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Abstract 

Air conditioning systems consume the largest share of energy in buildings. For this purpose, vapor 

compression air conditioning systems are widely used. There are billions of installed units of such 

systems all over the world. However, their operation is still not optimized since their performance 

during real time operation is mostly unknown. Availability of realistic information about the actual 

performance of air conditioners could guide the development of energy efficient operation strategies 

and consequently lead to a substantial reduction of primary energy consumption. Ideally, the system 

delivers cooling capacity according to load demand with the potentially maximum efficiency. In 

this study a cost effective and non-intrusive method to predict the actual air conditioning system 

performance is developed using artificial neural network. Input and output data for prediction are 

generated from simulation and experimental facility covering a wide range of operating conditions. 

The method is developed with the motivation that it can be applied to predict the system 

performance in dynamic operation and different systems using few input parameters that are non-

intrusive and inexpensive to measure. The results show that the artificial neural network method 

with the input of four refrigerant temperatures measured at outdoor unit has successfully predicted 

the cooling capacity of air conditioning system with relative error and RMSE within 5% and 1.8 

kW, respectively.  

 

Keywords: Air conditioning, Prediction, Artificial neural network, Cooling capacity  
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  Nomenclature 

Symbol 
  

A Area m2 

a Activated neuron output - 

b Bias - 

C Specific heat capacity J･kg-1･K-1 

c Normalized data - 

c1, c2 Regularization parameter - 

cp Area per pulse m2 

cV Flow coefficient - 

D Diameter m 

d Data - 

E Energy W 

e Error - 

Ep Error of prediction - 

Ew Error of network weight - 

f Transfer function - 

fr Friction factor - 

G Mass flow rate kg･s-1 

H System output - 

h Specific enthalpy J･kg-1 

j Mass flux kg･m-2･s-1 

Jreg Objective function of regularization - 

K Thermal conductance W･m-2･K-1 

Ki Integrative gain - 

Kp Proportional gain - 

L Length m 

Lc Circumference m 

M Network arcitecture - 

m Mass of refrigerant kg 

N Training data sets - 

n Neuron output - 

nd Number of data - 

P Pressure Pa 

p ANN input - 
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pv Valve opening pulse 

Q Heat flow W 

q Heat flux W･m-2 

Qe Cooling capacity W 

Qload Cooling load W 

r Control set point - 

S Cross sectional area m2 

s Specific entropy J･kg-1･K-1 

T Temperature °C 

t Time s 

td Delay time s 

U Specific internal energy J･kg-1 

u Control input signal - 

V Volume m3 

v Velocity m･s-1 

Vi Variability index - 

W Work W 

w Weight - 

X Concentration - 

x Function input - 

y ANN output - 

yp Prediction output - 

yt Prediction target - 

Z Weight and bias vector - 

z Length of state - 

 

Greek 
  

ρ Density kg･m-3 

η Efficiency - 

ω Compressor speed rps 

α Heat transfer coefficient W･m-2･K-1 

τ Time constant s 

  



 

5 

  

Subscript 
 

A Air 

ad Adiabatic 

C Condenser 

DB Dry bulb 

E Evaporator 

FC Fin collar 

FIN FIN 

HP High pressure 

I Inlet 

In Inside 

in Indoor 

INV Inverter 

k Number of input 

LP Low pressure 

max Maximum 

min Minimum 

O Outlet 

Out Outside 

out Outdoor 

R Refrigerant 

s Number of neuron 

T Tube  

V Volume 

vap Vapor 

WB Wet bulb 
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1. Introduction 

1.1 Background 

Energy provision and the control of the emissions related to energy consumption have 

arisen as major global issues in the last decade. The largest share of global energy provision still 

relies on depletable fossil fuels, such as coal, oil, and gas, which are non-renewable and becoming 

very limited. The large-scale fossil fuels usage leads to the raising of potential supply difficulties 

and critical environmental impacts such as greenhouse gas emission, climate change, ozone layer 

depletion, etc. Energy consumption reduction and environmental safety of energy conversion 

systems are issues currently targeted by many researchers in the world, especially in building sector. 

The statistical data show that residential is the second largest energy consumers after industrial 

sector[1]. Energy consumption in both commercial and residential buildings is steadily increasing. 

The main reasons contributing to this fact include the population growth, larger demand for 

building services, more advanced thermal comfort standards, and longer permanence of the 

occupants inside buildings[2]. These circumstances forewarn the rising of the related energy demand 

in the future. Effective evaluation approaches can significantly reduce the building energy usage[3]. 

Accordingly, improving energy efficiency in the building sector has recently become the main 

concern for policy makers and stakeholders. 

Besides the extensive use of cooling systems in the industrial and transportation sectors, 

today, air conditioning (AC) systems have become a necessity in buildings. The recent change of 

lifestyle, which has brought many people to spend most of their time inside the building, pushes AC 

systems to work for long time[4], in different conditions, and different climates. In these modern 

days, people are estimated to spend approximately 80-90% of their time in conditioned indoor 

spaces[5]. A comfortable indoor air is directly related to people’s health and productivity[6]. The 

International Energy Agency (IEA) estimates that 1.9 billion units of AC systems are operating all 

over the world in 2020[7]. This number is projected to experience an increase of as much as 50% by 

2030 (Fig. 1.1). A more extensive use of air conditioners is caused by stricter standard requirements 

of thermal comfort, the established development of this technology (large number of experienced 

manufactures providing systems at affordable price) and economic welfare in developing countries. 

Moreover, the AC systems used by consumers are most likely to demonstrate less than half of best 

available efficiency of this technology[7]. As a result, the growth in energy demand for AC systems 

tends to increase continuously and, if not operated properly, the related environmental footprint 

could become a substantial cause for unsustainable greenhouse emissions.  

At present, within the building sector, lighting accounts for approximately 15% of the total 

building energy consumption[2]. However, the global enhancement in light-emitting diodes (LEDs) 

technology could significantly reduce the lighting energy consumption[8]. Heating ventilating and 

air conditioning (HVAC) systems are responsible for the largest energy demand in the building 

sector
[3]

. The study reported in literature
[9]

 mentioned that as much as almost half of the building 
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energy consumption in developed countries is dedicated to the operation of HVAC systems. 

Similarly, in a tropical climate, the HVAC system consumes more than 50% of the total building 

energy demand[2]. The typical electricity use in Singapore shown in Fig. 1.2 demonstrates that the 

building sector accounts for a share of approximately 31%, where 60% of this share is used for 

cooling. This observation indicates that there are large opportunities to reduce energy consumption 

in the building sector through efficiency improvement of HVAC systems and their operation 

strategy.  

 

Fig. 1.1 Global air conditioner stock[1] 

 

Fig. 1.2 Typical electricity consumption by end use in building sector in Singapore[2] 
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In recent years, vapor compression technology (see Fig. 1.3) is most commonly applied for 

AC systems in residential building applications as the system is less bulky, inexpensive, and 

coefficient of performance (COP) is higher compared to absorption[10], injection[11], and other 

systems. In order to increase vapor compression system performance, some efforts have been 

directed to develop advanced control strategies[12, 13], improve component efficiency e.g. 

compressor[14]; heat exchanger[15]; expansion valve[16]; model system behavior[17], optimize 

operating condition[18], develop variable refrigerant flow (VRF) for multi indoor units application[19], 

optimize the system cycles[20],  etc. The efficiency of AC system has been successfully increased as 

the result of variable speed compressor together with the higher efficiency of heat exchanger[21]. 

Notwithstanding these efforts, their efficiencies have improved only slightly due to the approaching 

technical limitations. As the above-mentioned progress is generally directed to the technology and 

not case specific applications, no significant improvement and significant benefit in terms of energy 

efficiency and environmental impact have been achieved. Accordingly, the users rely on the current, 

often inefficient, AC systems for a long operation period, where the system will experience 

performance degradation and run with even lower efficiency. 

 

 

Fig. 1.3 Room air conditioning (AC) system 

Optimal operation management can be an effective measure to substantially reduce the 

energy consumption of AC systems. The system cooling capacity represents the main extensive 

indicator of the system performance, response to the external disturbances and internal load. This 

quantity is generally related to the input driving energy to evaluate the system performance in terms 

of first law thermodynamic efficiency, but also second law efficiency[22]. Ideally the system should 

be working to deliver appropriate cooling capacity in response to the instantaneous cooling load at 

the potentially maximum efficiency. According to the investigation presented in literature[23], the 
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optimal operation of AC systems can be achieved in range of 50-70% of the nominal capacity. To 

this purpose, a reliable prediction method for actual system performance is necessary to define 

advanced operation strategies, adapt the available capacity with the load of a facility, and establish 

system efficiency monitoring techniques. As billions of these systems have already been installed in 

different types of buildings, capacity sizes, grids, and climates and encountered performance 

degradation over time due to fouling of the heat exchanger surface[24-26], pipe leakage[27], improper 

refrigerant mass charge[28], etc., the actual system performance during operation is generally 

unknown. The efficiency in the reference conditions listed in the product catalogue provided by 

manufacture represents the system performance in a limited set of steady state conditions only. 

Therefore, due to the aforementioned factors, actual operating conditions and efficiency 

encountered by each installation may substantially deviate from those recorded. This suggests the 

fundamental necessity of a cost-effective, accurate, and non-intrusive method for predicting these 

systems performance for better system operation management.  

1.2 Issue 

Recently the appropriate method for performance prediction of AC system is not available. 

Several issues that should be considered in performance prediction method development include 

accessibility for input measurement, cost of sensors, reliability and applicability of developed 

method. All those mentioned issues represent the obstacles when developing model, collecting the 

input parameters, and implementing the method in field test system. Among the major issues 

encountered when estimating the actual performance of air conditioners the most challenging points 

are described as follows: 

 Performance of AC system is closely related to the various operating conditions, external 

disturbances (such as outdoor temperature and solar radiation) and internal building loads 

including electricity equipment, occupants, lighting, and others (see Fig. 1.4). The heat gain 

comes from solar radiation, infiltration and conductive heat gains may change frequently 

and affect the building cooling load pattern[29]. In the other hand, occupant behavior is also 

commonly recognized as the main source of uncertainty in estimating building energy 

performance[30-32]. The consequent variability spectrum is extremely broad and featuring 

dynamic characteristics. Accordingly, the rated performance provided by manufacture in 

product catalog does not reflect the actual performances. Part load and dynamic operation 

behavior constitute the main challenge and source of lack of knowledge in estimating the 

actual system performance. This variability is reflected by the thermophysical behavior of 

the working fluid (commonly called refrigerant) which is continuously circulating within 

the system and dynamically experiencing compression, phase change and two-phase 

lamination.  In detail, the effect of weather condition on AC system performances is 

discussed in literature[33].  
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Fig. 1.4 Source of cooling load in buildings 

 As explained in previous section, cooling capacity is an important indicator to quantify the 

performance of AC system. Experimentally, the cooling capacity can be determined by the 

instantaneous measurement of the refrigerant mass flow rate and the refrigerant enthalpy 

difference between outlet and inlet of the evaporator[34]. However, measuring pressure and 

mass flow rate is relatively complex, expensive, and intrusive. The installation of such 

sensors on an operating system involves the disassemblement to place pressure transmitter 

and flow meter. It interrupts the system operation and potentially leads to improper 

refrigerant charge.  

 There is a multitude of different systems among those installed all over the world. Every 

manufactures have different design to achieve the maximum system performance. It is 

related to the efficiency and specification of system component. As shown in Fig. 1.5, these 

systems are produced by different manufacturers, with different sizes, types and 

configurations, which may have different rated capacity and characteristics. In practice, the 

system installation may have different configuration pertaining to indoor and outdoor unit 

placement. This affects the accessibility for the input measurement. In the other hand, the 

package controllers designed in every system are non-identical. As a result, it generates 

different system dynamic behavior. Various AC system plants in actual application bring 

the challenge for an effective prediction of air conditioning system performance especially 

for generalization capability of model.  
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Fig. 1.5 Types of air conditioning plant[35] 

1.3 Possible method for prediction 

There are several possible methods that can be applied to predict AC system performance. 

The options for prediction techniques are described as follows:  

 Direct measurement 

Cooling capacity of actual system with directly measuring the refrigerant properties has 

high reliability and quick procedure. It can be determined using refrigerant flow rate and enthalpy 

difference between inlet and outlet of evaporator[36]. The enthalpy is obtained as a function of 

pressure and temperature. However as the installation of pressure transmitter and flow meter are 

intrusive as explained in section 1.2, this method is not applicable for implementation. Moreover, 

the huge investment cost is required when considering the implementation for a billion units 

installed in existing buildings since the price for these both sensors are quite expensive.  

 Physical model 

In the other way, cooling capacity can be predicted using physical model which relies on 

thermodynamic and heat transfer theory[37]. This technique has been proven to have good 

approximation and reliability to simulate the system behavior[38]. Unfortunately that method is not 

appropriate for current application due to many input parameters are required for calculation such as 

component geometry, refrigerant properties, system specifications, etc.,. While there are only COP 
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and rated capacity provided by manufacture. All those detail input parameters are difficult to obtain 

for every system. Additionally there are a lot of equations that should be solved pertaining to the 

heat transfer and thermodynamic phenomena. 

 Statistics 

Statistics method is developed based on the available historical data without considering the 

physical phenomena[39]. The AC systems can be characterized to collect the cooling capacity 

performances in wide operating conditions. Nonetheless the system performances are very complex 

and related to physical phenomena which are difficult to estimate using data distribution based. As 

that method is not related to the physical phenomena, it cannot be generalized to predict the system 

performance in various condition, different manufacture, and different rated cooling capacity size. 

 Machine learning 

Machine learning is a black box model that can be used to build the relationship between 

input and output. It is developed based on learning process on input output data without requiring 

the complex mathematical functions as involved in physical model. This method has been proven to 

be able to approximate the input output data accurately when the sufficient training data are 

available[40]. Regarding to the complexity of AC systems phenomena, this method offers the 

possibility for simplification of cooling capacity estimation. In physical model, the relationship 

between the physical phenomena and system performance is established using the complex 

mathematical functions based on first principle theory[41]. Instead of using the mathematical model, 

the black box model can be developed to learn the physical phenomena using few input parameters 

to predict the system performance. 

The measurement and estimation of actual AC systems performance is very challenging. By 

considering the model implementation in actual field test systems, the adopted method should 

ideally feature the following characteristics: 

- be easily implementable to existing systems, with a limited number of reliable input 

parameters, which can be collected with low-cost sensors placed in measurement points 

accessible from the outdoor unit without disturbing system installation and operation; 

- provide the highest possible prediction accuracy; 

- yield generalizable results applicable to different system configurations and climates; 

- be able to capture both steady state operation and dynamic responses to external 

disturbances or internal loads. 
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1.4 Previous literature 

In order to overcome the mentioned issues related to cost of sensors and accessibility during 

collecting input parameters, a black box model with artificial neural networks (ANN) offers the 

alternative solution to predict the cooling capacity without requiring many input parameters and 

equations. This method can be developed using relevant input parameters that are non-intrusive, 

inexpensive to measure and represent system performance behavior. 

The ANN model has been introduced since last two decades to apply for energy analysis in 

building[42]. This technique is believed to have good approximation in mapping input and output 

data. The main advantages of ANN method are speed, simplicity, and the ability of solving the 

complex nonlinear relationship between variables[43]. In some literature, ANN method has been 

successfully used to predict heating load[44, 45], cooling load[46], absorption system performance[47, 48], 

and optimize the thermal comfort and energy consumption in building[49].   

Furthermore the application of ANN related to air conditioning and refrigeration system 

application has been reviewed in literature[43]. Kamar et al. (2013)[50] have proposed the ANN 

method to predict automobile AC system performance. In that work, several parameters, i.e. 

compressor speed, valve opening, and air temperature at evaporator and condenser inlet have been 

taken as inputs. The results show that the optimized ANN structure can predict system performance 

with high accuracy. A similar study has also been conducted by Tian et al. (2015)[51] to predict 

vehicle AC system performance equipped with scroll compressor and electronic expansion valve 

(EEV). The results show that high prediction accuracy has been achieved using optimized ANN 

model with thirteen neurons. Atik et al. (2010)[52] have proposed an ANN model to predict system 

performance under variation of mass charge and compressor speed. The results have shown that the 

ANN model using the inputs of compressor speed and amount of refrigerant has successfully 

predicted mobile air conditioning (MAC) system performance (cooling capacity, compressor power, 

and COP) with satisfying accuracy. Wu et al. (2017)[53] have developed ANN model to predict split 

AC system performance and indoor thermal comfort (air temperature and humidity). The training 

data are collected by directly measuring the input output parameters in existing systems. The 

prediction is conducted using the inputs of supply air temperature, humidity, and velocity, outdoor 

temperature and humidity, and input power. The results indicate that the ANN model has 

successfully predicted energy efficiency ratio (EER) with acceptable accuracy.  

1.5 Unresolved issue 

According to the aforementioned-works above, the ANN models are mostly developed 

using the input parameters that are intrusive to measure (refrigerant mass charge, compressor speed, 

valve opening) or affected by high location variance (air-side temperatures and velocity), which 

could hinder their actual implementation in operative systems. Moreover, predictions are carried out 

using the training and testing data generated from the same system, in the same structural condition. 
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Therefore, the developed ANN model in previous studies cannot be applied in various systems with 

different rated capacity.  

1.6 Objective 

The present study aims to develop reliable ANN model that can be used to predict cooling 

capacity of AC systems using non-intrusive and cost effective input parameters. The research has 

three main objectives as follows: 

 Developing ANN model to capture dynamics systems performances behavior. 

 Teaching ANN the physics of air-conditioning cycles via few accessible inputs related to 

the refrigerant properties to predict actual system performance. 

 Developing a generalizable ANN model that can be applied for performance prediction on 

various systems from different manufacturers and different rated capacity. 

1.7 Research hypothesis 

The research is conducted with the hypothesis that the system performance can be predicted 

by properly teaching ANN the physics of air conditioning cycle. Moreover, the ANN model could 

be applied to predict the performance of different systems with the motivation that all vapor 

compression systems stand on the same fundamental cycle. The dynamic performance behavior of 

AC systems could be captured by dynamic ANN model which include previous time step input 

characteristics for training. 

1.8 Originality 

This research proposes a new method for cooling capacity prediction that is cost effective, 

non-intrusive, and applicable for implementation in different systems. The method involves few 

input parameters representing the refrigerant cycle, resulting in easily measurable in actual 

operative conditions. In this study, a cost-effective possibility of capturing output cooling capacity 

considering various operating condition, cooling loads, and different nominal capacity is 

demonstrated by utilizing an ANN model exclusively based on four refrigerant temperatures that 

are easily accessible from the outdoor unit.   

1.9 Thesis structure 

Chapter 1 describes the background, purpose, importance and contribution of the research. 

Chapter 2 shows the general vapor compression air conditioning system and simulation tool. 

In this section the mathematical model based on first principal analysis for each component are 
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introduced for simulation tool. The description related to the system operation and control 

development is also presented. 

Chapter 3 explains the ANN development as prediction approach. The development 

includes the analysis on data characteristic, sampling time selection, and data variability. 

Additionally, the input selection for performance prediction is presented in this chapter. 

 Chapter 4 describes the experimental facility to generate input output data on actual 

machine. The operation characteristics such as intermittent, steady and unsteady behavior on actual 

performance behavior are discussed.   

Chapter 5 investigates the ability of ANN model for performance prediction using 

simulation and experimental data based. In this section the ANN model is trained using the data 

generated from simulation and applied to predict the system performance on actual system. The 

difference in data characteristics is analyzed comprehensively. 

Chapter 6 introduces the feasibility studies of ANN model for actual implementation. The 

performance of ANN prediction based on experimental data in various operating condition 

considering dynamic cooling load, indoor and outdoor temperatures is investigated in this section.  

 Chapter 7 summarizes the conclusion for the entire works and presents the prospect of 

related research for future study. 
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2. System description and simulator development 

2.1 System description 

The AC system works to maintain indoor temperature by reversing the heat transfer from 

the conditioned space to the external environment. In general, a vapor compression AC system is 

composed of four main components i.e. compressor, condenser, expansion valve, and evaporator. 

Schematic diagram of the system is demonstrated in Fig. 2.1. As the working fluid (refrigerant) 

circulates, it absorbs the heat     from the conditioned space at low temperature surrounding     

through the evaporator and releases     to the external ambient at outdoor temperature      through 

the condenser. When the heat absorbed by the system (cooling capacity) is higher than the heat 

gained from solar radiation or internal sources (cooling load), the indoor temperature gradually 

decreases. Conversely, the indoor temperature will increase when the cooling capacity is lower than 

the cooling load. Different AC systems feature different instantaneous ability to respond to the 

balance between cooling load and cooling capacity, which is related to the control strategy 

implemented, the configuration adopted, and the refrigerant used as working fluid. The cooling 

capacity variations delivered by a certain system can be adjusted by regulating the work of 

compressor, which adjusts pressures (and saturation temperatures) levels as well as the refrigerant 

mass flow rate according to the characteristic operation map of the device, and valve opening, 

which acts on the evaporation pressure and superheat level at the compressor inlet.  

As succinctly descripted, the configuration of such vapor compression systems is mirrored 

by the sequence of thermophysical transfer processes constituting the refrigerant cycle as depicted 

in Fig. 2.2 

 Evaporation (1-2) 

In evaporator, the refrigerant temperature is lowered below the level of its surrounding 

(conditioned space). Therefore, it evaporates by absorbing the heat from the conditioned space. The 

refrigerant leaves the evaporator in a low-pressure saturated vapor. The superheat occurs when the 

saturated refrigerant vapor is heated above its boiling point. This parameter is important in AC 

system to ensure the liquid refrigerant is boiled off when leaving the evaporator, to make the 

compressor safe[54].     

 Compression (2-3) 

When the refrigerant enters the compressor, it exhibits a superheated gas phase at low 

pressure and temperature. During the compression process, its pressure and temperature are 

increased adiabatically by the mechanical work delivered to the compressor. The increase of gas 

pressure leads to higher condensing temperature of the refrigerant. A sufficient compression ratio 
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between inlet and outlet compressor pressures is required to achieve a refrigerant boiling point 

temperature higher than the outdoor environment.  

 

Fig. 2.1 Schematic diagram of general vapor compression air conditioning systems 

 

 Condensation (3-4) 

In condensation process, the refrigerant phase is changed from vapor to liquid by extracting 

the heat. When the refrigerant enters the condenser at high pressure and temperature, it carries the 

heat energy absorbed in evaporator and work energy transferred by the compressor. As the 

refrigerant temperature is higher than the outdoor temperature, the related heat transfer condenses 

the refrigerant from high-pressure vapor to high-pressure saturated liquid. Accordingly, the transfer 

surface and the control strategy are designed to ensure that the refrigerant leaves the condenser in a 

liquid phase.   

 Expansion (4-1) 

When the refrigerant enters the expansion valve, it expands and decreases the pressure. As a 

result, the temperature drops below the heat source temperature and refrigerant leaves the expansion 

valve in liquid-vapor mixture. Consequently, the condensed refrigerant is returned to the low 
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pressure and temperature levels of the evaporator for closing the cycle and operate continuously to 

the next cycle for uninterruptedly transferring heat from the indoor to the outdoor environment and 

reaching the desired indoor temperature.      

 

Fig. 2.2 Cycle diagram of vapor compression system 

2.2 Simulator development 

As previously mentioned, the physical phenomena of refrigerant state in every single 

component, although very complex in their interdependencies, can be approximated by using the 

first principle of thermodynamic, mass and momentum balances, and heat and mass transfer theory. 

Accordingly, such modeling effort can be used to estimate the performance of an air conditioner in 

various operating conditions, and, if the thermophysical properties of different refrigerants are 

available for correlating the state to the transfer properties, the operation of the same system can be 

explored for different working fluids. The implementation of such general principles in a common 

numerical simulation platform with a modular structure connecting the numerical approximation of 

the different components in any combination, would enable the user to simulate any possible system 

configuration on the market and explore others which are not. Finally, a modulation of the transfer 

properties based on the modeling of possible system faults encountered in real operation expands 

the simulation scenario to any fault conditions. Such simulator can thus handle the estimation of 

dynamically variable operating conditions, different climates, different system configurations and 

size, any working fluid, as well as possible operation faults. This generalizable and broad-spectrum 

simulation scenario overcomes the limitations related to cost and technology encountered when 

using in experimental facilities, and constitutes an extremely appealing tool for the generation of a 

broad and reliable set of training data.  
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Therefore, in this work, a multi-purpose air conditioning system simulator is designed to be 

able to simulate any systems with various specifications, nominal capacities, characteristics, 

configurations, and produced by different manufactures. Practically, the simulator is established by 

developing mathematical model of each system component, including fin-tube heat exchangers, 

compressor, expansion valve, accumulator, and reversing valve.  The equations for each component 

used for simulation are briefly described as follows: 

2.2.1 Compressor 

The compressor can be considered as the heart of vapor compression system. This 

component plays the utmost important role to circulate the refrigerant within the system. The 

compressor types used in this system vary including reciprocating compressor, rotary screw 

compressor, scroll compressor, and others. The mathematical model is developed for scroll 

compressor type (Fig. 2.3) with considering the volume of compressor, adiabatic efficiency, and 

volumetric efficiency that can be obtained from the system specification. The compressor is 

assumed to have inverter so it could provide the part load operating condition. The simulator does 

not exclude for the other compressor types. 

The basic formula of compressor model is developed based on the continuity and energy 

balance as expressed below. 

                                    (2.1) 

                                              (2.2) 

                           (2.3) 

Relationship between adiabatic efficiency and refrigerant properties at the suction and 

discharge of compressor is modeled using the following equation: 

    
             

         
     (2.4) 

When the adiabatic efficiency is neglected, the entropy at the suction and discharge of the 

compressor does not change as shown in Eq. (2.5).  

                  (2.5) 

Mass flow of refrigerant change in response to the rotational speed modulation is calculated 

using Eq. (2.6).    

                    (2.6)  
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Energy consumption of the compressor is determined by the following equation: 

               (2.7)  

 

Fig. 2.3 Scroll compressor model[55] 

2.2.2 Expansion valve 

Expansion valve aims to remove the pressure from liquid refrigerant to allow the refrigerant 

to change in gas phase when entering the evaporator. There are several expansion valve types used 

in vapor compression namely capillary tube[56], thermostatic expansion valve (TXV)[57] and 

electronic expansion valve (EEV)
[58, 59]

. The capillary tube is not controllable as it has no moving 

part. The pressure is reduced by passing the refrigerant through this device. Unlike the capillary 

type, TXV type is equipped with moving part that can control the mass flow of refrigerant. The 

valve opening is automatically adjusted to regulate the amount of refrigerant liquid injected to the 

evaporator by sensing the degree of the superheat temperature. The performance of mass flow 

control by this device is limited to imprecise valve opening regulation, poor accuracy of superheat 

measurement, and small range of operating condition. An EEV device is more advanced compared 

to two previous valve types. This technology has a proportional feed-back action control 

mechanism that can provide variable valve opening to maintain a superheat under various operating 

condition[60].   

The expansion valve control is related to the compressor safety and system efficiency. The 

proper mass flow of refrigerant should be properly adjusted to provide high cooling capacity and 

make sure that there is no liquid refrigerant when entering the compressor. In this simulation the 

expansion valve is modeled with EEV type (see Fig. 2.4). Mass flow of refrigerant can be directly 

adjusted by assigning the opening of valve.  

The basic formula for expansion valve model is written in Eqs. (2.8 and 2.9).  

                                    (2.8) 

Ref. inlet

Ref. outlet
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                                              (2.9) 

The mass flow rate in expansion valve is modeled using Eq. (2.10).  

        √       (         )     (2.10)  

During the operation, the pressure and mass flow of refrigerant can be controlled by 

adjusting the area of valve opening   as shown in Eq. (2.10). The relationship between the area and 

pulse of valve opening is shown in Eq. (2.11). Notation    represents the area per pulse.  

             (2.11)  

 

  

Fig. 2.4 Electronic expansion valve[55] 

2.2.3 Heat exchanger 

Heat exchangers are intended to interact with the thermal energy sources (external 

environment) and deliver the useful effect of the cycle (in this case, the cooling capacity   ), which 

is most commonly performed by exchanging heat between the air and refrigerant. There are several 

heat exchanger types used in vapor compression system that can be developed in simulator such as 

plate heat exchanger, shell and tube, compact heat exchanger, fin tube and others.  Fin-tube heat 

exchangers are the most common ones for AC system applications[61].  This heat exchanger type is 

selected for evaporator and condenser in present study. The illustration of fin tube heat exchanger 

can be seen in Fig. 2.5. Distributed model is employed to describe the phenomena of heat transfer 

between air and refrigerant in indoor and outdoor unit.   

Ref. inlet

Ref. outlet

S



 

25 

  

 

 

Fig. 2.5 Cut of fin tube heat exchanger[55] 

The basic equations representing the continuity, energy balance, and pressure drop for 

refrigerant at heat exchanger are expressed in Eqs. (2.12 - 2.14). The friction factor    is acquired 

from the equation presented in previous work[62]. The term     in Eq. (2.14) represents the heat 

transfer between refrigerant and tube. 

   

  
 

       

  
        (2.12) 

   

  
    

 

   
       

       (2.13) 

       

  
 

         

  
  

    

   
         (2.14) 

The energy balance of the tube is expressed in Eq. (2.15). The notation      shows the heat 

transfer between air and tube. 

    
   

  
 

    

  
    

             

    
                     (2.15) 

The correlation to calculate the air properties including continuity, moisture, pressure drop, 

and energy balance are described in Eqs. (2.16 - 2.18), respectively.   

                           
             

 
                              (2.16) 

                                     
             

 
         (2.17) 
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                     (2.18) 

The heat transfer between refrigerant and tube     is calculated using Eq. (2.19), while the 

heat transfer between the tube and air      is determined by Eq. (2.20). The total amount of heat 

absorbed by evaporator is considered as cooling capacity    and the total heat released to 

environment in condenser is recognized as condensing capacity   . 

                       (2.19) 

         
(       ) (       )

  
(       )

(       )

        (2.20) 

The amount of refrigerant charge inside the heat exchanger is calculated using Eq. (2.21). 

      ∫   
 

 
           (2.21) 

To calculate the pressure drop in the pipe, the Blasius equation[63] is applied for single phase 

flow. While the Chisholm[62]  and Lockhart-Martinelli[64] equations are applied for two-phase flow. 

Moreover, the heat transfer coefficient in the pipe is calculated using Dittus-Boelter[65] equation for 

single-phase flow. Yoshida et al. (1983)[66] and Nozu et al. (1983)[67] equations are for two-phase 

evaporation and condensation process, respectively. The formula for pressure drop, heat transfer 

coefficient, and fin efficiency in air side are adopted from Seshita’s equation[68]. 

2.2.4 Room 

Mainly, the room model aims to recreate the temperature response in regard to the effect of 

cooling load, cooling capacity, and the building size (thermal mass). The change of indoor 

temperature is calculated using the first order differential equation representing the energy balance 

Eq. (2.22).  

       
    

  
              (2.22) 

The equation for cooling capacity    can be expressed as follows: 

                           (2.23) 

2.2.5 Accumulator 

A compressor is specifically designed to compress the refrigerant vapor, not liquid. The 

main function of accumulator is to prevent compressor damage from liquid refrigerant that may 

enter the compressor from the suction. This device (Fig. 2.6) is a temporary reservoir to ensure that 
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any liquid exiting from evaporator falls at the bottom of accumulator and give it the time to 

complete phase change to vapor before entering the compressor suction. The equations of continuity 

and energy balance for accumulator model are presented in Eqs. (2.24 - 2.25). The pressure at inlet 

and outlet of accumulator is assumed to be the same.  

 
   

  
                                              (2.24) 

 
       

  
                                                  (2.25) 

 

Fig. 2.6 Accumulator[55] 

2.2.6 Reversing valve 

Reversing valve is modeled to allow the system to function in both heating and cooling 

modes. When the system is operated in cooling mode, the compressed refrigerant from the 

compressor goes to the heat exchanger located in the outdoor unit. Otherwise, the refrigerant flows 

reversely in heating mode and the heat exchanger in conditioned space works as the heating coil. 

The study presented in this work is focused on cooling mode only, but this does not exclude the 

application of the method presented to heat pumps and AC systems operating in heating mode. 

Schematic diagram of the reversing valve is shown in Fig. 2.7. The mathematical equation for this 

equipment is modeled with assumption that there is no pressure drop in the inlet and outlet. 

Notation of LP and HP represents low pressure and high pressure of refrigerant. 

The correlation for continuity and energy balance is described as in Eqs. (2.26 and 2.27). 

According to Eq. (2.27), the change of the internal energy of refrigerant is determined as a function 

of heat transfer between the inlet and outlet of high pressure refrigerant. 
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                                                      (2.26) 

   
              

  
                                                                   (2.27) 

The heat transfer between low and high pressure refrigerant is calculated using thermal 

conductivity as expressed in Eq. (2.28). 

                       (2.28) 

The amount of refrigerant in reversing valve is determined using Eq. (2.29). 

                            (2.29) 

 

Fig. 2.7 Reversing expansion valve model[55] 

2.3 Simulation validation 

Validation of simulation results is required to ensure that the mathematical model used for 

simulation could well represent the actual system behavior including response time, control and 

thermodynamics phenomena. Simulation results of numerical model have been validated with 

reference to experimental data[69] collected in intermittent, steady and unsteady operating conditions. 

When performing the numerical simulations, the dimensions of system components’ geometry and 

the operating scenario are set as precisely as possible as those encountered in the actual 

experimental facility. The representative validation results are presented in Fig. 2.8. Several 

parameters including input power, compressor power, cooling capacity, COP, compressor pressure 

at suction and discharge, and outlet temperature at indoor and outdoor unit show good agreement 

between simulation and experimental data with relative error of 10%. The validation results suggest 

Ref. inlet(HP)

Ref. outlet
(HP)

Ref. outlet
(LP)

Ref. Inlet
(LP)

HPV
LPV
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that the simulator is reliable enough to demonstrate the system performance either in steady and 

unsteady condition, but requires special calibration care of the control method during intermittent 

operation. 

 

Fig. 2.8 (a) simulation input (b) validation result[69] (line and markers show simulation and 

experimental data, respectively) 

2.4 Controller design 

The controller is designed to operate the system in a similar manner to the actual machine 

and generate reliable simulation results. A proportional integral (PI) controller is developed to 

control indoor temperature and superheat by regulating compressor speed and valve opening, 

respectively. The block diagram of PI controller can be seen in Fig. 2.9. The controller calculates 

the error as the difference between a set point target and a system output. The controllable 

parameters are adjusted to minimize the error expressed in Eq. (2.30). The optimum signal input is 

calculated according to the gain values (     ) as written in Eq. (2.31). 

                   (2.30) 

              ∫     
 

 
        (2.31) 
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Fig. 2.9 Block diagram of PI controller 

The procedure for the tuning of the PI control is described as follows: 

2.4.1 Step response test 

The development of PI controller begins with the step response test to characterize the 

system response. As depicted in Fig. 2.10(a), the input unit      is introduced in two different 

values. Subsequently, the response of plant indicated by      is analyzed since the step change 

starts until once it approaches the steady state value    (see Fig. 2.10(b)). This output response 

represents the system characteristics that should be considered while designing the controller.  

 

Fig. 2.10 (a) Unit step response and (b) S-shaped response curve 

PI

PI
=

Conditioned 
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AC System
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The S-shaped curve shown in Fig. 2.10(b) highlights two important constant parameters of 

the system response characteristics, namely delay time    and time constant  . These two 

parameters are determined by the intersection between a tangent line at inflection point of S-shaped 

curve to the constant value line (      ) and to the horizontal line of steady state response 

(      ), respectively. All these parameters are used to tune the gain values of PI controller. 

There are two PI controllers designed for compressor and expansion valve. The step 

response test for compressor and expansion valve is conducted individually. When the step response 

test for compressor is performed, the other parameters are set constant. Only compressor speed 

signals are changed. This also applies for the step response test of expansion valve. The signal of 

expansion valve opening is changed while other parameters are kept constant. 

2.4.2 Gain tuning 

The gain values of PI controller are tuned by following Ziegler-Nichols rules[70]. The gain 

values for Kp and Ki are calculated using the delay time and time constant parameters determined in 

step response test presented above. The equation of Kp and Ki are written in Eqs. (2.32 and 2.33). 

      
   

  
      (2.32) 

               (2.33) 

2.4.3 Control performance 

The performance of designed PI control is evaluated by analyzing the system response 

while controlling the indoor temperature and superheat. The controller is tested by introducing a 

sudden step change of cooling load. Initially, the indoor temperature and superheat is controlled at 

27 °C and 5 °C, respectively, at nominal capacity (full load) until reaching steady state condition. 

Then the cooling load is suddenly changed to 90% of the nominal capacity. Based on the results 

presented in Fig. 2.11, it can be observed that the controller can precisely maintain the desired 

indoor temperature and superheat. The corresponding control performance test shows the overshoot 

of cooling capacity, indoor temperature, and superheat are 20% of step change, 0.17 °C, and 1 °C. 

When the controller works properly, the cooling capacity reaches the proposed load with keeping 

the indoor temperature as the set point. The cooling capacity response presents a rise time (time 

spent to reach 90% of the step to the set point) of 81s and settling time (±2% set point) of 493s to 

reach the cooling load.  
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Fig. 2.11 Performance of PI control under load change (a) Cooling capacity (b) Indoor temperature 

(c) Superheat (   : 27 °C,     : 35 °C;      : 100 to 90%) 

 

Fig. 2.12 Performance of PI control under indoor temperature change (a) Outdoor temperature (b) 

Superheat (c) Indoor temperature (   : 27 to 25 °C,     : 35 °C;      : 50%) 
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Moreover, the control ability is also tested in response to variations of indoor and outdoor 

temperature with 50% of the maximum capacity. As presented in Figs. 2.12 and 2.13 the results 

demonstrate that the indoor temperature and superheat can be controlled accurately with acceptable 

overshoot and settling time. The satisfying control performance on several testing conditions 

indicates that the controller could successfully handle the disturbances (different load, indoor and 

outdoor temperature conditions). Hence such controller calibration method is applied for the 

characterization of different systems simulated in this study, and for the intelligent prediction of AC 

system performance presented as follows.   

 

 

Fig. 2.13 Performance of PI control under indoor temperature change (a) Outdoor temperature (b) 

Superheat (c) Indoor temperature (   : 27 °C,     : 35 to 36 °C;      : 50%)  
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3. Application of artificial neural network to air conditioning system 

3.1 ANN theory 

Recently everyone perceives the beginning of the overwhelming artificial intelligence (AI) 

era. There are more and more ―intelligent‖ services, which make use of such technology and have 

been introduced in many application cases. In the present study, the effective application of 

artificial neural network (ANN) for an efficient building energy management is proposed.  

In short, machine learning can be defined as a part of AI and a modeling technique that 

involves the development of interrelations between input and output data without requiring the 

rigorous application of theoretical principles and empirical correlations, while ANN is a kind of 

machine learning. This approach has been widely applied to solve the engineering problems in 

various fields[71-73].  

 

Fig. 3.1 Schematic diagram of machine learning model 

 

The process for developing a model by machine learning relies on a set of data to be used 

for the training procedure, which outlines the interrelations between input and output quantities as 

illustrated in Fig. 3.1. The vertical flow describes the learning process where the training data are 

referred for calibrating the model. The horizontal flow illustrates the application of the model. The 

model can be reliable when its implementation yields an accurate estimation of the testing data. 

Therefore, an effective application of the ANN model requires that the data used for the training to 

comprehensively cover the characteristics of the field occurrence of the actual phenomenon or 

system operation. The capability of ANN model in data approximation, without requiring 

complicated mathematical equations, opens up to prediction possibilities in circumstances where 

there is a lack of theoretical representations due to the over-complexity of the phenomena 

interrelations. This represents a critical advantage especially for the application to the engineering 
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field, where a certain system behavior can be characterized without requiring many detailed input 

parameters which would be necessary for the solution of the mathematical formulation of the model 

based on physical principles and formulas. 

Basically, the ANN technique is inspired by the human brain mechanism[74]. In the same 

way as the brain is composed of the large number of connected neurons, the ANN is structured 

around the connections of numerous nodes (neurons). The main role of such nodes is to define the 

relationship between input and output quantities using mathematical functions. The ANN technique 

offers an incredible variety of configurations and almost infinite adaptability to physical and 

technical interrelations. A multi-layer perceptron (MLP) model is one of the most popular structures 

which has been successfully applied for prediction purposes[75]. This structure is mainly composed 

of an input layer, hidden layers and an output layer, as demonstrated in Fig. 3.2. The number of 

hidden layers can be flexibly chosen (one or more). Moreover, the number of nodes in each layer 

can be arbitrarily set while taking account for the number of input-output variables and the 

complexity of the network structure.  

 

Fig. 3.2 General multi-layer perceptron ANN configuration 

 

A typical MLP structure features connections between every node in a layer and the nodes 

of the next layer. The mathematical function that builds the relationship between the nodes is 

described below. 

In a single-node form the output of a simple ANN structure with one input (Fig. 3.3) can be 

calculated as: 

           (3.1) 

              (3.2) 

Input layer Hidden layer Output layer



 

36 

  

where p and a represent the input and output quantities of the ANN, respectively. The weight w and 

bias b are adjustable scalar parameters that can be optimized during the training process to obtain 

the ANN output as the target values. The ANN output is affected by the selected transfer function f 

which can be a linear or nonlinear function of n.  

 

Fig. 3.3 Single input and single neuron 

Furthermore the ANN model may have more than one input connected to a neuron. The 

mathematical representation of ANN structure with k inputs and one neuron is demonstrated in Fig. 

3.4. In order to obtain the network output, every input   ,    ,…,     are multiplied by the 

corresponding weight coefficients   ,   ,….,    incorporated inside the matrix [w]. 

 

Fig. 3.4 Multi-input and single neuron 

The notation n in Fig. 3.4 is determined by the following equation: 

                                  (3.3) 

In matrix form it can be expressed as 

             (3.4) 

Then the network output after applying transfer function can be written as 

                (3.5) 

Inputs General Neuron

n a

b

p

Inputs Multi Input Neuron

n a

b
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Mathematical functions written in Eqs. (3.4 – 3.5) also apply to the ANN structure with 

multi input and multi neurons. For several complex cases there can be more neurons in a hidden 

layer to provide a sufficient number of weight coefficients for representing the target system or 

phenomenon. A single-layer network of s neurons and k inputs is shown in Fig. 3.5. In this structure, 

each neuron is equipped with a bias b, a summer, a transfer function f, and the output vector a. 

Every input p is connected to each neuron via the weight matrix [w].  

 

Fig. 3.5 Multi input and multi neuron 

The matrix W developed in a multi input and multi neurons structure is determined by Eq. 

(3.6). According to the index in element of matrix weight, the row index indicates the destination 

neuron associated with that weight. While the column index represents the source of the input for 

corresponding weight. For instance the index in      represents the weight connection from the 

second node source to the third node neuron. 

    [

             

             

    
             

]     (3.6) 

It should be noted that the mathematical representation described above can also be used for 

the additional nodes in the next layer. For general representation, every neuron in hidden layer has a 

sigma, a bias, and a transfer function. Then every arrow in schematic ANN structures represents a 

connection associated to a weight coefficient.   

Inputs Multi Input Neuron
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Accordingly, the key parameters for the data approximation of performed for developing an 

ANN model include weights w, bias b, and transfer function. During the training process the weight 

and bias parameters are optimized based on the supervised learning rule using Levenberg-marquardt 

algorithm[76], so that the ANN output meets the target value of the output. A transfer function is 

particularly selected to satisfy the neurons while solving the problem of data fitting. In this work, 

Tangen-sigmoid transfer function Eq. (3.7) is applied for the connection of the input layer to the 

hidden layers, and between hidden layer to hidden layer. While pure linear transfers function 

written in Eq. (3.8) is applied for the connection between hidden layer and output layer. The 

notation n represents the node output that can be determined based on input, weight and bias.  

  
      

           (3.7) 

         (3.8) 

Overfitting may frequently occur when the network fits the training data too rigidly and 

provides poor prediction accuracy when applied to new data. This phenomenon is directly related to 

the network complexity, which is defined by the overall magnitude of the weight coefficients. The 

network complexity is also highly correlated with the generalization capability of the ANN model; a 

lower network complexity produces a better generalization. The larger the network size, the more 

complicated the set of calibrated mathematical functions, and thus the network has higher 

complexity and a poor generalization capability[17]. The Bayesian regularization algorithm is 

considered as an ideal approach for balancing the learning characteristics of ANN to the network 

complexity[77]. The main principle of the Bayesian regularization method is the modification of the 

sum squared error performance index, performed by adding the sum of the squared weight that 

penalizes the network complexity as written in Eq. (3.9). The importance of adding the sum squared 

weight is to restrict the weight coefficient to a small number, and accordingly, the network function 

can generate a smooth interpolation through the training data and overfitting can be avoided.  

The regularization term can be expressed as follows: 

                     (3.9) 

Where      is the objective function to be minimized during the training process;    is the 

sum of the squared error of the actual and predicted values;    is the sum squared error of the 

network weight;   and    are the regularization parameters. The network complexity can be 

reduced by adjusting the ratio of    and   . In a Bayesian network, the network weights are 

assumed to be random variables. The density function of the weights and ratio of    and    are then 

determined using Bayesian’s theorem, which is described by the following equation: 

               
                     

            
        (3.10) 
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where Z is the vector containing the weight and bias in the network; N represents the datasets for 

training; and M is the designed network architecture. The details regarding the Bayesian 

regularization used for improving the generalization is further explained in literature[76].  

3.1.1 Static and dynamic ANN approach 

The configuration of ANN structures can be classified into static and dynamic models. In 

previous section, the mathematical representation of an ANN static model has been presented. The 

ANN output was calculated directly using the input in feed forward neurons connections. For the 

case of a dynamic ANN model, the output depends not only on the current time input (as in the 

static one), but also on the inputs from previous steps. Under these circumstances, the network 

adapts the sequence of time-varying training data pattern and can be trained to capture dynamic 

system characteristics[78]. The dynamic ANN model can be developed by including the additional 

information from the previous time steps to input layer. The difference between static and dynamic 

ANN structure is schematically demonstrated in Fig. 3.6.  

   

 

Fig. 3.6 Structure of ANN (a) static (b) dynamic 

3.1.2 Training procedure 

ANN modeling for input output data prediction is developed using the ANN Toolbox 

provided in MATLAB. The flow diagram for the training and testing procedures of ANN model is 

shown in Fig. 3.7. Firstly, the input and output data are collected from simulations and experiments. 

The data are divided in two groups intended for training and testing to make sure that the testing 

data are independent from the ones used in training phase. The accuracy of the ANN model is 

measured according to the error on the testing data. Although significant in the model calibration, it 
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is not generally recommended to consider the accuracy on the training data approximation as the 

actual performance of the ANN model. Because the data used during the actual application of the 

ANN model are different with those used in the training, an extremely low deviation in the training 

phase may hide overfitting issues yielding large deviations in the testing and application phases. 

 

 

 

Fig. 3.7 Procedure of ANN training 

The ANN structure is developed with considering the optimization of the number of input 

output nodes, hidden layers, and neurons. The variety of combinations of these parameters ensures 

the optimal adaptability of the network to the complexity of the problem related to the input output 

data characteristics. The training of ANN model is established by several trials and error attempts 

based on the combinations of the above mentioned parameters over a comprehensive range to avoid 

the local minima. In this study, during the training process, the number of neurons is varied from 1 

to 15 with one and two hidden layers. The network with the highest accuracy on the testing data is 

selected as the optimum. There is no standard procedure reported in literature to determine such 

optimal ANN structure and the result intrinsically depends on the specific problem complexity and 
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data characteristics. It is obvious that the increased of number of neuron and hidden layers may 

increase the training accuracy due to the larger number of weight coefficients, but again, an overly-

complex ANN structure may lead overfitting and generate poor accuracy on testing results.   

The accuracy of ANN prediction is measured by relative average error (    ) and root 

means square error (RMSE). The notation    shows the number of data. While  ̅  and  ̅  indicates 

the predicted and target values. 

     √
∑ (     )

   
   

  
         (3.11) 

     
 ̅    ̅ 

 ̅ 
          (3.12) 

 ̅  
 

  
∫   

  

 
         (3.13) 

 

3.2 Data sets generation for ANN training  

The configuration of AC systems in actual fields may vary depending on the application. 

The split[79] and VRF[80] system types are the most popular configurations for small to medium size 

buildings. The systems with VRF configurations can be considered as a multi split AC systems. It 

connects one outdoor unit to multi-indoor unit, while a split-type system connects one outdoor unit 

to one indoor unit. One of the advantages of VRF systems is that they can serve multiple rooms 

delivering different individual capacity and indoor set-temperature conditions.  

The numerical simulation of AC systems is based on the model of the simulation platform 

described in Chapter 2 and has been carried out to characterize the system performance in various 

operating conditions which reflect those of actual operating systems. Specifically, three different 

systems, with different nominal capacities and configurations, including the split type systems (2.5 

kW and 7.1 kW) manufactured by Daikin, and large VRF system (50 kW) manufactured by Sanyo, 

have been modeled. The schematic diagram of the split-type and VRF type system configurations 

are illustrated in Figs. 3.8 and 3.9, respectively. For split-type models, the systems are equipped 

with a virtual room and do not feature a sub-cooler. Meanwhile, the large VRF system is equipped 

with an additional heat exchanger to introduce and control the sub-cooling degree of the refrigerant 

prior entering the expansion device.   
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Fig. 3.8 Schematic diagram of split-type air conditioning system 

 

 

Fig. 3.9 Schematic diagram of VRF air conditioning system with sub cooler 

Providing a reliable training data set is an important task to obtain precise and generalizable 

ANN models. The data must be generated for representing the actual system behavior during real 
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operation by considering cooling load, outdoor temperature, and indoor temperature set point 

variations according to the scenarios described in Fig. 3.10. In a real operative condition, outdoor 

and indoor temperature set point may simultaneously change due to weather and occupant comfort 

standard. While the cooling load fluctuation is affected by the internal and external heat gain, which 

is correlated to occupant behavior and weather condition. To cover the variability of real system 

operation, during the implementation of this method, the scenario depicted in Fig. 3.10 (d), where 

cooling load, indoor and outdoor temperature are not constant, should also be included in the 

training data set generation. The other scenarios depicted in Fig. 3.10(a), (b), (c) can be used for 

investigating the effect of each individual parameter.  

In present study, the training data scenario shown in Fig. 3(a) is selected to characterize the 

system performances on wide range of part load operating conditions. The system is simulated by 

varying cooling load with step variations of 10% amplitude, from 30% to 100% while fixing 

outdoor and indoor temperature as constant. 

 

 

Fig. 3.10 Scenarios of training data generation 
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Fig. 3.11 (a) Input output of simulation; (b) Actuator signals; (c) Controlled parameters 
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The cooling load is changed every 15 minutes to explore realistic circumstances while 

obtaining balanced combinations of steady and unsteady characteristics. The details of the operation 

scenario and simulation results are shown in Fig. 3.11. The highest overshoots of superheat and 

indoor temperature recorded in the training scenario are 4 °C and 0.17 °C, respectively. As in actual 

machines, the controller exhibits poor accuracy (especially in achieving target room temperature 

and superheat) when the load is lower than 35% (Fig. 3.11(c)), because the PI controller is designed 

for meeting the maximum cooling load. This exemplifies the fact that the system cannot work 

effectively if operated far away from the design point. Further expanding the explored operating 

range would require an accurate modeling of intermittent operation at critically low cooling loads, 

but this circumstance is presently overlooked. This corresponding data pattern generated from 

numerical simulations is considered for the training of the ANN model. 

 

3.3 Selection of input parameters 

There are numerous parameters that can be used as inputs to predict the system 

performance, such as air temperatures, refrigerant temperatures, and controllable parameters. As 

previously mentioned, several practical factors affect the engineering choice of the inputs required 

for prediction, which need to be ultimately measured on operating systems for field predictions. 

Among such factors, non-intrusivity, accessibility, cost, along with the scientific targets of 

providing accurate and generalizable predictions. As vapor compression AC systems rely on the 

same fundamental technology, the hypothesis of this study is that parameters able to estimate the 

refrigerant thermodynamic cycle would be representative of the whole installed units. The 

illustration of some representative input parameters for the prediction of vapor compression systems 

performance is presented in Fig. 3.12.  

Controllable parameters, such as compressor speed and valve opening are highly correlated 

with the system performance and the dynamic response to external disturbances. The fluctuation of 

those parameters is tuned to directly affect the system performance by adjusting the refrigerant 

cycle and the mass flow rate while controlling the indoor temperature and output cooling capacity. 

It can be said that the compressor performance map and the expansion valve are the actuators of the 

―brain‖ of the systems, namely the control system which run the system operation. Unfortunately, 

measuring the rotational speed of the compressor or refrigerant flow rate and the opening of the 

expansion valve could be challenging. In practice some system configurations place the expansion 

valve in the indoor unit of the system[80]. Additionally, the strictly technological essence of these 

quantities is not likely to be scalable to different systems having different sizes and configurations. 

On the other hand, air temperatures are easier to access than controllable parameters, although 

placing sensors in the indoor space of the end-user could represent a practical challenge. 

Nonetheless, the high special variability of these parameters and measurement uncertainty require 

complex and possibly intrusive procedures to obtain precise measurement data. Alternatively, 

refrigerant temperatures are accessible from the outdoor unit and can be measured non-intrusively 
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via the placement of inexpensive thermocouples on the outer surface of the refrigerant connecting 

pipes at strategical locations for capturing the underlying refrigerant operation cycle of a plausibly 

major number of installed systems in operation.  

 

Fig. 3.12 Representation of input parameters on air conditioning systems schematic diagram 

(Colored markers show different input groups) 

 

In order to explore the suitability of the input parameters for designing an effective 

intelligent prediction method for broad-spectrum application to AC systems performance prediction 

using four input groups based on the above discussed categories of parameters (Table 3.1) are 

investigated and discussed with reference to the above mentioned criteria along with the prediction 

accuracy. 

 The first group includes air temperatures at inlet and outlet of the evaporator and the 

condenser, which benefit from the response sensitivity to the system performance. 

 The second group includes the compressor speed and the expansion valve opening, which 

are highly correlated to the part load operation conditions. 
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 The third group includes the refrigerant temperatures at inlet and outlet of evaporator and 

condenser (or sub-cooler, if installed) which represent the refrigerant cycle of the air 

conditioner. 

 The fourth group consists of the option provided by the combination of all these 

parameters.  

Table 3.1 Input groups for performance prediction 

Group Input parameters Classification 

1 Air temperature                             High response sensitivity 

2 
Controllable 

parameters 
     

Representative of external 

disturbance 

3 
Refrigerant 

temperatures 
                            

Representative of operative 

cycles 

4 
All inputs (Group 1, 

Group 2, Group 3) 
  - 

 

The applicability of the selected four input groups including air temperatures, controllable 

parameters, and refrigerant temperatures and representing different categories of the influent 

parameters for system performance prediction, is investigated. As a preliminary scenario, the 

numerical models of two split type AC systems, the first featuring 7.1 kW at the rated condition and 

the second with 2.5 kW rated capacities are used to characterize the system behavior in various 

operating condition as listed in Table 3.2.  

The investigation is conducted by firstly training the ANN model within a wide range of 

representative data and consequently testing the developed ANN model in different possible case: 

on data simulated within the range of training scenarios, on data outside the range of training 

scenarios, and on data obtained from the simulation of a different system with a different nominal 

capacity. It should be noted that the data used for testing are not introduced during training phase. 
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Table 3.2 Training and testing data scenario for input selection 

Nominal 

capacity 

(kW) 

Cooling 

load (%) 
        (℃)          (℃) Training Testing   

7.1 30- 100  Constant Constant 30 and 35   
● ● 

Inside 

range 

  
23, 25,  and 27 Variable 30- 35 

7.1 30- 100  Constant 27 Constant 40 
 

● 
Outside 

range 

2.5 30- 100  Constant 27 Constant 35   ● 
Different 

system 

 

Figure 3.13 shows the prediction result of different input groups when testing on data inside 

and outside of the range of external conditions used for the training of the ANN model. The 

prediction accuracy on the testing data can be interpreted by observing the similarity between the 

training and testing data in terms of the data range and dynamic characteristics as presented in Fig. 

3.14. In general, a commonly accepted conclusion from previous research on ANN modeling is that 

it is possible to tune the ANN model so that the predicted data will exhibit good agreement with the 

corresponding real values when the testing data are within the range of the ones used in the training. 

Otherwise, unless effective pre-processing or post- processing techniques are implemented, ANN 

will demonstrate a poor accuracy when applied to data characteristics not encountered during the 

training process.  

Accordingly, Fig. 3.13 shows that ANN model has good accuracy for all input groups when 

applied on the testing data that are inside range of training data. This implies that the trained ANN 

model has successfully recognized the data as the data behavior of the testing data set is similar to 

the one used in training, and that the selected ANN structure does not experience overfitting issues. 

Meanwhile, the accuracy shown by the testing results outside the training data range (specifically, 

when the system operates under the influence of an outdoor temperature which exceeds the 

maximum value encountered in the set of training data) indicates that only controllable parameters 

and all inputs demonstrate acceptable deviations. This demonstrates that the modulation of 

compressor speed and valve opening are strongly correlated to the cooling capacity fluctuations and 

could represent a strong choice for reliable predictions. As presented in Fig. 3.14 (a) and (b), there 

is no significant difference in controllable parameters behavior between the training and testing data. 

The higher outdoor temperature (outside the training range) at 40 °C does not significantly affect 

the data characteristics of these parameters in relation to corresponding output. Similarly, as the 

prediction using all inputs include valve opening and compressor rotational speed, the same 

conclusion applies to the prediction accuracy of this group outside the training range.  
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Fig. 3.13 Applicability of different input groups for performance prediction inside and 

outside the range of data 

Conversely, the higher error encountered when air temperature inputs are tested outside the 

data range is due to the gap of air inlet and outlet temperatures at condenser between training and 

testing data. As the outdoor unit is exposed to the outdoor environment the air inlet temperature of 

condenser is directly correlated to the outdoor temperature. This quantity can be considered as an 

external parameter that affects the system performance, whereas its variation is not related to the 

modulation of cooling capacity. Accordingly, the prediction based on input of air temperatures does 

not recognize sufficient input information for capturing the cooling capacity modulation when 

applied outside the range of the training data. On the other hand, the air inlet and outlet temperature 

at the evaporator result in similar values since the PI controller maintains the target indoor 

temperature.  

Similar observations can be extracted from the testing results based on refrigerant 

temperature inputs. It is observed that both the saturation temperature and outlet temperature from 

the condenser increase as the outdoor temperature increases. The discrepancy of inlet and outlet 

refrigerant temperatures at the condenser leads the low prediction accuracy when applied outside 

range of training data. Nonetheless, unlike the results obtained for air temperature inputs, refrigerant 

temperature inputs are more strongly related to the cooling capacity fluctuations at the evaporator. 

Although stronger correlations result into higher deviations when the range of training data is 

insufficient to cover the conditions encountered in the testing data, this suggests that refrigerant 

temperatures exhibit higher sensitivity to the system response to external and internal disturbances, 

which is necessary for capturing the complexity of the underlying physical behavior of the system 

and strongly associating the system performance to the operating conditions. 
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Fig. 3.14 Data characteristics (a) Training; (b) Testing (outside range) 

The observations reached at this phase, as in previous literature, are limited to the 

application of the ANN modeling technique to the single system characterized during the training 

phase. The applicability of the above conceived input groups for performance prediction is hereby 

investigated on systems with different sizes (and nominal capacities). The prediction method is 

based on a scaling process including pre-processing of the input and post-processing of the output 

data.  
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The pre-processing data normalization technique is applied before the training process to 

obtain more manageable data and simplify the convergence to the proper weight and bias 

coefficients during the training process. Norgaard et al. (2001)[81] previously suggested this 

technique when input and output parameters have different scales, to avoid the numerical 

dominance coming from the largest magnitude inputs. Data normalization using the min-max 

rule[82] expressed in Eq. (3.14) is used to convert all input and output data into the range [-1, 1]. 

            
           

           
             (3.14) 

where,   is the real value, whereas its minimum and maximum values are denoted by      and 

    , respectively. The notation   represents the normalized data ranging from      to     . When 

normalization is applied to training data, the minimum and maximum cooling capacities are 

obtained from 0 and 100% of rated cooling capacity, whereas the minimum and maximum 

temperatures refer to the range of the training data.  

 

Fig. 3.15 Air conditioning cycle of different system (a) 7.1 kW and (b) 2.5 kW   

(Operating condition:    : 27 °C,     : 35 °C) 

The consequent post processing of the output data is explored for overcoming one of the 

main challenges of this field, which limits the validity of ANN predictions to the specific system 

used in the training process. The technique is based on the observation that the multitude of 

different air conditioners, although featuring different manufacturers, components, sizes and 

configurations, all rely on the same underlying thermal machine technology based on vapor 

compression cycles. Specifically, it is hypothesized that the similarities between the refrigerant 

cycle of all these systems during their operation (rated or part-load, steady or unsteady) are 

somehow scalable as presented in Fig. 3.15. Therefore, on the basis of this scaling method the 

system performance prediction based on ANN models could be extended to different systems.  

(a) (b)
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From this standpoint, the adoption of refrigerant-side properties extracted at strategical 

locations as input parameters could provide a generalizable representation, which could be 

expanded to systems other than the one during training phase. That is, while operating between 

identical heat sources and applications, similar results of the response characteristics and the trend 

of refrigerant temperatures in two systems with different locations, compressor sizes, heat 

exchangers and other components, can be obtained.  

Figure 3.16 shows the accuracy of the ANN models trained with different input groups on 

the testing data generated from a different system. It is confirmed that the prediction accuracy 

obtained for refrigerant temperatures as ANN inputs outperformed the ones predicted by the other 

input groups when applied on a different system. The details of predicted results comparison by 

different input groups is shown in Fig. 3.17. 

 

Fig. 3.16 Applicability of different input groups for performance prediction on  

different system testing 

According to data characteristics illustrated in Fig. 3.18, the refrigerant temperatures of the 

two different systems mostly have similar characteristics when operated at corresponding 

conditions in terms of indoor temperature, outdoor temperature, and relative cooling load. However, 

the refrigerant temperature at the outlet of compressor (condenser inlet) exhibits a considerable 

deviation between the two systems. This could be related to different efficiencies of compressors 

with different sizes. However, by normalizing the whole input temperatures in the range of [-1, 1], 

the dominance of the absolute magnitude of this temperature is reduced. Normalization technique 

distributes equally the importance of each input.  

The highest error is recorded when the ANN model is trained by using air temperatures as 

input parameters. This is due to the limited input information for capturing the dynamics behavior 

of the cooling capacity and there are two parameters showing the gap between training and testing 

data. The significant discrepancy on air temperature inputs are indicated by the outlet temperatures 

at evaporator and condenser (      ,       ). The parameters changes are related to the amount of 

cooling capacity and heat exchanger efficiency. In the other hand the refrigerant temperatures have 

more variables that can recognize the cooling capacity modulation (      ,              ). Moreover 
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the difference between training and testing data on refrigerant temperature is shown by the 

temperature at condenser inlet only (      ). The higher accuracy of ANN model trained with 

controllable parameters compared to the one trained with air temperatures is caused by the strong 

similarity of compressor speed between training and testing data while delivering the various 

cooling capacity.  

 

Fig. 3.17 Prediction results on different system using various input parameters 

 

Figure 3.17 shows the comparison of the time distribution of the ANN prediction results 

with the inputs of controllable parameters, air temperatures and refrigerant temperatures. The 

enlarged figure clearly shows that the predicted cooling capacity by refrigerant temperature 

precisely estimates the corresponding data. Even though the controllable parameters are highly 

correlated with the cooling capacity modulations (Fig. 3.18), response and operating conditions, 

they are not effectively scalable and strongly related to the specific design of the original system. 

Accordingly, the related prediction results cannot be expanded to other systems due to the different 

component characteristics, especially the compressor performance map and the expansion valve 

design. Therefore, the range of compressor rotational speed and valve opening from one system to 

the others may be substantially different depending on the component’s manufacturer and not 

related to the fundamental phenomena occurring within the system.  
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Fig. 3.18 Data characteristics (a) Training; (b) Testing (different system) 

The observations extracted from the discussion of the results presented above, indicate that 

the refrigerant temperatures at the inlet and outlet of evaporator and condenser are selected as the 

best option for an intelligent prediction method of AC systems on the basis of the following criteria: 

 Inexpensive to measure (can be measured using thermocouples installed on the outer 

surfaces of connecting pipes or heat exchangers). 
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 Non-intrusive (can be accessed from the outdoor unit). 

 Relatively low uncertainty (the placement of the sensor on the refrigerant tube provides an 

estimation of the refrigerant temperature at that state of the cycle). 

 Represent air-conditioning cycle (which is the fundamental basis of this technology, 

independently from the specific component design or manufacturers). 

 Scalable for different systems with different rated capacity and manufacturer. 

 Sensitive to cooling capacity and external disturbances (the cycle changes are related to the 

variation of cooling load, indoor temperature, and outdoor temperature). 

 

3.4 Analysis of data characteristics  

3.4.1 Steady and unsteady operation 

During the operation the system encounters both steady and steady operating conditions due 

to the variation of cooling load, outdoor and indoor air temperature over the time. The effect of 

combination of these different data characteristics on the ANN prediction is investigated for 

identifying the proper training scenarios to be applied to the ANN model. As illustrated in Fig. 3.19, 

the steady operation is defined by small amplitude modulations of the data within the range of ± 2% 

cooling load, data distributions which are not satisfying the previous criterion are considered as part 

of unsteady operation. A reference representation of steady, unsteady, and continuous data 

characteristics is demonstrated in Fig. 3.20.  

 

Fig. 3.19 Data division for steady and unsteady operation 
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A balanced set of training data featuring both steady and unsteady characteristics is 

necessary for a comprehensive representation of the performance of these systems. The inclusion of 

an excessive amount of steady state data could lead to redundant information in some specific 

operation conditions, overfitting in these conditions, and poor representation of the dynamic 

response of the system. On the other hand, the use of an excessive portion of data captured during 

unsteady state operation would be likely to yield inaccurate predictions of the steady state operation. 

 

Fig. 3.20 Steady, unsteady, and continuous data 

 

Fig. 3.21 Comparison of steady and unsteady data for ANN training 
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The investigation on both data characteristic is conducted using 30 s sampling time. Two 

ANN models with the same structure are trained individually with steady and unsteady training data 

characteristic. The prediction results shown in Fig. 3.21 indicate that the ANN model trained using 

unsteady data has higher accuracy than the one trained with steady data. Since the time constant of 

cooling capacity is not too long, the system operation approaches quasi-static behavior. Unsteady 

operation represents high data variation, while steady data demonstrates only few conditions and 

causes high degree of data redundancy. Therefore unsteady data could capture more cooling 

capacity variation. This comparison reveals that the data variability is very crucial for training to 

achieve an accurate prediction in wide range of cooling capacity.  

3.4.2 Sampling time 

The sampling time of prediction data should be selected appropriately for capturing any 

influent variability of input and output parameters within the limits of experimental tests and 

simulation capability, while avoiding variations related to noise signals or an excessive number of 

similar data carrying very little additional information. It is important to note that an excessively 

short sampling time gives data redundancy in steady-state conditions. Contrarily, an excessively 

long sampling time will skip important information which is representative of the unsteady 

operation. Accordingly, the sampling time is selected by considering the time constant of the system. 

As the data sampling is applied on the same time span, the variation of sampling time affects the 

number of data point and variability. The smaller the sampling time is the larger the number of data 

in a given time frames, and vice versa. The variability index (   ) is calculated to measure data 

variability for a given sampling time, as expressed in Eq. (3.15).  

   
∑                 

  
   

     
         (3.15) 

The sampling time selection is performed by considering time constant   of cooling 

capacity response. Eight ANN models with different sampling time varying between      to     

are used for training, and then the pre-trained ANN models are applied to predict the continuous 

data. The results are analyzed for selecting the sampling time to be applied in the following 

development of the ANN model and performance prediction method. 

Figure 3.22 shows the results of the sampling time investigation. According to Fig. 3.22(a), 

it can be observed that the highest accuracy is obtained by the training data with the smallest 

sampling time. Furthermore the error increases as number of data used for training is decreased. 

This is because the larger number of data, as a consequence of a smaller sampling time, carries 

more defined information. Even though the data variability at 0.1  is very small, the large number 

of data represents almost all conditions. The effect of data variability is demonstrated in Fig. 3.22(b), 

where it is highlighted that the highest variability of the data with sampling time of 5  and     lead 

to a more accurate prediction than the data with sampling time of 2     and   . As shown in Fig. 
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3.22(b), a significant change in data variability exists in the range of sampling time between 2  to 

10 , whereas the number of data is only reduced slightly. In consideration of the accuracy and 

complexity in data gathering, sampling time in the range of 0.1  to   are considered for capturing 

both steady and unsteady performance. On the other hand, special care should be taken in balancing 

the permanence of the system in a steady state condition when generating training data, as data 

redundancy at steady state could lead overfitting and the ANN model might fail in representing 

unsteady conditions.  

 

Fig. 3.22 Relationship between sampling time, number of data, and variability  
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4. Experimental data generation 

Up to this chapter, only numerical results have been used as data for training and testing of 

the ANN model. In this section the experimental facility for actual system performance 

characterization is presented. The data collected with the experimental equipment hereby described 

represent a reliable target for demonstrating the prediction ability of the proposed ANN model. 

Additionally, the analysis of such experimental data provides information regarding the 

discrepancies between experiment and simulations. Therefore, guiding possible developments of the 

simulator as well as constituting a possible alternative set for the ANN training. The measuring 

procedure for collecting input output data for prediction are described.  

4.1  Experimental apparatus 

The schematic diagram of experimental facility is demonstrated in Fig. 4.1. The 

experimental facility is used to characterize the performance of two typical variable refrigerant flow 

(VRF) vapor compression air conditioning systems. These systems are commercial products for 

multi room air conditioning manufactured by Daikin. It features four evaporators and a single 

condenser. The first one is a new system with nominal cooling capacity of 33.5 kW, the other one is 

a system with nominal cooling capacity of 28 kW that has been operated in an existing building for 

6 years. The experimental facility serves two conditions-controlled room chambers intended for 

replacing indoor and outdoor spaces and the related disturbances. The system components are 

divided in two main parts e.g. indoor unit and outdoor unit. In this specific system configuration, 

the indoor unit mainly consists of evaporators, expansion valve and evaporator fan. Conversely, the 

condenser, compressor, accumulator and condenser fan are placed in the outdoor unit. In several 

different AC system configurations, the expansion valve may be located in outdoor unit[79]. For 

example, single split AC systems commonly see the placement of the expansion valve in the 

outdoor unit. Every component is then connected by the refrigerant pipes to circulate the working 

fluid in a closed loop system realizing the thermodynamic cycle necessary for delivering the useful 

output effect.  

 

In Fig. 4.1, the blue lines represent the liquid or liquid–vapor mixture refrigerant and the 

red lines are representing the pipes containing vapor refrigerant. The refrigerant is circulating 

continuously through the system inside the connection tube to absorb the heat generated in the 

indoor space via four evaporators, and then release it to the outdoor space via the condenser. As 

depicted in Fig. 4.2, the four evaporators in the indoor space are centralized in one chamber. This is 

to specify that the system is operated as a single split unit in this study, thus neglecting the 

additional operation variability provided by this type of AC system. It should be mentioned that 

there is no air flow between indoor and outdoor spaces, as the air circulation in each space follows a 

closed loop. Therefore, the change in air temperature and humidity in indoor space is only affected 

by the system operation and the condition generator.  
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Fig. 4.1 Layout of experimental apparatus  

The experimental facility is designed to be able to generate variation of cooling load, 

outdoor temperature, and indoor temperature as those encountered during actual operation of 

installed systems. The cooling load is generated by an electric heater and a boiler which are 

installed in the indoor space. The boiler is operated to adjust the amount of latent heat to a certain 

sensible heat ratio (SHF). The outdoor environment is conditioned by a dedicated air conditioner 

featuring a chiller, a heater, and a humidifier to generate the desired outdoor air conditions and 

control their variations in time. The outdoor temperature and humidity can be manipulated in 

various conditions for an actual outdoor environment representation. While the system operation is 

controlled by the package controller, which is already built in the system to respond to a given 

indoor cooling load and achieve the desired indoor temperature    . Accordingly, the system 

performance under a comprehensive range of various working conditions representing the actual 

system operation can be recreated by manipulating the cooling load      , outdoor temperature 
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Fig. 4.2 Photograph of experimental system 

The outdoor unit is fully instrumented with accurate sensors for measuring input parameters 

used for the ANN prediction. The thermocouples are placed on the outer pipe surface of the 

refrigerant tube in the outdoor unit, as illustrated in Fig. 4.3. Other operating quantities, including 

controllable parameters, air-temperatures and pressures, are measured for a complete monitoring 

and representation of the system performance. The actual cooling capacity instantaneously 

delivered by the system, and considered as the output of the ANN prediction, is determined by the 

mass flow rate of air passing through the centralized chamber  ̇ multiplied by the enthalpy 

difference between the inlet and outlet air streams as written in Eq. (4.1). The enthalpy of air (  ) is 

a function of air pressure (P), dry bulb and wet bulb temperatures (       ).  

                              (4.1) 

The experimental procedure, sensor instrumentation and uncertainty evaluation are 

established to meet the Japan Air Conditioning and Refrigeration Testing Laboratory (JATL) 

standard[83]. The calibration of the test equipment was outsourced and certified as ―testing facility 

quasi-certification‖, which qualified an uncertainty of the cooling capacity of ± 3%. Additionally, 

the uncertainties of the directly measured parameters are presented in Table 4.1. 

As represented in Fig. 4.1, the system features a variable speed compressor, expansion 

valve, one condenser, and four evaporators. In accordance with the engineering criteria, factors such 

as the limited access for measurement in operative systems, intrusivity of the required measurement 

procedures, uncertainty, cost of certain parameters, and possibility of generalizable depictions of 

different operative systems are taken into account[40].  

 

Indoor unit Outdoor unit 

Centralized chamber 
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Fig. 4.3 Refrigerant tube measurement by thermocouple 

 

Table 4.1 Sensor uncertainty of measurements 

Parameter Instrument Model Uncertainty 

Wet bulb air 

temperature,     

Sheath resistance 

Thermometer 
CHINO Pt100 NRHS1 class A  ±(0.15 + 0.002|t|) ℃    

Dry bulb air 

temperature,     

Sheath resistance 

Thermometer 
CHINO Pt100 NRHS1 class A  ±(0.15 + 0.002|t|) ℃    

Refrigerant tube 

temperature,   
Thermocouple CHINO C060-T JIS class 2 ±1.0 ℃ 

Air pressure,   Pressure gauge TP-6001-A1-A-C-A ±1.5 Pa 

 

4.2 Experimental scenario 

The performance prediction method presented in chapter 3 relies exclusively on simulation 

data and demonstrated that the ANN model could predict the testing data that are inside the range of 

training data. This suggests the importance of a complete set of training data which appropriately 
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covers the circumstances encountered during actual system operation. Otherwise, the ANN model 

would not recognize the performance cases of the testing data (if not provided in the training phase) 

hence resulting into a poor accuracy when training data are not sufficient. The data collected with 

the experimental equipment hereby described represent a reliable target for demonstrating the 

prediction ability of the proposed ANN model. Additionally, the analysis of such experimental data 

provides information regarding the discrepancies between experiment and simulations. Therefore, 

guiding possible developments of the simulator as well as constituting a possible alternative set for 

the ANN training. 

Table 4.2 Experimental scenarios for input and output data generation (VRF system 33.5 kW) 

Case Load pattern         (℃)          (℃) No. data point 

1 Variable rate load Constant 26  Constant 35 1798 

2 
Step load; Continuous 
decline load 

Constant 24; 26; 28  Constant 35  43250 

3 
Step load; Continuous 
decline load 

Constant 24; 26; 28 Constant 40  37238 

4 East load Constant 26  Constant 35  1091 

5 Continuous decline Constant 24; 26; 28 Constant 35; 40  40482 

6 East load; West load Constant 26  Variable 30- 40  4046 

7 
Step load; Continuous 
decline load 

Constant 26; 28  Constant 30  21950 

8 West load Constant 24; 26; 28 Variable 30- 40  66120 

9 East load Constant 24; 26; 28 Variable 30- 40  23967 

10 South load Constant 24; 26; 28 Variable 30- 40  12232 

11 East load; West load Constant 25; 27 Variable 30- 40  5486 

 

 

To develop a reliable model, the ANN should be trained using the data with high variability 

and wide coverage of operative conditions. A broad scenario of training data could improve the 

reliability and expanding the range of applicability of ANN model. Specifically, in actual 

application the fluctuation of cooling load and outdoor temperatures cannot be avoided. In addition, 

indoor temperature is also frequently changed due to the subjectivity of thermal comfort for each 

occupant. Hence various cooling load patterns together with different indoor and outdoor air 

temperature settings are introduced to generate a broad-spectrum data set of the input and output 
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parameters for training and testing. The experimental data generations are conducted using two 

different machines namely, VRF systems with the nominal capacity of 33.5 and 28 kW. 

The experimental scenarios collected in the system of 33.5 kW are presented in Table 4.2. 

Three constant values of 24, 26, and 28 °C are mainly assigned for the indoor temperature settings. 

Some cases are set as 25 and 27 °C. This variation is intended to include different individual 

sensitivities of the thermal comfort of the occupant and show the effect on AC system performance 

under different indoor set temperature. The outdoor temperature is modulated with constant and 

variable values representing the actual climate conditions. The representative indoor and outdoor 

temperature setting combinations are provided in Fig. 4.4.  

 
 

Fig. 4.4 Representative indoor and outdoor temperature settings   
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Variation of cooling load patterns is depicted in Fig. 4.5. It covers variable rate modulation, 

step variation, continuous decline pattern, and load behavior on the west, east, and south zones. The 

variable rate modulation is applied to demonstrate high variability in the cooling load in 

consequence of the occupant behavior and activity or the operation of other devices such as 

computers, kitchen stoves, and built in refrigerator units. The step variation aims to represent small 

variations of the cooling load and the related adjustment of the cooling capacity as a response of the 

system guided by its integrated control. The continuous decline pattern could represent the 

gradually decreasing cooling load due to continuous reduction of the load coming from solar 

radiation in the afternoon; finally, the west, east, and south zone loads illustrate the cooling load 

behavior related to the window and building orientation. 

 
Fig. 4.5 Main categories of cooling load pattern (a) Variable rate; (b) Step; (c) Continuous decline; 

(d) West zone; (e) East zone; (f) South zone; 

In total there are more than 250,000 data points generated by the system of 33.5 kW in 

various operating conditions. The representative data characteristics covering all six load patterns 

are presented in Figs. 4.6 to 4.11. According to the graphs, the indoor temperatures do not stand in 

the constant value as the desired value. It indicates that the package controller designed on actual 

system is not as good as the one in simulator. However it helps ANN to learn more data variation as 

the experimental data provide more variability in indoor temperature variation.  
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Fig. 4.6 Experimental data (Rated capacity: 33.5 kW; Variable rate load;       constant 35 °C) 

 

Fig. 4.7 Experimental data (Rated capacity: 33.5 kW; Step load;       constant 40 °C) 

 

Fig. 4.8 Experimental data (Rated capacity: 33.5 kW; Con. decline load;       constant 35 °C) 
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Fig. 4.9 Experimental data (Rated capacity: 33.5 kW; West zone load;       variable) 

 

Fig. 4.10 Experimental data (Rated capacity: 33.5 kW; East zone load;       variable) 

 

Fig. 4.11 Experimental data (Rated capacity: 33.5 kW; South zone load;       variable) 
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Furthermore the experimental data with the VRF system of 28 kW are generated with 

different indoor and outdoor temperature settings. There are two scenarios of data variations with 

the same step load pattern. The data generated by this system are mainly used to examine the ANN 

model while predicting on different system. The list of experimental scenarios for VRF system of 

28 kW can be seen in Table 4.3.  

Table 4.3 Experimental scenarios for input and output data generation (VRF system 28 kW) 

Case Load pattern         (℃)          (℃) No. data point 

12 Step load (2h) Constant 26  Constant 30 3688 

13 Step load (2h) Constant 28 Constant 40 3688 

 

The representative experimental data characterized by the system of 28 kW are shown in 

Figs 4.12 and 4.13. It can be analyzed that the data fluctuations on the system of 28 kW are more 

stable compared to the ones presented in the system of 33.5 kW. It is highly affected by the control 

designed for each system is slightly different. According to the system of 33.5 kW, the intermittent 

operation mostly appears in low load operation. Meanwhile in system of 28 kW, the system works 

more smoothly for the whole load conditions. It indicates that the controllers of each system are not 

tuned with the same response performance, thus the dynamics characteristics are different. 

 

 

Fig. 4.12 Experimental data (Rated capacity: 28 kW; Step load;       constant 30 °C) 
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Fig. 4.13 Experimental data (Rated capacity: 28 kW; Step load;       constant 40 °C) 

 

4.3 Selection of measurement points for cycle representation 

The pressures and temperatures representing the refrigeration cycle are measured from 

outdoor unit in seven points (denoted by red markers from point 1 to 7 in Fig. 4.14). Seven 

measurement locations are easily accessible for the installation of thermocouples. Each location on 

the refrigerant pipes represents a different location (i.e thermodynamic states, assuming that single 

values of the thermodynamic quantities can be associated to a given location) along the refrigerant 

cycle that governs the performance of the vapor compression system. The temperatures inputs for 

prediction should be carefully selected to properly represent the air conditioning cycle while 

avoiding locations affected by thermal noise or possibly large experimental uncertainties. Both the 

pressure and temperature sensors at corresponding measurement points are provided in the 

experimental facility. 

In chapter 3, the refrigerant temperatures representing the corners of the system cycle has 

been proven to be applicable for performance prediction. In this section the selection of 

corresponding temperatures for representing the system cycle is presented. The steady state 

operation shown by the red mark in representative data (see Fig. 4.15) is selected as reference to 

plot in P-H diagram. As the expansion valve in a VRF system is located within the indoor unit (see 

Fig. 4.1), the temperatures and pressures at the evaporator inlet are not available. Thus point 8 at P-

H diagram (see Fig. 4.16) follows the assumption of an isenthalpic process in expansion valve and 

no pressure drop during the evaporation process.  
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Fig. 4.14 Measurement point of refrigerant properties at outdoor units 

 

 

Fig. 4.15 Cooling capacity at steady condition for cycle representation 

 

Figure 4.16 demonstrates the whole measured pressures and temperatures plotted on P-H 

diagram to represent the air conditioning cycle. The pressure and temperature at point 2 and 3 are 

representative of the refrigerant state at inlet and outlet of condenser. On the other hand, the sub 

cooling temperature (in this case at the corner of the refrigerant cycle) can be well represented by 

point 5, which provide information about the sub cooling degree obtained prior entering the 

expansion valve.  
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Fig. 4.16 Air conditioning cycle plot 

 

Moreover, given the complexity of the system configuration (see Fig. 4.16), there are 

several options that can be selected to represent the state of the refrigerant at the evaporator outlet 

i.e. point 6, 1, and 7. As shown in Fig 4.17, these three points have the similar pressure and different 

temperature. The temperature at point 7 and 1 are higher than point 6 due to the heat transfer in the 

reversing valve. Additionally, the temperature at point 1 fluctuates with high amplitude as it is in 

close proximity to the compressor suction. Apparently, the temperatures at point 6 and 7 show the 

same pattern representing the dynamic performance behavior. However, the temperature at point 6 

is preferred as it is located at the outlet of the indoor unit (not affected by heat transfer of the 

reversing valve). According to the above mentioned relationships between the measuring points and 

the physical characteristics of the P-H diagram of the system, the temperatures at point 2, 3, 5 and 6 

are selected as the input to the ANN model for representing the air-conditioning cycle and for 

predicting the system performance.   
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Fig. 4.17 Pressure and temperature fluctuation at measuring point 6, 1, and 7 

 

 

4.4 Analysis of experimental data 

Performance prediction involving simulation data is appropriate for analyzing and verifying 

the generalization capability of the ANN results in a broad spectrum of conditions. However, the 

experimental data obtained from operating systems may have different characteristics which are 

affected by different transient responses, noise, and ineffective control during on-off and hunting 

operation. Figures 4.18 to 4.20 show the representative experimental data with various load and 

operating temperature condition. Figure 4.18 shows fairly constant outdoor temperature       with 

increasing steps of cooling load, Fig. 4.19 has variable outdoor temperature      representing the 

daily variation along with continuous decline in cooling load, and Fig. 4.20 demonstrates the system 

behavior with fairly constant outdoor temperature      and variable rate of cooling load.  
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According to those three figures, it can be observed that the change of four temperatures 

have relationship with cooling capacity modulation. Specifically, the inlet temperature of condenser 

seems to have high sensitivity to cooling capacity due to the effect of compressor operation. 

Meanwhile, the outlet temperature of condenser shows similar trend with outdoor temperatures. 

Even though it has less sensitivity to cooling capacity, this temperature can capture the system 

performance related to effect of outdoor temperature.   

 
 Fig. 4.18 Representative input and output data with constant      and step load 

 

In Fig. 4.18, the typical system dynamic operation including on/off, unsteady and, steady 

characteristics are highlighted. Cooling capacity and four selected temperature have large amplitude 

variations at low cooling load, especially below 30% of the nominal cooling capacity. This dynamic 

operation illustrates the intermittent (on–off) system operation in the modulation of its capacity. 

Moreover it can be observed that the package controller shows limited ability in maintaining the 

indoor temperature     under these cooling load and outdoor temperature variations. The actual 

indoor temperature in all figures deviates from its set point temperature        . Furthermore the 

experimental data also indicate that the actual system operation responds with unsteady 

characteristics even when interfaced with steady heat loads and outdoor temperature. These 

operative conditions and the consequent system response are associated with the time evolution of 

the measured refrigerant temperatures, which are used as the quantities to identify the operative 

performance of the system in relation to the internal cycle. 
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Fig. 4.19 Representative input and output data with variable      and continuous decline load 

 

 
Fig. 4.20 Representative input and output data with constant      and variable rate load 
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From the experimental data depicted in Figs. 4.18- 4.20, it obviously shows that the data 

characteristics are mostly dominated by unsteady operation. Representative steady and unsteady 

data features from Fig. 4.18 are analyzed and presented in Fig. 4.21- 4.23 to show in detail the 

difference of both data characteristics in relation to the selected ANN modeling.  

During steady operation (see Fig. 4.23), the recorded cooling capacity is associated with 

unique and steady values of the four input temperatures. This suggests the possibility of a strong 

relationship, which would ensure a direct dependency between the input and output parameters for 

the training of the ANN model. During unsteady and on–off operation (see Figs. 4.21 and 4.22), the 

measured temperatures and cooling capacity are highly related to the previous behavior, hence 

suggesting the necessity of including time characteristics for representing these operative conditions, 

such as temperature rate and rate of change, besides the magnitude of the measured temperature. In 

this regard, the inclusion of a certain number of the values of the inputs from previous time steps is 

thus investigated to develop an ANN model with sufficient input information for approximating 

such unsteady characteristics of real operation. Along with the time characteristics of the measured 

data, the effects of external disturbances, such as indoor and outdoor temperatures and cooling load 

pattern, are investigated to effectively define a reliable prediction method. 

 
 

Fig. 4.21 Data characteristic of intermittent (on/off) operation 
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Fig. 4.22 Data characteristic of unsteady operation 

 

 
 

Fig. 4.23 Data characteristic of steady operation 
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4.5 Dynamic input characteristics 

During steady state operation, the current cooling capacity can be approximated using the 

instantaneous value of the selected input temperature. However, this kind of univocal relationship is 

not encountered during dynamic operation. As a simplified interpretation of the calibration of such 

mathematical relationship within the ANN model, Fourier analysis offers an approximated 

representation of the relationship between input and output. A generic function can be approximated 

with Taylor series as expressed in Eqs. (4.2 - 4.4). In the case of a dynamic response of the system, 

the experimental data recorded have shown that the accurate representation of the performance of 

the AC system (in this case,      ) may not be sufficiently accurate when only the instantaneous 

value of the input temperatures are used as expressed in Eq. (4.5). The inclusion of several inputs in 

previous time steps may be necessary for capturing the dynamic modulations of the system capacity 

through the rate of temperature variation ( ̇     and the rate of change of temperature variations 

( ̈   ). This technique has been applied in Taylor series method to get a precise approximation in 

data fitting of transient operation[84]. Figure 4.24 indicates that the higher the degree of the Taylor 

polynomial approximation, the more accurate the representation of the function is. It suggests the 

importance of previous time step inputs in the time distribution of the approximation.  

 

           
            

  
 

              

  
   

       )       

  
          (4.2) 
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Fig. 4.24 Taylor series representation 
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The dynamic ANN model can be developed to predict the cooling capacity at current time 

      using the temperature at current and previous time steps as written in Eqs. (4.6). As the actual 

system operation is mostly dominated by transient behavior, the inclusion of previous time step 

inputs data is required for capturing the dynamic operation with an advanced ANN training 

procedure. 

       (    )                                                 〈                               〉 (4.5) 

                ̇     ̈                      ̇    〈
        

  
 
        

  
 
        

  
 
        

  
〉   (4.6) 

                                                                           ̈    〈
  ̇      

  
 
  ̇      

  
 
  ̇      

  
 
  ̇      

  
〉  (4.7) 

4.6 Cycle prediction 

According to the selection of measurement points in the outdoor unit as discussed in section 

4.3, the selected pressure and temperature at point 2, 3, 5, and 6 are the most representative 

variables to identify the refrigerant cycle (see Fig. 4.16). In this section the cycle prediction is 

conducted by using three temperatures at point 6, 2, and 5. By approximating the process within the 

expansion valve as an isenthalpic process and by neglecting the pressure drop at evaporator, the 

experimental air conditioning cycle can be plotted only using three measuring points as shown in 

Fig. 4.26.  

 

 
 

Fig. 4.25 Measurement point on outdoor unit for cycle prediction 
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outdoor temperature of 35 °C. The training data are selected to be able to cover the range of testing 

data characteristics. The ANN model is developed with three temperature inputs (T2, T5, T6) and 

three pressure outputs (P2, P5, P6).  

 
Fig. 4.26 Cycle representation by three measuring points 

 

 

 
Fig. 4.27 Selected operating condition for on/off, unsteady and steady condition 

The prediction accuracy on cycle performance is quantified by comparing the coefficient of 

performance (COP) between predicted and corresponding data. The COP is calculated as the ratio 
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denoted by   is a function of pressure and temperature (   ). The fluctuation of the refrigerant flow 

rate within the cycle during unsteady and on/off operation is assumed to be less significant. 

    
       

       
          (4.8) 

 
Fig. 4.28 Prediction of cycle performance (a) on/off ;(b) unsteady; (c) steady 

The prediction results are mainly evaluated in three selected operating condition as shown 

in Fig. 4.27, where data characteristics for on/off, unsteady and steady behavior are demonstrated. 

Few representative conditions of the results of cycle prediction are presented in Fig. 4.28. For on/off 

and unsteady condition, two data points are selected to demonstrate the cycle change during 

dynamic operation. The results show a high accuracy of the cycle predictions for all the selected 

operating conditions with a relative error mostly below 5%. This result indicates that the selected 

temperatures have successfully captured the modulation of corresponding pressure during on/off, 

unsteady, and steady operation. Therefore, the changes of system cycle are precisely predicted.  
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5. Performance prediction on actual systems 

In chapter 3, the proposed ANN model for AC systems performance prediction, using four 

refrigerant temperatures that represent the system cycle as input parameters, has shown satisfying 

results when applied to system with different rated capacities. Training and testing data were 

generated by a simulator. In this section, the performance prediction of actual AC systems, 

represented by the experimental data collected in the previously presented experimental campaign, 

is attempted by relying on simulation and experimental platform with different rated capacities for 

generating the training scenario.  

Training data are generated through the simulation of a VRF system of 50 kW rated 

capacity, while the testing data are obtained from actual AC systems characterized in experimental 

facility (VRF system 33.5 kW and 28 kW). This investigation aims to verify the generalization 

capability of the fundamental hypothesis underlying this method for actual implementation. The 

hypothesis guiding this research effort is that, although AC systems have different configuration 

and size, and the specific data characteristics of simulation and experiments differ in the specific 

response determined by the control package, the training data obtained via a reliable simulator still 

provide a fundamental representation of the refrigerant cycle realized in actual systems. If such 

hypothesis is proved true and the simulator could reliably approximate the data behavior of actual 

AC systems, the ANN model can learn the system cycle from simulation data with a much broader 

variability of conditions, configurations and climates, which could be impossible (in terms of time, 

cost, and measuring method) to collect experimentally. This will reduce the time, cost, and 

complexity of data generation. Additionally, the simulator can be flexible and could provide the 

data that are difficult to generate in experimental facility.    

Table 5.1 Scenario for performance prediction  

(Training using simulation and testing on experimental data based) 

System         (℃)          (℃) Training Testing 

Simulation VRF 50 kW Constant 27, 29  Constant 35 ● 
 

 
Constant 27, 29  Constant 40 ● 

 

Experiment VRF 33.5 kW Constant 28  Constant 35 
 

● 

Experiment VRF 28 kW Constant 28  Constant 40   ● 
 

The simulator has been designed with including a PI controller acting on standard 

controllable parameters to have the realistic performance behavior. The investigation procedure 

follows the data division presented in Table 5.1. The training data are simulated under different 

operating scenarios, covering a broad range of operating conditions. The cooling capacities are 
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varied from 30% to 100% of rated capacity with step pattern. The input output training data 

characteristics generated by simulating the VRF system, with 50 kW nominal capacity, are shown 

in Figs. 5.1 and 5.2.  

 

Fig. 5.1 Characteristics of input output of training data (a) refrigerant temperatures (b) cooling 

capacity (   : 27 °C;      : 35 °C;      : 30-100%) 

 

The performance prediction is conducted using the selected four temperatures that represent 

the corners of the refrigerant cycle of the system. The temperature selection in VRF system 

configuration has been discussed in previous chapter (section 4.3). The cooling capacity    is 

predicted using the sub cooling temperature (T5), indoor unit outlet temperature (T6), and inlet and 

outlet of condenser temperature represented by (T2) and (T3). The data characteristic for testing are 

taken from the previous experimental campaign. The layout of temperature points selected in 

outdoor unit for prediction inputs are illustrated in Figs. 5.3 and 5.4 for simulation and experiment, 

respectively. It should be noted that the temperatures at T2 and T3 show the inlet and outlet of 

condenser. While the temperatures at T5 and T6 represent the inlet and outlet of outdoor unit.  
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Fig. 5.2 Characteristics of input output training data (a) refrigerant temperatures (b) cooling 

capacity (   : 27 °C;      : 40 °C;      : 30-100%) 

 

 

Fig. 5.3 Layout of four temperature inputs on outdoor unit (Simulation based) 
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Fig. 5.4 Layout of four temperature inputs on outdoor unit (Experimental based) 

The prediction on different systems relies on the normalization procedure for input and 

output data, as presented in Chapter 3, Eq. (3.14). The data are normalized with reference to the 

minimum and maximum values presented in Table 5.2. The lower and upper bound of temperatures 

are taken with the assumption that all those temperatures fluctuate on the corresponding range while 

operating from the minimum and maximum load. Cooling capacity is normalized ranging from 0 to 

maximum nominal cooling capacity of each systems, which is provided in the product catalogue. 

Table 5.2 Lower and upper bound of data normalization  

Variable Minimum  Maximum 

Temperature, T6 (°C) 0 30 

Temperature, T2 (°C) 40 100 

Temperature, T3 (°C) 20 50 

Temperature, T5 (°C) 0 30 

Cooling capacity, Qe (VRF 50 kW) 0 50 

Cooling capacity, Qe (VRF 33.5 kW) 0 33.5 

Cooling capacity, Qe (VRF 28 kW) 0 28 
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Fig. 5.5 Characteristics of input output of testing data (a) refrigerant temperatures (b) cooling 

capacity (experiment 33.5 kW;         : 28 °C;      : 35 °C;   : 0-100%) 

 

Fig. 5.6 Characteristics of input output of testing data (a) refrigerant temperatures (b) cooling 

capacity (experiment 28 kW;        : 28 °C;      : 40 °C;   : 0-100%) 
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The characteristics of testing data generated by the actual machine are presented in Figs. 5.5 

and 5.6 for the system with nominal capacity of 33.5 and 28 kW, respectively. According to those 

two figures, it can be observed that the dynamic behavior of both systems seems to be slightly 

different. The data shown in the system of 33.5 kW have more intermittent operation. While the 

data fluctuation on the system of 28 kW are slightly more stable. It implies that the controller design 

for both systems is different which results in different dynamic data characteristics. Moreover the 

simulated data used for ANN training are mostly dominated by smooth data with very small noise 

in some conditions only. In this section the capability of ANN model to predict the system 

performance relying on the different data characteristics is investigated. Two ANN models are 

trained with different outdoor temperatures, namely 35 and 40 °C. It ensures that the training and 

testing data are in the same range of operating condition. Then the trained ANN model with outdoor 

temperature 35 °C is applied for testing on the system 33.5 kW, while the other pre-trained ANN 

model with outdoor temperature 40 °C is used for testing on the system 28 kW. 

 

 

Fig. 5.7 Prediction results on experimental VRF system (ANN trained with simulation data 50 kW) 

(a) 33.5 kW (    : 35 °C) ; (b) 28 kW (    : 40 °C) 
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Figure 5.7 shows the prediction results on the system with 33.5 kW and 28 kW. The results 

demonstrate that the predicted cooling capacity has good agreement with the corresponding value 

for both systems in some operation conditions. It indicates that the air conditioning cycle of the 

actual system can be identified by simulation data. Therefore, the ANN model trained with 

simulation data could successfully capture the actual system performances.  

The error analysis for the prediction results are specifically demonstrated in Figs. 5.8 and 

5.9 for the system of 33.5 and 28 kW, respectively. According to Fig. 5.8, the highest deviations 

mostly occur when the system runs in intermittent (on-off) operation, specifically highlighted in 

between 800-1000 min. Meanwhile, the testing results demonstrated in 100- 300 min are closer to 

the target values as the data are not fluctuating very much. The unstable control acting on system 

33.5 kW produces high-frequency oscillation data which are not accurately represented in the 

simulation data; hence the ANN model has no sufficient information to capture such intermittent 

operation and other characteristics with a quick dynamic response. 

 

 

 Fig. 5.8 Enlarged results of small and high error data on VRF system 33.5 kW 

Furthermore the results presented in Fig. 5.9 shows that cooling capacity in 400-900 min 
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from experimental facility. The PI controller of AC simulator has been properly tuned to provide 

good response with considering overshoot and settling time. Thus, the system works very smoothly 

while reaching various cooling capacity from 30%-100%. In experimental facility, the actual system 

includes many disturbances such as noise, unstable control, and others during the operation. This 

condition causes the gap between simulation and experimental data. Since the training data 

generated by simulation include only few unsteady state and intermittent behavior, the dynamic data 

characteristics are not well recognized by the ANN model.   

 

 

 Fig. 5.9 Enlarged results of small and high error data on VRF system 28 kW 

The investigation presented in this section has proven that the ANN model can be trained 

using the representative data generated from simulation equipped with reliable control to predict the 

system performance on a system produced by a different manufacturer and featuring a different 

rated capacity. The results also reveal that the AC simulator can be used to characterize the dynamic 

system behavior to provide training data for ANN to establish intelligent method for performance 

prediction. In order to provide reliable data during intermittent and quick response operation, the 

controller and the model of the AC simulator should be adjusted to meet an advanced precision in 

the representation of the dynamic behavior of the actual system. 
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6. Advanced cooling capacity prediction 

Effective cooling capacity prediction is fully conducted using experimental data presented 

in Table 4.2 and 4.3 provided in Chapter 4. Thus the experimental data scenarios used for the 

prediction in this section refer to those tables. The effect of dynamic inputs, sampling time, data 

variability, and indoor and outdoor temperature are investigated. The ability of ANN model on 

cooling capacity prediction in various operating condition is investigated with the system of 33.5 

kW. Moreover the performance prediction on different system is proposed with training and testing 

data are obtained from the system of 33.5 and 28 kW, respectively. 

6.1 Effect of previous time inputs, sampling time, and indoor temperature 

In practice, the occupants may frequently change the indoor temperature setting according 

to their different thermal comfort standards and sensations. The effect of the number of time steps 

considered for the input parameters and sampling time variation is investigated with reference to the 

prediction ability over different load patterns and indoor set temperature values. The data scenario 

for prediction is referred to Table 6.1. Three different data sets with various indoor temperatures are 

included for training and testing data. It aims to investigate the effect of indoor temperature on 

system performance prediction with ANN. The ANN model is trained using the data with        : 

26 °C (case 2a) and tested on the other data with        : 28 °C (case 2b) and        : 24 °C (case 2c). 

The outdoor temperature is set as constant at 35 °C and the cooling loads are varied with step 

modulation until 100% for all three cases. 

Table 6.1 Prediction data for indoor temperature analysis (adopted from Table 4.2) 

Case Load pattern         (℃)          (℃) No. data points 

2a Step load 0 - 100% (2h) 26 35 4140 

2b Step load 0 - 100% (5h) 28 35 8280 

2c Step load 0 - 100% (5h) 24 35 9000 

In Chapter 3, it has been clarified that the sampling time in the range of 0.1  to   could 

provide the proper combination between steady and transient responses of the system without 

overloading the training with redundant data, especially those related to prolonged phases of steady 

operation. Nonetheless the prediction relying on simulation data does not represent the actual data 

behavior, where the data oscillation was not appeared. As the PI controller is well designed in 

simulation system, the prediction data do not include the intermittent operation as existed in actual 

system.  The effect of sampling time for prediction with experimental data based is investigated. 

The sampling time is varied as 20, 60, 120, 300, and 600 s. The dynamic ANN model is developed 

with including previous time step inputs (see section 4.5). The number of previous time step inputs 

is incrementally changed from 0 to 3. The case with zero-previous time steps indicates that the 
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training and testing are conducted by the input values at the current time step only. The difference 

between static and dynamic ANN configuration is explained in Chapter 3 (Fig. 3.6). 

The prediction results for training and testing are presented in Table 6.2. The accuracy 

varies according to the sampling time and number of time steps to be considered for the input 

values. The ANN model trained with sampling time of 20 s shows good accuracy, with a maximum 

RMSE on testing data below 1.80 kW (cooling capacity range is 0 – 37 kW). Then, the errors tend 

to increase slightly as the sampling time increases. The accurate prediction indicates that the input 

output of testing data characteristics are similar to those used during the training phase. As 

presented in Fig. 6.1, it can be observed that the variation of indoor temperature settings have less 

significant impact on training and testing data behavior. Accordingly the ANN model could 

successfully predict the corresponding data with high accuracy as they are inside the range of 

training data. 

Theoretically, at the same cooling capacity and outdoor temperatures, different indoor 

temperatures are achieved by controlling the evaporating temperature. However, the temperature 

inputs collected from outdoor unit in this study, under different indoor temperature set points 

demonstrate a minor influence, which could be related to the limited precision of the control 

package (see experimental data characteristics in section 4.4). This suggests the necessity of 

expanding the training data considering indoor temperature set point variation to improve the 

reliability of the proposed method.  

Table 6.2 Prediction results under various sampling times, previous time step inputs, and indoor 

temperatures 

Sampling 

time 

RMSE of cooling capacity (kW) 

Training Testing Testing 

       : 26 °C        : 28 °C        : 24 °C 

Number of previous time 

inputs 

Number of previous time 

inputs 

Number of previous time 

inputs 

0 1 2 3 0 1 2 3 0 1 2 3 

20 s 1.18 1.07 0.99 1.02 1.79 1.77 1.59 1.65 1.58 1.45 1.46 1.42 

60 s 1.13 1.01 1.10 0.86 1.82 1.69 1.66 1.71 1.59 1.47 1.50 1.39 

120 s 1.24 1.05 0.94 0.63 1.87 1.77 1.69 1.60 1.71 1.48 1.51 1.41 

300 s 1.07 1.71 2.03 1.94 2.18 2.09 1.91 1.99 2.05 1.90 2.07 2.07 

600 s 1.36 2.32 2.25 2.18 2.30 2.14 2.09 2.01 1.97 2.23 2.32 2.35 
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According to Table 6.2, it can be seen that if the sampling time stays within the order of the 

time constant of the system, approximately 20 – 40 s[85]. It is generally demonstrated that the 

inclusion of inputs from previous time steps provides more information and improves the accuracy 

of the testing results provided that the sampling time enables a sufficient resolution for capturing 

dynamic phenomena. When the network is trained without input values from previous time steps, 

the model recognizes only the relationships between current time temperatures      and cooling 

capacity       and neglects the transient phenomena, such as those represented in Fig. 6.2(a). The 

reduced error by one additional input from the previous time step (for each temperature) is related 

to the gained ability of the network to relate the current time temperature to the slope of temperature 

in time 
  

  
. The lower error (although with generally lower improvement) obtained with two 

additional inputs from the previous time steps is associated with the ability of approximating the 

slope 
  

  
 and acceleration of temperature in time 

   

   , besides the current time input temperature. 

The effect of previous time step inputs on prediction during dynamic operation can be seen in Fig. 

6.2(a). 

 

Fig. 6.1 Relationship between individual input and output at the same outdoor temperature and 

different indoor temperature setting 

The degree of accuracy in the approximation of these dynamic features is related to the 

sampling time. Specifically, if the sampling time is too long, the approximation by a larger number 

of sparse data of the input values from previous time steps will actually lead to higher error. 

Additionally, it has been reported in literature[75] that the input values from three or more additional 

previous time steps generally do not bring a significant improvement to the prediction accuracy and, 
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contrarily, often tend to cause over-fitting in the testing phase due to data redundancy with respect 

to phenomena and characteristics not strongly related to the operation history.  

 

Fig. 6.2 Effect of (a) previous time step inputs and (b) sampling time on prediction accuracy 

The effect of sampling time on prediction results can be clearly distinguished in Fig. 6.2(b). 

It is shown that the predicted cooling capacity by sampling time of 600 s deviates from the true 

values. In general, as a larger sampling time results in loss of resolution towards unsteady 

characteristics, the higher the sampling time is, the higher the error becomes. The differences in 

data characteristics among various sampling time are statistically observed via student’s t-test[86] 

with confidence level of 95%, as demonstrated in Fig. 6.3. The P-values show how significant the 

difference in characteristic between 20 s sampling time data (population data) and 60 s, 120 s, 300 s, 

and 600 s sampling time data (sample data). As P-values are higher than 0.05, it indicates no 

substantial difference is recorded. However, as P-values tend to decrease when sampling time 

increases, the discrepancy on data characteristic relatively increases as sampling time gets higher.     

Besides sampling time, the importance of the number of time delays considered for the 

input parameters also depends on the magnitude of temperature variations and the rate of variation. 

As the data are mostly unsteady, the effect of the input of temperatures from previous time steps is 

significant to capture the dynamic behavior of the cooling capacity, especially in transient condition. 

According to this investigation, an ANN structure with the current time input and two previous time 
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step inputs, along with sampling time of 20 s, is suggested for the prediction in the present work and 

is applied in the following feature analysis. 

 

Fig. 6.3 P- values of student t-test under different sampling time (confidence level 95%) 

6.2 Effect of number of training data 

In actual operation, the cooling load varies according to the occupant behavior, operating 

devices, and weather conditions. As the data characteristics during the operation are mostly 

unsteady, the number of training data affects its variability and the generalization capability of the 

ANN model. The effect of number of training data is investigated by training the ANN model using 

data with a step load pattern (case 2) and testing the pre-trained ANN model on the data with a 

variable rate (case 1) and continuous decline (case 5) load pattern. The outdoor temperature is set at 

35 °C for all conditions. The prediction data scenarios are provided in Table 6.3. The number of 

training data sets is varied as one set (case 2a), two sets (case 2a and 2b), and five sets (cases 2a, 2b, 

2c, 2d, and 2e) to demonstrate the effect of data variability. 

Table 6.3 Prediction data for number of training data analysis (adopted from Table 4.2) 

Case Load pattern         (℃)          (℃) No. data points 

1 Variable rate 0- 100% 26 35 1800 

2a Step load 0 - 100% (2h) 26 35 4140 

2b Step load 0 - 100% (1h) 26 35 2970 

2c Step load 0 - 70% (5h) 26 35 8280 

2d Step load 0 - 100% (5h) 24 35 9000 

2e Step load 0 - 100% (5h) 28 35 8280 

5 Continuous decline 26 35 4500 
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The prediction results for training and testing are presented in Table 6.4. The errors for both 

testing cases decrease as more training data are included. It indicates that the additional data provide 

more variability to the training scenario and successfully increase the testing accuracy. The 

significant improvement is shown by the error discrepancy between the ANN model trained with 

one set (4140 data points) and five sets (32670 data points) of training data. The additional four-

data sets used in training can reduce the RMSE by approximately 44.27% and 43.36% for the 

variable rate and continuous decline load patterns, respectively.  

The prediction gap among various scenarios with different number of training data is 

depicted in Fig. 6.4, exemplifying that larger training data representations bring the testing 

prediction closer to the measured values. As the experimental scenarios are multiform and cover a 

wide range operation in the recorded characteristics, the additional training data improve the 

variability and are beneficial to increase the accuracy over the range of testing, without the 

occurrence of over-fitting. The results reveal that any cooling load patterns can be used to perform 

an effective training able to represent any variable operating condition as long as a wide range 

operation is covered with high variability. 

 

Fig. 6.4 Effect of number of training data on prediction accuracy: (a) variable rate (b) continuous 

decline load patterns 
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Table 6.4 Prediction results under different number of training data 

Number of 

training data sets 

RMSE of cooling capacity (kW) 

(Training) (Testing) (Testing) 

Step load  Variable rate load Continuous decline load 

1 0.62 2.43 2.20 

2 0.70 2.12 2.15 

5 0.70 1.33 1.19 

 

6.3 Effect of outdoor temperature 

The effect of outdoor temperature in the generation of a proper training scenario for 

effective predictions is investigated by comparing different training data obtained under diverse 

outdoor temperature patterns. Four datasets with different patterns of outdoor temperature are 

considered (Table 6.4). The first three cases include data with constant outdoor temperature, at 

approximately 30 °C (case 7), 35 °C (case 2), and 40 °C (case 3); the fourth scenario features 

variable outdoor temperature (case 8), representing a daily variation during summer ranging from 

30 to 40 °C. The indoor temperature is set at 26 °C and the cooling load is varied up to 100% for all 

corresponding cases. The training and testing accuracy of three different ANN models with various 

training data compositions is shown in Fig. 6.5. The empty markers show the training accuracy, 

while the full markers represent the testing accuracy. 

Table 6.4 Prediction data for outdoor temperature analysis (adopted from Table 4.2) 

Case Load pattern         (℃)          (℃) No. data points 

7 Step load 0 - 100% (5h) 26 30 9000 

2 Step load 0 - 70% (5h) 26 35 8280 

3 Step load 0 - 100% (5h) 26 40 9000 

8 West load 0 - 100%  26 30-40 21420 

The first training scenario refers to a single data set with constant 30 °C outdoor 

temperature (case 7) for training and the other data are considered for testing. The results show 

large errors for testing accuracy with RMSE always higher than 5 kW for all testing data. The error 

increases as the difference in outdoor temperature between the training and testing data is higher. It 

indicates that the variation in outdoor temperature leads to the significant difference in data 

characteristics. According to Fig. 6.6, it can be observed that the change of outdoor temperature is 

highly associated with the outlet temperature of condenser. From a more detailed perspective, at the 

same capacity and indoor temperature a higher outdoor temperature leads to higher condensing 
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temperature, which, in turn, affects the heat transfer on the condenser side in terms of inlet pressure 

and the degree of sub cooling at the condenser outlet. As the training data are limited to one 

constant outdoor temperature, the error becomes higher when applied on the other outdoor 

temperature conditions. 

 

Fig. 6.5 Prediction results under various outdoor temperatures in relation to different sets of training 

data (empty and full markers show training and testing accuracy, respectively). 

 

 

Fig. 6.6 Relationship between individual input and output at the same indoor temperature and 

different outdoor temperature 
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A second training scenario includes all three data sets with constant outdoor temperature 

(case 7, 2, and 3). The testing is applied only to data with variable temperature (case 8). The 

additional training data aims to extend the data coverage in a wider range. The results show that the 

error on testing data becomes lower, dropping drastically by approximately 62.87%, as more data 

that cover outdoor temperatures of 35 and 40 °C are included for training. This indicates that wider 

outdoor temperature ranges in the training data are significant to improve the prediction accuracy.  

The last training scenario investigates the effect of a variable outdoor temperature pattern 

on the training data sets. The data generated with variable outdoor temperature (case 8) are used for 

training and the other three data sets with constant outdoor temperatures (case 7, 2, and 3) are used 

for testing. Even though the ambient temperature patterns in the training and testing data have 

fundamentally different patterns (constant and variable), the ANN model can successfully predict 

the cooling capacity owing to the sufficient data coverage and higher variability. Accordingly, it is 

confirmed that such training data with high variability over a wide range are beneficial for effective 

training. 

6.4 Prediction on various cases using variable outdoor temperature and extended training 

scenario 

As demonstrated in the previous section, the outdoor temperature variation significantly 

affects the data characteristics. Moreover, the number of data is very influential on data variability 

owing to the unsteady operation. The variation of indoor temperature between 24, 26, and 28 °C 

shows limited effect on the four input refrigerant temperatures as the controller has poor accuracy, 

consequently the indoor temperature fluctuation on various set points are identical. Therefore, a 

large number of data with variable outdoor temperature become a necessity for an effective training. 

In this section, a large number of data with high variability, which include constant and 

variable outdoor temperature adopted from Table 4.2, are used for prediction. The representative 

data obtained from all cases are selected for training (24% of all data) and the others are used for 

testing (76% of all data). It should be noted that the training and testing data are totally different. 

The training data are selected to provide the wide range of operating conditions considering indoor 

temperature, outdoor temperature, and cooling load variations. The ANN model is developed with 

current and two previous time step inputs and sampling time of 20 s. 

The representative testing results in various operating conditions are demonstrated in Figs. 

6.7 to 6.12. The predicted cooling capacities by ANN model seem to follow the actual values 

precisely with high accuracy. It shows that the ANN model could successfully predict the data 

while keeping relative error mostly below 5%. This verification proves that the ANN model with 

four selected temperature inputs can be applied to predict the actual dynamic cooling capacity in 

various operating condition. For the most cases in which the sufficient data are available, ANN 

model can predict the system performance accurately. 



 

98 

  

 

Fig. 6.7 Performance prediction with constant     : 35 °C (case 2, Table 4.2) 

 

 

Fig. 6.8 Performance prediction with constant     : 40 °C (case 3, Table 4.2) 
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Fig. 6.9 Performance prediction with continuous decline load pattern (case 5, Table 4.2) 

 

 

Fig. 6.10 Performance prediction with west load pattern (case 8, Table 4.2) 
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Fig. 6.11 Performance prediction with east load pattern (case 9, Table 4.2) 

 

 

Fig. 6.12 Performance prediction with constant     : 30 °C (case 7, Table 4.2) 

 

6.5 Advanced cooling capacity prediction on different system 

In section 3.3, the performance prediction on different system has been carried out for input 

selection, which relies on the training and testing data obtained from simulations. It proved that the 

refrigerant temperatures are appropriate for use as input of performance prediction. Subsequently 

the prediction relying on the combined simulation and experimental data based has been established 
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in Chapter 5. The ANN model was trained using simulation data and applied for testing on 

experimental data. The results revealed that the ANN models have successfully predicted on smooth 

data characteristics. Nonetheless, it shows poor accuracy while applying on high fluctuation testing 

data characteristics since this kinds of data behavior are not available in present simulation training 

data.  

According to the investigation presented in Chapter 5, the ANN model trained with 

simulation data only has lower accuracy when predicting on intermittent (on/off) or strongly 

dynamic experimental data. This is due to the lack of information provided by the simulation data 

during such circumstances. As previously demonstrated, such strongly unsteady experimental data 

have features that, at present, cannot be replicated by the numerical simulator developed. 

Accordingly, in order to demonstrate the possibility of higher accuracy prediction results by relying 

on the suggested method, the prediction of air conditioner performance on different systems is 

investigated by using experimental data for both training and testing.  

Table 6.5 Prediction scenario for different system (experiment) 

System         (℃)          (℃) Training Testing 

Experiment VRF 33.5 kW Constant 26, 28  Constant 30 ● 
 

 
Constant 24, 26, 28 Constant 40 ● 

 

Experiment VRF 28 kW Constant 24 Constant 30 
 

● 

 Constant 28 Constant 40   ● 
 

The prediction scenario is as listed in Table 6.5. The training and testing data are generated 

from experimental facility using the VRF system of 33.5 kW and 28 kW, respectively. The testing 

data are generated with constant indoor and outdoor temperature set in two different conditions 

namely, 24/30 °C and 28/40 °C. In order to provide the sufficient data for training, the system on 

33.5 kW is run with more data variation with outdoor temperature set as the same with training. The 

cooling load pattern from 0 to 100% is introduced in both systems. 

Two ANN models are trained with different outdoor temperature (30 and 40 °C). It aims to 

provide the training and testing data with the same operating conditions. The prediction results for 

both testing data are demonstrated in Figs. 6.13 and 6.14, respectively. The results yield good 

agreement between predicted and corresponding values with RMSE and      of 2.10 kW and 2.36% 

for the data with     : 30 °C; and 2.75 kW and 9.73% for the data with     : 40 °C. The inclusion 

of intermittent data characteristics in the training improves the data variability and generalization 

ability of the ANN model. This result suggests that the ANN model could be applied to predict the 

performance of different systems using sufficient training data from a reference system.  
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Fig. 6.13 Prediction results on different system at      : 30 °C 

(Training with exp. 33.5 kW and Testing on 28 kW) 

 

 

 

Fig. 6.14 Prediction results on different system at      : 40 °C 

(Training with exp. 33.5 kW and Testing on 28 kW) 
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7. Conclusion and future prospects 

Applicability of ANN model to predict the cooling capacity by employing four refrigerant 

temperatures representing air conditioning cycle measured on outdoor unit has been 

comprehensively investigated. This represents a performance prediction method relying on limited 

information, being non-intrusive and low-cost, and having high accuracy, which can be 

implemented in operative systems. The adoption of refrigerant-side properties is based on the 

hypothesis that the identification of the refrigerant cycle, rather than air-side properties or 

manipulated parameters (e.g., valve opening and compressor speed), could provide a generalizable 

representation, which could be expanded to other systems in addition to the one referenced during 

the ANN training.  

7.1 Conclusions 

 The main conclusions of present work are summarized as follows: 

 Input-output data for training and testing collected in experimental facility have extensively 

represented the performance of actual systems and provided useful information on actual data 

characteristics. 

 Four corresponding refrigerant temperatures are the most representative inputs for performance 

prediction as they are inexpensive and non-intrusive to measure, scalable for different system 

application, and represent the system cycle.   

 It has been demonstrated that, by adopting the suggested ANN modeling method, a 

generalizable ANN model for AC performance prediction can be developed. Additionally, by 

relying on a modular numerical simulator, the flexibility and generality of its fundamental 

physical model provides a nearly infinite range of possible training conditions and system 

configurations. 

 From the analysis of the recorded data, during steady operation, the possibility of very close 

relationship between input refrigerant temperature and cooling capacity has been suggested. 

During unsteady and on–off operation, as the measured temperatures and cooling capacity has 

less strong relationship, the inclusion of time characteristics for representing these operative 

conditions, such as temperature rate and rate of change, besides the magnitude of cooling 

capacity, has been proposed. Specifically, the inclusion of a certain number of input values 

from previous time steps has been investigated. 

 Additional data, which provide more variability to the training scenario especially during 

intermittent and unsteady operation, successfully increase the testing accuracy. 
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 It has been confirmed that training data with high outdoor temperature and cooling load 

variability over a wide range are beneficial for effective training.  

 The results reveal that, if proper training scenarios are conceived, the ANN model can 

successfully predict the cooling capacity of an AC system during on–off, continuous unsteady, 

and steady operation, using four refrigerant temperature inputs, regardless of different 

manufacture and nominal rated capacity, while keeping the relative error mostly below 5%.   

As the performance of ANN model is directly related to how representative the data used 

for the training are, a broader spectrum of training data, comprehensively covering actual dynamic 

system behavior and operating conditions (including outdoor temperature fluctuation, load variation, 

and indoor temperature change), would be beneficial for improving the reliability of the prediction. 

 

7.2 Future prospects 

Performance prediction of AC system presented in present work still remains several issues that 

should be solved for future study as follows: 

 The inclusion of intermittent data characteristics for ANN training is necessary to capture the 

dynamic behavior of actual system. The reliable control on AC system simulator should be 

developed to provide the simulation data characteristics similar to the real operation condition 

especially on intermittent behavior.  

 The ideal training data pattern that are able to cover all data characteristics generated by various 

control design need to observe.  

 The prediction on different system should be expanded for many various operating conditions 

including variation of indoor temperature, outdoor temperature, and cooling load which 

represent the actual operation. 

 System characterization for the new system with different nominal capacity and manufacture 

needs to be investigated and analyzed comprehensively to understand the gap between one and 

the other systems. 
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Appendix 

A.1 Prediction results of ANN model trained with the same system of 33.5 kW (various 

operating conditions) 
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