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Abstract

In this thesis, we study the features of effective theories of type IIB superstring theory from the
perturbative and non-perturbative points of view. We mainly focus on coupling constants in
magnetized compactifications. The magnetized compactifications are constructed from super
Yang-Mill theory that is an effective theory of D-branes in type IIB superstring theory. In the
previous works, two features of the coupling constants have been shown in several magnetized
compactifications: the coupling constants are determined by the product property of the
space of the zero modes, higher order coupling constants are decomposed by the three-point
coupling constants. We revealed that these are common features to general compact spin
manifolds. This means that the origin of those features is not the property of just a specific
function but the property of a Dirac operator on such general manifolds. On the other hand,
the above is the result in the context of perturbative superstring theory. Hence, we also study
those features of the coupling constants based on the IKKT matrix model that is known as a
non-perturbative formulation of type IIB superstring theory. We show that those features are
essentially valid even if we consider magnetized noncommutative torus and magnetized fuzzy
sphere constructed based on the IKKT matrix model.
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Chapter 1

Introduction

The standard model (SM) is a successful model to explain the high-energy experiments.
However, the SM has several problems to be solved, e.g., the origin of the generations and the
chiral structure and the difficulties in incorporating gravity. Recent cosmological observations
also imply the existence of additional structures for the SM. These facts lead us to consider the
concept beyond the SM. As a possibility to overcome such problems, superstring theory has
energetically been studied. Traditional quantum field theory is constructed on the basis of a
point particle. On the other hand, superstring theory is constructed from an open string and
a closed string. According to the spectral analysis based on the canonical quantization, the
open string creates a gauge field and the closed string creates a gravitational field. Therefore,
superstring theory is regarded as a promising candidate of the unified theory of all forces in
nature.

In addition, superstring theory is rich in variety so called D-branes, which are various
dimensional objects. Classically, the D-branes are defined through a boundary condition to
consider the equation of motion with respect to an open string. For the open string, we
can select the Dirichlet boundary conditions with respect to the two endpoints of the open
string. The endpoints cannot move along the directions that are orthogonal to the directions
constrained by the Dirichlet boundary conditions. Therefore, it seems that the open string
can move only in a specific spatial area. The classical concept of the D-branes is such an
area. However, the modern interpretation of the D-branes is a various dimensional object
that couples naturally to a tensor fields defined in Type II superstring theory.

Type II superstring theory is constructed from a closed string. There are two types based
on the property of the supersymmetry: type IIA and type IIB. The physical states of a closed
string are classified as the left-mover and the right-mover, and the whole theory is defined by
combining them. As we mentioned, the spectrum of the closed string includes a gravitational
field. Actually, there are several massless tensor fields in the spectrum. The effective action
with respect to these massless fields is described by supergravity. In the type II supergravity
actions, the D-branes can be described as solutions of equations of motion. On the other
hand, an effective action of the D-branes is described by the super Yang-Mills action. As we
mentioned, the spectrum of the open string includes a gauge field. If we consider an open
string between several parallel D-branes, we have a degree of freedom to select which D-branes
the end points attach. If those D-branes coincide each other, the open string state can be a
massless state. Therefore, such a state can be identified as a non-Abelian gauge field. Because
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of the supersymmetry, the effective action is described by super Yang-Mills theory.
On the other hand, a feature of superstring theory is the requirement of a ten-dimensional

spacetime because of the consistency, e.g., physical state conditions based on the Virasoro
algebra. Our world is four-dimensional spacetime on the basis of the experiments and the
observations so far. Therefore, the problem is how to do with an additional six-dimensional
space so called an extra dimensional space. We have several ways to consider an extra dimen-
sional space. In this thesis, we focus on compactifications. In general, the compactifications
is a method to construct a lower dimensional effective field theory (low-energy effective field
theory) from a higher dimensional field theory by assuming the space associated to such a
difference of the dimensions is very small. From the viewpoint of superstring theory, con-
sidering a ten-dimensional field theory is natural. However, in practice, we may consider
higher dimensions lower than ten dimensions (e.g., six dimensions) as effective field theories
of superstring theory. In this thesis, we refer to four dimensions as lower dimensions and
D > 4 spacetime dimensions as higher dimensions. In this case, the smallness is restricted
from the experiments and the observations. According to Ref. [1], extra dimensional spaces
wider than TeV-size are excluded. In general, low-energy effective field theories derived from
compactifications have moduli fields as degrees of freedom of an extra dimensional space and
topological information. In practice, analytical information that is mentioned later is also
necessary.

In compactifications of superstring theory, moduli fields appear as scalar fields in low-
energy effective field theories. In this context, moduli fields parameterize possible string
backgrounds. More precisely, expectation values of the moduli fields play roles of parameters
governing coupling constants (e.g., the string coupling) and the shape of an extra dimen-
sional space. Typical examples are complex structure moduli fields and Kähler moduli fields
associated with the metric of an extra dimensional space. In general, coupling constants in
low-energy effective field theories depend on these moduli fields. From the viewpoint of phe-
nomenology, the value of a coupling constant should be fixed uniquely. To fix, we have to
understand the mechanism to obtain expectation values of moduli fields. The processes that
determine the expectation values of moduli fields through a certain mechanism are referred
to as the moduli stabilization. On the other hand, such moduli fields have shift symmetries.
The shift symmetry corresponds to the invariance of an action (up to total derivatives) under
a constant shift of the value of a field. In the context of superstring theory, such a field is
called a stringy axion. There are several works on applications of stringy axions to, e.g., dark
matters, inflations and the CP problem. In practice, the decay constants of stringy axions
are important. For example, the decay constant should be at around the Planck scale for the
natural inflation from the Planck data [2, 3], which is one of the typical inflation scenarios
within the framework of superstring theory.

On the other hand, typical topological information is the index based on the Index theo-
rem. The index counts the difference of the numbers of chiral and anti-chiral zero modes of the
Dirac operator on an extra dimensional space. In compactifications, we typically consider the
Kaluza-Klein expansion. This is the separation of varieties by eigenfunctions of an operator
on an extra dimensional space. In low-energy effective field theories applied the Kaluza-Klein
expansion, the eigenvalues play the role of mass parameters. In the SM, the fermions as the
matter fields are massless fields before the spontaneous symmetry breaking. Therefore, zero
modes in the Kaluza-Klein expansion based on a Dirac operator are identified with the mat-
ter fields in the SM. Hence, a non-zero index means a realization of the chiral structure in a
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low-energy effective field theory. The chiral structure is required from the SM. Therefore, we
have to consider setups that can lead to a non-zero index.

The analytical information mean wavefunctions and the integral on an extra dimensional
space. Coupling constants in low-energy effective field theories are important to compare
the theory with the experiments and the observations. To compute such a coupling constant,
information of the wavefunctions and the integral on an extra dimensional space are necessary.
According to the Kaluza-Klein expansion, the fields in a higher dimensional field theory
are decomposed by the eigenfunctions in principle. Accordingly, each term in the action
is decomposed into two parts: the four-dimensional part and the extra dimensional part.
The four-dimensional part consists of an expected form from the SM, e.g., four-dimensional
kinetic terms and Yukawa interactions. Therefore, the extra dimensional parts play the role
of coupling constants because they are constants from the viewpoint of the four-dimensional
field theory. Such an extra dimensional part is constructed by a product of wavefunctions as
the eigenfunctions and the integral over the extra dimensional space. Therefore, the analytical
information is necessary to obtain explicit values of coupling constants in low-energy effective
field theories.

As we mentioned, coupling constants in low-energy effective field theories depend on mod-
uli fields in general. This is because they are determined by the wavefunctions and the integral
on an extra dimensional space. Typically, we perform the Kaluza-Klein expansion based on
the Dirac operator or the Laplacian on an extra dimensional space. Such an operator is de-
fined by the metric. The metric, in general, depends on moduli fields, e.g., complex structure
moduli mentioned above. Thus, the operators defined with the metric and their eigenfunc-
tions depend naturally on moduli fields. Therefore, moduli fields and matter fields cannot be
considered separately. In conclusion, we have to investigate the dependence of moduli fields
and topological and analytical information to obtain a low-energy effective field theory and
consider its phenomenological implications.

One of interesting string-inspired models is a magnetized compactification model. Typ-
ically, we start from super Yang-Mills theory as a low-energy effective field theory of the
D-branes. In particular, such a model can be realized in type IIB superstring theory. There-
fore, in this thesis, we mainly focus on low-energy effective field theories of type IIB superstring
theory. In magnetized compactification models, the magnetic flux obtained from a background
gauge field can induce the non-trivial index. Therefore, the chiral structure is ensured by the
magnetic flux. Although it is difficult generally to obtain the explicit forms of wavefunctions
and compute the integral on an extra dimensional space, there are several works that have
obtained and computed them.

In Ref. [4], the authors considered the magnetized toroidal compactifications and obtained
the explicit zero modes, which are given by the Jacobi-theta function. In addition, they proved
that the lightest mode of the Laplacian has the same functional form with the zero modes.
Moreover, they computed the Yukawa couplings constructed from those eigenfunctions. In
Ref. [4], it is shown that the product of two zero modes can be described by the linear combi-
nation of zero modes. Namely, the space of the zero modes is closed under the multiplication
in the sense of a standard function space. The Yukawa couplings are nothing but the co-
efficients of the linear combination. In Ref. [6], the authors showed an interesting feature
of the coupling constants in the magnetized toroidal compactifications by using the product
property of the Jacobi-theta function. According to Ref. [6], generic multi-point coupling
constants in the magnetized toroidal compactifications can be decomposed by the product of
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the three-point coupling constants. In the decomposition, we can observe the structure that is
similar to the conformal blocks in conformal field theory. In Ref. [5], the authors generalized
the results of Refs. [4, 6] to include the massive modes. In Ref. [75], the authors considered
the magnetized spherical compactifications and obtain the explicit zero modes of the Dirac
operator by rational functions whose numerators are monomials. In addition, they proved
that the lightest mode of the Laplacian has the same functional form with the zero modes.
It is obvious that the Yukawa couplings (three-point coupling constants) are important in
comparison with the SM. The generic multi-point coupling constants are also important to
consider higher dimensional operators, for example, the dimension 5 operator for the neutrino
masses from the viewpoint of models beyond the SM.

So far, we discussed the features of low-energy effective field theories based on superstring
theory, especially type IIB superstring theory. However, superstring theory is established
perturbatively at present. In the traditional quantum field theory, we first define an action at
the beginning, and the rule of the Feynman diagrams is derived on the basis of the action to
compute amplitudes perturbatively. On the other hand, in superstring theory, we have only
the rule of Feynman diagrams for string amplitudes based on superconformal field theory,
but the origin of the rule is indefinite. Because the discussions so far are based on the
perturbative superstring theory. There is a possibility that the above features, especially for
coupling constants, will be affected by non-perturbative effects. Hence, it is important to
reconsider the above discussion from the viewpoint of non-perturbative perspectives.

The purpose of this thesis is to investigate features of coupling constants in magnetized
compactifications models as effective theories of type IIB superstring from perturbative and
non-perturbative points of view.

As a perturbative point of view, we discuss the generalization of the features of the coupling
constants in the magnetized toroidal and spherical compacifications to magnetized compacifi-
cations of general compact spin manifolds. In the previous works, the features of the coupling
constants are derived from the product property of the Jacobi-theta function or the rational
functions. Actually, we will prove that the features of the coupling constants can be attributed
to two general reasons: the space of the eigenfunctions of the Dirac operator configures the
complete orthonormal system, and the action of the Dirac operator satisfies the Leibniz rule.

As a non-perturbative point of view, we consider matrix models as non-perturbative for-
mulations of superstring theory. In this thesis, we mainly consider Ishibashi-Kawai-Kitazawa-
Tsuchiya (IKKT) matrix model. There are two reasons why the IKKT matrix model is
considered as a non-perturbative formulations of superstring theory: we can define the action
of the IKKT matrix model without Feynman diagrams, and type IIB string field theory in
the light-cone gauge can be derived from the IKKT matrix model. The action of the IKKT
matrix model can be defined by super Yang-Mills action. As we mentioned, magnetized
compactification models are described by super Yang-Mills theory. Therefore, we are natu-
rally lead to consider magnetized compactifications in the IKKT matrix model to investigate
non-perturbative effects for the perturbative results.

The organization of this thesis is as follows. Chapter 1 contains the introduction and
the structure of this thesis. In Chapter 2, we introduce superstring theory, especially type
IIB superstring theory. In Chapter 3, we review the results of the magnetized toroidal and
spherical compactifications as low-energy effective field theories of type IIB superstring theory
on the basis of Refs. [4–6, 75]. In Chapter 4, we review the IKKT matrix model. We define
the action of the IKKT matrix model from the matrix regularization of the Green-Schwarz
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action and the large-N reduction of the super Yang-Mills action. Although the momentum
cut-off is introduced effectively by the matrix regularization or the large-N reduction, the
gauge symmetry is preserved. The noncommutative torus in the IKKT matrix model is
defined on the basis of the gauge symmetry. Therefore, we introduce the noncommutative
torus in this Chapter. In addition, we introduce a modified IKKT matrix model to describe
the fuzzy sphere. In Chapter 5, we discuss the generalization of the results reviewed in
Chapter 3 to the case with more general manifold. We will prove the results are hold on
magnetized compactifications of general compact spin manifolds. In Chapter 6, we reconsider
the result of Chapter 5 from a non-perturbative perspective. We will consider the magnetized
compactification models on the noncommutative torus and fuzzy sphere based on the IKKT
matrix model. The quantization condition of the magnetic flux on the noncommutative torus
is deformed by the noncommutative parameter. We will derive zero modes of the Dirac
operator. In addition, we compute Yukawa couplings as examples to confirm the features of
the coupling constants. We will observe that the result based on the IKKT matrix model
is almost the same with magnetized toroidal and spherical compactifications in Chapter 5.
Chapter 7 contains the summary of this thesis. We take the natural unit convention � = c = 1,
where � is the Dirac constant and c is the speed of light. The Minkowski metric is set as
ηMN = diag(−,+, · · · ,+).
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Chapter 2

Type IIB superstring theory

In this thesis, we mainly focus on type IIB superstring theory and its low-energy effective field
theories. Hence, in this chapter, we survey superstring theory, especially type IIB superstring
theory on the basis of Refs. [8–11].

2.1 Superstring theory

There are two approaches to establish superstring theory: the Ramond-Neveu-Schwarz (RNS)
formalism, and the Green-Schwarz (GS) formalism. The RNS formalism is constructed on the
basis of the supersymmetry on the string world-sheet. On the other hand, the GS formalism
handles ten-dimensional Minkowski space-time with the supersymmetry. In this section, we
review superstring theory based on the RNS formalism.

2.1.1 RNS formalism

Let us start from the bosonic string theory. We consider a surface so called the world-
sheet since the trajectory of a string describes a surface. Therefore, we can characterize
the world-sheet by two-dimensional coordinates (τ, σ). We also use σα (σ0 = τ, σ1 = σ).
The dynamics of the string in D dimensions can be described D functions XM (τ, σ) (M =
0, . . . , D−1). In addition, we define the inner product of XM as X ·X := ηMNX

MXN where
ηMN = diag(−,+, · · · ,+). The well-known action of the bosonic string is the Nambu-Goto
action [12,13]

SNG = − 1

2πα′

∫
d2σ

√(
Ẋ ·X ′

)2 − (Ẋ)2(X ′)2, (2.1)

where ẊM := dXM/dτ , XM ′
:= dXM/dσ, and α′, which is called the Regge slope, has units

of length-squared. However, the square root is an obstacle when we consider quantization.
To perform quantization of the string, we introduce an auxiliary world-sheet metric hαβ(τ, σ)
whose signature is (−,+). By using the metric hαβ , we can define the action that is equivalent
to the Nambu-Goto action (2.1) as

S = − 1

4πα′

∫
d2σ

√−hhαβ∂αX · ∂βX, (2.2)
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where h := dethαβ . The action (2.2) is called Brink-Di Cecchia-Howe-Deser-Zumino ac-
tion [14,15] or Polyakov action [16].

The action (2.2) possesses the following symmetries:

1. Poincaré transformations (global)

δXM = aMNX
N + bM , δhαβ = 0,

where aMN = −aNM is the Lorentz transformation parameter and bM is the translation
parameter in D dimensions.

2. Diffeomorphisms (local)

σα → fα(σ, τ) = σ′α, hαβ(τ, σ) =
∂fγ

∂σα
∂f δ

∂σβ
hγδ(τ

′, σ′).

This is a reparameterization of the world-sheet coordinate.

3. Weyl transformations (local)

hαβ → eφ(τ,σ)hαβ , δXM = 0.

This local symmetry induces the vanishing of the energy-momentum tensor.

We can select a gauge of the auxiliary metric since diffeomorphisms and Weyl transformations
are local symmetries. On a two-dimensional space, the metric has three degrees of freedom
because of the symmetric condition. On the other hand, diffeomorphisms and Weyl transfor-
mations have two and one degrees of freedom, respectively. Therefore, we can fix a gauge of
the auxiliary metric completely. For convenience, we select the following gauge:

hαβ = ηαβ =

(−1 0
0 1

)
.

Hence, the action (2.2) takes

S =
1

4πα′

∫
d2σ

(
(Ẋ)2 − (X ′)2

)
. (2.3)

In the following, we set the unit α′ = 1/2. To establish superstring action, we generalize
the action (2.3) to the action containing fermions on the world-sheet. The expected action is
obtained by

S = − 1

2π

∫
d2σ

(
∂αXM∂

αXM + ψ̄MΓα∂αψM

)
(2.4)

where Γα is the two-dimensional Gamma matrix, e.g.,

Γ0 =

(
0 −1
1 0

)
, Γ1 =

(
0 1
1 0

)
.
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The spinors in the action (2.4) must be Grassmann numbers classically. We will impose the
anti-commutation relation. We label the two components of the spinors ψM as

ψM =

(
ψM−
ψM
+

)
. (2.5)

On the other hand, the Dirac conjugate is defined by

ψ̄M := ψM†C, C := iΓ0.

Since the spinors included in the action (2.4) should be Majorana spinors and the Majorana
spinors are defined by ψTC, the fermionic part of the action can be written as

Sf =
i

π

∫
d2σ

(
ψM
− ∂+ψM,− + ψM

+ ∂M,−ψ+

)
, (2.6)

where we introduce the light-cone coordinates, i.e.,

σ± = τ ± σ, ∂± =
1

2
(∂τ ± ∂σ).

The equations of motion are

∂+∂−XM = 0, (2.7)

∂±ψM
∓ = 0. (2.8)

We have to select the boundary conditions. For the bosonic part, there are three types of
boundary conditions: the Dirichlet boundary condition, the Neumann boundary condition,
and closed string. The first two conditions are for the open string.

• Neumann boundary condition

XM ′ |σ=0,π = 0. (2.9)

• Dirichlet boundary condition

XM |σ=0 = XM
0 , XM |σ=π = XM

π , (2.10)

Actually, we can consider mixed boundary conditions, e.g., XI (I = 1, . . . , D − p − 1)
Dirichlet boundary condition and XJ (J = D − p, . . . , D − 1) Neumann boundary
condition. We will consider such a case in the context of D-branes.

• Closed string

XM (τ, σ) = XM (τ, σ + π). (2.11)
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For the fermionic part, there are two types of boundary conditions if we fix the overall sign
between ψM

+ and ψM− : the Ramond boundary condition, and the Neveu-Schwarz boundary
condition.

• Ramond boundary condition

ψM
+ |σ=π = ψM

− |σ=π for open string, (2.12)

ψM
± (τ, σ) = ψM

± (τ, σ + π) for closed string (2.13)

• Neveu-Schwarz boundary condition

ψM
+ |σ=π = −ψM

− |σ=π for open string, (2.14)

ψM
± (τ, σ) = −ψM

± (τ, σ + π) for closed string (2.15)

To consider canonical quantization, the harmonic oscillator representation is convenient. In
this thesis, we are interested in type IIB superstring theory, and type IIB superstring theory
is defined by the closed string only. Hence, we obtain only the closed string solution in the
harmonic oscillator representation.

• Bosonic closed string

XM
R =

1

2
xM +

1

2
pM (τ − σ) +

i

2

∑
n �=0

1

n
αM
n e

−2in(τ−σ) for right movers,

XM
L =

1

2
xM +

1

2
pM (τ + σ) +

i

2

∑
n �=0

1

n
α̃M
n e

−2in(τ+σ) for left movers.

• Fermionic closed string: Ramond sector (R-sector)

ψM
− =

∑
n∈Z

dMn e
−2in(τ−σ) for right movers,

ψM
+ =

∑
n∈Z

d̃Mn e
−2in(τ+σ) for left movers.

• Fermionic closed string: Neveu-Schwarz sector (NS-sector)

ψM
− =

∑
r∈Z+1/2

bMr e
−2ir(τ−σ) for right movers,

ψM
+ =

∑
r∈Z+1/2

b̃Mr e
−2ir(τ+σ) for left movers.

For canonical quantization, we introduce the canonical commutation relations and the
canonical anti-commutation relations for the bosonic part and the fermionic part, respectively.
We define the canonical momentum by
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PM :=
δS

δẊM

(2.16)

Hence, [
PM (τ, σ), PN (τ ′, σ′)

]
=

[
XM (τ, σ), XN (τ ′, σ′)

]
= 0, (2.17)[

PM (τ, σ), XN (τ ′, σ′)
]
= −iηMNδ(σ − σ′), (2.18){

ψM
A (τ, σ), ψN

B (τ ′, σ′)
}
= πηMNδABδ(σ − σ′), (2.19)

where A,B = ±. The conditions (2.17), (2.18), (2.19) induce the following relations of each
mode operators defined through the Fourier coefficients

[αM
m , α

N
n ] = [α̃M

m , α̃
N
n ] = mηMNδm+n=0, [αM

m , α̃
N
n ] = 0, (2.20)

{bMr , bNs } = {b̃Mr , b̃Ns } = ηMNδr+s=0, {dMm , dNn } = {d̃Mm , d̃Nn } = ηMNδm+n=0. (2.21)

In the harmonic oscillator representation, we can introduce annihilation operators and creation
operators. From the relations (2.20) and (2.21), we can identify αM

m , α̃
M
m , d

M
m , d̃

M
m , b

M
r , b̃

M
r (m, r >

0) as the annihilation operators. Therefore, the ground state is defined by

αM
m |0〉 = α̃M

m |0〉 = dMm |0〉 = d̃Mm |0〉 = 0,

or

αM
m |0〉 = α̃M

m |0〉 = bMr |0〉 = b̃Mr |0〉 = 0.

The ground state with respect to the R-sector is degenerate since there is dμ0 . The number
operator with respect to the R-sector is defined by

NR =
∞∑

m=1

m
(
d−m · dm + d̃−m · d̃m

)
(2.22)

The number operator (2.22) commutes with the operator dμ0 and d̃μ0 . This induces the degen-
eracy of the ground state of the R-sector. On the other hand, the operator dμ0 satisfies

{dM0 , dN0 } = ηMN . (2.23)

If we set
√
2dM0 = ΓM , the relation (2.23) is nothing but the Dirac algebra. Hence, the

degenerated ground states can be labeled by the spinor index. Namely,

dM0 |a〉 = ΓM
ab |b〉 ,
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where a, b are the D-dimensional spinor indices. Therefore, all states of the R-sector are
spece-time fermions.

We note that the set of the states include negative-norm states since the space-time metric
appears in the right-hand side in eqs. (2.20) and (2.21). To exclude the negative-norm states,
we introduce the Virasoro algebra. Let us start from the bosonic part as a demonstration.

The energy-momentum tensor Tαβ is defined by the variation of the action with respect
to the metric

Tαβ := −2π
1√−h

δS

δhαβ
. (2.24)

On the other hand, eq. (2.24) is nothing but the equation of motion with respect to the world-
sheet metric. Therefore, the energy-momentum tensor must vanish, i.e., Tαβ = 0. By using
the light-cone coordinates of the world-sheet, the vanishing of the energy-momentum tensor
can be written by

T++ = ∂+X
M∂+XM = 0,

T−− = ∂−XM∂+−XM = 0.

while obviously T+− = T−+ = 0. For example, we obtain the energy-momentum tensor based
on the closed string by

T−− = 2
∑
m∈Z

Lme
−2im(τ−σ), T++ = 2

∑
m∈Z

L̃me
−2im(τ+σ),

where the coefficients

Lm =
1

2

∑
n∈Z

αm−n · αn, L̃m =
1

2

∑
n∈Z

α̃m−n · α̃n

are called the Virasoro generators. Therefore, the vanishing the energy-momentum tensor in
the classical sense is identified by the vanishing of the Virasoro generators, i.e.,

Lm = L̃m = 0 for m = 0,±1, . . .

Let us go back to the superstring case. The energy-momentum tensor derived from the
superstring action also vanished. This means that

T++ = ∂+X
M∂+XM +

i

2
ψM
+ ∂+ψ+M = 0,

T−− = ∂−XM∂+−XM +
i

2
ψM
− ∂−ψ−M = 0.

In addition, we have other currents called the supercurrents since the action possesses the
supersymmetry, i.e.,

13



J+ = ψM
+ ∂+XM , J− = ψM

− ∂−XM .

We can also introduce the Virasoro generators, which is called the super Virasoro generators
in this case. They are defined by the integration of the above currents along the space-like
direction of the world-sheet. Namely,

Lm =
1

π

∫ π

−π
dσT++e

imσ = L(B)
m + L(F )

m ,

L(B)
m =

1

2

∑
n∈Z

: α−nαm+n : m ∈ Z,

L(F,NS)
m =

1

2

∑
r∈Z+1/2

(r +
m

2
) : b−rbm+r : or L(F,R)

m =
1

2

∑
n∈Z

(n+
m

2
) : d−ndm+n : m ∈ Z.

We introduce the normal ordering to consider quantization. There is an ambiguity according
to this ordering. We will discuss the resolution of this ambiguity. On the other hand, the
supercurrents are obtained by

Gr =

√
2

π

∫ π

−π
dσJ+e

irσ =
∑
n∈Z

α−n · br+n r ∈ Z+
1

2
,

Fm =

√
2

π

∫ π

−π
dσJ−eimσ =

∑
n∈Z

α−n · dm+n m ∈ Z.

From the general discussion, the algebraic structure of the super Virasoro algebra is obtained
as follows,

[Lm, Ln] = (m− n)Lm+n +
D

8
m3δm+n=0,

[Lm, Fn] =
(m
2

− n
)
Fm+n,

{Fm, Fn} = 2Lm+n +
D

2
m2δm+n=0,

for the NS-sector, and

[Lm, Ln] = (m− n)Lm+n +
D

8
m(m2 − 1)δm+n=0,

[Lm, Gr] =
(m
2

− r
)
Gm+r,

{Gr, Gs} = 2Lm+n +
D

2

(
r2 − 1

4

)
δr+s=0,

14



for the R-sector. In addition, the physical states must satisfy the following conditions to avoid
the negative-norm states

Gr |φ〉 = 0 r > 0,

Lm |φ〉 = 0 m > 0,

(L0 − aNS) |φ〉 = 0

in the NS-sector, and

Fm |φ〉 = 0 m ≥ 0,

Lm |φ〉 = 0 m > 0,

(L0 − aR) |φ〉 = 0

in the R-sector. The constants aR and aNS are introduced from the normal-ordering ambiguity
as we mentioned.

The constant aR must be zero because of the super Virasoro algebra with respect to L0

and F0. On the other hand, we can determine the constant aNS by the following way.
Let us start from the NS-sector physical state

|ψ〉 := G−1/2 |χ〉 ,

where the state |χ〉 satisfies

G1/2 |χ〉 = G3/2 |χ〉 =
(
L0 − aNS +

1

2

)
|χ〉 = 0.

From the definition of the states |ψ〉 and |χ〉, aNS = 1/2 since

0 = G1/2 |ψ〉 = (2aNS − 1) |χ〉 .

We can determine the space-time dimension D on the basis of the similar way for the deter-
mination of aNS. To confirm, we define the Neveu-Schwarz physical state

|ψ〉 := (G−3/2 + λG−1/2L−1) |χ〉 ,

where the state |χ〉 satisfies

G1/2 |χ〉 = G3/2 |χ〉 = (L0 + 1) |χ〉 = 0.

We have already derived the result, aNS = 1/2. Therefore, we can obtain the following
equations
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0 = G1/2 |ψ〉 = (2− λ)L−1 |χ〉 ,
0 = G3/2 |ψ〉 = (D − 2− 4λ) |χ〉 .

From the conditions, the space-time dimensionD must be 10 as we mentioned in the Chapter 1
since the parameter λ is 2. We can obtain the same result on the basis of the R-sector.

Before proceeding to the discussion about the supergravity action, we mention the classical
notion of the D-branes. Let us consider open strings with the Dirichlet boundary condition.
For simplicity, we assume that we have two options (k, l = 1, 2) for the boundary condition.
Namely,

XI |σ=0 = xIk,0, XI |σ=π = xIl,π, (2.25)

where I = 1, . . . , D − p− 1 and XI
k,0 and XI

l,π are constants.
Comparing with the Neumann boundary condition, the solution is given by

XI = XI
k,0 + (XI

l,π −XI
k,0)

σ

π
+

∑
n �=0

1

n
αI
ne

−inτ sinnσ. (2.26)

We have already defined the canonical momentum by eq. (2.16). The mass-squared operator
M2 is defined as M2 = −P 2. In this case, the mass-squared operator has (XI

l,π − XI
k,0)

2

that is similar to the potential energy of a spring. In other words, all states of open strings
described by eq. (2.26) have the masses depending on the square of the distance |XI

l,π − xIk,0|.
From the set, all states have two labels to distinguish two options at the endpoints. If two
labels are different from each other, such a state has the masses depending on the square
of the distance. However, such a state can be a massless state if two D-branes coincide. In
that case, the massless states have the two types of the label: the spacetime vector, and the
coincident D-branes. Therefore, we can identify these states as a U(2) non-Abelian gauge
field. Obviously, we can consider N coincident D-branes. Hence, the effective field theory can
be described by U(N) super Yang-Mills theory, and we will discuss it below.

2.2 Type IIB superstring theory and supergravity action

In the following, we introduce the physical states in superstring theory by imposing the
Virasoro condition. According to Section 2.1, we can select the boundary conditions for each
left- and right-mover of the fermionic part: the NS-sector, the R-sector. Therefore, we have
four types of physical states: the NS-NS sector, the NS-R sector, the R-NS sector, the R-R
sector. Actually, the whole states are described by the combinations of the states from the
bosonic and the fermionic parts.

Let us start from the NS-NS sector. The massless states of the NS-NS sector can be
described by

|0〉(B) ⊗ b̃i−1/2 |0〉L ⊗ bj−1/2 |0〉R , (2.27)
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where |0〉(B), |0〉L,and |0〉R are the ground states of the bosonic part and the left-movers and
right-movers of the fermionic part. These states (2.27) have two indices corresponding to
the spacetime vector after the light-cone gauge, hence, i = 1, 2, . . . , 8. In other words, we
can identify these states as the 2-rank tensor field. More precisely, the rank-2 tensor can be
decomposed into the symmetric traceless part, the trace part and the anti-symmetric part.
They correspond to the gravitational field, and the dilaton field and the Kalb-Ramond field.

Next, we consider the NS-R sector and the R-NS sector. As we mentioned, the R-sector has
the label of the spacetime fermion. Hence, both of the sectors have the labels: the spacetime
fermion, the spacetime vector. Namely,

|0〉(B) ⊗ b̃i−1/2 |0〉L ⊗ |a〉R , (2.28)

|0〉(B) ⊗ |a〉L ⊗ bi−1/2 |0〉R . (2.29)

Let us consider a Dirac fermion in a ten-dimensional spacetime. Originally, such a fermion
has 32 components. However, due to the equation of motion, the number of the physical
degree of freedom is 16. This equals to that of the spinor in an eight-dimensional spacetime.
Additionally, the massless states (2.28) and (2.29) have the index of the spacetime vector.
Hence, the massless states can be identified as a Rarita-Schwinger field and a Majorana
fermion.

Next, we consider the R-R sector. The massless states of the R-R sector can be described
by

|0〉(B) ⊗ |a〉L ⊗ |b〉R . (2.30)

In general, the field with two spinor indices can be decomposed by the Gamma matrices and
their anti-symmetric combinations. In other words,

(
/C
)
ab

= C + Ci(Γ
i)ab + · · ·+ 1

8!
Ci1···i8(Γ

i1···i8)ab, (2.31)

where the slash means the Feynman slash and Γi (i = 1, . . . , 8) is the Gamma matrix in eight
dimensions. Hence, we can obtain anti-symmetric tensors from 0-rank to 8-rank.

From the above, the number of the bosonic fields is 320. On the other hand, we can
find 256 fermionic fields. This means that the ten-dimensional field theory of these massless
fields does not have supersymmetry. Actually, we have to consider the restricted Fock spaces
because of the modular invariance. They can be realized by the GSO projection [17]. The
GSO projection is described by the action of the fermionic number operator (−1)FL and
(−1)FR . The action of these operators for the ground states is defined as

(−1)FL |0〉L = − |0〉L ,
(−1)FL |a〉L = −γabξ |b〉L , (2.32)

(−1)FR |0〉R = − |0〉R ,
(−1)FR |a〉R = −γabξ̃ |b〉R , (2.33)

(2.34)
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where ξ, ξ̃ = ±1. The ambiguity of the sign assignment corresponds to the existence of two
supersymmetric theories: type IIA superstring theory, and type IIB superstring theory. The
difference lies in the R-R sector. The GSO projection imposes the chirality condition with
respect to the R-R sector. It induces that type IIA superstring theory and type IIB superstring
theory can have the anti-symmetric tensor fields with even number indices and odd number
indices, respectively. In addition, the fifth-rank anti-symmetric tensor field must satisfy the
anti-self-dual condition. In the following, we focus on type IIB superstring theory.

The effective action of these massless fields is described by supergravity so called type
IIB supergravity. In type IIB supergravity, the contents are dilaton Φ, graviton GMN , Kalb-
Ramond field B2 (field strength H3), R-R scalar field C0, R-R 2-form field C2 and R-R 4-form
field C4. We denote the field strength of p-form fields by Fp+1. The action is given by

SIIB = SNS + SRR + SCS,

SNS =

∫
d10x(−G)1/2e−2Φ

(
R+ 4∂MΦ∂MΦ− 1

2
|H3|2

)
,

SRR = −1

2

∫
d10x(−G)1/2e−2Φ

(
|F1|2 + |F̃3|2 + 1

2
|F̃5|2

)
,

SCS = −1

2

∫
C4 ∧H3 ∧ F3,

where

F̃3 := F3 − C0 ∧H3,

F̃5 := F5 − 1

2
C2 ∧H3 +

1

2
B2 ∧ F3.

In addition, we have to impose the anti-self dual condition to F5 = ∗F5, where ∗ is the Hodge
dual in a ten-dimensional spacetime.

2.3 D-branes

Classically, the D-branes are various dimensional objects where the endpoints of the open
strings attach. As we discussed, type IIB superstring theory is constructed on the basis of
the closed strings. Therefore, it seems that type IIB superstring theory does not contain the
D-branes. However, the massless spectrum of type IIB superstring theory contains the higher
form anti-symmetric tensor fields like the Maxwell gauge field. This fact implies the existence
of the D-branes in type IIB superstring theory.

Let us consider the Maxwell equations in four dimensions with electric and magnetic
sources

dF = ∗Jmag, (2.35)

d ∗ F = ∗Jelec. (2.36)

The point-like electric charge density is described by the delta function such that
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ρ = eδ(3)(�r) (2.37)

For the point-like magnetic charge density is described in a similar way by replacing e to em.
The electric and magnetic charges are defined by the integration of the field strength

e =

∫
S2

∗F, em =

∫
S2

F (2.38)

The magnetic field depending on the magnetic charge, for example

�B =
em
r2
�r (2.39)

can satisfy the Maxwell equation (2.36). This magnetic field induces a gauge potential de-
pending on the magnetic charge, for example

Aφ = em(1− cos θ) (2.40)

in the polar coordinate. On the other hand, the existence of the gauge field induces the
covariant derivatives in the Schrödinger equations. The covariant derivatives have the gauge
field dependence such that eAμ. Therefore, the gauge transformations carry both of charges.
Hence, if we consider the wavefunctions of an electrically charged particle in a magnetic
monopole background, the electric charge e and the magnetic charge em satisfy Dirac’s quan-
tization condition [18]

eem ∈ 2πZ. (2.41)

We can generalize the above result to the (p+1)-form gauge fields in D dimensions [19,20].
The interaction with (p+ 1)-form fields can be described by

∫
Ap+1 =

1

(p+ 1)!

∫
dp+1σAM1···Mp+1

∂xM1

∂σ0
· · · ∂x

Mp+1

∂σp
, (2.42)

where σ0, · · · , σp are the coordinates of (p + 1) dimensions. The electric charge ep is also
defined by the integration of the field strength on the sphere SD−p−2

ep =

∫
SD−p−2

∗Fp+2. (2.43)

We can interpret eq. (2.42) as the coupling between the anti-symmetric tensor field and an
extended charged object. Let us consider the following source in (p+ 1) dimensions

JM1...Mp+1 = ep

∫
dp+1σδ(D)(y − x)

∂xM1

∂σ0
· · · ∂x

Mp+1

∂σp
.
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Then, eq. (2.42) can be

∫
Ap+1 =

1

(p+ 1)!

∫
dp+1σAM1···Mp+1J

M1...Mp+1 .

On the other hand, the magnetic charge ep,m is also defined by the integration of the field
strength on the sphere Sp+2

em,p =

∫
Sp+2

Fp+2. (2.44)

For the Maxwell gauge field (the 1-form gauge field), we consider the integral on a loop
S1. For the (p + 1)-form gauge field in D dimensions, we have to consider the integral on
a sphere Sp+1. By the Stokes’ theorem, the integral converts to the integration of the field
strength on a (p+ 2)-dimensional hypersurface in D dimensions. If we consider two (p+ 2)-
dimensional hypersurfaces, the difference is topologically the sphere SD−p−2. Originally, the
(p + 1)-form gauge fields carry the charge ep. Therefore, we come to the generalization of
Dirac’s quantization condition

epem,6−p ∈ 2πZ (2.45)

if D = 10. In Ref. [21], the author derived the condition (2.45) by comparing the amplitude
of the closed string channel and the effective potential of the higher form gauge fields.
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Chapter 3

Magnetized extra dimensions

3.1 Super Yang-Mills theory

We discussed the D-branes in type IIB superstring theory. In addition, the world-volume
theory of N coincident supersymmetric D-branes is described by super Yang-Mills theory
as we mentioned in Section 2.1. In this section, we consider super Yang-Mills theory as an
effective field theory of type IIB superstring theory.

We consider the N = 1 super Yang-Mills action of the group G in D dimensions. The
action is given by

S =

∫
dDw

[
− 1

4g2
Tr

(
FMNFMN

)
+

i

2g2
Tr

(
λ̄ΓMDMλ

)]
, (3.1)

where M,N = 0, . . . , D − 1. The action has the gauge symmetry. The infinitesimal gauge
transformations are described by

AM → AM + ∂Mθ + i[θ,AM ], (3.2)

λ→ λ+ i[θ, λ], (3.3)

where θ is a G-valued arbitrary function as a gauge transformation parameter. In the fol-
lowing, we consider the group G = U(N) for concreteness. In this case, the bases of the Lie
algebra can be (Ua)kl = δakδal and (eab)kl = δakδbl. Hence, we can expand the gauge field and
the fermions in terms of the bases, i.e.,

AM = Ba
MUa +W ab

M eab, λ = χaUa +Ψabeab. (3.4)

By inserting these, the Lagrangian can be rewritten as
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L = LB + LF (3.5)

LB = − 1

2g2
Tr

[
DMWND

MWN −DMWND
NWM − iGMN [WM ,WN ]

]
+

1

4g2
Tr

[
[WM ,WN ][WM ,WN ]

]
=

i

2g2
Tr

[
(DMWN −DNWM )[WM ,WN ]− 1

2i
GMNG

MN

]
, (3.6)

LF =
i

2g2
Tr

(
Ψ̄ΓM∂MΨ− iΨ̄ΓM [BM ,Ψ]

)
+

i

2g2
Tr

(
Ψ̄ΓM [WM ,Ψ]

)
+

i

2g2
Tr

(
χ̄ΓM∂Mχ− iχ̄ΓM [WM ,Ψ]− iΨ̄ΓM [WM ,Ψ]

)
. (3.7)

where

GMN = ∂MBN − ∂NBM ,

DMWN = ∂MWN − i[BM ,WN ].

Let us consider the compactifications by a D−4 dimensional manifold with expectation values
of the components of the gauge fields since we are interested in magnetized compactifications.
We use indices μ for 0, . . . , 3 and i for 4, . . . , D−1. To preserve the four-dimensional Poincaré
invariance, we introduce the non-vanishing expectation values for Ba

i and W ab
i only

Ba
i (w) =< Ba

i > (y) + Ca
i (w), W ab

i (w) =< W ab
i > (y) + Φab

i (w), (3.8)

where wM is the coordinate of the whole spacetime, yi is that of the extra dimensional space
and xμ is that of the four-dimensional Minkowski spacetime. For simplicity, we consider
< W ab

i >= 0. Inserting the expansions around the above expectation values, we can rewrite
the action as

L = L(2)
B + L(2)

F + LY + L̃, (3.9)

L(2)
B =

i

2g2

(
Ga

ij −Gb
ij

)(
(Φi

ab)
∗
Φj
ab − (Φj

ab)
∗
Φi
ab

)
− 1

2g2
[
(DμΦi,ab)

∗(DμΦi
ab)

+(D̃iΦj,ab)
∗
(D̃iΦj

ab)− (DμΦi,ba)(D̃
iWμ

ab)− (D̃iΦj,ab)
∗
(D̃jΦi

ab)
]
,

L(2)
F =

i

2g2
Ψ̄baΓ

μDμΨab +
i

2g2
Ψ̄baΓ

iD̃iΨab,

LY =
1

2g2
(
Ψ̄abΓ

iΦi,bdΨda − Ψ̄abΓ
iΦi,caΨbc

)
,

where D̃i = ∂i − ig < Bi >, and D̃iΦj,ab = ∂iΦj,ab − i < Ba
i > Wj,ab + i < Bb

i > Wj,ab. The
part L̃ contains the irrelevant terms for the following discussions.
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Let us remark on the gauge-fixing. The quadratic bosonic part L(2)
B contains the term

−(DμΦi,ba)(D̃
iWμ

ab). By integration by parts, this term becomes (D̃iΦi,ba)(DμW
μ
ab). Hence, it

is convenient to consider the gauge-fixing condition D̃iΦi,ba = 0 since we can avoid complicated
mass terms.

We can read the Dirac operator and the Laplacian from the action (3.9)

i /̃DD−4ψab,n = iΓiD̃iψab,n, (3.10)

ΔD−4φi,ab,n = −D̃jD̃
jφi,ab,n. (3.11)

Then, the Kaluza-Klein expansions with respect to these operators are given as

Ψab(w) =
∑
n

χab,n(x)⊗ ψab,n(y)

Φi,ab(w) =
∑
n

ϕi, ab, n(x)⊗ φab,i,n(y),

where ψab,n(y) and φab,i,n(y) are eigenfunctions of the Dirac operator (3.10) and the Lapla-
cian (3.11), respectively. In the following parts, we will focus on coupling constants in four-
dimensional effective field theories. Based on the action (3.9), The Yukawa couplings can be
described by

S ⊃ 1

2g2

∑
I,J,K

[∫
dD−4yψ†

ab,Iφi,bd,JΓ
iψda,K

] ∫
d4xχ̄ab,Iϕi,bd,J,iχda,K

−
[∫

dD−4yψ†
ab,Iφi,ca,JΓ

iψbc,K

] ∫
d4xχ̄ab,Iϕi,ca,Jχbc,K .

(3.12)

The integration of the type

∫
dD−4yψ†

ab,Iφi,ca,JΓ
iψbc,K

is called an overlap integral.

3.2 Magnetized toroidal compactifications

From eq. (3.12), we have to derive the lightest modes of the operators (3.10) and (3.11)to
compute the product of those modes and perform the integration on the extra dimensional
space. For concreteness, let us consider magnetized toroidal compactifications on the basis
of Refs. [4, 7]. For simplicity, we consider a two-dimensional torus as an extra dimensional
space. Hence, we ignore the directions from y6 to yD−1.

For convenience, we adopt the real-coordinate description. Let us denote v4 = (2πR4, 0)
and v5 = (0, 2πR5) as vectors of R2. We define the lattice space Λ � Z2 generated by
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vi (i = 4, 5). The torus can be defined as the quotient space such that T 2 � R2/Λ. The
metric1 is obtained from the line element

ds2T 2 = dy4dy4 + dy5dy5.

We are interested in magnetized compactifications. Hence, we introduce an Abelian gauge
field on T 2. Let us recall the gauge transformations of the gauge field and its field strength.
Their gauge transformations are given by

Ai → Ai + ∂iΩ, Fij → Fij ,

where Ω is an arbitrary function corresponding to a degree of freedom of the gauge transfor-
mations. The field strength must be well-defined on the torus because of the gauge invariance.
On the other hand, the gauge field should be well-defined up to gauge transformations, i.e.,

Ai(y + vj) = Ai(y) + ∂iΩj(y), (3.13)

where Ωj(y) is an arbitrary function on T 2 corresponding to a degree of freedom of the gauge
transformations that are associated with the translation along the vj-direction. This induces
the transformation of the wavefunctions on the torus such that

ψ(y + vj) = eiΩj(y)ψ(y). (3.14)

If the gauge transformation function Ωj(y) is zero, the gauge transformation (3.14) is nothing
but the periodic boundary condition. Therefore, eq. (3.14) is interpreted as a kind of boundary
condition. The boundary condition (3.14) is called the twisted boundary condition.

The torus has the loop that goes around the fundamental domain along the edges. We
evaluate at the same point before and after the parallel transport along the loop. Since
the wavefunctions must be single-valued functions, the gauge transformation functions must
satisfy the following equation

Ωi(y + vj)− Ωi(y)− Ωj(y + vi) + Ωj(y) ∈ 2πZ. (3.15)

For concreteness, we consider the axial gauge defined by

A4 = 0, A5 = Fy4,

The gauge transformation functions in eq. (3.13) can be obtained by

Ωi(y) = 2πR4Fy
5δ4i + const., (3.16)

1We can introduce the complex structure modulus at this level. However, the dependence of the modulus
is irrelevant to the following discussions. Hence, we consider the real coordinate of the torus for simplicity as
mentioned.
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where the constant is called the Wilson line, which we ignore, because it is irrelevant to the
following discussion. The magnetic flux F in eq. (3.16) must satisfy the following quantization
condition

F · A
2π

∈ Z → F =
2π

A
Nν, (3.17)

where A = (2π)2R4R5, N ∈ N, and ν = ±1.
Let us start from a fermion in the fundamental representation. The zero mode equation

is obtained by

/Dψ =

(
0 ∂4 − i∂5 − 2π

A Nνy
4

∂4 + i∂5 +
2π
A Nνy

4 0

)(
ψ+

ψ−

)
= 0. (3.18)

According to Refs. [4, 7], the zero modes can be described by the Jacobi-theta function

ψs
I =

(
2πR5

√
π

|F |
)−1/2

exp

[
−1

2
F · s(y4)2

]
ϑ

[
I·s·ν
N
0

] (
N · s · ν
2πiR5

(y4 + isy5), i
R4

R5
N · s · ν

)
,

(3.19)

where s = ± is the label of the chirality, I = 0, . . . , N − 1 is the label of the degeneracy, and
the Jacobi-theta function is defined by

ϑ

[
a
b

]
(δ, τ) :=

∑
l∈Z

eπi(a+l)2τ+2πi(a+l)(δ+b),

where Im τ must satisfy Im τ > 0. Because of the normalization condition and the requirement
from the definition of the Jacobi-theta function, the chirality s and the sign of the magnetic
flux ν must satisfy s · ν = +1. In addition, we can confirm the orthogonality of them. The
zero modes can be written as

ψs
I =

(
2πR5

√
π

|F |
)−1/2

exp

[
−1

2
|F |(y4)2

]
ϑ

[
I
N
0

] (
N

2πiR5
(y4 + isy5), i

R4

R5
N

)
, (3.20)

where s · ν = +1, which has already been incorporated.
Consequently, the chirality is determined by the sign of the magnetic flux and the gen-

erations as the degeneracy is determined by the absolute value of the magnetic flux. This
means the realization of the chiral structure and the generations in the low energy effective
field theory.

On the other hand, we are interested in a bifundamental fermion. For simplicity, we
consider the U(2) adjoint representation and the gauge background such that

A4 = 0, A5 =

(
F1y

4 0
0 F2y

4

)
, (3.21)
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where Fm = 2πNmνm/A (m = 1, 2). The magnetic flux (3.21) breaks U(2) down to U(1) ×
U(1). Then, we can realize the bifundamental fermions from the off-diagonal component of
adjoint fermions, i.e.,

ψ± =

(
ψ±
11 ψ±

12

ψ±
21 ψ±

22

)
, (3.22)

From the above, the zero mode equation for each chirality is obtained by

(∂4 + is∂5)

(
ψ±
11 ψ±

12

ψ±
21 ψ±

22

)
+ s

(
0 (F1 − F2)y

4ψ±
12

(F2 − F1)y
5ψ±

21 0

)
= 0 (s = ±). (3.23)

The diagonal components are not affected by the magnetic fluxes. Therefore, the boundary
condition becomes the double periodic boundary condition. Then, the zero mode must be a
constant function. On the other hand, the off-diagonal components are affected by the mag-
netic fluxes. However, the net effect is the same as the fundamental representation case (3.18).
Therefore, when F12 = F1−F2 > 0 (N12 := N1−N2 > 0), the zero modes can be also described
by the Jacobi-theta function

ψ+
12,I =

(
2πR5

√
π

F12

)−1/2

exp

[
−1

2
F12(y

4)2
]
ϑ

[
I

N12

0

] (
N12

2πiR5
(y4 + isy5), i

R4

R5
N12

)
, (3.24)

where I = 0, . . . , N12 − 1.
Comparing with the Yukawa couplings (3.12), we have to consider the Kaluza-Klein expan-

sion with respect to the Laplacian (3.11). To obtain the eigenfunctions of the Laplacian (3.11),
let us compute the commutation relation of the Dirac operators, i.e.,

D := ∂4 − i∂5 − i[A4 − iA5, · ], D′ = ∂4 + i∂5 − i[A4 + iA5, · ], (3.25)

[D,D′] = 2F12, (3.26)

Therefore, we can identify D and D′ as an annihilation operator and a creation operator,
respectively. If sign(F12) = −1, it is enough to interchange the role of the annihilation and
the creation operators each other. On the other hand, the Laplacian (3.11) can be rewritten
as

/D
2
= Δ+

(−F12 0
0 F12

)
.

Therefore, the zero modes of the Dirac operator are the lightest modes of the Laplacian.
The generalization to U(N) gauge group is straightforward. Consequently, it is enough to
compute the product of the Jacobi-theta functions for the Yukawa couplings (3.12). According
to Ref. [22], the Jacobi-theta functions satisfy the following product property
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ϑ

[
I
N1

0

]
(z1, τN1) · ϑ

[
J
N2

0

]
(z2, τN2) =

∑
K∈ZN1+N2

ϑ

[ I+J+N1K
N1+N2

0

]
(z1 + z2, τ(N1 +N2))

× ϑ

[
N2I−N1J+N1N2K

N1N2(N1+N2)

0

]
(z1N2 − z2N1, τN1N2(N1 +N2)).

(3.27)

It is important that the product of the Jacobi-theta functions is written by the linear com-
bination of the Jacobi-theta functions. This indicates that the zero mode space is closed
under the multiplicity in the sense of the usual multiplication of functions. Therefore, we
can compute the Yukawa couplings from the coefficients of the linear combinations (3.27). To
compute eq. (3.12), we need to apply the formula (3.27) to ψI

bd · ψJ
da. The result is

ψbd,I · ψda,J =
(2Nbd)

1/4(2Nda)
1/4

(2Nba)1/4

∑
K∈ZNba

ψba,I+J+NbdK × ϑ

[MdaI−MbdJ+MbdMdaK
MbdMdaMba

0

]
(0, iMbdMdaMba).

Consequently, the Yukawa coupling constants are obtained by

YIJL =
(2Nbd)

1/4(2Nda)
1/4

(2Nba)1/4
ϑ

[MdaI−MbdJ+MbdMdaK
MbdMdaMba

0

]
(0, iMbdMdaMba), (3.28)

where L = I + J +NbdK.
We showed that the Yukawa couplings in magnetized toroidal compactifications can be

computed from the product property of the Jacobi-theta function. The Yukawa couplings are
three-point coupling constants. According to Ref. [6], we generalize from three-point coupling
constants to higher order coupling constants in magnetized toroidal compactifications.

• Four-point coupling constants

Because of the Lorentz invariance, the number of the fermions in general higher order coupling
constants must be even. Therefore, it is enough to consider just boson-boson-boson-boson
and boson-boson-fermion-fermion for four-point coupling constants. On the other hand, the
lightest modes of the Laplacian are the same as the zero modes of the Dirac operator. There-
fore, the computations for the two cases are essentially the same. This is similar for general
higher order coupling constants in magnetized toroidal compactifications. Hence, it is enough
to consider the following four-point coupling constants

YIJKL =

∫
d2yψM1

I ψM2
J ψM3

K

(
ψM4
L

)∗
. (3.29)

where we denote the magnetic flux by Ma for simplicity. From the gauge symmetry, M1 +
M2 +M3 =M4. In addition, we assume gcd(M1,M2,M3) = 1 for simplicity. We have shown
the product property of the Jacobi-theta functions. Therefore, we can evaluate the four-point
coupling constants (3.29) by using the product property (3.27). The result is obtained by
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YIJKL =
∑

P∈ZM1+M2

ϑ

[M2I−M1J+M1M2P
M1M2M

0

]
(0, iM1M2M)× ϑ

[
M3L−M4K+M3M4P ′

M3M4M

0

]
(0, iM3M4M),

(3.30)

where M =M1+M2 = −M3+M4 and I+J +K+M1P +(M1+M2)P
′′ = L+M4P

′ for the
constraint of P ′′. On the other hand, according to Ref. [6], the result (3.30) can be interpreted
as the insertion of the completeness relation. It is well-known that the eigensystem of the
Dirac operator on a compact manifold forms the complete orthonormal system. Therefore, the
entire eigenfunctions satisfy the completeness relation with respect to an appropriate inner
product. In this case, we define the inner product by

(Φ,Ψ) :=

∫
T 2

Tr
(
Φ† ·Ψ

)
,

where the dot · means the product with respect to the gauge group and the spinors if Φ and
Ψ are spinors. If we consider the splitting of eq. (3.29) by the delta function, we can insert
the completeness relation. Namely,

YIJKL =

∫
d2yd2y′ψM1

I (y)ψM2
J (y)δ(2)(y − y′)ψM3

K (y′)
(
ψM4
L (y′)

)∗
. (3.31)

The contributions including the massive modes vanish because of the orthogonality between
the massless modes and the massive modes. Hence, each of the two separated integrals is
a three-point coupling constant (3.28), and the result is the same with the direct computa-
tion (3.30).

On the other hand, we can consider other decomposition of eq. (3.29). In eqs. (3.30) and
(3.31), we first contracted ψM1

I and ψM2
J . Actually, we can contract ψM1

I and ψM3
K or ψM2

J and

ψM3
K at first. In that case, the decomposition process is as follows

YIJKL =

∫
d2yd2y′ψM1

I (y)ψM3
K (y)δ(2)(y − y′)ψM2

J (y′)
(
ψM4
L (y′)

)∗
. (3.32)

YIJKL =

∫
d2yd2y′ψM1

I (y)
(
ψM4
L (y)

)∗
δ(2)(y − y′)ψM2

J (y′)ψM3
K (y′). (3.33)

In general, we have to consider the spin statistics for the interchange of the positions. However,
we ignore the extra minus sign since it is irrelevant to the following discussion. The left-
hand sides of eqs. (3.32) and (3.33) are the same as that of eq. (3.31). Therefore, these
decomposition must be the same with each other. This structure is similar to the conformal
block in conformal field theory.

• n-point coupling constants
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The generalization to n-point coupling constants is straightforward. The n-point coupling
constants are described as

YI1...In =

∫
d2y

n∏
j=1

ψ
Mj

Ij
(y), (3.34)

Because of the Lorentz invariance and the gauge invariance, we have a selection rule

n∑
j=1

Mj = 0.

By the insertion of the completeness relation, we can obtain a decomposition as an example,
Mn < 0

YI1...In =

∫
d2yd2(y′)

n−2∏
j=1

ψ
Mj

Ij
(y)δ(2)(y − y′)ψMn−1

In−1
(y′)ψMn

In
(y′)

=
∑
I

YI1...In−2IYIIn−1In (3.35)

3.3 Magnetized spherical compactifications

We have shown the product property of the zero modes in magnetized toroidal compactifica-
tions. In this section, we confirm that magnetized spherical compactifications have the same
structure with respect to the zero modes.

In spherical compactifications, the difference from toroidal compactifications is the contri-
bution of the curvature. Therefore, we have to derive the zweibein. Let us consider a complex
projective space P1 as a complexified Riemann sphere. The metric, the Fubini-Study metric,
is given by

ds2 := gzz̄dzdz̄ = 4R2 1

(1 + |z|2)2dzdz̄, (3.36)

where R is the radius of the sphere. The zweibein is defined as an object that connects a
curved space and the flat space since several mathematical objects are defined only on a flat
space, e.g., the Gamma matrix. The explicit definition of the zweibein eαi (α = 1, 2, i = z, z̄)
is

gij = ηαβe
α
ie

β
j ,

where ηαβ is the Euclidean metric on a flat space. The metric (3.36) implies the following

e1z = e1z̄ =
R

1 + |z|2 , e2z = −e2z̄ = iR

1 + |z|2 .
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To define the Dirac operator, we have to introduce a spin connection. We can define the spin
connection wαβ

i by the zweibein

wαβ
i =

1

2

[
eαj

(
∂ie

β
j − ∂je

β
i

)
− eβj (∂ie

α
j − ∂je

α
i)− ejαekβ (∂jekρ − ∂kejρ) e

ρ
i

]
.

In this case, its non-zero components are

w12
z =

iz

1 + |z|2 , w12
z̄ =

−iz̄
1 + |z|2 .

We define the gamma matrix as follows

Γz := ezαΓ
α, Γz̄ := ez̄αΓ

α,

where Γα is the gamma matrix on a flat space

Γ1 =

(
0 1
1 0

)
, Γ2 =

(
0 −i
i 0

)
.

In Section 3.2, we introduced the background gauge field that induced the chirality and
the degeneracy of the zero modes. In this case, we also introduce a background gauge field

Az =
iM

2

z̄

1 + |z|2 , Az̄ =
−iM
2

z

1 + |z|2 , (3.37)

where M ∈ Z. The field strength satisfies
∫
S2 F = −2πM .

The Dirac operator and the zero mode equation are defined by

/D := Γi

[
∂i +

1

4
wiαβΓ

αβ − iAi

]
, /Dψ = 0.

Explicitly,

1

R

(
0 (1 + |z|2)∂z̄ − z

(
M+1
2

)
(1 + |z|2)∂z − z̄

(−M+1
2

)
0

)(
ψ+

ψ−

)
= 0.

We can easily set the following ansatz

ψ+ = f+(z̄)(1 + |z|2)(1−M)/2, ψ− = f−(z)(1 + |z|2)(1+M)/2,

where f+ and f− are arbitrary anti-holomorphic and holomorphic functions, respectively. The
concrete forms of f± are determined by the normalization condition. Since we have to consider
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normalizable zero modes on P1, the normalization condition is the square integrability on P1,
i.e.,

∫
P1

d2z
√
gψ† · ψ,

where g = det(gij). In magnetized toroidal compactifications, the chirality and the degener-
acy are determined completely by the magnetic flux. The square-integrable condition only
determines the normalization condition. On the other hand, in magnetized spherical com-
pactifications, we have to consider the square-integrable condition to determine the explicit
form of the zero modes. By inserting the ansatz, we have, for example,

∫
P1

d2z
√
gψ† · ψ = 2

∫
P1

d2z
|f+(z̄)|2

(1 + |z|2)(M+1)
.

The complex projective space P1 is the one-point compactification of the complex plane.
Therefore, if we convert from the complex coordinates to the polar coordinates, the conver-
gence at the infinity is important. Obviously, the convergence is determined by the sign of M
and the polynomial power of f+. Actually, if M ≤ 0, there is no normalizable solution. On
the other hand, if M > 0, the power of f+ can be M −1 or less. Similarly, ψ− is normalizable
if M < 0 and the polynomial power of f− can be |M | − 1 or less.

Comparing with the Yukawa couplings (3.12), we have to consider the Kaluza-Klein ex-
pansion with respect to the Laplacian (3.11). We discuss the spectrum of scalar fields and
vector fields separately since there is a curvature contribution.

Let us start from the scalar fields. In this case, there is no contribution of the curvature.
Hence, it is sufficient to consider the Laplacian (3.11) without the curvature contribution.
Namely,

−gijDiDjφ = −(gzz̄DzDz̄ + gz̄zDz̄Dz)φ = −m2φ, (3.38)

where Dz and Dz̄ are the gauge covariant derivatives

Dz := ∂z − iAz = ∂z +
M

2

z̄

1 + |z|2 ,

Dz̄ := ∂z̄ − iAz̄ = ∂z̄ − M

2

z

1 + |z|2 .

In magnetized toroidal compactifications, we confirmed that the lightest modes of the Lapla-
cian are the same functions as the zero modes of the Dirac operator. In this case, we can
observe the same situation. To see it, we arrange the Laplacian (3.38) as follows,

−gijDiDjφ = −2gzz̄Dz̄Dzφ− gz̄z[Dz, Dz̄]φ

= −2gzz̄Dz̄Dzφ+
M

2R2
φ.
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Since the spectrum of the operator −2gzz̄Dz̄Dz is positive semi-definite, the lightest modes are
the solutions of Dzφ = 0. On the other hand, the operator Dz is nothing but the component
of the Dirac operator for ψ+. Therefore, the solution of Dzφ = 0 has the same function as the
zero modes of ψ+. Accordingly, the condition of the magnetic flux for normalizable solutions
is M > 0, and it induces M + 1 degeneracies of the solution.

Similarly, it is sufficient to consider the Laplacian (3.11) for the vector fields. For the
sphere with the metric (3.36), the curvature contribution is given by

[∇i,∇j ]φ
i,ab = gz̄z[∇z̄,∇z]φ

ab
z =

1

R2
φabz .

Similarly, we can consider the case of φabz̄ . More precisely, according to Ref. [75], the lightest
modes are the tachyonic, but the zero modes can exist if |M | ≥ 2 due to the normalizability.
Consequently, it is sufficient for these bosonic fields to consider the equation, Dzφ = 0.

In the following, we assume that the magnetic flux is positive, i.e., M > 0. The eigenfunc-
tions are given by,

ψM
(F ),I =

1

NM
(F ),I

· z̄I

(1 + |z|2)M−1
2

, ψM
(B),I =

1

NM
(B),I

· z̄I

(1 + |z|2)M
2

(3.39)

where NM
(F ),I and NM

(B),I are the normalization constants such that

|NM
(F ),I |2 = 4πR2Γ(I + 1)Γ(M − I)

Γ(M + 1)
, |NM

(B),I |2 = 4πR2Γ(I + 1)Γ(M + 1− I)

Γ(M + 2)
.

In magnetized toroidal compactifications, the zero mode fermions cannot be distinguished
from the lightest mode bosons. On the other hand, we can distinguish them in this case.
Therefore, we have to consider three types of the products based on the spin statistics,

ψM
(B),I · ψM ′

(B),J =
1

NM
(B),I · NM ′

(B),J

z̄I+J

(1 + |z|2)M+M′
2

=
NM+M ′

(B),I+J

NM
(B),I · NM ′

(B),J

· ψM+M ′
(B),I+J ,

ψM
(B),I · ψM ′

(F ),J =
1

NM
(B),I · NM ′

(F ),J

z̄I+J

(1 + |z|2)M+M′−1
2

=
NM+M ′

(F ),I+J

NM
(B),I · NM ′

(B),J

· ψM+M ′
(F ),I+J ,

ψM
(F ),I · ψM ′

(F ),J =
1

NM
(B),I · NM ′

(B),J

z̄I+J

(1 + |z|2)M+M′−2
2

=
NM+M ′−2

(B),I+J

NM
(B),I · NM ′

(B),J

· ψM+M ′−2
(B),I+J .

Since Yukawa couplings contain two fermions and single boson and one of the fermions is
Hermitian conjugate, the Yukawa coupling constants can be obtained by

YIJK =
NM+M ′

(F ),I+J

NM
(B),I · NM ′

(B),J

,
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where I + J = K.
We can easily extend the results of the three-point couplings to higher order coupling

constants. For example, the four-boson coupling constant can be obtained by

YIJKL =

∫
d2zψM1

(B),Iψ
M2

(B),Jψ
M3

(B),K

(
ψM4

(B),L

)∗

=
NM1+M2

(B),I+J

NM1

(B),I · NM2

(B),J

·
NM1+M2+M3

(B),I+J+K

NM1+M2

(B),I+J · NM3

(B),K

=
NM1+M2+M3

(B),I+J+K

NM1

(B),I · NM2

(B),J · NM3

(B),K

, (3.40)

where M1 + M2 + M3 = M4 and I + J + K = L. We mentioned that there are other
decompositions, for example,

YIJKL =

∫
d2zψM1

(B),Iψ
M2

(B),Jψ
M3

(B),K

(
ψM4

(B),L

)∗
=

NM1+M3

(B),I+K

NM1

(B),I · NM3

(B),K

·
NM1+M2+M3

(B),I+J+K

NM1+M3

(B),I+K · NM2

(B),J

=
NM1+M2+M3

(B),I+J+K

NM1

(B),I · NM2

(B),J · NM3

(B),K

. (3.41)

As we expected, eq. (3.40) is the same as eq. (3.41).
In conclusion, we can find two features of the coupling constants in the magnetized toroidal

compactifications: the three-point coupling constants are determined by the expansion coeffi-
cients of the zero mode product, and any higher order coupling constants can be decomposed
by the three-point coupling constants. In addition, the gauge symmetry constrains the value
of the expansion coefficients, equivalently the coupling constants. For example, the gauge
symmetry implies the vanishing of the coefficients of the terms violating the gauge symmetry.
Moreover, it can be seen that a hierarchical structure of the three-point coupling constants is
inherited to a higher order coupling constants. In Ref. [23], the hierarchical structure of the
quark masses is realized in the magnetized toroidal compactifications.

On the other hand, it seems that the reason of the existence of the product property is the
Jacobi-theta functions or the rational functions have a good property under a usual multipli-
cation for functions. However, we can obtain strong suggestions for model buildings from a
top-down approach if the similar result can be proved for general magnetized compactifications
models. We will discuss this point in Chapter 5.
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Chapter 4

Matrix Model

4.1 Ishibashi-Kawai-Kitazawa-Tsuchiya matrix model

Matrix models are proposed as nonperturbative formulations of superstring theory. In this
thesis, we focus on Ishibashi-Kawai-Kitazawa-Tsuchiya (IKKT) matrix model [24].

4.1.1 Green-Schwarz action in Schild gauge

The action of the IKKT matrix model is derived in two ways: the matrix regularization of
Green-Schwarz action [25], and the large-n reduction of super Yang-Mills theory [27,31,41–43].
In the following, we show both derivations.

The Green-Schwarz action is the action of a worldsheet theory for type IIB superstring
theory. To derive the action of the IKKT matrix model, let us start from the covariant form
of the Green-Schwarz action

S = −T
∫
d2σ

(√
−1

2
Σ2 + iεαβ∂αX

M
(
θ̄1ΓM∂βθ

1 + θ̄2ΓM∂βθ
2
)
+ εαβ θ̄1ΓM∂αθ

1θ̄2ΓM∂βθ
2

)
,

where α, β = 1, 2, M = 0, . . . , 9, T is the string tension, θ1 and θ2 are ten-dimensional
Majorana spinors, and ΓM are Gamma matrices in 10 dimensions. ΣMN and ΠM

α are defined
by

ΣMN = εαβΠM
α ΠN

β ,

ΠM
α = ∂αX

M − iθ̄1ΓM∂αθ
1 + iθ̄2ΓM∂αθ

2.

This action has N = 2 SUSY of a target space and κ-symmetry as the gauge symmetry
on the worldsheet.

• N = 2 supersymmetry

δθ1 = ε1,

δθ2 = ε2,

δXM = iε̄1ΓMθ1 − iε̄2ΓMθ2
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• κ-symmetry

δθ1 = α1,

δθ2 = α2,

δXM = iθ̄1ΓMα1 − iθ̄2ΓMα2,

where

α1 = (1 + Γ̃)κ1,

α2 = (1− Γ̃)κ2,

Γ̃ =
1

2
√
−1

2(Σ)
2
ΣMNΓMN ,

where ΓMN = [ΓM ,ΓN ]/2 and κi (i = 1, 2) are local Majorana spinors. The κ-symmetry
implies that a half of the degrees of freedom of θ1 and θ2 are redundant because of Γ̃2 = 1.
We fix the κ-symmetry by imposing θ1 = θ2 ≡ ψ. Then, the gauge-fixed action is given by

S = −T
∫
d2σ

√
−1

2
σMNσMN + 2iεαβ∂αX

M ψ̄ΓM∂βψ. (4.1)

where σMN = εαβ∂αX
M∂βX

N . The action (4.1) still has N = 2 SUSY, which is provided by
mixing the original N = 2 SUSY and the κ-symmetry under the gauge fixing condition.

To obtain the Schild gauge action, we have to consider the Euclidean action. We consider
the Wick rotation of the target space and the worldsheet. Such a Wick rotation can be
obtained by the following replacements

X0 → −iX0
(E),

σ0 → −iσ0(E),

Γ0 → −iΓ0
(E),

εab → −iεab(E).

We will omit the subscript (E). We note that the Dirac conjugation is defined by ψ̄ := ψtC,
where C is the charge conjugate matrix.

The Schild gauge action is defined by introducing a scalar density as an independent
variable. We introduce the scalar density of the worldsheet

√
g and define the action as

S =
1

2

∫
d2σ

(
ξ√
g
det(∂αX

M∂βXM ) + ρ
√
g

)
+ ξ

∫
d2σ

i

2
εαβ∂αX

M ψ̄ΓM∂βψ, (4.2)

where ξ and ρ are arbitrary constants. The action (4.2) is equivalent to the action (4.1) by
eliminating the scalar density

√
g and setting T =

√
ξ · ρ.

To consider the matrix regularization, the symmetry with respect to the worldsheet should
be kept as only the area preserving diffeomorphism. To realize it, let us consider a gauge fixing
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of
√
g. The diffeomorphism of the worldsheet has two degrees of freedom. By using one of

these degrees of freedom, we can fix
√
g as

√
g = ηω(σ),

where η is an arbitrary constant and ω(σ) is a fixed scalar density. Then the action (4.2) can
be rewritten as

SSchild = ξ

∫
d2σηω(σ)

(
1

4
{XM , XN}2 + i

2
ψ̄ΓM{XM , ψ}

)
+

1

2
ρ

∫
d2σηω(σ), (4.3)

where the Poisson bracket is defined by

{f, g} :=
1

ηω(σ)
εαβ∂αf∂βg.

4.1.2 IKKT matrix model action from matrix regularization

We cannot assure that the path integral

Z =

∫
D√

gDXDψe−SSchild

has no divergence or defines a controllable quantum theory. The principle of matrix models
is to obtain a controllable action by the matrix regularization. The matrix regularization is
an approximation of a Poisson algebra on a manifold by a Hermitian matrix algebra. In this
case, we consider the matrix regularization with respect to a worldsheet Σ. More precisely,
the matrix regularization is defined by the following conditions (c.f., Ref. [26]) with respect to
linear maps {Tn}∞n=1 from f, g ∈ C∞(Σ,R) to n × n Hermitian matrices with the parameter
hn such that limn→∞ nhn <∞:

lim
n→∞ ||Tn(f)|| <∞,

lim
n→∞ ||Tn(fg)− Tn(f)Tn(g)|| = 0,

lim
n→∞ ||∂f1n · · · ∂fln (Tn(f))− Tn(∂

f1 · · · ∂flf)|| = 0,

lim
n→∞ 2πhnTr(Tn(f)) =

∫
Σ
f

where ∂f1(f) := {f1, f} and ∂f1n (Tn(f)) := [Tn(f), Tn(f1)]/ihn.
The key concept of the matrix regularization is to replace Poisson brackets by commuta-

tors. This is similar to the relationship between analytical mechanics and quantum mechanics.
In addition, the degree of freedom is no longer infinite, and the theory becomes statistical me-
chanics. This fact opens the possibility to obtain a controllable quantum theory of superstring
theory.
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The prescription of the matrix regularization is

{·, ·} → −in
2
[·, ·],

∫
Σ
→ 4π

n
Tr . (4.4)

We can apply the prescription to the action (4.3), which becomes

S = ξ′Tr
(
−1

4
[XM , XN ]2 +

1

2
ψ̄ΓM [XM , ψ]

)
+ ρ′Tr(1), (4.5)

where η = n/2, ξ′ = 2πξ, and ρ′ = πρ. The dimension of matrices is n × n. On the other
hand, according to Ref. [24], the IKKT (type IIB) matrix model is defined by

S = ξ′Tr
(
−1

4
[XM , XN ]2 +

1

2
ψ̄ΓM [XM , ψ]

)
(4.6)

The matrices in the action (4.6) have a block matrix structure. By considering the integral
out of the off-diagonal part, the term that is proportional to Tr1 in the action (4.5) can be
derived. Therefore, we can identify the action (4.6) as the fundamental action of the IKKT
matrix model.

4.1.3 IKKT matrix model from Large-n reduction

In the previous section, we derived the action of the IKKT matrix model from the Green-
Schwarz action. Hence, the connection with type IIB superstring theory is natural. On the
other hand, we have to discover some non-perturbative aspects like D-branes. In Section 3.1,
we considered super Yang-Mills theory as an effective theory for D-branes. The large-n re-
duction connects super Yang-Mills theory to the IKKT matrix model.

Large-n reduction in lattice gauge theory

Originally, the large-n reduction is proposed in the context of lattice field theory by Eguchi
and Kawai [27]. Let us start from the partition function of U(n) gauge theory in lattice field
theory, e.g.,

Z =

∫
Πx,MDUx,Me

−S , S = β
∑
x

D∑
M �=N

(
1− 1

n
ReTr

(
Ux,MUx+M,NU

†
x+N,MU

†
x,N

))
,

(4.7)

where Ux,M is a link variable in D-dimensional spacetime and β = 2n/g2 is the normalization
factor. This is the standard action of U(n) gauge theory in lattice field theory. According
to Ref. [27], U(n) gauge theory described by eq. (4.7) can be replaced effectively in the limit
n→ ∞ with fixed λ := ng2 by
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Z =

∫
ΠMDUMe

−S , S = β
D∑

M �=N

(
1− 1

n
Tr

(
UMUNU

†
MU

†
N

))
, (4.8)

where we impose the periodic boundary condition to define the path integral. The action (4.8)
does not contain the information of spacetime points, c.f., the label x in the action (4.7).
Therefore, we can identify the theory described by the action (4.8) as a 0-dimensional field
theory. In the following, we call a theory describe by eq. (4.8) the reduced model.

To prove the equivalence, we focus on Wilson loop amplitudes since we are interested in
gauge invariant quantities. Based on the action (4.7), a standard Wilson loop amplitude along
a contour C is written by

< W (C) >=< Tr (Ux,M1Ux+M1,M2 · · ·Ux−M3,M3) >, (4.9)

where the bracket < · > means the expectation value defined by the partition function (4.7).
We can write the corresponding Wilson loop amplitude in the reduced model

< Wr(C) >=< Tr (UM1UM2 · · ·UM3) >, (4.10)

where the bracket < · > means the expectation value defined by the partition function (4.8).
In Ref. [27], the authors proved the equivalence by confirming that the Wilson loop am-

plitudes (4.9),(4.10) obey the same Schwinger-Dyson equations in the limit n→ ∞.
Let us consider the loop C includes the link variable Ux,M , which is only encountered once

in this loop. We denote C ′ as the contour without the link (x, x +M) in C. Hence, we can
write the Wilson loop amplitude W (C) as

< W (C) >=< Tr (UC) >=< Tr (UC′Ux,M ) >,

where UC means the appropriate combination of the link variable along the contour C.
In the following, we derive the Schwinger-Dyson equation of < Tr (UC′τaUx,M ) > as an

example, where τa is the generator of the U(n) gauge group. The Schwinger-Dyson equation
can be derived by imposing the invariance of the expectation value under the infinitesimal
transformation of Ux,M . Namely,

Ux,M → (1 + iετa)Ux,M ,

where ε is a real-valued infinitesimal parameter. If we collect the first order corrections with
respect to ε, we can obtain the identity

< Tr (UC′τaUx,M ) >

=
β

2n
< Tr (UC′τaUx,M )×∑

N �=M

(
Tr

[
Ux,NUx+N,MU

†
x+M,NU

†
x,M

]
+Tr

[
U †

x−N,NUx−N,MUx+M−N,NU
†
x,Mτ

a
]

−Tr
[
τaUx,MUx+M,NU

†
x+N,MU

†
x,N

]
− Tr

[
τaUx,MU

†
x+M−N,NU

†
x−N,MUx−N,N

])
> .
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By applying the formula

N2∑
a=1

τijτkl =
1

2
δilδjk,

we can obtain the Schwinger-Dyson equation as

< W (C) >=
n

λ

∑
N �=M

(< W (D1,+) > + < W (D1,−) > − < W (D2,+) > − < W (D2,−) >) ,

where the contours are defined by

D1,+ = (y, . . . , x, x+N, x+N +M,x+M, . . . y),

D1,− = (y, . . . , x, x−N, x−N +M,x+M, . . . y),

D2,+ = (y, . . . , x, x+M,x+N +M,x+N, x, x+M, . . . , y),

D2,− = (y, . . . , x, x+M,x−N +M,x−N, x, x+M, . . . , y).

Let us consider the corresponding computation in the reduced model. We can identify
the contour Cr in the reduced model from the contour C = (x, x+M1, x+M1 +M2, . . . , x+
M1 +M2 + · · ·+M3) in the original theory, i.e., Cr = (M1,M2, . . . ,M3).

The difference in the Schwinger-Dyson equations is the contribution of the contour Cr

corresponding to C = (x, . . . , y, y +M, . . . , z, z +M, . . . , x), where y �= z. Consequently, we
have to consider the contribution < W (L1,r)W (L2,r) >, where L1 = (y, y +M, . . . , z) and
L2 = (z, z +M, . . . , y) are the open contours in the original theory.

Originally, the large-n limit induces the simplification of the perturbative expansion of
the theory [28]. In other words, only planar diagrams survive in the limit. In addition, the
following factorization is proved at large-n [29, 30]

< ÂB̂ >=< Â >< B̂ > +
1

n
.

By considering this factorization, the different contribution can be written as

< W (L1,r)W (L2,r) >=< W (L1,r) >< W (L2,r) > +
1

n
.

On the other hand, the action (4.8) has the global symmetry called the center symmetry
such that

UM → eiθUM , θ ∈ {0, 2π
n
, · · · , 2(N − 1)π

n
}.

Therefore,
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< W (L1,r) >=< W (L2,r) >= 0,

if we impose that the center symmetry is not broken spontaneously. Consequently, all different
contributions vanish at the limit n→ ∞, and the equivalence is proved.

We have to remark about the center symmetry. Actually, the center symmetry is sponta-
neously broken at high β for D > 2. This can be seen in the Monte Carlo simulations [31–33]
and in perturbative computations [31, 34]. Hence, there are several works to care about the
center symmetry, e.g., twisted Eguchi-Kawai model [35–40].

Large-n reduction in gauge theory

In the previous subsection, we introduced large-n reduction in lattice field theory. Actually,
this reduction holdsin continuous field theory. To describe large-n reduction in continuous
field theory, the following prescription for a matrix field φ(x) is proposed in Refs [41–43],

φ(x) → eiP ·xφe−P ·x,
i∂M → PM ,

where (PM )ab := paMδab is a set of diagonal matrices of quenched momenta. We assume that
the quenched momenta lie in the hypercube whose edges have the length Λ. We can confirm
that the length Λ corresponds to the ultraviolet cutoff.

Let us consider pure U(n) gauge theory with a Euclidean action

S =
1

4

∫
dDxTr(FMN )2, FMN = ∂MAN − ∂NAM + i[AM , AN ].

By applying the above prescription, we can obtain the 0-dimensional U(n) gauge theory as

S =

(
2π

Λ

)D 1

4
Tr

(
F̃MN

)2
, (4.11)

FMN = i[DM ,DN ], DM = PM +AM .

In the definition of the DM , AM can be absorbed into PM by the redefinition. Therefore, the
action (4.11) becomes

S = −
(
2π

Λ

)D 1

4
Tr ([PM , PN ])2 .

This is nothing but the bosonic part of the action of the IKKT matrix model (4.6). More
precisely, we can obtain the action (4.6) from super Yang-Mills action by applying the above
prescription.

In summary, the IKKT matrix model is defined by the matrix regularization of the Green-
Schwarz action or the large-n reduction of super Yang-Mills theory. The action is given by
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S =
1

g2
Tr

(
−1

4
[XM , XN ]2 +

1

2
ψ̄ΓM [XM , ψ]

)
, (4.12)

where we introduced g as a scale factor for convenience. This factor is not essential since the
factor g can be absorbed into XM and ψ. In the following, we consider the action (4.12).

4.2 Symmetry and equations of motion

In the above, we defined the action of IKKT matrix model (4.12). Clearly, the action (4.12)
has the 10D Lorentz invariance if XM and ψ transform as 10D vectors and 10D spinors,
respectively. Additionally, the action (4.12) has three symmetries:

1. Translations

δXM = CM · 1, δψ = 0, (4.13)

2. Gauge transformations

δXM = i[λ,XM ], δψ = i[λ, ψ], (4.14)

3. N = 2 SUSY

δ(1)XM = iε̄1ΓMψ, δ(1)ψ =
i

2
ΓMN [XM , XN ]ε1, (4.15)

δ(2)XM = 0, δ(2)ψ = ε11. (4.16)

If the eigenvalues of Xμ can be interpreted as space-time points, we can obtain “N = 2 SUSY
on 10D space-time” by mixing the N = 2 SUSY (4.15),

Q(1)′ := Q(1) +Q(2), Q(2)′ := i(Q(1) −Q(2)),

where Q(1) and Q(2) are the generators of the supersymmetry (4.15). In addition, we denote
PM as the generator of the translations (4.13). Then

[ε̄1Q
(i)′ , ε̄2Q

(j)′ ] = −2δij ε̄1Γ
M ε2PM .

where i, j = 1, 2. On the other hand, eq. (4.14) is infinitesimal form of the gauge transfor-
mation. More precisely, finite forms can be written as unitary transformations by a unitary
matrix U

XM → UXMU †, ψ → UψU †, (4.17)

if the trace in the action (4.12) satisfies the cyclic property. In general, the trace should be
well-defined in the definition of the IKKT matrix model action (4.12). However, we have
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to confirm it when we consider a concrete model. We will discuss this point for the case of
noncommutative torus in Chapter 6.

On the other hand, “equations of motion” in the IKKT matrix model mean variational
problems since the IKKT matrix model has no space-time by definition as mentioned above.
By considering the variations of XM and ψ, the equations of motion are given by

[[XM , XN ], XN ]− 1

2
(CΓM )ab{ψa, ψb} = 0,

ΓM
ab [XM , ψ

b] = 0.

Let us consider ψ = 0 to discuss classical solutions. The simplest solution is given by a
completely simultaneously diagonalizable case, i.e.,

[XM , XN ] = 0 for all M,N = 0, · · · 9.
In this case, however, there is an attractive force between the eigenvalues from the one-loop
potential. Then, the eigenvalues cannot have enough spread, and the correspondence to an
original theory will not be valid.

The second simplest solution is

[XM , XN ] = iθMN , (4.18)

where θMN is an arbitrary constant. We omitted the identity matrix in the right-hand side
of eq. (4.18). This solution is interpreted as a D-brane (BPS) configuration as follows. The
transformation δ(1) can be canceled by the other transformation δ(2) since the transformation
δ(1) is proportional to the identity due to the solution (4.18). More precisely, by setting
ε2 = ±1

2θ
MNΓMN ε1, then

(δ(1) ± δ(2))XM = 0, (δ(1) ± δ(2))ψ = 0.

Therefore, the solution (4.18) preserves N = 1 SUSY. In addition, the 1-loop potential around
the solution (4.18) reproduces the D-brane interactions through closed strings [24].

On the other hand, the bosonic matrices may have degree of freedom of space-time. There-
fore, the solution (4.18) may represent the noncommutativity of space-time. For example,
super Yang-Mills theory with the star-product can be derived from IKKT matrix model [44].

4.3 Noncommutative torus

We considered magnetized toroidal compactifications in Section 3.2. In that case, the torus
is defined by the identifications. The twisted boundary condition assures the compatibility
between the gauge transformations and such identifications. It is important that the shifts
to define the torus are interpreted as the gauge transformations since there is no change in
physics.

In the IKKT matrix model, we can consider the similar concept by combining the transla-
tions (4.13) and the unitary transformations (4.17). According to Ref [45], noncommutative
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torus is realized by this unitary transformation. To define noncommutative torus, we restrict
ourselves to the subspace of contents (XM , ψ) belonging to the same gauge class before and
after the shifts of (XM , ψ), i.e.,

U4Y
4U−1

4 = Y 4 + 2πR4, U5Y
5U−1

5 = Y 5 + 2πR5,

UiY
jU−1

i = Y j if i �= j (i, j = 4, 5),

UiX
MU−1

i = XM if XM �= Y i

UiψU
−1
i = ψ, (4.19)

where Y i (i = 4, 5) denotes as the direction of the noncommutative torus. The above condi-
tions are compatible with the equations of motions (4.18). Then, in the remaining part of this
chapter and Chapter 6, we adopt the solutions of (4.18) when we consider noncommutative
torus. On the other hand, the conditions (4.19) cannot be satisfied by any finite dimensional
representations since the trace on both hands are not equal. Therefore, we should interpret
XM and ψ as operators on an infinite dimensional Hilbert space. From this fact, the cyclic
property of the trace in the action (4.12) is not ensured as mentioned above. We will construct
the trace satisfying the cyclic property in Chapter 6.

The conditions (4.19) imply that U4U5U
−1
4 U−1

5 commutes with XM and ψ. Therefore, we
can assume that U4U5U

−1
4 U−1

5 is a scalar operator, i.e.,

U4U5 = e2πiθU5U4, (4.20)

where θ is a real number that is called a noncommutative parameter since U4 and U5 can
correspond to the basis of the Fourier expansion, which are usual functions and commutative
with each other, for double periodic functions. This real num as a noncommutative parameter.
More precisely, the parameter θ can be restricted to θ ∈ [0, 1/2) because of some isomorphisms.
Equation (4.20) is called the algebra of noncommutative torus.

The mathematical structure of the algebra of noncommutative torus depends on whether
the parameter θ is a rational number or irrational number. When the parameter θ is a rational
number θ = p/N , where p and N are natural numbers, the concrete representation matrices
can be obtained by the following N ×N matrices

Vshift =

⎛
⎜⎜⎜⎝
0 1 · · · 0

0 1 · · ·
...

... 1
1 · · · · · · 0

⎞
⎟⎟⎟⎠ , Vclock =

⎛
⎜⎜⎝
1

wN

· · ·
wN−1
N

⎞
⎟⎟⎠ , (4.21)

where wN = e2πi/N . The above matrices are called the shift matrix and clock matrix, respec-
tively. By considering the determinant on both hands of eq. (4.20), the selection θ = p/N is
compatible. On the other hand, the case of irrational parameter θ ∈ R\Q cannot be realized
by any finite dimensional representation since the trace on both hands of eq. (4.20) are not
equal. In such a case, the trace, which is restricted to XM , does not have the cyclic property.
Then, the algebra of noncommutative torus is consistent.
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In the remaining part of this chapter and Chapter 6, we consider the algebra of noncom-
mutative torus with irrational parameter θ ∈ R\Q. We use a “hat” to indicate an operator.
A concrete infinite dimensional representation can be realized as follows. Let us start from
the Hilbert space H = L2(R)⊗Cm, where m ∈ N (m corresponds to Zm in the constructions
of Refs. [45–47]). We define Û4 and Û5 as operators on H

Û4 |x : j〉 =
∣∣∣x− n

m
+ θ : j − 1

〉
, Û5 |x : j〉 = exp

[
−2πi

(
x− nj

m

)]
|x : j〉 ,

where n is some integer. For simplicity, we set m and n are positive and co-prime or m = 1
and n = 0. From the above, we define Ŷ 4 and Ŷ 5 as

Ŷ 4 :=
2πm

n−mθ
R4x̂⊗ 1m, Ŷ 5 := R5p̂⊗ 1m,

where x̂ and p̂ are the position and the momentum operators in one-dimensional quantum
mechanics (where � =1). We can confirm that the above operators satisfy the conditions (4.19)
and (4.20) with θ45 = 2πm

n−mθR4R5. In the following, we omit the identity on Cm. From an
analogy of quantum mechanics,

〈Y 4|Y 5〉 = 1

A
exp

[
i
Y 4Y 5

θ45

]
, A = (2π)2R4R5,

where Ŷ 4
∣∣Y 5

〉
= Y 4

∣∣Y 4
〉
and Ŷ 5

∣∣Y 5
〉
= Y 5

∣∣Y 5
〉
. We can restrict spectra of Ŷ 4 and Ŷ 5 to

0 ≤ Y 4 ≤ 2πR4 and 0 ≤ Y 5 ≤ 2πR5 since the periods correspond to the unitary equivalence
by Û4 and Û5.

We introduced noncommutative torus as a classical solution of the IKKT matrix model.
To compare with the result of Section 5, we have to introduce the notion of gauge fields. We
will discuss this point in Chapter 6.

4.4 Modified IKKT matrix model

In the previous section, we derived the action of the IKKT matrix model by applying the ma-
trix regularization or the large-n reduction. These methods can be applied to other theories.
Actually, the authors of Ref. [48] proposed the modified IKKT matrix model by applying the
above methods to super Yang-Mills theory on three dimensions with the Chern-Simons and
Majorana mass terms,

S =
1

g2
Tr

(
−1

4
[Xm, Xn]2 +

2

3
iαεlmnX

lXmXn +
1

2
ψ̄Γm[Xm, ψ] + αψ̄ψ

)
, (4.22)

where l,m, n = 1, 2, 3 and α is a real-valued parameter. The action (4.22) is proposed to
introduce various noncommutative or fuzzy geometry1. In this thesis, we consider three of

1We use noncommutative to describe infinite dimensional representations or operator algebras and fuzzy to
describe finite dimensional representations or approximations.
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the ten dimensions described by the IKKT matrix model (4.12) to be replaced by the modified
action (4.22).

The action (4.22) possesses SO(3) symmetry and the following symmetries:

1. Translations

δXm = Cm · 1, δψ = 0, (4.23)

2. Gauge transformations

δXm = i[λ,Xm], δψ = i[λ, ψ], (4.24)

3. N = 1 SUSY

δXm = iε̄Γmψ, δψ =
i

2
Γmn[Xm, Xn]ε. (4.25)

Compared with the action (4.6), the action (4.22) does not possess the translation symmetry
of ψ.

4.4.1 Fuzzy sphere

Let us consider the equation of motion based on the action (4.22) with ψ = 0,

[Xm, [Xm, Xn]] = −iαεnkl [Xk, Xl] . (4.26)

The simplest solution is again given by completely simultaneously diagonalizable one. We are
interested in the following solution

[Xm, Xn] = iαεmnlXl. (4.27)

This solution is called the algebra of fuzzy sphere. If we define Xm = αLm, the algebra (4.27)
becomes

[Lm, Ln] = iεmnlLl. (4.28)

Therefore, we can identify Lm as the generator of su(2) algebra. Hence, we can consider the
quadratic Casimir operator

3∑
i=1

(Xi)
2 = α2

3∑
i=1

(L̂i)
2 = α2L(L+ 1). (4.29)

In this case, the dimension of the representation is controlled by L in eq. (4.29). Therefore,
we are interested in a finite L in the sense of the matrix regularization.
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Let us consider the limit L→ ∞ with ρ := αL is fixed. To fix the value of ρ, the parameter
α should be α→ 0. Accordingly, the algebra of fuzzy sphere (4.27) becomes trivial, i.e.,

[Xm, Xm] = 0.

Therefore, we can identify Xm as a c-number satisfying

3∑
m=1

(Xm)2 = ρ2. (4.30)

Eq. (4.30) is the defining equation of the sphere in three-dimensional Euclidean space. Hence,
the degree of freedom described by the set {Xm}3m=1 at a finite L is called fuzzy sphere (more
precisely, the coordinate of the fuzzy sphere). The fuzzy sphere is studied in several context:
membrane theory in M(atrix)-theory (c.f., Refs. [49–55]), noncommutative gauge theory in
superstring theory (c.f., Refs. [56–66]).

On the other hand, the su(2) algebra (4.28) holdseven if the algebra (4.28) is induced
from the algebra of fuzzy sphere (4.27). At the limit L→ ∞, the generator Lm should be in
the infinite representation, especially the differential representation. Actually, the generator
of the su(2) algebra in the differential representation is

−iεlmnx
m∂n. (4.31)

In the algebra of fuzzy sphere,

[Ll, Xk] = α[Ll, Lk] = −iεlmkXm,

then the representation (4.31) can be recovered by [Ll, ·] at the limit L→ ∞.
Consequently, we can introduce noncommutative torus and fuzzy sphere as the solutions

of the equations of motion derived from the IKKT matrix model and the modified IKKT
matrix model, respectively. This means that such a solution is realized dynamically. In this
thesis, we will consider these geometries by hands. However, it is believed that the IKKT
matrix model contains a mechanism called emergent geometry that determines the spacetime
structure dynamically without a spacetime structure at the beginning of the theory. Several
approaches imply the existence of such a structure, c.f., Refs. [67–73].
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Chapter 5

Higher order coupling constants in
magnetized compactifications

In this chapter, we discuss the structure of higher order coupling constants in 4D effective
theories. In 4D effective theories, matter contents and their coupling constants are important
for phenomenological applications. In type IIB effective theory, magnetized compactifications
are promising models. Such models are described by super Yang-Mills theory with a back-
ground gauge field. Advantages of magnetized compactifications are seen in the realization
of

1. Chiral structure, and

2. Generations.

These advantages are consequences of the Index theorem. Moreover, we showed the two
features of the coupling constants in magnetized toroidal and spherical compactifications
in Chapter 3. In this chapter, we generalize the two features of coupling constants to d-
dimensional manifolds and its magnetized compactifications on the basis of Ref. [74].

5.1 Setup

In this section, we consider D = (4 + d)-dimensional field theories with an arbitrary gauge
group. As an extra dimensional space, we admit an arbitrary d-dimensional compact spin
manifold Md. From the viewpoint of extra dimensional models, the Kaluza-Klein expansion
is important. For a fermion Ψ and a scalar Φ, the formal Kaluza-Klein expansions can be
written as

Ψ(w) =
∑
n

χn(x)⊗ ψn(y),

Φ(w) =
∑
n

ϕn(x)⊗ φn(y),

where the fields ψn(y) and φn(y) satisfy the following eigenvalue problems with respect to a
Dirac operator and a Laplacian on Md
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i /Ddψn = mnψn,

Δdφn =M2
nφn. (5.1)

D-dimensilnal Lorentz invariance is broken by the compactifications. As we mentioned, the
lightest modes of the eigenvalue problems (5.1) are important since they are identified with
the SM matter contents. We will omit the subscript n = 0 since we often consider the lightest
modes labeled by n = 0.

In this section, we assume that the eigenvalue problem for the scalar can be written as

−gijDiDjφn =M2
nφn, (5.2)

where i, j = 4, . . . , (4+ d)− 1, gij is the inverse of the metric on Md, and Di = ∇i− i[Ai, ·] is
a gauge covariant derivative, c.f., Subsection 3.1. Generally, the difference between −gijDiDj

and the Laplacian is a factor depending on the field strength. In magnetized compactifications,
such a contribution is a constant factor in the previous works. Actually, such a situation
is realized on the torus [4], complex projective spaces [75], and internal four-cycle in the
conifold [76]. Therefore, we assume that the difference between −gijDiDj and the Laplacian
is a constant factor. Hence, it is sufficient to consider Diφ = 0 for the lightest modes since
−gijDiDj is semi-positive definite.

In addition, we assume that the equation of motion of an internal vector field is essentially
the same as that of a scalar field. According to Refs. [4, 75], the equation of motion of an
internal vector field Φab

i is given by

DiD
iΦab

j + 2iF ab,i
j Φab

i − [∇i,∇j ]Φ
ab
i = −m2Φab

j .

If the contribution from 2iF ab,i
j Φab

i − [∇i,∇j ]Φ
ab
i is a constant, the eigenvalue problem reduces

to the part DiD
iΦab

j . This part is nothing but the eigenvalue problem of a scalar field. We
assume the realization of this situation. Actually, such a situation is also realized on the
torus [4], complex projective spaces [75], and internal four-cycle in the conifold [76]. More
generally, if we can introduce the magnetic flux along the symplectic form of the compactifi-
cation manifold (c.f., the symplectic gauge), our expected situation will be realized since the
background gauge potential plays a role like the spin connection. As a consequence, we will
focus mainly on scalar fields and fermions in the remaining of this chapter.

5.2 Product property of the zero modes

We denote flat indices and curved indices by Roman characters and Greek characters, respec-
tively. Let us start from two Dirac-type equations of adjoint fields in magnetized compactifi-
cations of Md

i /D
(A)
ψ = iΓi

[(
∂i +

1

4
ωiαβΓ

αβ

)
ψ − i[Ai, ψ]

]
= 0, (5.3)

D
(A)
i φ = ∂iφ− i[Ai, φ] = 0, (5.4)
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where Γα is a Gamma matrix in d dimensions, Γαβ := [Γα,Γβ ]/2, and ωαβ
i is a spin connection.

The superscript (A) describes the symbol of the background gauge field, c.f., Section 3. The
fields ψ and φ are N × N matrices since they are in the adjoint representations of a gauge
group whose dimension is N . We call the solutions of eqs (5.3) and (5.4) zero modes although
the solutions of eq. (5.4) correspond to the lightest modes of the Laplacian.

We denote degenerated solutions of eq. (5.3) by ψ
(A)
I and φ

(A)
I , where I denotes the label

of the degeneracy. For example, we have shown such a degenerated chiral zero mode in
magnetized toroidal compactifications in Subsection 3.2. We apply the same notation for
solutions of eq. (5.4). In addition, we assume that the solutions satisfy the appropriate
boundary conditions and the orthogonality with each other.

We have to mention the normalization of the zero modes. The normalization condition is
defined as

δIJ =

∫
Md

ddyTr
[
φ
(A)
I · φ(A)†

J

]
≡ Tr

[
B

(A)
IJ

]
, (5.5)

δIJ =

∫
Md

ddyTr
[
ψ
(A)
I · ψ(A)†

J

]
≡ Tr

[
F
(A)
IJ

]
. (5.6)

where B
(A)
IJ and F

(A)
IJ are matrix-valued constants

B
(A)
IJ =

∫
Md

ddyφ
(A)
I · φ(A)†

J ,

F
(A)
IJ =

∫
Md

ddyψ
(A)
I · ψ(A)†

J .

In general, the eigenfunctions of a Dirac-type operator on a compact manifold form the
complete orthonormal system since the Dirac-type operator is an elliptic essentially self-adjoint
operator. Therefore, we have the completeness relations

∑
n,I

ψ
(A)†
n,I;ab;s(y) · ψ(A)

n,I;cd;s′(y
′) = δadδbcδss′δ

d(y − y′),

∑
n,I

φ
(A)†
n,I;ab(y) · φ(A)

n,I;cd(y
′) = δadδbcδ

d(y − y′),

where a, b, c, d describe the matrix indices and s describes the spinor indices. We note that the
Kronecker deltas in the right-hand sides transform under gauge transformations appropriately.

From the completeness relations, we can confirm B
(A)
IJ = F

(A)
IJ = NδIJ · 1. In fact,

∑
n,I,a,b,d

∫
ddyddy′φ(A)

J,a′a(y)φ
(A)†
n,I;ab(y) · φ(A)

n,I;bd(y
′)φ(A)†

J,dd′(y
′) = δIJ(B

2
JJ)a′d′ ,

∑
a,b,d

∫
ddyddy′φ(A)

J,a′a(y)δadδbbδ
d(y − y′)φ(A)†

J,dd′(y
′) = N · (BJJ)a′d′ ,
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where we have used the orthogonality among different and degenerate modes. Therefore,
the normalization conditions (5.5) and (5.6) can be realized by the following redefinition:

φ
(A)
I → φ

(A)
I /

√
N , and ψ

(A)
I → ψA

I /
√
N . In the following, we use φ

(A)
I and ψ

(A)
I as degenerated

solutions after the redefinition.
To investigate the structure of higher order coupling constants, the products of the zero

modes are important. Let us start from the product of ψ
(A)
I and φ

(A)
J . Actually, this quantity

is a zero mode of i /D
(A)

,

iΓiD
(A)
i (ψ

(A)
I · φ(A)

J )

= iΓi

[(
∂i +

1

4
ωiαβΓ

αβ

)
ψ
(A)
I − i[Ai, ψ

(A)
I ]

]
· φ(A)

J + iΓiψ
(A)
I ·

[
∂iφ

(A)
J − i[Ai, φ

(A)
J ]

]
= 0.

Therefore, the product ψ
(A)
I · φ(A)

J can be written by a linear combination of the zero mode
solutions of eq. (5.3) since they constitute a complete orthonormal system. The expansion is

ψ
(A)
I · φ(A)

J =
∑
K

s
(A)
IJK · ψ(A)

K , (5.7)

where s
(A)
IJK is a matrix-valued constant coefficient.

Similarly, the product φAI · φAJ can be expanded by φAK since the product φAI · φAJ satisfies
eq. (5.4). Namely,

φ
(A)
I · φ(A)

J =
∑
K

t
(A)
IJK · φ(A)

K , (5.8)

where t
(A)
IJK is a matrix-valued constant coefficient.

On the other hand, the product ψ
(A)
I · ψ(A)

J cannot be expanded by φ
(A)
K in general since

eq. (5.4) does not include the Gamma matrix. Hence, eq. (5.4) is not satisfied. As a special

case, we can expand the product ψ
(A)
I ·ψ(A)

J by φ
(A)
K if we consider a two-dimensional manifold

and chiral or anti-chiral zero mode ψA
I . To investigate higher order coupling constants, only

s
(A)
IJK and t

(A)
IJK are important.

Let us remark about the case of a fundamental representation. In this case, the Dirac-type
equations are defined by

i /D
(A)
ψ = iΓi

[(
∂i +

1

4
ωiαβΓ

αβ

)
ψ − iAiψ

]
= 0, (5.9)

D
(A)
i φ = ∂iφ− iAiφ = 0. (5.10)

Although the commutator satisfies the Leibniz rule, the gauge interaction parts of eqs. (5.9)
and (5.10) do not have such a property. This induces the modification of the product property

of zero modes. Actually, the product of ψ
(A)
I and φ

(A)
I is not a zero mode of i /D

A
but i /D

(2A)
,
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iΓiD
(2A)
i (ψ

(A)
I · φ(A)

J )

= iΓi

[(
∂i +

1

4
ωiαβΓ

αβ

)
ψ
(A)
I − iAiψ

(A)
I

]
· φ(A)

J + iΓiψ
(A)
I ·

[
∂iφ

(A)
J − iAiφ

(A)
J

]
= 0. (5.11)

In general, the product of ψ
(A)
I and φ

(A′)
I is a zero mode of i /D

(A+A′)
and that of φ

(A)
I and

φ
(A′)
I is a zero mode of D

(A+A′)
i . However, we have to replace the positions of A′

i and ψ
(A)
I or

φ(A) e.g., from the first line to the second line in eq. (5.11). Therefore, the product property
for a fundamental representation is valid on U(1) gauge theory only.

5.3 Generic n-point coupling constants

5.3.1 Three-point coupling constants

In this subsection, we consider three-point coupling constants constructed from the zero
mode fermions and bosons. In the following, we compute boson-boson-boson and boson-
fermion-fermion couplings since the four-dimensional Lorentz symmetry requires even number
of fermions.

• boson-boson-boson

b
(A)
IJK :=

∫
Md

ddyTr
[
φ
(A)
I (y) · φ(A)

J (y) · φ(A),†
K (y)

]

=

∫
Md

ddyTr

[∑
L

t
(A)
IJL · φ(A)

L (y) · φ(A),†
K (y)

]

=
∑
L

Tr
[
t
(A)
IJL ·B(A)

LK

]
= Tr

[
t
(A)
IJK

]
, (5.12)

• boson-fermion-fermion

y
(A)
IJK :=

∫
Md

ddyTr
[
φ
(A)
I (y) · ψ(A)

J (y) · ψ(A),†
K̄

(y)
]

=

∫
Md

ddyTr

[∑
L

s
(A)
IJL · ψ(A)

L (y) · ψ(A),†
K̄

(y)

]

=
∑
L

Tr
[
s
(A)
IJL · F(A)

LK̄

]
= Tr

[
s
(A)

IJK̄

]
. (5.13)

In both cases, the coupling constants are obtained by the expansion coefficients in eqs. (5.7)
and (5.8).
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5.3.2 Four-point coupling constants

In this subsection, we compute four-point coupling constants and will show the decomposition
by the three-point coupling constants (5.12) and (5.13). There are three kinds of four-point
coupling constants because of the four-dimensional Lorentz symmetry: boson-boson-boson-
boson, boson-boson-fermion-fermion and fermion-fermion-fermion-fermion.

• boson-boson-boson-boson

b
(A)
HIJK

:=

∫
Md

ddyTr
[
φ
(A)
H (y) · φ(A)

I (y) · φ(A)
J (y) · φ(A),†

K (y)
]

=

∫
Md

ddy
∑
a,b,c,d

[
φ
(A)
H;ab(y) · φ(A)

I;bc(y) · φ(A)
J ;cd(y) · φ(A),†

K;da(y)
]

=

∫
Md

ddy

∫
Md

ddy′
∑

a,b,c,d,s,t

δcsδatδ
d(y − y′)

[
φ
(A)
H;ab(y) · φ(A)

I;bc(y) · φ(A)
J ;sd(y

′) · φ(A),†
K;dt (y

′)
]

=

∫
Md

ddy

∫
Md

ddy′
∑

a,b,c,d,s,t

∑
n=0,S=1

φ
(A),†
n,S;ca(y)φ

(A)
n,S;ts(y

′)

×
[
φ
(A)
H;ab(y) · φ(A)

I;bc(y) · φ(A)
J ;sd(z) · φ(A),†

K̄;dt
(z)

]
=

∑
n=0,S=1

[∫
Md

ddyTr
(
φ
(A)
H (y) · φ(A)

I (y) · φ(A),†
n,S (y)

)]

×
[∫

Md

ddy′Tr
(
φ
(A)
n,S(y

′) · φ(A)
J (y′) · φ(A),†

K (y′)
)]

=
∑
S

Tr
[
t
(A)
HIS

]
× Tr

[
t
(A)
SJK

]
, (5.14)

The insertion of the completeness relation is important for the above decomposition. However,
we can alter the decomposition (5.14) since the representation of the completeness relation is
not unique. For example,

• boson-boson-boson-boson

b
(A)
HIJK =

∫
Md

ddy

∫
Md

ddy′
∑

a,b,c,d,s,t

δdsδbtδ
d(y − y′)

[
φ
(A)
I;bc(y) · φ(A)

J ;sd(y) · φ(A)
H;at(y

′) · φ(A),†
K;st (y

′)
]

=
∑
T

Tr
[
t
(A)
IJT

]
× Tr

[
t
(A)
HTK

]
, (5.15)

where we contracted φ
(A)
I and φ

(A)
J first by inserting the completeness relation.

Needless to say, eq. (5.14) must be equal to eq. (5.15), i.e.,

b
(A)
HIJK =

∑
S

Tr
[
t
(A)
HIS

]
× Tr

[
t
(A)
SJK

]
=

∑
T

Tr
[
t
(A)
IJT

]
× Tr

[
t
(A)
HTK

]
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This structure is similar to the conformal block or degenerations of Riemann surfaces in
conformal field theory. In the language of scattering processes, this alteration can be identi-
fied, for example, with the crossing symmetry between s-channel and t-channel. In scattering
theory, we have another channel called u-channel. In a fundamental representation, we can ob-

tain another decomposition (i.e., first contraction φ
(A)
I and φ

(A)†
K ) corresponding to u-channel.

However, in the adjoint representation, the non-Abelian structure is an obstacle to alter to
u-channel.

• boson-boson-fermion-fermion

y
(A)
HIJK =

∫
Md

ddyTr
[
φ
(A)
H (y) · φ(A)

I (y) · ψ(A)
J (y) · ψ(A),†

K (y)
]

=

∫
Md

ddy
∑
a,b,c,d

[
φ
(A)
H;ab(y) · φ(A)

I;bc(y) · ψ(A)
J ;cd(y) · ψ(A),†

K;da(y)
]

=

∫
Md

ddy

∫
Md

ddy′
∑

a,b,c,d,s,t

δcsδatδ
d(y − y′)

[
φ
(A)
H;ab(y) · φ(A)

I;bc(y) · ψ(A)
J ;sd(y

′) · ψ(A),†
K;dt (y

′)
]

=

∫
Md

ddy

∫
Md

ddy′
∑

a,b,c,d,s,t

∑
n=0,S=1

φ
(A),†
n,S;ca(y)φ

(A)
n,S;ts(y

′)

×
[
φ
(A)
H;ab(y) · φ(A)

I;bc(y) · ψ(A)
J ;sd(y

′) · ψ(A),†
K;dt (y

′)
]

=
∑
S

Tr
[
t
(A)
HIS

]
× Tr

[
s
(A)
SJK

]
. (5.16)

In this case, we can also find other decomposition

y
(A)
HIJK =

∫
Md

ddy

∫
Md

ddy′
∑

a,b,c,d,s,s′,t,u

δdtδbuδss′δ
d(y − y′)

×
[
φ
(A)
H;au(y

′) · φ(A)
I;bc(y) · ψ(A)

J ;cd;s(y) · ψ(A),†
K;ta;s′(y

′)
]

=

∫
Md

ddy

∫
Md

ddy′
∑

a,b,c,d,s,s′,t,u

∑
n=0,T=1

ψ
(A),†
n,T ;db;s(y)ψ

(A)
n,T ;ut;s′(y

′)

×
[
φ
(A)
H;au(y

′) · φ(A)
I;bc(y) · ψ(A)

J ;cd;s(y) · ψ(A),†
K;ta;s′(y

′)
]

=
∑
T

Tr
[
s
(A)
IJT

]
× Tr

[
s
(A)
HTK

]
. (5.17)
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• fermion-fermion-fermion-fermion

f
(A)
HIJK :=

∫
Md

ddyTr
[(
ψ
(A)
H (y) · ψ(A),†

I (y)
)
·
(
ψ
(A)
J (y) · ψ(A),†

K (y)
)]

=

∫
Md

ddy
∑
a,b,c,d

[(
ψ
(A)
H,ab(y) · ψ(A),†

I,bc (y)
)
·
(
ψ
(A)
J,cd(y) · ψ(A),†

K,da (y)
)]

=

∫
Md

ddy

∫
Md

ddy′
∑

a,b,c,d,s,t

δscδatδ
d(y − y′)

[(
ψ
(A)
H,ab(y) · ψ(A),†

I,bc (y)
)
·
(
ψ
(A)
J,cd(y) · ψ(A),†

K̄,da
(y)

)]
=

∑
n=0,L=1

∫
Md

ddyTr
[
ψ
(A)
H (y) · ψ(A),†

Ī
(y) · φ(A),†

n,L̄
(y)

]

×
∫
Md

ddy′Tr
[
φ
(A)
n,L(y

′) · ψ(A)
J (y′) · ψ(A),†

K (y′)
]
.

(5.18)

As we proved, the product of ψ
(A)
I and φ

(A)
J is in the space spanned by {ψ(A)

I }I . In general,

however, the product of the zero mode ψ
(A)
I and a fixed excited mode φ

(A)
n,J in not in the specific

space but the whole space of the eigenmodes of the Dirac operator /D
(A)

. For convenience, by
introducing the three-point coupling constants including higher mode scalars

s
(A)
n,IJK :=

∫
Md

ddyTr
[
φ
(A)
n,I (y) · ψ(A)

J (y) · ψ(A)†
K (y)

]
(n ≥ 0), (5.19)

then

f
(A)
HIJK =

∑
n,L

Tr
[
s
(A),n,†
LIH

]
× Tr

[
s
(A),n
LJK

]
.

In magnetized toroidal compactifications, the concrete form of three-point coupling con-
stants (5.19) are studied in Ref. [5].

5.3.3 n-point coupling constants

An n-point coupling is given by

Y
(A)
M1...MiN1...NjNj+1...N2j

:=

∫
Md

ddyTr

[
i∏

k=1

(
φ
(A)
Mk

(y)
) j∏

l=1

[
ψ
(A)
Nl

(y)
(
ψ
(A),†
Nj+l

(y)
)]]

, (5.20)

where n = i+ 2j. By the similar computations as above, the n-point coupling (5.20) can be
reduced to −1 + i+ 2j-point coupling, e.g.,
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Y
(A)
M1...MiN1...NjNj+1...N2j

=

∫
Md

ddyφ
(A)
M1,ab

(y)φ
(A)
M2,bc

(y)

×
∫
Md

ddy′δcsδatδd(y − y′)

[
i∏

k=3

(
φ
(A)
Mk

(y′)
) j∏

l=1

[
ψ
(A)
Nl

(y′)
(
ψ
(A),†
Nj+l

(y′)
)]]

st

=
∑

n=0,L=1

∫
Md

ddyTr
[
φ
(A)
M1

(y)φ
(A)
M2

(y)φ
(A),†
n,L (y)

]

×
∫
Md

ddy′Tr

[
φ
(A)
n,L(y

′)
i∏

k=3

(
φ
(A)
Mk

(y′)
) j∏

l=1

[
ψ
(A)
Nl

(y′)
(
ψ
(A),†
Nj+l

(y′)
)]]

=
∑
L=1

1

N
Tr

[
t
(A)
M1M2L

]
· Y (A)

L,M3...MiN1...NjNj+1...N2j
. (5.21)

We can obtain other decomposition that must be the same as the coupling constant (5.21).
In addition, we can continue the decomposition process, e.g., for the −1 + i + 2j-coupling

Y
(A)
L,M3...MiN1...NjNj+1...N2j

into a −2 + i+ 2j-coupling constant.
As a summary, we define the selection rule for higher-order coupling constants among

the zero modes: Higher-order coupling constants can be decomposed into three-point coupling
constants determined by the product property of the zero modes. We note that an actual n-
point coupling constant is obtained by the multiplication of the above computations and a
coupling constant of a gauge group and a sign coming from spin statistics.
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Chapter 6

Higher order coupling constants in
IKKT matrix model

In this chapter, we reconsider the results of Section 5 from the viewpoint of the IKKT matrix
model.

6.1 Conjecture

Let us fix a classical solution XM
0 satisfying eq. (4.18), and we consider fluctuation fields AM ,

i.e.,

XM = XM
0 + θMNAN (6.1)

On the other hand, the fermionic part of the IKKT matrix model is

Sf =
1

2
Tr

(
ψ̄ΓM [XM , ψ]

)
. (6.2)

By substituting the eq. (6.1) into the eq. (6.2), the fermionic part of the IKKT matrix model
is written by

Sf =
1

2
Tr

(
ψ̄ΓM [XM

0 + θMNAN , ψ]
)

(6.3)

Therefore, if the fluctuation fields have an expectation value as a background, < AN >, we
can define a Dirac operator in the IKKT matrix model as

D := −iΓM (θ−1)MN

[
XN

0 + θNL < AL >, ·
]
. (6.4)

This Dirac operator is similar to the gauge interaction part of the Dirac operator (5.3). The
essence of the selection rule obtained in Chapter 5 is that Dirac-type operators satisfy the
Leibniz rule. From this point, the same result with the Chapter 5 will be achieved since the
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Dirac operator (6.4) satisfy the Leibniz rule. However, there is no guarantee for the existence
of the complete orthonormal system on the noncommutative or fuzzy manifold. In the case
of a compact manifold, it is guaranteed by the general result with respect to essentially self-
adjoint operators on compact manifolds. Therefore, at this level, we conjecture that the
selection rule proposed in Chapter 5 is valid even if we consider a noncommutative or fuzzy
manifold.

In the following, we confirm our conjecture by considering the magnetized noncommutative
torus and the magnetized fuzzy sphere on the basis of Ref. [77, 78].

6.2 Magnetized noncommutative torus

6.2.1 Dirac operator on noncommutative torus

In Subsection 4.3, noncommutative torus is defined by the algebraic structure. Therefore,
differential operators on noncommutative torus are defined as linear maps on an algebra.

Let us denote a C∗-algebra over C as A. A map d : A → A is called a derivation on A if
d satisfies the Leibniz rule

d(ab) = (da)b+ a(db), d(λa) = λ(da),

for all a, b ∈ A, λ ∈ C.
In this thesis, noncommutative torus is defined as a C∗-algebra generated by Û4 and Û5

as we mentioned in Section 4.31. Therefore, derivations can be defined by the action to each
generator. We define the derivations δ̂i (i = 4, 5), which are called the basic derivations, as

δ4Û4 :=
i

R4
Û4, δ5Û5 :=

i

R5
Û5, δ4Û5 = δ5Û4 = 0,

and extend them to satisfy the linearity and the Leibniz rule. The factors 1
R4

and 1
R5

are
convenient factors for the commutative torus whose periods are 2πR4 and 2πR5.

The Dirac operator on noncommutative torus is defined by the basic derivations

/D := i
∑
i=4,5

Γiδi, (6.5)

where Γ4 and Γ5 are the Pauli matrices σ1 and σ2, respectively
2.

In this thesis, we consider noncommutative torus based on the IKKT matrix model. There-
fore, the above differential operators should be realized in the framework of the IKKT matrix
model. In addition, we are interested in a magnetized model. Hence, we have to construct,
for example, a gauge covariant derivative. For this purpose, let us start from noncommutative
super Yang-Mills theory based on the IKKT matrix model.

1In the following, we consider the infinite dimensional representation of the noncommutative torus. Hence,
we use “hat” for operators to distinguish them from finite dimensional matrices.

2We keep in mind that the noncommutative torus corresponds to an extra dimensional space. Hence, the
notation is unified as before.
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To obtain noncommutative super Yang-Mills theory, we expand the action (4.6) around
the classical solution, i.e., eq. (6.1). Then, the bosonic part of the action (4.6) is written as

Sb = − 1

4g2
Tr

(
ηIKηJL[X̂

I
0 + θIM ÂM , X̂

J
0 + θJM ÂM ][X̂K

0 + θKN ÂN , X̂
L
0 + θLN ÂN ]

)
. (6.6)

In the following, we consider a U(N) gauge group since we focus on the type IIB effective
theory. The basic expansion process is the same as the reductionof super Yang-Mills theory in
Section 3.1. The difference is whether the degrees of freedom are fields or matrices. Therefore,
we can follow the same process as in Section 3.1 by replacing fields by matrices if the cyclic
property of the trace is valid. More precisely, we have to define four following items.

• Partial derivatives

∂M := −i(θ−1)MN [X̂N
0 , ·],

• Field strength of the U(1) gauge group

F̂MN := ∂M B̂N − ∂N B̂M − i[B̂M , B̂N ]

The commutation relation does not vanish because of the noncommutativity of the
matrix algebra.

• Covariant derivatives with respect to the U(1) gauge group

DMŴN = ∂MŴN − i[B̂M , ŴN ]

• Effective metric

GMN = θMNθNJηIJ

By inserting these items, the action (6.6) can be written as

Sb =
1

4g2
Tr

((
F̂MN − (θ−1)MN

)(
F̂MN − (θ−1)MN

)
− [ŴM , ŴN ][ŴM , ŴN ]

)
+

1

2g2
Tr

(
DMŴND

MŴN −DMŴND
NŴM − i(F̂MN − (θ−1)MN )[ŴM , ŴN ])

)
, (6.7)

where the indices are contracted by the effective metric GMN .
We are interested in a magnetic flux. We introduce an Abelian magnetic flux on the extra

dimensional space. By arranging on the basis of the prescription in Subsection 3.1, we can
obtain the action after turning on the magnetic flux

Sb = − 1

2g2
Tr

(
Φ̂iDμD

μΦ̂i + Φ̂jD̃iD̃
iΦ̂j

)
− i

2g2

(
< F̂ a

ij > − < F̂ b
ij >

)
Φ̂i,abΦ̂j,ba + Sb,other,

(6.8)
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where

D̃iΦ̂
ab
j := ∂iΦ̂

ab
j − i < B̂a

i > Φ̂ab
j + iΦ̂ab

j < B̂b
i >,

and Sb,other is irrelevant part to the following discussion.
Similarly, the fermionic part of the IKKT matrix model after turning on the magnetic flux

becomes

Sf = − 1

2g2
Tr

(
i
¯̂
ΨΓ̃μDμΨ̂ + i

¯̂
ΨΓ̃iD̃iΨ̂ +

¯̂
ΨΓ̃i[Φ̂i, Ψ̂]

)
+ Sf,other, (6.9)

where the indices are contracted by the Minkowski metric and Γ̃M := θMNΓN , and Sf,other is
also an irrelevant part.

From the action (6.8), we can define the Dirac operator and the Laplacian

D := iΓ̃M [X̂M , ·], (6.10)

Δ := −GMN D̃MD̃N = [X̂M , [X̂
M , ·]], (6.11)

where X̂M has the same expression as eq. (6.1). In this thesis, we are interested in the noncom-
mutative torus in an infinite dimensional representation. Therefore, the Dirac operator (6.10)
and the Laplacian (6.11) are operators act on operators written by Ŷ 4 and Ŷ 5.

In the following, we consider the gauge background on noncommutative torus correspond-
ing to Section 3.2, i.e.,

Â4 = 0, Â5 = F Ŷ 4, (6.12)

where the field strength is F̂45 = F .
We have to consider a boundary condition corresponding to the twisted boundary condition

in Section 3.2. Because of the noncommutativity, the gauge transformation is obtained by

ÂM → Â′
M = Ω̂ÂM Ω̂−1 + iΩ̂∂M Ω̂−1, (6.13)

where Ω̂ is a unitary operator. From the construction of noncommutative torus, the back-
ground gauge field translates as

Â4(Ŷ
4 + 2πR4, Ŷ

5) = Â4(Ŷ
4, Ŷ 5 + 2πR5) = 0,

Â5(Ŷ
4 + 2πR4, Ŷ

5) = Â5(Ŷ
4, Ŷ 5) + 2πR5F ,

Â5(Ŷ
4, Ŷ 5 + 2πR5) = Â5(Ŷ

4, Ŷ 5). (6.14)

We require that the above translations can be realized as gauge transformations. In fact, the
unitary operator Ω in eq. (6.14) can be constructed by
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Ω̂4(Ŷ
4, Ŷ 5) ∝ exp

[
2πiR5

1 + θ45F · F Ŷ 5

]
, Ω̂5(Ŷ

4, Ŷ 5) ∝ 1̂, (6.15)

where ∝ represents an action on Cm part. This part is not important for the following
discussion since the Cm part of Ŷ 4 and Ŷ 5 is the identity matrix. Therefore, in the following,
we assume this part is the identity matrix and omit it.

In addition, we have to consider the consistency condition, i.e.,

Ω̂5(Ŷ
4 + 2πR4, Ŷ

5)Ω̂4(Ŷ
4, Ŷ 5) = Ω̂4(Ŷ

4, Ŷ 5 + 2πR5)Ω̂5(Ŷ
4, Ŷ 5). (6.16)

Consequently, eq. (6.16) requires that the magnetic flux F must be quantized in such a way
that

F
1 + θ12F · A

2π
≡ N ∈ Z. (6.17)

We have to note about the gauge choice. The choice (6.12) is called the axial gauge. The
following discussion in this chapter, e.g., explicit derivation of zero modes, depends on this
gauge choice. Therefore, we should confirm the gauge invariance of our discussion.

In the commutative case, another gauge commonly used is the symmetric gauge

A4 = −1

2
Fy5, A5 =

1

2
Fy4.

More generally, we can consider the following gauge

A4 = −tFy5, A5 = (1− t)Fy4, (6.18)

where t ∈ [0, 1]. We can realize the gauge transformations from ∀t1 to ∀t2 by the unitary
element U = exp[iF (t2 − t1)y

4y5].
Let us consider an analogy in the noncommutative case. We can introduce the similar

background gauge field

Â4 = −tF Ŷ 5, Â5 = (1− t)F Ŷ 4.

We expect that we can find the gauge transformations from ∀t1 to ∀t2. To find a unitary

element, let us consider a unitary element Û = exp
[
iα(Ŷ 4Ŷ 5 + Ŷ 5Ŷ 4)

]
, where α ∈ R. This

unitary element is the analogy of U = exp[iF (t2 − t1)y
1y2]. Based on the transformation by

Û , we can find the following identity,

(1− t1θ
45F)(1 + (t1 − 1)θ45F) = (1− t2θ

45F)(1 + (t2 − 1)θ45F). (6.19)

Eq. (6.19) is a quadratic equation with respect to t2, and its solution are t1 and 1 − t1. In
other words, non-trivial gauge transformation is uniquely determined as t1 → 1 − t1. This
may impose an additional condition to the gauge space compared to the commutative case.
However, we restricted ourselves to Û in the above discussion. Therefore, it may be possible
that the gauge space recovers by other unitary elements.
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6.2.2 Zero modes of the Dirac operator

In the previous subsection, we introduced the gauge background (6.12). In the following, we
obtain the explicit Dirac operator and derive zero modes.

As a first step, let us consider a zero mode equation for a fundamental representation for
convenience. We can define the covariant derivative for the fundamental representation

DM := ∂M − iÂM (6.20)

By replacing the basic derivations to the covariant derivative (6.20), a zero mode equation for
each chirality is given by

(∂4 + is∂5 + sF Ŷ 4)ψ̂s = 0 (s = ±1). (6.21)

with the twisted boundary condition

ψ̂s(Ŷ 4 + 2πR4, Ŷ
5) = exp

[
2πiR4

1 + θ45F · F Ŷ 5

]
ψ̂s(Ŷ 4, Ŷ 5)

ψ̂s(Ŷ 4, Ŷ 5 + 2πR5) = ψ̂s(Ŷ 4, Ŷ 5).

We expect that the zero modes of eq. (6.21) can be constructed from those of the commutative
case since eq. (6.21) is similar to the commutative case.

Here, we consider the viewpoint of Fourier transformation. The Fourier transformation of
the whole zero mode of the commutative case is written as

ψs(y4, y5) =

∫
dk

2π

∑
n=|N |p+q∈Z

C exp

[
− k2

2|F | −
ikn

R5F

]
exp

[
iky4

]
exp

[
i
n

R5
y5

]
, (6.22)

where p ∈ Z, q = 0, . . . , |N | − 1, C is the normalization constant, and the magnetic flux
F satisfies the quantization condition (3.17). We expect that the whole zero mode of the
eq. (6.21) is obtained by

ψ̂s(Ŷ 4, Ŷ 5) =

∫
dk

2π

∑
n=|N |p+q∈Z

C exp

[
− k2

2|F | −
ikn

R5F

]
exp

[
ikŶ 4

]
exp

[
i
n

R5
Ŷ 5

]
(6.23)

However, this is not a zero mode solution because of the difference in the quantization condi-
tion with respect to the magnetic flux.

To obtain zero mode solutions of eq. (6.21), let us focus on the decomposition of the label
of the summation. In eq.(6.22), the label of the summation n is restricted as n = |N |p + q.
However, p and q do not appear in eq. (6.22). Therefore, we can consider other decomposition
like n = |N |p + q, where p ∈ Z and q = 0, . . . , |N | − 1. In addition, the magnetic flux F
should be replaced by the magnetic flux F satisfying eq. (6.17). From these manipulations,
the zero mode solution of eq. (6.21) is obtained by
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ψ̂s
I(Ŷ

4, Ŷ 5) =

∫
dk

2π

∑
p∈Z

C exp

[
− k2

2|F| −
ik

R5F (|N |p+ q)

]
exp

[
ikŶ 4

]
exp

[
i
|N |p+ q

R5
Ŷ 5

]
,

(6.24)

where I = 0, . . . ,N −1. Actually, we can confirm that eq. (6.24) satisfies eq. (6.21) if Fs > 0.
We postpone the computation of the normalization constant to the next section.

In Section 3.2, the zero mode solutions are written by the Jacobi-theta function. To
discuss the property of the zero mode space, the Jacobi-theta function is useful. We can write
eq. (6.24) by operator-valued Jacobi-theta function

ψ̂s
I(Ŷ

4, Ŷ 5) = C

√
|F|
2π

exp

[
−|F|

2
(Ŷ 4)2

]
ϑ

[
I/|N |

0

] (
s|N |
2πiR5

(Ŷ 4 + isŶ 5), i
R4

R5
sN

)
.

If we consider the eigenstate of Ŷ 4 + isŶ 5, the factor sN should be positive because of the
convergence. Therefore, in the following, we require sN > 03. Accordingly, |N | = sN and

ψ̂s
I(Ŷ

4, Ŷ 5) = C

√
|F|
2π

exp

[
−|F|

2
(Ŷ 4)2

]
ϑ

[
I/|N |

0

] (
s|N |
2πiR5

(Ŷ 4 + isŶ 5), i
R4

R5
|N |

)
.

Let us go back to the zero mode equation of a bifundamental fermion. As a demonstration,
we consider the magnetic fluxes that break the gauge group U(2) → U(1) × U(1). Such a
symmetry breaking can be realized by the following gauge background

Â4(Ŷ
4, Ŷ 5) = 0, Â5(Ŷ

4, Ŷ 5) =

(F1Ŷ
4 0

0 F2Ŷ
5

)
,

where Fi (i = 1, 2) satisfies the quantization condition (6.17).
A fermion in U(2) adjoint representation is described as a 2× 2 matrix such that

ψ̂ =

(
ψ̂+

ψ̂−

)
, ψ̂s =

(
ψ̂s
11 ψ̂s

12

ψ̂s
21 ψ̂s

22

)
(s = ±).

The zero mode equation for each chirality is obtained by

(∂4 + is∂5)

(
ψ̂s
11 ψ̂s

12

ψ̂s
21 ψ̂s

22

)
+ s

( F1[Ŷ
4, ψ̂s

11] F1Ŷ
4ψ̂s

12 −F2ψ̂
s
12Ŷ

5

F2Ŷ
4ψ̂s

21 −F1ψ̂
s
21Ŷ

4 F2[Ŷ
4, ψ̂s

22]

)
= 0 (s = ±).

(6.25)

Because of the noncommutativity, we must maintain the ordering in eq. (6.25).
First, let us start from the diagonal components. The zero mode equation of the diagonal

component is written as

3The condition 2π − θ45 · N > 0 is necessary for both sF > 0 and sN > 0 to be compatible.
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(∂4 + is∂5)ψ̂
s
11 + sF1[Ŷ

4, ψ̂s
11] = 0. (6.26)

A unitary operator representing a gauge transformation is also described by a 2 × 2 matrix
and act on a fermion in U(2) adjoint representation such that

Ω̂ =

(
Ω̂(F1) 0

0 Ω̂(F2)

)
, ψ̂s → Ω̂ψ̂sΩ̂†

Therefore, the twisted boundary condition of the diagonal component is obtained by

ψ̂s
11(Ŷ

4 + 2πR4, Ŷ
5) = exp

[
2πiR4

1 + θ45F1
· F1Ŷ

5

]
ψ̂s
11(Ŷ

4, Ŷ 5) exp

[
− 2πiR4

1 + θ45F1
· F1Ŷ

5

]
,

ψ̂s
11(Ŷ

4, Ŷ 4 + 2πR4) = ψ̂s
11(Ŷ

4, Ŷ 5). (6.27)

In this case, the right hand side of the first condition induces the shift of Ŷ 4 such that
Ŷ 4 → Ŷ 4 + N1θ45

R5
. This shift induces the contradiction: F1θ45

1+θ45F1
= 1. Therefore, ψ̂s

11 must be

a scalar operator, i.e., ψ̂s
11 = const.× 1.

Next, we consider the top right component. The zero mode equation is

(∂4 + is∂5)ψ̂
s
12 + s(F1Ŷ

4ψ̂s
12 −F2ψ̂

s
12Ŷ

4) = 0 (6.28)

with the twisted boundary condition

ψ̂s
12(Ŷ

4 + 2πR4, Ŷ
5) = exp

[
2πiR4

1 + θ45F1
· F1Ŷ

5

]
ψ̂s
12(Ŷ

4, Ŷ 5) exp

[
− 2πiR1

1 + θ45F2
· F2Ŷ

5

]
ψ̂s
12(Ŷ

4, Ŷ 5 + 2πR5) = ψ̂s
12(Ŷ

4, Ŷ 5)

The third and fourth terms of eq. (6.28) represent the noncommutativity as we mentioned.

In the case of the fundamental representation, the factor exp
[
−|F|(Ŷ 4)2/2

]
comes from

the term F Ŷ 4 in eq. (6.21). Therefore, we expect that zero mode solutions can be written by
the operator-valued Jacobi-theta function. Actually, the zero mode solutions are obtained by

ψ̂s
12,I(Ŷ

4, Ŷ 5) = C12

√
|F12|
2π

exp

[
−sF1

2
(Ŷ 4)2

]

× ϑ

[
I/|N12|

0

] (
s|N12|
2πiR5

(Ŷ 4 + isŶ 5), i
R4

R5
|N12|

)
exp

[
sF2

2
(Ŷ 4)2

]
(6.29)

where F12 = F1 − F2, N12 = N1 − N2, and I = 0, . . . ,N12 − 1. In addition, we restrict
ourselves to sN12 > 0. We can confirm that eq. (6.29) satisfies the zero mode equation (6.28)
and the periodic boundary conditions if sF12 > 04.

Obviously, the above result can be generalized to U(N) gauge group and symmetry break-
ing by magnetic fluxes.

4The condition 2π − θ45 · N12 > 0 is necessary for both sF12 > 0 and sN12 > 0 to be compatible.
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6.2.3 Laplacian in the IKKT matrix model

In Chapter 5, we discussed the product of a scalar field and a fermion field. Therefore, to
compare with Chapter 5, we have to consider the Laplacian and its eigenvalue problem.

We have already defined the Laplacian in the IKKT matrix model in eq. (6.11). The
Laplacian has the relationship with the square of the Dirac operator even if we consider the
noncommutative case. To see this relationship, let us denote the Dirac operator as

/D =

(
0 −D
D′ 0

)
.

The square of /D can be arranged as

/D
2
=

(−DD′ 0
0 −D′D

)
= Δ+

(
− (θ45)2

2 [D,D′] 0

0 − (θ45)2

2 [D′, D]

)
. (6.30)

If we consider a fermion in an adjoint representation, the action of the operator (6.30) on the
(1, 2) component of the fermion can be written as

/D
2
ψ̂s
12 = Δψ̂s

12 − s(θ45)2F12ψ̂
s
12. (6.31)

The relation (6.31) indicates that the zero modes of D (D′) are also the lightest mode solutions
of the Laplacian.

In addition, we can construct the eigenmodes of the Laplacian by the similar way in
Section 3.2. Actually, the commutation relation between D and D′ is

[D,D′]ψ̂s
12 = 2(θ45)2F12ψ̂

s
12.

If we set the magnetic flux F12 > 0, the operators D and −D′ can be interpreted as a creation
operator and an annihilation operator, respectively. If we set the magnetic flux F12 < 0, it is
sufficient to exchange the roles of D and −D′. This interpretation allows us to consider the
analogy of the harmonic oscillator. Namely,

N := −DD′, Δ = N + (θ45)2F12,

Therefore, the eigenmodes of the Laplacian can be obtained by

Δψ̂+,n
12 = λθ45,nψ̂

+,n
12 ,

ψ̂+,n
12 := Dnψ̂+

12, λθ45,n = (θ45)2F12(2n+ 1).

The difference from the commutative case lies in the factor (θ45)2. In addition, it seems that
all eigenvalues λθ45,n vanish in the limit θ45 → 0. Let us consider the mass dimension. Based

on the principle of the IKKT matrix model, we assume the mass dimensions [X̂M
0 ] = M−1
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and [Âi] =M . This assumption implies that the mass dimension of the scale factor g is -2. In
addition, the noncommutative parameter θ45 and the field strength have the mass dimensions
-2 and +2, respectively. Therefore, the combination λθ45,n/g

2 has the mass dimension +2.
On the other hand, the trace is dimensionless. We expect that the trace with respect to four
dimensions becomes the integral on a four-dimensional space at an appropriate limit. From
the dimensionless of the trace, the expected correspondence is Tr4D ∼ ∫

d4x/ det(θMN ), and
det(θMN ) includes the factor (θ45)2. Therefore, the factor (θ45)2 is natural.

6.2.4 Normalizations

In this subsection, we define the trace and compute the normalization constant of the zero
mode solutions. We have to assure the cyclic property with respect to a gauge transformation
realized by a unitary operator. In addition, we should define the trace without facing an
inconsistency with the translations along Ŷ 4 and Ŷ 5 directions.

We define the trace by

Tr(·) =
∫ 2πR4

0
dY 4

〈
Y 4

∣∣ · ∣∣Y 4
〉
.

First, let us confirm the equivalence with the case of Y 4 and that of Y 5

∫ 2πR4

0
dY 4

〈
Y 4

∣∣ f̂(Ŷ 4, Ŷ 5)
∣∣Y 4

〉
=

∫ 2πR4

0
dY 4

∫ 2πR5

0
dY 5

〈
Y 4

∣∣ f̂(Ŷ 4, Ŷ 5)
∣∣Y 5

〉 〈
Y 5

∣∣Y 4
〉

=

∫ 2πR4

0
dY 4

∫ 2πR5

0
dY 5

〈
Y 5

∣∣Y 4
〉 〈
Y 4

∣∣ f̂(Ŷ 4, Ŷ 5)
∣∣Y 5

〉
=

∫ 2πR5

0
dY 5

〈
Y 5

∣∣ f̂(Ŷ 4, Ŷ 5)
∣∣Y 5

〉
= Tr

(
f̂(Ŷ 4, Ŷ 5)

)
,

where we have used

1 =

∫ 2πR4

0
dY 4

∣∣Y 4
〉 〈
Y 4

∣∣ , 1 =

∫ 2πR5

0
dY 5

∣∣Y 5
〉 〈
Y 5

∣∣
on the Hilbert space defined in Section 4.3. Next, we confirm the consistency with the
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compactification condition.∫ 4πR4

2πR4

dY 4
〈
Y 4

∣∣ f̂(Ŷ 4, Ŷ 5)
∣∣Y 4

〉
=

∫ 2πR4

0
dY 4

〈
Y 4 + 2πR4

∣∣ f̂(Ŷ 4, Ŷ 5)
∣∣Y 4 + 2πR4

〉
=

∫ 2πR4

0
dY 4

〈
Y 4

∣∣ Û4f̂(Ŷ
4, Ŷ 5)Û−1

4

∣∣Y 4
〉

=

∫ 2πR4

0
dY 4

〈
Y 4

∣∣ Ω̂4f̂(Ŷ
4, Ŷ 5)Ω̂−1

4

∣∣Y 4
〉

=

∫ 2πR5

0
dY 5

〈
Y 5

∣∣ Ω̂4f̂(Ŷ
4, Ŷ 5)Ω̂−1

4

∣∣Y 5
〉

= Tr
(
f̂(Ŷ 4, Ŷ 5)

)
,

∫ 4πR5

2πR5

dY 5
〈
Y 5

∣∣ f̂(Ŷ 4, Ŷ 5)
∣∣Y 5

〉
=

∫ 2πR5

0
dY 5

〈
Y 5 + 2πR5

∣∣ f̂(Ŷ 4, Ŷ 5)
∣∣Y 5 + 2πR5

〉
=

∫ 2πR5

0
dY 5

〈
Y 5

∣∣ Û5f̂(Ŷ
4, Ŷ 5)Û−1

5

∣∣Y 5
〉

=

∫ 2πR5

0
dY 5

〈
Y 5

∣∣ f̂(Ŷ 4, Ŷ 5 + 2πR5)
∣∣Y 5

〉
=

∫ 2πR5

0
dY 5

〈
Y 5

∣∣ f̂(Ŷ 4, Ŷ 5)
∣∣Y 5

〉
= Tr

(
f̂(Ŷ 4, Ŷ 5)

)
.

where we used the equivalence between Y 4 and Y 5 in the fourth line.
For general gauge transformations, we can show the equivalence of the trace between

before and after transformations if we assume the existence of the completeness relation of
the unitary operator as a gauge transformation. This ensures the cyclic property with respect
to the whole gauge transformations, and this is physically sufficient.

Then, we can compute the normalization constant with the above definition of the trace,

1 = Tr
(
ψ̂s,†
12,I(Ŷ

4, Ŷ 5)ψ̂s
12,J(Ŷ

4, Ŷ 5)
)
:=

∫ 2πR4

0
dY 4

〈
Y 4

∣∣ ψ̂s,†
12,I(Ŷ

4, Ŷ 5)ψ̂s
12,J(Ŷ

4, Ŷ 5)
∣∣Y 5

〉
=

1

A

∫ 2πR4

0
dY 4

∫ 2πR5

0
dY 5ψ̂s,†

12,I(Y
4, Y 5)ψ̂s

12,J(Y
4, Y 5)

= δIJ |C12|2R5|F12|
A

· I12(θ45)

where

I12(θ
45) :=

∑
p∈Z

∫ |N12|p+q
R5F12

(1+θ45F2)+2πR4

|N12|p+q
R5F12

(1+θ45F2)
exp

[−|F12|x2
]
dx
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If we take the limit θ45 → 0, the integral becomes the Gaussian integral and its value is
I12(0) =

√
π/|F12|. However, for θ45 �= 0, we need to use numerical approach.

Therefore, the normalization constant C12 is obtained by

C12 =

(
R5|F12|
A

· I12(θ45)
)−1/2

.

Then, the zero modes can be written by

ψ̂s
12,I(Ŷ

4, Ŷ 5) =

(
2πR5

A
· I12(θ45)

)−1/2

exp

[
−sF1

2
(Ŷ 4)2

]

× ϑ

[
I/|N12|

0

] (
s|N12|
2πiR5

(Ŷ 4 + isŶ 5), i
R4

R5
|N12|

)
exp

[
sF2

2
(Ŷ 4)2

]

If we consider the limit θ45 → 0, there is the difference in the overall factor, explicitly A−1/2,
between the commutative case in Section 3.2 and the noncommutative case. However, this
difference is due to the normalization of the integral on the torus. Hence, the same result can
be obtained if the normalization is unified.

6.2.5 Three-point and higher order coupling constants

In Subsection 6.2.4, we defined the trace and showed the orthogonality of the zero modes.
The purpose of this section is to compare the product property with Section 3.2.

Let us consider a product of zero modes (6.29). A key observation is that the Jacobi-theta
function part can be arranged as a c-number if two zero modes have the same chirality and
we consider their product. Based on these observations, the product of two zero modes (6.29)
is obtained as follows.

ψ̂ba,I · ψ̂ac,J

=

√
2π|FbaFac|

|Fbc|
CbaCac

Cbc

×
∑

K∈Z|Nba|+|Nac|

ψ̂bc,I+J+|Nba|K × ϑ

( |Nac|I−|Nba|J+|Nba||Nac|K
|NbaNbcNac|

0

) (
0, i

R4

R5
|NbaNbcNac|

)
.

(6.32)

We have used the formula for the Jacobi-theta function as we showed in Section 3.2. Equa-
tion (6.32) indicates that our conjecture mentioned at the beginning of this chapter is realized
and this is the same result as in Chapter 5.

Based on eq. (6.32), we compute Yukawa couplings. As a demonstration, we consider the
U(N) gauge group and its breaking U(N) → ∏3

a=1 U(Na), where
∑3

a=1Na = N . To realized
such a symmetry breaking, we introduce the background gauge field as
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Â4(Ŷ
4, Ŷ 5) = 0, Â5(Ŷ

4, Ŷ 5) =

⎛
⎝F1Ŷ

41N1 0 0

0 F2Ŷ
41N2 0

0 0 F3Ŷ
41N3

⎞
⎠ ,

We have to consider a sign assignment with respect to the magnetic fluxes. Obviously, the
following identity is valid

F12 + F23 + F31 = 0

This identity implies that only one of the three has a different sign. In the following, we select
F23 > 0 and F12,F31 < 0 to compare the following result with Section 3.2. This selection
also implies N23 > 0,N12,N31 < 0.

A fermion has a 3× 3 block matrix structure since we consider U(N) gauge group and its
breaking U(N) → ∏3

a=1 U(Na). Base on Subsection 6.2.2, the component of the zero mode
fermion can be written as

ψ̂ =

(
ψ̂+

ψ̂−

)
, ψ̂+ =

⎛
⎜⎝const. 0 ψ̂+

13,I

ψ̂+
21,J const. ψ̂+

23,K

0 0 const.

⎞
⎟⎠ , ψ̂− = ψ̂+,†,

where const. = 1 and I, J,K denote the degeneracies. The lightest mode scalars have the
same matrix structure as the zero mode fermion. In addition, we showed that the lightest
mode scalars have the same functional form as the zero mode fermions. Therefore, we denote
Φ̂ to describe both the lightest scalars and the zero mode fermions.

Let us denote by Φ̂ab,I (a, b = 1, 2, 3) the (a, b) block component. Based on the action (6.8),
the Yukawa couplings are obtained by

YIJL := Tr
(
Φ̂†
23,L · Φ̂21,I · Φ̂13,J

)
. (6.33)

The ordering in the Yukawa couplings (6.33) is important since the factor exp
[
sF1
2 (Ŷ 4)2

]
of

Φ̂21,I can be cancelled by the factor exp
[
−F1

2 (Ŷ 4)2
]
of Φ̂13,J . In addition, F21,F > 0 from

our sign assignment. This situation is the same as that in eq. (6.32). Therefore, we can
rewrite it by the linear combination of the Jacobi-theta function, and the result is as,

Φ̂21,I · Φ̂13,J

=

√
2π|F21F13|

|F23|
C21C13

C23

×
∑

K∈Z|N21|+|N13|

Φ̂23,I+J+|N21|K × ϑ

( |N13|I−|N21|J+|N21||N13|K
|N21N23N13|

0

) (
0, i

R4

R5
|N21N23N13|

)
,
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On the other hand, we have already proved the orthogonality. Consequently, the Yukawa
coupling (6.33) is obtained by

YIJL =

√
2πA

R5
· I23
I21I13

ϑ

(
1

|N21|
(

L
|N23| − J

|N13|
)

0

) (
0, i

R4

R5
|N21N23N13|

)
, (6.34)

where we assume ∃K ∈ Z|N21|+|N13| such that L = I + J + |N21|K.
The difference from the commutative case is the presence of an overall factor if we fix

each generation number Nab to the same value with the commutative case. The Yukawa
coupling (6.34) goes back to the commutative case in the limit θ45 → 0 since the normalization
constant Iab and the generation number Nab go back to the commutative case completely.

On the other hand, the product property of the zero modes is preserved (c.f., eq. (6.32))
even if the completeness relation is obscure since there is no assurance that the Dirac opera-
tor (6.25) has the complete orthonormal system as we mentioned. Hence, we cannot admit the
interpretation as an insertion of the delta function (e.g., eq. (5.14)) at this level. However, the
product property is the most important for the decomposition. Therefore, we can conclude
that the selection rule that we proposed in Section 3.2 is completed. In other words, we can
obtain the decomposition of higher order coupling constants in the IKKT matrix model by
the three-point coupling constants (6.34).

6.3 Magnetized fuzzy sphere

6.3.1 Ginsparg-Wilson algebra and Dirac operator

In the previous section, we defined the Dirac operator on the basis of the fermionic part of
the action of the IKKT matrix model (4.6). We are interested in the magnetized fuzzy sphere
to compare the product property with the result in Section 3.3. However, the Dirac operator
for magnetized fuzzy sphere cannot be defined by the fermionic part of the action (4.22)
straightforwardly. On the other hand, in Ref. [79], the authors proposed a method to construct
a Dirac operator on any fuzzy manifolds on the basis of the Ginsparg-Wilson (GW) algebra.
Therefore, we introduce the GW algebra in this subsection and define the Dirac operator for
magnetized fuzzy sphere in the next subsection.

The GW algebra AGW is defined as a unital ∗-algebra over C generated by Γ and Γ′ such
as

AGW :=
〈
Γ,Γ

′
: Γ2 = Γ

′2 = 1,Γ∗ = Γ,Γ
′∗ = Γ

′〉
, (6.35)

where ∗ is a conjugate, typically the Hermitian conjugate. We will define Γ and Γ′ as matrices
since the fuzzy sphere is constructed from the finite dimensional representation of the su(2)
algebra.

In general, a GW Dirac operator DGW is defined as an element of AGW [79] such that

f(a,Γ)DGW = 1− ΓΓ
′
, (6.36)

where a is a parameter which corresponds to a lattice spacing and f(a,Γ) is an arbitrary
function depending on a and Γ. In addition, we assume that f(a,Γ) has an inverse element.
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Since the GW Dirac operator satisfies

ΓDGW +DGWΓ
′
= 0, (6.37)

we can prove the index theorem

Index (DGW) =
1

2
Tr

(
Γ + Γ

′)
.

Originally, the relation (6.37), which is a kind of the GW relation, is introduced to avoid the
fermion doubling problem in lattice field theory. Therefore, we do not suffer from the fermion
doubling problem if we consider zero modes of the GW Dirac operator.

In the following, we consider

DGW =
1

a

(
Γ− Γ

′)
, S = Tr

(
Ψ̄DGWΨ

)
.

6.3.2 Dirac operator of magnetized fuzzy sphere

In Section 3.3, the magnetic flux is introduced as the ’t Hooft-Polyakov monopole background
that is a geometrical object. However, the fuzzy sphere is defined as an algebraic object.
Therefore, we have to introduce the concept of the vector bundle as an algebraic object.

To define a vector bundle as an algebraic object, the Serre-Swan theorem or Swan’s theo-
rem [80,81] are important. These theorems argue that the algebraic meaning of vector bundles
can be defined as projective modules.

Let us start from the case of the sphere. Each point of a vector bundle is composed of a
point of the manifold and an element of a vector space. Based on the Serre-Swam theorem or
Swan’s theorem, any vector bundles are direct summands of trivial bundles. In other words,
we can construct a non-trivial vector bundle by considering of a projection on a trivial bundle.
The projection for the ’t Hooft-Polyakov monopole bundle with the charge ±N on the sphere
can be defined by

P±N =

N∏
i=1

1± �σ(i) · �n
2

, (6.38)

�σ(i) := 12 ⊗ · · · ⊗
i

�σ ⊗ · · · ⊗ 12︸ ︷︷ ︸
N

, (6.39)

where ni (i = 1, 2, 3) is a unit vector on the sphere.
From the projection (6.38), we expect naturally that the following operator is an appro-

priate projection for the ’t Hooft-Polyakov monopole with the charge ±1 on the fuzzy sphere,

p(±1) =
1± �σ · �̂n

2
, (6.40)

where n̂i (i = 1, 2, 3) is the normalized generator of the su(2) algebra satisfying
∑3

i=1(n̂i)
2 = 1.

In the following, we use the hat to describe the representation matrix of the su(2) algebra.
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However, the operator (6.40) cannot play a role of a projection operator because of the
noncommutativity of n̂i. To define a projective operator, it is necessary to introduce another
generator T̂i of the su(2) algebra with the Casimir operator eigenvalue T (T + 1) [82, 83].
Namely,

p(+1) :=
1 + γχ

2
, γχ :=

�σ · �̂T + 1/2

T + 1/2
. (6.41)

This is an idempotent operator, which is remarked in Refs. [60, 61], hence we can admit
this idempotent operator as a projection operator. On the other hand, the projection op-
erator (6.41) can be also interpreted as the projection operator of the angular momentum

K̂
(+1)
i := T̂i+

1
2σi with the Casimir operator eigenvalue K(K+1), (K = T± 1

2) into K = T+ 1
2

subspace,

p(+1) =

∑3
i=1

(
K̂

(+1)
i

)2 − (T − 1/2)(T + 1/2)

(T + 1/2)(T + 3/2)− (T − 1/2)(T + 1/2)
.

Hence, based on this interpretation, we can define the projection operator for the ’t Hooft-
Polyakov monopole with the charge ±N on the fuzzy sphere as

p(+N) :=

∏
K �=Kmax

[
∑3

i=1

(
K

(+N)
i

)2 −K(K + 1)]∏
K �=Kmax

[Kmax(Kmax + 1)−K(K + 1)]
,

where K̂
(+N)
i := T̂i +

∑N
i=1

1
2σ

(i)
i and Kmax = K + N

2 . Similarly, the projection operator for
the monopole charge −N can be constructed from the minimum value Kmin = T − N

2 .
As a result, according to Refs. [82, 83], the GW algebra for magnetized fuzzy sphere can

be defined as

Γ± :=
�σ(
�̂
LL +

�̂
T ) + 1/2

L± T + 1/2
, Γ

′
= −−�σ · �̂LR + 1/2

L+ 1/2
, a =

1√
(L+ 1/2)(L± T + 1/2)

,

where T̂i with the Casimir operator spectrum T (T + 1) corresponds to the extra angular
momentum operator. The superscripts L and R mean the left-action and the right-action,
respectively. The IKKT matrix model is constructed by the commutator. Hence, we have
to consider the left-action and the right-action naturally. In addition, we have to restrict
ourselves into L̂L

i + T̂i with the Casimir operator eigenvalue (L ± T )(L ± T + 1). From the
definition, the square of DGW is given by

(DGW)2 =

(
�̂
LL − �̂

LR +
�̂
T +

1

2
�σ

)2

+
1

4
− T 2.

If we define the generator Ji = L̂L
i − L̂R

i + T̂i +
1
2σi with the Casimir operator eigenvalue

J(J + 1), then J = T − 1
2 corresponds to the zero mode states with the degeneracy 2T . On

the other hand, the topological charge or the index of this monopole background is 2T , and
this value is the same as the continuous limit [83]. Therefore, this result is consistent with
Section 3.3.
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6.3.3 Laplacian of magnetized fuzzy sphere

As we discussed in Section 3.3, the zero mode fermions are distinguished from the lightest
mode bosons because of the curvature contribution. Therefore, we have to consider the
lightest modes of the Laplacian on magnetized fuzzy sphere. In the following, we focus on
states corresponding to the scalar fields since the eigenvalue problem of the vector fields is
essentially the same as that of the scalar fields.

Let us start from the standard action of the scalar sector on the fuzzy sphere without the
monopole,

S = Tr
(
[L̂i,Φ][L̂i,Φ]

)
= Tr

(
−Φ[L̂i, [L̂i,Φ]]

)
= Tr

(
−Φ(L̂i)

2Φ
)
,

where Φ is a Hermitian matrix and L̂i = [L̂i, ·] = L̂L
i − L̂R

i is the su(2) generator with the
Casimir operator eigenvalue L(L+ 1),L ∈ {0, . . . , 2L}.

As we discussed, the ’t Hooft-Polyakov monopole can be introduced as an extra angular
momentum. Therefore, the action of the scalar sector on the fuzzy sphere with the ’t Hooft-
Polyakov monopole is defined naturally

S = Tr
(
−Φ(K̂i)

2Φ
)
= Tr (−K(K + 1)ΦΦ) ,

where K̂i := L̂i + T̂i.
As we mentioned in Subsection 6.3.2, we need to consider the projection into L̂L

i + T̂i
whose Casimir operator eigenvalue is (L ± T )(L ± T + 1). This implies that the Casimir
operator eigenvalue of K̂i is K(K + 1), where K runs from T to 2L ± T . Hence, the lightest
eigenvalue is T 2 + T . However, the lightest eigenvalue we expect is T if the corresponding
radius is R = 1. Therefore, the natural extension of the standard action of the scalar sector
is not an appropriate action.

To construct an appropriate action, we consider the correspondence between wavefunctions
and states by using the coherent spin state. The coherent spin state is introduced as an analogy
of the coherent state of the harmonic oscillator in quantum mechanics [84].

Let us start from the generator Ŝi of the su(2) algebra with the Casimir operator eigenvalue
S(S + 1). The ground state is the highest spin state,

Ŝz |S, S〉 = S |S, S〉 .
The other states can be constructed by acting the lowering operator, i.e.,

(Ŝ−)I |S, S〉 =
(

I!(2S)!

(2S − I)!

)1/2

|S, S − I〉 (0 ≤ I ≤ 2S),

where Ŝ− := Ŝx − iŜy. In Ref. [84], the coherent spin state is defined by

|z〉 := 1

N1/2
exp

(
zŜ−

)
|S, S〉 = 1

N1/2

2S∑
I=0

(
(2S)!

p!(2S − I)!

)1/2

zI |S, S − I〉 , (6.42)
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where N is a normalization factor. Since the inner product of the spin coherent state should
be finite, i.e.,

〈z|z〉 = 1

N

2S∑
I=0

(2S)!

I!(2S − I)!
|z|2I =

1

N
(1 + |z|2)2S <∞, (6.43)

then N should be proportional to (1 + |z|2)S .
On the other hand, the coherent spin state satisfies the overcompleteness relation since

the set {|S : S − I〉}2SI=0 satisfies the completeness relation. In other words,

∫
d2z m(|z|2) |z〉 〈z| =

2S∑
I=0

|S, S − I〉 〈S, S − I| = 1 (6.44)

determines the integral measure m(|z|2) ∝ 2S+1
π

1
(1+|z|2)2 . The proportionality constant de-

pends on the normalization condition (6.43).
Let us consider the coherent spin state for the zero modes of the Dirac operator. The set

of the zero mode states is {|T − 1/2 : T − 1/2− I〉}2TI=0. Therefore, the coherent spin state is
defined by

|z〉 := 1

N1/2

2T−1∑
I=0

(
(2T − 1)!

I!(2T − I − 1)!

)1/2

zI |T − 1/2, T − 1/2− I〉 .

We require the normalization factor N satisfies

〈z|z〉 = 1

N
(1 + |z|2)2T−1 ≡ 2T

4πR2

since there are 2T zero mode states in the area 4πR2. We can confirm the consistency of
this requirement from the integral measure. This requirement implies that the integral of the
overcompleteness relation must be the following form

4R2

∫
d2z

1

(1 + |z|2)2 . (6.45)

Equation (6.45) is nothing but the integral over the sphere with the metric (3.36).
The normalized state is written as

|z〉 := 1

(1 + |z|2) 2T−1
2

2T−1∑
I=0

(
1

4πR2
· (2T )!

I!(2T − I − 1)!

)1/2

zI |T − 1/2, T − 1/2− I〉 .

Then, we can derive the wavefunctions (c.f., Ref. [75], Section 3.3) as the inner product.
Namely,

〈T − 1/2, T − 1/2− I|z〉 =
(

1

4πR2
· (2T )!

I!(2T − I − 1)!

)1/2 zI

(1 + |z|2) 2T−1
2

. (6.46)

73



The right-hand side of eq. (6.46) is the same as the zero mode fermions ψ2T
(F ),I .

On the other hand, the lightest mode bosons can be written as zero-mode fermions with
the shift of the magnetic flux (3.39). Since the magnetic flux for fermions is 2T , the lightest-
mode bosons should have the magnetic flux 2T+1 and the corresponding states can be written
as {|T, T − I〉}2TI=0. This difference comes from the curvature contribution. We can expect
that an appropriate Laplacian can be constructed on the basis of the GW algebra without
the contribution of the curvature.

Let us consider

Γ±
i :=

L̂L
i + T̂i
L± T

, Γ
′
i = −−L̂R

i

L
, a =

1√
L(L± T )

,

where we also restrict ourselves into L̂L
i + T̂i with the Casimir operator eigenvalue (L±T )(L±

T + 1). These are Γ± and Γ
′
without the spinor and the curvature contributions (σi and 1/2

factor, respectively). Based on the spectral analysis, we can confirm that the following R2ΔGW

can be an appropriate Laplacian

R2ΔGW =

3∑
i=1

(DGW,i)
2, DGW,i :=

1

a

(
Γ±
i − Γ

′
i

)
.

6.3.4 Three-point and higher order coupling constants

We obtained the zero modes of the Dirac operator and the lightest modes of the Laplacian on
the magnetized fuzzy sphere. Those modes are states in a representation of the su(2) algebra.
We summarize the results as follows,

{
|T − 1/2, T − 1/2− I〉 (I = 0, . . . , 2T − 1) zero modes of the Dirac operator

|T, T − I〉 (I = 0, . . . , 2T ) the lightest modes of the Laplacian

In Section 3.3, we computed the products of wavefunctions corresponding to these modes.
On the other hand, we confirmed that these modes correspond to the wavefunctions in Sub-
section 6.3.3. Therefore, we expect naturally that we can obtain the product property in
Section 3.3 in the language of the states.

To confirm our expectation, let us consider the tensor product and Racah’s formula. The
zero modes and the lightest modes are the eigenstates of the angular momenta. Therefore,
the Clebsch-Gordan coefficients appear in the tensor product. Hence, we have to compute the
Clebsch-Gordan coefficients explicitly. The Racah’s formula [85] is the formula to compute
the general Clebsch-Gordan coefficients. The explicit form of Racah’s formula is
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〈j1,m1 : j2,m2 | j,m〉

= δm1+m2,m

[
(2j + 1)(j1 + j2 − j)!(j1 − j2 + j)!(−j1 + j2 + j)!

(j1 + j2 + j + 1)!

]1/2
× [(j1 +m1)!(j1 −m1)!(j2 +m2)!(j2 −m2)!(j +m)!(j −m)!]1/2∑
n

(−1)n
[

1

n!(j1 + j2 − j − n)!(j1 −m1 − n)!(j2 +m2 − n)!(j − j2 +m1 + n)!(j − j1 −m2 − n)!

]−1

,

(6.47)

where n is an integer, and the sum over n is taken as long as the factorial numbers are not
negative.

Let us start from the tensor product of the lightest-mode bosons. These states are written
as the coherent spin states such that

|z1〉(B) :=
1

(1 + |z|2) 2T1
2

2T1∑
I1=0

(
1

4πR2
· (2T1 + 1)!

I1!(2T1 − I1)!

)1/2

zI1 |T1, T1 − I1〉 =
2T1∑
I1=0

ψ2T1

(B),I1
|T1, T1 − I1〉 ,

|z2〉(B) :=
1

(1 + |z|2) 2T2
2

2T2∑
I2=0

(
1

4πR2
· (2T2)!

I2!(2T2 − I2)!

)1/2

zI2 |T2, T2 − I2〉 =
2T2∑
I2=0

ψ2T2

(B),I2
|T2, T2 − I2〉 .

Since we need to consider the projection to the maximum or minimum spin state, we have
to compute the Clebsch-Gordan coefficient 〈T1, T1 − I1;T2, T2 − I2 |T3, T3 − I3〉, where T3 =
T1 + T2 and I1 + I2 = I3. According to Racah’s formula, the Clebsch-Gordan coefficient is

〈T1, T1 − I1 : T2, T2 − I2 |T3, T3 − I3〉

=

[
Γ(2T1 + 1)

Γ(2T1 − I1 + 1)Γ(I1 + 1)
· Γ(2T2 + 1)

Γ(2T2 − I2 + 1)Γ(I2 + 1)
· Γ(2T3 − I3 + 1)Γ(I3 + 1)

Γ(2T3 + 1)

]1/2
.

In addition, we have to adjust the normalization factor. We are interested in the tensor
product |z3〉(B) ∝ |z1〉(B) ⊗ |z2〉(B). The normalization condition of each states is

〈zi | zi〉 = 2Ti + 1

4πR2
(i = 1, 2, 3).

Therefore, we can read the product property in Section 3.3 from

|z3〉(B) =

[
4πR2

2T1 + 1
· 4πR2

2T2 + 1
· 2T3 + 1

4πR2

]1/2
|z1〉(B) ⊗ |z2〉(B) .

Actually,
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|z3〉(B)

=
∑
I1,I2

[
1

4πR2

Γ(2T1 + 1)

Γ(2T1 − I1 + 1)Γ(I1 + 1)
· 1

4πR2

Γ(2T2 + 1)

Γ(2T2 − I2 + 1)Γ(I2 + 1)
· 2T3 + 1

4πR2

]1/2

× zI1+I2

(1 + |z|2) 2(T1+T2)
2

|T1, T1 − I1 : T2, T2 − I2〉

=
∑
I1,I2

ψ
2(T1+T2)
(B),I1+I2

|T1, T1 − I1 : T2, T2 − I2〉

×
[

Γ(2T1 + 1)

Γ(2T1 − I1 + 1)Γ(I1 + 1)
· Γ(2T2 + 1)

Γ(2T2 − I2 + 1)Γ(I2 + 1)
· Γ(2T3 − I1 + 1)Γ(I3 + 1)

Γ(2T3 + 1)

]1/2
=

∑
I1,I2

ψ
2(T1+T2)
(B),I1+I2

|T1, T1 − I1 : T2, T2 − I2〉 〈T1, T1 − I1 : T2, T2 − I2 |T3, T3 − I3〉 |T3=T1+T2,I3=I1+I2

=
∑

I1,I2,I3

ψ
2(T1+T2)
(B),I3

|T1, T1 − I1 : T2, T2 − I2〉 〈T1, T1 − I1 : T2, T2 − I2 |T3, T3 − I3〉 |T3=T1+T2

=
∑

I1,I2,I3

ψ
2(T1+T2)
(B),I3

|T3, T3 − I3〉 ,

where we used the completeness relation in the fourth line since the Kronecker delta δI1+I2=I3

is included naturally in the Clebsch-Gordan coefficient.
Therefore, we can find the product property

ψ2T1

(B),I1
· ψ2T2

(B),I2
=

[
4πR2

2T1 + 1
· 4πR2

2T2 + 1
· 2T3 + 1

4πR2

]−1

〈T1, T1 − I1 : T2, T2 − I2 |T1 + T2, I3〉ψ2(T1+T2)
(B),I3

=
N 2(T1+T2)

(B),I3

N 2T1

(B),I1
· N 2T2

(B),I2

ψ
2(T1+T2)
(B),I3

,

then the result in Section 3.3 is recovered completely.
Similarly, we can confirm for the remaining combinations. The tensor products should be

|z3〉(F ) ∝ |z1〉(F ) ⊗ |z2〉(B) and |z3〉(B) ∝ |z1〉(F ) ⊗ |z2〉(F ), where

|zi〉(F ) :=
1

(1 + |z|2) 2Ti−1

2

2Ti−1∑
Ii=0

(
1

4πR2
· (2Ti)!

Ii!(2Ti − Ii − 1)!

)1/2

zIi |Ti − 1/2, Ti − 1/2− Ii〉

=

2Ti−1∑
Ii=0

ψ2Ti

(F ),Ii
|Ti − 1/2, Ti − 1/2− Ii〉 ,

|z2〉(B) :=
1

(1 + |z|2) 2T2
2

2T2∑
I2=0

(
1

4πR2
· (2T2)!

I2!(2T2 − I2)!

)1/2

zI2 |T2, T2 − I2〉

=

2T2∑
I2=0

ψ2T2

(B),I2
|T2, T2 − I2〉 ,
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where i = 1, 2. The necessary Clebsch-Gordan coefficients are obtained by

〈T1 − 1/2, T1 − 1/2− I1 : T2, T2 − I2 |T3, T3 − I3〉 |T3=T1−1/2+T2,m3=m1+m2

=

[
Γ(2T1)

Γ(2T1 − I1)Γ(I1 + 1)
· Γ(2T2 + 1)

Γ(2T2 − I2 + 1)Γ(I2 + 1)
· Γ(2T3 − I3 + 1)Γ(I3 + 1)

Γ(2T3 + 1)

]1/2
,

〈T1 − 1/2, T1 − 1/2− I1 : T2 − 1/2, T2 − 1/2− I2 |T3, T3 − I3〉 |T3=T1−1/2+T2−1/2,m3=m1+m2

=

[
Γ(2T1)

Γ(2T1 − I1)Γ(I1 + 1)
· Γ(2T2)

Γ(2T2 − I2)Γ(I2 + 1)
· Γ(2T3 − I3 + 1)Γ(I3 + 1)

Γ(2T3 + 1)

]1/2
.

In addition, the normalization conditions of each states are

〈zi | zi〉(F ) =
2Ti
4πR2

(i = 1, 2, 3), 〈zj | zj〉(B) =
2Ti + 1

4πR2
(j = 2, 3).

Then, the adjustments for |z3〉(F ) and |z3〉(B) are

|z3〉(F ) =

[
4πR2

2T1
· 4πR2

2T2 + 1
· 2T3 + 1

4πR2

]1/2
|z1〉(F ) ⊗ |z2〉(B)

|z3〉(B) =

[
4πR2

2T1
· 4πR

2

2T2
· 2T3 + 1

4πR2

]1/2
|z1〉(F ) ⊗ |z2〉(F ) .

If we require

|z3〉(F ) =
∑
I3

ψ
2(T1+T2)
(F ),I3

|T3, T3 − I3〉 , |z3〉(B) =
∑
I3

ψ
2(T1+T2−1)
(B),I3

|T3, T3 − I3〉 ,

we can find the product property

ψ2T1

(F ),I1
· ψ2T2

(B),I2
=

N 2(T1+T2)
(F ),I1+I2

N 2T1

(F ),I1
· N T2

(B),I2

· ψ2(T1+T2)
(F ),I3

,

ψ2T1

(F ),I1
· ψ2T2

(F ),I2
=

N 2(T1+T2−1)
(B),I1+I2

N 2T1

(F ),I1
· N 2T2

(F ),I2

· ψ2(T1+T2−1)
(B),I3

.

In conclusion, the product property in Section 3.3 can be recovered completely from magne-
tized fuzzy sphere. By similar computations, we can obtain the same result for higher order
coupling constants as the result we derived in Section 3.3.

Let us remark about the product property. In Section 6.2, we considered the Dirac operator
like eq. (6.4). Equation (6.4) is essentially the same as the case of the adjoint representation
in Chapter 5. In Chapter 5, we mentioned the case of the fundamental representation, and
we proved that the product property is valid for U(1) gauge theory only. In the case of
noncommutative torus, even U(1) gauge theory does not hold the product property because
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the degrees of freedom are described as operators. Normally, this situation is the same as
for the case of fuzzy sphere in the IKKT matrix model. However, we converted the Dirac
operator from the type like eq. (6.4) to the Ginsparg-Wilson type. Accordingly, the product
of the zero modes was defined by the tensor product. Therefore, the commutativity between
the gauge field and the zero mode recovers, and the product property holds as we proved.
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Chapter 7

Summary

In this thesis, we studied type IIB effective theories from the perturbative and non-perturbative
points of view. In Chapter 3, we discussed the features of coupling constants in magnetized
toroidal and spherical compactifications. The framework of magnetized compactifications are
given by super Yang-Mills theory that is an effective theory of D-branes in type IIB pertur-
bative superstring theory. The coupling constants can be obtained by the overlap integrals.
We confirmed that higher order coupling constants can be decomposed by the three-point
coupling constants due to the product property of the eigenfunctions.

In Chapter 5, we generalized the features of the coupling constants in Chapter 3 to any
compact spin manifolds and its magnetized compactifications. We proved that the origin
of the features of coupling constants resides in the fact that the Dirac-type operator has the
complete orthonormal system. We confirmed the product property of the zero modes by direct
computations. In magnetized toroidal and spherical compactifications, the decomposition of
higher order coupling constants has the variations like s-channel and t-channel in the language
of scattering theory. We found that the two of them are allowed in general magnetized
compactifications because of the non-Abelian structure.

In Chapter 6, we reconsider the features of coupling constants based on the IKKT ma-
trix model as a non-perturbative formulation of superstring theory. We conjectured that the
product property of the zero modes holds since the Dirac operator in the IKKT model has
the same action structure as Dirac-type operators (c.f., eqs (5.3) and (5.4).). We confirmed
this conjecture by considering magnetized noncommutative toroidal and fuzzy spherical com-
pactifications of the IKKT matrix model. In magnetized noncommutative toroidal compact-
ifications, we found that the quantization condition of the magnetic flux is deformed by the
noncommutative parameter . However, the zero modes can also be obtained by the (operator-
valued) Jacobi-theta function, and the product property of the zero modes is essentially the
same as the formula we showed in Chapter 3. In magnetized fuzzy spherical compactifica-
tions, the product feature in Section 3.3 can be reproduced as the Clebsch-Gordan coefficients.
Therefore, we concluded that the selection rule we proposed in Chapter 5 holds even if we
consider non-perturbative formulation in the range of our discussion.

The coupling constants are fundamental objects since we can observe them through several
experiments and observations. The features of coupling constants we found are important for
top-down approaches since we discussed in general set-ups. In addition, we open the possibility
to compute physical quantity like coupling constants from the IKKT matrix model. We
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expect future progress of the IKKT matrix model as it provides a promising non-perturbative
formulation of superstring theory and investigations of its phenomenological aspects are just
getting started.
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