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Chapter 1

Introduction

In this dissertation, we develop the asymptotic theory of statistics associated with
binary series. We devote ourselves to independent and identically distributed
(i.i.d.) series and stationary time series. A binary process is also called a clipped
process and a zero-one valued process. It can be recognized ( i ) a process derived
from an underlying latent process or (ii) a process whose marginal distribution is
binomial.

In the former ( i ), Stieltjes (1889) gave a fundamental result. Let (G1,G2) be
Gaussian process such that

E
(
G1
G2

)
=

(
0
0

)
and E(G1,G2)T (G1,G2) :=

(
1 ρG1,G2

ρG1,G2 1

)
.

Then, the following relation holds

ρG1,G2 = sin
(
2πCov{I{G1>0}, I{G2>0}}

)
.

This equation shows that binary series (I{G1>0} and I{G2>0}) have information about
the correlation of original series (G1 and G2).

Closely related to binary series, there is a concept called the number of zero
crossings (ZC), which can be calculated from the clipped series. ZC are defined
as the points where the sign changes in an observed time series. Rice (1944)
investigated a trailblazing work of this field. In the context of continuous-time,
Rice (1944) studied the relation between distributions of processes and expecta-
tions of the number of ZC. Afterwards, several authors studied the counterpart
results (e.g.Ylvisaker (1965) for Gaussian processes, He and Kedem (1989) for
ellipsoidal processes, Barnett and Kedem (1998) for Mixtures and Products of
Gaussian processes, and Barnett and Kedem (1991a) for functions of Gaussian
processes). Barnett (2001) gave a good review of these results. The relation is
called Rice’s formula for continuous cases or cosine formula for discrete cases.
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Hence, the cosine formula allows us to estimate the autocorrelation of a broad
class of stationary processes by using the ZC. The estimator of autocorrelations
called a ZC estimator. Kedem (1980) showed the consistency and asymptotic
normality of the ZC estimator for scalar Gaussian processes. Kedem (1994) de-
veloped the theory of the zero crossings in the filtered time series in discrete time.
Recently, the level crossing and the categorical time series have been studied by
many authors (seeBlake andLindsey (1973); Abrahams (1986); Kaufmann (1987);
Fahrmeir and Kaufmann (1987); Fokianos and Kedem (1998, 2003); Kedem and
Fokianos (2002)). There are a number of applications of ZC. For example, emo-
tion recognition from brain signals (Petrantonakis and Hadjileontiadis (2010b,a)),
speech discrimination (Panagiotakis and Tziritas (2005)), nondestructive testing
of bounded metal adherents (Kedem (1994, p.7)), and tracking a vocal sound of a
Humpback Whale (Kedem and Li (1989)), etc.

Going back to the story of zero-one valued processes, Buz and Litan (2012);
Keenan (1982); Lomnicki and Zaremba (1955) studied the properties of binary
time series. Estimation of the spectral density function based on binary series
has been developed for stationary Gaussian processes. Hinich (1967) showed
the consistency and derived the asymptotic variance of estimators of the spectral
density for M-dependent stationary Gaussian processes. Brillinger (1968) derived
the asymptotic normality for short memory stationary Gaussian processes.

So far, we know binary process for appropriate classes of stationary processes
have the information of spectra of stationary process. However, the ordinary
spectral density

fZ (λ) :=
1
2π

∑
ℓ∈Z

Cov{Zt, Zt+ℓ} exp{iℓλ}

is based on the second moment. For uncorrelated processes like GARCH process
and QAR process (Koenker and Xiao (2006)) and processes with infinite variance,
the methods based on the ordinal spectral density do not available. In order to
overcome the defect, recently, several authors advocate new type of spectra. For
strictly stationary process {Zt}, Li (2008) proposed Laplace spectra defined by

f0,0(λ) :=
1
2π

∑
ℓ∈Z

Cov{I{Zt≤0}, I{Zt+ℓ≤0}} exp{iℓλ}.

This corresponds to spectrum based on binary series. Li (2012), Li (2014), and
Hagemann (2011) studied quantile spectra, defined, for x ∈ R, as

fx,1−x(λ) :=
1
2π

∑
ℓ∈Z

Cov{I{Zt≤x}, I{Zt+ℓ≤1−x}} exp{iℓλ}.
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More generally, Dette et al. (2015) introduced the Laplace spectral density kernel
and the copula spectral density kernel, which are defined by, for strictly stationary
process {Zt} with marginal distribution F, for any (q1,q2) ∈ R2 and (τ1, τ2) ∈
(0,1)2,

fq1,q2(λ) :=
∑
ℓ∈Z

Cov{I{Zt≤q1}, I{Zt+ℓ≤q2}} exp{iℓλ},

fτ1,τ2(λ) :=
∑
ℓ∈Z

Cov{I{F(Zt )≤τ1}, I{F(Zt+ℓ)≤τ2}} exp{iℓλ},

respectively. See also Birr et al. (2017), Kley et al. (2016), Hong (2000), Lee and
Rao (2012). Hong (1999) proposed the generalized spectral density defined, for
(u, v) ∈ R2, as

f Gu,v(λ) :=
1
2π

∑
ℓ∈Z

Cov{eiZtu, eiZt+ℓv} exp{iℓλ}.

As regards discriminant analysis for time series, statistical theory for discrim-
inant analysis has been studied by many authors (see Anderson (1984), Johnson
and Wichern (1988), Liggett Jr (1971), and Shumway and Unger (1974)). The
quality of classification is measured by misclassification probability, that is, the
probability of classifying the process into the incorrect category. For more deli-
cate evaluation, we often consider the misclassification probability when the two
categories are contiguous. For the nonparametric approach, Taniguchi and Kak-
izawa (2000) elucidated that, for the I-divergence measure, the misclassification
probability tends to zero and evaluated when the categories are contiguous. Using
the Chernoff disparity measure, Zhang and Taniguchi (1995) showed that mis-
classification probability tends to 0, and discussed robustness when a sharp peak
contaminates the spectral density. Kakizawa (1996) introduced a more general
disparity measure, which includes I-divergence and Chernoff divergence measure,
and discussed the two properties. Sakiyama and Taniguchi (2004) showed the
above for locally stationary processes.

However, these classificationmethods are based on a periodogram or smoothed
periodogram, and properties of disparitymeasures are only discussed. On the other
hand, Kedem and Slud (1982) introduced a discrimination method based on bi-
nary time series, and this was applied to emotion recognition from brain signals
(Petrantonakis and Hadjileontiadis (2010a,b)), and speech discrimination Pana-
giotakis and Tziritas (2005). Bagnall and Janacek (2005) studied the advantages
of using binary data for the classification of various time series models. They
concluded that using binary data has three good points. First, the classification
accuracy on binary data is not significantly less than that on the original data.
Second, the accuracy is better than that on the original data when outliers con-
taminate the data. Third, we could analyze the time series data when the data is
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available only for binary time series. For example, rainfall data (rainy day= 1, dry
day= 0) and binary self-assessment measurements of arthritis (good= 1, poor= 0)
(see Fitzmaurice and Lipsitz (1995)). Although, theoretical properties of their
classification method have not been exploited so far.

Regarding directional statistics, which is a field that deals with directional data,
directional statistics date back to the 1950s. Fisher (1953) had considerable influ-
ence and appealed to the necessity of directional statistics. After that, many authors
tackled the problem (see Mardia (1975); Watson (1983); Fisher et al. (1993)). In
recent years, directional statistics have attracted attention because of Mardia and
Jupp (2000). Many distributions on the circle have been developed (e.g., uniform,
cardioid, wrapped Cauchy, vonMises distribution). These distributions are closely
related to the spectral density functions in time series with complex-valued coef-
ficients (see Taniguchi et al. (2020) for details). For example, the spectral density
of the autoregressive model of order 1, that of the moving average model of order
1, and that of the autoregressive model of order 2 correspond to wrapped Cauchy
distribution, cardioid distribution, and the more flexible distribution proposed by
Kato and Jones (2013), respectively. Optimal estimation and testing based on lo-
cal asymptotic normality for directional data are addressed in Ley and Verdebout
(2017). However, estimation theory based on binary series in directional statistics
has not yet been investigated.

In the latter (ii), the binary time series modeling has been developed recently
(see Kedem and Fokianos (2002)). The categorical time series modeling is also
studied by, for example, Fahrmeir and Kaufmann (1987); Fokianos and Kedem
(1998, 2003); Kaufmann (1987); Kedem and Fokianos (2002). Binary and cate-
gorical time series can be regarded as a particular case of count time series.

Count time series appear in a variety of fields, for example, the number of
patients with infectious diseases (Ferland et al. (2006), Pedeli et al. (2015)), that
of transactions per minute for the stock (Fokianos et al. (2009)), that of corporate
defaults (Agosto et al. (2016)), and that of earthquakes (Wang et al. (2014)).

The basic approach of the modeling of count time series is to use generalized
linear model (GLM) advocated by McCullagh and Nelder (1989). GLM is con-
structed by three factors: a random component, a systematic component, and a
link function. For the sake of explanation, we define a random variable R with
some probability density function p(x; θ) and the expectation has the following
structure

φ(E(R)) = Xβ,

where φ is some function, β and θ are unknown parameters, and X is a covariate.
Then, the random component, the systematic component and the link function
correspond to p(x; θ), Xβ, and φ, respectively. One often uses the exponential
family as a random component. If we use Xβ as the systematic component,
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then it is called a linear predictor. Time-varying parameter models classified
into two classes, parameter-driven models and observation-driven models, by Cox
(1981). For parameter driven model, we refer to Davis et al. (2000) and Davis
and Wu (2009). We shall focus on observations driven models in this disserta-
tion. For observation driven model, McKenzie (1985) and Al-Osh and Alzaid
(1987) introduce first-order Integer Autoregressive (INAR) model, denoted by
INAR(1). Alzaid and Al-Osh (1990) discussed INAR(p) model. Ferland et al.
(2006), Fokianos et al. (2009), Fokianos and Tjøstheim (2011), and Wang et al.
(2014) discussed Poisson integer-valued generalized autoregressive conditional
heteroskedasticity (INGARCH) model. Davis et al. (2003) and Benjamin et al.
(2003) scrutinize the model motivated by GLM. Poisson INGARCH model shows
conditional equidispersion, whose conditional mean is equal to the conditional
variance, and overdispersion property, whose variance is greater than the mean.
Whereas many phenomena show underdispesion and strong overdispersion prop-
erties, authors examine distributions other than Poisson. Zhu (2011), Christou
and Fokianos (2014), and Cui and Wang (2019) examined the negative binomial
distribution which can capture strong overdispersion. Fokianos (2001), Heinen
(2003), Zhu (2012a), Zhu (2012b) and Melo and Alencar (2020),Zhu (2012c),
and Gorgi (2020) probe doubly truncated Poisson, double Poisson, generalized
Poisson, Conway-Maxwell Poisson, zero inflated Poisson and zero-inflated neg-
ative binomial, Beta-negative binomial, respectively. Diop and Kengne (2020)
introduced a piecewise stationary INGARCH model. The fundamental proper-
ties such that stationarity and ergodicity of the model are also explored by many
researchers. Neumann (2011) showed a sufficient condition for a solution of non-
linear Poisson INGARCH(1,1) models to have stationarity, ergodicity, β-mixing
property. Doukhan et al. (2013) clarified the existence of the stationary and er-
godic solution of general nonlinear Poisson AR models with any finite moment
under the contractive condition. Agosto et al. (2016) dealt with nonlinear Poisson
INGARCH(p,q)modelswith exogenous variable. Davis and Liu (2016) introduced
the one-parameter exponential family for count processes including Poisson, neg-
ative binomial, and Bernoulli distributions and proved stability of the models.

Structural break tests have been studied from the 1950s. Page (1955) gave a
pioneer study and appealed to the importance of the detection of structural breaks.
The cumulative sum (CUSUM) test for the parameters of time series models is
proposed by Lee et al. (2003). For the integer-valued time series models, Franke
et al. (2012) proposed the residual-based CUSUM test based on the conditional
least square estimator for non-linear Poisson AR(1) models. Kang and Lee (2014)
focused on Poisson nonlinear INGARCH(1,1) models and constructed the Wald
type test and the normalized residual-based CUSUM test based on the conditional
maximum likelihood estimator (CMLE). Lee et al. (2016) and Lee et al. (2018)
studied for nonlinear zero-inflated generalized Poisson INGARCH(1,1) models
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and linear bivariate Poisson INGARCH(1,1) models, respectively. Lee and Lee
(2019) compared several change tests include the Wald type, the score based,
and the residual-based CUSUM tests. Doukhan and Kengne (2015) developed
a change test for the general nonlinear Poisson AR models and investigated the
asymptotics under the null and the alternative. Diop and Kengne (2017) studied
the change detection problem for a one-parameter exponential INGARCH(1,1)
models and constructed a consistent test. Hudecová et al. (2017) advocated test for
structural change based on probability generating functions for INAR(1) model.
Cui et al. (2020) established the statistical inference for a location of change point.

However, it is unrealistic to assume the knowledge of the underlying conditional
distribution in practice. To the best of my knowledge, the change detection prob-
lem without conditional distribution assumption has not yet been investigated.
Moreover, although several change test procedures for INGARCH (1,1) models
and other simple models are well studied, those procedures for general non-linear
Poisson AR models have not yet been discussed except for Doukhan and Kengne
(2015). On the other hand, Ahmad and Francq (2016) dropped the assumption
of conditional distribution and devoted to Poisson quasi maximum likelihood es-
timators (PQMLE) for the general nonlinear AR models. They showed the strong
consistency and asymptotic normality (CAN) of PQMLE. Aknouche et al. (2018)
and Aknouche and Francq (2020) proposed negative binomial (NB) QMLE and
Exponential QMLE and showed CAN, respectively. Aknouche and Francq (2020)
elucidated the sufficient condition for the count time series to have the proper-
ties of the strict stationarity, ergodicity, and β-mixing. The essential condition
is called the stochastic-equal-mean order property and is satisfied by many time
series models.

Local asymptotic normality (LAN) plays a vital role in optimal inference and
testing. The concept is introduced by LeCam (1960). Once the LAN property
holds, optimal tests and estimations can be constructed (LeCam (1960); Ibragimov
andKhasminskii (1981); Taniguchi andKakizawa (2000)). Several authors studied
LANproperty for variousmodels (SeeRoussas (1972) forMarkov process, Roussas
(1979) for extension of Roussas (1972) to non-Markovian process, Swensen (1985)
for AR (p) models with regression term, Hallin et al. (1985) for a hypothesis that
the null and alternative is given by white noise and ARMA models, respectively,
Kreiss (1987) for ARMA models, Kreiss (1990) for AR (∞) models, Hallin and
Puri (1994) for regression models with ARMA disturbances, Garel and Hallin
(1995) for multivariate version of Hallin and Puri (1994), Hallin et al. (1999)
for regression models with long memory disturbances, Benghabrit and Hallin
(1996b) and Benghabrit and Hallin (1996a) for a hypothesis that the null and
alternative is given by ARmodels and bilinear models, respectively, Linton (1993)
for ARCH models, Kato et al. (2006) for CHARN models, Dahlhaus (1996) for
Gaussian locally stationary processes, Sakiyama and Taniguchi (2003) for optimal
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estimations based on Dahlhaus (1996), Hirukawa and Taniguchi (2006) for non-
Gaussian locally stationary processes, Cutting et al. (2017) for a hypothesis that the
null and alternative is given by uniform distributions and rotationally symmetric
distributions on high dimensional spheres, respectively, Paindaveine et al. (2017)
for rotational symmetric distributions when the concentration parameter converges
to 0 as the sample size diverges. ) Jeganathan (1995) made a general review
including local asymptotically quadratic (LAQ) and local asymptotically mixed
normal (LAMN). Cutting et al. (2017) for a hypothesis that the null and alternative
is given by uniform distributions and rotationally symmetric distributions on high
dimensional spheres, respectively.

The simultaneous equation system is one of the pivotal models in economics.
The limited information maximum likelihood estimator (LIMLE) is introduced by
Anderson et al. (1949). Theil (1953) and Basmann (1957) proposed two-stage
least squares estimator (TSLSE). Both are best asymptotically normal estimators,
that is, asymptotically efficient estimators. Theil (1961) advocated the k-class
estimator, including the LIMLE and TSLSE as a special case, and showed the
sufficient conditions that the k-class estimator is consistent and efficient. Fujikoshi
et al. (1982) gave the asymptotic expansions of density functions for the LIML
estimator and the TSLS estimator, and compared them. Takeuchi and Morimune
(1985) showed that the bias-adjusted LIML is third-order efficient. As a result,
LIML is superior to the bias-adjusted efficient estimator encompassing TSLS in the
sense of concentration on the true parameter uniformly. Phillips (1989) proposed
the concept of limiting Gaussian functional and dealt with partially identified
structural equations.

Analysis of variance (ANOVA) is the statisticalmethod to analyze the difference
of more than groups, effects of factors, and interaction of the factors. Fisher (1918)
gave a trailblazing work of analysis of variance (ANOVA) to analyze genetic
research. There are many applications of ANOVA method to various fields, for
example, genetics (Dickerson (1942) and Sprague and Tatum (1942)), biological
experiments (Anderson, 1960), horticultural sampling (Sharpe andVanMiddelem,
1955), agriculture (Talbot, 1984). Details of ANOVA can be seen in, for example,
Searle et al. (1992) and Hirotsu (2017)

In Chapter 2, first, we elucidate the joint asymptotic distribution of the ZC
estimator. Next, we show that the variance of the ZC estimator does not attain
the Cramer-Rao lower bound (CRLB). However, it is shown that the ZC estimator
has robustness when an outlier contaminates the process, In contrast with this, we
observe that the quasi-maximum likelihood estimator (QMLE) attains the CRLB.
However, we can see that QMLE is sensitive to outlier.

In Chapter 3, we introduce a discriminant analysis based on a binary time
series. We show the consistency of our discrimination method and evaluate the
misclassification probabilities for two contiguous categories. We also elucidate
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the robustness of our method against an outlier; the classical method is sensitive to
the outlier. However, for I-divergence measure, our method is insensitive against
an outlier.

Chapter 4 proposes a family of circular distributions of amoving averagemodel
of order p type and discusses estimation of trigonometric moments based on binary
series. We derive an explicit form of the root n consistent estimator. Although
the estimator based on clipped series does not attain Cramér–Rao lower bound,
it enables us to construct an efficient estimator by the Newton–Raphson iterative
method. We also show the robustness of the estimator when the probability
density function is contaminated with noise. The finite sample performance of the
proposed estimator is also investigated.

Chapter 5 tackles the change detection problem based on QMLEs under the
general nonlinear AR model. We emphasize our model includes the nonlinear
INGARCH(p,q) models and do not require to specify the conditional distribution.
We advocate the Wald type, score-based, and residual-based CUSUM tests based
on Kang and Lee (2014) and Lee and Lee (2019) and derive the limiting behavior
for these statistics under the null. As a result, we obtain the distribution-free
size α CUSUM test. However, since the asymptotics of these statistics under the
alternative is difficult to show, we also propose the Wald type test statistics based
on Doukhan and Kengne (2015) and establish the consistency of the test. From
a mathematical point of view, we deal with the Skorokhod space D([0,∞),Rd),
and provide a clear proof by using the multidimensional martingale difference
functional CLT.

Chapter 6 shows the LAN property for the curved normal families and the
simultaneous equation systems. On the other hand, we reveal that one-way random
ANOVA models do not have LAN property. We consider the two cases that
variance of random effect belongs to the interior of parameter space and boundary
of parameter space. In case of the former, the log-likelihood ratio converges to
0 or diverges. In case of the latter, the log-likelihood ratio has atypical limit
distributions which depend on the contiguity orders. The contiguity order is
also extraordinary. Consequently, we cannot use the optimal theory based on
LAN property. Therefore, we show the test based on the log-likelihood ratio is
asymptotically most powerful.

Figure 1.1 shows the relation of chapters. Chapters 2 and 3 are essentially
based on the cosine formula. Chapter 4 develops the statistical theory by the
cosine formula for circular data. Chapter 5 devotes the statistical theory for count
time series. Count time series can be seen as a generalization of binary time series.
Chapter 6 is independent of Chapters 2-5.
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Binary time series
Chapter 2 and Chapter 3

Binary series for circular data
Chapter 4

Count time series
Chapter 5

Likelihood ratio process
Chapter 6

Figure 1.1: Chapter Relations
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Chapter 2

Robustness of zero crossings
estimator

In this Chapter, we examine the asymptotic theory of the estimator based on
zero crossings (ZC), which is the number of zero crossings observed in a time
series. As previously described in Introduction, the expected value of the ZC
specifies the autocorrelations of the ellipsoidal processes. In Section 2.1, we
derive the asymptotic distribution of the ZC estimator and compares the asymptotic
variance of the ZC estimator with CRLB. Section 2.2 provides the robustness of
ZC estimator against an outlier. In Section 2.3, we give the simulation study
in order to know the influence of the outlier. We apply our estimator to the 91
monthly interest rates of an Austrian bank which contains three outliers in Section
2.4. This Chapter is based on Goto and Taniguchi (2019).

2.1 Asymptotic variance of ZC estimator
In this section, we define the ZC estimator, establish the asymptotic normality of
the ZC estimator under the ellipsoidal assumption and elucidate the accuracy of
the ZC. In the beginning, we introduce the ellipsoidal process.

Definition 2.1.1. A random vector X = (X1, · · · ,Xn)′ has an n-dimensional ellip-
soidal distribution with location parameter µ, scale parameter Σn and functional
parameter g, where µ ∈ Rn, Σn is positive definite matrix and g is a nonnega-
tive continuous function on [0,∞) such that

∫ ∞
0 t

2
n−1g(t)dt < ∞, if its probability

density function pX1,··· ,Xn is given by

pX1,··· ,Xn(y) :=
cn√
|Σn |

g
(
(y − µ)Σ−1n (y − µ)′

)
,

where cn = Γ(n/2)/(πn/2
∫ ∞
0 tn/2−1g(t)dt) and y = (y1, · · · , yn)′.
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Gómez et al. (2003) is helpful as a reference for the ellipsoidal distribution.

Definition 2.1.2. A stochastic process {Zt} is called an ellipsoidal process if all
the finite dimensional distributions are ellipsoidally distributed.

Kedem (1994, p.120) introduced an ellipsoidal process. The existence of a sub-
class of ellipsoidal process, at least, is stated in Tanaka and Shimizu (2001), which
includes normal, logistic, Laplace, and double-exponential distributions. Further-
more, Kano (1994) showed that the ellipsoidal distribution whose any marginal
distributions belong to an ellipsoidal family is a mixture of normal distribution.
Thus, essentially, we deal with a process whose any finite distributions are a scale
of mixture of normal.

Let {Zt} be an ellipsoidalm-dependent strictly stationary process with location
parameter 0, scale parameter Σ, functional parameter g. Define a clipped time
series {Xt} from {Zt} by

Xt :=

{
1, if Zt ≥ 0,
0, if Zt < 0.

(2.1.1)

The number of zero-crossings Dk is defined by

Dk :=
Nk∑
t=2

(Xk(t−1)+1 − Xk(t−2)+1)2

= 2
Nk∑
t=1

(Xk(t−1)+1 + Xk(t−2)+1) − 2
Nk∑
t=2

Xk(t−1)+1Xk(t−2)+1 − X1 − Xk(Nk−1)+1,

where Nk = [N−1k − 1]. Throughout this Chapter, we assume that g satisfies∫ ∞
0 t

2
n g(t)dt < ∞ and Σ satisfies the following condition; for any random vector

(Zt1, · · · , Ztn), Σ has the form

Σ = Σt1,··· ,tn =
n
∫
[0,∞) t

n
2−1g(t)dt∫

[0,∞) t
n
2 g(t)dt

(σti,tj )ni,j=1,

where σs,t satisfies σs,t = γZ (s − t), which is the autocovariance function of {Zt}
at lag s − t.
The condition for g impliesVarZt < ∞, the condition of Σ is technical assumption.
It means that Var(Zt1, · · · , Ztn) = (γZ (i − j))ni,j=1.
We denote that the autocovariance function of Xt at lag l, and the autocorre-
lation function of Xt at lag l by γX(l) and ρX(l) respectively. Here we as-
sume that the autocorrelations of {Zt} ρZ (l), l ∈ Z are unknown, and estimate

11



ρZ = (ρZ (1), · · · , ρZ (m))′ by using ZC.

The following lemma is due to He and Kedem (1989) (see also Barnett and
Kedem (1991b)).
Lemma 2.1.1. If {Zt} is a strictly stationary ellipsoidal process with zero mean,
finite variance and autocorrelation ρZ (k). Then,

ρZ (k) = cos
(
πEDk

Nk − 1

)
.

This equation is called as the cosine formula
Theorem 2.1.1. Let {Zt} be a strictly stationary ellipsoidal m-dependent process
with zero mean, and finite variance. Then,

1
√
N

©«
D1 − ED1
D2 − ED2

...
Dm − EDm

ª®®®®¬
⇒ N(0,V)

where V = (vs,t)s,t=1,··· ,m and vs,t is the limit value of 4/N ∑Nk

i=2
∑Ns

j=2[KX(k, s( j −
1) − k(i − 2), s( j − 2) − k(i − 2)) + γX(k(i − 1) − s( j − 1))γX(k(i − 2) − s( j − 2)) +
γX(k(i − 2) − s( j − 1))γX(k(i − 1) − s( j − 2))].

Now we proceed to estimate the unknown parameter vector ρZ. The ZC
estimator of ρZ (k) is defined by

ρ̂Z (k) := cos
(
πDk

Nk − 1

)
,

and we define ρ̂ZC := (ρ̂ZC(1), · · · , ρ̂ZC(m))′ By employing the cosine formula and
Theorem 2.1.1, the following Corollary is proved.
Corollary 2.1.1. Let {Zt} be a strictly stationary ellipsoidal m-dependent process
with zero mean, finite variance, autocorrelation ρZ (k) and ρ̂ZC(k) be the ZC
estimator of ρZ (k). Then,

√
N

©«
ρ̂ZC(1) − ρZ (1)
ρ̂ZC(2) − ρZ (2)

...
ρ̂ZC(m) − ρZ (m)

ª®®®®¬
⇒ N(0, A′VA),

where V = (vs,t)s,t=1,··· ,m and vs,t is the limit value of 4/N ∑Nk

i=2
∑Ns

j=2[KX(k, s( j −
1) − k(i − 2), s( j − 2) − k(i − 2)) + γX(k(i − 1) − s( j − 1))γX(k(i − 2) − s( j − 2)) +
γX(k(i − 2) − s( j − 1))γX(k(i − 1) − s( j − 2))] and

A = diag
(
π
√
1 − ρZ (1)2,2π

√
1 − ρZ (2)2, · · · ,mπ

√
1 − ρZ (m)2

)′
.
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2.1.1 Evaluation of asymptotic variance of ZC estimator and
CRLB

In this section we evaluate the Gaussian efficiency. We confine ourselves to the
case of MA(1), so we assume ρZ (l) = 0, |l | ≥ 2, and {Zt} is a Gaussian process
with unit variance. This is a special case of m−dependent ellipsoidal process. In
this case, the spectral density function fZ of {Zt} is represented as

fZ (λ) =
1
2π

(1 + 2ρZ (1) cos λ). (2.1.2)

It follows from Corollary 2.1.1 that

v21,1 = − 1
16

− 5
4π2

sin−2 ρZ (1) −
3
4π

sin−1 ρZ (1) + 2E{Xt+2Xt+1XtXt−1}. (2.1.3)

Proposition 2.1.1. Let {Zt} be an MA(1) Gaussian stationary process, which is
a special case of m−dependent ellipsoidal process, with mean zero, and spectral
density function f , and let {Xt} be the clipped time series in (2.1.1). Then,

E{Xt+2Xt+1XtXt−1}

=
1
4π2

∞∑
m1,m2,m3=0

ρZ (1)2(m1+m2+m3+1)

(2m1 + 1)(2m2)!(2m3 + 1)

× (2(m1 + m2))!(2(m2 + m3))!
2m1(m1)!2m1+m2(m1 + m2)!2m2+m3(m2 + m3)!2m3(m3)!

+
3
8π

sin−1 ρZ (1) +
1
16
.

From (2.1.3) and Proposition 2.1.1, we have

4π2(1 − ρZ (1)2)v1,12

=(1 − ρZ (1)2)(
π2

4
− 5sin−2ρZ (1) + 2

∞∑
m1,m2,m3=0

ρZ (1)2(m1+m2+m3+1)

(2m1 + 1)(2m2)!(2m3 + 1)

× (2(m1 + m2))!(2(m2 + m3))!
2m1(m1)!2m1+m2(m1 + m2)!2m2+m3(m2 + m3)!2m3(m3)!

).

Next, we evaluate CRLB 1/I(ρZ (1)), where I(ρZ (1)) is the Fisher information
in stationary time series;

I(ρZ (1)) =
1
4π

∫
[−π,π]

(
∂

∂ρZ (1)
log fZ (λ)

)2
dλ.

Note that ρZ (1) satisfies |ρZ (1)| ≤ 1/2 under the stationary condition.
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Proposition 2.1.2. For the spectral density f , represented as (2.1.2), we have

I(ρZ (1)) =


1 (ρZ (1) = 0)

1
2ρZ (1)2 {1 +

8ρZ (1)2−1
(4ρZ (1)2−1)

2
3
} (0 < |ρZ (1)| < 1

2 )

+∞ (ρZ (1) = ±1
2 )

.

2.1.2 Comparision of asymptotic variance of ZC estimator with
CRLB

We have already calculated the asymptotic variance of ZC estimator and CRLB
in Corollary 2.1.1 and Proposition 2.1.2 under Gaussian MA(1) model, which is a
special case ofm−dependent ellipsoidal process. So we compare the variance with
I(ρZ (1)). We plotted the graphs of asymptotic variance of ZCE and CRLB where
the variable on the horizontal axis is ρZ (1) in Figures 2.1 and 2.2 respectively.

Figure 2.1: Asymptotic variance of ZCE
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Figure 2.2: CRLB I−1(ρZ (1))

ρZ (1) ϕ(ρZ (1))
0. 1.4674
0.1 1.5
0.2 1.56829
0.26 1.59816
0.27 1.60081
0.28 1.60261
0.29 1.60349
0.3 1.60338
0.31 1.60223
0.32 1.59997
0.33 1.59655
0.34 1.59192
0.35 1.58603
0.4 1.53621
0.5 1.31595

Table 2.1: Approximate values of ϕ(ρZ (1))
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Figure 2.3: Values of function ϕ(ρZ (1))

Define the function ϕ (= (asymptotic variance of ZCE) − (CRLB)) by

ϕ(ρZ (1)) = 4π2(1 − ρZ (1)2)v21,1 − I−1(ρZ (1)).

Table 2.1 shows the value of ρZ (1) and the approximation value ϕ(ρZ (1)) cor-
responding to ρZ (1). We plotted the graph of ϕ(ρZ (1)) where the variable on
the horizontal axis is ρZ (1) in Figure 2.3. The asymptotic variance of the ZC
estimator is the closest to the CRLB when ρZ (1) = 0.5 and the difference of the
value between the asymptotic variance of the ZC estimator and CRLB is about
1.31595. Besides, we can show that ϕ(0) > 0 mathematically. Thus we conclude
the asymptotic variance of the ZC estimator does not attain the CRLB.

2.2 Outlier robustness of ZC estimator
In this section, we consider the case when {Zt} is contaminated by an outlier.
Then, we elucidate that ρ̂ZC is robust with respect to such an outlier but the quasi
maximum likelihood estimator (QMLE) of ρZ is not so. Let {Z s

t } be a process
whose the initial value is contaminated by an outlier, i.e. Z s

1 = s and Z s
t = Zt for

t ≥ 2.

2.2.1 Sensitivity of QMLE estimator
QMLE was studied by Hosoya and Taniguchi (1982). First, we fit a certain
parametric spectral density fθ to the spectral density of {Zt}.
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Let T(In) be a value that minimizes

DM( fθ, In) =
∫
[−π, π]

[
log fθ(λ) +

In(λ)
fθ(λ)

]
dλ,

with respect to θ, where In(λ) is the periodogram of {Zt}, given by

In(λ) =
1

2πn
{

n∑
t=1

Zteitλ}{
n∑
t=1

Zte−itλ}.

We make the following assumptions on parameter space Θ:
The parameter space Θ is compact subset of Rm, θ1 , θ2 implies fθ1 , fθ2 , fθ(λ)
is twice continuously differentable function of θ ∈ Θ and continuous with respect
to λ ∈ [−π, π], there exist constants c > 0, C such that c < fθ(λ) < C, uniformly
in θ ∈ Θ and λ ∈ [−π, π].
From Wold’s decomposition (see Brockwell and Davis (1991, p.187) and the
assumption of m−dependence of the process, we have Zt =

∑h+m
j=h ϕ jet− j where

{et} is a m−dependent white noise sequence. Hosoya and Taniguchi (1982) does
not impose distribution assumption, but require the below condition to {et}:
1) for each m,
Var [E {e(n)e(n + m)|B(n − τ)} − E {e(n)e(n + m)}] = O

(
τ−2−ε

)
, ε > 0,

uniformly in n.
2)

E
��E{e (n1) e (n2) e (n3) e (n4) ��B (n1 − τ)} − E {e (n1) e (n2) e (n3) e (n4)}

��
= O

(
τ−1−η

)
,

uniformly in n1, where n1 ≤ n2 ≤ n3 ≤ n4 and η > 0.
3)

∑∞
j1,j2,j3=−∞ |Ke ( j1, j2, j3)| < ∞,

where Ke is fourth order cumulant of {et}.
From m−dependency of {et}, the conditions 1), 2), and 3) are established.

The following lemma is essentially due to Hosoya and Taniguchi (1982).

Lemma 2.2.1. Under the assumptions on parameter space, it holds that
√
n

γ(0)
(
T(In) − T( fZ )

)
⇒ N(0,Q−1

fZ S fZQ
−1
fZ ),

where

Q fZ =

∫
[−π,π]

[
∂2

∂θ2
fZ (λ)
fθ(λ)

+
∂2

∂θ2
log fθ(λ)

]
θ=T( fZ )

dλ,
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and S fZ = (S(i,j)fZ
)i,j=1,··· ,n such that

S(i,j)fZ
=

4π
γ2(0)

∫
[−π,π]

[
f 2Z (λ)

{
∂

∂θi

(
1
fθ

)} {
∂

∂θ j

(
1
fθ

)}]
θ=T( fZ )

dλ

+
1

(2π)2γ2(0)

∫ π

−π

∫ π

−π

[(
∂

∂θi
fθ(λ1)

) (
∂

∂θ j
fθ(λ2)

)]
θ=T( fZ )

×
∞∑

t1,t2,t3=−∞
exp{−i(−λ1t1 + λ2t2 − λ2t3)}KZ (t1, t2, t3)dλ1dλ2.

For m-dependent process, the value T( fZ ) ∈ Rm coincides with ρ. Thus QMLE
can be used for the autocorrelation estimation when we can obtain uncontaminated
observations.

Next, we consider the case that we use observations contaminated by the outlier,
that is, we estimate the autocorrelation by using {Z s

t }.

Theorem 2.2.1. For fixed n and given Z1, Z2, · · · , Zn, it holds that

T(I sn) → min
θ∈Θ

∫
[−π,π]

1/ fθ(λ)dλ as s → ∞, (2.2.1)

where I sn is the periodogram of {Z s
t }.

Remark 2.2.1. Kedem (1994) pointed out that if Z1 > 0, the sample autocovari-
ance tends to 0 as s → ∞. Theorem 2.2.1 shows, if a process is contaminated
by the outlier, QMLE tends to a non-zero constant (it is more general than the
Kedem’s result), i.e. the right hand side value of (2.2.1). Hence, QMLE does not
work well. Thus we conclude that QMLE is sensitive to the outlier. Combined
the above two results, we conclude that ZCE is better than QMLE if the process is
contaminated by the outlier.

2.3 Simulation studies
In this section, we present the simulation studies. We compare the mean of ZCE,
sample autocorrelation (SACF), and highly robust estimator (HRE), proposed
by Ma and Genton (1998), for AR(1) (or MA(1)) model with for these with
contaminated AR(1) (or MA(1)) model, i.e. the process is contaminated with
outliers. HRE is a sort of the U statistics, defined by

ρ̂HR(l) =
Qn−h(u + v) −Qn−h(u − v)
Qn−h(u + v) +Qn−h(u − v),
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where u is a vector of the first n − l observations of an observation sequence, v is
a vector of the last n − l observations of an observation sequence,

Qn(z) = 2.219{|Zi − Z j |; i < j}(k), k = int
[((

n
2

)
+ 2

)
/4

]
+ 1,

int(·) denotes the integer part, and {|Zi − Z j |; i < j}(k) denotes kth order statistic
of the set of all absolute differences |Zi − Z j | for i < j. We consider AR(1) model
and MA(1) defined by

Zt = aZt−1 + ϵt, Zt = ϵt + bϵt−1

where {ϵt} i.i.d.∼ N(0,1), respectively.
The procedure is as follows: First, we generate 500 samples Z1, · · · Z500 and

computed the estimators, ρ̂ZC(l),ρ̂SACF(l) = γ̂SACF(l)/γ̂SACF(0), ρ̂HR(l). Next,
we replace Zi with Zi + Mmax{Z1, · · · Z500} for i = 1, · · · ,10, and computed
the three estimators, ρ̂MZC(l),ρ̂MSACF(l) = γ̂MSACF(l)/γ̂MSACF(0), ρ̂MHR(l), where M
is a constant. We iterated 500 times above procedure. Then, we compare the
influence of the estimation value, the mean E(ρ̂ j − ρ̂Mj ) ≈ 1/500∑500

i=1(ρ̂
(i)
j − ρ̂M (i)

j ),
j = ZCE,SACF,HRE .

The results are in Table 2.2. Roughly speaking, the Tables shows that ρ̂ZC(l)
and ρ̂HR(l) is not affected by the outliers. By contrast, ρ̂SACF(l) is influenced by
the outliers. We conclude that ρ̂ZC(l) and ρ̂HR(l) are insensitive to the outliers
and ρ̂SACF(l) is sensitive. More precisely, ρ̂ZC(l) is a little bit more robust against
outliers than ρ̂HR(l).
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Table 2.2: Influence of estimators in the mean value by the10 outliers
AR(1) model with a = −0.6

time lag M ρ̂ZC ρ̂HR ρ̂SACF
1 1 -0.03 -0.03 -0.23

2 -0.03 -0.03 -0.63
4 -0.03 -0.02 -1.11
8 -0.03 -0.02 -1.38

2 1 -0.02 -0.03 -0.07
2 -0.02 -0.03 -0.19
4 -0.02 -0.03 -0.33
8 -0.02 -0.03 -0.41

MA(1) model with b = 0.4
time lag M ρ̂ZC ρ̂HR ρ̂SACF

1 1 -0.02 -0.03 -0.08
2 -0.02 -0.03 -0.23
4 -0.02 -0.03 -0.41
8 -0.02 -0.03 -0.51

2 1 -0.02 -0.03 -0.12
2 -0.02 -0.03 -0.33
4 -0.02 -0.03 -0.60
8 -0.02 -0.03 -0.74

2.4 Real data analysis
In this section, we apply our estimator to the data of 91 monthly interest rates of
an Austrian bank. The data is already analyzed by Kunsch (1984), Ma and Genton
(1998), and many other authors. Figure 2.4 is the plot of the data. There are
three doubtful points at number 18, 28, 29 whether these points are outliers or
not. Kunsch (1984) replaced these points by 9.85, and discuss the influence which
caused by the substitution. The influence of replacement is small, then we could
be reliable the value of estimate.

We run ρ̂ZC and ρ̂SAFC on the original data and on the replaced data. Note that
the mean value changes in the substitution. The result is in Table 2.3. Comparing
the two tables, we can see that ρ̂ZC is not influenced by the outliers at all, contrary
to this, ρ̂SAFC is affected by the outliers. Thus we conclude that ρ̂ZC is more
reliable than ρ̂SAFC . From the point of view of the interest rate of a bank, a high
autocorrelation is reasonable. Because the interest rate of a bank is determined by
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reference to the past interest rate.

Figure 2.4: 91 monthly interest rates of an Austrian bank
F

Table 2.3: Estimated values of the autocorrelation
original data

time lag ρ̂ZC ρ̂SAFC
1 0.98 0.79
2 0.94 0.62

replaced data
time lag ρ̂ZC ρ̂SAFC

1 0.98 0.91
2 0.94 0.83
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Chapter 3

Discriminant analysis based on
binary time series

In Chapter 3, we discuss the discriminant analysis and propose a classification
method based on binary time series for an ellipsoidal alpha mixing strictly sta-
tionary process. Assume that the observations are generated by time series which
belongs to one of two categories described by different spectra. We propose a
method to classify into the correct category with high probability. First, we will
show that the misclassification probability tends to zero when the number of ob-
servation tends to infinity, that is, the consistency of our discrimination method.
Further, we evaluate the asymptotic misclassification probability when the two
categories are contiguous. Finally, we show that our classification method based
on binary time series has good robustness properties when the process is contam-
inated by an outlier, that is, our classification method is insensitive to the outlier.
However, the classical method based on smoothed periodogram is sensitive to
outliers. We also deal with a practical case where the two categories are estimated
from the training samples. For an electrocardiogram data set, we examine the
robustness of our method when observations are contaminated with an outlier.

This chapter is organized as follows: Section 3.1 introduces some notations and
assumptions. Section 3.2 provides the fundamental properties of our discriminant
method. We show its consistency and evaluate the contiguous misclassification
probability. In Section 3.3, we show robustness of our discriminant method
against an outlier. In Section 3.4, unknown categories case is considered. We give
a simulation study to see the robustness in Section 3.5. We apply our discriminant
method to electrocardiogram (ECG) data in Section 3.6. This Chapter is based on
Goto and Taniguchi (2020).
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3.1 Settings
In this section, we discuss ellipsoidal α-mixing processes and introduce some
relevant assumptions. First, we restate the definitions of the ellipsoidal distribution
and the ellipsoidal process.

Definition 3.1.1. A random vector Z = (Z1, · · · , Zn)′ has an n-dimensional el-
lipsoidal distribution with a location parameter µ ∈ Rn, scale parameter Σn and
functional parameter g, where Σn is a positive definite matrix and g is a nonnega-
tive continuous function on [0,∞) such that

∫ ∞
0 tn/2−1g(t)dt < ∞, if its probability

density function pZ1,··· ,Zn is given by

pZ1,··· ,Zn(y) :=
cn√
|Σn |

g
(
(y − µ)Σ−1n (y − µ)′

)
,

where cn := Γ(n/2)/(πn/2
∫ ∞
0 tn/2−1g(t)dt) and y = (y1, · · · , yn)′.

Gómez et al. (2003) is helpful as a reference for the ellipsoidal distribution.

Definition 3.1.2. A stochastic process {Zt} is called an ellipsoidal process if all
the finite dimensional distributions are ellipsoidally distributed.

(Kedem, 1994, p.120) introduced an ellipsoidal process. The existence of a
subclass of ellipsoidal processes, at least, is stated in Tanaka and Shimizu (2001),
which includes normal, logistic, Laplace, and double-exponential distributions.
Furthermore, Kano (1994) showed that the ellipsoidal distribution whose any
marginal distributions belong to an ellipsoidal family is a mixture of normal
distribution. Thus, essentially, we dealwith a processwhose any finite distributions
are a scale of mixture of normal.

In this Chapter, we need the α-mixing assumption, which is associated with
the dependence structure on the process.

Definition 3.1.3. A stochastic process {Zt} is called α-mixing or strongly mixing
if, for each k ∈ Z and n ∈ N, A ∈ Bk

−∞ and B ∈ B∞
k+n together imply

sup
k∈Z,A∈Bk

−∞, B∈B∞
k+n

|P(AB) − P(A)P(B)| ≤ α(n),

where Bb
a is the σ-field generated by {Zt : a ≤ t ≤ b} and α(·) is a function, called

α-mixing coefficients, satisfies α(n) → 0 as n → ∞.

Let {Zt} be an ellipsoidal α-mixing strictly stationary process with location
parameter 0, scale parameter Σn, functional parameter g, α-mixing coefficients
α(·) satisfying α(n) = O(1/n8+δ) for some δ > 0, and the second order spectral
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density function of fZ (λ). We define the clipped time series {Xt} generated from
{Zt} by

Xt : =

{
1, if Zt ≥ 0,
0, if Zt < 0.

The second order spectral density function of {Xt} is denoted by fX(λ), and the
autocovariance function of {Zt} at lag ℓ and that of {Xt} are represented as γZ (ℓ)
and γX(ℓ), respectively.

Throughout the Chapter, we assume that g satisfies
∫ ∞
0 tn/2g(t)dt < ∞,

γZ (0)=1, and Σn satisfies the following conditions; for any random vector
(Zt1, · · · , Ztn),
Σn has the form

Σn := Σt1,··· ,tn :=
n
∫
[0,∞) t

n
2−1g(t)dt∫

[0,∞) t
n
2 g(t)dt

(σti,tj )ni,j=1,

where σs,t = γZ (s − t). Recall that cumulant of order ℓ of (X1, · · · ,Xℓ) is defined
as

Cum(X1, · · · ,Xℓ) :=
∑

(ν1,...,νp)
(−1)p−1(p − 1)!

(
E

∏
j∈ν1

Xν1

)
. . .

©«E
∏
j∈νp

Xνp
ª®¬ ,

with the summation
∑

(ν1,...,νp) extends over all partitions (ν1, . . . , νp) of
{1,2, · · · , ℓ} (see Brillinger (1981)). The order assumption of α-mixing coefficient
implies that

( i )

fZ (λ), fX(λ) ∈ C8[−π, π] (see (Ibragimov and Rozanov, 1978, p.181));

(ii)
∞∑

ℓ1,··· ,ℓk−1=−∞
|Cum(Xt,Xt+ℓ1, · · · ,Xt+ℓk−1)| < ∞ for k = 2, · · · ,8

(see Kley (2014));

(iii)

γ̂X(ℓ) − Eγ̂X(ℓ) = Op(1/
√
n) uniformly in ℓ (see Robinson (1991)).
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The condition on g guarantees the existence of γZ (0). The condition on the Σ
is a technical assumption which ensures that Var(Zt1, · · · , Ztn) = (γZ (i − j))ni,j=1.
γZ (0)=1 means γZ (ℓ) = ρZ (ℓ) where ρZ (ℓ) is the autocorrelation function of {Zt}
at lag ℓ.

Remark 3.1.1. Brillinger (1968) imposed the summability condition of the cu-
mulant for the process {Xt}. Strictly stationarity and damping order of α-mixing
coefficient are essential to describe the condition on {Xt} in terms of that on {Zt}.
Also, the assumption for strictly stationarity is not restrictive. Giraitis et al. (2000)
discuss the strict stationarity of a very general class of ARCH models. In this case
we need stronger assumption for weakly stationarity.

Remark 3.1.2. In this dissertation, we restrict ourselves to an ellipsoidal process.
For strictly stationary process, Li (2008) proposed Laplace spectra defined by

f0,0(λ) :=
1
2π

∑
ℓ∈Z

Cov{I{Zt≤0}, I{Zt+ℓ≤0}} exp{iℓλ}.

More generally, Dette et al. (2015) introduced Laplace spectral density kernel and
copula spectral density kernel defined by, for strictly stationary process {Zt} with
marginal distribution F, for any (q1,q2) ∈ R2 and (τ1, τ2) ∈ (0,1)2,

fq1,q2(λ) :=
∑
ℓ∈Z

Cov{I{Zt≤q1}, I{Zt+ℓ≤q2}} exp{iℓλ},

fτ1,τ2(λ) :=
∑
ℓ∈Z

Cov{I{F(Zt )≤τ1}, I{F(Zt+ℓ)≤τ2}} exp{iℓλ},

respectively.

The following lemma is due to He and Kedem (1989) (see also Barnett and
Kedem (1991b)).

Lemma 3.1.1. If {Zt} is a strictly stationary ellipsoidal process with zero mean,
finite variance and autocorrelation ρZ (ℓ). Then,

ρZ (ℓ) = sin
(π
2
ρX(ℓ)

)
,

where ρX(ℓ) is the autocorrelation function of {Xt} at lag ℓ.

From the lemma, the sample version of the autocorrelations for {Xt} and {Zt}
at lag ℓ are given by

ρ̂X(ℓ) :=
4
n

n−|ℓ |∑
i=1

(Xi −
1
2
)(Xi+|ℓ | −

1
2
), and ρ̂Z (ℓ) = sin(π

2
ρ̂X(ℓ)),
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respectively.

We define the window functionWn by

Wn(θ) := M
∞∑

ν=−∞
W (M(θ + 2πν))

whereW(θ) and M satisfy the following assumptions:

Assumption 3.1.1. (W1)W(θ) is a real, bounded nonnegative, even function with∫ ∞

−∞
W(θ)ds = 1,

∫ ∞

−∞
θ2W(θ)ds = k2 > 0.

(W2) w(x) =
∫ ∞
−∞W(θ) exp (iθx)ds satisfies |w(x)| ≤ w̄(x), where w̄(x) is even,

integrable, and monotonically decreasing on [0,∞).
(M) M := M(n) satisfies the following relationship; M/

√
n + n1/4/M → 0 as n

→ ∞.

Remark 3.1.3. The above assumptions are standard; (W1) and (W2) can be seen
in Hannan (1970), Brillinger (1981), Taniguchi and Kakizawa (2000), and we can
find (M) in Taniguchi (1987).

Let f̂Z (λ) be a nonparametric spectral estimator given by

f̂Z (λ) :=
∫
[−π,π]

Wn(λ − µ)În(µ)dµ, (3.1.1)

where

În(λ) :=
1
2π

∑
|ℓ |≤M

ρ̂Z (ℓ) exp (−iℓλ).

3.2 Discriminant analysis
In this section, introducing a newdiscriminantmethod based on clipped time series,
we elucidate its fundamental properties. We use a general disparity measure in-
troduced by Kakizawa (1996), which includes I-divergence disparity measure and
Chernoff disparity measure. Although Kakizawa (1996), Taniguchi and Kakizawa
(2000), and Sakiyama and Taniguchi (2004) discussed the problem of discriminant
analysis, the used spectra are based on {Zt}, not clipped ones. Suppose that an ob-
served stretch {Z1, · · · , Zn} (or only {X1, · · · ,Xn}) is available. Then, we consider
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the problem classifying it into two categories Π1, Π2 described by spectra fZ and
gZ :

Π1 : fZ (λ), Π2 : gZ (λ).
Here we introduce a disparity measure DM( f ,g) by

DM( fZ,gZ ) :=
1
4π

∫
[−π,π]

H
(
fZ (λ)
gZ (λ)

)
dλ.

Remark 3.2.1. This class of disparity measure is sufficiently wide. Actually, if we
take H(x) = −log |x |+ tr(x)−m, then DM( f ,g) is I-divergence disparity measure
(Whittle type disparity measure). If we take H(x) = log |αx + (1− α)| − α log |x |,
then DM( f ,g) is the Chernoff disparity measure.

We impose the following assumptions on H(·) and categories.

Assumption 3.2.1. (H1) H(·) has a unique minimum at 1.
(H2) H(·) is a holomorophic function in a neighborhood of 1.
(H3) H(1) = H′(1) = 0, H′′(1) = c.
(C) there exists a constant d > 0 such that d ≤ fZ (λ), gZ (λ).

(H1) is for that H(·) leads to a distance between f and g, (H2) is for the consis-
tency, and (H3) is for the evaluation of property when the two categories are the
contiguous. (C) is not strong condition (e.g. Kakizawa (1997)).

Remark 3.2.2. Here, we deal with the divergence class of functionals of spectral
density ratio fZ (λ)/gZ (λ). Thus condition (C) is essential. If readers want to deal
with no band-limited cases where the spectrum vanish over frequency subintervals,
we can use the following important divergence measure;

DM( fZ,gZ ) :=
1
8π

∫
[−π,π]

{K(λ) ( fZ (λ) − gZ (λ))}2dλ,

where K is a real function (see Taniguchi and Kakizawa (2000)).

For f̂Z calculated from the clipped time series, we propose a classification
statistic D( f̂Z, fZ,gZ ) by using above disparity measure

D( f̂Z, fZ,gZ ) := DM( f̂Z,gZ ) − DM( f̂Z, fZ ),

and the classification rule is as follows:

If D( f̂Z, fZ,gZ ) > 0 (or ≤ 0), then {Zt} is classified into Π1 (or Π2), (CR)
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respectively. We show a basic property of the (CR) in view of misclassification
probability.

Theorem 3.2.1. Under Assumptions 3.1.1 and 3.2.1, we have

lim
n→∞

P(D < 0 | Π1) = 0 and lim
n→∞

P(D > 0 | Π2) = 0.

Remark 3.2.3. This result shows the consistency of D. Many discrimination
methods have this basic property (see Zhang and Taniguchi (1995), Kakizawa
(1996)).

Thus, next, we evaluate a more delicate property of D. Consider the case when
the two categories are contiguous:

Π1 : fZ (λ), Π2 : gZ (λ) := fZ (λ) +
h(λ)
√
n
,

where h(λ) ∈ C4([−π, π]). Then we have,

Theorem 3.2.2. Under Assumptions 3.1.1 and 3.2.1, it holds that

lim
n→∞

P(D < 0 | Π1) = lim
n→∞

P(D > 0 | Π2) =

Φ

©«
−

∫
[−π,π] h

2(λ) f −2Z (λ)dλ√∑∞
t,ℓ,r=−∞ f̃ (ℓ) f̃ (r)

√
(1 − ρ2Z (ℓ))(1 − ρ2Z (r))Q(t, ℓ,r)

ª®®®®¬
where Q(t, ℓ,r) := [16KX(−ℓ, t, t − r) + {ρX(t)ρX(t + ℓ − r) + ρX(t − r)ρX(t + ℓ)}]
and f̃ (ℓ) = 1/(2π)

∫
[−π,π] h(λ) f

−1
Z (λ)e−iℓλdλ.

Remark 3.2.4. This result enables us to compare D with the other discrimination
methods. However, generally, binary time series do not have this type of efficiency.
Thus we discuss robustness against outliers in the next section.

3.3 Robustness against outlier
In this section, we deal with the case when the process of {Zt} is contaminated by
an outlier. We assume that an observed stretch {Z1, · · · , Zn} is available, and show
our discrimination method based on binary time series has a robustness against the
outlier. However, the classical method based on the periodogram does not have
this property. Let {Z s

t } be the process replaced Z1 by Z s
1 = s.
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First, we consider the classical method. For the original observations {Zt}, the
nonparametric estimator based on periodogram is defined by

f
Z
(λ) :=

∫
[−π,π]

Wn(λ − µ)In(µ)dµ, (3.3.1)

where

In(λ) :=
1

2πn

����� n∑
ℓ=1

Zℓ exp (−iℓλ)
�����2 .

Let DM be the I-divergence disparity measure for {Zt}:

DM( fZ,gZ ) :=
1
4π

∫
[−π,π]

(
− log

| f (λ)|
|g(λ)| +

fZ (λ)
gZ (λ)

− 1
)
dλ. (3.3.2)

Then we have,

Theorem 3.3.1. For fixed n and given Z2, . . . , Zn, it holds that

lim
s→∞

D( f
Zs
, fZ,gZ ) − D( f

Z
, fZ,gZ ) =

{
∞,

∫
[−π,π]

1
gZ (λ) −

1
fZ (λ)dλ > 0

−∞,
∫
[−π,π]

1
gZ (λ) −

1
fZ (λ)dλ < 0.

Recall that f̂Z is defined by (3.1.1), and that f̂Zs is the one replaced Zt by Z s
t

from the clipped time series {Xt}. Then we have,

Theorem 3.3.2. For fixed n and given Z2, . . . , Zn, it holds that

lim
s→∞

D( f̂Zs, fZ,gZ ) − D( f̂Z, fZ,gZ ) =
{
0, Z1 ≥ 0
c, Z1 < 0,

where c is a constant.

Remark 3.3.1. Theorems 3.3.1 and 3.3.2 show the classical method is sensitive
to the outlier, but our new method is insensitive to it. Therefore, we conclude that
our method has the robustness against the outlier.

3.4 Unknown category case
In this section, we deal with the practical case where the two spectra fZ and
gZ , which describe two categories Π1 and Π2, are estimated from the training
samples. Let {Zt,1} and {Zt,2} be the training samples of {Zt} under Π1 and
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Π2, respectively. Assume that {Zt}, {Zt,1}, and {Zt,2} are mutually indepen-
dent, and {Z1, · · · , Zn}, {Z1,1, · · · , Zn,1}, and {Z1,2, · · · , Zn,2} (or {X1, · · · ,Xn},
{X1,1, · · · ,Xn,1}, and {X1,2, · · · ,Xn,2}, which are binary times series correspond to
{Zt}, {Zt,1}, and {Zt,2}, respectively) are available. We introduce nonparametric
spectra estimator f̂ TZ (λ) and ĝTZ (λ) in the same way as f̂Z . Then, we have the
following theorem.

Theorem 3.4.1. Under Assumptions 3.1.1 and 3.2.1, we have

lim
n→∞

P(D( f̂Z, f̂ TZ1, ĝ
T
Z2) < 0 | Π1) = 0 and lim

n→∞
P(D( f̂Z, f̂ TZ1, ĝ

T
Z2) > 0 | Π2) = 0.

Remark 3.4.1. The above result enables us to apply our method to practical
situation.

Next, we elucidate that an outlier in the training samples deteriorates the
classical method and, however, does not have a detrimental impact on our method.
Let {Zt,1,s} and {Zt,2,s} be the process replaced Z1,1 and Z1,2 by s.

Theorem 3.4.2. For fixed n and given Z2, . . . , Zn, the following equations hold
true:

( i ) lim
s→∞

D( f
Z
or g

Z
, f T

Z1,s
,gT

Z2
) − D( f

Z
or g

Z
, f T

Z1
,gT

Z2
) = −∞

(ii) lim
s→∞

D( f
Z
or g

Z
, f T

Z1
,gT

Z2,s
) − D( f

Z
or g

Z
, f T

Z1
,gT

Z2
) = ∞

Theorem 3.4.3. For fixed n and given Z2, . . . , Zn, the following equations hold
true:

( i ) lim
s→∞

D( f̂Z or ĝZ, f̂ TZ1,s, ĝ
T
Z2) − D( f̂Z or ĝZ, f̂ TZ1, ĝ

T
Z2) =

{
0, Z1,1 ≥ 0
c′, Z1,1 < 0

,

where c′ is a constant.

(ii) lim
s→∞

D( f̂Z or ĝZ, f̂ TZ1, ĝ
T
Z2,s ) − D( f̂Z or ĝZ, f̂ TZ1, ĝ

T
Z2) =

{
0, Z1,2 ≥ 0
c′′, Z1,2 < 0

,

where c′′ is a constant.

Remark 3.4.2. These theorems show that if training sample {Zt,1} has a big
outlier, then the classical method tends to classify the process intoΠ2, and if {Zt,2}
has a big outlier, then the classical method tends to classify the process into Π1.
However, our method has resistance to such a big outlier.

30



3.5 Simulation studies
This section provides simulation studies. We will see the robustness of the pro-
posed method against the outlier. We generate Z1, · · · , Zn from the AR(1) model

Zt = aZt−1 + ϵt,

where {ϵt} i.i.d.∼ N(0,1). Let the two categories Π1 and Π2 be

Π1 : fZ (λ) :=
1

2π |1 − a exp (ilλ)|2
, Π2 : gZ (λ) :=

1
2π |1 − 0.2 exp (ilλ)|2

.

We choose a as 0.3,0.5,07. Here, we use the I-divergence disparity measure,
defined by (3.3.2), and Parzen’s window function,

w(x) :=

1 − 6x2 + 6|x |3 if |x | < 1

2
2(1 − |x |)3 if 1

2 ≤ |x | ≤ 1
0 if 1 < |x |.

The simulating procedure is as follows: first, we generate n (n = 100, 300, 500)
samples Z1, · · · , Zn for each a = 0.3, 0.5, 0.7, and choose M (M = 5, 7, 8)
corresponding to n (n = 100,300,500) respectively. Next, we replace Z1 by
Z1 = Z1 − s × max{Z1, · · · , Z500} for s = 0, ±3, ±5, then we computed the
discriminant functionD( f̂Zs, fZ,gZ ) based on binary time series, andD( f

Zs
, fZ,gZ )

based on the ordinary periodogram. Finally, we iterate 500 times and compute
discriminant probability.

The results are shown in Table 3.1. Table 3.1 shows that the accuracies of
our discriminant method are almost the same as that of the classical method for
s = 0. For s = ±3,±5, the detection probabilities of our method are still high.
On the other hand, that of classical method are low. For s = ±5, all the correct
classification probabilities of the classical method are lower than 50%. Thus, we
conclude that our classification method is insensitive to the outlier. However, the
classical one is sensitive. Comparing s = 3 and s = −3, these results have no
significant difference. The same is true of s = 5 and s = −5.

3.6 Real data analysis
We apply our classification method to electrocardiogram (ECG) data. This dataset
has two categories. One is the dataset recorded during normal heart beat, denoted
by category A. The other is the dataset recorded during myocardial infraction,
described as category B. This dataset (ECG200) was formatted by Olszewski
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Table 3.1: Correct classification probabilities (%)
s a n binary periodogram
0 0.3 100 43.6 42.6

300 60.0 63.2
500 65.6 74.0

0.5 100 67.8 72.8
300 92.8 97.8
500 96.8 99.8

0.7 100 82.8 92.8
300 99.6 100
500 100 100 s a n binary periodogram

3 0.3 100 42.8 6.2 -3 0.3 100 42.8 6.4
300 59.0 20.4 300 59.6 24.4
500 65.6 34.4 500 65.4 37.6

0.5 100 66.0 6.0 0.5 100 66.8 7.6
300 89.6 53.2 300 90.4 53.8
500 96.8 86.6 500 96.6 87.2

0.7 100 83.4 11.8 0.7 100 81.3 10.6
300 99.6 85.8 300 99.6 84.4
500 100 100 500 100 100

5 0.3 100 42.8 0.4 -5 0.3 100 42.8 0.0
300 59.0 0.4 300 59.6 1.4
500 65.6 0.6 500 65.4 4.6

0.5 100 66.0 0.2 0.5 100 66.8 0.0
300 89.6 2.6 300 90.4 2.6
500 96.8 14.6 500 96.6 19

0.7 100 83.4 0.2 0.7 100 81.3 0.0
300 99.6 7.8 300 99.6 8.2
500 100 44.8 500 100 49.5
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(2001) and is available from Dau et al. (2018). ECG200 consists of test data and
training data, and the test data are composed of category A (36 time series, each
length of series is 96) and category B (64 time series, each length of series is 96).
Figures 3.1 and 3.2 show the plots of the data from category A and category B
respectively. In this real data anlaysis, we will see whether the proposed method
is valid for the real data or not and confirm the impact of the outliers.

The procedure is as follows: first, the series from categories A and B are de-
noted by {ZA,j(t)} and {ZB,i(t)} for t = 1, . . . ,96, j = 1, · · · ,36, and i = 1, · · · ,64
respectively, and take difference {Z′

A,j(t + 1)} := {ZA,j(t + 1) − ZA,j(t)} and
{Z′

B,i(t + 1)} := {ZB,i(t + 1) − ZB,i(t)} for t = 1, . . . ,95 in order to obtain zero
mean stationary sequences. Second, we estimate normalized spectral density
((spectral density)/(variance)) by nonparametric spectral estimator based on bi-
nary time series denoted by f̂A,j(λ) and f̂B,i(λ) and smoothed periodogram denoted
by f

A,j
(λ) and f

B,i
(λ), respectively. Third, we compute the discriminant function

D( f̂A,j ′(λ), f̂A,j(λ), f̂B,i(λ)) and D( f̂B,i′(λ), f̂A,j(λ), f̂B,i(λ)) based on binary time se-
ries, and D( f

A,j ′
(λ), f

A,j
(λ), f

B,i
(λ)) and D( f

B,i′
(λ), f

A,j
(λ), f

B,i
(λ)) based on the

smoothed periodogram for j, j′ = 1, · · · ,36 and i, i′ = 1, · · · ,64 using I-divergence
disparity measure. Finally, we compute the detection probability. Note that if the
spectral density estimator takes negative values, the sequence is excluded from the
dataset of both methods.

The detection probability of the proposed method is 60.25% and that of the
classical method is 64.12%. These results shows the accuracy of both methods
are almost the same. From the simulation study in Section 6, the results indicate
the structures spectra of normal heart beat and myocardial infraction are different
and these spectra possibly are not contiguous.
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Figure 3.1: Plots of time series from category A
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Figure 3.2: Plots of time series from category B

Next, we confirm Theorems 3.4.2 and 3.4.3. The procedure is as follows:
First, the series from categories A and B are denoted by {ZA,j(t)} and {ZB,i(t)} for
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t = 1, . . . ,96, j = 1, · · · ,36, and i = 1, · · · ,64 respectively, and replace {ZA,1(2)}
and {ZB,1(2)} as a and b, respectively (a and b are outliers). Second, we take differ-
ence {Z′

A,j(t+1)} and {Z′
B,i(t+1)} for t = 1, . . . ,95. Third, we estimate normalized

spectral densities f̂A,j(λ), f̂B,i(λ), f A,j(λ), and f
B,i
(λ). Finally, we compute the de-

tection probabilities (I) D( f̂A,j(λ), f̂A,1(λ), f̂B,i(λ)) and D( f
A,j
(λ), f

A,1
(λ), f

B,i
(λ))

for j = 2, · · · ,36, and i = 1, · · · ,64 (the training sample of category A includes an
outlier) respectively, and
(II) D( f̂A,j(λ), f̂A,j ′(λ), f̂B,1(λ)), and D( f

A,j
(λ), f

A,j ′
(λ), f

B,1
(λ)) for

j, j′ = 1, · · · ,36 (the training sample of categoryB includes an outlier) respectively.
The result is in the Table 3.2. The case I in the Table 3.2 indicates if training

sample {ZA,1(t)} has a big outlier, then the classical method tends to classify the
process intoΠ2. The case II in the Table 3.2 indicates if {ZB,1(t)} has a big outlier,
then the classical method tends to classify the process into Π1. On the other
hand, the proposed method has resistance to such a big outlier (see Remark 3.4.2).
Thus, we could confirm the results of Theorems 3.4.2 and 3.4.3 via ECG data.
We conclude that the classification results of the classical method are unreliable
and that of the proposed method are reliable when the observed time series have
outliers

Table 3.2: Detection probabilities when the training sample is contaminated with
an outlier

case I
outlier proposed method classical method
a = 0 41.56% 55.17%
a = 1 50.06% 66.61%
a = 2 50.06% 26.71%
a = 3 50.06% 10.83%
a = 5 50.06% 3.33%
a = 10 50.06% 1.11%

case II
outlier proposed method classical method
b = 0 59.21% 39.13%
b = 1 59.21% 44.22%
b = 2 65.45% 60.77%
b = 3 65.45% 74.40%
b = 5 65.45% 82.41%
b = 10 65.45% 90.32%
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Chapter 4

Estimation of trigonometric
moments for circular distribution of
MA(p) type by using binary series

Directional statistics have received a great deal of interest in recent years, and
a variety of distributions on the circle have been proposed. In this Chapter, we
propose circular distributions of a moving average model of order p type which in-
cludes the cardioid distribution, and discuss estimation of trigonometric moments
based on binary series. We give an explicit form of the root n consistent estimator
based on clipped series, which enables us to construct an efficient estimator by the
Newton–Raphson iterative method. We also show a robustness of the proposed
estimator when the probability density function is contaminated with a noise term.

The Chapter is organized as follows: In Section 4.1, we introduce circular
distributions of the moving average model of order p type and the estimator of
trigonometric moments based on binary series for the proposed distribution. We
show the asymptotic normality and compare the asymptotic variance with Cramér–
Rao lower bound. In Section 4.2, we elucidate a robustness of the estimator when
the probability density function is contaminated with noise. The finite sample
performance of proposed estimator is investigated, and asymptotic normality of
the proposed estimator is illustrated by computer simulation in Section 4.3. This
Chapter is based on Goto (2020).

4.1 Settings and main result
In this section, we define a family of circular distributions of MA(p) type and
propose a root n consistent estimator based on binary series. After that, we show
the asymptotic normality and compare the asymptotic variance of the proposed
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estimator with Cramér–Rao lower bound.
Throughout this Chapter, we consider a family of circular distributions of

MA(p) type whose probability density function is defined by

pcirc(θ) =
1

2π(1 + ϕ21 + · · · + ϕ2p)
|ϕ(eiθ)|2 (4.1.1)

where ϕ(z) = 1 + ϕ1z + ϕ2z2 + · · · + ϕpzp and ϕ j ∈ R for any j.
Let {Θk : k ∈ N} be independent random variables with a common circular

distribution defined by (4.1.1). From the residue theorem and symmetry of
(4.1.1), the j-th sine and cosine moments can be obtained as

E{sin( jΘk)} = 0 for j ∈ Z,

E{cos( jΘk)} =
{ ϕ j+ϕ j+1ϕ1+···+ϕpϕp−j

1+ϕ21+···+ϕ
2
p

for | j | ≤ p,

0 for | j | ≥ p + 1,

respectively. Then, the mean resultant length and the mean direction of {Θk : k ∈
N} can be obtained as

|E{eiΘk }| =
���ϕ1+ϕ2ϕ1+···+ϕpϕp−11+ϕ21+···+ϕ

2
p

��� ,
arg E{eiΘk } =


0 ϕ1 + ϕ2ϕ1 + · · · + ϕpϕp−1 > 0,
π ϕ1 + ϕ2ϕ1 + · · · + ϕpϕp−1 < 0,
undefined ϕ1 + ϕ2ϕ1 + · · · + ϕpϕp−1 = 0,

respectively. From Mardia and Jupp (2000, p.31), (4.1.1) can be written as

pcirc(θ) =
1
2π

©«1 +
p∑
j=1

η j cos( jθ)
ª®¬ , (4.1.2)

where η j = 2(ϕ j + ϕ j+1ϕ1 + · · · + ϕpϕp− j)/(1 + ϕ21 + · · · + ϕ2p). If we take p = 1,
(4.1.2) is the well-known cardioid distribution (see Mardia and Jupp (2000, p.45)).
Clearly, if ϕ j = 0 for any j ∈ {1, . . . , p}, (4.1.2) is a uniform distribution. The
proposed model (4.1.1) is generally non-identifiable. Actually, for p = 2 and
(ϕ1, ϕ2,ψ1,ψ2) := (0,−1

2,±
√

1
2,−1), we have p(θ; ϕ1, ϕ2) = p(θ;ψ1,ψ2).

In this Chapter, we discuss the estimation problem of η1, . . ., ηp of the proposed
probability density function by using clipped series. Hereafter, we confine our-
selves to the case that (ϕ1, . . . , ϕp) satisfies ϕ1 + ϕ2ϕ1 + · · · + ϕpϕp−1 ≥ 0. Define
(α1, α2, . . ., αp) ∈ Rp such that 0 < α1 < α2 < · · · < αp < π. For each α j ,
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j = 1, . . ., p, binary series {X j
k } are defined, for any j = 1, . . ., p,

Xk
j =

{
1 −α j ≤ Θk ≤ α j,

0 otherwise.

Applying the technique for the derivation of an orthant probability for normal
distribution (see Kedem (1994, p.48)), we have the following equation

©«
P(−α1 ≤ Θ1 ≤ α1)
P(−α2 ≤ Θ1 ≤ α2)

...
P(−αp ≤ Θ1 ≤ αp)

ª®®®®¬
=

©«
α1
π
α2
π
...
αp
π

ª®®®®¬
+

1
2π

©«
b11 b12 · · · b1p
b21 b22 · · · b2p
...

...
. . .

...
bp1 bp2 · · · bpp

ª®®®®¬
©«
η1
η2
...
ηp

ª®®®®¬
,

where

©«
b11 b12 · · · b1p
b21 b22 · · · b2p
...

...
. . .

...
bp1 bp2 · · · bpp

ª®®®®¬
=

©«

∫ α1
−α1 cos θdθ

∫ α1
−α1 cos 2θdθ · · ·

∫ α1
−α1 cos pθdθ∫ α2

−α2 cos θdθ
∫ α2
−α2 cos 2θdθ · · ·

∫ α2
−α2 cos pθdθ

...
...

. . .
...∫ αp

−αp cos θdθ
∫ αp

−αp cos 2θdθ · · ·
∫ αp

−αp cos pθdθ

ª®®®®®¬
.

Here, we suppose the observed stretch {Θ1, . . .,Θn} is available. We choose
(α1, α2, . . ., αp) ∈ Rp adequately so that (bi j)pi,j=1 is a nonsingular matrix, and
substitute (

1/n
n∑

k=1
Xk

1, . . .,1/n
n∑

k=1
Xk

p

)T
for (

P(−α1 ≤ Θ1 ≤ α1), . . .,P(−αp ≤ Θ1 ≤ αp)
)T
.

Then, the binary estimator
(
η̂1, . . ., η̂p

)T can be defined as

©«
η̂1
η̂2
...
η̂p

ª®®®®¬
= 2π

©«
b11 b12 · · · b1p

b21 b22 · · · b2p
...

...
. . .

...

bp1 bp2 · · · bpp

ª®®®®¬
©«
1
n
∑n

k=1 Xk
1 − α1

π
1
n
∑n

k=1 Xk
2 − α2

π
...

1
n
∑n

k=1 Xk
p − αp

π

ª®®®®¬
,
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where (bi j)pi,j=1 is the inverse matrix of (bi j)pi,j=1.
Before we derive the asymptotic distribution of the proposed estimator, we

give some examples that (bi j)pi,j=1 is a nonsingular matrix for specific models.

Example 4.1.1. MA(2) case: if we take α1 = π
4 and α2 = π

2 , then

(bi j)2i,j=1 =
(√

2 1
2 0

)
, (bi j)2i,j=1 =

(
0 1

2
1 − 1√

2

)
.

Example 4.1.2. MA(3) case: if we take α1 = π
4 , α2 =

π
2 , and α3 =

3π
4 , then

(bi j)3i,j=1 =
©«
√
2 1

√
2
3

2 0 −2
3√

2 −1
√
2
3

ª®®¬ , (bi j)3i,j=1 =
©«

1
4
√
2

1
4

1
4
√
2

1
2 0 −1

2
3

4
√
2

−3
4

1
4
√
2

ª®®¬ .
The following theorem shows that the asymptotic normality of the proposed

estimator.

Theorem 4.1.1. It holds that

√
n
©«
η̂1 − η1
η̂2 − η2

...
η̂p − ηp

ª®®®®¬
⇒ N(0,V ),

where V = (vi j)pi,j=1 and

vi j = 4π2
∑p

s,k=1 b
isb j k{P(−αs ≤ Θ1 ≤ αs,−αk ≤ Θ1 ≤ αk)

−P(−αs ≤ Θ1 ≤ αs)P(−αk ≤ Θ1 ≤ αk)}.

Next, we investigate whether our proposed method attains the Cramér–Rao
lower bound or not. For simplicity, we confine ourselves to the case of circular
distributions of MA(1) type.

Proposition 4.1.1. The Cramér–Rao lower bound is given by

I−1(η1) = 1 − η21 +
√
1 − η21 .

Proposition 4.1.1 enables us to compare the asymptotic variance of the proposed
estimator with the Cramér–Rao lower bound. Thus, we have the following state-
ment.
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Remark 4.1.1. The Binary estimator is not efficient.

Actually, If we consider the case η1 = 1, then it is easy to see that

(Covariance of η̂1) − I−1(η1) > 0.

Remark 4.1.1 is not a preferable property of the estimator. However, from Hosoya
and Taniguchi (1982, Theorem 5.1), we can construct an efficient estimator from
η̂1, . . ., η̂p by the Newton–Raphson iterative method. In the next section, we show
a robust property of the estimator when the true probability density function is
contaminated.

4.2 Robustness of proposed estimator against con-
tamination

In the previous section, we showed that proposed estimator is root n consistent, and
it enable us to construct the efficient estimator by the Newton–Raphson iterative
method. In this section, we show our estimator is robust when the true probability
density function is contaminated with noise. Let qcirc, contam(·) be a contaminated
probability density function defined, for θ ∈ [−π, π] and some β ∈ (0, π/2), as

qcirc, contam(θ) =
{
pcirc(θ) if − π + β ≤ θ ≤ π − β,

cξ(θ) otherwise,

where pcirc(θ) is defined by (4.1.1), ξ(θ) is a non-negative function with∫ π+β

π−β ξ(θ)dθ > 0, c is some constant such that qcirc, contam(θ) is probability density
function. In the above setting, cξ(θ) corresponds to a noise. Assume that the
process {Θk : k ∈ N} is misspecified, that is, the true model of {Θk : k ∈ N}
comes from qcirc, contam(θ), but we fit the process to pcirc(θ).

Theorem 4.2.1. If αp and β satisfy αp < π − β, then the our estimator does not be
influenced by the contamination.

Thus, the proposed method is robust against the contamination of probability
density.

4.3 Simulation studies
In this section, we study finite sample performance of the proposed method,
and confirm the asymptotic normality of the proposed estimator based on binary
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process. In this simulation, the circular distributions of MA(1) and MA(2) types
are discussed. First, we illustrate finite sample performance. The procedure
is the following; first, we generate random variables {Ui : i = 1, . . . ,n} (n =
100,300,500,1000), which follows i.i.d. standard uniform distribution. Next, we
compute {Θi = 1 . . . ,n} := {F−1(Ui) : i = 1, . . . ,n}, where F−1 is the generalized
inverse of a distribution function of (4.1.1), which follows the circular distribution
ofMA(p) type for p = 1,2. Then, we calculate the proposed estimators of η1 and η2
for the each set of parameters ϕ1 = 0.4,0.7,−0.5 and angulars α1 = π/4, π/2,3π/4
for MA(1) type distribution, and (ϕ1, ϕ2) = (0.7,0.4), (1.0,0.7), (0.9,−0.3) and
(α1, α2) = (π/4, π/2), (π/2,3π/4) for MA(2) type distribution. We iterate 1000
times and calculate mean absolute error, defined asMAEj :=

∑1000
k=1 |η̂(k)j −η j |/n for

j = 1,2, where η̂(k)j is the estimator of η j of k-th iteration. Next, we calculate, for
n = 1000, {

√
n(η̂(k)1 −η1); k = 1, . . . ,10000} and {

√
n(η̂(k)1 −η1),

√
n(η̂(k)2 −η2); k =

1, . . . ,10000} for circular distributions of MA(1) type with ϕ1 = 0.7 and MA(2)
type with (ϕ1, ϕ2) = (0.7,0.4), respectively to confirm the asymptotic normality
of the proposed estimator. Then, we give the Q-Q plots in Figures 4.1, 4.2,
and 4.3. We also provide the Kolmogorov–Smirnov test of normality to check
the asymptotic normality of the proposed estimator. The null hypothesis is that
{
√
n(η̂1−η1)} follows the normal distribution for large n. For n = 100, 1000, 10000,

{
√
n(η̂(k)1 − η1); k = 1, . . . ,100} and {

√
n(η̂(k)1 − η1),

√
n(η̂(k)2 − η2); k = 1, . . . ,100}

are calculated for circular distributions of MA(1) type with ϕ1 = 0.7 and MA(2)
type with (ϕ1, ϕ2) = (0.7,0.4). Then, we compute p-value by using R-function
ks.test()when {

√
n(η̂(k)1 −η1); k = 1, . . . ,100} regarded as a set of i.i.d. observations

with respect to k. Note that, from the definition of binary estimator, we possibly
have the exact same value η̂(k)j = η̂

(k ′)
j for some k and k′(, k). Therefore, we

added a small perturbation to {
√
n(η̂(k)1 − η1); k = 1, . . . ,100} by R function jitter()

in order to compute p-value (see Robert et al. (2010, p.17-18)).
The results are shown in Tables 4.1 and 4.2 and Figures 4.1, 4.2, and 4.3. Tables

4.1 and 4.2 show the proposed estimator works well, and the mean absolute errors
get smaller as the sample size increases. In Table 4.1, for ϕ1 = 0.4 and 0.7 inMA(1)
type model, MAE1 is smallest when α1 = 3π/4 among α1 = π/4, π/2, 3π/4. On
the other hand, for ϕ1 = −0.5 in MA(1) type model, MAE1 is smallest when
α1 = π/4 among three angulars. It is because MA(1) model with ϕ1 = −0.5 has
a mean direction π. The mean directions of the proposed model are 0 in the other
cases. In Table 4.2,MAE1 are smaller thanMAE2. For better estimation of ϕ2, the
set of angulars (π/2,3π/4) is better than (π/4, π/2). Regarding to estimation of ϕ1,
both sets of angulars (π/2,3π/4) and (π/4, π/2) provide almost the same MAE1.
Figures 4.1 4.2, and 4.3 show that almost of all points are on the reference line,
that is, we could confirm that our estimator has asymptotic normality. Moreover,
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for MA(1) model, the p-values of the KS test are obtained as 0.582, 0.987, 0.981
for n = 100, 1000 10000, respectively. For MA(2) model, the p-values of the KS
test for {

√
n(η̂(k)1 − η1); k = 1, . . . ,100} are obtained as 0.528, 0.507, 0.718 and

that for {
√
n(η̂(k)2 − η2); k = 1, . . . ,100} are obtained as 0.990, 0.799, 0.989 for

n = 100, 1000 10000, respectively. As a result, it shows that we cannot reject the
null hypothesis in all cases we investigated.

Table 4.1: MAE for circular distributions of MA(1) type
ϕ1 α1 n MAE1 ϕ1 α1 n MAE1

0.4 π/4 100 0.175 0.7 π/4 100 0.171
300 0.103 300 0.108
500 0.076 500 0.077
1000 0.054 1000 0.055

π/2 100 0.115 π/2 100 0.098
300 0.065 300 0.060
500 0.050 500 0.044
1000 0.036 1000 0.032

3π/4 100 0.106 3π/4 100 0.071
300 0.059 300 0.038
500 0.046 500 0.030
1000 0.034 1000 0.022

-0.5 π/4 100 0.087
300 0.052
500 0.041
1000 0.029

π/2 100 0.113
300 0.065
500 0.049
1000 0.034

3π/4 100 0.180
300 0.103
500 0.077
1000 0.055
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Table 4.2: MAE for circular distributions of MA(2) type
(ϕ1, ϕ2) (α1, α2) n MAE1 MAE2

(0.7,0.4) (π/4, π/2) 100 0.081 0.215
300 0.045 0.121
500 0.036 0.099
1000 0.026 0.069

(π/2,3π/4) 100 0.083 0.094
300 0.046 0.055
500 0.037 0.041
1000 0.026 0.029

(1.0,0.7) (π/4, π/2) 100 0.060 0.222
300 0.035 0.129
500 0.028 0.096
1000 0.020 0.070

(π/2,3π/4) 100 0.064 0.070
300 0.036 0.039
500 0.027 0.032
1000 0.019 0.021

(0.9,-0.3) (π/4, π/2) 100 0.115 0.210
300 0.066 0.125
500 0.051 0.095
1000 0.035 0.069

(π/2,3π/4) 100 0.111 0.155
300 0.067 0.094
500 0.052 0.075
1000 0.036 0.052
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Figure 4.1: Q-Qplots of {
√
n(η̂(k)1 −η1); k = 1, . . . ,10000} for a circular distribution

of MA(1) type with ϕ1 = 0.7 for n = 1000.

Figure 4.2: Q-Qplots of {
√
n(η̂(k)1 −η1); k = 1, . . . ,10000} for a circular distribution

of MA(2) type (ϕ1, ϕ2) = (0.7,0.4) for n = 1000.
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Figure 4.3: Q-Qplots of {
√
n(η̂(k)2 −η2); k = 1, . . . ,10000} for a circular distribution

of MA(2) type (ϕ1, ϕ2) = (0.7,0.4) for n = 1000.
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Chapter 5

Distribution free tests for structural
break of count time series

In this Chapter, testings for structural breaks of a count time series have been well
studied under several distributional assumptions, including one-parameter expo-
nential families and zero-inflated distributions. Here, we deal with the testing for
parameter change for count time series whose intensity functions have nonlinear
dependence structures without assuming any distributions. We derive the asymp-
totic null distribution for the Wald type, score based-, and residual-based CUSUM
statistics and, consequently, obtain the distribution-free tests. We also show the
test based on the modified Wald type statistic is consistent. A simulation study
illustrates that the residual-based test outperforms the other proposed methods.

The Chapter is organized as follows: In Section 5.1, we introduce count
processes with parametric intensities which have nonlinear dependence structures.
Next, we define the Poisson, negative binomial, and exponential QMLEs and
make assumptions. The strong consistency and asymptotic normality of QMLEs
are reviewed. These results are shown by Ahmad and Francq (2016), Aknouche
et al. (2018), and Aknouche and Francq (2020). In Section 5.2, we formulate the
testing for structural breaks and define the Wald type, the modified Wald type, the
score-based, and the residual-based CUSUM test statistics. We derive the limit
laws of these statistics under the null hypothesis. We illustrate the finite sample
performance in Section 5.3. The results reveal that the classical Wald type test
is easily affected by the underlying conditional distribution. On the other hand,
the proposed Wald tests work well. However, Wald type statistics show the size
distortion because of the instability of PQMLE. In contrast, the score-based and
the residual test provide good empirical size. Our simulation study suggests the
residual-based test is superior to the score based test from the perspective of the
power.
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5.1 Quasi maximum likelihood estimators
In this section, the fundamental settings and the quasi maximum likelihood es-
timators (QMLEs) are introduced, which is investigated by Ahmad and Francq
(2016), Aknouche et al. (2018), and Aknouche and Francq (2020).

Let {Zt} be a count time series or non-negative time series on the probability
space (Ω,F ,P) with conditional expectation, for any t ∈ Z

E (Zt |Ft−1) := λ(Zt−1, Zt−2, . . . , ; θ0)

where Ft−1 is the σ-field generated by {Zs, s ≤ t −1}, θ0 is an unknown parameter
on a parameter spaceΘ ⊂ Rd , and λ is a knownmeasurable function on [0,∞)∞×Θ
to (δ,+∞) for some δ > 0.

For any θ ∈ Θ and t ∈ N ∪ {0}, we define

λt(θ) := λ(Zt−1, Zt−2, . . . , ; θ), λ̃t(θ) := λ(Zt−1, Zt−2, . . . , Z1,x0; θ)

where x0 ∈ [0,∞)∞ be an initial parameter. The function λ̃t which can be calculate
from observed process is proxy for λt which contains population values. Since
we use specific models like the linear INGARCH(p,q) model as λ in practice,
so x0 ∈ [0,∞)∞ reduces to a finite dimension vector. Moreover, the impact of
the choice x0 ∈ [0,∞)∞ is asymptotically negligible as n → ∞. Instead of the
conditional distributional assumptions, we assume the stationarity and ergodicity
of {Zt};

Assumption 5.1.1. (A0) {Zt} is strictly stationary and ergodic.

Remark 5.1.1. This assumption is satisfied by a broad class of the time series of
counts. Aknouche and Francq (2020) showed sufficient conditions of Assumption
(A0) for the non-linear INGARCH(p,q) model, and it includes the exponential
family and the zero-inflated distributions.

The Poisson quasi (conditional) maximum likelihood estimator (PQMLE) is
defined as follows;

θ̂Pn := arg max
θ∈Θ

L̃P
n , L̃P

n (θ) :=
1
n

n∑
t=1

ℓ̃Pt (θ), ℓ̃Pt (θ) := −λ̃t(θ) + Zt log λ̃t(θ).

Similarly, the negative binomial QMLE (NBQMLE) and the exponential
QMLE (EQMLE) are defined below; for fixed r > 0,

θ̂NBn,r := arg max
θ∈Θ

L̃NB
n,r , L̃NB

n,r (θ) :=
1
n

n∑
t=1

ℓ̃NBn,r (θ),
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ℓNBn,r (θ) := r log
(

r
r + λ̃t(θ)

)
+ Zt log

(
λ̃t(θ)

r + λ̃t(θ)

)
,

and

θ̂En := arg max
θ∈Θ

L̃E
n , L̃E

n (θ) :=
1
n

n∑
t=1

ℓ̃Et (θ), ℓ̃Et (θ) := − Zt
λ̃t(θ)

− log λ̃t(θ),

respectively. We define ℓPn , ℓNB
n,r , and ℓEn in the same way as ℓ̃Pn , ℓ̃NB

n,r , and ℓ̃En using
λt(θ) instead of λ̃t(θ), respectively. Throughout this Chapter, ∥ · ∥ denotes ℓ2 norm.
We make the following assumptions;

Assumption 5.1.2. (A1) Θ is a compact set and θ0 belongs to the interior of Θ.

(A2) EZ1+η
t < ∞ for some η < 0.

(A3) λt(θ) = λt(θ0) a.s. if and only if θ = θ0 for any t ∈ N.

(A4) For at := supθ∈Θ
��λt(θ) − λ̃t(θ)��, it holds that at = o(1) and atZt = o(1) a.s..

(A5) For any t ∈ N, λt(θ) is twice continuously differentiable with respect to θ.

(A6) If sT∂/∂θλt(θ0) = 0 a.s., then s = 0.

(P7) For bt := supθ∈Θ
∂/∂θ (

λt(θ) − λ̃t(θ)
) and

ct := sup
θ∈Θ

max
( 1
λt(θ)

∂

∂θ
λt(θ)

 , 1
λ̃t(θ)

∂

∂θ
λ̃t(θ)

) ,
there exists κ > 1/2 such that bt = O(t−κ), btZt = O(t−κ), and atctZt =
O(t−κ) a.s..

(NB7) For dt := supθ∈Θ
��λ2t (θ) − λ̃2t (θ)�� and

et := sup
θ∈Θ

max
( 1
λt(θ)(r + λt(θ))

∂

∂θ
λt(θ)

 , 1
λ̃t(θ)(r + λ̃t(θ))

∂

∂θ
λ̃t(θ)

) ,
there exists κ > 1/2 such that bt = O(t−κ), btZt = O(t−κ), atet = O(t−κ),
atetZt = O(t−κ), and dtetZt = O(t−κ) a.s..

(E7) There exists κ > 1/2 such that bt = O(t−κ), btZt = O(t−κ), atct = O(t−κ)
and atctZt = O(t−κ) a.s..
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(P8) For some neighborhood V(θ0) of θ0 and any i, j ∈ {1, . . . , d},
��IPt (θ0)��1+δ,

supθ∈V(θ0)
��IPt (θ)��, supθ∈V(θ0) ��JPt (θ)��, and

sup
θ∈V(θ0)

���� (λt(θ0) − λt(θ))λt(θ)
∂

∂θi∂θ j
λt(θ)

����
are integrable for any i, j ∈ {1, . . . , d}, where some δ > 0,

IPt (θ) :=
(Zt − λt(θ))2

λ2t (θ)
∂

∂θi
λt(θ)

∂

∂θ j
λt(θ)

and
JPt (θ) :=

1
λt(θ)

∂

∂θi
λt(θ)

∂

∂θ j
λt(θ).

In particular, we denote IP := EIPt (θ0) = E
(
vt (θ)
λ2t (θ0)

∂
∂θi
λt(θ0) ∂

∂θ j
λt(θ0)

)
, JP :=

EJPt (θ0)with the conditional variance vt(θ0) := Var(Zt |Ft−1) = E(Z2
t |Ft−1)−

λt(θ0)2.

(NB8) For some neighborhoodV(θ0) of θ0 and any i, j ∈ {1, . . . , d},
��INBt (θ0)

��1+δ,
supθ∈V(θ0)

��INBt (θ)
��, supθ∈V(θ0) ��JNBt (θ)

��,
sup

θ∈V(θ0)

����(r(λt(θ0) − λt(θ))(2λt(θ) + r)λ2t (θ)(r + λt(θ))2

)
∂

∂θi
λt(θ)

∂

∂θ j
λt(θ)

���� ,
and sup

θ∈V(θ0)

����r(λt(θ0) − λt(θ))λt(θ)(r + λt(θ))
∂

∂θi∂θ j
λt(θ)

����
are integrable, where some δ > 0,

INBt (θ) := r2(Zt − λt(θ))2

λ2t (θ)(r + λt(θ))2
∂

∂θi
λt(θ)

∂

∂θ j
λt(θ),

and JNBt (θ) := r
λt(θ)(r + λt(θ))

∂

∂θi
λt(θ)

∂

∂θ j
λt(θ).

In particular, we denote INB := EINBt (θ0), JNB := EJNBt (θ0).

(E8) For some neighborhood V(θ0) of θ0 and any i, j ∈ {1, . . . , d},
��IEt (θ0)��1+δ,

supθ∈V(θ0)
��IEt (θ)��, supθ∈V(θ0) ��JEt (θ)��, and

sup
θ∈V(θ0)

����λt(θ0) − λt(θ)λ2t (θ)
∂

∂θi
λt(θ)

∂

∂θ j
λt(θ)

����
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are integrable, where some δ > 0,

IEt (θ) :=
(Zt − λt(θ))2

λ4t (θ)
∂

∂θi
λt(θ)

∂

∂θ j
λt(θ),

and JEt (θ) :=
1

λ2t (θ)
∂

∂θi
λt(θ)

∂

∂θ j
λt(θ).

In particular, we denote IE := EIEt (θ0), JNB := EJEt (θ0).

(A9)For some neighborhood V(θ0) of θ0 and any i, j ∈ {1, . . . , d},

v1+δt (θ0), sup
θ∈V(θ0)

���� ∂∂θi λt(θ) ∂∂θ j λt(θ)
���� , and sup

θ∈V(θ0)

���� ∂∂θi λt(θ)
����

are integrable, where some δ > 0.

Remark 5.1.2. (A1)-(A3) and (A5) are the fundamental assumptions to show the
strong consistency and the asymptotic normality. (A4), (P7), (NB7), and (E7)
are used to ensure that approximated processes based on λ̃t(θ) converge to proper
processes based on λt(θ). We can show that J j is the invertible matrix by (A6).
(P8), (NB8), and (E8) guarantee the existence of I j and J j and the almost surely
convergences of 1/n∑n

t=1 I
j
t (θ̂n) and 1/n∑n

t=1 J
j
t (θ̂n) to I j and J j , respectively.

(A9) is the moment conditions for the residual-based CUSUM test.

The strong consistency and the asymptotic normality is established by Ahmad
and Francq (2016), Aknouche et al. (2018), and Aknouche and Francq (2020);

Lemma 5.1.1. Assume that, for j = P,NB, or E, (A0)-(A6), ( j7), and ( j8). Then,
it holds that,

θ̂ j
n → θ0 a.s. as n → ∞,

√
n(θ̂ j

n − θ0) ⇒ N(0, (J j)−1I j(J j)−1) as n → ∞.

Remark 5.1.3. If Zt |Ft−1 ∼ Pois(λt(θ0)), NB(r,r/(r + λt(θ0))), or Exp(1/λt(θ0)),
then IP = JP, INB = JNE , or IE = JE , respectively. Hence, QMLE is efficient for
each case.

5.2 Detection of structural breaks
In the previous section, we introduced QMLEs and confirmed the strong consis-
tency and the asymptotic normality. In this section, we deal with tests for structural
breaks, which is the main object in this Chapter. The null hypothesis H0 is there
is no change point of the true parameter, and the alternative H1 is that the true
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parameter changes after an unknown point ⌊nτ⌋ where τ ∈ (0,1). More precisely,
the null hypothesis is given by

H0 : E (Zt |Ft−1) := λ(Zt−1, Zt−2, . . . , ; θ0) for any t ∈ {1, . . . ,n},

and the alternative is, for some θ1(, θ0),

H1 : E (Zt |Ft−1) := λ(Zt−1, Zt−2, . . . , ; θ0) for any t ∈ {1, . . . , ⌊nτ⌋},
E

(
Z′
t |F ′

t−1
)
:= λ(Z′

t−1, Z
′
t−2, . . . , ; θ1) for any t ∈ {⌊nτ⌋ + 1, . . . ,n},

where Ft−1 and F ′
t−1 are the σ-field generated by {Zs, s ≤ t−1} and {Z′

s, s ≤ t−1},
respectively.

5.2.1 Wald type CUSUM test
First, we propose the Wald type CUSUM test which is investigated by Kang and
Lee (2014), Lee et al. (2016), and Lee et al. (2018). From the definition of the
QMLEs and the Taylor’s expansion, it follows that, for j = P,NB, or E,

0 =
√
n
∂

∂θ
L̃ j
n(θ̂ j

n)

=
√
n
∂

∂θ
L̃ j
n(θ0) +

∂

∂θ∂θT
L̃ j
n(θ j

n
∗)
√
n(θ̂ j

n − θ0),

where θ0 ≶ θ j
n
∗
≶ θ̂ j

n. Then, we have

J j√n(θ̂ j
n − θ0) =

√
n
∂

∂θ
L̃ j
n(θ0) + ∆ j

n,

where

∆
j
n :=


−

(
J j + ∂

∂θ∂θT
L̃ j
n(θ j

n

∗)
) (

∂
∂θ∂θT

L̃ j
n(θ j

n

∗)
)−1 √

n ∂
∂θ L̃

j
n(θ0) if

(
∂

∂θ∂θT
L̃ j
n(θ j

n

∗)
)−1

exists,(
J j + ∂

∂θ∂θT
L̃ j
n(θ j

n

∗)
) √

n(θ̂ j
n − θ0) otherwise.

(5.2.1)

Since

J j ⌊ns⌋√
n
(θ̂ j

⌊ns⌋ − θ̂ j
n)

=
1
√
n

⌊ns⌋∑
t=1

∂

∂θ
ℓ̃
j
t (θ0) −

⌊ns⌋
n

1
√
n

n∑
t=1

∂

∂θ
ℓ̃
j
t (θ0) +

√
⌊ns⌋
n
∆
j
⌊nτ⌋ −

⌊ns⌋
n
∆
j
n,
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we know J j ⌊ns⌋/
√
n(θ̂ j

⌊ns⌋ − θ̂ j
n) takes the form of the CUSUM statistics. Under

the assumption that I j for j = P,NB, or E is positive definite matrix, let us define
the Wald type test statistics as, for j = P,NB, or E,

T j
KL,Wald := max

1≤k≤n

k2

n
(θ̂ j

k − θ̂ j
n)T Ĵ j

KL(Î
j
KL)

−1 Ĵ j
KL(θ̂

j
k − θ̂ j

n),

where

Î jKL :=
1
n

n∑
t=1

Ĩ jt (θ̂
j
n), Ĵ jKL :=

1
n

n∑
t=1

J̃ jt (θ̂
j
n),

and Ĩ jt and J̃ jt is defined in the same way as I jt and J jt using λt(θ) instead of λ̃t(θ),
respectively. Then, we have the following asymptotic null distribution.

Theorem 5.2.1. Assume that, for j = P,NB, or E,I j is positive definite matrix,
(A0)-(A6), and ( j7)-( j8). Then, under the null hypothesis H0, it holds that

T j
KL,Wald ⇒ sup

0≤s≤1
∥B◦

d(s)∥
2 as n → ∞,

where B◦
d(s) is d-dimensional standard Brownian bridge.

From Theorem 5.2.1, we can construct the distribution-free CUSUM test based
on T j

KL,Wald which rejects the null hypothesis H0 when T j
KL,Wald ≥ C, where C is

a critical value defined as follows; for significance level α such that 0 < α < 1,
P

(
sup0≤s≤1 ∥B◦

d(s)∥
2 > C

)
= α. Then, this is asymptotic size α test. However,

the consistency of this test is difficult to show since the asymptotics of θ̂ j
n has

to under the alternative does not take into consideration. As an alternative, we
proposeDoukhan andKengne (2015) type of statistics. Let us define the alternative
statistics as follows; for j = P,NB, or E,

T j
DK,Wald := max

1≤k≤n−1

k2(n − k)2
n3

(θ̂ j
1:k − θ̂ j

k+1:n)
T Ĵ j

DK(Î
j
DK)

−1 Ĵ j
DK(θ̂

j
1:k − θ̂ j

k+1:n),

where

Î jDK :=
1
un

un∑
t=1

Ĩ jt (θ̂
j
1:un), Ĵ jDK :=

1
un

un∑
t=1

J̃ jt (θ̂
j
1:un),

un is an integer value sequence such that un → ∞ and un/n → 0 as n → ∞, and
θ̂ j
a:b is the jQMLE estimator based on {Za, . . . , Zb} for j = P,NB, or E. Then, we

have the asymptotic results.
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Theorem 5.2.2. Assume that, for j = P,NB, or E,I j is positive definite matrix,
(A0)-(A6), and ( j7)-( j8). Then, under the null hypothesis H0, it holds that

T j
DK,Wald → sup

0≤s≤1
∥B◦

d(s)∥
2 as n → ∞,

where B◦
d(s) is d-dimensional standard Brownian bridge.

From Theorem 5.2.2, we therefore obtain a distribution-free and asymptotic
size α test if we reject H0 when T j

DK,Wald ≥ C. As expected, we obtain the
consistency of the test.

Theorem 5.2.3. Assume that, for j = P,NB, or E,I j is positive definite matrix,
(A0)-(A6), and ( j7)-( j8). Then, the test if we reject H0 when T

j
DK,Wald ≥ C, where

C is a critical value given by P
(
sup0≤s≤1 ∥B◦

d(s)∥
2 > C

)
= α is consistent.

From Theorems 5.2.1-5.2.3, we conclude that we can construct the asymptotic
size α CUSUM test based on T j

KL,Wald and the asymptotic size α and consistent
CUSUM test based on T j

DK,Wald. However, these Wald type tests often encounters
size distortion (see Lee and Lee (2019)). Therefore, we examine more stable tests,
that is, the score based and residual based CUSUM tests, which provide better size
control than Wald type tests.

5.2.2 Score based CUSUM test
A score based statistics is studied by Berkes et al. (2004), Oh and Lee (2018),
and Lee and Lee (2019). We define the alternative statistics as follows. For
j = P,NB, or E,

T j
score := max

1≤k≤n

1
n

(
k∑

t=1

∂

∂θ
ℓ̃
j
k(θ̂

j
n)

)T
(Î jKL)

−1
(

k∑
t=1

∂

∂θ
ℓ̃
j
k(θ̂

j
n)

)
.

The reason why T j
score is called the CUSUM test is

max
1≤k≤n

1/
√
n

(
k∑

t=1

∂

∂θ
ℓ̃
j
k(θ̂

j
n)

)
can be approximated by

max
1≤k≤n

1
√
n

(
k∑

t=1

∂

∂θ
ℓ̃
j
t (θ0) −

k
n

n∑
t=1

∂

∂θ
ℓ̃
j
t (θ0)

)
,

which is proven in Lemma 7.4.3 in Section 6.
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Theorem 5.2.4. Assume that, for j = P,NB, or E,I j is positive definite matrix,
(A0)-(A6), and ( j7)-( j8). Then, under the null hypothesis H0, it holds that

T j
score ⇒ sup

0≤s≤1
∥B◦

d(s)∥
2 as n → ∞,

where B◦
d(s) is d-dimensional standard Brownian bridge.

Similar to the aboveWald type test, we obtain a distribution-free and asymptotic
size α test which rejects the hypothesisH0wheneverT j

score ≥ C where C is a critical
value defined by P

(
sup0≤s≤1 ∥B◦

d(s)∥
2 > C

)
= α.

5.2.3 Residual based CUSUM test
Franke et al. (2012) andKang andLee (2014) discussed the residual basedCUSUM
test. Define ϵt := Zt − λ(θ0), ϵ̃t(θ̂ j

n) := Zt − λ̃(θ̂ j
n), and the residual based CUSUM

statistics as

T j
res := max

1≤k≤n

1√
1
n
∑n

t=1 ϵ̃
2
t (θ̂

j
n)

1
√
n

����� k∑
t=1

ϵ̃t(θ̂ j
n) −

k
n

n∑
t=1

ϵ̃t(θ̂ j
n)
����� .

Theorem 5.2.5. Assume that, for j = P,NB, or E,I j is positive definite matrix,
(A0)-(A6), ( j7)-( j8), and (A9). Then, it holds that, under H0,

T j
res ⇒ sup

0≤s≤1
|B◦

1(s)| as n → ∞.

Similarly, we obtain a distribution-free and asymptotic size α test rejects the
hypothesis H0 in favour of H1 if T j

res ≥ C′, where C′ is a critical value given by
P

(
sup0≤s≤1 |B◦

1(s)| > C′) = α.
5.3 The simulation studies
In this section, we investigate the finite sample performance of the proposed tests.
We use the linear INGARCH(1,1) model;

λt = ω + αZt−1 + βλt−1.

The critical values are calculated by generating 10000 realizations of the stan-
dard Brownian bridge by the R function BBridge in the R package sde (Iacus,
2016) and these are 1.336995 and 3.011263 for maxk=1,...,10000 |B◦

1(k/10000)| and
maxk=1,...,10000 ∥B◦

3(k/10000)∥2 at a significance level of 0.05, respectively. The
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INGARCH process is generated using the analytic mean of Zt for the model as
initial values of Z0 and λ0 by the R function ingarch.mean in the R package tscount
(Liboschik et al., 2017).

Since PQMLE is not stable for small samples (see Figure 5.1), we used the
modified statistics TP

KL,Wald2 and T
P
DK,Wald2 which are defined as

TP
KL,Wald2 := max

vn≤k≤n

k2

n
(θ̂Pk − θ̂Pn )T ĴPKL2(ÎPKL)−1 ĴPKL(θ̂Pk − θ̂Pn ),

TP
DK,Wald2 := max

vn≤k≤n−vn

k2(n − k)2
n3

(θ̂P1:k − θ̂Pk+1:n)
T ĴPDK(ÎPDK)−1 ĴPDK(θ̂P1:k − θ̂Pk+1:n),

where vL = ⌊(log n)2⌋, respectively. In this simulation, we also use the following
test statistics

TP
KL := max

vL≤k≤n

k2

n
(θ̂Pk − θ̂Pn )T (ÎPKL)(θ̂Pk − θ̂Pn ),

which is proposed by Kang and Lee (2014) under the conditional distribution of
the process being Poisson, to investigate the impact of the misspecification.

The procedure is the following; First, We investigate the empirical sizes of
the tests. we generate n (n = 300,600,900) samples of the Poisson or negative
binomial INGARCH (1,1) with r = 4 for negative binomial distribution and
(ω,α, β) = (1,0.3,0.2). Next, we estimate the parameters θ̂P1:k and θ̂Pk+1:n by
PQMLE with the initial values

∑k
t=1 Zt/k and

∑n
t=k+1 Zt/(n − k) for k = vL, . . . ,n

and k = vL, . . . ,n − vL , respectively. The optimization is obtained by use of the
R package constrOptim given the gradient function and 0 as the initial value of
the gradient. Then, we calculate the proposed test statistics, and replicate this
procedure 200 times and calculate the rejection probabilities.

Second, we simulate the cases the parameters changes from
(ω,α, β) = (1,0.3,0.2) to (1,0.3,0.4) and (1.5,0.3,0.2) at ⌊n/2⌋ + 1 to study the
empirical powers of the test statistics, respectively. The rest of the procedure is the
same as the above null case.

The results are summarized in Table 5.1 and 5.2. Here, we denote Poisson
distribution and negative binomial distribution with the parameter r as Pois(λt)
and NB(λt,r/(r + λt)), respectively. The classical statistics TP

KL are sensitive
to the misspecification, the non-Poisson case. On the other hand, the alternative
statisticsTP

KL,Wald2 andT
P
DK,Wald2workwell sincewe need not specify the underlying

distribution. However, as Lee andLee (2019) pointed out, theseWald type statistics
show the severe size distortions in Table 5.1. Although the modifiedWald statistics
TP
DK,Wald2 are mathematically tractable, it provides the worst size control. This can
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be explained from the perspective of the instability of PQMLE. We can confirm
PQMLE based on small samples is not stable, and Wald type test statistics are
calculated through PQMLEs which are based on small samples. These facts cause
the size distortions.

In contrast, TP
score and TP

res are based on PQMLE which are calculated from
full samples. Thus, these statistics achieve better size control. According to the
empirical power, Table 5.2 shows the test based on the residual has better power
than the test based on the score.

Figure 5.1: PQMLE based on {Z1, . . . , Zk} for λt = 1 + 0.3Zt−1 + 0.2λt−1; x-axis
is the number of observations (k). y-axis is the estimated values (θ̂Pk,1,θ̂

P
k,2,θ̂

P
k,3) for

(0.1,0.3,0.2).

Table 5.1: Empirical sizes at the nominal size α = 0.05
λt = 1 + 0.3Zt−1 + 0.2λt−1 for all n

Conditional distribution sample size TP
KL,Wald2 TP

KL TP
DK,Wald2 TP

score TP
res

n = 300 0.160 0.145 0.240 0.025 0.025
Pois(λt) n = 600 0.160 0.170 0.215 0.040 0.035

n = 900 0.095 0.080 0.220 0.020 0.020
n = 300 0.175 0.970 0.305 0.035 0.045

NB(λt,4/(4 + λt)) n = 600 0.185 0.980 0.290 0.055 0.065
n = 900 0.155 0.995 0.260 0.020 0.020
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Table 5.2: Empirical powers at the nominal size α = 0.05
λt = 1 + 0.3Zt−1 + 0.2λt−1 for the first half of n
λt = 1 + 0.3Zt−1 + 0.4λt−1 for the latter half of n

Conditional distribution sample size TP
KL,Wald2 TP

KL TP
DK,Wald2 TP

score TP
res

n = 300 0.965 0.970 0.745 0.445 0.770
Pois(λt) n = 600 1.000 1.000 0.935 0.965 0.995

n = 900 1.000 1.000 0.985 1.000 1.000
n = 300 0.795 1.000 0.610 0.255 0.345

NB(λt,4/(4 + λt)) n = 600 0.890 1.000 0.660 0.575 0.800
n = 900 0.995 1.000 0.895 0.885 0.975

λt = 1 + 0.3Zt−1 + 0.2λt−1 for the first half of n
λt = 1.5 + 0.3Zt−1 + 0.2λt−1 for the latter half of n

Conditional distribution sample size TP
KL,Wald TP

KL TP
DK,Wald TP

score TP
res

n = 300 0.840 0.840 0.840 0.540 0.755
Pois(λt) n = 600 0.975 0.990 0.975 0.955 0.990

n = 900 1.000 1.000 0.980 0.995 1.000
n = 300 0.555 0.995 0.645 0.225 0.340

NB(λt,4/(4 + λt)) n = 600 0.720 1.000 0.790 0.575 0.695
n = 900 0.850 1.000 0.890 0.830 0.895
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Chapter 6

Likelihood ratio processes under
non-standard settings

Chapter 6 investigates the log-likelihood ratio for curved models and the one-way
random effect ANOVA model. Local asymptotic normality (LAN) is the specific
form of the asymptotic expansion of the log-likelihood ratio. Once we obtain
the LAN results for models, optimal tests and estimations can be constructed by
means of central sequences. More precisely, for example, the lower bound of loss
functions can be obtained among regular estimators, and the power of the tests
can be derived explicitly from the null distribution by the Le Cam’s third lemma.
Here, we show the simultaneous equation system, which plays a significant role in
econometrics, has LAN property. Hence, we can construct an efficient estimator
and an asymptotically maximin test. In contrast, we elucidate that the one-way
ANOVA model does not have LAN property. The limiting behavior is out of
the common. Thereby, we cannot use the existing theory to construct optimal
statistical methods. By use of the Neyman–Pearson lemma, we show our test is
the asymptotically most powerful.

The Chapter is organized as follows: In Section 6.1, we deal with the two types
of curved normal families. The first one is normal distributions whose mean and
variance are governed by the same parameter. The second one is the simultaneous
equation system. The regression parameter of the reduced form of the system is
endowed with a curved structure. For the two models, we show LAN property. In
Section 6.2, we focus on one-way random effect ANOVA models and derive the
limit distribution of the log-likelihood ratio when the variance of the random effect
belongs to the boundary and interior of parameter space, respectively. After that,
we show our test based on the log-likelihood ratio is asymptotically most powerful.
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6.1 Local asymptotic normality for curved models
In this section, we investigate the local asymptotic normality (LAN) for curved
models. Before getting to the main subject, we confirm the definition of LAN
property. For a sequence of probability measures {P(n)

θ }, {P(n)
θ } said to be local

asymptotic normal (LAN) at θ if the log-likelihood ratio admits the following
expansion; For any vector h and any sequence of matrix {τn} such that ∥τn∥ → 0
as n → ∞, it holds that

log
dP(n)

θ+τnh

dP(n)θ

= hT∆n −
1
2
hTI(θ)h + op(1) as n → ∞,

where I(θ) is the Fisher information matrix and

∆n ⇒ N(0,I(θ)) as n → ∞.
The random variable ∆n and the sequence τn are called the central sequence
and the contiguity order, respectively. Especially, I−1(θ)∆n is called the central
sequence. As discussed at Introduction, many models including ARMA, ARCH,
and CHARN hold LAN. Usually, the contiguity order is 1/

√
n.

First, we consider the normal distribution N(θα, θβ), where θ > 0 and (α, β) ∈
R2, that is, mean and variance have the curved structure. We are interested in the
hypothesis testing when parameter is contiguous;

H(n)
0 : θ = θ0(> 0), K(n)

0 : θ = θn := θ0 +
h
√
n
(> 0),

where h > −
√
nθ0. Assume that, for each n, {Xni, i = 1, . . . ,n,n = 1,2, . . .}

is available and {Xni} is independent for each n and i. We denote, for each n,
the sequence of hypothesis as N(n)

θ0
for {Xni, i = 1, . . . ,n} under H(n)

0 and N(n)
θn

for
{Xni, i = 1, . . . ,n} under K(n)

0 . Then, the next theorem shows, under H(n)
0 , the log-

likelihood ratio Λ0(θ0, θn) := log dN(n)
θn
/dN(n)

θ0
admits the asymptotic expansion.

Theorem 6.1.1. Under the null hypothesis H(n)
0 , {N(n)

θ0
, θ0 > 0} is local asymptot-

ically normal, that is, for h ∈ R and sufficiently large n such that h > −
√
nθ0, it

holds that

Λ0(θ0, θn) = h∆0n −
1
2
h2I0(θ0) + op(1) as n → ∞,

where I0(θ0) denotes the Fisher information defined as I0(θ0) := β2θ−20 /2 +
α2θ

2α−β−2
0 and ∆0n denotes the central sequence defined as

∆
0
n :=

(√
n
h

(
θ
α−β
n − θα−β0

)
−

√
n

2h

(
θ
−β
n − θ−β0

)) 1
√
n

n∑
i=1

(
Xi − θa0 X2

i − θ2α0 − θβ0
)T
,
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=
(
(α − β)θα−β−10

β
2 θ

−β−1
0

) 1
√
n

n∑
i=1

(
Xi − θa0 X2

i − θ2α0 − θβ0
)T
+ op(1),

which converges to normal distribution with mean zero and variance I0(θ0) as
n → ∞.

The LAN property of a family of the curved normal distribution is given in
Theorem 6.1.1. However, one may think it is not natural to consider curved
models. Therefore, we discuss the simultaneous equation system, which is nat-
urally endowed with the curved structure. The model plays an essential role in
econometrics; see Anderson et al. (1986), Hosoya et al. (1989), and the references
therein.

Let a single structural equation be

Y1 = Y2β + Z1γ + ϵ

and the reduced form of the system of equation be(
Y1 Y2

)
=

(
Z1 Z2

) (
ζ11 ζ12
ζ21 ζ22

)
+

(
ν1 ν2

)
where Y1 and Y2 are n × 1 and n × p1 matrices of endogenous variables, Z1
and Z2 are n × p2 and n × p3 matrices of exogenous variables, β, γ, ζ11,ζ21,
ζ12, and ζ22 are p1 × 1, p2 × 1, p2 × 1, p3 × 1, p2 × p1, p3 × p1 matrices of
coefficients, and ϵ , ν1, and ν2 are n × 1, n × 1, and n × p1 vectors of errors,
respectively. Assume that {Y1 := (Y11, . . . ,Y1n)′}, {Y2 := (Y21, . . . ,Y2n)′;Y2 j :=
(Y2 j1, . . . ,Y2 jp1), j = 1, . . . ,n}, {Z1 := (Z11, . . . ,Z1n)′; Z1 j := (Z1 j1, . . . , Z1 jp2), j =
1, . . . ,n}, and {Z2 := (Z21, . . . ,Z2n)′; Z2 j := (Z2 j1, . . . , Z2 jp3), j = 1, . . . ,n} are
available.

We make the following assumption;

Assumption 6.1.1. (S1) the ranks of (ζ21 ζ22) and ζ22 are p1.

(S2) the rows of (ν1 ν2) are independent of each other.

(S3) each row of (ν1 ν2) follows normal distribution with mean 0 and covariance
matrix

Ω :=
(
ω11 ω12
ω21 ω22

)
.

(S4) Ω is a non-singular matrix and the inverse matrix Ω−1 is written by

Ω
−1 :=

(
ω11 ω12

ω21 ω22

)
.
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(S5)

1
n

n∑
i=1

(
Z1i

T

Z2i
T

) (
Z1i Z2i

)
= M + op(1).

Then, under Assumption 6.1.1, it can be seen that ϵ = ν1−ν2β, γ = ζ11−ζ12β,
ζ21 = ζ22β, the components of ϵ are independent of each other and follow normal
distribution with mean 0 and variance σ2

β := ω11 − 2ω12β + β′ω22β. Therefore,
the reduced form of the system of equation can be written as(

Y1 Y2
)
=

(
Z1 Z2

) (
ζ12β + γ ζ12
ζ22β ζ22

)
+

(
ν1 ν2

)
Here, we suppose that we interested in θ := (β,γ)T . We consider the testing
problem that the null hypothesis is

H(n)
1 : θ = θ0 :=

(
β0
γ0

)
,

and the alternative is

K(n)
1 : θ = θn :=

(
βn
γn

)
, :=

(
β0 +

h1√
n

γ0 +
h2√
n

)
where h ∈ Rp1 . For each n, the sequence of hypotheses are denoted as N(n)

θ0
for

(Y1 Y2) under H(n)
1 and N(n)

θn
for (Y1 Y2) under K(n)

1 , respectively. Then, we have the
LAN theorem for the simultaneous equation system.

Theorem 6.1.2. Under Assumption 6.1.1 and the null hypothesis H(n)
1 , {N(n)

θ0
} is

local asymptotically normal, that is, for h ∈ R, it holds that

Λ1(θ0,θn) := log
dN(n)

θn

dN(n)
θ0

=
(
h1

T h2
T
)
∆1n −

1
2

(
h1

T h2
T
)
I1(θ0)

(
h1
h2

)
+ op(1) as n → ∞,

where

I1(θ0) := ω11
(
ζ12 Ip2×p2
ζ22 0p3×p2

)T
M

(
ζ12 Ip2×p2
ζ22 0p3×p2

)
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is the Fisher information matrix of the following model with respect to θ0;(
Y1i Y2i

)
=

(
W1i W2i

) (
ζ12β0 + γ0 ζ12

ζ22β0 ζ22

)
+

(
ν1i ν2i

)
(6.1.1)

with (W1i
T W2i

T )T (W1i W2i) = M and

∆1n :=
1
√
n

n∑
i=1

(
ζ12 Ip2×p2
ζ22 0p3×p2

)T (
ZT
1i

ZT
2i

)
(ω11 ω12)

(
Y1i − Z1i(ζ12β0 + γ0) − Z2iζ22β0

(Y2i − Z1iζ12 − Z2iζ22)T
)

which converges to normal distribution with mean zero variance I1(θ0).

Theorem 6.1.2 enables us to construct the local asymptotically maximin test
for the hypothesis testing whose the null and alternative are given by θ = θ0 and
θ , θ0.

See Taniguchi and Kakizawa (2000, Theorem 3.1.21, p.78) for details. As
for estimation, we can see that the asymptotically centering estimator is efficient
among the regular estimators in the sense of Taniguchi and Kakizawa (2000,
Theorem 3.1.9, p.69).

ϕn,h :=


1 Λ3(θ0,θn) > cn,h,
γn,h Λ3(θ0,θn) = cn,h,
0 Λ3(θ0,θn) < cn,h,

6.2 Likelihood ratio process for randomeffectANOVA
model.

In this Section, we consider the one-way random effect ANOVA model; for i =
1, · · · ,a and j = 1, · · · ,n,

Yi j = µ + αi + ei j, (6.2.1)

where (αi′, ei j)T follows the i.i.d. normal distribution with mean zero and variance(
σ2
α 0
0 σ2

e

)
for any i, i′ = 1, · · · ,a and j = 1, · · · ,n. Equivalently, we can rewrite

the model in matrix form;

Y = µ1an + (Ia ⊗ 1n)α + e,

where Y := (Y11, · · · ,Y1n,Y21, · · · ,Ya1, · · · ,Yan)T ,
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e := (e11, · · · , e1n, e21, · · · · · · , ea1, · · · , ean)T , and α := (α1, · · · , αa)T . By noting
that Y ∼ N(µ1an, Ia ⊗ (σ2

αJn + σ
2
e In)) (see Searle et al. (1992, p.79)), the loglike-

lihood function is given by

log dN(n)
(σ2

α,σ
2
e ,µ)

:= − an
2

log 2π − a(n − 1)
2

logσ2
e −

a
2
log(σ2

e + nσ
2
α)

− 1
2σ2

e

a∑
i=1

n∑
j=1

(Yi j − µ)2 + n2σ2
α

2σ2
e (σ2

e + nσ2
α)

a∑
i=1

(Ȳi· − µ)2,

where Ȳi· :=
∑n

j=1Yi j/n. Hereafter, we denote that θ := (θ1, θ2, θ3) := (σ2
α,σ

2
e , µ).

6.2.1 When the variance of random effect belongs to the bound-
ary of parameter space

In this subsection, we are interested in the following hypothesis;

H(n)
2 : θ = θ0 :=

©«
0
θ2
θ3

ª®¬ , K(n)
2 : θ = θn :=

©«
h1
nk1

θ2 +
h2
nk2

θ3 +
h3
nk3

ª®®¬ ,
where θ2 > 0, h1 > 0, and h2 > −nk2θ2.

Theorem 6.2.1. (i) Under the null hypothesis H(n)
2 , the loglikelihood ratio has

the following asymptotic expansion; for h ∈ R and sufficiently large n such
that h2 > −nk2θ2, it holds that

Λ2(θ0, θn) := log
dN(n)

θn

dN(n)
θ0

=



(
h3

√
θ2

θ2+h1
h1

2(θ2+h1)

) (
g1(Tn)
g2(Tn)

)
− a

2 log(1 + h1
θ2

) − ah2
3

2(θ2+h1)
+ op (1) k2 ≥ 1, k3 = 1

2 , k1 = 1,

h3√
θ2

g1(Tn) −
ah2

3
2θ2
+ op (1) k2 ≥ 1, k3 = 1

2 , k1 > 1,
h1

2(θ2+h1)
g2(Tn) − a

2 log(1 + h1
θ2

) + op (1) k2 ≥ 1, k3 > 1
2 , k1 = 1,

op (1) k2 ≥ 1, k3 > 1
2 , k1 > 1,

where

Tn :=
(√

n(Ȳ1· − θ3)√
θ2

, . . . ,

√
n(Ȳa· − θ3)√

θ2

)T
,(

g1(x1, . . . , xa) g2(x1, . . . , xa)
)T :=

(∑a
i=1 xi

∑a
i=1 x

2
i ,
)T

and
Tn ⇒ N(0, Ia×a) as n → ∞ under H(n)

2 .
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(ii) Under the null hypothesis H(n)
0 , the fisher information of the model (6.2.1) is

given by

I2(θ0) :=
©«

1
2(θ1+θ2)2

1
2(θ1+θ2)2 0

1
2(θ1+θ2)2

1
2(θ1+θ2)2 0

0 0 1
θ1+θ2

ª®®¬ .
Remark 6.2.1. For {k2; 0 < k2 < 1} or {(k1, k2, k3); k2 ≥ 1, k3 < 1

2, k1 > k3 + 1
2 },

Λ2(θ0,θn) shows indeterminate form asymptotically. For {(k1, k2, k3); k2 ≥ 1, k3 <
1
2, k1 ≤ k3 + 1

2 } or {(k1, k2, k3); k2 ≥ 1, k3 ≥ 1
2, k1 < 1}, Λ2(θ0,θn) tends to −∞

as n → ∞.

Remark 6.2.2. Clearly, g1(Tn) and g2(Tn) converge in distribution to N(0,a) and
χ2a as n → ∞, respectively.

Theorem 6.2.1 reveals that the asymptotic behavior of the likelihood ratio
process for the random ANOVA model is atypical. The contiguity orders of
this model are also unusual since these are different from the usual order n1/2.
The Fisher information matrix is singular. Obviously, we cannot apply the optimal
theory based on LAN such as Le Cam’s third lemma. In order to discuss optimality
of the testing problem, we restrict ourselves to the following hypothesis;

H(n)
3 : θ = θ0 :=

©«
0
θ2
θ3

ª®¬ , K(n)
3 : θ = θn :=

©«
h1
nk1
θ2
θ3

ª®¬ ,
where θ2 > 0 and h1 > 0. Thereupon, we can prove the next theorem.

Theorem 6.2.2. Under the null hypothesis H(n)
3 , it holds that

Λ3(θ0,θn) := log
dN(n)

θn

dN(n)
θ0

=

{
−a

2 log(1 +
h1
θ2
) + h1

2(θ2+h1)g2(Tn) + op(1) k1 = 1,
op(1) k1 > 1.

Remark 6.2.3. For {k1; k1 = 1}, Λ3(θ0,θn) tends to −∞ as n → ∞.

Theorem 6.2.2 shows that the random effect ANOVAmodel does also not have
LAN property for the hypothesis H(n)

3 . On the other hand, in this case, we can
derive the asymptotic distribution of the log-likelihood ratio under the alternative
K(n)
3 from the direct calculation.
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Theorem 6.2.3. Under the null hypothesis K(n)
3 , it holds that

Λ3(θ0,θn) =
{
−a

2 log(1 +
h1
θ2
) + h1

2θ2g2(T
′
n) + op(1) k1 = 1,

op(1) k1 > 1,

as n → ∞, where

T ′
n :=

©«
√
n(Ȳ1· − θ3)√
nθ(n)1 + θ2

, . . . ,

√
n(Ȳa· − θ3)√
nθ(n)1 + θ2

ª®®¬
T

Remark 6.2.4. For {k1; k1 < 1}, Λ3(θ0,θn) shows indeterminate form asymptoti-
cally.

Next, we shall show the test derived from the log-likelihood is asymptotically
most powerful (AMP). The definition of AMP test at asymptotic level α is given
as follows ((Lehmann and Romano, 2005, Definition 13.3.1, p.541));
Definition 6.2.1. For the simple hypothesis θ = θ0 against θ = θn, a sequence of
test {ϕn,h} is asymptotically most powerful at asymptotic level α if
lim supn Eθn(ϕn,h) ≤ α and, for any test {ψn,h} such that lim supn Eθn(ψn,h) ≤ α,

lim sup
n

(
Eθn(ϕn,h) − Eθn(ψn,h)

)
≥ 0.

Wedefine the test function based on the log-likelihood, for αn such that αn → α
as n → ∞,

ϕn,h :=


1 Λ3(θ0,θn) > cn,h,
γn,h Λ3(θ0,θn) = cn,h,
0 Λ3(θ0,θn) < cn,h,

(6.2.2)

where the critical value cn,h and the constant γn,h are determined by Eθ0(ϕn,h) = αn.
Then, the next theorem shows the asymptotic power of the proposed test (6.2.2)

and our test is AMP.
Theorem 6.2.4. For k1 = 1, the following statements hold true; ( i ) It holds that

cn,h → c := − log
a
2
log

(
1 +

h1
θ2

)
+

h1
2(θ2 + h1)

χ2a [1 − α] as n → ∞,

where χ2a [1−α] denotes the 1−α quantile of chi-square with a degree of freedom.
(ii) The asymptotic power of the test is given by

lim
n→∞

P(Λ3(θ0,θn) ≥ cn,h |K(n)
3 ) = P(χ2a ≥ θ2

(θ2 + h1)
χ2a [1 − α]).

(iii) The test {ϕn,h}, defined by (6.2.2), is asymptotically most powerful at
asymptotic level α.
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Theorem 6.2.4 shows our test is optimal in the sense of AMP. For a small
perturbation h1, the power is almost equal to significance level α. The optimal
tests endowed with uniformity with respect to h1 such as local asymptotically
uniformly most powerful (LAUMP) and asymptotically uniformly most powerful
(AUMP) are beyond the scope of the dissertation.

6.2.2 When the variance of randomeffect belongs to the interior
of parameter space

In this subsection, we shall consider the case σ2
α > 0. The null and alternative

hypotheses are defined as

H(n)
4 : θ = θ0 :=

©«
θ1
θ2
θ3

ª®¬ , K(n)
4 : θ = θn :=

©«
θ1 +

h1
nk1

θ2 +
h2
nk2

θ3 +
h3
nk3

ª®®¬ ,
where θ1 > 0, θ2 > 0, h1 > 0, h1 > −nk1θ1, and h2 > −nk2θ2.

Theorem 6.2.5. Under the null hypothesis H(n)
4 , it holds that, for all k1 ≥ 1,

k2 > 0, and k3 > 0,

Λ4(θ0,θn) := log
dN(n)

θn

dN(n)
θ0

→ 0 in probability as n → ∞.

Remark 6.2.5. For {k1; k1 < 1},Λ4(θ0,θn) tends to indeterminate form as n → ∞.

We expectΛ4(θ0,θn) has LANproperty since the parameters belongs to interior
of the parameter spaces. However, Theorem 6.2.5 shows that the likelihood ratio
converges to the degenerate distribution. This is also an unusual result.

Furthermore, we consider the case that σ2
α > 0 is only perpetuated.

H(n)
5 : θ = θ0 :=

©«
θ1
θ2
θ3

ª®¬ , K(n)
5 : θ = θn :=

©«
θ1 +

h1
nk1

θ2
θ3

ª®¬ ,
where θ1 > 0, θ2 > 0, h1 > 0, and h1 > −nk1θ1. Then, we have the same result as
Theorem 6.2.5.
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Theorem 6.2.6. Under the null hypothesis H(n)
5 , it holds that, for all k1 > 0,

Λ5(θ0,θn) := log
dN(n)

θn

dN(n)
θ0

→ 0 in probability as n → ∞.

Again, this theorem shows the erratic behavior of log likelihood ratio process.
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Chapter 7

Proof chapter

In this Chapter, we give the proofs of the propositions and the theorems stated in
Chapters 2, 3, 4, 5, and 6.

7.1 Proofs in Chapter 2
Proof of Theorem 2.1.1.
It is easy to see that1/

√
N(Dk − D̃k) = op(1), where D̃k = 2

∑nk
t=2 Xk(i−1)+1 −

2
∑nk

t=2 Xk(i−1)+1Xk(i−2)+1, hence it suffices to show that

1
√
N

©«
D̃1 − ED̃1
D̃2 − ED̃2

...
D̃m − ED̃m

ª®®®®¬
⇒ N(0,V).

First we show the asymptotic variance of 1/
√
N(D̃1 − ED̃1, D̃2 − ED̃2, . . . , D̃m −

ED̃m)′ is given by V. We can see that

1
N
Cov(D̃k, D̃s) =

4
N

nk∑
i=2

ns∑
j=2

[KX(k, s( j − 1) − k(i − 2), s( j − 2) − k(i − 2))

+ γX(k(i − 1) − s( j − 1))γX(k(i − 2) − s( j − 2))
+ γX(k(i − 2) − s( j − 1))γX(k(i − 1) − s( j − 2))]

+
4

8πN
[sin−1 ρz{k(nk−1) − s(ns−1)} + sin−1 ρz{0}

− sin−1 ρz{s(ns−1)} − sin−1 ρz{k(nk−1)}],

which tends to vk,s as N → ∞.
Next, we show that the asymptotic distribution of (1/

√
N)D̃k . We define the
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random vector

Yi :=
©«

X(i−1)+1(1 − X(i−2)+1)I{(i−1)+1≤N}
X2(i−1)+1(1 − X2(i−2)+1)I{2(i−1)+1≤N}

...
Xm(i−1)+1(1 − Xm(i−2)+1)I{m(i−1)+1≤N}

ª®®®®¬
.

From Cramer-Wold device, it is sufficient to show that, for arbitrary λ ∈ Rm,
(1/

√
N)λ′(Yi − EYi) ⇒ N(0,λ′Vλ). From the central limit theorem (see Brock-

well and Davis (1991, p.213)) for m-dependent sequences and the fact that
(2/

√
N)∑N

i=2Y
′
i = (D̃1, · · · , D̃m), we get the desired result.

Next, we calculate E{Xt+2Xt+1XtXt−1}. Let Ha(x) be the function (see Baum
(1957)) given by

Ha(x) :=


−a x < −a,
x |x | ≤ a,
a a < x

=
2
π

∫ ∞

0

sin au sin xu
u2

du.

(7.1.1)

The function Ha has the following relation:

lim
a→0

Ha(x)
a
=


−1 x < 0,
0 x = 0,
1 0 < x.

(7.1.2)

Let hm be the function defined by

hm(x) =
2
π

∫ ∞

0
u2m−1 exp

−u2
2

sin(xu)du. (7.1.3)

It holds that

lim
x→0

hm(x)
x
=

√
2
π

(2m)!
2mm!

, f or m = 0,1,2, · · · . (7.1.4)

Lemma 7.1.1. Let {Zt} be a Gaussian stationary process with mean zero, and
spectral density function f . Let Ha(x) be the function defined by (7.1.1). Then the
following statements hold:

( i ) E{Ha1(Z1)Ha2(Z2)Ha3(Z3)Ha4(Z4)}
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=

∞∑
m1,m2,m3=0

hm1(a1)hm1+m2(a2)hm2+m3(a3)hm3(a4)
ρZ (1)2(m1+m2+m3+1)

(2m1 + 1)!(2m2)!(2m3 + 1)!
,

(ii) E{Ha1(Z1)Ha2(Z2)Ha3(Z3)} = 0,

(iii) E{Ha1(Z1)Ha2(Z2)} =
∑∞

m=0
ρZ (1)2m+1
(2m+1)! hm(a1)hm(a2),

(iv) E{Ha1(Z1)} = 0.

Proof. ( i ) We first compute E {sin Z1u1 sin Z2u2 sin Z3u3 sin Z4u4}.
Let Σ4 be a variance-covariance matrix of (Z1, Z2, Z3, Z4), given by

Σ4 =


1 ρZ (1) 0 0

ρZ (1) 1 ρZ (1) 0
0 ρZ (1) 1 ρZ (1)
0 0 ρZ (1) 1

 .
Recalling the characteristic function of multivariate normal distribution, we obtain

E{sin(u1Z1) sin(u2Z2) sin(u3Z3) sin(u4Z4)}
=(2i)−4E{(eiu1Z1 − e−iu1Z1)(eiu2Z2 − e−iu2Z2)(eiu3Z3 − e−iu3Z3)(eiu4Z4 − e−iu4Z4)}
=2−4

∑
ϵ1,ϵ2,ϵ3,ϵ4=±1

(ϵ1ϵ2ϵ3ϵ4)E{exp{i(ϵ1u1Z1 + ϵ2u2Z2 + ϵ3u3Z3 + ϵ4u4Z4)}

=2−4
∑

ϵ1,ϵ2,ϵ3,ϵ4=±1
(ϵ1ϵ2ϵ3ϵ4) exp{−

1
2
(ϵ1u1, ϵ2u2, ϵ3u3, ϵ4u4)Σ4(ϵ1u1, ϵ2u2, ϵ3u3, ϵ4u4)}

=2−4 exp{−1
2
(u21 + u22 + u23 + u24)}

∑
ϵ1,ϵ2,ϵ3,ϵ4=±1

(ϵ1ϵ2ϵ3ϵ4)

× exp{−ϵ1ϵ2u1u2ρZ (1) − ϵ2ϵ3u2u3ρZ (1) − ϵ3ϵ4u3u4ρZ (1)}

=2−4 exp{−1
2
(u21 + u22 + u23 + u24)}23{sinh(u1u2ρZ (1) + u2u3ρZ (1))

+ sinh(u1u2ρZ (1) − u2u3ρZ (1))}
× sinh(u3u4ρZ (1))

=2−1 exp{−1
2
(u21 + u22 + u23 + u24)}2 sinh u1u2ρZ (1) cosh u2u3ρZ (1) sinh u3u4ρZ (1)

= exp{−1
2
(u21 + u22 + u23 + u24)}

∞∑
m1,m2,m3=0

u1u2u3u4ρZ (1)2(m1+m2+m3+1)

×
u2m1
1 u2(m1+m2)

2 u2(m2+m3)
3 u2m3

4
(2m1 + 1)!(2m2)!(2m3 + 1)!

.

By (7.1.1) and (7.1.3), Fubini’s theorem, the above calculation and term by
term integration, we have

E{Ha1(Z1)Ha2(Z2)Ha3(Z3)Ha4(Z4)}
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=

(
2
π

)4 ∫ ∞

0

∫ ∞

0

∫ ∞

0

∫ ∞

0

sin a1u1 sin a2u2 sin a3u3 sin a4u4
u21u

2
2u

2
3u

2
4

×E {sin Z1u1 sin Z2u2 sin Z3u3 sin Z4u4} du1du2du3du4

=

(
2
π

)4 ∫ ∞

0

∫ ∞

0

∫ ∞

0

∫ ∞

0

∞∑
m1,m2,m3=0

sin a1u1 sin a2u2 sin a3u3 sin a4u4
u1u2u3u4

× exp{−1
2
(u21 + u22 + u23 + u24)}ρZ (1)

2(m1+m2+m3+1)

×
u2m1
1 u2(m1+m2)

2 u2(m2+m3)
3 u2m3

4
(2m1 + 1)!(2m2)!(2m3 + 1)!

du1du2du3du4

=

∞∑
m1,m2,m3=0

hm1(a1)hm1+m2(a2)hm2+m3(a3)hm3(a4)
ρZ (1)2(m1+m2+m3+1)

(2m1 + 1)!(2m2)!(2m3 + 1)!
.

(ii) It suffices to show E{sin(u1Z1) sin(u2Z2) sin(u3Z3)} = 0. Let Σ3 be the
variance-covariance matrix of (Z1, Z2, Z3), given by

Σ3 =


1 ρZ (1) 0

ρZ (1) 1 ρZ (1)
0 ρZ (1) 1

 .
We have

E{sin(u1Z1) sin(u2Z2) sin(u3Z3)}
= (2i)−3E{(eiu1Z1 − e−iu1Z1)(eiu2Z2 − e−iu2Z2)(eiu3Z3 − e−iu3Z3)}
= (2i)−3

∑
ϵ1=±1

∑
ϵ2=±1

∑
ϵ3=±1

(ϵ1ϵ2ϵ3)E{exp{i(ϵ1u1Z1 + ϵ2u2Z2 + ϵ3u3Z3}

= (2i)−3
∑
ϵ1=±1

∑
ϵ2=±1

∑
ϵ3=±1

(ϵ1ϵ2ϵ3) exp{−
1
2
(ϵ1u1, ϵ2u2, ϵ3u3)Σ3(ϵ1u1, ϵ2u2, ϵ3u3)′}

= (2i)−3 exp{−1
2
(u21 + u22 + u23)}

×
∑
ϵ1=±1

∑
ϵ2=±1

∑
ϵ3=±1

(ϵ1ϵ2ϵ3) exp{−ϵ1ϵ2u1u2ρZ (1) − ϵ2ϵ3u2u3ρZ (1)}

= 0.

(iii) First, we observe

E{sin(u1Z1)sin(u2Z2)}
= (2i)−2E{(eiu1Z1 − e−iu1Z1)(eiu2Z2 − e−iu2Z2)}
= (2i)−2

∑
ϵ1=±1

∑
ϵ2=±1

(ϵ1ϵ2)E{exp{i(ϵ1u1Z1 + ϵ2u2Z2)}
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= (2i)−2
∑
ϵ1=±1

∑
ϵ2=±1

(ϵ1ϵ2) exp{−
1
2
(ϵ1u1, ϵ2u2, )Σ2(ϵ1u1, ϵ2u2, )′}

= (2i)−2 exp{−1
2
(u21 + u22)}

∑
ϵ1=±1

∑
ϵ2=±1

(ϵ1ϵ2) exp{−ϵ1ϵ2u1u2ρ1}

= exp{−1
2
(u21 + u22)} sinh u1u2ρZ (1)

= exp{−1
2
(u21 + u22)}

∞∑
m=0

(u1u2)2m
(2m + 1)!u1u2ρZ (1)

2m+1.

By Fubini’s theorem, it follows that

E{Ha1(Z1)Ha2(Z2)}

=

(
2
π

)2
E

{∫ ∞

0

∫ ∞

0

sin a1u1 sin a2u2
u21u

2
2

sin Z1u1 sin Z2u2du1du2

}
=

(
2
π

)2 ∫ ∞

0

∫ ∞

0

sin a1u1 sin a2u2
u21u

2
2

E {sin Z1u1 sin Z2u2} du1du2

=

(
2
π

)2 ∫ ∞

0

∫ ∞

0

sin a1u1 sin a2u2
u21u

2
2

exp{−1
2
(u21 + u22)}

×
∞∑

m=0

(u1u2)2m
(2m + 1)!u1u2ρZ (1)

2m+1du1du2

=

∞∑
m=0

(
2
π

)2 ∫ ∞

0

∫ ∞

0

sin a1u1 sin a2u2
u1u2

× exp{−1
2
(u21 + u22)}

(u1u2)2m
(2m + 1)! ρZ (1)

2m+1du1du2

=

∞∑
m=0

ρZ (1)2m+1
(2m + 1)! hm(a1)hm(a2),

which completes the proof of the assertion.

(iv) It suffices to show E{sin(u1Z1)} = 0.

We obtain

E{sin(u1Z1)}
= (2i)−1E{(eiu1Z1 − e−iu1Z1)}
= (2i)−1

∑
ϵ1=±1

(ϵ1)E{exp{i(ϵ1u1Z1)}
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= (2i)−1
∑
ϵ1=±1

(ϵ1) exp{−
1
2
(ϵ1u1)(ϵ1u1)′}

= (2i)−1 exp{−1
2
u21}

∑
ϵ1=±1

ϵ1

= 0,

which concludes the proof. □

Proof of Proposition 2.1.1.
From the definition of (7.1.1), then it follows that���� {Ha1(Z1) + a1}{Ha2(Z2) + a2}{Ha3(Z3) + a3}{Ha4(Z4) + a4}

a1a2a3a4

���� ≤ 24.

Then, use of the dominated convergence theorem and (7.1.2) leads to

E{Xt+2Xt+1XtXt−1}

=
1
16

lim
a1,a2,a3,a4→0

E
{Ha1(Z1) + a1}{Ha2(Z2) + a2}{Ha3(Z3) + a3}{Ha4(Z4) + a4}

a1a2a3a4
.

Then from Lemma 7.1.1 and (7.1.4), we get the result. □

Proof of Proposition 2.1.2
From the definition of I(ρZ (1)) we have

I(ρZ (1)) =
1
4π

∫ π

−π

(
2 cos λ

1 + 2ρZ (1) cos λ

)2
dλ.

First, for ρZ (1) = 1, I(ρZ (1)) = 1, by a straightforward calculation.
Second, for |ρZ (1)| < 1

2 , the residue theorem yields the assertion.
Third, for the case when ρZ (1) = 1

2 , we observe that∫ π

−π

(
cos λ

1 + cos λ

)2
dx

=2
∫ π

0

(
cos λ

1 + cos λ

)2
dx

=2
∫ 1

−1

( t
1 + t

)2 1
√
1 − t2

dt

=2
∫ 2

0

(
s − 1
s

)2 1√
s(2 − s)

ds
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=2 lim
ϵ→0

∫ 1

ϵ

(
s − 1
s

)2 1√
s(2 − s)

ds + 2 lim
ϵ→0

∫ 2−ϵ

1

(
s − 1
s

)2 1√
s(2 − s)

ds

≥ lim
ϵ→0

∫ 1

ϵ

(
(s − 1)2

s

)
ds + 2 lim

ϵ→0

∫ 2−ϵ

1

(
s − 1
s

)2 1√
s(2 − s)

ds

≥2 lim
ϵ→0

[
log s − 2s +

1
2
s2

]1
ϵ

+ 2 lim
ϵ→0

∫ 2−ϵ

1

(
s − 1
s

)2 1√
s(2 − s)

ds

=2(+∞) + 2 lim
ϵ→0

∫ 2−ϵ

1

(
s − 1
s

)2 1√
s(2 − s)

ds

= +∞.

The remaining case ρZ (1) = −1
2 follows similarly. □

Proof of Theorem 2.2.1.
We can see that

DM( fθ, I sn)

=

∫
[−π, π]

[
log fθ(λ)dλ +

1
2πn

∫
[−π, π]

1
fθ(λ)

{
n∑
t=1

Z s
t e

itλ}{
n∑
t=1

Z s
t e

−itλ}
]
dλ

=

∫
[−π, π]

{
log fθ(λ) +

1
2πn fθ(λ)

n∑
t1,t2=2

Zt1Zt2e
−i(t1−t2)λ

}
dλ

+
2s
2πn

∫
[−π, π]

1
fθ(λ)

n∑
t

Zt cos{(t − 1)λ}dλ + s2

2πn

∫
[−π, π]

1
fθ(λ)

dλ.

For fixed n and sufficiently large s, the minimization of D( fθ, I sn) with respect
to θ equal to the minimization of the main order term s2/(2πn)

∫
[−π, π] 1/ fθ(λ)dλ,

so we get the result. □

7.2 Proofs in Chapter 3
The nonparametric spectral estimator f̂Z (λ), defined by (3.1.1), can be written in
the form

f̂Z (λ) =
1
2π

∑
|ℓ |≤M

w

(
ℓ

M

)
ρ̂Z (ℓ) exp (−iℓλ).
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Expanding ρ̂Z (ℓ) around ρZ (ℓ), we obtain

ρ̂Z (ℓ) =ρZ (ℓ) +
π

2
(ρ̂X(ℓ) − ρX(ℓ))

√
1 − ρ2Z (ℓ)

− π2

8
(ρ̂X(ℓ) − ρX(ℓ))2 sin(

π

2
ρ∗X(ℓ)),

where ρX(ℓ) ≷ ρ∗X(ℓ) ≷ ρ̂X(ℓ). Write

f̂Z (λ) =
1
2π

∑
|ℓ |≤M

w

(
ℓ

M

)
ρZ (ℓ) exp (−iℓλ)

+
1
4

∑
|ℓ |≤M

w

(
ℓ

M

)
(ρ̂X(ℓ) − ρX(ℓ))

√
1 − ρ2Z (ℓ) exp (−iℓλ)

− π

16

∑
|ℓ |≤M

w

(
ℓ

M

)
(ρ̂X(ℓ) − ρX(ℓ))2 sin(

π

2
ρ∗X(ℓ)) exp (−iℓλ)

=: fn(λ) + ĝ(λ) + ĥ(λ).

Lemma 7.2.1. Under Assumptions 3.1.1 and 3.2.1, then

lim
n→∞

n
M

E{ f̂Z (λ) − fZ (λ)}2

=

{
4π2

∫ 1
−1 k

2(θ)ds f 2X (λ) (λ , 0,±π)
8π2

∫ 1
−1 k

2(θ)ds f 2X (λ) (λ = 0,±π)
.

In order to prove Lemma 7.2.1, we wil use the following lemma is due to
Leonov and Shiryaev (1959).

Lemma7.2.2. Consider a two-way array of randomvariables Xi j, j = 1, · · · , Ji, i =
1, · · · , l. Let

Yi =
Ji∏
j=i

Xi j, i = 1, · · · , l .

Then

Cum(Y1, · · · ,Yl) =
∑
ν

Cum{Xi j ; (i, j) ∈ ν1} · · ·Cum{Xi j ; (i, j) ∈ νp},

where the summation is taken over all indecomposable partitions ν = ν1∪· · ·∪νp.

Proof of Lemma 7.2.1
Note that

n
M

E{ f̂Z (λ) − fZ (λ)}2
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=
n
M

(Var(ĝ(λ)) + Var(ĥ(λ)) + 2Cov(ĝ, ĥ))

+
n
M

( fn(λ) − fZ (λ) + Eĝ(λ) + Eĥ(λ))2.

First, we show that

lim
n→∞

n
M

Cov(ĝ(λ1), ĝ(λ2))

=


0 (λ1 , ±λ2)
4π2

∫ 1
−1 k

2(θ)ds f 2X (λ) (λ1 = λ2 = λ , 0,±π)
8π2

∫ 1
−1 k

2(θ)ds f 2X (λ) (λ1 = λ2 = λ = 0,±π).

It is easy to see

n
M

Cov(ĝ(λ1), ĝ(λ2))

=
1

16M

∑
|ℓ |,|r |≤M

w

(
ℓ

M

)
w

( r
M

) √
1 − ρ2Z (ℓ)

√
1 − ρ2Z (r)

× exp {i(rλ2 − ℓλ1)}nCov((ρ̂X(ℓ) − ρX(ℓ)), (ρ̂X(r) − ρX(r))),

and

nCov{(ρ̂X(ℓ) − ρX(ℓ)), (ρ̂X(r) − ρX(r))}

=
16
n

n∑
i=ℓ+1

n∑
j=r+1

[KX(−ℓ, j − i, j − i − r) + γX( j − i)γX( j − i + ℓ − r)

+ γX( j − i − r)γX( j − i + ℓ)].

Hence, we have

n
M

Cov(ĝ(λ1), ĝ(λ2))

=
1
M

∑
|ℓ |,|r |≤M

w

(
ℓ

M

)
w

( r
M

) √
1 − ρ2Z (l)

√
1 − ρ2Z (r) (7.2.1)

× exp {i(rλ2 − ℓλ1)}
∞∑

u=−∞
[{KX(−ℓ,u,u − r)

+ γX(u)γX(u + ℓ − r) + γX(u − r)γX(u + ℓ)}ϕn(u, ℓ,r)],
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where for r ≤ ℓ

ϕn(u, ℓ,r) :=



0 (u ≤ −n + r)
1 − r−u

n (−n + r ≤ u ≤ 0)
1 − r

n (0 ≤ u ≤ ℓ − r)
1 − ℓ+u

n (ℓ − r ≤ u ≤ n − ℓ)
0 (n − ℓ ≤ u)

.

(7.2.1) can be written approximately in the form

n
M

Cov(ĝ(λ1), ĝ(λ2))

=
1
M

∑
|ℓ |,|r |≤M

w

(
ℓ

M

)
w

( r
M

)
exp {i(rλ2 − ℓλ1)} (7.2.2)

×
∞∑

u=−∞
[{KX(−ℓ,u,u − r) + γX(u)γX(u + ℓ − r)+

× γX(u − r)γX(u + ℓ)}ϕn(u, ℓ,r)] + o
(
M
n

)
.

The first term of (7.2.2) is of orderO (1/M). The second term of (7.2.2) converges
to {

0 (λ1 , λ2)
4π2

∫ 1
−1 k

2(θ)ds f 2X (λ) (λ1 = λ2 = λ)
as n → ∞.

The third term of (7.2.2) converges to{
0 (λ1 + λ2 , 0 mod 2π)
4π2

∫ 1
−1 k

2(θ)ds f 2X (λ) (λ1 = −λ2 = λ)
as n → ∞

(see Hannan (1970)), therefore we get the result.

Next, we show that

Cov(ĥ(λ1), ĥ(λ2)) = O
(
M2

n2

)
.

For simplicity, we use the following notation:

Aℓ := ρ̂X(ℓ) − Eρ̂X(ℓ),Cℓ := Eρ̂X(ℓ) − ρX(ℓ).
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Since there exists constant c such that w(x) ≤ c uniformly in x ∈ R, we have

Cov(ĥ(λ1), ĥ(λ2))

≤ cπ2

162
∑

|ℓ |,|r |≤M
|Cov((Aℓ + Cℓ)2 sin(

π

2
ρ∗X(ℓ)), (Ar + Cr)2 sin(

π

2
ρ∗X(r)))|

=
cπ2

162
∑

|ℓ |,|r |≤M
|E{(A2

ℓ + 2AℓCℓ + C
2
ℓ )(A

2
r + 2ArCr + C2

r )

× sin(π
2
ρ∗X(ℓ)) sin(

π

2
ρ∗X(r))}

− E{(A2
ℓ + 2AℓCℓ + C

2
ℓ ) sin(

π

2
ρ∗X(ℓ))}

× E{(A2
r + 2ArCr + C2

r ) sin(
π

2
ρ∗X(r))}|.

From the above discussion of Var(ĝ(λ)), it follows that EA2
ℓ
= O(1/n).

We can see that

|Cℓ | =
|ℓ |
n
ρX(ℓ), sin(

π

2
ρ∗X(ℓ)) ≤ 1 and |Aℓ | ≤ 1,

therefore it is sufficient to show that
∑

|ℓ |,|r |≤M EA2
r A

2
ℓ
= O(M2/n2).

From Lemma 7.2.2, we have∑
|ℓ |,|r |≤M

EA2
r A

2
l

=
44

n4
∑

|ℓ |,|r |≤M

∑
i1,i2=ℓ+1,··· ,n
j1,j2=r+1,··· ,n

E(Yi1Yi1−ℓ − EYi1Yi1−ℓ)(Yi2Yi2−ℓ − EYi2Yi2−ℓ)

× (Yj1Yj1−r − EYj1Yj1−r)(Yj2Yj2−r − EYj2Yj2−r)

=
42

n4
∑

|ℓ |,|r |≤M

∑
i1,i2=ℓ+1,··· ,n
j1,j2=r+1,··· ,n

[Cum{Yi1,Yi1−ℓ,Yi2,Yi2−ℓ,Yj1,Yj1−r,Yj2,Yj2−r}

+
∑

Cum{6terms}Cum{2terms} +
∑

Cum{5terms}Cum{3terms}

+
∑

Cum{4terms}Cum{4terms}

+
∑

Cum{4terms}Cum{2terms}Cum{2terms}

+
∑

Cum{3terms}Cum{3terms}Cum{2terms}
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+
∑

Cum{2terms}Cum{2terms}Cum{2terms}Cum{2terms}],

where the all summations are in an appropriate range. Because of summability
of cumulant for the process {Xt}, we can see the each summation is of order
O(M2/n2), therefore we get the result.

Using the Cauchy-Schwarz inequality, we get

Cov(ĥ(λ1), ĝ(λ1)) = O

((
M
n

) 3
2
)
.

Next, we show fz(λ) − fn(λ) = O(1/M2). We observe

M2( fZ (λ) − fn(λ))

=
1
2π

∑
|ℓ |≤M

1 − w
(
ℓ
M

)
ℓ2

M2

ℓ2ρZ (ℓ) exp(−iℓλ) +
M2

2π

∑
|ℓ |>M

ρZ (ℓ) exp(−iℓλ)

→ k2
4π

∞∑
ℓ=−∞

ℓ2ρZ (ℓ) exp (−iℓλ) < ∞ (n → ∞),

then we get the result.
Finally, we have

Eĝ(λ) = − 1
4n

∑
|ℓ |≤M

√
1 − ρ2Z (ℓ)w

(
ℓ

M

)
exp(−iℓλ)ℓρX(ℓ) = O

(
1
n

)
,

and Eĥ(λ) = O
(
1/n2

)
+O(M/n), Hence we have the desired result. □

Lemma 7.2.3. Under Assumption 3.1.1, then

max
λ∈[−π,π]

( f̂Z (λ) − fZ (λ)) = op(1)

Proof. For any ϵ > 0, η > 0

P
(
max

λ∈[−π,π]
| f̂Z (λ) − fZ (λ)| > η

)
≤P

(
max

λ∈[−π,π]
| f̂Z (λ) − fZ (λ)| > η,

1
ϵ
≤ M ≤ ϵ

√
n
)

(7.2.3)
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+P (ϵM < 1) + P
(
M > ϵ

√
n
)
.

by Assumption 3.1.1, the second term and third term of (7.2.3) tend to 0. Hence
it is sufficient to show

max
1/ϵ≤m≤ϵ

√
n

λ∈[−π,π]

| f̂ mZ (λ) − fZ (λ)| = op(1),

where f̂ mZ (λ) := 1
2π

∑
|ℓ |≤m w (ℓ/m) ρ̂Z (ℓ) exp (−iℓλ). Write as

f̂ mZ (λ) − fZ (λ) = f̂ mZ (λ) − E f̂ mZ (λ)

+

∫
[−π,π]

Wn(λ − µ){EÎn(µ) − fZ (µ)}dx

+

∫ ∞

−∞
W(θ){ fZ (λ −

θ

m
) − fZ (λ)}ds

=a1 + a2 + a3,

where

a1 := f̂ mZ (λ) − E f̂ mZ (λ),

a2 :=
∫
[−π,π]

Wn(λ − µ){EÎn(µ) − fZ (µ)}dx,

a3 :=
∫ ∞

−∞
W(θ){ fZ (λ −

θ

m
) − fZ (λ)}ds.

First, we show max1/ϵ≤m≤ϵ
√
n

λ∈[−π,π]
|a1 | = op(1). From ρ̂X(ℓ) − ρX(ℓ) = Op(1/

√
n)

uniformly in ℓ, therefore we obtain

max
1/ϵ≤m≤ϵ

√
n

λ∈[−π,π]

|a1 | = max
1/ϵ≤m≤ϵ

√
n

λ∈[−π,π]

|ĝ(λ) − Eĝ(λ) + ĥ(λ) − Eĥ(λ)|

≤1
4

∑
|ℓ |≤ϵ

√
n

w̄( ℓ

ϵ
√
n
)| (ρ̂X(ℓ) − Eρ̂X(ℓ)) |

+ max
1/ϵ≤m≤ϵ

√
n

λ∈[−π,π]

π

16

∑
|ℓ |≤m

w( ℓ
m
) (ρ̂X(ℓ) − ρX(ℓ))2

=Op

(
1
√
n
+ ϵ

∫ 1

−1
w̄(θ)dθ

)
+ op (1) .
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Because ϵ is arbitrary, we get the statement. Next, we show max1/ϵ≤m≤ϵ
√
n

λ∈[−π,π]
|a2 | =

op(1). It is easy to see that

max
1/ϵ≤m≤ϵ

√
n

λ∈[−π,π]

|a2 | ≤ max
1/ϵ≤m≤ϵ

√
n

λ∈[−π,π]

|EÎn(λ) − fZ (λ)|
∫ ∞

−∞
W(θ)ds.

We can also show

max
1/ϵ≤m≤ϵ

√
n

λ∈[−π,π]

|EÎn(λ) − fZ (λ)| =(
1
4
+
π

16
)

∑
|ℓ |≤ϵ

√
n

|ℓ |
n
|ρX(ℓ)| +

∑
|ℓ |>1/ϵ

ρZ (ℓ)

+
π

16

∑
|ℓ |≤ϵ

√
n

E(ρ̂X(ℓ) − Eρ̂X(ℓ))2,

which tends to zero as n → ∞ and ϵ → 0.
Finally, we show max1/ϵ≤m≤ϵ

√
n

λ∈[−π,π]
|a3 | = op(1). For any ξ > 0,

max
1/ϵ≤m≤ϵ

√
n

λ∈[−π,π]

|a3 |

≤ max
|θ |≤ξ/ϵ, λ∈[−π,π]

1/ϵ≤m≤ϵ
√
n

| fZ (λ −
θ

m
) − fZ (λ)|

∫ ∞

−∞
|W(θ)|ds

+ max
1/ϵ≤m≤ϵ

√
n

λ∈[−π,π]

∫
|θ |>ξ/ϵ

|W(θ)| | fZ (λ −
θ

m
) − fZ (λ)|dθ

− max
|θ |≤ξ/ϵ, λ∈[−π,π]

1/ϵ≤m≤ϵ
√
n

| fZ (λ −
θ

m
) − fZ (λ)|

∫
|θ |>ξ/ϵ

|W(θ)|dθ

+ max
1/ϵ≤m≤ϵ

√
n

λ∈[−π,π]

∫
|θ |≤ξ/ϵ

|W(θ)| | fZ (λ −
θ

m
) − fZ (λ)|dθ

− max
|θ |≤ξ/ϵ, λ∈[−π,π]

1/ϵ≤m≤ϵ
√
n

| fZ (λ −
θ

m
) − fZ (λ)|

∫
|θ |≤ξ/ϵ

|W(θ)|dθ

≤ max
|θ |≤ξ/ϵ, λ∈[−π,π]

1/ϵ≤m≤ϵ
√
n

| fZ (λ −
θ

m
) − fZ (λ)|

∫ ∞

−∞
|W(θ)|ds (7.2.4)

+ 4 max
λ∈[−π,π]

| fZ (λ)|
∫
|θ |>ξ/ϵ

|W(θ)|dθ.
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Because fZ is uniform continuous and |θ/m| < ξ, the first term of the right hand
side of (7.2.4) can be made arbitrarily small by choosing small ξ. The second term
of the right hand side of (7.2.4) tends to zero as ϵ → 0, hence we have the desired
result. □

Remark 7.2.1. Robinson (1991) showed the consistency of smoothed periodogram
uniformly in λ ∈ [−π, π].

Lemma 7.2.4. Let {Zt} be a strictly stationary ellipsoidal α-mixing process with
zero mean, finite variance, autocorrelation ρZ (ℓ) and and α-mixing coefficients
α(·) satisfying α(n) = O(1/n8+δ) for some δ > 0 and ρ̂Z (ℓ) be the binary estimator
of ρZ (ℓ). Then,

√
n
©«
ρ̂Z (1) − ρZ (1)
ρ̂Z (2) − ρZ (2)

...
ρ̂Z (m) − ρZ (m)

ª®®®®¬
⇒ N(0, A′VA)

where V = (vℓ,r)ℓ,r=1,··· ,m,
vℓ,r =

∑∞
u=−∞{16KX(−ℓ,u,u − r) + ρX(u)ρX(u + ℓ − r) + ρX(u − r)ρX(u + ℓ)} and

A = diag
(
π
√
1 − ρ21, π

√
1 − ρ22, · · · , π

√
1 − ρ2m

)′
.

From lemma 7.2.1, we can see the asymptotic variance is given by A′VA .
Then, we show that the asymptotic normality. We define the random vector

Wi =

©«
YiYi−1I{2≤i}
YiYi−2I{3≤i}

...
YiYi−mI{m+1≤i}

ª®®®®¬
.

From the Cramer-Wold device, it is sufficient to show that, for arbitrary λ ∈ Rm,
(4
√
n)∑n

i=1 λ
′(Wi − EWi) ⇒ N(0,λ′Vλ). We can see that λ′(Wi − EWi) is α-

mixing process with the same ϕ-mixing coefficients as {Zt}. From the central limit
theorem for mixing sequences (see Billinsley (1968)) and using Taylor expansion,
we get the desired result. □

Let H(·, ·) be a function satisfying: (H1) ( i )H(Z, λ) is defined onD×[−π, π],
whereD is an open subset of Cwhich contains the whole range of spectral density
function of the process.
(ii) H(Z, λ) is holomorophic at fZ (λ).
(iii) For a real, positive definite function Z ∈ D, H(Z, λ) is real valued.
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(H2) There exists a positive constant r such that ( i ) r is independent of λ,
(ii) for every λ ∈ [−π, π], the ball Bλ = {Z ∈ Cs : |Z − fZ (λ)| ≤ r} is contained
in D,
(iii) supZ∈∂Cλ

|H(Z, λ) − H( fZ (λ), λ)| ≤ h(λ), where
∫
[−π,π] h(λ)dλ < ∞,

and ∂Cλ = {Z : Z = fZ (λ) + r exp (iθ), −π ≤ θ < π}.

(H3) The first derivative of H(Z, λ) respect to Z, H(1)(Z, ·), satisfies
H(1)( fZ (−π),−π) = H(1)( fZ (π), π).

Lemma 7.2.5. Under Assumption 3.1.1 and (H1),(H2), we have∫
[−π,π]

H{ f̂Z (λ), λ}dλ −
∫
[−π,π]

H{ fZ (λ), λ}dλ = op(1). (7.2.5)

Moreover, if H(·, ·) satisfies (H3) and (H4), then
√
n
{∫

[−π,π]
H{ f̂Z (λ), λ}dλ −

∫
[−π,π]

H{ fZ (λ), λ}dλ
}
⇒ N(0,w2) (7.2.6)

as N → ∞, where w2 =
∑∞
ℓ,r=−∞ ϕ̃(ℓ)ϕ̃(r)

√
1 − ρ2Z (ℓ)

√
1 − ρ2Z (r)

×∑∞
t=−∞[16KX(−ℓ, t, t − r) + {ρX(t)ρX(t + ℓ − r) + ρX(t − r)ρX(t + ℓ)}] with

ϕ̃( j) = 1/(2π)
∫
[−π,π] H

(1)( f (µ), µ) exp (−i jµ)dx.
Proof. First, we show (7.2.5). From (H1), there exists an open neighborhood
U ⊂ D such that H{Z, λ}, Z ∈ U is analytic. To begin with, we evaluate the
remainder term when we expand H{Z, ·} as a Taylor expansion around f (λ) under
the condition | f̂Z (λ) − fZ (λ)| < δ, where δ is taken so that f̂ (λ) ∈ U. Then, the
remainder term R is

R(λ) :=H( f̂Z (λ), λ) − H( fZ (λ), λ) − H(1)( fZ (λ), λ)
(
f̂Z (λ) − fZ (λ)

)
=
1
2
H(2)( f̃Z (λ), λ)

(
f̂Z (λ) − fZ (λ)

)2
,

where f̃Z (λ) is a function on U between fZ (λ) and f̂Z (λ). By using Cauchy’s
integral formula for derivatives of H( f̃Z (λ), λ) −H( fZ (λ), λ) and (H2), we observe
that

|R(λ)| ≤ ah(λ)| f̂Z (λ) − fZ (λ)|2
(
| f̂Z (λ) − fZ (λ)| ≤ δ

)
,

where a is a constant. Moreover, by using Lemma 7.2.1 and employing Fubini’s
theorem, we can see, for arbitrary ϵ > 0,

P(
����∫

[−π,π]
R(λ)dλ

���� > Mϵ

N
)

84



≤
Na

∫
[−∞,∞] h(λ)dλ

Mϵ
E

����∫
[−π,π]

{ f̂Z (λ) − fZ (λ)}2dλ
����

=
a
∫
[−∞,∞] h(λ)dλ

ϵ

∫
[−π,π]

N
M

E{ f̂Z (λ) − fZ (λ)}2dλ

→
8π2a

∫
[−∞,∞] h(λ)dλ

∫ 1
−1 k

2(θ)ds
ϵ

∫
[−π,π]

f 2X (λ)dλ

≤
8π2a

∫
[−∞,∞] h(λ)dλ

∫ 1
−1 k

2(θ)ds
ϵ

∫
[−π,π]

(
∞∑

l=−∞
|ρZ (l)|)2dλ

< ∞
(
| f̂Z (λ) − fZ (λ)| ≤ δ

)
.

From the above discussion and Lemma 7.2.3, for every ϵ > 0, there exists constant
c and N ∈ N such that for n > N ,

P
(����∫

[−π,π]
R(λ)dλ

���� > Mc
n

)
≤P( n

M

∫
[−π,π]

ah(λ)| f̂Z (λ) − fZ (λ)|2dλ ≥ c)

+ P
(
max

λ∈[−π,π]
| f̂Z (λ) − fZ (λ)| > δ

)
<ϵ.

Then we have ∫
[−π,π]

H{ f̂Z (λ), λ}dλ −
∫
[−π,π]

H{ fZ (λ), λ}dλ

=

∫
[−π,π]

{ f̂Z (λ) − fZ (λ)}H(1)( fZ (λ), λ)dλ +Op

(
M
n

)
≤1
δ

∫
[−π,π]

h(λ)dλ max
λ∈[−π,π]

| f̂Z (λ) − fZ (λ)| +Op

(
M
n

)
= op(1),

which proves (7.2.5).
Next, we show (7.2.6). From above discussion, we have

√
n
{∫

[−π,π]
H{ f̂Z (λ), λ}dλ −

∫
[−π,π]

H{ fZ (λ), λ}dλ
}

=
√
n
∫
[−π,π]

{ f̂Z (λ) − fZ (λ)}H(1)( fZ (λ), λ)dλ +Op

(
M
√
n

)
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=
√
n
∫
[−π,π]

H(1)( fZ (λ), λ)
{
În(λ) − EÎn(λ)

}
dλ

+
√
n
∫
[−π,π]

H(1)( fZ (λ), λ)
{
EÎn(λ) − fZ (λ)

}
dλ

+
√
n
∫
[−π,π]

[
H(1)( fZ (λ), λ)

{∫
[−π,π]

fZ (µ)Wn(λ − µ)dx − fZ (λ)
}]
dλ

+
√
n
∫
[−π,π]

[
H(1)( fZ (λ), λ)

∫
[−π,π]

{ În(µ) − fZ (µ)}Wn(λ − µ)dx
]
dλ

−
√
n
∫
[−π,π]

H(1)( fZ (λ), λ)
{
În(λ) − fZ (λ)

}
dλ +Op

(
M
√
n

)
=L1 + L2 + L3 + L4 +Op

(
M
√
n

)
,

where

L1 :=
√
n
∫
[−π,π]

H(1)( fZ (λ), λ)
{
În(λ) − EÎn(λ)

}
dλ,

L2 :=
√
n
∫
[−π,π]

H(1)( fZ (λ), λ)
{
EÎn(λ) − fZ (λ)

}
dλ,

L3 :=
√
n
∫
[−π,π]

[
H(1)( fZ (λ), λ)

{∫
[−π,π]

f (µ)Wn(λ − µ)dx − fZ (λ)
}]
dλ,

L4 :=
√
n
∫
[−π,π]

[
H(1)( fZ (λ), λ)

∫
[−π,π]

{ În(µ) − f (µ)}Wn(λ − µ)dx
]
dλ

−
√
n
∫
[−π,π]

H(1)( fZ (λ), λ)
{
În(λ) − fZ (λ)

}
dλ.

( i ) To begin with, we show L1 ⇒ N(0,w2) as N → ∞.

By Fejér’s theorem, for any ϵ , there exists L0 ∈ N such that the Cesaro sum, i.e.

ϕL(λ) :=
1
2π

L−1∑
j=−L+1

(1 − | j |
L
)ϕ̃( j) exp (−i jλ),

satisfies supλ∈[−π,π] |H(1)( fZ (λ), λ) − ϕL(λ)| < ϵ for L > L0,
where ϕ̃( j) := 1/(2π)

∫
[−π,π] H

(1)( fZ (µ), µ) exp (−i jµ)dx.
Let δL(λ) be the function defined by

δL(λ) = H(1)( fZ (λ), λ) − ϕL(λ).
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We have

Var
[√

n
∫
[−π,π]

δL(λ)În(λ)dλ
]

≤
∞∑

ℓ,r,t=−∞

����∫
[−π,π]

δL(λ) exp (−iℓλ)dλ
���� ����∫

[−π,π]
δL(λ) exp (−irλ)dλ

����
×

√
1 − ρ2Z (ℓ)

√
1 − ρ2Z (r)[16|KX(−ℓ, t, t − r)|

+ {|ρY (t)ρX(t + ℓ − r)| + |ρX(t − r)ρX(t + ℓ)|}] + o(1)

which tends to 0 as L → ∞.

For each L, we observe
√
n
∫
[−π,π]

ϕL(λ)
{
În(λ) − EÎn(λ)

}
dλ

=
1
2π

L−1∑
j=−L+1

(1 − | j |
L
)ϕ̃( j)

√
n(ρ̂Z ( j) − Eρ̂Z ( j)).

The asymptotic normality for follows from Bernstein’s Lemma (Hannan (1970)),
and the asymptotic variance is given by

lim
L→∞

L−1∑
ℓ,r=−L+1

(1 − |ℓ |
L
)ϕ̃(ℓ)(1 − |r |

L
)ϕ̃(r)

√
1 − ρ2Z (ℓ)

√
1 − ρ2Z (r)

×
∞∑

t=−∞
[16KY (−ℓ, t, t − r) + {ρX(t)ρX(t + ℓ − r)

+ ρX(t − r)ρX(t + ℓ)}],

which leads to the desired result.
(ii) Next, we show L2 = op(1) as N → ∞.

From the continuity of H(1), we can see
√
n
∫
[−π,π]

H(1)( fZ (λ), λ)
{
EÎn(λ) − fZ (λ)

}
dλ

≤ max
(y,x)∈Range( f )×[−π,π]

|H(1)(y, x)|
√
n
∫
[−π,π]

|EÎn(λ) − fZ (λ)|dλ

= max
(y,x)∈Range( f )×[−π,π]

|H(1)(y, x)|

× ©«
√
n

∑
|ℓ |≤M

|Eρ̂Z (ℓ) − ρZ (ℓ)| +
√
n

∑
|ℓ |>M

|ρZ (ℓ)|
ª®¬
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≤ max
(y,x)∈Range( f )×[−π,π]

|H(1)(y, x)|

× ©«
√
n

∑
|ℓ |≤M

|Eρ̂Z (ℓ) − ρZ (ℓ)| +
√
n

M2

∑
|ℓ |>M

ℓ2 |ρZ (ℓ)|
ª®¬

=op(1).

(iii) Next, we show L3 = op(1) as N → ∞
We observe

√
n
����∫

[−π,π]
fZ (µ)Wn(λ − µ)dx − fZ (λ)

����
=

√
n

M2
M2

2π

����� ∞∑
ℓ=−∞

ρZ (ℓ) exp (−iℓλ)w
(
ℓ

M

)
−

∞∑
ℓ=−∞

ρZ (ℓ) exp (−iℓλ)
�����

≤
√
n

M2
M2

2π

������ ∑|ℓ |≤M ρZ (ℓ) exp (−iℓλ)
{
1 − w

(
ℓ

M

)}������
+

√
n

M2
M2

2π

�����∑
ℓ≥M

ρZ (ℓ) exp (−iℓλ)
�����

≤
√
n

M2
1
2π

∑
|ℓ |≤M

|ℓ |2 |ρZ (ℓ)|

�������
1 − w

(
ℓ
M

)
ℓ2

M2

������� +
√
n

M2
1
2π

∑
|ℓ |≥M

|ℓ |2 |ρZ (ℓ)|

→ 0 as n → ∞,

we get the result.
(iv) Last of all, we show L4 = op(1) as N → ∞.
Putting M(λ − µ + 2πν) = η, we have

√
n
∫
[−π,π]

[
H(1)( f (λ), λ)

∫
[−π,π]

{ În(µ) − f (µ)}Wn(λ − µ)dx
]
dλ

=
√
n
∫
[−π,π]

[∫ ∞

∞
H(1)( fZ (

η

M
+ µ), η

M
+ µ)W(η)dη

]
× { În(µ) − f (µ)}dµ,

where H̃(1)(·, ·) is a periodic extension of H(1)(·, ·). Then we have

|
√
n
∫
[−π,π]

[
H(1)( fZ (λ), λ)

∫
[−π,π]

{ În(µ) − fZ (µ)}Wn(λ − µ)dx
]
dλ
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−
√
n
∫
[−π,π]

H(1)( f (λ), λ)
{
În(λ) − fZ (λ)

}
dλ |

=

����√n∫
[−π,π]

AM(µ){ În(µ) − fZ (µ)}dx
���� ,

where

AM(µ) =
[∫ ∞

∞
H̃(1)( fZ (

η

M
+ µ), η

M
+ µ)W(η)dη − H(1)( fZ (µ), µ)

]
.

By the above discussions,

Var
[√

n
∫
[−π,π]

AM(µ){ În(µ) − fZ (µ)}dx
]

≤
∞∑

ℓ,r,t=−∞

����∫
[−π,π]

AM(λ) exp (−iℓλ)dλ
���� ����∫

[−π,π]
AM(λ) exp (−irλ)dλ

����
×

√
1 − ρ2Z (ℓ)

√
1 − ρ2Z (r)[16|KX(−ℓ, t, t − r)|

+ {|ρX(t)ρX(t + ℓ − r)| + |ρX(t − r)ρX(t + ℓ)}|]
+ o(1),

which tends to 0 as N → ∞.
□

Remark 7.2.2. We referred to Taniguchi and Kakizawa (2000) to prove the con-
sistency, Hosoya and Taniguchi (1982) to evaluate L1, L2, Hannan (1970) to
see L3 = op(1), Taniguchi (1987) and Taniguchi and Kakizawa (2000) to show
L4 = op(1).

Proof of Theorem 3.2.1
From Lemma 7.2.5, the result follows. □

Proof of Theorem3.2.2
Under Π1, we can observe

∫
[−π,π]

H
(
f̂Z (λ)
gZ (λ)

)
dλ

=
c
n

∫
[−π,π]

(
h(λ)

fZ (λ) + h(λ)/
√
n

)2
dλ +O

(
1

n
√
n

)
,
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and ∫
[−π,π]

H(1)
(
f̂Z (λ)
gZ (λ)

)
exp(−iℓλ)dλ

=
c
√
n

∫
[−π,π]

(
h(λ)

fZ (λ) + h(λ)/
√
n

)
exp(−iℓλ)dλ +O

(
1
n

)
.

From a direct application of the above we can get the desired result. □

Proof of Theorem 3.3.1
From the definition of the nonparametric estimator (3.3.1), and I-divergence
(3.3.2), we have

D( f̂Zs, fZ,gZ ) − D( f̂Z, fZ,gZ )

=
1
4π

∫
[−π,π]

(
f̂Zs (λ) − f̂Z (λ)

) (
1

gZ (λ)
− 1

fZ (λ)

)
dλ

=
Z s
1

8π2n

{
ω(0)Z s

1

∫
[−π,π]

(
1

gZ (λ)
− 1

fZ (λ)

)
dλ

−
∑
|ℓ |≤M
ℓ,0

ω

(
ℓ

M

)
Z1+ℓ

∫
[−π,π]

(
1

gZ (λ)
− 1

fZ (λ)

)
exp {−iℓλ}dλ


+

1
8π2n

ω(0)Z2
1

∫
[−π,π]

(
1

gZ (λ)
− 1

fZ (λ)

)
dλ

− 1
8π2n

∑
|ℓ |≤M
ℓ,0

ω

(
ℓ

M

)
Z1Z1+ℓ

∫
[−π,π]

(
1

gZ (λ)
− 1

fZ (λ)

)
exp {−iℓλ}dλ.

Because the braces expression of the above is positive for sufficiently large s and
the other terms are constant and independent of s, we get the desired result. □

Proof of Theorem 3.3.2
The proof is omitted. □

Proof of Theorem 3.4.1
First, we show

max
λ∈[−π,π]

(
f̂Z (λ)
ĝTZ (λ)

− fZ (λ)
gZ (λ)

)
= op(1).

From Assumption 3.2.1 (C), there exist d such that g(λ) − d > 0. By Lemma
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7.2.3, for any ϵ > 0 and sufficiently large n,

P

(
max

λ∈[−π,π]

(
f̂Z (λ)
ĝTZ (λ)

− fZ (λ)
gZ (λ)

)
> ϵ

)
=P

(
max

λ∈[−π,π]

(
f̂Z (λ)
ĝTZ (λ)

− fZ (λ)
gZ (λ)

)
> ϵ, max

λ∈[−π,π]
(ĝTZ (λ) − gZ (λ)) > c

)
+ P

(
max

λ∈[−π,π]

(
f̂Z (λ)
ĝTZ (λ)

− fZ (λ)
gZ (λ)

)
> ϵ, max

λ∈[−π,π]
(ĝTZ (λ) − gZ (λ)) ≤ c

)
≤P

(
max

λ∈[−π,π]
(ĝTZ (λ) − gZ (λ)) > c

)
+ P

(
max

λ∈[−π,π]

(
gZ (λ)( f̂Z (λ) − fZ (λ)) + fZ (λ)(gZ (λ) − gTZ (λ))

(g(λ) − c)g(λ)

)
> ϵ

)
→ 0 n → ∞.

We can see the followings the same way as Lemma 7.2.5. Using continuity of f (λ)
and g(λ), Lemma 7.2.1, and Lemma 7.2.3, for

(
f̂Z (λ)
ĝTZ (λ)

− fZ (λ)
gZ (λ)

)
< δ, any ϵ > 0, and

the above d,

P(
����∫

[−π,π]
R′(λ)dλ

���� > Mϵ

N
)

=P(
����∫

[−π,π]
R′(λ)dλ

���� > Mϵ

N
, max
λ∈[−π,π]

(ĝTZ (λ) − gZ (λ)) > c)

+ P(
����∫

[−π,π]
R′(λ)dλ

���� > Mϵ

N
, max
λ∈[−π,π]

(ĝTZ (λ) − gZ (λ)) ≤ c)

≤P( max
λ∈[−π,π]

(ĝTZ (λ) − gZ (λ)) > c)

+ P(
����∫

[−π,π]
R′(λ)dλ

���� > Mϵ

N
, max
λ∈[−π,π]

(ĝTZ (λ) − gZ (λ)) ≤ c)

≤ϵ + CN
M

E

������
∫
[−π,π]

{(
f̂Z (λ)
ĝTZ (λ)

− fZ (λ)
gZ (λ)

)
I{maxλ∈[−π,π](ĝT (λ)−gZ (λ))≤c)}

}2

dλ

������
=ϵ +

∫
[−π,π]

CN
M

E
{(

f̂Z (λ)
ĝT (λ) −

fZ (λ)
gZ (λ)

)
I{maxλ∈[−π,π](ĝTZ (λ)−gZ (λ))≤c)}

}2
dλ

≤ϵ +
∫
[−π,π]

CN
M

E

(
gZ (λ)( f̂Z (λ) − fZ (λ)) + fZ (λ)(gZ (λ) − gTZ (λ))

(gZ (λ) − c)gZ (λ)

)2
dλ
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<∞,

where C is a some constant R′ is the remainder term defined by

R′(λ) :=H
(
f̂Z (λ)
ĝTZ (λ)

)
− H

(
fZ (λ)
gZ (λ)

)
− H(1)

(
fZ (λ)
gZ (λ)

) (
f̂Z (λ)
ĝT (λ) −

fZ (λ)
gZ (λ)

)
.

Then we have ∫
[−π,π]

H

(
f̂Z (λ)
ĝTZ (λ)

)
dλ −

∫
[−π,π]

H(1)
(
fZ (λ)
gZ (λ)

)
dλ

=

∫
[−π,π]

(
f̂Z (λ)
ĝTZ (λ)

− fZ (λ)
gZ (λ)

)
H(1)( fZ (λ), λ)dλ +Op

(
M
n

)
≤C max

λ∈[−π,π]

(
f̂Z (λ)
ĝTZ (λ)

− fZ (λ)
gZ (λ)

)
+Op

(
M
n

)
= op(1),

which leads to the result. □

Proof of Theorem 3.4.2
The proof is omitted. □

Proof of Theorem 3.4.3
The proof is omitted. □

7.3 Proofs in Chapter 4
In this section, we provide the proofs of Theorems 4.1.1 and 4.2.1 and Proposition
4.1.1.

Proof of Theorem 4.1.1. First, we show the binary estimator is centered. For each
j ∈ {1, . . ., p},

E{
√
n(η̂ j − η j)} =

√
n2π(b j1, . . ., b jp)

©«
1
n
∑n

k=1 EXk
1 − P(−α1 ≤ Θ1 ≤ α1)

...
1
n
∑n

k=1 EXk
p − P(−αp ≤ Θ1 ≤ αp)

ª®®¬
= 0.
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Next, we evaluate the variance of estimator. For i, j ∈ {1, . . ., p},

cum{
√
n(η̂i − ηi),

√
n(η̂ j − η j)}

=
4π2

n

p∑
s,k=1

bisb j k
n∑

v=1
cum{Xv

s,Xv
k}

=4π2
p∑

s,k=1
bisb j kcum{X s

1,X
k
1 }.

Finally, we elucidate the L-th order cumulant (L ≥ 3) of the binary estimator is of
order O(n−L/2+1). For i1, . . ., iL ∈ {1, . . ., p},

cum{
√
n(η̂i1 − ηi1), . . .,

√
n(η̂iL − ηiL )}

=nL/2(2π)L
p∑

s1,...,sL=1
bi1s1 · · · biLslcum{1

n

n∑
k=1

Xk
s1, . . .,

1
n

n∑
k=1

Xk
sL }

=n−L/2+1(2π)L
p∑

s1,...,sL=1
bi1s1 · · · biLslcum{X s1

1 , . . .,X
sL
1 }

=O(n−L/2+1),

thus, we have the desired result. □

Proof of Proposition 4.1.1. It is sufficient to show the Fisher information I, de-
fined by

I(η1) =
∫ π

−π

(
∂

∂η1
log pcirc(θ)

)2
pcirc(θ)dθ,

becomes the following

I(η1) =


1
2 (η1 = 0),
1
η21

(
1√
1−η21

− 1
)

(0 < |η1 | < 1),

∞ (η1 = ±1).

First, for η1 = 0, by a straightforward calculation. Second, the residue theorem
yields the assertion when η1 satisfies 0 < |η1 | < 1. Third, for η1 = ±1, it is easy
to see the integral diverges. □

Proof of Theorem 4.2.1. For any a j(< π − β), j = 1, . . ., p, we have∫ aj

−aj
qcirc, contam(θ)dθ =

∫ aj

−aj
pcirc(θ)dθ,

from which the statement follows. □
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7.4 Proofs in Chapter 5
Proof of Lemma 5.1.1
It is easy to see that

sup
θ∈Θ

 ∂∂θ L̃E
n (θ) −

∂

∂θ
LE
n (θ)

 = 1
√
n

n∑
t=1

{
2
δ2

Ztatct +
1
δ2

Ztbt +
1
δ
(bt + atct)

}
,

which, from (E10) and Resnick (1999, p.198 exercise 6.16), converges to 0 a.s..
Since ∂

∂θ ℓ
E
n (θ) is the strictly stationary, ergodic, and martingale difference se-

quence, it holds that
∂

∂θ
LE
n (θ) ⇒ N(0, IE )

by the martingale central limit theorem Billinsley (1999, Theorem 18.1) and the
Cramer–Wold devise. We can show − ∂

∂θ∂θT
L̃E
n (θEn

∗) → J a.s. in the same way as
Ahmad and Francq (2016, Theorem 2.2). If

sT JEs =E

(
1

λ2t (θ0)

(
sT

∂

∂θ
λt(θ0)

) (
sT

∂

∂θT
λt(θ0)

)T )
= 0

Then, sT ∂
∂θλt(θ0) = 0 a.s. and, by (A9), s = 0. Hence, JE is non-singular matrix.

For large n such that − ∂
∂θ∂θT

L̃ j
n(θ j

n
∗) is non-singular, we have

√
n(θ̂En − θ0) =

(
∂

∂θ∂θT
L̃E
n (θEn

∗)
)−1√

n
∂

∂θ
L̃E
n (θ0)

⇒ N(0, (JE )−1IE (JE )−1) as n → ∞.

□

The essential tool to prove Theorem 5.2.1 is the multi-dimensional martin-
gale functional central limit theorem (FCLT). Billinsley (1999, Theorem 18.2)
shows the one-dimensional martingale FCLT on the Skorokhod space. How-
ever, the extension of the theorem to multi-dimension is not obvious. We define
the functional space of càdlàg function on [0,∞) to Rd . Let D([0,∞),Rd) :=
{x(t) : [0,∞) → Rd; right continuous with left limits everywhere} and, for any
x, y ∈ D([0,∞),Rd), d∞(x, y) := infλ∈Λmax

(
γ(λ),

∫ ∞
0 e−ud(x, y, λ,u)du

)
where

Λ be the set of strictly increasing and Lipschitz continuous functions on [0,∞) to
[0,∞) such that λ(0) = 0, limt→∞ λ(t) = ∞,

γ(λ) := sup
0≤t<s

log
����λ(s) − λ(t)s − t

���� < ∞,
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d(x, y, λ,u) := sup0≤t min{∥x(min{t,u}) − y(min{λ(t),u}))∥,1}, ∥ · ∥ denotes ℓ2
norm. Then d∞(·, ·) is norm (Ethier andKurtz, 1986, p.118) and (D([0,∞),Rd), d∞)
is separable and complete (Ethier and Kurtz, 1986, Theorem 3.5.6).

The following multi-dimensional martingale FCLT is due to Ethier and Kurtz
(1986, Theorem 3.5.6) and Whitt (2007, Theorem 2.1 and Section 5)

Lemma 7.4.1. Let {mt ∈ Rd : t ∈ Z} be a martingale difference sequence, i.e.
E (mt |Mt−1) = 0 where Mt−1 is the σ-field generated by {ms, s ≤ t − 1} and
Mn(s) := 1√

n

∑⌊ns⌋
j=1 m j . If

lim
n→∞

1
√
n
E

(
max
1≤s≤n

∥ms∥
)
= 0,

and
1
n

n∑
j=1

m jmT
j → Σ in probability as n → ∞,

where Σ is positive definite. Then, it holds

Σ−1/2Mn(s) ⇒ Bd(s) in (D([0,∞),Rd), d∞) as n → ∞,

where Bd is a d-dimensionalstandard Brownian motion (see Ethier and Kurtz
(1986, p.276)).

The multi-dimensional martingale FCLT holds that for any ergodic, station-
ary, and martingale difference process {ξt ∈ Rd : t ∈ Z} with positive definite
covariance matrix and E∥ξ1∥2+δ < ∞ for some δ > 0. Actually, the conditions of
Lemma 7.4.1 can be checked easily; for any sequence Cn > 0 such that Cn/n → 0
and Cn → ∞ as n → ∞,

1
√
n
E

(
max
1≤ j≤n

∥ξ j ∥
)

=

√
1
n
E

(
max
1≤ j≤n

∥ξ j ∥2I{∥ξ j ∥>Cn}

)
+

√
1
n
E

(
max
1≤ j≤n

∥ξ j ∥2I{∥ξ j ∥≤Cn}

)
≤

√√√
1
n

n∑
j=1

E
(
∥ξ j ∥2I{∥ξ j ∥>Cn}

)
+

√
Cn

n

≤
√
E

(
∥ξ j ∥2I{∥ξ j ∥>Cn}

)
+

√
Cn

n

≤ 1
Cδ
n

√
E

(
∥ξ j ∥

)2+δ
+

√
Cn

n
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→ 0 as n → ∞.

The second condition follows from the ergodic theorem. Thus, it holds that(
Eξ1ξT1

)−1/2 1
√
n

⌊ns⌋∑
j=1

ξ j ⇒ Bd(s) in (D([0,∞),Rd), d∞) as n → ∞,

and (
Eξ1ξT1

)−1/2 ©« 1
√
n

⌊ns⌋∑
j=1

ξ j −
s
√
n

n∑
j=1

ξ j
ª®¬

⇒ Bd(s) − sBd(1) in (D([0,∞),Rd), d∞) as n → ∞.

We use the following Lemma 7.4.2 to prove Thorem 5.2.1.

Lemma 7.4.2. For j = P,NB, or E, we assume (A0)-(A6) and ( j7)-( j8). Then, it
holds that, under H0,

max
1≤k≤n

√
k
n

∆ j
k

 = op(1) as n → ∞.

Proof. We follow Kang and Lee (2014, Lemma 9)’s proof. By Assumption ( j8),
it can be shown that

−1
n

∂

∂θ∂θT
L̃ j
n(θ j

n
∗) → J j a.s. as n → ∞

in the same way as Ahmad and Francq (2016, Theorem 2.2). We can apply the
Egorov’s theorem, that is, for any ϵ > 0, there exists some Borel set A ∈ F such
that P(A) < ϵ and

−1
n

∂

∂θ∂θT
L̃ j
n(θ j

n
∗) → J j uniformly on Ω\A.

There exists N1 such that, for any n ≥ N1,����det (J j
)
− det

(
−1
n

∂

∂θ∂θT
L̃ j
n(θ j

n
∗)
)���� < 1

2
det

(
J j

)
on Ω\A,

and then ����det (−1n ∂

∂θ∂θT
L̃ j
n(θ j

n
∗)
)���� > 1

2
det

(
J j

)
on Ω\A.
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For any invertible matrix Bn and B such that Bn → B as n → ∞, ∥B−1
n − B−1∥ =

∥A−1
n (An − A)A−1∥ ≤ ∥A−1

n ∥∥(An − A)∥∥A−1∥ → 0. Thus, there exists N2 ∈ N
such that, for any n ≥ N2 ≥ N1,(−1n ∂

∂θ∂θT
L̃ j
n(θ j

n
∗)
)−1 < 3

2

(J j
)−1 on Ω\A.

For any ϵ > 0,

P

(
max
1≤k≤n

√
k
n

∆ j
k

 > ϵ

)
≤P

(
max

1≤k≤N2

√
k
n

∆ j
k

 > ϵ,Ω\A
)
+ P

(
max

N2+1≤k≤n

√
k
n

∆ j
k

 > ϵ,Ω\A
)
+ P (A)

(7.4.1)

From the definition of the tightness in R, there exists η > 0 such that

P
(
max

1≤k≤N2

√
k
∆ j

k

 > η,Ω\A
)
< ϵ.

The second term of (7.4.1) is asymptotically negligible along the line of Kang and
Lee (2014, Lemma 9), which concludes the lemma. □

Proof of Theorem 5.2.1
We note that

sup
0≤s≤1

sup
θ∈Θ

 1
√
n

⌊ns⌋∑
t=1

∂

∂θ
ℓ̃
j
t (θ) −

1
√
n

⌊ns⌋∑
t=1

∂

∂θ
ℓ
j
t (θ)


≤ 1
√
n

n∑
t=1

sup
θ∈Θ

 ∂∂θ ℓ̃ jt (θ) − ∂

∂θ
ℓ
j
t (θ)

 → 0 a.s. as n → ∞

and

∂

∂θ
ℓPt (θ0) =

(
Zt
λt

− 1
)
∂

∂θ
λt(θ0),

∂

∂θ
ℓNB
t (θ0) =

r(Zt − λt)
λt(θ0)(r + λt(θ0))

∂

∂θ
λt(θ0), and

∂

∂θ
ℓEt (θ0) =

Zt − λt
λ2t

∂

∂θ
λt(θ0),
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which are strictly stationary, ergodic, and martingale difference sequences. The
multi-dimensional martingale FCLT yields that

(Î jKL)
−1/2 1

√
n

⌊ns⌋∑
t=1

∂

∂θ
ℓ
j
t (θ0) − (Î jKL)

−1/2 ⌊ns⌋
n

1
√
n

n∑
t=1

∂

∂θ
ℓ
j
t (θ0)

=
(
I jKL

)−1/2 1
√
n

⌊ns⌋∑
t=1

∂

∂θ
ℓ
j
t (θ0) −

(
I jKL

)−1/2 ⌊ns⌋
n

1
√
n

n∑
t=1

∂

∂θ
ℓ
j
t (θ0) + op(1)

⇒Bd(s) − sBd(1) in (D([0,∞),Rd), d∞) as n → ∞.

Since Brownian motion has sample paths in C([0,∞),Rd), we can apply the con-
tinuous mapping theorem (Ethier and Kurtz, 1986, 3.10.2). Hence, from Lemmas
7.4.1 and 7.4.2, the continuous mapping theorem, we obtain

T j
KL,Wald = sup

0≤s≤1

 ⌊ns⌋√
n
(Î jKL)

−1/2 Ĵ j
KL(θ̂

j
⌊ns⌋ − θ̂ j

n)
2

= sup
0≤s≤1

(I jKL)−1/2
(
1
√
n

⌊ns⌋∑
t=1

∂

∂θ
ℓ̃
j
t (θ0) −

⌊ns⌋
n

1
√
n

n∑
t=1

∂

∂θ
ℓ̃
j
t (θ0)

)
2

+ op(1)

⇒ sup
0≤s≤1

∥B◦
d(s)∥

2 as n → ∞,

which completes Theorem 5.2.1. □

Proof of Theorem 5.2.2
We note that

k(n − k)
n
√
n

J j(θ̂ j
1:k − θ̂ j

k+1:n)

=
1
√
n

k∑
t=1

∂

∂θ
ℓ̃
j
t (θ0) −

k
n

1
√
n

n∑
t=1

∂

∂θ
ℓ̃
j
n(θ0) +

n − k
n

√
k
n
∆
j
1:k −

k
n

√
n − k
n
∆
j
k+1:n,

where∆ j
a:b is defined in a same way as (5.2.1) based on {Za, . . . , Zb}. Then, we can

show the asymptotic distribution of T j
DK,Wald in a same way as Theorem 5.2.1. □

Proof of Theorem 5.2.3
It is easy to see that, under the alternative H1,

T j
DK,Wald

≥ ⌊nτ⌋2(n − ⌊nτ⌋)2
n3

(θ̂ j
1:⌊nτ⌋ − θ̂ j

⌊nτ⌋+1:n)
T Ĵ j

DK(Î
j
DK)

−1 Ĵ j
DK(θ̂

j
1:⌊nτ⌋ − θ̂ j

⌊nτ⌋+1:n)
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=
nτ2(1 − τ)2

4
(θ0 − θ1)T J j

(
I j

)−1
J j(θ0 − θ1) + op(1)

→ ∞ as n → ∞,

which competes the proof. □

The next Lemma is needed to show Thorem 5.2.4.

Lemma 7.4.3. For j = P,NB, or E, suppose that (A0)-(A6) and ( j7)-( j8). Then,
it holds that, under H0,

max
1≤k≤n

1
√
n

 k∑
t=1

∂

∂θ
ℓ̃
j
t (θ̂

j
n) −

(
k∑

t=1

∂

∂θ
ℓ̃
j
t (θ0) −

k
n

n∑
t=1

∂

∂θ
ℓ̃
j
t (θ0)

)
= op(1) as n → ∞.

Proof. By theTaylor’s expansion, there exists θ j
n
∗
and θ j

n
∗∗
such that θ0 ≶ θ j

n
∗
≶ θ̂ j

n,
θ0 ≶ θ j

n
∗∗
≶ θ̂ j

n,
k∑

t=1

∂

∂θ
ℓ̃
j
t (θ̂

j
n) −

k∑
t=1

∂

∂θ
ℓ̃
j
t (θ0) =

k∑
t=1

∂

∂θ∂θT
ℓ̃
j
t (θ

j
n
∗)

(
θ̂ j
n − θ0

)
,

and
n∑
t=1

∂

∂θ
ℓ̃
j
t (θ̂

j
n) −

n∑
t=1

∂

∂θ
ℓ̃
j
t (θ0) =

n∑
t=1

∂

∂θ∂θT
ℓ̃
j
t (θ

j
n
∗∗)

(
θ̂ j
n − θ0

)
.

Then, we have

max
1≤k≤n

1
√
n

 k∑
t=1

∂

∂θ
ℓ̃
j
t (θ̂

j
n) −

(
k∑

t=1

∂

∂θ
ℓ̃
j
t (θ0) −

k
n

n∑
t=1

∂

∂θ
ℓ̃
j
t (θ0)

)
= max

1≤k≤n

1
n

 k∑
t=1

∂

∂θ∂θT
ℓ̃
j
t (θ

j
n
∗)
√
n
(
θ̂ j
n − θ0

)
− k
n

n∑
t=1

∂

∂θ∂θT
ℓ̃
j
t (θ

j
n
∗∗)

√
n
(
θ̂ j
n − θ0

)
≤

√n (
θ̂ j
n − θ0

) max
1≤k≤n

k
n

1k k∑
t=1

∂

∂θ∂θT
ℓ̃
j
t (θ

j
n
∗) + J j


+

1n n∑
t=1

∂

∂θ∂θT
ℓ̃
j
t (θ

j
n
∗∗) − J j

 √n (
θ̂ j
n − θ0

) .
Since

√n (
θ̂ j
n − θ0

) = Op(1) and we can show that1n n∑
t=1

∂

∂θ∂θT
ℓ̃
j
t (θ

j
n
∗∗) − J j

 → 0 a.s. as n → ∞ (7.4.2)

99



in a same way as Ahmad and Francq (2016, Theorem 2.2), thus, the second term
is asymptotically negligible. From (7.4.2), for any ϵ > 0, there exists N4 > 0 such
that, for k ≥ N4,

P

(1k k∑
t=1

∂

∂θ∂θT
ℓ̃
j
t (θ

j
n
∗) + J j

 > ϵ

)
= 0.

Hence, it holds that

max
1≤k≤n

k
n

1k k∑
t=1

∂

∂θ∂θT
ℓ̃
j
t (θ

j
n
∗) + J j


= max

1≤k≤N4

k
n

1k k∑
t=1

∂

∂θ∂θT
ℓ̃
j
t (θ

j
n
∗) + J j

 + max
N4≤k≤n

k
n

1k k∑
t=1

∂

∂θ∂θT
ℓ̃
j
t (θ

j
n
∗) + J j


≤N4

n

N4∑
t=1

 ∂

∂θ∂θT
ℓ̃
j
t (θ

j
n
∗)
 + N4

n

J j
 + max

N4≤k≤n

1k k∑
t=1

∂

∂θ∂θT
ℓ̃
j
t (θ

j
n
∗) + J j

 ,
which tends to 0 in probability since for any ϵ′, there exists M such that

P

(
N4∑
t=1

 ∂

∂θ∂θT
ℓ̃
j
t (θ

j
n
∗)
 > M

)
≤ ϵ′.

□

Proof of Theorem 5.2.4
By employing Lemma 7.4.3, the ergodic theorem, and the multi-dimensional
martingale FCLT, we can see that

(Î jKL)
−1/2 1

√
n

(⌊ns⌋∑
t=1

∂

∂θ
ℓ̃
j
t (θ̂

j
n)

)
=(Î jKL)

−1/2 1
√
n

⌊ns⌋∑
t=1

∂

∂θ
ℓ
j
t (θ0) − (Î jKL)

−1/2 ⌊ns⌋
n

1
√
n

n∑
t=1

∂

∂θ
ℓ
j
t (θ0) + op()

=
(
I jKL

)−1/2 1
√
n

⌊ns⌋∑
t=1

∂

∂θ
ℓ
j
t (θ0) −

(
I jKL

)−1/2 ⌊ns⌋
n

1
√
n

n∑
t=1

∂

∂θ
ℓ
j
t (θ0) + op(1)

⇒Bd(s) − sBd(1) in (D([0,∞),Rd), d∞) as n → ∞.

From the fact����� sup0≤s≤1

(Î jKL)−1/2 1
√
n

(⌊ns⌋∑
t=1

∂

∂θ
ℓ̃
j
t (θ̂

j
n)

) − sup
0≤s≤1

(Î jKL)−1/2 1
√
n

⌊ns⌋∑
t=1

∂

∂θ
ℓ
j
t (θ̂

j
n)

�����
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≤
(Î jKL)−1/2 sup

0≤s≤1

 1
√
n

(⌊ns⌋∑
t=1

∂

∂θ
ℓ̃
j
t (θ̂

j
n)

)
− 1
√
n

(⌊ns⌋∑
t=1

∂

∂θ
ℓ
j
t (θ̂

j
n)

)
≤

(Î jKL)−1/2 1
√
n

n∑
t=1

( ∂∂θ ℓ̃ jt (θ̂ j
n)

)
−

(
∂

∂θ
ℓ
j
t (θ̂

j
n)

) → 0 a.s. n → ∞

and the continuous mapping theorem (Ethier and Kurtz, 1986, 3.10.2), it holds
that

sup
0≤s≤1

(Î jKL)−1/2 1
√
n

(⌊ns⌋∑
t=1

∂

∂θ
ℓ̃
j
t (θ̂

j
n)

)
2

⇒ sup
0≤s≤1

B◦
d(s)

2 as n → ∞,

which shows the result. □

Lemma 7.4.4. If we assume that, for j = P,NB, or E, (A0)-(A6), ( j7)-( j8), and
(A9). Then, it holds that, under H0,

max
1≤k≤n

1
√
n

����� k∑
t=1

(ϵ̃t(θ̂ j
n) − ϵt) −

k
n

n∑
t=1

(ϵ̃t(θ̂ j
n) − ϵt)

����� = op(1) as n → ∞..

Proof. By Taylor’s expansion, we have

max
1≤k≤n

1
√
n

����� k∑
t=1

(ϵ̃t(θ̂ j
n) − ϵt) −

k
n

n∑
t=1

(ϵ̃t(θ̂ j
n) − ϵt)

�����
≤ 2
√
n

n∑
t=1

at + max
1≤k≤n

1
√
n

����� k∑
t=1

(λt(θ̂ j
n) − λt(θ0)) −

k
n

n∑
t=1

(λt(θ̂ j
n) − λt(θ0))

�����
≤ 2
√
n

n∑
t=1

at + max
1≤k≤n

1
√
n

����� k∑
t=1

(θ̂ j
n − θ0)T

∂

∂θ
λt(θ0) −

k
n

n∑
t=1

(θ̂ j
n − θ0)T

∂

∂θ
λt(θ0)

�����
+ max

1≤k≤n

1
√
n

���� k∑
t=1

(θ̂ j
n − θ0)T

(
∂

∂θ
λt(θ j

n
∗) − ∂

∂θ
λt(θ0)

)
− k
n

n∑
t=1

(θ̂ j
n − θ0)T

(
∂

∂θ
λt(θ j

n
∗) − ∂

∂θ
λt(θ0)

) ����
≤ 2
√
n

n∑
t=1

at +
√
n∥θ̂ j

n − θ0∥ max
1≤k≤n

k
n

1k k∑
t=1

∂

∂θ
λt(θ0) −

1
n

n∑
t=1

∂

∂θ
λt(θ0)


+
√
n∥θ̂ j

n − θ0∥
2
n

n∑
t=1

 ∂∂θ λt(θ j
n
∗) − ∂

∂θ
λt(θ0)
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where θ0 ≶ θ j
n
∗
≶ θ̂ j

n. Under the assumption, we can show that

2
n

n∑
t=1

 ∂∂θ λt(θ j
n
∗) − ∂

∂θ
λt(θ0)

 → 0 a.s. as n → ∞

along the line of Ahmad and Francq (2016, Theorem 2.2), and, by the ergodic
theorem, it is easy to see that

max
1≤k≤n

k
n

1k k∑
t=1

∂

∂θ
λt(θ0) −

1
n

n∑
t=1

∂

∂θ
λt(θ0)

 → 0 a.s. as n → ∞

in the same way as Lemma 7.4.2. Considering to
√
n∥θ̂ j

n − θ0∥ = Op(1), the proof
of Lemma 7.4.4 is complete. □

Lemma 7.4.5. If we assume that, for j = P,NB, or E, (A0)-(A6), ( j7)-( j8), and
(A9), it holds that, under H0,

1
n

n∑
t=1

ϵ̃2t (θ̂
j
n) → Eϵ2t in probability as n → ∞.

Proof. By Taylor’s expansion, we obtain�����1n n∑
t=1

(ϵ̂2t (θ̂
j
n) − ϵ2t )

�����
=

�����1n n∑
t=1

(ϵ̂t(θ̂ j
n) − ϵt)(ϵ̂t(θ̂ j

n) + ϵt)
�����

≤1
n

n∑
t=1

(
at +

����(θ̂ j
n − θ0)T

∂

∂θ
λt(θ∗n)

����) (
2|Zt − λt(θ0)| + at +

����(θ̂ j
n − θ0)T

∂

∂θ
λt(θ∗n)

����)
≤1
n

n∑
t=1

(
a2t + 2at |Zt − λt(θ0)| + 2at

θ̂ j
n − θ0


ℓ1

 ∂∂θ λt(θ∗n)ℓ1
+ 2|Zt − λt(θ0)|

θ̂ j
n − θ0


ℓ1

 ∂∂θ λt(θ∗n)ℓ1 +
θ̂ j

n − θ0

2
ℓ1

 ∂∂θ λt(θ∗n)2ℓ1
)

≤1
n

n∑
t=1

a2t + 2

√√
1
n

n∑
t=1

a2t

√√
1
n

n∑
t=1

|Zt − λt(θ0)|2

+ 2
θ̂ j

n − θ0


ℓ1

√√
1
n

n∑
t=1

a2t

√√
1
n

n∑
t=1

 ∂∂θ λt(θ∗n)2ℓ1
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+ 2
θ̂ j

n − θ0


ℓ1

√√
1
n

n∑
t=1

|Zt − λt(θ0)|2
√√

1
n

n∑
t=1

 ∂∂θ λt(θ∗n)2ℓ1
+

θ̂ j
n − θ0

2
ℓ1

1
n

n∑
t=1

 ∂∂θ λt(θ∗n)2ℓ1 ,
where θ0 ≶ θ j

n
∗
≶ θ̂ j

n. By the ergodic theorem, we observe

1
n

n∑
t=1

|Zt − λt(θ0)|2 → Evt(θ0) a.s. as n → ∞ (7.4.3)

and, by Assumption (A9), we can show

1
n

n∑
t=1

 ∂∂θ λt(θ∗n)2ℓ1 →E
 ∂∂θ λt(θ0)2ℓ1 a.s. as n → ∞,

which shows that �����1n n∑
t=1

ϵ̂2t (θ̂
j
n) −

1
n

n∑
t=1

ϵ2t

����� → 0 as n → ∞.

The conclusion of the Lemma 7.4.5 then follows from (7.4.3). □

Proof of Theorem 5.2.5
Since ϵt is the strictly stationary, ergodic, and martingale difference, we can apply
the multi-dimensional martingale FCLT. From Lemmas 7.4.1, 7.4.4, and 7.4.5, we
have

max
1≤k≤n

1√
1
n
∑n

t=1 ϵ̂
2
t (θ̂

j
n)

1
√
n

����� k∑
t=1

ϵ̃
j
t −

k
n

n∑
t=1

ϵ̃
j
t

�����
= sup

0≤s≤1

1√
Evt(θ0)

1
√
n

�����⌊ns⌋∑
t=1

ϵt −
⌊ns⌋
n

n∑
t=1

ϵt

����� + op(1)
⇒ sup

0≤s≤1
|B◦

1(s)| as n → ∞,

which proves the desired result. □
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7.5 Proofs in Chapter 6
Proof of Theorem 6.1.1
Let pCG(θ0) be a probability density function of N(θα, θβ). First observe that, for
X ∼ N(θα, θβ),

∂2

∂θ0∂θ
T
0
log pCG(θ0) = −

β(β + 1)
2

θ
−β−2
0 X2 + (α − β)(α − β − 1)θα−β−20 X

− (2α − β)(2α − β − 1)
2

θ
2α−β−2
0 +

β

2
θ−20

and

I(θ0) := −E[ ∂2

∂θ0∂θ
T
0
log pCG(θ0)] =

β2

2
θ−20 + α

2θ
2α−β−2
0 .

A Simple algebra gives

Λ0(θ0, θn) = log

∏n
i=1

1√
2πθβn

exp
{
− (Xi−θαn )2

2θβn

}
∏n

i=1
1√
2πθβ0

exp
{
− (Xi−θα0 )2

2θβ0

}
=h

(√
n
h (θα−βn − θα−β0 )√
n
h (θα−βn − θα−β0 )

)T ( 1√
n

∑n
i=1(Xi − θα0 )

1√
n

∑n
i=1{X2

i − (θ2α0 + θ
β
0 )}

)
− n

{
θ2α0 + θ

β
0

2
(θ−βn − θ−β0 ) − θα0 (θ

α−β
n − θα−β0 )

+
1
2
(θ2α−βn − θ2α−β0 ) + β

2
(log θn − log θ0)

}
.

By Taylor’s expansion, we know that

θ
−β
n − θ−β0 = − βθ

−β−1
0

h
√
n
+
1
2
β(β + 1)θ−β−20

h2

n
+O(n− 3

2 ),

θ
α−β
n − θα−β0 =(α − β)θα−β−10

h
√
n
+
1
2
(α − β)(α − β − 1)θα−β−20

h2

n
+O(n− 3

2 ),

θ
2α−β
n − θ2α−β0 =(2α − β)θ2α−β−10

h
√
n
+
1
2
(2α − β)(2α − β − 1)θ2α−β−20

h2

n

+O(n− 3
2 ),
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log θn − log θ0 =θ−10
h
√
n
− 1
2
θ−20

h2

n
+O(n− 3

2 ).

Then, it follows that

− n
{
θ2α0 + θ

β
0

2
(θ−βn − θ−β0 ) − θα0 (θ

α−β
n − θα−β0 )

+
1
2
(θ2α−βn − θ2α−β0 ) + β

2
(log θn − log θ0)

}
→ −1

2
h2I0(θ0) as n → ∞,

and(√
n
h (θα−βn − θα−β0 )

√
n
h (θα−βn − θα−β0 )

)
→

(
(α − β)θα−β−10

β
2 θ

−β−1
0

)
as n → ∞.

The central limit theorem gives that( 1√
n

∑n
i=1(Xi − θα0 )

1√
n

∑n
i=1{X2

i − (θ2α0 + θ
β
0 )}

)
⇒ N

((
0
0

)
,

(
θ
β
0 2θα+β0

2θα+β0 2θ2β0 + 4θ
2α+β
0

))
as n → ∞.

Applying the Slutsky’s lemma, we have the desired result. □

Proof of Theorem 6.1.2
First, we derive the Fisher information matrix. Let pSES is a probability density

function of the model (6.1.1). It is easy to see that

log pSES(θ0)

= − p + 1
2

log 2π − 1
2
log det |Ω|

− 1
2

(
Y1i −W1i(ζ12β0 + γ0) −W2iζ22β0

(Y2i −W1iζ12 −W2iζ22)T
)T
Ω

−1

×
(
Y1i −W1i(ζ12β0 + γ0) −W2iζ22β0

(Y2i −W1iζ12 −W2iζ22)T
)
,

and

− ∂2

∂θ0∂θT0
log pSES(θ0)

= ω11
(
(Z1iζ12 + Z2iζ22)T (Z1iζ12 + Z2iζ22) (Z1iζ12 + Z2iζ22)TW1i

WT
1i(Z1iζ12 + Z2iζ22) WT

1iW1i

)
,
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which converges in probability to I1(θ0).
Second, we show the LAN property. Under the null hypothesis, we observe

that

Λ1(θ0,θn)

:= − 1
2

n∑
i=1

(
ν1i − 1√

n
(Z1i(ζ12h1 + h2) + Z2iζ22h1)

ν2i
T

)T
Ω

−1

×
(
ν1i − 1√

n
(Z1i(ζ12h1 + h2) + Z2iζ22h1)

ν2i
T

)
+
1
2

n∑
i=1

(
ν1i
ν2i

T

)T
Ω

−1
(
ν1i
ν2i

T

)
=

1
√
n

n∑
i=1

{Z1i(ζ12h1 + h2) + Z2iζ22h1}T
(
ω11 ω12) (

ν1i
ν2i

T

)
− 1
2n

n∑
i=1

{Z1i(ζ12h1 + h2) + Z2iζ22h1}T ω11 {Z1i(ζ12h1 + h2) + Z2iζ22h1}

=
(
h1

T h2
T
)
∆1n −

ω11

2

(
h1

T h2
T
) (

ζ12 Ip2×p2
ζ22 0p3×p2

)T
× 1
n

n∑
i=1

(
Z1i

T

Z2i
T

) (
Z1i Z2i

) (
ζ12 Ip2×p2
ζ22 0p3×p2

) (
h1
h2

)
.

By Assumption 6.1.1, it holds that

(ω11 ω12)
(
Y1i − Z1i(ζ12β0 + γ0) − Z2iζ22β0

(Y2i − Z1iζ12 − Z2iζ22)T
)
∼ N(0,ω11),

and this yields that ∆1n ⇒ N(0,I1(θ0)) as n → ∞. □

Proof of Theorem 6.2.1

Proof. (i) First observe that

n(θ(n)3 − θ3)
θ
(n)
2 + nθ

(n)
1

∑
i

(ȳi· − θ3)

⇒



0 (k3 ≤ 1
2, k1 <

1
2 + k3) or (k3 > 1

2 ),√
θ2h3
h1

g1(Tn) k3 < 1
2, k1 =

1
2 + k3,

∞ k3 < 1
2, k1 >

1
2 + k3,

h3
√
θ2

θ2+h1
g1(Tn) k3 = 1

2, k1 = 1,
h3√
θ2
g1(Tn) k3 = 1

2, k1 > 1,

(7.5.1)
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as n → ∞ and

−
an(θ(n)3 − θ3)2

2(θ(n)2 + nθ
(n)
1 )

⇒



0 (k3 ≤ 1
2, k1 < 2k3) or (k3 > 1

2 ),
−ah23

2h1 k3 < 1
2, k1 = 2k3,

−∞ k3 < 1
2, k1 > 2k3,

− ah23
2(θ2+h1) k3 = 1

2, k1 = 1,

−ah23
2θ2 k3 = 1

2, k1 > 1,

(7.5.2)

as n → ∞.
From (7.5.1) and (7.5.2), it follows that

n(θ(n)3 − θ3)
θ
(n)
2 + nθ

(n)
1

∑
i

(ȳi· − θ3) −
an(θ(n)3 − θ3)2

2(θ(n)2 + nθ
(n)
1 )

⇒



0 (k3 ≤ 1
2, k1 < 2k3) or (k3 > 1

2 ),
−ah23

2h1 k3 < 1
2, k1 = 2k3,

−∞ k3 < 1
2, 2k3 < k1 ≤ k3 + 1

2,

indeterminate form k3 < 1
2, k1 > k3 + 1

2,

h3
√
θ2

θ2+h1
g1(Tn) −

ah23
2(θ2+h1) k3 = 1

2, k1 = 1,
h3√
θ2
g1(Tn) −

ah23
2θ2 k3 = 1

2, k1 > 1,

(7.5.3)

as n → ∞.
Second, the Taylor’s expansion yields that

− a
2
(n − 1) log

θ
(n)
2
θ2
+
θ
(n)
2 − θ2
2θ2θ(n)2

a∑
i=1

n∑
j=1

(yi j − ȳi·)2

= − h2a
2θ2

(1 − 1
n
)n1−k2 +

ah2(1 − 1
n )

2(nk2−1θ2 + h2
n )

+
h2

√
2a(1 − 1

n )

2(nk2− 1
2 θ2 +

h2√
n
)

{ 1
θ2

∑a
i=1

∑n
j=1(yi j − ȳi·)2 − a(n − 1)√

2a(n − 1)

}
+O(n1−2k2)

⇒
{
indeterminate form 0 < k2 < 1,
0 k2 ≥ 1,

(7.5.4)

as n → ∞.
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Finally, it holds that

− a
2
log

θ
(n)
2 + nθ

(n)
1

θ2
+
n(θ(n)2 − θ2) + n2θ(n)1

2θ2(θ(n)2 + nθ
(n)
1 )

∑
i

(ȳi· − θ3)2

⇒

−∞ 0 < k1 < 1,

h1
2(θ2+h1)g2(Tn) − a

2 log(1 +
h1
θ2
) k1 = 1,

0 k1 > 1,
(7.5.5)

as n → ∞. The conclusion of theorem then follows from (7.5.3), (7.5.4),
and (7.5.5).

(ii) Let pANOVA(θ) be a probability density function of (6.2.1). SinceYi j follows
the normal distribution with mean θ3 and variance θ1+ θ2, the loglikelihood
function can obtained as

log pANOVA(θ) = −1
2
log 2π − 1

2
log(θ1 + θ2) −

1
2(θ1 + θ2)

(yi j − θ3)2.

A Simple algebra gives the desired result. □

Proof of Theorems 6.2.2 and 6.2.3
From the definition of log-likelihood function, we have

Λ(θn, 1θ) = −
a
2
log

θ2 + nθ
(n)
1

θ2
+

n2θ(n)1

2θ2(θ2 + nθ(n)1 )

∑
i

(ȳi· − θ3)2.

Under the null H(n)
3 , it is easy to see that

Λ(θn, 1θ) = −a
2
log

θ2 + nθ
(n)
1

θ2
+

nθ(n)1

2(θ2 + nθ(n)1 )

(
n
θ2

∑
i

(ȳi· − θ3)2
)
,

which shows the result of Theorem 6.2.2.
Similarly, we observe that, under the alternative K(n)

3 , n
∑a

i=1(ȳi· − θ3)2/(θ2 +
nθ(n)1 ) follows χ2a and

Λ(θn, 1θ) = −a
2
log

θ2 + nθ
(n)
1

θ2
+
nθ(n)1
2θ2

(
n

(θ2 + nθ(n)1 )

∑
i

(ȳi· − θ3)2
)
,

which gives the result of Theorem 6.2.3. □
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Proof of Theorem 6.2.4
We denote the asymptotic distribution of Λ3(θ0,θn) as LN for the null and LA

for the alternative.
( i ) From Theorem 6.2.2 and Problem 23.1 in Van der Vaart (2000, p.339), it

can be seen that

sup
x∈R

|P(Λ3(θ0,θn) < x |H(n)
3 ) − P(LN < x)| → 0 as n → ∞.

It implies that

|P(Λ3(θ0,θn) ≥ cn,h |H(n)
3 ) − P(LN ≥ cn,h)| → 0 as n → ∞.

Hence, we obtain

α = P(Λ3(θ0,θn) ≥ cn,h |H(n)
3 ) = lim

n→∞
P(LN ≥ cn,h),

and consequently

cn,h → c = − log
a
2
log

(
1 +

h1
θ2

)
+

h1
2(θ2 + h1)

χ2a [1 − α] as n → ∞.

(ii) Theorems 6.2.3 and 6.2.4 (i) yields that

Λ3(θ0,θn) − cn,h ⇒ LA − c under K(n)
3

and it gives that

lim
n→∞

P(Λ3(θ0,θn) ≥ cn,h |K(n)
3 ) = P(LN ≥ c)

= P(χ2a ≥ θ2
(θ2 + h1)

χ2a [1 − α]).

(iii) By Neyman–Pearson lemma, for any n ∈ N and any test {ψn,h} such that
lim supn Eθn(ψn,h) ≤ α, it holds Eθn(ϕn,h) − Eθn(ψn,h) ≥ 0. Thus, the desired result
holds. □

Proof of Theorem 6.2.5
From the fact that

∑a
i=1(

√
n(ȳi· − θ3)/

√
θ2 + nθ1)2 follows χ2a , simple algebra gives

that

Λ(θn,θ)

= − a
2
(n − 1) log

θ
(n)
2
θ2

− a
2
log

θ
(n)
2 + nθ

(n)
1

θ2 + nθ1
+
θ
(n)
2 − θ2
2θ(n)2

{ 1
θ2

∑
i

∑
j

(yi j − ȳi·)2}
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+
(θ(n)2 − θ2) + n(θ(n)1 − θ1)

2(θ(n)2 + nθ
(n)
1 )

{ n
θ2 + nθ1

∑
i

(ȳi· − θ3)2}

+

√
nθ2 + n2θ1(θ(n)3 − θ3)

θ
(n)
2 + nθ

(n)
1

{
√
n

√
θ2 + nθ1

∑
i

(ȳi· − θ3)} −
an(θ(n)3 − θ3)2

2(θ(n)2 + nθ
(n)
1 )

= − a
2
(n − 1) log(1 + h2

nk2θ2
) +

ah2(1 − 1
n )

2(nk2−1θ2 + h2
n )

+
h2

√
2a(1 − 1

n )

2(nk2− 1
2 θ2 +

h2√
n
)

( 1
θ2

∑
i
∑

j(yi j − ȳi·)2 − a(n − 1)√
2a(n − 1)

)
+ op(1),

which shows the desired result. □

Proof of Theorem 6.2.6
In the same way to Theorem 6.2.5, it holds that

Λ(θn,θ)

= − a
2
log

θ2 + nθ
(n)
1

θ2 + nθ1
+

n(θ(n)1 − θ1)
2(θ2 + nθ(n)1 )

{ n
θ2 + nθ1

∑
i

(ȳi· − θ3)2}

= − a
2
log(1 + h1

nk1−1θ2 + nk1θ1
) + h1

2(nk1−1θ2 + nk1θ1 + h1)
∑
i

(Yi −
√
nθ3√

θ2 + nθ1
)2,

which tends to 0 as n → ∞. □
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