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This dissertation comprises of three essays in applied econometrics and machine learning.

The essays present results of empirical analysis on the topics that cover firm productivity,

monetary policy, and macroeconomic forecasting by machine learning models, focusing

on the related data in Japan.

After the introduction, Chapter 2 presents t Impact of Foreign

Ownership on Firm Productivity: Evidence from the Japanese Manufacturing Firms.

This chapter examines the impact of foreign ownership on firm productivity in Japan,

using firm-level data of the Japanese manufacturing firms from 2000 to 2016. Firm

productivity is estimated by Olley-Pakes semi-parametric estimation method to minimize

the simultaneou The

system GMM estimation is applied to address a possible endogeneity problem between

foreign ownership and firm productivity.

Chapter 3 presents the second essay, a co-work with Professor BAAK Saang Joon,

Physical investment of Japanese firms during QE and QQE periods: Did the

transmission mechanism work? This chapter

asset ratio, and debt ratio on the investment rate of firms and examines neoclassical and

non-neoclassical transmission mechanism during QE and QQE periods.

Chapter 4 presents t

. This

chapter introduces machine learning models, including Gradient Boosting and Random

Forest model, that produce forecasts on real GDP growth of Japan for the periods between



2001 and 2018. In the process of training the models, a customized cross-validation

process is applied to improve the predictive power of the models.

Lastly, Chapter 5 concludes this dissertation.





Figure 2.1. Aggregate foreign ownership of stock in Japan



foreign ownership increases firm heterogeneity of the firms and contributes to aggregate

productivity growth.



1 The Olley-Pakes method has an option for firm exit. However, this option is not used in this
study because the data set does not have specific information whether the firm exit because
of liquidation or other reasons such as acquisition by another firm.

2 Labor is number of employees.







3 The value of HHI may range from close to 0 to 10000.
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Table 2.2. Descriptive statistics

Variable Mean Median SD Min Max Obs.

L_TFP 2.566 2.573 0.061 1.694 2.933 19750

FO 0.103 0.056 0.118 0.000 0.900 19750

L_HHI 6.256 6.223 0.595 5.292 8.166 19750

L_TR 24.336 24.186 1.442 17.828 30.123 19750

L_TR2 594.324 584.955 71.277 317.822 907.366 19750

L_FX 4.541 4.593 0.143 4.253 4.808 19750

EX 0.019 0.000 0.138 0.000 1.000 19750

L_K 23.807 23.687 1.758 13.377 29.515 19750

L_L 6.465 6.385 1.261 1.099 11.210 19750
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Figure 2.2. Foreign ownership of stock

* The lines represent the median values of foreign ownership of the firms analyzed in this study.
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Figure 2.3. Firm total factor productivity (TFP)

* The lines represent the median values of TFP of the firm groups analyzed in this study.
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Table 2.3. Baseline model estimation results

OLS Fixed Effects Random Effects

Independent Variables Dependent Variable: L_TFP

FO
0.113*** 0.043*** 0.043***

(0.005) (0.011) (0.010)

L_HHI
-0.018*** -0.017*** -0.012***

(0.003) (0.004) (0.003)

L_TR
-0.002 0.026 0.026

(0.008) (0.052) (0.033)

L_TR2
0.000 -0.000 -0.000

(0.000) (0.001) (0.001)

EX
0.010*** -0.003 -0.002

(0.002) (0.005) (0.004)

Obs. 19750 19750 19750

R-squared 0.051 0.035

Wald's Chi 1263.6

All regressions have industry sector fixed effects controlled. Standard errors are in
parentheses. Significance levels are indicated by *** p < .01, ** p < .05, * p < .1
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Table 2.4. Dynamic panel model estimation results

Variable OLS Fixed Effects System GMM

Dependent Variable: L_TFP

L_TFP(t-1)
0.821*** 0.572*** 0.997***

(0.005) (0.007) (0.252)

FO
0.022*** 0.019*** 0.626***

(0.003) (0.005) (0.210)

L_HHI
-0.011*** -0.013*** -0.017***

(0.002) (0.002) (0.005)

L_TR
0.009** 0.052*** 0.141***

(0.004) (0.011) (0.044)

L_TR2
-0.000** -0.001*** -0.003***

(0.000) (0.000) (0.001)

EX
0.003* -0.004 0.011*

(0.002) (0.003) (0.006)

Obs. 18212 18212 18212

R-squared 0.722 0.462

No. of Instruments 42

AR(1) 0.000

AR(2) 0.030

AR(3) 0.737

Hansen Test P-Value 0.241

All regressions have industry sector fixed effects controlled. Standard errors are in
parentheses. Significance levels are indicated by *** p < .01, ** p < .05, * p < .1
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4 Real effective exchange rate provided by International Monetary Fund is used.
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Sluggish fixed investment of Japanese firms has been widely raised in the literature as

one of main causes of the so-called lost decades of Japan. (Horioka, 2006; Hori et al.,

2006 among others). After the burst of the Japanese bubble, as is well known and

reasonably expected, the amount of fixed investment of the Japanese manufacturing

sector sharply decreased in early 1990s. Although the sharp decrease was ceased in the

mid-1990s, it did not increase back as Figure 3.1 illustrates. According to BOJ (2013 and

2017), the non-financial sector turned into net savers in late 1990s, and then it never

returned to its previous position as net borrowers despite the zero interest policy and the

quantitative easing policy of the Bank of Japan. As a result, as Figure 3.2 shows, the share

of private investment in the Japanese GDP almost continually declined for the last 25

years. As lack of investment demand was recognized as one of the main causes of the

long recession of Japan, a substantial amount of literature tried to determine the causes

of investment stagnation in Japan.
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Figure 3.1. Median values of investment rate of Japanese manufacturing firms

The definition of the investment rate is written in section 3.3.2.

Figure 3.2. Gross fixed capital formation of private sector in Japan (% of GDP)

Data Source: World Development Indicator of World Bank
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Among them, Hori et al. (2006) analyzed, using a model similar to those adopted

by Hoshi and Kashyap (1990), Hoshi et al. (1991), Hayashi and Inoue (1991), and

Hayashi (2000), the financial data of listed Japanese firms for the period from 1991 to

2000. Their major explanatory variables of the fixed investment of Japanese firms are

cash flow.5

of the firm. A high q is expected to encourage a firm to increase investment because its

market value is high relative to the cost of fixed capital it buys. Hori et al. (2006) found

during the

of Japanese firms.

s a

neoclassical transmission channel because higher stock prices induced by an

expansionary monetary policy will raise q, leading more investment.6 Therefore, the

findings of Hori et al. (2006) show that the neoclassical transmission mechanism was

workin

not discussed by the authors.

5 Hong et al. (2007) applied a similar model to an analysis of the investment of Korean

6 See
transmission channel of monetary policies.
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In addition, Hori et al. (2006) also reported that investment was more sensitive to

cash flow among the firms who hold less liquid assets, implying firms hold liquid assets

to relax future liquidity constraints. The finding shows that the balance sheet effect, a

non-neoclassical transmission channel, also worked in the 1990s in Japan although they

did not explicitly mention the balance sheet effect in their paper.

As Bernanke and Gertler (1995) and Boivin et al. (2010) explain, cash flow or

liquid asset should not affect investment decision of firms if there is no asymmetric

information problem between borrowers and lenders. However, if lenders (especially

banks) have asymmetric information problems, they discriminate borrowers based on the

net worth of their firms. In that case, firms with a smaller amount of liquid asset may

suffer liquid constraint and be restricted in their investments because liquid asset is

regarded as a proxy for net worth by lenders.

their estimation equation of fixed investment, but focused more on other variables such

as debt ratio and financial environment. Ogawa (2006) explored the effects of mainly debt

ratio and lending attitude of financial institutions on fixed investment of Japanese listed

and unlisted firms using the data from 1993 to 1998. He reported lending attitude has a

much bigger impact than debt ratio, and then concluded that sluggish investment of

Japanese non-manufacturing firms and small firms in the manufacturing sector in the

1990s could be well explained by unsoundness of Japanese financial institutions. Fukuda

et al. (2006), focused on small and medium sized Japanese firms by using the financial

statement data of only unlisted firms. Although they analyzed a different time span (1997-
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2003) and different firm groups from Ogawa (2006), they found similar results. That is,

impact on investment of the firm. Of interest is that Ogawa (2006) and Fukuda et al. (2006)

flow.

Masuda (2015) adopted a very similar estimation equation of investment to those

in the papers discussed above. However, the main focus of the paper is the balance sheet

effect, a non-neoclassical transmission channel rather than causes of sluggish investment.

In addition, the work of Masuda (2015) is the only research, to our best knowledge, that

investigate the effects of the first Quantitative Monetary Easing (QE hereafter) of Bank

of Japan on fixed investment using firm level financial data.

The central bank of Japan launched the famous zero interest policy in 1999 to

encourage economic activities including fixed investment of Japanese firms. However,

because the effectiveness of the aggressive expansionary monetary policy was questioned

soon, Bank of Japan experimented the QE policy for the first time in the modern history.

The first Japanese QE was implemented from March 2001 to March 2006. Then, the

second QE, also known as QQE (Quantitative-Qualitative Easing, hereafter QQE), has

been implementing since April 2013.

The papers that examined the effects of the two QEs analyzed macro data in

general and reported positive effects of the non-conventional policies. The survey paper

of Ugai (2006) reports that the first QE had the effect to lower down the Japanese yield

curve and improved the credit environment for Japanese firms. Honda et al. (2007) argue
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that the first QE stimulated the aggregate demand through a stock price channel. BOJ

(2015) and Kan et al. (2016) report that QQE had a positive effect on the aggregate

demand by reducing real interest rates.

Different from the papers mentioned above, Masuda (2015) analyzed the effect of

the first QE using firm level micro data by adopting the framework of Hori et al. (2006),

Ogawa (2006) and Fukuda et al. (2006). Masuda (2015) extended the coverage of the data

to 1970 to 2006, and specifically explored whether the QE policy of Bank of Japan

reduced the balance sheet effect. If the central bank provides more liquidity to the

economy, then the external finance premium that should be paid by those firms who have

less liquid asset will be reduced. Therefore, the effect of liquid asset is expected to decline

during the first QE period. Masuda (2015) reported that liquidity constraint was reduced

especially for large corporations during the first QE period in Japan, implying that the QE

policy influenced the real economic activity.

However, because the work of Masuda (2015) does not cover the period after the

first QE policy, it is not certain whether the change in the balance sheet effect was truly

caused by the policy or it is only a result of some unrevealed environmental changes since

early 2000s. For example, a lower level of debt ratio in 2000s might alleviate wariness of

lenders and, as a result, might reduce the external finance premium. If the impact of liquid

asset on investment was truly reduced for the period from 2001 to 2005 due to the QE

policy, however, its impact is expected to increase back during the non-QE and non-QQE

period from 2006 to 2012.
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Against this background, the present paper aims to further investigate whether the

neoclassical and/or the non-neoclassical transmission channel worked during the QE

periods by analyzing financial statement data of Japanese listed companies covering not

only the first QE period but also the periods between the QE and QQE periods (2006-

2012) and QQE period (2013-2017). Considering a misspecification problem, the

regression model adopted in the paper includes various control variables which are also

expected to affect investment decision of Japanese firms. However, a more decisive

improvement of the present paper can be found by the estimation methodology. Different

from the papers mentioned above, the present paper employs the system GMM as its

estimation tool because some explanatory variables are suspected to have endogeneity

problem. To our best knowledge, this paper is the first trial to examine the neoclassical

and non-neoclassical transmission channels in the investment decision of Japanese firms

during the period covering both the first and QQE periods using the methodology of the

system GMM.
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(1)

where subscripts i and t denote a firm i and a year t, respectively. The fixed effects

are captured by the firm dummy, , and . is the time dummy. The idiosyncratic

disturbance is denoted by .

The dependent variable, , is investment rate which is the ratio of investment

made in time t over fixed capital at the end of time t-1.7 Considering that investment is

fairly time persistent, the one-lagged value of investment, , is included as an

explanatory variable. As Nickell (1981) proves, the one-lagged dependent variable causes

endogeneity problem because it is correlated with . Therefore, the present paper

estimates Equation (1) using the system GMM of Blundell and Bond (1998) which is

widely used for dynamic panel models with such endogeneity problem.

Among other explanatory variables, is T q, debt ratio, and

liquid asset ratio at time t. This study considers , , and to be endogenous

7 More detailed definitions of the variables in Equation (1) will be provided in the following
section.
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variables. The endogeneity problem possibly caused by them will be discussed in the

section 3.2.4 in which the estimation methodology and results are presented.8

In Japan, a fiscal year of a firm typically ends at the end of March. Therefore, the

annual financial statement of a typical Japanese firm published in year t reports its

business performance from April of t-1 to March of t. In this present paper, the data

contained in such a report are treated as the data of year t-1. In the case that the fiscal year

ends at other than March, we determine the corresponding year by the following principle:

If the fiscal year ends before or in May, the data contained in year t reports are treated as

the data of year t-1, and as the data of year t otherwise. In other words, for example, the

financial statements reported in May 2001 is regarded as containing the data of 2000,

while those reported in June 2001 is regarded as containing the data of 2001.

This section presents specific definitions of the variables in Equation (1) and explains

how they are computed by the data from financial statements.

8 Researchers such as Masuda (2015) often employ time t-1 explanatory variables to remove the
endogeneity problem which may be caused by employing time t explanatory variables.
However, as previously discussed, time t-1 explanatory variables may also cause
endogeneity problem. This also justifies the use of the system GMM along with the presence
of one-lagged dependent variable as an explanatory variable.
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Investment rate ( )

Table 3.1. Six categories of tangible fixed assets

J Category Depreciation rate ( )
1 Buildings 0.0470
2 Structures 0.0564
3 Machinery/Equipment 0.0949
4 Ships 0.1470
5 Autos/Trucks 0.1470
6 Tools/Fixtures 0.0884

The investment rate is defined to be the real value of investment ( ) divided by

the real value of tangible fixed capital of the previous year ( ). The real value of

tangible fixed capital ( ) is calculated by the permanent inventory valuation method in

the following way. First, tangible fixed assets ( ) in a financial statement are split

into six categories that are listed in Table 3.1 along with the depreciation rate of each

category ( ).

Second, the nominal investment ( ) in each category is calculated by the

following equation:
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Third, the nominal value of investment ( ) is deflated by a corresponding

whole sale price index to obtain the real investment in each category ( ). The whole sale

price index for each category ( ) is obtained from the Corporate Goods Price Index

provided by the Bank of Japan.

Fourth, it is assumed that the real value of a tangible asset is equal to its nominal

(book) value at the initial year ( ). Since the database used in this research reports

consistent data from 1977, the initial year is set to be 1977 for the firms which were listed

in the Japanese stock market from 1977 or before. In the case of the firms which were

listed after 1977, the first year listed is used as the initial year.

Fifth, the time series of real fixed capital in each category is obtained using the

perpetual inventory equation below.

Then, finally the real fixed capital ( ) and the real investment ( ) are the

summations of the real amounts of the six categories.
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In the meantime, the replacement cost of the real fixed capital ( ) is computed

as follows:

)

where is the book value of total assets. The market value of outstanding stocks

is computed by multiplying average stock price to the number of outstanding stocks.9

9 q adopted in the paper was originally proposed by Lindenberg and Ross

the literature including Lang and Stulz (1994) and Hori et al. (2006).
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QE dummy ( )

is one for the years 2001-2005 and zero otherwise.

QQE dummy ( )

is one for the years 2013-2017 and zero otherwise.

Liquid asset ratio ( )

Debt ratio ( )

This research analyzes the data of manufacturing Japanese corporates that are listed in

either the first or second section of the stock exchanges of Tokyo, Osaka, Nagoya,

Sapporo, and Fukuoka. The financial statement data of those firms are obtained from The

Corporate Financial Databank compiled by the Development Bank of Japan.
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The dynamic panel model, Equation (1), is estimated by the system GMM of Arellano

and Bover (1995) and Blundell and Bond (1998).

As Nickell (1981) shows, the coefficient of the lagged dependent variable in a

dynamic panel model such as Equation (1) (that is here) is not consistently

estimated by conventional OLS estimators even after controlling fixed effects or random

effects due to the endogeneity problem that the lagged dependent variable is correlated to

t

also have the possibility of endogeneity problem in some respects. If those explanatory

variables have endogeneity problem, their coefficient estimates obtained by a fixed or

random effect model will be inconsistent.

To obtain consistent estimates in such a situation, Arellano and Bond (1991)

proposed to use the difference GMM model that utilizes the orthogonality condition that

the lagged dependent variable is not correlated to first-differenced error terms. Arellano

and Bover (1995) and Blundell and Bond (1998) improved the efficiency of the difference

GMM model by developing the system GMM model which adds level equations to first

difference equations in the model.

The two step GMM estimation method is used to estimate the coefficients in the

model and the standard errors are estimated by the method of Windmeijer (2005) to
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correct for the downward bias of finite samples.10 In addition, to test for the validity of

the model, the Hansen (1982) J-test and the Arellano-Bond AR(2) and AR(3) (AB test,

hereafter) tests are also implemented in the following section. The null hypothesis of the

Hansen J-test is that the instruments are exogenous. Therefore, if we employ appropriate

instruments the null hypothesis should be accepted. The null hypothesis of the AB AR(2)

test is that the differenced residuals do not show AR(2) behaviour. If the AB AR(2) is

rejected, AB AR(3) test should be conducted. If the AR(3) test shows a high p-value, this

means that the null hypothesis cannot be rejected and suggests the absence of serial

correlation in the error structure.

As previously discussed, , , , and are regarded as endogenous (or

not strictly exogenous) variables. Therefore, their lagged values are used as instruments,

and these instruments should be at least two-time lagged from the endogenous

explanatory variables due to the AR(1) behavior of the differenced residuals. The lag

lengths of these instruments are determined in the way to increase the p-values of the

Hansen J test and/or the AB AR(2) and AB AR(3) test. In addition, all strictly exogenous

variables are also included in the set of instruments.

10 The xtbond2 command of Roodman (2009) was used to estimate the system GMM model
using STATA.
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Table 3.2. Regression results for all firms

Explanatory variables (1) System GMM (2) FE (3) OLS

0.298*** 0.129*** 0.277***

(0.094) (0.011) (0.010)

0.074*** 0.046*** 0.028***

(0.019) (0.003) (0.002)

-0.044 0.017 0.016

(0.126) (0.011) (0.010)

-0.063** -0.019** -0.012

(0.032) (0.009) (0.008)

0.396*** 0.101*** 0.068***

(0.107) (0.011) (0.006)

-0.891* 0.000 -0.029

(0.465) (0.020) (0.019)

-0.502** 0.008 -0.013

(0.220) (0.026) (0.022)

0.024 0.025** -0.002

(0.078) (0.010) (0.005)

-0.469*** -0.054*** -0.042**

(0.174) (0.018) (0.017)

-0.097 -0.011 -0.009

(0.140) (0.027) (0.022)

N. of observation 19779 19779 19779

N. of firms 1464 1464 1464

R-squared 0.107 0.160

Arellano-Bond AR(1) test 0.000

Arellano-Bond AR(2) test 0.034

Arellano-Bond AR(3) test 0.487

Hansen test statistic 0.363

Number of instruments 60
The numbers in parentheses are p-values.

* p<0.10, ** p<0.05, *** p<0.01



41

The first column in Table 3.2 shows the estimation results of equation (1) based on system

GMM estimation. There are 1464 firms during the period analyzed. Column 2 in Tables

2 report the estimation results based on fixed effect estimation. Column 3 presents the

result based on OLS estimation. Figures 3.4 and 3.5 illustrate the median values of the

variables in Equation (1).

it does

not significantly change during the QE period but reduced during the QQE period

according to the result by system GMM estimation. Even though the coefficient is

reduced, the coefficient stays to be positive all periods. The result implies that the

neoclassical transmission mechanism worked in Japan, and it appears that the

neoclassical transmission mechanism worked as the coeffi q is positive.

Figure 3. q for the period covered in the research.

q rises during both QE and QQE periods, and it is

mainly due to an increase in overall stock prices. Figure 3.3 shows that the stock price
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Figure 3.3. Stock p

The Stock price index in the graph is the annual average of the Nikkei index of the first section of the Tokyo Stock
Exchange obtained from the Nikkei Value Search.

s q is the whose definition is written in section 2.

The coefficient of liquid asset is significantly positive for all firms and for large firms.

The significantly positive coefficient value of the liquid asset is consistent with the

findings of Hori et al. (2006) and Masuda (2015). According to the result by system GMM,

the coefficient is reduced during QE and QQE periods. In fact, the impact of liquid asset

turned to be negative during both QE and QQE periods. This implies that the liquidity

restriction was reduced during QE and QQE periods.
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Figure 3.4. Liquid asset ratio

The debt ratio has no statistically significant impact on the investment rate according to

the system GMM estimation. However, the impact became negative during QE period.

This implies the presence of debt-overhang in Japan during QE period. This further shows

that high debt ratio was a hurdle for investment of firms in Japan during QE period. In

fact, Figure 3.5 shows that the debt ratio has declined during QE period, but not so much

during QQE period. This shows that the firms reduced their debt more actively during QE

period compared to QQE period.
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Figure 3.5. Debt ratio

The debt ratio has a non-negative impact on investment of large firms during non-QQE

period and a negative impact during QE period. In the case of the positive impact during

the non-QE period, this finding contradicts the wide-spread belief in the literature that

investment stagnation of Japanese corporates during the 1990s resulted from their

deleveraging efforts. (See Eggertsson and Krugman, 2012; Koo, 2008). If it is true, the

impact of debt ratio on investment should be negative not only for during the QE period

but also for the entire time period covered in the paper (1991-2017). This puzzle demands

further investigation of the issue including the consideration of measurement errors and

mis-specification problem of our estimation equation.

This paper investigates whether the first (QE) and the second quantitative easing policy
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(QQE) in Japan influenced physical investment decisions of Japanese publicly listed

firms through neoclassical and non-neoclassical transmission channels using their

financial statement data from 1991 to 2017.

Empirical test results

d QQE periods, the positive coefficient of

listed firms. That is, the neo-classical transmission channel worked during the QE and

QQE periods.

The coefficient of liquid asset ratio is estimated to be positive during the periods

excluding QE and QQE periods indicating that the balance sheet effect channel did not

work during QE and QQE periods. The coefficient reduces significantly during both the

QE and QQE periods. This implies that liquidity constraint changed significantly for

manufacturing firms during the QE and QQE periods.

Finally, the debt ratio turns out to have negative impacts on investment only for the QE

period. During the QQE period and other periods, the coefficient turns out to have no

significant impact on investment.
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Table 3.A.1. Regression results for all firms with variations

Explanatory
variables

(1)
System
GMM

(2)
System
GMM

(3)
System
GMM

(4)
FE

(5)
FE

(6)
FE

(7)
OLS

(8)
OLS

(9)
OLS

0.567*** 0.365*** 0.487*** 0.131*** 0.129*** 0.130*** 0.286*** 0.277*** 0.284***

(0.102) (0.093) (0.099) (0.011) (0.011) (0.011) (0.010) (0.010) (0.010)

0.038** 0.060*** 0.041** 0.052*** 0.047*** 0.052*** 0.031*** 0.028*** 0.030***

(0.018) (0.017) (0.019) (0.003) (0.003) (0.003) (0.002) (0.002) (0.002)

-0.120 0.022 -0.308** 0.014 0.015 0.016 0.010 0.015 0.012

(0.134) (0.122) (0.130) (0.011) (0.011) (0.011) (0.010) (0.010) (0.010)

-0.048* -0.055* -0.043 -0.022** -0.019** -0.022** -0.015* -0.011 -0.016*

(0.028) (0.030) (0.032) (0.009) (0.009) (0.009) (0.008) (0.008) (0.008)

0.299*** 0.100*** 0.069***

(0.059) (0.011) (0.006)

-0.397 0.010 -0.023

(0.370) (0.020) (0.019)

-0.327** 0.010 -0.012

(0.146) (0.025) (0.020)

-0.207*** 0.022** -0.017***

(0.050) (0.010) (0.005)

-0.152 -0.050*** -0.031*

(0.152) (0.018) (0.016)

0.207** 0.002 -0.008

(0.097) (0.027) (0.021)

N. of
observation

19779 19779 19779 19779 19779 19779 19779 19779 19779

N. of firms 1464 1464 1464 1464 1464 1464 1464 1464 1464

R-squared 0.098 0.106 0.099 0.151 0.160 0.152

Arellano-
Bond AR(1)

test

0.000 0.000 0.000

Arellano-
Bond AR(2)

test

0.000 0.007 0.001

Arellano-
Bond AR(3)

test

0.346 0.952 0.474

Hansen test
statistic

0.000 0.020 0.023

Number of
instruments

60 60 60

The numbers in parentheses are p-values.

* p<0.10, ** p<0.05, *** p<0.01
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Hong, K., Lee, J.-W., & Lee, Y. S. (2007). Investment by Korean conglomerates before

and after the crisis. Japan and the World Economy, 19(3), 347 373.
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The ability to forecast macroeconomic variables is highly desirable for the design and

implementation of timely policy measures. Among the macroeconomic variables, real

GDP growth is one of the most important data. However, forecasting real GDP growth

involves complicated calculations, and official data are often available only after at least

a one-quarter delay. Due to this delay, policymakers often design and implement policies

without knowing the necessary information. From this point of view, if available, the

accurate forecasting of real GDP growth in advance would be highly valuable.

Forecasting macroeconomic data, such as real GDP growth, is not a simple

process. To forecast data, considering the causal relationship between the dependent

variable and independent variable, traditional economic forecasting models require

predetermined relevant variables to make predictions and often take top-down and theory-

driven approaches (Mullainathan and Spiess 2017). This process also requires economic

intuition and judgment by forecasters regarding the data and methods used. If there is any

flaw in the assumptions made by the forecasters, the models could produce inaccurate

predictions.

In contrast to many traditional economic forecasting models, machine learning

models mostly deal with pure prediction (Varian 2014). Machine learning models are
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more flexible than traditional economic forecasting models and can produce predictions

without predetermined assumptions or judgments. In fact, in conjunction with

technological development and the increase in predictive power, machine learning

models have been actively applied in various fields, from forecasting transportation flows

to forecasting housing prices. In fact, machine learning methods often perform better than

traditional econometric models, as shown by Plakandaras et al. (2015) in the case of

forecasting US housing prices. In addition, machine learning models are applied to

relatively low-frequency data sets and are shown to produce sound forecasts, as

demonstrated in the studies on inflation forecasting by Medeiros et al. (2019) and Inoue

and Kilian (2008).

With a focus on forecasting real GDP growth in Japan, this study presents

forecasts with machine learning models, specifically a gradient boosting model and a

random forest model, and compares their prediction accuracy against the benchmark

forecast data published by the Bank of Japan (BOJ) and the International Monetary Fund

(IMF) for the years from 2001 to 2018.

This study contributes to the literature in several points. First, this study provides

a comparison of the performance of machine learning models on GDP predictions in

Japan, which has not been analyzed and covered sufficiently. In specific, this study

focuses on gradient boosting and random forest models, as these two models have

received great attention due to their outstanding performance at numerous prediction

competitions, such as those hosted by Kaggle, and there has also been high demand for

comparisons of their forecasting performance. used a

random forest model to forecast the GDP data of the euro area and found that the machine

learning model could produce more accurate predictions than the forecasts produced by
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a traditional autoregressive model. Jung et al. (2018) predicted real GDP growth in the

United States, the United Kingdom, Germany, Spain, Mexico, the Philippines, and

Vietnam using elastic net, recurrent neural network, and super-learner models. Tiffin

(2016) employed elastic net and random forest models to forecast GDP growth in

Lebanon, which provides official GDP growth data only after a two-year delay. Emsia

and Coskuner (2016) used support vector regression to predict the GDP growth of Turkey.

However, the prediction of real GDP growth in Japan has not been sufficiently analyzed

in the previous literature. Second, this study introduces a machine learning method that

produces more accurate predictions of annual real GDP growth in Japan than the forecasts

made by two prestigious institutions, the IMF and the BOJ, over a significant period.

Lastly, this study presents a cross-validation and hyperparameter tuning process to

address forecasting issues, such as overfitting problems, and provides the detailed

parameters used in the prediction models, which can serve as a valuable reference for

relevant research in the future.

This study uses two machine learning models: gradient boosting and random forest

models. All the models are supervised machine learning models, which means that the

models perform analyses based on training data and construct a function to make

predictions based on new data.

Using the data from the fourth quarter of 1981 to the second quarter of 2018, the

machine learning models predict annual real GDP growth in Japan from 2001 to 2018.

The machine learning models are designed to make predictions of annual real GDP
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growth based on data up to the second quarter of the focal year. For example, for 2001,

the machine learning models train and fit their models using data up to the second quarter

of that year. This means that the models do not use future data to predict past data.

The response variable for the models is the two-quarters-ahead real annual GDP

growth. It should be noted that in cases where the two-quarters-ahead real annual GDP

growth is predicted, the two-quarters-ahead real annual GDP is not available for the first

quarter of the data; the two-quarters-ahead real annual GDP growth is available only

when the third-quarter data are available. For example, for the prediction of the annual

real GDP growth of 2002, the models make predictions with data up to the second quarter

of 2002. However, the data set for the first quarter of 2002 cannot have two-quarters-

ahead real annual GDP growth since the data become available only in the third quarter

of 2002. The machine learning models make predictions of the two-quarters-ahead real

annual GDP growth for the first-quarter data first. With the forecasted data in the first-

quarter data, the models make final predictions of the second-quarter data and then predict

the two-quarters-ahead real GDP growth.

All the machine learning algorithms used in this study are implemented with the

Scikit-Learn package using Python language.
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The gradient boosting model is an ensemble machine learning model introduced by

Friedman (2001). The main idea of the gradient boosting model is to combine multiple

weak learners to improve the accuracy and robustness of the final model.

The gradient boosting model starts by making a single leaf and building regression

trees. A regression tree is a type of decision tree that is designed to estimate a continuous

real-valued function instead of a classifier. The regression tree is constructed through an

iterative process that continues to split the data into nodes or branches into smaller and

smaller groups. Initially, all observations are placed in the same group. The data are then

allocated into two partitions, using every possible split on every available predictor. The

predictor that splits the tree is that which most clearly separates the observations into two

distinct groups and minimizes the residual error, which, in this study, is measured by the

Friedman MSE introduced in Friedman (2001).

Based on the error made by the previous tree, the gradient boosting model makes

another tree, and it continues to train additional trees in this fashion until the designated

number or fit cannot be improved. To avoid overfitting problems, the gradient boosting

model uses a learning rate to scale the contribution from the new tree.

Based on Friedman (2001), the algorithm of the gradient boosting model takes the

following steps for the input data, , and a differentiable loss function,

, which is a squared regression in this study.

Step 1: Initialize the model with a constant value:
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(1)

where is an observed value, and is a predicted value. is the average of the

observed values.

Step 2: For m = 1 to M:

(A) Compute

(2)

(B) Fit a regression tree to the values and create terminal regions for

(C) For , compute

(3)

(D) Update

(4)

where is the learning rate.

The loss functions used can be customized by setting the learning rate, . This

feature improves the flexibility of this model while minimizing the overfitting problem

by learning from the iterations performed at a slower rate (Hastie et al. 2009).

Step 3: Output:

(5)
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After performing all M iterations and updating the function, the final

model, , approximates the relationship between the independent variables and the

dependent variable.

The random forest model, introduced by Breiman (2001), is another ensemble method

similar to boosting models. According to Dietterich (2000), the random forest is one of

the most successful ensemble models in machine learning. Similar to the gradient

boosting model, the random forest model uses regression trees. However, unlike the

gradient boosting model, in the random forest model, using bootstrapped data, the

regression trees are trained independently, and the output of trees is averaged to produce

predictions.

The basic steps of the random forest model are as follows:

Step 1. For m=1 to M:

(1) Create a bootstrapped sample set, Z of size N, from the training data.

(2) Grow a random forest tree, , for the bootstrapped data by repeating the

following steps for each terminal node of the tree until the minimum node size, , is

reached.

i. Select x variables at random from the p variables.

ii. Pick the best variable and split point among the x variables.

iii. Split the node into two daughter nodes. The split is decided in such a way that

it minimizes MSE, which is calculated as follows:
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(6)

where is an observed value and is a predicted value.

In addition to the bootstrapping unique data for each tree predictor, additional

randomness is added at each node by randomly assigning a subset of variables to split the

nodes. This random process greatly reduces the dependence between individual trees and

improves flexibility against a potential overfitting problem. A fully developed tree often

leads to an overfitting problem if it fits the model perfectly. In other words, a model with

close to perfectly fitting trees may not produce accurate predictions when new data are

added. To avoid this problem, a random forest model may prune the trees or limit the

number of nodes at the expense of the in-sample fit.

Step 2. Output the ensemble of trees, :

The final output, , is calculated by averaging the outputs of all the trees.

Averaging over multiple predictions reduces the variance and stabilizes

predictive performance.

The machine learning models used in this study utilize several hyperparameters. This

study uses k-fold cross-validation, which is a popular technique for tuning

hyperparameters. The k-fold cross-validation separates the training data into k-pieces and

separately tests each piece to fit the model. Due to the temporal dependencies among the
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data, the k-fold cross-validation is designed to set the first k-folds as the training set and

the data after the folds as the test set. This ensures that future data are not used to test past

data since the forecasting model should exclude all data about events that occur

chronologically after the events used to fit the model (Tashman 2000). In this study,

following previous literature, including Molinaro et al. (2005), k is set to 10, and the

training data are set to 10 subsets to train and fit the model. Fig. 1 illustrates the concept

behind the cross-validation process used in this study.

Figure. 4.1 Cross-validation process

Some may argue that the cross-validation process is not needed for the random

forest models as the random forest models use trees created from the bagging process. It

is true that the out-of-bag process of the random forest model is similar to the cross-

validation process, and the cross-validation may not be needed. However, one of the main

aims of this study is to compare the performance of the gradient boosting model and the

random forest model. To make this comparison as fair as possible, this study applies the

cross-validation process to the random forest model. In addition, the out-of-sample data
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are set to be the same for both the gradient boosting model and the random forest model

to ensure a fair comparison of the models.

The cross-validation process is designed to select an optimal set of

hyperparameters that produces the lowest average mean squared errors based on the tests

of 10 subsets. In other words, the set of hyperparameters suggested by the cross-validation

process will be used to make forecasts based on the test data set. The hyperparameter

tuning strategy that this study uses is grid search, in which all possible combinations of

the hyperparameters given are tested (Probst et al. 2019). Regarding the number of

predictors, all predictors are considered, and the depth of trees is controlled with the

number of splits for both the gradient boosting model and the random forest model. The

cross-validation is designed to find a combination of the hyperparameters that minimizes

the average of MSE. The hyperparameters determined by the cross-validation are

presented in Table 4.1.

Table 4.1. Description of the hyperparameter test

For the forecast of real GDP growth in year x, the same cross-validation will be

conducted twice. The first process will be for the forecast of the two-quarters-ahead
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forecast of year-to-year real GDP growth in the first-quarter data. The second process

will be repeated for the second quarter of the data for the final forecast.

The prediction models use the traditional economic indicators related to national account,

employment, monetary, trade, and inflation statistics as the regressors. The inflation

variables include the consumer price index and GDP deflator. The national account

variables include real government consumption, real private consumption, current

account of balance of payments, real annual GDP, real GDP growth (quarter to quarter),

real GDP growth (year over year), government balance as share of GDP, gross

government debt as percent of GDP, foreign exchange reserves, real stockbuilding, total

external debt, and foreign direct investment. The employment variables include total

employment and the unemployment rate. The monetary variables include exchange rate

against US dollar, exchange rate against euro, and 10-year government bond yields.

The data are chosen based on the availability and previous literature, including

Jung et al. (2018) and Richardson et al. (2018). All variables are quarterly data from the

fourth quarter of 1981 to the second quarter of 2018. In this study, real GDP growth (year

over year) is set as the dependent variable, and other variables are set as independent

variables. The number of observations is 147 for each variable. More details on the

variables are available in Table 4.A.1 in Appendix.
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Figure 4.2. Correlation matrix of the variables

Figure 4.2 presents the matrix for the correlation between the dependent variable

and the independent variables for the two-quarters-ahead forecast. According to the

correlation matrix, correlations among the regressors can be observed. Multiple

regressors have correlations with other regressors above 0.5. For traditional linear
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regression models that focus on the interpretation of the impact of regressors, high

correlations may lead to multicollinearity problems; however, ensemble models that

focus on prediction, such as the gradient boosting and random forest models, are designed

to handle multicollinearity problems using decision trees, which, instead of using all the

predictors, choose certain regressors to maximize prediction accuracy and are robust to

multicollinearity problems (Sandri and Zuccolotto, 2008).

As benchmarks, this study uses the forecast data published by the IMF and the

BOJ from 2001 to 2018 to check the performance of the machine learning models used

in this study. Although the details of the previous forecast models used by the IMF and

BOJ are not available to the public, the results of their models are used as benchmarks in

this study, as they are widely accepted and quoted in both the public and private sectors.

The forecasts that the IMF and the BOJ publish are the main forecasts on annual real GDP

growth in spring and fall. In the case of the BOJ, this study uses the median values of the

forecasts by the majority of policy board members.

This study presents a method for forecasting the annual real GDP growth11 of Japan from

2001 to 2018. The machine learning models produce predictions of annual real GDP

growth in Japan for each year from 2001 to 2018, using data from the fourth quarter of

11 The data on the annual real GDP growth of Japan refer to those published by the World Bank
and are obtained from
https://data.worldbank.org/indicator/NY.GDP.MKTP.KD.ZG?locations=JP
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1981 up to the second quarter of the year of prediction. For example, for the prediction

of annual real GDP growth in Japan in 2018, the machine learning models use data up to

the second quarter of 2018.

Table 4.2 presents the hyperparameters used by the machine learning models,

which are selected by the cross-validation process. As Table 4.2 shows, since the training

data receive new data for each new year, the hyperparameters change accordingly to

adjust to the new data set.

Table 4.2. Hyperparameters by year

* GB and RF are gradient boosting and random forest, respectively.
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For benchmark points, this study uses the forecast data generated by the IMF and

the BOJ. The IMF and the BOJ provide annual real GDP growth biannually: once in the

spring and again in the autumn. Table 4.3 presents the forecasted real GDP growth of

Japan, including that from the machine learning models, the IMF and the BOJ, along with

the actual real GDP growth.

Table 4.3. Actual and predicted real GDP growth of Japan (%)

* GB and RF are gradient boosting and random forest, respectively, and represent the
forecasts based on the out-of-sample tests. IMF_F and IMF_S are the IMF forecasts made
in fall and spring, respectively. BOJ_F and BOJ_S are the BOJ forecasts made in fall and
spring, respectively.
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Figure 4.3. Actual and predicted real GDP growth in Japan (including the gradient
boosting model)

* Actual_rgdpg is actual annual real GDP growth of Japan. IMF_F, BOJ_F, and GB are
the forecasts made by the IMF in fall, the BOJ in fall and the gradient boosting model
(out-of-sample tests)

Figure 4.4. Actual and predicted real GDP growth in Japan (including the random forest
model)

* Actual_rgdpg is actual annual real GDP growth of Japan. IMF_F, BOJ_F, and RF are
the forecasts made by the IMF in fall, the BOJ in fall and the random forest model (out-
of-sample tests)
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Figure 4.3 and Figure 4.4 present the graphs of the actual real GDP growth of

Japan and those forecasted by the machine learning models, the IMF, and the BOJ.

As shown in Table 4.3 and Figures 4.3 and 4.4, the machine learning models

produce forecasts that are overall more accurate than those produced by the IMF and the

BOJ. However, for 2009, a year during which the global economic crisis was on-going,

the machine learning models do not predict the extreme drop in real GDP growth, which

was forecasted by the IMF. The actual real GDP growth in 2009 is -5.42 %. The rates

forecasted by the gradient boosting and random forest models are -3.97 % and -2.32 %,

respectively. The rate by forecasted by the IMF is -5.37 %.

To compare forecast accuracy, MAPEs (mean absolute percentage errors) and

RMSEs (root mean squared errors) are calculated for each model and compared. MAPE

is a measure strongly preferred and frequently used by both practitioners and academics

to assess the accuracy of forecasting models. MAPE is calculated by using the following

formula.

(8)

P is a predicted value, and O is an observed value. n is the total number of

observations. Table 4.4 presents MAPEs for the machine learning models of this study,

the gradient boosting and random forest models, and for the forecasts by the IMF and the

BOJ in the spring and fall for each year from 2001 to 2018.



69

Table 4.4. MAPEs for the machine learning models and forecasts by the IMF and the BOJ
(%)

36.04 23.38 217.18 46.84 358.62 35.47

118.78 43.32 390.08 482.91 277.62 152.48

81.34 29.26 269.81 337.32 204.1 113.17

61.25 22.66 227.43 265.99 168.89 95.03

49.08 18.18 185.51 223.1 141.57 80.39

41.35 15.29 169.28 202.08 129.48 76.14

35.5 13.57 147.68 179.13 112.24 69.12

32.64 14.66 149.62 185.61 111.85 90.12

31.99 19.38 133.09 166.59 103.97 84.86

28.97 18.55 123.04 155.41 98.57 82.08

29.03 102.6 139.73 260.91 122.41 131.14

26.72 94.08 132.15 242.2 112.24 124.7

24.9 87.02 122.16 225.16 106.3 118.57

24.99 85.06 123.27 227.66 101.09 123.91

23.36 79.68 118.5 213.46 94.47 119.88

22.11 74.84 112.11 201.38 92.58 118.45

20.91 70.54 106.78 191.62 87.22 112.49

19.86 67.23 103.31 183.97 86.69 111.96

* GB and RF are gradient boosting and random forest, respectively. The first two
columns indicate the results from the out-of-sample tests. IMF_F and IMF_S are the
IMF forecasts made in fall and spring, respectively. BOJ_F and BOJ_S are the BOJ
forecasts made in fall and spring, respectively.

According to Table 4.4, for the 2001-2018 period, the gradient boosting model

appears to have more predictive power than the random forest model. In addition, both

the gradient boosting (19.86 %) and random forest (67.23 %) forecasts are shown to be

more accurate than the IMF (103.31 % in fall and 183.97 % in spring) and the BOJ (86.69 %

in fall and 111.96 % in fall) forecasts. Some may question whether the in-sample forecast

models could overfit, and there could be an overfitting problem. Regarding the overfitting

problem, Table 4.A.2 in Appendix presents MAPEs calculated for the in-sample tests.
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MAPEs for in-sample tests are calculated using the forecast values from the cross-

validation process. The average values for the in-sample tests of the gradient boosting

model (39.61%) and random forest model (73.13%) for the 2001-2018 period suggest the

lack of overfit for the models. In addition, to avoid potential overfitting problems, this

study adopts an expanding window method. This method creates a new model for each

period using cross-validation and hyperparameter tuning and introduces a certain level of

bias into the model to reduce variance. For example, if the model used for the annual real

GDP growth of Japan in 2015 is used again for the prediction in 2017, the performance

could be significantly low. However, the methodology used in this study creates a new

model for the prediction in 2017 using the sample available up to the second quarter of

2017. As a result, the out-of-sample forecasts consistently outperform the those made by

the IMF and the BOJ; the MAPEs for the out-of-sample forecasts are lower than those

for the IMF and the BOJ. Based on the performance shown by the out-of-sample forecast

models, the overfitting problem should not be significant.

RMSE is another measure that is popular among practitioners and academics for

assessing the accuracy of forecasting models. RMSE measures the differences between

observed and predicated values and is calculated using the following formula:

(9)

P is a predicted value, and O is an observed value. n is the total number of

observations. In the formula, it should be noted that by squaring the difference between

the predicted and observed values, the RMSE penalizes large errors.

Table 4.5 presents the RMSEs for the machine learning models of this study, the

gradient boosting and random forest models, and the forecasts by the IMF and the BOJ

in spring and fall for each year from 2001 to 2018.
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Table 4.5. RMSEs for the machine learning models and the forecasts by the IMF and
the BOJ

* GB and RF are gradient boosting and random forest, respectively. The first two
columns indicate the results from the out-of-sample tests. IMF_F and IMF_S are the
IMF forecasts made in fall and spring, respectively. BOJ_F and BOJ_S are the BOJ
forecasts made in fall and spring, respectively.

Table 4.5 presents RMSEs for the predictions of the annual real GDP growth of

Japan made by the machine learning models two quarters ahead. The RMSEs for all the

machine learning models are lower than those of the IMF and the BOJ for the 2001-2018

period. Based on the RMSEs for the 2001-2018 period, the gradient boosting model

appears to have more predictive power than the random forest model. Similar to MAPEs,

Table 4.A.2 in Appendix presents the RMSEs for in-sample tests. The average values for

the in-sample tests of the gradient boosting model (0.39) and random forest model (0.57)

for the 2001-2018 period show that the overfit should not be significant.
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Although the machine learning models made worse forecasts for the crisis year of

2009, both the MAPEs and the RMSEs of the machine learning models suggest that the

machine learning models produce predictions that are more accurate than those produced

by the IMF and the BOJ for multiple years, including the 2001-2018 period.

The results of this study advocate the use of machine learning techniques in forecasting

macroeconomic data. Based on the customized cross-validation process, the machine

learning method employed in this study, which creates gradient boosting and random

forest models for the 2001-2018 period, produces forecasts that are more accurate than

those made by the IMF and the BOJ. Accuracy is measured by MAPE and RMSE.

Traditional econometric models focus on explanations of causal relationships,

whereas machine learning models focus on predictions. Machine learning models may

not be a good choice for determining the impact of independent variables on the

dependent variable or analyzing a causal relationship. However, as shown in this study

and in multiple previous studies, machine learning models often show high prediction

power.

Since there is no model or methodology that produces the best result for every

type of data set, this study contributes to the literature by empirically testing and

comparing predictions of real GDP growth in Japan using popular machine learning

models based on real data. This study further proposes a recursive method that combines

cross validation and hyperparameter tuning to create accurate models, which can be
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accurate even with low-frequency macroeconomic data. From this point of view, the

method suggested in this study should serve as an effective analysis option for predicting

economic variables that could lead to more effective economic policy design and

implementation, especially when only low-frequency data are available. Finally, based

on the validated result, this study also supports and encourages further research on and

use of machine learning models to forecast economic variables and to answer economic
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Table 4.A.1. Description of the variables
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Table 4.A.2. MAPEs and RMSEs for the in-sample tests of the machine learning models

80.67 196.11 0.44 0.59

24.04 35.15 0.52 0.78

28.86 39.12 0.30 0.40

27.31 33.94 0.43 0.65

28.06 44.06 0.30 0.42

20.76 23.89 0.31 0.66

8.27 15.92 0.19 0.35

22.35 25.93 0.39 0.50

27.80 48.44 0.35 0.50

61.05 210.95 0.39 0.55

11.36 25.62 0.73 0.83

26.96 46.06 0.21 0.58

9.89 15.39 0.10 0.24

79.98 287.14 0.74 0.87

24.26 24.14 0.73 0.96

9.03 18.61 0.21 0.44

208.40 208.43 0.41 0.50

13.95 17.37 0.26 0.47

39.61 73.13 0.39 0.57

* MAPEs and RMSEs are calculated using the forecast values from the cross-validation
process used for each forecast year.
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This dissertation presents various applied econometric and machine learning methods

ranging from system GMM to machine learning models including Random Forest and

Gradient Boosting models. In addition, the detailed analysis results are presented to

answer questions on empirical economic issues that cover firm productivity, monetary

policy, and macroeconomic forecasting by machine learning models with focus on the

Japanese data.

Impact of Foreign Ownership on Firm

Productivity: Evidence from the Japanese Manufacturing Firms, confirms the positive

impact of foreign ownership on firm productivity in the case of manufacturing firms in

Japan. Physical investment of Japanese firms

during QE and QQE periods: Did the transmission mechanism work? udes that the

neoclassical transmission channel worked during the QE and QQE periods with the

-

neoclassical transmission channel did not work during QE and QQE periods. It is also

confirmed that the debt ratio turns out to have negative impacts on investment only for

the QE period. T Forecasting of Real GDP Growth of

Japan Using Machine Learning Models machine learning models, including

Gradient Boosting and Random Forest model, that produce more accurate forecasts on

real GDP growth of Japan for the periods between 2001 and 2018 than those by

International Monetary Fund (IMF) and Bank of Japan (BOJ).

I strongly believe that the results and implications from this dissertation could

make meaningful contribution to the current literature of applied econometrics and
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machine learning. I also sincerely hope that the essays in this dissertation would serve as

stepping-stones for advancement of related applied econometric and machine learning

research in the future.
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- The End -


