
Quantum Chemical Approaches to
Nonadiabatic Dynamics in Complicated Systems:
Nonradiative Relaxation of Excited Molecules and

Carrier Behaviors in Halide Perovskites

複雑な系における非断熱動力学への

量子化学的アプローチ:
励起分子の無輻射緩和及び

ハライドペロブスカイト中のキャリア挙動

February 2021

Hiroki URATANI
浦谷浩輝





Quantum Chemical Approaches to
Nonadiabatic Dynamics in Complicated Systems:
Nonradiative Relaxation of Excited Molecules and

Carrier Behaviors in Halide Perovskites

複雑な系における非断熱動力学への

量子化学的アプローチ:
励起分子の無輻射緩和及び

ハライドペロブスカイト中のキャリア挙動

February 2021

Waseda University

Graduate School of Advanced Science and Engineering

Department of Chemistry and Biochemistry

Research on Electronic State Theory

Hiroki URATANI
浦谷浩輝





Table of Contents

1 General Introduction 1

2 Theoretical Backgrounds 5

2.1 NA-MD Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Mean-Field Approach . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.2 Trajectory Surface Hopping Approach . . . . . . . . . . . . . . . . . . 8

2.2 DFTB-Based Approaches to Ground-State Calculations . . . . . . . . . . . . . 9

2.2.1 DFTB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.2 DC-DFTB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 DFTB-Based Approaches to Excited-State Calculations . . . . . . . . . . . . . 14

2.3.1 TD-DFTB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3.2 DC-TD-DFTB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.3 SF-TD-DFTB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Development of NA-MD Methods for Complicated Systems 25

3.1 Implementation of DFTB-Based NA-MD Method into Dcdftbmd Program . . . 26

3.1.1 FSSH Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.1.2 NAC Calculation Algorithms . . . . . . . . . . . . . . . . . . . . . . . 28

3.2 Large-Scale NA-MD Technique with DC Type Excited-State Calculations . . . 33

3.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2.2 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2.3 Numerical Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.3 Efficient NA-MD Scheme Capable of Simulating Nonradiative Relaxation Pro-

cesses via SF-TD-DFTB Method . . . . . . . . . . . . . . . . . . . . . . . . . 51

i



3.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.3.2 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.3.3 Numerical Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.4 NA-MD Method with Combined DC and SF-TD-DFTB Approach for

Condensed-Phase Nonradiative Relaxation Phenomena . . . . . . . . . . . . . 68

3.4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.4.2 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.4.3 Numerical Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4 Structure Dependence of Nonradiative Relaxation Mechanism of Excited

Molecules: Case Studies on Tetraphenylethylene and Its Derivative 87

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.2 Computational Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5 Environment Dependence of Nonradiative Relaxation Mechanism of Excited

Molecules: Case Studies on trans-Azobenzene Solutions 101

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.2 Computational Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6 Coupled Structural–Electronic Dynamics of Photoexcited Lead Iodide Perovskites111

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.2 Computational Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.3.1 Exciton Dissociation and Charge Localization . . . . . . . . . . . . . . 116

6.3.2 Energetics of Charge Carriers . . . . . . . . . . . . . . . . . . . . . . 117

6.3.3 Structural Deformation . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

ii



7 Nanometer-Scale Polaron Formation in Methylammonium Lead Iodide Perovskite129

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

7.2 Computational Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

7.2.1 Details of Parameter Fitting . . . . . . . . . . . . . . . . . . . . . . . 132

7.2.2 Calculation Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

7.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

7.3.1 Spatial Distribution of Charge Carriers . . . . . . . . . . . . . . . . . 135

7.3.2 Structural Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

7.3.3 Early Stage of Polaron Formation: Disorder and Relaxation Effects . . 141

7.3.4 Energetic Contribution for Polaron Formation: PbI –
3 Framework ver-

sus MA Cations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

7.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

8 General Conclusion 155

Appendices 159

A Derivation of Analytical Energy Gradient for SF-TD-DFTB . . . . . . . . . . . 159

A.1 Spin-Unrestricted Case . . . . . . . . . . . . . . . . . . . . . . . . . . 159

A.2 Restricted Open-Shell Case . . . . . . . . . . . . . . . . . . . . . . . 164

B Details of DFTB Parametrization in Chapter 6 . . . . . . . . . . . . . . . . . . 172

B.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

B.2 Construction of the Electronic Part . . . . . . . . . . . . . . . . . . . . 173

B.3 Construction of the Repulsive Part . . . . . . . . . . . . . . . . . . . . 175

C Tables of DFTB Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

C.1 For Chapter 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

C.2 For Chapter 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

Acknowledgement 183

List of Achievements 185

iii



iv



List of Abbreviations

ADC(2) algebraic diagrammatic construction scheme to second order

AIE aggregation-induced emission

AO atomic orbital

BHHLYP Becke’s half-and-half exchange + Lee–Yang–Parr

CBM conduction band minimum

CI configuration interaction

CIS configuration interaction with singles

CO canonical orbital

CPA classical path approximation

CPU central processing unit

CSF configuration state function

CX conical intersection

DC divide and conquer

DFT density-functional theory

DFTB density-functional tight binding

DOF degree of freedom

DOS density of states

EC excitation center

EOM equation of motion

FC Franck–Condon

v



FSSH fewest-switches surface hopping

FQY fluorescence quantum yield

GGA generalized gradient approximation

HOMO highest occupied molecular orbital

LD local diabatization

LHP lead halide perovskite

LR linear response

LUMO lowest unoccupied molecular orbital

MaxAD maximum absolute deviation

MD molecular dynamics

MECX minimum-energy conical intersection

MO molecular orbital

NA-MD nonadiabatic molecular dynamics

NAC nonadiabatic coupling

NTO natural transition orbital

OD orbital derivative

OLED organic light-emitting diode

PBE Perdew–Burke–Ernzerhof

PES potential energy surface

PSC perovskite solar cell

QM quantum mechanical

RHS right-hand side

RIR restriction of intramolecular rotation

RMSD root-mean-square deviation

SCC self-consistent charge

SF spin flip

SO singular orbital

vi



SOC spin–orbit coupling

SOMO singly occupied molecular orbital

SVD singular value decomposition

TD time dependent

TDA Tamm–Dancoff approximation

TDNAC time-derivative nonadiabatic coupling

TPE tetraphenylethylene

VBM valence band maximum

VDOS vibrational density of states

WO wavefunction overlap

vii



viii



Frequently Used Mathematical Notations

The following indices are used throughout the thesis unless otherwise noted.

κ, λ, µ, ν AOs

i, j, k occupied MOs

a, b, c virtual MOs

p, q, r general MOs

A, B,C,D atoms

I, J,K, L,M valence shells

ζ, η, θ, ξ adiabatic states

s subsystems in the DC framework

σ, τ spins

A matrix or a vector is denoted in a bold Roman character (e.g., A), and its elements are

indicated in non-bold italics (e.g., Apq). In the spin-dependent context, an upper line is added

to an MO index to indicate a β-spin MOs (e.g., p̄), and an MO index with a hat (e.g., p̂) is used

when the spin is not specified, and an MO index with neither an upper line nor a hat (e.g., p)
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Chapter 1

General Introduction

When the Born–Oppenheimer approximation is valid, chemical dynamics can be understood

as atomic motions on a single adiabatic PES, which associates the atomic coordinates with po-

tential energy of an adiabatic state. On the contrary, dynamics that involve multiple PESs, i.e.,

nonadiabatic dynamics, often play a critical role, especially in excited-state phenomena. Be-

cause nonadiabatic dynamics are, in general, ultrafast and yet microscopic phenomena, quan-

tum chemistry-based computational simulations are essential tools for studying them, as well as

the state-of-the-art spectroscopic techniques. NA-MD, which simulates nonadiabatic dynamics

within an MD-like framework by decomposing the electronic and nuclear DOFs into quantum-

and classical-mechanical problems, is the most widely used class of computational techniques

for nonadiabatic dynamics.

However, while the computational cost of NA-MD is lower than that of other typical nonadi-

abatic dynamics simulation techniques, e.g., multiconfigurational TD Hartree method, NA-MD

is still significantly expensive, limiting its application to relatively simple systems. There are

three major contributors to the high computational cost of NA-MD. First, to describe multiple

PESs, NA-MD requires excited-state calculations, which consume substantially larger com-

putational time than ground-state calculations. Second, nonadiabaticity is incorporated via

NACs among the adiabatic states, whose calculations require additional computational efforts.

Third, statistically meaningful results cannot be obtained without simulating a sufficiently large
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number of trajectories to approximate the exact nuclear dynamics. For these reasons, con-

ventional quantum chemical approaches have difficulties to study nonadiabatic dynamics in

high-complexity systems.

This thesis presents development of computationally efficient NA-MD techniques capable

of simulating nonadiabatic dynamics in complicated systems based on the DFTB framework,

which is a low-cost semiempirical formulation of DFT. In addition, the methods are applied

to tackle several important problems in real systems where such dynamics play a key role.

Specifically, the thesis focuses on two cases that are crucial from both fundamental and practi-

cal viewpoints: nonradiative relaxation processes of excited molecules and photoexcited-state

dynamics of solar cell materials.

The remainder of this thesis is organized as follows.

Chapter 2 reviews the theoretical background of this thesis, i.e., outline of NA-MD methods,

and details of DFTB approaches to ground- and excited-state calculations.

Chapter 3 describes novel computational methods for nonadiabatic dynamics in compli-

cated systems. Section 3.1 presents the implementation of the NA-MD method employed

throughout this thesis, i.e., FSSH, combined with an excited-state calculation framework based

on DFTB, i.e., TD-DFTB. The routine was incorporated into the developmental version of

Dcdftbmd code, and the techniques described in Sections 3.2–3.4 were built on this implementa-

tion platform. Section 3.2 extends the TD-DFTB/FSSH technique to enable simulations in large

systems within a reasonable computational cost by employing a spatial-fragmentation-based

linear-scaling framework called the DC technique. Numerical tests show that the developed

DC-TD-DFTB/FSSH technique can simulate nonadiabatic dynamics in systems with thousands

of atoms, such as in the case of solutions, without a significant increase in computational cost

compared with the conventional TD-DFTB/FSSH method. Section 3.3 describes the improve-

ment of the TD-DFTB/FSSH to a different direction; to treat nonadiabatic dynamics involving

S1/S0 CXs, which are crucial for nonradiative relaxation processes and cannot be correctly de-

scribed by the conventional TD-DFTB technique, the SF approach is introduced. The developed
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method, i.e., SF-TD-DFTB/FSSH, was tested on photoisomerization reactions, and its accuracy

was comparable with that of expensive ab initio approaches. Section 3.4, the final section of

Chapter 3, combines the approaches developed in Sections 3.2 (DC-TD-DFTB/FSSH) and 3.3

(SF-TD-DFTB/FSSH) to enable nonradiative relaxation dynamics simulations in condensed

phases.

Chapters 4 and 5 discuss the first target of the practical application, i.e., nonradiative relax-

ation of excited molecules. In Chapter 4, as a case study, the SF-TD-DFTB/FSSH technique

is applied to investigate the effects of molecular structure on nonradiative relaxation dynamics

in tetraphenylethylene and its derivative. The simulations reproduced experimentally observed

molecular-structure dependence of excited-state lifetimes. Moreover, the mechanism of the

structure dependence was elucidated via combined analyses of NA-MD trajectories, MECX

structures, and adiabatic PESs.

Then, Chapter 5 focuses on the effect of the environment on nonradiative relaxation. Using

the DC-SF-TD-DFTB/FSSH technique, NA-MD simulations are conducted for the nonradiative

relaxation of trans-azobenzene in solutions. The trend of excited-state lifetimes vs. the solvents

was consistent with experimental results. In addition, the mechanism of solvent dependence is

discussed focusing on the solvent viscosity.

Chapters 6 and 7 focus on the second target, i.e., exciton and charge carrier dynamics of

solar cell materials. Chapter 6 presents TD-DFTB/FSSH simulations of the photoexcited-state

dynamics of LHPs, which are of key importance as materials for a class of solar cells, namely,

the perovskite solar cells. The results show that the electronic and nuclear dynamics are strongly

coupled with each other in the conversion processes from the photogenerated exciton to band-

edge charge carriers, i.e., exciton dissociation, hot carrier cooling, and polaron formation.

Chapter 7 focuses on band-edge carriers, which are generated after the series of nonadia-

batic processes discussed in Chapter 6. Previous studies suggest that, at this stage, the polarons,

i.e., the carriers, are associated with nanometer-scale structural deformation. In addition, be-

cause the most typical LHP, MAPbI3, includes methylammonium cations (MA+s) as structural

3



components, the effect of the dipolar orientation of MA+s on polaron formation has been a long-

standing question. Using the DC-based DFTB technique, quantum mechanical MD simulations

were conducted for the polarons in MAPbI3 to elucidate the characteristics of the structural

deformation. Moreover, based on the energy contribution, the role of the MA+ rotation is dis-

cussed.

Chapter 8 concludes the thesis by summarizing the contribution of this work to the field of

nonadiabatic dynamics studies and future perspectives.
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Chapter 2

Theoretical Backgrounds

2.1 NA-MD Framework

In the nonrelativistic limit, the total many-body wavefunction Ψ of a system composed of elec-

trons and nuclei is governed by the TD Schrödinger equation:

i~
∂Ψ (r,R, t)
∂t

= Ĥ (r,R)Ψ (r,R, t) , (2.1.1)

where r and R denote the coordinates of all electrons and nuclei, respectively. The spin DOFs

are omitted for simplicity. The Hamiltonian Ĥ is described as

Ĥ (r,R) = T̂n + Ĥe (r,R) , (2.1.2)

where

T̂n = −
∑

A

1
2mA

∇2
RA

(2.1.3)

Ĥe (r,R) = −
1

2m
∇2

r + V (r,R) (2.1.4)
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Here, m and mA denote the masses of electrons and the nucleus of the atom A, respectively. The

potential V includes electron–electron, nuclei–electron, and nuclei–nuclei interaction parts.

NA-MD is a general term for methods based on the mixed quantum–classical concept, where

the faster, i.e., electronic, and slower, i.e., nuclear, DOFs are treated separately with quantum

and classical EOMs, respectively. As such a decomposition is not unique, a variety of NA-

MD techniques have been developed.1–7 Among them, this section focuses on the trajectory

surface hopping approach, which is the most typical class of methods and is extensively used

throughout this thesis. Prior to the description of trajectory surface hopping, the mean-field

approach, which is also important as a practical method and as a background to the trajectory

surface hopping, is summarized.

2.1.1 Mean-Field Approach

The mean-field-type NA-MD method, a.k.a. Ehrenfest dynamics, assumes that electrons and

nuclei move in the mean fields created by each other. In this ansatz, the total wavefunction Ψ

can be factorized as

Ψ (r,R, t) = χ (R, t)Ξ (r, t) , (2.1.5)

where χ and Ξ denote nuclear and electronic wavefunctions, respectively. As several routes of

further derivation have been proposed,7–9 here, only their essence are summarized. By taking the

classical limit for the nuclear wavefunction and its governing EOM, one obtains the classical,

Newton-like EOM for the nuclei:

d2Rc
A

dt2
= −

1
mA

∇Rc

〈

Ξ (r, t; Rc)
∣

∣

∣ Ĥe (r; Rc)
∣

∣

∣Ξ (r, t; Rc)
〉

r
. (2.1.6)

Note that R was replaced with Rc, because it is no longer the nuclear coordinate as quantum

DOFs but it is the position of classical nuclei. For the same reason, Ξ, which was independent
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of R, now depends on Rc in a parametric manner. The EOM for the electronic part is derived

from the TD Schrödinger equation for the electronic wavefunction:

i~
∂Ξ (r, t; Rc (t))

∂t
= Ĥe (r; Rc (t))Ξ (r, t; Rc (t)) . (2.1.7)

Using an orthonormal many-electron basis set, which is here chosen to be adiabatic states, Ξ

can be expanded as follows:

Ξ (r, t; Rc (t)) =
∑

η

cη (t)ψη (r; Rc (t)) . (2.1.8)

Using Eqs. 2.1.7 and 2.1.8, one obtains the EOM for the electronic part, i.e., for the expansion

coefficients:

i~
∂cη (t)

∂t
= Eη (t) cη (t) − i~

∑

θ

σηθ (t) cθ (t) . (2.1.9)

Here, σηθ is called TDNAC and is described as

σηθ (t) =
〈

ψη (r; Rc (t))
∣

∣

∣

∣

∣

dψθ (r; Rc (t))
dt

〉

r

. (2.1.10)

Note that TDNAC has another common expression:

σηθ (t) = dηθ (t) ·
dRc (t)

dt
, (2.1.11)

using the NAC vector dηθ:

dηθ (t) =
〈

ψη (r; Rc (t))
∣

∣

∣∇Rcψθ (r; Rc (t))
〉

r
. (2.1.12)
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2.1.2 Trajectory Surface Hopping Approach

In the field of molecular science, branching of nuclear wave packets is often crucial, for ex-

ample, to discuss the yields of multiple products of a photochemical reaction. However, as

the mean-field approach assumes a completely localized (delta-function) nuclear wave packet,

branching is not allowed. Among several mixed quantum–classical methods that overcome

this limitation, which include the multiple spawning technique by Multínez and co-workers,10

the trajectory surface hopping method is the most popular one owing to its conceptual simplic-

ity, relatively straightforward implementation, and suitable compromise between computational

burden and accuracy.

Unlike in the mean-field scheme, in the trajectory surface hopping method,11 the classical

nuclear coordinates are propagated on a specific PES, where hopping to another surface is al-

lowed to take nonadiabaticity into account. Conceptually, the probability distribution of the

exact nuclear wave packet is approximated by the ensemble of trajectories, where branching is

naturally allowed. For the quantum part, the EOM of the same form as the mean-field approach

(Eq. 2.1.9) is typically used.

Tully pointed out that the trajectory surface hopping EOMs can be obtained through essen-

tially the same route as the mean-field approach (Subsection 2.1.1) by starting from a multistate

ansatz:

Ψ (r,R, t) =
∑

η

χη (R, t)ψη (r,R) , (2.1.13)

instead of the mean-field ansatz (Eq. 2.1.5).9

The most widely used trajectory surface hopping algorithm may be the fewest-switches

approach,12 where the hopping probability is calculated such that the number of hopping events

is minimized, i.e., according to the following concept:

pζ→θ =
population transmission from state ζ to state θ

population of of state ζ
, (2.1.14)

8



where ζ is the index of the currently active state. This leads to the following expression of the

probability.

pζ→θ = max

















0,
2δt
∣

∣

∣cζ
∣

∣

∣

2
σζθℜ

(

c∗ζcθ
)

















(2.1.15)

2.2 DFTB-Based Approaches to Ground-State Calculations

2.2.1 DFTB†

DFTB is a well-established semiempirical quantum chemical calculation scheme, which has

been adopted for a wide range of systems, as briefly reviewed elsewhere.14 The theoretical

framework is grounded on the Taylor expansion of Kohn–Sham equations with respect to

charge density fluctuation δρ around reference density ρ0, which is a superposition of the un-

perturbed atomic charge density. There are three major types of DFTB: DFTB1,15,16 DFTB2,17

and DFTB3.18 In the studies described in this thesis, DFTB2 was employed. In the framework

of DFTB2, the total energy E is expressed as17,19

E =

NMO
∑

i

ni

〈

φi

∣

∣

∣ Ĥ0

∣

∣

∣ φi

〉

+
1
2

Nshell
∑

I,J

∆qI∆qJγIJ

+
1
2

N
∑

A

∑

L,L′∈A

pAL pAL′WALL′ + Erep, (2.2.1)

where the first, second, third, and fourth terms correspond to the one-electron component;

charge density fluctuation contribution, including long-range Coulomb interaction; contribu-

tion from spin polarization; and inter-nuclear repulsion plus some ad hoc collection to the total

energy, respectively. ni and φi are the occupation number and single-particle wavefunction for

the i-th MO, respectively. NMO and Nshell are the number of MOs and electron shells included in

the calculation, respectively. ∆qI is the fluctuation in the Mulliken charge of shell I referenced

to that of the neutral isolated atoms. γIJ is a function of interatomic distance R and the Hubbard

†Reproduced from Ref. [13] with permission from the Phys. Chem. Chem. Phys. Owner Societies.
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parameters for shells I and J (UI and UJ, respectively). The Hubbard parameters are given as

derivatives of orbital energies with respect to their occupation numbers in free atoms. In the

limit of R → ∞, γIJ approaches 1/R, i.e., bare Coulomb interaction. When R = 0, i.e., shells

I and J belong to the same atom, γIJ is represented with UI (and UJ), and the second term

in Eq. 2.2.1 represents the atomic energy variation originating from the partial electron attach-

ment on (detachment from) the atom, which is related to the chemical hardness. The explicit

form of γIJ is found elsewhere.17 pAL denotes the spin population of shell L in atom A, which

is the difference between the Mulliken populations for up and down spins. The parameter that

represents the energetical contribution of spin polarization, WALL′ , is computed from the deriva-

tive of orbital energies of a free atom with respect to the occupation numbers for up and down

spins. Erep is a repulsive potential, which is described as a function of interatomic distance and

conceptually includes nuclear repulsion and the other corrections for electronic energy.

φi is expanded by a set of pseudo-AOs, ϕµ, which is obtained by solving a Kohn–Sham-like

equation for an isolated atom:

[

T̂ + Veff[ρA] + Vconf

]

ϕµ = ǫµϕµ, (2.2.2)

where T̂ and Veff[ρA] denote the kinetic operator and the exchange–correlation potential with

respect to the atomic charge density ρA calculated with the PBE formulation of the GGA (GGA-

PBE),20 respectively. Artificial atom-centered potentials (confinement potentials) Vd
conf and Vconf

are applied for the calculations of charge density ρA and pseudo-AO ϕµ, respectively, to mimic

the localized electronic states of the atoms in molecules or solids. In general, the shape of Vconf

is optimized for each element in an empirical manner.

Through the variational principles, the set of MO coefficients, c, is obtained by solving the

following generalized eigenvalue problem:

Fc = ScǫMO, (2.2.3)
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where the diagonal elements of ǫMO are the MO energy levels. The Fock matrix element Fµνσ

is given as

Fµνσ = H0
µν +

1
2

S µν

Nshell
∑

K

(γIK + γJK)∆qK

±
1
2

S µν

∑

L′′∈A

(WALL′′ +WAL′L′′) pAL′′), (2.2.4)

where the plus and minus signs correspond to α-spin and β-spin, respectively. Note that the

AOs µ and ν belong to the shells I and J, respectively. The third term of Eq. 2.2.4 can be

nonzero only if the AOs µ and ν belong to the same atom A, and in this case, they are included

in shells L and L′, respectively. Eq. 2.2.4 is solved self-consistently until Mulliken charge ∆qI

is converged; this procedure is called SCC cycles.

Elements of H0 and S matrices are described as

S µν =
〈

ϕµ
∣

∣

∣ϕν
〉

, (2.2.5)

H0
µν =























































ǫ0µ if µ = ν

〈

φµ
∣

∣

∣ T̂ + Veff[ρA + ρB]
∣

∣

∣ φν
〉

if A , B & µ , ν

0 otherwise,

(2.2.6)

respectively, where ǫ0µ denotes the orbital energy eigenvalue of the corresponding AO in the

neutral isolated atom without the confinement potential. In actual calculations, H0
µν and S µν are

obtained from a pre-computed table through Slater–Koster transformation.21 In the table, which

is called Slater–Koster parameter and given for each element pair, H0
µν and S µν values for σ-,

π-, and δ-type interactions are tabulated as functions of interatomic distance. In addition, the

repulsive potential Erep is also a parametric component; Erep is commonly expressed by a set of

spline functions of interatomic distance for each element pair.

11



2.2.2 DC-DFTB†

The computational bottleneck of the DFTB method is solving the generalized eigenvalue prob-

lem (Eq. 2.2.3), whose computational time scales approximately as O
(

N3
)

. While the DFTB

is a computationally efficient method, this scaling still limits the accessible system size to ap-

proximately 102–103 atoms. With this background, an O (N) type DFTB method, DC-DFTB,

has been developed to extend the DFTB applications to huge systems. DC23–26 is a class

of fragmentation-based approaches for large-scale quantum chemical calculations,27–30 among

which the fragment MO method31–33 has been interfaced with DFTB.34 In addition, the “modi-

fied divide-and-conquer” approach, which is also a linear-scaling method based on fragmenta-

tion, has been integrated with DFTB and successfully applied to condensed-phase systems.35–37

The DC technique has been combined with a wide range of techniques including spin-restricted

and unrestricted Hartree–Fock,38,39 Møller–Plesset perturbation theory,40,41 coupled-cluster,42,43

and DFTB.44 In the DC framework, delocalized electronic states over multiple fragments can

be described. Moreover, the DC scheme is capable of treating chemical reactions that exceed

the boundary of fragments. Taking advantage of these features, the ground-state DC-DFTB

has been applied to a variety of problems, where fully quantum mechanical treatment of the

whole system is necessary, such as nonlocal proton and hydroxide anion transport in bulk wa-

ter,45,46 carrier diffusion in electrolyte solutions for alkali-metal ion batteries,47,48 chemical CO2

absorption in amine solutions,49 polaron formation in a perovskite solar cell material,13 and

proton transfer in bacteriorhodopsin.50

In the DC scheme, the target system is spatially divided into mutually exclusive subsets of

atoms called subsystems. The subsystem is expressed as Ss, where s is the index that specifies

the subsystem. The division is arbitrary; each subsystem can be, for example, a single atom,

chemically well-defined atom group (e.g., one amino acid in a protein), or can be automatically

defined by a spatial mesh with a constant interval. For each subsystem s, the Hamiltonian

matrix and the corresponding MOs are expanded by a set of AOs included in the corresponding

†Reproduced from Ref. [22], with the permission of AIP Publishing.
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localization region Ls, which incorporates Ss and the neighboring subsystems called the buffer

region, Bs, which is composed of subsystems within the given distance (buffer radius) rb from

Ss. Namely,

Ls = Ss ∪ Bs. (2.2.7)

For each localization region Ls, Ss is sometimes called the central region, to distinguish it from

the buffer region Bs. For each subsystem s, the generalized eigenvalue problem corresponding

to Eq. 2.2.3, i.e.,

Fscs = Sscs
ǫ

s, (2.2.8)

is solved. The occupation number f s
p of each MO in Ls is determined using the Fermi–Dirac

distribution function

f s
p =

ν

exp
[

β
(

ǫ s
p − ǫF

)]

+ 1
, (2.2.9)

where ν = 2 for the spin-restricted case. ǫF is a Fermi level that is common to all subsystems,

which is determined to conserve the total number of electrons in the overall system. The inverse

temperature β is given as a controllable parameter. The density matrix for each subsystem s,

Ds, is obtained as:

Ds
µν =
∑

p

f s
pcs
µpcs
νp. (2.2.10)

The density matrix for the overall system DDC is obtained by merging the subsystem density

matrices while avoiding double counting

DDC
µν =

∑

s

PµνD
s
µν, (2.2.11)
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where Ds
µν is the element of the density matrix for subsystem s, and Pµν is defined as:

Pµν =















































































1 µ ∈ Ss ∧ ν ∈ Ss

1/2 µ ∈ Ss ∧ ν < Ss

1/2 µ < Ss ∧ ν ∈ Ss

0 µ < Ss ∧ ν < Ss

. (2.2.12)

The total number of electrons N in the overall system is obtained as:

N =
∑

µν

DDC
µν S νµ. (2.2.13)

The error arising from the division into the subsystems is controlled by rb; the error decreases

as rb increases, in general.

2.3 DFTB-Based Approaches to Excited-State Calculations

2.3.1 TD-DFTB†

Linear-response formulation of TD-DFTB is an extension of its ground-state counterpart,

DFTB, to excited-state calculations. In the TD-DFTB, the η-th excitation energy and response

properties are obtained by solving the following non-Hermitian eigenvalue problem, which is

called Casida’s equation.51



























A B

B∗ A∗





















































Xη

Yη



























= ωη



























1 0

0 −1





















































Xη

Yη



























. (2.3.1)

†Reproduced from Ref. [22], with the permission of AIP Publishing.
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where ωη is the η-th excitation energy, and the elements of the matrices A and B are defined as:

Aia, jb = δi jδab (ǫa − ǫi) + Kia, jb, (2.3.2)

Bia, jb = Kia,b j, (2.3.3)

where spin indices are omitted. Kia, jb and Kia,b j are coupling matrices. The explicit form of

the coupling matrices in the case of the TD-DFTB is found elsewhere.52 Xη and Yη are the

excitation and de-excitation amplitudes, respectively. For numerical convenience, Eq. 2.3.1 is

solved after conversion to the following Hermitian eigenvalue problem:

(A − B)1/2 (A + B) (A − B)1/2 Fη = ω2
ηF
η, (2.3.4)

where

Fη = (A − B)−1/2 (Xη + Yη) . (2.3.5)

The resulting eigenvectors are normalized to satisfy the biorthogonality condition:

∑

ia

(

X
η

ia
+ Y

η

ia

) (

Xθia − Yθia

)

= δηθ. (2.3.6)

The corresponding adabatic electronic wavefunction ψη is expressed in a form similar to that in

CIS51

ψη =
∑

ia

C
η

ia
Φa

i . (2.3.7)

Here, Φa
i

is the Slater determinant corresponding to the i→ a excitation configuration. Accord-

ing to the Casida’s ansatz,51

C
η

ia
= X

η

ia
+ Y

η

ia
. (2.3.8)
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2.3.2 DC-TD-DFTB†

DC-TD-DFTB is an extension of DC-DFTB44 for excited-state calculations, in the same

context that TD-DFTB is an extension of DFTB. Two distinct approaches have been em-

ployed for the excited-state calculations in the DC framework, i.e., dynamical-polarizability-

based53,54 and eigenvalue-problem-based55–57 approaches. It should be noted that the dynamical-

polarizability-based approach can treat nonlocal excitations such as charge-transfer excitation

and transitions among delocalized orbitals.53,54 Because of the effectiveness in the case of local

excitation, the eigenvalue-problem-based approach has been combined with DFTB and applied

to MD calculations in excited states.55–57 In the eigenvalue-based DC-TD-DFTB approach, the

excited-state properties are obtained by solving Casida’s equation (Eq. 2.3.1) for the subsystem

s that includes the excitation center:



























As Bs

Bs∗ As∗





















































Xs,η

Ys,η



























= ωη



























1 0

0 −1





















































Xs,η

Ys,η



























, (2.3.9)

where As and Bs are the counterparts of A and B, respectively. Here, the MOs are substituted

with those obtained from Eq. 2.2.8 for the subsystem s. Similar to the case of TD-DFTB,

Eq. 2.3.9 is solved in the form:

(As − Bs)1/2 (As + Bs) (As − Bs)1/2
Fs,η = ω2

ηF
s,η, (2.3.10)

where

Fs,η = (As − Bs)−1/2 (Xs,η + Ys,η) . (2.3.11)

The resulting eigenvectors are normalized according to:

∑

ia

(

X
s,η

ia
+ Y

s,η

ia

) (

X
s,θ

ia
− Y

s,θ

ia

)

= δηθ. (2.3.12)

†Reproduced from Ref. [22], with the permission of AIP Publishing.
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The corresponding adiabatic wavefunction is described as:

ψs
η =
∑

ia

C
s,η

ia
Φsa

i , (2.3.13)

whereΦsa
i is the Slater determinant for the i→ a excitation configuration within the localization

region Ls, and

C
s,η

ia
= X

s,η

ia
+ Y

s,η

ia
. (2.3.14)

2.3.3 SF-TD-DFTB†

In the framework of spin-polarized DFTB,19 α/β-spin Fock matrices are described by a point-

charge-based representation:

Fα/βµν = H0
µν

+
1
2

S µν

∑

K

(γIK + γJK)∆qK

±
1
2

S µν

∑

L′′∈A

(mALL′′ + mAL′L′′) pAL′′ . (2.3.15)

Here, the one-electron Hamiltonian matrix element H0
µν and the AO overlap matrix element S µν

are computed from pre-calculated tables, which are externally given as a parameter set. The

second term on the RHS describes the spin-independent component of the electron-electron

interaction with γIK and ∆qK , which are 1/R-like functions of the interatomic distance17 and the

Mulliken charge of the shell K referenced to that of the isolated neutral atom, respectively. The

third term on the RHS of the Eq. 2.3.15 is the spin-dependent part, whose sign is + and − for α

and β spins, respectively. pAL′′ represents the spin polarization, i.e., the α-spin Mulliken charge

minus the β-spin one, of shell L′′ in atom A. The short-range nature of the electron-electron

magnetic interaction allows the spin constant mALL′ to be considered nonzero only for intra-

atomic interactions. mALL′ is pre-calculated via Kohn–Sham DFT calculations of an isolated

†Reprinted with permission from Ref. [58]. Copyright 2020 American Chemical Society.
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neutral atom by infinitesimally varying the α and β occupation numbers of shell L′, i.e., nα
L′

and

n
β

L′
, respectively:

mALL′ =
1
2















∂ǫα
L

∂nα
L′

−
∂ǫα

L

∂n
β

L′















. (2.3.16)

Here, ǫα
L

is the α-spin Kohn–Sham orbital energy level corresponding to the highest occupied

valence shell of the atom. The MO coefficients c are obtained by solving the generalized eigen-

value problem:

Fc = Scǫ. (2.3.17)

In principle, the Fock matrix in Eq. 2.3.17 can be either Fα/β themselves, i.e., the spin-

unrestricted form, or constructed from them in the restricted open-shell fashion. In this study,

the spin-unrestricted-type expression is employed to achieve better convergence of the SCC

process.

The SF-TD-DFTB59 is derived as a DFTB-style approximation to the SF-TD-DFT,60 which

is a modified linear-response TD-DFT where only spin-flipping, i.e., α → β, excitations are

allowed. In the SF-TD-DFT/DFTB approach, adiabatic states with the desired spin multiplicity

are obtained via spin-flipping excitations from a reference state of higher spin multiplicity,

which is chosen to be triplet when focusing on singlet states. Within the TDA,61 the excitation

energy ωη and the response matrix Xη for the state η are obtained as

∑

jb̄

Aiā, jb̄X
η

jb̄
= ωηX

η

iā
, (2.3.18)

where

Aiā, jb̄ = F
β

āb̄
δi j − Fαi jδāb̄ + Kiā, jb̄. (2.3.19)
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Here, the coupling matrix K is represented in the point-charge-approximated form:

Kiā, jb̄ = 2
∑

A

qiā
A mAq

jb̄

A
. (2.3.20)

The transition Mulliken charge for the shell K, q
p̂q̂

K
, is defined as

q
p̂q̂

K
=

1
2

∑

ν∈A

∑

λ

(

cν p̂S νλcλq̂ + cλ p̂S λνcνq̂
)

, (2.3.21)

and that for the atom A, q
p̂q̂

A
, is the sum of q

p̂q̂

K
over the shells belonging to the atom A:

q
p̂q̂

A
=
∑

K∈A

q
p̂q̂

K
. (2.3.22)

The atom-wise spin constant mA is equal to the mALL′ for the outermost occupied valence of the

atom A.

For each state η, the adiabatic wavefunction ψη is expressed in a form similar to that in the

CIS:

ψη =
∑

iā

C
η

iā
Φā

i . (2.3.23)

Here, Φā
i

is the Slater determinant for the i → ā excitation configuration. Under the TDA, one

can set C
η

iā
= X

η

iā
.
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Chapter 3

Development of NA-MD Methods for

Complicated Systems

Simulations of nonadiabatic dynamics in complicated systems, e.g., carrier dynamics in solar

cell materials and structure-/environment-dependent nonradiative relaxation processes of ex-

cited molecules, request sizable model systems to include the details of systems and sufficiently

large number of trajectory samples to obtain the statistically reliable outcome. With this back-

ground, this chapter presents development of NA-MD methods to satisfy such requirements

within the reasonable computational resources. Results of numerical validation for the accu-

racy and computational cost are also shown.

Section 3.1 describes the implementation of the FSSH technique with the use of TD-DFTB

method, which is a low-cost semiempirical excited-state calculation technique. In Section 3.2,

by adoption of the DC framework, the TD-DFTB/FSSH technique is further extended to treat

huge systems including solutions. Section 3.3 presents the combination of the TD-DFTB/FSSH

with the SF approach to obtain the correct description of S1/S0 CXs, which play an important

role in excited- to ground-state transitions, i.e., nonradiative relaxation phenomena. Section

3.4 describes the combined approach of the techniques presented in Sections 3.2 and 3.3 to

simulate the nonradiative relaxation dynamics of excited molecules with including the effects

of environments, e.g., solvents.
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3.1 Implementation of DFTB-Based NA-MD Method into

Dcdftbmd Program†

3.1.1 FSSH Algorithm

In the FSSH technique, the electronic wavefunction is propagated quantum mechanically, while

the nuclear dynamics is treated classically. For each independent classical trajectory, the TD

electronic wavefunction Ξ is expressed as a linear combination of a set of adiabatic electronic

wavefunctions:

Ξ (r, t; R(t)) =
∑

η

cη(t)ψη (r; R(t)) , (3.1.1)

where t, r, and R are the time, electronic coordinates, and nuclear coordinates, respectively.

According to the TD Schrödinger equation, propagation of the electronic wavefunction is de-

scribed as:

i~
∂cη(t)

∂t
= Eη(t)cη(t) − i~

∑

θ

dηθ(t) ·
∂R(t)
∂t

cθ(t). (3.1.2)

Here, Eη(t) is the potential energy of the adiabatic state η at the time t, and dηθ(t) is the NAC

vector, defined as:

dηθ(t) =
〈

ψη(t)
∣

∣

∣∇ψθ(t)
〉

, (3.1.3)

where ∇ indicates the gradient with respect to the nuclear coordinates. The NAC can be simpli-

fied as the time-derivative form.

σηθ(t) = dηθ(t) ·
∂R(t)
∂t
=

〈

ψη(t)
∣

∣

∣

∣

∣

∂ψθ(t)
∂t

〉

. (3.1.4)

σηθ(t) is termed TDNAC. In the standard approach, σηθ(t) is calculated by using the numerical

derivative. For CIS type wavefunctions, the numerical evaluation may be performed via either

of two distinct methods, i.e., the WO approach2 or OD approach.3 While the latter is computa-

tionally more efficient in general, the importance of the former should not be overlooked. For

†Reproduced from Ref. [1], with the permission of AIP Publishing.
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example, in the electronic wavefunction propagation scheme called local diabatization,4 which

has excellent numerical stability in the case where trivial crossings among adiabatic PESs are

present, the wavefunction overlap is directly used instead of the TDNAC.

As in adiabatic MD simulations, the nuclear coordinates R are propagated according to

Newton’s equation using the atomic force on the active adiabatic state ξ:

d2Ru
A

dt2
= −

1
mA

(

∂ωξ

∂Ru
A

+
∂E0

∂Ru
A

)

, (3.1.5)

where Ru
A

(u = x, y, z) is the coordinate of atom A for the axis u, and mA is the mass of atom A.

Quantum decoherence is not included in the time propagation according to Eqs. 3.1.2 and

3.1.4. The simplified decay of mixing5 approach is a straightforward and widely used correction

scheme for the decoherence. In this approach, the population of the non-active state θ is damped

with the time constant of τθξ, which is calculated as:

τθξ =
~

∣

∣

∣Eθ − Eξ
∣

∣

∣

(

1 +
α

Ekin

)

. (3.1.6)

Here, α is a constant parameter, the typical value of which is set to 0.1 hartree. Ekin is the nuclear

kinetic energy.

For each time step of the electronic wavefunction propagation, the probability of hopping

from the current active state ξ to another state θ, pξ→θ, is computed as:6

pξ→θ = max

















0,
2δt
∣

∣

∣cξ
∣

∣

∣

2
σξθℜ

(

c∗ξcθ
)

















, (3.1.7)

where δt is the time step for propagating the electronic wavefunction. Based on the hopping

probability, the active state at the next step is determined using a uniform random number,

which ranges from 0 to 1.
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3.1.2 NAC Calculation Algorithms

WO Approach

In the WO approach, TDNAC is approximately computed on the basis of the overlap between

the adiabatic state wavefunctions at the subsequent time steps:

S ηθ(t1, t2) =
〈

ψη(t1)
∣

∣

∣ψθ(t2)
〉

, (3.1.8)

where t2 = t1 + ∆t. ∆t is the time step for propagation of the nuclear coordinates. TDNAC is

obtained using the finite difference approximation,2,7 which, for example, takes the following

form:

σηθ

(

t1 +
∆t

2

)

→
1

2∆t

[

S ηθ(t1, t2) − S θη(t1, t2)
]

. (3.1.9)

For CIS type wavefunctions (Eq. 2.3.7), the wavefunction overlap S ηθ(t1, t2) is expressed as:

S ηθ(t1, t2) =
∑

ia, jb

C
η

ia
(t1)Cθjb(t2)

〈

Φa
i (t1)
∣

∣

∣Φb
j(t2)
〉

, (3.1.10)

where the overlap between the Slater determinants on the RHS is calculated using the following

relation8,9

〈

Φa
i (t1)
∣

∣

∣Φb
j(t2)
〉

= det (Σ[ia, jb]) . (3.1.11)

Here, Σ[ia, jb] is the overlap matrix among the spin orbitals that constitute the Slater determi-

nants Φa
i
(t1) and Φb

j
(t2). Assuming α–α excitation, Σ[ia, jb] is written as:

Σ[ia, jb] =



























αα
Σ[ia, jb] αβ

Σ[ia, j j]

βα
Σ[ii, jb] ββ

Σ[ii, j j]



























, (3.1.12)
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where

στ
Σ[ip, jq] =




















































































〈φ1(t1) | φ1(t2)〉 〈σ | τ〉 . . .
〈

φ1(t1)
∣

∣

∣ φq(t2)
〉

〈σ | τ〉 . . .
〈

φ1(t1)
∣

∣

∣ φnO(t2)
〉

〈σ | τ〉

...
...

...

〈

φp(t1)
∣

∣

∣ φ1(t2)
〉

〈σ | τ〉 . . .
〈

φp(t1)
∣

∣

∣ φq(t2)
〉

〈σ | τ〉 . . .
〈

φp(t1)
∣

∣

∣ φnO(t2)
〉

〈σ | τ〉

...
...

...

〈

φnO(t1)
∣

∣

∣ φ1(t2)
〉

〈σ | τ〉 . . .
〈

φnO(t1)
∣

∣

∣ φq(t2)
〉

〈σ | τ〉 . . .
〈

φnO(t1)
∣

∣

∣ φnO(t2)
〉

〈σ | τ〉





















































































,

(3.1.13)

in the spin-restricted case. σ and τ are spin indices, which take either α or β. The i-th row and

the j-th column are underlined and overlined, respectively. Each matrix element in Eq. 3.1.13

is calculated as:

〈

φp(t1)
∣

∣

∣ φq(t2)
〉

=
∑

µν

cµp(t1)cνq(t2)
〈

χµ(t1)
∣

∣

∣ χν(t2)
〉

, (3.1.14)

〈σ | τ〉 =



































1 σ = τ

0 σ , τ

, (3.1.15)

where cµp is the MO coefficient of the AO basis function χµ in the MO p. Because the overlap

between spin functions 〈σ | τ〉 vanishes when σ , τ, Σ[ia, jb] is block diagonal with respect to

the spin.

Σ[ia, jb] =



























αα
Σ[ia, jb] 0

0 ββ
Σ[ii, j j]



























. (3.1.16)

Hence, the determinant is given as:

det (Σ[ia, jb]) = det (ααΣ[ia, jb]) × det
(

ββ
Σ[ii, j j]

)

. (3.1.17)
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It should be noted that Mitrić and co-workers derived a rigorous formulation for overlap be-

tween spin-adapted CSFs for singlet excited states10,11

〈

CSFΦa
i (t1)
∣

∣

∣

CSFΦb
j(t2)
〉

=

det (σσΣ[ia, jb]) × det (σσΣ[ii, j j])

+ det (σσΣ[ia, j j]) × det (σσΣ[ii, jb]) . (3.1.18)

For a sufficiently small nuclear time step∆t where the finite difference approximation (Eq. 3.1.9)

is valid, the mutual orthogonality of the occupied and virtual spaces should be approximately

conserved between the subsequent time steps, resulting in

det (σσΣ[ia, j j]) ≈ 0, (3.1.19)

det (σσΣ[ii, jb]) ≈ 0. (3.1.20)

From this observation, the “bare” Slater determinant overlap (Eq. 3.1.11) and the CSF overlap

(Eq. 3.1.18) are considered to give essentially the same results.

The adiabatic wavefunctions have the arbitrariness to the extent of the phase factor eiθ,

which takes 1 or −1 in the real-valued case. The uncertainty in the phase (sign) of the adiabatic

wavefunctions affects the sign of TDNAC and introduces severe error in the propagation of the

total electronic wavefunction Ξ. For this reason, the sign of ψη(t2) is flipped when S ηη(t1, t2) is

negative, to keep the sign of the adiabatic wavefunctions at adjacent time steps consistent with

each other.7,12
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OD Approach

Another approach called the OD method was developed by Ryabinkin and co-workers.3 Using

Eqs. 2.3.7 and 3.1.4, TDNAC is formally expressed as:

σηθ(t) =
∑

ia jb















C
η

ia
(t)
∂Cθ

jb
(t)

∂t

〈

Φa
i (t)
∣

∣

∣Φb
j(t)
〉

+C
η

ia
(t)Cθjb(t)

〈

Φa
i (t)

∣

∣

∣

∣

∣

∣

∣

∂Φb
j
(t)

∂t

〉















, (3.1.21)

where the first term on the RHS can be non-zero only if i = j ∧ a = b according to the Slater–

Condon rule. Using the following conditions for real-valued orbitals,

〈

φp(t)

∣

∣

∣

∣

∣

∣

∂φp(t)

∂t

〉

= 0, (3.1.22)

〈

φp(t)
∣

∣

∣ φq(t)
〉

= δpq, (3.1.23)

one obtains:

〈

Φa
i (t)

∣

∣

∣

∣

∣

∣

∣

∂Φb
j
(t)

∂t

〉

= δi j

〈

φa(t)
∣

∣

∣

∣

∣

∂φb(t)
∂t

〉

− Pi jδab

〈

φ j(t)
∣

∣

∣

∣

∣

∂φi(t)
∂t

〉

. (3.1.24)

Here, the factor Pi j arises from the arbitrariness in the ordering convention selected for the or-

bitals constituting the Slater determinants. Pi j = 1 in the present case, where an occupied orbital

i is substituted by a virtual orbital a without changing the ordering for each Slater determinant
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of i→ a excitation configuration. Using Eq. 3.1.24, TDNAC is further rewritten as

σηθ(t) =
∑

ia

C
η

ia
(t)
∂Cθ

ia
(t)

∂t

+
∑

iab

C
η

ia
(t)Cθib(t)

〈

φa(t)
∣

∣

∣

∣

∣

∂φb(t)
∂t

〉

−
∑

i ja

Pi jC
η

ia
(t)Cθja(t)

〈

φ j(t)
∣

∣

∣

∣

∣

∂φi(t)
∂t

〉

. (3.1.25)

Finally, TDNAC is numerically computed by applying the finite difference approximation to the

derivatives in Eq. 3.1.25 as

∂Cθ
ia

(t)

∂t
→

1
∆t

(

Cθia(t + ∆t) −Cθia(t)
)

, (3.1.26)
〈

φp(t)

∣

∣

∣

∣

∣

∣

∂φq(t)

∂t

〉

→
1
∆t

〈

φp(t)
∣

∣

∣ φq(t + ∆t)
〉

. (3.1.27)

Note that the phase (sign) of each orbital wavefunction is arbitrary, and the order of the orbital

energy levels, on which the orbital indices are based, may change in association with the time

propagation of the nuclear coordinates. To keep the sign of the orbitals constant and to track the

appropriate orbital, Ref. [3] proposed the use of a permutation matrix O, the elements of which

are defined as:

Opq =























































1
〈

φp(t)
∣

∣

∣ φq(t + ∆t)
〉

> 0.5

−1
〈

φp(t)
∣

∣

∣ φq(t + ∆t)
〉

< −0.5

0 otherwise

. (3.1.28)

The sign and order of the orbitals are permutated based on O, and the CIS coefficients are

corrected accordingly, prior to numerical differentiation (Eqs. 3.1.26 and 3.1.27).
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3.2 Large-Scale NA-MD Technique with DC Type Excited-

State Calculations†

3.2.1 Introduction

In the condensed phase, dynamics of nonadiabatic systems is inevitably affected by interactions

with the environment, such as solvent molecules or ligands. The nonadiabatic dynamics is mod-

ulated by exchange of energy and electrons with the environment. For instance, Marcus theory

compactly illustrates that the rate of an electron transfer reaction is controlled by the probability

of the nonadiabatic transition and how it is affected by the interaction with the solvent.13 Atoms

(chemical species) are also exchanged if chemical reactions, e.g., proton transfer, are involved.

This background strongly suggests the importance of techniques for simulating nonadiabatic

dynamics capable of simultaneously treating not only the active site, but also the environment,

which is still challenging because of the severe computational cost arising from the system size.

The trajectory surface hopping method14 is a widely accepted approach for simulating nona-

diabatic dynamics, in which the nuclear dynamics involving multiple PESs is approximated in a

statistical manner based on a set of classical trajectories. Propagation of each classical nuclear

trajectory is performed according to the atomic force calculated from the energy derivative at the

current active state, which stochastically hops to another state. Because of its computational ef-

ficiency and compatibility with well-established electronic structure methods for excited states

such as linear response TD-DFT,15–19 The trajectory surface hopping is extensively utilized to

treat nonadiabatic dynamics in the context of quantum chemistry. There are several variations

of trajectory surface hopping techniques, including decoherence-induced-surface hopping20 and

Zhu–Nakamura theory approach.21–24 Among them, the FSSH method, proposed by Tully,6 is

the most widely used method owing to the suitable compromise between the accuracy and

cost.25,26 The name of the technique originates from its characteristics, where the probability of

hopping is calculated to minimize the number of hopping events.

†Reproduced from Ref. [1], with the permission of AIP Publishing.

33



Typically, there are two computational bottlenecks in the FSSH. The first is the calculation of

the adiabatic excited-state energy, energy gradient, and the corresponding wavefunctions. The

second is the calculation of the NAC terms, which is required to propagate the electronic (quan-

tum) DOFs. In recent years, the available system size of the FSSH has been extended by combi-

nation with TD-DFTB method.10,11,27,28 TD-DFTB29 is a low-cost semi-empirical excited-state

calculation technique that is based on the ground-state counterpart, i.e., the DFTB method.30–33

Successful application of the TD-DFTB-based FSSH has been reported for a variety of tar-

gets, including cycloparaphenylene,28 polyacene derivatives,34,35 adenine in a water cluster,10

and silver nanorods.36

This section presents a large-scale NA-MD methodology, in which DC-TD-DFTB is com-

bined with the FSSH method. The rest of this section is organized as follows: Subsection 3.2.2

describes the theoretical aspects, focusing on the formulation of the NAC calculation algorithms

in the framework of DC-TD-DFTB. The results of the numerical tests are reported in Subsec-

tion 3.2.3. Subsection 3.2.3 describes the details of the computational setup. Subsection 3.2.3

compares the DC-TD-DFTB-based NAC value with that from the conventional (TD-DFTB-

based) calculation, and evaluate the accuracy of the proposed method. The advantages of the

developed approach for enhancing the numerical stability is also discussed. Moreover, as a pilot

application, DC-TD-DFTB-based FSSH simulations are performed for a thymine molecule in

acetonitrile solution. Subsection 3.2.3 compares the computational time required for the DC-

TD-DFTB-based method versus the conventional method. Subsection 3.2.4 summarizes the

study.

3.2.2 Theory

The scope of the theory described in this subsection is limited to singlet excited states with spin-

restricted reference. In the present DC-TD-DFTB/FSSH approach, FSSH simulations (Subsec-

tion 3.1.1) are conducted using the adiabatic potential energies, adiabatic wavefunctions, and

TDNACs, obtained in the framework of DC-TD-DFTB. The DC-TD-DFTB calculations of adi-
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abatic potential energies and wavefunctions were described in Subsection 2.3.2. Here, TDNAC

calculation algorithms with DC-TD-DFTB are presented.

TDNAC Calculation in DC Scheme: WO Approach

For TD-DFTB without DC (Subsection 3.1.2), the wavefunction overlap is obtained on the basis

of the overlap between the Slater determinants for the excitation configurations, which is equal

to det (Σ[ia, jb]) (Eq. 3.1.11). In the case of DC-TD-DFTB, the analogue of the matrix Σ[ia, jb]

can be defined as:

ΣDC[ia, jb] =



























αα
ΣDC[ia, jb] αβ

ΣDC[ia, j j]

βα
ΣDC[ii, jb] ββ

ΣDC[ii, j j]



























, (3.2.1)

where

στ
ΣDC[ip, jq] =




















































































〈φ1(t1) | φ1(t2)〉 〈σ | τ〉 . . .
〈

φ1(t1)
∣

∣

∣ φq(t2)
〉

〈σ | τ〉 . . .
〈

φ1(t1)
∣

∣

∣ φnO(t2)(t2)
〉

〈σ | τ〉

...
...

...

〈

φp(t1)
∣

∣

∣ φ1(t2)
〉

〈σ | τ〉 . . .
〈

φp(t1)
∣

∣

∣ φq(t2)
〉

〈σ | τ〉 . . .
〈

φp(t1)
∣

∣

∣ φnO(t2)(t2)
〉

〈σ | τ〉

...
...

...

〈

φnO(t1)(t1)
∣

∣

∣ φ1(t2)
〉

〈σ | τ〉 . . .
〈

φnO(t1)(t1)
∣

∣

∣ φq(t2)
〉

〈σ | τ〉 . . .
〈

φnO(t1)(t1)
∣

∣

∣ φnO(t2)(t2)
〉

〈σ | τ〉





















































































,

(3.2.2)

regarding the localization region Ls, which includes the excitation center. Note that nO is time-

dependent in the DC scheme, because the buffer region around the excitation center is re-defined

for each nuclear time step based on the current atomic coordinates, as schematically shown in

Fig. 3.1. In Fig. 3.1(a), the subsystem represented by the red-colored circle is included in Ls

at t1 and remains included in it at t2. Fig. 3.1(b) shows the case in which the subsystem is not

included at t1, but is newly included at t2. On the other hand, in Fig. 3.1(c), the subsystem is

included at t1, but not at t2. In the following discussion, the situations corresponding to Figs.

3.1(a), 3.1(b), and 3.1(c) are called in-in, out-in, and in-out, respectively.
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Fig. 3.1: Schematic illustration of buffer region update in the DC scheme. White and red circles indicate subsys-
tems; the area marked as EC is the central region corresponding to the excitation center. Green-colored region is
the buffer region with a buffer radius of rb. (a) Red-colored subsystem is included in the buffer region at t1, and
remains included at t2 (in-in). (b) Red-colored subsystem is not included in the buffer region at t1, but is newly
included at t2 (out-in). (c) Red-colored subsystem is included in the buffer region at t1, but is not included at t2
(in-out).

When Ls(t1) , Ls(t2), i.e., out-in or in-out subsystems exist, the wavefunction overlap

calculations become problematic. In this case, ΣDC[ia, jb] is not squared in general; thus,

det (ΣDC[ia, jb]) cannot be defined. Even if ΣDC[ia, jb] becomes squared by coincidence, it

is effectively not a regular matrix, i.e., det (ΣDC[ia, jb]) is essentially zero. This is because the

orbitals arising from in-out(out-in) subsystems at t1(t2) do not overlap significantly with any

orbitals at t2(t1); in other words, all the elements in the rows(columns) of ΣDC[ia, jb] corre-

sponding to these orbitals are approximately zero.

From another perspective, Σ[ia, jb] or ΣDC[ia, jb] can be seen as a transformation matrix

from the space spanned by the orbitals that constitute Φb
j
(t2) to the space spanned by the com-

ponent orbitals of Φa
i
(t1) (Fig. 3.2). In the case of TD-DFTB without DC, det (Σ[ia, jb]) is

always well-defined and generally non-zero because the transformation is one-to-one corre-

spondence. However, in the case of DC-TD-DFTB, the transformation is no longer one-to-one

correspondence when Ls(t1) , Ls(t2). The orbitals arising from the out-in subsystems at t2

do not correspond to any orbitals at t1. In the case of the in-out subsystems, the opposite is

true. Therefore, det (ΣDC[ia, jb]) is either essentially zero, which is physically meaningless, or

undefined.
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Fig. 3.2: Schematic illustration of the relationship between the orbital space regarding Φa
i

at t1 and Φb
j

at t2. (a)
Without DC, the transformation between the t1 and t2 orbital spaces (Σ[ia, jb]) can be one-to-one correspondence.
(b) With DC, the one-to-one correspondence can be maintained only within the subspace indicated by the blue-
colored region. Orbitals in the red-colored region at t1(t2) are not mapped to any orbital at t2(t1).

Here, one can construct a subspace in which the one-to-one correspondence character of

the transformation ΣDC[ia, jb] can be maintained, where the subspace is called common space,

and its complement is called uncommon space, by the following procedure. Let ΣO and ΣV

be the MO overlap matrices for the occupied and virtual spaces, respectively, where the matrix

elements are defined as:

ΣO
i j =
〈

φi(t1)
∣

∣

∣ φ j(t2)
〉

, ΣV
ab = 〈φa(t1) | φb(t2)〉 . (3.2.3)

SVD of the occupied or virtual MO overlap matrices

Σ
O/V = UO/V

Λ
O/VVO/V†, (3.2.4)

produces sets of orbitals at t1 and t2, which are represented by the matrices UO/V and VO/V,

respectively, in the canonical MO basis. The obtained orbitals are hereafter called SOs. Each

set of orbitals is orthonormal, and spans the same space as spanned by the corresponding (either

occupied or virtual, at either t1 or t2) set of MOs. Note that the SVD is performed for the

occupied and virtual spaces separately. The matrix ΛO/V contains the set of corresponding

singular values

ΛO/V
pq =



































λ
O/V
p p = q ∧ p ≤ n′O/V

0 otherwise

, (3.2.5)
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where n′O/V = min
{

nO/V(t1), nO/V(t2)
}

. The singular values are sorted in descending order:

λ1 > λ2 > · · · > λn′O/V
. Here, one can define a new set of SOs that contain only the SOs having

singular values close to unity

ŨO/V =

(

u
O/V
1 u

O/V
2 · · · u

O/V
ñ′O/V

)

, (3.2.6)

ṼO/V =

(

v
O/V
1 v

O/V
2 · · · v

O/V
ñ′O/V

)

, (3.2.7)

where u
O/V
p and v

O/V
q are the p-th column vectors in the matrices UO/V and VO/V, respectively,

and represent the p-th SOs at t1 and t2, respectively. ñ′O/V is the number of singular values that

satisfy λO/V
p > λthresh, where λthresh is a given threshold constant. The common space is defined

as the space expanded by the new set of SOs, i.e., ŨO/V or ṼO/V.

On the basis of the common/uncommon spaces, the CIS state overlap in the case of DC-TD-

DFTB can be calculated as follows. The CIS coefficient matrices at t1 and t2 can be represented

using the SOs at each time as:

C′η(t1) = UOCη(t1)UV†, (3.2.8)

C′θ(t2) = VOCθ(t2)VV†, (3.2.9)

respectively. Note that C
′η(t) is an nO(t) × nV(t) matrix, where nV(t) is the number of virtual

orbitals at the time t. Therefore, the adiabatic wavefunctions at t are represented as:

ψη(t) =
∑

ia

C
′η

ia
(t)Φ′ai (t), (3.2.10)

where Φ′ai (t) is the Slater determinant for the single excitation configuration from the i-th oc-

cupied SO to the a-th virtual SO. Note that the uncommon space arises from the incorporation

of out-in or in-out subsystems. The out-in and in-out subsystems cross over the outer bound-

ary of the buffer region around the excitation center in the time step of ∆t. This fact indicates

that these subsystems are located near the outer boundary, which is expected to be apart from
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the excitation center; thus, their contribution to the excitation energy and excitation amplitude

can be neglected. Therefore, it can be safely assumed that the excitation character is described

within the common space and the uncommon space has negligible contribution. ψ̃η(t), which is

the approximate expression of ψη(t) within the common space, is defined as

ψ̃η(t) =
∑

ia

C̃
′η

ia
(t)Φ̃′ai (t), (3.2.11)

where C̃
′η

ia
(t) = C

′η

ia
(t) but the range of orbital indices is restricted to the 1 ≤ i ≤ ñ′O and

1 ≤ a ≤ ñ′V, i.e., C̃′η(t) is an ñ′O × ñ′V matrix. Φ̃′a
i
(t) is the Slater determinant corresponding

to the single excitation configuration from the i-th occupied SO to the a-th virtual SO, where

the reference configuration Φ̃′(t) is constituted by the set of ñ′O occupied SOs, which spans the

occupied common space at t. The wavefunction overlap in DC-TD-DFTB can be defined as the

wavefunction overlap calculated within the common space, namely

S DC
ηθ (t1, t2) =

〈

ψ̃η(t1)
∣

∣

∣ ψ̃θ(t2)
〉

(3.2.12)

=
∑

ia, jb

C̃
′η

ia
(t1)C̃′θjb(t2)

×
〈

Φ̃′ai (t1)
∣

∣

∣ Φ̃′bj(t2)
〉

, (3.2.13)

where the overlap between the Slater determinants is calculated as:

〈

Φ̃′ai (t1)
∣

∣

∣ Φ̃′bj(t2)
〉

= det
(

Σ̃
′[ia, jb]

)

. (3.2.14)

The matrix Σ̃′[ia, jb] is an analogue of Σ[ia, jb], and is defined as

Σ̃
′[ia, jb] =



























αα
Σ̃
′[ia, jb] αβ

Σ̃
′[ia, j j]

βα
Σ̃
′[ii, jb] ββ

Σ̃
′[ii, j j]



























, (3.2.15)
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where

στ
Σ̃
′[ip, jq] =























































































〈

φ′1(t1)
∣

∣

∣ φ′1(t2)
〉

〈σ | τ〉 . . .
〈

φ′1(t1)
∣

∣

∣ φ′q(t2)
〉

〈σ | τ〉 . . .

〈

φ′1(t1)
∣

∣

∣

∣

φ′
ñ′O

(t2)
〉

〈σ | τ〉

...
...

...

〈

φ′p(t1)
∣

∣

∣ φ′1(t2)
〉

〈σ | τ〉 . . .
〈

φ′p(t1)
∣

∣

∣ φ′q(t2)
〉

〈σ | τ〉 . . .

〈

φ′p(t1)
∣

∣

∣

∣

φ′
ñ′O

(t2)
〉

〈σ | τ〉

...
...

...
〈

φ′
ñ′O

(t1)
∣

∣

∣

∣

φ′1(t2)
〉

〈σ | τ〉 . . .

〈

φ′
ñ′O

(t1)
∣

∣

∣

∣

φ′
b
(t2)
〉

〈σ | τ〉 . . .

〈

φ′
ñ′O

(t1)
∣

∣

∣

∣

φ′
ñ′O

(t2)
〉

〈σ | τ〉























































































.

(3.2.16)

Note that Σ̃′[ia, jb] is a 2ñ′O × 2ñ′O squared matrix of rank 2ñ′O. The matrix elements in

στ
Σ̃
′[ip, jq] can be calculated as

〈

φ′p(t1)
∣

∣

∣ φ′q(t2)
〉

=
∑

rs

uO/V
pr vO/V

qs 〈φr(t1) | φs(t2)〉 , (3.2.17)

〈σ | τ〉 =



































1 σ = τ

0 σ , τ

, (3.2.18)

where the superscript O/V over upr takes O or V when the φ′p(t1) is an occupied or a virtual SO,

respectively. The same convention is applied for the superscript over vqs depending on whether

φ′q(t2) is occupied or virtual. Because the α–β and β–α parts vanish, Σ̃[ia, jb] becomes block

diagonal and the determinant in Eq. 3.2.14 can be calculated as:

det
(

Σ̃
′[ia, jb]

)

= det
(

αα
Σ̃
′[ia, jb]

)

× det
(

ββ
Σ̃
′[ii, j j]

)

. (3.2.19)

Finally, as done in the case of TD-DFTB (Subsection 3.1.2), TDNAC can be obtained from the

wavefunction overlap through the finite difference approximation (Eq. 3.1.9).

In principle, the CPU time for calculation of S DC
ηθ

according to Eq. 3.2.13 scales as

40



O

(

[

ñ′O

]5 [
ñ′V

]2
)

, because the scaling for the numerical computation of each det
(

Σ̃
′
DC[ia, jb]

)

is O

(

[

ñ′O

]3
)

. The scaling of the power of seven suggests severe computational burden even if

the DC method is applied. Here, the efficient computation scheme proposed by Sapunar and

co-workers37 for this type of wavefunction overlap, which is based on the NTO concept,38 is

employed. NTOs are orbitals obtained by SVD of the CIS coefficient matrix. For the approx-

imate CIS coefficient matrix within the common space, C̃′η, the corresponding set of NTOs is

obtained as:

C̃′η = ÙηΛ̀ηV̀η†, (3.2.20)

where Ùη and V̀η contain the occupied and virtual NTOs, respectively, which are represented

by the SOs within the common space, and

Λ̀ηpq =



































λ̀
η
p p = q ∧ p ≤ ǹ

0 otherwise

, (3.2.21)

where ǹ is the number of NTOs, and here ǹ = min
{

ñ′O, ñ′V

}

. The adiabatic wavefunction is

represented as:

ψ̃η(t) =
∑

p

λ̀ηpΦ̀
η
p, (3.2.22)

where Φ̀ηp is the Slater determinant corresponding to the single excitation configuration from

the p-th occupied NTO to the p-th virtual NTO at the state η. Using the NTO representation,

the wavefunction overlap is rewritten as:

S DC
ηθ (t1, t2) =

∑

p,q

λ̀ηp(t1)λ̀θq(t2)

×
〈

Φ̀ηp(t1)
∣

∣

∣ Φ̀θq(t2)
〉

. (3.2.23)

Here, the overlap between the Slater determinants on the RHS is calculated in a manner similar

to that used in Eq. 3.2.14, i.e., computing the determinant of the overlap matrix between the

41



NTOs that constitute Φ̀p(t1) and Φ̀q(t2). Therefore, the scaling becomes O

(

ǹ2
[

ñ′O

]3
)

, which is a

significant cut of the computational cost. Note that a set of NTOs is defined for each adiabatic

state, i.e., the overall computational cost increases by the square of the number of adiabatic

states of interest. Because the number of states is normally significantly smaller than that of

the occupied or virtual orbitals, this shortcoming does not obviate the advantage of the NTO-

based approach in terms of computational efficiency. The calculation can be further accelerated

by neglecting the configurations with small absolute values of the coefficient λ̀ηp(t) based on a

threshold value C̀thresh.

TDNAC Calculation in DC Scheme: OD Approach

For essentially the same reason as that discussed in the case of the WO approach, it is obvious

that the OD method cannot be directly applied to the DC-TD-DFTB when Ls(t1) , Ls(t2).

Alternatively, TDNAC is calculated within the common space for the case of DC-TD-DFTB.

σDC
ηθ (t) =

〈

ψ̃η(t)

∣

∣

∣

∣

∣

∣

∂ψ̃θ(t)
∂t

〉

. (3.2.24)

Using a procedure similar to that used for the transformation from Eq. 3.1.21 to Eq. 3.1.25, σDC
ηθ

can be expressed in the similar form to Eq. 3.1.25, where the CIS coefficients and orbitals are

replaced by their counterparts in the common space formalism

σDC
ηθ (t) =

∑

ia

C̃
′η

ia
(t)
∂C̃′θ

ia
(t)

∂t

+
∑

iab

C̃
′η

ia
(t)C̃′θib(t)

〈

φ′a(t)

∣

∣

∣

∣

∣

∣

∂φ′
b
(t)

∂t

〉

−
∑

i ja

Pi jC̃
′η

ia
(t)C̃′θja(t)

〈

φ′j(t)

∣

∣

∣

∣

∣

∣

∂φ′i(t)

∂t

〉

. (3.2.25)
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The derivatives of the CIS coefficients and orbitals in Eq. 3.2.25 are numerically calculated

using the analogues of Eqs. 3.1.26 and 3.1.27, respectively.

∂C̃′θ
ia

(t)

∂t
→

1
∆t

(

C̃′θia(t + ∆t) − C̃′θia(t)
)

, (3.2.26)
〈

φ′p(t)

∣

∣

∣

∣

∣

∣

∂φ′q(t)

∂t

〉

→
1
∆t

〈

φ′p(t)
∣

∣

∣ φ′q(t + ∆t)
〉

. (3.2.27)

3.2.3 Numerical Tests

Computational Details

The TDNAC calculation algorithms and FSSH routine with TD-DFTB and DC-TD-DFTB

methods were implemented in the developmental version of Dcdftbmd code.39 Benchmark cal-

culations were performed using acetonitrile solutions of thymine (Fig. 3.3) as target systems.

Cubic simulation cells were used with application of the periodic boundary condition, where

the electrostatic interaction among the atomic Mulliken charges were treated with Ewald sum-

mation.40 Because the calculations were conducted with several different numbers of solvent

molecules, hereinafter, the model systems are specified as thymine + n CH3CN, where n is the

number of acetonitrile molecules in the system. For each model system, n was determined to

adjust the density to that of pure acetonitrile based on the given volume of the cell; the resulting

density was in the range of 0.7829 to 0.7868 g cm−3. Initial equilibration was conducted for

2.0 ns or longer with classical MD, followed by an equilibration run with (DC-)DFTB-MD for

2.0 ps. Both equilibration steps were conducted with the NVT ensemble using the time step of

0.5 fs. The classical MD simulations were conducted using GROMACS code41 with the general

AMBER force field.42 For the DC-(TD-)DFTB calculations, each single molecule was treated

as a subsystem, and the thymine molecule was chosen as the excitation center. According to

a previous study,43 the buffer radius rb was set to 6.0 Å, and all DFTB calculations including

excited-state calculations, with or without DC, were performed at the DFTB2 level33 using the

3OB parameter set.44 In the excited-state calculations, the two lowest singlet excited states were
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solved. The threshold for singular values, λthresh, was set to 0.99.

Fig. 3.3: Chemical structures of (a) thymine and (b) acetonitrile molecules. The white, cyan, blue, and red spheres
indicate H, C, N, and O, respectively. (c) Snapshot of thymine acetonitrile solution system obtained in DFTB-MD
run with NVT ensemble. The system contains one thymine molecule (magenta) and 89 acetonitrile molecules
(light green) in the 2 nm × 2 nm × 2 nm periodic box, indicated by blue solid lines.

Accuracy of DC-based Treatment

For the thymine + 89 CH3CN system, the time course change of the TDNAC calculated using

TD-DFTB and DC-TD-DFTB are compared in Fig. 3.4 for the WO and OD methods. The

WO-based TDNAC calculations were performed in the NTO representation with or without

the DC scheme.37 The threshold for the absolute value of the CIS coefficients, C̀thresh, was set

to 1.0 × 10−2. For the OD-based TDNAC calculations, the SO representation was used for

both DC-TD-DFTB and TD-DFTB. The nuclear trajectory was pre-determined and externally

given, and thus was exactly the same in all of the four (TD-DFTB or DC-TD-DFTB, and WO

or OD) aforementioned conditions. The trajectory was obtained by a ground-state DFTB-MD

simulation using the NVT ensemble with a time step of 0.5 fs. Note that this treatment was

only applied to the numerical validation of TDNAC itself; in the FSSH simulations, which

are reported later in this subsection, the nuclear coordinates were propagated according to the

atomic force on the PES of the active state at each nuclear time step. In Fig. 3.4, the TD-

DFTB result (blue, solid line) and the DC-TD-DFTB result (orange, dotted line) overlap with

each other, indicating satisfactory agreement of these two results. Hence, it can be concluded

that the TDNAC determined with DC-TD-DFTB is sufficiently accurate compared with that

obtained using TD-DFTB. In addition, from Fig. 3.4, it can be deduced that the WO and OD

results are consistent with each other. Note that the common-space-based method can treat
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In the bootstrap method, the original data set is resampled N-times with replacement. The un-

certainty of a statistical quantity Q can be measured based on a set of N different values of Q

obtained from the resampled data sets. In this work, the number of resampling, N, was set to

104. As shown in Fig. 3.6, the agreement of the TD-DFTB (solid lines) and DC-TD-DFTB

(dashed lines) results was reasonably good for both WO and OD cases. In addition, Fig. 3.7

presents the time course change of potential energy and total (potential plus kinetic) energy for

a representative trajectory with DC. Fig. 3.7(a) demonstrates that the DC-TD-DFTB trajectory

yields the smooth potential energy, and Fig. 3.7(b) indicates conservation of the total energy at

the acceptable level.

Fig. 3.6: Time course change of S1 and S2 populations in FSSH simulations with TD-DFTB (solid) and DC-TD-
DFTB (dashed), averaged over 1740 trajectories. Error bars indicate 95% confidence interval obtained with the
bootstrap method with resampling of 104 times (left). Enlarged views for 0–50 fs are also shown (right). Results
obtained with WO method (a) and OD method (b) are indicated.
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Fig. 3.7: Time course change of (a) potential energy and (b) total energy in a representative trajectory with DC.
The potential energy is referenced to that of S1 state at t = 0. The total energy is referenced to the value at t = 0.

Efficacy of Singular Orbitals for OD-based TDNAC Calculations

For the OD-based TDNAC calculations, the permutation matrix (O) plays a critical role; for

each orbital p at t1, a corresponding orbital q at t2 must be uniquely assigned by the permutation

matrix. This condition is satisfied if and only if the determinant of the permutation matrix is 1

or -1. For the thymine + 89 CH3CN system and using TD-DFTB without DC, the determinants

of the permutation matrix were calculated in the conventional (canonical MO) representation

and in the SO representation for various sizes of the time step ∆t. The results are listed in

Table 3.1, where “Success” indicates that the determinant was 1 or -1; otherwise “Fail” is

indicated. The SOs were calculated for TD-DFTB by using the same procedure as used for the

DC-TD-DFTB. Table 3.1 indicates that the canonical-MO-based permutation matrix collapses

at∆t = 2.0×10−4 fs, suggesting that an impossibly small time step is required in the conventional

approach. This is because many canonical MOs are found within a very narrow energy window

in large systems such as thymine + 89 CH3CN. This pseudo-degeneracy entails strong mixing

among the canonical MOs, even due to the small perturbation originating from the nuclear
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displacement in the time step ∆t. On the other hand, Table 3.1 shows that the singular-orbital-

based permutation matrix is stable up to ∆t = 2.0 fs, which suggests that the construction of the

permutation matrix is no longer the factor limiting the size of ∆t. In contrast with the canonical

MOs, the character of each SO is maintained as long as the orbital space is not drastically

changed. Therefore, the present singular-orbital-based approach not only enables the TDNAC

calculations in the DC-TD-DFTB, but also overcomes the problem of tracking canonical MOs.

In other words, even without the DC scheme, the SO approach is beneficial for OD-based

TDNAC calculations, in the sense that ∆t can be significantly increased without loss of the

numerical stability.

Table 3.1: TD-DFTB results for orbital permutation matrix construction for thymine + 89 CH3CN system with
varying ∆t.

∆t / fs SO
canonical MO
(conventional)

5 × 10−5 Success Success
1 × 10−4 Success Success
2 × 10−4 Success Fail
5 × 10−4 Success Fail
1 × 10−3 Success Fail
2 × 10−3 Success Fail
5 × 10−3 Success Fail
1 × 10−2 Success Fail
2 × 10−2 Success Fail
5 × 10−2 Success Fail
1 × 10−1 Success Fail
2 × 10−1 Success Fail
5 × 10−1 Success Fail

1 Success Fail
2 Success Fail
5 Fail Fail

Computational Time

The CPU time per nuclear time step for the excitation energy and energy gradient, WO-based

TDNAC, and OD-based TDNAC were measured with varying the number of solvent molecules

n; the results are shown in Fig. 3.8. The calculations were performed on Intel Xeon Gold 6154

processors. Each data point is the average of the results of eleven runs. Note that the excitation
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Fig. 3.8: (a) CPU time per nuclear time step for excitation energy and gradient, WO-based TDNAC and OD-based
TDNAC are indicated by blue, orange, and green, respectively. TD-DFTB and DC-TD-DFTB results are indicated
by circles with solid lines and lozenges with dashed lines, respectively. (b) Enlarged view for the CPU time range
of 0 to 0.9 sec.

energy and gradient are always necessary, while one can choose either the WO or OD ap-

proach for the TDNAC calculations. The TD-DFTB results are indicated by circles with solid

lines. The corresponding DC-TD-DFTB results are indicated by lozenges with dashed lines.

As shown in Fig. 3.8, the CPU time for the DC-TD-DFTB calculations is significantly less than

that for the TD-DFTB calculations. In addition, while the CPU time in the case of TD-DFTB

increases sharply with n, in the case of DC-TD-DFTB the CPU time is constant irrespective of

n, suggesting that DC-TD-DFTB can treat excited states and TDNAC in large systems without

increasing the computational cost. Note that in the case of DC-TD-DFTB, the ground-state

energy and energy gradient are obtained with DC-DFTB, where the computational cost scales

linearly with the system size. In addition, the DC-DFTB algorithm is efficient for massively

parallelized computations because each subsystem is solved separately.39,46 Therefore, it is sug-

gested that the DC-TD-DFTB-based FSSH simulations can be applied to huge systems with

manageable computational cost.

3.2.4 Conclusion

The DC-TD-DFTB method, which is an extension of the TD-DFTB method for the DC frame-

work, enables large-scale excited-state calculation with low computational cost. In the present

study, algorithms for TDNAC calculations with the DC-TD-DFTB method were developed,

based on the concept of common/uncommon orbital spaces constructed using SVD of the over-
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lap matrix among MOs in the subsequent time steps. The DC-TD-DFTB-based TDNAC cal-

culation algorithm was presented for each of WO and OD approaches. Sufficient accuracy was

obtained compared to the corresponding results obtained with the conventional method, i.e.,

TD-DFTB, in both cases. Moreover, it was found that the SVD-based approach improves the

numerical stability of the OD-based TDNAC calculations in the circumstances where the canon-

ical MOs are pseudo-degenerated, which commonly occurs in medium-sized or larger systems;

this benefit is relevant not only for the DC-based scheme but also for conventional, non-DC

calculations. The developed DC-TD-DFTB-based TDNAC calculation algorithms were com-

bined with the FSSH technique. DC-TD-DFTB-based FSSH simulations of the excited-state

dynamics of the thymine molecule in acetonitrile solutions were conducted, and reasonable re-

sults were obtained. The benchmark calculation results indicate that the CPU time required by

the DC-TD-DFTB-based approach is drastically less than that of the conventional TD-DFTB,

and does not increase when the system size is extended. Hence, it can be concluded that the

DC-TD-DFTB-based approach enables huge-scale FSSH simulations, which incorporates not

only an excitation center but also its environment, within affordable computational resources

without loss of accuracy.
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3.3 Efficient NA-MD Scheme Capable of Simulating Nonra-

diative Relaxation Processes via SF-TD-DFTB Method†

3.3.1 Introduction

The nonadiabatic dynamics of photoexcited chemical species play a key role in multifarious

systems from fundamental and/or pragmatic points of view, e.g., photoactive proteins,48 solar

cells,49 and molecular machines.50 NA-MD methods,26 in which trajectory surface hopping14,25

may be the most popular example in the field of molecular science, provide practical ways to

study nonadiabatic phenomena in such highly complex chemical systems via computational

simulations. The NA-MD techniques are based on mixed quantum–classical approach, which

decomposes problems of electronic and nuclear DOFs into quantum mechanical and classi-

cal mechanical hierarchies, respectively. The quantum mechanical, i.e., electronic, part can

be treated with a variety of electronic structure calculation methods developed in the field of

quantum chemistry, which include multiconfigurational self-consistent field, multireference CI,

and ADC(2).51,52 In particular, linear-response TD-DFT, which is considered a standard tool

for excited-state calculations, is important also as an option for the electronic structure tech-

nique to combine with NA-MD.15,19,45,53,54 Notably, the tight-binding formulation of DFT with

semiempirical parametrization, DFTB,30–33,55 and its TD extension, TD-DFTB,56 have been es-

tablished as efficient quantum chemical calculation techniques with accuracies comparable with

that of (TD-)DFT. Owing to the low computational cost, adoption of the TD-DFTB method has

extended the size of target systems in NA-MD simulations within affordable computational

resources.1,11,27,28,34,35,57–59

It is widely recognized that single-reference methods, e.g., TD-DFT and ADC(2), present

difficulties in situations where multireference character is pronounced, such as S1/S0 CXs,52,60

which, in particular, play a critical role in nonradiative relaxation processes of photoexcited

species. The TD-DFTB, as a single-reference method derived from the TD-DFT, has similar

†Reprinted with permission from Ref. [47]. Copyright 2020 American Chemical Society.
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limitations.28,58 To solve this problem, the SF approach61,62 is one of the well-established meth-

ods. The SF version of the TD-DFT, SF-TD-DFT,63 utilizes a high-spin reference state, which

is triplet if the singlet states are of interest. The eigenstates of the desired spin multiplicity are

obtained via the spin-flipping excitation from the reference state, which yields not only single-

excitation configurations, but also double-excitation configurations. Because the SF-TD-DFT

can conveniently include the multireference character within minor modifications to the theoret-

ical and programmatic infrastructures of the normal TD-DFT, the SF-TD-DFT has been widely

used to search for CX structures64–70 and perform (nonadiabatic) dynamics simulations,71–76 as

an alternative to single-reference methods in situations where they do not provide the correct

description.

This section presents a computationally efficient NA-MD method capable of describing dy-

namics that involve S1/S0 CXs. To this end, the semiempirically approximated version of the

SF-TD-DFT, i.e., SF-TD-DFTB, which has been introduced as the DFTB-counterpart of the

SF-TD-DFT,77 was combined with the FSSH technique. The remainder of this section is or-

ganized as follows. Subsection 3.3.2 describes the theoretical aspects of the proposed method,

i.e., NA-MD based on the SF-TD-DFTB. Subsection 4.3 discusses the results of numerical

tests. The accuracy of the proposed technique is discussed therein via comparisons with results

of previous studies. Subsection 3.3.4 summarizes the study.

3.3.2 Theory

Analytical Energy Gradient

In the SF-TD-DFTB/FSSH technique, the nuclear coordinates are propagated according to the

atomic force obtained from the reference-state and excitation energy gradients. Because the

reference-state gradient is nothing but the ordinary open-shell SCC-DFTB gradient, of which

the analytical implementation is already available in the Dcdftbmd program,39 this section only

presents the formulation of the excitation energy gradient. Because the derivation is lengthy, the
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details are described in Appendix A.1, and only the final results are presented below. Although

only the spin-unrestricted case is discussed, the derivation of the gradient in the restricted open-

shell case is also shown in Appendix A.2. The Lagrangian approach78,79 enables one to obtain

the analytical gradient of the excitation energy ω (the adiabatic state index η is omitted here-

inafter for simplicity) avoiding explicit calculations of the derivatives of MO coefficients with

respect to the nuclear coordinates, which are extremely costly. The Lagrangian L for the SF-

TD-DFTB with the spin-unrestricted reference is defined as

L
[

X, ω,C,Zα,Zβ,Wα,Wβ
]

= G [X, ω]

+
∑

ia

ZαiaFαia −
∑

p≤q

Wα
pq

(

S αpq − δpq

)

+
∑

īā

Z
β

īā
F
β

īā
−
∑

p̄≤q̄

W
β

p̄q̄

(

S
β

p̄q̄ − δ p̄q̄

)

. (3.3.1)

where L and G are variational with respect to the quantities in the square brackets. The second

and fourth terms on the RHS denote the condition that the α- and β-spin MOs are variational

for the reference state, respectively. The third and fifth terms are the orthonormal conditions for

the α- and β-spin MOs, respectively. The energy functional G is

G [X, ω] =
∑

iā, jb̄

XiāAiā, jb̄X jb̄ − ω















∑

iā

XiāXiā − 1















. (3.3.2)

Prior to further explanation, the coupling-like matrices are defined as

Kc
p̂q̂,r̂ ŝ =

∑

IJ

q
p̂q̂

I
γIJqr̂ ŝ

J , (3.3.3)

Km
p̂q̂,r̂ ŝ =

∑

A

∑

L∈A

∑

L′∈A

q
p̂q̂

L
mALL′q

r̂ ŝ
L′ , (3.3.4)

Ksf
p̂q̂,r̂ ŝ =

∑

A

q
p̂q̂

A
mAqr̂ ŝ

A . (3.3.5)
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In addition, the following notations are introduced:

H+αp̂q̂ [V] =
∑

r̂ ŝ

(

2Kc
p̂q̂,r̂ ŝ + 2Km

p̂q̂,r̂ ŝ

)

Vr̂ ŝ, (3.3.6)

H
+β

p̂q̂
[V] =

∑

r̂ ŝ

(

2Kc
p̂q̂,r̂ ŝ − 2Km

p̂q̂,r̂ ŝ

)

Vr̂ ŝ, (3.3.7)

K p̂q̂ =
∑

iā

2Ksf
p̂q̂,iāXiā, (3.3.8)

where V is an arbitrary vector. The stationary condition of L with respect to the MO coefficients:

∂L

∂cµ p̂

= 0. (3.3.9)

leads to the Z-vector equation to obtain Zα and Zβ:



























Jαα Jαβ

Jβα Jββ





















































Zα

Zβ



























= −



























Uα

Uβ



























. (3.3.10)

where the orbital Hessian matrix elements are

Jααia, jb = (ǫa − ǫi) δi jδab + 2Kc
ia, jb + 2Km

ia, jb, (3.3.11)

J
αβ

ia, j̄b̄
= 2Kc

ia, j̄b̄
− 2Km

ia, j̄b̄
, (3.3.12)

J
βα

īā, jb
= 2Kc

īā, jb
− 2Km

īā, jb
, (3.3.13)

J
ββ

īā, j̄b̄
= (ǫā − ǫī) δī j̄δāb̄ + 2Kc

īā, j̄b̄
+ 2Km

īā, j̄b̄
. (3.3.14)

The RHS of Eq. 3.3.10 is expressed as

Uαia = H+αia [Tα] + H
+β

ia

[

Tβ
]

+
∑

b̄

2Xib̄Kab̄, (3.3.15)

U
β

īā
= H+α

īā

[

Tβ
]

+ H
+β

īā
[Tα] +

∑

j

2X jāK jī. (3.3.16)
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Here, the unrelaxed difference density matrices for the α-spin and β-spin were defined as

Tαpq =



































−
∑

ā XiāX jā (p, q) = (i, j)

0 otherwise

, (3.3.17)

T
β

p̄q̄ =



































∑

i XiāXib̄ (p̄, q̄) = (ā, b̄)

0 otherwise

, (3.3.18)

respectively. From Tα/β and Zα/β, the relaxed difference density matrices, Pα/β, are obtained as

Pα = Tα + Zα, (3.3.19)

Pβ = Tβ + Zβ, (3.3.20)

55



where Zαpq is zero unless (p, q) = (i, a), and Z
β

p̄q̄ is zero unless ( p̄, q̄) = (ī, ā). Wα and Wβ are

calculated as

Wα
i j =

1
1 + δi j

[

H+αi j [Pα] + H
+β

i j

[

Pβ
]

−2
∑

c̄

Xic̄X jc̄ − 2ωTαi j















, (3.3.21)

Wα
ia = H+αia [Pα] + H

+β

ia

[

Pβ
]

+ ǫαa Zαia +
∑

b̄

2Xib̄Kab̄, (3.3.22)

Wα
ai = 0, (3.3.23)

Wα
ab = 0, (3.3.24)

W
β

ī j̄
=

1
1 + δī j̄

[

H+α
ī j̄

[

Pβ
]

+ H
+β

ī j̄
[Pα]
]

, (3.3.25)

W
β

īā
= H+α

īā

[

Pβ
]

+ H
+β

īā
[Pα]

+ ǫ
β

ā Z
β

īā
+
∑

j

2X jāK jī, (3.3.26)

W
β

āī
= 0, (3.3.27)

W
β

āb̄
=

1
1 + δī j̄















2ωT
β

āb̄
+ 2
∑

k

ǫαk XkāXkb̄















. (3.3.28)
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Derivative of the Lagrangian (Eq. 3.3.1) with respect to nuclear coordinates gives the explicit

form of the gradient:

∂ω

∂R
=
∂L

∂R

=
∑

µν













dH0
µν

dR
+

dHc
µν

dR













(

Pαµν + P
β
µν

)

+
∑

µν

dHx
µν

dR

(

Pαµν − P
β
µν

)

−
∑

µν

Wµν

dS µν

dR

+
1
2

∑

µνλκ

(

dS µν

dR
S λκ + S µν

dS λκ

dR

)

× (mAδAC + mBδAD + mBδBC + mBδBD)

× XµνXλκ. (3.3.29)

Here, the following “AO representation” was employed.

Pαµν =
∑

pq

cµpPαpqcνq, (3.3.30)

Pβµν =
∑

p̄q̄

cµ p̄P
β

p̄q̄cνq̄, (3.3.31)

Wµν =
∑

pq

cµpWα
pqcνq +

∑

p̄q̄

cµ p̄W
β

p̄q̄cνq̄, (3.3.32)

Xµν =
∑

iā

cµiXiācνā. (3.3.33)
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As Hc and Hx represent the spin-independent and spin-dependent parts of the Fock matrix,

respectively, their derivatives are calculated as

dHc
µν

dR
=

1
2

dS µν

dR

∑

M

(γIM + γJM)∆qM

+
1
2

S µν

∑

M

(

dγIM

dR
+

dγJM

dR

)

∆qM

+
1
2

S µν

∑

M

(γIM + γJM)

×
∑

λ∈M

∑

κ

(

Dακλ + D
β

κλ

) dS κλ

dR
, (3.3.34)

dHx
µν

dR
=

1
2

dS µν

dR

∑

L′′∈A

(mALL′′ + mAL′L′′) pL′′

+
1
2

S µν

∑

L′′∈A

(mALL′′ + mAL′L′′)

×
∑

λ∈M

∑

κ

(

Dακλ − D
β

κλ

) dS κλ

dR
. (3.3.35)

TDNAC

The TDNAC calculation algorithm is developed on the basis of the OD approach of Ryabinkin

et al.,3 with some modification to improve the numerical stability. The OD approach is based on

the analytical time-derivative expression of TDNAC under the CIS type wavefunction ansatz,

which is expressed using the time-derivative coupling of MOs. Using the same derivation ap-

proach as that described in Ref. [3], a similar formula for the SF-CIS type wavefunctions can

be obtained:

σηθ (t) =
∑

iā

C
η

iā
(t)
∂Cθ

iā
(t)

∂t

+
∑

iāb̄

C
η

iā
(t) Cθ

ib̄
(t)
〈

φā (t)
∣

∣

∣

∣

∣

∂φb̄ (t)
∂t

〉

− Pi j

∑

i jā

C
η

iā
(t) Cθjā (t)

〈

φ j (t)
∣

∣

∣

∣

∣

∂φi (t)
∂t

〉

, (3.3.36)
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where the phase factor Pi j depends on the choice of ordering rule in the Slater determinants for

single-excitation configurations. In the present case, an α-spin occupied orbital i is replaced

by a β-spin virtual orbital ā without reordering to construct an i → ā excitation configuration

Slater determinant, namely

Φā
i =
∣

∣

∣φ1 · · · φi−1φāφi+1 · · · φNαφ1̄ · · · φN̄β

∣

∣

∣ . (3.3.37)

In this case, Pi j = 1, regardless of i and j. The value of TDNAC is obtained by calculating the

derivative of CIS coefficients and the time-derivative coupling of MOs by applying the following

finite-difference approximations on the analytical derivative coupling terms in Eq. 3.3.36.

∂C
η

iā
(t)

∂t
≈

1
∆t

(

C
η

iā
(t + ∆t) −C

η

iā
(t)
)

, (3.3.38)
〈

φp̂ (t)

∣

∣

∣

∣

∣

∣

∂φq̂ (t)

∂t

〉

≈
1
∆t

〈

φp̂ (t)
∣

∣

∣ φq̂ (t + ∆t)
〉

. (3.3.39)

Although the analytical form of TDNAC (Eq. 3.3.36) is invariant with respect to orbital rota-

tion within the occupied or virtual spaces for each spin, the numerical behavior does change

upon rotation because of the finite-difference approximations (Eqs. 3.3.38 and 3.3.39). In the

CO expression, signs and energetic ordering of orbitals may change with the nuclear dynamics

and must be corrected to keep tracking the orbital with the same character; this is not neces-

sarily a trivial task and may limit the size of the time step, especially when the COs are quasi-

degenerate. The approach in the present study, which is hereafter called the SVD-OD method,

has been previously introduced in the context of fragmentation-based NA-MD calculations.1

The SVD-OD approach utilizes a set of unitary-transformed MOs called SOs
{

φS
p̂

}

, instead of

COs
{

φC
p̂

}

.

φS
i (t) =

∑

j

φC
j (t) UαO

ji (t) , (3.3.40)

φS
ā (t) =

∑

b̄

φC
b̄

(t) U
βV
b̄ā

(t) . (3.3.41)
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The transformation matrices to convert the COs to the SOs, UαO/βV (t), are constructed for each

nuclear time step via SVD:

Σ
αO (t, t + ∆t) = UαO (t)ΛαO (t, t + ∆t) UαO (t + ∆t)

†
, (3.3.42)

Σ
βV (t, t + ∆t) = UβV (t)ΛβV (t, t + ∆t) UβV (t + ∆t)

†
, (3.3.43)

where the matrices ΛαO (t, t + ∆t) and ΛβV (t, t + ∆t) contain the p̂-th singular values as their

( p̂, p̂) elements. ΣαO (t, t + ∆t) and ΣβV (t, t + ∆t) are the overlap matrices between the COs at t

and those at t + ∆t, i.e.,

ΣαO
i j (t, t + ∆t) =

〈

φC
i (t)
∣

∣

∣ φC
j (t + ∆t)

〉

, (3.3.44)

Σ
βV
āb̄

(t, t + ∆t) =
〈

φC
ā (t)
∣

∣

∣ φC
b̄

(t + ∆t)
〉

. (3.3.45)

In the present case, where the number of occupied and virtual MOs does not change with time,

the SVD is equivalent to the diagonalization. The CO-based CIS coefficient matrix for each

state η, Cη,C (t), is also transformed into the SO-based expression:

Cη,S (t) = UαO (t)
†
Cη,C (t) UβV (t) . (3.3.46)

The TDNAC values are obtained via Eq. 3.3.36 using the SO-based CIS coefficients Cη,S (t)

and the SOs
{

φS
p̂

}

. Because the construction of SOs (Eqs. 3.3.42 and 3.3.43) is performed for

each time step, the characters of SOs φS
p̂

(t) and φS
p̂

(t + ∆t) are kept similar to each other without

suffering from the sign flips, reordering, and intermixing of COs. As discussed in Ref. [1], the

use of SOs avoids the tracking problem of COs and allows one to safely employ a comparable-

sized nuclear time step to that typically used in adiabatic MD simulations, i.e., 0.25-0.5 fs, even

with the presence of quasi-degenerate COs.

It should be noted that there exists another method to obtain the TDNAC, called the WO

approach, which is based on the finite-difference approximation using the overlap between the
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adiabatic many-electron wavefunctions2,9,37,80

σηθ (t) ≈
1

2∆t

(〈

ψη (t)
∣

∣

∣ψθ (t + ∆t)
〉

−
〈

ψθ (t)
∣

∣

∣ψη (t + ∆t)
〉)

. (3.3.47)

While the WO approach was also implemented, the SVD-OD approach is used for the calcula-

tions presented later because of its computational efficiency.

Identification of Target States

In SF-based dynamics simulations, the adiabatic states of interest must be identified carefully.

In general, adiabatic states obtained via the SF approach are spin-contaminated because the SF

excitation does not necessarily generate a complete set of configurations to make a spin-pure

configuration state function.81–83 Note that this origin of spin contamination is independent of

the spin contamination in the reference state introduced by the spin-unrestricted approach, and

thus cannot be eliminated even if one uses the restricted open-shell instead. Because the singlet

(
〈

S 2
〉

= 0) and triplet (
〈

S 2
〉

= 2) states in the SF approach are occasionally mixed with each

other because of the spin contamination, it is difficult to find the desired states, i.e., S0 and S1,

on the basis of only
〈

S 2
〉

. In the present study, the TSF-index method proposed by Maeda et

al.,68 was employed. The TSF-index method has been successfully applied to CX searches,68,77

ab initio MD,71,72 and FSSH simulations.75,76 The TSF value is calculated for each state as the

sum of
〈

S 2
〉

and the squared CIS coefficients for the four excitation configurations among the

SOMOs. From the lowest three roots, the one with the largest TSF value is characterized as

triplet (T1), and the remaining two are picked up as S0 and S1. Only the S0 and S1 states are

considered in the FSSH algorithm.
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3.3.3 Numerical Tests

Computational Cost

The CPU time required to calculate the SF excitation energy and its analytical gradient was

measured for the SF-TD-DFT and SF-TD-DFTB using phenyl-substituted ethylenes as the tar-

get molecules with increasing the number of phenyl rings from zero to four (Fig. 3.9(a)). The

ethylenic double bonds of the molecules were twisted with a dihedral angle of 60◦ to mimic

the intermediate situations between the stable geometries at S0 and the S1/S0 CXs. In both

SF-TD-DFTB and SF-TD-DFT calculations, the lowest 10 roots were solved, and the gradi-

ent was calculated for the lowest one. The SF-TD-DFT calculations were conducted on the

GAMESS program84,85 using 6-31G(d,p) and STO-3G basis sets with BHHLYP exchange–

correlation functional,86 which is typically combined with SF-TD-DFT calculations. The re-

sults are presented in Fig. 3.9(b), indicating that the SF-TD-DFTB (green solid line with cross

marks) is 102-103 and 103-104 times faster than the SF-TD-DFT calculations with STO-3G (or-

ange solid line with circles) and 6-31G(d,p) (blue solid line with lozenges), respectively. In

addition, Fig. 3.9(b) shows the CPU time for calculating the TDNAC using the SF-TD-DFTB

with the SVD-OD approach (black dashed line with cross marks). The CPU time is approxi-

mately one order of magnitude lower than that of the excitation energy and gradient (green solid

line with cross marks), suggesting that the TDNAC calculation with the SVD-OD approach is

not the computational bottleneck for SF-TD-DFTB-based NA-MD simulations.
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Fig. 3.9: (a) Ethylene derivatives with n phenyl substitutions. (b) CPU time for calculating SF excitation energy
and gradient vs n using BHHLYP/6-31G(d,p) (blue solid line with lozenges), BHHLYP/STO-3G (orange solid line
with circles), and DFTB (green solid lines with cross marks). CPU time for TDNAC calculation using DFTB with
SVD-OD approach is also shown by black dashed lines with cross marks.

cis↔ trans Photoisomerization of Azobenzene

The proposed method was tested on the photoexcitation-invoked ultrafast cis↔ trans isomer-

ization reactions of azobenzene, which are prototypical targets of nonadiabatic chemical dy-

namics studies with respect to both experiments and computational simulations. Azobenzene

molecules undergo both cis→ trans and trans→ cis isomerization after being excited to S1,
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which has the n→ π∗ character.87

The populations of HOMO→ LUMO excitation configurations at S1 calculated with the SF-

TD-DFTB were 99.98% and 99.80% for cis-azobenzene and trans-azobenzene, respectively,

on the optimized geometries at S0. The HOMOs and the LUMOs, i.e., the lower and higher

SOMOs in the triplet reference states, respectively, are visualized in Fig. 3.10. Only the α-spin

MOs are shown because the shapes of the β-spin MOs did not substantially differ from the α-

spin ones. Fig. 3.10 shows that the HOMOs and the LUMOs have the N-lone-pair character and

the π∗ character, respectively, indicating that the SF-TD-DFTB correctly captured the excitation

character of S1 for cis- and trans-azobenzene.

Fig. 3.10: HOMO of cis-azobenzene (upper left), LUMO of cis-azobenzene (upper right), HOMO of trans-
azobenzene (lower left), and LUMO of trans-azobenzene (lower, right) are indicated by purple and green iso-
surfaces. H, C, and N atoms are represented by white, gray, and blue sticks, respectively. Rendered using the
visualization software VESTA88 with an isosurface level of 0.04.

Fig. 3.11 presents the time-course change of the S1 population in the FSSH simulation

starting from each isomer. The 95% confidence interval obtained using the bootstrap method is

also shown.
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Fig. 3.11: Time-course changes of S1 populations for trans-azobenzene (blue) and cis-azobenzene (red). Error
bars indicate 95% confidence interval.

Tables 3.2 and 3.3 show the calculated photoisomerization quantum yields and excited-state

lifetimes for cis- and trans-azobenzene, respectively, with previous computational and exper-

imental results for comparison. The cis and trans products were distinguished based on the

dihedral angle of the N−−N bond at the final geometry of each trajectory. The dihedral angle was

defined in the range from 0◦ to 180◦. The trajectories that ended up with > 90◦ were classified

as trans products, and the rest were treated as cis products. The S1 lifetimes were estimated

via single-exponential fitting of the decay curves in Fig. 3.11. For cis-azobenzene (Table 3.2),

the photoisomerization quantum yield obtained by the present simulations (41.5%) is reason-

able compared with the experimental value (41%-58%). This result is also comparable with

the previous ab initio results, i.e., from 34 ± 10% to 65%. In addition, the S1 lifetime obtained

by the present simulations (54.1 fs) is consistent with the previous simulation results, which

vary from 52.7 ± 0.6 to 121 fs. Table 3.3 indicates that the quantum yield for trans-azobenzene

(32.6%) is reasonable compared with the experimental results (23%-35%) and the previous ab

initio computational results (from 11%-16% to 33 ± 5%), as well as the semiempirical results

(from 17% to 46 ± 8%). The S1 lifetime of trans-azobenzene obtained from the present calcu-

lations is 0.380 ps. While this is a shorter estimation than the previous ab initio results, which

range from 0.81 ± 0.10 to 2.218 ± 0.010 ps, the present result falls within the experimentally
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Table 3.2: Quantum yields of photoisomerization and excited-state lifetimes of cis-azobenzene upon S0 → S1

excitation.

Ref.
Electronic structure

method
Dynamics

method
cis→ trans

quantum yield (%)
S1 lifetime (fs)

This work SF-TD-DFTB FSSH 41.5 54.1
[89] SA5-CASSCF(6e,4o) FSSH 45 6 × 101

[23] SA2-CASSCF(6e,6o) ZNa 39 ± 4 53.1 ± 3.0
[90] SA3-CASSCF(10e,8o) FSSH 65 67
[74] SF-TD-DFT(BHHLYP) FSSH 34 ± 10 52.7 ± 0.6
[74] SF-TD-DFT(BHHLYP) ZNa 43 ± 7 63.1 ± 0.1
[74] TD-DFT(BHHLYP) ZNa 34 ± 9 62.0 ± 0.9
[54] TD-DFT(BLYP) FSSH 58 121

[91]
Semiempirical(AM1)/

CASCI(4e,6o)
FSSH 61 ± 3 N/Ac

[91]
Semiempirical(AM1)/

CASCI(4e,6o)
FMSb 68 ± 11 N/Ac

[92]
Semiempirical(OM2)/

MRCI
FSSH 58 60-116

[87] Experiment 41-58d N/Ac

[93] Experiment N/Ac 170

aSurface hopping with Zhu–Nakamura-theory-based hopping probability.
bFull multiple spawning.
cNo data available.
dDepending on solvents.

observed range (0.26-2.02 ps). Notably, the previous studies, computational or experimental,

consistently result in lower photoisomerization quantum yield and longer S1 lifetime for cis-

azobenzene (Table 3.2) compared with those of trans-azobenzene (Table 3.3). The results in

the present study also follow this trend.

3.3.4 Conclusion

This section presented an approach that combined the FSSH algorithm and the approximate SF-

TD-DFT in the DFTB framework, i.e., the SF-TD-DFTB. The analytical gradient of excited-

state energy was derived, and the TDNAC calculation algorithm was presented as the SF version

of the SVD-OD approach. The computational time of the SF-TD-DFTB was approximately 102-

103 and 103-104 times lower than that of the SF-TD-DFT with 6-31G(d,p) and STO-3G basis

sets, respectively, demonstrating the computational efficiency of the present approach. In addi-
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Table 3.3: Quantum yields of photoisomerization and excited-state lifetimes of trans-azobenzene upon S0 → S1

excitation.

Ref.
Electronic structure

method
Dynamics

method
trans→ cis

quantum yield (%)
S1 lifetime (ps)

This work SF-TD-DFTB FSSH 32.6 0.380
[89] SA5-CASSCF(6e,4o) FSSH 28 ± 14 1.86
[23] SA2-CASSCF(6e,6o) ZNa 33 ± 5 0.81 ± 0.10
[74] SF-TD-DFT(BHHLYP) ZNa 11-16 2.218 ± 0.010
[74] TD-DFT(BHHLYP) ZNa 13 ± 16 1.039 ± 0.009

[91]
Semiempirical(AM1)/

CASCI(4e,6o)
FSSH 33 ± 3 N/Ac

[91]
Semiempirical(AM1)/

CASCI(4e,6o)
FMSb 46 ± 8 N/Ac

[94]
Semiempirical(OM2)/

MRCI
FSSH 17 0.258

[87] Experiment 23-35 N/Ac

[95] Experiment N/Ac 0.26-2.02d

aSurface hopping with Zhu–Nakamura-theory-based hopping probability.
bFull multiple spawning.
cNo data available.
dDepending on solvents and pump/probe wavelengths. For each condition, the original literature presents multiple

time constants with their relative weights obtained via multiexponential fitting. The average lifetimes, i.e., the

weighted-average values, are indicated in this table.

tion, as a test of numerical performance, FSSH simulations were conducted for the cis↔ trans

photoisomerization reactions of azobenzene. The S1 lifetime and the quantum yield of the

product for the cis → trans reaction were estimated to be 41.5% and 54.1 fs, respectively.

The results for the trans → cis reaction were 32.6% and 0.380 ps, respectively. Agreement of

these results with the experimental values was at the comparable level with that of the previ-

ous ab-initio-based NA-MD results, suggesting that the use of the simplified method, i.e., the

SF-TD-DFTB, does not significantly deteriorate the accuracy of NA-MD simulations.
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3.4 NA-MD Method with Combined DC and SF-TD-DFTB

Approach for Condensed-Phase Nonradiative Relaxation

Phenomena

3.4.1 Introduction

Nonradiative relaxation, in which excited species decay to the ground state via internal conver-

sion without emitting photons, holds the key to various photochemistry-related problems that

are interested in both fundamental and industrial contexts. For example, nonradiative relaxation

is one of the factors controlling aggregation-induced emission phenomena,96 the luminescence

quantum yield of OLEDs,97 and the photoelectric conversion efficiency of solar cells.98 Im-

portantly, many of the nonradiative-relaxation-related phenomena of interest occur in the con-

densed phase. For instance, spectroscopic experiments are typically conducted in the liquid or

solid phase. Moreover, most commercial photoelectronic devices consist of condensed matter;

for example, the core components of OLEDs are amorphous organic layers, which are mixtures

of electron-/hole-transporting molecules (host materials) and luminescent molecules.99

The importance of the nonradiative relaxation dynamics motivates the research commu-

nity toward a microscopic understanding, where computational approaches should play a key

role. In particular, hybrid approaches of quantum mechanical treatment of electrons and clas-

sical treatment of nuclei, i.e., NA-MD methods,26 including trajectory surface hopping,6,14,25

are established as efficient and yet reasonably accurate tools to explore nonadiabatic dynam-

ics. However, computational simulations of condensed-phase nonradiative relaxation dynam-

ics are challenging for two reasons. First, nonradiative relaxation involves S1/S0 CXs, which

have a strong multireference character and cannot be correctly described with ordinary single-

reference excited-state calculation techniques such as linear-response TD-DFT.52,60 Second, in

general, chemical phenomena in condensed phases are strongly affected by the environment,

e.g., by solvent molecules; explicit consideration of the environment imposes a very high com-
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putational cost, which makes it difficult or even impossible.

Regarding the first problem, to mitigate the drawbacks of single-reference methods while

retaining their advantages, i.e., simplicity of formulation and low computational cost, SF ap-

proach61,62 is widely accepted. The SF method in effect incorporates a multireference character

into the single-reference framework by using spin-flipping excitation from a high-spin refer-

ence state. TD-DFT in the SF framework (SF-TD-DFT)63 is a standard tool for exploring S1/S0

CXs64–70 and dynamics involving them.71–76 Notably, a tight-binding approximated version of

SF-TD-DFT, i.e., SF-TD-DFTB, was proposed recently. Its accuracy is reportedly comparable

to that of conventional ab initio electronic structure methods (including SF-TD-DFT), but its

computational cost is several orders of magnitude lower.47,70

The root of the second difficulty, i.e., the high computational cost, is the high-order scaling

of the computational time required for typical excited-state calculation methods with system

size. Fragmentation-based frameworks,100–103 e.g., the fragment MO method,104–108 are fre-

quently used for calculations of large systems because the cost scales only linearly. Among

them, the DC technique109–115 has been successful in practical applications. Because the DC

method naturally allows interfragment exchange of electrons and atoms, DC-based approaches

have been used to investigate multifaceted chemical problems that involve 103–104 atoms: the

proton and hydroxide ion transfer dynamics in water116,117 and in a protein,118 ion diffusion in

electrolyte solutions for batteries,119 and polaron formation in a perovskite solar cell material.120

Furthermore, the DC method has been extended to excited-state (adiabatic and nonadiabatic)

MD simulations.1,43,121,122

This section proposes an efficient trajectory surface hopping approach suitable for treating

condensed-phase nonradiative relaxation dynamics by combining the SF-TD-DFTB and DC

techniques.
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3.4.2 Theory

Method Overview

Tully’s FSSH (Subsection 3.1.1)6 was employed as the NA-MD framework. In the FSSH

scheme, the electronic and nuclear DOFs are simultaneously propagated according to the TD

Schrödinger equation and the classical EOM, respectively. The adiabatic-state wavefunctions,

energies, and energy gradients were obtained on the fly using the DC-SF-TD-DFTB method,

which is described below. The TDNACs among the adiabatic states were calculated using an

OD approach based on SVD, called SVD-OD method, which is also presented in this section.

DC-SF-TD-DFTB

Here, the DC-based SF-TD-DFTB calculation method, DC-SF-TD-DFTB, is presented. The

method of excited-state calculations based on SF-TD-DFTB technique was described in Sub-

section 2.3.3. Two strategies for DC-based excited-state calculations have been reported: the

dynamical polarizability approach for nonlocal excitation123–125 and the EC approach for lo-

cal excitation.43,115,121,122 Here, the latter, which has been adopted in excited-state MD simu-

lations, was employed. In the DC-SF-TD-DFTB approach, the SF-TD-DFTB eigenequation

(Eq. 2.3.18) is solved for a specific localization region that includes the EC, which is referred

to hereafter as the ECL region. Other localization regions are treated in the same way as in the

ground-state DC-DFTB method. To adapt the EC approach to the SF(-TD-DFTB) method, the

ECL region must have the spin multiplicity that is appropriate as the reference state. Therefore,

an additional approximation is made in the proposed approach; a shifted Fermi level ǫσF,ECL is

adopted for the ECL region, and the other localization regions share the common Fermi level

ǫσF,out, as in the conventional DC scheme. The Fermi levels of the ECL region and the other

regions are related to each other through the shift quantity ∆:

ǫσF,ECL = ǫ
σ
F,out ± ∆, (3.4.1)
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where ± is + and − for σ = α and σ = β, respectively. For each SCC iteration, ∆ is determined

on the fly to satisfy both of the following conditions.

1. NαECL −N
β

ECL = ∆N, where NσECL is the number of σ-spin electrons in the ECL region, and

∆N is the expected difference in the number of α- and β-spin electrons for the desired

spin multiplicity; for example, ∆N = 2 for triplet.

2. Nσ = Nσ0 .

Note that the value of ∆ is uniquely determined from the above conditions, because the numbers

of α- and β-spin electrons in each subsystem are monotonic with respect to the α- and β-spin

Fermi levels, respectively.

TDNAC Calculation: SVD-OD Approach

The TDNAC calculation method for the DC-SF-TD-DFTB approach is presented in the follow-

ing. The method is based on the SVD-OD algorithm, which was originally developed for the

DC-TD-DFTB technique,1 but is rewritten as the SF version according to the author’s previous

study.47 A major obstacle to TDNAC calculations in the DC framework is that atoms may enter

or exit the buffer region of the ECL region because of changes in the atomic coordinates with

time; such events change the dimensionality of the adiabatic wavefunctions in the ECL region

(Eq. 2.3.23), making the TDNAC values meaningless or undefined.1 In the SVD-OD method,

which has been introduced to avoid this problem, SOs
{

φS
i

}

are constructed by the unitary trans-

formation of the MOs {φi}:

φS
i (t) =

∑

j

φ j (t) U ji (t) , (3.4.2)

φS
i (t + ∆t) =

∑

j

φ j (t + ∆t) U ji (t + ∆t) , (3.4.3)
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where the transformation matrices U (t) and U (t + ∆t) are obtained by SVD:

Σ (t, t + ∆t) = U (t)Λ (t, t + ∆t) U (t + ∆t)† . (3.4.4)

Here, the element (k, k) of the matrix Λ (t, t + ∆t) is the singular value λk (t, t + ∆t) (0 ≤

λk (t, t + ∆t) ≤ 1) corresponding to the k-th singular vector. The singular values and singu-

lar vectors are sorted in descending order, i.e., λ1 > λ2 > · · · . The matrix Σ (t, t + ∆t) is the MO

overlap matrix between the times t and t + ∆t:

Σi j (t, t + ∆t) =
〈

φi (t)
∣

∣

∣ φ j (t + ∆t)
〉

. (3.4.5)

Note that SOs are separately constructed for the α-occupied, α-virtual, β-occupied, and β-virtual

spaces, although here only the α-occupied case is shown as an example. As the singular value

λk (t, t + ∆t) measures the similarity of the SOs φS
k

(t) and φS
k

(t + ∆t), the SOs with singular

values close to unity, i.e., larger than a threshold value λthresh, are picked up to expand the

common space; the other SOs are discarded. The adiabatic wavefunctions are re-expressed

within the common space as

ψ̃η (t) =
ÑαO
∑

i

Ñ
β

V
∑

ā

X
η

iā
(t) Φ̃ā

i (t) . (3.4.6)

Here, X
η

iā
is an SO-based expression of the response matrix X

η

jb̄
:

X
η

iā
(t) =

∑

jb̄

Ui j (t) X
η

jb̄
(t) U

†

b̄ā
(t) . (3.4.7)

ÑαO and Ñ
β

V are the numbers of α-spin occupied and β-spin virtual SOs that expand the common

space, respectively. Φ̃ā
i

is the SO-based Slater determinant of the i→ ā excitation configuration
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and is expressed within the common space:

Φ̃ā
i =

∣

∣

∣

∣

∣

φS
1 · · · φ

S
i−1φ

S
āφ

S
i+1 · · · φ

S
ÑαO
φS

1̄ · · · φ
S
Ñ
β

O

∣

∣

∣

∣

∣

. (3.4.8)

On the basis of this expression, the TDNAC is calculated using the analytical time-derivative

form for CIS type wavefunctions:3

σηθ (t) =
ÑαO
∑

i

Ñ
β

V
∑

ā

X
η

iā
(t)
∂X θ

iā
(t)

∂t

+

ÑαO
∑

i

Ñ
β

V
∑

ā

Ñ
β

V
∑

b̄

X
η

iā
(t) X

θ

ib̄
(t)
〈

φS
ā (t)

∣

∣

∣

∣

∣

∣

∣

∂φS
b̄

(t)

∂t

〉

− Pi j

ÑαO
∑

i

ÑαO
∑

j

Ñ
β

V
∑

ā

X
η

iā
(t) X

θ
jā (t)
〈

φS
j (t)

∣

∣

∣

∣

∣

∣

∂φS
i

(t)

∂t

〉

. (3.4.9)

Here, the phase factor Pi j is unity when the SOs in the Slater determinants are ordered as

described in Eq. 3.4.8, i.e., when φS
i

in the reference configuration is replaced by φS
ā (without

reordering) to construct the Slater determinant for the i→ ā configuration. The time derivatives

in Eq. 3.4.9 are calculated using the finite-difference approximation:

∂X
η

iā
(t)

∂t
≈

1
∆t

(

X
η

iā
(t + ∆t) −X

η

iā
(t)
)

, (3.4.10)
〈

φS
p (t)

∣

∣

∣

∣

∣

∣

∂φS
q (t)

∂t

〉

≈
1
∆t

〈

φS
p (t)
∣

∣

∣ φS
q (t + ∆t)

〉

. (3.4.11)

Adiabatic State Tracking

The SF approach generally does not yield the spin-complete set of configurations. In particular,

when the singlet states are of interest, i.e., the reference state is triplet, a spin-complete de-

scription can be obtained only within the two-electron–four-orbital space among the α HOMO,

α LUMO, β HOMO, and β LUMO; all the other excitations lack some of the configurations

needed to make the spin eigenfunctions.81–83 As a result, the adiabatic states in the SF frame-

work are spin-contaminated, and a large number of unphysical mixed singlet–triplet states, i.e.,
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〈

S 2
〉

≈ 1 states, are found. Hence, it is a nontrivial task to identify the correct singlet states

from the obtained roots. The TSF index method,68 which is typically used for this purpose, is

based on the TSF value calculated from the
〈

S 2
〉

and CIS coefficients, where TSF ≈ 0 for sin-

glet states and TSF ≈ 2 for triplet states in general. Although the TSF index method is a robust

approach when the desired states are expected to be found in lowest a few roots, this is not nec-

essarily the case when the DC-SF-TD-DFTB approach is used because the environment, e.g.,

solvent molecules, is explicitly included. Alternatively, the procedure illustrated in Fig. 3.12

was employed. Fig. 3.12 shows a flowchart for determining the indices of the roots, θx (t), cor-

responding to the correct Sx states at time t. The present scheme uses
〈

S 2
〉

as the criterion if

possible. When
〈

S 2
〉

-based selection becomes problematic, the scheme identifies the states of

the next time step so that they are energetically close to, and have a large TDNAC with, the

states of the current time step, to maintain the state characters. The routine is repeated for every

nuclear time step.

3.4.3 Numerical Tests

This subsection presents and discusses the results of benchmark calculations using the devel-

oped method. The method was implemented in the development version of the Dcdftbmd

code,39 and all the DFTB calculations were performed using this program with the 3OB pa-

rameter set.44 Dispersion correction was included via Grimme’s D3 scheme126 using Becke–

Johnson damping.127 Time steps for integrating the TD Schrödinger equation (Eq. 3.1.2) and

the Newton’s equation (Eq. 3.1.5) were set to 0.01 and 0.5 fs, respectively. For the DC-based

calculations, rbuf = 4.0 Å and B = 800 hartree−1 were employed, and each molecule was treated

as a subsystem. The threshold for singular values in the SVD-OD method (λthresh) was set to

0.95. Classical MD calculations for preliminary equilibration were performed using the GRO-

MACS code.41
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Fig. 3.12: Flowchart of singlet state identification scheme. θx (t) is the index of the root corresponding to the
Sx state at time t. ntarget is the number of adiabatic states of interest.

〈

S 2
〉

max
, ∆Emax, and σmin are threshold

parameters.

Accuracy of DC Approach

The accuracy of the DC-SF-TD-DFTB approach is compared with that of the SF-TD-DFTB ap-

proach without the DC scheme. The target system is an acetonitrile solution of thymine, which

is composed of one thymine molecule and 89 acetonitrile molecules within a 2 nm×2 nm×2 nm

periodic box. The time-course changes in the TDNAC between the S1 and S0 states were calcu-

lated using SF-TD-DFTB and DC-SF-TD-DFTB over the same predetermined nuclear trajec-

tory constructed using a DFTB-MD run. The DFTB-MD simulation was conducted under the

NVT ensemble at T = 298.15 K using an Andersen thermostat128 after an equilibration run of

2.0 ps following pre-equilibration by a classical MD simulation. Figure 3.13 shows the SF-TD-
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DFTB (blue solid line) and DC-SF-TD-DFTB results (orange dotted line), which agree well

with each other. The results suggest that the error originating from fragmentation is negligibly

small in the context of nonadiabatic dynamics simulations.

Fig. 3.13: Time-course changes in TDNAC between S1 and S0 states (σ10) for a predetermined nuclear trajectory
of a thymine+89 acetonitrile system, calculated using SF-TD-DFTB without DC (blue solid line) and DC-SF-TD-
DFTB (orange dotted line).

Computational Cost

Figure 3.14 shows the measured CPU times for the (DC-)SF-TD-DFTB calculations of the

excitation energy, excitation energy gradient, and TDNAC for acetonitrile solution models of

thymine with various numbers of solvent molecules, n. Each data point in Fig. 3.14 represents

the averaged result of 11 trials. The SF-TD-DFTB results (solid lines with circles) show a

rapid increase with n. By contrast, the DC-SF-TD-DFTB results (dashed lines with lozenges)

are essentially constant as n is increased, suggesting that the DC-SF-TD-DFTB approach can

simulate systems with hundreds of molecules without a significant increase in the computational

burden.

3.4.4 Conclusion

The SF-TD-DFTB/FSSH technique has been established as an efficient NA-MD technique ca-

pable of treating the nonradiative relaxation processes of excited molecules.47 In the present
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Fig. 3.14: CPU time required to calculate excitation energy and its gradient (blue) and TDNAC (orange) versus
the number of solvent molecules (n) for acetonitrile solutions of thymine. Results with and without the use of DC
are shown by dashed lines with lozenges and solid lines with circles, respectively.

study, this strategy was extended to simulations of condensed-phase nonradiative relaxation

processes by introducing the DC fragmentation scheme, which enables the explicit quantum-

mechanical treatment of entire systems including environmental species, without a prohibitively

high computational cost. Numerical tests using acetonitrile solutions of thymine showed that

the S1/S0 TDNACs obtained using the DC-SF-TD-DFTB method and the conventional method,

i.e., SF-TD-DFTB, were in good agreement, indicating that the proposed approach is reasonably

accurate. In addition, although the CPU time required for the SF-TD-DFTB method increased

sharply with increasing number of solvent molecules, that required for the DC-SF-TD-DFTB

calculations remained constant at a manageable level even when the system contained several

hundreds of molecules.
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Chapter 4

Structure Dependence of Nonradiative

Relaxation Mechanism of Excited

Molecules: Case Studies on

Tetraphenylethylene and Its Derivative†

4.1 Introduction

TPE and its derivative (2OTPE) (Fig. 4.1), which were experimentally studied by Shi et al.2

while exploring the mechanism of the AIE, illustratively exemplify the molecular-structure de-

pendence of nonradiative relaxation dynamics. The term AIE denotes a class of phenomena, in

which some types of molecules that are not fluorescent in the solution phase exhibit substan-

tially strong fluorescence in aggregate form.3 From the general perspective, the AIE phenomena

are ascribed to the hindrance of specific intramolecular DOFs that lead to nonradiative decay

from the excited state. In particular, the RIR has been proposed as one of the typical mecha-

nisms.4 The RIR concept is based on the viewpoint that the propeller-like rotation of aromatic

rings around the single bond plays a critical role in nonradiative decay; in the aggregate form,

†Reprinted with permission from Ref. [1]. Copyright 2020 American Chemical Society.
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the rotation should be sterically hindered by the presence of surrounding molecules, resulting in

an excited-state lifetime that is long enough for fluorescence to be observed. The TPE molecule

(Fig. 4.1, left) has torsional DOFs about the four single bonds between the phenyl rings and the

ethylene unit. Conversely, in the 2OTPE molecule (Fig. 4.1, right), the geminal phenyl rings

are bridged with O atoms, so that the propeller-like rotation of these rings is prohibited. They

reported that TPE is not fluorescent in the solution phase but exhibits fluorescence in the crystal

phase. On the contrary, 2OTPE has substantial FQY in both solution and crystal. From the

phenomenological point of view, this result suggests that locking the torsional rotation about

the phenyl–ethylene single bonds elongates the excited-state lifetime of this class of molecules,

in line with the RIR concept. However, thus far, limited knowledge is available regarding the

detailed pathway of the nonradiative decay of these molecules (in particular, 2OTPE) and the

manner in which the restriction of phenyl ring rotation affects it.

In this chapter, using the SF-TD-DFTB/FSSH technique, which was described in Section

3.3, the nonradiative decay processes of TPE and 2OTPE are simulated in the gas phase. The

obtained excited-state lifetime for 2OTPE is longer than that for TPE in several orders of mag-

nitude, being consistent with the abovementioned experimental results on FQY. In addition, the

underlying mechanism of the difference in the excited-state lifetimes between TPE and 2OTPE

is discussed in detail from the points of view of NA-MD trajectories, MECX structures, and

potential energy landscapes.

Fig. 4.1: Structures of TPE (left) and 2OTPE (right).2
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4.2 Computational Details

All the DFTB calculations were performed using Dcdftbmd code5 with the 3OB parameter set.6

SF-TD-DFTB/FSSH simulations were started from the S1 state and performed without a ther-

mostat. For each target system, 2000 independent trajectories were collected to obtain statistical

convergence. These trajectories differ from each other with respect to the initial geometry, ini-

tial velocity, and the seed for random numbers. Time steps of 0.25 and 0.01 fs were adopted for

numerical integration of the EOM for the nuclei (Eq. 3.1.5) and the TD electronic Schrödinger

equation (Eq. 3.1.2), respectively. The dispersion correction was included using Grimme’s D3

scheme7 with Becke–Johnson damping.8 The initial structures and velocities for FSSH simu-

lations were sampled from closed-shell DFTB-MD trajectories in the S0 state under the NVT

ensemble with the temperature controlled to 298.15 K using the Andersen thermostat,9 follow-

ing equilibration runs of 50 ps. The intervals between subsequent samplings were 250 fs or

longer.

4.3 Results and Discussion

Figure 4.2 shows the time trace of S1 populations obtained by the FSSH simulations for TPE and

2OTPE, indicating that the S1 → S0 decay of TPE (magenta) occurred on a subpicosecond time

scale, while that of 2OTPE (black) was significantly slower. The S1 lifetimes of TPE and 2OTPE

estimated by single-exponential fitting were 0.742 and 119 ps, respectively. These results are

qualitatively consistent with the experimentally observed FQY of these molecules in solution

(Table 4.1). Note that the FQY of a molecule is determined in general by the competition

between the spontaneous emission and other nonradiative decay channels; in other words, the

slower nonradiative relaxation suggests the higher FQY.
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Table 4.1: FQY (%) of TPE and 2OTPE in solution and in crystal. Data taken from Ref. [2].

Solution Crystal
TPE ∼ 0a 24.6

2OTPE 30.1 30.8

aNot detected.

Fig. 4.2: Time-course changes of S1 populations for TPE (magenta) and 2OTPE (black). Error bars indicate 95%
confidence interval.

Typically, nonradiative decay pathways are understood in a schematic picture whereby the

molecules move through the MECXs from the excited state(s) to the ground state. Figure 4.3

shows the MECX structures of TPE and 2OTPE optimized with the combined use of the SF-

TD-DFTB and the branching-plane updating method.10 The optimized structures at S0 are also

shown for comparison. There has been a debate on the principal pathway of the S1 → S0 decay

of TPE. On the one hand, it has been suggested that the decay involves a twist of the ethylenic

C−−C bond by approximately 90◦.11–15 On the other hand, some researchers have proposed a

different path via quasi C−C bond formation between the vicinal phenyl rings.16–18 Another path

has been proposed, where the propeller-like torsion of phenyl rings around the ethylene-phenyl

single bonds plays a key role.19,20 Two MECXs for TPE, which are hereafter termed twist-

type and cycle-type MECXs (Figs. 4.3(c) and 4.3(d), respectively), were found. The similar

twist- and cycle-type MECX structures were also recognized for 2OTPE (Figs. 4.3(e) and 4.3(f),

respectively). Figure 4.3 indicates the two DOFs that characterize the twist and cycle MECXs,
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i.e., the twisting angle of the C−−C bond (ϕ, 0◦ ≤ ϕ ≤ 90◦) and the minimum distance between

the vicinal phenyl rings (d), respectively. In Fig. 4.3, the twist-type and cycle-type MECXs

have twisted ethylenic C−−C bonds with ϕ ≈ 90◦ and closely contacted vicinal phenyl rings

(d ≈ 1.7 Å), respectively, suggesting that the twist-type and cycle-type MECXs correspond to

the abovementioned “C−−C bond twisting” path and the “quasi C−C bond formation” paths,

respectively.

Fig. 4.3: (a), (b): S0 stable geometry of TPE and 2OTPE, respectively. (c), (d): twist-type MECX of TPE and
2OTPE, respectively. (e), (f): cycle-type MECX of TPE and 2OTPE, respectively. Optimized with SF-TD-DFTB.
C, H, and O atoms are represented by gray, white, and red sticks, respectively. Twisting angle of ethylenic C−−C
bond (ϕ) and minimum distance between vicinal phenyl rings (d) are also shown.

For each FSSH trajectory, ϕ and d at the moment of the S1 → S0 transition are indicated as

a circle in Fig. 4.4. The S1/S0 energy gap is also represented by the color of the circle. For TPE

(Fig. 4.4(a)), most of the S1 → S0 transitions occurred with a significant twist of the C−−C bond

(ϕ > 60◦) and a narrow S1/S0 energy gap (< 1.0 eV), suggesting that the twist-MECX route is

dominant for the nonradiative decay of TPE. In the case of 2OTPE (Fig. 4.4(b)), the number
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of trajectories passing through the twist-MECX route, which is characterized by ϕ ≈ 90◦, is

significantly decreased compared with that for TPE. The plot also indicates that the S1 → S0

transitions of 2OTPE mostly occurred in the region of ϕ < 30◦ and 2.5 Å < d < 3.0 Å, where

the S1/S0 gap is substantially large (> 1.0 eV). This result suggests that the structural dynamics

toward the twist-MECX is hindered in the case of 2OTPE, resulting in its long S1 lifetime.

Notably, the cycle-MECX route did not become the main pathway while the twist-MECX route

was impeded.

Fig. 4.4: Distribution of φ, d, and the S1/S0 energy gap at the S1 → S0 transitions, obtained from FSSH simulations
for TPE (a) and 2OTPE (b). ϕ and d are represented by positions of circles, and the S1/S0 energy gap is indicated
by their colors.

S1 potential energy profiles with respect to ϕ and d are shown in Fig. 4.5. Each data point

in the profiles was obtained by structural relaxation on the S1 PES with fixing the DOF corre-

sponding to the horizontal axis, i.e., ϕ or d. The potential profiles for d (Figs. 4.5(c) and 4.5(d)

for TPE and 2OTPE, respectively) suggest that there are large (1.50 and 0.51 eV for TPE and

2OTPE, respectively) energy barriers in the pathways from the FC-like point (d = 3.08 Å and

d = 2.89 Å for TPE and 2OTPE, respectively) to the cycle-type MECXs (d ≈ 1.7 Å), which

explains the reason why the cycle-MECXs were not the main routes for S1 → S0 decay in the

present FSSH simulations.

Conversely, in Fig. 4.5(a), it is clear that the C−−C bond twisting of TPE is driven from

the FC-like point (ϕ = 11◦) toward the twist-MECX (ϕ = 89◦). Because the potential energy

difference between the starting point (ϕ = 11◦) and the S1 minimum (ϕ = 52◦) is approximately
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0.3 eV, this energetically downhill process may provide the molecule with sufficient kinetic

energy to overcome the small barrier at ϕ = 85◦ (0.057 eV). The rapid S1 → S0 decay of TPE

and the dominant role of the twist-type MECX route can be understood from this result.

For the C−−C bond twisting of 2OTPE (Fig. 4.5(b)), two different potential energy profiles

were obtained, depending on the conformations shown in Fig. 4.6, which are hereafter called

the louver-type and seesaw-type. In the louver-type conformation, the two Ph−O−Ph units

are in parallel, like slats in a louver window. The seesaw-type conformation has a staggered

arrangement of the two Ph−O−Ph units. The S0 stable geometry of 2OTPE (Fig. 4.3(b)) has

the louver-type conformation, and this has also been experimentally confirmed in Ref. [2] by

X-ray diffraction measurements. The twist-type and cycle-type MECXs (Figs. 4.3(d) and 4.3(f),

respectively) have the seesaw-type and louver-type conformations, respectively. Note that such

conformational isomers are not present for TPE, in which the phenyl rings are allowed to rotate

around the ethylene-phenyl single bonds. The potential energy profiles about the twisting angle

ϕ for louver- and seesaw-type conformations of 2OTPE are shown in Fig. 4.5(b) with blue and

orange lines, respectively. The plot for louver breaks off at ϕ = 44◦ because louver-type energy

minima were not found for ϕ > 44◦. The potential energy profiles indicate that the C−−C bond

twisting of 2OTPE from the FC-like point (ϕ = 0◦ with the louver-type conformation) is an

energetically uphill process, which may be ascribed to the steric repulsion between the two

Ph−O−Ph units. In addition, because the molecule has the louver-type conformation at the

FC point, the twist-type MECX cannot be accessed without transformation to the seesaw-type

conformation, which may need to overcome some additional energy barriers. The infrequency

of the S1 → S0 decay via the twist-type MECX for 2OTPE (Fig. 4.4(b)) can be understood from

this point of view, suggesting that the effect of locking phenyl rings on the excited-state lifetime

is indirect, in the sense that it blocks the twisting motion of the ethylenic C−−C bond, which is

the main nonradiative decay pathway of TPE.
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Fig. 4.5: Potential energy profiles on S1 obtained using constrained geometry optimization. (a), (b): Scanned with
ϕ for TPE and 2OTPE, respectively. (c), (d): Scanned with d for TPE and 2OTPE, respectively.

Fig. 4.6: Structures of louver (left) and seesaw (right) conformers of 2OTPE at ϕ = 25◦.

Figure 4.7 presents the time trace of potential energies, ϕ, and d for representative FSSH

trajectories. In the twist-type MECX route for TPE (Fig. 4.7(a)), ϕ increased in an essentially

monotonic manner from t = 0, accompanied by a decrease in the S1 potential energy. Fi-

nally, the molecule underwent the S1 → S0 transition at the CX with ϕ ≈ 90◦ (t = 621 fs).

Conversely, Fig. 4.7(b) shows an example of the S1 → S0 decay trajectory of 2OTPE with-

out passing through any CXs, which was the main nonradiative relaxation route in the present

FSSH simulations. The S1 → S0 transition (at t = 966 fs) occurred jumping over the large en-
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ergy gap (1.61 eV). It can also be seen that the time-course changes of ϕ and d do not show any

characteristic behavior other than thermal fluctuations, suggesting that this type of nonradiative

relaxation process may not be linked to a specific mode of structural dynamics. In addition, an

example of the twist-type MECX route for 2OTPE, which was the minor pathway, is also shown

(Fig. 4.7(c)). Figure 4.7(c) indicates that ϕ tended to increase with time until t ≈ 1000 fs. On the

contrary, the S1 potential energy did not substantially change until t ≈ 600 fs, indicating a lack

of driving force, but started to decrease at t ≈ 600 fs. This result contrasts with the case of TPE

(Fig. 4.7(a)), where the increase in ϕ toward the twist-type MECX and the decrease in the S1

potential energy were synchronized. The molecular structures around t = 600 fs are visualized

in Fig. 4.8, in which the molecule initially had the louver conformation but transformed to the

seesaw conformation at t = 600 fs. Keeping in mind the S1 potential energy profile (Fig. 4.5(b)),

where the C−−C bond twisting of 2OTPE is slightly unfavorable in the louver conformation but is

favorable in the seesaw conformation, it can be concluded that the change in the tendency of the

S1 potential energy in Fig. 4.7(c) at t ≈ 600 fs is a result of the louver→ seesaw transformation.
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Fig. 4.7: Time trace of potential energies, ϕ, and d for representative trajectories that exhibited S1 → S0 transitions.
(a) TPE, via twist-type MECX. (b) 2OTPE, via twist-type MECX. (c) 2OTPE, not passing through CXs. S0

potential energy at t = 0 is set to zero. Red circles indicate S1 → S0 transitions.

Fig. 4.8: Snapshots of 2OTPE molecular structures in the example trajectory presented in Fig. 4.7(c). C, H, and O
atoms are represented by gray, white, and red sticks, respectively.
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4.4 Conclusion

This chapter reported a practical application of the developed SF-TD-DFTB/FSSH method, tar-

geting the nonradiative relaxation processes of the photoexcited TPE and its derivative where

the phenyl rings are bridged with O atoms (2OTPE), in the context of exploring the essence of

the RIR mechanism of AIE. The present FSSH simulations estimated the excited-state lifetimes

of TPE and 2OTPE at subpicoseconds and > 100 ps, respectively, in agreement with the ten-

dency of the experimental FQY in solution. The simulations also clarified that the main pathway

of the nonradiative decay of TPE is characterized by the twist of the C−−C bond, while the non-

radiative decay via this route was barely observed in the case of 2OTPE. This is because locking

the phenyl rings makes a significant difference in the S1 potential energy landscape of 2OTPE

from that of TPE. For TPE, the twisting motion around the C−−C bond is energetically favorable

in S1. Conversely, because the S0 stable structure of 2OTPE has a conformation in which the

two Ph−O−Ph units are arranged in parallel, the twisting motion around the C−−C bond in S1

becomes energetically uphill because of the steric repulsion between the two Ph−O−Ph units.
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Chapter 5

Environment Dependence of Nonradiative

Relaxation Mechanism of Excited

Molecules: Case Studies on

trans-Azobenzene Solutions

5.1 Introduction

Solvent dependence of nonradiative relaxation processes of trans-azobenzene is an illustrative

example of the importance of the environment for nonadiabatic dynamics. Upon photoexcita-

tion to the S1 (n→ π∗) state, trans-azobenzene undergoes nonradiative relaxation associated

with an isomerization reaction to the cis isomer, which passes through S1/S0 CXs. Two paths

for this reaction have been proposed: rotation and inversion mechanisms, whose key DOFs are

the C−N−−N−C torsional angle and N−−N−C bond angle, respectively.1–3 Using fluorescence

anisotropy measurements, Chang and co-workers3 proposed that the isomerization route de-

pends on the solvent viscosity. The rotation mechanism is dominant in low-viscosity solvents,

e.g., hexane, but it is hindered in high-viscosity solvents, e.g., ethylene glycol, and the inversion
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route makes a significant contribution in such situations.

With this background, in this chapter, DC-SF-TD-DFTB/FSSH simulations are conducted

for the nonradiative relaxation processes of n→ π∗ excited trans-azobenzene in hexane, in

ethylene glycol, and in the gas phase. Tendency in the resulting excited-state lifetimes, which

depend on the solvents, is consistent with the experimental results. The solvent dependence of

the results is discussed from the viewpoint of viscosity of the solvents.

5.2 Computational Details

All the DFTB calculations were performed using the Dcdftbmd code4 with the 3OB parame-

ter set.5 Dispersion correction was included via Grimme’s D3 scheme6 using Becke–Johnson

damping.7 Time steps for integrating the TD Schrödinger equation (Eq. 3.1.2) and Newton’s

equation (Eq. 3.1.5) were set to 0.01 and 0.5 fs, respectively. For the DC-based calculations,

rbuf = 4.0 Å and B = 800 hartree−1 were employed, and each molecule was treated as a sub-

system. The threshold for singular values in the SVD-OD method (λthresh) was set to 0.95.

Classical MD calculations for preliminary equilibration were performed using the GROMACS

code.8 Each solution model (Fig. 5.1) was a 3 nm × 3 nm × 3 nm periodic box containing a

trans-azobenzene molecule as the solute with 122 hexane molecules or 289 ethylene glycol

molecules as the solvent, where the trans-azobenzene molecule was treated as the EC (Fig. 5.1).

The number of solvent molecules was determined to reproduce the room-temperature density

of pure solvents, i.e., 0.66 and 1.11 g mL−1 for hexane and ethylene glycol, respectively. In

the gas-phase model, which was an isolated trans-azobenzene molecule, the periodic boundary

condition was not applied. The initial geometries and velocities for the FSSH simulations were

sampled from ground-state DFTB-MD trajectories under the NVT ensemble at T = 298.15 K

using an Andersen thermostat,9 which followed 10 ps of equilibration runs. The solution mod-

els were pre-equilibrated using classical MD before the DFTB-MD equilibration. The interval

between sampling was at least 100 fs. The FSSH simulations were started from the S1 state,
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Fig. 5.1: Snapshot of 3 nm × 3 nm × 3 nm periodic model structure (ethylene glycol solution). Solute (trans-
azobenzene) and solvent molecules are represented by red and gray, respectively.

which has been characterized as n→ π∗ in SF-TD-DFTB calculations of trans-azobenzene,10

and were conducted without any thermostats or barostats. The threshold values for state track-

ing, i.e.,
〈

S 2
〉

max
, ∆Emax, and σmin, were set to 0.5, 1.0 × 10−2 hartree, and 5.0 × 10−3 a.u.,

respectively. Excluding trajectories that resulted in convergence failure, 2000 valid trajectories

were obtained for each of the hexane solution, ethylene glycol solution, and gas-phase model,

out of 5637, 2405, and 2000 trials, respectively.

5.3 Results and Discussion

Figure 5.2 shows the time-course changes in the excited-state population under each condition,

which indicates that the S1 → S0 decay is slower in solution than in the gas phase. Table 5.1

summarizes the excited-state lifetimes of trans-azobenzene in the solutions as estimated exper-

imentally3 and calculated in the present FSSH simulations. The experimental values are the

weighted-averaged lifetimes of multiple decay components. The FSSH lifetimes were calcu-

lated by single-exponential fitting of the decay curves in Fig. 5.2. As indicated in Table 5.1,

the experimentally observed excited-state lifetimes in hexane are shorter than those in ethylene

glycol. The present FSSH results are also consistent with this trend.

For further analysis of the nonradiative relaxation pathways, here, the C−N−−N−C torsional

angle (θ) and the N−−N−C bond angle (φ), are defined as shown in Figs. 5.3(a) and 5.3(b),

respectively. Because two N−−N−C angles can be defined for each azobenzene molecule, φ
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Fig. 5.2: Time-course changes in excited-state populations of trans-azobenzene in hexane (orange), in ethylene
glycol (blue), and without a solvent (black). Error bars indicate 95% confidence intervals.

Table 5.1: Experimental and calculated excited-state lifetimes of trans-azobenzene.

Experiment (Ref. [3]) FSSH (present)
Solvent Ex. [nm]a Fl. [nm]b τave/psc τ/psd

hexane

400 600 0.56

0.98 ± 0.05e

440 520 0.26
440 600 0.63
480 600 0.47
440 680 0.89
480 680 1.10

Ethylene glycol
440 680 1.88

1.29 ± 0.08e

480 680 2.02
None (gas phase) - - - 0.38 ± 0.01e

aExcitation wavelength.
bFluorescence wavelength.
cWeighted average of multiple decay components.
dObtained from single-exponential fitting of excited-state population decay curves (Fig. 5.2).
e95% confidence interval.
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Fig. 5.3: (a) Illustration of C−N−−N−C torsional angle, θ, where the N−−N bond is perpendicular to the screen.
(b) Illustration of N−−N−C bond angle, φ. Red arrows in (a) and (b) indicate rotation and inversion channels,
respectively. Gray, white, and blue spheres represent C, H, and N atoms, respectively.

is defined as their average. The values of θ and φ at the S1 → S0 transitions are plotted in

Figs. 5.4(a), 5.4(b), and 5.4(c) for the hexane solution, ethylene glycol solution, and gas-phase

results, respectively. The time of the transition (thop) for each trajectory is indicated by the color

of the circle, and the green circles indicate θ and φ at t = 0, i.e., the values taken from the

ground-state NVT ensembles. The blue crosses represent θ and φ for the S0 stable structure,

the MECX corresponding to inversion, and the MECX corresponding to rotation (Figs. 5.5(a),

5.5(b), and 5.5(c), respectively) of gas-phase trans-azobenzene from SF-TD-DFTB calculations

combined with the branching-plane updating method.11

Figures 5.4(a), 5.4(b), and 5.4(c) indicate that S1 → S0 transitions are associated with in-

creases in both θ and φ compared with the t = 0 values, which are distributed around the

S0 stable geometry (S0 min.). The values of θ and φ at the S1 → S0 transitions are broadly

dispersed, suggesting that the inversion channel, i.e., S0 min. → MECX (inversion), and the

rotation channel, i.e., S0 min. →MECX (rotation), are not clearly distinguished, and thus each

trajectory has a mixture of the characteristics of these two channels. For convenience in the

following qualitative discussion, the transitions with θ < 135◦ are classified as rotation and the

other transitions are classified as inversion.

Table 5.2 summarizes the contribution of each channel, i.e.,

[the number of transitions classified as each channel]
[

total number of trajectories
] (5.3.1)
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Fig. 5.4: Each black, red, or yellow circle indicates θ and φ at the S1 → S0 transition for each trajectory, where the
color represents the time of transition (thop). θ and φ at t = 0 for each trajectory are also plotted as green circles.
Blue crosses indicate θ and φ at S0 min. or MECXs. Results (a) in hexane, (b) in ethylene glycol, and (c) without
a solvent.

Fig. 5.5: (a) S0 stable geometry, (b) S1/S0 MECX corresponding to rotation, and (c) S1/S0 MECX corresponding
to inversion, optimized using SF-TD-DFTB.

106



Table 5.2: Fractions of rotation and inversion channels among all (2000) trajectories, with 95% confidence inter-
vals.

Solvent rotation inversion
hexane 48.4 ± 2.2% 20.5 ± 1.8%

Ethylene glycol 45.4 ± 2.2% 14.8 ± 1.6%
None (gas phase) 93.1 ± 1.1% 6.7 ± 1.1%

Note that the denominator is the total number of trajectories, i.e., 2000, regardless of whether

they underwent S1 → S0 transitions within 1 ps. Table 5.2 indicates that the contribution of

the rotation channel follows the order ethylene glycol solution (45.4± 2.2%) < hexane solution

(48.4 ± 2.2%) < gas phase (93.1 ± 1.1%), where the error ranges indicated by ± are the 95%

confidence intervals obtained via the bootstrap method. This result clarifies that rotation is

hindered by the presence of solvents and suggests that this effect is stronger in the high-viscosity

solvent (ethylene glycol) than in the low-viscosity one (hexane). In addition, Table 5.2 shows

that the contributions of the inversion path in the ethylene glycol solution (14.8 ± 1.6%) and

in the hexane solution (20.5 ± 1.8%) are larger than that in the gas phase (6.7 ± 1.1%), which

implies that the suppression of rotation by the solvents increased the relative importance of

the inversion channel. The smaller contribution of inversion in the ethylene glycol solution

(14.8 ± 1.6%) compared to that in the hexane solution (20.5 ± 1.8%) suggests that not only the

rotation channel but also the inversion channel depends on the solvent viscosity.

5.4 Conclusion

The DC-SF-TD-DFTB/FSSH simulations showed that the presence of solvents elongates the

excited-state lifetime of trans-azobenzene compared with that in the gas phase. In addition,

the lifetime in ethylene glycol, a high-viscosity solvent, was longer than that in hexane, a low-

viscosity solvent, which is consistent with previous experimental results.3 The longer excited-

state lifetime in solutions compared to that in the gas phase was found to be ascribed to sup-

pression of the rotation mechanism (twisting of the N−−N bond) by the presence of solvents.

In addition, the results suggested that the difference between the lifetimes in the hexane and
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ethylene glycol solutions results from the solvent viscosity dependence of both the rotation and

inversion (rotation around the N−−N−C angle) channels.
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Chapter 6

Coupled Structural–Electronic Dynamics

of Photoexcited Lead Iodide Perovskites†

6.1 Introduction

The opto-electronic properties of LHPs have drawn attention in the context of solar-cell appli-

cations.2–4 Nowadays, the usage of LHPs has been widened to include not only solar cells but

also, for example, light-emitting devices.5 As a basis for rational material design, the excited-

state dynamics of this class of materials must be understood from a fundamental point of view.

Driven by this motivation, experimental evidences have been accumulated to characterize the

behavior of the photoexcited LHPs, mostly by means of time-resolved spectroscopy techniques.

It has been revealed that the excitons promptly dissociates into free carriers with the small en-

ergy barrier comparable to the thermal energy at the room temperature.6–9 In addition, hot carrier

cooling process in LHPs has interested many physical chemists, because of the possibility of

surpassing Schockley–Queisser limit of the efficiency by harvesting the hot carriers.10–16 Char-

acter of polarons in LHPs, which may involve the charge carrier properties, has been also deeply

discussed.17–19

As well as the experiments, quantum-chemistry-based simulations are powerful tools, which

†Reprinted with permission from Ref. [1]. Copyright 2020 American Chemical Society.
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are especially advantageous to gain microscopic insights. In LHPs, photogenerated charge car-

riers cause structural deformation in their surroundings, which acts back on the electronic state,

resulting in polaron formation.17,18 Polaron formation has been mainly studied using adiabatic

ground-state quantum chemical calculations, including MD. For instance, Neukirch and co-

workers investigated the character of polarons in LHPs based on structures optimized at the

Kohn–Sham DFT level.20,21 Quantum mechanical MD simulations of the polaron formation

process have also been reported.22–24 In these studies, the relationship between the charge dis-

tribution and the structural deformation was discussed within the adiabatic regime.

The other aspect of charge carrier dynamics involves nonadiabatic processes, where elec-

tronic dynamics must be explicitly treated. Hot carrier cooling is such a phenomenon; the

charge carriers relax to the band edge by dissipating the excess energy via electron–phonon

interactions.15 In addition, treatment of non-radiative recombination of positive and negative

charge carriers also requires a nonadiabatic framework.25 In typical computational approaches

for problems of this type, the electronic dynamics are simulated under the CPA26 because of

its efficiency. CPA assumes that the nuclear dynamics are governed purely by the thermal ki-

netic energy and not affected by the electronic dynamics. In practical computations, the nuclear

trajectories are generated using adiabatic MD simulations, and the electronic wavefunction is

propagated on the pre-determined nuclear trajectories. Based on this approach, Long, Prezhdo,

and co-workers conducted a series of studies covering a wide range of situations including the

presence of grain boundaries,27 doped chlorine,28 defects,29 A-site cation substitution,30,31 and

oxygen species.32 Some of these studies are summarized in their review papers.25,33 Madjet et

al. focused on the dependence of the hot carrier cooling rate on the A-site cation species.34

Kilin and co-workers investigated the electronic dynamics in LHP nanoclusters from the view-

point of quantum confinement,35 spin–orbit coupling,36,37 and polaron excited states.38 Wang

and co-workers elucidated the effect of interstitial iodine on hot carrier cooling.39

In real situations, the electronic and structural DOFs should be coupled with each other.

The nuclear motion modulates the propagation of the electronic wavefunction, and the change
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in the electronic wavefunction affects the atomic motion through the force acting on the nuclei.

However, the adiabatic MD and the CPA approaches ignore the former and the latter effects,

respectively. For this reason, to the best of the author’s knowledge, the interplay between these

two dynamics has not been fully investigated to date. In this work, the nonadiabatic dynamics

of photogenerated charge carriers in LHPs was simulated by incorporating the two-way inter-

action between the electronic and structural DOFs by means of FSSH40 without CPA. To make

the simulations practical with the realistic quantity of computational resources, the excitation

energy, excited state wavefunctions, and force acting on the nuclei were obtained using the

LR-TD-DFTB method,41 which is a parametrically approximate analogue of LR-TD-DFT.

6.2 Computational Details

LR-TD-DFTB is an extension of the DFTB method42,43 to excited-state calculations in the same

way as DFT has been extended to LR-TD-DFT. DFTB is a computational method to treat the

electronic structure and atomic dynamics at low computational cost but comparable accuracy

to that of DFT by introducing some empirical parametrization. In particular, the efficacy of

DFTB to describe the electronic character and structural dynamics of LHPs has been estab-

lished by previous studies.24,44 The nonadiabatic dynamics were treated by the FSSH technique.

For each FSSH trajectory, the electronic wavefunction was described as a linear combination of

adiabatic wavefunctions, and the nuclear dynamics were approximated as a classical trajectory.

The electronic wavefunction and nuclear geometry were propagated simultaneously according

to TD Schrödinger equation and Newton’s equation, respectively. The force acting on the nu-

clei was calculated on-the-fly at the active adiabatic state, which stochastically hops to another

state according to the population variation in the electronic wavefunction. The fully quantum

electronic–nuclear dynamics were approximated by a swarm of independent FSSH trajectories.

All DFTB and LR-TD-DFTB calculations were performed at the closed-shell SCC-DFTB

(DFTB2) level43 under periodic boundary conditions. Only singlet excited states were solved in

113



the LR-TD-DFTB calculations. The developmental version of the Dcdftbmd code,45 in which

the TD-DFTB/FSSH technique was implemented, was used for all DFTB calculations unless

otherwise noted. For visualization, VESTA software was utilized.46

The parameters for DFTB are composed of two parts: the electronic part defined for each

element and the repulsive part given for each pair of elements. The parameter set was newly

constructed for I, Pb, Cs, and the element pairs regarding them using ADPT program package.47

For other elements and element pairs, the 3OB parameter set48,49 was employed. Further details

of the parameter optimization are described in Appendix B. As shown in Appendix B, the band

gap and vibrational spectra of lead iodide perovskites calculated by DFTB with the constructed

parameter set agreed well with the DFT results obtained using the PBE exchange–correlation

functional.50 Because previous studies, e.g., Refs. [25, 27–34, 39] have established that PBE

provides reasonable results for the nonadiabatic dynamics of LHPs, PBE is considered to be a

suitable reference to evaluate the accuracy of the DFTB parametrization in the context of the

present study. While the effect of SOC on the rate of hot carrier cooling and non-radiative

recombination has been discussed in several previous studies,36,37,51,52 the SOC was not consid-

ered in the present calculations. It is widely recognized that PBE reproduces the experimental

band gap of the lead iodide perovskites well when the SOC is not included. This is because

of the cancellation of the neglect of SOC and the self-interaction error inherent in the gener-

alized gradient approximation. It should be noted that PBE has been used without including

the SOC for the nonadiabatic dynamics in Refs. [25, 27–34, 39], of which the results were not

unreasonable.

In this study, 2×2×2 supercells of tetragonal CsPbI3 and MAPbI3 (MA = CH3NH3), which

are composed of 160 and 384 atoms, respectively, were constructed and utilized as model sys-

tems. These structures are depicted in Fig. 6.1. In the FSSH simulations, the propagation of

the electronic wavefunction was performed using the LD method.53 Because the LD method

requires the calculation of the overlap between the adiabatic wavefunctions at adjacent nuclear

time steps, the OD approach was employed for this purpose.54 The decoherence effect was
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Fig. 6.1: Tetragonal 2 × 2 × 2 supercell structures employed for calculations as model systems. Simulation cells
of CsPbI3 and MAPbI3 systems are composed of 160 and 384 atoms, respectively. The gray, purple, green, brown,
blue, and pink spheres represent Pb, I, Cs, C, N, and H atoms, respectively. The cell boundary is indicated by blue
solid lines.

Table 6.1: Number of solved adiabatic states (Nstate).

System Einit Nstate

CsPbI3 E0 10
CsPbI3 E0 + 0.4 eV 100

MAPbI3 E0 15
MAPbI3 E0 + 0.4 eV 90

approximately included with the simplified decay of mixing technique,55 which is typically

combined with LR-TD-DFTB-based FSSH.56,57 The initial conditions (nuclear geometries and

velocities) for FSSH simulations were sampled from the ground-state DFTB-MD trajectory in

the NVE ensemble, which was followed by a thermalization run of 4 ps with the temperature

adjusted to 298.15 K by rescaling the velocity every 200 fs. The interval between the subse-

quent sampling was at least 100 fs. A nuclear time step of 0.05 fs was employed for the FSSH

simulations. The initial adiabatic states for the FSSH were chosen on the basis of the initial

excitation energy, Einit. To compare the band-edge and hot carrier dynamics, two different ini-

tial conditions were considered: Einit = E0, and Einit = E0 + 0.4 eV. E0 is the lowest excitation

energy averaged over the initial geometries, and their values are 1.83 and 1.70 eV for CsPbI3

and MAPbI3, respectively. The conditions of Einit = E0 and Einit = E0 + 0.4 eV correspond to

the band-edge and hot carriers, respectively. For each condition, 201 or more FSSH trajectories

were collected and the results were averaged to obtain reasonable statistical convergence. The

number of solved adiabatic states are listed in Table 6.1. Each FSSH trajectory ran for 500 fs.
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6.3 Results and Discussion

6.3.1 Exciton Dissociation and Charge Localization

The population of positive and negative charge carriers are described in density-matrices-like

forms:

Γ
+ = (X + Y) (X + Y)† , (6.3.1)

Γ
− = (X + Y)† (X + Y) , (6.3.2)

respectively. Here, X and Y are the excitation and de-excitation amplitudes, respectively. The

dimension of both X and Y is Nocc × Nvir, where Nocc and Nvir are the numbers of occupied and

virtual MOs, respectively. Using Mulliken charge analysis, the atomic population of positive

and negative charge carriers can be obtained as

q
+/−

A
=
∑

µ∈A

(

D+/−S
)

µµ
. (6.3.3)

Here, S is the overlap matrix of AOs. A and µ are the indices of atoms and AOs. +/− takes +

and − for the value regarding positive and negative charge carriers, which are calculated from

Γ
+ and Γ−, respectively, and this usage is hereafter used in this chapter. D+ and D− are defined

as

D+ = CO
Γ
+CO†, (6.3.4)

D− = CV
Γ
−CV†, (6.3.5)

where CO and CV are the MO coefficient matrices for occupied and virtual orbitals, respectively.

The charge separation can be measured from the spatial overlap between the positive and

negative charge carriers. Here, the amount of spatial overlap was quantified as the inner product
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of the atomic population of positive and negative charge carriers, s:

s =
∑

A

q+Aq−A. (6.3.6)

The calculated time-course changes of s are presented in Fig. 6.2(a). The decay patterns of

s suggest that the time scale of the exciton dissociation is around 101–102 fs, which seems

consistent with the experimental result (ca. 50 fs).9 The visualized spatial distribution of charge

carriers is shown in Fig. 6.2(b) for a representative trajectory of CsPbI3 in the case of Einit =

E0 + 0.4 eV. At t = 0 fs, the positive (red) and negative (blue) charge carriers are delocalized

and overlapped each other, whereas the carriers are dissociated at t = 300 fs.

Spatial delocalization of the charge carriers was quantified by index d+/−, which is defined

as24

d+/− =















∑

A

(

q
+/−

A

)2














−1

. (6.3.7)

d+/− can be interpreted as the number of atoms that characterizes the locality of the charge car-

rier density. Fig. 6.2(c) shows the time-course change of d+/−. d+/− rapidly decreases within the

characteristic time in the order of 101–102 fs, which is similar to the time scale of the decrease

in s, indicating that the charge carriers are localized concurrently with the exciton dissocia-

tion. This result implies that exciton dissociation and polaron formation are mutually coupled

processes.

6.3.2 Energetics of Charge Carriers

The energies of the positive and negative charge carriers are obtained from the excitation energy

decomposition as follows. In LR-TD-DFTB, the excitation energy, E, is described as

E = 〈X + Y | (A + B) |X + Y〉 , (6.3.8)
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Fig. 6.2: (a) Time-course changes of the averaged spatial overlap, s, between positive and negative charge carriers.
Error bars indicate the 95% confidence interval. (b) Snapshots of the spatial charge carrier distribution for a
representative trajectory of CsPbI3 with Einit = E0 + 0.4 eV. Positive and negative charge carriers are represented
by red and blue isosurfaces, respectively. (c) Time-course changes of averaged charge delocalization indices d+

(for positive charge carrier) and d− (for negative charge carrier). Error bars indicate the 95% confidence interval.

where

(A + B)ia, jb = δi jδab (ǫa − ǫi) +
(

Kia, jb + Kia,b j

)

. (6.3.9)

Here, (i, j) and (a, b) are the indices of occupied and virtual MOs, respectively. ǫp is the energy

level of the p-th MO. Kia, jb and Kia,b j are the coupling matrices, whose explicit form in the

case of LR-TD-DFTB can be found elsewhere.41 Using Eqs. 6.3.1, 6.3.2, 6.3.8, and 6.3.9, the

excitation energy can be decomposed into three terms:

E = E+ + E− + E′, (6.3.10)

where

E+ = −
∑

i

ǫiΓ
+
ii , (6.3.11)

E− =
∑

a

ǫaΓ
−
aa, (6.3.12)

E′ =
〈

X + Y
∣

∣

∣

∣

(

Kia, jb + Kia,b j

)

∣

∣

∣

∣

X + Y
〉

. (6.3.13)
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Fig. 6.3: Time-course changes of averaged E+, E−, and E′. Energy decay rates for the time range of 0 fs ≤ t ≤

150 fs are also shown with the corresponding colors. Error bars indicate the 95% confidence interval.

The time-course changes of E+, E−, and E′ are plotted in Fig. 6.3. Note that, in Fig. 6.3,

the unit of E′ is the milielectronvolt (meV), whereas the unit of E+ and E− is the electronvolt

(eV). Figure 6.3 suggests that the third term, E′, is negligibly small in absolute value compared

to those of E+ and E−. Because E+ arises from the occupied orbital energy and occupation

(Eq. 6.3.11) and E− from the virtual orbital energy and occupation (Eq. 6.3.12), E+ and E−

can be interpreted as the energies of the positive and the negative charge carriers, respectively.

Figure 6.3 also presents the initial energy decay rates measured for the time range from t = 0 fs

to t = 150 fs, where the decay patterns are quasi-linear. The calculated initial energy decay rates

fall within the range of 1.7 to 5.5 meV / fs, which is reasonable compared to the experimental

results (3.0 and 4.6 meV / fs for CsPbI3 and MAPbI3, respectively19).

Figure 6.4(a) shows the averaged time-course changes of the orbital occupations with posi-

tive and negative charge carriers. Here, the occupations are defined as Γ+pp and Γ−pp, respectively,

where p is the MO index. In the case of band-edge carriers (Einit = E0), the orbital occupations

are dominated by the HOMO and the LUMO, and the occupations of the remaining orbitals are
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approximately zero. On the other hand, in the case of hot carriers (Einit = E0 + 0.4 eV), the sit-

uation changes. At t = 0 fs, the occupations are distributed over multiple MOs including those

deeper than the HOMO and shallower than LUMO. As time t, the occupations gradually cumu-

late to the HOMO and LUMO, indicating the relaxation of hot carriers. In addition, Fig. 6.4(b)

shows the averaged time-course changes of the orbital energies around the band edge, which re-

flect the structural deformation in response to the existence of carriers, i.e., polaron formation.

The occupied/virtual orbitals become shallower/deeper, resulting in the stabilization of posi-

tive/negative carriers. Overall, the change in the orbital occupation (Fig. 6.4(a)) and the orbital

energies (Fig. 6.4(b)) suggest that hot carrier cooling and polaron formation simultaneously

involve the decay of the carrier energy (Fig. 6.3).

Time-course changes of the adiabatic potential energy for representative trajectories are

presented in Fig. 6.4(c). Nonadiabatic transitions are not observed in the case of Einit = E0,

suggesting that band edge carriers behave adiabatically. This result supports the validity of

the previous treatment of band-edge carriers with adiabatic MD simulations.22–24 On the other

hand, the dynamics in the case of Einit = E0 + 0.4 eV, i.e., hot carriers, features a large number

of nonadiabatic transitions.

6.3.3 Structural Deformation

According to the previous study,24 the structural deformation associated with the polaron for-

mation can be measured using the following index,

Z+/− =

∑

A q
+/−

A
ZA

∑

A q
+/−

A

, (6.3.14)

where ZA is an arbitrary structural quantity of interest, e.g., bond length, regarding the atom

A. Z+/−, which is the weighted average of ZA about q
+/−

A
, represents the value of ZA in the

region where the positive/negative charge carrier is localized. Because most of the positive and

negative charge carrier populations are located on I and Pb atoms, respectively, the index A in
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Fig. 6.4: (a) Time-course changes of averaged orbital population of positive (red) and negative (blue) charge
carriers. (b) Time-course changes of averaged orbital energies. Magenta and green lines indicate occupied and
virtual orbital energies, respectively. (c) Time-course changes of adiabatic potential energy for representative
trajectories of CsPbI3.
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Eq. 6.3.14 runs over I and Pb atoms for negative and positive charge carriers, respectively.

The time-course change of the Pb–I bond length was calculated in the region where the

charge carriers are localized. In other words, Z+/− in Eq. 6.3.14 was computed by substituting

the Pb–I distance rPb–I for ZA. The definition of rPb–I is illustrated in Fig. 6.5(a). The results

are shown in Fig. 6.5(b). For both positive and negative charge carriers, the Pb–I bond length

increases with time. This result can be qualitatively understood from an electrostatic point of

view. Whereas Pb and I are partially cationic and anionic, respectively, the positive and negative

charge carriers are located on I and Pb atoms, respectively. Thus, the Pb–I bond elongation

reduces the Coulombic repulsion between the negative charge carriers and I atoms, and between

the positive charge carriers and Pb atoms.

The structural motion of another component of LHPs, i.e., the A-site cations, were analyzed

using a similar approach utilizing Eq. 6.3.14. Fig. 6.5(c) shows the time-course changes of

rI–A(rPb–A), which are the distances between the A-site cation and I(Pb) in the region where the

charge carriers populate, as depicted in Fig. 6.5(a). Note that the position of each MA cation is

defined as its centroid. In the case of positive charge carriers, the distance between the A-site

cations and I atoms increases with time, reflecting the Coulombic interaction between the A-site

cations and the positive charge carrier. The same explanation can be applied to the decrease in

the distance between the A-site cations and Pb atoms in the case of negative charge carriers. In

addition, Fig. 6.5(d) indicates the time-course change of angle θ of the MA cations (in MAPbI3).

As depicted in Fig. 6.5(a), θ is defined as the angle between the I(Pb) → MA vector and the

dipole moment vector µ of the MA cation. θ increases and decreases in the case of positive

and negative charge carriers, respectively, suggesting that the MA cations rotate in a direction

favorable in terms of the electrostatic charge–dipole interactions.

Notably, the sub-picoseconds time scales of the structural deformation shown in

Figs. 6.5(b)–6.5(d) are consistent with the experimentally observed characteristic time of the

polaron formation (ca. 400 fs19).
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Fig. 6.5: (a) Schematic illustration of the definition of structural quantities under discussion. Atoms on which
positive and negative charge carriers populate are indicated as red and blue circles, respectively. Orange spheres
represent A-site cations. µ is the electric dipole moment vector of MA cation. The red arrows are vectors con-
necting I and the centers of MA cations. The blue arrows are vectors connecting Pb and the centers of the MA
cations. (b)–(d) Time-course change of structural quantities in the region where positive (h+) and negative (e−)
charge carriers are localized, as calculated using Eq. 6.3.14. Error bars indicate the 95% confidence interval. (b)
Pb–I bond length, (c) distance between A-site cation and I (for positive charge carrier) or Pb (for negative charge
carrier), and (d) angle θ of MA cations.
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6.4 Conclusion

In summary, the excited-state dynamics of two representative LHPs, CsPbI3 and MAPbI3, were

simulated using the LR-TD-DFTB-based FSSH technique. The mutual dependence of elec-

tronic and nuclear dynamics was incorporated in the simulations. Exciton dissociation, decay

of the carrier energy, and polaron formation were observed at similar time scales. In addition,

these time scales are in reasonable agreement with the experimental results. The calculation

results suggest that two factors simultaneously involve the decay of the carrier energy: the

relaxation of positive/negative carriers to the HOMO/LUMO and the variation of the orbital en-

ergy invoked by the structural deformation. The systems behave adiabatically when the initial

excitation energy is at its lowest (Einit = E0), i.e., band-edge carriers, whereas a large num-

ber of nonadiabatic transitions were observed in the case of hot carriers (Einit = E0 + 0.4 eV).

The structural deformation was observed in both the inorganic framework (Pb and I) and A-site

cations (Cs+ or MA+). Regarding the inorganic framework, the Pb–I bond length increased for

both positive and negative charge carriers. For A-site cations, the distance between the A-site

cation and Pb, where the negative charge carriers populate, decreased with time. On the other

hand, the distance between the A-site cation and I, i.e., the center of positive charge carrier,

increased. In addition, the rotational dynamics of dipolar MA+ were observed in the direction

that reduces the electrostatic charge–dipole interaction between MA+ and the charge carriers.

These behaviors suggest that the structural deformation associated with polaron formation is

mainly governed by the interatomic electrostatic interaction. The results reported herein shed

light on the importance of coupling between the structural and the electronic dynamics in the

photoexcited states of LHPs.
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Chapter 7

Nanometer-Scale Polaron Formation in

Methylammonium Lead Iodide

Perovskite†

7.1 Introduction

The opto-electronic applicability of LHP materials was first recognized in the context of uti-

lization for photovoltaics, called PSCs, which realized an exceptionally high photoconversion

efficiency.2,3 Recently, the field of LHP application has grown to include other types of devices,

such as light-emitting diodes4 and phototransistors.5 LHPs have the general formula APbX3,

where A and X denote monovalent cations and halide anions, respectively. The most typi-

cal and first LHP used in PSCs is methylammonium lead iodide perovskite (MAPbI3), where

an organic molecular cation—methylammonium (CH3NH +
3 , MA+)—is chosen as cation A.2

From structural viewpoint, LHP has two components. One is an inorganic framework, which

is formally PbX –
3 , composed of corner-sharing PbX6 octahedra. Because the DOS around the

VBM and CBM is dominated by the PbX –
3 framework, the charge carriers are located on this

structural part. The other is a sublattice constructed by the A cations, which fill the vacancies

†Reproduced from Ref. [1] with permission from the Phys. Chem. Chem. Phys. Owner Socieries.
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and compensate for the net negative charge of the PbX –
3 framework. While the A cations have

no significant contribution to DOS around the band edge, their indirect effect on the electronic

structure through their electrostatic or structural role has been recognized.6

The unique properties of charge carriers in LHPs, such as long diffusion length, long life-

time, and low electron–hole recombination rate,7–12 have been considered to be key to the re-

markable performance of LHP-based opto-electronic devices such as PSCs. Therefore, the

physics underlying these properties, particularly polarons, i.e., charges wearing structural defor-

mation caused by the polarization potential,13 has been extensively studied experimentally and

theoretically. The polaron formation process, which is a structural motion responding the addi-

tional (negative or positive) charge coupled with its electronic state, is a fundamental knowledge

needed to unveil the abovementioned charge carrier properties. However, the understanding in

this regard is still limited. In particular, some researchers have proposed the importance of rota-

tional motion of organic molecular cations such as MA+,14–18 while others have focused on the

role of structural deformation in the PbX –
3 frameworks19–21 rather than the organic molecular

cations. This issue has been focused on in conjunction with the recent progress in the opto-

electronic applications of LHPs using various cations such as formamidinium (FA+), Cs+, and

Rb+.22–24

A commonly used model of polarons was proposed by Frölich.25 In this picture, the lattice

is polarized by the Coulomb potential of the charge carrier to produce the polarization poten-

tial. This polarization potential acts back on the charge carrier toward self-consistency. Zheng

and Wang26 constructed a model Hamiltonian, which includes the polarization potential as the

screened Coulomb potential, as well as the effects of the thermal disorder of the MA+ and

the PbI –
3 lattice as artificial stochastic potential fluctuation. An electronic wavefunction was

propagated based on this Hamiltonian. Their simulations were performed with a sufficiently

large spatial scale to describe the whole electronic wavefunctions of polarons, whose radii are

estimated to be several nanometres.21,27 The simulations indicated that not only the polariza-

tion potential but also the thermal disorder significantly affect the spatial distribution of the
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wavefunction, the polaron binding energy, and the transport properties. Note that their model

Hamiltonian approach cannot describe atomic motions, although nanoscale simulations can be

performed.

In contrast, from the atomistic viewpoint, the mechanism of polaron formation has been in-

vestigated for several years using first-principles DFT calculations, which are frequently com-

bined with MD simulations. Neukirch et al.28 compared the stable geometries of MAPbI3 and

CsPbI3 between neutral and charged states, using zero-dimensional cluster models. Yin et al.29

used DFT-based MD simulations to analyse the structural dynamics of LHP clusters, which are

monomers or dimers of PbX6 octahedral units, with the existence of charge carriers. For bulk

LHPs, Miyata et al.21 compared their time-resolved spectroscopy measurements with DFT cal-

culations in the negatively or positively charged state. In addition, DFT-based MD simulations

in the presence of charge carriers were reported by Ambrosio et al.30,31 These studies21,28–31

clarified the relationship between charge localization and explicit atomic motions: for example,

modulations in Pb–X bond length and the rotation of MA+.

In the present study, the polaron formation mechanism was studied from both nanoscale and

atomistic viewpoints. To capture both real atomic motions and spatial size of the polarons simul-

taneously, QM-MD simulations were performed for the polaron formation process in MAPbI3

with large model systems, which is beyond the reach of the conventional DFT technique. To

overcome the computational burden arising from the system size, this study employed a com-

bined approach of DC method32–39 and DFTB method,40–43 referred to as DC-DFTB,44–46 which

is a linear scaling QM technique. Its parallelized implementation, that is, Dcdftbmd code,46

can perform QM-MD simulations of systems containing thousands of atoms by using parallel

computation resources.

The rest of this chapter is organized as follows. Section 7.2 explains the numerical details

of the simulations. The results are reported and discussed in Section 7.3. On the basis of

the simulations, the extent of charge localization is evaluated (Subsection 7.3.1). Next, the

relationship between charge localization and structural deformation is discussed (Subsection
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7.3.2). Moreover, the process of structural deformation is discussed in detail by focusing on

the early stage of polaron formation (Subsection 7.3.3). From the energetical viewpoint, the

importance of the role of PbI –
3 framework and MA cations is discussed (Subsection 7.3.4).

Finally, the conclusion is presented in Section 7.4.

7.2 Computational Details

7.2.1 Details of Parameter Fitting

In the DFTB parametrization process, the shape of Vconf (Eq. 2.2.2) is subjected to optimization

for each element. For the MAPbI3 system, H, Pb, C, I, and N are needed to be parametrized.

For H, C, N, and I, the Vconf proposed in the previous studies47,48 was employed. Vconf for Pb

was newly constructed. The modified Woods–Saxon potential49 was employed:

Vconf(r) =
W

1 + exp [−a(r − r0)]
, (7.2.1)

where the parameters W, a, and r0 were subjected to optimization. These parameters were tuned

to reproduce the band structure of the Pb pure metal obtained by DFT calculations with the PBE

formulation of the GGA (GGA-PBE).50 The obtained set of parameters are listed in Appendix

C.2. In the calculations, 5d, 6s, and 6p shells were included for Pb; 5s and 5p for I; and 2s and

2p for H, C, and N. Regarding Pb and I, the Hubbard parameters were calculated for each of the

s, p, and d (for Pb) shells, and these shell-dependent values were used. For the other elements,

the common Hubbard parameters for s and p shells, which are only dependent on the type of

element, were used as described in the literature.47

In addition, the repulsive potential Erep was parametrized. Erep is defined for each element

pair as a function of interatomic distance, which is typically described by a set of spline func-

tions. As done for Vconf , the previously reported Erep was used for element pairs among H, C,

N, and I.47,48 For the Pb–I pair, a new repulsive potential was constructed. In this study, the
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fourth-order spline function form was adopted. The function is piecewisely defined as

c0 + c1(R − R0) + c2(R − R0)2 + c3(R − R0)3 + c4(R − R0)4, (7.2.2)

for each distance range that starts from R0 and ends at the starting point of the next range or at a

sufficiently far cutoff point. In a region shorter than the first starting point, the exponential form

was used with adjustable parameters a1, a2, and a3.

exp [−a1R + a2] + a3. (7.2.3)

The values of the parameters defining the set of functions were fitted to reproduce the atomic

forces calculated by GGA-PBE for a set of disordered structures. Note that the repulsive po-

tentials for Pb–(H, Pb, C, N) pairs were omitted because repulsive potentials are only necessary

only for a short interatomic distance within the bonding regions; throughout the simulations, for

these element pairs such as Pb–C, interatomic distances are so long that the repulsive potential

is not meaningful.

To obtain the set of optimized parameters and solve Eq. 2.2.2, the ADPT program pack-

age51 was utilized. All reference GGA-PBE calculations were conducted with VASP code,52–55

treating the core electrons by using the projector augmented-wave method.56

Using the obtained parameter set, the VDOS was calculated and is shown in Fig. 7.1, with

the GGA-PBE result as a comparison. The VDOS was obtained by the Fourier transform of ve-

locity autocorrelation functions calculated from MD runs. The DFTB-MD and GGA-PBE-MD

runs for VDOS calculations were performed for 15 ps with a time step of 0.25 fs without any

geometrical constraint, using 2× 2× 2 supercells, whose building block is the optimized tetrag-

onal cell with each method. Prior to the production runs, the equilibration runs were performed

at room temperature in the reported scheme.20 Note that these computational conditions were

employed only for VDOS calculations and not for the polaron formation simulations described

in detail in the next section. Figure 7.1 shows that the VDOS calculated with DFTB (blue)
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agrees with that obtained using GGA-PBE (grey), indicating that DFTB calculations with the

constructed parameter set well-reproduce the GGA-PBE results in terms of structural dynamics.

Fig. 7.1: Calculated VDOS from unconstrained NVE-MD runs. GGA-PBE and DFTB results are shown by grey
and blue lines, respectively.

7.2.2 Calculation Setup

All DFTB calculations, with or without the DC technique, were performed in the orbitally

resolved DFTB243 level under the periodic boundary condition, using the abovementioned pa-

rameter set, unless otherwise noted. As the building block of the simulation cell, the tetragonal

unit cell of MAPbI3, which includes four formula units (48 atoms), was optimized with DFTB

without DC, as implemented in DFTB+ code57 using the Γ-centered 6 × 6 × 6 k-point mesh. In

this process, both the atomic coordinates and cell parameters were optimized. A slight deviation

from the perfect tetragonal unit cell shape was eliminated in the reported manner,20 which essen-

tially does not affect the cell length (change in the length was smaller than 0.001 Å). The sim-

ulation cells were constructed by repeating the optimized unit cell of MAPbI3 four times along

each dimension. They contained 3072 atoms and had lattice parameters of a = b = 36.83 Å,

c = 53.79 Å, and α = β = γ = 90◦.

DC-DFTB-MD calculations were conducted using the Dcdftbmd program.44–46 To adopt

the DC technique, each unit cell was treated as a subsystem; one simulation cell contained

64 subsystems. For each subsystem, the neighboring subsystems within 8 Å were included as

buffer regions. Figure 7.2 compares the averaged wall clock time for one SCC cycle with and

without DC in this system in the neutral state. Using the sufficiently large number of CPU
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cores, DC-DFTB has the advantage of the order of magnitude compared to DFTB without DC,

enabling MD simulations of this system within a feasible computation time.

Fig. 7.2: Averaged wall clock time for one SCC cycle with (orange) and without (blue) DC technique on Intel
Xeon Gold 6148 (40 cores per computation node). Calculations without DC were parallelized with OpenMP. DC
calculations were performed with MPI/OpenMP hybrid parallelization, where five OpenMP threads and #cores/5
MPI processes were used.

Prior to the simulations of the polaron formation process, the system was equilibrated in

the charge-neutral state with an NVT run of over 6 ps at 298.15 K, followed by an NVE run of

over 2 ps. Then, the polaron formation process for a negative (positive) charge was initiated by

resetting the net system charge -1 (+1) and restarting an NVE run. Spin-polarized calculations

were conducted in the charged systems. Time steps of 2 and 4 fs were adopted for the NVE

and NVT runs, respectively, with constraints of C–H and N–H bond lengths using the RATTLE

method.58

7.3 Results and Discussion

7.3.1 Spatial Distribution of Charge Carriers

Throughout this section, the atomic spin population for each atom is defined as its α-spin Mul-

liken charge minus β-spin one; here, the number of α-spin electrons is larger than that of β-spin

ones. The atomic spin population obtained for a snapshot, as depicted in Fig. 7.3, shows that

the negative (positive) charge is located on Pb (I) atoms. The results are consistent with the
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orbital nature of VBM and CBM, where the p-orbitals of I atoms and those of Pb atoms have a

dominant contribution, respectively.

Fig. 7.3: Atomic spin population corresponding to a negative (positive) charge is shown as a yellow iso-surface
for a snapshot. For visualization, the atomic spin population values are converted into density at each spatial grid
point by multiplying the atom-centered Slater functions. The pink, grey, brown, purple, and blue spheres indicate
H, Pb, C, I, and N atoms, respectively.

The radius of the charge carrier was estimated as follows. The number of atoms d, over

which an electron or a hole is delocalized, was evaluated as

d =
1
∑

A p2
A

, (7.3.1)

where pA is the spin population on the atom A. In Eq. 7.3.1, the index A runs over all atoms (re-

gardless of their type) in the cell. Once d was obtained, the volume V of the negative (positive)

charge carrier was estimated as

V = Vcelld/n, (7.3.2)

where Vcell = 1.14 nm is the volume of a tetragonal unit cell of MAPbI3 and n = 4 (n = 12)

is the number of Pb (I) atoms in the unit cell. Finally, the radius of the charge carrier rdeloc

was evaluated as that of a sphere of volume V . Figure 7.4 shows the time-course change in the

radii of negative and positive charge densities. The averaged radii were estimated as 1.1 and

0.9 nm for the negative and positive charge carriers, respectively. Note that the estimated radii
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are smaller than the estimation by Frölich model.21 This is attributable to the structural disorder

arising from the thermal motion, which is not considered in the Frölich model; the effect of the

thermal motion will be more deeply discussed later.

Fig. 7.4: Time course change of negative (blue) and positive (red) charge carrier radii. Averaged values are shown
with dashed lines.

7.3.2 Structural Dynamics

Figure 7.5(a) and 7.5(b) show a comparison of the time-course changes in the averaged Pb–I

bond lengths in the region where the charge is localized (charged region) and the rest (non-

charged region). The averaged values in the charged and non-charged regions are defined as

Xcharged =

∑

A pAXA
∑

A pA

, (7.3.3)

Xnon-charged =

∑

A XA

NA

, (7.3.4)

respectively, where pA is the spin population on the atom A. The index A runs over all Pb

atoms in the case of the negative excess charge and all I atoms in the case of the positive excess

charge. XA is a structural quantity, which is the target of comparison between the charged and

non-charged regions, defined for the atom A (e.g., averaged length of bonds involving the atom

A).
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In Fig. 7.5(a), XA is defined as the average length of six Pb–I bonds around the atom A,

which is a Pb atom (Fig. 7.6(a)). In Fig. 7.5(b), the average length of two I–Pb bonds around

the atom A, which is an I atom (Fig. 7.6(b)), is used as XA. From Figs. 7.5(a) and 7.5(b), a longer

Pb–I bond length is observed in the charged region compared to that in the non-charged region.

From the electrostatic viewpoint, the elongation of Pb–I distance, which is observed in both

cases of negative and positive excess charges, can be considered as the result of Coulombic

repulsion between the negative (positive) excess charge and I– (Pb2+). In addition, because

CBM has antibonding nature between the AOs of Pb and I,59 the CBM energy level is deepened

with the Pb–I distance, stabilizing the negative excess charge.

In the case of the positive excess charge, the distance between I atom and its nearest-

neighbor I atom is shorter in the charged region than that in the non-charged region (Fig. 7.5(c)).

Here, XA is defined as the distance between the atom A, which is an I atom, and its nearest-

neighbor I atom (Fig. 7.6(c)). This behaviour is considered to originate from the antibonding

interaction between the p-orbitals of these I atoms, which raises the valence bands near the

VBM.

Figure 7.5(d) shows the time-course change of the averaged Pb–MA distance in the case of

negative excess charge, where XA is defined as the averaged distance between the atom A, which

is a Pb atom, and the neighboring eight MA cations (Fig. 7.6(d)). The position of an MA cation

is defined as the geometrical center. As indicated in Fig. 7.5(d), the Pb–MA distance in the

charged region is shorter than that in the non-charged region. Similarly, Fig. 7.5(e) shows the

averaged I–MA distance in the case of positive excess charge, where XA is the averaged distance

between the atom A, which is an I atom, and the neighboring four MA cations (Fig. 7.6(e)).

Figure 7.5(e) indicates that the longer I–MA distance tends to be observed in the charged region

compared to the non-charged region. Because the excess negative (positive) charge is located

on the Pb (I) atoms, these tendencies are suggested to originate from the Coulombic interaction

between the excess negative (positive) charge and MA cations.

Figure 7.5(f) (7.5(g)) compares the angle θ of MA cations in charged and non-charged re-
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gions for the case of excess negative (positive) charge. The angle θ, which is used as XA here, is

defined as the averaged angle between the MA→ Pb (MA→ I) vectors and the C→ N vectors

in the corresponding MA cations (Figs. 7.6(f) and 7.6(g)). Note that the direction of C → N

vector is approximately equal to that of the electric dipole moment of the MA cation. The

average is taken over the nearest eight (four) MA cations around the Pb (I) atom. In the pres-

ence of negative excess charge (Fig. 7.5(f)), θ in the charged region is smaller than that in the

non-charged region. Hence, in the charged region, the MA cations tend to direct their electric

dipole moment to the neighboring Pb atom, on which the negative excess charge is populated.

On the other hand, in the case of positive excess charge (Fig. 7.5(g)), a larger θ is observed in

the charged region compared to the non-charged region. These tendencies can be interpreted

as the minimization of charge–dipole interaction energy between the excess negative (positive)

charge and the electric dipole moment of the MA cations. Therefore, the dipolar rotation of the

MA cations is suggested to occur in the polaron formation process.
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Fig. 7.5: Time course changes of (a) Pb–I distance for negative charge, (b) Pb–I distance for positive charge, (c)
I–nearest I distance for positive charge, (d) Pb–MA distance for negative charge, (e) I–MA distance for positive
charge, (f) angle of MA cations θ for negative charge, (g) angle of MA cations for positive charge. θ is defined as
the angle between C→N vector and MA→Pb/I vector. Orange and blue lines indicate the values in charged and
non-charged regions, respectively. Averaged values are shown in dashed lines.
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Fig. 7.6: Schematic illustration of the definition of structural quantities under discussion. (a),(b): Pb–I distance in
the case of negative and positive charges, respectively. (c): I–nearest I distance in the case of positive charge. The
iodine atom indicated by green circle is the closest one to the iodine atom indicated by red circle, in each snapshot.
(d): Pb–MA distance in the case of negative charge. (e) I–MA distance in the case of positive charge. (f),(g):
Angle of MA cation θ in the case of negative and positive charges, respectively. µ is the C→N vector of the MA
cation, which approximates the electrostatic dipole moment of the MA cation.

7.3.3 Early Stage of Polaron Formation: Disorder and Relaxation Effects

Figure 7.7(a)–7.7(g) show the structural deformation in the early stage (until 100 fs from the

charge injection) of polaron formation; for one-hundred 100- fs trajectories, in other words,

the 100- fs trajectories starting from one-hundred different initial snapshots, the same analyses

as that conducted in the previous subsection were performed and the results were averaged.

These initial snapshots were obtained from the neutral NVE run, which is described in the
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computational details (Subsection 7.2.2). The first initial snapshot was obtained at 500 fs from

the beginning of the NVE run, and the others were subsequently sampled every 100 fs. For

example, the Pb–I bond length shown in Figs. 7.7(a) and 7.7(b) has the followings tendencies.

1. At t = 0, that is, the time of the excess negative (positive) charge injection, the Pb–I bond

length in the charged region is larger than that in the non-charged region.

2. The Pb–I bond length in the charged region further increases as the time t passes (while

the Pb–I bond length in the non-charged region does not change significantly).

The former (1) suggests that the excess charge is localized by thermal fluctuation in the struc-

ture; the injected charge localizes in the region where Pb–I bond length is already long. On the

other hand, the latter (2) indicates that the excess charge affects the lattice structure, resulting

in further elongation of Pb–I bonds at t > 0. Similar tendencies are found for the I–nearest I

distance (Fig. 7.7(c)), the Pb(I)–MA distance (Figs. 7.7(d) and 7.7(e)), and the angle of MA

(Figs. 7.7f and 7.7(g)). These results suggest that, in the polaron formation process, the charge

carriers are first localized by the thermal structural fluctuation, and after that, further structural

deformation is caused by the relaxation of the charge carriers. Hereafter, the former (1) effect

and the latter (2) effect are called as disorder effect and relaxation effect, respectively. Note that

this finding, obtained from the QM-MD simulations, is consistent with that of a model Hamilto-

nian study by Zheng and Wang.26 In their Hamiltonian, the effects of the rotation of MA cations

and the lattice vibration of the PbI –
3 framework were mimicked by artificial potential fluctua-

tions and the polarization potential was described by screened Coulomb potential. In the Flölich

Hamiltonian, which is commonly used to model the polarons in LHPs,21 the former (thermal

fluctuation) effect is neglected and only the latter (polarization potential) is considered. They

compared the resulting wavefunction and its time evolution with turning on and off each (ther-

mal fluctuation and polarization potential) effect, and concluded that both effects are relevant to

polaron formation.
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Fig. 7.7: Averaged time course changes of (a) Pb–I distance for negative charge, (b) Pb–I distance for positive
charge, (c) I–nearest I distance for positive charge, (d) Pb–MA distance for negative charge, (e) I–MA distance
for positive charge, (f) angle of MA cations θ for negative charge, (g) angle of MA cations for positive charge. θ
is defined as the angle between C→N vector and MA→Pb/I vector. Orange and blue lines indicate the values in
charged and non-charged regions, respectively.
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7.3.4 Energetic Contribution for Polaron Formation: PbI –
3 Framework

versus MA Cations

This subsection discusses the importance of each structural part, i.e., the PbI –
3 framework and

the MA cations, regarding polaron formation, from the energetical viewpoint. Because the

polaron formation was showed to be understood as a process involving two effects, that is,

disorder and relaxation, in what follows, these effects are discussed separately.

Disorder Effect

The stabilization energy of the charge carriers by the disorder effect, Ed, is described as

Ed =
〈

Ecarrier(R)
〉

neutral
− Ecarrier(R0), (7.3.5)

where Ecarrier(R) is the energy of the charge carrier, defined as the total energy of the charged

state with geometry R minus the total energy of the neutral state with the same geometry R. The

average 〈. . .〉neutral is taken over the NVE trajectory at neutral state to separate out the relaxation

effect. R0 is the geometry without any thermal fluctuation. Because the model system is initially

constructed as a 4 × 4 × 4 supercell of the optimized unit cell of the tetragonal MAPbI3, here,

this initial supercell structure is defined as R0. The sample points used to calculate the average

〈. . .〉neutral are the same as the initial snapshots obtained as described in the previous subsection

(7.3.3). Ed = −235± 4 and −267± 5 meV (95% confidence interval) are obtained in case of the

negative and positive charges, respectively.

To separately evaluate the contribution of the PbI –
3 framework and the MA cations for

Ed, the atomic decomposition scheme of the total energy in the spirit of the energy density

analysis60 was utilized. The first term in the energy expression (Eq. 2.2.1), which corresponds

to the orbital interaction contribution, can be decomposed into the atomic contribution (EH0
A

):

E
H0
A
=
∑

µ∈A

(H0S)µµ , (7.3.6)
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where A and µ are the indices of atoms and AOs, respectively. The second term, which arises

from the charge fluctuation, can also be re-written in the atom-decomposed fashion:

ESCC
A =

1
2

∑

I∈A

Nshell
∑

J

∆qI∆qJγIJ. (7.3.7)

Next, the third, spin-polarization term, can be decomposed straightforwardly.

E
spin
A
=

1
2

∑

l,l′∈A

pAl pAl′WAll′ . (7.3.8)

Because the fourth term, Erep, only depends on the geometry, it does not contribute to Ed.

Therefore, the atomic energy contribution can be evaluated as the sum of E
H0
A

, ESCC
A

, and E
spin
A

.

Tables 7.1 and 7.2 show the contribution of the PbI –
3 framework and MA cations with respect

to each term, indicating that E
H0
A

contribution of the PbI –
3 framework is the largest. This result

implies that the disorder effect is mainly attributed to orbital interaction in the PbI –
3 framework.

Table 7.1: Component of Ed for negative charge carrier (95% confidence interval).

EH0
A

ESCC
A

E
spin
A

PbI –
3 102.7 ± 2.1% −25.9 ± 2.2% 2.0 ± 0.1%

MA+ 3.0 ± 0.4% 18.2 ± 1.6% 0.0 ± 0.0%

Table 7.2: Component of Ed for positive charge carrier (95% confidence interval).

EH0
A

ESCC
A

E
spin
A

PbI –
3 50.3 ± 2.1% 5.3 ± 2.6% 1.4 ± 0.1%

MA+ 9.0 ± 0.5% 34.0 ± 1.9% 0.0 ± 0.0%

Relaxation Effect

For the relaxation effect, the contribution of the PbI –
3 framework and MA cations for the inter-

nal reorganization energy in the Marcus theory,61 which measures the energy variation resulting
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from the structural relaxation in response to the addition or subtraction of an electron, is eval-

uated in the following scheme. The contribution of the atom A (∆wA(t)) for the reorganization

energy is defined as follows.

∆wA(t) =
∫ R(t)

R(t0)

[

Fc
A(R) − Fn

A(R)
]

· dR, (7.3.9)

where Fc
A
(R) and Fn

A(R) are the atomic forces acting on the atom A in the charged and neutral

states, respectively, at the geometry R. The integration is performed along an MD trajectory

from t0 to t. Note that the ordinary expression of reorganization energy is obtained by integrating

the RHS of Eq. 7.3.9 from a neutral optimized geometry to a charged optimized geometry and

summing over A. In this sense, ∆wA(t) can be considered as the atomic contribution for the

reorganization energy. Here, one can compare ∆wA with respect to the PbI –
3 framework and

MA cations, that is, ∆wA summed over the PbI –
3 framework and MA cations, respectively. ∆wA

is calculated with the MD trajectories of the polaron formation process initiated at t0 and run for

100 fs. The obtained ∆w is averaged over the 100 trajectories, and the averaged value (〈∆wA〉) is

shown in Fig. 7.8, which indicates that the contribution from the PbI –
3 framework is dominant,

while that from the MA cations is small. This result suggests that the polaron stabilization by

the relaxation effect is mainly ascribed to the structural deformation of the PbI –
3 frameworks,

and that the contribution of motion of MA cations is not the most important component. To

understand this result, note that the MA cations are composed of much lighter elements than Pb

and I, and thus, the change in dynamics of the MA cations can be pronounced even if the acting

force is small.
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Fig. 7.8: 〈∆w〉 of the PbI –
3 framework (magenta) and MA cations (green) in the case of (a) negative and (b)

positive charge carriers. The error bars indicate 95% confidence interval.

7.4 Conclusion

Using the DC-DFTB scheme, the full-QM-level MD simulations were performed for the po-

laron formation process in MAPbI3 with 3072 atom supercells. The simulations provided

comparable results with a nanoscale model Hamiltonian study,26 and also gave atomic-scale

information as well as the first-principles studies.21,28–30

The structural dynamics of both PbI –
3 framework and MA cations were found to involve

the polaron formation process in MAPbI3. For the PbI –
3 framework, elongation of Pb–I bonds

was observed. Particularly in the case of positive polarons, the distances between I atoms and

their nearest-neighbor I atoms decreased. For the MA cations, both translational and rotational

motions were observed. With respect to translational motion, the distance between Pb (I) atom

and the neighboring MA cation increased (decreased) in the case of negative (positive) polaron

formation. The rotational motion was characterized by a change in the angle between the dipole

moment of an MA cation and the corresponding MA→Pb (MA→I) vector. In the case of

negative polaron, the angle decreased, indicating that the dipole moment was directed towards

the Pb atoms, where the excess negative charge was located. On the other hand, in the case of

positive polaron, the angle increased, indicating that the dipole moment reoriented to avoid the

I atoms, on which the excess positive charge was populated.
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In addition, this chapter clarified that the polaron formation process, which is characterized

by the abovementioned structural deformations, underwent two steps. The first step, called

the disorder effect, was the charge localization and its stabilization by thermal motion of the

structure. The second one, called relaxation effect, was the further structural deformation caused

by the injected charge.

For each of these two steps, the energetical contribution of the PbI –
3 framework and MA

cations was evaluated. These analyses were performed with the atomic energy decomposition

scheme and the decomposition of the reorganization energy into the work that each atom does,

for the disorder effect and relaxation effect, respectively. The results suggested that for both

effects, the PbI –
3 framework had the primary contribution, implying that the nature of polarons

in LHPs is, to a significant extent, determined by the inorganic frameworks. This conclusion

can be one possible explanation of the reason why the carrier diffusion length, carrier lifetime,

and electron–hole recombination rate are not significantly dependent on the cation species,62

while the dipolar rotation of MA cations themselves is actually observed in this study.
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Chapter 8

General Conclusion

This thesis described computationally efficient NA-MD methods capable of simulating nonadi-

abatic dynamics in complicated systems, and applications of the methods to challenging real-

world problems.

The methodological development was described in detail in Chapter 3. Based on the TD-

DFTB/FSSH approach, three extended methods were proposed: DC-TD-DFTB/FSSH, SF-

TD-DFTB/FSSH, and DC-SF-TD-DFTB/FSSH. The computational efficiency of the developed

methods extends the capability of the NA-MD approach in two aspects. First, the available size

of model systems is significantly increased such that the nonadiabatic dynamics center, e.g.,

the chromophore, and the environment, e.g., solvent molecules, can be treated on equal foot-

ing. This characteristic enables realistic modeling of the target systems. Second, reduction of

the cost for running each NA-MD trajectory means that one can sample trajectories of larger

number within the same quantity of computational resources. This point is particularly impor-

tant from the perspective of the resolution and credibility of NA-MD results because NA-MD

is a statistical approach to approximate the exact wave-packet dynamics; while the use of the

semiempirical method, i.e., DFTB, may more or less sacrifice the accuracy, it has a significant

advantage in terms of precision. The author hopes that this achievement will produce paradigm

shift in nonadiabatic dynamics studies; the NA-MD approach is no longer a supplementary tool

that provides complementary information to experiments, but can be considered as a class of
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“observation techniques” on the same plane as the spectroscopic methods.

This concept was proven by the practical applications described in Chapters 4–7, where

the developed methods were applied to investigate nonadiabatic dynamics in real, complicated

systems, which have been difficult to be accessed by conventional NA-MD approaches.

Chapters 4 and 5 demonstrated the way the present methods can be used to elucidate the

molecular-structure and environment dependence of the nonradiative relaxation dynamics of

excited molecules. Nonradiative relaxation is of general importance in the energy-conversion

processes associated with the emission or absorption of light, which are key functions of, for

example, light-emitting diodes, solar cells, and light-driven molecular machines. Although the

fundamental physics underlying the functionalities of these materials are simple and conve-

niently understood by “toy models,” such approaches are not always appropriate for practical

material design, where fine tuning of the properties via structural and environmental modifica-

tions is required. The developed methods, which enable to incorporate the details of the systems

into NA-MD simulations, may pave the way to tune the properties computationally. In addi-

tion, material design, that is, finding materials that exhibit the desired properties, is an inverse

problem, which requires trial and error to obtain the appropriate solutions. At present, the most

robust strategy for this class of problems is simply increasing the number of trials, which can be

achieved by the computational efficiency of the proposed methods, whereas informatics-based

approaches may be promising future solutions.

Chapter 6 presented the first coupled structural–electronic dynamics simulations in pho-

toexcited lead iodide perovskite systems, which are of interest in the context of photovoltaic

applications. The results clarified the crucial role of the mutual dependence of the structural

and electronic dynamics, suggesting that the simulations, which were realized by the TD-

DFTB/FSSH approach, are an important step in understanding the photoexcited-state dynamics

of this class of materials. The presented computational scheme and the results may enable a

critical appraisal of conventional theoretical and computational approaches to this class of ma-

terials, where the mutual dependence of electronic and nuclear dynamics is ignored for ease
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of treatment. Finally, in Chapter 7, the DC-DFTB-MD simulations probed nanoscale polarons

in the methylammonium lead iodide perovskite material, which are formed after the series of

nonadiabatic processes studied in Chapter 6. The MD simulations provided complementary in-

formation to the NA-MD calculations in terms of spatial and time scales. The study illustrates

how the combined use of the NA-MD and MD approaches can help unravel the entire picture

of the excited-state dynamics of complicated chemical systems.

Note that this thesis implies some remaining issues. First, at present the applicability of the

DC-based excited-state dynamics methods is limited to local excitations, where the excitation

is localized and its the position can be identified trivially. Hence, a further algorithmic break-

through is needed to cover phenomena involving spatially nonlocal excitations, for example,

the entire process from photoexcitation to the generation of completely dissociated band-edge

carriers in semiconductors. Second, the thesis only focused on the internal conversion among

singlet states. Additional methodological effort is required to extend the methods to discuss

higher spin states and intersystem-crossing-mediated phenomena, e.g., thermally activated de-

layed fluorescence. Third, as the methods proposed and used in this thesis are based on the

DFTB, their performance is limited in principle by that of DFTB. Although the applicability of

DFTB has been extensively examined in recent years, it is, at least in part, an open question.

In particular, heavy-element compounds may be challenging targets. Because the (DC-based)

NA-MD itself is a class of general frameworks in the sense that the computational method for

the electronic part can be chosen arbitrarily, the numerical performance of DFTB in the NA-

MD context is worth comparing with a variety of first-principles or semiempirical electronic

structure methods.

The author believes that the works described in this thesis will help the research community

pioneer the unexplored frontiers of nonadiabatic dynamics.
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Appendices

A Derivation of Analytical Energy Gradient for SF-TD-

DFTB

A.1 Spin-Unrestricted Case

The energy functional G is defined as

G [X, ω] =
∑

iā, jb̄

XiāAiā, jb̄X jb̄ − ω















∑

iā

XiāXiā − 1















. (A1)

Here, the matrix A is written as

Aiā, jb̄ = F
β

āb̄
δi j − Fαi jδāb̄ + Kiā, jb̄. (A2)

The excitation energy ω and the response matrix X are obtained by variational minimization of

G, which leads to the following eigenvalue problem.

AX = ωX. (A3)
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The Lagrangian L for the spin-unrestricted case has the following form:

L
[

X, ω,C,Zα,Zβ,Wα,Wβ
]

= G [X, ω]

+
∑

ia

ZαiaFαia −
∑

p≤q

Wα
pq

(

S αpq − δpq

)

+
∑

īā

Z
β

īā
F
β

īā
−
∑

p̄≤q̄

W
β

p̄q̄

(

S
β

p̄q̄ − δ p̄q̄

)

. (A4)

As L is variational with respect to the MO coefficients, one obtains

∑

µ

∂L

∂cµ p̂

cµq̂ = 0. (A5)

In addition, the following matrix Q is defined.

Q p̂q̂ =
∑

µ

∂G

∂cµ p̂

cµq̂. (A6)

For convenience in further derivation, the following relations for Fα should be noted.

∑

µ

∂Fαrs

∂cµi
cµq = δirF

α
qs + δisF

α
rq + 2Kc

iq,rs + 2Km
iq,rs, (A7)

∑

µ

∂Fαrs

∂cµī
cµq̄ = 2Kc

īq̄,rs
− 2Km

īq̄,rs
, (A8)

∑

µ

∂Fαrs

∂cµa
cµq = δarF

α
qs + δasF

α
rq, (A9)

∑

µ

∂Fαrs

∂cµā
cµq̄ = 0. (A10)
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For Fβ, the spin-inverted counterparts of these equations hold. In addition, the following nota-

tions are introduced, as in Section 3.3.

Kc
p̂q̂,r̂ ŝ =

∑

IJ

q
p̂q̂

I
γIJqr̂ ŝ

J , (A11)

Km
p̂q̂,r̂ ŝ =

∑

A

∑

L∈A

∑

L′∈A

q
p̂q̂

L
mALL′q

r̂ ŝ
L′ , (A12)

Ksf
p̂q̂,r̂ ŝ =

∑

A

q
p̂q̂

A
mAqr̂ ŝ

A , (A13)

H+αp̂q̂ [V] =
∑

r̂ ŝ

(

2Kc
p̂q̂,r̂ ŝ + 2Km

p̂q̂,r̂ ŝ

)

Vr̂ ŝ, (A14)

H
+β

p̂q̂
[V] =

∑

r̂ ŝ

(

2Kc
p̂q̂,r̂ ŝ − 2Km

p̂q̂,r̂ ŝ

)

Vr̂ ŝ, (A15)

K p̂q̂ =
∑

iā

2Ksf
p̂q̂,iā.Xiā (A16)

where V is an arbitrary vector.

One can derive explicit forms of Eqs. A5 and A6 by exploiting the relations of Eqs. A7-A10

and the condition of Eq. A3.

In the ( p̂, q̂) = (i, j) case,

Wα
i j =

1
1 + δi j

(

Qi j + H+αi j [Zα] + H
+β

i j

[

Zβ
])

, (A17)

Qi j = −2ωTαi j − 2
∑

c̄

ǫ
β

c̄ Xic̄X jc̄ + H+αi j [Tα] + H
+β

i j

[

Tβ
]

. (A18)

In the ( p̂, q̂) = (i, a) case,

Wα
ia = Qia + ǫaZαia + H+αia [Zα] + H

+β

ia

[

Zβ
]

, (A19)

Qia = H+αia [Tα] + H
+β

ia

[

Tβ
]

+
∑

b̄

2Xib̄Kab̄. (A20)

In the ( p̂, q̂) = (a, i) case,

Wα
ia = Qai + ǫiZ

α
ia, (A21)
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Qai = 0. (A22)

In the (p̂, q̂) = (a, b) case,

Wα
ab =

1
1 + δab

Qab, (A23)

Qab = 0. (A24)

In the (p̂, q̂) = (ī, j̄) case,

W
β

ī j̄
=

1
1 + δī j̄

(

Qī j̄ + H
+β

ī j̄
[Zα] + H+α

ī j̄

[

Zβ
])

, (A25)

Qī j̄ = H
+β

ī j̄
[Tα] + H+α

ī j̄

[

Tβ
]

. (A26)

In the (p̂, q̂) = (ī, ā) case,

W
β

īā
= Qīā + ǫāZ

β

īā
+ H

+β

īā
[Zα] + H+α

īā

[

Zβ
]

, (A27)

Qīā = H+α
īā

[

Tβ
]

+ H
+β

īā
[Tα] . (A28)

In the ( p̂, q̂) = (ā, ī) case,

W
β

īā
= Qāī + ǫīZ

β

īā
, (A29)

Qāī =
∑

j

2X jāK jī. (A30)

In the ( p̂, q̂) = (ā, b̄) case,

W
β

āb̄
=

1
1 + δāb̄

Qāb̄, (A31)

Qāb̄ = 2ωT
β

āb̄
+ 2
∑

k

ǫkXkāXkb̄. (A32)

Thus, Wα, Wβ, and Q can be obtained.

By eliminating Wα
ia

from Eqs. A19 and A21, one can derive the α part of the Z-vector

equation:

(ǫa − ǫi) Zαia + H+αia [Zα] + H
+β

ia

[

Zβ
]

= − (Qia − Qai) . (A33)
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Similarly, by eliminating W
β

īā
from Eqs. A27 and A29, one can derive the β part:

(ǫā − ǫī) Z
β

īā
+ H

+β

īā
[Zα] + H+α

īā

[

Zβ
]

= − (Qīā − Qāī) . (A34)

The set of Z-vector equations (Eqs. A33 and A34) can be rewritten as a single matrix equation:



























Jαα Jαβ

Jβα Jββ





















































Zα

Zβ



























= −



























Uα

Uβ



























, (A35)

where

Jααia, jb = (ǫa − ǫi) δi jδab + 2Kc
ia, jb + 2Km

ia, jb, (A36)

J
αβ

ia, j̄b̄
= 2Kc

ia, j̄b̄
− 2Km

ia, j̄b̄
, (A37)

J
βα

īā, jb
= 2Kc

īā, jb
− 2Km

īā, jb
, (A38)

J
ββ

īā, j̄b̄
= (ǫā − ǫī) δī j̄δāb̄ + 2Kc

īā, j̄b̄
+ 2Km

īā, j̄b̄
, (A39)

and

Uαia = H+αia [Tα] + H
+β

ia

[

Tβ
]

+
∑

b̄

2Xib̄Kab̄, (A40)

U
β

īā
= H+α

īā

[

Tβ
]

+ H
+β

īā
[Tα] −

∑

j

2X jāK jī. (A41)
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The geometric derivative of the Lagrangian gives the excitation energy gradient:

∂ω

∂R
=
∂L

∂R

=
∑

µν













dH0
µν

dR
+

dHc
µν

dR













(

Pαµν + P
β
µν

)

+
∑

µν

dHx
µν

dR

(

Pαµν − P
β
µν

)

−
∑

µν

Wµν

dS µν

dR

+
1
2

∑

µνλκ

(

dS µν

dR
S λκ + S µν

dS λκ

dR

)

(mAδAC + mBδAD + mBδBC + mBδBD)XµνXλκ, (A42)

where Pα/βµν , Wµν, and Xµν are “AO-based” representations of the relaxed difference density

matrices Pα/β, the energy-weighted difference density matrix W, and the response matrix X,

respectively:

Pαµν =
∑

pq

cµpPαpqcνq, (A43)

Pβµν =
∑

p̄q̄

cµ p̄P
β

p̄q̄cνq̄, (A44)

Wµν =
∑

pq

cµpWpqcνq, (A45)

Xµν =
∑

iā

cµiXiācνā. (A46)

Here, in the spin-unrestricted case, Pα/β and W are defined as follows.

Pα = Tα + Zα, (A47)

Pβ = Tβ + Zβ, (A48)

W =Wα +Wβ. (A49)

A.2 Restricted Open-Shell Case

In the restricted open-shell formulation, α-spin and β-spin MOs share common spatial one-

electron functions. According to the occupation numbers, the MOs are grouped into three
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sets: called core (C), open (O), and virt (V), which are doubly occupied, singly occupied, and

unoccupied, respectively, where the total wavefunction is invariant with respect to the orbital

rotation within each group. In this section, distinct indices are used for the core, open, and virt

MOs:

• core: i, j, k, l

• open: x, y, z, w

• virt: a, b, c, d

• general MOs: p, q, r, s

The set of MOs is given as the solution of the generalized eigenvalue problem with respect to

the effective Fock matrix F, which is defined as follows in the MO-based representation.

F =













































ACCFαCC + BCCF
β

CC F
β

CO

(

FαCV + F
β

CV

)

/2

F
β

OC AOOFαOO + BOOF
β

OO FαOV
(

FαVC + F
β

VC

)

/2 FαVO AVVFαVV + BVVF
β

VV













































. (A50)

Here, FσXY is the XY (X and Y stand for C, O, or V) block of the MO-based Fock matrix for

the spin σ. AXX and BXX are arbitrary parameters satisfying AXX + BXX = 1. The nondiagonal

blocks of F vanish when the MOs satisfy the variational principle. Hence, the Lagrangian L is

defined as1

L [X, ω,C,Z,W] = G [X, ω] +
∑

kz

ZCO
kz Fkz +

∑

zc

ZOV
zc Fzc +

∑

kc

ZCV
kc Fkc −

∑

rs,r≤s

Wrs (S rs − δrs) .

(A51)
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For clarity, the definitions of the energy functional G and unrelaxed difference density matrices

Tα/β are rewritten as follows in the context of restricted open-shell.

G =

O⊕V
∑

qs

C⊕O
∑

pr

XpqApq,rsXrs − ω

















O⊕V
∑

q

C⊕O
∑

p

XpqXpq − 1

















, (A52)

Tαpr =



































−
∑O⊕V

q XpqXrq (p, r) ∈ C ⊕ O

0 otherwise

, (A53)

T βqs =



































∑C⊕O
p XpqXps (q, s) ∈ O ⊕ V

0 otherwise

. (A54)

In addition, as the α- and β-spin MOs are identical under the restricted open-shell formulation,

the relations of Eqs. A7-A10 become

∑

µ

∂Fσrs

∂cµp

cµq = δprF
σ
qs + δpsF

σ
rq + Hσpq,rs, (A55)

Hσpq,rs =















































































4Kc
iq,rs

(p = i)

2Kc
xq,rs + 2Km

xq,rs (p = x ∧ σ = α)

2Kc
xq,rs − 2Km

xq,rs (p = x ∧ σ = β)

0 (p = a)

. (A56)

Furthermore, the total unrelaxed difference density matrix

T = Tα + Tβ, (A57)
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the total Z-vector

Zpq =















































































ZCO
ix

(p, q) = (i, x)

ZOV
xa (p, q) = (x, a)

ZCV
ia

(p, q) = (i, a)

0 otherwise

, (A58)

and the following notation

H+pq [V] = H+αpq [V] + H+βpq [V] , (A59)

are defined.

The explicit forms of Eqs. A5 and A6 are obtained as follows.

In the (p, q) = (i, j) case,

Wi j =
1

1 + δi j

(

Qi j + H+i j [Z]
)

, (A60)

Qi j = H+i j [T] − 2
O⊕V
∑

qs

XiqFβqsX js − 2ωTαi j. (A61)

In the (p, q) = (x, y) case,

Wxy =
1

1 + δxy

(

Qxy + H+βxy

[

ZCO
]

+ H+αxy

[

ZOV
]

+
1
2

H+xy

[

ZCV
]

)

, (A62)

Qxy = H+αxy [Tα] + H+βxy

[

Tβ
]

− 2
O⊕V
∑

qs

XxqFβqsXys + 2
C⊕O
∑

pr

XrxFαrpXpy + 2ωT βxy − 2ωTαxy. (A63)

In the (p, q) = (a, b) case,

Wab =
1

1 + δab

Qab, (A64)

Qab = 2ωT
β

ab
+ 2

C⊕O
∑

pr

XpaFαprXrb. (A65)
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In the (p, q) = (i, x) case,

Wix = Qix + H+ix [Z] +
∑

z

ZCO
iz Fβzx +

1
2

∑

c

ZCV
ic Fβcx, (A66)

Qix = H+ix [T] − 2
O⊕V
∑

qs

XiqFβqsXxs − 2ωTαix. (A67)

In the (p, q) = (x, i) case,

Wix = Qxi + H
+β

xi

[

ZCO
]

+ H+αxi

[

ZOV
]

+
1
2

H+xi

[

ZCV
]

+
∑

k

ZCO
kx F

β

ki
+
∑

c

ZOV
xc Fαci, (A68)

Qxi =H+αxi [Tα] + H
+β

xi

[

Tβ
]

+ 2
C⊕O
∑

p

XpxKpi + 2
O⊕V
∑

q

XxqKqi

+ 2
∑

k

TαxkFαki + 2
∑

z

TxzF
α
zi + 2

∑

c

T βxcF
β

ci
. (A69)

In the (p, q) = (x, a) case,

Wxa = Qxa + H+βxa

[

ZCO
]

+ H+αxa

[

ZOV
]

+
1
2

H+xa

[

ZCV
]

+
∑

k

ZCO
kx F

β

ka
+
∑

c

ZOV
xc Fαca, (A70)

Qxa = H+αxa [Tα] + H+βxa

[

Tβ
]

+ 2
O⊕V
∑

q

XxqKqa + 2
C⊕O
∑

pr

XpxFαprXra + 2
∑

k

TαxkFαka + 2ωT βxa. (A71)

In the (p, q) = (a, x) case,

Wxa = Qax +
∑

z

ZOV
za Fαzx +

1
2

∑

k

ZCV
ka Fαkx, (A72)

Qax = 2
C⊕O
∑

p

XpaKpx + 2
O⊕V
∑

q

T βaqFβqx. (A73)
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In the (p, q) = (i, a) case,

Wia = Qia + H+ia [Z] +
∑

z

ZCO
iz Fβza +

1
2

∑

c

ZCV
ic

(

Fαca + Fβca

)

, (A74)

Qia = H+ia [T] + 2
O⊕V
∑

q

XiqKqa + 2
∑

k

TαikFαka. (A75)

In the (p, q) = (a, i) case,

Wia = Qai +
∑

z

ZOV
za Fαzi +

1
2

∑

k

ZCV
ka

(

Fαki + F
β

ki

)

, (A76)

Qai = 2
C⊕O
∑

p

XpaKpi + 2
∑

c

T βacF
β

ci
. (A77)

From Eqs. A66 and A68, the Z-vector equation for the (core, open) part is obtained as

∑

z

ZCO
iz Fβzx −

∑

k

F
β

ik
ZCO

kx +
1
2

∑

c

ZCV
ic Fβcx −

∑

c

ZOV
xc Fαci

+ H+αix

[

ZCO
]

+ H
+β

ix

[

ZOV
]

+
1
2

H+ix

[

ZCV
]

= − (Qix − Qxi) . (A78)

In a similar manner, Eqs. A70 and A72 yield the Z-vector equation for the (open, virt) part, that

is,

∑

c

ZOV
xc Fαca −

∑

z

FαxzZ
OV
za +

∑

k

F
β

ak
ZCO

kx −
1
2

∑

k

FαxkZ
CV
ka

+ H+βxa

[

ZCO
]

+ H+αxa

[

ZOV
]

+
1
2

H+xa

[

ZCV
]

= − (Qxa − Qax) . (A79)

Finally, the Z-vector equation for the (core, virt) part is obtained from Eqs. A74 and A76 as

∑

c

1
2

ZCV
ic

(

Fαca + Fβca

)

−
∑

k

1
2

(

Fαik + F
β

ik

)

ZCV
ka +

∑

z

ZCO
iz Fβza −

∑

z

FαizZ
OV
za

+ H+ia [Z] = − (Qia − Qai) . (A80)
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Eqs. A78-A80 can be rewritten as













































JCO,CO JCO,OV JCO,CV

JOV,CO JOV,OV JOV,CV

JCV,CO JCV,OV JCV,CV

























































































ZCO

ZOV

ZCV













































= −













































UCO

UOV

UCV













































, (A81)

where the orbital Hessian matrix is defined as

J
CO,CO
ix,kz

= Fβxzδik − F
β

ik
δxz + 2Kc

ix,kz + 2Km
ix,kz, (A82)

J
CO,OV
ix,zc

= −Fαicδxz + 2Kc
ix,zc − 2Km

ix,zc, (A83)

J
CO,CV
ix,kc

=
1
2

Fβxcδik + 2Kc
ix,kc, (A84)

J
OV,CO
xa,kz

= F
β

ak
δxz + 2Kc

xa,kz − 2Km
xa,kz, (A85)

JOV,OV
xa,zc = Fαacδxz − Fαxzδac + 2Kc

xa,zc + 2Km
xa,zc, (A86)

J
OV,CV
xa,kc

= −
1
2

Fαxkδac + 2Kc
xa,kc, (A87)

J
CV,CO
ia,kz

=
1
2

Fβazδik + 2Kc
ia,kz, (A88)

J
CV,OV
ia,zc

= −
1
2

Fαizδac + 2Kc
ia,zc, (A89)

J
CV,CV
ia,kc

=
1
4

(

Fαac + Fβac

)

δik −
1
4

(

Fαik + F
β

ik

)

δac + 2Kc
ia,kc. (A90)

The orbital Hessian matrix is found to be symmetric under the condition that the nondiagonal
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blocks of the effective Fock matrix (Eq. A50) vanish. The RHS of Eq. A81 is described as

UCO
ix = H

+β

ix
[Tα] + H+αix

[

Tβ
]

− 2
C⊕O
∑

p

XpxKpi − 2
O⊕V
∑

q

XxqKqi

− 2
O⊕V
∑

qs

XiqFβqsXxs − 2
∑

x

TxzF
α
zi − 2

∑

c

T βxcF
β

ci
− 2
∑

k

TαxkFαki − 2ωTαix, (A91)

UOV
xa = H+αxa [Tα] + H+βxa

[

Tβ
]

+ 2
O⊕V
∑

q

XxqKqa − 2
C⊕O
∑

q

XpaKpa

+ 2
C⊕O
∑

pr

XpxFαprXra + 2
∑

k

TαxkFαka − 2
O⊕V
∑

q

T βaqFβqx + 2ωT βxa, (A92)

UCV
ia =

1
2

H+ia [T] +
O⊕V
∑

q

XiqKqa −

C⊕O
∑

p

XpaKpi +
∑

k

TαikFαka −
∑

c

T βacF
β

ci
. (A93)

By differentiating the Lagrangian (Eq. A51) with the nuclear coordinates, one can obtain the

same expression for the excitation energy gradient as in the spin-unrestricted case (Eq. A42),

whereas the definitions of relaxed difference density matrices Pα/β, which are described as fol-

lows, are different from those in the spin-unrestricted case.

Pα = Tα + ZOV +
1
2

ZCV, (A94)

Pβ = Tβ + ZCO +
1
2

ZCV. (A95)
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B Details of DFTB Parametrization in Chapter 6

B.1 Overview

In DFTB, the ground-state total energy E0 is expressed as

E0 = Eel + Vrep. (B1)

Here, Eel is the energy component depending on the electronic structure, and Vrep is a repul-

sive potential, which is a function of interatomic distance. The DFTB parameter set consists

of the electronic part and the repulsive part, which are regarding Eel and Vrep, respectively.

The electronic and repulsive parts are defined for each element and each element pair, respec-

tively. As summarized in Tables B1 and B2, new parameters were constructed for Pb, I, and

Cs and the related element pairs. For other elements or element pairs, the 3OB parameter set2,3

was employed. Table B1 also describes the included basis set shells for each element. Note

that the repulsive part is essential only when the interatomic distance is within the bonding

region. Hence, the repulsive potential were omitted for element pairs whose interatomic dis-

tance does not fall within the bonding region. For parameter construction, the ADPT program

was used.4 The reference DFT calculations including DFT-MD were performed using the PBE

exchange–correlation functional5 and projector augmented-wave method6 as implemented in

VASP program package.7–10

Table B1: Electronic part for each element. new and 3OB indicate that the electronic parameter was newly
constructed and that the 3OB parameter2 was adopted, respectively.

element parameter shells
Pb new s,p
I new s,p

Cs new s
H 3OB s
N 3OB s,p
C 3OB s,p
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Table B2: Repulsive part for each element pair. The labels new and 3OB indicate that the repulsive potential
parameter was newly constructed and that the 3OB parameter2,3 was adopted, respectively. ∅ indicates element
pairs where the repulsive potential was not imposed.

Pb I Cs H N C
Pb ∅ new ∅ ∅ ∅ ∅

I - 3OB new 3OB 3OB 3OB

Cs - - new ∅ ∅ ∅

H - - - 3OB 3OB 3OB

N - - - - 3OB 3OB

C - - - - - 3OB

B.2 Construction of the Electronic Part

The closed-shell DFTB2 Hamiltonian is described as

Hµν = H0
µν +

1
2

S µν

Nshell
∑

ξ

(

γαξ + γβξ
)

∆qξ, (B2)

where

S µν =
〈

φµ
∣

∣

∣ φν
〉

, (B3)

H0
µν =























































ǫ0µ µ = ν

〈

φµ
∣

∣

∣ T̂ + Veff
[

ρA + ρB

]

∣

∣

∣ φν
〉

A , B ∧ µ , ν

0 otherwise

. (B4)

φµ denotes µ-th AO basis function that expands the MOs. γαβ depends on the interatomic dis-

tance and the Hubbard parameter (chemical hardness, U) of the atoms to which shells α and β

belong. U is calculated as a derivative of the energy level of highest occupied AO in the isolated

atom with respect to its occupation number. ǫ0µ is the orbital energy of the µ-th AO calculated

in the isolated single atom. The calculated values of ǫ0µ and U for the atoms whose electronic

part was newly constructed, i.e., Pb, I, and Cs, are listed in Table C1. For other elements,

these values were taken from ref. S8. T̂ is the kinetic energy operator with respect to electrons.

Veff
[

ρA + ρB

]

is the Kohn–Sham potential according to the superposition of atomic electron den-
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sities, ρA + ρB. In this work, Veff was calculated using the PBE exchange–correlation potential.

The AO wavefunction, φµ, is obtained by solving the following Kohn–Sham-like equation for

an isolated atom:
[

T̂ + Veff
[

ρA

]

+ Vconf

]

φµ = ǫµφµ, (B5)

where the confining potential Vconf is imposed to mimic the environment of the atoms in com-

pounds. Vconf is optimized in an empirical manner for each element and shell. For Pb, I, and Cs,

the modified Woods–Saxon type confining potential4,11 was employed:

Vconf(R) =
W

1 + exp [−a (R − r)]
, (B6)

where W, a, and r are the parameters to be optimized, and R is the distance from the nucleus.

The parameters for Pb and Cs were optimized to reproduce the band structures of pure metals

calculated with PBE. Regarding I, the parameters were fitted to the set of PBE-calculated band

gaps of CsPbI3 with various cell parameters. The optimized parameters are listed in Table C2.

The parameters for the s and p shells are specified by the subscripts s and p, respectively. The

parameters for the calculation of the atomic electron density (ρA) is indicated by the subscript

“den.” Regarding other elements, namely, H, N, and C, the settings of 3OB parameter set2 was

employed, where the confining potential is expressed as a quadratic form:

Vconf(R) =
(

R

r

)2

. (B7)

The optimized values of the parameter r are listed in ref. S8. The band gaps of cubic CsPbI3

calculated using DFTB with the optimized parameter are compared in Fig. B1 with the reference

PBE results. The horizontal axis indicates the cell parameter referenced to that relaxed with

PBE. In the PBE-optimized structure, which is indicated by “100” at the horizontal axis, the

DFTB band gap is in excellent agreement with the PBE result. Fig. B1 also shows that the

discrepancy between the DFTB and PBE results are within an acceptable level when the cell
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repulsive potential parameters are listed in the Tables C3, C4, and C5, respectively. For the

element pairs where the 3OB parameters were adopted (Table B2), the spline order was set to

3 (Z = 3) following the original literature.2,3 The optimized cell parameters of cubic CsPbI3,

where the cell parameter is α, and tetragonal MAPbI3, where the cell is an α×α× β cuboid, are

listed in Table B3. Table B3 compares the DFTB and PBE results, revealing that the deviation

is around 1%, which suggests satisfactory agreement. In addition, Fig. B2 shows the VDOS

via Fourier transformation of velocity autocorrelation functions obtained from DFTB-MD runs

(blue), with comparison to the corresponding DFT-MD results (black). The MD simulations

were conducted under the NVE ensemble with a time step of 0.25 fs after thermalization runs

at 298.15 K with velocity rescaling. Fig. B2(a) indicates that the DFTB result was consistent

with the DFT result in the case of CsPbI3. For MAPbI3 (Fig. B2(b)), while the intensity of the

DFTB result is somewhat deviated from that of the DFT result, the positions and shape of the

peaks are consistent. Hence, it can be concluded that the constructed parameter set reproduces

the structural dynamics with reasonable quality.

Table B3: Optimized cell parameters with DFTB and PBE.

compound
crystal
system

α /Å
(DFTB)

α /Å
(PBE)

dev. (%)
β /Å

(DFTB)
β /Å
(PBE)

dev. (%)

CsPbI3 cubic 6.4743 6.3977 1.2 - - -
MAPbI3 tetragonal 9.0073 8.9326 0.8 13.1117 13.1103 0.01
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Fig. B2: VDOS of (a) CsPbI3 and (b) MAPbI3 obtained from DFTB-MD (blue) and DFT-MD (black). Enlarged
views of the low-frequency range are shown in the insets.

177



C Tables of DFTB Parameters

C.1 For Chapter 6

Table C1: Calculated AO energy values, ǫ0s and ǫ0p , for s and p shells, respectively, and Hubbard parameters (U, in
Hartree atomic units). The subscripts s and p indicate that the value is regarding s-shell and p-shell, respectively.

Pb I Cs
ǫ0s -0.44019521 -0.63889433 -0.07666100
ǫ0p -0.13254749 -0.26128390 -
U 0.210323662338 0.284106077922 0.120564649351

Table C2: Optimized electronic parameters (in Hartree atomic units except dimensionless quantities).

parameter Pb I Cs
rs 4.5159813652382921 4.7328576867979359 7.0652390787826107
as 10.479037924020117 16.226632944172614 6.1164101159663158
ws 14.578966029615868 19.924746482182726 5.1165651133884182
rp 4.7393160961205529 5.3930212738958705 -
ap 14.200977710672456 4.7313131571249842 -
wp 12.804412006327981 7.5979906375433588 -
rden 5.6718184437141685 5.7860785683446556 8.9467680558691178
aden 5.0127951382518257 9.1806798848075744 6.8343175057981425
wden 9.3173909273039293 5.4381510083721301 0.45554964026034445

Table C3: Optimized I–Pb (Pb–I) repulsive parameters (in Hartree atomic units except dimensionless quantities).

a1 a2 a3

1.895029E+00 5.867450E+00 -2.454019E-02

n dn cn
0 cn

1 cn
2 cn

3 cn
4

0 4.400000 5.998730428165E-02 -1.601820622742E-01 1.517748332588E-01 -6.080821796801E-02 8.932801133142E-03
1 6.100000 2.163940000845E-03 4.192528891709E-03 -3.452306729325E-03 -6.517026263925E-05 -2.491790159566E-03
2 6.300000 2.859845283657E-03 2.724048483356E-03 -4.089438525205E-03 -2.058602390292E-03 4.090061099110E-03
3 6.500000 3.231152717956E-03 9.721227416100E-04 -4.342985295594E-03 1.213446488996E-03 -8.859608245139E-04
4 6.700000 3.260147889048E-03 -6.478085443323E-04 -3.827548000079E-03 5.046778293849E-04 -4.810481214887E-03
5 7.000000 2.695987409293E-03 -3.327606301654E-03 -5.970997809672E-03 -5.267899628479E-03 2.424077824916E-02
6 7.300000 1.214432729776E-03 -5.714533836237E-03 2.377912779242E-03 2.382103427051E-02 -3.197806393003E-02
7 7.600000 9.823033650729E-05 -1.309737820097E-03 6.548689100486E-03 -1.455264244552E-02 1.212720203794E-02
8 7.900000 - - - - -
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Table C4: Optimized I–Cs (Cs–I) repulsive parameters (in Hartree atomic units except dimensionless quantities).

a1 a2 a3

5.904081E-01 1.136443E+00 -9.435844E-02

n dn cn
0 cn

1 cn
2 cn

3 cn
4

0 4.000000 1.993436555017E-01 -1.734041003186E-01 5.118959450787E-02 -5.117972788196E-03 -9.272613132359E-07
1 4.500000 1.247991994171E-01 -1.260534490325E-01 4.351124443361E-02 -5.119827310823E-03 5.211672798013E-08
2 5.000000 7.201031085266E-02 -8.638204902363E-02 3.583158164247E-02 -5.119723077367E-03 -1.401179155146E-08
3 5.500000 3.713721549105E-02 -5.439026669509E-02 2.815197600873E-02 -5.119751100950E-03 -9.584208282441E-06
4 6.000000 1.633950824505E-02 -3.008289611621E-02 2.045797304488E-02 -5.138919517515E-03 8.529568485306E-05
5 6.500000 5.775519488781E-03 -1.343646486705E-02 1.287753729589E-02 -4.968328147809E-03 2.221624094918E-06
6 7.000000 1.655769212260E-03 -4.284062869968E-03 5.428377510316E-03 -4.963884899619E-03 2.359330441096E-03
7 7.500000 3.978046949709E-04 -1.398933813818E-03 1.521545822532E-03 -2.452240174265E-04 -3.232639277740E-04
8 8.000000 2.786724603045E-05 -2.229379682436E-04 6.688139047309E-04 -8.917518729745E-04 4.458759364873E-04
9 8.500000 - - - - -

Table C5: Optimized Cs–Cs repulsive parameters (in Hartree atomic units except dimensionless quantities).

a1 a2 a3

9.23887 74.9819 -0.00107706

n dn cn
0 cn

1 cn
2 cn

3 cn
4

0 8.70000 3.456565616244E-03 -4.188560129835E-02 1.934877639489E-01 -2.899459963340E-01 0.000000000000E+00
1 8.80000 9.129371295643E-04 -1.188642839859E-02 1.065039650487E-01 -2.899459963340E-01 1.707058984628E-02
2 8.90000 5.010950028433E-04 7.842670805199E-04 2.054440153929E-02 -2.831177603955E-01 7.367734570233E-01
3 9.05000 4.984532208385E-04 -2.216419614575E-03 -7.394173940541E-03 1.589463138185E-01 -3.611019698167E-01
4 9.25000 4.532096991429E-04 2.344205433290E-03 1.309141594528E-03 -1.299352620349E-01 3.308709063991E-01
5 9.40000 5.632680870100E-04 -1.566925039320E-03 -1.249415395730E-02 6.858728180456E-02 -9.695914473357E-02
6 9.60000 1.436805437167E-04 -1.436805437167E-03 5.388020389378E-03 -8.980033982296E-03 5.612521238935E-03
7 10.00000 - - - - -
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C.2 For Chapter 7

Table C6: Electronic parameters for Pb (in atomic units).

orbital type W a r0

s 6.76254 5.60847 4.54346
p 5.33981 9.14422 4.42425
d 4.58160 5.96026 4.80418
f 2.40562 2.83573 5.82248

density 7.01658 5.55764 4.23132

Table C7: Pb–I repulsive potential parameters (in atomic units).

a1 a2 a3

2.067509E+00 5.616456E+00 -7.032404E-03

R0 c0 c1 c2 c3 c4

4.300000 3.082860992619E-02 -7.827799356081E-02 8.092023408549E-02 -3.003160069907E-02 5.128927793232E-05
4.609800 1.345202267925E-02 -3.678065883753E-02 5.303839964651E-02 -2.996804302586E-02 2.414304304420E-03
4.826300 7.676232444769E-03 -1.793104068906E-02 3.425313895081E-02 -2.787725549823E-02 1.727706606781E-04
4.831400 7.585671363570E-03 -1.758383384233E-02 3.382664390428E-02 -2.787373097675E-02 7.729573645229E-03
5.622500 4.072295874378E-03 -1.089048277048E-03 -3.301260240250E-03 -3.414268133792E-03 7.967429589431E-03
5.898700 3.494087064850E-03 -3.022546521069E-03 -2.483481779939E-03 5.388148076612E-03 -4.197780308028E-03
6.171900 2.569449999077E-03 -3.515425857717E-03 5.275477906474E-05 8.008137559991E-04 7.202015661719E-04
6.572200 1.240538476683E-03 -2.903436228347E-03 1.706883001333E-03 1.954000503753E-03 -3.804023645709E-03
6.778900 7.236369074490E-04 -2.081734329285E-03 1.943399762789E-03 -1.191166246519E-03 9.471375980340E-04
7.166000 1.611817555858E-04 -8.928732587616E-04 1.411649413755E-03 2.753816102771E-04 -1.765618955388E-03
∗7.431500 2.001209625241E-05 -2.172276391035E-04 8.842373369206E-04 -1.599705720345E-03 1.085282035512E-03

∗The last distance range ends at 7.800000 a.u..
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