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Abstract

Andreas GEIER

Development and Implementation of a Tactile Feedback
System Using End-to-end Tactile Sensor Data Projections
for Wearable Human-Robot Interaction

The proliferation of distributed tactile sensing technologies and the
large-scale implementation of soft, distributed tactile sensor skins into
robots has been widely adopted for tactile recognition, tactile exploration,
and autonomous control. However, in human-centred applications like
teleoperation, the complex sensory input data generated by a multitude of
distributed tactile sensors must be projected to the skin of a human operator
to generate effective, yet efficient tactile feedback during remote operation
of a robotic agent.

Till to date, tactile displays suffer from a high energy consumption and a
large form factor. Moreover, most tactile displays are restricted to simplified
application scenarios, such as virtual reality, and previous research has not
considered the end-to-end transformation from tactile sensor input data to
tactile actuator driving signal for the realization of a vastly applicable tactile
feedback system to establish the tactile sensory information flow between
robots and humans.

The objective of this thesis was the development and implementation of
a tactile feedback system that integrates distributed tactile skin sensors
originally developed for the large-scale implementation into robots with
ultra-compact tactile displays that deploy sparse actuator arrays to provide
direct tactile feedback in unstructured environments in an energy- and
space-saving way.

The data-driven tactile feedback system features a set of novel
capabilities: (1) it deploys tactile illusory phenomena to mitigate energy and
space restrictions for compact tactile display designs, (2) a rigorous
end-to-end design from raw tactile sensor data to tactile display output, and
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(3) a modular design paradigm to ensure the tactile feedback system is
scalable, extendable, and generalizes to a plurality of applications.

Tactile feedback is the conveyance of information on the location of
contacts and the physical properties at these contact locations: The proposed
algorithm termed Sequential Tactile Data Clustering for Tactile Image
Compression performs a dynamic compression of the tactile sensor data
into a number of desired contact locations and stimulus intensities; thereby,
enables the generation of tactile illusions with sparse actuator arrays. The
complementary algorithm termed End-to-end Tactile Texture Projection
with Psychophysically-meaningful Latent Space Encodings enables the
implicit representation of tactile sensor data in psycho-physically
meaningful latent space coordinates and allows for conveying generic
textural surface properties in accordance with the tactile sensor input data.

Several prototypes of a tactile display fingertip module were developed
for the experimental evaluation of the proposed tactile feedback system.
The experiments showed that the presented algorithms for the implicit or
compressed representation of tactile sensor data enable the transformation
from tactile sensor data to tactile display driving signal and allow for the
generation of precise spatio-temporal actuation patterns for the conveyance
of macro-geometric and micro-geometric contact information. The final
prototype (size 2.7x2.3x1.2cm) implemented a sparse 3D actuator array of
eight shape memory alloy-based micro-vibrators and a driver module with
a power consumption of only 180mW per actuator with a total weight of
only 16.74g, including a WiFi-enabled driver unit with current amplifiers.

In conclusion, the proposed tactile feedback system utilizes algorithms
for the end-to-end projection of tactile sensor data and adheres to
psycho-physiological paradigms for the generation of tactile illusions,
which enables the efficient real-time transmission of tactile feedback from
tactile sensor skin to the human user by deploying only sparse actuator
arrays of shape memory alloy-based micro-vibrators. The experimental
results suggest that the developed tactile feedback system constitutes an
effective and efficient technical framework for real-time end-to-end tactile
feedback during active tactile object exploration in teleoperation and
human-robot interaction applications.
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Chapter 1

Introduction

1.1 Motivation: The Importance of Tactile

Feedback

Tactual perception is a combination of kinesthetic and cutaneous feedback
that enables humans to perform a great variety of exploration and
manipulation tasks in physical, unstructured environments [1] [2] [3] [4] [5].
In contrast to kinesthetic feedback, cutaneous feedback is mediated by sets
of distributed mechanoreceptors in the skin and allows humans for sensing
local object properties. In analogy to tactile skin sensors for robots, this type
of feedback is also referred to as tactile feedback, i.e., extrinsic feedback that
enables the sensing of distributed contacts and contact properties at the site
of physical interaction [6] [7].

In addition to visual perception, tactile sensing is paramount for the
direct perception of unstructured environments. Solely direct physical
contact enables the direct transmission of forces, vibrations, and heat fluxes,
which inform us not only about macro-geometric object and
micro-geometric surface properties but also about important physical
quantities, e.g. weight distributions, that cannot be perceived otherwise.
Without tactile feedback, humans would not be able of robustly grasping
and dexterously manipulating objects, as it has been demonstrated in
experiments that investigated influencing factors of the force control during
precision grip under local anesthesia [8].

In this context, it has been shown that autonomous robot operation
tremendously benefits from tactile sensing as it provides extrinsic feedback
that facilitates safe operation and robust, dexterous object manipulation [9]
[6] [10] [7]. Thus, tactile sensor skin has been widely adopted in robot
design and control. Especially, the integration of distributed tactile sensors
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enables information-rich feedback from the robot’s environment and makes
robot manipulators increasingly capable of dexterous object manipulation
and even active (tactile) exploration [6] [7]. Not only modern industrial
robots but also emerging robot applications like social and service robots
benefit from the combined deployment of anthropomorphic, dexterous
robot hands with compliant skin that carries distributed arrays of tactile
sensors, because of their higher manipulation capabilities, higher
deployment flexibility, and in turn, a tremendous potential for versatile,
human-like interaction with the physical world [6] [10] [7].

The recreation of tactual perception is the goal of so-called haptic
devices. A sub-category to haptic devices are so-called tactile displays,
which, by analogy to tactile sensors, implement distributed sets of actuators
to stimulate the mechanoreceptors in the human skin and therefore seek to
provide direct, distributed feedback to resemble the physical interaction
with the environment [1] [11] [2].

The realization of a wearable tactile feedback system that possesses the
capability of transmitting tactile sensor data from robots to humans in a
meaningful manner establishes the tactile sensory information flow between
robots and humans, thus, yields the potential for powerful and immersive
human-machine interaction. Depending on the application scenario, this
tactile information must be artificially recreated, e.g. in virtual reality, or
transmitted, e.g. in robot teleoperation, in a manner that produces the
salient features of touch needed to enhance realism and enable human-like
performance [2].

Apart from well-known applications in interactive computing and
virtual reality, tactile feedback has therefore important implications for
human-robot interaction and robot-teleoperation [12] [1] [4] [5]. For
example, robot-assisted surgery seeks to enhance delicate procedures at a
level that is beyond the capabilities of the human hand. In such
teleoperation scenarios, the human operator requires an accurate sense of
telepresence [13] such that the tactile feedback resembles the physics of
directly manipulating the environment, rather than being indirectly
mediated, e.g. by visual cues [1] [2] [4].

While there has been research on the importance of tactile, i.e.
cutaneous, feedback during teleoperation [1], e.g. McMahan et al. [14] and
more recently by Quek et al. [15] and Abiri et al. [16], or the deployment of
tactile skin sensors for haptic device calibration [17], there have been very
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few examples of the combination of distributed tactile skin sensors with
tactile displays [18] [19]; the most popular example being the Tactile-Telerobot
from HaptX1 [12]. This might be attributed to the proliferation of tactile
sensors being limited to the robotic community and, certainly, the enormous
technical challenges to integrate distributed tactile sensing and tactile
feedback into technical systems [1] [16] [4].

Thus, the objective of this thesis is the development and implementation
of a tactile feedback system that integrates distributed tactile skin sensors
originally developed for the large-scale implementation into robots or
robotic manipulators with ultra-compact tactile displays that deploy sparse
actuator arrays to provide direct tactile, i.e., cutaneous feedback in
unstructured environments in an energy- and space-saving way.

The following sections review the theory behind the psycho-physiology
of human mechanoreceptors and the state-of-the-art in tactile technologies,
i.e. tactile sensors and tactile displays, that aspire to create an artificial
tactile feedback for the use in robot control, human-robot interaction, or
robot teleoperation.

1.2 Background

1.2.1 Tactile Feedback in Humans

The development of a tactile display relies heavily on the fundamentals of
human mechanoreceptor physiology. This section therefore briefly reviews
fundamentals and relevant literature on mechanoreceptor physiology and
tactile perception in response to spatio-temporal stimulation patterns.

Spatio-temporal stimulation patterns that act in accordance with the
psycho-physiological paradigms of the brain allow for conveying tactile
information to a human user in more meaningful and more effective ways
[20] [2] [21]. Understanding the underpinning mechanisms of human tactile
sensing and tactile perception is thus especially important as it may allow
for the optimization of the tactile display design and its working principle.
The physiology fundamentals are adopted from [9] [22] [23] [24] [3] to
which the reader is referred to for a more comprehensive review on human
tactile sensing and perception.

1https://haptx.com/robotics/
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1.2.1.1 Human Mechanoreceptors from a Technical Perspective

In contrast to the other human sensing modalities (vision, audio, etc.), the
sense of touch is distributed across the entire body in the skin, joints, muscles,
and tendons. Tactual perception is therefore a combination of feedback from
proprioceptive (internal) and cutaneous (external) receptors.

Proprioception, also termed kinesthesia, is the sensory channel that gives
feedback on the position, velocity, and load of our extremities. In contrast,
cutaneous receptors are sets of distributed sensors that are directly located in
the glabrous, hairless skin and perceive pressure, vibration, and temperature
due to direct physical contact with the environment, Fig. 1.1. Tactile displays
are devices that implement sets of distributed actuators that stimulate the
cutaneous receptors. This thesis focuses on cutaneous mechanoreceptors in
terms of tactile sensing and tactile stimulation.

FIGURE 1.1: Cutaneous receptors are sets of distributed sensors
directly located in the glabrous, hairless skin and perceive
pressure, vibration, and temperature. Tactile displays are
devices that stimulate these cutaneous receptors. Picture

adopted from Park et al. [3], modified.

Embedded in the dermis, the glabrous skin includes four main types of
cutaneous mechanoreceptors, which are located in different depths: namely
Merkel disks (Ø≈10mm) and Ruffini nerve (L≈0.5-2mm) endings as well as
Meissner corpuscles (L≈30-140mm, Ø≈40-60mm) and Pacinian corpuscles
(L≈0.5-2mm, Ø≈0.7mm).
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These mechanoreceptors have specific stimuli responses depending on
the mechanical loading and stimulation frequency. They are divided
according to their adaptation rate yielding two categories: fast adapting
(FA) units sensing transient stimuli and slow adapting (SA) units sensing
(quasi)-static stimuli. SA-type receptors are sensitive to sustained static
stimuli, thus, generate a time-invariant signal output. FA-type receptors, on
the other hand, are sensitive to dynamic stimuli. Each category furthermore
comprises type-I and type-II receptors depending on the respective size of
their receptive fields and their density, as depicted in Figure 1.1 and
summarized in Table 1.1. Type-I receptors are located in the superficial layer
of the skin and have small receptive fields. Type-II receptors are located in
the deeper layers of the dermis and have comparatively larger receptive
fields.

TABLE 1.1: Characteristics of the mechanoreceptors in the
human skin [23] [24] [3].

Meissner Pacinian Merkel Ruffini
Receptor type FA-I FA-II SA-I SA-II
Adaption Fast Fast Slow Slow
Skin Layer Upper Lower Upper Lower
Density [units/cm2] 140 20 70 10
Resolution [mm] 3-4 >10 0.5 >7
Receptive Field [mm] 3-5 >20 2-3 10-15
Frequency [Hz] 10-200 70-1000 0.4-10 0.4-10
Mechanical Response Slip, Texture Vibrations Static Forces Shear

Merkel endings are SA-I receptors that provide information on
macro-geometric properties, namely position, shape, and orientation; as
they respond to sustained skin deformation and the static pressure
distribution between the skin and the asperities of the contact surface. Even
though this information is rather quasi-static, it is reported that Merkel disks
(SA-I) have their optimal frequency response at 0.4 to 15Hz and are able of
detecting skin deflections of as less as 1mm. Ruffini nerve endings (SA-II)
generate a slowly adapting static response to sustained pressure and,
moreover, to skin stretch due to shear forces; i.e., they are capable of
detecting slip at the fingertips.

Meissner (FA-I) and Pacinian corpuscles (FA-II), on the other hand,
respond to temporal or vibratory information that occurs by relative
movement of the skin to the contact surface, such as shape and textural
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changes along a timely trajectory. Meissner corpuscles exhibit the highest
sensitivity at 30-50Hz, but respond to stimuli up to 200Hz. They encode
light touch, grip control, and texture discrimination [24] [3]. Pacinian
corpuscles respond to frequencies from 50Hz-1kHz with their peak
sensitivity to frequencies at around 250Hz. Vibrations of up to a maximum
of 1kHz could occur, e.g., during very rapid explorative motion of the finger
on very fine surfaces [24]. Pacinian corpuscles play therefore a crucial role in
the perception of micro-geometric surface properties [24] [3].

1.2.1.2 Vibro-tactile Actuation Patterns for Spatio-temporal Stimulation

Vibration is an information-rich signal that is inherently produced during
physical interactions with the environment. The human sense of touch
excels at sensing and interpreting these vibrations to gather information
about interactions with the physical world [25] [26].

In fact, in addition to displaying static sensations at discrete locations on
the body, previous research [27] [20] [28] [29] [30] [31] [32] on the psycho-
physiological aspects of the human sense of touch investigated the impact of
vibro-tactile stimulation patterns by single or multiple, independently driven
actuators. The creation of meaningful higher-order tactile percepts as the
result of spatio-temporal actuation patterns from only few actuators enables
the transmission of complex tactile information on, e.g., textures, directions,
or shapes, thus constitutes an interesting solution to alleviate limitations of
tactile actuator technology inherent to any technical tactile feedback loop.

It has been shown that by controlling the timing and intensity of tactile
stimuli patterns, information can be communicated in a compact and
efficient manner by so-called tactile illusions [33] [34] [35]. Hence,
vibro-tactile actuation patterns for spatio-temporal stimulation that create
meaningful tactile illusions bear the potential of mitigating the problem of
space and energy consumption of large arrays of tactile actuators. The
following paragraphs elaborate on important psycho-physical tactile
phenomena, namely the apparent tactile motion and the phantom tactile
sensation, as a major design tool to achieve a compact and wearable tactile
feedback system, Fig. 1.2.

Apparent tactile motion (AM) [33] [20] [2] is observed, when the
projection of two vibro-tactile stimuli is spatio-temporally controlled so that
their stimuli on the skin are in close proximity to each other and their
stimuli times overlap. Then, humans do not perceive two separated
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FIGURE 1.2: Illusory tactual percepts due to vibro-tactile
stimulation: Apparent tactile motion (A) and phantom tactile
sensation (B) may allow to mitigate limitations in tactile
information transmission due to a limited actuator grid density.

actuators, but merely a single actuator that appears to be moving between
the two points of the actual stimulation [33]. Neuhaus et al. demonstrated
that the variables allowing for a robust generation of AM were (1) stimuli
duration τd and (2) inter-stimulus onset asynchrony (SOA) τSOA. SOA is
defined as the time interval between the onsets of subsequent actuation
stimuli [36] [37] [25], Fig. 1.2-A. The optimal values for τSOA are a function
of the stimuli duration τd [36] [37] [25]. The stimuli duration is inversely
proportional to the perceived velocity of the illusory movement. Due to
their inter-dependency, τd and τSOA require careful adjustment to preserve
the illusion.

Phantom tactile sensation (PS) [34] [20] [2] is observed, when the
intensity of two simultaneous vibro-tactile stimuli is controlled so that their
stimuli on the skin are in close proximity to each other, however, the
stimulus intensities differ. Then, humans do not perceive two separated
actuators, but merely an illusory vibrating actuator located between the
physical actuators, Fig. 1.2-B. Unlike AM, the PS is perceived as static [35].
Hence, the resulting location and intensity are controlled by the relative
intensities of the two vibro-tactile stimuli [34]. For example, if two
vibro-tactile stimuli intensities are equal, the resulting sensation is perceived
at the center between these two actuators. Alles [35] found that the
logarithmic relation of stimuli intensities maintains a constant PS intensity
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over the entire range of locations. Different relations between the stimuli
intensities have been proposed to control the resulting PS localization and
intensity [20] [38] [28] [21].

Israr and Poupyrev [20] proposed an algorithm called the Tactile Brush
that combined AM and PS to create tactile illusions of 2D tactile strokes by
controlling a sparse 4× 3 array of C-2 tactors inside a sheet of foam glued to
the back of a wooden chair. Park et al. [28] presented an extension to the
Tactile Brush algorithm that controls a set of three actuators to create
smoother, non-linear PS and was deployed to render moving tactile
sensations on the palm by means of a sparse 2D-array of piezo-electric
vibrators. In [39] and [21] these efforts have been extended towards the
haptic interaction with a 3D virtual object by means of tactile illusions
generated by a sparse 3D-array of piezo-electric vibrators. These algorithms
enabled the sensation of continuous tactile motion with sparsely, grid-like
arranged actuators.

Given this previous research, AM and PS are important design elements
of tactile displays, since they may allow for the creation of tactile stimuli to
convey locations of contact and textural properties [27] [20] [21], yet with
only a small number of physical actuators. Up-to-date, however, it is a
major challenge to design tactile displays based on tactile illusions, as the
knowledge of the control parameters that enable tactile illusions depend on
the individual user, the body site and the deployed hardware for stimulus
generation [40] [31] [41].

1.2.2 State of the Art in Tactile Technology

1.2.2.1 Tactile Sensors and their Large-scale Implementation into Robots

Recently, the development of tactile sensors and the demonstration of their
potential in robotic applications promoted the technical development of a
large diversity of transduction principles and design criteria to further
facilitate their application in robotics [9] [6] [7], Fig. 1.3.

The biomimetic sensor from BioTac [48] is a multi-modal sensor module
that integrates three transduction principles, Fig. 1.3-A. Normal forces can
be measured by an arrangement of 24 electrodes and with a resolution of
0.01N at up to 100Hz. Given the knowledge on the sensor geometry,
tri-axial forces can be computed [49]. Furthermore, due to an integral
pressure sensor that senses the oscillations of a fluid inside the fingertip
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FIGURE 1.3: Representative selection of robot hands with tactile
sensors: Fishel et al. [42] [43] (A), Tomo et al. [44], [45] (B),

Daolin et al. [46] (C), and Lambeta et al. [47] (D).

compartment, vibrations from 10-1040Hz can be measured. The BioTac has
been deployed to many anthropomorphic robot hands, e.g. the Shadow Hand
[43] [50], the BarretHand [51] as well as the Allegro hand [52]. The BioTac
sensor is also, to the author’s best knowledge, the only modern tactile skin
sensor that has been utilized in academic research on tactile feedback by
means of tactile displays: Pacchierotti [18] [12] and co-workers used the
BioTac to provide a human operator with tactile feedback in terms of
fingertip contact deformations and vibrations for robotic
surgery-applications, however, only by directly mapping the tactile data to
input commands for the tactile display.

In this context, our lab has been developing the tactile sensor module
uSkin, which is a soft 3-axis skin sensor [53] in a compact form factor. It was
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developed for the implementation into the Allegro hand [54], Fig. 1.3-B. Each
sensor element inside the module contains a small permanent magnet that
is suspended above a tri-axial Hall-effect sensing microchip which allows for
sensing of tri-axial force vectors upon external deformation of the silicon.
A flat uSkin sensor module accommodates 16 sensor elements in a grid-like
array of the size 24× 28× 5.5 mm.

Another example is the GelSlim [55] [46], a high-resolving tactile sensor
module that enables tactile sensing by monitoring the deformations of a soft
elastomer matrix with a small camera, Fig. 1.3-C. In detail, a camera system
captures highly detailed images of an illuminated, clear elastomer that is
covered with a reflective coating and deforms under load. While the GelSlim
has a very high resolution and can sense fine micro-geometric surface
features, it has a comparatively low frequency response due to the required
signal processing of the huge amounts of data. The GelSlim module is
comparatively large, but has been deployed to robotic grippers, e.g. [46].

Adapting the operational principle of GelSlim, Lambeta et al. [47]
developed a low-cost tactile sensor that was termed DIGIT. DIGIT has a
smaller form factor compared to GelSlim and has been implemented into a
multi-fingered Allegro hand, Fig. 1.3-D.

Recently, Padmanabha et al. [56] developed OmniTact, which deploys a
vision-based operational principle comparable to GelSlim, but combines
high-resolution with multi-directional tactile sensing. The group around
Padmanabha et al. reported that these features of tactile sensors are crucial
for robot manipulation as it allows for higher accuracy in the state
estimation task.

A summary of the technical specifications of most of the here mentioned
sensors is given in Tab. 1.2. Note that the sampling frequency must be
regarded with respect to the mechanical design and the technical
transduction principle of the sensor. It does therefore not necessarily reflect
the maximum achievable frequency response of the sensor. Additionally,
extensive signal processing might be necessary to calculate physical
quantities like force vectors, e.g. in the BioTac [49] or in the GelSlim [55].

Evidently, tactile sensors for the implementation into robots are designed
to be (1) distributed and high-resolving, (2) compliant, and (3) compact. The
intrinsic compliance mimics the human skin and adds passive safety, which
is important, since active control schemes that involve feedback loops from
joint encoders are typically not sufficient, neither to provide direct feedback
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TABLE 1.2: Technical specifications of representative tactile
sensors.

BioTac GelSlim uSkin DIGIT
[42] [55] [46] [53] [47]

Sensor type Impedance, Camera Hall-Effect Camera
Thermistor,
Hydrophone

Size [mm] (15x28x18)2 50x205x20 24x28x5.5 20x27x18
Sensing Field [mm] NA 30x40 17.6x17.6 19x16
Sensing Points1 19 Electrodes 640x480 4x4x3 640x480

(4x5)3

1 Thermistor
1 Hyrdroph.

Frequency* 10-1040Hz 60FPS 100Hz4 60FPS
Remarks multi-modal, soft tri-axial, soft

soft soft
∗Does not reflect the overall frequency response.
1Direct readout without extensive signal processing.
2Estimated from pictures, datasheets, etc.
3Non-linear pattern.
4For 4x4-module with one microcontroller unit.

from the environment in terms of distributed sensing modalities nor precise
contact localization. Furthermore, compliance of joints and sensors have
been shown to facilitate robot tactile servoing [57] as well as grasp stability
and in-hand manipulation [58] [59] [60] [61] [62]. Large-scale
implementations of tactile sensors into humanoid robots are depicted in
Fig. 1.4.

For example, the TWENDY-ONE robot [58] is entirely covered with a
tactile sensor skin that contains distributed force sensors implemented into
the hands (2× 241), into the arms (2× 54), and into the torso, Fig. 1.4-A. The
fingers and hand are covered with silicone-like materials, which was
reported to enhance the stability of grasping and manipulating objects with
complicated shapes.

The NAO robot is equipped with 116 multi-modal skin sensors, termed
Hex-O-Skin[65]: These sensor cells have been implemented into the chest (32),
each hand (14), fore arm (12), and upper arm (16), Fig. 1.4-B. In total, the
seven body segments of NAO were providing 348 normal-force, 116 x,y,z-
axis accelerometer, 116 proximity, and 116 temperature sensor readouts.

Other examples are the small humanoid iCub with 2000 force sensors
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FIGURE 1.4: Representative selection of robots with large-scale
tactile sensor implementations: Iwata et al. [58] (A), and Cheng

et al. [63] and Kaboli et al. [64] (B).

[66] or the H1 robot, i.e. the REEM-C bipedal humanoid from PAL Robotics 2,
whose entire body is covered with 1260 Hex-O-Skin [67]. The large-scale
implementation of tactile sensor skin and associated challenges are an
interesting and ongoing field of research, a very good overview is given by
Cheng et al. [63].

1.2.2.2 Active Tactile Recognition and Compression of Tactile Data

Active tactile (texture) recognition is the active engagement of robot
manipulators with objects in unstructured environments to retrieve
information on physical object properties, e.g. contact locations and surface
properties transmitted at these locations. An extensive overview is given by
Li and co-workers in [7].

2https://robots.ieee.org/robots/reemc/
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Commonly, the sensing of micro-geometric textural surface features
necessitates sensors that can sample high frequency signals [68] [69] [70]:
Fishel et al. published a study in which they described the algorithm called
Bayesian exploration, which allowed for the recognition of 117 different
textures by means of the BioTac sensor module that provided a combination
of reaction forces and comparatively high-frequency vibration signals as
input data.

Kaboli and Cheng [64] constructed a set of so-called tactile descriptors
that were adopted from Hjorth parameters, i.e. a set of time-domain
parameters for the signal analysis in real-time electroencephalography. This
approach was used in the tactile signal analysis of the vibro-tactile signals
measured during human-like exploration of 120 different materials by
robots carrying a variety of multi-modal tactile sensors. In this regard,
Chathuranga et al. [71] combined statistical descriptors for the signal
analysis with artificial neural networks to distinguish seven wooden
textures with a biomimetic fingertip sensor with soft material properties.

Takahashi and Tan [72] used a convolutional autoencoder approach to
associate the tactile data to the corresponding images of the surfaces of 25
material probes enabling the perception of tactile properties indirectly via
vision. Polic et al. [73] used a convolutional autoencoder to identify a
universal set of tactile features from tactile sensor data, i.e. an unsupervised
feature extraction, and investigated the usefulness of these features for
different robot manipulation tasks.

Albeit many applications regard data compression as a key technique for
image processing, or in general, for information retrieval [74] [75], the
task-specific compression of tactile data, in particular for the control of
tactile displays, has rarely been investigated [12] [1] [17].

Compressed learning has been used in the classification of tactile signals
by performing the recognition directly on compressed, low-dimensional
sensor data obtained from embedded tactile skin sensor arrays [76] [77].
Another recent approach suggests to encode sub-sequences of the tactile
input data using a linear dynamic system approach and the application of
fuzzy c-means to cluster the obtained representation [78]. Liu et al. [79]
investigated the direct recognition of the shape of objects that are in contact
with a robotic finger by deploying a novel feature extractor, which uses the
tactile pressure map to construct a feature vector for finite contact shape
classification. This is in contrast to purely analytic approaches [80] [7].
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In this context, the interpretation of tactile information is one of the
trending challenges in computational learning [81] and could be potentially
useful for the control of tactile displays in the context of large-scale
implementation of tactile sensors.

1.2.2.3 Tactile Displays

Due to a major shift towards wearable devices, haptic systems have started
to be designed with wearability in mind [11] [82]. Arguably, wearability
and, in particular, the portability of haptic systems are important factors for
the ubiquitous communication between humans and machines. Thus,
stationary, handheld, or invasive devices, e.g. the Tactile-Telerobot from
HaptX3, are not considered further. These type of devices naturally exhibit
restrictions that impede their uncomplicated use for manipulation tasks,
e.g., free finger motion and natural hand-eye coordination for
multi-fingered teleoperation. However, comprehensive reviews on haptic
devices in general can be found in [24] [11] [2] [82].

In fact, cutaneous feedback has been reported to play a crucial role in
enhancing the performance and effectiveness of teleoperation [83] [84] [15]
[4] [5]. Tactile displays are therefore gaining increasing interest, as they are
generally easier and safer to integrate into teleoperation systems, because
they do not introduce instability into the control loop of the manipulators [1]
[4].

Wearable systems are typically tactile, i.e. cutaneous, devices [11] [2]
[82]. By analogy to tactile sensors, tactile displays are arrays of typically
very small actuators that stimulate the cutaneous mechanoreceptors to
resemble the extrinsic sense of touch by the projection of forces, pressure,
vibration or temperatures onto the human skin [5]. In this sense, tactile
displays yield the potential of immersive and direct tactile feedback in the
form of wearable and portable devices [82]. Their technical realization,
however, imposes severe demands on the actuator technology.

The following section reviews wearable tactile displays according to their
mode of stimulation, as adopted from Biggs & Srinivasan [85]: normal skin
indentation, skin shear, and vibration. Additionally, electro-tactile displays
are shortly reviewed, Fig. 1.5.

3https://haptx.com/robotics/
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FIGURE 1.5: Representative selection of wearable tactile
displays: Kim et al. [86] (A), Gabardi et al. [87] (B), Mun et
al. [88] (C), Schorr et al. [89] (D), Kim et al. [39] (E), Rahimi et al.

[90] (F).

Normal indentation displays transmit tactile stimuli via indentation of
the skin by one or multiple moving tactors, which enables spatially
distributed tactile information transmission into the skin. Contact, pressure,
curvature, and soft-/hardness displays belong to this category. For example,
Kim et al. [86] presented a piezoelectric ultrasonic actuator-based tactile
display that drove a 8 × 4 array of pins with a spatial resolution of 1.5mm
and a temporal resolution of 20Hz, Fig. 1.5-A. Despite the mechanical
embodiment as pin array, they achieved a rather lightweight and wearable
design with an overall dimension of 1.7 × 3.4 × 3.2cm. The authors
managed to implement three of these modules into a glove, making them
able to provide a human user with cutaneous stimuli to the thumb, index,
and middle fingers. The controller hardware was rather bulky and the
system was attached to the back of the user to enable free finger motion.
Gabardi et al. [87] presented a haptic device called Haptic Thimble for surface
exploration in virtual environments, Fig. 1.5-B. It uses a serial kinematics
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chain to combine the rendering of surface orientation with fast transient and
wide frequency bandwidth tactile cues of up to 300Hz. It combines a
compact servo motor for orienting a plate that is in contact with the finger
pad and a voice coil actuator that actuates the plate. The total weight of
Haptic Thimble was reported to 30g and the overall size to 6.6× 3.5× 3.8cm.
Mun et al. [88] developed a flexible tactile display using an electro-active
polymer that activates with an external electrical voltage and protrudes
vertically to cause normal skin indentations, Fig. 1.5-C. Mun et al. reported
that the maximum protrusion is 650µm with a maximum force of 255mN.
One actuator has a diameter of around 15mm and can be worn on the finger
phalanges and the forearm.

In contrast, skin shear devices exert shear forces which stimulate the
cutaneous mechanoreceptors efficiently, due to their high sensitivity to
tangential stretch. These devices can transmit directional cues, which can be
even further enhanced by combining stretch and tangential motion stimuli,
e.g. to generate perceptions of slippage. Friction, indentation, push-button,
proprioception, and large-radius surface curvature display fall under this
category [11]. Schorr & Okamura [89] presented a 3-degree-of-freedom
(DOF) wearable device of this category, which is able to engage and
disengage with the finger pad skin surface as well as to resemble shear and
normal skin deformations at the finger pad, Fig. 1.5-D. The device deploys a
delta parallel-link mechanism, which has three translational DOFs that
enable normal as well as lateral and longitudinal skin deformations. This
device weighs 32g with a size of 2.1 × 4.9 × 4.0cm, has an operational
workspace of 1× 1× 1cm, and maximum achievable forces of 2N (normal)
and 7.5N (shear). Young & Kuchenbecker [91] presented a 6-DOF parallel
manipulator capable of controlling the position and orientation of a single
end-effector platform, such that any combination of normal and shear force
can be delivered. Even-though this device is technically wearable and can
display normal and shear forces at any location on a fingertip, the immense
size of the mechanical construction severely limits the applicability and
makes teleoperation almost impossible.

In addition to the above-mentioned types of tactile displays, there is also
a growing interest in vibro-tactile stimuli. Due to the small form factor and
low mass of vibro-tactile actuators, highly-wearable interfaces can be more
easily achieved [11], which makes these type of actuators most applicable in
terms of unobstructed human-robot interactions and dexterous



17

teleoperation. Murray et al. [92] presented a wearable, vibro-tactile glove
containing miniature voice coils that enabled the display to convey
continuous, proportional force information to the user’s fingertips. In
psychophysical experiments, Murray and co-workers could show that
vibro-tactile feedback allowed the users to control the grip forces more
effectively during pick-and-place manipulation tasks. They concluded that
correlated amplitude and frequency signals of vibro-tactile feedback
substantially improved teleoperation.

Recently, Kim et al. [39] developed an adaptive vibro-tactile fingertip
module that implemented four piezoelectric actuators (four 9mm ceramic
disks concentrically mounted on 12mm metal disk) on the sides of the user’s
finger around an opening at the bottom for touch screen interaction,
Fig. 1.5-E. In conjunction with a rendering algorithm that made use of the
AM-theory by modulating τSOA and τd, the module was able to create a
vibration flow and virtually resemble 2.5D surface features on a touch
screen when using multiple fingertip interfaces.

Electro-tactile displays elicit tactile sensation by artificially stimulating
the mechanoreceptors, i.e., by directly inducing electrical current from
surface electrodes into nerve fibers within the skin. Despite the high
variability and the somewhat unnatural perception, electro-tactile displays
can be designed to be thin, light, and flexible, thus, highly wearable. In this
regard, Kajimoto et al. [93] presented a compact (7.5 × 5cm) electro-tactile
display with 512 electrodes for the display of tactile images based on camera
data of a smartphone. Recently, Rahimi et al. [90] investigated the feasibility
of projecting identifiable moving patterns using electro-tactile stimulations
by means of a 4× 4 array of fingertip contacting electrodes (Ø1.5mm) using
varying voltages and frequencies, Fig. 1.5-F. Within an experimental session,
only 39.6% of the participants could exactly identify the variously moving
patterns induced by electrical signals. Further drawbacks of electro-tactile
displays are the varying electrical impedance of the skin and effects of
receptor fatigue due to electrical stimulation. However, solutions for the
automated online-estimation of optimal electric stimulation to mitigate
these effects are discussed in [94].

1.2.2.4 Shape Memory Alloy-based Tactile Displays

The use of SMAs for the construction of tactile displays goes back to the
research of Howe et al. [95] and Wellman et al. [96] in the late 1990s,



18

Fig. 1.6-A. Howe and co-workers device consisted of an array of
SMA-driven pin elements that were raised against the finger pad to
approximate the desired surface shape on the skin of a human operator. It
was pneumatically cooled and closed-loop position controlled. They
achieved a maximum frequency bandwidth between 6Hz to 7Hz (-3dB
attenuation). In this regard, Wellman and co-workers investigated
SMA-driven (Ø75µm, L30mm) multi-pin matrix arrays with active thermal
liquid cooling (water and ethylene glycol), which increased the frequency
bandwidth to up to 40Hz (-3dB). Both the devices were limited in their
frequency response, thus directed towards static shape representation, and
at that point only stationary prototypes. The power consumption of these
devices was not reported. However, the groups around Howe and Wellman
established important groundwork for SMA-based actuators for the use in
tactile displays.

FIGURE 1.6: Shape memory ally-based tactile displays: Howe
et al. [95] (A), Wellman et al. [96] (B), Fukuyama et al. [27] (C1),
Okumoto et al. [97] (C2), Aiemsetthee et al. [98] (C3), Scheibe et

al. [99] (D), Hwang et al. [100] (E), Lim et al. [101] (F).

Firstly in 2006 by Mizukami et al. [102] and later in 2009 by Fukuyama et
al. [27], SMA-based micro-vibrators for the transmission of tactile stimuli
were investigated, Fig. 1.6-C1, and the control of short and thin SMA wires
(Ø50µm, L5mm) by pulse width modulation (PWM) was established.
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Mizukami et al. reported that by deploying pulsed current signals to thin
SMA wires, frequencies of up to 300Hz could be generated in
synchronization with the control signal.

Fukuyama et al. [27] constructed a stationary planar array of roughly
5.5 × 5.0cm with up to eight SMA-wire actuators to transmit sensations of
surface properties by means of vibration signals with a frequency bandwidth
of 50Hz to 100Hz. This prototype used static actuation patterns to generate
AM and the SMA actuator itself consisted of an SMA wire (Ø50µm, L5mm,
R3Ω) sitting inside an insulator embedded into the display matrix.

From 2012, several versions of SMA-based, glove-type devices were
suggested: Okumoto et al. [97] presented TactoGlove having three SMA wires
(Ø50µm, L5mm, R3Ω) sewed into a cloth spanning linearly across the center
of the thumb’s finger pad in an attempt to transmit distinguishable
sensations of sliding or initial contact for virtual reality applications,
Fig. 1.6-C2. TactoGlove was operated at 3.0V and had a maximum of nine
independently controlled SMA actuators running at approx. 4% duty cycle.

In 2020, Aiemsetthee et al. presented a prototype of an Braille
information display with up to six independently driven SMA actuators
(Ø100µm, L5mm, R1.4Ω) similar to the ones used in Okumoto et al. [97],
however with a pin-like design comparable to the early designs of Howe
[95] and Wellman [96]. These actuators were sewed into six VELCRO R©
straps, each for every segment of index and middle finger, and were meant
to act as refresh-able Braille display, Fig. 1.6-C3.

Scheibe et al. [99] presented an ergonomic SMA-based fingertip module
that was designed for improving tactile interaction in virtual reality
applications for the car industry, Fig. 1.6-D. Each fingertip module had a
size of approx. 17× 28mm and implemented a maximum of three SMA wire
(Ø80µm, L50mm, R11Ω) loops that wrapped around the finger pads and
were fixed on top of the fingertip module using M2 screws with a head
diameter of 3.8mm. The spacing between the loops was approx. 6mm. Due
to the loop-like design, the SMA wires were much longer then in the above
designs (cf. L5mm in Okumoto et al. to L50mm in Scheibe et al.) and
implemented completely different tactile stimulus modalities. Scheibe and
co-workers module was able to generate the sensation of vibratory
contractions, which were intended to resemble typical tactile interactions
inside a car interior, e.g. touching the steering wheel, operating various
knobs and buttons. However, due to the control board, the maximum
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number of SMA actuators was limited to eight actuators: three actuators
were implemented into index and middle finger module, and two into the
thumb module, respectively. The system was reported to operate at 12.6V
input voltage with a rather high power consumption of 1.81W per actuator,
because the internal SMA actuator resistance (R11Ω) is proportional to the
length of the SMA wire loop, which was rather high.

Hwang et al. [100] proposed a haptic ring that displayed normal and
shear forces to the fingertips by implementing three SMA wires (Ø100µm)
that move a platform with a slider upon which the finger pad rests,
Fig. 1.6-E. For the display of pressure, one SMA wire compresses the
platform with the slider pressing against the fingertip. For the display of
shear forces, two additional SMA wires move the slider alongside a linear
motion guide. Hwang and co-workers reported achievable displacements of
0.5mm (normal direction) and ±1mm (shear direction), and achievable force
outputs of 3N (normal direction) and 3N (shear direction). However, due to
the passive cooling of the SMA, these specifications depended heavily on
the desired frequency response, which were reported to be up to only 2.6Hz
(normal direction) and 3Hz (shear direction). The final prototypes had an
overall size of 25 × 14 × 30mm, a total weight of approx. 7.1g, and it was
operated at 8.5V supply voltage together with a desktop PC as part of a
virtual reality environment.

Recently, Lim et al. [101] proposed HaptiCube, a cube-shaped 5-DOF
finger-wearable tactile device that uses various SMA wires/helices
(Ø150µm) to displace and tilt inner platforms against the finger pad,
Fig. 1.6-F. This device was designed to display 3-DOF pressures and 2-DOF
shear forces to the finger pad, i.e. force feedback. The motion trajectories
were generated by PWM-control at high duty cycles of up to 30%, thus, the
frequency response was limited to 4.1Hz to allow for sufficient passive
cooling of the SMA actuators. However, a maximum shear force of approx.
2.1N and normal force of approx. 12N were achieved. The total weight and
the overall size of HaptiCube were reported to 26g and 2.9 × 2.9 × 3 cm,
respectively. The operating voltage and power consumption were not
reported.

1.2.2.5 Summary

Clearly, tactile sensing is an indispensable ability for the interaction with
and the manipulation of unstructured environments; both for humans and
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robots [1] [2] [3] [4] [5]. The complementation of robotic manipulators with
tactile sensors has therefore demonstrated great potential, as physical
feedback during dynamic interaction with unstructured environment
greatly enhances automation and manipulation capabilities of robots [58] [9]
[6][59] [60] [10] [61] [62] [7]. The vast majority of modern tactile sensors for
the large-scale implementation into robots or robot manipulators are: soft,
densely distributed, and often multi-modal [48] [53] [55] [46] [47] [56].

Despite decades of development of wearable tactile displays that seek to
enable the emulation of natural tactile feedback, till to date the
manufacturing of high-density tactile displays is challenging [1] [11] [2] [82].
Tactile displays are arrays of distributed actuators and inherently suffer
from high energy consumption, large form factors, and a limited output
range. For this reason, they are always restricted to a certain application,
e.g. virtual reality, and only few modes of tactile stimulation, e.g. lateral
skin deformation, because the integration of various actuators for the
emulation of multi-modal tactile perception is challenging, especially in a
compact form factor for, e.g., the application in telerobotics [103].

In this regard, the signal processing of tactile sensor data for the use in
tactile displays has been rarely investigated [18] [17]. In particular, the
generation of tactile feedback across the skin of a human user from a
remotely operating robot or robot end effector that is equipped with soft,
distributed tactile sensor skin and thus capable of sensing physical
information in unstructured environments is a major technical challenge.
The efficient yet meaningful end-to-end projection of arbitrary tactile sensor
data for the generation of tactile stimuli by means of wearable tactile
displays that provide information on the location of physical contacts and
the conveyance of physical contact information, such as micro-geometric
surface properties, is the objective of this thesis.

1.3 Objectives

The above limitations motivated the following outline of research objectives.
They target the development of a data-driven tactile feedback system
deploying end-to-end tactile sensor data projections for a compact and
scalable tactile feedback solution and its implementation into a wearable
human-machine interface for human-robot interaction and
robot-teleoperation.
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1. Generalizability: The presented research and the proposed solutions
should possess external validity, i.e., should establish a framework
rather than a particular solution for the specific hardware deployed
throughout this thesis. For this reason, a major part of this thesis deals
with the development of software algorithms that establish the tactile
information flow regardless of the tactile technology deployed. The
presented research rather adheres to a design concept of tactile
feedback systems that is applicable beyond the hardware on which it
is necessarily tested within this thesis.

2. End-to-end Design: A large majority of the in sections 1.2.2.3 and
1.2.2.4 presented tactile displays are designed for or verified in virtual
reality applications or other strictly defined settings, e.g. Braille
information displays. In fact, this is a dramatic limitation: Tactile
sensors are ultimately designed to allow robots to explore,
understand, and interact with new, unstructured environments.
Similarly, tactile displays should enable human operators to perceive
unstructured, raw tactile sensor data in a meaningful way. While this
is a great challenge, since electro-mechanical design and technical
transduction principles of both the deployed tactile sensor and the
tactile actuator clearly affect the tactile information flow, algorithms
must overcome or at least alleviate this issue and enable an end-to-end
tactile information projection.

3. Scalability: The developed tactile feedback framework as a whole
should scale in accordance with the desired application and the
associated tactile sensor and tactile actuator technology. In terms of
software, this means that the end-to-end projection of the tactile sensor
data into a control signal that drives the tactile display must work
with little as well as with immense amounts of sensor data. Likewise,
the hardware design must be modular to be applicable across a wider
range of application scenarios, e.g. a varying number of associated
tactile sensor and display modules for differently designed robot
manipulators, while keeping the form factor as compact as possible.

4. Extensibility: In contrast to sole scalability, an extensible system
design allows the addition of new capabilities or functionality. The
need for extensibility arises from the fact that tactile perception is
multi-modal, since the set of cutaneous receptors includes



23

mechanoreceptors with different sensing modalities from static shear
to dynamic micro-vibration to heat flux, compare section 1.2.1. The
mechanical module and the electrical circuit driver design should
allow for an easy complementation of the tactile display module by
SMA-actuators of different embodiment or completely different
actuators to generate a broader range of tactile stimuli. Likewise, the
associated software must not impede those extensions.

5. Wearability: Even though any tangible addition to the human
fingertip admittedly decreases the naturality of motion and tactile
interaction, the hardware design must be compact enough to be worn
comfortably and must not be connected to the ground. Furthermore,
the manufacturing process of the complete module should be efficient
and customizable to the individual finger size and shape.

1.4 Novel Contributions

There has been extensive research on tactile sensors, their large-scale
implementation for robotic applications (section 1.2.2.1) and on algorithms
that use tactile data to enhance tasks, e.g. tactile recognition or
manipulation by robotic manipulators (section 1.2.2.2). Likewise, wearable
tactile displays (section 1.2.2.3) have been researched for decades.

Just recently, however, the knowledge on tactile perception (section 1.2.1)
is becoming sufficient to robustly control tactile illusory phenomena and
integrate them as an integral part of the control of vibro-tactile displays. In
this context, the development of a wearable tactile feedback system for
human-robot interaction that uses end-to-end tactile sensor data projections
to enable the creation of psychophysical tactile illusions from densely
distributed tactile skin sensors and thereby enables the generation of
high-resolution tactile stimuli using low-resolution vibro-tactile actuator
grids has not been investigated before.

The choice of ultra-compact, energy-dense SMA-based micro-vibrators
enables a compact and wearable mechanical design with comparably low
energy consumption of approx. 180mW (cf. [27] [99]). These micro-vibrators
have a frequency bandwidth of typically up to 300Hz [102] to stimulate the
Meissner and Pacinian corpuscles, are sparsely distributed inside the
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fingertip module, and thus enable the generation of tactile illusory stimuli
onto the skin of the finger pad.

Moreover, the tactile feedback system implements algorithms that solve
the unknown transformation from massive amounts of tactile sensor data to
the driving signals of sparsely distributed actuators and enable the efficient
end-to-end projection of contact locations and textural surface properties by
means of tactile illusions. The use of tactile illusory stimuli to convey the
locations of contact and textural surface properties with only a
low-resolution actuator grid reduces the energy and space requirements
compared to traditional tactile displays.

Due to the very high force-volume ratio of SMA-actuators and the data
projection algorithms, the tactile display module can be complemented with
more SMA-actuators without increasing the energy consumption. Owing to
this compactness, the tactile display modules can also serve as an extension
for the integration into tactile displays targeting other mechanoreceptors for
multi-modal feedback or haptic devices for kinesthetic feedback.

Ultimately, the custom-made driver board of the tactile display module
deploys a WiFi-enabled microcontroller unit that can connect with several
compact I2C-capable driver circuit units each of which can independently
drive up to eight SMA-actuators; sufficient to cover the complete hand of a
human operator.

The throughout this thesis developed prototype implements the in
section 1.3 outlined objectives and yields the potential for a highly efficient
tactile display module. To the author’s best knowledge, no other tactile
feedback system implements these features in a compact and complete
tactile feedback system.

Thus, the presented research on hard- & software establishes a novel
data-driven tactile feedback framework that deploys end-to-end tactile
sensor data projections for the application as a wearable human-machine
interface for robot-teleoperation and human-robot interaction.
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1.5 Thesis Outline

1.5.1 Chapter 2: System Architecture and Design Concept of

the Tactile Feedback System

Chapter 2 establishes the system architecture for the experimental studies
on the design and evaluation of the proposed data-driven tactile feedback
system. The system architecture adheres to the outlined research objectives.
Concretely, the system architecture involves an anthropomorphic robot
hand that is covered with a soft, distributed tactile sensor skin, a host PC
running resource-intensive algorithms on the tactile sensor data, a compact
WiFi-enabled microcontroller unit that can control the actuation of multiple
I2C-enabled custom-made tactile display driver circuits that, in turn, can
generate pulsed driving currents for the actuation of tactile display modules
consisting of arrays of energy-dense and ultra-compact SMA-based
actuators to create vibro-mechanical stimuli on the human skin. Chapter 2
thoroughly analyzes made design choices and functional aspects in the light
of human tactile perception and robot tactile sensing technology as
reviewed in section 1.2.2.

1.5.2 Chapter 3: End-to-end Tactile Texture Projection with

Psychophysically-meaningful Latent Space Encodings

Chapter 3 introduces the concept and associated algorithm of End-to-end
Tactile Texture Projection with Psychophysically-meaningful Latent Space
Encodings, which takes inspiration from human material perception by
representing physical surface properties in low-dimensional latent space.
Thus, the presented algorithm investigates the auto-compression of tactile
sensor data into psycho-physically meaningful latent space coordinates by
deploying a deep gated recurrent unit-based autoencoder. It is investigated
how this auto-compression of tactile sensor data allows to identify the
generally unknown end-to-end mapping from tactile sensor data to tactile
actuator driving signal, i.e., the end-to-end generation of illusory tactile
stimuli that convey generic information on micro-geometric surface
properties in accordance with the tactile sensor input data. The proposed
algorithm was experimentally verified by deployment to the custom-made
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tactile display prototype from chapter 2 and the evaluation of the emulated
tactile feedback within user studies.

1.5.3 Chapter 4: Sequential Tactile Data Clustering for

Tactile Image Compression to Enable Direct Adaptive

Feedback

Chapter 4 introduces a to chapter 3 complementary algorithm termed
Sequential Tactile Data Clustering for Tactile Image Compression. This algorithm
resolves the dimensional mismatch between tactile sensor space and tactile
display space by performing two data compression stages on the raw tactile
sensor data at each time instant. This dynamic compression addresses the
technological yet fundamental mismatch between the technical
specifications of tactile sensor array and tactile actuator array by
discretizing the tactile sensor data into a number of desired contact locations
and stimuli intensities to match the tactile display capabilities. The
algorithm allows for the generation of direct feedback from massive tactile
sensor data for a broad variety of tactile sensors and tactile displays,
thereby, enables the compressed yet intuitive representation of massive
tactile sensor information for real-time applications. The algorithm is
experimentally verified within several parameter studies.

1.5.4 Chapter 5: System Integration into a Wearable Tactile

Display Fingertip Module

Chapter 5 achieves the system integration of the initially in section 2.1
introduced system architecture into a compact and wearable
human-machine interface. Chapter 5 is therefore application-oriented and
describes the mechanical (wearable fingertip module) and electronic
(compact PCB of the I2C-enabled driver circuit) implementation of the
system components with optimized wiring into a compact, ergonomic
fingertip module. As a result, chapter 5 arrives at a novel, scalable tactile
display fingertip module that implements the in section 1.3 initially outlined
objectives. The proposed tactile feedback system solves the unknown
transformation from tactile sensor space to tactile actuator space and utilizes
tactile illusions to mitigate limitations of tactile display actuators in terms of
energy consumption and actuator density.
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1.5.5 Chapter 6: Conclusion

Finally, chapter 6 draws conclusion on the presented research by
summarizing the key achievements and critical limitations of the developed
data-driven tactile feedback system that deploys end-to-end tactile sensor
data projections for the application as a wearable human-machine interface
for robot-teleoperation. Chapter 6 also concretizes future work that needs,
firstly, to investigate and implement solutions for the more robust
generation of tactile illusions for the more effective and more efficient
generation of illusory tactile feedback and, secondly, to address design and
implementational challenges for the integration into robot-teleoperation
applications.
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Chapter 2

System Architecture and Design
Concept of the Tactile Feedback
System

This chapter introduces the system architecture and the comprising
components for the development and experimental evaluation of the tactile
feedback system. Additionally, the operational principles of the deployed
SMA-based actuators are explained and important design principles that
come with the SMA-based actuator are outlined. Moreover, the inherent
benefits and limitations of the SMA-based tactile display module are
elaborated on. Note, the tactile display module went through several stages
of development: The first tactile display module prototype is introduced in
this chapter. The associated software algorithms are explained separately in
chapters 3 and 4. Finally, chapter 5 presents the latest tactile display module
prototype and its implementation as a compact wearable tactile feedback
system.

2.1 System Architecture and Experimental Setup

The system architecture included the low-cost anthropomorphic Allegro
robot hand [54] (Wonik Robotics1), the uSkin tactile sensor module [53] with
a microcontroller unit (MCU) (MTB3 [104]), a host PC (Intel R© Core(TM)
i7-8700K CPU @ 3.70GHz and 32.0GB RAM) with GPU (NVIDIA R© GeForce
GTX 1080 Ti with 11 GB frame buffer), a second MCU (Adafruit R© Feather
M0 WiFi), an I2C-enabled pulse width modulation (PWM)-driver
(Adafruit R© 16-Channel 12-bit PWM Driver Board), a custom-made current

1http://www.simlab.co.kr/



30

amplifying driver circuit, and several generations of SMA-based tactile
display module prototypes for the generation of vibro-mechanical stimuli.

Figure 2.1 shows the complete system architecture as a block diagram and
depicts the flow of information between the system components.

FIGURE 2.1: System architecture of the data-driven tactile
feedback system. Pictures adopted from [45] [105].

Briefly, the MTB3 of the uSkin tactile sensor module governed the
collection of uncalibrated, raw tactile sensor readings using I2C
(Inter-Integrated Circuit)-communication and sent the tactile data via CAN
(Controlled Area Network) bus and CAN/USB (Universal Serial Bus)
converter2 to the host PC. The host PC executed the algorithms for the
driving signal computation. The algorithms were implemented in Python3

(v3.7.6) and the neural networks were modelled in the high-level neural
networks API KERAS4 (v2.2.4) with Tensorflow5 (v1.15.0) backend.

With the goal of wearability in mind, the host PC sent the computed
driving parameters via WiFi to the WiFi-enabled MCU, which controlled the
time-critical actuation of the SMA-based micro-vibrators for the generation
of spatio-temporal actuation patterns that elicited illusory tactile sensations.
To do so, the MCU controlled the PWM-driver, which triggered amplified,
pulsed current signals flowing through each individual SMA-actuator.
Note, an external power supply (Kikusui PWR800L, Regulated Power
Supply) was used during the experimental studies (not depicted for the
sake of simplicity).

2https://esd.eu/en
3https://www.python.org/
4https://keras.io/
5https://www.tensorflow.org/
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2.1.1 Allegro Robot Hand with uSkin Tactile Sensor

Modules

The Allegro robot hand is a low-cost anthropomorphic robot hand, which
was equipped with uSkin tactile sensor modules [53] for research on in-hand
manipulation [106] and active tactile (object) exploration [107] [54], Fig. 2.2.
Important details on the operational principle and tactile features of uSkin
are explained in the next section 2.1.2.

The Allegro robot hand setup was used as a testbed to experimentally
verify the algorithm Sequential Tactile Data Clustering for Tactile Image
Compression (chapter 4) under realistic conditions.

FIGURE 2.2: Allegro robot hand with uSkin sensor modules
(left) and the arrangement of the active taxels within the uSkin

modules (right).

The Allegro robot hand implemented two versions of the uSkin tactile
sensor modules: a flat module for phalanges with 4×4 taxels [108] and a
curved module for fingertips with 4×6 taxels [44]. In total, there were
eleven flat modules mounted on the phalanges and four curved modules
mounted on the fingertips. An MTB3 reads up to 16 taxels, thus several
MTB3s were daisy-chained via CAN bus to allow for proper transmission of
all the tactile sensor data to the Windows machine.

The Allegro robot hand was connected via a PEAK6 CAN/USB converter
to a Linux machine, on which the motion controller was implemented using

6https://www.peak-system.com/
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ROS (Robot Operating System7). Since the uSkin requires the Windows
ESD-CAN library for CAN/USB conversion, the uSkin tactile data was
bypassed to the Linux machine via LAN (local area network) using TCP/IP
(Transmission Control Protocol/Internet Protocol) communication.

This enabled the simultaneous recording of the uSkin sensor and Allegro
robot hand joint angle data at a maximum sampling rate of approx. 30Hz.
In the current implementation, the Allegro robot hand delivered 240× 3-axis
readings tactile sensor readouts in total.

2.1.2 uSkin Tactile Sensor Module

The uSkin is a soft, distributed 3-axis tactile sensor module with a magnetic
sensing principle [44] and a dynamic range of 1g f -1800g f , Fig. 2.3. The
uSkin’s silicone structure suspends a grid-like array of 16 magnets over 16
Hall effect-based magnetometers, which detect changes in the magnetic field
upon contact and deformation of the silicon structure.

The package size is 24 × 28 × 5.5 mm and the sensor module provides
digital readouts in three axes across the module’s surface (x- and
y-direction, shear forces) and along the surface normal (z-direction, normal
forces) with a 16-bit resolution. The approximate sensor density is therefore
6.72 taxels/cm2.

The skin sensor module [44] used throughout this thesis was similar to
the previously presented compact, soft, and distributed 3-axis uSkin module
for the deployment to robotic manipulators [53] and is of similar type to the
sensor modules that covered the fingers of the Allegro robot hand [54] [106]
for tactile sensing during object manipulation.

In the experiments, a flat 4× 4 uSkin module with a maximum sampling
frequency of approx. 100 Hz was used. The comparatively low frequency
response arises due to the I2C-communication bottleneck that requires to
ping each sensor readout axis consecutively. Aiming for an end-to-end
design, exclusively uncalibrated raw sensor readings were used throughout
all the experiments described in chapters 3, 4, and 5.

Since the uSkin sensor module was designed for the implementation onto
robot hands, a major design element of uSkin is the grid-like silicone structure
made of Dragon Skin 308 providing the sensor with passive compliance. This

7https://www.ros.org/
8https://www.smooth-on.com/products/dragon-skin-30/
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FIGURE 2.3: uSkin tactile sensor module deployed during the
experiments (A) and the working principle (B). Note that there
exist several versions of uSkin for which reason dimensions

differ slightly. Pictures adopted from [105] (A) and [109] (B).

passive compliance is desirable for in-hand object manipulation, but causes
the uSkin to act as a lowpass filter and thus limits the frequency response
during tactile (object) exploration.

For durability reasons, the top layer of the uSkin consists of a flexible
gripping fabric GM4009 that prevents the silicone structure and magnets
from direct contact with objects and increases the grasping stability and
shear force detection by elevating the friction coefficient. These design
choices were made to facilitate in-hand manipulation, but introduce
additional bias when compared to the physiology of the human skin and
mechanoreceptors.

As explained in chapter 1, the autonomous operation of robots requires
tactile sensors to adhere to the paradigms of safe and robust manipulation
of unknown objects in unstructured environments[6], for which reason the
properties that uSkin and comparable tactile sensors [55] exhibit are often
desired in anthropomorphic robot manipulators. Hence, these properties
must be considered during the development of a tactile feedback system for
teleoperation or human-robot interaction with anthropomorphic robot
hands.

9https://www.3m.com/
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2.2 Development of a Shape Memory Alloy-based

Tactile Display Prototype

Chapter 1 reviewed design concepts of SMA-based tactile displays. This
section elaborates on the choice of SMA wires as actuators, introduces the
first generation of the tactile display module for the experimental testing of
the algorithm end-to-end tactile texture projection (chapter 3), and discusses
mechano-physiological implications of the SMA-based micro-vibrator
design.

2.2.1 Design Choice: Shape Memory Alloy-based Actuator

Shape memory alloy (SMA)-based actuators were chosen, because they
exhibit the following advantages for a space- and energy-conserving, yet
efficient tactile display design:

1. Space and energy density Due to the fact that thin SMA wires can be
controlled in an open-loop manner using pulsed currents, it is possible
to design a compact circuitry with minimal wiring, i.e. only two wires
per actuator for establishing the current flow. SMAs provide very high
force-to-volume ratios [95], which is necessary for clear stimuli
transmission under variable conditions when wearing the device. This
enables ergonomic and space-saving design of the wearable device
with comparably low weight (≤10g per module) and high
force-to-weight ratio (≥0.3N/g) [100], [101]. Noteworthy, when the
SMA wire’s diameter is doubled, the force output capacity increases
by approx. four times while leaving the actuator weight almost
unchanged [100] [101].

2. Durability Another major advantage is the enormous mechanical
durability of SMA-actuators. In fact, nickel-titanium SMA wires can be
cycled at approx. 4.8% strain with a 2N load for tens of thousands of
cycles with no appreciable loss in performance, as reported by
Wellman et al. [96]. SMAs made of nickel-titanium are regularly
deployed in biomedical device development, since this type of alloy is
inert. While this particular feature makes them difficult to solder [99],
it prevents corrosion and material wear due to mechanical stress,
debris, and saline liquids.
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3. Energy consumption Yet, compared to other micro-actuator
technologies, e.g. piezoelectric or magnetostrictive actuators,
SMA-based actuators exhibit a low-power consumption while
providing much larger displacements for perceptible skin
deformation. Mizukami et al. [102] claimed that SMA wires could
consume as little as 20mW. Moreover, the usually reported voltage
supply that is necessary to drive SMA wire actuators, although
dependent on SMA type and dimensions, was between 0.8V [102] and
12.6V [99].

4. Frequency bandwidth Given an electrical current driving circuit,
SMAs can generate micro-vibrations from 1Hz up to 300Hz [102], [99],
[100] and therefore cover the most dominant frequency range for
human tactile perception [24]. Moreover, SMA vibrators do usually
not generate noise due to moving parts, which is a problem with
electromagnetic actuators [101].

2.2.2 Concept of the Shape Memory Alloy-based Tactile

Display Module

The conceptual idea and the first prototype of the tactile display module are
depicted in Fig. 2.4. The WiFi-enabled MCU received the computed driving
parameters and the I2C-address of the targeted PWM driver. Each PWM
driver board had an unique I2C-address and was connected via four
connection points to the MCU for I2C-communication (VCC, SDA, SCL &
GND). Since each PWM signal output was associated with one current
amplifier and one SMA actuator, all the SMA actuators were independently
controlled by only one MCU. Hence, the MCU was operated at low currents
and triggered high driving currents from an external power source in
accordance with the desired driving patterns. Owing to an internal
oscillator in each of the PWM driver boards, the MCU can loop through all
the PWM outputs within one control cycle; i.e. the MCU can define
synchronized actuation patterns that take effect in subsequent control
cycles.

As a result, the tactile display module is highly scalable and modular.
One control cycle can be executed at a rate up to 1.6kHz with 12-bit
resolution, i.e. at a timely resolution of 1.6µs, which is sufficient to cover the
frequency range of the cutaneous mechanoreceptors and adheres to the
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FIGURE 2.4: Concept of the SMA-based tactile display module.

timing specifications that are necessary to generate tactile illusions [33] [34],
[35]. Note that the thermal properties of the SMA wire pose a limitation on
the maximum achievable actuation frequency.

2.2.3 First Prototype of the Shape Memory Alloy-based

Tactile Display Fingertip Module

The tactile display module prototype utilized bare SMA wires to generate
micro-vibrations and to project tactile stimuli directly onto the skin [102] [27]
[110], Fig. 2.5-A, B. The first prototype implemented three thin SMA wires
(Ø100µm, L5mm, R1.4Ω) into a small 3D-printed package and could deflect
the skin by up to 10µm [110].

Connecting the SMA wires to the power supply is challenging and is
commonly done by a proprietary soldering equipment. In fact, improper
soldering can cause the SMA to lose its shape memory effect. Therefore, the
first prototype used threaded steel inserts and M2 screws to fix the SMA
wires inside the module and to electrically connect them by soldering
AWG28 copper wires to the thread and the connectors of the current driver
board.

As mentioned in chapter 1, the two-point-orientation discrimination
threshold of the fingertips is around 5mm [22]. Accordingly, the actuator
array was designed to have a linear alignment with distances of 6.5mm
between actuators, which was larger than this discrimination limit and
enables discretely perceivable signals for the generation of illusory tactile
stimuli [33] [34], [35].
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FIGURE 2.5: First generation prototype of the SMA-based
tactile display module (A,B) and the PWM signal timing for the
generation of tactile illusions (C). Microscopic image adopted

from Sawada et al. [110].

The alloy composition of the utilized SMA caused the entire wire to
shorten around 5% lengthwise when undergoing a temperature-induced
phase transition from the Martensite to the Austenite phase. Due to the
electrically induced temperature changes, periodic micro-vibrations of up to
300Hz could be generated [102] [27] [110]. Thus, the SMA wires could be
electrically controlled by periodic current pulses for the presentation of
tactile sensations using a PWM control scheme, Fig. 2.5-C.

One pulse had an amplitude of I[A] and a width of τd,i[ms]. The duty ratio
D was calculated by τd,i/Ti, where Ti was the period of the PWM signal.
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The duty ratio controlled the strength of the vibrations and was a critical
parameter for the heating/ cooling times of the SMA. Note that no active
cooling was implemented, as the skin of the finger pad served as passive
heat sink. The electrical power transmitted into a single SMA is equivalent
to I2[A]× R[Ω]× D, considering a squared PWM-wave form.

The generation of tactile stimuli strongly depends on the spatio-temporal
design of the vibro-tactile actuation patterns (cf. section 1.2.1.1). According
to literature studies on the generation of illusory tactile stimuli [20] [38] [28]
[21], the control parameters are: stimuli duration τd,i, the inter-stimulus
onset asynchrony (SOA) τSOA,i [37], i.e. the time interval between onsets of
subsequent actuations, and the inter-stimulus interval (ISI) τIOI,i [36], i.e. the
time interval between the offset and the onset of subsequent actuations.

2.2.4 Mechano-physiological Considerations on the Design

of the Shape Memory Alloy-based Tactile Display

Module

Given the design of the SMA-based micro-vibrator, mechanical
micro-vibrations up to 300Hz [102] [27] [110] can theoretically be generated.
Nevertheless, the maximum achievable frequency depends on the wire
dimensions and the duration of the pulsed currents (cf. [99] and [101]).
Mechanical micro-vibrations of the frequency range between 10 to 300Hz
are predominantly perceived by the fast-adapting Meissner and Pacinian
corpuscles, as described in section 1.2.1.1.

During the interaction with physical objects, Meissner corpuscles sense
the rate of skin deformation caused by the slipping of a grasped object or by
surface discontinuities and edges moving under the finger [1] [24] [3]. On
the other hand, Pacinian corpuscles sense high-frequency vibrations caused
by transient contacts with an object, as in collisions or during dragging of
tools across a textured surface [1] [24] [3]. As the density of Pacinian and
Meissner corpuscles in the finger pad is comparatively high [1] [24] [3], these
mechanoreceptors are optimal for the generation of vibro-tactile illusions [2].

Hence, the underlying principle of the presented tactile display module
is to resemble the occurrence of different moving textures under the resting
finger. In this manner, the location of an object’s contact on the finger pad is
transmitted by conveying micro-geometric information on the textural
properties at specified contact locations. This is majorly important
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information for human-machine interaction and teleoperation applications
[92] [1] [4].

Static or sustained deflection of the skin, however, are not easily
achievable using the current design, because of the required on/off timing
to allow for sufficient heat dissipation from the SMA wire into the skin. In
this regard, it must be noted that mechanical interaction also includes
macro-geometric information perceived by Merkel and Ruffini nerve endings
through mechanical pressure or shear of the finger pad. Even though
micro-vibrations carry information on the (moving) contact location and the
controlled stimuli generation allows for transmitting this information via
repetitive activation of Meissner and Pacinian mechanoreceptors at the
desired location by orchestrating stimuli duration τd,i and inter-stimulus
onset asynchrony τSOA,i, the transmission is limited to information that can
be encoded by Meissner and Pacinian corpuscles, which does not cover the
entirety of modalities of the human sense of touch [23] [24] [3].

Moreover, Pacinian corpuscles have a comparably large receptive field
(≈20mm) and low spatial resolution (≈10mm), for which reason the
perception of the tactile stimulus and its localization might be less precise
compared to the other mechanoreceptors (cf. section 1.2.1.1). This issue of
discriminability is further compounded by the propagation of vibrations
through the skin [32].

The generation of vibro-tactile illusions is an ongoing field of research,
because the tactile perception also depends on the higher-level processing of
the human brain, which is difficult to account for and might even be
modified by experience or by injury [24]. As reviewed in chapter 1, it has
been shown that by using effects of human higher-level perception, it is
possible to generate more complex tactile sensations by orchestrating the
temporal order (AM, [34]) and the relative intensities (PS, [35]) of several
spatially distributed tactile stimuli. The knowledge of higher-level
perception paradigms might partially alleviate the aforementioned SMA
actuator limitations, however, this is still an open research question [20] [38]
[28] [31] [41] [21].

An important a priori limitation in using SMA-based micro-vibrators is
the restriction to a subset of tactile stimuli in accordance with the
frequency/ stimuli response of the cutaneous mechanoreceptors. The
absence of proprioceptive feedback, i.e. stimuli that inform the brain on
dynamic positioning/loading of articulated body segments, is another
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limitation that demands the integration of haptic feedback devices into the
feedback loop, but is beyond the scope of this thesis [1] [11] [2].

In conclusion, the presented SMA-based tactile display module can
stimulate the fast-adapting mechanoreceptors Meissner and Pacini for tactile
feedback, yet does not cover the full range of the Pacinian frequency
bandwidth of up to 1kHz. Moreover, due to the mechanical embodiment of
the SMA actuator, in which the SMA wire is directly in contact with the
skin, long continuous pulses for the generation of shear or sustained
pressure are not possible and would cause overheating of the SMA wire.
The projection of shear forces due to lateral skin stretch or the conveyance of
softness-hardness would require a complementation with other actuators
[11] [2] [103] or a different embodiment of the SMA actuator (cf. [100] and
[101]).

2.3 Chapter Summary

Chapter 2 presented the system architecture for the experimental design
and evaluation of the proposed tactile feedback system: The system
architecture involved the anthropomorphic Allegro robot hand covered with
uSkin tactile sensor modules, a host PC running resource-intensive
algorithms on the tactile data, a compact WiFi-enabled MCU that controls
the computed spatio-temporal actuation patterns, an I2C-enabled
custom-made tactile display driver circuit, and the first generation of a
SMA-based tactile display fingertip module.

Additionally, chapter 2 reviewed important design and operational
principles to characterize the potential applications and limitations of the
tactile feedback system, due to both the tactile skin sensor uSkin and the
proposed tactile display module. The presented prototype implements three
SMA-based micro-vibrators (Ø100µm, L5mm, R1.4Ω) into a 3D-printed
package with equidistant linear alignment (6.5mm). The SMA actuator has a
frequency bandwidth of roughly 10Hz to 300Hz [102] [27] [110], which
covers the full frequency bandwidth of the Meissner and the most sensitive
frequency range of the Pacinian mechanoreceptors [24] [3]. The distances
between the micro-vibrators are larger than the two-point-orientation
discrimination threshold in the index finger [22] and enables the module to
generate micro-vibrations for the realization of illusory tactile stimuli at
intermediate finger pad locations [20] [38] [28] [2] [21].
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Thus, the employed design concept of the SMA actuator module, in
conjunction with the variable PWM-control scheme, relies on the generation
of variable spatio-temporal pulse patterns to stimulate the fast-adapting
mechanoreceptors and to convey tactile stimuli of textural surface
properties at desired contact locations by micro-vibrations. Since the stimuli
patterns involve higher-level perceptual effects, thus, partially allow for
alleviating the SMA-based actuators’ limitations in terms of actuator density
and frequency bandwidth, the following chapters must investigate the
resulting integrity of the perceived tactile sensations.

Due to the mechanical embodiment of the SMA actuator, in which the
SMA wire is directly in contact with the skin, long continuous current pulses
are not suitable. The projection of static, macro-geometric information on the
skin, which is perceived by the mechanoreceptors Merkel and Ruffini nerve
endings, is therefore not possible. The current SMA actuator design is not
capable of projecting the full variety of mechanical tactile stimuli onto the
skin. In fact, the projection of softness-hardness due to sustained pressure or
the projection of shear due to lateral skin stretch require the complementation
with other actuators [11] [2] [103] or a different embodiment of the SMA wire
[100] [101]. This is assumed feasible, due to the extremely compact form
factor and low energy consumption of SMA materials.
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Chapter 3

End-to-end Tactile Texture
Projection with
Psychophysically-meaningful
Latent Space Encodings

3.1 Problem Formulation and Solution Concept

3.1.1 Problem Formulation

As described in section 1.2.2.1, tactile sensor modules for the
implementation into robots are designed to carry a large number of
distributed sensing points for high-resolving tactile feedback and to be
compliant for increased stability during manipulation tasks and safety
reasons [6] [48] [46] [44] [47]. The tactile feedback from tactile sensor data
that projects micro-geometric surface properties or generally
micro-vibrations during the operation of a robot that actively engages with
arbitrary contact surfaces carries important information about the robot’s
interaction with its environment [92] [72] [4] [5].

As this feedback on the contact state is a physical information modality
inherent to the human sense of touch, its transmission is required during
human-robot interaction and robot teleoperation. The transformation of the
tactile sensor data from soft, distributed tactile sensor modules to a tactile
display control signal that generates physiologically meaningful tactile
stimulation for the transmission of this feedback by a tactile display with
only few tactile actuators is, however, an open technical challenge.
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3.1.2 Solution Concept

This chapter addresses the implementation of an end-to-end transformation
from tactile sensor data to tactile display control signals to enable the
generation of convincing tactile stimuli in accordance with the tactile input
data for emulating micro-geometric surface properties by means of
micro-vibrations. As outlined in section 1.3, the actuator control is defined
such that it allows for the generation of illusory tactile sensations by means
of the tactile display module prototype from chapter 2 with sparsely
distributed SMA-based micro-vibrators. The algorithm end-to-end tactile
texture projection deploys an auto-encoder approach, specifically a deep
gated recurrent unit-based autoencoder (GRU-AE), to encode the perceptual
dimensions of tactile textures in latent space coordinates that coincide with
the psychophysical layer of human material perception.

This compact auto-compression of raw tactile sensor data enables an
end-to-end projection from tactile sensor data to tactile actuator control
signal by modulating the free parameters of a control signal in accordance
with the latent space encodings of the tactile sensor raw data. The algorithm
does not depend on any specific hardware: Since the retrieved tactile sensor
data is encoded into perceptual coordinates of a psychophysically
meaningful latent space, it allows for the control of any tactile actuator as
long as the relation between a desired stimulus and the respective driving
parameterization is sufficiently known. Given the presented hardware in
chapter 2, this chapter focuses on the generation of tactile illusory
sensations to transport textural surface properties by means of sparsely
distributed tactile displays that implement vibro-tactile actuators.

3.1.3 Chapter Organization

This chapter is organized as follows: in section 3.2, the theory behind the
psychophysical layer of human material perception, its importance for
texture recognition, and its relation to the auto-compression of tactile sensor
data are briefly explained. Section 3.3 elaborates on the proposed
end-to-end tactile feedback loop for the projection of tactile sensor data into
tactile actuator driving signals to emulate textural surface properties by
means of vibro-tactile actuation patterns. Next, section 3.4 describes the
experiments and user studies that were conducted to verify the proposed
approach by deploying the GRU-encoder to control the first prototype of the
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custom-made SMA-based tactile display module (refer to chapter 2) for the
generation of micro-vibrations to emulate textural properties in accordance
with the tactile sensor data. Then, section 3.5 reports and discusses the
results. Finally, section 3.6 draws conclusion on the main findings and
summarizes major limitations of the presented algorithm for end-to-end
tactile texture projection.

3.2 Psychophysical Material Perception in Latent

Space Coordinates

From previous literature studies [24] [111] on material perception, it is
known that the sense of touch consists of several hierarchical layers,
Fig. 3.1-A. While the upper layers increasingly involve individual
judgement on the material properties, the psychophysical layer is defined as
the primal layer of material perception in response to direct physical
stimuli. This layer describes the human-perceivable properties of surfaces in
terms of mutually independent physical quantities. They are therefore
called psychophysical dimensions and numerically describe a material in
terms of its hardness, temperature, friction, and roughness, Fig. 3.1-B. User
responses on the evaluation of material probes, specifically their respective
psychophysical property profile are therefore sets of ratings in these
dimensions, Fig. 3.1-C. User evaluations on real texture probes were
regarded as a common ground truth against which the performance of the
tactile feedback loop was quantitatively measured during the user studies.

Given the definition of the psychophysical layer as the primal layer of
material perception, a subset of only four fundamental physical properties
that are sensed by the human cutaneous mechanoreceptors enable the
perception of various surface properties. Therefore, it was assumed that the
previously presented deep GRU-classifier [105] can be modified to
auto-compress raw tactile sensor data into a latent space Z that encodes the
most relevant tactile features for the discrimination of surface properties.
Even though the auto-compression into latent space depends on the specific
tactile sensor hardware, e.g the sensor’s sensitivity, frequency response, and
surface properties, the compressed representation of the tactile sensor data
must allow for correlation with the psychophysical space, because the
relevant tactile information are physical properties inherent to the material.
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FIGURE 3.1: Layers of material perception [111] [50] (A), the
definition of the psychophysical layer with its dimensions
Hardness, Temperature, Roughness, Friction, and the material
probes used for the experimental studies (C). Pictures are

adopted from Geier et al. [112].

3.3 Control Scheme for End-to-end Tactile Texture

Projection with Psychophysically-meaningful

Latent Space Encodings

The control scheme aims at the end-to-end projection of the tactile input
data into a tactile display control signal and allows for the generation of
tactile stimuli that emulate textural properties of contact surfaces by means
of sparse arrays of micro-vibrators. The concept of the end-to-end control of
haptic or tactile devices by means of latent space encodings of tactile input
data is, however, applicable to a broad set of tactile sensor - tactile actuator
combinations.

Briefly, the tactile hardware comprised the uSkin tactile sensor module
and the first prototype of the tactile display module with three sparsely
distributed SMA-based micro-vibrators (cf. chapter 2). Furthermore, a deep
GRU-AE [112] was deployed for the encoding of the tactile time-series data
into latent space coordinates. The encoded tactile data was used for the
parameterization of a control trial function. Given a meaningful relation
between the latent space encodings and the free parameters of the control
trial function, the tactile display can be driven in accordance with the tactile
sensor raw input data.

The tactile sensor data was gathered during the active tactile texture
exploration of several representative material probes with mutually
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different surface properties [105]. This auto-compression of the raw tactile
sensor data (Fig. 3.2-A) into coordinates of a latent space encoding Z was
used to modulate the activation functions A by adjusting their free
parameters in control space C. As a result, the tactile display module
generated micro-vibrations for the emulation of various textural surface
properties from the tactile sensor data. A flow chart of the complete control
scheme is depicted in Fig. 3.2. Note, the temperature dimension is not
further considered, since the uSkin tactile sensor does not allow for
determining heat fluxes.

FIGURE 3.2: A deep GRU-based autoencoder was deployed to
obtain an implicit representation of the uSkin tactile sensor data
in latent space (A). The latent space variables Z were used to
find the free parameters C that allow the controlled activation
A of a SMA-based tactile display module (B). Pictures adopted

from Geier et al. [112].

3.3.1 Gated Recurrent Unit-based Auto-compression for

Implicit Tactile Texture Recognition

The GRU-AE addresses two major challenges: First, as reviewed in
chapter 1, tactile sensors for the deployment to (anthropomorphic) robots
[58] [66] [63], robot hands [50] [64] [44], and grippers [55] [46] are often soft
or covered with compliant material to facilitate grasping and in-hand
manipulation [58] [6] [10]. Specifically, the uSkin tactile sensor module is
covered with a soft silicon layer which acts as a lowpass filter. Additionally,
gripping tape covers the silicon layer to protect the silicone structure and to
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increase the friction coefficient to facilitate in-hand manipulation. These
layers of soft material limit the ability to sense fine vibrations and
micro-geometric object features, which makes their direct extraction, or
respectively sensing, for texture recognition difficult.

It was demonstrated, however, that the time-series tactile data may
contain sufficient information for the discrimination of textural surface
properties [72] [105]. By deploying a deep gated recurrent unit
(GRU)-recurrent neural network, optimal filter banks that recognize abstract
temporal features and thus allow for accurate texture recognition could be
learned, as it has been shown in a preliminary study on active tactile texture
multi-class classification [105].

Second, the network architecture of the GRU-AE implemented a
bottleneck layer to perform a non-linear compression of the tactile input
data into continuous latent space Z. Precisely, the GRU-encoder comprised
three stacked GRU layers each of which had 96 units to express the
increasingly abstract temporal features of the tactile data as latent space
encoding. The GRU-AE’s encoder architecture resembled the
aforementioned deep GRU-classifier presented in [105]. In contrast to the
GRU-classifier that implemented the final dense-layer with soft-max
activation for multi-class classification between only a limited number of
textures, it implemented a GRU bottleneck layer with only three output
units in order to compress the temporal feature sequences into an encoding
in the latent space Z ∈ R3. Note that due to failure of one sensor element
inside the module, the input feature number was NF = 45.

In regard to the properties of the psychophysical layer (cf. section 3.2), the
implicit representation of the tactile sensor data in latent space coordinates
yields the potential to recognize and resemble an infinite number of texture
property profiles, or micro-vibration patterns.

Although the use of the deep GRU-AE alleviates the aforementioned
limitations of the uSkin tactile sensor to a certain extent, it is important to
note that the lost information due to, e.g., a limited frequency response or
sensitivity will generally limit the discrimination capacity of the overall
system. The GRU units were implemented in their original version acc. to
Cho et al. [113]. The GRU-AE architecture is depicted in Table 3.1.

The network’s free parameters were optimized using Adam [114]. The
learning rate was set to α=10−5, the exponential decay rate for the first
moment estimates to β1=0.900, the exponential decay rate for the second
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TABLE 3.1: Gated-Recurrent-Unit Autoencoder (GRU-AE)
Architecture [112].

Layer Type Output Shape Units Remarks
0 Input (_, _, 45) /
1 GRU (_, _, 96) 96 returns tactile sequence
2 GRU (_, _, 96) 96 returns tactile sequence
3 GRU (_, _, 96) 96 returns tactile sequence
Encoding GRU (_, 3) 3 latent vector z
4 Repeat (_, 100, 3)
5 GRU (_, 100, 3) 3 returns tactile sequence
6 GRU (_, 100, 96) 96 returns tactile sequence
7 GRU (_, 100, 96) 96 returns tactile sequence
8 GRU (_, 100, 96) 96 returns tactile sequence
9 Dense (_, 100, 45) 45 Linear Activation
Size: 299,106 trainable parameters.

moment estimates to β2=0.999, and the decay to δ= 0.0. The mean squared
error between sequences of measured raw sensor data and their
reconstructed counterpart served as loss function. Due to the low
dimension of Z, explicit regularization was not implemented as the
GRU-AE acted as undercomplete autoencoder.

As reported by the preliminary study on the GRU-classifier, the trained
network was capable of accurately discriminating between a set of four
objects of daily living with mutually different texture profile: a polishing
sponge1, a cotton towel, a board of wood, and a piece of cardboard, Fig. 3.1-C.
Therefore, the GRU-AE’s encoder was assumed to find conclusive latent
space encodings that would allow for driving the tactile display prototype
by controlling the micro-vibrator activations A in accordance with the latent
space encodings Z.

Another four textures that were different from the training set, however,
also exhibiting mutually different texture profiles were selected to validate
the GRU-encoders ability to encode previously unseen texture samples: a
softer sponge2, a handkerchief, a catalogue back cover, and a shoe sole. Note that
this second set of texture probes was excluded from training and exclusively
used for validation purposes.

Finally, the latent space encodings of the raw tactile data that was
recorded during active tactile texture exploration of the entire sets of texture
probes were compared to their psychophysical property profiles that were
determined during a user studies.
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3.3.2 Tactile Display Control with

Psychophysically-meaningful Latent Space Encodings

As explained in chapter 2, the tactile display module deployed in the
following experiments carries three linearly-arranged SMA-based
micro-vibrators with mutual actuator distances of 6.5mm, which is larger
than the two-point-orientation threshold as defined by Tong and
co-workers [22].

By choosing proper activation functions An(t < T) [102] [27] that control
the succession of activation and deactivation and thus the stimulus onset
duration τd and inter-stimulus onset asynchrony τSOA across all the micro-
vibrators, phantom tactile sensations [35] and apparent tactile movements
[34] are combined to eventually trigger perceptions of moving textures with
varying surface properties under the resting finger pad.

As a result, the stimuli control scheme enables the repetitive, vibratory
stimulation of Meissner and Pacinian mechanoreceptors at the desired
locations and allows for transmitting information on micro-geometric object
properties by emulating generic textural surface properties.

The activation functions An(t < T) are given by Gaussian trial functions
defining the activation probabilities as normal distributions over a time
interval T:

An(t < T) = α + βe−(t−µ)2
/

2σ2
for n ∈ 1, ..., NA, (3.1)

where t is the time in ms, µ is the mean in ms, σ2 is the variance in ms2, α

is the offset, β is the gain, and NA is the total number of available actuators.
Note that α and β are constants; moreover, α + β < 1 must hold.

The micro-vibrators are arranged alongside a straight line with relative
distances of 6.5mm for which reason µn and σn control the spatio-temporal
density of the micro-vibrations. fPWM, however, directly controls the
frequency of the micro-vibrations. Hence, by defining the parameters µn, σn,
and fPWM in dependence on the target texture, the occurrence of pulsed
current signals, thus, the occurrence of vibro-tactile stimuli is controlled
such that the higher-level phantom tactile sensation and apparent tactile
movement cause the perception of moving contact surfaces with varying
textural properties.

Based on the results of prior user studies [102] [27] on the transmission of
textural properties by means of SMA-based micro-vibrators, interval limits
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of the control parameters c1 ∈ [µ, µ], c2 ∈ [σ, σ], and c3 ∈ [ f
PWM

, f PWM] were
assumed. Furthermore, a linear relation of a control parameter ci ∈ [ci, ci] to
a coordinate of a latent space encoding zj ∈ [zj, zj] was assumed. Thus, the
control parameters of the actuator driving signal An(t < T) that enable the
emulation of a desired textural property were obtained by

ci =
ci − ci

zj − zj
(zj − zj) + ci. (3.2)

3.4 Experiments and User Studies

3.4.1 Data Acquisition and Training

To resemble the active exploration of arbitrary objects by a robotic
manipulator, the tactile input data required for the training of the GRU-AE
was collected using a flat uSkin tactile sensor module that was comparable
to the modules implemented onto the Allegro robot hand (cf. chapter 2). The
surfaces of two sets of four objects with mutually different surface
properties (cf. section 3.2) was explored once at a time by moving the sensor
module across the surface. The manual exploration resembled a linear
motion pattern across the object surfaces.

The time limit of the data recording was set to T=2s, which comprised the
complete motion pattern from initial impact on the object surface to the actual
stroking motion across the surface. The GRU-AE was trained exclusively on
the first set of textures: sponge1, towel, wood, and cardboard, depicted on the
left-hand side in Fig. 3.3-A. Each of these four textures was explored 20 times
and the tactile sensor data was recorded over 200 time steps. The second set
of textures, depicted on the right-hand side in Fig. 3.3-A, were probed in the
same manner, however, used for evaluation purposes only.

The input features to the GRU-AE, i.e., the x, y, z-tactile sensor raw
readouts were scaled using their respective minimum and maximum
values. The sequences of the tactile input data, which were fed to the
GRU-AE and therefore had an impact on the real-time applicability, were
chosen to have a length of SL=100 and were offset with the negative of their
initial values. The sequence length SL=100 corresponded to a time window
of approximately 1s real-time considering the uSkin tactile sensor’s
sampling frequency of approximately 100Hz. Given that the evaluation of
textural surface properties by humans - solely from tactile feedback - is in
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fact a challenging task, the time window of 1s should balance the
requirements of a responsive texture recognition and sufficient data for the
GRU-AE to compute the correct latent space encoding. Moreover, the
training was conducted deploying a sliding window approach, which is
beneficial during online deployment of the GRU-AE in conjunction with the
tactile display. The dataset was partitioned into training (6335 sequences),
test (1188 sequences), and cross-validation set (397 sequences). During the
design process of the GRU-AE, the performance was evaluated in terms of
the mean squared error signal between input and reconstructed sequences of
test and cross-validation set.

The GRU-AE was implemented in KERAS1 with Tensorflow2 backend.
The implicit texture recognition by the GRU-AE was run on the host machine:
Intel(R) Core(TM) i7-8700K CPU @ 3.70GHz and 32.0GB RAM, GeForce GTX
1080 Ti with 11 GB frame buffer. The training comprised 500 epochs with a
batch size of one.

3.4.2 User Study I

The first user study aimed at the quantification of the true psychophysical
coordinates of the above-defined texture probes. Accordingly, the first user
study required the subjects to actively touch the real texture probes and rate
their property profile in terms of the aforementioned psychophysical
coordinates. These user ratings of the psychophysical property profile
served as a common ground truth, i.e., an objective numeric reference
against which the performance of the end-to-end tactile texture projection
for the emulation of textural property profiles was quantitatively measured.

Four healthy subjects (one female, three males, mean age 28.25yrs) were
asked to stroke across the texture probe surfaces of all the objects mentioned
in section 3.2 in a natural, linear motion as depicted in Fig. 3.3-A. To prevent
any impact from auditory and visual sensory channels on the evaluation of
the psychophysical property profile, all subjects were blindfolded and
wearing soundproof earmuffs. At the end of each trial, the subjects were
asked to rate the psychophysical property profile in a questionnaire with
integer numbers ranging from 1 to 6, where 1 or 6 equaled, e.g., very smooth
or very rough, respectively. Only one texture probe at a time was presented

1https://keras.io/
2https://www.tensorflow.org/
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and all probes were shown in a random order for three times. The texture
probe was removed before evaluation and previous evaluations were made
unavailable to reduce the training effect.

During an introductory session before the user study, the participants
were explained the meaning of the quantities hardness, roughness, and
friction. Furthermore, before the very first trial, the subjects were presented
pairs of texture probes exhibiting a very soft/ hard, a very rough/ smooth,
and a very high/low-friction psychophysical property profile to ensure that
even initial ratings during the actual user studies covered the full range of
possible ratings.

FIGURE 3.3: Experimental setup for the evaluation of the
psychophysical property profile of the texture probes (A) and
the proposed end-to-end tactile texture projection (B). Pictures

adopted from Geier et al. [112].

3.4.3 User Study II

The second user study was identical to the first user study, however, the
target psychophysical property profile was generated by the proposed
end-to-end tactile texture projection algorithm. Thus, the second user study
included the implementation of the above introduced control scheme (cf.
section 3.3) and the tactile display module prototype from chapter 2,
Fig. 3.3-B.

The subjects were instructed to rest their index finger on top of the tactile
display module. Then, one target texture was chosen randomly from the
cross-validation set (cf. Fig. 3.3, trained textures) or the unseen texture probes
(cf. Fig. 3.3, unknown textures), upon which the corresponding raw data was
propagated through the end-to-end tactile texture projection algorithm.

Similar to the first user study, the subjects were asked to rate the
perceived property profile in terms of psychophysical coordinates.
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However, the textures were emulated by the tactile display prototype that
was controlled by the proposed end-to-end tactile texture projection
algorithm, thus, generated micro-vibrations in accordance with the raw
tactile sensor data that was collected during the active tactile exploration of
the respective texture probe.

Finally, these user ratings were compared against the ratings of the real
texture probes to draw conclusion on the performance of the end-to-end
tactile texture projection. Mann-Whitney-U tests were performed on
evaluation pairs of real and emulated textures. Statistically significant
discrepancies between real and emulated tactile ratings were labelled
accordingly.

3.5 Results and Discussion

3.5.1 Textures and their Psychophysical Property Profile

The user evaluations on the perceived psychophysical property profile are
depicted in Fig. 3.4. Since the psychophysical property profile was measured
in terms of user ratings and is therefore ordinal data, all results are shown as
box plots.

The user evaluations exhibited a high to very high range indicating the
increased difficulty of determining textural properties solely from a short
stroke across an object’s surface. This is in line with a previous study by
Fukuyama et al. who investigated the explicit recognition of similar texture
probes by human subjects [27]. A detailed analysis on individual user
responses showed that the intra-subject evaluations for one texture over all
the trials were relatively constant, i.e. deviations were typically within 1
rating. However, the inter-subject evaluations varied largely for which
reason the results exhibited such a high variance. While the dimension
hardness was rated rather consistently, the dimensions roughness and
friction were rated less consistently between trials and subjects with friction
having the largest variance among all the dimensions.

Friction is perceived as a quantity that relates to the counteracting force
and the dynamic shear deformations that occur during finger motion.
Friction thus depends on the sticky-slippery or the moist-dry factor levels of
the skin in contact with an object [24]. Hence, particularly the subjects’
individual moist-dry factor levels of the finger pad skin could have had an
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FIGURE 3.4: Results of the first user study showing the
psychophysical property profile of all the texture probes. The
median is depicted as bold horizontal bar, outliers are depicted

as circles. Pictures adopted from Geier et al. [112]

impact on the perceived friction thereby causing the high inter-subject
variances in the user evaluations.

Besides the high variance of the ratings for friction and roughness, both
dimensions were frequently rated equal for one type of texture probe. Even
though friction and roughness are independent psychophysical properties,
these two dimensions are often thought of related [24]. In view of this fact,
roughness seemed to have an impact on the perceived friction level as it
likewise counteracts the finger motion. This effect may have contributed to
the higher variance of the user evaluations of both the dimensions.

As it regards the textural property profile, the first set of texture probes
that was used for the training of the GRU-AE featured enough variety for
assessing the plausibility of the encodings in terms of the psychophysical
properties. Considering the severe restriction on the reconstruction of the
original sequence of tactile sensor input data from the low dimensional
latent space as was imposed by the GRU-AE’s bottleneck layer, it was
assumed that the GRU-encoder was forced to learn a conclusive and
physically meaningful representation of the tactile sensor data that
coincided with the psychophysical property profile. Regarding the second
set of texture probes, the textural property profile ratings were different
enough from the first set and should allow for evaluating the generalization
capabilities of the GRU-AE.

It would have been desirable, however, to sample the psychophysical
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space systematically and exhaustively, e.g., by either increasing the number
of texture probes until the space that is spanned by the psychophysical
properties is saturated with user ratings or the direct metrological
measurement of the psychophysical coordinates. Yet the set of
psychophysical coordinates of a texture probe, if quantified in terms of user
ratings, relies on subjective perception exhibiting a considerable variance. In
regard to the evaluation of the tactile display, which eventually must
involve user studies, the direct metrological evaluation can merely be a
supplemental evaluation, because tactile perception is subjective.

3.5.2 Relation between Latent and Psychophysical Space

Fig. 3.5-A shows the latent space encodings of the tactile data of all the
texture probes in comparison to the user ratings of the psychophysical
property profiles (cf. Fig. 3.5-B). Regarding the hardness, the z2-coordinates
of the encodings coincided with the respective user ratings of the perceived
hardness, i.e., the latent space encodings were in line with the reported
median user percepts of the respective texture probe’s hardness. Similarly,
yet less consistently, the tactile sensor data of texture probes that received
high user ratings in terms of the combined roughness and friction were
encoded alongside the z1-axis towards the right end of the latent space.

Fig. 3.5-A shows that all the latent space encodings had rather high
variances, which most likely was due to the variances in the stroking
patterns when collecting the tactile sensor data. As the stroking motion had
an impact on the location of the encoding, the resulting actuator driving
signal is likewise affected by the stroking motion. As it concerns the
roughness, this effect seemed to be in line with observations that higher
speeds of the explorative motion of the finger cause higher vibration
frequencies resulting in a change of the perceived surface roughness [24],
however, needs further experimental validation. As it concerns the
hardness, the high variances alongside the z2-axis may have been due to the
dynamic contact when engaging with the texture probe, i.e., harder
materials (cf. wood) exhibiting higher variances due to the quickly increasing
reaction forces upon contact in contrast to softer materials being deformed
(cf. sponge1).

The z1, z2-coordinates of the latent space encodings of the second set of
texture probes, which were excluded from the training of the GRU-AE, were
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FIGURE 3.5: Shown are the latent space encodings after
auto-compression by the trained GRU-AE (A), ellipses are
1σ-confidence ellipses. Additionally, the user ratings of
the perceived psychophysical property profile are shown in
relation to the latent space encodings (B) and (C). The latent
space coordinate z1 was selected to parameterize the actuator
driving signal for tactile display control (D). Pictures adopted

and modified from Geier et al. [112].

generally meaningful. Their respective location in latent space was in
agreement to the locations of the first set of texture probes and their
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respective psychophysical property ratings. For example, the z2-coordinates
of the probes catalogue and shoe sole, which were assumed to encode the
hardness of these probes, were located between the z2-coordinates of the
probes wood and cardboard. The location of these encodings in the latent
space were in agreement with the user-rated hardness and in meaningful
relation to the encodings of the trained texture probes.

Similarly, the auto-compressed tactile data of the texture probes
catalogue, shoe sole, and sponge2 were encoded in agreement with the
user-rated property profile and in agreement with the encodings of the
trained textures. For example, the roughness of shoe sole was rated similarly
to the roughness of sponge1 and their z1-coordinates coincided very well.
Yet, sponge1 received a much lower hardness rating which is in agreement
with its comparatively lower z2-coordinate.

Discrepancies were found for the encoding of the texture probe
handkerchief, as the z1-coordinate indicated a rather high surface friction or
roughness. This is in contrast to the user-rated property profile of this
texture probe. During the course of the experiments it was noted that the
material pairing of the handkerchief and the uSkin sensor module’s gripping
tape exhibited an extremely high friction, which made the probing of this
surface with the uSkin module very difficult. In contrast, the subjects could
slide their fingers with ease across the handkerchief ’s surface, for which
reason it was rated as being smooth and having low friction. Consequently,
the discrepancy between the mutual material pairings of finger pad skin,
uSkin sensor module, and handkerchief negatively affected the latent space
encoding, which inherently affects the emulation of the psychophysical
properties of handkerchief by the proposed algorithm and the tactile display
module in a negative manner.

Moreover, it must be noted that the correlation of the latent space
encoding and the user-rated psychophysical property profile of a specific
texture probe was not enforced, as it was assumed that the latent space
describes the minimum feature space necessary to discriminate between
textures and therefore naturally coincided with the physical properties of a
texture’s surface. It would be more desirable, however, to ensure the
coincidence of the psychophysical property rating and the latent space
encoding, e.g., by adopting the compounded loss function of variational
autoencoders.

As it regards the tactile display control, the latent space encodings
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alongside the z1-axis were used to modify the parameters µ, σ, and fPWM of
the actuator activation function An(t < T) in equation (3.1), i.e. were
selected to control the friction and roughness of an emulated texture
(Fig. 3.5-D). This allowed for driving the tactile display in accordance with
the tactile sensor input data by, first, encoding a sequence of tactile sensor
readings alongside the z1-axis in latent space coordinates and, second, by
computing the activation probabilities of the tactile display actuators via
substituting the modulated control parameters µ, σ, and fPWM into equation
(3.1). Note, the dimension hardness was not considered further, because it
requires the combination with proprioceptive feedback loops.

3.5.3 Evaluation of the End-to-end Tactile Texture Projection

Fig. 3.6 shows the ratings of the perceived psychophysical properties for the
dimensions roughness and friction. The ratings of the emulated
psychophysical properties as generated by the end-to-end tactile texture
projection are depicted in comparison to the ratings of the real texture
probes.

While the ratings exhibited rather large variances, the proposed
approach on the end-to-end projection of textural properties seemed to
generate meaningful tactile sensations in agreement with the corresponding
real texture for both the sets of texture probes. The median ratings of the
perceived psychophysical coordinates in response to the stimulation by the
tactile display were roughly similar to the median ratings of the actual
texture probe.

Particularly the emulated stimuli of textures that exhibited distinct
physical properties, e.g. sponge2, were perceived in accordance with their
real counterpart. Generally, the large variances in the results indicate the
need for a larger cohort of subjects. Since the proposed approach focused
solely on the cutaneous feedback without complementing kinesthetic
feedback, a more extensive training of the subjects on the tactile display
feedback would likely improve the discrimination ability.

However, the absence of important modalities of cutaneous feedback,
specifically dynamic skin shear, and the absence of proprioceptive feedback
generally limit the ability to project some physical quantities. For example,
the driving signal for the emulation of friction, i.e. the resistance
counteracting the finger motion when stroking across a surface, was
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FIGURE 3.6: Evaluation of the end-to-end tactile texture
projection for the psychophysical dimensions roughness (A)
and friction (B). Note, a p-value<0.05 indicates a statistically
significant difference (Mann-Whitney-U test). Pictures adopted

from Geier et al. [112]

modulated by the relative difference ∆µ (cf Fig. 3.5-D), which equaled a
lower emulated speed of the moving texture and must be therefore
regarded as mere surrogate for this physical quantity.

Moreover, the ranges of the user ratings were comparatively larger in the
Tactile Display-group, Fig. 3.6-A. These higher ranges may indicate that the
users experienced greater difficulty to rate the emulated textural properties
in comparison to the actual textures.

A large disagreement was found between the Real- and the Tactile
Display-group for the rating of the roughness and friction of the texture
handkerchief : The stimuli resulting from the end-to-end tactile texture
projection were often rated higher, i.e. exhibiting a higher roughness and
friction. In regard to the above discussed influence of the relative material
pairings (Fig. 3.5-A), this issue was most likely caused by the GRU-AE that
encoded the tactile data of the handkerchief probe incorrectly, i.e. towards the
far right in latent space causing the emulation of a rough texture. Since
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roughness and friction are jointly encoded by the z1-coordinate, this
disagreement might have been caused by the comparably higher friction
coefficient between the uSkin sensor gripper tape and the fabric of the
handkerchief. The mismatch in the material properties between finger pad
skin and uSkin tactile sensor was surely one reason for the biased projection
of the physical properties. This would suggest that besides the tactile
sensor’s characteristics like frequency response and sensitivity, hardware
specifications like the sensor’s material properties can have a great impact
on the projection of the physical properties, as it concerns the proposed
approach in its current implementation.

3.6 Chapter Summary

The contribution of this chapter lies in the introduction of the algorithm End-
to-end Tactile Texture Projection with Psychophysically-meaningful Latent Space
Encodings that solves the unknown transformation from tactile sensor data
into actuator driving signals and thus enables the control of tactile displays
for the conveyance of cutaneous feedback from compliant and distributed
tactile skin sensors.

The algorithm utilizes an autoencoder approach to compress potentially
massive amounts of tactile sensor data into a low-dimensional,
psychophysically meaningful latent space that allows for the modulation of
the actuator driving signals in accordance with the tactile input data such
that an object’s psychophysical property profile is emulated.

The proposed algorithm was experimentally verified by executing two
user studies on the perception of the psychophysical property profiles of
eight texture probes: The first user study aimed at the quantification of the
true psychophysical properties of all the texture probes by requesting the
study participants to evaluate the textures by direct probing with the index
finger. This first user study provided a ground truth against which the
performance of the end-to-end tactile texture projection for the emulation of
textural property profiles was quantitatively measured. The second user
study thus deployed the tactile display prototype from chapter 2 in
conjunction with the proposed algorithm to generate tactile stimuli from
tactile sensor data that was collected by probing all the texture probes with a
uSkin tactile sensor module.
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The results indicated that the proposed algorithm enables the end-to-end
control of tactile displays and the generation of psychophysically
meaningful tactile perceptions from tactile sensor data in unstructured
environments, due to the implicit encoding of previously unseen and thus
untrained tactile sensor data. While this chapter focused exclusively on the
development of the algorithm for the end-to-end projection of tactile sensor
data into a control signal for tactile displays, the results clearly suggested
that besides the tactile sensor’s characteristics like frequency response and
sensitivity, other hardware specifications like the sensor’s material
properties can have a great impact on the projection of the physical
properties. This influence was seen in the case of the texture probe
handkerchief that involved the emulation of inconsistent tactile feedback due
to the mutual material mismatch of human skin and tactile skin sensor in
combination with this texture probe.

Albeit the promising results, future research should, first, investigate
how a modified loss function may enforce the coincidence of the
psychophysical properties with the respective coordinates of the latent
space encodings and, second, should aim for the technical realization of
more modalities of tactile feedback. In fact, the absence of key modalities of
cutaneous feedback, such as dynamic skin deformation, and the absence of
proprioceptive feedback impose limitations on the projection of some
physical quantities, e.g. friction, and stress the importance of the deployed
tactile display hardware. Moreover, as experiments must involve user
evaluations on the emulated tactile feedback, the deployed hardware has a
significant impact on the experimental evaluation of the entire system. In
this regard, the concept of the end-to-end control of haptic or tactile devices
by means of latent space encodings of tactile input data yields an approach
that is widely applicable to a broad set of tactile sensor - tactile actuator
combinations, e.g. for the projection of hardness.
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Chapter 4

Sequential Tactile Data Clustering
for Tactile Image Compression to
Enable Direct Adaptive Feedback

4.1 Problem Formulation and Solution Concept

4.1.1 Problem Formulation

As explained in section 1.2.2.1, major research is directed towards the
large-scale implementation of tactile sensors into (anthropomorphic) robots
[58] [66] [63], robot hands [50] [64] [44], and grippers [55] [46]. As it regards
human-robot interaction or robot-teleoperation, a significant problem is the
meaningful and intuitive representation of the massive raw sensor
information to human operators [83] [84] [15] [4] [5]. In particular, the
display of meaningful feedback via visual cues is a limitation in itself and,
for technical reasons, tactile displays inherently suffer from a limited
number of actuators and a limited output for optimal stimuli generation
[24], [11] [2] [82].

Moreover, the sensor information that is relevant to a task is often
obscured behind redundancy and sensory noise. Extracting and displaying
meaningful and intuitive information from the massive amounts of sensor
data poses challenges on both the software, which has to process the data in
real-time to extract meaningful information, and the hardware, which has to
display the extracted information to the user.

Note, contacts are defined as locations of cutaneous information
exchange with the environment by means of forces, vibrations, and heat
fluxes (cf. chapter 1). It is an open question how tactile compression
techniques can preserve the physical meaning of massive tactile sensor data
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in order to provide useful information to a human by means of rather
compact tactile displays (cf. section 1.2.2.2).

4.1.2 Solution Concept

In this context, chapter 3 dealt with an end-to-end mapping from tactile
sensor data to tactile actuator driving signal that deploys tactile illusory
phenomena (PS and AM) to enable the efficient projection of textural
properties from raw tactile sensor data. This chapter, however, addresses
the mismatch between tactile sensor space and tactile display space to
enable the compressed projection of independently moving contacts from
the tactile sensor raw data and in accordance with the tactile display
specifications, i.e. limitations in terms of energy and actuator density.

Precisely, the presented algorithm enables the compression of the tactile
sensor raw data alongside a timely trajectory, i.e., it enables the projection of
distributed contacts onto the skin of a human operator in a meaningful and
intuitive manner. In fact, only after this compression, the deployment of
tactile illusory phenomena becomes feasible, because the exact contact
location has to be known in order to associate tactile actuators for the
creation of phantom actuators. Moreover, sensory noise should not be
projected to the skin, as it does not carry useful information, however,
causes the actuators to consume energy.

Apart from the immense variety of compression techniques, K-means
clustering [115] is due to its flexibility an often preferred choice over more
complicated algorithms for clustering [116]. For example, K-means
clustering uses physically meaningful Euclidean distance measures,
furthermore, allows for the integration of domain knowledge while it does
not require training.

The presented algorithm, termed Sequential Tactile Data Clustering for
Tactile Image Compression, allows for an end-to-end projection of distributed
contacts into a well-defined set of quantized stimuli locations and stimuli
intensities that are necessary to construct moving contact patterns by means
of illusory tactile sensations. The algorithm dynamically compresses the
tactile sensor data into a number of discrete contact locations and stimuli
intensities by deploying two stages of rapid K-means++ [117] clustering on
the raw tactile sensor data at each time instant. In this manner, the
compressed tactile data preserves its physical meaning, i.e. the tactile
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information remains intuitive and direct, and sensory noise is removed. The
algorithm does not depend on any specific hardware and enables direct
adaptive feedback for a broad variety of tactile sensors and tactile displays.
This dynamic compression is almost always beneficial, either due to
technical limitations as mentioned above, or for reasons specific to the
application, e.g. in prosthetics where the tactile sensation must be
re-reproduced on another body part with different mechanoreceptor density
[118].

4.1.3 Chapter Organization

This chapter is organized as follows: in section 4.2, the control scheme of the
algorithm is presented in terms of a block diagram. Section 4.3 gives a
detailed explanation of the algorithm, its building blocks, and its
operational principle. Then, in section 4.4, the algorithm is extensively
evaluated on experimental data that was collected using the uSkin tactile
sensor modules in conjunction with the Allegro robot hand during various
dynamic contact scenarios with objects of daily living. The results are
discussed in section 4.5. Finally, section 4.6 summarizes the main findings
and revisits the limitations of the presented algorithm.

4.2 Control Scheme for End-to-end Tactile Image

Compression

The objective of the algorithm is to compress raw tactile sensor data into a
specifiable number of contact points and stimulus intensities while enabling
direct and adaptive feedback when dynamically interacting with arbitrary
objects. The compression, however, should preserve the physical meaning
to be intuitively understood by a human operator. Again, contacts are
locations of cutaneous information exchange with the environment by
means of forces, vibrations, and heat fluxes. The algorithm Sequential Tactile
Data Clustering for Tactile Image Compression outputs a maximum number of
desired contact locations, Kmax

C , and stimulus intensities, Kmax
I , which must

be set in accordance with the tactile display specifications and may
incorporate laws of psychophysics [119] [120] [34] [35], Fig. 4.2.

The initializer identifies non-operational sensors and identifies a contact
threshold upon which contacts are detected. The preprocessor renders the
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FIGURE 4.1: Control scheme for end-to-end tactile contact
compression. The raw tactile sensor data, here from uSkin
modules (A), is fed to the algorithm (B), which outputs
compressed contacts, i.e. a specifiable number of contact

locations and stimulus intensities (C).

tactile sensor data into RGB-like images, in which the channel dimension
corresponds to the modality of the tactile input data, e.g. tri-axial
x, y, z-sensor readouts in case of the uSkin tactile sensor module. The tactile
image compression sequentially deploys two stages of K-means++
clustering: The first stage estimates the location of contact points in regard
to the maximum simultaneously displayable contact locations, i.e. performs
a contact area discretization. The second stage adaptively compresses the
range of the measured sensor readouts into a set of stimulus clusters, i.e.
performs a stimulus intensity discretization.

The compressed contact locations KC and compressed stimulus
intensities KI are dynamic values, since the number of contacts needs to be
dynamically adjusted in accordance with the contact scenario, e.g. different
contact area sizes or no contact at all. Moreover, the algorithm keeps track of
the previous cluster centroids for rapid convergence of the clustering
process of the subsequent time instants. In this manner, the tactile sensor
information available in the locations of contact is adaptively compressed,
however, in a way that maintains or even enhances their psychophysical
meaning.

As it regards the stimulus intensity discretization, note that the
dynamic clustering of the sensor readouts into discrete intensity values
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might lead to physical inconsistencies for the user, because the cluster
centroids and thus their associated stimulus intensities as generated by the
tactile display actuators change between time instants. Cluster centroids
representative for the intended application may be pre-selected and fixed
during run-time. The importance of the intensity clustering is discussed
later in the light of psychophysics [119], [120] and energy conservation.

4.3 Sequential Tactile Data Clustering for Tactile

Image Compression

4.3.1 Algorithm Description

K-means clustering is an iterative method of vector quantization [115] [117]
[121][116]. It belongs to the unsupervised learning algorithms and partitions
an N-dimensional data set into K distinguished clusters of equal size and
shape in which each data point of arbitrary dimension belongs to the cluster
with the shortest distance. For example, the Euclidean distance, i.e. the
distance measured as the sum of the squared differences of the coordinates
in each direction.

Briefly, the tactile data at each time instant t is denoted as St = [s1, ..., sNS ],
where each of the NS coordinates sns is a D-dimensional vector and can be
assigned to exactly one of the clusters k ∈ 1, ..., K. The assignment of sensor
data point sns to cluster k is denoted by an = k and permits the calculation of
a cluster centroid µk. Within each iteration, the algorithm alternates between
updating the cluster assignments an and updating the cluster centroids µk

until a convergence criteria ζk ≤ J(µk) with some objective J(µk) is reached.
This clustering can be performed on either the spatially distributed sensor
array, i.e. resulting in a contact area compression, the sensor readouts, i.e.
resulting in a contact stimulus intensity compression, or both.

K-means clustering is conceptually simple, its computational cost scales
with the dimensionality and size of the data set, and it allows for the
injection of domain knowledge [121] [116]. Note, K-means++ refers to a
seeding method that improves the speed of the traditional K-means
clustering dramatically, and was implemented here to speed up the
algorithm [117]. Further relevant key features of K-means clustering are the
assumption of an a-priorily fixed number of K clusters, an isotropic data
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space, and usually a geometrically meaningful distance measure, which is
typically fulfilled for the application of tactile sensor data.

K-means clustering can be deployed to alleviate the inherent hardware
limitations of state-of-the-art tactile displays, namely, the need for intensity
discretization addressing the limited range of force generation capacity and
the need for actuator discretization addressing the limited number of
actuators or limited number of displayable contact points.

Figure 4.2 summarizes the complete algorithm for Sequential Tactile Data
Clustering for Tactile Image Compression in a flowchart. In the following, the
algorithm is explained in regard to the Allegro robot hand equipped with 15
uSkin sensor modules, as introduced in chapter 2.

FIGURE 4.2: Flowchart of the algorithm for the sequential
tactile data clustering for tactile image compression.
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4.3.2 Preprocessing

As depicted in Fig. 4.2, the preprocessor renders the entirety of the raw
sensor readouts for each of the 15 uSkin modules at each time instant t into
an image-like input frame of the size nW × nH × nA, where nW refers to the
width, nH refers to the height, and nA refers to the number of axes of the
sensor array. Accordingly, the input frame contains the tactile sensor data
with reference to their physical location on the Allegro robot hand and Γ(St)

holds these spatial attributes:

Γ(St) ∈ RnW×nH×nA . (4.1)

4.3.3 Initialization

The initializer receives image-like rendered input frames and performs three
tasks before passing the tactile data to the compressor bank; it:

1. identifies and stores non-operational sensors in FnS to prevent
unnecessary operations,

2. calculates a reference frame Γ(St<T=t−), and

3. determines a contact threshold ζTh upon which exceedence a sensor
readout is registered as valid contact.

The initialization procedures should be run after the implementation of the
tactile sensors onto the robot and before contact with any object is made. If
these conditions are met, an input frame is called initial frame Γ(St=0).

As it concerns the identification of faulty sensors, they are identified by
statistically evaluating all sensor readings of the initial frame Γ(St=0).
Within this work, a sensor is considered as faulty and excluded from further
calculations, if one of the readings sx,nS , sy,nS , sz,nS deviates from the
arithmetic mean µx, µy, µz among all NS sensor readings by a multiple of its
standard deviation σx, σy, σz, respectively. Accordingly, a sensor snS is
assigned with the attribute FnS = 1, if faulty and FnS = 0, if operational.
Then, a relative tactile frame ∆Γ(St) is calculated as the absolute difference
between the average sensor readouts of a number of initial frames
Γ(St<T=t−) and any following frame Γ(St≥T=t)

∆Γt = Γ(∆St) = |Γ(St)− ¯Γ(St−)|, (4.2)
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where ¯Γ(St−) summarizes the rendered tactile data without contact over
the time span t < T, thus serves as a set of reference values.

Lastly, the threshold ζTh, upon which exceedence a contact is registered,
is defined as the maximum value:

ζTh = max(∆Γt=1). (4.3)

Once the contact threshold is defined, the parts of the Allegro robot hand
covered with the uSkin sensor modules can detect contact points.

4.3.4 Tactile Compressor: Contact Area Compression

The actuator discretization precedes the intensity discretization and
addresses the limitation of a finite, usually smaller number of tactile display
actuators (or conveyable contact points) compared to the number of tactile
sensors. Moreover, the projection of illusory tactile sensations requires to
carefully match the number of detected contacts with the number of
available actuators to project these contacts, e.g. by means of
spatio-temporally controlled vibro-tactile stimuli alongside a timely
trajectory [20] [39].

In case a number of valid contacts NC is identified at time instant t, the
actuator discretization compresses the tactile frame ∆Γt(SnC) by performing
a K-means cluster compression across the tactile frame to compress the
number of contact locations in order to match the number of desired
contacts Kmax

C . If NC ≤ Kmax
C , i.e., the number of contact points is initially

lower or equal to the number of desired contact points, a further
compression is not required. Then, ∆Γt(SnC) translates directly to the output
of the actuator discretization, and KI is set to NC. In contrast, if KC is
exceeded by NC, the compression must be performed. Using K-means, the
initial centroids µKC are rapidly initialized to a set of mutually far spread
contact locations by using the K-means++ cluster seeding procedure [117]
that samples all NC contact locations and returns KC seeds.

µkC

K++←−−− ∆Γt(SnC). (4.4)

Subsequently, the algorithm has to alternate between only a very limited
number of points to compute the Euclidean distance between the nC-th
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contact point and cluster centroid µi,kC at every iteration i

dnC,kC = ‖∆Γt(SnC)− µi,kC ‖2 (4.5)

and to find the cluster assignments anC that represent the physical
centroid of the contact area

anC = arg min
kC∈1,...,KC

(dnC,kC). (4.6)

The cluster centroids µkC are updated by averaging over the cluster
members

µkC =
1

NkC

NkC

∑
n:anC=kC

‖st,nC‖
p
l × ∆Γt(snC) for kC ∈ 1, ..., KC, (4.7)

where ‖st,nC‖
p
l is the l-th vector norm of st,nC and p is an exponent, which

allow for the introduction of a weighted update rule for improved stability
and smoothness. This update terminates, when

ζC ≤ J(µkC) =
1
2

KC

∑
∥∥∆µkC

∥∥
2 . (4.8)

The compressed contact locations are the terminal cluster centroids
µt,kC = µkC from equation (4.7) and the new contact intensities s′t,kC

at the
compressed locations µt,kC are found by simple interpolation:

s′t,kC
= I(∆Γt(snC), µt,kC). (4.9)

4.3.5 Tactile Compressor: Contact Intensity Compression

The stimulus discretization refers to the compressed representation of the
contact intensities while dynamically interacting with an object. The
relevant information arising from this interaction is often obscured behind
redundancy and sensory noise, which may be accounted for by deploying
another K-means clustering that compresses the sensor readouts into KI

intensity clusters. As this compression succeeds the contact area
compression, only KI ≤ KC intensities must be considered, which makes
this compression far less computationally expensive. In fact, the
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compression of the contact intensities is somewhat comparable to the
compression of the color depth in RGB-images.

Again, using K-means, the initial centroids µKI are initialized to a set of
mutually far spread contact intensities by using the K-means++ cluster
seeding procedure [117] that samples from KC contact intensities
S′t = [s′t,1, ..., s′t,KC

] and returns KI seeds:

µkI

K++←−−− S′t,kC
, (4.10)

i.e., the preceding compression into KC contact locations limits the
maximum number of intensity clusters to KC. Subsequently, the algorithm
calculates the Euclidean distance between sensor readout s′kC

and the current
intensity centroid µi,kI for iteration i:

dkC,kI = ‖s
′
t,kC
− µi,kI ‖2. (4.11)

Then the algorithm alternates between updating the intensity cluster
assignments akC :

akC = arg min
kI∈1,...,KI

(dkC,kI ) (4.12)

and updating the cluster centroids in a K-means typical manner

µkI =
1

NkI

NkI

∑
n:akC

=kI

s′t,kC
for kI ∈ 1, ..., KI (4.13)

until the convergence criteria is reached:

ζ I ≤ J(µkI ) =
1
2

KI

∑
∥∥∆µkI

∥∥
2 . (4.14)

Eventually, the final contact intensities are obtained by

s′′t,kC
= µkI=akC

for kC ∈ 1, ..., KC, (4.15)

where s′′t,kC
is a compressed sensor reading that fulfills the conditions of a

contact and µt,kC is its corresponding compressed contact location of the
original input frame Γ(St) that rendered the tactile sensor readouts St.
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4.3.6 Implementational Notes

1. Importantly, if the intensity centroids µkI are updated at each time
instant, one and the same sensor reading may be represented
differently between time instants. This is desirable for finely resolving
the tactile feedback over the full range of the tactile display’s actuator
output range, however, may require the superposition of kinesthetic
feedback to provide continuity to the human operator. Otherwise, it
could lead to inconsistencies in the representation of physical stimuli.
To prevent this problem, the intensity compression might be run on a
dataset that is representative for an entire application scenario (e.g.
rolling a ball in ones hand) to find a static compression via fixed
intensity cluster centroids µ∗kI

. Then, the online intensity compression
exclusively assigns the sensor readings to the predefined cluster
centroids µ∗kI

by using equations 4.11 & 4.12, thereby, considerably
speeds up the entire algorithm.

2. Another important consideration is the initialization between the time
instants t. To speed up the initialization and improve the
representation of the original dataset Γ(St), St, the K-means++
initialization procedure according to Arthur et al. [117] was chosen.
However, it is beneficial to keep track of the previous compressions
µt,kC , s′′t,kC

, as depicted in Fig. 4.2. Since physical stimuli change
continuously, the previous cluster centroids most likely provide a very
good starting point for the current K-means update procedure. Hence,
K-means++ might be run only after loss of contact.

4.4 Evaluation Studies

4.4.1 uSkin Tactile Sensor Module

For the evaluation of the algorithm, the dynamically moving contact of a
StyrofoamTM sphere (Ø19.45mm, 0.28g) rolling across the uSkin tactile
sensor module’s surface was exemplarily analyzed, Fig. 4.3. More precisely,
the StyrofoamTM sphere was rolled across the surface from the bottom edge
to the top edge of the sensor module with varying degrees of contact
pressure.
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For each time instant, the algorithm was run on the rendered tactile
(4 × 4 × 3)-image frame to output the contact locations and contact
intensities after compression. The maximum number of desired contact
locations, Kmax

C , and stimulus intensities, Kmax
I , were set to

Kmax
C ∈ 1, 2, 4, 8, (4× 4) and Kmax

I = 10. Since kinesthetic feedback was not
investigated in this thesis, the intensity centroids µ∗kI

were set to static, and
were identified via K-means intensity clustering on the complete dataset.

FIGURE 4.3: Tactile image compression experiment with the
uSkin tactile sensor module and a rolling StyrofoamTM sphere.

As a reference, each sensor readout was recorded and the contact
pressure distribution was calculated over the entire sensor module surface,
which allowed for comparison of the uncompressed and compressed tactile
data as well as the estimation of the actual contact area. The algorithm was
verified by analyzing the compressed tactile image in comparison to the raw
tactile sensor data.

Moreover, the algorithm was evaluated in terms of its capacity to estimate
the location of the contact points and in terms of how the sensor readings
at the contact point were efficiently represented after intensity quantization.
For the sake of simplicity, however, each of the NS vector entries in Γt(SnS)

was summarized to its corresponding vector magnitude snS ←− ‖snS‖2.
The maximum sampling frequency of the data collection that could be

achieved with the uSkin tactile sensor module was approx. 100Hz, referred
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to as uSkin sampling frequency. Finally, a parameter study was
implemented that demonstrated the estimation of the contact imprint area
and the corresponding speed of the algorithm for different numbers of
displayable contacts.

4.4.2 Scalability to Robotic Hands with Massive Tactile Data

In order to analyze the algorithm under realistic conditions and evaluate its
scalability, tactile sensor data was gathered during the active tactile
exploration of representative objects of daily living using the Allegro robot
hand that was covered with 15 uSkin sensor modules that provided 240
tri-axial force vector measurements at each time instant [107][45], Fig. 4.4.

Thus, in complementation to the above study on the compression of the
tactile data, this evaluation study investigated the scalability towards
massive amounts of tactile sensor data and different tactile display
specifications. For a detailed explanation of the Allegro robot hand, the
reader is also referred to section 2.1.1.

FIGURE 4.4: Active tactile object exploration using the Allegro
robot hand on the Yale-CMU-Berkeley object model set.

Briefly, the Allegro robot hand was mounted on a sturdy aluminum
profile with the fingers pointing upwards. A grasping motion that
dynamically moved all four fingers was pre-recorded to actively explore a
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set of objects. The data collection sequence started with all fingers in a fully
open state. Then, one out of 20 everyday objects from the YCB object model
set (Yale-CMU-Berkeley1) were placed into the Allegro robot hand and the
pre-recorded motion sequence together with the data logging software that
streamed the uSkin sensor readings and the 16 servo motors’ joint angles
into a .csv (comma separated value)-file were triggered. Accordingly, one
data set consisted of 720 tactile sensor and 16 joint angle readouts. Note
that, however, the joint angle information was not used, since it is not
relevant to the tactile display.

As a result, the algorithm compressed 720 tactile sensor readings at each
time instant, as available across the finger phalanges and fingertips of the
Allegro robot hand, into the specified number of contact locations KC and
stimulus intensities KI . Similarly to the above test conditions, the maximum
number of desired contact locations, Kmax

C , and stimulus intensities, Kmax
I ,

were set to Kmax
C ∈ 1, 2, 4, 8, (4× 4) and Kmax

I = 10 per sensor module; and
the intensity centroids µ∗kI

were identified via K-means intensity clustering on
the complete dataset of an object. Note that the phalanx of the thumb carries
only three uSkin modules for which reason the missing sensor readings were
treated similarly to faulty sensor readings.

The maximum sampling frequency of the data collection that could be
achieved with the Allegro robot hand was approx. 30Hz, referred to as
Allegro sampling frequency. The results were evaluated with the focus on
the algorithm speed, since the compression of the tactile data has been
analyzed in depth in the previous section. All calculations were run on an
off-the-shelf PC with Intel(R) Core(TM) i7-8700K CPU @ 3.70GHz and
32.0GB RAM on one core.

4.5 Results and Discussion

4.5.1 uSkin Tactile Sensor Module

Figure 4.5 shows the results of the tactile image compression experiment
with the uSkin tactile sensor module. The compressed contact locations and
the contact pressure distribution across the entire sensor module were
superposed for all tactile images, Fig. 4.5-A. Figure 4.5-B depicts the entirety
of tactile sensor readouts as rug plot, in which the left-hand side black area

1http://www.ycbbenchmarks.com/
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contains the inactive sensor readouts that were not registered as valid
contacts and the right-hand side grey area contains all active sensor
readouts. Finally, Figure 4.5-C shows the raw tactile data as a reference:
time step t = 102 marks the initial contact and time step t = 210 marks the
tactile image frame with the highest number of tactile sensing points
registered as contact.

FIGURE 4.5: The compressed contact locations and the contact
pressure distribution across the entire sensor module are shown
(A). A rug plot shows the entirety of sensor readouts and the
intensity clusters (B). The entirety of raw tactile sensor readout

magnitudes are shown in (C).

It can be seen that the centroid location that is an estimate of the contact
location coincided very well with the relative contact pressure distribution
depicted at the top and right-hand side of the graph in Fig.4.5-A, therefore
indicating an accurate estimation of the centroid location. The contact path
was very smooth, which can be attributed to the compression algorithm that
estimates the contact location from a group of associated cluster members,
therefore efficiently mitigates sensor noise. From the intensity rug plot in
Fig. 4.5-B, it can be seen that as soon as a sensor readout was registered as
valid contact, it was assigned to the first intensity centroid µkI=1. Note that
the intensity clusters do not change between time steps, which guarantees
physically consistent stimuli. The timely trajectory of discrete contact
locations and their corresponding intensities are well suited as input data
for tactile illusory algorithms as proposed in [20] [39] [21].

Figure 4.6 shows detailed results of the tactile image compression
experiment Kmax

C ∈ 1, 2, 4, 8, (4 × 4) at time step t = 210, where the
maximum number of NC = 12 contacts were registered. Despite the rather
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small contact of the spherical StyrofoamTM probe with the flat sensor
module, the registration of NC = 12 out of 16 sensing points was
surprisingly high. This might be attributed to the crosstalk among the
sensing points that is introduced by the gripping tape (cf. section 2.1.2) and
should be addressed in future version of the sensor module.

FIGURE 4.6: The compression of the time instant with the
maximum number of registered contacts NC = 12 (A) was
analysed in detail in terms of algorithm speed (B) and contact
area discretization (C) for a varying number of desired contact

clusters Kmax
C ∈ 1, 2, 4, 8, (4× 4).

Figure 4.6-A shows that the actual point of contact was located at the top
border of the sensor module. Due the dependency of K-means on the
number of points N, clusters K, and the data point dimensionality D
(O(NKD)), Figures 4.6-B and C illustrate the algorithm’s speed and the
distribution of cluster centroids for higher numbers of desired contact
clusters Kmax

C . While the algorithm speed decreased with an increasing
number of registered contacts, it did never fall below the uSkin sampling
frequency, except for Kmax

C = 16. This was, however, a rather theoretical
value, since Kmax

C = nW × nH, which effectively means that no compression
was performed and the algorithm has no impact on the tactile sensor data.
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Following a modular approach and considering the small size of the
uSkin tactile sensor module, a maximum Kmax

C = 4 contact point estimates
per sensor module should be sufficient for most applications with tactile
displays. With increasing Kmax

C the true contact area was increasingly
covered with discrete contact point estimates until for Kmax

C = 16 the
algorithm stopped increasing this number, since all unique contact points
were represented and the compression coincided with the actual contact
area. Note that the estimation of continuous contact areas is always bound
to discrete sensing points.

4.5.2 Scalability to Robotic Hands with Massive Tactile Data

Figure 4.7 shows the results of the tactile image compression experiment
during the active tactile object exploration of several representative objects
of the YCB object model set.

Several points were noteworthy: For example the compressed intensity
profiles (A-D, top) were mutually different between the different objects,
which most likely was due to their different shapes and hardnesses. This
was interesting, because the pre-set cluster reflected the complete motion
scenario and would cause notable differences in conjunction with a tactile
display alone from the distribution of intensity values.

Due to the active engagement of the Allegro robot hand with the
differently shaped and sized objects, the number of contacts NC was
considerably higher and oscillated within one motion cycle of active
engagement between 75 and 125. While the algorithm speed decreased with
an increasing number of registered contacts, it did rarely fall below the
Allegro sampling frequency, except for Kmax

C = 16. Again, Kmax
C = 16

effectively means no compression, since for each sensor module
Kmax

C = nW × nH, and the algorithm should not be deployed.

4.6 Chapter Summary

The importance of this chapter lies in the introduction of the algorithm
termed Sequential Tactile Data Clustering for Tactile Image Compression to
Enable Direct Adaptive Feedback that allows for the dynamic compression of
tactile sensor data for its representation by tactile displays that suffer from a
limited number of actuators (or displayable contacts) and high energy
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FIGURE 4.7: Results of the tactile image compression during
the active tactile object exploration experiment are shown for
representative objects of different size and hardness: football
(A), baseball (B), a pack of foam (C), and foam blocks (D).
The respective top graph shows the incidence of individual
sensor readouts as histogram (24 bars) and the pre-set intensity
clusters as rug plots. The respective bottom graph shows the
number of registered contacts and the corresponding algorithm

speed. Note that Kmax
C , Kmax

I are per sensor module.

consumption. The algorithm resolves the dimensional mismatch between
tactile sensor space and tactile display space by performing two stages of
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unsupervised K-means++ clustering on the raw tactile sensor data at each
time instant.

The capabilities of the algorithm have been experimentally verified by
compressing the massive tactile information that was captured by uSkin
sensor modules mounted onto an anthropomorphic Allegro robot hand that
actively explored a representative selection of objects of everyday living.
The rendering of 240 tri-axial sensor readings of the uSkin tactile sensor
module into image-like frames allowed for the sequential clustering for
tactile image compression. In this manner, the location of the contact point
could be precisely estimated and, moreover, the tactile information stored in
the contact point could be optimized for the representation via tactile
displays while removing sensor noise and therefore smoothing the contact
point trajectory.

The results suggest that the algorithm is capable of dynamically
compressing the tactile sensor readings into the tactile display space, in a
way that maintains their physical meaning, scales to the capacities of the
respective tactile display, and enables direct adaptive feedback with
(varying intensity cluster µkI ) or without (representative intensity cluster
µk∗I

) the complementation by kinesthetic feedback.
These characteristics yield a promising potential for important

applications like human-robot interaction, e.g. teleoperation and
prosthetics, all of which would require the tactile display to resemble the
physical meaning of tactile information in real-time. In this regard, the
results also suggested that the algorithm, as tested in conjunction with the
Allegro robot hand and uSkin sensor module, is very fast; it well exceeded
the respective sampling frequencies of Allegro robot hand and uSkin sensor
module.

Following a modular paradigm, however, future versions of the
algorithm should include implementational improvements, e.g. the
multiprocessing of several tactile sensor modules on distributed CPU-cores
in order to maintain the algorithm’s speed even for very high resolving
tactile sensors, e.g camera-based tactile sensors like the DIGIT [47], and very
large-scale implementations across large surfaces of humanoid robots, e.g
the iCub with 2000 force sensors [66] or the H1 robot with 1260
Hex-O-Skin-sensors [67].

The current implementation of the algorithm assumes geometrically
simple contact imprints that are approximated by a varying number of
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contact location centroids (linear Euclidean distance kernel). Tactile sensors
with very high resolutions, e.g. camera-based sensors (cf. GelSlim [55]),
however, are capable of sensing fine micro-geometric surface details. Those
complex contact imprints that are caused by the detailed features of an
object’s surface would most likely require modifications to the algorithm
and, as of now, would pose severe challenges on their efficient projection by
means of tactile illusions [20] [28]. Since the proposed algorithm produces
discrete contact locations with varying contact intensity, it could be,
however, combined with the algorithm from chapter 3 to give
independently moving contact points generic surface properties.

Another interesting direction of future research would be the
incorporation of psychophysical domain knowledge into the intensity
compression. In fact, the consideration of the principle of Just Noticeable
Differences [119] [120], i.e. the minimum amount by which the stimulus
intensity must be changed in order to produce a noticeable variation in
sensory experience, is akin to the meaningful compression of intensity
values. Next to the contact location compression, this could further
contribute to the tactile display’s energy conservation, since the output of
stimulus intensities that are higher, but not noticeable can be assigned to
lower clusters µkI , i.e. actuator outputs with lower energy consumption.
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Chapter 5

System Integration into a Wearable
Tactile Display Fingertip Module

5.1 Problem Formulation and Solution Concept

5.1.1 Problem Formulation

As initially explained in chapter 1, the overall goal is to develop and
implement a vastly applicable end-to-end tactile feedback loop that uses the
raw data from tactile skin sensors to transmit physical contact information
by means of tactile displays for the application in telerobotics and
human-robot interaction. The large majority of tactile displays is designed
for the application in virtual reality settings [99] [97] [20] [39] [2] [1] [82] [21]
which constitutes a well defined environment, or other specific applications,
e.g. Braille information displays [98].

To the author’s best knowledge, there is no wearable tactile feedback
system that uses sparse actuator distributions to encounter energy and
space restrictions in tactile displays in combination with tactile illusory
phenomena to transmit meaningful tactile information from massive
amounts of raw tactile sensor data for the application in unstructured
environments [11] [2] [82].

Moreover, due to the multi-modal nature of the sense of touch, the tactile
display module should implement ultra-compact and energy-dense
actuators to allow for being scaled in accordance with the intended
application and eventually for being complemented with further actuators
for multi-modal haptic feedback. Another vital requirement are networking
capabilities, i.e. the wireless connectivity to accompanying systems, to allow
for the system integration into robotic application scenarios.
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5.1.2 Solution Concept

In addressing these challenges, chapters 3 and 4 developed the required
software that enables end-to-end tactile sensor data projections for the
construction of psychophysical tactile illusory phenomena and thus allows
for the transmission of physical contact information, i.e. micro-geometric
surface properties and contact locations, onto the skin of a human user by
means of tactile displays.

This chapter is therefore concerned with the integration of the system
architecture, as introduced in chapter 2, into a compact and wearable tactile
display fingertip module. The following sections present the
implementation of a scalable tactile display fingertip module with a
sparsely distributed 3D-array of ultra-compact SMA-based micro-vibrators
together with a modular WiFi- and I2C-enabled driver unit.

In combination with the in chapters 3 and 4 developed software, this
tactile display fingertip module realizes a novel data-driven tactile feedback
framework that deploys end-to-end tactile sensor data projections to
provide tactile feedback from massive tactile sensor data by means of
compact tactile displays with sparse actuator distributions for its use in
robot-teleoperation and human-robot interaction.

5.1.3 Chapter Organization

This chapter is organized as follows: in section 5.2, both the system
architecture and the tactile display fingertip module with sparse actuator
array are explained in detail. Next, section 5.3 describes the control strategy
that deploys the presented hardware in combination with the in chapter 4
introduced algorithm sequential tactile data compression to identify and enable
the projection of compressed contacts on the skin of a human operator by
means of psychophysical tactile illusions. Section 5.4 describes the
experimental setup and the user studies that were conducted to verify the
proposed tactile feedback system, i.e., the transmission of arbitrary contact
trajectories from raw tactile sensor data to a human user by means of the
tactile display fingertip module. The results are presented and discussed in
section 5.5. Finally, section 5.6 summarizes the main findings and
limitations of the presented tactile feedback system.
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5.2 Implementation of a Wearable Tactile Display

Fingertip Module

5.2.1 System Architecture and Networking

Fig. 5.1 summarizes the entire system architecture in the form of a block
diagram depicting the components and the information flow, Fig. 5.1.
Referring back to the system architecture and system components as
introduced in chapter 2 (Fig. 2.1), the tactile display fingertip module
comprises the latest tactile display fingertip prototype (Fig. 5.1-A) with eight
SMA-based micro-vibrators as well as the driver unit. A driver unit consists
of a set of custom-made driver boards with I2C-enabled pulse-width
modulation (PWM) driver and eight current amplifying units as well as a
WiFi-enabled MCU that stacks on top of the driver boards (Fig. 5.1-B).

FIGURE 5.1: The tactile display fingertip module implements
eight SMA-based micro-vibrators in a 3D-array covering all
sides of the fingertip (A). The MCU is stacked on top of custom-
made driver boards each of which comprising a pulse-width
modulation (PWM) driver and eight current amplifying units
(B). Each driver unit is associated with a tactile display module,
up to 16 driver boards connect with one WiFi-enabled MCU (C).

The tactile display fingertip prototype connects via 16 AWG30 copper
wires (two wires per micro-vibrator) to the driver boards, which then
connects via I2C to the MCU. Each driver board connects with a tactile
display unit and up to 16 driver boards can be conveniently stacked onto
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one MCU. Finally, the MCU connects via WiFi (or USB) to the host PC
executing the algorithms for the actuator driving parameter computation.

The MCU manages the time-critical actuation of the micro-vibrators in
order to generate spatio-temporal actuation patterns that elicit illusory tactile
sensations. For this reason, each driver board implements not only current
amplifiers but also a PWM driver with built-in, i.e., autonomous oscillator. In
this manner, a single MCU can be connected to up to 16 daisy-chained driver
boards of which each of them drives one tactile display unit independently,
thus, enables scalable design and control in a compact form factor, Fig. 5.1-C.
Note, in its current implementation, the module furthermore requires to be
connected to an external power source (here: Kikusui PWR800L, Regulated
Power Supply).

5.2.2 SMA-based Tactile Display Fingertip Module

The tactile display fingertip module prototype utilizes bare SMA wires
(Ø75µm, L5mm, R1.9Ω) to generate micro-vibrations and project tactile
stimuli directly onto the skin, Fig. 5.2-A. The SMA wires are implemented
into a small 3D-printed package covering all the sides and the front of the
fingertip.

FIGURE 5.2: The tactile display fingertip module implements
eight SMA-based micro-vibrators within a 3D-array covering
the front and all sides of the finger (A). At room temperature,
the SMA-based micro-vibrators rest loosely against the skin
without being compressed (B). The tactile display prototype

including all wires and connectors had a weight of 4.58g (C).

As explained in chapter 1, the two-point-orientation discrimination
threshold of the fingertips is around 5mm [22]: In realizing a sparse actuator
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distribution, the actuator array of the new prototype has mutual actuator
distances of 9mm to 14mm, which is larger than the discrimination threshold
and enables discretely perceivable signals for the generation of illusory
tactile stimuli [34], [35]. The SMA wire-carrying bar is similar to the
structure in the first prototype, however, is set 1mm into the fingertip
module and surrounded by a notch to allow for free vibration and proper
cooling of the SMA wire. In the low-temperature state (no current flow), the
SMA wire is barely noticeable and rests loosely against the skin of the
fingertip.

In order to maintain the smallest possible form factor, the SMA wires are
threaded through flanged eyelets (Øo760µm, Øi530µm, L2.41mm) that are
crimped around the SMA wire and soldered to the current supplying cables,
Fig. 5.2-B. Compared to the first fingertip prototype, the manufacturing of
this fingertip module is simpler and the SMA-based micro-vibrator itself
requires less space allowing for a more flexible and less intrusive design.

The tactile display unit including all the wires and connectors had a total
weight of approx. 4.58g, Fig. 5.2-C. The combined weight of I2C-driver PCB
(5.77g) and MCU (6.39g) was 12.16g, resulting in a total weight of 16.74g for
one tactile display fingertip module. Every additional tactile display unit
increases the weight by only 10.35g.

5.3 Control Scheme for Quasi-dynamic Contact

Trajectory Projection

For the tactile transmission of an arbitrary contact trajectory that results from
the free interaction of a moving object in contact with a tactile sensor module,
it is necessary to construct discrete contact points that can be well projected
onto the skin of a human user using illusory tactile sensations. Since it is
difficult to assume any prior information on the interaction, such as duration,
speed or direction, the tactile sensor data must be continuously sampled and
the identified contact trajectory must be projected on-the-fly in a dynamic
fashion. Note, the variable t thus refers to the time instants at which the
tactile sensor data is sampled.

The subsequently explained control scheme aims at the quasi-dynamic
projection of contacts, i.e., the identification of contact centroids from raw
tactile sensor data and their immediate projection at each time instant t



88

using a set of neighbouring micro-vibrators for the generation of an
apparently moving phantom tactile illusion.

Accordingly, the stimuli duration τd, i.e. the duration that stimuli are
presented, and the SOA τSOA, i.e. the delay between subsequent stimulus
onsets, are well-defined constants that enable the perception of a moving
contact point [20] [21]. Note that τSOA refers to the duration between time
instants t, not however, to the delay between stimulus onsets within the same
time instant. This is because for the generation of phantom tactile illusion,
this duration must be negligibly small [35]. For more information on the
theory of these parameters, the reader is referred to chapter 1 and the therein
recommended literature. The calculation of the parameters τd and τSOA is
described by Israr [20] and Baik et al. [21]. A flow chart of the complete
control scheme is depicted in Fig. 5.3.

FIGURE 5.3: For the quasi-dynamic contact trajectory
projection, firstly, the raw tactile sensor data from the uSkin
module (A) is fed to the algorithm for sequential tactile data
compression (B). Then, the contact centroid location is mapped
into tactile display space. Finally, the micro-vibrators of the
tactile display module are activated such that the perceived
stimulus location corresponds with the contact location on the
tactile sensor module. This is achieved using local actuator
activation functions for the generation of tactile illusions [20]

[38] [21] (C).

At each time instant t, the algorithm for sequential tactile data compression
receives the tactile sensor raw data to compress the detected contacts and to
identify the centroid location in tactile sensor space S(x, y)C, Fig. 5.3-B. With
the knowledge on the geometries of the uSkin tactile sensor and the tactile



89

fingertip display modules, the centroid location S(x, y)C can be mapped into
tactile display space D(x, y)C, such that the tactile display space is entirely
contained inside the tactile sensor space, Fig. 5.3-C.

The respective micro-vibrators that are relevant for the generation of the
phantom tactile illusion at time instant t are simultaneously activated for the
stimuli duration τd and their relative vibration intensities are regulated in
accordance with the location of the contact location in tactile display space
D(x, y)C. For this reason, all actuators are assigned local activation functions
An(DxC, DyC) of the form:

An(
DxC, DyC) = α + β× an(

DxC, DyC) for n ∈ 1, ..., NA, (5.1)

where α is the PWM duty offset that increases/ decreases the absolute
micro-vibrator intensity in accordance with the individual’s sensation level
[20], β is the PWM duty ratio that scales the variation of the micro-vibrator
intensity, an is the activation ratio to control the generation of phantom tactile
illusions, and NA is the total number of available actuators. Note that an ≤ 1.

The activation ratio an(t) is a logarithmic function. This definition goes
back to the research of Alles [35], Lee [38] and Park [30], however, has been
adopted and modified for the use in this thesis. Precisely, the modifications
restrict the functions to local activity in a larger actuator array such that only
the surrounding actuators exhibit activity. For example, in case the locations
of the contact centroid and one actuator coincided, the respective actuator
was fully activated (an = 1), while the others were fully deactivated.

As a result, the actuator activation, i.e. the vibration intensity that is
controlled by the PWM duty cycle ratio, and therefore the stimulus intensity
is scaled depending on the location of the centroid D(x, y)C in relation to the
location of the surrounding actuators D(x, y)An inside the actuator array:

an(
DxC, DyC) = max

[
1−

(
log2(

∣∣DxC − DxAn

∣∣+ 1)

log2(
Ddx + 1)

)sx

, 0

]

×max

[
1−

(
log2(

∣∣DyC − DyAn

∣∣+ 1)

log2(
Ddy + 1)

)sy

, 0

]
.

(5.2)

The parameters sx, sy are the shape factors of the activation function and
dx, dy are the relative actuator distances. These parameters are constants and
control the shape of the activation function depending on the geometry of
the tactile display in x- and y-direction, respectively.
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5.4 Experiments and User Studies

For the experimental evaluation, the control scheme implemented the uSkin
tactile sensor module for collecting raw tactile sensor data, the in chapter 4
introduced algorithm sequential tactile data compression for the identification
of well-defined contact centroids, and the tactile display fingertip module
for the generation of micro-vibrations in accordance with the tactile input
data. The overall system as described in the previous sections was deployed
in a preliminary user study.

Briefly, users were asked to wear the tactile fingertip display on the index
finger and to evaluate the perceived stimuli that were generated by the
end-to-end projection in response to the incoming tactile sensor raw data.
Figure 5.4 shows the experimental setup and an exemplary user evaluation.

FIGURE 5.4: For the evaluation of the overall system, a
StyrofoamTM sphere was rolled across the uSkin tactile sensor
module resembling four representative contact trajectories (A).
These contact trajectories were identified using the algorithm
from chapter 4 and projected onto the skin of a human user
using the tactile display fingertip module (B). The tactile
display module was evaluated by asking the users to reproduce
the perceived contact trajectory on an image of the fingertip
module; red annotations mark perceived discontinuities (C, D).

To generate the tactile sensor input data, a small StyrofoamTM sphere
(Ø19.45mm, 0.28g) was manually moved across the uSkin tactile sensor
module resembling four dynamic contact scenarios, Fig. 5.4-A. It was
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assumed that the arbitrary rolling/slipping of the StyrofoamTM sphere on
the tactile sensor module is a meaningful model case for fine in-hand
manipulation of a small object with index finger and thumb. The sampling
frequency of the data collection was approx. 100Hz, referred to as uSkin
sampling frequency. The in chapter 4 introduced algorithm sequential tactile
data compression was deployed to identify one contact centroid Kmax

C = 1
with the coordinates S(x, y)C(t) from the tactile sensor raw data at each time
instant t, which enabled the sequential projection of these dynamic contact
locations that sampled the true path of the StyrofoamTM sphere on the
sensor module.

The identified contact centroid coordinates S(x, y)C(t) were linearly
mapped into tactile display space coordinates D(x, y)C(t). An activation
function An(DxC, DyC) was defined for each of the eight SMA-based
micro-vibrators (Eq. 5.1) to generate the quasi-dynamic phantom tactile
illusions.

As it concerns the actuation of the tactile display module, the
PWM-driver of the tactile display module was set to f = 200Hz around
which the sensitivity of the Meissner and Pacinian mechanoreceptors to
vibratory signals is very high [24], [3]. The stimulus duration was set to
τd = 35mSec and the inter-stimulus onset asynchrony τSOA was calculated
to 58.5mSec [20] [21]. The tactile display actuators were driven at a PWM
duty ratio of β = 2.44% resulting in a power consumption of approx.
180mW per actuator; in case fully activated.

Finally, the users were handed a sheet of grid paper depicting a top-view
image of the tactile display fingertip prototype. Then, they were asked to
draw a line that best described the perceived contact trajectory, Fig. 5.3. The
users were also asked to annotate the direction of the moving contact and to
mark any discontinuities on the same sheet of paper. Each dynamic contact
trajectory was evaluated five times and presented in random order to two
healthy users (male, mean age 29.5yrs) amounting to 40 trials in total.

In a brief training session before the experiment, participants were made
familiar with the experimental setup and procedure. Furthermore, it was
assured that the fingertip module was worn correctly so that the users could
perceive stimuli from all actuators. All the user responses were digitized,
i.e., saved in terms of x- and y-coordinates to a .csv-file to allow for proper
evaluation of the perceived contact trajectories.
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5.5 Results and Discussion

Figures 5.5 shows the results of the real-time tactile image compression to a
trajectory of contact centroids (A), the compression algorithm’s performance
(B), and the user evaluations of the perceived contact locations (C) for all the
trajectories and over all trials. Columns refer to the above defined contact
scenarios, i.e. the motion trajectory of the StyrofoamTM sphere across the
uSkin tactile sensor module’s surface.

In detail, Figs. 5.5-A1 to A4 show the sequences of compressed contact
locations S(x, y)C(t) alongside their respective trajectory for each of the above
defined contact scenarios (green markers). These contact centroid trajectories
are the result of the sequential tactile contact area compression by means of
the algorithm from chapter 4, which rendered the complete tactile sensor
data as tactile image and compressed it into KC = 1 contact centroid in real-
time at each time instant t. The contact centroid trajectories are shown in
comparison to the raw tactile sensor data over the complete time horizon.

Even though the tactile imprint, i.e. the contact area, of the StyrofoamTM

sphere was small, the data in Fig. 5.5-B1 to B4 reveals that up to 12 sensing
points of the uSkin tactile sensor module were activated simultaneously at a
single time instant, which amounts to 75% of the entire module’s surface
and was likely a result of the cross-talk between the sensing points. Thus,
only after the compression of the tactile raw data into a discrete contact
centroid with a well-specified location S(x, y)C(t), the generation of
phantom tactile illusion at a specified target location D(x, y)C(t) in tactile
display space became possible.

For the sake of completeness, Fig. 5.5-B depicts the performance of the
algorithm throughout all the contact scenarios. Fig. 5.5-B emphasizes the
need for compression of the raw data before the projection via tactile
displays, as the number of sensor readouts that exceeded the contact
threshold upon contact with an object increased quickly. Denser tactile
sensor arrays would exacerbate this problem, as the contact area would
cover a greater number of sensing points. In case of Kmax

C = 1, the algorithm
essentially performs a weighted center of mass computation to identify the
sequence of contact locations for which reason the computation
performance (CPU-bound) was very high and well above the uSkin
sampling frequency.

Generally speaking, depending on the tactile sensor’s resolution and
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sensitivity, macro-geometric and micro-geometric object features are
approximated by a number of sensing points of a tactile sensor module. In
regard to the uSkin’s resolution and sensitivity (cf. chapter 1), only
macro-geometric object features, i.e., rough contact imprints can be
approximated by the array of sensing points (4 × 4-array, center-to-center
distances are 4.7mm). More complex contact features, i.e. detailed tactile
imprints due to micro-geometric surface features, would require an even
denser sensor array and modifications to the algorithm as mentioned in
chapter 4. The algorithm sequential tactile data compression, however,
generated an accurate and smooth contact trajectory as a sequence of
compressed contact locations, which enabled the generation of phantom
tactile illusion and, thus, the projection of contacts onto the skin of the
human users by means of sparse actuator arrays.

FIGURE 5.5: The contact trajectories were identified using the
algorithm from chapter 4 for Kmax

C = 1 (A1-A4). The total
number of contacts and the algorithm speed of compressing the
tactile data into a succession of compressed contact centroids
are shown in comparison to the uSkin tactile sensor module
sampling frequency for evaluation purposes (B1-B4). The user
evaluations on the perceived contact locations are depicted
(C1-C4), where each marker type represents one trial and red

markers annotate discontinuities.
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Finally, Fig. 5.5-C shows the digitized user responses on the perceived
contact trajectories. The user responses show that the successions of
compressed contact centroids were perceived as quasi-dynamic contact
trajectories. Moreover, the perceived contact trajectories were in good
agreement with the actual contact trajectories of the rolling StyrofoamTM

sphere on the uSkin tactile sensor module in most of the cases (Fig. 5.5-A).
Yet, the projection of contact trajectories A2 and A4 exhibited partially

considerable deviations from the true contact trajectory, Fig. 5.5-C2 and C4. It
is assumed that these deviations originated from the irregular skin contact
of the actuator that could vary dynamically when moving the finger inside
the module, thus, could have caused the curved contact trajectory projection
in Fig. 5.5-C1. This effect is also believed to have caused jumps in the contact
projection, i.e. temporary irregularities in the projection of the tactile
phantom due to the wiggling of the fingertip inside the module back and
forth causing a brief change in contact intensity.

The perceived discontinuities (annotated in red), however, mark the
temporary destruction of the phantom tactile illusion and occurred at the
actuator locations (Fig. 5.5-C2) and around the center between actuators
(Fig. 5.5-C4). While this might be caused by the relative motion between
fingertip skin and tactile actuator, it is more likely that the actuator locations
D(x, y)An in combination with the assigned local activation functions
An(DxC, DyC) caused a decrease of the vibration intensity below the
sensation level; specifically when the contact centroid approached the center
between actuators followed by a sudden increase above the sensation level
when the contact centroid approached the vicinity of an actuator. This effect
is exacerbated by the very restricted actuator output range of the
SMA-based micro-vibrator, since it prevents from driving the display well
beyond the sensation level [20], thus making the generation of phantom
tactile illusions less accurate and robust.

Albeit the conducted user study comprised only two different users and
must be regarded as preliminary with limited conclusiveness, the results
were sufficient to identify technical limitations of the presented tactile
display module and were in agreement with recent studies on the control of
tactile displays implementing sparse actuator arrays for the use in virtual
reality applications [38], [30], [31]. Hence, before conducting larger user
studies, the identified limitations are worth addressing in future prototype
versions.
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Concretely, the foremost important limitation revealed to be the
mechanical design of the fingertip module as a rigid 3D-printed module. A
compliant silicone structure carrying separated micro-vibrator modules
would allow for a widely regular contact between fingertip skin and SMA
wire, therefore would alleviate the above mentioned problem of irregular
skin contact of the actuators that was associated with the perceived
deviations, discontinuities, and jumps in the phantom tactile illusion.

In this regard, equidistant spaces in the actuator array or the selective
activation of a set of three actuators surrounding the contact centroid location
may increase the accuracy of the projected phantom illusion [28] [21]. This is
in contrast to the overall activation across all local activation functions that
might cause discontinuities in the resulting hyperplane that describes the
activation across the entire actuator array.

Another important limitation was the rather narrow actuator output
range of the SMA-based micro-vibrator that limits the generation of
variable, yet perceivable vibration stimuli for the projection of phantom
tactile illusions. This issue might be addressed by controlling the peak
current flowing through the SMA wire instead of the PWM duty ratio,
because the impulse against the skin that is generated when the SMA wire
heats up and shrinks depends directly on the amount of the injected
electrical power [99].

Despite the above discussed limitations, the user responses suggest that
the momentaneous contact location and eventually the complete contact
trajectory could be effectively projected with an overall good level of
accuracy and robustness in real-time and with a very compact device
design. Due to the sparsity of the actuator array, the power consumption
and space requirements are lower compared to a dense implementation of
actuators of the same type, which was achieved by quasi-dynamic phantom
tactile sensations that enable tactile feedback on the object’s location and its
trajectory across the fingertip with relative actuator distances beyond the
two-point-orientation threshold [22].

Apart from the distortions of the phantom tactile illusion due to the above
mentioned effects, recent research [20] [28] [40] [29] [31] [32] [21] and the
obtained results clearly advocate the proposed approach that uses end-to-
end projection of tactile data to enable tactile feedback by means of tactile
illusions for the use in human-robot interaction applications.

In this regard, the exact positioning of a virtual phantom actuator,
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therefore the exact projection of a contact location is theoretically possible,
but the achievable accuracy will ultimately depend on practical factors, such
as the density of tactile display actuators, their stimuli production range,
and the relative contact between the user’s skin and the actuators. For this
reason, the design of the tactile display actuator array must be a
compromise between the desired application performance, the availability
of space and energy, and the body site [41].

Using a sparse actuator array in combination with tactile illusions poses
limitations on the instantaneous projection of detailed, micro-geometric
surface features, e.g. the tactile imprint of a thread of a screw (cf. [55]). This
is because tactile illusions require the timely succession of spatially
distributed tactile stimuli, which restricts the achievable complexity of the
simultaneous projection of an object’s micro-geometric surface features.
However, bearing the biological limits of the human touch in mind [23] [24]
[3], the two-point-orientation threshold [22] seems a good candidate for the
lower limit of the actuator implementation density.

For the efficient projection of micro-geometric surface features, future
research should be directed towards the incorporation of the algorithm from
chapter 3, which yields the prospect of realizing projected contact
trajectories that exhibit textural properties.

5.6 Chapter Summary

This chapter implemented the initially outlined thesis objectives 1.3 of a
compact and wearable tactile display into a fingertip module that uses
end-to-end tactile data projections and tactile illusory phenomena to project
contact information onto the skin of a human user. The module integrates
eight energy-dense SMA micro-vibrators into a 3D-printed package with
relative actuator distances of approx. 9-14mm, i.e. a very sparse actuator
distribution. For this reason and due to the optimization for the use of
tactile illusions, it is compared to the in chapter 1 reviewed tactile displays
very space (0.35 × 0.25 cm per actuator) and energy (approx.
180mW/actuator) conserving.

The tactile fingertip display module prototype was successfully tested in
a preliminary user study: Several representative contact trajectories of an
object that moved across a uSkin tactile sensor module were transmitted to
human users by deploying the algorithm from chapter 4 that enabled the
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quasi-dynamic, consecutive projection of compressed contact locations by
means of tactile illusions. Hence, the proposed human-machine interface
solves the unknown transformation from tactile sensor space to tactile
actuator space and utilizes tactile illusions to mitigate limitations of tactile
display actuators in terms of energy consumption and actuator density.

In this respect, the developed fingertip module exhibits similar
limitations as described in the previous chapters: The projection of tactile
stimuli using SMA-based micro-vibrators is limited to a subset of
perceivable tactile stimuli, excluding static protrusion, shear, and heat flux.
Moreover, the generation of accurate and robust tactile illusions is still a
matter of research: The experiments on the feedback of moving contact
patterns revealed inconsistencies in the perceived stimuli with respect to the
desired contact trajectory due to the SMA-based actuator’s limited range of
producible stimulus intensities and relative movements between finger pad
and display module that caused irregular contacts, and in turn, the
degradation of the tactile illusions.

However, the experiments on both the hard- and software components
have shown that the proposed data-driven tactile feedback system
effectively utilizes end-to-end tactile data projections to efficiently convey
physical contact information in real-time from tactile sensor data.

Future research should address improvements on the accuracy and
robustness of tactile illusions by the use of compliant actuator arrays for
uniform and steady skin contact and by increasing the perceivable output
range of the SMA-based micro-vibrators, e.g. by implementing a controller
that regulates the current amplification. The incorporation of the algorithm
from chapter 3 yields the prospect of the combined projection of textural
properties in addition to the contact location projection for richer tactile
feedback.
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Chapter 6

Conclusion

The sense of touch enables humans to perform a great variety of exploration
and manipulation tasks in the real world [1] [2] [3] [4] [5]. Tactile
information therefore constitutes a key sensory channel that is especially
important in unstructured environments. Thus, tactile sensor skin has been
widely adopted in robot design and control [9] [6] [10] [7]. The integration
of distributed tactile sensors enables information-rich feedback from the
robot’s environment and makes robot manipulators increasingly capable of
dexterous object manipulation and even active (tactile) exploration. For this
reason, not only modern industrial robots but especially emerging robot
applications like social and service robots benefit from the deployment of
anthropomorphic, dexterous robot hands, because they exhibit higher
manipulation capabilities, a higher flexibility, and in turn, possess a
tremendous potential for versatile, human-like interaction with the physical
world [58] [59] [60] [57] [61] [62].

However, in human-centered applications, e.g., robot-teleoperation or
human-robot interaction, this massive sensor data must be projected to the
skin of a human operator in order to create meaningful, yet efficient tactile
feedback that allows either for highly-efficient teleoperation of the robot or
for tactile immersion while using the robot [92] [83] [84] [15] [16] [4] [5].

This final chapter revisits the major milestones in the hard- and software
development of a data-driven tactile display module that implements
end-to-end sensor data projections and addresses the establishment of the
tactile information flow from massive tactile sensor data to wearable
human-machine interfaces with respect to the design and transduction
principles of the deployed tactile sensors and tactile actuators as integral
part of any technical tactile feedback loop.

The presented algorithms for the implicit or compressed representation
of tactile sensor data allow for the generation of carefully orchestrated



100

spatio-temporal actuation patterns that allow for mapping from the tactile
sensor space to the actuator driving space for efficient, yet intuitive
end-to-end tactile stimuli generation, i.e. the conveyance of
macro-geometric (locations of contact) and micro-geometric (properties of
surface) contact information. Finally, this chapter outlines directions of
future research to address the current limitations of the proposed tactile
feedback framework.

6.1 Contributions and Limitations

Chapter 1 laid the groundwork to this thesis: First, insight into the
mechanisms of tactile stimuli perception and an extensive overview over
tactile technologies and the application to (anthropomorphic) robot
manipulators were provided. Secondly, the benefits and drawbacks of
existing tactile feedback systems with the focus on tactile sensors, tactile
displays and tactile recognition algorithms in the domain of
anthropomorphic robots were summarized and evaluated. The end of
chapter 1 outlined the objectives of the development of a novel data-driven
tactile display module that used end-to-end tactile data projections and
illusory tactile sensations to mitigate space and energy restrictions of the
tactile display hardware that implemented shape memory alloy
(SMA)-based actuators.

Chapter 2 introduced the complete system architecture for the
experimental design and evaluation of the proposed data-driven tactile
feedback system together with the associated software algorithms for
end-to-end tactile data projection. The system architecture involved the
anthropomorphic Allegro robot hand covered with uSkin tactile sensor
modules, a host PC running resource-intensive algorithms on the tactile
data, a compact WiFi-enabled microcontroller unit that calculated resulting
spatio-temporal actuation patterns, an I2C-enabled custom-made tactile
display driver circuit for the generation of pulsed current signals, and shape
memory alloy-based tactile display prototypes to create vibro-mechanical
stimuli on the human skin. Even though soft- and hardware developments
evolved throughout the experimental trials, Chapter 2 also reviewed
fundamental design and operational principles and thereby characterized
the potential applications and inherent limitations of the proposed tactile
feedback system. An important a priori limitation in using SMA-based
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micro-vibrators is the restriction to dynamic vibrations, i.e. only a subset of
required tactile stimulus modes to resemble the sense of touch, and the
absence of proprioceptive feedback, i.e. stimuli that inform the brain on
dynamic positioning/loading of articulated body segments. The
SMA-based micro-vibrator could generate mechanical vibrations perceived
by the Meissner and Pacinian corpuscles and therefore could convey
information on the textural properties of distributed contacts that is majorly
important for in-hand manipulation. The realization of sustained pressure
(Merkel), skin shear (Ruffini) or proprioceptive feedback, however, would
necessitate a different embodiment of the actuator or the complementation
with a different actuator as discussed in chapters 1 and 2.

Chapter 3 described the algorithm of end-to-end tactile texture projection in
psycho-physically meaningful latent space coordinates. This algorithm
deployed a deep gated recurrent unit-based autoencoder (GRU-AE) to
capture the perceptual dimensions of tactile textures in latent space
coordinates that coincided with the psychophysical layer of human material
perception. The auto-compression of tactile sensor data enabled an
end-to-end mapping from tactile sensor data to tactile actuator driving
signal by modulating the tactile display actuator driving signal in
accordance with the latent space coordinates. The approach was
experimentally verified by evaluating the prediction performance of the
GRU-AE on seen and unseen tactile data that were gathered during active
tactile exploration of objects commonly encountered in daily living using a
uSkin tactile sensor module. Additionally, a user study on a custom-made
tactile display was conducted in which real tactile perceptions in response
to active tactile object exploration were compared to the emulated tactile
feedback using the proposed GRU-AE approach. The algorithm was able to
drive the first prototype of a custom-made tactile display module and
generated convincing tactile stimuli even for new, unseen textures alone
from the uSkin tactile sensor readouts. The results suggested that the
GRU-AE, or AE approaches in general, may allow for finding an end-to-end
mapping between tactile sensor and tactile display space over a wide range
of tactile sensor and actuator combinations. However, the specifics of tactile
sensor and tactile display must be accounted for, because their respective
hardware limitations in capturing and projecting relevant surface features
immediately impact the quality and integrity of the tactile perception.
Finally, another important limitation was the pre-definition of the moving



102

contact pattern in order to emulate the sensation of moving object surfaces
with a variety of different textural properties.

Chapter 4 introduced Sequential Tactile Data Clustering for Tactile Image
Compression, which resolved the dimensional mismatch between tactile
sensor space and tactile display space by performing two stages of
K-means++ clustering on the raw tactile sensor data at each time instant.
This dynamic compression is almost always necessary, either due to
technical limitations of the deployed tactile display, or for reasons specific to
the application, e.g. in prosthetics where the tactile sensation must be
reproduced on another body part with different mechanoreceptor density.
The algorithm compresses the tactile sensor data into a number of discrete
contact locations and stimuli intensities to match the tactile display
specifications. In this manner, the compressed tactile data preserves its
physical meaning and enables direct adaptive feedback by means of tactile
illusions. The algorithm was experimentally verified within an extensive
parameter study by evaluating the original and compressed tactile data that
was gathered during the active tactile exploration of several objects of daily
living by the Allegro robot hand that was covered with 15 uSkin tactile sensor
modules providing 240 x, y, z-axis force vector measurements at each time
instant. Since K-means++ clustering is an iterative algorithm, chapter 4 also
discussed multiprocessing-implementations to alleviate the speed problem
that may become problematic in very large-scale applications due to the
iterative nature of the algorithm. Sequential Tactile Data Clustering for Tactile
Image Compression allows for the direct feedback from massive tactile sensor
data for a broad variety of tactile sensors and tactile displays, thereby,
enables the compressed yet intuitive representation of massive tactile sensor
information for real-time applications. Furthermore, the algorithm produces
discrete contact points of varying intensity, which could be combined with
the algorithm from chapter 3 to give contact points textural properties.

Chapter 5 was concerned with the integration of the system architecture
as introduced in chapter 2, 3, and 4 into a compact and wearable
human-machine interface. Chapter 5 was therefore more
application-oriented and described the mechanical (wearable fingertip
module) and electronic (compact PCB of the I2C-enabled driver circuit)
implementation of the system components with optimized wiring into a
compact, ergonomic fingertip module. As a result, chapter 5 arrived at a
novel, scalable tactile fingertip module that successfully implements the in
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chapters 1 and 2 initially outlined design paradigms. The proposed
human-machine interface solves the unknown transformation from tactile
sensor space to tactile actuator space and utilizes tactile illusions to mitigate
limitations of tactile display actuators in terms of energy consumption and
actuator density. In this respect, the developed fingertip module exhibits
similar limitations as described in the previous chapters, i.e., the projection
of tactile stimuli using SMA-based micro-vibrators is limited to a subset of
perceivable tactile stimuli, excluding static protrusion, shear, and heat flux.
Moreover, the generation of robust tactile illusions in wearable devices is
still a matter of research and, indeed, the results of the user experiments
confirmed partial integrity losses of the perceived stimuli yielding the need
for further design improvements. However, the experiments on both the
hard- and software components have shown that the proposed data-driven
tactile feedback system utilizes end-to-end tactile data projections
effectively to convey locations of contact and micro-geometric surface
properties; which undoubtedly is very useful for teleoperation and
human-robot interaction.

6.2 Future Work

The contribution of this thesis lies in the introduction of a novel data-driven
tactile feedback system that uses generally applicable end-to-end tactile
data projections and illusory tactile sensations to mitigate space and energy
restrictions and therefore exhibits highest scalability in a compact form
factor. The tactile feedback system was implemented into a compact,
wearable fingertip module with WiFi- and I2C-interface and was
experimentally verified in user studies that confirmed the capability of
generating convincing tactile stimuli of moving contact points with varying
textural properties from raw tactile sensor data in an end-to-end manner.

For a greater coverage of perceivable stimulus modalities, the
deployment of merely one type of actuator (embodiment) is not sufficient.
Further developments should be directed towards the integration of heat
flux feedback and the complementation of the cutaneous feedback with
kinesthetic feedback, i.e., the implementation of actuators that target the
proprioceptive receptors in the joints and muscles of articulating body
segments. As it concerns the former, the developments of the presented
tactile feedback module have been accompanied by the development of a
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data-driven thermoelectric actuator for heat flux generation [122]. This
thermoelectric actuator uses a custom control circuit to generate
PWM-signals that drive a compact Peltier element for the generation of
positive or negative heat fluxes. Since the developments of both the tactile
display modules have been coordinated and carried out together, they allow
for the rapid integration into the existing fingertip module from chapter 5.

The implementation of kinesthetic feedback, on the other side, requires
actuators with greater power output in order to resemble the sensations of
variable resistances when statically holding or dynamically moving objects.
The implementation of kinesthetic feedback into the presented wearable
system would overall benefit from the small form factor and low energy
consumption (approx. 180mW/actuator) of the SMA-based tactile display
and is ultimately required to increase the range of achievable tactile stimuli.
One conceivable solution would be a parallel-link manipulator that moves
the presented tactile display module relative to the finger pad and thereby
creates mechanical protrusion and shear forces. Recently, Lim et al. [101]
have demonstrated that SMA-based actuators could be deployed to enable
such a combined design.

Due to the need for extensive experimental testing and debugging, the
algorithms that enabled the data projections were run on a host PC (Intel(R)
Core(TM) i7-8700K CPU @ 3.70GHz and 32.0GB RAM) with GPU (GeForce
GTX 1080 Ti with 11 GB frame buffer). In this respect, another rather
practical step, should be the migration of the algorithms to mobile,
embedded computing boards with GPU, e.g. the Nvidia Jetson Family, which
is currently in progress. In this context, the overall system integration with
the Cyberglove and the Allegro robot hand for closed-loop robot-teleoperation
and extensive field testing poses the next logical challenge. Due to the
compactness and modularity of the developed hard- and software, several
fingertip modules, e.g. four tactile display modules matching the four
fingertips of the Allegro robot hand, could be integrated into a glove like
wearable device that covers the finger tips of an operator and thus allows
for being simultaneously worn with the Cyberglove.
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