of "neurons" and connect them so that
they can send messages to each other. These neurons are then asked to solve
a real problem, and it will try to solve the problem over and over again. Each
time strengthening the connections of the neurons that lead to success and
reducing those that lead to failure. By doing so, the neural network learns to
solve this problem. With neural networks, we can solve many problems such
as classification or regression. In fact, the recommendation system could be
viewed as a binary classification task [60] of which main task is trying to pre-
dict that if a user would like or dislike an item. Therefore, we can use deep
neural network to solve this binary classification problem.

3.2.1 A Multi-Layer Perceptron

As shown in Figure 3.5, this is a typical feedforward neural network archi-
tecture called a multi-layer perceptron consists of three layers. It is a network
structure composed of many neurons connected together. Neuron is the ba-
sic computation unit in a neural network, which receives input datas from
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FIGURE 3.5: The network structure of a full-connected feedfor-
ward neural network

other nodes or external sources and apply a function on these data. Each
neuron has a weight w and a bias b. Then, the output of a single neuron is
calculated by f (w1 ⇤ x1 + w2 ⇤ x2 + b). As shown Figure 3.6, an activation
function f is occasionally exploited to weight the sum of its input. Without
activation functions, no matter how many layers of neural network are su-
perimposed, only the linear relations between input and output data can be
learned. Therefore, the activation function plays an important role in learn-
ing the nonlinear relations between input and output data. As most data
in the real world is nonlinear, it is important for neural network to improve
the nonlinear representations learning ability. [61] In practice, the commonly
used activation functions are sigmoid and ReLU functions.

FIGURE 3.6: A single neuron

Neurons are lined up to form a layer. A typical neural network can be
composed of multiple layers. For example, in Figure 3.7, this simple multi-
layer perceptron has three layers. The first layer in the feedforward neural
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network is called an input layer, which took the response to pass the train
data x to the hidden layer, and there is no computation in this layer. It should
be noticed that the size of neurons in the input layer should have the same
size with the dimension of the input data x.[62] The output layer will out-
put a vector y that represents the result of learning through the whole neural
network. For example, in the classification model, each neuron in the output
layer represents a different class. The value of each output neuron gives the
probability of whether the input data sx belongs to a possible class. To get
this result, neural networks need to perform some mathematical operations,
which performed by the hidden layers between input and output layer. In
this example, there is only one hidden layer. In general, deep learning means
that there are many hidden layers in the neural network. Given a set of fea-
tures x = (x1, x2, x3.....) and the target y, the neural network will the linear
and nonlinear relationship between x and y.

FIGURE 3.7: An example of a three-layer perceptron

3.2.2 Learning Process of a Neural Network

The training of the model mainly consists of three steps: forward learning,
calculating the loss, and backward propagation. In the first step of training,
we put the input data into the model. Then, in each layer, the input data will
be multiplied with the weights and added with a bias. Finally, we can get the
output of the model. Before the training of neural networks, loss functions
need to be defined. In a deep learning task, defining the loss function is an
important step in ensuring that the model works as expected. Neural net-
works can perform a variety of tasks, such as predicting continuous values
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or classifying discrete categories. Different loss functions are defined for spe-
cific tasks. To compute the loss function, we must traverse every data x in the
dataset, and predict y for each sample, and then calculate loss error by the dif-
ference between the predicted value and the real value. For example, in our
recommendation task, we can use Equation 3.2 as the loss function. At the
beginning of training the neural network, the weights should be randomly
initialized. The training process is equivalent to minimizing the loss function
by adjusting the weight. There are many algorithms for function optimiza-
tion. The simplest way to optimize the loss function is utilizing stochastic
gradient descent algorithm (SGD). Generally, the gradient is the maximum
directional derivative of the function at a certain point, and the function has
the maximum rate of change along the gradient. Since the function has the
maximum rate of change along the direction of gradient at a certain point
in the variable space, it is natural to reduce the value of the function along
the direction of negative gradient when optimizing the objective function, so
as to achieve our optimization goal. After defining the objective function,
we take the derivative of the objective function and update the parameters
with gradient descent. However, the problem of stochastic gradient descent
is that, from the perspective of the number of iterations, there are so many
iterations, and the search process in the solution space seems to be blind, re-
sulting in too high computational complexity of the update method. Another
problem with SGD is that there is so much noise that SGD does not always
go in the direction of overall optimization for each iteration. To tackle this
issue, we can use mini-batch gradient descent algorithm. To be specific, at
each step of the algorithm, a small batch (Mini-batch) samples are randomly
selected from the training set of the total sample for calculation. The batch
size used to estimate the gradient is another hyper-parameter that needs to
be tuned. As the powerful representation ability, neural networks can ap-
proximate any functions as long as there are enough hidden neuron layers.
However, the exact number of hidden layers is impossible to calculate and
can only be adjusted in practice by constant experimentation.
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3.3 The Basic Framework of Recommendation Sys-
tem based on Deep Learning

Recent studies have show that deep learning is useful in information retrieval
and personalized recommendation. Compared with the traditional recom-
mendation methods, utilizing deep learning can better generate the feature
of the user’s interests and the item’s characteristics. In addition, deep learn-
ing can also promote the learning capability of the non-linear relations be-
tween input features in the recommendation system. Therefore, deep learn-
ing has attracted much concentration in both scientific and industrial areas.
The basic framework of the recommendation system based on deep learning
is displayed in Figure 3.8.

FIGURE 3.8: The basic framework of RS based on DL

As shown in Figure 3.8, the whole framework of deep learning-based rec-
ommendation system is divided into input layer and deep learning model
layer and the final prediction layer. The input layer mainly includes user be-
havior data and other auxiliary data. Among them, user behavior data can be
explicit feedback data, for example, ratings, comments, etc., or implicit feed-
back data, for example, clicks, favorites, browsing, etc. Other auxiliary data
mainly include users’ social data, contextual data and so on. On the basis of
acquiring the input data from input layer, the deep learning model exploits
appropriate manipulation to process the data according to the characteristics
of different deep learning technologies and in combination with the actual
application scenarios, so as to retrieve the relevant inherent factors of users
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and items. The final output layer will generate the final recommendation list
of items through similarity calculation or inner product or other operation
based on the inherent features of users and items output through the hidden
layer.

3.4 Embedding and Representation Learning

Theorem 1 Representation learning: To improve the accuracy of machine learning
systems, we need to translate input information into valid features, or more gen-
erally, representations. If there is an algorithm that automatically learns effective
features and promotes the performance of machine learning model, then this learn-
ing will be called Representation Learning.

If a prediction model is directly based on the underlying features, it will
lead to excessive demands on the predictive model capability. If we can
have a good representation that somehow reflects the high-level semantic
characteristics of the data, then subsequent machine learning models will be
built relatively easily. Within presentation learning, there are no clear crite-
ria for a good representation, but it usually has the following advantages:
A good representation should have a strong representation that a vector of
the same size can represent more information. A good representation should
make subsequent learning tasks simple, that is, it needs to contain higher
level semantic information. In traditional machine learning, we often use
two ways to represent features: Local Representation and Distributed Rep-
resentation. Take color representation as an example. One way to represent
color is to name different colors with different names. This representation
is called one-hot local representation, also known as discrete representation
or symbolic representation. A local representation can usually be expressed
as a vector. Compared with local representation, distributed representation
has much better representation capability than local representation, and the
vector dimension of distributed representation is generally lower. We just
need a dense vector in three dimensions to represent all the colors. And the
distributed representation makes it easy to represent new color names. In
addition, the similarity between different colors is easy to calculate. To learn
a good high-level semantic representation, it usually needs to start from the
underlying features and go through a multi-step nonlinear transformation.
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The advantage of a deep structure is that multiple consecutive linear trans-
formations that can add features are equivalent to reusability, thus exponen-
tially increasing expressiveness. Therefore, the key to representation learning
is to construct multi-level representation with certain depth.

In recent years, considerable success of the application of deep learning
has been accomplished in different fields. A remarkably successful applica-
tion of deep learning is embedding, which is a method of representing dis-
crete variables as continuous vectors. We noted that the latent features in
Latent Factor Model are similar to the embeddings in neural network. There-
fore, it has been found that Deep Neural Network(DNN) can be utilized to
help realize matrix factorization, and DNN has been successfully applied in
the recommendation system. We will introduce the embedding methods and
application in the recommendation system in the following section.

3.4.1 Embedding Matrix

In machine learning, data will be required specific processing before it can be
fitted to a machine learning model. The most widely used method to a cate-
gorical data is one-hot encoding. However, one-hot encoding usually high-
dimensional and sparse. Take the Amazon dataset as an example. There will
be hundred thousands of users in the dataset. This means that, if we want
to represent a user using one-hot encoding, the encoding vector will have
hundred thousands dimensions and only one integer in this vector is one. In
such a big dataset like Amazon, this method is not efficient in computational.
Beside, We found that there is a certain similarity between different users or
items in the multi-dimensional latent space. Embedding matrix is one way
to represent these relationships. In deep learning-based model, we utilized
an embedding layer to map these categorical datas as continuous vectors.

For example, we have five users < u1, u2, u3, u4, u5 > in our Amazon
datasets. First, we need to assign a unique index to each user as the user’s
identity information. The input data of the embedding layer will look like
the following list:[0,1,2,3,4]. Then, an embedding matrix will be created. In
the embedding matrix, each row represents the latent feature of the user cor-
responding to the index. In the previous section, we have introduced the
Latent Factor Model, in which each dimension represents the factor on dif-
ferent aspect. Therefore, the length of the factor here can be freely specified
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and is referred as the vector dimension. The commonly used vector dimen-
sion can be [128,64,32]. For easy representation, we assume that the vector
has a length of 5, and its embedded matrix is shown as follows:

FIGURE 3.9: An example of the user embedding matrix.

As shown in Figure 3.9, a user embedding matrix is a list of all users and
their corresponding embeddings. Similarly, the embeddings of items can also
be found through an item embedding matrix. This embedding matrix here
is nearly the same as the user/item latent feature matrix that introduced in
MF model. Compared with the traditional matrix factorization algorithm,
in addition to embedding achieved by the embedding layer, various latent
features can be added to promote the prediction accuracy. In conclusion, em-
bedding was utilized to transform the high-dimensional vector into the rela-
tively low-dimensional space and making sparse vectors easier for machine
learning. Also, through putting the input of related semantic information
tightly in embedded space, embedding could catch rich semantic informa-
tion from the original data. We will explore it further in our paper.

3.4.2 Network Embedding

Network Embedding is a method with the purpose of mapping nodes to a k-
dimensional latent space to learn a low-dimensional, dense, real-valued rep-
resentation. The learned node representation is conducive to computation
and storage. The traditional method used adjacency matrix to store graph
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structure, which only records the information of nodes’ neighbors of 1 de-
gree. The dimension of the adjacency matrix is very high, which requires
n*n space complexity to store. More importantly, similar structural equiv-
alence of network nodes should be required to share similar embedding to
save the network topology. The common representation of network structure
does not apply to the deep learning method, because the interrelationships
between network nodes cannot be divided into independent vectors. The
ML method usually assumes that the sample can be partitioned into inde-
pendent vectors. Therefore, network representation learning is important in
the application of deep learning to network analysis.

In the conditions of development of network embedding, many success-
ful algorithms, such as DeepWalk, node2vec, SDNE, have been occurred.
Different network embedding techniques have different effects for different
downstream tasks. At present, the most commonly used network embed-
ding algorithm is node2vec. Its algorithm is shown as follows:

Algorithm 2 The node2vec algorithm

Input: G0 = (V, E, p)
1: Initialize walks to Empty
2: for iter = 1 to r do
3: for all nodes ueV do
4: walk = node2vecWalk(G0, u, l);
5: Append walk to walks;
6: end for
7: end for
8: f = StochasticGrandientDescent(k, d, walks)
9: return f ;

In the above algorithms, network was symbolized as G0 = (V, E, p).
walks was used to store the random walk, it would be initialized to null at
the beginning. The outer loop r means that r random walks are generated for
each node. The algorithm mainly consists of two processes. First, traversing
the graph structure and generating a random walk for each node and add
the walk to the walks to save. In particular, node2vec proposed a parameter-
ized random walk mode, and introduced two important parameters p and q,
which are utilized to direct the walk. Then, the obtained node sequences will
be fed into the skip-gram model to update representation with the following
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objective function:
L = Â

ueV
Â

veNR(u))
�log(P(v|zu) (3.5)

zu is the neighbors of node u in a walk. Given the representation of nodes,
it will maximize the probability of next node is node v in the walk. Each of
the nodes will be mapped to a d-dimensional representation. It’s actually a
matrix that has |V| ⇤ d parameters. These parameters are what you need to
learn during the training. Through network embedding, we can get a low-
dimensional inherent representation for each node.

3.4.3 Attention Model

The Attention Mechanism was the generally exploited optimization model in
neural networks[63]. The intuitive understanding of attention is that when
faced with a large amount of information, people are more likely to pay atten-
tion to such points, such as the most prominent parts of a picture. It can help
people filter out unimportant information from vast amounts of information
and quickly locate more noteworthy information. The attention mechanism
in deep learning refers to the attention thinking mode of human beings and
is integrated into various deep learning models, thus achieving remarkable
results.

FIGURE 3.10: An illustration of attention mechanism
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Figure 3.10 illustrates the theory of attention mechanism. Let’s take a sim-
ple example to understand the principle. There are many books (value) in the
library. In order to find them easily, we make the number (key) for the books.
If we want to know more about Marvel(query), we can check out comics,
movies, and even World War II books. In order to improve efficiency, not all
books will be read carefully. For Marvel, comic books and movies will be
read more carefully (with high weight), but World War II books will be sim-
ply browsed (with low weight). We’ll get a complete picture of Marvel when
we’re all done. To implement the above principle, first calculate the similarity
between query and key to get the weight. The weights are then normalized
using so f tmax() function to get directly available weights. Finally, weighted
sum of the weights and values is calculated.

There are many different types of Attention, such as soft attention, hard
Attention, self attention and so on. Soft attention is a common way to calcu-
late the weighted probability of all keys, and each key has a corresponding
weight. This is a rational way of looking at all the keys and weighting them.
But the computation might be a little bit more complicated. The algorithm
proposed in this paper also utilized soft attention. When doing attention, it
was necessary to compute the score or called similarity between the query
and a certain key. The easiest approach to calculate the similarity was using
dot product or cosine similarity. Otherwise, it can be calculated by concate-
nating the q and the k. Another common approach is to use a multilayer
perceptron, which is what we’re going to use in the proposed algorithm in
this paper. It could be represented as:

s(q, k) = vTtanh(Wq ⇤ q + Wk ⇤ k) (3.6)

Where, vT,Wq,Wk are learnable parameters.

3.5 Heterogenous Information Network

Most information network analysis assumes that the object or link only have
one category. In other words, the network is homogeneous, which com-
prised with identical variety of objects or links. These homogeneous net-
works usually ignore the heterogeneity of the network structure, in other
terms, it simply considered one kind of relationship between objects. How-
ever, most real networks contain multiple types of interactions that could not



30 Chapter 3. Technical Background

be easily modeled by a homogeneous network. Therefore, it is necessary to
consider to utilize a special network structure to model these multiple types
of interactions. This special network was called heterogeneous information
networks(HINs)[64], which comprised with different varieties of objects and
links. Based on this concept, it could be defined as:

Theorem 2 A heterogeneous information network: If the total number of object
types in the network is |A| > 1 or the total number of linked types is |R| > 1 in
a network, the network would be defined as a Heterogeneous Information Network,
alternatively, it would be defined as a Homogeneous Information Network.

Considering a heterogeneous information network, it was appropriate to
give a description of its meta-level with the purpose of better understanding
the network structure. For this reason, a conception called network schema
was proposed to depict the network meta-structure.

Theorem 3 A Network Schema is a meta-template for a heterogeneous information
network with object type maps g : V ! A and link maps f : # ! R, denoted as
TG = (A, R)

Theorem 4 A meta-path is denoted as a path in the form of A1
R1! A2

R2! ...
Rl!

Al+1, wherein R denotes a composite relation between a start object A1 and the end
object Al+1.

The meta-path is the core of the entire HIN system. Different meta-paths
depict different semantic relationships between objects, and the mining of
such semantic relationships is the cornerstone of various subsequent tasks.
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Chapter 4

Representation Learning
Framework for Social
Recommendation

4.1 Problem Definition

The main purpose of this paper is to integrate users’ social information into
recommendation system to achieve improvement on recommendation per-
formance. The basic assumption of a social-based recommendation system
is that the user’s partiality are similar to their social neighbors. However,
utilizing social information to make recommendation is quite complicated
in practice, and many algorithms overestimate the effectiveness of directly
applying social information to the recommendation system. The shortcom-
ings of existed social-based recommendation algorithms can be attributed
to following aspects: (1)Currently, most existed work directly embedding
user ID into the latent space to learn the inherent feature vector. This ini-
tialization method does not take full advantage of the semantic knowledge
in this social network, so it is difficult to get the most effective embedding
method.(2) The openness of social networks allows users to easily build con-
nections with other users. This connection is different from the real-world
connection. Low-quality links make the social network become noisy. Most
social-based recommendation models usually use these social relations indis-
criminately, thus affecting the performance of the recommendation system.
(3) Users’ preferences have different aspects, but most work usually assumes
that users are interested in all aspects of the social neighbors. (4)The influ-
ence of social relationships is not universally applicable to any context. When
faced with different items, the influence changes dynamically. (5) The user’s
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social relations also come up against the data sparsity issue. When history
data is sparse, the benefit of utilizing social relations to augment the user’s
profile and promote the recommendation quality is limited. For the purpose
of solving the above key shortcomings of social recommendation, based on
the framework of deep learning, this paper carries out concrete modeling and
analysis on the social influence of users, and solves the complex situation of
the application of social relations. (6) At present, it was not straightforward
for recommendation system to provide the recommendation interpretation.

Therefore, a social recommendation system based on attention neural net-
work was proposed for the purpose of solving the above limitations. Par-
ticularly, it has the following contributions: (1) To learn augmented effec-
tive inherent factors of users and accelerate the convergence rate of the pro-
posed model, network embedding technology was exploited. (2)Through the
factor-level attention model, we can learn specific inherent factors of users
to promote the accuracy of the model. (3) We leverage attention neural net-
works to model the social dynamic influences.(4)We propose to use heteroge-
neous information network (HIN) to find users with similar preferences, and
use these social relations to solve the sparsity problem of users’ social data.
(5) We propose a two-layer attention structure to enhance the interpretability
of the recommendation model.

4.2 Notations and Formulation

For the purpose of this work, matrices were represented by uppercase letters
(e.g., X), vectors were represented by lowercase letters (e.g., x), Latin letters
(e.g., X ) represents sets. Without any special declarations, all vectors are
column vectors. Figure 4.1 illustrates our input data in the social recommen-
dation task. In this task, suppose there were n users and m items, which were
denoted as U = u1, u1, ..., un and I = i1, i1, ..., in, respectively. The l-th set of
users F = uk f 1 , uk f 2 , ..., uk f l represent user uk’s friends set. Among the input
data, we have two kinds of observed data, which are user-item interactions
and user-user interactions. In general, R = [rij]nxm represents the user-item
interactions and G represents the social network of users. Different from
other work based on explicit feedback, the following equation demonstrate
how we convert explicit feedback from users into implicit feedback:
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rui =

(
1, i f the user u has rated the item i
0, otherwise

(4.1)

It should be noticed that rui = 0 does not of necessity imply the user’s
partiality. There were several possible reasons for rui = 0. It may be due
to the fact that user u dislike that item i, also, it could be owing to the fact
that the user have no idea of that item. Then, the task is to predict the users
unobserved interactions with items with the input R and G. The model will
provide the recommended item list to the a target user.

FIGURE 4.1: An example of the input data in social recommen-
dation system.

4.3 Probabilistic Model in RLSeSys

For the purpose of this part, we presented the probabilistic model of social
recommendation system based on representation learning in our paper, and
described how to combine the ideas of PMF and DNN with the intention of
making use of both users’ ratings and social information. In general, suppose
there were n users and m items, and the user-item rating matrix R. The pri-
mary objective is to find the best inherent factors to represent the users. The
users’ inherent factors could be symbolized by U = [ui]nxd, the items’ inher-
ent factors could be symbolized by U = [vj]mxd, where d is the embedding
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size. The dot product between users and items could be employed to rebuild
the rating matrix R. From the perspective of probability, the conditional dis-
tribution of observed rating matrix is given by the following equation:

p(R|U, V, s2) =
N

’
i

M

’
j

N(rij|uT
i , vj, s2) (4.2)

where N(rij|vT
i , vj, s2) is the probability density function which is consis-

tent with the Gaussian Normal Distribution. The probability density func-
tions of user attributes U and item attributes U are gaussian distributions,
which are denoted as:

p(U) = N(0, s2
U), p(V) = N(0, s2

V) (4.3)

where s2
U and s2

V are the variance of prior noise, which can be set manu-
ally. However, our proposed model in this paper differs from the traditional
PMF model is that the user’s latent model U is generated from two variables.
In addition to the above mentioned probability density function p(U), we
also learn a probability model of users’ social relations through deep learn-
ing model. Finally, the latent model of users is obtained by the following
formula:

ui = DNN(w, u f ) + p(u) (4.4)

where W denotes the weights used in DNN model, and u f is the social
relations of related user. It could be viewed as the user’s preference is deter-
mined by the user’s general preference and the user’s friends preference. The
primary objective of the task was to maximize the probability defined in For-
mula 4.2. The learning process for parameters U and V would be described
in details below.

4.4 The RLSeSys Model

For the purpose of this part, a general approach in the social recommenda-
tion system was introduced, which integrating users’ social information into
MF-based model to make recommendations. In accordance with social the-
ory, a user u’s preference was similar or affected his/her social neighbors,
who were denoted as Fu. Therefore, inspired by SocialMF [11], the user u’s
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latent representation of is dependent on the latent representation of his social
friends f eFu. This influence could be denoted as the subsequent formulation:

Ûu =
Â f eFu Wu, f ⇤Uf

|Fu|
(4.5)

where, Ûu denotes the latent representation of user u by summing the la-
tent representation of user u’s social friends. As our social networks in social
recommendation are un-weighted graph, all the weights between user u and
his friends f are equal to 1. Therefore, the above formula can be reduced to:

Ûu = Â
f eFu

Uf (4.6)

It should be noted that taking integrating users’ social information into
MF-based model does not affect the conditional distribution function of ob-
served rating matrix. It only affects the user’s latent representation. There-
fore, the conditional probability function is still the same as the conditional
probability in Formula 4.2. The graphical demonstration of the formula was
demonstarted in the Fig.4.2.

FIGURE 4.2: An illustration of integrating social information
into MF-based model.
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FIGURE 4.3: The overall architecture of representation learning
framework in Social Recommendation.

4.5 A Whole Architecture of RLReSys

The ultimate objective was to develop a social recommendation model to de-
pict the influence of social propagation on users’ preferences. On the basis of
the model-based recommendation system, we utilized deep neural network
instead of the traditional model to encode the user and item to a latent em-
bedding space and predicted the user’s preference degree to a target item.
A major advantage of deep neural networks over previous machine learning
models is its strong advantage in feature learning. In the case of sparse train-
ing features, it can still learn new and effective features from limited feature
sets. At the same time, it can learn correlations between features and dis-
cover other related features. Although the data is not preprocessed and may
be noisy, it can still filter out noisy signals and learn more relevant informa-
tion. This will save a lot of manual data processing. From this part, we were
going to introduce the whole architecture at this study, which is shown in
Figure 4.3. A model based on deep learning is proposed to learn to predict
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unknown ratings between users and items. As demonstrated in Figure 4.3,
the proposed model in this work mainly consists of a four-layer neural net-
work structure, which are input layer, embedding layer, pooling layer and
output layer.

Input Layer – The input in this paper was the user-item interactions and
user-user interactions. The input layer took the input data as input and
passed them to the next layer.

Embedding Layer – The essential idea of embedding layer is to reduce
the dimension of data and use dense and low-dimensional vectors instead of
sparse and high-dimensional ones to represent data. As mentioned in section
3.4, we use embedded matrix instead of huge one-hot coding vectors to repre-
sent each input user and item. For example, what the embedding layer does
here is to use vector [0.22,0.02,0.48,...,0.21,0.56,0.15] to represent user with id
"1", and the same for item. These embeddings could be view as the inherent
factors in some latent geometric space. The latent geometric space was hard
to understand subjectively, but any vector can be represented in this space.
The relationship between them can be computed by vector computation. For
example, the users’ embedding can be viewed as the users’ preference. Each
dimension denotes some aspect that the user may be interested in. Through
training process, the embedded vectors will also be updated, so that the in-
teraction between users and items could explored in the low dimensional
space.

Neural CF Layers – User embedding and item embedding obtained from
the embedding layer would be entered into a multi-layer neural structure.
The purpose is to project the latent vectors to some latent space for further
operation through linear and non-linear functions. Each layer in this struc-
ture can be customized for the required function to capture the interaction
between users and items. The capability of this structure is determined by
the dimension and number of hidden layers.

Output Layer – The final layer of the who architecture is the output layer.
It was employed to output the final predict results.

4.6 Model Optimization

Matrix decomposition is based on the prediction of the user’s rating of the
candidate, then the ranking based on the predicted rating, and finally the
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recommendation to the user. This method is a typical Pointwise method.
Whether predicting the score or predicting the implicit feedback, it essen-
tially predicts the user’s preference for an item. However, this method has
a big problem, because most of the time we can only collect a few positive
samples, and the rest of the data is actually a combination of real negative
samples and lacking values. The missing value here refers to the unknown
data except the positive example and negative exception in the training data,
which can be understood as unexposed or exposed but the user may not no-
tice the missing data, so the sample in the missing value may be the positive
example or the negative example. When we use this method to construct
training data, we are often unable to determine what the negative examples
are, so we can only treat all the other parts except the positive examples as
negative examples, which will make part of the negative examples in training
data actually be missing values. Take the missing value as the negative sam-
ple, and then use the prediction error as the criterion to approximate these
samples. It is ok to approximate the positive sample, but at the same time
the approximate negative sample is just a missing value, which is really pre-
sented to the user, and it is not sure whether they like it or not. Moreover,
such a model can only predict positive or negative examples, which is not
conducive to sorting because it cannot distinguish the importance of samples
within the category in depth. Of course, in this case, we can also use some
other methods to avoid these problems, such as negative sample sampling,
such as sorting by forecast probability, but these methods are only "delay-
ing tactics", not perfect for solving the sorting problem. Pairwise method to
re-optimize matrix decomposition.

Since this paper focuses on the implicit feedback, we define the recom-
mended tasks from the perspective of ranking. Therefore, we chose to opti-
mize the model parameters using a pairwise learning method that commonly
used in ranking tasks, which also known as Bayesian personalized ranking
algorithm. The basic assumption in pairwise learning method is that the ob-
served interactions should rank higher than the unobserved ones. In particu-
lar, we adopted the regression-based pair-wise loss function that commonly
used in the ranking-based recommendation system. The regression-based
pair-wise loss function can be denoted as:

Luser = �log( Â
i,j,keR

(rij � rik)) (4.7)
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where R denotes the train data, and i, j, keR was a triplet meaning that
user i had interacted with item j and there existed no interaction between
user i and item k. Here the interaction means a behavior from user i, for
example, click or buy, or other behavior proving that the user took an interest
in that item.

At present, the most common algorithm for optimizing the loss function
is SGD. In each iteration, SGD calculates a mini-batch train data’s gradient
and then updates the parameters. However, in SGD, all parameters are up-
dated based on the same learning rate, which is not always possible to reach
a global optimal solution. In practice, it may be the case that some param-
eters are already nearly optimal and therefore only need to be fine-tuned,
while others may need to be significantly tweaked. If the learning rate was
too small, the variable with a large gradient will converge slowly; if the learn-
ing rate was too large, the variable that has been tending to converge may be
unstable. AdaGrad is a solution to this problem. The algorithm idea is to use
a different learning rate for each variable. At the beginning of model train-
ing, a larger learning rate is used to make the model gradient drop rapidly.
When the training reaches a certain level, AdaGard will assign a relatively
small learning speed to variables that have changed a lot, while for variables
that have changed a little, the learning speed will increase relatively. RM-
Sprop is an improvement of AdaGrad, which can alleviate the problem that
the learning rate of AdaGrad declines rapidly. Therefore, AdaGrad is well
suited to working with sparse data and RMSprop are suitable for handling
non-stationary targets. Adam combined these two strengths. In each itera-
tion, it calculates different adaptive learning rates for different parameters,
and keeps the learning rate fixed in a value range, making the update of pa-
rameters more stable. In general, RMSprop or Adam was chosed to optimize
the loss function. The optimization algorithm is shown in Alg. 3.

In general, the neural network has a good fitting ability, but when the neu-
ral network structure is too deep or the parameters are too many, the model is
hard to avoid the problem of overfitting. We will mainly use regularization,
dropout to prevent the model from falling into overfitting state.
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Algorithm 3 Training Algorithm for the supervised deep learning model

Input: user social network G = (V, E, p), and the user-item rating matrix R
Output: the predict rating rui

1: Initialize the parameters q
2: for iter = 1 to iternum do
3: for train data X in mini-batch do
4: L(X, q) = Model(X, q);
5: ∂Lmin/∂q = GrandientDescent(L(X, q))
6: update paramaters q
7: end for
8: end for
9: return rui;
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An Adaptive Attentive Model for
Social Recommendation

5.1 Motivations and Rationales

According to sociological theory, users usually get informations from their
social relations, such as friends in real world or friends in social media. So-
cial recommendation systems were on the basis of this social effect, the phe-
nomenon that a user’s partiality for an item was influenced by his/her so-
cial neighbors. Effective use of users’ social relationships had been instru-
mental in improving the quality of the recommendation system. This led us
to explore the way of accurately catching the affect of social neighbors on
users’ partiality. Previous recommendation systems tried to model social in-
fluence through trust propagation, regularization constraints, deep learning
and other methods. Although these methods demonstrate the effect of so-
cial relations on the recommendation system, they still have some common
drawbacks.

First, in the traditional recommendation system model such as SocialMF
and other deep learning based model, user embedding adopts a simple ini-
tialization method to transform user’s identity ID which was typically de-
noted as the one-hot encoding into a random vector conforming to gaussian
distribution, and these vectors are input into the interaction layer for calcu-
lation to obtain user embedding. Embedding the user’S ID directly into a
low-dimensional space does not fully exploit the implicit intelligence of the
social network, so it is difficult to get the most effective embedding.

Second, in practical application, people’s choice of an item is usually de-
cided by many factors. The research on the influence of the existing algo-
rithms on social effect on people’s behavior is insufficient, which is mainly
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reflected in the homogeneity and heterogeneity of social interaction. (1) So-
cial homogeneity leads to similar preferences of users. However, this simi-
larity may only exist in certain respects. As an illustration in Figure 5.1 (A),
users Alice and Bob and Mike are friends, but their preferences are not al-
ways the same. Among Bob’s many preferences, Alice is only interested in
movies. Similarly, in Mike’s preference, Alice is only interested in sports.
Therefore, when we want to make use of the users’ social neighbors’ pref-
erence to predict users’ preference, it is necessary for the model to consider
how to extract users’ specific preferences in a certain aspect to enhance the
quality of recommendation. (2) Although the emphasis on a certain aspect of
users’ friends preference can enhance users’ preference to a certain extent, the
influence of social effect on users also has heterogeneous characteristics. The
heterogeneity of network is mainly reflected in two aspects. First of all, the
social relationship between users is different, generally there is a difference
between strong relationship and weak relationship. For example, connec-
tions between users and their social friends with whom they often interact
are called strong links. Social friends with strong connections tend to have
a greater impact on users than those with weak links. Last but not least, the
affect of social friends on users’ partiality tends to vary from situation to sit-
uation. We refer to the user’s choice of different items as a context. Even the
same social friend should have different influence on users in different con-
texts. For example, as shown in Figure 5.1 (b), Angel and Mike may have the
same effect on Alice when the system recommends a movie to Alice, because
they are both interested in movies. However, when we want to recommend
travel products to Alice, it is clear that Mike’s influence is higher than An-
gel’s. Because Mike has more experience in Travel. Therefore, we found that
the user influence of a social user varies with the context, and does not al-
ways remain the same.

Motivated by the previous analysis, we proposed the subsequent meth-
ods to figure out the above problems.

First, different from the previous mentioned embedding method which
mapping the identity of users to a low-dimensional latent space through
one-hot-encoding, we proposed to utilize network embedding technology
to transform the user’s identity to a dense representation which preserved
rich information in social domain. Secondly, we proposed a social recom-
mendation model based on attention mechanism. Inspired by the ensemble
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(A)

(B)

FIGURE 5.1: An illustration of social influences, (a) demon-
strates that users may not have similar preferences in all aspects
and (b) demonstrates different social neighbors contributes dif-

ferent to users’ decision

methods, which argued that there were two factors influence a user’s partial-
ity. One is on the basis of the user’s past taste. The other is on the basis of the
influence from their social neighbors. For this reason, we distinguish two in-
herent factors that affect a user’s decision on the given item. The first factor
was called the item-based inherent factor and the second factor was called
social-based inherent factor. Item-based inherent factor could be viewed as
users’ specific preferences, which would not be influenced by other factors.
As discussed above, it could be inferred from the user’s historical prefer-
ences for items. to infer the user’s possible preferences based on the user’s
social influence. Social-based inherent factor were inferring users’ possible
preference based on the partiality from theirs social neighbors. It could be
learned through the complex effects of the social relationship between users
and their neighbors. Especially, we designed a module based on the attention
mechanism. It could not only acquire the user’s factor-level attention on the
user’s social neighbor’s partiality, but also learn the different influence value
of the social neighbors. Finally, these two factors were combined to form the
users’ representation. In next section, we are going to explain our method for
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further details.

5.2 Adaptive Neural Network for Social Recom-
mendation(ANSR)

We first introduced the framework of ANSR and then introduced the de-
tails of the key components of the proposed model, namely :1) Network
embedding-based representation learning; and 2) Attention-based social ef-
fects modeling. Finally, we will explain the training algorithm in ANSR.

5.2.1 Model Framework

We will utilize the representation learning framework to solve the social rec-
ommendation problem. In a representation learning framework, each entity
is represented as an embedding vector that encodes the latent feature of the
entity. For example, the user’s embedding vector represents the user’s pref-
erence, and the item’s embedding vector represents the item’s property. The
most widely used matrix factorization method in the recommendation sys-
tem is a typical representation learning framework, and calculates the corre-
lation between the user and item through the inner product. Therefore, based
on the representation learning framework, we build our model to learn the
representation of users and items and make recommendation to user. The
overall architecture is show in Figure 5.2.

Input Layer
The input of this model is the rating feedback of users and the social net-

work of users. The rating feedback of users is usually represented by a rating
matrix which is denoted as ReRn⇥m. If user i has rated item j, then the rating
score of user i on item j is represented by rij = 1. The users’ social network
is formally denoted as GeGn⇥n. Let’s take one user useri as an example. As
shown in Figure 5.2, the input will be useri, an item rated by user i and useri’s
social neighbor list. Each user and item has a unique identity to represent the
input data.

Embedding Layer
When the identity of the user and item is input into the model, it needs to

be expressed in a way that can be understood by the computer before vari-
ous calculations can be performed. Therefore, the purpose of the embedding
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FIGURE 5.2: The overall Architecture Framework of ANSR.

layer is to encode the input object entities into a low-dimensional dense vec-
tor, which is also called a presentation in representation learning framework.

First of all, it was necessary to consider how to obtain the item’s repre-
sentation. The simplest way is to represent an item by one-hot-encoding. For
example, suppose we have a total number of 10 items, and when these items
are stored in the database, each item has its own unique identity. The j� th
position represents the item j in the item list, so item j can be represented by
[0,0... 1... 0]. This vector is a 10-dimensional vector with only one position
of 1 and the rest positions of 0, as shown in Figure 5.3. But in practice, the
number of items is probably in the tens of thousands. Such an embedding
will be a high dimensional sparse vector. Essentially, we define a embedding
matrix in the embedding layer, in which each row of the matrix represents
the embedding vector of the corresponding item, which is shown in Figure
5.4. The representation obtained from the embedding layer could be viewed
as the items’ latent feature which represents the items’ attributes. As shown
in 5.5, we took the Titanic Movie as an example, each factor in this vector rep-
resents an attribute of the movie. This embedding needs to be continuously
optimized in the training of the model, and eventually a reasonable way to
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present this item is realized.

FIGURE 5.3: An example of utilizing one-hot-encoding to rep-
resent an entity.

FIGURE 5.4: An example of mapping the identity of item to a
low-dimensional space to obtain a dense representation of an

entity.

Embedding of users can also use one-hot-encoding. However, the ob-
tained vector does not contain the user’s social network information. There-
fore, different from the approach mentioned above, we have utilized network
embedding to map users to a latent space, where the position of connected
users is as close as possible. In this semantic space, this representation is also
valid, because connected users usually have similar interests, so the vector
representation between them should also be similar. When translated into
the latent space, it is denoted as position proximity. The specific methods
will be explained in detail in Section 5.2.2.



5.2. Adaptive Neural Network for Social Recommendation(ANSR) 47

FIGURE 5.5: An example of the explanation of an item vector.

Attention Layer
In comparison with the item embedding, the way of learning the repre-

sentation of user would be more complex. In a social-based recommenda-
tion system, users’ preferences are often influenced in two ways. On the one
hand, users’ preferences can be inferred from their own rating history. On
the other hand, users’ partiality could be influences by the interests of their
social neighbors. As a result, the user’s representation is divided into two
factors. The former means to infer a user’s preferences from the context of
the user’s own preference history. The latter means to infer a user’s prefer-
ences based on the preferences of a friend. We will explain how to obtain
these two representations of the user in details in the next section.

Fusion Layer
From the different modules, we would get several different user repre-

sentation that represents the different inherent factors of the user. We need
to fuse these representations into a synthetic representation as the input of
the final prediction layer, and the fusion layer was such neural network to
achieve this goal. In general, the strategy of the fusion layer could exploit
a number of different methods to merge different factors. These methods
could be as simple as concatenating all these features, adding these features
or utilizing element-wise product. By experiment and comparison, we found
that simple addition works best. Accordingly, we first added these two fac-
tors to get the final user feature. According to the factorization algorithm,
the interaction could be learned effectively through the element product ap-
proach. As a result, we applied the element product approach to learn how
users interact with items. However, some work has found that the element
product approach may lose some valid characteristics, so in addition to that,
we need to concatenate the element result with user representation and item
representation to get the final input of the final prediction layer.
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Prediction Layer
In general, the input of the final layer was obtained in the fusion layer,

and we would utilize this input to predict the result. But since we focus on
implicit feedback, our goal was to predict the probability that a user u will be
interested in an item i or not. It was worth noting that in the final layer, we
utilized the sigmoid function to convert the output value into a probability
between 0-1 to predict the probability of whether the user u will be interested
in the item i. This could be achieved through several fully connected layers,
which could be defined as:

hg = Sigmoid(Wg ⇤ hg�1 + bg)

hg�1 = ReLU
�
Wg�1 ⇤ hg�2 + bg�1

�

...

hg = ReLU(W1 ⇤ h0 + b1)

As we know, deep learning models could solve complex problems by ei-
ther increasing depth or increasing width, and the cost of increasing width
was often much higher than the cost of depth. This was because deeper mod-
els mean better non-linear representation, more complex transformations can
be learned, and more complex feature inputs can be fitted. However, as the
number of hidden layers increases, the complexity of the model will increase
correspondingly. Therefore, the final prediction layer actually contains only
two hidden layers.

5.2.2 Network embedding-based representation learning

FIGURE 5.6: The illustration of Network Embedding. The con-
nected users will have a similar embedding vector in the latent

space.
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In the existing research, the user’s ID was directly mapped to a random la-
tent space to represent the user’s inherent factors. This approach is obviously
not effective in exploiting users’ social signals. Most social-based recommen-
dation algorithms assumed that the user’s representation in the social latent
space should be as similar as possible to the representation in the preference
latent space. Therefore, users’ social network relationships may store a lot of
hidden information of users, which is difficult to be read directly. However,
the representation of their inherent factors may help us obtain a lot of mean-
ingful user information. The biggest advantage of network embedding tech-
nology was that it could learn the low-dimensional vectors of nodes while
preserving the network topology and node feature. Figure 5.6 gave a simple
example of the process of the network embedding. Based on this advantage,
we adopted the network embedding method to make full use of users’ social
signals. Deep Walk is the first algorithm that apply the ideas of NLP into
Network Embedding. Figure 5.7 illustrate the main process of Deep Walk.

FIGURE 5.7: The illustration of the Deep Walk Methods. First,
generate a social corpus with random walk. Then, learn the

node representation using the Skip-Gram Model.

First, we utilized users’ social network G as the input. As shown in Figure
5.7, we have five users. We will generate a certain number of node sequences
for each node by random walk. The random walk method is to start at a par-
ticular node, randomly select an edge that is connected to the current node,
and walk along the edge to the next node, and continue this process until
all the points generate a random walk sequence. For example, starting with
user1, we randomly select contiguous nodes to walk around and eventually
generate a sequence of nodes like [1, 2, 5, 3]. The study found that a random
walk on a network is equivalent to a sentence in a natural language domain.
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And all the paths that travel through a certain strategy can be combined to-
gether as a corpus. Next, we can use the Skip-Gram model in natural lan-
guage processing for network representation learning. We use the Word2Vec
model directly. With the network embedding operation described above, we
can output a new representation for each user. This representation contains
the user’s social semantic information.

There are many existing network embedding methods, such as Deep-
Walk, Node2Vec, SDNE and so on. We will also use different network embed-
ding methods to learn the user representation in the following sequence to
compare the impact of different network embedding methods on the model
accuracy. The learning of user representation through network embedding
can be regarded as a pre-training strategy, and the acquired features will be
input to the next level to mine more implicit information in user represen-
tation, so as to get a better user representation. At the same time, we also
found that it helps to improve the convergence speed.

5.2.3 Attention-based social effects modeling

To strengthen the prediction accuracy, applying attention mechanism into
neural network model has become an important approach. For example,
in the areas of research such as image recognition and machine translation,
attention mechanism have been successfully employed into deep learning
models to strengthen the prediction results. We could consider the attention
neural network as a powerful feature extractor in nature. Simply understood,
it extracts the data that most relevant to the predicted results, and the data
that is not important to the predicted results will be ignored. For that reason,
the attention model could be utilized to withdraw more valuable features
for each user, so as to reduce the noise generated by invalid features on the
model to help us learn user preference features more accurately. The purpose
of attention-based social effects modeling is to make better use of the prefer-
ences of users’ social friends to enrich the preference information of users, so
as to advance the performance of the recommendation systems.

In the previous section, we have discussed that the user’s representation
can be learned from two factors. The former factors means to infer a user’s
preferences from the context of the user’s own preference history. The lat-
ter means to infer a user’s preferences based on the preferences of a friend.
Users tend to have similar interest with their social neighbors and friends, so
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the preference features of social friends can be used to predict users’ interest.
However, we found that not all preferences are consistent, and the features
that other users are not interested in will become the noise of the system,
thus affecting the system’s recommendation results to users. Therefore, we
can use the Attention model to extract the part of the features that users are
interested in. Through embedding layer, we have obtained the representa-
tion of each user, and we will take these representations as the input of the
attention layer to learn the preferences representation of users in specific as-
pects. Figure 5.8 illustrate how we learn the specific attention vector between
users and users’s friends.

FIGURE 5.8: The illustration of the framework of aspect-aware
module.

First, we need to calculate the correlation, that is, the degree of similarity,
between user i’s inherent factors and his social neighbor ui’s. To calculate the
correlation between these two features, we could exploit different functions
and calculation mechanisms. In general, the commonly employed way to
achieve this function were utilizing dot product, Cosine similarity, or apply-
ing an additional neural network. Accordingly, we first use the element-wise
product to calculate the similarity between user i’s inherent factors and his
social neighbor ui’s, which could be obtained through the following function:
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Ci = eui
K

f l
ui

(5.1)

where eui denoted user i’s representation, f l
ui

denoted user i’s l� th friend’s
representation, respectively. Take the user’s vector and each user’s friend’s
vector, we can obtain a new vector by element-wise product. These new
vectors can form a new matrix which is the correlation matrix between the
user and the friend. In our work, the user’s feature can be regarded as com-
posed of different factors. Suppose the factors represents different factors
of the friend that the user may be interest in. Then, the attention network
can be viewed as a feature extractor, by assigning different weights to differ-
ent factors, it will extract the factor that most relevant to the user’s interest,
and the factor that is not important to the predicted results will be ignored.
Then, we will use so f tmax() function to convert the correlation matrix into
the probability distribution with the sum of all element weights being 1. As
a result, the factor that more similar with the user’s interest will assign a
higher weight through the attention score learned from the so f tmax() func-
tion. We use Pk to represent the k� th factor in a user’s feature. The process
of calculating attention score was defined as followings:

opk = ReLU(W1 ⇤ Pk
fl
+ W2 ⇤ CT

i + b) (5.2)

where, W1, W2, and b are the weight matrices of the attention network. Pk
fl

represents the k � th factor of fl. Then, we normalize this weight using the
softmax function to get the available weights:

apk =
exp(opk)

ÂkeF( fl) exp(opk)0
(5.3)

The score will help us extract more related information to user’s specific pref-
erence. Finally, the specific representation of the user on a friend can be ob-
tained by the following formula:

useritem_based
i = S fl a

pk ⇤ Pk
fl
+ ui (5.4)

On the other hand, the influence of users’ social relations on users’ pref-
erences is reflected in the heterogeneity of social networks. Due to the differ-
ent relationships between different social friends, we need to assign different
weights to the users’ friends. Moreover, the weight is not static, but dynamic.
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This weight should be different when the user interacts with different items.
Intuitively, if a friend has more experience on an item, he should have more
influence on the user when the user facing choice of that item. To understand
this, consider an example where a user decides to watch an action movie. If
a friend of the user has seen many different action movies, that friend should
have more influence when the user considering whether or not to watch an
action movie. We need to learn a parameter that represents the user’s in-
fluence on different item choices. Different with the aspect-aware module
which focuses on assigning different weight to the factors inside a user’s fea-
ture, this module will assign different weight to different friend’s feature.
The process of calculating the influence value will be similar with the aspect-
aware module. The framework of the module was displayed in Figure 5.9.
First, we need to calculate the correlation between these three features, the
calculation process was shown as following equation:

Hfl = wTReLU(Wv ⇤ vj + Wf ⇤ f l
ui
+ Wu ⇤ ui + b) (5.5)

a( f ) = so f tmax(Hf ) =
exp(Hfl)

Â fleFui
expH0fl

(5.6)

where, Wv,Wf ,Wu,b is the weight matrices and bias of the attention layer.
fl is the l-th friend of user i. Fui is the friends set of user i. a( f ) is the influence
score of l � th friend on user i. Based on this attention score, we could select
more representative social friends to represent the user’s social information.
Then, user’s latent factor in social domain was denoted as:

usersocial_based
i = Sa( f ) ⇤ f l

ui
(5.7)

5.2.4 Optimization and Training

In the recommendation system, it is not common for the user to give an ex-
plicit rating to the item, what more common is that the implicit feedback
which without obvious rating behaviors, such as clicking an item, buying an
item, watching a movie, etc. Compared with explicit feedback, implicit feed-
back is more practical because most websites today are not rating based sites,
but interaction-based sites, so implicit feedback can be used in a wider range
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FIGURE 5.9: The illustration of the influence calculating mod-
ule.

of scenarios. Consequently, we will pay more attention to the implicit feed-
backs. Here we’re going to focus on the pair-wise loss function for implicit
feedback. BPR is a pair-wise ranking algorithm which is commonly used in
ranking task. BPR is actually an optimization of the loss function in the fac-
torization model. It is based on a partial ordered model that sorts the user’s
interactions with different items. In general, the loss function was displayed
as the following formula:

LBPR = Â
(u,i,j)eDs

�lns(y̌ui(Q)� y̌uj(Q)) + lQ||Q||2

The meaning of this formula was that the user’s positive interaction should
be ranked higher than the negative one. Where Ds represents the training
data set, which is composed of different pairs of user-item. As we mentioned
in our explanation above, the loss function requires a sample of positive and
negative items corresponding to the user. Item i represents the positive sam-
ple of user u, which can be obtained directly from the user’s historical interac-
tion data. Item j represents the negative sample of user u, which the user has
not interacted with. Therefore, during training, we need to randomly sample
a negative item. Additionally, in order to prevent overfitting of the model, we
need to regularize the parameters of the model. lQ represents the regular-
ization parameter, which can be specified in advance. With the objective loss
function, we need to utilize the loss optimization algorithm to minimize the
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above objective loss function. Deep network parameter learning mainly uses
gradient descent method to minimize loss function. The method used for
optimization can be generally divided into three forms: batch gradient de-
scent(BGD), stochastic gradient descent(SGD) and mini-batch stochastic gra-
dient descent. BGD will obtain a global optimal solution, but each iteration
requires all data in the training set. By doing so, the calculation resources will
be occupied and calculation efficiency will be slow. In SGD, only one sample
is used for each parameter update, which is randomly selected. However, a
problem of SGD is that it is sensitive to noise data. In addition, thousands
of iterations may be required before the optimal solution is obtained, which
also affects the efficiency of calculation. Therefore, here mini-batch gradient
descent method was utilized for model training.

Algorithm 4 Optimization Algorithm
Input: R: Observed Rating Matrix; Gu:Users’ Social Network;
Output: unobserved rating r⇤

1: Initialize parameters : D, l, dp, lr, num_neg;
2: for i = 1 to epoch do
3: Sample mini-batch size user-item pairs;
4: For each positive pair (u, p_i) and negative pair (u, n_i);
5: pos_prediction = model(Qu,Qi);
6: neg_prediction = model(Qu,Qi);
7: Loss(pos_prediction,neg_prediction)
8: Update Qu and Qi via backward()
9: end for

Algorithm 4 demonstrated the training algorithm. In the beginning, we
need to initialize the parameters of users, items and the weight/bias in each
neuron. In addition to the user embedding that can be learned by embedding
the graph, all other parameters can be initialized by the Gaussian distribu-
tion. After the model parameters are initialized, we can input the training
data into the model for learning. In the above discussion, we have mentioned
the influence of different batch selection on the model. The neural network
training process is carried out simultaneously on all m samples (called batch)
through vectorization calculation. If m is large, the training will be slow,
because each iteration will require summation and matrix operations on all
sample bases. Therefore, here we use the commonly used Mini-Batch gradi-
ent descent algorithm to optimize the model. M training batches are divided
into several subsets, called mini-batches, and then neural network training
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is carried out on a single subset at a time. In 5, the algorithm of small batch
sequence generation is presented. Using this training data, we will calculate
the loss function described above and compute the gradient to update the
parameters.

Algorithm 5 Mini-batch user-item pairs Generation Algorithm
Input: R: Observed Rating Matrix; Gu:Users’ Social Network;
Output: a mini-batch size train data:ui, pi, gi, Fui

1: for user in mini� batch size train user set do
2: ui  append(user);
3: pi  append(positive item in user i’s rating data);
4: for t in negative sample size do
5: ni  append(sample a negative item of user i);
6: end for
7: Fui  append(user i’s friend list);
8: Reshape;
9: end for

5.3 Experiments Settings

5.3.1 Datasets

The data set used in the experiment is commonly used in the field of social
recommendation. They were collected and processed by other scholars and
published publicly. Statistics of different data set are recorded in Table 5.1.
The detailed description of the data set is as follows:

Delicious: Delicious(http://www.delicious.com) was an online social book-
marking platform that enable custormers to store and find bookmarks on
the site and assign various semantic tags to them. At the same time, users
can also create social relations and share bookmarks with their social friends.
This data set is collated and published by HetRrc [65]. Since we only con-
sider social based personalized bookmark recommendation, we only select
the bookmark records and user social data for experiment.

Ciao: Ciao is a data set widely used in social recommendation systems. It
was crawled from a DVD website by Guo et al. [8] Users can rate movies on
the website and follow the users they trusted.

Epinions: Epinions is also an online review site. Users can rate many
different types of items. In particular, Epinions provide a trust system that
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TABLE 5.1: Data set statistics

Data set Delicious Epinions Ciao Douban
users 1,521 18,163 17589 2,848
items 1,202 37,325 16,121 39,586
ratings 8,397 374,658 62,452 894,887
social 10,401 287,260 40,133 35,770

allows users to add trusted users to their own trust networks. Therefore,
the dataset includes not only the user’s rating data, but also the user’s trust
relationship network. This dataset could be found from LIBREC’s website.

Douban: Douban is a Chinese social review site. The site enables cus-
tormers to rate movies, books and music they have watched. The site also
supports a variety of online social services, such as joining different interest
groups and following other users with the similar interests. The data set con-
sists of three categories, namely, the user’s movie rating data, and music and
book rating data. Due to the large amount of data and different categories in
the data set, we mainly exploit the movie rating data to predict the movies
that users might be interested in. The data set is publicly available on a data
site and can be downloaded via the link written in the paper.

5.3.2 Baselines

For the purpose of examining the effectiveness of ANSR, we will carry out
experiments on the above mentioned data set to compare the performance
of ANSR with baseline methods. To better understand the baseline methods,
the baseline methods would be classified into the following categories: tradi-
tional recommendation method:BPR, social-aware recommendation method:
SBPR, deep learning-based method:NCF,DMF,APR, and deep learning-based
social recommendation method:CUNE-BPR, which are shown as follows:

BPR: BPR(Bayesian Personalized Ranking)[58] algorithm was a commonly
used pairwise ranking model in the recommendation system, which was an
optimization of MF. Instead of viewing the recommendation task as a regres-
sion problem, BPR is more concerned with which items have higher priority
in the user’s preference. Since we focused on implicit feedback, it is very
competitive for ranking model.

SBPR: ScoialBPR [20] is an optimization model of BPR. On the basis of
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the original BPR, SocialBPR incorporated the user’s social data into the orig-
inal BPR model to improve the recommendation performance. The concept
of SocialBPR is that users tilting towards to rank the items that their social
neighbors prefer higher compared to the negative items that they did not
rated. It is competitive in social recommendation domain.

NCF: NCF [39] is a collaborative filtering method based on deep learning,
which is also the basic model of various other deep learning algorithms. It
proposed to use multilayer perceptrons to model the linear and nonlinear
interactions between users and items. Our recommendation algorithm will
also based on this model, but new input features and algorithms are added
to optimize the NCF algorithm.

DMF: DMF [66] is an improvement of traditional MF algorithm using
neural network. The difference between DMF and NCF is that NCF ran-
domly initializes the user and item embedding representation from a gaus-
sian distribution, but DMF takes the user’s feedback as input and maps it
to the a latent space to learn the user’s representation by imitating the idea
of semantic model. It is a competitive model in deep learning-based recom-
mendation domain.

CUNE-BPR: CUNE-BPR [67] is an optimization of the BPR model based
on network embedding. This model solves the cold start problem effectively
by utilizing the feedback to extract reliable friends with similar interests of
users through network embedding.

APR: APR [68] is a new framework based on deep learning, which makes
use of GAN’s idea to enhance the recommendation system through adver-
sarial training. At the same time, the robustness and generalization ability of
the recommendation model can be improved.

5.3.3 Evaluation protocols

In the experiment, we would adopt a commonly utilized method called ’leave-
one-out protocol’ as the test method. In particular, we randomly selected an
item from his implicit feedback and put it into the test data set for each user.
This method is often used in recommended ranking tasks. The remaining
data were randomly divided into 80% training data and 20% validation data.
The purpose of validation data set is to optimize the model parameters. Due
to the huge amount of data in training sets such as Douban, it would take
a lot of time if all items were tested and sorted. In order to shorten the test
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time, we randomly selected 300 non-interactive items for each user as neg-
ative data set, and put the test item which was picked up according to the
’leave-one-out protocol’ into these negative sampling data for ranking.

HR@K and NDCG@K were commonly utilized metrics to examine the
validness of a ranking model. HR@K represents the success rate of hit items.
At the same time, we hope that the position of test item appearing in the
list of predict items as high as possible. This is important for ranking tasks,
because users would become dissatisfied with the recommendation system
if the items they are interested in are ranked very low. Therefore, NDCG
(NDCG@K) could tell us whether the recommend list provide a good rank-
ing. The definition of these two metrics were shown as follows:

HR@K = (Numbero f Hits@K)/(|GT|) (5.8)

DCG@K = SK
i=1(

2reli � 1
log2(i + 1)

); NDCG@K =
DCG@K
IDCG@K

(5.9)

In this experiment, we used the leave-one-out strategy to evaluate the
model. The number of items is determined by 300 negative items of the ran-
dom sample and a positive item randomly selected. The numerator repre-
sents the number of positive items in the test set that the predicted result can
accurately hit. Generally, we will call it a ’hit’. K represents the number of
items in the predicted list for each user. The formula of NDCG looks com-
plicated, but its idea is very simple. In the test, the model returns a recom-
mendation item list, and we want to calculate how good the list is. Each item
in the list has an associated score, usually a non-negative number, known as
’gain’. reli = 1 if the i� th item hits the test set exactly. For other items with
no interaction with users, we usually set the gain to 0. And then we add all
the scores, which is called ’cumulative gain’. We want the item in the test
to be at the top of the recommended list, so before adding up the scores, we
divide each item by an increasing number, usually the logarithm of that po-
sition, which is called the depreciation value, denoted as log2(i + 1). NDCG
is the normalized DCG. Finally, NDCG@K is the normalized DCG@K.
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5.3.4 Parameter settings

We implement our proposed model ANSR on Pytorch, which is implemented
by the Python language. Parts of the parameters were learned through pre-
train strategy. And part of the parameters used in the initial model are ran-
domly initialized. In the experiment, RMSProp, which is an adaptive learn-
ing rate optimization algorithm, was used to optimize the model.Batch size
is an important parameter in deep learning. Within a reasonable range, the
increase of batch size can make the parallelization efficiency of matrix mul-
tiplication higher and improve the utilization of memory. At the same time,
the number of iterations needed to complete an epoch can also be reduced,
thus improving the running speed of the model. The large batch size can
also reduce the gradient oscillation to some extent. However, batch size is
not the bigger the better. We should consider the memory capacity. There-
fore, we need to carefully tune the batch size. Usually, it could be tuned
among [64,128,256,512]. In addition to using regularization, we will also uti-
lize dropout method to prevent model overfitting. Specifically, during for-
ward propagation, we let the neurons in the network stop working with a
certain probability. This has the advantage of making the model more gen-
eralizable. The reason is that models don’t rely too much on local features.
According to practice, the dropout ratio will be tuned between 0.4 and 0.6.
Another useful method to avoid overfitting is called regularization. By reg-
ularization, additional constraints are imposed on the model, such as con-
straining the range of parameter values, to prevent the model from becoming
too complex. Therefore, we utilize L2 regularization and the regularization
parameter will be tuned among [0.01, 0.001, 0.0001].

5.4 Performance Evaluation

5.4.1 Overall Performance Comparison

In the first experiment, we will evaluate our proposed model(ANSR) on the
above mentioned data sets. For the purpose of confirming the effectiveness
of ANSR, we additionally compare the evaluation results to the results on
other baselines. Figure 5.10 illustrates the performance comparison results.
Here, k means the number of items present in the prediction list. Through
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the observation of the experiment results, the following conclusions could be
attained.
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(A) HR@K (B) NDCG@K

(C) HR@K (D) NDCG@k

(E) HR@K (F) NDCG@K

(G) HR@K (H) NDCG@K

FIGURE 5.10: The overall comparison results.
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1) The top red line represents the performance results of the proposed
ANSR. It is easy to note that our proposed ANSR was superior to other meth-
ods in different K values. This result also fully confirms the effectiveness of
the ANSR model, which can effectively enhance the performance of the rec-
ommendation system.

2) In comparison to the traditional factor decomposition-based algorithm
BPR, deep learning-based model ANSR, NCF and other models significantly
enhance the functioning of recommendation systems. The reason was that
the algorithms based on traditional factorization are difficult to deal with
large-scale data. In addition, the model based on deep learning can fit any
function, but the complexity of the model determines that it is difficult for
general factorization model to get the same effect. At the same time, the ac-
tivation function in the model makes the deep learning model have stronger
nonlinear learning ability and can learn the more complex nonlinear relation-
ship between users and items. Furthermore, we could observe that APR per-
forms even that CUNE-BPR which was based social information. This was
due to the high learning ability of adversarial learning, which also proves the
superiority of deep learning-based recommendation algorithm.

3) Compared with the model based on users’ feedback, integrating users’
social information into recommendation model could enhance the function-
ing of recommendation systems. For example, SBPR performs better than
BPR, CUNE-BPR performs better than NeuMF, DMF. Especially, SBPR can
perform almost similar with NeuMF on some small data sets such as Ciao.
This was due to the fact that leveraging social recommendation could enrich
the intelligence of users by using their social data. As a result, it could mit-
igate the influence of data sparsity. This also proved that exploiting social
information could significantly enhance the performance of the recommen-
dation systems.

4) Since all models aim to find representations of users and items and uti-
lize the same objective function, it could be concluded that the ANSR model
is better at learning user representations. ANSR can learn better user repre-
sentation because the model not only considers how to rationally use social
network to learn user embedding and promote the recommendation ability.
In addition, the attention neural network was also effectively used to capture
the dependence among latent factors, which helps us extract more effective
information, thus leading to better prediction results.
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5.4.2 Model Analysis

Attention Module Analysis

During last performance comparison experiment, we had verified the perfor-
mance of ANSR by using the overall performance comparison experiments.
However, we do not know why the algorithm can effectively improve the
performance of the model. In the second experiment, ablation study was
carried out to analyze the contribution of our proposed approaches. The
ablation study is to analyze the influence of different modules on the exper-
imental results so as to obtain the effects of different modules. In order to
analyze the contribution of different modules to the experimental results, we
will transform the proposed models into different variation models and com-
pare the results. In Chapter 4, we have introduced a general framework for
deep learning-based social recommendation models, which were based on
NeuMF. Our proposed ANSR algorithm was also based on the NeuMF and
added new modules, so we chose the NeuMF as the baseline for other vari-
ant models to prove the effectiveness of the added modules. Among them,
the first variant model called SNeuMF was based on the assemble methods
which exploiting social data to enhance the user representation. The second
variant model called SNE which utilized the network embedded module to
capture the user’s social information. In the fourth model which denoted
as SN-CUNE, we tried to utilize the algorithm provided by CUNE-BPR to
optimize the influence of social relations on the representation of user pref-
erences. Here we used cosine function to calculate the similarity of different
users, and assign a value to the influence of different social neighbors on
users’ preferences. To clearly express different variant model, Figure 5.11
was used to demonstrate and symbolize the different variant model, while
SNE and SNU were used to symbolize the variant model that only utilize the
network embedding module and attention-based module, respectively.

Table 5.2 shows the performance comparison on several variant models
utilizing four data sets. From the experimental results demonstrated in this
table, several subsequent could be drawn. The SNeuMF results were rela-
tively poor. The reason was that assumes that all the user’s friends have the
same effect on the user. SNE performed a litter better than SNeuMF. This
was because we utilized the network embedding to enhance the user’s rep-
resentation. However, we have known from social regularization methods
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FIGURE 5.11: The illustration of the variant models.

that the heterogeneity of a network leads to the difference in the contribu-
tion of different friends to user preference. Therefore, the SNeuMF results
did relatively poorly. At the same time, we could observe that the SN-CUNE
perform better than the SNeuMF results. Obviously, in the real world, dif-
ferent social relationships differ in the degree to which they contribute to
users’ preferences. For example, we usually use the strength of a user’s so-
cial relationship as an example. A close social friend may be highly consistent
with the user’s preferences, or have a greater influence. Therefore, when we
utilized the principle in CUNE-BPR and employed these social regulariza-
tion terms to constrain the social neighbor’s representation, SN-CUNE could
help improve the accuracy of the variant model. Nevertheless, instead of
using the above algorithm, our proposed ANSR algorithm based on the at-
tention mechanism can further improve the performance of the model. This
was because the weight based on attention can further optimize the social
regularization coefficient by changing with the context, compared to calcu-
lating the fixed influence of friends on users using the cosine formula. At
the same time, our model could effectively extract more useful feature in-
formation from redundant information and solve the problem of data noise.
As a result, from the experimental results of these variant models, we can
conclude that the superposition of the two modules shows the best effect.
Through the network embedding module, we can learn more social seman-
tic information about users. At the same time, through this social semantic
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TABLE 5.2: The comparison results on variant models.

Ciao Epinions
HR@10 NDCG@10 HR@10 NDCG@10

NeuMF 0.4302 0.2546 0.2209 0.1100
SNeuMF 0.4438 0.2587 0.2402 0.1224
SNE 0.4495 0.2602 0.2415 0.1247
SN-CUNE 0.4520 0.2592 0.2542 0.1284
ANSR 0.4751 0.2614 0.2860 0.1326

Delicious Douban
HR@10 NDCG@10 HR@10 NDCG@10

NeuMF 0.0592 0.0298 0.3250 0.1889
SNeuMF 0.0642 0.0312 0.3291 0.1902
SNE 0.0677 0.0320 0.3435 0.1926
SN-CUNE 0.0681 0.0349 0.3503 0.1928
ANSR 0.0756 0.0382 0.3607 0.2044

information, the attention layer can learn more effective representations for
the user. These two modules promote each other and cannot be separated
from each other.

In order to make the results more intuitive to be observed, we use the
graphical representation method to draw a comparison diagram of the ex-
perimental results. Based on the above results, we further analyze the impact
of the attention module on model performance. Where, ScAN represents the
use of the attention model in the variant model, while SN-uniform repre-
sents the use of the uniform weight assignment strategy in the variant model.
Figure 5.12 shows the comparison of ScAN and SN-uniform performance in
each training iteration under optimal parameter Settings. Compared with the
uniform weight distribution model, the performance of ScAN on both data
sets is the best. When K=10, our method improves 8.54% and 10.87% on HR
and NDCG, and 5.22% and 5.53% on douban, respectively, compared with
the baseline method. Since ScAN and Sn-uniform are both models based
on multilayer perceptron, the convergence speed is fast. However, with the
increase of the number of iterations, the performance began to fluctuate or
even decline, which indicates that excessive iterative calculation may lead to
overfitting of the model, thus affecting the performance of the model.
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(A) HR@10 (B) NDCG@10

FIGURE 5.12: Performance of HR@10 and NDCG@10 varying
iterations on Epinions and Douban

Network Embedding Module Analysis

In the previous discussion, we noted that the embedding layer used random
initialization method, for example, users’ embedding were obtained from
parameters compatible with Gaussian distribution, is unable to fully receive
social semantic signals from users. Through network embedding technology,
each user could be represented by a node embedding vector that include so-
cial semantic signals. Intuitively, if two users are connected with each other,
they may have some similar interest. The consequence of such embedding is
that the users with similar preferences will have close representations in the
latent space. By doing so, we can learn a better embedding for each user to
encode the social semantic signals. In order to understand the contribution
of network embedding module, we conducted next experiment to compared
the result of utilizing Gaussian initialization and the variant models utilizing
different network embedding methods. We will use _[method] to represent
models that use different network embedding methods. Table 5.3 shows the
comparison of the results of variant models deformations on the four data
sets. From the results, we can draw a conclusion that the performance of uti-
lizing embedding method initialized by Gaussian distribution is the weakest
in the embedding layer, while the adoption of network embedding method
as embedding method has generated effective improvement as a result. We
tried to analyze why SNDE worked best. This may be due to the advan-
tages of the SNDE algorithm. In SNDE [69], the node embedding can not
only learn the similarity between two connected nodes, but also learn the
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TABLE 5.3: The comparison results varying different network
embedding methods.

ciao epinions
HR@10 NDCG@10 HR@10 NDCG@10

_GD 0.4326 0.2598 0.2402 0.1198
_hope 0.4598 0.2603 0.2751 0.1287
_n2v 0.4602 0.2607 0.2785 0.1292
_line 0.4632 0.2602 0.2815 0.1307
_snde 0.4751 0.2614 0.2860 0.1326

delicious douban
HR@10 NDCG@10 HR@10 NDCG@10

_GD 0.0591 0.0229 0.3202 0.1673
_hope 0.0708 0.0340 0.3535 0.1947
_n2v 0.0713 0.0347 0.3541 0.1972
_line 0.0723 0.0362 0.3581 0.2017
_snde 0.0756 0.0382 0.3607 0.2044

secondary similarity between two common neighbor nodes that are not di-
rectly connected. This has practical implications for social recommendation
systems.

In addition to the above points, we also found through the experimental
results that the adoption of network embedding can accelerate the conver-
gence speed of the neural network. To prove this finding, we carried out the
following experiment. In order to enrich the experimental data, we divided
Douban data set into two data sets with different data sparsity. We deleted
user data with less than 5 rating records to form the data set named Douban5,
at the same time, we deleted user data with less than 10 rating records to
form the data set named Douban10. ScAN represents the use of network
embedding model, while Scan-Node represents the model using a random
initialization method. These two models were experimented on these two
different data sets. Figure 5.13 shows the performance changes in the HR@10
and NDCG@10 results as the number of iterations increases. We found that
the ScAN results were relatively superior and could accelerate the conver-
gence rate of the neural network. In particular, when k = 10, ScAN performs
better than ScANnode and received 7.88% on HR and 7.45% on NDCG re-
spectively on Douban5. While, ScAN performs better than ScANnode and
received 3.80% on HR and 4.77% on NDCG respectively on Douban10. In ad-
dition to the above results, we also found that the model training converges
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faster on the Douban5 dataset. The reason may be that the social recommen-
dation system is a solution for the the data sparsity problem. When training
data set is sparse, this advantage is amplified, so the convergence speed of
the network is accelerated. However, when the data set is relatively dense,
the performance enhancement reflected by social information is not as obvi-
ous as that reflected by sparse data.

(A) HR@10 (B) NDCG@10

FIGURE 5.13: Performance of HR@10 and NDCG@10 varying
iterations on Douban5 and Douban10

5.5 Discussion

5.5.1 Data Sparsity Problem Study

The core goal of social recommendation system is to alleviate the data spar-
sity problem of traditional collaborative filtering methods. In the experiment
of this section, we will analyze the effect of the proposed algorithm on alle-
viating data sparsity. In order to enrich the experiment data, we still divide
the original data set into four data sets according to the degree of data spar-
sity. The sparsity of the data is measured by the number of the user’s rating
records. In this experiment, we divided the data set into four data sets (0-5,
5-10, 10-20, 20-50) according to the number of rating records of users. Next,
we will carry out experiments on these four experiment data sets to check if
the model have the ability to recover the data sparsity problem. We chose
NeuMF and CUNE-BPR as the baseline algorithms in the experiment. Figure
5.14 shows the comparison results of different algorithms across three data
sets. From the histogram of results, we can easily see that our model always
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performs relatively well on data sets with different degrees of sparsity. The
reason for this is that NeuMF is a collaborative filtering method based on
deep learning that uses only the user’s rating data, so data sparsity can affect
the results of the model to some extent. ANSR, which is a social recommen-
dation algorithm based on deep learning, performs better than NeuMF by
learning more features from the user’s social domain, enabling the model to
learn better user representation and improve recommendation performance.
Compared with CUNE-BPR, our algorithm can further improve the accu-
racy of user representation. In particular, we find that ANSR performs better
when the data set is relatively sparse. However, with the increase of data
sparsity, the superiority of the model began to decrease. This may be related
to the rating data of users. It can help the model learn rich user representa-
tions since the rating data is diversity.

(A) HR@10 (B) NDCG@10

FIGURE 5.14: (a), (b) are HR@10 and NDCG@10 of NeuMF,
CUNE-BPR, ANSR on the Douban dataset w.r.t. different data

sparsity levels.

5.5.2 Discussion

In the following experiments, we will analyze other factors that affect the
performance of the model, especially the hyper-parameters. Regularization
and dropout are both commonly used techniques in neural networks, whose
main purpose is to control the complexity of the model and reduce the in-
fluence of overfitting. The essence of overfitting is that the model is too
complex, which weakens the generalization ability. Model complexity is im-
portant for generalization of the model. Regularization is a general term for
suppressing overfitting methods, which reduces the complexity of model by
dynamically adjusting the value of model parameters. This is because when
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the value of some parameters is small enough, the corresponding attributes
of the parameters have little effect on the result, which is essentially the effect
of non-related attributes. To obtain a stable and high generalization model,
it is necessary to utilize these techniques to prevent model from overfitting.
Therefore, we conduct experiments and compare the results using different
hyper-parameters to help us choose an appropriate hyper-parameter to con-
trol the complexity of the model. Figure 5.15 shows the comparison of model
results when hyper-parameters take different values. From the results, we
can observe that as the regularization parameter l changes, the model’s per-
formance changes accordingly. When the regularization parameter l is too
large, the model performs relatively poorly. This is because when the reg-
ularization parameter l is too large, the more stringent the constraints, the
model loses its ability to fit. The regularization parameter l can’t be too
small too. If it is too small, the regularization parameter l loses its ability to
restrict the parameters, and the network will tend to rely on certain charac-
teristics, which reduces the generalization ability of the model. Therefore, we
should choose a more reasonable regularization coefficient in a limited range.
Meanwhile, embedding size has a corresponding impact on the model per-
formance. We find that the model performance is relatively poor when there
is small embedding dimension.on the contrary,the model performance is also
affected when the embedding dimension is too large. This is because embed-
ding size also affects the generalization ability of the model. When the size
is too small, the model cannot learn effective features, thus resulting in the
lack of fitting ability of the model. When the size is too large, the complexity
of the model will greatly increase, which is easy to lead to overfitting. There-
fore, it is very important to select the appropriate embedding dimension for
the fitting ability of the model.
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(A) HR@10 (B) NDCG@10

(C) HR@10 (D) NDCG@10

FIGURE 5.15: (a) and (b) are HR@10 and NDCG@10 of ANSR
on the Ciao dataset w.r.t different embedding dimension size
D, respectively. (c) and (d) are HR@10 and NDCG@10 of ANSR
on the Ciao dataset w.r.t different regularization parameter l,

respectively.

5.5.3 Threats to the Experiment

In the above experiment, we have discussed the influence of the hyper-parameters
of the model on the experimental results. In this section, we will continue
to discuss other factors that may influence the results of the experiment.
Through different processing of the data set, we have found that different
evaluation protocols will lead to great deviation of the experimental results.
For example, we have discussed how to generate test data. We adopted the
leave-one-out protocol to generate the test data. The meaning of leave-one-
out protocol was that we randomly selected an item from his implicit feed-
back and put it into the test data set for each user. Then, we will random
select 300 items as the test set. The advantage of doing this was to save a lot
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TABLE 5.4: Leave-one-out vs Hold-out

Douban
leave-one-out protocol hold-out protocol

HR@10 0.3607 0.0598
NDCG@10 0.2044 0.1203

of testing time, so that we can get the experimental results as soon as pos-
sible. Of course, there are other ways to generate test data. For example,
we could directly divide the data set into a training set, a validation set, and
a test set. At this point, the test will iterate over all item data, resulting in
slower test time. Table 5.4 displayed the comparison results when different
protocols were selected.

The deviation of the experimental results is also of practical significance.
Because in real life, online platforms can have millions of items. Recommen-
dation results from all items are unrealistic. Typically, recommendation re-
sults are generated from a set of candidates. This candidate set is a set smaller
than the total item set that is generated by a crude algorithm in advance ac-
cording to the category to be recommended. This is similar to the small test
set of 300 items generated when we used the leave-one-out protocl. There-
fore, the results of the negative sample could better reflect the actual results.
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Chapter 6

Adaptive Social Influence Learning
for Recommendation via
Heterogeneous information
Networks

6.1 Motivations and Rationales

In the previous chapter, we introduced that the social-aware recommenda-
tion system can recover the data sparse problem when use the users’ social
information. The prediction result of the preference is effected not only by the
users’ past rating behaviors, but also influenced by the users’ social neigh-
bors’ preference. However, the data of explicit user-user social links also has
the problem of data sparsity, which is much higher than the user-item rating
data. In most real world systems, such as Epinions, the social relations data is
also sparse, with a trust density of just 0.029%. The problem of data sparsity
is not only in the user’s rating data, but also in the social aspect, users rarely
establish explicit social relations with other users. Figure 6.1 is an Example
of the social friends’ size of users grouping by the number of the observed
relation data in the dataset we used in our paper. From this figure, we can
observe that Nearly half of the users only have zero to five social friends.
Only 100 users have more than 50 social friends. Therefore, using existing
social data to help predict users’ preferences is very limited. However so
far, few studies have focused on the sparsity issue of users’ social relation
data. Therefore, we need to consider how to overcome this shortcoming and
help users expand more relations with the other users who have similar in-
terests to help predict users’ preferences, and thus reduce the impact of the
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sparsity problem on the performance of the social-aware recommendation
system. Besides, users’ social relations do not always play a positive role in
predicting users’ preferences. Although we would like to find more potential
user relations to infer users’ preferences, we need develop a specific model
to verify whether these user relations have a positive effect on the predicted
results.

FIGURE 6.1: Example of the social friends’ size of users group-
ing by the number of the observed rating data.

Last but not least, the current end-to-end recommendation system based
on deep learning is difficult to interpret the recommendation results. Rec-
ommendation explanation is to provide users with recommendations results
and at the same time give the reasons for recommendation. Deep learning
is basically viewed as a black box, and it’s hard to explain. We can only un-
derstand the input and output of the deep model, but it is difficult to under-
stand how the black box works. This leads to the difficulty in predicting and
debugging the results of deep learning models, which ultimately affects the
understanding of the models and the improvement of the results. Therefore,
How to make users understand the recommendation generating mechanism
is also valuable for researchers and recommendation algorithm developers to
better understand the operating principle of the algorithm, which can help
us to answer questions such as why these recommendations are given to me,
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how to improve the recommendation effect, and what data or features can
affect the recommendation results.

First, for the purpose of solving the mentioned shortcomings, it is nec-
essary to find a way to enrich the user’s social datas. Accordingly, hetero-
geneous information network (HIN) was utilized to help users find new so-
cial neighbors who will share similar interest, which can also be regarded as
users’ implicit social relations, and utilized these implicit social relations to
solve the mentioned problem. In social theoretical studies, an important ex-
planation for the relatively sparse social network data of users is that some
users rarely explicitly establish social connections with other users. As a re-
sult, the explicit social relations we can observe in social networks represent
only a limited portion of a person’s real social network. Therefore, we want
to find those users who have no explicit relations with the user, but share
similar preferences with the user, and thus are likely to be friends of the
user. We believe that users with similar preferences and the same friends
as target users can be used as auxiliary social data of target users to make
up the missing part of social relations. For example, in Figure 6.2, u1 and
u4 are "strangers" in the social network, there is no clear social relationship
between them, but they are both interested in the same movie, so it can be
assumed that u1 and u4 may be potential friends, and the rating information
of u4 can be used to help predict the preference of u41. Motived by [70, 71], it
is naturally to combine the user-user social network and the user-item rating
network into a whole network, which could be denoted as a heterogeneous
information network. Even if the user is not directly connected in the original
social network, an indirect connection can be created in the HIN through the
user-item link. Therefore, establishing a HIN to help users find indirect social
relations will help the social recommendation system alleviate the problem of
social data sparsity. Another problem is that the constructed heterogeneous
information network will be a complex network structure, therefore how to
reasonably find users’ potential social friends with similar preferences also
needs to be considered.

In the above discussion, we have discussed how the obtaining auxiliary
user social links can help solve the problem of data sparsity. However, we
need a reasonable way to use these auxiliary social links. Obviously, these
newly acquired auxiliary social links do not necessarily play a positive role
in predicting users’ preferences. It has been discussed in the social regular-
ization method that different social neighbors have different effects on users.
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FIGURE 6.2: Example of an HIN in a recommendation sys-
tem. The dotted blue line represents that a user has rated an
item, and the solid yellow line represents the user trust his/her

friends.

A simple example is the diversity of users’ social relationships. In general,
the closer the relationship between users, the stronger the influence between
users should be. If we just utilize these auxiliary social relations equally, they
are not necessarily effective for the model and may even become the input
noise of the model, thus reducing the performance of the model. Therefore,
the usage of these auxiliary social relations requires a reasonable evaluation
of their quality. To solve this problem, we put forward a model based on
attention neural network, which will automatically assign different weights
to different social relations, so as to control the influence of social relations
on users. In general, when a social relationship contributes more to the pre-
diction of user preferences, it should be given higher weight, while when a
social relationship is not important to the prediction or even makes noise, we
need to punish the social relationship by assigning it as little weight as possi-
ble. Through the above process, we can use these social auxiliary links more
properly. Another important reason is the dynamic nature of social impact.
Even the same social relationship may not produce the same contribution to
the same user. For example, as shown in Figure 6.3, when we want to recom-
mend a science fiction movie to Alice, Mike‘s influence may be higher than
Angel’s. Because Mike has more experience in science fiction movie. How-
ever, when we want to recommend a romantic movie to Alice, Angel may
have a higher influence. Because the romantic movies played a large part in
angel’s historical feedback data. Therefore, it should be noticed that the user
influence varies with the context and does not always remain the same. It
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should be considered how to learn dynamic influence value during differ-
ence context. Another important reason is that the model based on attention
network can improve the interpretability of the recommendation system. We
can judge the influence of different factors on the recommendation results
according to the different weights.

FIGURE 6.3: Example of the social influence.

6.2 Methodology

6.2.1 Overview of HASRec

The purpose of the proposed model is to infer user preferences and provide a
top-k recommendation item list to user. To achieve this purpose and solve the
problems mentioned in the previous section, our proposed model will consist
of two main parts, the first part is the missing link identification module and
the second part is the attention-based recommendation module. The missing
link identification module was proposed to figure out social data sparsity
issue. After generating new user social neighbors, we used the user’s new
social network as input of the attention-based recommendation module. This
module aim to utilize the users’ social relations in a more reasonable way to
learn a better representations for the user. In the end, the model will generate
a recommendation list for users. In the subsequent part, these two parts will
be introduced in details.

6.2.2 Missing Links Identify Module

The primary purpose of the proposed missing links identify module it to dis-
cover the unobserved relations between users to enrich the users’ social data.
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To achieve this goal, our missing links identify module is mainly divided into
three steps: 1) Establish a heterogeneous information network; 2) Generate
users’ social semantic corpus by random walk. 3) Learn the latent represen-
tation of users via word2vec model. Through this three steps, we can find
users’ top-K similar friends by calculating the similarity between users. The
framework of this module was shown in 6.4.

FIGURE 6.4: The framework of Missing Links Identify Module

• Heterogeneous Information Network Construction: In the first step,
we need to connect the user-item rating network and the user-user so-
cial network together to form a complete heterogeneous information
network. The process of generating HIN was demonstrated in Figure
6.5. User-item rating network (User-Item-NET) using rating relations
to connect two sets of nodes from different sets, namely users set and
items set. The connection between user-item represents a user-item rat-
ing feedback. For example, the edge between user 1 and item a indicates
that the user 1 has rated item a. Since both network structures contain
the same node type ’user’, we can connect the two networks together
to form a new network structure through the user nodes. In this net-
work structure, there are two types of edges between nodes, namely,
social relations and rating relations. After the new network is built, we
can use indirect connections between users to find other users that were
not connected in the original network structure. Moreover, as the HIN
is rich in semantic information, for example, two users connected by
the same item can be considered to have similar preferences, which can
help us to obtain more reliable users with similar semantic information.
Next, we will find users with similar semantics by random walk.
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FIGURE 6.5: the Construction of a Heterogeneous Information
Network from a user-item rating network and a user-user social

network.

• Generate users’ social semantic corpus by random walk: Heteroge-
neous networks contain more semantic information than homogeneous
networks, and if we just use methods like DeepWalk and Node2Vec, we
can only simply number the different nodes and then conduct a random
walk. However, this approach ignores the type information of nodes
and treats user and item as nodes of the same type, which loses a lot of
semantic information. To solve this problem, we use the walk strategy
based on the meta-path to generate node sequence. A meta-path can
be understood as a predefined sequence of node types. In general, a
meta-path is denoted as a path in the following form:

A1
R1! A2

R2! ...
Rl! Al+1 (6.1)

wherein R denotes a composite relation between a start object A1 and
the end object Al+1. For example, the UIU represents [user � item �
user]. By the definition of meta-path, a series of node sequences with
semantic and structural dependencies between different types of nodes
can be obtained in heterogeneous information networks. The meta-
paths utilized in this paper are presented in Figure 6.6.

For example, the meta-path P1 : user click! item click user, which is de-
noted by UIU, represents that two users have rated the same item
which illustrate that they have similar interest, and a meta-path P2 :
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FIGURE 6.6: The meta path designed in our work. U denotes
the user and I denotes the item.

user click! item click user trust user, which is denoted as UUIU, represents
that a user may have similar preference with another user who have

similar taste with his social neighbor. Given a meta-path A1
R1! A2

R2!
...

Rl! Al+1, we use the meta-path to guide the next node in a random
walk, the transition probability is defined as:

p(vl+1|vl, r) =

8
<

:

1
|Nl+1(vl)| , (vl+1, vl)er

0, otherwise
(6.2)

where vl denote the current node in the walk, and vl+1 is the next node
in the walk. Nl+1(vl) denote the node type of the neighbor node of vl.

1
|Nl+1(vl)| means that if Nl+1 = I, the next node will randomly selected

with equal probability. Through random walk based on the meta paths
defined above, we will get paths rich in different semantic information.
These generated node sequence will be put into a set which is called
social corpora. It is found that the probability distribution of nodes in
the random walk follows is similar to the word frequency distribution
in the context corpus. Therefore, inspired by word2vec, we can use
the skip-gram model to learn the semantic characteristics of each node.
Next, we will learn the representation of each node by treating these
node sequences as sentences in the language model.

• Embedding Learning via skip-gram: Inspired by word2vec, we uti-
lized the skip-gram model to learn the node embedding. Word2vec is a
model of learning semantic knowledge in an unsupervised way from a
large-scale text corpus. It represents the semantic information of words
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by learning word vectors. In other words, an embedded space is con-
structed to make words with similar semantics close to each other in
the space. Skip-gram model is a fully connected neural network with
only one hidden layer. Its training process can be regarded as a Fake
Task. In other words, the purpose of training model is not to use the
trained model for downstream tasks, but to obtain the weight matrix
of hidden layer, because the weight matrix contains the weight infor-
mation of all words. The optimization function of skip-gram model
is to maximize the average log probability of a given word appearing
in a corpus. According to skip-gram’s idea, we will maximize the co-
occurrence probability of nodes in each random walk. In general, the
objective function is defined as:

max Â
veV

Â
vkeC(vl)

logp(vk|vl) (6.3)

where vl is the current node, C(vl) is the context of node vl, which
the widow size is fixed. logp(vk|vl is usually calculated by a softmax
function, which is defined as:

logp(vk|vl) =
exvk xvl

ÂveC(v) exvxvl
(6.4)

where xvk represent the embedding vector of node vk. We only employ
the same type node to optimize the objective function. After defining
the objective function, we can use gradient descent to optimize the ob-
jective function.

Through the above steps, we first generate the corresponding semantic
corpus for each node through a meta-path based random walk, then use
the stochastic gradient descent method to optimize the skip-gram model’s
objective function. Through training, a vector representation of each node
can be obtained. We can calculate the cosine similarity of each pair of users
through the embedding vector, and then find most K similar users for each
user, namely the new top-K social neighbor.
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FIGURE 6.7: The architecture framework of Attention-based
Recommendation Module.

6.2.3 Attention-based Recommendation Module

In the previous section, we utilized the meta-path based random walk to find
neighbor users with the similar preferences, and thus to enrich the users’
social information in order to recover the data sparsity problem which ex-
isting in the training data. In this section, we will use the generated user
social semantic neighbors to help predict user preference. Similar to other
social-based recommendation systems, we also assume that users’ prefer-
ences come from two aspects: the users’ history rating data and history rating
data from the users’ neighbors. To increase the interpretability of the system,
we divided the factors of users’ latent preferences into two aspects, item-
based and social-based representation. The first is used to achieve the user’s
preferences based on the user’s rating history. The latter representation ex-
trapolates the effect of a user’s social relations on users’ preferences. The
overall architecture of attention-based recommendation module is shown in
Figure 6.7. The following section will give the details of the Attention-based
Recommendation Module.

Embedding Layer The input data of attention-based recommendation
module were the user’s interaction data which has a property of item and
the other is social interaction data. More particularly, each user and item are
given a unique identity and then stored in a file. One input instance for user
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will be the user-item pair in addition with the additional social neighbors for
this user, which were denoted as a friends list. These index number will be
the initial input for the embedding layer. Obviously, the input data needs to
be encoded before it can be understood and calculated by a computer. The
embedding layer can be viewed as a simple matrix look-up table that trans-
forms positive index into a dense vector of fixed size. Through embedding
layer, each user and item will be represented by a dense and low-dimensional
vector. Then, these embeddings will be put into next layer for further pro-
cessing. Besides the user’s feature, the user’s friends feature will also be put
into next layer to incorporate social information the enhance the model.

Attention Layer

FIGURE 6.8: The framework of the attention layer.

In the attention layer, we will focus on the task of incorporate the user’s
social information into this model. The framework of this layer was demon-
strated in Figure 6.8. Of course, we can take the simplest approach, such
as the one used in SocialMF, which averages all the features of a user’s so-
cial neighbors to get a social-based representation of a user. The problem
with this is that not all social neighbors are properly utilized in the model.
The irrationality mainly reflected in two problems. Firstly, different friends
will have different influence on user. For example, close friends and family,
these connections could be viewed as strong relations because they often in-
teract with each other. Compare with this, Classmate and colleagues could be
viewed as weak relations for that they may not often interact with each other.
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Obviously, Social friends with strong connections tend to have a higher in-
fluence on users than those with weak relations. Assign uniform weight to
all user’s friends will not work well. Therefore, it is necessary to consider
how to assign different influence value to user’s different friends to model
this heterogeneous social effect. Another problem of the influence in social
effect is that the influence of social relations is not universally applicable to
any context. We refer to the user’s choice of different items as a context.
When user faced with different items, the social influence changes dynami-
cally. Therefore, it should be noticed that the user influence varies with the
context and does not always remain the same. It need to be considered how
to learn dynamic influence value during difference context.

Based on the above discussion, we propose to use the attention network to
make reasonable use of users’ different social relations. We utilized the same
idea provided by an attention mechanism to assign different and dynamic
weights to different social relations. You may wander ‘Why this weight is
dynamic’? The reason is that the contribution of a friend is dependent on
his relation type and the target item’s property. when the user interacts with
different items, the context will change. Therefore, the attention value will
also change due to the context change. Generally, under the attention neural
network, the weight is called an attention score. First, we need to calculate
the correlation between the user feature and friend feature and item feature.
The following function demonstrate how to represent this correlation vector:

a⇤i f = s(W1 ⇤Ui f + W2 ⇤Ui + W3 ⇤Vj + b) (6.5)

Where, W1,W2 and b were the weights and bias utilized in this attention
layer. Ui represents the user feature, Vj represents the item feature and Ui f

represents the friend features. Then, we utilize so f tmax() function to con-
vert the correlation vector into the probability distribution with the sum of
all element weights being 1. As a result, the social neighbors who are more
useful to the prediction result will assign a higher weight through the atten-
tion score learned from the so f tmax() function. The process was defined as
followings:

ai f =
exp(a⇤i f )

Â f eNi
exp(a⇤i f )

(6.6)

where, ai f can be view as the influence weight of each friend with respect
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to different candidate items. Finally, we can get the updated the user’s social-
based preference by the following function:

users
i = Â ai f ⇤ ui f (6.7)

By doing so, these weighted friends features can describe a user’s feature
more accurately than directly using the friend feature.

Fusion Layer Next, we use a fusion layer to fuse the user’s different fac-
tors obtained from the previous layer into a synthetic one. We can simply
generate a new vector of the user by concatenating these two latent factors
to a wide one. However, it is difficult to determine which factor contributes
more to the recommendation results. Therefore, we apply an attention net-
work to assign non-uniform weights to different factors. If the social factor
influences the user more on item selection, the attention network will learn
a higher weight on social-based representation and penalize the item-based
representation. Let users

i denotes the social-based representation, useri de-
notes item-based representation, respectively. The attention score is defined
as:

s⇤u = s(W ⇤ users
i + b), I⇤u = s(W ⇤ useri + b) (6.8)

where W, b are the weights and bias of the attention network, respectively.
Then, the attention score of the social factor is obtained by normalizing with
a softmax function:

as =
exp(s⇤u)

exp(s⇤u) + exp(I⇤u)
(6.9)

The user’s final representation is defined as:

ui = as ⇤ users
i + (1� as) ⇤ useri (6.10)

Predict Layer After obtaining the latent factors of users and items, we
predict the probability of user u clicking the item i. The prediction probability
is defined as follows:

r⇤i,j = ui ⇤ ij (6.11)

6.3 Optimization and Training

Unlike other methods based on user rating matrix, the task of our recom-
mendation system is to rank items based on implicit feedback from the user
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(such as clicks, favorites, etc.) to produce a personalized recommendation
list. The implicit feedback of users is mainly used in BPR (Bayesian Person-
alized Ranking) to sort the item through the maximum posterior probability
obtained by bayesian analysis, so as to generate recommendations. There-
fore, we choose BPR as the objective function to optimize the model. Accord-
ing to the derivation, it can be defined as:

LBPR = Â
(u,i,j)eDs

�lns(y̌ui(Q)� y̌uj(Q)) + lQ||Q||2 (6.12)

Where, Ds is the training set that we extracted data from the original data
set and built, and its construction method is as follows. Based on the user
history feedback data in the original data set, we will mark all users and the
corresponding items. If item i is in the positive feedbacks of user u, and there
is no item j, we will randomly sample item j from all the negative feedbacks
as the training data, so that we will get a training triple < u, i, j >. The
algorithm to generate the training set is as follows:

Algorithm 6 Algorithm of generating training instances
Input: rating matrix R
Output: training instances < u, i, j >

1: for (u, i) in R do
2: i_idx.append(i)
3: u_idx.append(u)
4: neg_item = choice(item_list)
5: while neg_item in pos_item do
6: neg_item = choice(item_list)
7: end while
8: j_idx.append(neg_item)
9: end for

10: return u_idx,i_idx,u_idx

Additionally, to increase the robustness of the model, we fine-tuned the
learning algorithm to improve the performance of the model on unknown
data. We update the objective function by adding a regularization term lQ||Q||2.
We need to optimize the value of the regularization term lQ to get a well-
fitting model. A good optimization algorithm can improve the running time
of the algorithm. Therefore, we choose Adam optimization algorithm [72]
instead of the classical stochastic gradient descent method to update the net-
work weight more effectively. We also leverage mini-batch training strategy
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to count gradient and minimize loss function. For each training epoch, a
batch size of user-item pairs together with the social friends of the user are
input into the HASRec model to compute the loss. To alleviate overfitting
and improve the generalization ability, we apply the dropout strategy to our
model. Only a part of the parameters are updated during training.

6.4 Experimental Settings

6.4.1 Datasets

The data set used in this experiment have been introduced in Chapter 5.
Here, we chose three of these data sets to conduct experiment: Delicious,
Ciao, and Douban. They are commonly used in the field of social recommen-
dation. Since we have covered each data set in detail in the previous chapter,
there is no further description of the data set in this chapter. It is noteworthy
that the above described datasets only contain explicit feedback data, but we
want to evaluate the performance against implicit feedback data. Therefore,
we need to do some processing on the data. We mark the rating data of each
user as 1 to indicate that the user has clicked or bought the item. However,
the consequence of such processing is that each data set contains only posi-
tive samples, but no negative samples. Therefore, in the actual experiment,
it is necessary to randomly generate negative samples to train the model.

6.4.2 Baselines

So as to validate the efficacy of the methods presented in this chapter, we
selected the baseline algorithms commonly used in the evaluation of recom-
mendation system for comparison. Here, we also added the proposed ANSR
method described in the previous chapter for comparison. The above men-
tioned methods can be divided into the following groups: factor decomposition-
based algorithms, social-based algorithms, and DL-based algorithms. Some
of these algorithms have already been described in detail in Chapter 5, and
we will not repeat them here. The specific description is as follows:

• BPR [58]: BPR is a commonly used ranking algorithms in recommen-
dation systems.
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• SBPR [20]: A social-aware recommendation algorithm which extend
BPR. The basic concept of SBPR is that users tilt towards to prefer the
items that their social neighbors clicked or bought.

• NeuMF [66]: A CF method based on a multi-layer perceptron. It has
been proven that NeuMF is superior to the traditional recommendation
algorithms.

• CUNE-BPR [27]: A network embedding(NE)-based model, which cal-
culate the similarities between users through network embedding. It
extended SBPR by assigning different regularization terms to different
friends.

• SERec [73]: A a social-aware recommendation algorithm that integrate
social exposure into CF to improve social-based recommendation per-
formance.

• ANSR [61]: This is the proposed method in Chapter 5. ANSR is an
attention-based deep learning model for social recommendation.

6.4.3 Evaluation protocols

In general, the data set is divided into training set and test set. There are
two drawbacks to this simple division. First of all, the selection of the final
model and parameters will greatly depend on how you divide the training
set and the test set. Secondly, the method only uses part of the data to train
the model. The test set is independent of the training and does not partici-
pate in the training at all, and is used for the evaluation of the final model.
In the process of training, the problem of overfitting often occurs, that is, the
model can match the training data well, but can not predict the data outside
the training set well. Therefore, we use cross validation to train the model.
We integrate the original data into 5 groups (5-fold), make a validation set for
each subset data respectively, and take the remaining 4 sets of subset data as
the training set. After the model was trained, we need to evaluate how well
this model. How to evaluate a recommendation algorithm is an important
link in the research of recommendation system. Accuracy metric is the most
important metric in recommender system. The most commonly used accu-
racy metrics is the recall rates. It test how many of the user’s favorite items
appear in the recommended list. It could be defined like below:
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HR@K = (Numbero f Hits@K)/(|GT|) (6.13)

In addition to predict accuracy, we also need a metric to measure the accu-
racy of the ranking of results. Normalized Discounted Cumulative Gain(NDCG)
was used as the evaluation index of the sequencing results to evaluate the ac-
curacy of the sequencing. It could be defined as follows:

NDCG@K = rkSK
i=1(

2ri � 1
log2(i + 1)

) (6.14)

where, ’gain’ represents the correlation score for each item in the list,
which is denoted as ri; ’cumulative gain’ means the cumulative gain of K
items; Considering the factor of sorting order, the item at the top of the list
will gain more and the item at the bottom will lose. If the correlation score
ri has only two values of (0,1), that is, if the item in the sorting list returned
by the algorithm appears in the real interaction list, the numerator is incre-
mented by 1, otherwise it is skipped. Finally, we need to normalize the ‘Dis-
counted Cumulative Gain’ indicator. rk represents the normalized coefficient.

6.4.4 Hyper-parameter Settings

We implement our proposed model HASRec on Tensorflow, which is imple-
mented by the Python language. The parameters used in the initial model
are randomly initialized. In the experiment, the dataset was randomly split
into two subsets, among this, 30 percent of the data was used as test data,
and the remaining 70 percent of the data was used for cross-validation. Af-
ter we prepared the data and model, we needed to choose the appropriate
hyper-parameters to train the model. Once these hyper-parameters were not
chosen well, the performance of the neural network is likely to be worse than
that of the perceptron. Therefore, it is necessary to avoid unreasonable influ-
ence of hyper-parameters on the model. Learning rate determines the step
size of weight iteration, so it is a very sensitive parameter. There must be
an optimal value for the initial learning rate. If the learning rate is too large,
it will not converge; if the learning rate is too small, it will converge very
slowly or fail to learn. With the increase of learning rate, the model may
transition from under-fitting to overfitting. As a rule, the learning rate could
be tuned among [0.1,0.01,0.001]. The learning rate is rarely unchanged in the
training process of the model, the way to change the learning rate is called
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the self-adaptive learning rate change method. Therefore, we often chose
RMSProp as the optimization method. Although the model performance is
not as sensitive to batch size as the learning rate, batch size also become a
very key parameter when the model performance is further improved. We
could feed the whole data set or a sample to the neural network, or feed a
part of the samples at a time to complete the iteration. In engineering prac-
tice, from the point of view of convergence speed, small batch sample sets
are optimal, which is also known as mini-batch. Therefore, the batch size
is the result of tuned to [64,128,256,512]. For the purpose of preventing the
model from overfitting, we use regularization and dropout methods. Specif-
ically, we utilized L2 regularization method to impose additional constraints
on the model to restrict the range of parameter values, so as to prevent the
model from becoming too complex. Therefore, the regularization parame-
ter will be adjusted between [0.01,0.001,0.0001]. In addition, during forward
propagation, we make the neurons in the network stop working with a cer-
tain probability. By convention, the drop-out rate will be adjusted between
0.4 and 0.6.

6.5 Performance Evaluation

6.5.1 Performance Comparison of Recommendation Systems

For the purpose of verifying the effectiveness of our proposed algorithm, we
carried out experiments on the above mentioned data sets and compared
the experiment results of HASRec to the results of the mentioned baseline
methods. Table 6.1 demonstrated the experiment results of HASRec and the
baseline methods on three different datasets. Several conclusions could be
obtained through the observation of the results.

1) we found that based on depth of learning is always better than the ef-
fect of the methods such as NeuMF based on traditional factorization method
such as BPR since compared to the deep learning based method, the method
based on factorization can only learn a linear relationship between the user
and item, NeuMF endows the model with more learning and representation
capabilities through hierarchical network results to learn the complex non-
linear relationship between the user and the item.

2) Another finding is that social-aware recommendation systems such
as SBPR, CUNE-BPR always outperform methods such as BPR and NeuMF
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that use only information about the user’s interaction with item. This phe-
nomenon is easily explained, because the method of using the user history in-
teraction with the item were easy prone to data sparsity problem, and social-
aware recommending method has the advantage that it can incorporate so-
cial information into the model, leverage the characteristics of users’ social
neighbors to enrich their own characteristics, so as to learn better user por-
trait to promote the performance of the system.

3) As social-aware recommendation system, HASRec’s performance is
better than CUNE-BPR, SERec, and ANSR methods. This is because, com-
pared with other algorithms, HASRec method helps users generate connec-
tions with rich semantic information through the random walk base on meta-
path, through which users can find their potential social neighbors, thus al-
leviating the problem of sparse social information.

TABLE 6.1: Recall@K and NDCG@K comparisons for different
top-k values on different datasets

Delicious Recall@10 NDCG@10 Recall@20 NDCG@20 Recall@50 NDCG@50
BPR 0.1139 0.0758 0.1613 0.0836 0.2284 0.1033
SBPR 0.1477 0.0881 0.1733 0.1068 0.2701 0.1304
NeuMF 0.1454 0.0948 0.1658 0.1029 0.2615 0.1255
CUNE-BPR 0.1544 0.0968 0.1903 0.1037 0.2731 0.1327
SERec 0.1511 0.0997 0.2057 0.1152 0.2705 0.1342
ANSR 0.1729 0.1120 0.2287 0.1310 0.3120 0.1465
HASRec 0.1995 0.1292 0.2526 0.1408 0.3308 0.1593
Ciao Recall@10 NDCG@10 Recall@20 NDCG@20 Recall@50 NDCG@50
BPR 2.7525% 1.3454% 4.6078% 2.3151% 7.1967% 3.3265%
SBPR 3.8335% 2.2744% 5.5479% 2.4441% 9.5698% 3.8875%
NeuMF 3.7585% 2.3541% 5.1323% 2.4026% 9.3597% 3.6882%
CUNE-BPR 4.2172% 2.3938% 5.7372% 2.4928% 10.0283% 3.8729%
SERec 4.2581% 2.4094% 5.8028% 2.4827% 10.2373% 3.9287%
ANSR 4.4172% 2.4827% 5.9479% 2.5413% 10.5698% 4.0875%
HASRec 4.7709% 2.8333% 6.1630% 2.8997% 11.2452% 4.1160%
Douban Recall@10 NDCG@10 Recall@20 NDCG@20 Recall@50 NDCG@50
BPR 0.0381 0.0824 0.0698 0.1056 0.1366 0.1151
SBPR 0.0482 0.0973 0.0802 0.1108 0.1402 0.1192
NeuMF 0.0452 0.0927 0.0729 0.1083 0.1392 0.1184
CUNE-BPR 0.0493 0.0975 0.0928 0.1092 0.1483 0.1203
SERec 0.0502 0.0989 0.0972 0.1107 0.1458 0.1239
ANSR 0.0528 0.0992 0.1025 0.1124 0.1565 0.1283
HASRec 0.0598 0.1023 0.1092 0.1173 0.1672 0.1302



94
Chapter 6. Adaptive Social Influence Learning for Recommendation via

Heterogeneous information Networks

6.5.2 Model Analysis

Next, we will conduct experiments to analysis how the proposed modules
contribute to the final results. In the ablation studies, we will transform the
proposed models into different variation models and compare the results. To
clearly express different variant model, Figure 6.9 was used to demonstrate
the different variant model. Firstly, we choose NeuMF method as the bench-
mark algorithm to compare the performance of variant models. This is be-
cause the various deformation models are based on the NeuMF model. Next,
we performed ablation studies by superimposing different modules on the
NeuMF model to compare the effectiveness of different modules. In order to
reasonably stack each module, we took the idea from ensemble method, and
divided the factors affecting user characteristics into the user’s own potential
preference characteristics and social preference characteristics. NeuMF + S
stands for incorporation of social information into the NeuMF model. The
user’s characteristics can be represented as the user’s own potential pref-
erence characteristics and the weighted average of the user’s social neigh-
bors’ feature. NeuMF + hin utilized social information in the same way as
NeuMF+ s, the main difference being that it integrates the missing link iden-
tifier module into NeuMF + s to address social data sparsity. ASRec⇤ is a
variant model of HASRec with the missing link identifier module removed
and the attention module retained to evaluate the adaptive effects of different
social links.

FIGURE 6.9: The variant models in ablation study.

Figure 6.10 shows the performance of the different HASRec variant mod-
els. As it can be seen from Fig 6.10, after incorporating different modules into
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the deep learning-based model, all components have made positive contri-
butions to the improvement of the model’s performance and achieved signif-
icantly improvement. As NeuMF only utilizes users’ history interaction with
items, which suffers the data sparsity problem, it performs worse than other
variant models. NeuMF+s and NeuMF+hin perform better than NeuMF.
This is because by incorporating a user’s social profile into the model, we can
learn a user’s features from auxiliary information to solve the data sparsity
problem. Compared with NeuMF+s, NeuMF+hin performs better, especially
on the Douban dataset. Due to the different degrees of social data sparsity in
the datasets, identifying missing links has a different impacts on improving
the performance of recommendation models. The more sparse the dataset is,
the more improvement the model can achieve. HASRec and ASRec* further
improve the performance on two datasets because they include the attention-
based module to evaluate the quality of social links. Unlike the methods that
view all social relations as the same influence to the users, the variant mod-
els assign non-uniform weights to the social links. If the social links are not
helpful to a user’s recommendation results, the module will punish these
links and increase the weights of more useful social links. Compared with
ASRec*, the HASRec model add missing links identifier module enable it to
augment the user’s social data to further improve the performance of recom-
mendation models.
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(A) Recall@10 (B) NDCG@10

(C) HR@K (D) NDCG@k

FIGURE 6.10: (a) and (b) are Recall@10 and NDCG@10 of the
variant models of HASRec on the delicious dataset, respec-
tively. (c) and (d) are Recall@10 and NDCG@10 of the variant

models of HASRec on the douban, respectively.

6.5.3 Case Study

For the purpose of studying whether the algorithm we proposed can effec-
tively alleviate the problem of data sparsity, we will conduct comparative
experiments on data sets with different data sparsity degrees. Due to the
limited data, we divide the same data set into data sets with different data
sparsity. Specifically, we divided the Douban dataset into three groups ac-
cording to the number of scoring records. Where, D_50 means that the user
has less than 50 rating records, D_50_100 means that the user’s rating records
are between 50-200, and D _100 means that the user has more than 200 rat-
ing records. Next, we choose several representative algorithms to compare
with HASRec to study the performance of different models at different data
sparsity levels. Figure 6.11 shows the performance comparison results of dif-
ferent algorithms on three data sets which have different data sparsity. It can
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be found that when the dataset was sparse, HASRec improved significantly
compared to the other baselines. HASRec’s performance gains are less pro-
nounced when the data density is higher. This is because, when the data set
is very sparse, we need to make full use of social data as auxiliary informa-
tion to enrich the user portrait, so as to learn richer user characteristics. When
the data becomes dense, and the data set itself contains a lot of information,
we don’t necessarily need additional information. Of course, in practice, it is
difficult to get such dense data distribution, so HASRec is used to solve the
problem of data sparsity.

(A) HR@10 (B) NDCG@10

FIGURE 6.11: (a) and (b) are Recall@10 and NDCG@10
of NeuMF, CUNE-BPR, ANSR and HASRec on the douban

dataset w.r.t. different data sparsity levels.

We have mentioned in the discussion that attention neural network can
effectively improve the explanatory ability of models. Next, we will demon-
strate why HASRec can provide explanatory recommendation results through
a case study. For the purpose of reasonably exploiting users’ social data, the
factors affecting user characteristics were divide into the user’s own potential
preference characteristics and social preference characteristics. HASRec can
learn two attention scores for these two factors through the Fusion Layer. For
example, we randomly selected item(#387) and item(#929) from the top10 list
of user(#1408). Through the attention network, different factors are assigned
different weights, known as attention scores. In this way we can see which
factor has the greatest impact on the user. For example, item(#387) is 0.38 and
0.62, respectively; This means that social factors have a greater influence on
the recommendation results. By doing so, models provide some explanatory
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power to a certain extent. In addition to knowing which factors influence
recommendations, we can also understand the distribution of influence of
different friends on users. Figure 6.12 shows the attention distribution of the
top 10 friends of user(#1408) interact with item(#387) and item(#929). From
Figure 6.12, we can observe that different friends have different attention
weights and contribute differently. A number of friends have a higher at-
tention weight, which means they influence the target user more than other
friends. This is easy to understand, because the diversity of the network
leads to different social relationships contributing differently to users, and
therefore, these weight of attention will change accordingly.

FIGURE 6.12: Case Study: The attention distribution of sam-
pled friends of user(1408).
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Chapter 7

Conclusions and Future Work

In this paper, we discussed how to incorporate users’ social information into
recommendation models and generate a more quality recommendation re-
sults. As we have discussed in this paper, traditional recommendation algo-
rithms mainly fall ill with data sparsity issue. Several studies have demon-
strated that leveraging social information to make recommendation could
over the above shortcomings. So, our research focused on the social recom-
mendation. Despite the success of the existed works, we have found several
limitations. For example, the embedding method used in the existed work
are not sufficient to yield satisfactory embeddings for users. The user’s dif-
ferent social relations will play a different role to recommendation results.
The user’s social data are still facing the data sparsity problem. And there
are still other limitations need to solve.

For the purpose of solving the above limitations, we proposed to design a
representation learning framework to train a better model for different user
and improve the recommendation quality. To be more specific, we propose a
social semantic encoding module in the embedding layer to solve the encod-
ing problem. An aspect-aware Module and influence calculating module is
proposed in the neural network layer to solve the problem of noise data and
social influence. Last, an Identify missing link module is proposed to solve
the social data sparsity problem. There are two main contribution in this pa-
per. The first contribution is that we design a model called ’An Adaptive
Attentive Model for Social Recommendation’. In this model, we improve the
method used in embedding layer to learn a better embedding for user which
contain the social semantic signals. Besides, we design an aspect-aware mod-
ule and an influence calculating module could solve noise data problem and
assign adaptive influence on different friends. Another contribution is that
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we proposed another work called ’Enhance Social Recommendation via Het-
erogeneous information Networks’. In this work, we design an identify miss-
ing link module to find the missing link of users and solve users’ social data
sparsity problem. Also, the fusion layer provide a way to improve the inter-
pretability of the recommendation results.

These methods still have some limitations. First, this paper focuses on the
user modeling. However, the use-item rating network is not well studied. In
fact, interactions in the user-item graph should also be jointly captured to
learn item latent features. In the future work, we will further incorporate
the item modeling into the existed framework to learn a better representa-
tion for the item. We would also like to incorporate more side information,
like reviews and knowledge graphs, to the recommendation model to learn
more informative features of users and items. Moreover, we found that the
temporal signals of users are not well studied. For example, a person’s in-
terests shift over time. A person’s interests after work may be quite different
from those of his school days. In this way, the accuracy of a recommendation
system based on historical feedback will be influenced by past preferences.
Therefore, establishing a recommendation system based on timing informa-
tion need to be considered. It is also worth noting that users’ social informa-
tion is not easily accessible. Some online platform doesn’t have a clear social
network. We may need to continue to explore the user’s history to build
similar communities. These studies may brings new opportunities for social
recommender system. Besides, the evaluation of the generated friends is not
well studied. So far, we utilize the manual design to generate social data.
How is the quality of the generated social data? Inspired by the GAN, which
can automatically complete the process of data generation, and constantly
optimize to judge the quality of the generated results.

Nowadays, the development of deep learning technology provides a new
research direction for social recommendation. Other studies have attempted
to integrate other deep learning methods into collaborative filter-based mod-
els. For example, multi-task learning provides a new research direction for
the development of recommendation system. Most algorithms currently fo-
cus on a single model, which can cause the model to ignore potential in-
formation in related tasks that might improve the target task. By sharing
parameters between different tasks to a certain extent, the original task will
have a better generalization ability. For example, [74] proposed a method
based on multi-task learning that adaptively assign a personalized scheme
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to transfer the shared knowledge between item domain and social domain.
Adversarial Learning is similar to a regularization method, which can im-
prove the quality of embedding and avoid overfitting to achieve more excel-
lent performance. [75] adopted a bidirectional mapping method to transfer
users’ information between social domain and item domain using adversar-
ial learning. These latest researches provide important reference significance
for our future work.

At present, the recommender system is mainly used in PC and mobile,
which accounts for the vast majority of recommender system products. In
the future, with the development of intelligence, intelligent devices will ap-
pear in more scenes, and the application in these scenes may also need to
use recommendation technology to distribute information. Recommenda-
tion system into daily life to make life more intelligent. For example, it is
also feasible to make intelligent recommendations on smart refrigerators.
The smart refrigerator can record the consumption of food in household life
and understand the family’s eating habits. Based on the mining of family
consumption habits, it is a very feasible strategy to carry out accurate per-
sonalized food recommendation, which is directly linked to e-commerce. It
is of great commercial value and is worth looking forward to and exploring.
With the powerful generative ability of GAN, everyone can become an artist
in the future. If someone has the ability to create a story but can’t draw, GAN
can help generate the corresponding cartoon based on their idea. Not only
that, everyone can have the ability to compose and write poetry, making life
full of creativity. Another future for AI is building smart cities. With the
development of the city, the intelligent technology of the city is constantly
evolving to build an intelligent system based on serving the residents in the
future. For example, intelligent travel, based on historical information such
as traffic flow, it can intelligently control the traffic light time to make travel
more convenient. In a word, AI is the future.
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