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Abstract

Stellar dynamics is one of the oldest research topics of mechanics. In Newtonian
mechanics, it was proved by Poincaré that systems with more than three components
have no general solution. The complicated evolutions of the motion in such multi-
body systems have been discussed with the analytical mechanics and the numerical
simulations, and many interesting features have been explored so far.

In the 20th century, Einstein advocated general relativity, which revealed that
Newtonian mechanics is just the weak-gravity limit of the theory. This means that
Newtonian mechanics does not work fine for the systems with a strong gravitational
field, e.g., the systems that have compact objects like black holes, neutron stars,
and white dwarfs as their components in tight orbits. Stellar dynamics in such rel-
ativistic multi-body systems should be discussed with general relativity, but several
interesting topics have been discussed only with Newtonian mechanics and remain-
ing to be discussed in the relativistic regime. In order to expand such Newtonian
discussions to relativistic ones, I use a post-Newtonian approximation to consider
the relativistic effects as the correction terms for the Newtonian equations and calcu-
lated stellar dynamics in relativistic multi-body systems. In this thesis, I summarize
two kinds of research about the von Zeipel-Lidov-Kozai (ZLK) mechanism and the
Hill stability problem in a general relativistic regime.

First, I focus on the ZLK mechanism. It is one of the most interesting orbital
resonances seen in hierarchical triple systems and characterized by the secular oscil-
lations of the inner eccentricity and the relative inclination between the inner and
outer orbits. The excitation of the inner eccentricity enhances the emission of the
gravitational waves at the periastron point of the inner orbit. I found this enhance-
ment of the gravitational wave emission causes the bending of the cumulative shift
of the periastron time (CSPT), which can be observed if the system has a pulsar as
a component of the inner binary. It has been calculated only for the isolated binary
so far and is calculated for three-body systems for the first time in this research. If
such an interesting evolution of the CSPT is detected through radio observation, it
will be the first indirect observation of the gravitational waves from a triple system.
A variety of models with a pulsar is analyzed and the parameter space where the
bending of the CSPT curve can be observed on an appropriate timescale is also
explored. In addition, I compare the orbital evolutions obtained by two different
calculation methods: one is the direct integration of the equations of motion and the
other one is the so-called double-averaging method. The latter one has been com-
monly used in the studies of the ZLK mechanism but some authors pointed out its
accuracy problem appearing when highly eccentric orbits are calculated. Through
the comparison of these two methods, I confirm the deviations between the two
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methods and stress the importance of the direct integration for the studies of the
ZLK mechanism.

Second, I study the relativistic effects on the stability problems focusing on Hill
stability. It is the stability of a multi-body system against a close approach of one or-
bit to another. In Newtonian mechanics, the sufficient condition for this stability was
obtained analytically only for three-body systems. I expand the sufficient condition
of the Hill stability to the general relativistic regime by using the post-Newtonian
approximation. In this research, as a first step, only the first-order post-Newtonian
approximation is considered and several approximations are imposed for simplicity,
for example, the limited configurations that the central object is much heavier than
the two orbiting objects. The validity and usefulness of so-obtained approximated
sufficient conditions are confirmed by numerical simulations for several models that
have massive black holes as their central objects. I found that the relativistic effect
makes the system more unstable than calculated in Newtonian mechanics in the
sense of Hill stability as expected by the theoretical prediction. The approximated
criterion will be useful to estimate the stability of the relativistic three-body systems
before conducting costly numerical simulations.
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Chapter 1

Introduction

The research of stellar dynamics has a long history. It started from the discovery
of Kepler’s laws of planetary motion in the 16th century, which were completely
explained by Newtonian mechanics in the 17th century. In Newtonian mechanics,
the stellar dynamics is described with the equations of motion. One can obtain
general solutions of the equations of motion for two-body systems where only the
gravitational force works. For systems with more than three components, however,
it was proved that the equations of motion have no general solution (Poincaré,
1890) and the complicated evolutions of the motion in many-body systems have
been discussed by many researchers for a long time.

Many interesting features of the evolution of the multi-body systems have been
explored in Newtonian mechanics: for example, some special solutions like Lagrange
collinear and equilateral triangle solutions (see e.g. Murray and Dermott (2000))
and figure-eight solutions (Moore, 1993; Chenciner and Montgomery, 2000) were
obtained; various orbital resonances like the mean motion resonances (see e.g. Mur-
ray and Dermott (2000); Morbidelli (2011)) and the von Zeipel-Lidov-Kozai (ZLK)
mechanism (von Zeipel, 1910; Lidov, 1962; Kozai, 1962; Naoz, 2016; Shevchenko,
2017) were also discovered; another important example is the stability problems
(e.g. Marchal and Bozis (1982); Eggleton and Kiseleva (1995); Mardling and Aarseth
(2001); Deck et al. (2013); Petrovich (2015)), which have been discussed by both
the theoretical and numerical approaches.

In the 20th century, Einstein advocated general relativity, which revealed that
Newtonian mechanics is just the weak-gravity limit of general relativity. It was con-
firmed that the relativistic effects appear on the orbital evolution by the observation
of the periastron shift of Mercury’s orbit (see e.g. Weinberg (1972); Soffel (1989);
Will (2006)). Then some discussions about the stellar dynamics were expanded to
take into account the relativistic effects by using so-called post-Newtonian approx-
imations: for example, some special solutions were obtained under the first-order
post-Newtonian approximation (Imai et al., 2007; Yamada and Asada, 2010; Ichita
et al., 2011); the ZLK mechanism was discussed under the relativistic corrections
(Blaes et al., 2002; Naoz et al., 2013b; Naoz, 2016; Shevchenko, 2017; Liu and Lai,
2017; Liu et al., 2019; Fang and Huang, 2019; Fang et al., 2019) and a new orbital
resonance due to the relativistic effects was also found (Seto, 2012, 2013; Iwasa and
Seto, 2017). Recently, due to the successful observations of the gravitational waves,
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2 CHAPTER 1. INTRODUCTION

stellar dynamics in a strong gravitational field is attracting more and more attention
from researchers.

There are many remaining subjects about the stellar dynamics of the relativistic
multi-body systems. One important problem is the formulation of the evolution
equations. Many studies employed the so-called double-averaging method to calcu-
late the secular evolutions of systems (e.g. Ford et al. (2000); Blaes et al. (2002);
Naoz et al. (2011, 2013b); Rafikov (2014); Liu and Lai (2017); Liu et al. (2019)),
but some problems about the accuracy of this method were pointed out by several
authors (Will, 2014a,b; Luo et al., 2016). Another problem is that some interesting
phenomena have not been discussed in general relativity yet. Especially, the stability
problems were not discussed enough in general relativity because the main target of
such studies in the 20th century was the planetary systems where the gravitational
field is weak enough to be treated in Newtonian mechanics.

This thesis intends to tackle these important problems and aims to contribute
to understanding the dynamics of relativistic multi-body systems. In this chapter,
as a preparation, I review some basic equations of the dynamics of the multi-body
systems. First, I introduce some definitions and equations established in Newtonian
mechanics. Then I show the formulation of the relativistic corrections by using the
post-Newtonian approximations. In the last part of this chapter, I briefly introduce
the main topics in this thesis.

1.1 Basic Equations of

Newtonian Stellar Dynamics

The stellar dynamics have been deeply studied mainly in Newtonian mechanics. In
this section, I summarize some basic definitions and equations improved to discuss
stellar dynamics in Newtonian mechanics. The contents in this section are also
described in detail in, for example, Murray and Dermott (2000); Morbidelli (2011);
Shevchenko (2017).

1.1.1 Kepler Elements

It is well known that the relative motions in two-body systems are classified into
three types: elliptic, parabolic, and hyperbolic trajectories. These trajectories are
characterized by six constants called orbital elements. They correspond to six inte-
gration constants necessary to solve the equations of motion. Two elements are used
to fix the orbital shape, other two elements fix the orbital plane, one determines the
direction of the orbit, and the other one shows the position at an arbitrary time.
In this thesis, I use the Kepler elements, which are one of the most common sets
of orbital elements describing the elliptical orbits: semi-major axis a, eccentricity e,
inclination i, the argument of periastron ω, the longitude of ascending node Ω, and
mean anomaly M .

These elements except the mean anomaly are defined by the conserved quantities
of two-body systems: the specific energy E, the specific angular momentum h and
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the eccentric vector e. The conserved quantities are described as

E =
1

2
v2 − G(m1 +m2)

r
, (1.1)

h = r × v, (1.2)

e = − h× v
G(m1 +m2)

− r
r
, (1.3)

where m1 and m2 are the stellar masses of star 1 and 2, respectively, and r and v are
the relative motion and velocity vectors of star 2 seen from star 1. The description
of the eccentric vector Eq. (1.3) can be derived by integrating the equation of motion
multiplied by the specific angular momentum.

The inner product of the specific angular momentum h and the eccentric vector
e is zero, which means the eccentric vector e exists on the orbital plane spanned by
r and v. The magnitude of the eccentric vector e = |e| is defined as the eccentricity.
The square of Eq. (1.3) describes the eccentricity by E and h as

e2 = 1 +
2h2E

G2(m1 +m2)2
. (1.4)

The eccentricity determines the type of the trajectory of the two-body motion: the
elliptic orbit has 0 ≤ e < 1, the parabolic one has e = 1, and the hyperbolic orbit
has e > 1.

Here I focus on elliptic orbits, i.e., 0 ≤ e < 1. In this case, the magnitude of the
relative position vector r can be described with the eccentricity e by calculating the
inner product of r and Eq. (1.3) as

r =
h2

G(m1 +m2)(1 + e cos f)
, (1.5)

where f is the angle between r and e called a true anomaly. Eq. (1.5) with 0 ≤ e < 1
gives the configuration as in Fig. 1.1. One can find that r becomes a minimum when
f = 0 in Eq. (1.5). It means that the eccentric vector is directed to the periastron
point, where the distance between the two stars is closest. Star 1 is on the focus
of the elliptic orbit with the semi-major axis a = h2/{G(m1 + m2)(1 − e2)}. The
semi-major axis can be expressed with the specific orbital energy by using Eqs. (1.1)
and (1.3) as

a = −G(m1 +m2)

2E
. (1.6)

The eccentricity and semi-major axis that are defined above fix the shape of the
orbit. Next, I show the definitions of the two orbital elements that determine the
orbital plane: the inclination i and the longitude of the ascending node Ω. The
inclination i is the angle between the orbital plane and the reference plane. Defining
the reference coordinates as (X, Y, Z) and the reference plane as the X-Y plane, the
inclination is described as

cos i =
hZ
h
. (1.7)
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Figure 1.1: An example of the elliptical orbit. Star 1 is on the focus of the elliptic
orbit. The coordinates are defined as x = r cos f and y = sin f . The eccentric vector
is directed to the periastron shown as the point P. Detail explanation is in the text.

Figure 1.2: An example of the orbital configuration in a three-dimensional reference
frame. The axes X, Y , and Z describe the reference coordinates whose origin O is
on the star 1. The orange and blue planes are the reference and orbital planes. The
orbital periastron and ascending node are described as P and N. The inclination,
longitude of the ascending node, and argument of periastron are shown as i, Ω and
ω. Detail explanation is in the text.
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The longitude of the ascending node Ω is the angle between the X-axis and the
ascending node on the reference plane. The ascending node is the point where the
orbit crosses the reference plane from Z < 0 to Z > 0. The configuration is shown

in Fig. 1.2. The vector from the primary star to the ascending node
−→
ON is directed

to εZ × h, where εZ is the unit vector in the Z-direction. With this relation, the
longitude of the ascending node Ω is described as

cos Ω =
(εZ × h)X
|εZ × h|

, (1.8)

where (εZ × h)X means the X-component of the vector.
The direction of the orbit on the orbital plane is determined by the argument of

periastron ω. It is defined as the angle between the directions of the ascending node−→
ON and the periastron

−→
OP (see Fig. 1.2), so cosω = (

−→
ON/|

−→
ON|) · (

−→
OP/|

−→
OP|). As in

the Figs. 1.1 and 1.2,
−→
OP and

−→
ON can be replaced by e and εZ × h, respectively,

and the description becomes as

cosω =
e

e
· (εZ × h)

|εZ × h|
. (1.9)

The remaining one element, the mean anomaly M , describes the position of
the star at an arbitrary time. The mean anomaly M is proportional to time and
can be described as M = n(t − t0), where n =

√
G(m1 +m2)/a3 is the angular

velocity called the mean motion, and t0 is arbitrary time. This value is indirectly
related to the true anomaly f . Here I introduce another parameter u called an

eccentric anomaly. It is defined as the angle between
−−→
O′P and

−−→
O′Q′ in Fig. 1.3. The

points O’ is the center of the circle osculating the elliptic orbit at the periastron and
apoastron points and Q’ is the position of the orbiting star projected to the circle.
The coordinates of the point Q is described as

x = r cos f =
a(1− e2) cos f

1 + e cos f
= −ae+ a cos u, (1.10)

y = r sin f =
a(1− e2) sin f

1 + e cos f
= a
√

1− e2 sinu. (1.11)

The time derivative of u is given by du/dt = (dr/dt)(du/dr). The first part dr/dt
is derived by the vector product of Eq. (1.3) and r as

dr

dt
=
G(m1 +m2)e

h
sin f =

G(m1 +m2)e

h

√
1− e2 sinu

1− e cos u
. (1.12)

The second part du/dr is calculated as

du

dr
=

(
dr

du

)−1
=

1

ae sinu
. (1.13)

By using these equations, the time derivative of u is described as

du

dt
=
G(m1 +m2)

ah

√
1− e2

1− e cos u
=

n

1− e cos u
. (1.14)
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Figure 1.3: The definition of the eccentric anomaly u. The points O’ is the center
of the circle osculating the elliptic orbit at the periastron and apoastron points and
Q’ is the position of the orbiting star projected to the circle. Details are explained
in the text.

The integration of this equation describes the mean anomaly with the eccentric
anomaly u as

M = u− e sinu. (1.15)

These six orbital elements fix the relative motion of the two-body system in the
elliptic orbit.

Note that the Kepler elements are related with so-called Delauney’s variables,
which are the canonical variables of the Hamiltonian of the two-body relative motion
(see Appendix A). Delaunay’s variables are classified as the action-angle variables
that are used to approach the stellar dynamics from the viewpoint of Hamiltonian
mechanics. I do not use the Hamiltonian approach in this thesis, but I remark that
it played a quite important role in the progress of the understanding of the orbital
resonances (see e.g. Arnold (1989); Murray and Dermott (2000); Morbidelli (2011)).

1.1.2 Lagrange Planetary Equations

If a system has three or more objects, the motions of the components are not exact
elliptical orbits even if they are bounded in the system. However, if the forces
other than two-body gravitational interaction is small enough to be treated as the
perturbation, the motions can be approximated to the elliptical orbits that change
their shape gradually. It is convenient to introduce osculating orbits, which is defined
as the elliptical orbits coming in contact with the instantaneous motions. The
evolutions of the motions in the perturbed systems can be intuitively understood by
calculating the evolutionary equations of the osculating orbital elements instead of
the equations of motion. I introduce the derivation of such evolutionary equations
of the osculating orbital elements called Lagrange planetary equations.
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The relative positions ri and velocities vi (i = 1 to 3) can be described as the
functions of the osculating orbital elements cj(t) (j = 1 to 6) and the time t, that
is, ri = ri(cj(t), t) and vi = vi(cj(t), t). By using these relations, the time derivative
of the positions and velocities are written as

dri
dt

=
∂ri
∂t

+
6∑
j=1

∂ri
∂cj

dcj
dt
, (1.16)

dvi
dt

=
∂vi
∂t

+
6∑
j=1

∂vi
∂cj

dcj
dt
. (1.17)

On the other hand, from the equations of motion, the time derivatives are written
as

dri
dt

= vi, (1.18)

dvi
dt

= −G(m1 +m2)

r
+
∂V

∂ri
, (1.19)

where V is the potential corresponding to the perturbation like the gravitational po-
tential from the objects orbiting distant region. These descriptions give the following
equations:

6∑
j=1

∂ri
∂cj

dcj
dt

= 0, (1.20)

6∑
j=1

∂vi
∂cj

dcj
dt

=
∂V

∂ri
. (1.21)

By multiplying ∂ri/∂cl and ∂vi/∂cl (l = 1 to 6) to the former and latter equations,
respectively, subtracting the latter from former ones, and then summing them up
about i, I obtain

6∑
j=1

[cl, cj]
dcj
dt

=
∂V

∂cl
, (1.22)

where [cl, cj] is Lagrange brackets, which is defined as

[cl, cj] ≡
3∑
i=1

(
∂ri
∂cl

∂vi
∂cj
− ∂ri
∂cj

∂vi
∂cl

)
. (1.23)

By using the definition of the Kepler elements in §1.1.1, the Lagrange brackets are
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calculated as

[M,a] =
1

2
an, (1.24)

[a,Ω] = −1

2
an
√

1− e2 cos i, (1.25)

[a, ω] = −1

2
an, (1.26)

[e,Ω] =
a2ne√
1− e2

cos i, (1.27)

[e, ω] =
a2ne√
1− e2

, (1.28)

[Ω, i] = −a2n
√
a− e2 sin i. (1.29)

The Lagrange brackets other than the above six just vanish. The Lagrange planetary
equations for the Kepler elements are derived by substituting the Lagrange brackets
into Eq. (1.22) and multiplying the inverse matrix:

da

dt
=

2

an

∂V

∂M
, (1.30)

de

dt
=

1− e2

a2ne

∂V

∂M
−
√

1− e2
a2ne

∂V

∂ω
, (1.31)

di

dt
=

cot i

a2n
√

1− e2
∂V

∂ω
− 1

a2n
√

1− e2 sin i

∂V

∂Ω
, (1.32)

dω

dt
=

√
1− e2
a2ne

∂V

∂e
− cot i

a2n
√

1− e2
∂V

∂i
, (1.33)

dΩ

dt
=

1

a2n
√

1− e2 sin i

∂V

∂i
, (1.34)

dM

dt
= − 2

an

∂V

∂a
− 1− e2

a2ne

∂V

∂e
. (1.35)

1.1.3 Double-Averaging Method

In the systems where the forces other than two-body gravitational force is small
enough to be treated as the perturbation, some interesting behaviors in the orbital
evolutions are obtained on a secular timescale much longer than the orbital periods.
In order to extract such secular evolutions from the Lagrange planetary equations,
it is convenient to take the average of the equations over all the orbital periods in
the system. This method is commonly used to calculate the orbital evolutions of
the multi-body systems where the interaction between the orbiting objects can be
treated as the perturbation: one example is hierarchical triple systems, where the
third body is orbiting far from the inner binary; another example is the planetary-
like systems, where the masses of the orbiting objects are much smaller than that
of the central object.

Here I introduce the basic equations of the double-averaging method derived for
so-called restricted triple systems. This is a kind of hierarchical triple systems that
have one test particle as a component of its inner binary. A schematic picture of
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Figure 1.4: A schematic picture of a restricted triple system. The relative position
vectors from star 1 to 2 and 1 to 3 are described as r and r′, respectively. The outer
distance r′ is assumed to be much longer than the inner one r. The masses of the
three stars as mi (i = 1 to 3) and m2 is assumed to be much smaller than the other
masses.

the system is in Fig. 1.4. The masses of the stars are denoted as mi (i = 1 to 3)
and the relative motion of the inner and outer orbits are described as r and r′,
respectively. In the restricted triple system, I assume r � r′ and m2 � m1,m3.
With these assumptions, the gravitational force from the inner to outer orbits is
negligibly small, which means the outer orbit is almost unchanged. Therefore, I
focus on the evolution of the inner orbit in this subsection. Note that the double-
averaging method for the hierarchical triple system with massive m2 was given in
Naoz et al. (2013a), where several different evolutions from the restricted triple
systems are observed. This point is discussed again in Chapter 2.

The equations of motion of the relative position r are written as

d2r

dt2
= −G(m1 +m2)

r

r3
−Gm3

(
r− r′

|r− r′|3
+
r′

r′3

)
. (1.36)

The latter term in Eq. (1.36) can be described with a potential V as ∂V/∂r, where
the potential V is defined as

V ≡ Gm3

(
1

|r− r′| −
r · r′

r′3

)
. (1.37)

This potential V is sometimes called the perturbation function. When the angle
between r and r′ is defined as S, 1/ |r− r′| in the potential is rewritten as

1

|r− r′| =
1

r′

{
1 +

( r
r′

)2
− 2

r

r′
cosS

}− 1
2

. (1.38)

The right-hand side of this equation corresponds to the generating function of the
Legendre polynomial Pn(cosS), which is expanded with the Legendre polynomials
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as
1

|r− r′| =
1

r′

∞∑
n=0

Pn(cosS)
( r
r′

)n
, (1.39)

where the Legendre polynomial is defined as

Pn(x) ≡ 1

2nn!

dn

dxn
(x2 − 1)n. (1.40)

By substituting Eqs. (1.39) and (1.40) into Eq. (1.37), the perturbation function is
rewritten as

V = Gm3
1

r′

{
1−

(
−1

2
+

3

2
cos2 S

)( r
r′

)2}
+O

(( r
r′

)3)
. (1.41)

I explicitly write down the expansion up to quadrupole order. I neglect higher-order
terms in this section. Note that some secular behaviors appear in the calculation
with the double-averaging method only when the higher-order terms are considered,
for example, orbital flip in the ZLK mechanism (Naoz, 2016). We revisit this point
in Chapter 2.

The perturbation function V can be divided into two parts: one is the periodic
part Vp, which changes on inner and outer periods, and the other one is the secular
part Vs, which changes on a secular timescale. In order to extract Vs from V , the
average of V over the inner and outer periods are calculated. The orbital average is
calculated as

1

P

∫ P

0

dt =
1

2π

∫ 2π

0

dM, (1.42)

where P is the orbital period. I describe this orbital average as 〈 〉Min
and 〈 〉Mout

for the inner and outer orbits. The subscripts in and out mean the orbital elements
of the inner and outer orbits, respectively. The secular potential Vs is calculated as

Vs = 〈〈V 〉Min
〉Mout

=
Gm3a

2
in

aout3

[
− 1

2

〈(
r

ain

)2
〉
Min

〈(aout
r′

)3〉
Mout

+
3

2

〈(
r

ain

)2〈(aout
r′

)3
cos2 S

〉
Mout

〉
Min

]
. (1.43)

In this calculation, the orbital elements except the mean anomalies are assumed not
to change for one orbital cycle. The distances r and r′ are described with orbital
elements by using Eqs. (1.10) and (1.11). The eccentric anomaly is related to the
mean anomaly as Eq. (1.15), which is used to calculate the orbital average as in
Eq. (1.42).

The angle S in Eq. (1.43) can be rewritten with the orbital elements by using
spherical trigonometry. In spherical trigonometry, the angle on a sphere is defined
by the inner product of the normal vectors of two planes on both sides of the angle.
For example, in Fig. 1.5, the angle α on a unit sphere is defined as
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Figure 1.5: A unit sphere to explain spherical trigonometry. The angles α, β, and
γ are on the spherical plane. The angles between OB and OC, OC and OA, and
OA and OB are defined as a, b and c, respectively.

cosα ≡
−→
OA×

−→
OC∣∣∣−→OA×
−→
OC
∣∣∣ ·
−→
OA×

−→
OB∣∣∣−→OA×
−→
OB
∣∣∣ (1.44)

By using the angles a, b and c in Fig. 1.5, the denominator and numerator on the
right-hand side of this equation can be calculated as∣∣∣−→OA×

−→
OB
∣∣∣ =

∣∣∣−→OA
∣∣∣ ∣∣∣−→OB

∣∣∣ sin c = sin c, (1.45)∣∣∣−→OA×
−→
OC
∣∣∣ =

∣∣∣−→OA
∣∣∣ ∣∣∣−→OC

∣∣∣ sin b = sin b, (1.46)

(−→
OA×

−→
OC
)
·
(−→

OA×
−→
OB
)

=
{(−→

OA×
−→
OC
)
×
−→
OA
}
·
−→
OB

=
{(−→

OA ·
−→
OA
)−→

OC−
(−→

OC ·
−→
OA
)−→

OA
}
·
−→
OB

= cos a− cos b cos c. (1.47)

These definitions and relations give the cosine theory of the spherical trigonometric
as

cosα =
cos a− cos b cos c

sin b sin c
, (1.48)

cos β =
cos b− cos c cos a

sin c sin a
, (1.49)

cos γ =
cos c− cos a cos b

sin a sin b
. (1.50)

This cosine theory can be applied to the restricted triple system. From the schematic
picture is in Fig. 1.6, the relative inclination between inner and outer orbits I can
be written with the other angles as

cos I =
cosS − cos (fout − Ωin) cos (ωin + fin)

sin (fout − Ωin) sin (ωin + fin)
, (1.51)
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Figure 1.6: A schematic picture of the configuration of a restricted triple system.
A unit sphere is also drawn to apply the spherical trigonometric to the system. The
angles used in the cosine theorem are written with some orbital elements defined in
subsection 1.1.1. The elliptic shape drawn with a dashed line corresponds to the
inner orbit. The points P and N are the orbital periastron and the ascending node.
The x- and x∗-axes are directed to the periastron points of outer and inner orbit,
respectively. The outer orbital plane is defined as the reference plane and assumed
not to change due to small gravitational force from the inner orbit.
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and this gives the description of the angle S as

cosS = cos I sin (fout − Ωin) sin (ωin + fin) + cos (fout − Ωin) cos (ωin + fin). (1.52)

Note that in Fig. 1.6, the reference plane (x-y plane) is defined as the outer orbital
plane because the effect of gravitational force from the inner orbit to the outer one
is negligible in the restricted triple system and the outer orbital plane does not
move in the orbital evolution. In such configuration, the relative inclination I just
corresponds to the inner inclination iin. In general, the relative inclination is written
with the inclinations and the longitudes of ascending nodes as

cos I = cos iin cos iout + sin iin sin iout cos (Ωin − Ωout). (1.53)

Now Eq. (1.43) can be calculated by using Eqs. (1.10), (1.11), (1.15), and (1.52)
as

Vs =
Gm3a

2
in

aout3(1− e2out)
3
2

[
1

8

(
1 +

3

2
e2in

)
(3 cos2 I − 1) +

15

16
e2in cos 2ωin sin2 I

]
. (1.54)

When V in the Lagrange planetary equations (1.30)-(1.35) is replaced by Vs, the
equations for secular evolution are derived as

dain
dt

= 0, (1.55)

dein
dt

= −
√

1− e2in
a2inninein

∂Vs
∂ωin

, (1.56)

dI

dt
=

cot I

a2innin

√
1− e2in

∂Vs
∂ωin

(1.57)

dωin

dt
=

√
1− e2in

a2inninein

∂Vs
∂ein
− cot I

a2innin

√
1− e2in

∂Vs
∂I

, (1.58)

dΩin

dt
=

1

a2innin

√
1− e2in sin I

∂Vs
∂I

. (1.59)

Interestingly, from Eq. (1.55), one can find that the inner semi-major axis does not
evolve on a secular timescale for the restricted triple systems.

1.2 Post-Newtonian Approximation

The Newtonian basic equations introduced in § 1.1 work well in planetary systems
or star-planet-satellite systems. However, if some objects are orbiting in the vicinity
of a star, sometimes the gravitational field is strong enough that the effects of the
general relativity can be seen in their orbital evolutions. For example, it is well
known that the orbit of Mercury shows the shift of its periastron on a secular
timescale, which is explained by general relativity (see e.g. Weinberg (1972); Soffel
(1989); Will (2006)).

When multi-body systems have compact objects like black holes, neutron stars,
or white dwarfs as their components interacting with the separations short enough,
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their orbital evolutions should be calculated with general relativity because the
gravitational field in such systems can be much stronger than that in the orbit of
Mercury. Although one may think such relativistic multi-body systems may be
quite rare, there is indeed an observed example: the PSR J0337+1715 system is a
relativistic three-body system composed of a millisecond pulsar and two white dwarfs
orbiting around it (Ransom et al., 2014). More relativistic multi-body systems
with massive black holes are also expected to be observed by future satellite-borne
gravitational-wave detectors like Laser Interferometer Space Antenna (LISA) (Hoang
et al., 2019; Randall and Xianyu, 2019; Deme et al., 2020; Gupta et al., 2020) or with
radio observations of pulsars (Suzuki et al., 2019, 2021), which I discuss in Chapter 2.
Hence, it is important to calculate the evolutions of relativistic multi-body systems
with general relativity taken into account.

In most relativistic systems except binaries just before the merger, the gravita-
tional field cannot be treated in the Newtonian limit but is weak enough that the
relativistic effects can be treated as some correction terms to Newtonian mechanics
instead of calculating the full Einstein equations. I use the post-Newtonian (PN)
approximation to consider the relativistic effects as the correction terms to New-
tonian equations of motion in this thesis. In the PN approximation, the metric is
expanded with (v/c)2, where c and v are the speed of light and that of the compo-
nent, respectively. This approximation can be applied only for the systems whose
typical speed is much smaller than the speed of light c. I mainly use the first-order
post-Newtonian (1PN) approximation in this thesis, that is, the expansion up to
the fourth-order of v/c is considered. In this section, I introduce the derivation of
the 1PN equations of motion called Einstein-Infeld-Hoffmann equations and discuss
how to consider the relativistic corrections for the orbital evolutionary equations.
Some of the higher-order PN effects are also discussed in chapters 2 and 3, later.

The notation of the general relativity in this thesis follows Weinberg (1972).
Alphabetical subscripts like i, j, and k are used as the label of spatial coordinates
(x, y, z) that run from 1 to 3 or used as the number of the objects in the system. On
the other hand, subscripts written in Greek alphabets like µ, ν, and λ are always
used as the label of four-dimensional coordinates (ct, x, y, z), and run from 0 to 3.
The sign of the Minkowski metric η is (− + + +) and the Einstein equations are
described as Gµν = −(8πG/c4)Tµν .

1.2.1 Einstein-Infeld-Hoffmann Equations

In the PN approximation, the relativistic effects are treated as the correction terms
to the Newtonian equations of motion. The acceleration d2xi/(dt2) is described with
the proper time τ as

d2xi

dt2
=

(
dτ

dt

)2
d2xi

dτ 2
−
(
dτ

dt

)3
d2t

dτ 2
dxi

dτ
. (1.60)

The second derivatives of xi and t by τ in this description are given by the geodesic
equations, which describe the motion of the free-falling particle in the general rela-
tivity:

d2xµ

dτ 2
+ Γµνλ

dxν

dτ

dxλ

dτ
= 0, (1.61)
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where Γµνλ is the affine connection, which is described with the metric gµν as

Γµνλ =
1

2
gµσ
(
∂gσν
∂xλ

+
∂gσλ
∂xν

− ∂gνλ
∂xσ

)
. (1.62)

By substituting Eq.(1.61) to Eq. (1.60), the acceleration is described as

d2xi

dt2
= −c2Γi00 − 2cΓi0j

dxj

dt
− Γijk

dxj

dt

dxk

dt

+

[
cΓ0

00 + 2Γ0
0j

dxj

dt
+

1

c
Γ0
jk

dxj

dt

dxk

dt

]
dxi

dt
. (1.63)

The Newtonian limit is calculated when the perturbed Minkowski metric gµν =
ηµν + hµν (|h| � 1) is used in Eq. (1.62) and the second- and higher-order terms of
h in Eq. (1.63) is neglected. The Newtonian equations of motion obtained as this
limit are

d2xi

dt2
=

1

2
c2ηµi

∂h00
∂xµ

=
1

2
c2
∂h00
∂xi

. (1.64)

This means that h00 should be described with the Newtonian gravitational potential
φ as h00 = −2φ/c2. Since φ ∼ v2 from the Newtonian virial theorem, the Newtonian
equations of motion is proportional to (v/c)2. For the 1PN approximation, therefore,
the terms up to (v/c)4-order should be included in the equations of motion.

The procedure to obtain the 1PN equations of motion requires three steps: first,

the metric gµν are expanded with v/c as gµν =
0
gµν +

1
gµν + · · · , where

N
gµν means

N -th order term, and then the affine connections Γµνλ and the Ricci tensor Rµν are

also expanded and described with the expanded terms of the metric
N
gµν ; second,

the Einstein equations are solved and each
N
gµν is described with the components

of the energy-momentum tensor; third, each expanded component of the energy-
momentum tensor is explicitly written with the masses, positions, and velocities of
N -body components assuming all components are the point particles. I explain these
three steps subsequently and derive the 1PN equations of motion called Einstein-
Infeld-Hoffmann equations. The equations were originally derived in Einstein et al.
(1938) and note that it could be derived from the Lagrangian given by Lorentz and
Droste (1917). The derivation processes were later explained in detail in several
references (see e.g. Weinberg (1972); Misner et al. (1973); Landau and Lifschits
(1975)).

Expansion of gµν, Γµνλ and Rµν

As in the Newtonian limit case, the metric is considered as the perturbed Minkowski
metric, that is, gµν = ηµν + hµν (|h| � 1). All of the higher-order terms of v/c are
in hµν .

In order to expand each component of gµν , here time-reversal transformation
t→ −t is considered since v/c is antisymmetric with respect to the transformation.
The coordinates and the metric after the transformation are denoted as x′µ and g′µν ,
respectively. The transformation of the metric can be calculated as

g′µν = gλσ
∂xλ

∂x′µ
∂xσ

∂x′ν
, (1.65)
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and each component of g′µν is obtained as

g′00 = g00, (1.66)

g′i0 = −gi0, (1.67)

g′ij = gij. (1.68)

This means that the i0-component of gµν is antisymmetric with respect to the time-
reversal transformation, that is, has odd-order terms of v/c, and, on the other hand,
the 00- and ij-components are symmetric and have even-order terms of v/c. Hence

the components of the metric are expanded with N -th order term
N
gµν as

g00 = −1 +
2
g00 +

4
g00 + . . . , (1.69)

gi0 =
3
gi0 +

5
gi0 + . . . , (1.70)

gij = δij +
2
gij +

4
gij + . . . , (1.71)

and the components of the inverse metric are also obtained as

g00 = −1 +
2
g00 +

4
g00 + . . . , (1.72)

gi0 =
3
gi0 +

5
gi0 + . . . , (1.73)

gij = δij +
2
gij +

4
gij + . . . . (1.74)

By substituting these expansions into the relation between the metric and the inverse
metric gµλgλν = δµν , we obtain

3
gi0 =

3
gi0, (1.75)

2
g00 = −2

g00, (1.76)
2
gij = −2

gij. (1.77)

The affine connection Γµνλ can be described with
N
gµν by substituting the expan-

sion of the metric into Eq. (1.62). I denote the (v/c)Nr−1 order term of Γµνλ as
N

Γµνλ. In order to include up to (v/c)4-order terms into the right-hand-side of the
Eq. (1.63), the affine connections should be expanded as

Γi00 =
2

Γi00 +
4

Γi00, (1.78)

Γi0j =
3

Γi0j, (1.79)

Γijk =
2

Γijk, (1.80)

Γ0
00 =

3

Γ0
00, (1.81)

Γ0
0j =

2

Γ0
0i, (1.82)

Γ0
jk =

1

Γ0
ij. (1.83)
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All terms with order higher than those written above are neglected because they cor-
respond to higher-order PN terms. Each component in the expansions are described

with
N
gµν as

2

Γi00 = −1

2

∂
2
g00
∂xi

, (1.84)

4

Γi00 = −1

2

∂
4
g00
∂xi

+
1

c

∂
3
gi0
∂t

+
1

2

2
gij
∂
2
g00
∂xj

, (1.85)

3

Γi0j =
1

2

(
1

c

∂
2
gij
∂t

+
∂
3
gi0
∂xj
− ∂

3
gj0
∂xi

)
, (1.86)

2

Γijk =
1

2

(
∂
2
gik
∂xj

+
∂
2
gij
∂xk
− ∂

2
gjk
∂xi

)
, (1.87)

3

Γ0
00 = − 1

2c

∂
2
g00
∂t

, (1.88)

2

Γ0
0i = −1

2

∂
2
g00
∂xi

, (1.89)

1

Γ0
ij = 0. (1.90)

The Ricci tensor Rµν is described with the affine connections as

Rµν = Rλ
µλν (1.91)

=
∂Γλµλ
∂xν

−
∂Γλµν
∂xλ

+ ΓηµλΓ
λ
νη − ΓηµνΓ

λ
ηλ. (1.92)

By substituting the expansions of the affine connections into the above description,
the Ricci tensor is expanded as

R00 =
2

R00 +
4

R00, (1.93)

Ri0 =
3

Ri0, (1.94)

Rij =
2

Rij, (1.95)

where
N

Rµν is (v/c)Nr−2 order component of the Ricci tensor, which is described with
N
gµν as

2

R00 =
1

2
∇2 2g00, (1.96)

4

R00 =
1

2c2
∂2

2
gii
∂t2
− 1

c

∂2
3
gi0

∂xi∂t
+

1

2
∇2 4g00 −

1

2

2
gij

∂2
2
g00

∂xi∂xj

−1

2

∂
2
gij
∂xj

∂
2
g00
∂xi

+
1

4

∂
2
g00
∂xi

∂
2
g00
∂xi

+
1

4

∂
2
g00
∂xi

∂
2
gjj
∂xi

, (1.97)
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3

Ri0 =
1

2c

∂2
2
gjj

∂xi∂t
− 1

2

∂2
3
gj0

∂xi∂xj
− 1

2c

∂2
2
gij

∂xi∂t
+

1

2
∇2 3gi0, (1.98)

2

Rij = −1

2

∂2
2
g00

∂xi∂xj
+

1

2

∂2
2
gkk

∂xi∂xj
− 1

2

∂2
2
gjk

∂xi∂xk
− 1

2

∂2
2
gik

∂xj∂xk
+

1

2
∇2 2gij. (1.99)

These components can be described more simply when the gauge condition is fixed
as the harmonic coordinate condition, that is, gµνΓλµν = 0. This condition imposes
additional equations of expanded components as

1

2c

∂
2
g00
∂t
− ∂

3
g0i
∂xi

+
1

2c

∂
2
gii
∂t

= 0, (1.100)

1

2

∂
2
g00
∂xi

+
∂
2
gij
∂xj
− 1

2

∂
2
gjj
∂xi

= 0. (1.101)

The partial derivative of these equations by t and xk give three equations that make
the descriptions of the components of the Ricci tensor simpler:

1

2c

∂2
2
g00
∂t2

− ∂2
3
g0i

∂t∂xi
+

1

2c

∂2
2
gii
∂t2

= 0, (1.102)

−1

c

∂2
2
gij

∂t∂xi
− ∂2

3
g0i

∂xi∂xj
+

1

c

∂2
2
gii

∂t∂xj
= 0, (1.103)

∂2
2
gij

∂xj∂xk
+

∂2
2
gkj

∂xi∂xj
+

∂2
2
g00

∂xj∂xk
+

∂2
2
gjj

∂xi∂xk
= 0. (1.104)

The expanded components of the Ricci tensor are hence obtained by substituting
the above three equations into Eqs. (1.96) to (1.99) as

2

R00 =
1

2
∇2 2g00, (1.105)

4

R00 =
1

2
∇2 4g00 −

1

2c2
∂2

2
g00
∂t2

− 1

2

2
gij

∂2
2
g00

∂xi∂xj
+

1

2

(
∇2
g00

)2
, (1.106)

3

Ri0 =
1

2
∇2 3gi0, (1.107)

2

Rij =
1

2
∇2 2gij. (1.108)

Solving the Einstein equations

First, the Einstein equations Gµν = −(8πG/c4)Tµν are rewritten in another form for
convenience. The Einstein tensor Gµν is defined as

Gµν = Rµν −
1

2
gµνR, (1.109)

where R ≡ Rµ
µ is the Ricci scalar. By substituting this definition, the Einstein

equations are rewritten as

Rµν −
1

2
gµνR = −8πG

c4
Tµν . (1.110)
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When the tensor contraction of these equations and gλµ are calculated, we obtain

Rλ
ν −

1

2
δλνR = −8πG

c4
T λν . (1.111)

If the superscript λ is set as ν and the tensor contraction is calculated, the Ricci
scalar R can be described with the trace of the energy-momentum tensor T ≡ T νν
as

R =
8πG

c4
T. (1.112)

The Einstein equation (1.110) is rewritten with this description as

Rµν = −8πG

c4

(
Tµν −

1

2
gµνT

)
. (1.113)

The tensor in the brackets on the right-hand side is hereafter denoted as Sµν .
In order to solve these equations for each expanded components in Eqs. (1.105)

to (1.108), the expansion of Sµν on the right-hand side is required. The energy-
momentum tensor T µν can be expanded with (v/c)2 by considering the physical value
which each component of the tensor corresponds to: T 00, T i0, and T ij correspond to
the energy density, the momentum density, and the momentum flux, respectively.
Each component is expanded as

T 00 =
0

T 00 +
2

T 00 + . . . , (1.114)

T i0 =
1

T i0 +
3

T i0 + . . . , (1.115)

T ij =
2

T ij +
4

T ij + . . . , (1.116)

where
N

T µν means (v/c)N−2mv2r−3-order term. The expanded components of Sµν
are calculated with these expansions as

0

S00 =
1

2

0

T 00, (1.117)

2

S00 =
1

2

(
2

T 00 − 2
g00

0

T 00 +
2

T ii
)
, (1.118)

1

Si0 = −
1

T i0, (1.119)
0

Sij =
1

2
δij

0

T 00. (1.120)

Note that the components with an order higher than those shown above are needed
only when the higher-order PN approximation effects are considered. The Einstein
equations for the expanded components are obtained therefore as

2

R00 = −8πG

c4

0

S00, (1.121)

2

Rij = −8πG

c4

0

Sij, (1.122)

3

Ri0 = −8πG

c4

1

Si0, (1.123)

4

R00 = −8πG

c4

2

S00. (1.124)
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By substituting Eqs. (1.105) and (1.117) into Eq. (1.121), the differential equa-

tions for
2
g00 is obtained as

∇2 2g00 = −8πG

c4

0

T 00. (1.125)

The metric component
2
g00 can be described with Newtonian gravitational potential

φ as
2
g00 = −2φ

c2
, (1.126)

where the potential φ is defined in the below equation:

∇2φ =
4πG

c2

0

T 00. (1.127)

This differential equation has the solution that becomes zero at infinity as

φ (r, t) = −G
c2

∫
d3r′

0

T 00 (r′, t)

|r − r′|
, (1.128)

where r is the 3-dimensional coordinates described as a vector.

From Eq. (1.122), the differential equations for
2
gij is obtained in a similar form

as

∇2 2gij = −8πG

c4
δij

0

T 00, (1.129)

and the solution is obtained as

2
gij = −2δijφ

c2
. (1.130)

As for
3
gi0, the differential equation is obtained by substituting Eqs. (1.107) and

(1.119) into Eq. (1.123) as

∇2 3gi0 =
16πG

c4

1

T i0. (1.131)

Here another potential called vector potential ζ is defined as

∇2ζi =
16πG

c2

1

T i0, (1.132)

and this equation is solved as

ζi (r, t) = −4G

c2

∫
d3r′

1

T i0 (r′, t)

|r − r′|
. (1.133)

The metric component
3
gi0 is therefore described with ζ as

3
gi0 =

ζi
c2
. (1.134)
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The differential equation about
4
g00 is obtained by substituting Eqs. (1.106) and

(1.118) into Eq. (1.124) and by using Eqs. (1.126) and (1.130):

∇2 4g00 = − 2

c4
∇2φ2 − 2

c2

[
1

c2
∂2φ

∂t2
+

4πG

c2

(
2

T 00 +
2

T ii
)]

. (1.135)

The terms in the square brackets on the right-hand side are replaced with so-called
second potential, which is defined as

∇2Ψ =
1

c2
∂2φ

∂t2
+

4πG

c2

(
2

T 00 +
2

T ii
)
. (1.136)

The solution of this differential equation that becomes zero at infinity is

Ψ (r, t) = −
∫

d3r′

|r − r′|

[
1

4πc2
∂2φ (r, t)

∂t2
+
G

c2

2

T 00 (r, t) +
G

c2

2

T ii (r, t)

]
. (1.137)

Hence the metric component
4
g00 is described as

4
g00 = −2φ2

c4
− 2Ψ

c2
. (1.138)

The energy-momentum tensor

Now all the expanded components of the metric needed to obtain 1PN equations of
motion are described with the expanded components of the energy-momentum ten-
sor. Next, the expanded components of the energy-momentum tensor are described
as the functions of masses, positions, and velocities of the N -body point particles.
In general relativity, the energy-momentum tensor is given as

T µν (r, t) = g−
1
2 (r, t)

∑
n

mn
dxµn (t)

dt

dxνn (t)

dt

(
dτn
dt

)−1
δ3 (r − rn (t)) , (1.139)

where mn, xµn, and τn are the mass, the 4-dimensional coordinates, and the proper
time of the n-th particle, respectively, and g = − det gµν is the determinant of the
metric. From the definition of the proper time, dτ 2 = −c−2gµνdxµdxν , the time
derivative of the proper time is calculated as

dτ

dt
=

[
−g00 − 2gi0

(
vi

c

)
− gij

(
vi

c

)(
vj

c

)] 1
2

, (1.140)

where vi denotes the velocity. When all the obtained components of gµν (Eqs. (1.69)
to (1.71), (1.126), (1.130), (1.131) and (1.138)) are substituted into the right-hand
side, it becomes

dτ

dt
=

[
1 +

1

c2
(2φ− v2) +

2

c2

{
φ2

c2
+ Ψ− ζ ·

(v
c

)
+ φ

(v
c

)2}] 1
2

. (1.141)

From this description, (dτn/dt)
−1 in Eq.(1.139) is calculated as(

dτn
dt

)−1
= 1− φ

c2
+

1

2

(v
c

)2
+O

((v
c

)4)
. (1.142)



22 CHAPTER 1. INTRODUCTION

Note that the higher-order terms are neglected here because they are not needed to
calculate the energy-momentum tensor up to the second order. The determinant of

the metric g expanded as g = 1 +
2
g +

4
g + . . . and the terms up to second order

are needed now. The second-order term
2
g is calculated as

2
g = −4φ/c2, and g is

described as

g = 1− 4φ

c2
+O

((v
c

)4)
. (1.143)

By substituting Eqs. (1.142) and (1.143) into Eq. (1.139), each expanded component
of the energy-momentum tensor is obtained as

0

T 00 =
∑
n

mnc
2δ3 (r − rn(t)) , (1.144)

2

T 00 =
∑
n

mnc
2

(
φn
c2

+
1

2

(vn
c

)2)
δ3 (r − rn(t)) , (1.145)

1

T i0 =
∑
n

mnc
2v

i
n

c
δ3 (r − rn(t)) , (1.146)

2

T ij =
∑
n

mnc
2v

i
n

c

vjn
c
δ3 (r − rn(t)) . (1.147)

The equations of motion

By substituting Eqs. (1.126), (1.130), (1.131) and (1.138)) into Eqs. (1.84) to (1.90),
the affine connections required to obtain the equations of motion are described with
the potentials as

2

Γi00 =
1

c2
∂φ

∂xi
, (1.148)

4

Γi00 =
∂

∂xi

(
2φ2

c4
+

Ψ

c2

)
+

1

c3
∂ζi
∂t
, (1.149)

3

Γi0j =
1

2c2

(
∂ζi
∂xj
− ∂ζj
∂xi

)
− δij
c3
∂φ

∂t
, (1.150)

2

Γijk = −δik
c2

∂φ

∂xj
− δij
c2

∂φ

∂xk
+
δjk
c2

∂φ

∂xi
, (1.151)

3

Γ0
00 =

1

c3
∂φ

∂t
, (1.152)

2

Γ0
0i =

1

c2
∂φ

∂xi
, (1.153)

1

Γ0
ij = 0. (1.154)

The equations of motion are described with the potentials by using the above de-
scriptions in Eq. (1.63) as

dv

dt
= −∇

(
φ+

2φ2

c2
+ Ψ

)
− 1

c

∂ζ

∂t
+
v

c
× (∇× ζ)

+3
v

c

∂φ

∂t
+ 4

v

c

(v
c
· ∇φ

)
−
(v
c

)2
∇φ. (1.155)
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The potentials are written in Eqs. (1.128), (1.133) and (1.137) as the functions of
the components of the energy-momentum tensor, which are calculated for N-body
systems in Eqs. (1.144) to (1.147). By substituting latter equations into former ones,
the potentials are calculated as

φ (r, t) = −G
∑
n

mn

|r − rn(t)|
, (1.156)

ζ (r, t) = −4G

c

∑
n

mnvn
|r − rn(t)|

, (1.157)

Ψ (r, t) = −G
∑
n

mn

|r − rn(t)|

[
− 1

2

{
r − rn(t)

|r − rn(t)|
·
(vn
c

)}2

+2
(vn
c

)2
+
φn
c2
− 1

2c2
(r − rn(t)) · dvn

dt

]
. (1.158)

Finally, the 1PN equations of motion called Einstein-Infeld-Hoffmann (EIH) equa-
tions are obtained by calculating Eq. (1.155) by using Eqs. (1.156) to (1.158) and
neglecting higher-order terms as

dvk
dt

= −G
∑
n6=k

mn
rk − rn
|rk − rn|3

[
1− 4

G

c2

∑
n′ 6=k

mn′

|rk − rn′ |

− G

c2

∑
n′ 6=n

mn′

|rn − rn′ |

{
1− (rk − rn) · (rn − rn′)

2|rn − rn′ |2

}

+

(
|vk|
c

)2

+ 2

(
|vn|
c

)2

− 4
vk · vn
c2

− 3

2

{
(rk − rn)

|rk − rn|
· vn
c

}2
]

− G

c2

∑
n6=k

mn(vk − vn)

|rk − rn|3
(rk − rn) · (3vn − 4vk)

− 7

2

G2

c2

∑
n6=k

mn

|rk − rn|
∑
n′ 6=n

mn′(rn − rn′)
|rn − rn′ |3

, (1.159)

where the subscript k means the k-th object in an N -body system. In this thesis,
I use these equations of motion to calculate orbital evolutions of the relativistic
multi-body systems.

The 1PN Hamiltonian H1PN and the 1PN linear momentum P for a general
N-body system can be obtained from these equations of motion as

H1PN =
1

2

∑
j

mj

(
v2j −

∑
i6=j

Gmi

rij

)
+

1

c2

∑
j

mj

[
3

8
v4j +

3

2
v2j
∑
i6=j

Gmi

rij
+

1

2

∑
i6=j

∑
k 6=j

G2mimk

rijrjk

− 1

4

∑
i6=j

Gmi

rij
{7vi · vj + (vi · nji)(vj · nji)}

]
, (1.160)
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Pj = mjvj +

[
1

2c2
mjvj

(
v2j −

∑
i6=j

Gmi

rij

)
− G

2c2

∑
i6=j

mimj

rij
(vj · nji)nji

]
, (1.161)

where rij ≡ |rj − ri| and nji is the unit vector whose direction is the same as that
of ri − rj.

1.2.2 Post-Newtonian Corrections to
Double-Averaging Method

As in the Newtonian stellar dynamics, the double-averaging method is commonly
used to discuss secular dynamics of relativistic N -body systems (e.g. Blaes et al.
(2002); Naoz et al. (2013b); Rafikov (2014); Liu and Lai (2017)). The relativistic
effects are usually included as some PN correction terms that are added to the
Newtonian equations. Here I introduce several discussions about the PN corrections
to the double-averaging method.

For restricted triple systems, the simplest 1PN correction term is obtained by
considering the 1PN Hamiltonian of the relative motion of the inner binary and
neglecting 1PN effects coming from the outer orbit (see e.g. Migaszewski and
Goździewski (2011)). The 1PN specific Hamiltonian for the relative motion r =
r2 − r1 was originally obtained by Richardson and Kelly (1988) from the N -body
Hamiltonian Eq. (1.160) as

Hrel =
1

2
p · p− G(m1 +mi)

r
− 1

c2

[
σ0(p · p)2 +

σ1
r
p · p+

σ2
r2

+
σ3
r3

(r · p)2
]
, (1.162)

where p is the specific linear momentum for the relative motion, which is defined as

p = v +
1

c2

[
4σ0v

2v +
2σ1
r
v +

2σ3
r3

(r · v)r
]
. (1.163)

The coefficients are given as

σ0 =
1− 3χ

8
, (1.164)

σ1 =
G(m1 +mi)(3 + χ)

2
, (1.165)

σ2 = −G
2(m1 +mi)

2

2
, (1.166)

σ3 =
G(m1 +mi)χ

2
, (1.167)

χ =
m1mi

(m1 +mi)2
. (1.168)

By calculating the orbital average of the 1PN term in Eq. (1.162), the 1PN correction
term for the secular potential is obtained as

V (1PN) =
3G2(m1 +m2)

2

c2a2in
√

1− e2in
+ const., (1.169)
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and the 1PN orbital evolution can be calculated by replacing Vs in Eqs. (1.55) to

(1.59) by V
(1PN)
s = Vs + V (1PN) . The additional term in the Lagrange planetary

equations appears only in the equation for ωin:

dωin

dt
=

√
1− e2in

a2inninein

∂V
(1PN)
s

∂ein
− cot I

a2innin

√
1− e2in

∂V
(1PN)
s

∂I

=

√
1− e2in

a2inninein

∂Vs
∂ein
− cotI

a2innin

√
1− e2in

∂Vs
∂I

+

√
1− e2in

a2inninein

∂V (1PN)

∂ein
. (1.170)

The last term in the second line of the above equation corresponds to the peri-
astron shift, which is one of the most famous relativistic effects confirmed by the
observation.

This 1PN correction is very simple and easy to calculate, but Will (2014a,b)
pointed out that this method may violate the energy conservation in a long-term
calculation. The averaged specific energy of the inner orbit is described as

〈Ein〉 = −G(m1 +m2)

2ain
−
(
Vs + V (1PN)

)
. (1.171)

In a restricted triple system, the outer orbital energy is assumed not to change,
that is, from the energy conservation, the inner orbital energy should be conserved.
From Eqs. (1.54) and (1.169), the averaged inner-orbital energy depends on the
semi-major axis ain, the eccentricity ein, the argument of periastron ωin, and the
relative inclination I. Will (2014b) calculated the variation of each element while
an inner orbital cycle as ∫ Pin

0

dain
dt

dt = 0, (1.172)∫ Pin

0

dein
dt

dt =
15π

2

m3

m2

(
ain
aout

)3

ein(1− e2in)
1
2 sin2 I sinωin cosωin (1.173)∫ Pin

0

dI

dt
dt = −15π

2

m3

m2

(
ain
aout

)3

sin I cos I sinωin cosωin (1.174)

∫ Pin

0

dωin

dt
dt =

6πGm2

c2a(1− e2in)
+

3π

2

m3

m2

(
ain
aout

)3

ein(1− e2in)−
1
2

×
{

5 cos2 I sin2 ωin + (1− e2in)
(
5 cos2 ωin − 3

)}
. (1.175)

From Eq. (1.172), one finds that the semi-major axis ain does not vary on a secular
timescale as in the Newtonian calculation. In Eqs. (1.173) and (1.174), the variations
of the eccentricity ein and the relative inclination I are proportional to the third
order of ain/aout. However, the first term of Eq. (1.175) is a−1in order and much
larger than the other terms, which contradicts the energy conservation. Will (2014a)
claimed that this contradiction is caused by the lack of the “cross terms” between
the multipole expansion shown in Eq. (1.39) and the post-Newtonian expansions.
The differential equations for the secular evolution of the orbital elements with the
cross terms were obtained in Naoz et al. (2013b) and Will (2014b) by calculating
the multipole expansion in the EIH equations for a three-body system.
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Even when the double-averaging method with the cross terms is used, the calcu-
lation may not be adequate. Some researchers stressed that the orbital evolutions
calculated by the double-averaging method sometimes show deviation from that ob-
tained from the direct integration of the equations of motion especially when the
excitation of the orbital eccentricity occurs (Antonini and Perets, 2012; Luo et al.,
2016; Antonini et al., 2016). This may be caused by the short distance at the peri-
astron of the highly eccentric orbit, where the higher-order terms in the multipole
expansion neglected in the double-averaging method sometimes become important
(Antonini et al., 2016). This deviation appears even when the multipole expansion
includes up to octupole-order terms (Luo et al., 2016). Will (2017) calculated the
multipole expansion up to hexadecapole order and showed that even such higher-
order effects could not be neglected in the orbital evolution with the excitation of
the eccentricity. In this thesis, in order to avoid this difficulty, I calculated the direct
integration of the EIH equations (1.159) in the numerical simulations. I discuss this
problem again in Chapter 2.

The higher-order PN effects have also been considered in the double-averaging
method. The most important effect is the gravitational radiation, which corresponds
to the 2.5th PN order terms. This effect is usually included as the energy dissipation
from the inner or outer binary orbit (see e.g. Blaes et al. (2002); Liu and Lai (2017)).
Another PN effect that has lately focused on is the spin-orbit coupling called the
Lense-Thirring effect (Fang and Huang, 2019; Fang et al., 2019; Liu et al., 2019).
It corresponds to the 1.5th order PN terms derived from the two-body interaction
(Barker and O’Connell, 1975). These higher-order PN effects are mainly treated
not in the direct integration but the double-averaging method because they affect
the orbital evolution on a secular timescale and take too much computational cost
for the direct simulation. In this thesis, I do not compute these higher-order effects
with the direct integration for the reason mentioned above, but in later chapters,
discuss whether these effects are important or not by comparing their timescales.

1.3 Main topics in this thesis

This thesis intends to extend the discussions of multi-body dynamics that have
been done in Newtonian mechanics into the general relativistic regime and aims
to contribute to understanding more about the dynamics of relativistic multi-body
systems. The two subjects are treated as the main topics of this thesis.

First, in Chapter 2, I focus on the ZLK mechanism, which is one of the most in-
teresting orbital resonances seen in hierarchical triple systems. It is characterized by
the secular oscillations of the inner eccentricity and the relative inclination between
the inner and outer orbits. Recently, the gravitational wave (GW) signal emitted
from the triple system with the ZLK mechanism has been actively investigated. I
also focus on the GW emission caused by the ZLK mechanism but from a different
perspective that the observation of the radio signal from a pulsar in the inner binary
of the hierarchical triple system. The excitation of the inner eccentricity due to the
ZLK mechanism enhances the GW emission and causes interesting evolution of the
cumulative shift of the periastron time (CSPT), which can be observed through the
radio signals from the pulsar. The orbital evolutions and the CSPT curves of a
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variety of models with a pulsar are calculated. I compare the two simulation results
obtained from the double-averaging method and direct integration to confirm how
the results obtained from the former method can deviate from that obtained from
the latter one, which is one of the main problems of the studies about the relativistic
multi-body systems. I also investigate the parameter space of the models where the
interesting feature in the CSPT curve can be observed on an appropriate timescale.

Second, I show the research of the relativistic effects on the Hill stability problem.
The Hill stability is the stability problem of the multi-body systems against a close
approach of one orbit to another. It has been hitherto studied mainly in Newtonian
mechanics and few kinds of research have been devoted to a systematic examination
of this stability problem, despite the recent increase of the attention to the relativistic
multi-body systems. In Chapter 3, first I review the Newtonian studies of the Hill
stability and expand the discussion to the general relativistic regime by using the
1PN approximation. The approximated sufficient condition for the 1PN stability is
derived analytically by assuming limited configurations of three-body systems. The
validity and usefulness of the approximated sufficient condition are confirmed by the
1PN numerical simulations for models with supermassive or intermediate-mass black
holes as their central objects. I found that the 1PN effect makes the system more
unstable than calculated in Newtonian mechanics in the sense of the Hill stability
as expected by the theoretical prediction.

After the two main topics, I conclude this thesis in Chapter 4.
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Chapter 2

von Zeipel-Lidov-Kozai
Mechanism

2.1 Purpose

The von Zeipel-Lidov-Kozai (ZLK) mechanism is one of the most remarkable orbital
resonances that occur in three-body systems. It has been called the “Kozai-Lidov” or
“Lidov-Kozai” mechanism since the pioneer papers (Kozai, 1962; Lidov, 1962) were
published. Recently, however, Ito and Ohtsuka (2019) found that the framework
of the fundamental formulation of this mechanism had been already done by von
Zeipel (1910), and the newly-proposed prefix “von Zeipel-Lidov-Kozai” started to
be used. This mechanism is seen in hierarchical triple systems and characterized by
the secular oscillations of the inner eccentricity and the relative inclination. These
values evolve exchanging their values with each other, that is, when the eccentricity
excites, the inclination decreases, and vice versa, on a timescale much longer than
both the inner and outer-orbital periods.

The eccentricity excitation caused by the ZLK mechanism is thought to be quite
important for various astrophysical phenomena. In a highly eccentric orbit, the
distance between two stars at the orbital periastron point is much shorter than
the orbital semi-major axis, and gravitational interactions between two stars be-
come much stronger at this point. For example, the high eccentricity enhances the
emission of the gravitational waves (GW), which may promote the merger of the
compact binaries within the Hubble time (Blaes et al., 2002; Miller and Hamilton,
2002; Thompson, 2011; Antonini et al., 2017; Silsbee and Tremaine, 2017; Liu and
Lai, 2017, 2018; Hoang et al., 2018; Randall and Xianyu, 2018; Fragione and Loeb,
2019). Another important gravitational interaction is the tidal force that causes the
deformation of stars. Some researchers discussed the possibility of the tidal disrup-
tions of stars around supermassive black holes due to the strong tidal force enhanced
by the ZLK mechanism (Ivanov et al., 2005; Chen et al., 2009, 2011; Wegg and Bode,
2011; Li et al., 2015; Fragione and Leigh, 2018). The enhanced tidal force also causes
the energy dissipation inside the star called tidal dissipation. The tidal dissipation
enhanced by the ZLK mechanism is one of the candidates of the formation processes
of the hot and warm Jupiters (Naoz et al., 2011, 2012; Petrovich, 2015; Frewen and
Hansen, 2015; Anderson et al., 2016; Petrovich and Tremaine, 2016; Antonini1 et al.,

29
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2016; Grishin et al., 2018) and the ultra-short-period planets (Oberst et al., 2017;
Nielsen et al., 2020). Recently, the ZLK mechanism in four-body systems has been
also considered as the sources of the above astrophysical phenomena (Hamers and
Lai, 2017; Hamers and Safarzadeh, 2020; O’Connor et al., 2020).

From the context of the relativistic multi-body systems, the GW emission from
the hierarchical triple systems with the ZLK mechanism has attracted the attention
of researchers. Recently, not only the merger phase but also the regular orbiting
phase is discussed as the candidate of the source of the observable GW (Hoang et al.,
2019; Randall and Xianyu, 2019; Deme et al., 2020; Gupta et al., 2020). I also focus
on the GW emission effects in the regular orbiting phase of the hierarchical triple
systems but discuss the possibility of the indirect observation through the radio
signal from the pulsars.

The radio observation that indirectly gives the information of the GW emission
was done for the PSR B1913+16 system called the Hulse-Taylor binary. The Hulse-
Taylor binary is one of the most famous binary pulsars, whose semi-major axis and
the eccentricity are short and large enough that the orbit shrinks due to the GW
emission (Hulse and Taylor, 1975; Taylor et al., 1976). The shrinking orbit decreases
its orbital period. The decrease of the period clearly appeared in the cumulative shift
of the periastron time (CSPT), which was observed over 30 yrs for the Hulse-Taylor
binary (Weisberg and Taylor, 2005). The observed CSPT curve was explained quite
well by the theoretical calculation of the GW emission effect in the general relativity
and it was the first indirect evidence of the existence of the GW (Weisberg et al.,
2010).

In this chapter, I focus on the evolution of the CSPT curve from the binary pulsar
in a hierarchical triple system and discuss how the ZLK effect appears on the curve.
If a deviation from the curve of the isolated binary is detected through the radio
observation, it will be the first indirect observation of GW from a triple system. I
also investigate the accuracy problem of the double-averaging method seen in the
studies of the ZLK mechanism (explained in §1.2.2) by comparing the two simulation
results obtained from the double-averaging method and direct integration.

In this chapter, first, the basic equations of the ZLK mechanism are introduced
in both the Newtonian and 1PN calculations in §2.2. Second, in §2.3, I explain
the formulation to calculate the CSPT in the hierarchical triple systems and show
an example by using the parameters of an observed binary pulsar. I subsequently
introduce various models with a pulsar as a component of the inner binary and
discuss the parameter space where the effect of the ZLK mechanism appears on the
CSPT curve on an appropriate timescale. In §2.4, first I show the orbital evolutions
of the models and investigate the accuracy problem of the double-averaging method
and 1PN effects on the ZLK mechanism, and then show the CSPT curves for various
models. I summarize this chapter in §2.5.

2.2 Basic Equations of ZLK Mechanism

In this section, I review the basic equations of the ZLK mechanism obtained by the
double-averaging method. Here I use the double-averaging method for the restricted
triple systems introduced in §1.1.3 to grasp the main features of the ZLK mecha-
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nism intuitively. First I show several Newtonian basic analyses with quadrupole
approximation and briefly introduce some discussions about the effects of massive
components and higher-order terms. Then the basic equations of the 1PN effect on
the ZLK mechanism are introduced by using the simplest 1PN correction shown in
§1.2.2. The main contents in this section follow Suzuki et al. (2021).

2.2.1 Newtonian Analysis

First I summarize important characteristics of the Newtonian ZLK mechanism. In
this subsection, I mainly assume the restricted hierarchical triple system, where one
of the components of the inner binary is treated as a test particle. I remark that the
ZLK mechanism is seen not only in the restricted systems but also in the hierarchical
triple systems with massive binary components. Although there exist some effects
of the massive components on the ZLK mechanics as discussed in the last part of
this subsection, the simple formulation obtained in the restricted hierarchical triple
system is useful to understand the ZLK mechanics intuitively.

Here I mainly use the double-averaging method with quadrupole approximation
introduced in §1.1.3. The effects of the higher-order terms in the multipole expansion
are also discussed in the last part of this subsection.

Basic Equations in Quadrupole Approximation

First I show the basic equations of the ZLK mechanism obtained in the double-
averaging method with quadrupole approximation for restricted triple systems. As
in the discussions in §1.1.3, the reference plane is defined as the outer-orbital plane.
Since the orbital elements of the outer orbit are assumed to be conserved in restricted
triple systems, the outer inclination iout vanishes and the relative inclination I just
corresponds to the inner inclination iin. The secular time evolutions of the osculating
orbital elements of the inner orbit are described by the Lagrange planetary equations
given in Eqs. (1.55) to (1.59).

The secular potential Vs given in Eq. (1.54) is divided into two components V0
and vs defined as

V0 ≡
Gm3a

2
in

16a3out(1− e2out)3/2
, (2.1)

vs ≡ (2 + 3e2in)(3 cos2 I − 1) + 15e2in cos 2ωin sin2 I. (2.2)

The former component V0 determines the magnitude of the secular potential. It
does not change over time because the components in Eq. (2.1) are conserved in
the double-averaging method as discussed in §1.1.3. The secular potential Vs is
the conserved quantity and, therefore, the dimensionless part vs should be also
conserved.

For simplicity, here I introduce additional three dimensionless parameters:

η ≡
√

1− e2in, (2.3)

µ ≡ cos I, (2.4)

τ ≡ V0
nina2in

t. (2.5)



32 CHAPTER 2. VON ZEIPEL-LIDOV-KOZAI MECHANISM

The dimensionless timescale τ is measured by the typical timescale of quadrupole
interactions nina

2
in/V0 (see Eqs. (1.55) to (1.59)). The Lagrange equations for the

eccentricity, the inclination, and the argument of periastron in Eqs. (1.56), (1.57)
and (1.58) are rewritten with these dimensionless parameters as

dη

dτ
=

∂vs
∂ωin

, (2.6)

1

µ

dµ

dτ
= −1

η

∂vs
∂ωin

, (2.7)

dω

dτ
= −∂vs

∂η
+
µ

η

∂vs
∂µ

. (2.8)

From the above basic equations, the following two quantities are proved to be con-
served:

θ ≡ ηµ, (2.9)

CZLK ≡ (1− η2)
[
1− 5

2
(1− µ2) sin2 ωin

]
. (2.10)

The former quantity θ corresponds to the z-component of the angular momentum of
the inner orbit and the latter one CZLK is obtained from the dimensionless potential
vs. From the three equations and the two conserved quantities, the evolutionary
equation for η can be described with η itself and the two conserved quantities as

dη

dτ
= s

12
√

2

η

√
f(η)g(η), (2.11)

where s = −1 for sinω cosω > 0 and s = +1 for sinω cosω < 0. The functions in
the square root are defined as follows:

f(η) ≡ 1− η2 − CZLK, (2.12)

g(η) ≡ −5θ2 + (5θ2 + 3 + 2CZLK)η2 − 3η4. (2.13)

Oscillations of Eccentricity and Inclination

The ZLK mechanism is characterized by the secular oscillation of the eccentricity
and inclination, that is, the oscillation of η and µ. Due to the existence of the
conserved value θ shown in Eq. (2.9), when one of η and µ evolves, the other one
also evolves exchanging their values with each other to conserve the value of θ. I
call the secular oscillations as “ZLK oscillation” in this thesis. If the ZLK oscillation
occurs, η becomes maximum or minimum values when dη/dτ vanishes. From the
evolutionary equation of η, Eq. (2.11), it occurs when f(η) or g(η) becomes zero.
Since the value of f(η) can be zero only when CZLK ≥ 0 for 0 < η ≤ 1, the ZLK
oscillation is classified into the following two types: one is called rotation type, where
CZLK ≥ 0, and the other is libration type, which has CZLK < 0. The names of these
two types come from the behaviors of the argument of periastron ωin in these two
types of the ZLK oscillation, which is explained in this subsection later.
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The value of f(η) become zero for

η = η0 ≡
√

1− CZLK, (2.14)

while g(η) vanishes for

η = η± ≡

√
5θ2 + 2CZLK + 3±

√
(5θ2 + 2CZLK − 3)2 + 24CZLK

6
. (2.15)

By considering the conditions f(η)g(η) ≥ 0 for 0 < η ≤ 1, the range of η for each
type of the ZLK oscillation is obtained as

η− ≤ η ≤ η0 for rotation type (CZLK ≥ 0),

η− ≤ η ≤ η+ for libration type (CZLK < 0).

The above conditions for η give both the minimum and maximum values of the inner
eccentricity emin and emax. For rotation type (CZLK ≥ 0), they are obtained as

emin =
√
CZLK, (2.16)

emax =

√
4CZLK

5θ2 + 2CZLK − 3 +
√

(5θ2 + 2CZLK − 3)2 + 24CZLK

, (2.17)

while for libration type (CZLK < 0),

emin =

√
4CZLK

5θ2 + 2CZLK − 3−
√

(5θ2 + 2CZLK − 3)2 + 24CZLK

, (2.18)

emax =

√
4CZLK

5θ2 + 2CZLK − 3 +
√

(5θ2 + 2CZLK − 3)2 + 24CZLK

. (2.19)

By fixing θ2 within 0 ≤ θ2 ≤ 1, the maximum and minimum eccentricities of the
ZLK oscillation Eqs. (2.16) to (2.19) can be calculated as the functions of CZLK. In
Fig. 2.1, some examples of emin and emax for four different θ2 are shown. One can
find that the libration type of the ZLK oscillation does not appear when θ2 becomes
larger than the critical value, θ2 = 0.6. For the rotation types, on the other hand, θ2

could reach almost unity but the oscillation amplitude becomes smaller and smaller
as θ2 becomes larger.

The constraints on the conserved quantities to have both the minimum and
maximum values shown above are obtained from the condition emin ≤ emax. For
rotation type (CZLK ≥ 0), the constraint for the ZLK oscillation is

θ2 ≤ −CZLK + 1, (2.20)

and for libration type, it is obtained as

θ2 ≤ 1

5
(−2CZLK + 3− 2

√
−6CZLK). (2.21)
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Figure 2.1: Some examples of the maximum and minimum values of eccentricity
in terms of CZLK. Note that CZLK defined in the text is denoted as CKL in the
figure. The red solid and blue dotted curves are the maximum and minimum values
of the eccentricity, respectively. The four different θ2 = 0.01, 0.2, 0.4, 0.6, and 0.8
are chosen as the examples.

Figure 2.2: The constraints on the two conserved values θ and CZLK where the
ZLK mechanism occurs. The purple and green regions correspond to the parameter
ranges for the rotation and libration types of the ZLK oscillation, respectively. Each
parameter range is given in Eqs. (2.20) and (2.21). The same figure with different
notation is in e.g. Antognini (2015).
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The ranges of the conserved values where the ZLK oscillation is obtained are depicted
in Fig. 2.2. The purple and green areas in the figure correspond to the parameter
ranges for the rotation and libration types, which are described in Eqs (2.20) and
(2.21), respectively. The same figure as Fig. 2.2 with a bit different notations is
seen in e.g. Antognini (2015). On the boundary between the regions for rotation
and libration types, one can find that the critical value of the libration type of θ2 is
0.6, which is consistent with the results seen in Fig. 2.1. When the initial orbit is
almost circular, Eq. (2.21) with CZLK ≈ 0 and θ2 = 0.6 gives the well-known initial
inclination range for the ZLK oscillation as

| cos I0| ≤
√

3

5
, (2.22)

where I0 is the initial relative inclination.
The timescale of the ZLK oscillation (hereafter called ZLK timescale) TZLK is

defined twice of the time for which the eccentricity changes from the minimum to
the maximum values (Antognini, 2015). It is evaluated as

TZLK =
nina

2
in

V0
(2τZLK), (2.23)

where

τZLK =

∫ ηmax

ηmin

(
dη

dτ

)−1
dη. (2.24)

Since the order of τZLK is about unity, the typical timescale of quadrupole inter-
actions nina

2
in/V0 can be used for a rough estimation of the ZLK timescale. It is

calculated as

τZLK =


1

12
√

6(η20−η2−)
K

(√
η2+−η2−
η20−η2−

)
for rotation

1

12
√

6(η2+−η2−)
K

(√
η20−η2−
η2+−η2−

)
for libation,

where K(k) is the complete elliptic integral of the first kind with the modulus k.
Fig. 2.3 shows τKL calculated as the function of θ2 by fixing CZLK for several values.

Rotation and Libration of Argument of Periastron

The two types of the ZLK oscillations introduced in the former discussion are char-
acterized by the behavior of the argument of periastron. It is clearly seen when the
contours of CZLK are plotted as functions of ωin and η2 by fixing θ2 in Eq. (2.10).
One example with θ2 = 0.250 is plotted in Fig. 2.4. The contours correspond to
the evolution curves of the eccentricity ein and ωin for given CZLK. One finds that
there are some closed curves at the center of this plane, which means that the ar-
gument of periastron ωin oscillates around 90◦ on these curves. Such behavior is
called as libration of the periastron. These curves have CZLK < 0, which is classified
as the libration type of the ZLK oscillation. On the other hand, the curves with
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Figure 2.3: The dimensionless ZLK timescale τZLK in terms of θ2 is calculated by
fixing CZLK for several values. Note that CZLK defined in the text is denoted as
CKL in the figure. The cyan and magenta curves correspond τZLK calculated for the
libration and rotation types of the ZLK oscillation, respectively.

Figure 2.4: The contours of CZLK on ωin-η2 plane are plotted by fixing θ2 = 0.250.
The contours are depicted every 0.1 for the range of −0.15 ≤ CZLK ≤ 0.75. The
libration type with CZLK < 0 corresponds to the closed cycles at the center, while
the lines of the rotation type go through the whole range of ωin.
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Figure 2.5: Examples of the evolutions of the argument of periastron ωin in libra-
tion (top panel) and rotation (bottom panel) types of ZLK oscillations. In these
evolutions, θ2 = 0.250 for both types, and CZLK = −3.18 × 10−5 for libration type,
while for rotation type, it is 6.20× 10−5.

CZLK ≥ 0 are not closed and ωin can go through the whole range on the curves. This
means that the periastron point does not oscillate but rather rotates in the orbital
evolution. Therefore, the ZLK oscillation with CZLK ≥ 0 is called the rotation type.

I show examples of the evolutions of the argument of periastron ωin in the libra-
tion and rotation types of the ZLK oscillations in Fig. 2.5. The upper and lower
panels show the evolutions of ωin in the libration and rotation types, respectively.
Both the libration and rotation behaviors of the periastron are clearly seen in the
figure. The value of θ2 is fixed as 0.250 for both types as in Fig. 2.4, and CZLK is
set as −3.18× 10−5 for libration type, while for rotation type, it is 6.20× 10−5. The
examples calculated for Fig. 2.5 are the ICL and ICR types of the PNN model, which
are defined in §2.3.3. See the subsection to check the detailed initial parameters of
these calculations.
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Effects of Massive Components and Higher-Order Terms

The above discussions assume one of the components of the inner binary is a test
particle, that is, m2 � m1,m3. Naoz et al. (2013a) pointed out that the secular
potential Vs should be modified to consider the effect of massive m2 and the deviation
from the test-particle limit appears in the ZLK oscillations if the modified potential
is used for the systems with m2 ∼ m1,m3. The effects of such “relaxing” of the test
particle approximation were also discussed recently by Hamers (2021). The modified

secular potential V
(m)
s is described as

V (m)
s =

V0
8

[
(1 + 3 cos (2iout))

{
(2 + 3e2in) (1 + 3 cos (2iin))

+30e2in cos (2ωin) sin2 iin
}

+ 3 cos (2∆Ω)
{

10e2in cos (2ωin)

×(3 + cos 2iin) + 4(2 + 3e2in) sin2 iin
}

sin2 iin

+12
{

2 + 3e2in − 5e2in cos (2ωin)
}

cos (∆Ω) sin (2iin) sin (2iout)

+120e2in sin iin sin (2iout) sin (2ωin) sin (∆Ω)

−120e2in cos iin sin2 iout sin (2ωin) sin (2∆Ω)
]
, (2.25)

where ∆Ω = Ωout−Ωin is the difference of the inner and outer longitudes of ascending
node. Due to the additional terms depending on ∆Ω, the conserved quantities for
the test-particle limit θ2 and CZLK are no longer conserved. This means that the
inner- and outer-orbital angular momenta are exchanging with each other because
of the effect of the massive components in the inner binary. The amplitude and
timescale of the ZLK oscillation are sensitive to the angular momentum of the inner
orbit and sometimes large deviation from the test-particle limit appears as in Fig. 4
of Naoz et al. (2013a). In this chapter, the effects of the massive inner components
are discussed in §2.4.

Even in the test-particle limit, the higher-order terms of the multipole expansion
that are neglected in the above discussions sometimes give important effects on
the ZLK oscillation. In Eq. (1.41), I explicitly wrote the expansion just up to
quadrupole order. When the octupole order terms are also considered and the
average is calculated, the secular potential becomes V

(oct)
s = Vs + V (oct), where

V (oct) =
15

64

Gm3(m1 −m2)a
3
in

(m1 +m2)a4out(1− e2out)
5
2

eineout

×

[{
4 + 3e2in −

5

2

(
2 + 5e2in − 7e2in cos (2ωin)

)
sin2 I

}
×
(
− cosωin cosωout − cos I sinωin sinωout

)
+10(1− e2in) cos I sin2 I sinωin sinωout

]
. (2.26)

The octupole contribution V (oct) depends on eout and ωout, which causes the exchange
of the angular momenta between the inner and outer orbits. Due to the exchange of
the angular momenta, in some limited configuration, the relative inclination I can
evolve across 90◦, which is the boundary of prograde and retrograde orbits (see e.g.
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Fig. 5 of Naoz (2016)). The evolution of I over the 90◦ boundary is called orbital
flip. The ZLK mechanism that can make orbital flip is called the eccentric ZLK
mechanism (Naoz, 2016) and it might work for the formation of exoplanets with
retrograde orbits (Naoz et al., 2011, 2012). Recently, the effects of much higher-
order terms have also been discussed as pointed out in §1.2.2. The effects of such
higher-order terms are also discussed in §2.4 in this chapter.

2.2.2 1PN Corrections

Next, I summarize the effects of the 1PN corrections on the ZLK mechanism. For
simplicity, here I use the simplest 1PN correction to the double-averaging method
with the quadrupole approximation for the restricted triple systems, which is ex-
plained in §1.2.2. I remark that there are some discussions about the accuracy of the
1PN double-averaging method as introduced in the subsection. In §2.4, I revisit this
point comparing the results obtained from direct integration and the basic features
obtained in this subsection.

The simplest 1PN correction for the double-averaging method is obtained by just
replacing Vs with V

(1PN)
s as shown in §1.2.2. As in the Newtonian discussion, the

secular potential is divided into the dimensionful part V0 given in Eq. (2.1) and the

dimensionless part v
(1PN)
s defined as

v(1PN)
s ≡ vs + 12

ε(1PN)

η
, (2.27)

where ε(1PN) is a dimensionless parameter of the 1PN correction defined as

ε(1PN) ≡ 4
rg,in
ain

m1 +m2

m3

(
aout
ain

)3

(1− e2out)
3
2 . (2.28)

The distance rg,in ≡ G(m1 +m2)/c
2 in the above description is a gravitational scale

of the total mass of the inner binary. By replacing vs in basic equations Eqs. (2.6)

to (2.8) with v
(1PN)
s , one can find the two conserved quantities θ and C

(1PN)
ZLK as in

the Newtonian analysis: θ is the same as the Newtonian definition in Eq. (2.9) while

C
(1PN)
ZLK is defined with 1PN correction as

C
(1PN)
ZLK ≡ CZLK(η, µ, ω) + ε(1PN)

(
1− η
η

)
. (2.29)

Note that CZLK(η, µ, ω) is not conserved with the 1PN correction. The three basic
equations and the existence of two conserved quantities give a single evolutionary
equation for η as

dη

dτ
= −12

√
2

η

√
f (1PN)(η)g(1PN)(η), (2.30)

where

f (1PN) = 1− η2 − C(1PN)
ZLK + ε(1PN)

(
1− η
η

)
, (2.31)

g(1PN) = −5θ2 +
(

5θ2 + 3 + 2C
(1PN)
ZLK

)
η2 − 3η4 − 2ε(1PN)η (1− η) . (2.32)
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Figure 2.6: The maximum and minimum eccentricities of the ZLK oscillation
calculated with the 1PN correction. Note that C

(1PN)
ZLK defined in the text is denoted

as C
(GR)
KL in the figure. The libration region exists only for θ2 < (3− ε(1PN))/5. The

value of ε(1PN) is fixed as 0.484, the value of one of the PNIB model shown in §2.3.3.

If the ZLK oscillation occurs, when the time derivative of η vanishes, the value
of η becomes maximum or minimum. Hence maximum and minimum eccentricities
can be investigated by looking for η that makes f (1PN) or g(1PN) vanish under the
conditions f (1PN)g(1PN) ≥ 0 and 0 < η ≤ 1. It can be proved that the cubic equation
ηf (1PN) = 0 has one root only when C

(1PN)
ZLK ≥ 0. Therefore, just as in the Newtonian

case, the 1PN ZLK oscillation is classified into the following two types: one is the
rotation type with C

(1PN)
ZLK ≥ 0 and the other is the libration type with C

(1PN)
ZLK < 0.

As in the Newtonian discussion, the maximum and minimum eccentricities can be
calculated when the two conserved quantities θ and C

(1PN)
ZLK , and the 1PN parameter

ε(1PN) are fixed. Fig. 2.6 shows the maximum and minimum eccentricities as the
functions of C

(1PN)
ZLK by fixing ε(1PN) = 0.484 and θ for several values. The value

of ε(1PN) = 0.484 is obtained for the PNIB model, one of the models explained in
§2.3.3. The libration region exists only for θ2 < (3 − ε(1PN))/5 in this figure. The
shape of the curves in Figs. 2.1 and 2.6 are similar but the parameter region of
the two conserved quantities where the ZLK oscillation occurs is different. In order
to clarify this point, in Fig. 2.7, the maximum and minimum eccentricities with
θ2 = 0.1 calculated in the Newtonian and 1PN formulae are compared. The 1PN
parameter ε(1PN) is fixed as 0.484. One finds that, in the libration type, the 1PN
effect suppresses the ZLK oscillation, that is, the parameter region of C

(1PN)
ZLK where

the oscillation occurs is reduced and the oscillation amplitude becomes smaller for
the given value of C

(1PN)
ZLK . For the rotation type, on the other hand, the parameter

region of C
(1PN)
ZLK increases, and the amplitude of the eccentricity does not always

become smaller for given C
(1PN)
ZLK .

The suppression of the ZLK oscillation for the libration type has been discussed
by several authors (e.g. Blaes et al. (2002); Anderson et al. (2017)) and they found

the critical value of the 1PN parameter ε
(1PN)
cr = 3(1 − e2in)3/2 with which the max-

imum and minimum eccentricities of the inner orbit become equal. When the 1PN
parameter ε(1PN) is larger than the critical value, the libration type of the ZLK oscil-
lation does not occur. The condition for the stable ZLK oscillations (ε(1PN) < ε

(1PN)
cr )
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Figure 2.7: Comparison between the Newtonian and 1PN results with ε(1PN) =
0.484. Here θ2 is fixed as 0.1. Note that CZLK and C

(1PN)
ZLK defined in the text are

denoted as CKL and C
(GR)
KL in the figure, respectively.

is rewritten with orbital parameters as

rg,in
ain

m1 +m2

m3

(
aout
ain

)3
(1− e2out)3/2

(1− e2in)3/2
<

3

4
. (2.33)

The ZLK timescale with the 1PN correction can be evaluated in the same way as
the Newtonian one. The 1PN ZLK timescales are almost the same as the Newtonian
ones but can be slightly different. The small difference complicatedly depends on
the parameters of the system, so I avoid explaining in detail here but discuss later
in §2.4 with the simulation results.

2.3 Application to Pulsar Observation

I focus on the GW emission effects on the CSPT of the inner binary of the hierar-
chical triple system where the ZLK mechanism occurs. The CSPT is observable if
the system has a pulsar as a component of the inner binary. In this chapter, hence,
I calculate orbital evolutions and the CSPT numerically for such triple systems and
discuss how the ZLK effects are observed in the CSPT curves.

In this section, first I explain the numerical method to calculate the orbital
evolutions and the basic equations to calculate the CSPT. Then I show an example
by using the parameters of an observed binary pulsar. Subsequently, various models
with a pulsar as a component of the inner binary are introduced and the parameter
space for observability is discussed.

2.3.1 Method

Numerical Simulation of Orbital Evolution

In this chapter, the method to calculate the orbital motion of the relativistic hier-
archical triple systems considering the 1PN effects is explained. As mentioned in
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Figure 2.8: The schematic picture of a hierarchical triple system. The orbit of star
2 (whose mass is m2) around star 1 (whose mass is m1) is denoted as inner orbit
and the trajectory of the center of mass of the inner binary around the third star
(whose mass is m3) is the outer orbit. The outer semi-major axis aout is assumed to
be much larger than the inner one ain.

§1.2.2, I directly integrate the equations of motion Eq. (1.159) to avoid the difficulty
of the double-averaging method. Here I explain how the initial coordinates are made
from orbital parameters, how the equations of motion are integrated, and how the
obtained results are analyzed.

First, I introduce the process to obtain the initial coordinates from the values
of orbital elements. The models in this research were characterized by the Kepler
elements introduced in §1.1.1 for the inner and outer orbits. As for the outer orbit,
the center of mass of the inner binary rotating around the third body is pursued
as in the schematic picture in Fig. 2.8. In order to calculate the equations of mo-
tion, the orbital elements should be transformed to the Cartesian coordinates of the
constituent bodies. As a first step, the eccentric anomaly u is obtained from the
mean anomaly M by solving Eq. (1.15) with the Newton-Raphson method. Then
the true anomaly f is obtained by using the relations in Eqs. (1.10) and (1.11). The
polar coordinates of an orbiting body measured from its companion are described
in terms of the true anomaly and other orbital elements as

r =
a(1− e2)

1− e cos f
, (2.34)

ψ = Ω + arctan{tan(ω + f) cos i)}, (2.35)

θ = arccos{sin(ω + f) sin i}. (2.36)

The origin of these coordinates is on the companion of the orbiting object: in the
hierarchical triple system in Fig. 2.8, the origin is on star 1 and the orbiting object
is star 2 for the inner orbit, while, for the outer orbit, the origin is at the position
of the third body and orbiting object is the center of mass of the inner binary. The
time derivatives of the polar coordinates are obtained as

ṙ = grḟ , (2.37)

θ̇ = gθḟ , (2.38)



2.3. APPLICATION TO PULSAR OBSERVATION 43

ψ̇ = gψḟ , (2.39)

where gr, gθ, gψ, and ḟ are described as

gr =
a(1− e2)e sin f

(1 + e cos f)2
, (2.40)

gθ = − 1

sin θ
cos (ω + f) sin i, (2.41)

gψ = cos2(ψ − Ω)
cos i

cos2(ω + f)
, (2.42)

ḟ =

√
Gm′

(
2

r
− 1

a

)
1

g2r + (rgθ)2 + (r sin θgψ)2
. (2.43)

The mass m′ is the total mass of the binary, that is, in the hierarchical triple system,
m′ = m1 + m2 for the inner orbit while m′ = (m1 + m2) + m3 for the outer orbit.
These positions and velocities in the polar coordinates are transformed to be written
in the Cartesian coordinates. The origins of the coordinates for both the inner and
outer orbits are shifted to the center of mass of the entire system, and the coordinates
are rotated to set the x-y plane as the initial outer-orbital plane. The integration
of the equations of motion uses the initial conditions so obtained in the Cartesian
coordinates.

The equations of motion are integrated by using the sixth order implicit Runge-
Kutta method. The implicit Runge-Kutta method is one of the symplectic methods,
in which the conservation of Hamiltonian is guaranteed. When applied to dx/dt =
f(t, x), it advances the time step from n to n+1 according to the following equations:

ξi = xn + h
s∑
j=1

Aijf(t̃jn, ξj), (2.44)

xn+1 = yn + h
s∑
i=1

Bif(t̃in + Cjh, ξi). (2.45)

In the above equations, xn and xn+1 are the values of the solution at the n- and
(n + 1)-th time steps, respectively. The positive value h is the corresponding time
interval and ξi (i = 1, ..., s) is the value of x at the i-th intermediate time t̃in =
tn + Cih. The implicit-Runge-Kutta method is specified by the number of stages s
and the coefficients Aij, Bi, and Ci are given according to s. Here I use the three-
stage and sixth-order accurate scheme, which is also referred to as the Kuntzmann &
Butcher method (Butcher, 1964). The coefficients used in the scheme are described
as

A =

 5
36

2
9
−
√
15
15

5
36
−
√
15
30

5
36

+
√
15
24

2
9

5
36
−
√
15
24

5
36

+
√
15
30

2
9

+
√
15
15

5
36

 , (2.46)

B =

(
5

18

4

9

5

18

)
, (2.47)
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C =

(
1

2
−
√

15

10

1

2

1

2
+

√
15

10

)
. (2.48)

In this research, both the Newtonian and 1PN equations of motion are numer-
ically integrated and the results are compared. Note that the back reaction of the
GW emission to the orbital evolution corresponding to the 2.5PN terms is neglected
in the integration of the equations of motion because the effects of back reaction on
a few ZLK timescales are negligibly small. It is important that the GW emission ef-
fects are so small that cannot be seen in the orbital evolution but could be observed
in the CSPT. I revisit this point in the explanation of the calculation of the CSPT
soon.

The position and velocities obtained at each timestep is again transformed to
the osculating orbital elements to analyze the results. The semi-major axis a, ec-
centricity e, inclination i, and longitude of ascending node Ω are calculated by using
Eqs. (1.6), (1.4), (1.7), and (1.8), respectively. The relative inclination I at each
timestep is also calculated by substituting i and Ω in Eq. (1.53). The argument of
periastron ω defined in Eq. (1.9) is calculated by following two steps: first, the true
anomaly f is calculated by using Eq. (1.5) as

f = arccos

(
a(1− e2)− r

er

)
; (2.49)

secondly, the angle of the planet measured from the ascending node θ is calculated
as

θ = arccos

(
x cos Ω + y sin Ω

|r|

)
; (2.50)

finally, the argument of periastron ω is obtained by calculating the difference of
these arguments as

ω = θ − f. (2.51)

Due to the effect of the third body, the trajectory of the inner orbit is not exactly
a closed ellipse, that is, the osculating orbital elements fluctuate with small ampli-
tudes. This small oscillation with the period of the inner orbit is not essential but
seems to be rather artificial. Hence, in this research, an average of these elements
for each inner cycle is calculated to extract the effective values of the inner orbital
elements at each cycle. Hereafter the averaged elements are described with a bar,
e.g., āin and ēin. Those effective inner orbital elements evolve on a secular timescale
due to the effect of the third body.

Cumulative Shift of Periastron Time

If the inner orbit is close enough, its orbital energy is gradually extracted by the
GW emission. When the orbital energy is dissipated, the orbit shrinks and then
the orbital period is shortened. Peters and Mathews (1963) derived a well-known
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formula of the period change for each orbital cycle as

Ṗin = −192π

5

(
Pin

2π

)− 5
3 G2m1m2

c5
{G(m1 +m2)}−

1
3

× 1

(1− ē2in)
7
2

(
1 +

73

24
ē2in +

37

96
ē4in

)
, (2.52)

where Pin is the orbital period of the inner binary described as

Pin = 2π

√
ā3in

G(m1 +m2)
. (2.53)

In this estimation, the orbital elements are assumed to be constant for one orbital
cycle, that is, the back reaction of the GW emission is assumed to be negligibly
small on such a short timescale. Therefore, the averaged orbital elements are used
in the above formula to reflect the effective shape of the orbit for one cycle. On
a few ZLK timescales, if the system is an isolated binary without the third body,
changes in orbital elements due to the GW emission are small enough to assume
that Ṗin is constant. If the ZLK mechanism occurs because of the existence of the
third body, however, the secular evolution of the eccentricity cannot be neglected
on a few ZLK timescales and Ṗin changes with time.

Since the period change due to the GW emission is quite small and difficult to
observe directly, it is convenient to introduce a new variable called the cumulative
shift of periastron time (CSPT). In observation, this value can be obtained through
radio signals from a binary pulsar just as the observation of the Hulse-Taylor binary
(Weisberg and Taylor, 2005). In this research, the analysis of the CSPT that has
been done for isolated binary pulsars is expanded for hierarchical triple systems
whose inner binaries contain a pulsar. The CSPT is defined as the accumulation of
the shift of the periastron passage timing, that is, the CSPT of the inner binary of
the hierarchical triple system, ∆P , is given as

∆P (TN) = TN − Pin(0)N, (2.54)

where TN is the N -th periastron passage time and Pin(0) is the initial value of the
inner orbital period. From the definition of TN , N can be described as

N =

∫ TN

0

1

Pin(t)
dt, (2.55)

where Pin(t) is the orbital period at time t, which is gradually shortened by the GW
emission as

Pin(t) = Pin(0) +

∫ t

0

Ṗin(t′)dt′. (2.56)

By substituting Eqs. (2.55) and (2.56) into Eq. (2.54), the CSPT ∆P is described
as

∆P (TN) = TN −
∫ TN

0

dt
Pin(0)

Pin(0) +
∫ t
0
Ṗin(t′)dt′

=

∫ TN

0

dt

∫ t
0
Ṗin(t′)dt′

Pin(0) +
∫ t
0
Ṗin(t′)dt′

. (2.57)



46 CHAPTER 2. VON ZEIPEL-LIDOV-KOZAI MECHANISM

The period change due to the GW emission is usually quite small for binary pulsars
and one can expect the following condition:∣∣∣∣∫ t

0

Ṗin(t′)dt′
∣∣∣∣� Pin(0). (2.58)

In fact, for the Hulse-Taylor binary pulsar (Weisberg and Taylor, 2005), the binary
period Pb and the period change rate Ṗb is given as

Pb = 0.32299 day, (2.59)

Ṗb = −2.4184× 10−12 s/s , (2.60)

which means that the condition given in Eq. (2.58) is true if t � 3.7 × 108 yrs. In
this research, just a few ZLK timescales are calculated and the timescale satisfies
TN � 108 yrs. This is nothing but the reason why I do not consider 2.5PN terms
in the equations of motion. Hence ∆P is approximated as

∆P (TN) ≈ 1

Pin(0)

∫ TN

0

dt

∫ t

0

dt′Ṗin(t′). (2.61)

Here I remark that if Ṗin(t) is assumed to be almost constant, that is, Ṗin(t) ≈
Ṗin(0), ∆P is described as

∆P (TN) ≈ Ṗin(0)

2Pin(0)
T 2
N , (2.62)

which corresponds to the formula used for the Hulse-Taylor binary in Weisberg
and Taylor (2005). In a hierarchical triple system with the ZLK mechanism, Ṗin(t)
cannot be treated as a constant and its evolution should be considered by calculating
Eq. (2.61) with Eq. (2.52) instead of Eq. (2.62).

This formulation of the CSPT can be applied to a general stable three-body (or
N -body) system with a binary pulsar as long as the condition Eq. (2.58) is satisfied.
The CSPT is the accumulated effect and the feature makes it possible to observe
it through long-term detection of radio signals from binary pulsars even for such
weak GW emission that the back reaction of GW emission on the orbital elements
is negligibly small. The CSPT observation from a binary pulsar in a triple system
may be the precursor of the detection of GW from a triple system with the ZLK
mechanism (Hoang et al., 2019; Randall and Xianyu, 2019; Deme et al., 2020; Gupta
et al., 2020).

2.3.2 Example for Three-Body Model with PSR J1840-0643

In this subsection, I show an example of the calculation of the CSPT following
Suzuki et al. (2019). I use the parameters of the PSR J1840-0643 system as the
binary pulsar in the triple-system models. This binary pulsar was discovered in the
Einstein@Home project. The detail about the project and the orbital parameters
of the binary pulsar are given in Knispel et al. (2013).

From the observation of radio signals from binary pulsars, the constraint on
the presence of a third body orbiting around the binary can be given with the
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orbit a[au] e i[deg] Ω[deg] ω[deg] M [deg]
inner 2.17373 0 60 0 - 0
outer 20.0 0 0 0 - 20

Table 2.1: Initial orbital elements of a model with the PSR J1840-0643 system.
The masses are m1 = 1.4 M�,m2 = 0.16 M� and m3 = 30 M�, respectively. The
parameters of the inner orbit are fixed by the observational data, whereas those
of the outer orbit are just assumptions. The argument of periastron ω cannot be
defined because the eccentricity is zero. The degree of freedom has been instead
used to fix the axis of the reference frame.

Doppler shift effect. In the radio signals, the Doppler shift effect by the acceleration
due to the third body degenerates with the spin-down effect of the pulsar. These
effects degenerate in the characteristic age of pulsar τν = ν/(2|ν̇|), where ν(t) is the
effective spin frequency of the pulsar. The Doppler time-scale τD ∼ ca2outG

−1m−13

should be longer than the characteristic age of the pulsar τν , which gives the upper
limit for the mass of the third body and its distance. For the Hulse-Taylor binary
pulsar, τν ≈ 2 × 107 yrs and the presence of a third stellar-mass object within
aout < 100 au was ruled out by comparing τD and τν (Smarr and Blandford, 1976).
The characteristic age of the PSR J1840-0643 system is estimated as τν = 2.56×106

yrs and it seems that this system also has a strict constraint on the presence of a third
body like the Hulse-Taylor binary. However, this characteristic age was evaluated in
the topocentric frame by assuming that this system is an isolated binary, and when
it is evaluated in the barycentric frame, the spin period seems to be increasing,
which looks unphysical (Knispel et al., 2013). Hence, here I assess that this system
has not yet had a strict constraint on the presence of a third body and calculate the
evolution of the system by assuming the presence of the third body.

The orbital parameter of a model with PSR J1840-0643 is in Table 2.1. The
parameters of the inner binary are obtained from the observed data of the PSR
J1840-0643 system. The masses of the components of the inner binary are m1 =
1.4 M� and m2 = 0.16 M�, respectively. In this model, the mass of the third body
is assumed to be m3 = 30 M�, and the outer-orbital semi-major axis aout and the
relative inclination I are set as 20.0 au and 60◦, respectively. These parameters
satisfy the condition for the ZLK mechanism introduced in §2.2.

The results of the calculations of the orbital evolution and the CSPT curve for
this model are shown in Figs. 2.9 and 2.10. Fig. 2.9 shows the evolutions for 100 yrs
of the averaged inner eccentricity ēin, relative inclination Ī, and conserved quantity
of ZLK mechanism θ̄2 defined in Eq. (2.9), which is referred as Θ̄ in the figure. In
the evolutions of ēin and Ī, the two kinds of oscillations with different timescales are
seen: one is the oscillation with outer-orbital orbit Pout = 15.92 yrs, and the other is
the ZLK oscillation whose timescale is about 100 yrs. The former rapid oscillation
with the outer-orbital period was also found in some papers (Ivanov et al., 2005;
Katz and Dong, 2012; Antognini et al., 2014; J and Wegg, 2014). In the latter ZLK
oscillation, the effective eccentricity increases from 0 to about 0.6 while the effective
inclination decreases from 60◦ to about 48◦. The ZLK timescale can be roughly
estimated as TZLK ∼ nina

2
in/V0 and is calculated with the parameters in Table 2.1 as
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Figure 2.9: The evolutions of the averaged inner eccentricity ēin, relative inclination
Ī and the conserved quantity of the ZLK mechanism Θ̄ = θ̄2 for 100 yrs. The red,
green, and blue lines describe the evolution of ēin, Ī, and Θ̄, respectively.

Figure 2.10: The CSPT ∆P is calculated for 100 yrs. The blue solid and red
dotted lines are the CSPT curves for the inner binary of the three-body model and
the isolated binary, respectively. The cyan and orange dashed lines correspond to
quadratic functions given as ∆P1(TN) and ∆P2(TN) in the text. The blue line is
initially overlapped with the red and cyan line in Period A, but show deviation in
Period B, and fitted by different quadratic curve shown as the orange line in Period
C. Detail explanations about the figure is in the text.



2.3. APPLICATION TO PULSAR OBSERVATION 49

TZLK ∼ 104 yrs, which is consistent with the result of the simulation. I remark that
Θ̄ is approximately but not exactly conserved and it shows small oscillation with
the outer-orbital period Pout around Θ̄ = 0.3. This may be caused by the effect of
massive m2 discussed in §2.2. The fluctuation in Θ̄ is consistent with the deviation
from the ideal restricted triple system discussed in Naoz et al. (2013a).

Fig. 2.10 exhibits the evolution of the CSPT ∆P for 100 yrs. The CSPT curve of
the triple-system model is shown by the blue solid line, and, as a reference, that of
an isolated binary without the third body calculated in the same way is also shown
by the red dotted line. By using Eq. (2.62), the CSPT of the isolated binary is
approximately described by the quadratic function as

∆P1[s] = −3.185× 10−13 (TN [yrs])2 , (2.63)

which is shown in Fig. 2.10 as a cyan dashed line. One finds that the red line for
the isolated binary is completely overlapped with the cyan line in the figure. In
Fig. 2.10, The CSPT curve of the triple system (blue line) coincides with that of the
isolated binary (red line) initially in Period A, but it starts to deviate at t ∼ 30 yrs
and the discrepancy between these two lines becomes larger until t ∼ 60 yrs in
Period B. In Period B, the inner eccentricity is excited by the ZLK mechanism seen
in Fig. 2.9. Hence the deviation in the CSPT curves is caused by the enhancement
of the GW emission due to the large eccentricity obtained from the ZLK mechanism.
After t ∼ 70 yrs, in Period C, the eccentricity decreases again as seen in Fig. 2.9,
and then ∆P is approximated by another quadratic function

∆P2[s] = −3.185× 10−13
(
TN [yrs] + 1.501× 102

)2
+ 1.206× 10−8, (2.64)

whose curve is also given in the figure as an orange dashed line. As a result, I
conclude that the CSPT curve bends when the eccentricity is excited by the ZLK
mechanism.

If the ZLK mechanism occurs in triple systems with binary pulsars, it should
be found first by the observation of the orbital elements themselves, not from the
observation of the CSPT, as pointed out by (Gopakumar et al., 2009; Zwart et al.,
2011). Hence the observation of the CSPT may not be quite important from the
perspective of the confirmation of the presence of the third body, but it is important
to discover the GW from a three-body system.

Furthermore, the feature of the CSPT curve may be useful for real pulsar obser-
vations where sometimes the observational data cannot be obtained for some years
due to several reasons. For example, the data of the Hulse-Taylor binary for a decade
in the 1990s was not obtained because of major upgrades of the Arecibo telescope
(Hulse, 1994). If the unseen region is completely overlapped with the Period B of
the ZLK oscillation, one never recognizes ZLK oscillation only from the data of the
orbital elements because the high eccentricity state shown in Fig. 2.9 is completely
missed. With the plot of the CSPT like Fig. 2.10, however, it can be concluded that
the bending in Period B must exist from the observational data about the periastron
time TN in both Periods A and C. Then it is possible to judge whether the ZLK
oscillation had happened or not by using the CSPT without the data in the highly
eccentric state.
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One may be worried about the spin-orbit coupling effect in 1.5PN terms (Barker
and O’Connell, 1975) because the effect may change the direction of the pulsar
rotation axis and the beaming direction of the pulse signal. The change of the
beaming direction may cause the disappearance of the pulse signal from the radio
observation. The effect of the spin-orbit coupling in the ZLK mechanism is roughly
estimated by using the so-called “adiabaticity parameter” A (Liu and Lai, 2017,
2018). This parameter is the ratio of the ZLK timescale to the 1.5PN precession
timescale and I found it is small enough for the model used in this subsection. It
means that the spin of the pulsar evolves “non-adiabatically” even when the ZLK
oscillation occurs, that is, the spin is parallelly transported just as Newtonian case,
and then the beaming direction does not change so much. I revisit this problem for
the other models and discuss more detail in §2.4.

Finally, I discuss the possible parameter range of the third body with which the
bending of the CSPT curve occurs within our lifetime (about 100 yrs). In addition
to the model given in Table 2.1, 19200 models are made by changing the outer
semi-major axis (10 au ≤ aout ≤ 40 au) and the mass of the third body (10 M� ≤
m3 ≤ 90 M�), and their orbital evolutions are calculated. In the evolutions of these
models, the time taken to see the deviation of ∆P from ∆P1, Td, is detected by using
a simple criterion

(∆P −∆P1)

∆P1

> 1. (2.65)

Fig. 2.11 shows the color contour map of Td. In the black region seen in the
bottom-right corner of Fig. 2.11, Td is longer than 100 yrs. The white dotted
line shows the critical curve obtained by the theoretical estimation of the ZLK
timescale. Here I used the rough estimation of the Newtonian ZLK timescale given
as TZLK ∼ nina

2
in/V0 = 100 yrs. It is found that the dependence of Td on aout and

m3 are almost consistent with the critical curve estimated by the Newtonian ZLK
timescale. This is because the semi-major axes of the present model are large enough
that the 1PN effect is negligible. If the parameters of the third body are in the top-
left white region with aout < 15 au and m3 > 30 M�, the system becomes unstable.
The yellow solid line is obtained from the empirical criterion for the stability of the
Newtonian three-body systems given by Mardling and Aarseth (2001) as

aout
ain

>
2.8

1− eout

[(
1 +

m3

m1 +m2

)
1 + eout

(1− eout)
1
2

] 2
5

. (2.66)

From Fig. 2.11, one can find that if the parameters of the third companion are within
m3 = 10-100 M� and aout . 40 au, the bending of the CSPT curve may be detected
within 100 yrs through the observation of radio pulse.

2.3.3 Possible Models with a Pulsar

In this section, I consider several models with a broad range of parameters. First,
I classify the hierarchical triple systems with the mass ratio of their components.
Then I discuss the constraints on parameters obtained from the stability condition
and the observable timescale as done in the last subsection and give several models
in the allowed parameter range.
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Figure 2.11: The color contour map of Td that shows the parameter range of the
third body with which the bending of the CSPT curve occurs within 100 yrs. The
horizontal and vertical axes are the outer semi-major axis aout and the mass of the
tertiary companion m3, respectively. The color shows the value of Td, which is the
minimum time such that the criterion Eq. (2.65) is satisfied. In the black region,
the bending of the CSPT curve does not occur for 100 yrs and the white dashed line
corresponds to the theoretical boundary obtained from the rough estimation of the
ZLK timescale. In the white region, the system becomes unstable; the yellow solid
line is an empirical criterion given by Mardling and Aarseth (2001).

The hierarchical triple systems are classified into three classes according to their
mass ratio:

Class [1] min � m3 ,

Class [2] min ∼ m3 ,

Class [3] min � m3 .

In Class [1], the ZLK oscillation explained in §2.2 can be obtained (VanLandingham
et al., 2016; Randall and Xianyu, 2018; Hoang et al., 2019). For Class [2], the ZLK
oscillations may also occur (Blaes et al., 2002; Wen, 2003; Thompson, 2011; Liu and
Lai, 2018) as in Class [1] as long as the outer semi-major axis aout is much longer
than ain. The systems in Class [2] with aout not large enough compared to ain do not
have a sufficient hierarchy and the gravitational interaction between the inner and
outer orbits is strong. As a result, both the inner and outer orbital elements will
extremely change and the orbit may become chaotic. Such systems are unstable.

In Class [3], when the outer semi-major axis is much longer than that of the inner
one (aout � ain), the outer object can be treated as a test particle and the inner
orbit is not affected so much by the tertiary object, while the orbital elements of the
outer orbit may change with time. However, it is known that the outer eccentricity
does not change with time at least in the quadrupole order approximation. Instead
of the outer eccentricity, the longitude of ascending node of the outer orbit Ωout and
the relative inclination I oscillate in a secular timescale (Naoz et al., 2017). In this
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research, I focus on the CSPT caused by the excitation of the eccentricity of the
binary pulsar and I discuss only Classes [1] and [2].

In order to observe the CSPT through radio signals, all models should have a
pulsar as a component of the inner binary. I choose the companion of the pulsar
from compact objects with a similar or larger mass than that of the pulsar, that is,
a neutron star (NS) or a black hole (BH), to obtain the large GW emissions. For
these compact objects, one can neglect the tidal dissipation effect, which may be
strong for a non-compact object like a main-sequence star. The energy dissipation
by the tidal force may also affect the periastron shift in addition to the GW emission
and the CSPT will be more complicated. This interesting but complicated effect
is beyond the scope of this chapter. Hence, below three types of model for inner
binaries are discussed here:

P-NS binary (pulsar + NS),

P-BH binary (pulsar + BH),

P-IMBH binary (pulsar + intermediate-mass BH).

The values of the masses and the semi-major axis of these inner binaries are shown
in Table 2.2.

As discussed in §2.3.2, there exist some constraints on the parameter of the outer
body to have the ZLK oscillation on an appropriate timescale. In Figs. 2.12 to 2.14,
the constraints are shown in terms of the outer semi-major axis aout and the mass of
the third body m3 by fixing parameters of the inner binary. The dashed black line
shows the boundary for the outer binary mass m3 ≥ m1 + m2 for the hierarchical
triple systems Class [1] and Class [2], which means that the gray area in the figures
is not treated in this research.

The blue thin-stripe region is the parameter range where the empirical stability
condition obtained in Mardling and Aarseth (2001) given in Eq. (2.66) is satisfied.
The boundary of this condition is sometimes called the “chaotic boundary”. This
condition should be satisfied so that the hierarchical structure of the system does
not break at least in the initial state.

The magenta-colored region is obtained from Eq. (2.33), which ensures that
the ZLK oscillation occurs even with 1PN effects. Note that this magenta area is
depicted by setting ein = eout = 0 in Eq. (2.33) because it does not change the area
so much even for non-zero eccentricities in these figures.

In order to observe the effect of the ZLK oscillation on the CSPT, the ZLK
timescale should be shorter than our lifetime. The ZLK timescale can be roughly
estimated as TZLK ∼ nina

2
in/V0 and its contours are shown in Figs. 2.12 to 2.14 by

the dark-green lines for TZLK = 10, 102, and 103 yrs.
When the third body has the parameters in the area where the blue thin-stripe

and the magenta-colored regions are overlapped in Figs. 2.12 to 2.14, the ZLK
oscillation will occur on an appropriate timescale. The parameters of the models in
this research are plotted by the black dots with the model names in these figures.
In this research, nine models are analyzed: for the P-NS inner binary, PNN, PNB,
PNIB, and PNSB models, in which the tertiary companion is an NS, BH, IMBH,
and supermassive black hole (SMBH), respectively, are discussed. For the P-BH
inner binary, I consider three cases: PBB, PBIB, and PBSB, in which the tertiary
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Figure 2.12: The constraints on the parameters of the outer orbit with a pulsar-NS
(P-NS) inner binary to have the stable ZLK oscillation on an appropriate timescale.
The parameters of the inner binary are fixed as m1 = 1.4 M�, m2 = 1.4 M� and
ain = 0.01 au. The dashed black line denotes the boundary of m3 ≥ m1 + m2,
which is the condition of Class [1] and Class [2] of hierarchical triple systems. In
the blue thin-stripe region, a hierarchical triple system is stable from the empirical
condition. The condition for the ZLK oscillations not to be suppressed by the 1PN
effect is given by the magenta-colored region. The overlapped region gives a stable
ZLK oscillation even in the 1PN calculation. The dark-green lines show the ZLK
timescales (TZLK = 10, 102, and 103 yrs), which should be shorter than our lifetime
(< 100 yrs) for observation. Our models given in Table 2.2 are shown by the black
dots.
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Figure 2.13: The same figure as Fig. 2.12, but the inner binary is a pulsar-BH
(P-BH) binary. The parameters of the inner binary are fixed as m1 = 30 M�,
m2 = 1.4 M� and ain = 0.01 au.
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Figure 2.14: The same figure as Fig. 2.12, but the inner binary is a pulsar-IMBH
(P-IMBH) binary. The parameters of the inner binary are fixed as m1 = 103 M�,
m2 = 1.4 M� and ain = 0.1 au.

companion is a BH, IMBH, and SMBH, respectively. I also analyze the model PIBIB
and PIBSB: these systems have the P-IMBH inner binary and an IMBH or SMBH
as a tertiary companion. The masses of a pulsar (or NS), BH, IMBH, and SMBH
are chosen as 1.4M�, 30M�, 103M�, and 106M�, respectively. The masses, semi-
major axes, and the 1PN parameter ε(1PN) defined in Eq. (2.28) for all the models
are summarized in Table 2.2.

Here I briefly discuss the 1.5PN effect called the Lense-Thirring precession effect.
This is one of the spin-orbit coupling effects appearing in the 1.5PN order corrections
(Barker and O’Connell, 1975). Recent studies pointed out that the Lense-Thirring
precession caused by the rapid rotation of an outer SMBH changes the evolutions
of the ZLK oscillation (Fang and Huang, 2019; Fang et al., 2019; Liu et al., 2019).
The timescale of this effect is evaluated in Liu et al. (2019) as

TLT =
2c3a3out(1− e2out)3/2

χ3G2m2
3(4 + 3min/m3)

, (2.67)

where χ3 ≤ 1 is the Kerr parameter of the third object. If TLT is much larger than
the ZLK timescale TZLK, the Lense-Thrring precession effect can be neglected on a
few ZLK timescales. This situation is obtained if the following condition is satisfied:

(ain
au

) 3
2 � 10−12

(
m3

M�

)(
min

M�

) 1
2

, (2.68)

where χ3 = 1 is imposed. Since all models in Table 2.2 satisfy this condition, the
1.5PN effect on the orbital evolution is safely neglected in this research.

In order to set initial conditions for numerical simulations, the other orbital
parameters like the eccentricity e and the inclination i are needed. These parameters
give the conserved quantities θ and C

(1PN)
ZLK , which classify the types of the ZLK
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oscillation as “libration” or “rotation” (see §2.2). In this research, four sets of the
initial parameters are prepared for each model: “initially circular libration (ICL)”,
“initially circular rotation (ICR)”, “initially eccentric libration (IEL) ” and “initially
eccentric rotation (IER)”. For “Initially circular” and “initially eccentric” types, the
initial inner eccentricities are set as ein = 0.01 and ein = 0.6, respectively. The other
parameters are determined to obtain C

(1PN)
ZLK < 0 for libration and C

(1PN)
ZLK > 0 for

rotation. The parameters of these types for each model are summarized in Tables 2.3,
2.4, and 2.5 for P-N, P-BH, and P-IMBH inner binaries, respectively, and they are
used as the initial conditions for 1PN calculations. In order to study the 1PN effects,
the Newtonian calculations are also performed and the results are compared. The
Newtonian conserved quantities for the ZLK oscillations are set to have the same
value as the 1PN ones: θ2 is the same as the 1PN one and CZLK is set equal to C

(1PN)
ZLK

by choosing the initial argument of periastron as ω
(N)
in given in the last column of

Tables 2.3 to 2.5.
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model ε(1PN) Type ein iin[deg] ωin[deg] C
(1PN)
ZLK θ2 ω

(N)
in [deg]

PNN 0.177 ICL 0.01 60 60 −3.18× 10−5 0.250 57.0
ICR 0.01 60 30 6.20× 10−5 0.250 26.8
IEL 0.6 53 90 -0.170 0.232 73.9
IER 0.6 45 60 0.0667 0.320 53.8

PNB 0.129 ICL 0.01 60 60 −4.42× 10−5 0.250 57.8
ICR 0.01 60 30 5.96× 10−5 0.250 27.7
IEL 0.6 53 90 -0.182 0.232 76.3
IER 0.6 45 60 0.0548 0.320 55.4

PNIB 0.484 ICL 0.01 60 60 −1.64× 10−5 0.250 52.0
ICR 0.01 60 30 7.73× 10−5 0.250 20.4
IEL 0.6 53 90 -0.0931 0.232 62.7
IER 0.6 45 60 0.143 0.320 43.9

PNSB 0.0310 ICL 0.01 60 60 −3.91× 10−5 0.250 59.5
ICR 0.01 60 30 5.47× 10−5 0.250 29.5
IEL 0.6 53 90 -0.206 0.232 83.3
IER 0.6 45 60 0.0302 0.320 58.9

Table 2.3: The important parameters in initial conditions for the 1PN ZLK oscil-
lation for models with the P-NS inner binary. The four sets of initial parameters
are prepared: “initially circular libration (ICL)”, “initially circular rotation (ICR)”,
“initially eccentric libration (IEL)” and “initially eccentric rotation (IER)”. In the
fourth to sixth columns, ein, iin, ωin show the eccentricity, the inclination, and the
argument of the periastron of the inner orbit, respectively. The two conserved
quantities for the 1PN ZLK oscillation C

(1PN)
ZLK and θ2 are also given in the seventh

and eighth columns. For “initially circular” and “initially eccentric” types, I set
ein = 0.01 and ein = 0.6, respectively. The other parameters are determined to
obtain C

(1PN)
ZLK < 0 for libration and C

(1PN)
ZLK > 0 for rotation types, respectively. For

the outer orbit, eout = 0 and iout = 0◦ are used and ωout cannot be defined. About
the parameters other than those shown in the table, the longitude of the ascending
node Ω is set as 0 for both inner and outer orbits, and the mean anomaly M is set as
0◦ and 20◦ for inner and outer orbits. The Newtonian calculation is also performed
to compare both the Newtonian and 1PN results. The Newtonian two conserved
quantities for the ZLK oscillation are set as the same value as the 1PN ones, that
is, θ2 is the same as the 1PN one and CZLK is set equal to C

(1PN)
ZLK by choosing the

initial argument of periastron as ω
(N)
in given in the last column.

2.4 Results and Discussions

In this section, the results of the numerical simulations explained in §2.3.1 are shown.
First I show the results of the orbital evolutions obtained for the models introduced
in §2.3.3. I discuss the accuracy problem of the double-averaging method by com-
paring the results obtained from the 1PN direct integration and those from the
double-averaging method with the 1PN correction. I also compare the 1PN and
Newtonian direct-integration results to recognize how the 1PN effect appears in the
ZLK mechanism calculated by the direct integration.
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model ε(1PN) Type ein iin[deg] ωin[deg] C
(1PN)
ZLK θ2 ω

(N)
in [deg]

PBB 0.0130 ICL 0.01 60 60 −4.00× 10−5 0.250 59.8
ICR 0.01 60 30 5.38× 10−5 0.250 29.8
IEL 0.6 53 90 -0.211 0.232 85.7
IER 0.6 45 60 0.0257 0.320 59.5

PBIB 0.177 ICL 0.01 60 60 −3.39× 10−5 0.250 57.7
ICR 0.01 60 30 5.98× 10−5 0.250 27.6
IEL 0.6 53 90 -0.181 0.232 76.0
IER 0.6 45 60 0.0559 0.320 55.3

PBSB 0.0249 ICL 0.01 60 60 −3.94× 10−5 0.250 59.6
ICR 0.01 60 30 5.44× 10−5 0.250 29.6
IEL 0.6 53 90 -0.208 0.232 84.0
IER 0.6 45 60 0.0287 0.320 59.1

Table 2.4: The same table as Table 2.3 but for models with the P-BH inner binary.

model ε(1PN) Type ein iin[deg] ωin[deg] C
(1PN)
ZLK θ2 ω

(N)
in [deg]

PIBIB 0.684 ICL 0.01 60 60 −6.41× 10−5 0.250 48.8
ICR 0.01 60 30 8.73× 10−5 0.250 15.1
IEL 0.6 53 90 -0.0430 0.232 56.9
IER 0.6 45 60 0.194 0.320 37.5

PIBSB 0.396 ICL 0.01 60 60 −2.08× 10−5 0.250 53.4
ICR 0.01 60 30 7.29× 10−5 0.250 22.3
IEL 0.6 53 90 -0.115 0.232 65.5
IER 0.6 45 60 0.122 0.320 46.7

Table 2.5: The same table as Table 2.3 but for models with the P-IMBH inner
binary.

Then I show the results of the CSPT. I discuss how the shape of the CSPT curve
depends on the types of the ZLK oscillation by comparing the results of four types
of models (ICL, ICR, IEL, IER). I also focus on the initial time when the CSPT
calculation is started. I found that the shape of the CSPT curves becomes different
when the starting time is different even for the same model.

2.4.1 Orbital Evolutions

The stable orbital evolutions are observed in all the models shown in Tables 2.3 to
2.5. Some results obtained in different models look similar, so I show the results
of the PNN (+ PBB) model and the PNIB model as representative avoiding just
show many similar figures. The PNN model is chosen because the mass hierarchy
in this model is the smallest in all the models and it is expected that the deviation
from the test-particle approximation used in the double-averaging method shown
§2.2 is the largest. With the results of this model, the differences between these two
methods are discussed, and for some related analyses, the results of the PBB model
are also shown. The PNIB model has ε(1PN) which is the largest in Table 2.3 and
the relativistic effect in this model may be important. I discuss the 1PN effects on
the ZLK mechanism by comparing Newtonian and 1PN direct integration results



2.4. RESULTS AND DISCUSSIONS 59

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0  5  10  15  20  25  30

 40

 45

 50

 55

 60

e-
in

, 
θ- 2

I-  [
d

e
g

]

t [yr]

I
- e- in θ

-2

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0  5  10  15  20  25  30

 40

 45

 50

 55

 60

e-
in

, 
θ- 2

I-  [
d

e
g

]

t [yr]

I
- e- in θ

-2

Figure 2.15: Time evolution of the averaged inner eccentricity ēin (green line),
relative inclination Ī (red line) and the conserved value for the ZLK oscillation θ̄2

(blue line) for the “libration” type of the ZLK oscillations in the PNN model. The
top and bottom panels show the results of the ICL and IEL types, respectively.

for this model.

Direct Integration v.s. Double-averaging Method

Figs. 2.15 and 2.16 are the time evolutions of the averaged inner eccentricity ēin,
relative inclination Ī, and conserved value for ZLK oscillation θ̄2 of each type of the
PNN model: Figs. 2.15 and 2.16 exhibit the results of the libration and rotation types
of ZLK oscillations, respectively. The top and bottom panels of these figures are the
results of the initially circular and eccentric types, respectively, whose parameters
are given in Table 2.3. As in Fig. 2.9, the green, red, and blue lines correspond to
the evolutions of ēin, Ī, and θ̄2.

The ZLK oscillation is observed in all the panels in these figures with differ-
ent amplitudes and timescales. The initially eccentric types (bottom panels) have
smaller amplitudes and shorter timescale than those of initially circular types (top
panels). This amplitude difference reflects the feature of the ZLK oscillation ex-

plained in Fig. 2.6. In the initially circular type, the value of C
(1PN)
ZLK is almost zero
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Figure 2.16: The same figure as Fig. 2.15 for the “rotation” type of the ZLK
oscillations in the PNN model. The top and bottom panels are the results of the
ICR and IER types, respectively.
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and the eccentricity oscillates between zero and the maximum value. In the initially
eccentric type, on the other hand, C

(1PN)
ZLK has a finite value and the eccentricity

oscillates between two finite values around the initial value, which means that the
amplitude becomes smaller than that in the initially circular type. However, in all
the panels, θ2 is not exactly constant but oscillates on the ZLK timescale as seen
in Fig. 2.9. It should be constant in the analysis by the double-averaging method
with test-particle quadrupole approximation (see §2.2) and the oscillation of θ2 may
occur because the mass hierarchy is not enough and the test-particle limit is no
longer satisfied in this model. The oscillating feature of θ2 is consistent with what
is seen in the results in Naoz et al. (2013a).

In order to clarify the difference between the results obtained from the direct
integration and the double-averaging method, in Figs. 2.17 and 2.18, I show the
evolution of ēin obtained by the 1PN direct integration as a dark-green solid line as
well as that calculated with the Lagrange planetary equations with 1PN correction
(see §1.2.2) as a light-green dashed line. The latter one imposes the quadrupole ap-
proximation and the test-particle limit. It is integrated by the fourth-order implicit
Runge-Kutta method using the W4 method (Okawa et al., 2018; Fujisawa et al.,
2019), which is an improved version of the Newton-Raphson method, as an internal
nonlinear solver. Each panel in Figs. 2.17 and 2.18 shows the same evolution of ēin
as shown in the corresponding panel in Figs. 2.15 and 2.16.

At first glance, one finds that the difference between the two lines is very small
except for the IER type (the bottom panel in Fig. 2.18). The ZLK timescale obtained
from the direct integration is smaller than that calculated in the double-averaging
method in the panels of Fig. 2.17, but it is larger in the panels in Fig. 2.18. The
deviation in timescale is much more obvious in the bottom panel of Fig. 2.18. For
the amplitude, the tendency of the difference is more complicated than that of the
timescale. In the results of the ICL and ICR types (top panels in Fig. 2.17 and
2.18), the amplitude of the ZLK oscillation is larger in the direct simulation than
that obtained with double-averaged calculation. Both the lines in each panel have
the same minimum values but the maximum values are enhanced in dark-green
lines. In the result of the IER type (bottom panel of Fig. 2.18), the enhancement
of the amplitude in the direct simulation is observed as seen in the ICL and ICR
types, but both the maximum and minimum values in the dark-green line are smaller
than those of the light-green line. In the result of the IEL type, (bottom panel of
Fig. 2.17), on the other hand, the amplitudes of both two lines are almost the same.
These differences are summarized in Table 2.6.

From the above features, the double-averaging method with the quadrupole ap-
proximation works well for the ICL, IEL, and ICR types of the ZLK oscillations
in this model, but it should not be applied to the IER type because the deviation
from the direct integration cannot be neglected in this type. One may wonder that
the double averaging method can be improved if the higher-multipole interaction
terms are taken into account. However, in the models with the PN-binary, the
evolution equation obtained from octupole-order equations under the test-particle
limit are completely the same as quadrupole ones because the octupole terms are
always proportional to the mass difference m1 − m2 (see Eq. (2.26), which is ob-
tained from Ford et al. (2000)). In order to consider the octupole-order effect for the
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Figure 2.17: Comparison between two evolution lines of the averaged inner ec-
centricity ēin obtained by the direct integration (solid green line) and the double-
averaging method (dashed light-green line) for the libration type of the ZLK oscil-
lations in the PNN model. The top and bottom panels are the results of the ICL
and IEL types, respectively.
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Figure 2.18: The same figure as Fig. 2.17 for the “rotation” type of the ZLK
oscillations in the PNN model. The top and bottom panels show the results of the
ICR and IER types, respectively.
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Type θ2 C
(1PN)
ZLK method emin emax TZLK[yrs]

ICL 0.25 −3.18× 10−5 direct 0.00728 0.687 12.465
average 0.00613 0.683 12.858

ICR 0.25 6.20× 10−5 direct 0.00689 0.687 12.117
average 0.00768 0.683 11.937

IEL 0.232 −0.170 direct 0.525 0.605 3.473
average 0.524 0.600 3.477

IER 0.32 0.0667 direct 0.170 0.654 5.083
average 0.267 0.675 4.046

Table 2.6: The differences between the eccentricity evolutions calculated by the
direct integration and by the double averaging method for the PNN model. The
maximum and minimum eccentricities and the ZLK timescale TZLK are given. The
first and second rows in each value show those obtained by the direct integration
and by the double-averaging method, respectively.

system with m1 = m2, the potential with octupole order terms should be derived as
the quadrupole order potential with massive objects derived in Naoz et al. (2013a),
which is beyond the scope of this chapter.

Hence, to see the effect of the octupole-order terms, we instead analyze the PBB
model with different-mass binary. The octupole-order double-averaging method is
also calculated in the same way as that used for the quadrupole-order one. Figs. 2.19
and 2.20 show the evolution curves obtained by the direct integration (dark-green
solid line), by the double-averaging method with quadrupole-order terms (light-green
dashed line), and by that with the octupole-order terms (dark-blue dashed line). In
the bottom panels of Figs. 2.19 and 2.20, the quadrupole- and octupole-order lines
are almost the same but are different from the result of the direct-integration. In
the top panels of Figs. 2.19 and 2.20, on the other hand, the difference between
the results of quadrupole- and octupole-order expansion are seen. In the top panel
of Fig. 2.19, the octupole-order expansion gives a better result compared with the
quadrupole one. In the top figure of Fig. 2.20, if one looks at the second period, the
result of the octupole-order expansion is better, but the opposite result is seen in the
fourth period. This is possible because the result obtained by the direct integration
sometimes shows an irregular period. I will revisit this point later in this subsection.

From these results for the PBB model, I cannot confirm that the octupole-order
expansion improves the accuracy of the double-averaging method. What I can con-
clude here is that the double-averaged calculations not only in quadrupole-order but
also octupole-order expansion do not exactly reproduce the evolution obtained by
the direct integration. I remark that the deviation seen in the eccentricity evolution
may be crucial when one evaluates the GW emission for the systems with finite
masses because one may overestimate or underestimate the value of the eccentricity
with the double-averaging method and the amplitude and frequency of GWs are
strongly sensitive to the eccentricity, especially for the highly eccentric orbit like
e > 0.9. Here I stress that it may be important to calculate the evolutions of such
systems by direct integration.
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Figure 2.19: Three evolution lines of the averaged inner eccentricity ēin for the
libration type of the ZLK oscillations in the PBB model obtained by three different
methods: the direct integration (solid green line), the double-averaging method with
the quadrupole approximation (dashed light-green line) and that with the octupole
approximation (dashed dark-blue line). The top and bottom panels show the results
of the ICL and IEL types, respectively.
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Figure 2.20: The same figure as Fig. 2.19 but for the “rotation” type of the ZLK
oscillations in the PBB model. The top and bottom panels show the results of the
ICR and IER types, respectively.
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Figure 2.21: The same figure as Fig. 2.15 but for the PNIB model. The top and
bottom panels correspond to the results of the ICL and IEL types, respectively.

Newtonian v.s. post-Newtonian

Figs. 2.21 and 2.22 are the same figures as Figs. 2.15 and 2.16 but for the PNIB
model. The former and latter figures show the results of the libration and rotation
types of the ZLK oscillations, respectively. As in the figures for the PNN model, top
and bottom panels in each figure are the results of initially circular and eccentric
types, respectively. As seen in Figs. 2.15 and 2.16, initially eccentric types (bottom
panels) have smaller amplitudes and shorter timescale than those of initially circular
types (top panels), which is similar to the results of the PNN model. The ZLK
conserved value θ̄2 is almost constant in the PNIB model unlike that in the PNN
model, which means that the test-particle limit is valid in this model. In fact, the
deviation from the double-averaging method is smaller than that of the PNN model.

The PNIB model has the largest value of ε(1PN) in Table 2.3 and its relativistic
effect may be strong enough to affect the ZLK oscillation. In Figs. 2.23 and 2.24, the
evolutions of the eccentricity obtained by the 1PN and Newtonian direct simulations
are shown as the dark-green and light-green solid lines, respectively. Each figure
exhibits the results of the libration and rotation types of the ZLK oscillations. The
top and bottom panels in each figure show the results of the initially circular and



68 CHAPTER 2. VON ZEIPEL-LIDOV-KOZAI MECHANISM

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0  5  10  15  20  25  30
 40

 45

 50

 55

 60

 65

e-
in

, 
θ- 2

I-  [
d

e
g

]
t [yr]

I
- e- in θ

-2

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0  5  10  15  20  25  30
 40

 45

 50

 55

 60

 65

e-
in

, 
θ- 2

I-  [
d

e
g

]

t [yr]

I
- e- in θ

-2

Figure 2.22: The same figure as Fig. 2.16 but for the PNIB model. The top and
bottom panels correspond to the results of the ICR and IER types, respectively.
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Figure 2.23: Comparison between Newtonian and post-Newtonian evolution curves
of the averaged inner eccentricity ēin for the “libration” type of the ZLK oscillations
in the PNIB model. The top and bottom panels correspond to the results of the ICL
and IEL types, respectively. The light- and dark-green curves describe the results
obtained from Newtonian and 1PN direct simulations, respectively.

eccentric types.

The tendency of the difference between the two curves is complicated. In the
results of the ICL and ICR types (top panels of Figs. 2.23 and 2.24), both the
1PN and Newtonian curves have the same minimum values (about zero), but the
maximum value is suppressed in the 1PN curve, that is, the amplitude of the ZLK
oscillation is smaller in the 1PN calculation. In these initially circular types, the
ZLK timescale is a little longer in the 1PN result. In the results of the IEL and IER
types (bottom panels of Figs. 2.23 and 2.24), on the other hand, the ZLK timescale
obtained by the 1PN calculation is shorter than that obtained by the Newtonian
one. About the amplitude, interestingly, the IEL (bottom panel of Fig. 2.23) and
IER (bottom panel of Fig. 2.24) types have different features. In the IEL type, the
amplitude obtained by the 1PN simulation is smaller than that of the Newtonian
result and both the maximum and minimum values are suppressed unlike the results
of the ICL and ICR types. On the other hand, in the result of the IER type, the
amplitudes of the 1PN and Newtonian results are almost the same but both the
maximum and minimum values of the 1PN result are shifted downward.
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Figure 2.24: The same figure as Fig. 2.23 for the “rotation” type of the oscillations
in the PNIB model. The top and bottom panels correspond to the results of the
ICR and IER types, respectively.
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These complicated features can be understood basically by using the double-
averaging method as discussed in §2.2.2. As in Fig. 2.7, the curves of the maximum
and minimum eccentricities in terms of CZLK in Newtonian dynamics is shifted to the
right when the 1PN term is taken into account by fixing C

(1PN)
ZLK = CZLK. In Fig. 2.7,

one can find that the maximum value decreases and the minimum value increases
for the libration type, while both maximum and minimum values decrease for the
rotation type. These features are consistent with the properties seen in Figs. 2.23
and 2.24. I summarize the amplitude and timescale of the ZLK oscillation obtained
by 1PN and Newtonian direct simulations in Table. 2.7. In the table, I also add the
amplitude and timescale calculated by the 1PN double-averaging analysis in §2.2.2
as a reference.

Type θ2 C
(1PN)
ZLK method emin emax TZLK[yrs]

ICL 0.25 −1.64× 10−5 N (direct) 0.00438 0.761 36.779
1PN (direct) 0.00550 0.680 36.913

1PN (average) 0.00509 0.668 37.673
ICR 0.25 7.73× 10−5 N (direct) 0.00869 0.761 32.231

1PN (direct) 0.00776 0.680 32.60
1PN (average) 0.00789 0.668 32.820

IEL 0.232 −0.0931 N (direct) 0.328 0.749 11.419
1PN (direct) 0.450 0.605 10.804

1PN (average) 0.428 0.599 11.144
IER 0.32 0.143 N (direct) 0.377 0.738 9.992

1PN (direct) 0.322 0.672 9.504
1PN (average) 0.336 0.669 9.111

Table 2.7: The differences between the eccentricity evolutions calculated by the
Newtonian and 1PN direct integrations for the PNIB model. The amplitude and
timescale calculated by the 1PN double-averaging analysis are also summarized as a
reference. The first, second, and third rows give the results of the Newtonian direct
integration, the 1PN direct integration, and the 1PN double-averaging method.

Irregularity of KL oscillation period

As we showed above, the amplitude of the ZLK oscillation and its timescale can be
understood basically by the double-averaging method. However, sometimes there
appears an irregularity of the period in the results calculated by the direct integration
for some models. For example, the irregular periods are seen in the ZLK oscillations
in the ICR type of the PNB and PBB models as shown in Fig. 2.25. This irregular
behavior in the period of the ZLK oscillation was already found in Antonini and
Perets (2012). They calculated orbital evolutions of BH binaries around SMBH by
the direct integration and found the irregular periods and amplitudes in the ZLK
oscillation (Fig. 3 in Antonini and Perets (2012)), which is consistent with but rather
more drastic than the results obtained in this chapter.

Note that the amplitude and timescale of the ZLK oscillation are strongly de-
pendent on two conserved quantities θ2 and C

(1PN)
ZLK , but not so much on the 1PN
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Figure 2.25: The same figures as Fig. 2.23 for the ICR type of the ZLK oscillations
in the PNB model (top) and the PBB model (bottom). The periods between two
peaks are not regular on the Newtonian curve in the top panel and on the 1PN curve
in the bottom panel.
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Figure 2.26: Time evolutions of CZLK and C
(GR)
ZLK for the ICR type KL-oscillations

in the PNB model (top) and the PBB model (bottom), respectively.

parameter ε(1PN) except for the ICL type, in which the 1PN effect is important be-
cause it changes the existence range of the ZLK oscillation (see Eq. (2.33)). Hence,
I analyze the behavior of the “conserved” quantities in the direct integration. As
seen in Figs. 2.15 and 2.16, the value of θ2 is not conserved but oscillates and dras-
tically changes when the eccentricity reaches the maximum value. As for the other
“conserved” quantity, the time evolution of CZLK and C

(1PN)
ZLK for the models shown

in each panel in Fig. 2.25 are exhibited in the top and bottom panels of Fig. 2.26,
respectively. These values are no longer conserved especially when the eccentricity
reaches the maximum value. However, I remark that it becomes almost constant
again when the eccentricity decreases. This time evolution of the “conserved” quan-
tities may cause the irregular oscillations in the direct integration.

In order to analyze the detail, in Table 2.8, I show the numerical values of the
oscillation periods obtained from the results in Fig. 2.25. The period n (n = 1, 2, 3)
denotes the period from the n-th peak of the eccentricity to the (n + 1)-th peak.
I also show the constant “conserved” values after the eccentricity passes through
the maximum value. In addition, I also show the ZLK timescale evaluated by the
double-averaging method with those values of CZLK or C

(1PN)
ZLK , which are given as

“period n (ave)” in the third row of each period in Table 2.8. One finds that
those ZLK timescales evaluated by using the “conserved” quantity and the double-
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PNB PBB
Newtonian 1PN Newtonian 1PN

period 1 8.6 yrs 8.8 yrs 7.4 yrs 8.0 yrs

CZLK or C
(1PN)
ZLK 3.2× 10−5 5.5× 10−5 2.6× 10−5 −2.7× 10−5

period 1 (ave) 9.34 yrs 8.90 yrs 8.06 yrs 8.03 yrs
period 2 10.0 yrs 8.8 yrs 7.6 yrs 7.2 yrs

CZLK or C
(1PN)
ZLK 5.2× 10−6 5.6× 10−5 1.9× 10−5 −7.9× 10−5

period 2 (ave) 10.77 yrs 8.88 yrs 8.26 yrs 7.31 yrs
period 3 8.6 yrs 8.8 yrs 7.2 yrs 7.1 yrs

CZLK or C
(1PN)
ZLK 3.2× 10−5 5.6× 10−5 3.1× 10−5 −1.1× 10−4

period 3 (ave) 9.34 yrs 8.88 yrs 7.94 yrs 7.09 yrs

Table 2.8: The period of the ZLK oscillations obtained from the results in Fig. 2.25.
The period n (n = 1, 2, 3) denotes the period from the n-th to the (n+ 1)-th peaks
of the eccentricity obtained from the direct integration results. The value of CZLK or
C

(1PN)
ZLK is the “conserved” value after the eccentricity passes through the maximum

value. The periods calculated by the double-averaging method with the obtained
CZLK or C

(1PN)
ZLK are given as the period n (ave), in the third rows of each period.

averaging estimation are consistent with the numerical ones obtained from the direct
integration. I believe that these small deviations of the “conserved” values in each
period cause a small irregularity of the ZLK oscillation period. Small differences from
the numerical results still exist. I think this may be caused by a large deviation of
CZLK or C

(GR)
ZLK near the maximum eccentricity.

As discussed in Antonini et al. (2017), this irregular behavior and the evolution of
the “conserved” quantities may be caused by the effects of the higher-order multipole
terms that are neglected in the double-averaging method. If the eccentricity excites
in the orbital evolution, one may need to consider many higher-order multipole
terms to obtain the exact evolution with the double-averaging method. Will (2017)
calculated the expansion up to hexadecapole order and showed that even such higher-
order effects could not be neglected in the orbital evolution with the excitation of
the eccentricity. Hence, here I stress again that it should be important to calculate
the ZLK mechanism with the direct integration.

2.4.2 Cumulative Shift of Periastron Time

The ZLK oscillation shown in §2.4.1 affects the evolution of the CSPT, ∆P , of the
binary pulsar in the hierarchical triple system. As I showed in §2.3.2, if a hierarchical
triple system shows the ZLK oscillations in the observation period, the bending of
the CSPT curve is expected. This is because when the eccentricity becomes large,
the GW emission is enhanced and then the orbital period changes drastically. Here
I discuss how the bending of the CSPT curve depends on the models or types of the
ZLK oscillation.

The time evolution of the CSPT is calculated as explained in §2.4.2 for each
model in Tables 2.3 to 2.5. Since the behavior of the CSPT curves of these models
is similar, only the results for the PNIB model are shown here as representative



2.4. RESULTS AND DISCUSSIONS 75

-16

-14

-12

-10

-8

-6

-4

-2

 0

 0  5  10  15  20

∆
P
 [
s
]

TN [yr]

KL-ICL
isolated binary

KL-IEL
isolated binary

-12

-10

-8

-6

-4

-2

 0

 0  5  10  15  20

∆
P
 [
s
]

TN [yr]

KL-ICL
isolated binary

KL-IEL
isolated binary

Figure 2.27: The CSPT curve for the libration type of the ZLK oscillation in the
PNIB model. The top and bottom panels are the results integrated from the time
when the maximum and minimum eccentricities are obtained, respectively. The
blue and red solid curves in both the panels correspond to the results of the ICL
and IEL types, respectively. The dashed curves are the CSPT curves of the isolated
binaries whose parameters are the same as the initial values of the inner binaries of
the corresponding types.
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Figure 2.28: The same figure as Fig. 2.27 but for the rotation type. The blue and
red solid curves are the results of the ICR and IER types.
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avoiding just showing many similar figures. Figs. 2.27 and 2.28 show the results of
the libration and rotation types of the ZLK oscillations, respectively. In each panel,
the results of the initially circular and eccentric types are shown as the red and
blue solid curves, respectively. The top panel in each figure shows the CSPT curves
calculated from the time when the maximum eccentricity in each ZLK oscillation
type (at t = 15.21 yr, t = 0 yr, t = 14.96 yr and t = 1.32 yr for the ICL, IEL, ICR,
and IER types, respectively) is obtained, while the bottom panel exhibits those
calculated from the time when the eccentricity reaches the minimum value (at t = 0
yr, t = 5.40 yr, t = 0 yr and t = 6.10 yr for the ICL, IEL, ICR, and IER types,
respectively). By comparing the top and bottom panels, one can find that the CSPT
curves become completely different depending on the choice of the initial time of
the integration, TN = 0, even for the same model. As a reference, I also show the
CSPT curves of the isolated binaries whose parameters are the same as the initial
parameters of the inner binaries in corresponding hierarchical triple models, by the
red and blue dashed curves. The curves of the isolated binaries are approximated
by the quadratic functions as Eq. (2.62).

At first, the CSPT curves of the triple systems coincide with the quadratic
curves of corresponding isolated binaries. However, when the eccentricity changes
with the ZLK oscillation, the curves of the triple systems bend and the discrepancy
from those of the isolated binaries becomes large as already shown in §2.3.2. This
is because the decrease of the orbital period of the inner binary due to the GW
emission Ṗin depends on the orbital eccentricity as given by Eq. (2.52). Hence, the
ZLK oscillation of the orbital eccentricity changes Ṗin and then causes the large
deviation of the CSPT curve from the quadratic curve.

In the top panels of Figs. 2.27 and 2.28, the solid curves at first coincide with the
quadratic curves of the eccentric isolated binaries, but they switch to the less steep
curves as the eccentricities become smaller by the ZLK oscillation. This feature
causes a slower decrease of ∆P in the triple system compared with that of the
isolated eccentric binary. The slope and bending timescale of the red and blue solid
curves are different from each other depending on the amplitude and timescale of the
ZLK oscillation. On the other hand, in the bottom panels of Figs. 2.27 and 2.28,
the switch from the circular curves to the eccentric steeper curves results in the
rapid decrease of ∆P in the triple system curves than those of the isolated circular
binaries.

This bending feature may be useful to detect the ZLK oscillation from the ob-
servation of pulsars. The shape of the CSPT curve has the information on the
amplitude and timescale of the ZLK oscillation in its slope change. The bending of
the CSPT curve is clear when the curve is integrated from the minimum eccentricity
(bottom panels of Figs. 2.27 and 2.28), but the curve from the maximum eccentric-
ity (top panels of these figures) does not show clear bending. The change of the
CSPT curve becomes clearer, however, if the time-derivative of ∆P is plotted. In
Figs. 2.29 and 2.30, the time-evolution of d∆P/dTN for libration and rotation types
of the ZLK oscillations are plotted, respectively. In the top and bottom panels in
each figure, d∆P/dTN is calculated from the time when the maximum and minimum
eccentricities are obtained, respectively. In each panel, the red and blue curves are
the results of the initially circular and eccentric types. The clear changes of the
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Figure 2.29: Time derivative of the CSPT d∆P/dt calculated for the libration type
of the ZLK oscillation for the PNIB model. The top and bottom panels are the
results calculated from the time when the maximum and minimum eccentricities are
obtained, respectively. The blue and red solid curves are the results of the ICL and
IEL types.

slopes of d∆P/dTN curves are seen in these figures even for the curve integrated
from the maximum eccentricity (top panels).

Here the slope of the d∆P/dTN curve is defined from Eq. (2.61) as

S(TN) =
d2∆P

dT 2
N

=
Ṗin(TN)

Pin(0)
. (2.69)

When the eccentricity gets large, the slope of the d∆P/dTN curve becomes steep,
i.e., the absolute value of S(TN) becomes large, and vise versa. Hence, the difference
between the minimum and maximum values of the slope (Smin and Smax) indicates
the amplitude of the ZLK oscillation.

The magnitude of S(TN) depends not only on the eccentricity but also on the
other model parameters. If a system has a smaller semi-major axis or larger masses
in its inner binary, the GW emission rate is larger, which makes the slope of the
d∆P/dTN curve becomes steeper. In Table 2.9, I summarize the minimum slope
Smin and the maximum slope Smax as well as the ZLK timescale TZLK, which gives
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Figure 2.30: The same figures as Fig. 2.27 but for the rotation type of the ZLK
oscillation. The blue and red solid curves are the results of the ICR and IER types.
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the time interval between minimum and maximum slopes, for all models calculated
in this section.

For the Hulse-Taylor binary, the slope is SHT ≈ −8.57 × 10−2. Hence it is
expected that the observation of the change of the slope is possible for most models
except for the models with the P-BH inner binary. The models with the P-BH inner
binary give the smallest absolute values of S(TN), for which we may need more
precise observation to find the CSPT curve. In each model, the difference between
Smin and Smax in the IEL type is the smallest of all types of ZLK oscillations. This
is because the amplitude of the ZLK oscillation in this type is the smallest as seen
in Figs. 2.17 and 2.23.

Next, I discuss the spin-orbit coupling effect mentioned in §2.3.2. The spin-orbit
coupling in 1.5PN terms (Barker and O’Connell, 1975) may change the direction
of the pulsar rotation axis, which may affect the radio observation. In the other
words, the change of the beaming direction of the pulse signal due to the 1.5PN
effect may cause the disappearance of the pulsar in the radio observation. Following
Liu and Lai (2017, 2018), the evolution of spin in the ZLK oscillation due to the
1.5PN effect is characterized by the “adiabaticity parameter” A defined as the ratio
of the de-Sitter spin precession rate ΩSL to the orbital precession rate by the ZLK
oscillation ΩL. The adiabaticity parameter A is described as

A ≡
∣∣∣∣ΩSL

ΩL

∣∣∣∣ ' 4
rg,in
ain

m1 + µin/3

m3

(
aout
ain

)3

(1− e2out)
3
2 , (2.70)

where µin ≡ m1m2/(m1 +m2) is the reduced mass of the inner binary. This param-
eter is quite similar to ε(1PN) defined in Eq. (2.28). When the ZLK oscillation is suc-
cessfully obtained in the relativistic three-body system, the condition in Eq. (2.33)
derived with ε(1PN) should be satisfied. By rewriting ε(1PN) with A, I find that the
adiabaticity parameter A should satisfy

A .
m1(3m1 + 4m2)

(m1 +m2)2
(1− e2in)

3
2 ≤ 3. (2.71)

The adiabaticity parameters of our models are summarized in Table 2.10.
In case that A � 1, the spin evolution is classified as “non-adiabatic”, that is,

the orbital precession by the ZLK oscillation is much faster than the relativistic
spin precession, and then the spin axis cannot ‘catch up’ with the precession of the
angular-momentum axis. In the non-adiabatic evolution, the spin axis of the pulsar
is expected to be parallelly transported just as in the Newtonian case, which means
that the beaming direction of the radio signal is expected not to change so much
even when the inclination changes by the ZLK oscillation. The PBB model may
correspond to this case. For the other models, A is still smaller than unity, but
not extremely small. In the system with such a mid-range of A, the spin axis of
the pulsar is perturbed around its initial direction as shown in Liu and Lai (2018).
If the perturbation is large enough so that the beaming angle of the pulsar goes
out from the observable range, the radio signal from the pulsar will disappear and
will rarely re-appear due to the complicated evolution of the spin direction of the
pulsar. If such a disappearance of a pulsar is observed, it will be an important
example of the 1.5PN effect on the ZLK oscillation. The critical value of A for the
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Model Type TKL [yr] Smin[s/yr2] Smax[s/yr2]
PNN ICL 12.7 -0.475 −2.02× 10−2

ICR 12.0 -0.476 −2.02× 10−2

IEL 3.47 -0.215 -0.117
IER 4.08 -0.423 −3.10× 10−2

PNB ICL 9.18 -0.902 −2.02× 10−2

ICR 8.84 -0.903 −2.02× 10−2

IEL 2.48 -0.223 -0.167
IER 3.40 -0.480 −2.79× 10−2

PNIB ICL 36.9 -0.442 −2.02× 10−2

ICR 32.6 -0.442 −2.02× 10−2

IEL 10.8 -0.215 −7.28× 10−2

IER 9.50 -0.406 −3.91× 10−2

PNSB ICL 1.98 -1.21 −1.99× 10−2

ICR 1.97 -1.21 −2.02× 10−2

IEL 0.588 -0.255 -0.179
IER 0.876 -0.527 −2.34× 10−2

PBB ICL 7.05 −2.70× 10−2 −4.85× 10−4

ICR 7.99 −2.72× 10−2 −4.88× 10−4

IEL 2.23 −6.33× 10−3 −4.62× 10−3

IER 3.19 −1.38× 10−2 −6.01× 10−4

PBIB ICL 75.1 −2.13× 10−2 −4.85× 10−4

ICR 69.9 −2.13× 10−2 −4.86× 10−4

IEL 21.6 −5.40× 10−3 −3.88× 10−3

IER 29.1 −1.20× 10−2 −6.90× 10−4

PBSB ICL 14.0 −2.82× 10−2 −4.85× 10−4

ICR 14.5 −2.86× 10−2 −4.87× 10−4

IEL 4.09 −6.28× 10−3 −4.37× 10−3

IER 5.96 −1.41× 10−2 −6.08× 10−4

PIBIB ICL 2.50 -6.04 -0.516
ICR 2.26 -6.01 -0.518
IEL 0.899 -6.34 -0.771
IER 0.491 -10.5 -1.20

PIBSB ICL 1.20 -11.5 -0.516
ICR 1.20 -11.5 -0.519
IEL 0.400 -7.69 -1.48
IER 0.339 -13.7 -0.915

Table 2.9: The minimum and maximum slopes Smin and Smax and the ZLK timescale
TZLK for all the models calculated in this section are summarized.
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name A
PNN 0.103
PNB 0.075
PNIB 0.282
PNSB 0.0181
PBB 0.0125
PBIB 0.129
PBSB 0.0242
PIBIB 0.683
PIBSB 0.396

Table 2.10: The adiabaticity parameter A is calculated for all the models in this
section.

disappearance of the signal should depend on the radio emission mechanism of the
pulsar, the intensity of the radio signal, the distance to the system, and the opening
angle of the radio telescope. If the CSPT is observed for a whole ZLK timescale
despite the precession of the spin direction of the pulsar, it means the pulsar is
successively observed from some different directions and such observation may give
new information about the pulsar.

The hierarchical three-body system which causes the bending of the CSPT curve
requires high relative inclination so that the ZLK oscillation occurs. Such highly
inclined triple systems may need to be formed by the dynamical interaction in
dense environments like globular clusters and galactic nuclei (Kulkarni et al., 1993;
Samsing et al., 2014; Zevin et al., 2019). Hence we need a large N -body simulation
to estimate event rates of the observation of bending of the CSPT. The distance to
the system should be close enough to observe the radio signals, which should also
be considered to estimate the event rate. Though such a large N -body simulation
considering all factors is beyond the scope of this chapter, it can be expected that
the observation of the bending of the CSPT curve may be a rare event. However,
as mentioned in §2.3.2, this interesting signal is important not only to confirm the
existence of the third body but to provide the first indirect evidence of GW emission
from triple systems. The GW emission makes the inner binary more compact. The
waveform of GW from such a compact triple system with the ZLK oscillation can
be observed by future GW detectors (Hoang et al., 2019; Randall and Xianyu,
2019; Deme et al., 2020; Gupta et al., 2020) like LISA (Amaro-Seoane et al., 2017),
DECIGO (Sato et al., 2017), and Big Bang Observer (Harry et al., 2006).

As explained in §2.3.2, for some binary pulsars like the PSR J1840-0643 system
(Knispel et al., 2013), the possible existence of the tertiary companion has not been
denied. Radio observations of such binary pulsars for a long period may lead to the
discovery of the first indirect evidence of the GW emission from the triple system
with ZLK oscillations through the detection of the bending of the CSPT curves.
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2.5 Summary

In this research, the ZLK oscillations in relativistic hierarchical triple systems with
compact objects were studied by taking the 1PN relativistic correction into account.
All the models in this research have a pulsar as a component of the inner binary
and the CSPT that may be observed in the radio signal from the pulsar was also
calculated.

The ZLK mechanism is one of the orbital resonances seen in the hierarchical
triple systems and characterized as the secular oscillations of the inner eccentricity
and the relative inclination. In the theoretical analysis using the double-averaging
method, the amplitude and timescale of the oscillation are determined by the two
conserved quantities, θ2 and CZLK. When the 1PN effect is taken into account, the
value of CZLK is no longer conserved, and, in addition to θ2, the new conserved
quantity with the 1PN correction that is named as C

(1PN)
ZLK determines the amplitude

and timescale of the ZLK oscillation. These amplitude and timescale obtained in
1PN calculation should be different from Newtonian ones.

When the eccentricity of the binary pulsar is excited by the ZLK oscillation, it
enhances the GW emission from the binary, which changes the shape of the CSPT
curve. The theoretical calculation method of the CSPT for a general hierarchical
three-body system with a binary pulsar was proposed in this chapter. An example
of the CSPT calculation was shown by using the parameters of the PSR J1840-0643
system. This system was chosen because the presence of the third body around this
binary pulsar has not been excluded yet. It was confirmed that the ZLK oscillation
effect appears in the CSPT as the bending of the curve. I discussed the parameter
space of the third body where the bending of the CSPT curve could be observed
within 100 yrs.

Then I introduced several models composed of compact objects including a pulsar
as a component of the inner binary. By fixing the parameters of some inner binaries,
the parameter region of the third body was discussed. The four sets of initial
parameters were chosen for each model to realize four different types of the ZLK
oscillation: the ICL, IEL, ICR, and IER types.

I calculated the orbital evolution of the models by the direct integration of the
1PN equations of motion. In the four types of ZLK oscillation, the amplitudes and
timescales are different, and, in addition, the non-test particle limit effect and the
1PN effect appeared differently. In the result of the model whose mass hierarchy is
small (e.g. PNN model), the “conserved” quantities are not conserved but oscillating
whereas they should be constant in the double-averaged method with the quadrupole
and test-particle limit approximations. It was also found that the amplitudes and
timescales obtained in the direct integration do not coincide with those obtained in
the double-averaged method. The tendency of these discrepancies is different in the
four types of ZLK oscillation. The amplitudes and frequencies of the GW are quite
sensitive to the eccentricity, and these differences between eccentricity evolutions
in the direct integration and the double-averaged method may be crucial when the
GW emission is estimated for the systems with finite masses. It may be better
to use the direct integration for the calculation of such systems because one may
overestimate or underestimate the maximum or minimum value of the eccentricity
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with the double-averaged method.
In the model with large ε(1PN) (e.g. PNIB model), clear differences between

the results obtained by the Newtonian and 1PN direct integrations are observed.
The 1PN effect appears differently in the four types of ZLK oscillation. Such com-
plicated behavior can be basically understood theoretically by using the double-
averaging method with the 1PN corrections. However, in some models (e.g. PNB
and PBB models), the irregular periods appear in the ZLK oscillation, which cannot
be explained by the double-averaging method. This may be because the conserved
quantities of the ZLK oscillation are not exactly constant in the direct integration.

As seen in the example with the PSR J1840-0643 system, the bending of the
CSPT curves are caused by the effect of the ZLK oscillation for all the other models.
The slope of the curve at each phase reflects the values of the maximum or minimum
eccentricity, while the time between two bending points indicates the ZLK timescale.
The shapes of the CSPT curves become completely different depending on the choice
of the initial time of the integration even for the same model. The bending of the
CSPT curve is clear when the curve is integrated from the time when the minimum
eccentricity is obtained, but the clear binding is not obtained for the curve calculated
from the time when the maximum eccentricity is reached. In the latter case, the
time derivative of the CSPT can be a good indicator of the bending.

The system that causes this interesting signal may be rare because such com-
pact hierarchical triple systems with relatively high inclinations may be formed by
dynamical interactions in dense environments like globular clusters or the galactic
center. However, once such systems are observed with the pulsar signal, it is very
important because it is the first indirect observation of the GW from triple systems.
It will be the precursor of the direct detection of the waveform of the GW by the
future gravitational detectors like LISA, DECIGO, and Big Bang Observer.

Some highly relativistic triple systems should show the spin precession of the
pulsar due to the spin-orbit coupling in the 1.5PN effect, which may change the
beaming angle of the pulsar. If the beaming angle of the pulsar is perturbed and
goes out of the observable range, the radio signals from the pulsar will disappear and
rarely appear again. If the disappearance of the signal from a pulsar in the triple
system occurs, it will provide one of the important examples of the 1.5PN effect on
the ZLK oscillation. On the other hand, if the CSPT is observed for a whole ZLK
timescale despite the precession of the spin direction of the pulsar, it means that
one successively observes a pulsar from different directions and such observation
may give new information about a pulsar.



Chapter 3

Hill Stability Problem

3.1 Purpose

The orbital stability of multi-body systems is one of the oldest problems that have
been discussed in celestial mechanics. Numerous astronomers, physicists, and math-
ematicians have discussed this problem from various perspectives with theoretical
and numerical analyses (e.g. Marchal and Bozis (1982); Gladman (1993); Eggleton
and Kiseleva (1995); Chambers et al. (1996); Mardling and Aarseth (2001); Deck
et al. (2013); Petrovich (2015)). In this chapter, I focus on one of the stability
problems called the Hill stability problem and extend the discussion to the general
relativistic regime.

The research of the Hill stability problem started from the study on the lunar
motion by Hill (1878). It is defined as orbital stability against a close approach, that
is, the system is Hill stable if none of the pairs of orbits in the system experiences a
close approach for all the time. In Hill’s pioneer paper (Hill, 1878) and the following
works (Szebehely, 1967; Hénon, 1970; Hénon and Petit, 1986), it was studied for a
limited configuration called the circular restricted three-body system, in which two
components have much smaller masses than the other one and are orbiting around
this massive component on coplanar and circular trajectories. A conserved quantity
called Jacobi integral found in such systems was used to analyze the motion. The
authors found that if the initial distance between the two orbits ∆ is large enough,
the two orbiting objects are separated by the so-called forbidden region for all the
time, and hence cannot approach each other, which means that the system is Hill
stable. A detailed analysis using so-called Hill’s coordinates was given by Hénon
and Petit (1986).

Various authors have extended the investigation of the Hill stability problem to
more and more general three-body systems (see Marchal and Bozis (1982); Milani
and Nobili (1983); Roy et al. (1984) and references therein). As a generalization of
the idea of the Jacobi integral, they analyzed the allowed and forbidden regions for
each component with the relation between the values of the total energy and the
angular momentum of the system.

In the 1990s, the Hill stability was focused on in the context of the evolution and
formation of planetary systems. After the first discovery of the extra-solar planetary
system in 1992 (Wolszczan and Frail, 1992), Gladman (1993) refined the sufficient

85
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condition of the Hill stability for general three-body systems derived by Marchal
and Bozis (1982) into simpler inequalities with respect to the orbital separations
under several approximations appropriate for the planetary systems. This simple
sufficient condition has been broadly used in planetary science.

In 1996, Chambers et al. (1996) explored the Hill stability for four- and more-
than-four-body systems with numerical simulations. It was surprising that the suf-
ficient condition for the Hill stability seems not to exist for these more-than-three-
body systems. Instead, they obtained a log-linear relation between the initial orbital
separation ∆ and the time that it takes the system to experience a close approach
Tstab. The limited configurations that three components with small masses orbit
around a massive object in coplanar and circular orbits were assumed in their pio-
neer work, and many authors have expanded the research considering different con-
figurations: elliptical orbits (Ito and Tanikawa, 1999; Chatterjee et al., 2008; Smith
and Lissauer, 2009; Pu and Wu, 2015), noncoplanar orbits (Marzari and Weiden-
schilling, 2002), unequal initial orbital separations (Marzari, 2014), and somewhat
more massive planets (Morrison and Kratter, 2016). The relation between the sys-
tem scale ∆ and the onset time of the instability Tstab obtained from these researches
have been applied to the studies of the formation of planetary systems (Chambers
and Wetherill, 1998; Iwasaki and Ohtsuki, 2006; Zhou et al., 2007), by interpreting
Tstab as the timescale for the collision of planetesimals.

So far, almost all works about the Hill stability problem have used Newtonian
mechanics for their discussions. It is fine because their main targets were satellites,
planets, and planetesimals. However, if one considers multi-body systems composed
of compact objects like black holes (BH), neutron stars (NS), and white dwarfs in
tight orbits, Newtonian mechanics is no longer appropriate and general relativity
must be taken into account.

As introduced in §1.2, such relativistic multi-body system has already been ob-
served (Ransom et al., 2014), and, as discussed in Chapter 2, more discoveries
through GW (Hoang et al., 2019; Randall and Xianyu, 2019; Deme et al., 2020;
Gupta et al., 2020) and radio observations (Suzuki et al., 2019, 2021) are also ex-
pected. It has been pointed out that the multi-body interactions between compact
objects in these relativistic systems are definitely important to make compact bi-
naries that experience coalescence within the Hubble time (Samsing et al., 2014;
Leigh et al., 2016, 2017; Liu and Lai, 2017; Zevin et al., 2019). The multi-body
interactions in dense environments like globular clusters or galactic centers have
been investigated with large-scale N -body numerical simulations (Secunda et al.,
2019; Fragione and Antonini, 2019) and the effect of the presence of supermassive
black holes (SMBH) or intermediate-mass black holes (IMBH) at the center of such
environments have been also explored (Trani et al., 2019a; Fragione and Bromberg,
2019; Trani et al., 2019b).

Although more and more attention has been paid to the studies of the relativistic
multi-body systems, few types of research have been devoted to a systematic exam-
ination of the stability problem in general relativity. One exception is the paper by
Ge and Alexander (1991), but their theoretical analysis can be applied only to the
Schwarzschild geometry, whose application to different configurations is not easy.

The purpose of this chapter is hence to investigate the effect of general relativity
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on the Hill stability. I use the PN approximation instead of the fully relativistic grav-
ity as in Ge and Alexander (1991) to make the application to different configurations
easier. As a first step, I address only relativistic three-body systems to obtain the
sufficient condition for the relativistic Hill stability, and only the 1PN effect is taken
into account. By limiting the configurations to have an SMBH or IMBH at the cen-
ter of the system and two orbiting objects with much smaller masses, for simplicity,
I successfully extend the theoretical Newtonian analysis in the previous works to
the 1PN gravity and give approximated sufficient conditions of the relativistic Hill
stability. Other configurations, more-than-three-body systems, and higher-order PN
effects will be discussed in future works.

Numerical simulations are also conducted with the 1PN equations of motion
to test the approximated sufficient conditions. I show that the systems are more
unstable in the sense of the Hill stability in the relativistic calculation than in the
Newtonian one and that the theoretical and numerical results are consistent with
each other. The approximated sufficient conditions will be useful not only to predict
the stability of relativistic three-body systems but also to analyze the results of
large-scale N-body simulations of dense environments like globular clusters.

In this chapter, first, in §3.2, I review the previous studies of the sufficient condi-
tion of the Hill stability problem discussed in Newtonian mechanics. Second, in §3.3,
I explain the analyses with the 1PN equations: I introduce the theoretical analysis
to give the approximated sufficient conditions of the relativistic Hill stability, and,
subsequently, the method for the numerical simulations to test the stability condi-
tions are explained. The results and discussions are presented in §3.4. I summarize
this chapter in §3.5.

3.2 Review of Newtonian Analyses

In this section, I review several important results in previous research about the Hill
stability done in Newtonian mechanics. First I derive an important typical distant
scale called Hill radius in §3.2.1. After that, in §3.2.2, I introduce the derivation
of the Newtonian sufficient condition of the Hill stability of the general three-body
systems and subsequently show the simpler description obtained assuming a limited
configuration.

3.2.1 Hill radius

In this section, an important distant scale called Hill radius is derived. It is obtained
from the analysis of the motion of a test particle moving around a binary system
with a circular orbit. The derivation is also explained in detail in e.g. Murray and
Dermott (2000).

Here the position of the test particle is denoted as rt and those of the massive
components are written as r1 and r2. The masses of the components of the binary
are denoted as m1 and m2. In the inertial frame, the equations of motion of the test
particle are written as

d2rt
dt2

= −∂U
∂rt

, (3.1)
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Figure 3.1: The configuration of the coordinates on the orbital plane. The coordi-
nates in the inertial frame are described as ξ and η, and those in the rotating frame
are shown as X and Y . The origins of both coordinates are at the center of mass of
the binary. The semi-major axis and the mean motion of the outer orbit is denoted
as a and n, respectively.

where U is the Newtonian potential defined as

U = − Gm1

|rt − r1|
− Gm2

|rt − r2|
. (3.2)

Here I denote the coordinates of rt in the inertial frame as rt = (ξ, η, ζ) and
consider a rotating frame that rotates with the outer circular orbit r∗t = (X, Y, Z).
I set the origin of both the coordinates at the center of mass of the binary and the
ξ-η (X-Y ) plane as the orbital plane of the binary. The ζ-axis coincides with the
Z-axis. The configuration on the orbital plane is shown in Fig. 3.1. The semi-major
axis and the mean motion of the binary orbit are denoted as a and n in the figure,
respectively. The relations between the two coordinates are given as

ξ = X cos θ − Y sin θ, (3.3)

η = X sin θ + Y cos θ, (3.4)

ζ = Z. (3.5)

The acceleration of the test particle is calculated from these equations as

ξ̈ = Ẍ cos θ − Ÿ sin θ − 2nẊ sin θ − 2nẎ cos θ

−n2X cos θ + n2Y sin θ, (3.6)

η̈ = Ẍ sin θ + Ÿ cos θ + 2nẊ cos θ − 2nẎ sin θ

−n2X sin θ + n2Y cos θ. (3.7)

ζ̈ = Z̈. (3.8)

The acceleration can also be calculated from the equation of motion (Eq. (3.1)) as

ξ̈ = −∂X
∂ξ

∂U

∂X
− ∂Y

∂ξ

∂U

∂Y
= − cos θ

∂U

∂X
+ sin θ

∂U

∂Y
, (3.9)
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η̈ = −∂X
∂η

∂U

∂X
− ∂Y

∂η

∂U

∂Y
= − sin θ

∂U

∂X
− cos θ

∂U

∂Y
, (3.10)

ζ̈ = −∂Z
∂ζ

∂U

∂Z
= −∂U

∂Z
. (3.11)

By using Eqs. (3.6) to (3.11), one can erase θ from the equations and obtain the
equations of motion in the rotating frame as

Ẍ − 2nẎ − n2X = − ∂U
∂X

, (3.12)

Ÿ + 2nẊ − n2Y = −∂U
∂Y

, (3.13)

Z̈ = −∂U
∂Z

. (3.14)

The second and third terms in the left-hand sides of Eq. (3.12) and Eq (3.13) corre-
spond to the Coriolis forces and the centrifugal forces, respectively. The latter ones
can be written in the potential form by using the centrifugal potential UCF defined
as

UCF ≡ −
1

2
n2(X2 + Y 2). (3.15)

Hence, the equations of motion of the test particle are rewritten with the total
potential Utot ≡ U + UCF as,

Ẍ − 2nẎ = −∂Utot

∂X
, (3.16)

Ÿ + 2nẊ = −∂Utot

∂Y
, (3.17)

Z̈ = −∂Utot

∂Z
. (3.18)

By multiplying Ẋ, Ẏ , and Ż to Eqs. (3.16), (3.17) and (3.18), respectively, and
summing up those values, I obtain

ẊẌ + Ẏ Ÿ + ŻZ̈ = −∂Utot

∂X

dX

dt
− ∂Utot

∂Y

dY

dt
− ∂Utot

∂Z

dZ

dt
= −dUtot

dt
. (3.19)

A conserved quantity called Jacobi integral Γ is calculated by integrating this equa-
tion with respect to time as

1

2
(Ẋ2 + Ẏ 2 + Ż2) + Utot = const. ≡ Γ. (3.20)

The first term in the left-hand side of Eq. (3.20) is greater than or equal to zero,
which gives

Utot ≤ Γ. (3.21)

The position of the test particle should satisfy this inequality, that is, this inequality
gives the allowed region of the motion of the particle. Especially, the criterion curve
Utot = Γ is called zero-velocity curve because the criterion is satisfied only when the
velocity of the test particle is zero.
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Figure 3.2: The contour map of Utot on the X-Y plane. The parameters of the
binary are chosen as m1 = 1.0 M�, m3 = 0.05 M� and a = 1.0 au. The Lagrange
points L1 to L5 are plotted as the black dots. Detail explanation of the figure is in
the text.

In Fig. 3.2, the contours of Utot on the X-Y plane are plotted for a binary system
whose parameters are chosen as m1 = 1.0 M�, m2 = 0.05 M� and a = 1.0 au. The
black points L1 to L5 in Fig. 3.2 are the special solutions of the equation of motion
of the restricted triple systems called the Lagrange points. They are obtained by
solving Eqs. (3.16) to (3.18) with the right-hand-side set as zero. The coordinates
of the Lagrange points L4 to L5 are given as

X = a

{
1

2
− m1

m1 +m2

}
, Y = ±

√
3

2
a. (3.22)

For the systems with m1 > m2, the X-coordinates of the Lagrange points L1 to L3

are given as the expansions with m2/m1 as

XL1 = a

{
m1

m2 +m1

−
(
m2

3m1

) 1
3

+
1

3

(
m2

3m1

) 2
3

− . . .
}
, (3.23)

XL2 = a

{
m1

m2 +m1

+

(
m2

3m1

) 1
3

+
1

3

(
m2

3m1

) 2
3

− . . .
}
, (3.24)

XL3 = a

{
− 1 +

7

12

(
m2

m1

)
− 7

12

(
m2

m1

)2

+ . . .

}
. (3.25)

In a test-particle limit m2 � m1, the higher-order terms are neglected and the



3.2. REVIEW OF NEWTONIAN ANALYSES 91

coordinates are approximated as

XL1 ≈ a

{
1−

(
m2

3m1

) 1
3
}
, (3.26)

XL2 ≈ a

{
1 +

(
m2

3m1

) 1
3
}
, (3.27)

XL3 ≈ a

{
− 1 +

7

12

(
m2

m1

)}
. (3.28)

A region inside the eight-shape contour crossing the Lagrange point L1 is called
Roche lobe. In the Roche lobe, the allowed region of a test particle is inside of
a counter that corresponds to the given Jacobi constant Γ. The boundary of the
allowed region is given as a sphere whose center is on a component of the binary. The
largest sphere around the component is called as Hill sphere. As seen in Fig. 3.2,
the radius of the Hill sphere can be approximated by the distance between the
component and the Lagrange point L1. Especially, in the test particle limit m2 �
m1, the distance between the component with smaller mass and the Lagrange point
L1 is obtained from the coordinate of L1 in Eq. (3.26) as

RHill,2 =

(
m2

3m1

) 1
3

a. (3.29)

Such approximated radius of the Hill sphere is called Hill radius. When the Hill
stability problem is discussed, the Hill radius is regarded as a typical scale where
the gravitational force from the object can be dominant.

3.2.2 Sufficient Conditions for Three-Body Systems

In this section, I review the derivation of the sufficient condition of the Hill stability
for general three-body systems by Marchal and Bozis (1982) and introduce the
simplified sufficient conditions for the Hill stability of planetary systems obtained
by Gladman (1993).

Marchal and Bozis (1982) defined the generalized Hill stability for general three-
body systems as follows: a triple system is stable in the sense of the Hill stability
if it can be grouped into a close bounded binary and a third body orbiting it. I
remark that even if the third body escapes from the system, the system is Hill
stable according to this definition.

The Hill stability of a given three-body system had been discussed especially in
the 1970s and 1980s with the topological analyses (see e.g. Hénon (1970); Hénon
and Petit (1986); Marchal and Bozis (1982); Milani and Nobili (1983); Roy et al.
(1984)). The Hill stability can be judged by the phase space of the third body in the
triple system, which is divided into allowed and forbidden regions. If the forbidden
region exists between the orbits of the inner binary and the third body in the phase
space, they cannot approach each other closely, that is, the system is Hill stable.
This means that the existence of the forbidden region between the two orbits works
as a sufficient condition for the Hill stability of the three-body system.
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Allowed and Forbidden Region from Sundman’s Inequality

First, I explain how the allowed and forbidden regions are obtained from the con-
served quantities of the three-body system in Newtonian mechanics. This is the
generalization of the discussion with the Jacobi integral shown in the last subsec-
tion. In the analysis of the three-body system, Sundman’s inequality plays a quite
important role (see e.g. Ge and Alexander (1991); Ge and Leng (1994)). The in-
equality is written as(∑

j

mjr
2
j

)(∑
j

mjv
2
j

)
≥

∣∣∣∣∣∑
j

mjrj × vj

∣∣∣∣∣
2

+

∣∣∣∣∣∑
j

mjrj · vj

∣∣∣∣∣
2

. (3.30)

In the stability analysis, mj, rj, and vj in this inequality normally mean the mass,
position, and velocity vectors of the j-th object, respectively. I remark, however,
that two vectors can be chosen arbitrarily and mj can take an arbitrary positive
value in fact. The subscript j runs from 1 to an arbitrary integer N , which is chosen
to be N = 3 in this research. This inequality is proven by using the well-known
Cauchy’s inequality. The proof is shown in Appendix B.

Here I choose mj, rj, and vj to be the mass, position, and velocity vectors as
usual. Then the inequality (3.30) can be rewritten with some Newtonian character-
istic quantities of the system as

2

(∑
j

mjr
2
j

)
(HN − UN) ≥ J2

N +

∣∣∣∣∣∑
j

mjrj · vj

∣∣∣∣∣
2

, (3.31)

where HN, UN, and JN are the total Hamiltonian, gravitational potential, and the
magnitude of the total angular momentum, respectively. These quantities are de-
fined as

HN =
1

2

∑
j

mjv
2
j + UN, (3.32)

UN = −1

2

∑
i

∑
j 6=i

Gmimj

rij
, (3.33)

JN =

∣∣∣∣∣∑
j

mjrj × vj

∣∣∣∣∣ , (3.34)

where rij = |ri − rj| is the distance between the i-th and j-th objects. The second
term on the right-hand side of the inequality (3.31) is positive and I obtain

2

(∑
j

mjr
2
j

)
(HN − UN) ≥ J2

N. (3.35)

Since this inequality depends only on the positions, when two of the three positions
are fixed, the condition for the remaining position is given. In other words, the
allowed regions of the remaining body are characterized by the conserved quantities
of the system HN and JN by the inequality (3.35). Hence the Hill stability of a
given three-body system can be judged if one knows the conserved quantities of the
system and if the positions of two objects are fixed.
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Derivation of Sufficient Condition

From the inequality (3.35), Marchal and Bozis (1982) successfully obtained the
sufficient condition of the Hill stability of general three-body systems. Here I explain
their strategy.

They rewrite the inequality (3.35) by introducing several new parameters de-
scribing distances. First, they rewrite the positions in the inequality (3.35) by two
distances: the mean quadratic distance ρ and the mean harmonic distance η. These
distances are defined as

ρ2 ≡ m1m2r
2
12 +m2m3r

2
23 +m3m1r

2
31

m1m2 +m2m3 +m3m1

, (3.36)

1

ν
≡ 1

m1m2 +m2m3 +m3m1

(
m1m2

r12
+
m2m3

r23
+
m3m1

r31

)
. (3.37)

Another two distances corresponding to the conserved quantities of the system are
also introduced: the generalized semi-major axis a∗ and the generalized semi-latus
rectum p∗. These distances are defined as

a∗ ≡ −G(m1m2 +m2m3 +m3m1)

2HN

, (3.38)

p∗ ≡
(m1 +m2 +m3)J

2
N

G(m1m2 +m2m3 +m3m1)2
. (3.39)

With these distances, the inequality (3.35) is rewritten as

ρ

ν
≥ ρ

2a∗
+
p∗
2ρ
. (3.40)

If the generalized semi-major axis a∗ is positive (in the case, the total energy
HN < 0), the right-hand side becomes minimum value equal to

√
p∗/a∗ with ρ =√

a∗p∗ due to the relation between the arithmetic mean and the geometric mean.
Hence the inequality (3.40) gives

ρ

ν
≥
√
p∗
a∗
, (3.41)

where the right-hand side is written with the conserved quantities. The allowed
region of one of the components of the system can be described by mapping the
contours of the left-hand side of the inequality (3.41) fixing the positions of the
other two components. This is the generalization of the discussion in §3.2.1 with
the inequality (3.21).

In Fig. 3.3, I show an example of the color and contour map of ρ/ν on an orbital
plane of the binary. Here I fix the parameters of a binary and plot ρ/ν as a function
of the position of the third component. The parameters of the binary are the same
as those used in Fig. 3.2, but the mass of the third component is set as m3 = 0.05 M�
in this plot.

The value of ρ/ν is minimum at the Lagrange points L4 and L5, and, on the
other hand, it becomes infinitely large at m1, at m2, and at infinity. If the value
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Figure 3.3: The contour and color map of ρ/ν on the orbital plane of a binary.
The parameters of the binary are the same as those used in Fig. 3.2. The mass of
the third component is m3 = 0.05 M�. The Lagrange points L1 to L5 are plotted as
the black dots.

of
√
p∗/a∗ is large enough, the allowed region of the third body is split into three

parts (the reddish region in Fig 3.3). In such a case, the motion in the system can
be successfully divided into a binary orbit and a motion of a third body separated
from the binary, which means that the system is Hill stable. The critical value to
split the allowed region into three parts is given by the value of ρ/ν at Lagrange
points L1, L2, or L3, depending on the system. Hence, the sufficient condition of
the Hill stability of general three-body systems is given as

p∗
a∗

>
[
sup

{ρ
ν

(L1),
ρ

ν
(L2),

ρ

ν
(L3)

}]2
. (3.42)

Gladman’s Simple Sufficient Conditions

Gladman (1993) rewrote the sufficient condition of the general three-body systems
given as the inequality (3.42) as a useful form by limiting the situation to planetary
systems, where the mass of the central object overwhelms other objects orbiting it.
He also assumed that two orbits in the system are coplanar. Here I introduce his
simpler sufficient conditions written with the orbital elements of the system.

For the three-body system with m1 � m2, m3, as shown by Marchal and Bozis
(1982), the critical value of p∗/a∗ given in the right-hand side of the inequality (3.42)
can be approximated as (

p∗
a∗

)
crit

≈ 1 +
3

4
3m2m3

m
2
3
1 (m2 +m3)

4
3

. (3.43)

In addition, in that limited case, the conserved quantities are approximately given
as the summation of those of each binary orbit. The conserved quantities are hence
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given with the initial orbital elements as

HN ≈ −Gm1m2

2ain
− Gm1m3

2aout
, (3.44)

J2
N ≈ (Jin + Jout)

2, (3.45)

where the magnitudes of the angular momenta of the inner and outer orbits Jin and
Jout are defined as

Jin =

√
G

m2
1m

2
2

m1 +m2

ain(1− e2in), (3.46)

Jout =

√
G

m2
1m

2
3

m1 +m3

aout(1− e2out). (3.47)

By substituting these values into the inequality (3.42), the sufficient condition
becomes

(µ2 + µ3)
−3
(
µ2 +

µ3

1 + δ

)(
µ2

√
1− e2in + µ3

√
1− e2out

√
1 + δ

)2

> 1 + 3
4
3

µ2µ3

(µ2 + µ3)
4
3

, (3.48)

where µi ≡ mi/m1 (i = 2, 3) is the ratio of the mass of the orbiting objects to that
of the central object, and δ ≡ (aout − ain)/ain is the normalized difference between
two semi-major axes.

This description becomes even simpler under the condition that the two orbiting
objects have equal masses µ = µ2 = µ3, by expanding Eq. (3.48) with µ and e and
taking the lowest order. The sufficient conditions obtained in Gladman (1993) are
classified into three cases:

1. for initially circular orbits (ein, eout = 0)

δ > 3µ
1
3 , (3.49)

2. for initially low eccentric orbits (ein, eout ≤ µ
1
3 )

δ >

√
8

3
(e2in + e2out) + 9µ

2
3 , (3.50)

3. for initially highly eccentric orbits (ein = eout = e > µ
1
3 )

δ >

(√
3 + e2

2(1− e2)
− 1

2

√
9− e2
1− e2

+
1

2

√
9− e2
1− e2

− 1

2

)2

− 1. (3.51)

In §3.4, I compare these conditions with the approximated sufficient conditions ob-
tained in this chapter.
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3.3 Post-Newtonian Analysis

In this section, I present the method to give the sufficient condition of the 1PN
Hill stability following Suzuki et al. (2020). First, I explain the 1PN analysis with
Sundman’s inequality to give the allowed and forbidden regions for three-body sys-
tems in §3.3.1. Instead of the theoretical way done by Marchal and Bozis (1982),
I obtained the 1PN sufficient condition numerically by using some results of the
numerical simulations of three-body systems with an SMBH or IMBH. I explain the
method of the numerical simulations in §3.3.2.

3.3.1 1PN Analysis with Sundman’s Inequality

In this subsection, I expand the analysis with Sundman’s inequality from the New-
tonian to 1PN discussion. I use the 1PN Hamiltonian and linear momentum given in
Eqs. (1.160) and (1.161), respectively. The total angular momentum J1PN is defined
as

J1PN =
∑
j

rj × Pj. (3.52)

The total energyH1PN in Eq. (1.160) and total angular momentum J1PN in Eq. (3.52)
are conserved quantities of the system.

For simplicity, I limit the configurations of the systems to the triple systems that
have a massive central object like an SMBH or IMBH whose mass is denoted as m1,
and two orbiting objects with much smaller masses, that is, m2,m3 � m1. In this
limited case, it can be assumed that the barycenter of the system exists almost on
the central object. It means that if the coordinate origin is set on the barycenter,
the following relations approximately hold:

r1 ≈ 0, (3.53)

r2 ≈ r2 − r1, (3.54)

r3 ≈ r3 − r1, (3.55)

v1 ≈ 0, (3.56)

v2 ≈ v2 − v1, (3.57)

v3 ≈ v3 − v1. (3.58)

By using these approximations, the 3-body 1PN Hamiltonian can be approxi-
mated with the Hamiltonian of the relative motion as in the following form:

H1PN ≈ m2H(1−2)
rel +m3H(1−3)

rel − Gm2m3

r23
, (3.59)

where H(1−2)
rel and H(1−3)

rel are the 1PN specific Hamiltonians for the relative motions
r2−r1 and r3−r1, respectively. Here I neglected 1PN correction terms proportional
to m2m3 or m1m2m3 because they have the order of m2(∼ m3)/m1× the dominant

1PN corrections, m2H(1−2)
rel and m3H(1−3)

rel . Note that these terms for the models
in this chapter are confirmed by direct numerical evaluations to be always smaller
by a factor of 106. Each 1PN specific Hamiltonian Hrel, as well as the specific
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linear momentum p of the relative motion r = ri − r1, were derived by Richardson
and Kelly (1988) as shown in Eqs. (1.162) and (1.163). In Eq. (1.162), with the
approximation m2,m3 � m1, I make the following replacements: G(m1 + m2) ≈
Gm1, r2 − r1 ≈ r2 and v2 − v1 ≈ v2. Denoting the terms of the order of 1/c2 in

Hrel as X(r,p), H(1−2)
rel , and H(1−3)

rel are written as

H(1−2)
rel ≈ 1

2
p2 · p2 −

Gm1

r12
+X(1−2)(r2,p2), (3.60)

H(1−3)
rel ≈ 1

2
p3 · p3 −

Gm1

r13
+X(1−3)(r3,p3). (3.61)

By substituting these expressions in Eq. (3.59), the total Hamiltonian is rewritten
as

H1PN ≈
1

2
m2p

2
2 +

1

2
m3p

2
3 + UN +m2X

(1−2)(r2,p2) +m3X
(1−3)(r3,p3), (3.62)

where UN is the Newtonian gravitational potential defined in Eq.(3.33).
I use Sundman’s inequality shown in Eq. (3.30) for 1PN analysis. As remarked

in §3.2.2, the two vectors in this inequality can be chosen arbitrarily. In the 1PN
analysis, I choose the specific linear momentum p instead of the velocity v. Then
the Sundman’s inequality is written as(∑

j

mjr
2
j

)(∑
j

mjp
2
j

)
≥

∣∣∣∣∣∑
j

mjrj × pj

∣∣∣∣∣
2

+

∣∣∣∣∣∑
j

mjrj · pj

∣∣∣∣∣
2

. (3.63)

Note that the terms with j = 1 are almost vanishing due to the approximations I
imposed here. Following the procedure in §3.2.2, this inequality is further rewritten
in terms of the characteristic quantities of the system as

2

(∑
j

mjr
2
j

)(
H1PN −UN −m2X

(1−2)(r2,p2)−m3X
(1−3)(r3,p3)

)
≥ J2

1PN. (3.64)

The above inequality is the 1PN counterpart of the Newtonian inequality (3.35).
However, this is not convenient compared with the Newtonian one, because the
functions X(1−2)(r2,p2) and X(1−3)(r3,p3) depend not only on the position but
also on the specific linear momentum. In order to obtain the allowed and forbidden
regions as in the Newtonian discussion, they need to be approximated somehow with
the functions of the position alone. Here I propose to apply the 1PN virial theorem
derived by Chandrasekhar and Contopoulos (1963) individually to the two-body
systems consisting of the central object and one of the orbiting objects:

v2i ≈
Gm1

ri

(
1− 3

c2
Gm1

ri

)
(3.65)

In fact, the last term of the 1PN virial approximation in Eq. (3.65) can be neglected
because it corresponds to the higher-order PN term when it is employed in the
terms that are already of the 1PN order. When the higher-order term is neglected,
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this approximation is reduced to the Newtonian virial relation. Strictly speaking,
the virial relation holds only for the average over the orbital cycle unless the orbit
is circular. In this chapter, however, this relation is used even for elliptic orbits
pointwise as an approximation, which is confirmed to work well in the numerical
simulation.

By substituting this approximation in Eq. (1.163) and using the result in the
definition of X(1−i)(ri,pi), I obtain

X(1−i)(ri,pi) ≈ −
9

8

1

c2
G2m2

1

r2i
+O

(
v4i
c4

)
. (3.66)

I remark that the angle θ between ri and pi which appears as p2(3 + χ cos2 θ) in
the calculation of X(1−i)(ri,pi), can be neglected because χ � 1. By using this
approximated X(1−i)(ri,pi), Eq. (3.64) is also approximated as

2

(∑
j

mjr
2
j

){
H1PN − UN +

9

8

G2m2
1

c2

(
m2

r22
+
m3

r23

)}
≥ J2

1PN. (3.67)

This inequality depends only on the position and works as the 1PN counterpart of
the Newtonian inequality (3.35).

Next, we bound H1PN from above and J2
1PN from below in the inequality (3.67)

with the initial orbital elements. First, with the virial relation given in Eq. (3.65),
the total Hamiltonian H1PN is approximately written as

H1PN ≈
1

2
m2v

2
2 +

1

2
m3v

2
3 + UN +

19

8

1

c2

(
G2m2

1m
2
2

r22
+
G2m2

1m
2
3

r23

)
(3.68)

As in Gladman (1993), the Newtonian orbital energy can be rewritten with the
initial semi-major axes ain and aout as

1

2
m2v

2
2 −

Gm1m2

r2
≈ 1

2

m1m2

m1 +m2

v212 −
Gm1m2

r12
= −Gm1m2

2ain
, (3.69)

1

2
m3v

3
2 −

Gm1m3

r3
≈ 1

2

m1m3

m1 +m3

v213 −
Gm1m3

r13
= −Gm1m3

2aout
, (3.70)

The gravitational interaction term between m2 and m3, Gm2m3/r23, can be ne-
glected because it is much smaller than the two orbital energies. In order to bound
the Hamiltonian from above, the last term in Eq. (3.68) can be evaluated with the
following relation

1

r2
≤ 1

a2(1− e)2
. (3.71)

In this evaluation, I used the periastron distance in the Kepler orbit as the minimum
distance between the central and orbiting objects. By substituting this evaluation
into Eq. (3.68), the total Hamiltonian is now estimated from above as

H1PN . −Gm1m2

2ain
− Gm1m3

2aout
+

19

8

G2m2
1

c2

{ m2

a2in(1− ein)2
+

m3

a2out(1− eout)2
}
. (3.72)
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The square of the magnitude of the angular momentum J2
1PN can be estimated

similarly. The total angular momentum J1PN is written as

J1PN = Jin,N

[
1 +

1

c2

(
v22
2

+
3Gm1

r2

)]
+ Jout,N

[
1 +

1

c2

(
v23
2

+
3Gm1

r3

)]
, (3.73)

where Jin,N = m2r2×v2 and Jout,N = m3r3×v3 are the Newtonian angular momenta
of the inner and outer orbits, respectively. Their magnitudes are expressed with
the orbital elements as shown in Eqs. (3.46) and (3.47). Then the square of the
magnitude of the total angular momentum J2

1PN is given as

J2
1PN = J2

in,N

[
1 +

2

c2

(
v22
2

+
3Gm1

r2

)]
+ Jout,N

[
1 +

2

c2

(
v23
2

+
3Gm1

r3

)]
+ 2Jin,N · Jout,N

[
1 +

1

c2

{v22 + v23
2

+ 3Gm1

(
1

r2
+

1

r3

)}]

+ O
(
v4

c4

)
. (3.74)

The scalar product of the inner and outer angular momenta in the second line of
Eq. (3.74) can be calculated as Jin,N · Jout,N = Jin,NJout,N because the coplanar
prograde orbits are considered here and the two angular momenta are aligned with
each other. I use the 1PN virial relation given in Eq. (3.65) again and Eq. (3.74)
becomes

J2
1PN ≈ J2

in,N

[
1 + 7

1

c2
Gm1

r2

]
+ Jout,N

[
1 + 7

1

c2
Gm1

r3

]
+ 2Jin,NJout,N

[
1 +

7

2

Gm1

c2

(
1

r2
+

1

r3

)]
+O

(
v4

c4

)
. (3.75)

In order to bound J2
1PN from below, the following relation is employed:

1

r
≥ 1

a(1 + e)
. (3.76)

The maximum value of the distance is set as the apoastron distance in the Kepler
orbit. Then the total angular momentum squared is estimated as

J2
1PN & J2

in,N

[
1 +

7

c2
Gm1

ain(1 + ein)

]
+ J2

out,N

[
1 +

7

c2
Gm1

aout(1 + eout)

]
+ 2Jin,NJout,N

[
1 +

7

2

Gm1

c2

{
1

ain(1 + ein)
+

1

aout(1 + eout)

}]
, (3.77)

By employing these approximations of the conserved quantities shown in the
inequalities (3.72) and (3.77) in the inequality (3.67) and by fixing the positions
of two objects, I obtain the allowed and forbidden regions of the remaining body.
As explained in the Newtonian discussion in §3.2.2, the existence of the forbidden
region between two orbits may be interpreted as a sufficient condition of the 1PN



100 CHAPTER 3. HILL STABILITY PROBLEM

Hill stability. Note that this 1PN evaluation can be applied only to the triple system
with a massive central object and two orbiting objects with much smaller masses.

In the Newtonian discussion in §3.2.2, the sufficient condition of the Hill stability
is obtained by rewriting the inequality with an adequate parameterization. Find-
ing such a good parameterization in the 1PN inequality (3.67) is a big challenge,
however, and will be deferred to future work. Instead of the theoretical approach
with the parameterization, here I evaluate the 1PN inequalities (3.67), (3.72), and
(3.77) numerically to obtain the approximated sufficient conditions for some models.
I also compare the approximated sufficient condition with the results of numerical
three-body simulations in the 1PN approximation to validate the 1PN criterion.

3.3.2 Numerical Simulations

In order to obtain the approximated sufficient condition of the 1PN Hill stability
numerically and to test it, I conduct some numerical simulations following Chambers
et al. (1996), who computed Newtonian orbital evolutions of four or more-than-four-
body systems with various initial orbital separations until the instability occurs in
the sense of the Hill stability. The onset of the instability was judged from the
orbital separation during the simulation. From the relation between the initial
orbital separation and the time when the instability occurs, the condition needed
for the Hill Stability is obtained.

I conduct both the Newtonian and 1PN simulations and compare the results.
Note that neglected higher-order PN terms may have some important effects on the
Hill stability. For example, the Lense-Thrring effect caused by 1.5PN terms have
been pointed out to affect the orbital evolution of the hierarchical triple systems (see
Fang and Huang (2019); Fang et al. (2019); Liu et al. (2019) and also §2.3.3 in this
thesis) and may also affect the Hill stability. The 2.5PN order effects corresponding
to the GW emission may be also important because it extracts energy from the
inner orbit more efficiently than from the outer orbit (Peters and Mathews, 1963)
and, as a result, the orbital separation will become larger, which should affect the
Hill stability. In this research, however, I ignore these interesting higher-order PN
effects and focus on the 1PN effect as a first step. I will give a rough estimation of
these higher PN effects in §3.4, though. They will be investigated in detail in future
works.

Our numerical models of relativistic three-body systems are divided into two
groups: the SMBH and IMBH groups, where the models have an SMBH and an
IMBH as their central object, respectively. Each group has three models: the cir-
cular, small-eccentricity (small-e) and large-eccentricity (large-e) models according
to the classification by Gladman (1993); in the circular model, the inner and outer
orbits are both circular (e = 0), whereas in the low- and high-eccentricity models,
the two orbital eccentricities satisfy e < µ1/3 and e > µ1/3, respectively.

The important parameters in the initial conditions are summarized for all the
models in Table 3.1. We use the Kepler elements introduced in §1.1.1. In the SMBH
group, I fix the inner semi-major axis ain to 1.0 au, while in the IMBH group, ain
is determined so that the inner orbital period should be the same as that of the
SMBH group to facilitate comparison. All the models have coplanar and prograde
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group model m1[M�] mi[M�] ain[au] e ω[deg]
SMBH circular 106 1.0 1.0 0 -
SMBH small-e 106 1.0 1.0 0.009 0
SMBH large-e 106 1.0 1.0 0.1 0
IMBH circular 103 1.0 0.1 0 -
IMBH small-e 103 1.0 0.1 0.009 0
IMBH large-e 103 1.0 0.1 0.2 0

Table 3.1: The important parameters in the initial conditions for all models treated
in this research. The third and fourth columns, m1 and mi, are the masses of the
central object and the orbiting objects in the three-body system. The subscript
i runs from 2 to 3 and I set m2 = m3. The fifth column, ain, is the semi-major
axis of the inner orbit. The semi-major axis of the outer orbit, aout, is determined
from the parameter of the orbital separation ∆ as explained in the text. The sixth
column, e, is the eccentricity, which is assumed to be common to the inner and
outer orbits. The last column, ω, is the argument of periastron of the two orbits,
which are assumed to be the same. Note that in the circular orbit, we cannot define
it. The information about the other orbital elements, e.g., the inclinations and the
mean anomalies are given in the text.

orbits, that is, the relative inclination I = 0. The longitude of the ascending node
Ω cannot be defined in such a condition. Note that the Newtonian Hill stability
with finite relative inclinations is investigated in detail by Grishin et al. (2017).
They showed that for highly inclined Hierarchical three-body systems, the ZLK
mechanism operates and affects stability. It is known, on the other hand, that the
1PN effects change the features of the ZLK mechanism as discussed in Chapter 2.
Although its effect on stability is also an interesting issue, it is beyond the scope of
this research and will be addressed in the future.

As mentioned repeatedly, here I consider the relation between the onset time of
the orbital instability and the initial orbital separation. The latter one is denoted
as ∆, which is defined as the difference of the semi-major axes in the units of the
mutual Hill radius R′Hill:

aout − ain = ∆R′Hill. (3.78)

The mutual Hill radius R′Hill is a distant scale almost the same as the Hill radius
given in Eq. (3.29) but the mass and semi-major axis in the definition are replaced
with the mean values of those of the two orbits, that is, it is defined as

R′Hill ≡
(
µ2 + µ3

3

) 1
3 ain + aout

2
, (3.79)

where µi is the mass ratio that is the same as that used in §3.2.2. The mutual Hill
radius was used as the typical distant scale for the Hill stability in e.g. Hénon and
Petit (1986); Chambers et al. (1996).

For each model, I change the value of ∆ from 1.0 by an increment of 0.1 and com-
pute both the Newtonian and 1PN orbital evolutions. The initial mean anomalies of
the two orbiting objects Min and Mout are set randomly to satisfy that they should
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be separated by at least 20◦. For each value of ∆, I perform three computations
with different combinations of mean anomalies.

The method of numerical simulations is almost the same as that explained in
§2.3.1. First, the Kepler elements are transformed into the positions and velocities in
the Cartesian coordinates of the constituent bodies. Then the Newtonian and 1PN
(Eq. (1.159)) equations of motion are numerically integrated by using the sixth order
implicit Runge-Kutta method (Butcher, 1964). As mentioned in §2.3.1, I directly
integrate the equations of motions and successfully avoid the difficulty pointed out
for the double-averaging method (see §1.2.2). Each computation is continued up to
either the onset of instability or 106 yrs. When the integration is completed, the
positions and velocities at each timestep again converted into the orbital elements
of the osculating orbit.

In the numerical simulations, the onset of the instability is judged by the sep-
aration of two adjacent orbits, that is, we assume that the instability sets in when
the difference of the distance of the periastron of the outer orbit and that of the
apoastron of the inner orbit becomes smaller than one of the Hill radii of the two
orbiting objects:

aout(1− eout)− ain(1 + ein) < RHill,i, (3.80)

where RHill,i is the Hill radius of the i-th object defined in Eq. (3.29). We remark
that although some authors employed the mutual Hill radius as the critical distance
instead of the Hill radius, both the radii are not much different from each other.
Hence I do not think that the change of the criterion would produce qualitatively
different results. As already mentioned, if Eq. (3.80) is satisfied in the simulation,
I record the time as the onset time of instability Tstab. If, on the other hand, the
system has a stable evolution up to 106 yrs in all the three calculations for the same
∆ but different initial mean anomalies for the consecutive three values of ∆, I stop
the calculation for that model assuming the system is Hill stable.

3.4 Results and Discussions

3.4.1 SMBH group

Here first I show the results of the numerical simulations of the models in the SMBH
group. Second, I give the approximated sufficient conditions from the analyses by
the mapping of the allowed and forbidden regions. Then I also discuss the higher-
order PN effects with some timescales.

Orbital Evolutions and Relation between ∆ and Tstab

In Fig. 3.4, I show an example of the 1PN evolutions of orbital elements of the
small-e model in the SMBH group with ∆ = 13.3. The top and middle panels show
the evolutions of the semi-major axes and eccentricities, respectively, and, in the
bottom panel, the evolutions of the apoastron distance of the inner orbit and of
the periastron distance of the outer orbit are presented. One can find that both the
semi-major axes and the eccentricities are fluctuating around their initial values. The
orbital evolution is calculated until the separation between the apoastron distance
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Figure 3.4: The 1PN evolutions of the orbital elements for the small-e model in
the SMBH group with ∆ = 13.3. The purple and green lines correspond to the
evolution lines of the inner and outer orbital elements, respectively. The top and
middle panels show the evolutions of the semi-major axes and eccentricities. The
bottom panel exhibits the time evolutions of the apoastron distance of the inner
orbit and the periastron distance of the outer orbit. The inset is the enlargement
around the onset time of the instability Tstab = 2793 yrs.
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Figure 3.5: The relation between ∆ and Tstab for the circular model in the SMBH
group. The blue dots and cyan triangles show the results of the Newtonian and 1PN
calculations, respectively. Detailed explanations about the other vertical lines are
in the text.

of the inner orbit and the periastron distance of the outer orbit satisfies the criterion
of the Hill stability Eq. (3.80). In this case, the onset time of the instability Tstab is
2793 yrs.

The relations between ∆ and Tstab for the circular, small-e, and large-e models in
the SMBH group are summarized in Figs. 3.5 to 3.7, respectively. In these figures,
the blue dots and the cyan triangles show the results of the Newtonian and 1PN cal-
culations. The onset time of the instability Tstab is shorter for the 1PN calculations
than for the Newtonian ones in these figures, which means that the 1PN evolutions
are more unstable than the Newtonian ones in the sense of the Hill stability.

The 1PN effect should mainly appear as the orbital periastron shift as seen in
§1.2.2, and this may be the cause of the earlier instability. The timescale of the
periastron shift tP can be estimated from the evolutionary equation of the argument
of periastron ω with the simplest 1PN correction in Eq. (1.170) as

tP =
nina

2
in

V (1PN)
≈ 1

3π

ain
rg,1

Pin

∼ 2day
( ain

1.0au

)( rg,1
0.020au

)−1( Pin

0.365day

)
, (3.81)

where rg,1 = 2Gm1/c
2 is the Schwarzschild radius of the central object, and Pin is the

period of the inner orbit. This timescale is not much longer than the inner-orbital
period and smaller than Tstab in the Newtonian calculations, e.g., for ∆ < 4.0 in
Fig. 3.5, which suggests that the periastron shift should affect the 1PN Hill stability.

The onset time of the instability Tstab grows almost monotonically with respect
to ∆ in the circular and small-e models, but in the large-e model, its behavior
looks more complicated. This may be because, for the highly eccentric orbits, the
initial mean anomalies become another important factor of the stability. In order to
confirm this, I plot another three 1PN calculations in Fig. 3.7 by fixing the initial
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Figure 3.6: The same as Fig. 3.5 but for the small-e model in the SMBH group.
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Figure 3.7: The same as Figs. 3.5 and 3.6 but for the large-e model in the SMBH
group. Three 1PN calculations with fixed initial mean anomalies are also shown as
the triangles with different colors: magenta, brown and purple triangles show the re-
sults of the 1PN calculations with (Min,Mout) = (0◦, 0◦), (0◦, 180◦), and (180◦, 90◦),
respectively.
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mean anomalies to different values: magenta, brown and purple triangles exhibit
the 1PN results for the initial mean anomalies (Min,Mout) = (0◦, 0◦), (0◦, 180◦)
and (180◦, 90◦), respectively. One can find that Tstab grows almost monotonically
with respect to ∆ when the initial mean anomalies are fixed. The purple triangles
corresponding to (Min,Mout) = (180◦, 90◦) show rapid increase of Tstab around ∆ =
25.0, whereas, for the magenta triangles corresponding to (Min,Mout) = (0◦, 0◦), it
keeps small value until ∆ = 35.0. These two extreme results probably correspond
to the most stable and unstable limits and encompass the results with other mean
anomalies.

The black dashed lines in Figs. 3.5 to 3.7 show the sufficient conditions given by
Gladman (1993) as Eqs. (3.49) to (3.51). In these figures, Gladman’s sufficient con-
ditions well explain the numerical results obtained from the Newtonian calculations.
However, they are clearly inconsistent with those from the 1PN calculations, which
means that it is inappropriate to apply Gladman’s Newtonian sufficient conditions
to such compact multi-body systems with an SMBH as considered here.

The red lines in these figures are the approximated sufficient conditions obtained
in this chapter. In the next part, I explain the derivation of them. One finds that the
1PN approximated sufficient conditions for the Hill stability works much better than
the Gladman’s Newtonian conditions. The features of the approximated condition
seen in each figure are also discussed in the next part.

Approximated Sufficient Condition

In order to analyze the numerical results further, I map the allowed and forbidden
regions of motion for the third body by using Eq. (3.35) for the Newtonian and
Eq. (3.67) for the 1PN cases, respectively. For the mapping of the allowed region
of the third body, one needs to fix the positions of the central and inner-orbiting
objects as explained in §3.3.1, so here I fix ∆ and r12 in addition to the values of
the total energy and angular momentum. Since r12 fluctuates with time as shown
in the bottom panel of Fig. 3.4, I use r12 in a finite range.

In Fig. 3.8, the maps of the Newtonian allowed regions for the circular models
with ∆ = 2.0, 3.0, and 3.6 are exhibited. The top left and right panels show the
whole map for ∆ = 2.0 and the enlargement of the vicinity of the inner-orbiting
object, and the bottom left and right panels are the enlarged maps for ∆ = 3.0 and
∆ = 3.6, respectively. The cross points in these panels indicate the positions of the
central SMBH and the inner-orbiting object. In this figure, the value of r12 is fixed
to 1.01ain. The color in the figure shows the value of the function fN defined as

fN = 2

(∑
j

mjr
2
j

)
(HN − UN)− J2

N. (3.82)

In the bluish region of the figure, the value of fN is positive, which means that
inequality (3.35) is satisfied and the region corresponds to the allowed region for
the third body. On the other hand, in the reddish region, fN is negative, and the
region corresponds to the forbidden region where the third body cannot enter. The
green line is a contour corresponding to fN = 0, which is the boundary between the
allowed and forbidden regions.
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Figure 3.8: The Newtonian allowed and forbidden regions for the third body of
the circular model in the SMBH group. The upper two panels show the results
for ∆ = 2.0: the right panel is the enlargement of the inner-orbiting object. The
enlargements for ∆ = 3.0 and 3.6 are displayed in the bottom left and right panels,
respectively. The value of function fN is represented by colors. The bluish and
reddish regions correspond to the allowed and forbidden regions, respectively. The
green lines are contours for fN = 0, which corresponds to the boundary dividing
the two regions. Cross points are the positions of the central SMBH and the inner-
orbiting object. The distance between these two objects is fixed to 1.01ain.
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Figure 3.9: The 1PN allowed and forbidden regions for the third body of the circular
model in the SMBH group. The left and right panels show the enlargements of the
inner-orbiting objects for ∆ = 12.4 and 12.8, respectively. The value of function
f1PN is represented by colors. The bluish and reddish regions show the allowed and
forbidden regions, respectively. The green lines are contours for f1PN = 0, which
corresponds to the boundary dividing the two regions. The position of the inner-
orbiting object in each panel is indicated as the cross point. The distance between
the central and the inner-orbiting objects is fixed as r12 = 1.09ain.

For ∆ = 2.0, the inner orbit except around the cross point is covered with the
forbidden region. As seen in the bottom panels, when ∆ increases, the forbidden
region is expanded. At ∆ = 3.0, the forbidden region is extended to the Lagrangian
point L1 between the central and inner-orbiting objects, and at ∆ = 3.6, the forbid-
den region reaches another Lagrangian point L2 and the inner-orbiting object is now
completely surrounded by the forbidden region. In the latter situation, the third
body is not allowed to approach the inner-orbiting one as closely as the Hill radius,
that is, the system is Hill stable. This behavior of the Newtonian allowed-region is
consistent with what was explained in §3.2.2.

The allowed and forbidden regions described with the 1PN inequality (3.67) show
similar behaviors as Newtonian ones. The enlarged maps for ∆ = 12.4 and 12.8 are
exhibited in Fig. 3.9. The color in this figure shows the value of the function f1PN
defined as

f1PN = 2

(∑
j

mjr
2
j

){
H1PN − UN +

9

8

G2m2
1

c2

(
m2

r22
+
m3

r23

)}
− J2

1PN. (3.83)

As in the Newtonian maps in Fig. 3.8, the bluish and reddish regions are the allowed
and forbidden regions for the third body, respectively. The green line corresponds to
the boundary between them. In the left panel of Fig. 3.9, one finds that the forbidden
region is extended to the inner Lagrangian point L1 at ∆ = 12.4. On the other hand,
in the right panel, one can see that the forbidden region is further expanded to the
outer Lagrangian point L2 and surrounds the inner-orbiting object completely at
∆ = 12.8. From these results, it can be considered that, in this configuration, the
arrival of the forbidden region at L2 may be regarded as the sufficient condition of
the Hill stability both in the Newtonian and 1PN calculations.

The local minimum of f1PN is close but not exactly the same as that of fN. In
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Figure 3.10: The values of fN (blue solid line) and f1PN (cyan dashed line) as
functions of X with Y = 0. The bottom panel is the enlargement of the inner-
orbiting object. The values of ∆ are set as ∆ = 3.6 and 12.8 for the Newtonian and
1PN calculations, respectively. The black lines show the positions of the central and
inner-orbiting objects. The distance between them is fixed as r12 = 1.01ain in both
the Newtonian and 1PN calculations. The red solid lines exhibit the Newtonian
Lagrangian points.

Fig. 3.10, I show the values of fN and f1PN on the X-axis with Y = 0. The value of ∆
is set as 3.6 and 12.8 in the Newtonian and 1PN calculations, respectively. The top
and bottom panels show the whole view and the enlargement of the inner-orbiting
object. The blue and cyan lines exhibit the values of fN and f1PN, respectively.
The black dashed lines correspond to the positions of the central and inner-orbiting
objects. The distance between the central and inner-orbiting objects r12 is fixed to
1.01ain in both the Newtonian and 1PN calculations. The red solid lines exhibit the
Newtonian Lagrange points L1, L2, and L3, whose X-coordinates are obtained by
replacing a in Eqs. (3.26) to (3.28) with r12. As in Fig. 3.10, the local minimum
points of fN coincide with the Newtonian Lagrange points, but those of f1PN are
slightly dislocated from the points. The local minimum points of f1PN are hence
should be called the 1PN Lagrangian points.

From the above analyses with the mapping of the allowed and forbidden regions,
I find the approximated sufficient condition of the Hill stability could be obtained
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in the following steps: fixing r12, I first search for the value of ∆ = ∆cr at which
the forbidden region appears for the first time, in the range of RHill,2 to 50RHill,2

from the inner-orbiting object; second, the value of r12 is varied in the range of
0.5ain(ein− 1) to 1.5ain(ein + 1), looking for the maximum value of ∆cr at which the
forbidden region surrounds the inner-orbiting object. The maximum value of ∆cr

obtained in this way is regarded as the approximated sufficient condition of the Hill
stability. The Newtonian and 1PN sufficient conditions derived by the above way
are exhibited in Figs. 3.5 to 3.7 as the red solid lines.

In these figures, one finds that the Newtonian red lines agree well with Glad-
man’s sufficient conditions although the criterion is a bit tighter for the large-e case.
They are also consistent with the numerical results as a sufficient condition for the
Hill stability. The discrepancies from Gladman’s conditions may be caused by the
numerical procedure to search maximum ∆cr, in which the values of r12 and ∆ are
changed independently within a finite range.

The 1PN red lines that are newly obtained here, on the other hand, are also
consistent with the results of the 1PN simulations. As sufficient conditions for the
1PN Hill stability, it is a little too tight for the circular model as seen in Fig. 3.5
whereas they are looser for small- and large-e models compared with the Newtonian
calculations. Some of the approximations imposed in §3.3.1 may be the cause of
these discrepancies: actually, the virial approximation in Eq. (3.65) is not strictly
satisfied and may have caused the small discrepancy seen in Fig. 3.5, and, on the
other hand, in the small- and large-e models in Figs 3.6 and 3.7, the approximations
used in Eqs. (3.71) and (3.76) may be too conservative and be the reason for the
looseness of the 1PN approximated sufficient conditions.

Effect of Higher-Order PN Terms

So far, the higher-order PN terms are completely neglected in this chapter. Here
their importance for the Hill stability of the models in the SMBH group is roughly
estimated.

The 1.5PN terms cause the spin-orbit coupling called the Lense-Thrring preces-
sion. Its timescale is given as Eq. (2.67) and with the parameters of the models in
the SMBH group, it is estimated as

tLT =
2c3a3in(1− e2in)3/2

χ1G2m2
1(4 + 3m2/m1)

∼ 1yr
( χ1

0.1

)−1 ( ain
1.0au

)3( m1

106M�

)−2
, (3.84)

where χ1 ≤ 1 is the Kerr parameter. This timescale is not much longer than
the orbital periods and hence may have an important effect on the relativistic Hill
stability even if the Kerr parameter of the central SMBH is not so large. Its detailed
analysis will be given in future work.

The 2.5PN term corresponds to the GW emission. The timescale of the GW
emissions in a binary system is estimated in Peters (1964) and calculated with the
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parameters of the models with an SMBH as

tGW =
5

256

c5

G3

ain
m1m2(m1 +m2)

∼ 105yr
( ain

1.0au

)4( m1

106M�

)−2(
m2

1.0M�

)−1
. (3.85)

This is essentially the time that it takes to cause the merger of the inner-orbiting
object with the central SMBH, that is, if Tstab is longer than tGW, the inner orbit
collapses before the system become unstable in the sense of the Hill stability. In such
a case, the so-called Extreme Mass Ratio Inspiral (EMRI) with an outer perturber
might be observed through the GW observations (Amaro-Seoane et al., 2012; Yang
and Casals, 2017; Bonga et al., 2019). Although it is also interesting to investigate
how the GW emission affects the sufficient conditions themselves, it will be addressed
in the future.

These interesting effects are unaddressed, though, I think that the 1PN approx-
imated sufficient conditions for the relativistic Hill stability should be a useful tool.
It can be used, for example, to estimate the stability of multi-body systems before
conducting costly direct numerical simulations.

3.4.2 IMBH group

For models in the IMBH group, the relations between ∆ and Tstab obtained from
the 1PN numerical simulations are not so different from those obtained from the
Newtonian calculations. Both of the Newtonian and 1PN results for models in the
IMBH group show actually the same behavior as the Newtonian results for the
models in the SMBH group. The results of the circular, small-e, and large-e models
are exhibited in Figs. 3.11 to 3.13, respectively.
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Figure 3.11: The same as Fig. 3.5 but for the circular model in the IMBH group.

The long-term numerical simulations done in this chapter show the typical error
less than 1 % in the conservation of total angular momentum. For a small number
of models in the IMBH group, however, I found much larger numerical errors more
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Figure 3.12: The same as Fig. 3.5 but for the small-e model in the IMBH group.
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Figure 3.13: The same as Fig. 3.5 but for the large-e model in the IMBH group.
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than a few tens %, which is caused when the eccentricities are highly excited in
their orbital evolutions. In such situations, I should have employed a much shorter
timestep to resolve fast motions around the periastron, which I could not afford due
to the computational cost, though. Hence, those apparently failed computations
with the relative error of more than 5 % are just excluded from the analysis.

The Newtonian and 1PN approximated sufficient conditions shown as the red
lines in the figures are completely overlapped. This can be explained with the
inequality (3.67), that is, the left-hand side of inequality (3.67) is negligibly small
in models in the IMBH group and inequalities (3.35) and (3.67) become almost
identical. The timescale of the periastron shift is tP ∼ 2.0 × 103 days. This value
is much longer than the inner-orbital period and somewhat longer than Tstab in the
Newtonian case, which implies again that the 1PN effects do not affect the Hill
stability very much in the models in the IMBH group.

Hence, the 1PN effect on the Hill stability is important only when the last term
in the left-hand side of Eq. (3.67) becomes comparable with the total Hamiltonian
or the Newtonian potential. Here I find that this is not the case for the systems with
the 103 M� IMBH and the inner-orbital semi-major axis ain = 0.1 au. The difference
between Gladman’s sufficient conditions and the Newtonian approximated sufficient
conditions seen in Figs. 3.11 and 3.12 may be caused by the numerical procedure
to derive the latter conditions as I discussed in §3.4.1. Interestingly, Gladman’s
condition fails to reproduce the results of the Newtonian simulation in Fig. 3.13.
This may be because the expansion with µ and e used to derive Eq. (3.50) in §3.2.2
no longer appropriate in this model.

Finally, I give the estimations of the neglected higher-order PN effects as done
in §3.4.1. The timescale of the Lense-Thrring precession tLT corresponding to the
1.5PN order is evaluated with the parameters of the models with an IMBH as

tLT ∼ 103yr
( χ1

0.1

)−1 ( ain
0.1au

)3( m1

103M�

)−2
. (3.86)

This is not so long compared with the typical value of Tstab in Figs. 3.11 to 3.13
and the 1.5PN terms may affect the relativistic Hill stability for the models in the
IMBH group, especially when the IMBH has a relatively large spin parameter. On
the other hand, the effect of the GW emission at the 2.5PN order is estimated as

tGW ∼ 107yr
( ain

0.1au

)4( m1

103M�

)−2(
m2

1.0M�

)−1
. (3.87)

This timescale is much longer than the computational time in this chapter and the
GW effect may not be seen in similar simulations. If the orbital evolutions are
calculated for a much longer time, the inner orbit may merge before the system
becomes unstable in the sense of Hill stability, as discussed in §3.4.1.

3.5 Summary

I studied the relativistic effects on the stability problem of the multi-body systems
focusing on the Hill stability problem. The Hill stability is defined as the stability
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of multi-body systems against close approaches of their orbits. In this chapter, I ex-
tended the Newtonian formalism to obtain the sufficient condition to the relativistic
one using the 1PN approximation and limiting the configuration to the three-body
systems that have an SMBH or an IMBH as a central object and two objects with
much smaller masses orbiting around the central object. I successfully obtained
the approximated sufficient condition for the 1PN Hill stability of the three-body
systems with the above configurations and confirmed its validity with numerical
simulations.

In Newtonian mechanics, the sufficient condition for the Hill stability of three-
body systems was obtained from the analysis with Sundman’s inequality. With the
conserved quantities of the system, the inequality gives the allowed region for the
motion of the components of the system. If a forbidden region lies between the two
orbiting objects, the system should be stable in the sense of the Hill stability. In the
previous study by Marchal and Bozis, the Newtonian sufficient condition for general
three-body systems was obtained with a technical parameterization of Sundman’s
inequality.

In order to derive the relativistic sufficient condition of the Hill stability, first I
derived the inequality for the allowed region by substituting the 1PN Hamiltonian
and total angular momentum into Sundman’s inequality. For simplicity, I imposed
several approximations assuming a limited configuration that a central object is
much heavier than those of orbiting objects, and also employed the virial approxi-
mation to rewrite the velocity with the function of the positions. I found that, as
in the Newtonian case, when a forbidden region lies between the two orbiting ob-
jects, the system is judged as stable in the sense of the Hill stability. Instead of the
technical approach done in Newtonian analysis, I used numerical analysis to obtain
the 1PN sufficient condition from the inequality for the allowed regions, that is, I
estimated the inequality by changing orbital separation ∆ and the distance between
two objects r12 independently within finite ranges, and found the maximum value
of ∆ as the approximated sufficient condition of the Hill stability.

I confirmed this newly obtained 1PN approximated sufficient condition with
numerical simulations. In the numerical analysis, the 1PN equations of motion were
directly integrated with the sixth-order implicit Runge-Kutta method. Following
the Newtonian previous studies, I computed numerous three-body systems with
different initial orbital separation ∆ and investigated the relation between ∆ and
the onset time of the orbital instability Tstab. The systems computed in this research
were divided into two groups: one with an SMBH as the central object and the other
containing an IMBH. Each group consisted of three models: circular, small-e, and
large-e models. The relation between ∆ and Tstab was investigated for each model
in each group, and the result was compared with the 1PN approximated sufficient
condition derived in this research.

In the SMBH group, the 1PN effects are important for stability. Actually, the
1PN orbital evolutions are more unstable than the Newtonian ones in all the models
in the SMBH group. The numerical results are consistent with the new criterion as
a sufficient condition for the 1PN Hill stability, especially for the circular and small-
e models. Although it is also valid as a sufficient condition in the large-e model,
the criterion is not so strict compared with the numerical results. This is probably
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because the approximation adopted for the position r is somewhat too conservative.
In the IMBH group, the results obtained in the 1PN calculations are not so different
from those obtained in the Newtonian calculations. These results imply that the
1PN effect is negligible for the Hill stability of the three-body systems in the IMBH
group. Incidentally, I found that the Newtonian sufficient condition obtained by
Gladman is inconsistent with the numerical results for the large-e model whereas
the Newtonian criterion obtained in this chapter is still valid in these cases.

I did not include the higher-order PN terms for simplicity but estimated the
several important effects: the Lense-Thirring precession (1.5PN) and GW emissions
(2.5PN). The timescales on which these effects become appreciable are not so long
compared with the orbital periods of the systems. This indicates that these processes
cannot be ignored to obtain a tighter condition. These higher-order PN effects
will be an interesting topic worth further investigation. Although these important
issues still remain, I think the 1PN approximated sufficient conditions given in this
chapter will be useful as a measure for the orbital stability of relativistic multi-body
systems, and one can use them before conducting costly numerical simulations for
such systems.
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Chapter 4

Conclusion

Stellar dynamics is one of the oldest research topics that has been discussed mainly
in Newtonian mechanics. It started to be discussed with general relativity recently,
but many interesting topics have not been discussed yet in the general relativistic
regime. In this thesis, I intended to study these remaining topics and to contribute
to the comprehension of the dynamics of relativistic multi-body systems. I used
post-Newtonian (PN) approximation to consider relativistic effects as some cor-
rection terms to the Newtonian equations of motion. The first-order PN (1PN)
approximation was mainly used in this thesis, and the higher-order PN effects were
briefly discussed in each chapter. Since some authors pointed out several accuracy
problems of the so-called double-averaging method, which has been commonly used
to calculate dynamics of relativistic multi-body systems, I directly integrated the
1PN equations of motion in the numerical simulations to avoid the difficulty of the
double-averaging method.

First, I discussed the 1PN effect on the von Zeipel-Lidov-Kozai (ZLK) mechanism
and its application to the observation of the effect of the emission of gravitational
waves (GW) through the cumulative shift of periastron time (CSPT) of a binary
pulsar in a hierarchical triple system. The ZLK mechanism is one of the orbital
resonances seen in the hierarchical triple systems and characterized by the periodic
oscillation of the inner-orbital eccentricity and the relative inclination between the
inner and outer orbits. Its Newtonian features have been deeply understood with the
double-averaging method. The 1PN correction on the method has also given a simple
estimation of the relativistic effects on the ZLK mechanism. However, by comparing
the numerical results obtained from the direct integration of the equations of motion
with those from the double-averaging estimation, I found several discrepancies that
should not be neglected when the GW emission is considered. I stressed that it
is important to calculate the relativistic ZLK mechanism by the direct integration
especially when the maximum eccentricity becomes quite large.

The excitation of the eccentricity by the ZLK mechanism enhances the GW
emission from the binary. If it occurs in a hierarchical triple system with a binary
pulsar, the enhanced GW emission changes the shape of the CSPT curve, which
may be seen in the radio observation of a pulsar. I proposed a method to calculate
the CSPT for a general hierarchical three-body system with a binary pulsar and
calculated it for several three-body models. The models consist of compact objects

117



118 CHAPTER 4. CONCLUSION

whose parameters are in the ranges where the change of the CSPT curve due to
the ZLK mechanism could be observed within our lifetime (< 100 yr). When the
ZLK mechanism occurs in the models, the bending of the CSPT curve is seen. Its
slope and the time between two bending points in the curve indicate the value of
the eccentricity and the ZLK timescale. Although the systems that cause such an
interesting signal might be rare, searching such signals is very important because it
will be the first indirect observation of the GW from triple systems. In regard to the
higher-order PN effects, the 1.5PN terms may affect the systems as the precession
of the beaming angle of the pulsar and it may result in the disappearance of the
pulsar from the observable range, which will provide one of the important examples
of the 1.5PN effect on the ZLK oscillation.

Second, I studied the relativistic effects on the stability problems focusing on
the Hill stability problem, which is defined as the stability of multi-body systems
against the close approach of their orbits. I discussed the relativistic Hill stability
problem for three-body systems with limited configurations that have an SMBH
or IMBH as their central object and obtained an approximated sufficient condition
with the 1PN approximation. I derived the inequality for the allowed region by
substituting the 1PN conserved quantities into Sundman’s inequality imposing sev-
eral approximations: I assumed that a central object is much heavier than orbiting
objects, and also employed the virial approximation to rewrite the velocity with the
function of the positions. By mapping the allowed region, I found that the system
is Hill stable when a forbidden region appears between the two orbiting objects.
Although the sufficient condition was obtained in the Newtonian case by the tech-
nical parameterization of the inequality for the allowed region, in the 1PN case, I
used the numerical analysis to obtain the 1PN approximated sufficient condition. I
estimated the inequality by changing orbital separation ∆ and the distance between
the central and inner-orbiting objects r12 independently within finite ranges and
found the maximum value of ∆ with which a forbidden region appears between the
two orbiting objects. I interpreted the maximum ∆ as the approximated sufficient
condition of the Hill stability.

This newly obtained 1PN approximated sufficient condition was confirmed by
the comparison with the results of the numerical simulations. Numerous three-body
systems with different initial orbital separation ∆ were calculated to investigate
the relation between ∆ and the onset time of the orbital instability Tstab. For
the system with an SMBH as its central object, the 1PN calculation showed much
more unstable evolutions than those in the Newtonian calculation. The results
are consistent with the 1PN approximated sufficient condition especially when the
orbits in the model initially have zero or small eccentricities. When the system
has initially highly eccentric orbits, the criterion is not so strict compared with the
numerical results, although it is still valid as a sufficient condition, probably because
of the approximation adopted to obtain the inequality for the allowed region. For
the systems with an IMBH, the 1PN and Newtonian simulations showed not-so-
different results, which implies that the 1PN effect is negligible for the Hill stability
in such systems. The higher-order PN effects that were neglected in this research,
like 1.5PN and 2.5PN effects, may also have important effects on the Hill stability.
Although these higher-order PN terms remain to be included, I consider the 1PN
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approximated sufficient conditions will be useful as a measure for the orbital stability
of the relativistic multi-body systems and one can employ them before conducting
costly numerical simulations.
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Appendix A

Delaunay variables

From the Liouville-Arnold theorem, an integrable Hamiltonian system could be de-
scribed with the canonical variables called action-angle variables (Arnold, 1989).
The momenta of the variables are called actions. They correspond to the first in-
tegrals of the system, that is, they do not evolve with time. The corresponding
coordinates are called angles, which are cyclically defined with period 2π. With
these variables, the Hamiltonian of the system becomes the function only of the
actions. These variables are mainly used to analyze the resonances with the Hamil-
tonian mechanical approach.

The action-angle variables for the Keplerian motion are well known as Delaunay
variables. They are described with the orbital elements as

L =
√
G(m1 +m2)a, l = M (A.1)

G = L
√

1− e2, g = ω (A.2)

H = G cos i, h = Ω. (A.3)

The variables denoted with capital letters L, G, and H are actions, whereas small
characters l, g, and h describe corresponding angles. Here the gravitational constant
is denoted as G. In some researches about the stellar dynamics, these variables are
used instead of the Kepler elements (e.g. Ford et al. (2000); Naoz et al. (2013a);
Iwasa and Seto (2017)). The detailed derivation of these variables is explained in
e.g. Morbidelli (2011).

Each action corresponds to the conserved quantities of the system: the action L
is related with the orbital specific energy E defined in Eq. (1.1) as

L =
G(m1 +m2)√
−2E

, (A.4)

and G and H are the magnitude and Z-component of the specific angular momen-
tum, respectively, that is,

G = J = |J |, (A.5)

H = Jz, (A.6)

where J is the same as h defined in Eq. (1.2). On the other hand, three angles l, g,
and h correspond to the angles in Kepler elements, the inclination i, the argument
of periastron ω, and the longitude of the ascending node Ω, respectively.
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Appendix B

Proof of Sundman’s inequality

Sundman’s inequality (3.30) can be proved by using the well-known Cauchy’s in-
equality, which is given as∣∣∣∣∣∑

j

(AjBj)

∣∣∣∣∣
2

≤

∣∣∣∣∣∑
j

(Aj)
2

∣∣∣∣∣
∣∣∣∣∣∑
j

(Bj)
2

∣∣∣∣∣ , (B.1)

where Aj and Bj are the components of arbitrary vectorsA andB. The components
on the right-hand side of Eq. (3.30) are estimated as∣∣∣∣∣∑

j

mjrj × vj

∣∣∣∣∣ ≤∑
j

mjrjvj |sin γj| =
∑
j

√
mjr2j

√
mjv2j sin2 γj, (B.2)

∣∣∣∣∣∑
j

mjrj · vj

∣∣∣∣∣ ≤∑
j

mjrjvj |cos γj| =
∑
j

√
mjr2j

√
mjv2j cos2 γj, (B.3)

where γj is the angle between rj and vj. Applying Cauchy’s inequality to the square
value of Eq.(B.2) and (B.3) gives∣∣∣∣∣∑

j

mjrj × vj

∣∣∣∣∣
2

≤

∣∣∣∣∣∑
j

√
mjr2j

√
mjv2j sin2 γj

∣∣∣∣∣
2

≤

(∑
j

mjr
2
j

)(∑
j

mjv
2
j sin2 γj

)
, (B.4)

∣∣∣∣∣∑
j

mjrj · vj

∣∣∣∣∣
2

≤

∣∣∣∣∣∑
j

√
mjr2j

√
mjv2j cos2 γj

∣∣∣∣∣
2

≤

(∑
j

mjr
2
j

)(∑
j

mjv
2
j cos2 γj

)
. (B.5)

Sundman’s inequality (3.30) is immediately obtained if the summation of both two
inequalities is taken.
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