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Abstract

Essays in Bayesian Econometrics

Masahiro Tanaka

This thesis consists of three essays on methodological contributions to Bayesian economet-
rics.

The first chapter proposes a new Bayesian inferential approach to local projections. A local
projection is a statistical framework that accounts for the relationship between an exogenous
variable and an endogenous variable, measured at different time points. Local projections are
often applied in impulse response analyses and direct forecasting. While local projections are
becoming increasingly popular because of their robustness to misspecification and their flexi-
bility, they are less statistically efficient than standard methods, such as vector autoregression.
In this study, I seek to improve the statistical efficiency of local projections by developing a fully
Bayesian approach that can be used to estimate local projections using roughness penalty priors.
The proposed priors, which are adapted from Bayesian splines, are generated from an intrinsic
Gaussian Markov random field; that is, they induce random-walk behavior on a sequence of pa-
rameters. By incorporating such prior-induced smoothness, one can use information contained
in successive observations to enhance the statistical efficiency of an inference. I compare the
proposed approach with the existing approaches through a series of Monte Carlo experiments. |
apply the proposed approach to an analysis of monetary policy in the United States, showing that
the roughness penalty priors successfully estimate the impulse response functions and improve
the predictive accuracy of local projections. [Computational Economics, Volume 55, Issue 2,
pp. 629-651.]

The second chapter develops a computational method for the Bayesian version of general-
ized method of moments (GMM) in difficult situations. A GMM criterion can be viewed as a
quasi-likelihood, being theoretically equivalent to the Laplace approximation of the true like-
lihood around its mode. Exploiting this feature, one can conduct a (quasi-)Bayesian inference
by replacing true likelihood with a GMM criterion. There are cases where the number of mo-
ment conditions can be large. However, a GMM estimator is unreliable when the number of
moment conditions is large, that is, it is comparable or larger than the sample size. While a
number of provisions for this problem is proposed in classical GMM literature, the literature on
its Bayesian counterpart (i.e., Bayesian inference using a GMM criterion as a quasi-likelihood)
has paid scant attention to this problem. This study fills this gap by proposing an adaptive
Markov chain Monte Carlo (MCMC) approach to a GMM inference with many moment con-
ditions. Particularly, this study focuses on the adaptive tuning of a weighting matrix on the fly.
Our proposal consists of two elements. The first is the use of the nonparametric eigenvalue-
regularized precision matrix estimator, which contributes to numerical stability. The second
is the random update of a weighting matrix, which substantially reduces computational cost,
while maintaining the accuracy of the estimation. A simulation study and real data application
are then presented to illustrate the performance of the proposed approach in comparison with
existing approaches. [arXiv preprint, arXiv:1811.00722.]

The third chapter proposes a new Bayesian approach to infer average treatment effect. The
approach treats counterfactual untreated outcomes as missing observations and infers them by
completing a matrix composed of realized and potential untreated outcomes using a data aug-
mentation technique. We also develop a tailored prior that helps in the identification of param-
eters and induces the matrix of the untreated outcomes to be approximately low rank. While



the proposed approach is similar to synthetic control methods and other relevant methods, it has
several notable advantages. Unlike synthetic control methods, the proposed approach does not
require stringent assumptions. Whereas synthetic control methods do not have a statistically
grounded method to quantify uncertainty about inference, the proposed approach can estimate
credible sets in a straightforward and consistent manner. Our proposal approach has a better fi-
nite sample performance than the existing Bayesian and non-Bayesian approaches, as we show
through a series of simulation studies. [arXiv preprint, arXiv:1911.01287.]
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Chapter 1

Bayesian Inference of Local Projections
with Roughness Penalty Priors

1.1 Introduction

Local projections introduced by Jorda (2005) provide a statistical framework that accounts for
the relationship between an exogenous variable and an endogenous variable, measured at dif-
ferent time points. Typical applications of local projections include impulse response analyses
and direct (non-iterative) forecasting (Stock and Watson, 2007). A local projection has sev-
eral advantages over standard methods, such as vector autoregression (VAR). First, it does not
impose a strong assumption on the data-generating process, making it robust to misspecifica-
tion. Second, it can easily deal with asymmetric and/or state-dependent impulse responses (e.g.,
Riera-Crichton et al., 2015; Auerbach and Gorodnichenko, 2013; Ramey and Zubuairy, 2018).
On the other hand, local projections have several disadvantages. First, when using a local pro-
jection, the exogenous variable must be identified beforehand. Second, a local projection is
subject to more estimation risk than other methods, and typically obtains a wiggly impulse re-
sponse function, (e.g., Ramey, 2016). In an impulse response analysis, the shape of an estimated
impulse response function is of concern. Therefore, if an estimated impulse response function
is wiggly and has wide confidence/credible intervals, it is difficult to interpret the result, and one
might wrongly reject or accept a hypothesis . In this study, we address the second disadvantage
of local projections.

In order to improve the statistical efficiency, we develop a fully Bayesian approach that can be
used to estimate local projections using roughness penalty priors as well as B-spline basis expan-
sions.! The proposed priors, which are adapted from Bayesian splines (Lang and Brezger, 2004),
are generated from an intrinsic Gaussian Markov random field; that is, they induce random-walk
behavior on a sequence of parameters. By incorporating such prior-induced smoothness, we can
use information contained in successive observations to enhance the statistical efficiency of an
inference. We compare the proposed approach with the existing approaches through a series of
Monte Carlo experiments. The proposed approach is applied to an analysis of monetary policy
shocks in the United States to show how the roughness penalty priors successively smooth im-
pulse responses and improve statistical efficiency in terms of predictive accuracy. Furthermore,
we show that such improvements are almost entirely attributable to the roughness penalty priors
and not to the B-spline expansions.

There are three strands of studies related to this work. For the first, Barnichon and Matthes

ISee, e.g., Geweke (2005) for a general introduction to Bayesian analysis.



(2019) approximate a moving average representation of a time series using values from Gaus-
sian basis functions. Their approximation is simpler, but much coarser than ours. As a result,
their estimated impulse responses may be excessively smoothed and vulnerable to model mis-
specification. For the second, to smooth an impulse response estimate, Miranda-Agrippino and
Ricco (2017) penalize the estimate based on deviations from an impulse response derived from
an estimated VAR. However, their approach seems not to work well in cases with asymmetric
and/or state-dependent impulse responses. Furthermore, their approach uses the same dataset
twice. This shortcoming can be resolved if a time series is long enough to be split into train-
ing and estimation samples, but this is not the general situation in macroeconomic studies. In
contrast, our approach does not require a reference model, thus it is free from these problems.

For the third, the most relevant studies are those of Barnichon and Brownlees (2019) and
El-Shagi (2019), who develop frequentist methods using roughness penalties. Although our
approach can be regarded as a Bayesian counterpart to theirs, it confers four additional benefits.
First, our approach is more flexible than Barnichon and Brownlees’s (2019) approach: they
allow a single parameter to control the smoothness of all parameter sequences, whereas we can
assign different smoothing parameters to individual sequences. Second, our Bayesian approach
can evaluate credible intervals in a consistent and straightforward manner, while the frequentist
approaches cannot provide a theoretically grounded confidence interval. Third, in our approach,
smoothing parameters are inferred from priors, implying that we can systematically consider
uncertainty in the smoothness of an impulse response. In contrast, the frequentist approach
prefixes smoothing parameters; Barnichon and Brownlees (2019) choose a smoothing parameter
via cross-validation, while El-Shagi (2019) determines smoothing parameters on the basis of
some information criteria. Fourth, our approach has better finite-sample performance than El-
Shagi’s (2019) approach, as shown in Section 1.5.

The rest of the paper is organized as follows. Section 1.2 introduces the model, the priors
and the posterior simulation. Section 1.3 conducts a set of Monte Carlo experiments and reports
the result. Section 1.4 demonstrates our approach in an analysis of the macroeconomic effects
of monetary policy shocks in the United States. Section 1.5 compares the proposed approach
with the existing frequentist approaches. Section 1.6 concludes this chapter.

1.2 Proposed Approach

We consider two classes of local projections: those with and those without B-spline expansions.

1.2.1 Local Projection without B-spline expansions
1.2.1.1 Model

We begin by describing a local projection (Jorda, 2005). While we consider only time series
data, an extension to panel data is straightforward. A model for an individual observation is
given by

J-2
y(h),t-i—h = /B(h)zt + a(h) + Z ’Yj,(h)wj,t + u(h),t—‘rha h = 07 ]-a 2a Ty H7 t= 1a EEER Tﬂ
j=1

where y(,)+++ is an endogenous variable observed at period ¢ + h, o) is an intercept, z; is an
exogenous variable observed at period ¢, w; 4, ..., wy_2 are covariates, which may include lags



of the endogenous and exogenous variables, (3, and 7; () are unknown coefficients, and 1) 111,
is a residual. The model allows asymmetric and/or state-dependent impulse responses, as in
Riera-Crichton et al. (2015), Auerbach and Gorodnichenko (2013), and Ramey and Zubuairy
(2018). The definition of y 1)+, and z; depends on whether the model is used for an impulse
response analysis or forecasting. For the former task, y() .1, denotes a response observed 5
periods after shock z; occurs at ¢; for the latter, z; is one of several predictors observed at ¢, and
Y(h),t+h is an h-period-ahead target observation. Note that in an impulse response analysis, z;
cannot be predicted using the current and past information, which implies that z; is uncorrelated
with x;. In what follows, we focus on impulse response analysis.

In an impulse response analysis, we seek to infer a smooth function f, (h) that represents
an impulse response of y to z, namely, f. (h) = Oy()+n/0z. Here, we allow a sequence
{B0): -, B } to represent an impulse response of y to z, namely, 5,y = 9y 1+n/0z. The
model can be represented as

Yy ash = T Oy + ugypan, =0, H;t=1.T;

ry = (Zt, 17 Wity ey U)J,Q,t)—r

-
Oy = (Bl s Y)1s -+ Ywys 2)
where x; is a .J-dimensional vector of regressors and 64, is a vector of corresponding parame-

ters. For notational convenience, we reindex the coefficient vector as 6 ;) = (Q(h),l, H(h)J) "
Stacking these over the projection dimension yields a representation resembling a seemingly
unrelated regression (SUR): fort =1, ..., 7,

y=Tppiox )0+u, u~N(0pi1,2),

T T
Y = (y(O),ta ?J(H),t+H) y Up = (U(o),n ey u(H),t+H) )
0= (00...00m) .

where X is a covariance matrix, and A (d, B) denotes a multivariate normal distribution with
mean d and covariance B. © denotes the Kronecker product.

Although multivariate time series data are considered, an LP model is not a typical time
series model. The purpose of the model is to directly examine the relationship between variables
measured at different time points, not to recover the underlying data generating process (DGP).
Therefore, the realizations of the endogenous variable observed at different projection points
h =0, ..., H are treated as different time series.

Rearranging the above representation, we express the model in matrix notation as

Yy=Tpg1 9 X)0+ u, UNN(O(H+1)T7 Z®IT) (1.1)

T T T
y= (y(TO)7 ...,y(TH)) , X =(xy,.c,xp) , w= (u(TO), ...,u(TH)) ,
T T
Yoy = Y asns - Ymyoan) » Uw) = (U athy - Umyren) > h=0, . I
Letting D denote the data, the likelihood takes a standard form:

_H+H)T _T
2

p(DI0,X) = (2r) = [

exp [—%UT (2'1 ® IT) u]

_(H+DT

T 1
= (2m)" 2 |X%| ?exp [—Etr (UTUE—l)},

U= (’l,l,(o)7 ,’UJ(H)) .
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1.2.1.2 Bayesian Inference

This section first discusses priors on the subsets of 8 and then assembles them into a prior on 8,
followed by a description of the priors on the other parameters. Lastly, the posterior simulation
method is discussed.

We introduce a class of roughness penalty priors for 8; = (6(g) ;, ..., H(H)J)T, j=1,..J.
Our prior construction is motivated by Lang and Brezger (2004). The prior induces an rth-
order random-walk behavior on a sequence of parameters 6 ;, ..., 0(m) ;. When r = 2, the
relationship between 6,) ; and successive parameters is represented by

O = 20015 = 0215+ s o~ N (0 77AG),)

for h = r,..., H, where 7; and A(y,) ; are global and local smoothing parameters, respectively.
Controlling 1ocal smoothness is potentially beneficial, because impulse response functions of-
ten have both strongly bent and smooth areas: for example, fast-growing responses immediately
after an occurrence of shock and virtually flat responses after convergence to a long-run equilib-
rium. In some applications, without the adaptation for local smoothness, an estimated impulse
response might be oversmoothed in some areas and undersmoothed in others. A prior on 6,
is an improper normal prior generated by an intrinsic Gaussian Markov random field (Rue and
Held, 2005), and the smoothing parameters are inferred from gamma priors, unlike in existing
approaches such as Miranda-Agrippino and Ricco (2017); Barnichon and Matthes (2019). The
hierarchy of the prior takes the form

H
T5 r 2
p(0;l75, Aj) o exp [‘gj > A (A0y.5) ]

h=r

= exp (—%OJ-TDTAJDBJ-)

Ay =land Ay ;j ~ G (), h=r+1,... H,
Tj ~ g(UhVQ) R

where A; = diag (A¢)j. ... Ar);), D is an (H — r)-by-(H + 1) difference matrix of order
7,2 11, N2, V1, and vy are pre-fixed hyperparameters, G (a, b) denotes a gamma distribution with
shape @ and rate b (and, thus, with mean a/b and variance a/ b?), and A" denotes the rth-order
difference operator. By assembling the priors on the subsets of 8, the prior density for 8 condi-
tional on 7 = {7, ..., 7y} and A = {A, ..., A} is represented as

p (67, A) x exp (—%tf@@) ,

J
Q=)> ((D"A;D)® E;), (1.2)
j=1
2For instance, when r = 2,
1 -2 1 0 0
D o 1 -2 1
0
0 0 1 -2 1



where E; is a J-by-J zero matrix in which the jth diagonal element is replaced by one. In
what follows, the above prior is referred to as an adaptive roughness penalty (A-RP) prior. As
a special case, the same prior with all local smoothing parameters set to one is called a non-
adaptive roughness penalty (N-RP) prior. For the N-RP prior, (1.2) can be rewritten as

Q= D'D® diag (71, ..., 7s) -

Choosing a prior of the covariance matrix 3 is non-trivial. Because of the strong correla-
tions between the residuals, 3 tends to be close to a matrix of ones and almost singular. If the
Jeflreys prior, a popular non-informative prior for covariance matrices, is employed, a posterior
simulation easily crashes due to the singularity of the gram matrix of the realized residuals.’
Therefore, prior-induced shrinkage is necessary to complete a posterior simulation. On the
other hand, as Alvarez et al. (2014) argue, an inverse Wishart prior, another popular choice, can
be unintentionally, significantly informative, resulting in significant biases. For these reasons,
we use a hierarchical inverse Wishart (HIW) prior for 3 (Huang and Wand, 2013):

NP ~IW (2P, (+ H),

® = diag (@), -, ) -

1

Oy ~ G <§7’U) ., h=0,.. H,

where ¢(;,,) is a hyperparameter to be inferred, ¢ and v are prefixed hyperparameters, and
IW (A,b) is an inverse Wishart distribution with scale matrix A and degrees of freedom b.
This prior distribution is seen as a scale mixture of inverse Wishart distributions, and is more
robust than an inverse Wishart prior. We conducted a simulation study that compares an in-
verse Wishart prior and the HIW prior and show that the HIW prior has better finite sample
performance than an inverse Wishart prior. See Section A.1 in the Appendix for details.

We can induce this prior to be arbitrarily non-informative by setting v to a very small value,
but Huang and Wand’s (2013) recommendation v = 1071 (in our notation) is too flat to com-
plete the posterior simulation in this chapter. Our default choice in this chapter is v = 0.01.
Although there is no general procedure to find a sufficiently small value of v, the results in
the subsequent sections are not sensitive to v as long as it is chosen from a fairly large range
[107%,107'] (see Section A.2 in the Appendix).

As demonstrated in Section A.2 in the Appendix, the proposed approach is not very sensitive
to the choice of the hyperparameters. However, as the priors used in this chapter are not scale-
invariant, a user of the proposed approach is strongly encouraged to conduct a prior sensitivity
check.

A posterior simulation is conducted using the Markov chain Monte Carlo (MCMC) algo-
rithm. Because all of the conditional posterior densities are standard, we can construct a block
Gibbs sampler. The joint posterior is represented as follows:

3Bayesian inference using the Jeffreys prior for 3 almost always fails for the synthetic and real data used in the
subsequent section.



Algorithm 1.1 Sampling € (Rue 2001)
6 ~N (m P‘l) :
m=P'(2'23X")y, P=Y"'9X'X+Q=LL".

Step 1. Sample @ ~ N (O¢zr41)7, I (#r41)7)-
Step 2. Solve L™ b = a to obtain b.

Step 3. Solve Le = (7' ® X ) y to obtain c.
Step 4. Solve L' m = ¢ to obtain m.

Step 5. Set 8 = b+ m.

p(0, 7, A%, ®D) x p(DO,X)p@|T,A)p(T)p(A)p(X|®)p(P)

T 1
x |X] H exp [—éuT (' Ir) u}
.
X exp —59 Qo
J
X 1_[7';’171 exp (—1aT;))

XH H A";L)Jlexp 772)\(h),j)

j=1 h=r+1

-~ 1
[20® 77 BT exp —5u (@)
H 1
X H gﬁ(i) exp (—Ugb(h)) i
h=0
Each sampling block is specified as follows.

Sampling & The conditional posterior density of 8 is given by the multivariate normal distri-
bution:

6|— ~ N(m, Pil) ,

m = P (Z'2X")y, (1.3)
P = 2'9X'X+Q. (1.4)

This block is computationally demanding, with two bottlenecks. The first is concerned with
calculation of the prior precision matrix, which involves repeated high-dimensional matrix mul-
tiplications, Eq. (1.2). The computational cost declines significantly by treating ¢ as a sparse
matrix. The second bottleneck is the inversion of P. For speed and numerical stability, we apply
the algorithm described in Section 2 of Rue (2001) (see Algorithm 1), which exploits a banded
structure of P; inverting a lower-triangular Cholesky root of P, (denoted by L), is faster and
more numerically stable than inverting P itself.



Sampling 7 and A The conditional posteriors of the smoothing parameters for 6,, j =
1,..., J, are specified as the following gamma distributions: for j = 1,.... J,

H -7 1
Til—~G <1/1 + — + §BIDTAJ-D9J'> ,

1 Ts
Awy il =~ G <’771 +5 Tkt EJ

(A’“e(h),jf) ch=7+1... H

Sampling > and & The conditional posteriors of 3 and ® are

- ~IW(A®+U'U, (+H+T),

‘ (+H+1 B
Pny|—~ G <T, u+§(2 1)h7h) ., h=0,. H,

where (£7), , denotes the (h + 1,2’ + 1)-element of X~

1.2.2 Local projection with B-spline expansions

We consider a local projection with B-spline expansions as an additional smoothing device.
We intend to approximate an impulse response function f, (h) using a B-spline basis function
expansion over a projection horizon*

K
Fo () = By = Y bupr (h) = b (R),
k=1

where K is a number of knots, b = (by,...,bx)' is a vector of coefficients, and ¢ (h) =
(1 (h) ..., (h))" is a vector of B-spline basis functions. We define the approximations
of the other coeflicients in a similar fashion. Given the approximation, the model is represented
as

K K
Yasn ~ > aron (h) + > begr (h) 2o+ > > ciupn (B) wye + wn e

J—2
= a'@(h)+b @ (h)z+ Z CJ'TSO (h) Wit + ) t4n

=1
= ' (x: Q@ (h)) + W(h),t+hs

T. . .
where @ = (b",a', ¢, ...,c)_,) isa vector of corresponding parameters. We reindex 9 =

(19?, ﬂ;)T for expositional convenience. Letting Z(5); = %, ® ¢ (), the model can be
expressed as

Ymyirh = O s+ Uy iin
Stacking these equations over the projection dimension yields a representation a la SUR:

yt - Xtﬁ_'_,u’tt

4See, for example, De Boor (1978); Eilers and Marx (1996) for a detailed description of B-splines.
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Y, = (o, ---vy(H),t+H)T~ X, = (%01, -~-~1~U(H),t)—ra ur = (o)t ~~-au(H),t+H)T7

fort =1, ..., T. Rearranging the above representation delivers

y:XqHu, uw~ N (Osnr. @ Ir), (1.5)
T
T x! T Ty
y=(v0 - v ) - <X<o> (H)) w=(ug) i)
T Y - T
Yo =(vm1 - vmr) » Xw=(Zmwma - Zar) , h=0..H

-
WU(n) = (u(h),la -~~=U(h),T) , h=0,... H

We construct a posterior simulator for the model in a similar fashion as the model without
B-spline expansions. Given the same priors for 7 and A, a prior on 4 is constructed as

p (P T, A) x exp (—%fﬁQﬁ) ,

Q = blkdiag (nD'A\D,,....7;D"A;D). (1.6)

The conditional posterior density of ¥ is derived as the multivariate normal distribution

I—~N(m, P,

m = P'X (S wl)y,
P=Q+X (3 'sly)X (1.7)

As in the model without B-spline expansions, this sampling block presents a major computa-
tional burden. On the one hand, the prior precision matrix @ can be calculated easily by virtue
of its block diagonal structure (1.6) (unless the number of covariates .J is not extremely large).

On the other hand, the quantity X ' (7' ® Ir) X in (1.7) involves a high-dimensional matrix
multiplication and cannot be compressed as in (1.4), eventually making the posterior simula-
tion more demanding than the previous case. Sampling distributions of the other parameters are
derived analogously to those of a model without B-spline expansions.

1.3 Simulation Study

We conducted Monte Carlo simulations to investigate the performance of our proposed ap-
proach. We considered six specifications consisting of the combination of three priors, each
with/without B-spline expansions. As with the N-RP and A-RP priors, we considered a weakly
informative independent standard normal prior, @ ~ A/ (0, 10*I).

First, we considered a linear data generating processes (DGPs) specified by the following
moving average representation:

H
Ye = Z By ze-n + €,
h=0

ZtNN(071), EtNN(O,l),



where y; is an endogenous variable, z; is an exogenous variable, and ¢; is the measurement
error. A set of parameters (). ..., (g represents an impulse response. True parameter values
are defined as a convex curve:

hexp (r(1—h))
Sl exp (r (1= h))

r~U(01, 1),

By =

where U (0.1, 1) denotes a uniform distribution with support (0.1, 1), and » governs where the
peak of the impulse response is located. Covariates are a constant and four lags of y; and z;. We
fixed the length of the impulse response to [/ = 20 and the effective sample size to " = 50, 100.
Hyperparameters are v = v; = 1, = 0.01, 7 = 1 = 2 = 0.5, and v = 0.01. We choose
the order of the difference matrix as » = 2, implying that the sequences of parameters to be
inferred are reduced to straight lines. We use the B-spline basis with equidistant knots ranging
from —2 to H — 1 with unitary increments. We set the degree of the B-spline bases to three.
We generate 500 sets of synthetic data. Gibbs sampling obtained 40,000 posterior draws, after
discarding the initial 10,000.> Each chain is initialized to an ordinary least squares estimate.

We compared the alternative approaches on the basis of four performance measures: mean
squared errors (MSE), lengths of credible intervals (Length), and computational speed (Speed).
MSE is the sum of mean squared errors,

M
MSE = M ! Z Z (Bm,(h) - 5%%))2 ,

H
m=1 h=0

where Bm,(h) denotes a posterior mean estimate of /33 in the mth experiment, | Zﬁ) denotes

the corresponding true value, and M is the total number of experiments. Length denotes the
arithmetic mean of the lengths of a 90% credible interval,

M H
Length = 47 (11-+1)7 323 (4126 = )

m=1 h=0

Speed is the mean computational time of posterior simulations in seconds.®

Table 1.1 reports results of the first experiment. With regard to MSE and Length, the N-RP
and A-RP priors outperform the normal prior, while the A-RP prior performs slightly worse
than the N-RP prior. Using B-spline expansions reduces MSE and Length but the magnitude is
tiny. Speed depends on the prior specification and on whether a B-spline is used. The differ-
ence attributable to the choice of prior is not notably large, but the use of a B-spline imposes
a significant computational burden. When B-spline expansions are emplo , approximately
95% of computational time during each MCMC cycle is spent calculating P, in particular, a

quantity x' (2*1 o | T) X . This bottleneck is a simple matrix-matrix multiplication that is
executed via a built-in mathematical routine of Matlab, so switching to a compiled language
such as Fortran and C/C++ will not totally resolve the problem. We checked the sensitivity
of the simulation results to choice of the hyperparameters. The results are summarized in the
Appendix.

3Tn this study, the number of MCMC iterations is chosen based on pilot runs so that the minimum of the effective
sample sizes for obtained posterior draws (except the warmup draws) in each experiment is no less than 15,000.

6 All programs were written in Matlab 2016a (64 bit) and executed on an Ubuntu Desktop 16.04 LTS (64 bit),
running on Intel Xeon E5-2607 v3 processors (2.6GHz).
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Table 1.1: Results of the Monte Carlo simulation: linear IRF
T Prior B-spline MSE Length Speed

Normal 0.542 0.976 99
Normal Vv 0542 0976 1174
50 N-RP 0.131 0.432 105
N-RP vV 0.130 0.423 1164
A-RP 0.150 0.468 120
A-RP Vv 0.151 0.459 1167
Normal 0.243  0.599 150
Normal Vv 0.243  0.599 4296
100 N-RP 0.067 0.309 152
N-RP Vv 0.067 0.301 4291
A-RP 0.074 0.331 167
A-RP vV 0.074 0.323 4299

Note: MSE denotes the mean squared error. Length denotes the length of
the 90% credible interval. Speed denotes computational time in seconds.

It is not surprising that the B-spline function expansions have only a marginal effect, given
that response variables can appear as functional data observed on an equally spaced grid.” Panel
(a) in Figure 1.1 displays B-spline basis functions on a fine grid (2,401 points) and simulated
functional data. This situation is presumed in a functional data analysis. In a local projection,
however, observation points (A = 0, ..., H) are sparse and invariant, as demonstrated in panel
(b). As is evident from there, B-spline expansions merely allocate observed information to the
fixed grids, rather than interpolating neighboring information. In our case, observed information
for a single grid point is allocated to neighboring grid points with weights {1/6, 2/3, 1/6}.3
Therefore, using a B-spline indeed smooths estimates of impulse responses, but its effectiveness
is limited.

We fortified our results by considering nonlinear DGPs characterized by asymmetric and
state-dependent impulse responses, respectively. The asymmetric DGP is specified by

H
U = Z (ﬂ([i})zt—hl{zt_h<0} + ﬁ([i])zt—hl{zt_hzo}> + e,
h=0
while the state-dependent DGP is specified by

H
ye= (5([}3)Zt—h1{yt_h<0} + ﬁéi])zt—hl{yt_hzoﬂ + e
h=0
where 1y, denotes the indicator function. For both cases, two sets of parameters are indepen-
dently generated in the same way as the linear DGP. We set 7" = 80, 160. The other settings
are exactly the same as those in the first experiment. For computational reasons, we did not
consider a model with B-spline expansions. Table 1.2 presents the results, in which we largely
verified the result of the first experiment. With regard to MSE and Length, the N-RP and A-RP
priors consistently improve accuracy versus the normal prior.

"From this point of view, local projections are similar to functional data models such as Guo (2002); Morris
and Carroll (2006).
8When the degree of the B-spline bases is increased to 5, the weight set becomes {1/120, 13/60, 33/60, 13/60,
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Figure 1.1: B-spline basis

(a) functional data analysis
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(b) local projection
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Note: The solid lines show B-spline basis functions used in a functional
data analysis (panel (a)) and local projection (panel (b)), respectively. Points
are simulated observations for each case. Thick lines highlight the basis
functions centered at the sixth knot.

Table 1.2: Results of the Monte Carlo simulation: nonlinear IRF

T DGP Prior MSE Length
Normal 2.489 1.439
Asymmetric N-RP  0.564 0.618
A-RP  0.643 0.670
Normal 1.526 1.073
State-dependent N-RP  0.453  0.500
A-RP  0.504 0.541
Normal 1.211 0911
Asymmetric N-RP  0.339 0.445
A-RP  0.373 0.477
Normal 0.648 0.666
State-dependent N-RP  0.216  0.355
A-RP  0.234 0.380

Note: MSE denotes the mean squared error. Length denotes the length of
the 90% credible interval.

80

160
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From the simulation study, we obtained two findings. First, our proposed approach improves
the finite sample performance of local projection, while such improvements are almost entirely
attributable to the roughness penalty priors and not to the B-spline expansions. Second, despite
its flexibility, the A-RP prior is not superior to the N-RP prior. In conclusion, a specification
with the N-RP prior and no B-spline expansion is recommendable as a first choice.

1.4 Application

To demonstrate our model, we applied our approach to an analysis of monetary policy in the
United States. We use monetary policy shocks compiled by Coibion et al. (2017) which is an
update of Romer and Romer (2004).° For the covariates and the response, we considered the fol-
lowing three macroeconomic variables, downloaded from the Federal Reserve Economic Data
(FRED), maintained by the Federal Reserve Bank of St. Louis: the industrial production in-
dex (FRED mnemonic: INDPRO), the consumer price index for all urban consumers: all items
(CPIAUCSL), and the effective federal funds rate (FEDFUNDS). We also treated all three as re-
sponse variables. We included lags of monetary policy shock as covariates. All data are monthly
and spans from March 1969 to December 2008. The range is limited by the availability of data
for monetary policy shocks. Industrial production and the inflation rate are seasonally adjusted,
and included as annualized month-to-month percentage changes (log-difference multiplied by
1,200). We included the time trend and up to four lags of covariates. We choose hyperparam-
eters as in the previous section. The Gibbs sampler obtained a total of 40,000 posterior draws
after discarding the first 10,000.

Figures 1.2, 1.3, and 1.4 show posterior estimates of the impulse responses of the macroeco-
nomic variables to monetary policy shocks under different specifications. Figs. 1.5, 1.6, and 1.7
display credible intervals for all the specifications. The shaded areas indicate the 90% credible
sets for a preferred specification using no B-spline and the N-RP prior. For all the response vari-
ables, the roughness penalty priors successfully penalize the roughness of the impulse response
functions. Thus, we obtain economically plausible, smoothed estimates, and can interpret the
shape of the impulse response easily, recognizing the underlining response. Use of the B-spline
e Ise response.

We then compared the fitness of these estimates based on the deviance information crite-
rion (DIC) (Spiegelhalter et al., 2002) and the Watanabe—Akaike information criterion (WAIC)
(Watanabe, 2010). Table 1.3 reports on both criteria for different specifications (reported val-
ues are on the deviance scale; the smaller, the better). Specifications including the roughness
penalty priors outperform the normal prior in predictive accuracy regardless of the fitness mea-
sure, while the use of a B-spline yields only limited improvement. Both B-spline and the rough-
ness penalty prior enhance fitness, but almost all improvements originate from the latter.!® This

1/120}. The added weights are too small to affect the estimate (1/120 = 0.0083).

°The time series of monetary policy shocks is from Yuriy Gorodnichenko’s website
(https://eml.berkeley.edu//~ygorodni/index.htm).

19Both the DIC and WAIC are asymptotically related to the AIC. Thus, one might consider evaluating the sta-
tistical significance of the difference in the values of the criteria of two models by applying a rule of thumb that is
originally proposed to Bayes factor. As Burnham and Anderson (2004) describe, the AIC can be interpreted as an
approximation of the log marginal likelihood of a model under a "savvy" prior that is a function of sample size and
the number of model parameters. According to Jeffreys’s (1961) rule of thumb, the statistical significance of the
difference between two models is "weak” if the difference in the AIC/DIC/WAIC is 0-2, "positive" if 2-6, "strong"
if 6-10, or "very strong" if >10 (see also Raftery, 1995). When this rule of thumb is directly applied to Table 1.3,
one might be able to interpret the results as follows: the statistical significance of the differences related to the
prior choice is "very strong,” and the significance of the differences attributable to the use of B-splines is "weak”

12



Figure 1.2: Response of industrial production to monetary policy shocks

0.6 T T T T T

04

0.2 r

0 \/ Vv

w/o B-spl., Normal Prior
sl = \v/0 B-spl., N-RP Prior

I w B-spl., Normal Prior
-------- w B-spl., N-RP Prior

0.6 1 1 1 1 1

0 4 8 12 16 20

Note: The thin solid line traces the posterior mean for a specification with no
B-spline and the normal prior. The thick solid line traces the posterior mean
for a specification using no B-spline and the N-RP prior, and the shaded area
indicates the corresponding 90% credible set. The thin dotted line traces the
posterior mean for a specification with B-splines and the normal prior. The
thick dotted line traces the posterior mean for a specification with B-splines
and the N-RP prior.
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Figure 1.3: Response of inflation to monetary policy shocks
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Note: The thin solid line traces the posterior mean for a specification with no
B-spline and the normal prior. The thick solid line traces the posterior mean
for a specification using no B-spline and the N-RP prior, and the shaded area
indicates the corresponding 90% credible set. The thin dotted line traces the
posterior mean for a specification with B-splines and the normal prior. The
thick dotted line traces the posterior mean for a specification with B-splines
and the N-RP prior.
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Figure 1.4: Response of fed funds rate to monetary policy shocks
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Note: The thin solid line traces the posterior mean for a specification with no
B-spline and the normal prior. The thick solid line traces the posterior mean
for a specification using no B-spline and the N-RP prior, and the shaded area
indicates the corresponding 90% credible set. The thin dotted line traces the
posterior mean for a specification with B-splines and the normal prior. The
thick dotted line traces the posterior mean for a specification with B-splines
and the N-RP prior.
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Figure 1.5: Response of industrial production to monetary policy shocks
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Note: The thick lines trace the posterior mean. The shaded area indicates
the 90% credible set.
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Figure 1.6: Response of inflation to monetary policy shocks

Normal prior

~ -

12 16 20 24

~

12 16 20 24

0.6

04 ¢
0.2 ¢

0

02 f
0.4 |

-0.6

0.6

04 ¢
0.2 ¢

0

02}
0.4 |

-0.6

N-RP prior
0 4 8 12 16 20 24
—
0 4 8 12 16 20 24

Note: The thick lines trace the posterior mean. The shaded area indicates
the 90% credible set.
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Figure 1.7: Response of the Fed funds rate to monetary policy shocks
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Note: Thick lines trace the posterior mean. The shaded area indicates the
90% credible set.

finding supports our simulation results. When the B-spline is not used, the posterior simulation
takes 26 minutes to generate 50,000 draws; when it is used, the same simulation takes 66 hours.
Considering the higher computational cost, use of a B-spline would not be out of proportion to
the benefit for many applications (Table 1.3).

1.5 Comparison with Existing Approaches

Recent frequentist approaches to estimate smooth impulse response are closely related to ours
in that their objective functions have forms similar to the posterior densities we present, i.e.,
the sum of a log Gaussian likelihood and a penalty term. From this perspective, Barnichon and
Brownlees (2019) can be seen as a frequentist counterpart to our approach with both B-spline
expansions and roughness penalty priors. Their objective function is written in our notation as

~ ~ 2
9 —argmin ||ly ~ X9| +9" (FI, > D' D)o

They propose to selecting a (scalar) smoothing parameter 7 using a A-fold cross validation.
Barnichon and Brownlees’s (2019) approach bears only one smoothing parameter, rendering
it less flexible than ours. Figures 1.8, 1.9, and 1.10 plot the posterior estimates of the (global)
smoothing parameters for the real data considered in Section 1.4. As evident from these figures,
the posterior estimates of the smoothing parameters are significantly different from covariate to
covariate. Having single smoothing parameter seems implausible in practice.

or "positive" when the Normal prior is used while it is "very strong" when the N-RP prior is used.
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Table 1.3: Comparison of fitness

(a) Industrial production

Normal prior
DIC  WAIC

N-RP prior
DIC  WAIC

without B-spline
with B-spline

32,585 31,894
32,583 31,894

31,872 31,431
31,854 31,423

(b) Inflation Normal prior N-RP prior
DIC WAIC DIC WAIC
without B-spline 29,955 29,073 29,321 28,675

with B-spline

29,950 29,068

29,309 28,647

(c) Fed funds rate Normal prior N-RP prior
DIC WAIC DIC WAIC

without B-spline 35,457 34,901 34,756 34,455

with B-spline 35,461 34,902 34,732 34,445

Note: Values of the DIC (deviance information criterion) and WAIC
(Watanabe-Akaike information criterion) under different specifications are
reported. All values are on the deviance scale.

Figure 1.8: Posterior of smoothing parameter: industrial production
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Note: The lines within the boxes denote the posterior median, the edges of
the boxes denote the 25th and 75th percentiles of the posterior sample, and
the end points of the solid line denote the 5th and 95th percentiles of the

posterior sample.
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Figure 1.9: Posterior of smoothing parameter: inflation
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Note: The lines withn the boxes denote the posterior median, the edges of
the boxes denote the 25th and 75th percentiles of the posterior sample, and
the end points of the solid line denote the 5th and 95th percentiles of the
posterior sample.
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Figure 1.10: Posterior of smoothing parameter: Fed funds rate
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Note: The lines withn the boxes denote the posterior median, the edges of
the boxes denote the 25th and 75th percentiles of the posterior sample, and
the end points of the solid line denote the 5th and 95th percentiles of the
posterior sample.
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El-Shagi’s (2019) approach can be regarded as a frequentist version of a model using the
N-RP priors and no B-spline expansion. His estimator is written in our notation as

. ~ 2
6 = arg min Hy—XBH +0" [D'D ® diag (7, ..., 77)] 6.

This boilds down to a least squares estimator of 8 for an extended model specified by

Yy Iy X 0 u
( OH*T—"—I ) D® dlag( 1/2a ) }/2> + ( u” ) ’

where u* is an (H — r + 1)-dimensional vector of pseudo residuals generated by the penalty
term. Let 3" denote the covariance matrix of w*. Given X and X*, a generalized least squares
(GLS) estimator of @ is

~ ~ T ~

6 = 39 (X'X)+D ()" D =Xy, (1.8)

D = D & diag <711/ e }/2) :
He chooses = 2, restricts 3 to be diagonal and set 3 to a submatrix of X, that is,

3 = diag (J&O, . J?{’H) , X" =diag (ail, s JIZLI_LH_l) @Iy

As X is unknown, the parameters are estimated through a feasible GLS procedure. First, an
ordinary least squares (OLS) estimate 00 g is obtained, and then EO Ls is computed using the
realized residuals. Second, using EO LS, a first-stage GLS estimate 0(; LS is computed as (1.8)

and compute Yo S usmg the obtained realized residuals. Lastly, using Sar s,1, a second-stage

(final) GLS estimate 8 = O Ls2 is obtained. He chooses 7 = {7, ..., 7;} by minimizing the
finite sample corrected Akaike’s information criterion (AICc) (HurV1ch et al., 1998),

25 (5 +1)

AlC.(T) = —2logp (D‘éGLS,Za 2(;Ls,l) + 20 + T 1

or a variant of the Bayesian information criterion (BICc) analogously defined as the AlICc,

25 (5 +1)

BIC. (1) = —2logp (D|9GLS,2= 2GLS,1) + (logT) d + T 1

d denotes the effective loss of degrees of freedom (or pseudo dimension of the model) which is
defined as the trace of a hat (or projection) matrix P with Y= Py, that is, 0 = tr {15} with

P=[2'2(X'X)+ (DT (2)"' D) adiag(r,...7,)] [ = (X X)].

In terms of nonparametric regressions, 6 measures the effective number of zero-th order poly-
nomial bases defined over the projection horizons H, xy, ...., ;. This approach can be crudely
interpreted as a maximum a posteriori estimation of a local projection using a (non-adaptive)
roughness penalty prior of 8, a “prior” of T generated from the AICc or BICc, and a non-
informative prior of 3. Figures 1.11, 1.12, and 1.13 represent estimated IRFs of monetary
policy shocks using El-Shagi’s (2019) approach along with the default Bayesian estimates. The
IRFs obtained by both approaches are fairly comparable.
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Figure 1.11: Response of industrial production to monetary policy shocks: frequentist and
Bayesian approaches
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Note: The solid line traces the posterior mean for a Bayesian approach, and
the shaded area indicates the corresponding 90% credible set. The dashed
line traces an estimate for a frequentist approach with the AICc. The dotted
line traces an estimate for a frequentist approach with the BICc.
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Figure 1.12: Response of inflation to monetary policy shocks: frequentist and Bayesian ap-
proaches
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Note: The solid line traces the posterior mean for a Bayesian approach, and
the shaded area indicates the corresponding 90% credible set. The dashed
line traces an estimate for a frequentist approach with the AICc. The dotted
line traces an estimate for a frequentist approach with the BICc.
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Figure 1.13: Response of fed funds rate to monetary policy shocks: frequentist and Bayesian
approaches
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Note: The solid line traces the posterior mean for a Bayesian approach, and
the shaded area indicates the corresponding 90% credible set. The dashed
line traces an estimate for a frequentist approach with the AICc. The dotted
line traces an estimate for a frequentist approach with the BICc.
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Figure 1.14: Response to monetary policy shocks: inferred and fixed smoothing parameters
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(c) fed funds rate

Note: The solid black line traces the posterior mean for a model with inferred
smoothing parameters. The bold dotted line traces the posterior mean for a
model with fixed smoothing parameters. The shaded area indicates a 90%
credible set for a model with inferred smoothing parameters. The thin dotted
line indicates 90% credible set for a model with fixed smoothing parameters.

We can identify three advantages of the proposed Bayesian approach over the frequentist
approaches. First, our approach can provide credible intervals in a consistent and straightfor-
ward manner. In contrast, at this time, the frequentist approaches have no statistically grounded
method to estimate confidence intervals; Barnichon and Brownlees (2019) mention a heuristic
method, while El-Shagi (2019) does not discuss a method to estimate confidence intervals.

Second, while frequentist approaches fix smoothing parameters before inference by cross
validation (Barnichon and Brownlees, 2019) or penalized optimization (El-Shagi, 2019), our
approach infers them using priors, allowing us to systematically consider uncertainty in the
smoothness of an impulse response (and other sequences of coefficients). The quantitative sig-
nificance of this conceptual advantage depends on context. We re-estimated the model with the
(global) smoothing parameters fixed to the posterior medians for the default specifications. As
shown in Figure 1.14, for the real data in Section 1.3, there is no significant difference.

Third, the proposed approach has better finite-sample performance. We compared El-Shagi’s
(2019) approach to ours through a simulation study. The simulation setup is the same as that
of the linear IRF in Section 1.4. ' We examine specifications with unrestricted and diagonal
covariance matrices for both El-Shagi’s (2019) and our Bayesian approaches. A half-t prior is
used for the diagonal elements in 3, denoted by a(zh), h =0, ..., H. Itis derived from the HIW
prior:

"'We minimize the information criteria using the limited-memory Broyden-Fletcher-Goldfarb-Shanno algorithm
with bounds (Byrd et al., 1995), using a Matlab routine minConf _TMP.m written by Mark Schmidt.
(https://www.cs.ubc.ca/~schmidtm/Software/minConf.html)

25



, 1
U(Qh)|@ ~IG (é CC%)) . by~ G <§,U> ., h=0,.. H.

We choose v = 0.01 as in Section 1.3. The result is summarized in Table 1.4.!% In line with the
simulation study by El-Shagi (2019), finite sample performance of the BICc is comparable to or
slightly better than the AICc. The Bayesian approach obtained smaller MSE on average than the
FGLS approach for both covariance specifications. For the frequentist approach, specifications
with diagonal covariances obtained smaller MSEs than those with unrestricted covariances,
whereas for the Bayesian approach, the situation is the opposite. It is difficult to identify a
specific reason behind this twisted simulation result. The plug-in estimator of 3 employed in
the frequentist approach might not work well for the short time series.!®> The overall winner was
the Bayesian approach with unrestricted covariance. Because residuals in a local projection are
strongly correlated by construction, assuming independence between them is inappropriate.

1.6 Conclusion

This study developed a fully Bayesian approach to estimate local projections using roughness
penalty priors. It is also considered a specification involving a B-spline basis function expan-
sion. Monte Carlo experiments have demonstrated that both B-splines and the roughness penalty
priors improve statistical efficiency, however, almost all the improvements originate from the
latter. Applying our proposed method to an analysis of monetary policy in the United States
shows that the roughness penalty priors successfully smooth posterior estimates of the impulse
response functions, and can improve the predictive accuracy of local projections.

This study addresses one of the two disadvantages of local projections, compared with the
standard statistical framework that includes VAR, namely, that of less statistical efliciency. The
other disadvantage that the exogenous variable is identified ex ante can be resolved by a two-
stage regression approach, as in Aikman et al. (2016). Constructing a Bayesian counterpart to
this line of approach has not been studied. In addition, it is potentially beneficial to develop more
robust approaches than ours: for example, a choice of hyperparameters, heteroskedasticity and
autocorrelations in errors, and so on. This study provides a first step for further developments
of Bayesian local projections.

Appendix

A.1 Inverse Wishart Prior for X

This section compare an inverse Wishart prior with the hierarchical inverse Wishart prior we
propose. An inverse Wishart prior is specified by

where ¢ is a prefixed hyperparameter. The corresponding conditional posterior is

S-~IW(E+U'U, H+£+T+1).

12We also considered Jeffreys prior for J(th) and obtained almost the same result for the half-t prior (thus, it is
not reported).

13As T increases (e.g., T = 500), the relative performance of the FGLS approach with unrestricted covariance
becomes comparable with that with diagonal covariance (not reported).
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Table 1.4: Results of the Monte Carlo simulation: comparison to the frequentist approach

T Prior ~ Penalty/Prior MSE Length
full diagonal full diagonal
AlCc 0.221  0.162 - -
50 FGLS BICc 0.166  0.110 - -
Bayes N-RP 0.131  0.151  0.432  0.298
AlCc 0.100  0.091 - -
100 FGLS BICc 0.100  0.091 - -
Bayes N-RP 0.067 0.076 0309 0.213

Note: MSE denotes the mean squared error. Length denotes the length of
the 90% credible interval.

Table 1.5: Results of the Monte Carlo simulation: inverse Wishart prior for X

T Prior & MSE Length

HIW - 0.131 0432

50 0 0.227 0.299
Iw 1 0228 0.297

2 0.229 0.296

HIW - 0.067 0.309

100 0 0.090 0.217
Iw 1 0.090 0.216

2 0.090 0.215

Note: MSE denotes the mean squared error. Length denotes the length of
the 90% credible interval.

This prior is more popular and simpler than the HIW prior. A simulation environment is the
same with the linear case in Section 1.3. The simulation result is summarized in Table 1.5.
Though we considered ¢ = 0, 1, 2, the choice of £ had almost no effect on the result. Compared
to the HIW prior, the inference using the inverse Wishart prior tended to obtain a shorter length,
larger MSE. Based on the simulation result, we prefer the HIW prior to the inverse Wishart
prior.

A.2 Sensitivity Check

We investigated the sensitivity of the inference to the choice of hyperparameters. A simulation
setting is adapted from the linear case in Section 1.3. We considered » = 0.1,0.01, 0.001, 0.0001
for models with the N-RP prior and no B-spline. Table 1.6 shows the results, wherein two items
are noteworthy. First, as long as v is set between 0.1 and 0.0001, an estimation using the N-RP
prior is more efficient than one using the normal prior. Second, we see a bias-variance trade-off:
as v increases (i.e., shrinkage toward 0), an estimator becomes more efficient but less robust. Ta-
ble 1.7 reports the results for n = 1,0.5,0.1,0.01. We can see that as long as it is chosen within
this range, 1 does not significantly affect the performance. Even when 7 changes, the A-RP
prior cannot beat the N-RP prior. Table 1.8 includes the results for v = 0.1,0.01, 0.001, 0.0001.
There is almost no difference between the results for the alternative specifications, which im-
plies that v = 0.01 is sufficiently small for the synthetic data. The results for v = 1,2,3,4
are shown in Table 1.9. While this experiment indicates that » = 1 was the best choice, the
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Table 1.6: Results of the Monte Carlo simulation: sensitivity to the choice of v

T Prior v MSE Length
Normal - 0.542 0976
0.1 0.180 0.526
50 N-RP 0.01 0.131 0.432

0.001  0.099 0.367
0.0001 0.079 0.324

Normal - 0.243 0.599
0.1 0.090 0.378
100 N-RP 0.01 0.067 0.309

0.001  0.053 0.261
0.0001 0.043 0.228

Note: MSE denotes the mean squared error. Length denotes the length of
the 90% credible interval.

Table 1.7: Results of the Monte Carlo simulation: sensitivity to the choice of

T Prior n  MSE Length

Normal - 0.542 0976

N-RP -  0.131 0432

50 1.0 0.143 0.454

ARP 0.5 0.150 0.468

0.1 0.163 0.494

0.01 0.157 0481

Normal -  0.243 0.599

N-RP - 0.067 0.309

w g om o
A-RP ) ) )

0.1 0.078 0.344
0.01 0.074 0.332

Note: MSE denotes the mean squared error. Length denotes the length of
the 90% credible interval.

approach using the N-RP prior consistently outperformed that using the normal prior.
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Table 1.8: Results of the Monte Carlo simulation: sensitivity to the choice of v

T Prior v MSE Length

Normal - 0.542 0.976

0.1 0.130 0.438

50 0.01 0.131 0.432
N-RP 0.001 0.131 0.432
0.0001 0.131 0.432

Normal - 0.243  0.599

0.1 0.067 0314

100 N.RP 0.01 0.067 0.309

0.001  0.067 0.309
0.0001 0.067 0.309

Note: MSE denotes the mean squared error. Length denotes the length of
the 90% credible interval.
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Table 1.9: Results of the Monte Carlo simulation: sensitivity to choice of r

T Prior r MSE Length

Normal — 0.542 0.976

1 0077 0381

50 2 0131 0.432
N-RP 3 0.169 0.471

4 0.197 0503

Normal - 0.243 0.599

1 0046 0287

100 2 0.067 0.309
N-RP 3 0.081 0.328

4 0.090 0.344

Note: MSE denotes the mean squared error. Length denotes the length of
the 90% credible interval.

We also conducted a series of sensitivity checks for the real data application in Section 1.5
using the same alternative hyperparameter values above. Figures 1.15 to 1.18 depict the results
for v, n, v, and r, respectively. We see that choice of the hyperparameters did not affect the
shape of the impulse response functions.
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Figure 1.16: Response to monetary policy shocks: sensitivity to n
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Figure 1.18: Response to monetary policy shocks: sensitivity to r
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Chapter 2

Adaptive MCMUC for Generalized Method
of Moments with Many Moment
Conditions

2.1 Introduction

The generalized method of moments (GMM) is a widely used statistical framework (Hansen,
1982; Hall, 2005). Under GMM, unknown parameters are estimated via a set of moment con-
ditions. A parameter estimate is obtained by minimizing a GMM criterion constructed as a
quadratic form and composed of the sample mean of a vector-valued function that represents the
moment conditions and a weighting matrix. While GMM uses only lower-order moments, thus
being statistically less efficient than full-information methods such as the maximum likelihood
method, it has many advantages, including robustness to model misspecification, nonparametric
treatment of heteroskedasticity, and computational simplicity.

This study focuses on the Bayesian version of GMM. A GMM criterion can be viewed as a
quasi-likelihood, being theoretically equivalent to the Laplace approximation of the true likeli-
hood around its mode (Chernozhukov and Hong, 2003). Exploiting this feature, one can conduct
a (quasi-)Bayesian inference by replacing true likelihood with a GMM criterion, as discussed by,
for example, Kim (2002); Yin (2009).! Posterior draws from a quasi-posterior density (product
of quasi-likelihood and prior density) can be simulated using standard Bayesian Markov Chain
Monte Carlo (MCMC) techniques, such as the Metropolis-Hastings algorithm. In this study, we
call this inferential approach Bayesian GMM, in contradistinction to classical GMM.

A GMM criterion has many moment conditions for applications, making the estimator con-
siderably unreliable. There are cases where the number of moment conditions can be large,
including dynamic panel models (e.g., Arellano and Bond, 1991; Blundell and Bond, 1998;
Roberts and Rosenthal, 2009; Vieira et al., 2012), instrumental variable methods (e.g., Cher-
nozhukov and Hansen, 2005, 2013), and identification through heteroskedasticity (Lewbel, 2012).

The literature on classical GMM proposes several provisions to the problem such as sys-
tematic moment selection (Andrews, 1999; Andrews and Lu, 2001; Hall and Peixe, 2003; Hall
et al., 2007; Okui, 2009; Donald et al., 2009; Canay, 2010; DiTraglia, 2016; Chang and Di-
Traglia, 2018), averaging (Chen et al., 2016), and shrinkage estimation (Liao, 2013; Fan and
Liao, 2014; Cheng and Liao, 2015; Caner et al., 2018). On the contrary, the literature on
Bayesian GMM has paid scant attention to the problem, although remedies tailored to clas-

I'See also Belloni and Chernozhukov (2009); Li and J iang (2016) for a discussion of theoretical properties.
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sical GMM are not straightforwardly applicable to Bayesian GMM for two reasons. First, they
are two-stage procedures in which the final estimate is computed based on the first estimate with
the identity weighting matrix. However, such a strategy is not feasible in Bayesian GMM; be-
cause the relative contributions of a GMM criterion (quasi-likelihood) and a prior density to the
quasi-posterior depend on the weighting matrix, the mode of a quasi-posterior under the identity
weighting matrix is not consistent with that under the optimal weighting matrix. Therefore, in
Bayesian GMM, a weighting matrix has to be estimated along with the unknown parameters
of interest. Second, Bayesian GMM is often used for cases where numerical optimization does
not work well for the reason that a GMM criterion is discontinuous in parameters or has many
local optima. Therefore, even when a non-informative prior is employed, there are cases where
a first-step estimate is not readily available. The purpose of this study is to bridge this gap by
proposing a novel method to deal with Bayesian GMM with many moment conditions.

For both classical and Bayesian GMM, choosing a good weighting matrix is a significant
issue. It is theoretically optimal to set a weighting matrix to the precision matrix (i.e., the
inverse of the covariance matrix) of moment conditions, evaluated based on true parameter
values. Since this approach is infeasible in practice, two-step and continuously updated estima-
tors are commonly used in classical GMM (Hansen, 1982; Hansen et al., 1996). By contrast,
the literature on Bayesian GMM has paid less attention to the weighting matrix choice. Cher-
nozhukov and Hong (2003), who use the random-walk Metropolis-Hasting algorithm, suggest
recomputing the weighting matrix each time a parameter proposal is drawn; a posterior mean
of the weighting matrix is supposed to be optimal on average. In this approach, the unknown
parameters and a weighting matrix are updated concurrently. Consequently, the surface of the
quasi-posterior becomes complicated, making the MCMC algorithm inefficient and unstable.
To tackle this problem, Yin et al. (2011) propose an approach they call stochastic GMM, where
unknown parameters are updated one by one and the corresponding weighting matrix is also
updated accordingly. Their approach improves the numerical stability of the posterior simula-
tor by suppressing changes in the posterior in a single cycle. However, this approach requires
so many matrix inversions of the weighting matrix that it is not practical for models with many
moment conditions.

There are two difficulties in setting a weighting matrix when the number of moment con-
ditions is large. First, as in classical GMM, the sample estimate of the covariance matrix of
the moment conditions is unreliable, and the inversion of the covariance matrix can amplify
estimation errors. Second, it is computationally demanding because the inversion of the sample
covariance matrix is repeatedly computed. This problem is specific to Bayesian GMM.

In this study, we develop an adaptive MCMC approach to deal with the problem of many
moment conditions in Bayesian GMM. The proposal consists of two main contributions. First,
we propose estimating the precision matrix of the moment conditions using the nonparametric
eigenvalue-regularized precision matrix estimator developed by Lam (2016). This estimator is
more numerically stable than the standard estimator, the inverse of a sample covariance matrix.
Through a series of Monte Carlo experiments, we show that the proposed approach outperforms
existing ones in terms of both statistical and computational efficiency. Second, we propose a
random updating of a weighting matrix using the recursive mean of the posterior samples. In our
approach, adaptation probabilities are set to decrease exponentially, which ensures the validity
of the MCMC algorithm, and significantly saves computational cost.

The rest of this chapter is structured as follows. Section 2.2 introduces the proposed ap-
proach. Section 2.3 conducts a simulation study. In Section 2.4, we apply the approach to a real
data problem as an example. Section 2.5 concludes the paper with a discussion.
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2.2 Method

2.2.1 Setup and challenges

We consider the Bayesian inference of a statistical model by means of a set of moment condi-
tions. Assume that a likelihood function can be approximated by a quasi-likelihood based on a
GMM criterion (Hansen, 1982). We call this inferential approach Bayesian GMM (Kim, 2002;
Yin, 2009). Given data D and an L-dimensional parameter @, a statistical model is estimated
through a set of moment conditions represented by a K -dimensional vector of moment functions

My (0) = (M1 () ... ic (0)):

A GMM criterion v (@) is defined as the quadratic form of the sample mean of m,, (8), denoted
by 1 (8), and a symmetric positive definite weighting matrix W:

where N is the sample size. For notational convenience, we omit the dependence on D from
functions m,, (8), 7 (6), and v (6). A quasi-lik
as

vl

M

N

9\ -
- (%) det (W)
A GMM criterion can be seen as the Laplace approximation of the negative true likelihood

evaluated around the mode (Chernozhukov and Hong, 2003). Given a prior density p (@), the
posterior density p (8|D) is approximated as

() = 2—) det (W3 exp {—‘—VU(Q)}

ol

[SIE

exp {——m @) W (0)} .

¢(8/D)p(6)
0|D) ~ 51
porP) [q(0'|D)p (') d6" 2.1
where the denominator is generally unknown but constant. The posterior samples 8(; = (9[ s -

are drawn from this target density (evaluated up to the normalizing constant) using Bayesian
simulation techniques. In this study, we consider using Metropolis-Hastings (MH) algorithm as
in previous studies (e.g., Chernozhukov and Hong, 2003; Yin, 2009). Given a current state 6, a
single step of a MH algorithm is specified as follows.

1. A proposal 8’ is generated from a proposal kernel p (6’|6).
2. Compute the MH ratio « (6', 8) as

;o q(@D)p(8)p(6'10)
8.0 =" @D p @) p (06
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3. Set the next state to the proposal 8* = 8’ with probability of « (8",8) V 1, or set the next
state to the current state 8 = @ with probability of 1 — (o (6',6) V 1).

4. Return the next state 0*.

As in classical GMM, the statistical efficiency of the Bayesian GMM critically depends on the
choice of the weighting matrix W. W is optimal when it is set to the precision matrix of the mo-
ment conditions based on true parameter values 6. This choice is optimal in that it minimizes
the Kullback-Leibler divergence of the true data generating process to the set of all asymptot-
ically less restrictive distributions (Li and Jiang, 2016). Let M (8) = (m, (0),...,my (0))"
denote an /N-by-K matrix of the moment functions. The optimal choice of weighting matrix in

finite sample is
—1

W (8y) = |[N"'M (8,)' M (8,)

In classical GMM, it is a common practice to employ the two-step (Hansen, 1982) or contin-
uously updating estimators (Hansen et al., 1996). The two-step estimation method obtains a
first-stage estimate using an arbitrary weighting matrix (e.g., an identity matrix), then obtains
a second-stage estimate using a weighting matrix to a precision matrix of the moment condi-
tions based on the first-stage estimate. The continuously updating estimation method repeats
the two-step estimation for more than one time.

Despite its critical importance, the practical choice of W in the context of Bayesian GMM
has received rather scant attention. A straightforward approach to choosing W, which is em-
ployed by, for instance, Chernozhukov and Hong (2003); Yin (2009), can be described as fol-
lows. At the jth MCMC iteration, given the current parameters 8|;_, a proposal €’ is simulated
for a proposal density p (9’\9[j_1]). For simplicity, we assume the density is symmetric, e.g., a
normal distribution. The weighting matrix is set to the precision matrix of the moment condi-
tion based on @', that is, the parameter vector and weighting matrix are concurrently proposed
and updated (i.e., accepted or rejected). We call this approach the concurrent GMM. The MH
ratio is calculated as

q(0'D)p(6')p(0'16-1)
1 (0,-4|P) p (0-1) p (0;-16")
det (W (6)% exp |~ 5m (6) W (8)) 17 (8')| p(6))

 (0.61) =

det (W (8, 4))* exp [~ Xm0 (6 1) W (8 1) 172 (65 1) | (8 1)

This approach is motivated by setting a weighting matrix to an optimal one on average. Note
that uncertainty about W is inherently different from that about 8; W is not inferred using a
prior but it is crudely tuned along the posterior simulation.

Yin et al. (2011) argue this approach is slow to converge, because the concurrent updating
of 8 and W complicates the surface of the target density, resulting in an inefficient move of
the MH sampler. They propose an alternative approach, named stochastic GMM, where the
elements of @ are updated one by one, keeping W unchanged. This approach is designed to
update 8 and W gradually, suppressing instantaneous changes in the shape of the target density.
Let Oy = (801, - 03000 O30 11011, - B0 11.0) | denote a state at the jth MCMC iteration
after the {th parameter was updated. Once a proposed value of 9{ i 18 simulated, a proposal is

.
constructed as H’M = (9[%1]717 s O, ij,l“, Ola—1), 0415 - e[j,lfl},L) , and the MH ratio is
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given by
exp [_gm (61,) W (80 1) ™ (%.”)} P (0n)
exp [—%ﬁ’b (G[j,lfl])—r W (8)0-1)) m (OW*U)] ACT)

The underlying justification of this approach is exactly the same as the concurrent GMM. When
the number of moment conditions is large, this approach is computationally heavy, because it
requires many matrix inversions.

There are two challenges with regard to the choice of the weighting matrix for Bayesian
GMM, especially when the number of moment conditions K  is large, that is, K is comparable
to or even larger than the sample size N. The first is that when K is large, the covariance of the
moment functions is ill-estimated, and estimation errors are amplified through matrix inversions.
As mentioned in Section 2.1, remedies in classical GMM literature cannot be directly imported
to Bayesian GMM. Using the Moore-Penrose generalized inverse is a simple solution, but it
does not work well, as shown by the simulation study reported in Section 2.3.> The second
challenge is the computational cost. The existing approaches require repeated inversion of the
sample covariance of the moment functions, thus imposing severe computational loads.

a (6] 05 1) =

2.2.2 Proposed approach

The proposal of this study is comprised of two elements: regularized precision matrix estima-
tion and random update of weighting matrix. The former is aimed at improving the numerical
stability in update of W, while the latter is introduced to reduce the computational cost.

First, we propose to compute W using the nonparametric eigenvalue-regularized (NER)
precision matrix estimator (Lam, 2016), in which the eigenvalues of a sample covariance matrix
are regularized through splitting of the data.> The estimator has several favorable properties.
First, it is asymptotically optimal with respect to the Stein’s loss (Proposition 2 in Lam, 2016,
p. 937). Second, it is optimization-free and thus computationally less demanding than the other
shrinkage covariance/precision matrix estimators.*

-
Given 8, the moment functions are partitioned as M (8) = (M (O, M, (G)T) ,

where the sizes of My (8) and M, (8) are N;-by-K and N,-by-K, respectively. The covariance
matrices of the sub-samples are computed in a standard manner: ; = N,"' M, (8)" M, (6),
1 = 1,2. Let N* denote the sample size of the first sub-sample, or the splitting location,
N; = N7*, and then N, = N — N*. The eigenvalue decomposition of >, is represented by
> = P,D;P/,i = 1,2, where D; = diag (di1,-..,d; k) is a diagonal matrix containing the
eigenvalues of 3, d;; > --- > d; ., and P; = (Pi1- - Pix) is a matrix composed of the cor-
responding eigenvectors. Following Lam (2016), the sample covariance matrix of the moment
functions is estimated as

Sner =P [(PIE?QPl) © IK} P/

where I j is a K'-dimensional identity matrix and © denotes the Hadamard product. Therefore,
the corresponding precision matrix is given by

W () = P, [(Pjizpl) ® IK} P 2.2)

2See Satchachai and Schmidt (2008) on this point for classical GMM.

3 Abadir et al. (2014) consider a closely related covariance estimator.

4See, e.g., Pourahmadi (2011); Fan et al. (2016); Lam (2020) for a survey of the literature of covari-
ance/precision matrix estimation.
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Lam (2016) suggests improving this estimator by averaging many (e.g., 50) estimates using
different sets of partitioned data that are generated via random permutation. For robustness, we
also randomly permute m,, (8), n = 1, ..., N, for each computation of W .

The choice of the split location N* is non-trivial. Theorem 5 of Lam (2016, p. 941) suggests
that when K/N — ¢, it is asymptotically efficient to choose N* = N — aN'/2, with some
constants ¢, a > 0. However, this poses two difficulties. First, this asymptotic property is not
applicable when N* /N goes to a constant smaller than 1. Second, there is no practical guidance
for setting a. Lam (2016) proposes to choose N* to minimize the following criterion by means

of a grid search:
2
g(N™) = , (2.3)

F

d &(m) & (m)
Z(ENER—E2 )

m=1

where the superscripts for 2%’3 r and Egm) denote indices for different permutations, M is a
number of permutations executed, and ||-|| - denotes the Frobenius norm. Lam (2016) considers
the following grid as a set of candidates for N*:

{2NY2 02N, 0.4N, 0.6N. 0.8N, N — 2.5N"2 N — 15N"/2} 2.4

In our framework, one might consider tuning /N* adaptively based on the above criterion as well.
However, we do not adopt such a strategy, because the criterion is not informative enough to
pin down the optimal choice of N*, as shown in the subsequent section. A default choice in this
study is N* = 0.6V, that is, the median of Lam’s (2016) grid. As shown in the next section,
simulated posteriors are not sensitive to N*, as long as N'* is within a moderate range.

In classical GMM, Doran and Schmidt (2006) suggest using principal components of a
weighting matrix. From the author’s experience, a strategy using the standard principal compo-
nent analysis to estimate the weighting matrix does not work well for Bayesian GMM, which is
not considered in this study.

Next, we consider randomly updating a weighting matrix W. We explicitly treat W as
a tuning parameter, and update it on the fly as in adaptive MCMC algorithms (Haario et al.,
2001; Andrieu and Thoms, 2008; Roberts and Rosenthal, 2009). Our adaptation procedure is
motivated by Bhattacharya and Dunson (2011). At the jth MCMC iteration, the adaptation of
W occurs with probability s (j) = exp (ag + aqj), regardless of the previous proposal being
accepted or rejected. Throughout the study, we chose oy = —1 and oy = —10/Jyyarmup, Where
Jwarmup denotes the number of warmup iterations. If an adaptation occurs, W is updated using
the mean of the previous sample obtained; at the jth iteration, 8;_y = (j — 1) Zj;ll 0.
After warmup iterations, W is fixed to the end. This adaptation strategy satisfies the conver-
gence condition in Theorem 5 of Roberts and Rosenthal (2007). In our implementation, at every
Jthiteration, arandom variable is simulated from a standard uniform distribution, u; ~ {4 (0,1),
and W is updated if u; < s (j), where U (a, b) denotes a uniform distribution with support on
interval (a,b). At the jth iteration, given a proposal 8’, the MH ratio is calculated as
exp {— N (0) W (1)) m (e')} p(6')

2
exp [—%m (0 1) W (8 y) (BU*”)} P (0-)

This treatment of W does not conflict with the theoretical results of Bayesian GMM (e.g., Kim
2002; Chernozhukov and Hong 2003; Belloni and Chernozhukov 2009; Li and Jiang 2016).
Whilst in the existing literature there is a discrepancy between theory and practical computation
in how a weighting matrix is treated, our treatment of W is in agreement with the theoretical
results than existing approaches.

o (6,65 1) =
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2.3 Simulation Study

We compare the proposed approach with alternatives.> We compare the NER estimator given
by (2.2) with the standard estimators specified by

-1

[N*lM(G)TM(O)} . K <N,

W= [N‘lM(G)TM(G)r, K> N,

where A" denotes the Moore-Penrose generalized inverse of a matrix A. Six adaptation strate-
gies are considered. The first is fixing the weighting matrix of the moment conditions based on
the true parameter value (Oracle), the second is the concurrent Bayesian GMM (Concurrent)
(Chernozhukov and Hong, 2003; Yin, 2009), and the third is the stochastic GMM (Stochastic)
(Yinet al., 2011). The fourth is a MCMC version of the continuously updating GMM estimator
(Hansen et al., 1996) (Continuous), that is, W is updated in each cycle based on the current
recursive means of the sampled parameters. The fifth is the random update strategy we propose
(Random).

We adopt an instrumental variable (IV) regression as laboratory. A true data generating
process is specified by the following equations, forn =1,..., N,

Tp =20 +w,, w, ~N(0,02), (2.5)

where y,, is a response variable, z,, is an endogenous covariate, z,, is a K'-dimensional vector
of instruments, wu,, and w, are normally distributed errors, and N (u, o%) denotes a normal
distribution with mean p and variance o2. v = (.5 is a coefficient to be inferred. p = 0.2 is a

-

fixed parameter. The instruments are generated from a latent factor model: forn = 1,..., N,
z, = Bv, +¢€,,

v, ~N(05,Is), €, ~N(0g, ¥?),

where S is the number of latent factors, v,, is an S-dimensional vector of latent factors, €, is a
K -dimensional vector of idiosyncratic errors with covariance 2, and B is a K -by-S matrix of
factor loadings. The distribution of z,, is written as

z, ~N (0, BB +%¥?), n=1,.. N.
W2 are B are set as follows:
U2 = diag (¢, .., ¥%), Ye~U(2,4), k=1 .K,
B = (b)), bps~U(01), k=1, K s=1,..,5.
The coefficients of z,, are generated as
§=A"p, A=B' (BB +¥?) |
n=0n,...ns) ., ns~U01), s=1.85

>The programs in this study are written in Matlab 2019b (64bit), and executed on an Ubuntu Desktop 18.04
LTS (64bit), running on AMD Ryzen Threadripper 1950X (4.2GHz).
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We consider three scenarios with different numbers of instruments X' = {50, 150,250} and
factors S = { K, K/2,3}. The standard deviations of the errors, o, and ¢, are chosen so that
the ratios of the standard deviations of the errors to those of the signals, denoted by ¢, and ¢,),
are ¢, and g, respectively:

Or = S2qz;, Oy = Sydy,

1. =1/6' (BB +¥?)35,

@y = V72 (1 +2) + 224,

We fix ¢, = ¢, = 2. Unknown parameter 7 is inferred through a set of moment conditions,

E [(yn - ’77n) Zn] = Og.

We assign a flat prior on 7, p () o 1. The sample size is fixed at N = 200. For posterior
sampling, we employ an adaptive MH sampler of Vihola (2012), which automatically tunes the
covariance of a proposal density. The tuning parameters of the sampler are chosen as in Vihola
(2012). For all experiments, we simulate a total of 70,000 draws: the initial 20,000 draws are
used for warmup and the subsequent 50,000 for posterior estimates.® The initial value of ~ is
randomly generated from a uniform distribution with interval (—2.5,3.5). W is initialized to
an identity matrix.

We evaluate the results of inference of v according to four measures. The first is the failure
rate (Fail): when the estimated inter-quantile range of a target posterior density is larger than 1 or
smaller than 0.01, we regard the MCMC run as failed. The second is the mean squared error of
the posterior mean estimate (MSE). The third is the inter-quantile range of the posterior density
(IQR). The fourth is the total computation time measured in seconds (Speed). We conduct 500
experiments.

We compare the results for the precision matrix estimators. The left halves of Tables 2.1-2.3
show the results for the standard precision matrix estimator and the right halves show those for
the NER estimator. The upper parts of Tables 2.1-2.3 report the results for X' = 50, the middle
parts for K = 150, and the lower parts for X = 250. We see a similar pattern from the tables
regardless of the number of latent factors S relative to K.

When K > N, the numbers of Fail for the standard estimator exceeded a half of the number
of experiments (500), and the posterior simulations using the standard estimator are unsuccess-
ful. For instance, when S = 3, K = 250, and Random is used, the standard estimator failed
485 of 500 experiments (the last row of Table 2.3). In contrast, even with X > N, unless using
Concurrent, the numbers of Fail for the NER estimator are zero, which means that the NER
estimator provides reasonable posterior estimates. Therefore, when K > N, only the NER
estimator is a viable option.

For most cases, the MSEs for the NER estimator are smaller than those for the standard
estimator. For instance, when S = 3, K = 150, and Random is used, MSE for the standard
estimator was 0.0809, while that for the NER estimator was 0.0155. Thus, in terms of the esti-
mation accuracy, the NER estimator outperforms the standard estimator. While the advantage
of the NER estimator over the standard estimator in terms of MSE is not so large for relative
easy cases, i.e., K and/or S are small, even when the number of moment conditions K is smaller
than the sample size /V, the NER estimator is likely to obtain a more accurate posterior mean es-
timate than the standard precision estimator. It is also worth mentioning that, when K" > N, the

®In this study, the number of MCMC iterations is chosen based on pilot runs so that minimum of the effective
sample sizes for obtained posterior draws (except the warmup draws) in each experiment is no less than 15,000.
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posterior simulation using the NER estimator is almost as precise as the cases with X' < N. For
instance, when S = 3 and Random is used, the standard estimator had MSEs of 0.247, 0.0809,
and N/A (all the experiments failed) for K = 50, 150, and 250, respectively. On the other
hand, for the same cases, the NER estimator obtained MSEs of 0.0215, 0.0155, and 0.0166 for
K = 50, 150, and 250, respectively. A comparison between the results for the Oracle cases with
different precision estimators and K = 50. 150 reveals that the NER estimator is not better than
the standard one if the true value of 8 is known. For instance, when S = 3 and Random is used,
MSE:s for the standard estimator are 0.0104 and 0.0012 for A" = 50 and 150, respectively, while
those for the NER estimator are 0.0185 and 0.0121 for K = 50 and 150, respectively. However,
as suggested by a comparison between MSEs for cases using updating procedures other than
Oracle, the gain from the numerical stability of the NER estimator outweighs its efficiency loss
in practical situations.

We also investigate the sensitivity of the above results to the choice of split location N*.
We conduct Monte Carlo experiments using different N* and two preferred adaptation strate-
gies, Stochastic and Random. Following Lam (2016), we consider the grid of (2.4) (each N~*
is rounded to the nearest integer). Table 2.4 shows that the NER estimator consistently out-
performs the standard estimator, irrespective of the split location choice. In terms of MSE, a
moderate value of N* is preferred. To investigate how much this result is in agreement with
the criteria based on the Frobenius norm (2.3), we simulate the values of (2.3) for different
random permutations of the moment conditions using the true parameter. Panel (a) of Fig-
ure 2.1 reports the median and 90 percentile intervals of the simulated values for a fine grid
{0.1N, 0.15N,...,0.9N}. We only report the results for K = 250, as those for K = 50, 150
are qualitatively similar. As evident from the panel, an extremely high /N* is not preferred, but
the criterion is not informative enough to select a good N* from a considerably large range. The
variability of the criterion is not attributable to the small sample size. We conduct the same sim-
ulation as in panel (a) but the sample size increases to N = 5, 000. Panel (b) of Figure 2.1 shows
the results. As is the case of N = 200, the values of the criterion based on the Frobenius norm
are almost indifferent for a large range. As such, we recommend setting N* to approximately
half the sample size as default.

Next, we compare the results for the adaptation strategies. There are five points worth men-
tioning. First, Concurrent does not work despite high computational cost. Second, the relative
advantage of Stochastic to Concurrent in terms of numerical stability is in line with Yin et al.
(2011). Third, in terms of MSE, all Stochastic, Continuous, and Random work well. Stochastic
is better than Continuous and Random, while Continuous and Random are comparable. Fourth,
as shown by the IQR estimates, Continuous and Random are more optimistic than Stochastic.
Fifth, Random is much faster than Stochastic and Continuous. Figure 2.2 provides a typical
example of recursive posterior mean and the occurrence of random adaptation (NER estimator,
K = 150). From this figure, a posterior mean is fairly fast to converge, which indicates that
most updates of the weighting matrix in Continuous are essentially redundant. We find Random
has a good balance between statistical and computational efficiency, so that it is recommendable
for a test run. Compared with Random, although Stochastic is computationally demanding, it is
more accurate and conservative. Therefore, it is suitable for a final estimate.
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Ta le 2.1: Comparison of different approaches (1): S = K

Estimator Standard NER
K Adaptation Fail MSE IQR  Time Fail MSE IQR  Time
Oracle 0/500 0.0089 0.1292 22 0/500 0.0166 0.1349 2.2
Concurrent  201/500 - - 9.9 486/500 - - 359
50  Stochastic 0/500 0.0205 0.1305 4.6 0/500 0.0184 0.1529 11.2
Continuous 0/500 0.0210 0.1289 4.9 0/500 0.0215 0.1348 124
Random 0/500 0.0210 0.1287 2.3 0/500 0.0215 0.1348 2.6
Oracle 0/500 0.0012 0.0480 5.7 /500 0.0114 0.0939 5.7
Concurrent  383/500 - - 56.4 500/500 - - 247.5
150  Stochastic 0/500 0.0336 0.0689 19.9 /500 0.0137 0.1209 67.8
Continuous 0/500 0.0686 0.0480 21.8 /500 0.0162 0.0939  76.1
Random 0/500 0.0711 0.0481 6.3 /500 0.0166 0.0936 8.3
Oracle 375/500 - - 54 0/500 0.0115 0.0772 54
Concurrent  500/500 - - 458.5 500/500 - - 259.1
250 Stochastic ~ 395/500 - - 126.1 0/500 0.0142 0.1075 764
Continuous 480/500 - - 138.4 0/500 0.0162 0.0782  81.7
Random 450/500 - - 10.9 0/500 0.0176 0.0769 8.6
Notes: The column labeled Fail reports the number of failed runs. Column
MSE reports the mean squared errors of posterior mean estimates. Column
IQR reports inter-quantile ranges of posterior densities. Column Time re-
ports averages of computation time measured in seconds.
Table 2.2: Comparison of different approaches (2): S = K/2
Estimator Standard NER
K Adaptation Fail MSE IQR Time Fail MSE IQR  Time
Oracle 0/500 0.0085 0.1290 2.2 0/500 0.0151 0.1346 22
Concurrent  212/500 - - 9.9 481/500 - - 35.7
50  Stochastic 0/500 0.0217 0.1308 4.6 0/500 0.0179 0.1513  11.1
Continuous 0/500 0.0228 0.1288 4.9 0/500 0.0205 0.1335 123
Random 0/500 0.0228 0.1287 23 0/500 0.0204 0.1343 2.6
Oracle 0/500 0.0012 0.0476 5.7 0/500 0.0112 0.0937 5.7
Concurrent  402/500 - - 56.4 500/500 - - 247.8
150  Stochastic 0/500 0.0380 0.0701 19.9 0/500 0.0135 0.1187 68.0
Continuous 0/500 0.0619 0.0477 21.7 0/500 0.0169 0.0931 76.2
Random 0/500 0.0673 0.0482 6.3 0/500 0.0160 0.0935 8.3
Oracle 359/500 - - 10.4 0/500 0.0095 0.0787 104
Concurrent  500/500 - - 1036.2 500/500 - - 757.8
250 Stochastic ~ 398/500 - - 226.2 0/500 0.0113 0.1076 200.1
Continuous 475/500 - - 307.7 0/500 0.0130 0.0787 225.5
Random 467/500 - - 214 0/500 0.0135 0.0782 18.3

Notes: The column labeled Fail reports the number of failed runs. Column
MSE reports the mean squared errors of posterior mean estimates. Column
IQR reports inter-quantile ranges of posterior densities. Column Time re-
ports averages of computation time measured in seconds.
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Table 2.3: Comparison of different approaches (3): S =3

Estimator Standard NER
K Adaptation Fail MSE IQR Time Fail MSE IQR  Time
Oracle 0/500 0.0104 0.1288 2.6 0/500 0.0185 0.1258 2.6
Concurrent  208/500 - - 11.2 480/500 - - 40.8
50 Stochastic 0/500 0.0242 0.1303 54 0/500 0.0207 0.1352 12.8
Continuous 0/500 0.0247 0.1283 5.7 0/500 0.0219 0.1251 14.2
Random 0/500 0.0247 0.1282 2.8 0/500 0.0215 0.1267 3.1
Oracle 0/500 0.0012 0.0479 6.2 0/500 0.0121 0.0868 6.2
Concurrent  398/500 - - 71.3 500/500 - - 285.1
150 Stochastic 0/500 0.0379 0.0689 24.1 0/500 0.0139 0.1055 77.7
Continuous 0/500 0.0761 0.0487 26.5 0/500 0.0165 0.0863 87.3
Random 0/500 0.0809 0.0488 7.0 0/500 0.0155 0.0867 9.2
Oracle 363/500 - - 10.8 0/500 0.0110 0.0706 10.8
Concurrent  500/500 - - 1157.6 500/500 - - 829.3
250 Stochastic  480/500 - - 295.7 0/500 0.0142 0.0937 218.7
Continuous 493/500 - - 343.0 0/500 0.0161 0.0706 246.3
Random 485/500 - - 23.1 0/500 0.0166 0.0707 194

Notes: The column labeled Fail reports the number of failed runs. Column
MSE reports the mean squared errors of posterior mean estimates. Column
IQR reports inter-quantile ranges of posterior densities. Column Time re-
ports averages of computation time measured in seconds.

Figure 2.1: The Frobenius norm criterion for different permutations

(a) N = 200

(b) N = 5000

1 L ! L L L L L
500 1000 1500 2000 2500 3000 3500 4000 4500

Notes: Solid lines denote the median, and dashed lines denote the 90 per-
centile interval. K = 250. Moment conditions are calculated based on the
true parameter value.
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Figure 2.2: An example of random adaptation
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Notes: The x-axis denotes MCMC iterations and the y-axis denotes param-
eter values. A thin solid vertical line denotes the occurrence of adaptation.
A bold solid line denotes a recursive mean of posterior samples.

46



Table 2.4: Comparison of difterent choices of N*

Adaptation Stochastic Random
K  Estimator N* MSE IQR MSE IQR
Standard 0.0242 0.1303  0.0247 0.1282
28 (= [2NT77]) 0.0223 0.1174  0.0237 0.1109
40 (= 0.2N) 0.0220 0.1209  0.0225 0.1131
50 80 (= 0.4N) 0.0211 0.1299  0.0229 0.1201
NER 120 (= 0.6N) 0.0207 0.1354  0.0220 0.1261
160 (= OSN) 0.0206 0.1382  0.0218 0.1266
164 (= [N —25N'2]) 0.0205 0.1386  0.0223 0.1252
178 (= [N L5N'2])  0.0206 0.1408  0.0239 0.1233
Standard 0.0379 0.0689  0.0809 0.0488
28 (= [2N177]) 0.0171 0.0854  0.0182 0.0733
40 (= 0.2N) 0.0163 0.0904  0.0177 0.0753
150 80 (= 0.4N) 0.0145 0.1016  0.0165 0.0816
NER 120 (= 0.6N) 0.0139 0.1055  0.0160 0.0864
160 (= 0.8N) 0.0143 0.1051  0.0161 0.0887
164 (= [N —2.5N2]) 0.0144 0.1054  0.0158 0.0882
178 (= [N — 1.5N'2]) 0.0147 0.1083  0.0165 0.0847
Standard - - - -
28 (= [2N177]) 0.0177 0.0743  0.0184 0.0591
40 (= 0.2N) 0.0168 0.0796  0.0187 0.0611
250 80 (= 0.4N) 0.0148 0.0913  0.0173 0.0667
NER 120 (= 0.6V) 0.0142 0.0938  0.0163 0.0707
160 (= 0.8N) 0.0148 0.0916  0.0166 0.0710
164 (= [N — 25N'2]) 0.0149 0.0916  0.0175 0.0724

178 (= [N — L5NY2]) 0.0153 0.0939  0.0176 0.0693

Notes: The column labeled Fail reports the number of failed runs. Column
MSE reports the mean squared errors of posterior mean estimates. Column
IQR reports inter-quantile ranges of posterior densities.

2.4 Application

To demonstrate the proposed method, we apply it to a demand analysis for automobiles. Berry
et al. (1995) consider an IV regression model of demand for automobiles specified by

-
Yit = VPir + 0 Tiy+ Uiy,

vie = log (si4) —log (s0.) -

s;+ denotes the market share of product ¢ on market ¢, with subscript 0 denoting the outside op-
tion. The treatment p; ; is the product price. 2, is an error term, and -y and & are the parameters
to be estimated. The primary focus of this application is the inference of +.

We consider two specifications.” The first specification coincides with Berry et al. (1995)
as follows. A vector of covariates x,, includes four covariates, namely, air conditioning dummy,
horsepower to weight ratio, miles per dollar, and vehicle size. A set of instruments contains the

7All data are extracted from R package hdm (version 0.2.3).
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four covariates and ten variables, namely, sum of each covariate taken across models made by
product #’s firm, sum of each covariate taken across competitor firms’ products, total number
of models produced by product #’s firm, and total number of models produced by the firm’s
competitors. The second specification is an extension of the first, which is considered in Cher-
nozhukov et al. (2015). =, and z,, are extended from the first case by incorporating a time trend,
quadratic and cubic terms of all continuous covariates, and first-order interaction terms. The
numbers of the instruments in the first and second specifications are 10 and 48, respectively. The
sample size is N = 2,217, being larger than the numbers of instruments. Nevertheless, because
of ill-posedness of the data set, the covariance of a classical estimator is nearly singular. We use
a constant prior; thus, if the relationship between the instruments and the treatment is linear and
the distributions of residuals are normal, a posterior estimate coincides with a two-stage least
square estimate. The posterior estimate is obtained using different combinations of precision
matrix estimators and the adaptation of proposal density. A total of 250,000 posterior draws are
sampled with the last 200,000 drawn for posterior analysis.

Table 2.5 summarizes the results of the posterior estimate for the coeflicient on price. Al-
though the number of moment conditions is fairly smaller than the sample size, MCMC runs
using Concurrent fails to converge. By contrast, MCMC runs using the NER estimator obtain
sensible posterior samples, irrespective of the adaptation strategy. For comparison, Table 2.5
also includes the estimates obtained using four alternative methods. The first two are conven-
tional: ordinary least squares (OLS) and two-stage least squares (2SLS) methods. The second
two are state-of-the-art: IV with instrument selection based on a least absolute shrinkage and
selection operator (Chernozhukov et al., 2015) (LASSO-IV), and Bayesian IV with a factor
shrinkage prior (Hahn et al., 2018) (HS-1V). LASSO-1IV is designed to select fewer relevant
instruments, while HS-IV is designed to compress observed information into few latent factors.
The two methods assume a linear relationship between instruments and the endogenous vari-
able and Gaussianity of the error terms, while our method does not impose such assumptions.
These alternative methods obtain larger estimates than the conventional ones, and the estimates
considerably depend on a set of (potential) instruments. By contrast, our method estimated
the coeflicient to be intermediate between OLS and 2SLS, nearly irrespective of the choice of
instruments. As shown in Figure 2.3, the posterior densities of + for alternative approaches
(excluding Concurrent adaptation) are quite similar.

2.5 Discussion

We propose a new adaptive MCMC approach to infer Bayesian GMM with many moment condi-
tions. Our proposal consists of two elements. The first is the use of a nonparametric eigenvalue-
regularized precision matrix estimator (Lam, 2016) for estimating the weighting matrix. This
prevents us from ill-estimating the weighting matrix. The second is the use of random adapta-
tion. By setting adaptation probability as exponentially decreasing, it can significantly reduce
the computational burden, while retaining statistical efficiency. We show the superiority of the
proposed approach over existing approaches through simulation, and demonstrate the approach
by applying it to a demand analysis for automobiles.

There are several promising research areas stem from this study. First, a theoretical inves-
tigation of the effects of tuning/estimation of a weighting matrix on the posterior density is
needed, which is absent in the literature. Second, while the proposed approach seems to be
fairly robust to N*, there is room for improvement by finding a better N*. Third, while this
study addresses only problems caused by many moment conditions, problems caused by many
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Figure 2.3: Posterior distribution of ~

(a) K=10, Standard (b) K=10, NER
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Notes: Solid lines trace the mean estimates for Stochastic. Dashed lines trace

the mean estimates for Continuous. Dotted lines trace the mean estimates for
Random.
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Table 2.5: Posterior estimates of ~y

Standard NER
K Mean  Std Time Mean  Std Time
Concurrent - - 1214.4 - - 1213.6
Stochastic  -0.120 0.049 3343 -0.117 0.051 508.3
Continuous -0.122 0.051  363.3 -0.106 0.051 439.9
10 Random -0.122 0.051 215.7 -0.110 0.050 220.8
OLS -0.089 0.004
2SLS -0.142 0.012
LASSO-IV -0.185 0.014
Concurrent - - 2606.9 - - 3711.2
Stochastic  -0.116 0.011 1230.7 -0.119 0.014 1613.8
43 Continuous -0.117 0.010 1071.4 -0.117 0.010 14324
Random -0.117 0.010 698.3 -0.119 0.010 705.6
LASSO-IV -0.221 0.015
HS-1V -0.275 0.018

Notes: The column labeled Mean reports mean estimates. Column Std re-
ports standard errors. Column Time reports computation time measured in

seconds.

unknown parameters are also important. The proposed method should serve as a stepping stone
for further development of inferential methods for high-dimensional Bayesian GMM. Finally, it
is worth conducting a thorough comparison between the proposed approach and existing clas-
sical and Bayesian approaches tailored to a specific class of models such as I'V regressions and

dynamic panel models.
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Chapter 3

Bayesian Matrix Completion Approach to
Causal Inference with Panel Data

3.1 Introduction

Program/policy evaluations and comparative case studies using observational data are pervasive
in social and natural sciences and in government and business practice. In particular, causal
inference is an integral part of social sciences, where randomized experiments are usually in-
feasible. For instance, although Abadie et al. (2015) analyzed the economic cost of the German
reunification in 1990, we cannot repeat such a political event many times in a controlled fashion.

The primary interest of this study is inference of causal effects of a treatment, such as average
treatment effect and average treatment effect on treated (ATET). Suppose we have panel data
with J units and 7" time periods. An outcome of unit j at period ¢ is denoted by v, ; (s;), where
s;+ = 1 when the unit is exposed to treatment and s;, = 0 otherwise. Let Z; and Z; be sets of
indices for treated and untreated observations, respectively. Then, for instance, ATET is defined
as

o= > (e (1) =45 (0)),

7
el (Gt)ET

where |A| denotes the cardinality of set .A. Inference of causal effects amounts to inference
of counterfactual untreated outcomes y;, (0), (7,t) € Z;, or the “potential outcome” in terms
of Neyman—Rubin’s causal model (Im -
ous challenge to statisticians, and numerous approaches have been proposed: the difference-in-
differences estimator, regression discontinuity design, matching-based methods, etc.!

In this study, we propose a new Bayesian approach for inferring the causal effect of a binary
treatment with panel data. We transform a statistical problem of causal inference into a matrix
completion problem, an extensively studied issue in machine learning (e.g., Keshavan et al.,
2010). Our approach implements in two steps. First, the potential outcomes are inferred via
a Bayesian matrix completion method. Then, a causal effect is inferred based on the posterior
draws of the potential outcomes.

We model the sum of a matrix of outcomes using two-component factorization and a matrix
of covariate effects. The potential outcomes are treated as missing observations and simulated
from the posterior predictive distribution,

[ p40).G.0) e TiD. @) (O1D) O

'See, e.g., Imbens and Rubin (2015).
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where D denotes a set of observations including untreated outcomes ,; (0), (j.t) € Z, and
exogenous covariates and © denotes a set of parameters and random variables to be sampled.
The other unknown parameters, such as coefficients on the covariates and the variance of mea-
surement error, are simulated from the conditional posterior distribution. Leaving aside the
covariate effects, the proposed approach can be thought of as treating inference of the potential
outcomes as multiple imputation of a matrix of panel data that is probably rank deficient.

Given the posterior draws of potential outcomes, we can infer a causal effect of interest.
For instance, when we have a total of [V, posterior draws of potential outcomes, the posterior
mean estimate of the ATET is given by

N, ost
. 1 <~ 1 ( (i)
pe > Y (e -4 ).
" Npost i=1 |Z4| vat( ) y],t( )

(4,t)€Ts
where y? (s;.) denotes the ith posterior draw of the potential outcome of unit j at period ¢.

To facilitate this task, we develop a tailored prior that induces the model to be lower rank,
adapting a cumulative shrinkage process prior (Legramanti et al., 2020). With this prior spec-
ification, there is no need to specify the rank of the outcome matrix because the prior pushes
insignificant columns of one of the factorizations toward zero.

Our Bayesian approach has two notable advantages. First, it can provide credible intervals
in a consistent and straightforward manner, while the existing non-Bayesian approaches have
difficulty quantifying uncertainty. As hypothesis testing is an essential component of scientific
research, this advantage is a strong reason to use a Bayesian method. Second, our approach has
better finite sample performance than that of the existing approaches. By means of a series of
simulation studies, we show that our proposal is competitive with the existing approaches in
terms of the precision of the prediction of potential outcomes.

Three strands of the literature are particularly relevant to this study. First, the proposed ap-
proach is related to a class of synthetic control methods (SCMs) (e.g., Abadie and Gardeazabal,
2003; Abadie et al., 2010).> This class of methods is aimed at obtaining “synthetic” observa-
tions of untreated outcomes as weighted sums of the outcomes of the control units. Despite its
increasing popularity, the original SCM (Abadie et al., 2010) has two notable shortcomings.
The first shortcoming is that it imposes a strong assumption that the weights of synthetic ob-
servations are nonnegative and sum to one. This assumption implies that the treated unit falls
in the convex hull of the control units and that synthetic observations are positively correlated
with the control units, which is not plausible in many real situations. While some alternative
approaches (Doudchenko and Imbens, 2017; Kim et al., 2020; Amjad et al., 2018) do not re-
quire these assumptions, our approach has better finite sample performance under various data
generating processes, as shown in the simulation studies. The second shortcoming is that the
original SCM does not have an effective method for assessing the uncertainty of the obtained
estimates. Abadie et al. (2010) conduct a series of placebo studies, but the approach incurs size
distortion (Hahn and Shi, 2017). Recently, Li (forthcoming) proposes a subsampling method to
obtain confidence intervals for SCMs, but our Bayesian approach can obtain credible intervals
simply as a byproduct of posterior simulation.

Second, an approach developed by Athey et al. (2018) is particularly related to our proposal.
They also treat potential outcomes as missing data and estimate them via matrix completion with
the nuclear norm penalty (Mazumder et al., 2010). However, Athey et al.’s (2018) non-Bayesian
approach does not have an estimator for confidence intervals.

2See Abadie (forthcoming) for a recent overview of the literature on SCMs.
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Finally, our proposal is conceptually similar to approaches proposed by Brodersen et al.
(2015); Ning et al. (2019) in that all of them infer potential outcomes as missing observations
in Bayesian manners. On the other hand, their approaches rely on the fit of a time-series model,
while our approach exploits the factor structure of panel data. Therefore, our proposal is better
suited for typical panel data covering short time periods where it is difficult to estimate a time-
series model.

The remainder of this study is structured as follows. In Section 3.2, we introduce a new
Bayesian approach to causal inference with panel data and compare it with the existing alterna-
tives. In Section 3.3, we illustrate the proposed approach by applying it to simulated and real
data. We conduct a simulation study and show that our proposed method is competitive with
the existing approaches in terms of the precision of the predictions of potential outcomes. Then,
the proposed approach is applied to the evaluation of the tobacco control program implemented
in California in 1988. The last section concludes the study.

3.2 Proposed Approach

3.2.1 Framework

An individual outcome is modeled as follows: for y =1,..., J;t =1, ..., T,

where 7;; is a unit- and time-specific intercept, x;; is an L-dimensional vector of covariates
that may contain unit- and/or time-specific effects, 3 is the corresponding coeflicient vector,
and u;, is an error term that is distributed according to a normal distribution with precision 7.
sj is a treatment indicator: s;, = 0 if untreated and s;;, = 1 if treated. A set of the treatment
indicators is denoted by S={s;,}. The covariates x ;. are completely observed for all the units
and periods.

7, and Z, are sets of indices for treated and untreated observations, respectively. Z = 7, UZ,
denotes a set of all the indices for the observations. Let Y be a .J-by-7" matrix composed
of (actually) untreated outcomes, ¥, (0), (j,t) € Z,, and counterfactual untreated outcomes,
v+ (0), (4, t) € Z;. The latter elements are also called “potential outcomes” (e.g., Im

. We define sets of observed and unobserved untreated outcomes respectively as

Y = {y; (0), (4, t) € Io}, Yy = {45 (0), (5:8) € T} -

In this study, we treat Y""** as missing and infer it as a set of unknown parameters via matrix
completion, using a Markov chain Monte Carlo (MCMC) method. In other words, we trans-
form the inferential problem into a matrix completion problem and infer the potential outcomes
by imputing them via data augmentation (Tanner and Wong, 1987) (or, more generally, Gibbs
sampling). The responses under treatment, ;. (1), (j,¢) € Z;, are observed, but they are not
used for inference of Y ™,

Let X = {x;,} be a set of covariates. Define a .J-by-T matrix of the covariate effects as
E = (&) with¢;, = :r:JTt B. The model can be posed in a matrix representation as

Y =T+E2+U,
I'= (’Yla ~--7'YT)», with v, = ('Yl,n ~-~;’YJ,t)Ta

where I is a .J-by-T" matrix and U = (u;,) is a JJ-by-T" matrix of the error terms.

53



We have several assumptions in the model. First, we make the standard stable unit treatment
value assumption (STUVA) (e.g., Imbens and Rubin, 2015): there is no interference between
units, there is a single type of treatment, and each unit has two potential outcomes. In addition,
the assignment mechanism is assumed to be unconfounded, i.e., ignorable, conditional on the
covariates X:

p (S|]Y, Y™, X) =p(S|X).
In contrast to the difference-in-differences estimator, the treated and untreated units are not
supposed to have parallel trends in outcome.

A matrix of untreated outcomes Y can be structured flexibly. For instance, when only the
Jth unit is affected by the treatment for the last 7" — 7 periods as in the standard synthetic
control method (SCM) (Abadie and Gardeazabal, 2003; Abadie et al., 2010), Y is specified as

y11(0) -y (0) iz (0) -+ v (0)
Yy — : : : :
Yyr110) - w11 0) yram41 (0) < yy12(0)
ys1(0) - yim (0) v e V
where |/ denotes a missing entry. It is possible to allow more than one treated unit:
Y100 i (0) vim, (0) - Yyt (0)
Y — Yo (0) 0 YaoTo (O) YJo, To41 (0) T Yo, To+1 (O)
Yao+1,1 (0) -+ yyr1m (0) v e v
yra(0) -y (0) v a Vv
Furthermore, it is possible to handle a more complex structure:
J v e (0) T a()
e (0) oy (0) v Yje v (0) T - yer (0)
Yiv 1 (0) Y g (O) \/ \/ Yjo v 42 (O) o Ypr (0)
ysa (0) - oy (0)

From a theoretical perspective, Bayesian inference of Y ™% is specified as follows. Let
© = {T", B, 7} denote the set of all unknown parameters. If Y, Y™ and S are given, the
complete-data likelihood is represented as

JT

obs miss —=t _JT T
p(Y bs Y \S,X7®) = (2m) 2z 72 exp{—itr(UTU)}

= (277)*§ 77 exp {—%vec (U)" vec (U)} )

U=Y-T-E,

where vec (-) denotes the column-wise vectorization operator. The joint posterior distribution
of the missing observations of the responses and the unknown parameters is proportional to
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the product of the prior density of ® and the joint likelihood of all the potential outcomes
{y,+(0),y;+(1),(j,t) € L}, the treatment indicators S, and the covariates X :

p (Y™, @Y, 8, X) oxp(®) [ pwe(0),y;.(1),8,X|®),

(J,t)eT

where p (@) denotes the prior density of ®. Given Y and @, the conditional posterior dis-
tribution of the missing responses is given by

p(YmiSS‘YObS,S,X,C') H p Sjt|yjt yjt( ) mj,“@)

(3, t)ez

Xp (Y56 (0) 50 (1) [0, ©) p (x,4]O) .

By the unconfoundedness assumption, the assignment mechanism p (s;+|y;: (0),z;;, ®) and
the covariate distribution p (x;,|®) are ignorable:

p(Y™ Y™ 8, X,0) o« [ »u(0),y5 (1) |0, ©)

(j?t)eIl

x T 2w (0),550 (1) |z, ©)

(49,t)€Zo

X H p yjt |J]t( ) mj}ta@)
(4)ELL

< 1T » e () ]y;4 (0), 254, ©)

(4:t)€To

o [ » W (0) |y (1), 250, ©)
(j,t)EIl

= p (}fmz’ss‘}/'obs7 )(7 @) )

Thus, the conditional posterior of Y "*** depends only on the observed information (YObS, X )
and the parameters ©, and it can be derived from the complete-data likelihood. In turn, the
conditional posterior of ® is proportional to the product of the complete-data likelihood and
the prior of ®:

p ((_.)|};missJ Yobs’ S, X) x p (@)p (Yobs’ YmiSS|S, X, @) )

Therefore, as the conditional posteriors of Y ™% and O are simulable, we can conduct a poste-
rior simulation using a Gibbs sampler: Y ™*** and © are alternately simulated from the corre-
sponding conditional posterior distributions.

Once the approximation of the posterior distribution of Y""*** is obtained, we can evalu-
ate treatment effects straightforwardly. For instance, the posterior density of ATET, ¢, can be
represented as

Elevex] = [ / ] 2 (e ()~ 0)

(t)ET

szss @‘Yobs X) deZSSd@
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Given the posterior draws of the potential outcomes, the posterior mean estimate of ATET is
computed as

1 Npost

(

b

N
post i=1

I%(Z (yj,t(l)‘ it <0)) ’

j?t)eIl

where yj(Lt) (0) denotes the ith posterior draw of the potential outcome of unit j at period ¢ and
Npost 1s the number of posterior draws used for the posterior analysis. The posterior estimates

of the variance/quantiles of the posterior of ATET are obtained analogously.

3.2.2 Priors

As the structure of the model indicates, unless some restrictions are imposed, we cannot identify
T and Y™*°. We induce I" to be low rank and decompose it into two parts as

r=owv'

T . ‘ ‘

¢ = (¢(1)7 e ¢(J)) € RJXH; with ¢(j) = (51, @j,H)T;
T . /

v = (¢(1)ﬁ e 1/’(T)) e R™ with Yy = (Pea, s Yon) '

where H < min (.J,T"). Although this decomposition is not unique, as ¢ and W are not identi-
fied, exact parameter identification is not necessary for our purpose: we require the identification
of the convolution, I', not that of its factorization, ® and W.

Nevertheless, when ® and ¥ are not identified, the posterior simulation can diverge, which
is computationally inefficient. We use a prior motivated by singular value decomposition (SVD).
When the SVD of I is represented as I' = E; DE;r , we interpret W = E5 as the right orthonor-
mal matrix and ® = FE,D as the product of the left orthonormal matrix £ and the diagonal
matrix having the eigenvalues in its principal diagonal D. Two types of priors introduced in
what follows correspond to the interpretation of ® and W.

First, we restrict ¥ to be unitary, i.e., ' = I, and assign a uniform Haar prior to ¥,
p (W) x (¥ € My, ), where Mpyy denotes a Stiefel manifold with dimensions of 7" x H
and I (-) denotes the indicator function. This restriction implies that the covariance of the rows
of Wis T 'Iy. Then, ' = (44, ...,7y) can be regarded as being generated from a static factor
model as

Y. =Py, t=1.,T,

where 1, is interpreted as a vector of independently distributed “latent factors” and @ is inter-
preted as a matrix of “factor loadings”.

Second, we arrange the relative magnitudes of the columns of ® in descending order. For
this purpose, we adapt a cumulative shrinkage process prior (Legramanti et al., 2020) to our
context. A prior of @ is specified by the following hierarchy:

Gin|An ~ J\/'(07/\;2L)7 j=1,...,J; h=1,..., H,
)\h‘ﬂ-h ~ 7Th(5,\oo—|—(1—7Th)Ig(/{.1,l{2), h:]_,,H,

h -1
o= Y w, withwy=¢[[(0=¢n), h=1..H,
=1 m=1

G o~ B(lg), h=1,..H—1,
<H = 1
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where ZG (a, b) is an inverse gamma distribution with shape parameter @ and rate parameter b,
and B (a,b) is a beta distribution (of the first kind) with scale parameters a and b. The prior
of ¢; is a scale mixture of normal distributions. The prior distribution of the variances ),
belongs to a class of spike-and-slab priors (e.g., Ishwaran et al., 2005), in that the prior consists
of spike 4, and slab ZG (1, ko). Although J,_ can be zero, we set it to a small nonzero value
for the ease of posterior simulation (Ishwaran et al., 2005; Legramanti et al., 2020). The prior
distribution of the weights 7}, exploits the stick-breaking construction of the Dirichlet process
(Ishwaran and James, 2001). As h grows, the distribution of \;, concentrates around ¢,__ since
limy,_, o m, = 1 almost surely.

In turn, for the remaining parameters, we employ standard priors. For 3, we use an inde-
pendent normal prior with mean zero and precision a, 3 ~ N (0z, o 'I). The prior distri-
bution of 7 is specified by a gamma distribution with shape parameter v, and rate parameter v,
T~ G (v1,11).

Although we do not consider them in this study, many alternative priors can be used for ©.
Bhattacharya and Dunson (2011) consider a prior similar to the cumulative shrinkage process
prior, called the multiplicative gamma process prior. This prior cannot simultaneously control
the rate of shrinkage and the prior for the active elements; thus, it readily overshrinks the model.
See Durante (2017) and Legramanti et al. (2020) for further discussion. In addition, many fully
Bayesian approaches exist for estimating or completing low-rank matrices (e.g., Salakhutdinov
and Mnih, 2008; Ding et al., 2011). However, these approaches do not consider parameter
identification. The only exception is Tang et al. (2019). They factorize a possibly rank-deficient
matrix I into three parts as in SVD, I’ = @ DW¥ ', where D is diagonal. While they suppose ®
and W to be unitary, as in this study, the diagonal elements of .D are not restricted: the ordering
of rows of ® and ¥ and the diagonal elements of D are freely permuted along the posterior
simulation.

3.2.3 Posterior simulation

For posterior simulation, we develop an MCMC sampler. We conduct posterior simulations
using a hybrid of two algorithms. To address the unitary constraint, we sample ¥ using the
geodesic Monte Carlo on embedded manifolds (Byrne and Girolami, 2013). As the conditionals
of the remaining parameters are standard, the remaining parameters are updated via Gibbs steps.
See the Appendix for the computational details.

While Legramanti et al. (2020) adaptively tune the rank of a matrix of interest, we prefix
the rank of I', I, for several reasons. First, the unitary constraint on W makes it difficult to
change H adaptively. Second, as our prior pushes I' to be low rank, it is unnecessary to exactly
specify the true rank of I': if the h/th eigenvalue of I' is negligible, the prior standard deviation
of the //th row of @ is inclined to be J., (spike part). Therefore, we recommend choosing a
conservative value for H or tuning /1 based on test runs.

3.2.4 Extensions

We mention some simple extensions. First, we can make the model more robust to outliers by
modeling the measurement errors using a distribution with heavier tails than those of a normal
distribution. For instance, following Geweke (1993), the generalized Student’s t error is modeled
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as

wiTwie ~ N (0, 7’71@171) , j=1,..,J;t=1,..1T,

Jit

v )
wielv ~ 9(5,5), j=1..J;t=1,...,T,
v~ f),

where w;; is an auxiliary random variable, v is the number of degrees of freedom of w;, and
f (v) is a prior distribution of v.
Second, to allow serial correlations in the error terms, their distribution can be modeled as

w; = (1, y0) 7o~ N (O, 7R,

R = (Tt,t’), with Te = /)It—tll’

where R is a correlation matrix whose generic element 7, is specified as a function of an
autocorrelation parameter p € (—1,1). As the conditional posterior of p is not standard, p is
sampled using, e.g., the random-walk Metropolis-Hastings algorithm.

3.2.5 Comparison with existing approaches

The class of SCMs (Abadie and Gardeazabal, 2003; Abadie et al., 2010) is closely related to
the proposed approach. In SCMs, “synthetic” untreated outcomes are estimated as weighted
sums of the untreated units. This approach imposes three strong assumptions: no intercept,
nonnegativity of the weights, and weights that sum to one. However, none of these assumptions
appears plausible in many real cases. The proposed approach is free from such restrictions.
Doudchenko and Imbens (2017) propose an approach that does not impose any of these restric-
tions on the weights and use a penalty similar to the elastic net estimator (Zou and Hastie, 2005).
Amjad et al. (2018) propose a robust synthetic control method (RSCM). The difference between
RSCM and the abovementioned SCMs is that RSCM constructs a design matrix using the SVD
of a matrix composed of the outcomes of untreated units: SVD is used for dimension reduction
and denoising. Xu (2017) also considers a similar modeling strategy.

All the existing non-Bayesian approaches, including Abadie et al. (2010), Doudchenko and
Imbens (2017), Amjad et al. (2018), and Xu (2017), share the same caveat: they cannot evaluate
confidence intervals straightforwardly. Abadie et al. (2010) conduct a series of placebo studies,
which can be interpreted as permutation tests to quantify the uncertainty of an inference, but the
size of the permutation tests may be distorted as shown by Hahn and Shi (2017). No statistically
sound method has been developed to estimate confidence intervals of synthetic control meth-
ods. Recently, Li (forthcoming) proposes a subsampling method to obtain confidence intervals.
In contrast, our Bayesian approach can estimate credible intervals as a byproduct of posterior
simulation.

Kim et al. (2020) develop a Bayesian version of Doudchenko and Imbens’s (2017) approach.
Instead of the elastic net penalty, they propose the use of a shrinkage prior, e.g., the horseshoe
prior (Carvalho et al., 2010). As with Bayesian inference, their approach can consistently obtain
credible intervals. Our fully Bayesian approach also enjoys the same advantage. Amjad et al.
(2018) also mention a Bayesian version of RSCM, but the method is not fully Bayesian in that
the SVD of an outcome matrix is treated as given, and uncertainty about the decomposition is
ignored.
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Our proposal is closely related to Athey et al. (2018), where an estimation problem is treated
as a matrix completion problem with a nuclear norm penalty. Athey et al. (2018) call their esti-
mator the matrix completion with a nuclear norm minimization estimator (MC-NNM). The prior
of I' used in our approach plays a similar role to the nuclear norm penalty because the nuclear
norm is a convex relaxation of the rank constraint (Fazel et al., 2001). This family of approaches
involving matrix completion has two notable advantages over SCMs. First, treatment is allowed
to occur arbitrarily, not consecutively. Second, while SCMs use only pretreatment observations
for estimation, this family exploits all the observations, including the treated periods (except
treated outcomes). Therefore, this class is likely to be statistically more efficient than SCMs,
as shown in the simulation study below. Similar to Amjad et al.’s (2018) approach, the matrix
completion approaches intend to capture the underlying factor structure of panel data. While
in Amjad et al.’s (2018) approach, a threshold for truncating the eigenvalues of an outcome
matrix must be specified (hard thresholding), our approach and Athey et al.’s (2018) approach
do not because the cumulative shrinkage process prior and the nuclear norm penalty automat-
ically push the model to be low rank (soft thresholding). Indeed our approach prefixed H, but
H is merely an upper bound of the rank of I'; our approach can infer the causal effects without
presupposing/estimating the rank of I'. As with other non-Bayesian approaches, Athey et al.’s
(2018) approach provides only a point estimation, while our proposal readily estimates credible
intervals.

Finally, Brodersen et al. (2015) and Ning et al. (2019) also develop Bayesian approaches to
causal inference that use structural time series models, more specifically, state-space models.
Brodersen et al.’s (2015) approach relies on a univariate state-space model, while Ning et al.’s
(2019) approach uses a multivariate state-space model that allows spatial correlations between
units. These two approaches are similar to ours in that both tend to obtain potential outcomes
using Bayesian methods. On the other hand, there is a notable difference between their ap-
proaches and ours: their approaches rely on the fit of a state-space model, while our approach
exploits the factor structure of panel data. As a consequence, our proposal is better suited for
typical panel data where due to the short sample, it is difficult to recover the dynamics of the
potential outcomes from the observations.

3.3 Application

3.3.1 Simulated data

We conduct a simulation study to demonstrate the proposed approach. In our experimental
setting, only the Jth unit is treated, and it is exposed to the treatment during the last 77 periods
of T'. Let Ty denote the number of untreated periods; thus, 7" = T + 7. The realized treated
outcomes are specified by the sums of hypothetical untreated outcomes 7, (0) and the average
treatment effect on treated denoted by :

v (D) =y (0)+, t=Ty+1,.,T.

We consider three types of data-generating processes (DGPs). In the first two types, y;; (0)
is generated from a factor model: for j =1,..., J;t =1, ..., 7T,

(’yl,t 0), ..., Yt (O))T =1y, (0) = Y, + uy,
W= (¢, ..., ¢T)Ta with ¥, = (Y1, Yoy, '¢’3,t)T
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U = (7'1'17t7 seny “J,t)T ~ N (OJ7 IJ) ’

where 1), is a vector of latent factors, @ is a matrix of factor loadings, and u, is a vector of
error terms. We do not include any covariates. Entries in ® are generated independently from
a standard normal distribution:

b = (Qb],t) s with ¢j,t ~ N (07 1) .
In the first case, called DGP-independent, latent factors are independently distributed according
to a normal distribution specified as
¢t NN(Og,Ig), tzl,T

The second case is called DGP-dependent, where the row of motion of 1), is specified by the
following process:

Yin=¢€1, 7=123,
Y1 =0.6914 1+ €14
1/)2,15 = 0'4d’12,t71 + 62,t: lL — 2’ 37 e 7—77
Y3 =023, 1 + €34
€ = (El,ta€27t7€3,t)—r NN(OgIs) t = 1,...7T.

The third case, DGP-weighted, is motivated by a simulation study in Kim et al. (2020). In
this setting, outcomes of untreated units are generated from a multivariate normal distribution,
and outcomes of treated units are constructed as weighted sums of untreated units:

J-1
Yt = Z(l’j?}j,t T U, Ut N (O, 02) . t=1,....T,
j=1

(Y16 (0) s s yr-12 (0) " = 9171, (0) ~ N (1, B), t=1,..T,

3 7=1

2 j=2
CY—(Ocj) a]_ 1 ]_3 3

0 j=4,.,J—1

1 is specified as follows:

(10 j =
20 j=
p=(), pj=4930 j=3 , for J = 10,
40 j=
15 j=5,..9
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and

10 j =
20 j=
30 J=
w= (). pj= leg ; ;;17 10 for J = 40.
25 j—11,..20
35 j—21,..30
(45 5 =31,..,39

We compare six alternative approaches.

1. The firstis the original synthetic control method described in Abadie et al. (2010) (SCM-

ABD).
The second is a method proposed by Doudchenko and Imbens (2017) (SCM-DI).

. The third is a Bayesian approach developed by Kim et al. (2020). According to their

simulation study, specifications with the horseshoe (Carvalho et al., 2010) and spike-and-
slab (Ishwaran et al., 2005) priors outperform other alternatives. While the performances
of these two priors are comparable, posterior simulation using the horseshoe prior is faster.
Thus, we consider the horseshoe prior for Kim et al.’s (2019) approach and refer to this
specific approach as Bayesian synthetic control method (BSCM). We sample weighting
parameters in the observation model using the elliptical slice sampler (Hahn et al., 2019)
and obtain the remaining parameters (noise variance and shrinkage parameters) using a
Gibbs sampler, as in Makalic and Schmidt (2016).

. The fourth is the robust synthetic control method introduced by Amjad et al. (2018)

(RSCM). Specifically, we consider their primary choice described in Algorithm 1 of the
original paper (p. 8).

. The fifth is the matrix completion with a nuclear norm minimization estimator Athey et al.

(2018) (MC-NNM).

. The sixth is the proposed approach, Bayesian matrix completion with the cumulative

shrinkage process prior (BMC-CSP). The prefixed hyperparameters for the cumulative
shrinkage process prior are chosen following Legramanti et al. (2020) as = 5 and
K1 = Ko = 2. While Legramanti et al. (2020) use 9,__ = 0.05, we use a smaller value,
dx.. = 0.01. The maximum rank of © is set to H = min (J. T).

To ensure a fair comparison, we use the same prior for the error variance in BSCM as in the
proposed approach. We choose the hyperparameters as v; = vy = 0.001, inducing the prior of
7 to be fairly noninformative. For MC-NNM, we choose tuning parameters via five-fold cross-
validation, where the training samples are randomly chosen without replacement. For SCM-DI
and RSCM, the tuning parameters are determined by forward chaining: the tuning parameters
are chosen by minimizing the mean squared errors of one-step-ahead out-of-sample predictions,
and the training sample is initially set to five and expanded sequentially to 7j — 1. For BSCM
and BMC-CSP, we obtain 40,000 draws after discarding the initial 10,000.> All the posterior
simulations pass Geweke’s (1992) convergence test at a significance level of 5%.

3The number of MCMC iterations is chosen based on pilot runs so that the minimum of the effective sample
sizes for obtained posterior draws (except the warmup draws) in each experiment is no less than 10,000.
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We consider four types of sample size, namely, combinations of J € {5,20} and Ty €
{10, 40}, and the length of the treated periods is fixed to 77 = 20. A total of 200 experiments
are conducted for each case. As noted earlier, an estimation of treatment effects amounts to
an estimation of potential outcomes. Therefore, we evaluate the alternatives based on the pre-
cision of the estimates of ;. (0), ¢ = T, + 1,..., 7", measured by the mean of the sum of the
squared errors (MSE) and the mean of the sum of the absolute errors (MAE). For the Bayesian
approaches, we compute posterior means of predicted potential outcomes. We also report the
mean computation time measured in seconds (Time).* For each experiment, the MSE and MAE
are normalized by the corresponding values for SCM-ABD.

Table 3.1 summarizes the results of the simulation study for DGP-independent. In terms
of MSE and MAE, irrespective of the combination of (.J, Tj), the proposed approach consis-
tently outperforms the others. The recently proposed alternatives are comparable to or worse
than SCM-ABD. In this setting, RSCM is consistently inferior to the original SCM-ABD. In
terms of computational time, as expected, the Bayesian approaches are slower than the non-
Bayesian options. Indeed, BMC-CSP is computationally heavy, but the computational cost is
not prohibitive. In our simulation study, SCM-DI is slow to converge, possibly due to nons-
mooth objective functions. The simulation results for DGP-dependent are reported in Table 3.2.
In terms of MSE and MAE, RSCM, MC-NNM, and BMC-SCP perform best. Table 3.3 summa-
rizes the results for DGP-weighted. SCM-DI and BSCM perform very well because this DGP
is exactly consistent with the DGPs of the models. In contrast to the other DGPs, the predictive
accuracy of RSCM and MC-NNM is much worse than that of the others, including SCM-ABD.
Although BMC-SCP performs worse than SCM-DI and BSCM, it consistently outperforms the
remaining approaches. In summary, while the relative finite sample performance of the alterna-
tive approaches depends on the DGP, the proposed approach, BMC-SCP, is fairly competitive
under various circumstances.

3.3.2 Real data

As an illustration, we apply the proposed approach to evaluate California’s tobacco control pro-
gram implemented in 1988. We replicate Abadie et al.’s (2010) study using the same data,
annual state-level panel data spanning periods from 1970 to 2000.°> The first 19 years are the
pretreatment period. Only California is treated, while the other 38 states are used as control
units. We include seven time-invariant covariates: log of gross domestic product per capita,
percentage share of 15-24—year—old people in the population, retail price, beer consumption
per capita, and cigarette sales per capita in 1980 and 1975; see Abadie et al. (2010) for further
details. We use the same hyperparameters as in the simulation study. We draw 100,000 posterior
samples and use the last 80,000 samples for posterior analysis.°®

Figure 3.1 compares the realized per capita cigarette sales in California (solid black line),
the potential per capita cigarette sales in “synthetic California” obtained using the original SCM
(Abadie et al., 2010) (dashed black line), and the posterior mean estimates of the corresponding
potential outcomes obtained by the proposed method (solid red line). The estimates obtained
using the proposed method are in line with the estimates obtained using the original SCM.

“We wrote all the programs in Matlab R2019b (64 bit) and executed them on an Ubuntu Desktop 18.04 LTS
(64 bit), running on AMD Ryzen Threadripper 1950X (4.2GHz).

SThe data and the Matlab program were downloaded from Jens Hainmueller’s personal website.
(https://web.stanford.edu/~jhain/synthpage.html)

%We also conduct a posterior simulation where the unitary constraint on ¥ is removed and W is sampled via a
standard Gibbs step, but this approach is unsuccessful because the Markov chains diverge, resulting in numerical
error.
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Table 3.1: Results of simulation study (1): DGP-independent
(J,7To) Approach MSE MAE Time
(1) SCM-ABD 1.00 1.00 0.1
(2) SCM-DI 148 1.17 24.7

(5.10) ()BSCM 1.60 123 113
’ (4) RSCM 122 1.08 6.5
(5)MC-NNM  0.99 0.98 0.8

(6) BMC-CSP  0.95 096  92.7

() SCM-ABD 1.00 1.00  <0.1
(2)SCM-DI  1.54 121  96.0

(5.40) (3)BSCM 153 121 283
’ (4) RSCM 127 111 8.1
(5)MC-NNM  1.09 1.04 1.6

(6) BMC-CSP  0.90 0.95 507.8

(1) SCM-ABD 1.00 1.00  <0.1
(2)SCM-DI 096 097 175.5

(3) BSCM 097 097 149

(20.10) " ) rRscm 129 1.10 532
(5)MC-NNM  1.00 0.98 0.8

(6) BMC-CSP  0.90 093  96.1

() SCM-ABD 1.00 1.00  <0.1
(2)SCM-DI  1.16 1.06 728.6

(3) BSCM 1.68 127  46.1

(20.40) ;) RscM 159 124 743

(5) MC-NNM 1.09 1.04 2.1
(6) BMC-CSP 094 097 5145
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Table 3.2: Results of simulation study (2): DGP-dependent
(J,7To) Approach MSE MAE Time

(1) SCM-ABD 1.00 1.00 <0.1

(2) SCM-DI 144 1.15 23.9

(3) BSCM 1.57 1.21 10.3

(5.10) (4) RSCM 0.71 0.84 6.1
(5) MC-NNM  0.73  0.85 0.6

(6) BMC-CSP 0.71 0.84 93.8

(1) SCM-ABD 1.00 1.00 <0.1

(2) SCM-DI 1.53 1.22 97.9

(5,40) (3) BSCM 142 1.18 26.0
’ (4) RSCM 0.81 0.89 7.6
(5) MC-NNM 0.88 0.93 1.1

(6) BMC-CSP 0.79 0.89  508.7

(1) SCM-ABD 1.00 1.00 <0.1

(2) SCM-DI 0.86 092 170.6

(20, 10) (3) BSCM 0.87 0.92 14.0
’ (4) RSCM 0.75 0.86 52.0
(5) MC-NNM 0.76  0.86 0.5

(6) BMC-CSP 0.75 0.86 97.0

(1) SCM-ABD 1.00 1.00 <0.1

(2) SCM-DI 147 1.19 6984

(20, 40) (3) BSCM 1.75 1.30 42.3

(4) RSCM 0.87 0.93 65.9
(5) MC-NNM 090 0.95 1.5
(6) BMC-CSP 0.88 094 518.6
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Table 3.3: Results of simulation study (3): DGP-weighted
(J,To) Approach MSE MAE Time

(1) SCM-ABD 1.00 1.00 <0.1

(2) SCM-DI 0.03 0.17 254

(3) BSCM 0.03 0.17 17.3

(5.10)  4)RsCM 2328 570 127
(S)MC-NNM  15.18 462 32
(6)BMC-CSP  0.63 078 904
(1)SCM-ABD  1.00 1.00  <0.1
(2)SCM-DI 039 060  70.1

a0 (BSCM 043 063  54.1

’ (4) RSCM 1467 460 239
(S)MC-NNM 1388 444 63
(6)BMC-CSP 071 083 5073
(1)SCM-ABD 1.00 1.00  <0.1
(2)SCM-DI 002 013 2112

0,19 ) BSCM 002 013 210

00 yRseM 2656 617 867
(S)MC-NNM 1174 396 3.5

(6) BMC-CSP 005 0.19 922
(1)SCM-ABD  1.00 1.00  <0.1
2)SCM-DI 003 017 622.1

(3) BSCM 003 017  84.1

(20.40) I RsCM 2277 574 1856

(5) MC-NNM 9.70 3.63 7.4
(6) BMC-CSP 041 0.63 5119
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Figure 3.1: Trends in per-capita cigarette sales
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Notes: The solid black line traces the realized per capita cigarette sales in
California. The dashed black line and the solid red line trace the estimated
potential per capita cigarette sales using SCM-ABD and BMC-CSP, respec-
tively. The light and dark shaded areas indicate the 90% and 70% credible
sets, respectively.

Posterior estimates of 90% and 70% credible sets are also reported (shaded areas). As the
credible sets do not include the realized California, the program has statistically significant
effects on tobacco consumption in California, confirming the conclusion in the original paper.

Figure 3.2 depicts the posterior estimates of some rows of ®, which can be interpreted as
state-specific loadings. While the estimates have different patterns, reflecting heterogeneity in
US states, their magnitude is roughly decreasing with h = 1, ..., H as intended by the prior.
Figure 3.3 plots the posterior mean estimates of the eigenvalues of I', which suggests that ap-
proximately half of the eigenvalues are not essential.

3.4 Concluding Remarks

This study develops a novel Bayesian approach to causal analysis using panel data. We treat
the problem of inferring a treatment effect as a matrix completion problem: counterfactual un-
treated outcomes are inferred using a data augmentation technique. We also propose a prior
structured to help identification and to obtain a low-rank approximation of the panel data. In
contrast to existing non-Bayesian methods, the proposed Bayesian approach can estimate cred-
ible intervals straightforwardly. By means of a series of simulation studies, we show that the
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Figure 3.2: Posterior estimates of the rows of ®.
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Notes: The solid black lines trace the posterior mean estimates of the rows
of ®. The shaded areas indicate the 90% credible sets.
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Figure 3.3: Posterior mean estimates of the eigenvalues of I
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proposed approach outperforms the existing ones in terms of the prediction of hypothetical un-
treated outcomes, that is, the accuracy of the treatment effect estimates.

While asymptotic argument is not absolutely necessary for Bayesian analysis, there is a
need to investigate frequentist (asymptotic) properties of the proposed approach, such as pos-
terior consistency and Bernstein-von Mises theorem. However, to the best of the author’s
knowledge, there is no published work on frequentist properties of Bayesian matrix factoriza-
tion/completion, except Mai and Alquier (2015).” The author hopes that this study stimulates
further theoretical studies in the related research horizons.

"Mai and Alquier (2015) propose a Bayesian estimator for the matrix completion method and provide an oracle
inequality for this estimator. However, they employ a uniform prior, and the proof critically depends on this prior
choice; thus, their discussion is not easily extended to other environments.
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Appendix: Computational Details

This appendix describes the computational details of the posterior simulation of the proposed
approach. The joint posterior is specified as

p (Y™ 2% 8,7, CAY™ X) o p(YP[Y™ & 8,7 X)p(Y™*) p(7)
xp(B)p (¥)p(®A)p(AlC)p(C)

JT

X T2 exp {—%tr (UTU)} x 7 L exp (—uvyT)

X exp {—QBTB} x [(¥ € Mpun)
J

X Hexp { d(diag (A1 Ay ¢(J’)}
H
X |:<ZCZH 1—<7)’L>(5>\oo
h=1 m=1
hooo1
+(1—ZCJ (1_<m)>

=1 m=1
’l{gl —r1—1 K2
A5 _—
At e (5]
H-1
X (1 gh)nil )
h=1

where ¢ = ({3, ..., (H,I)T and A = diag (), ..., Ay ). Each sampling block is specified in what
follows.

Sampling & Each row of ® is sampled from a multivariate normal distribution. For j =
1,..,J,

¢mw~NW%f%)
T
_ A1 T
P% A 0T,

Y = (yo), ~-~=y<J))Tv 2= (&u) -~~75<J))T

Sampling the shrinkage parameters Define an indicator function z, with probability mass
function Pr(z, = 1) =w;, 1 =1,.... H and

)\h|zh ~ 1 (Zh S h) 5)\00 —+ (1 -1 (Zh § h))IQ (Hl, fig) .
Then the conditional posterior mass function of z, is specitfied as

wlN (¢h|OJ, >\OOIJ), = 1, ...,h,

zp, = l|rest) o :
p< h | ) {wztzm <¢h|OJ7 :_?IJ) ) l:h+1”’H’
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where N (z|a, B) is the PDF of a multivariate normal distribution with mean a and covariance
B evaluated at  and t. (z|a, B) is the PDF of a multivariate t distribution with location pa-
rameter a, scale parameter B, and ¢ degrees of freedom. The sampling distributions of ¢; and
Ap, are

H H
Cplrest ~ B <1+Zﬂ(zl =h), ?7—|—Z]I(zl > h)) , h=1.,H—1,
=1 =1
J 1<
)\h|I'CSt ~ ]I(Zh < }L) (5)\00 + (1 — H(Zh < h))IQ (Hl + 5, Ko + 5 quih) R h=1, R H.
j=1

Sampling ¥ To sample ¥, we employ the geodesic Monte Carlo on embedded manifolds
developed by Byrne and Girolami (2013). The algorithm for sampling ¥ is summarized in
Algorithm 3.1. Let 7 (¥) be the posterior density of ¥ conditional on the other parameters.
Then we have

log 7 (¥) = (constant) — gtr{(Y —ow’ -8) (v -ou -5)},
and the gradient with respect to W is derived as
Velogrn () =7(Y —E)' & - 793",

The step size ¢ is adaptively tuned to maintain the average acceptance rate near a target value
a”*. In the ith iteration, < is updated according to the following rule which is motivated by the
Robbins-Monro algorithm (Robbins and Monro, 1951):3

log (c)  log () + i~ (a* — @),

where a; is the average acceptance rate in the ith iteration and ¢ € (0.5, 1) is a tuning parameter.
We choose a* = 0.6 and ¢ = 0.6.° The number of steps is fixed to five, Ngiep = 5, based on
pilot runs.

Sampling 3 3 is simulated from a multivariate normal distribution:

Blrest ~ N (mg, Pg'),
mg=1Pg5' X vec(Y — @),
Ps=al, +7X"X,
X :cth
X = : . with X, =
X7 :z:;t

Sampling 7 7 is updated via the following gamma distribution:

JT 1
T|rest ~ G (u1 + ]7 vo F Sr (UTU)> :

8Similar rules are considered for random-walk Metropolis-Hastings algorithms (e.g., Atchadé and Rosenthal,
2005; Andrieu and Thoms, 2008; Vihola, 2011) and an adaptive version of the Metropolis adjusted Langevin
algorithm (Atchadé, 2006).

The target acceptance rate a* is chosen based on a multivariate effective sample size (Vats et al., 2019).
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Algorithm 3.1 Geodesic Monte Carlo
Input: W, (current state), 7 (¥) (target kernel), € (step size), Ny, (number of steps)
vec (V) ~ N (07, Iry)
22V« V-1 (T V + V)
: Ho + log 7 (W) — tvec (V) vec (V)
W — Py
cfori=1, ..., Ngep do
V <V +5Vy, logn ()
Ve V-ilu (v vie)
ATV, S« V'V
A —-S exp(—zA OHXH
(0, V)e(w V)exp(s(IH b )) < pl=4) exp(_gA)>
10: V &V + Vg, logm (W)
1 V«V-1o (¥]V+VTE)
12: end for
13: #; + logm (¥;) — tvec (V) vec (V)
14: w ~U(0,1)
15: if w < exp (H1 — Ho) then
16: ¥« ¥,
17: end if
18: return ¥

Y N AE

Note: exp (A) denotes the matrix exponential operator.

Sampling Y"** The conditional posterior distribution of a missing observation of unit j in
time period 7 is a normal distribution,

Yo (0) Jrest ~ N (v +&us 7 1), (1) € 4
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