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ABSTRACT

RNA modification is biochemical modifications of RNA and plays their roles in gene
regulation at post-transcription level. So far, more than 150 types of RNA modifications
have been discovered with N6-methyladenosine (m6A) as being one of the most abundant
types found in nature. m6A is featured with its preferential location near 3’ untranslated
regions (3’ UTR) and its nearby sequences mostly conforming to a certain motif, i.e., DRACH
(where D = A, G or U; R = A or G; H= A, C or U) in the mammalian genome.

There are two main kinds of high-throughput sequencing technologies for mapping
transcriptome-wide m6A. One is named as MeRIP-Seq(Methylated RNA
immunoprecipitation sequencing, also known as m6A-seq) that was developed in 2012. The
other is named as miCLIP-Seq that was developed in 2015. MeRIP-Seq detects genomic
regions containing m6A sites and is economical, therefore more popular for biologists while
miCLIP-Seq detects positions of m6A sites at single-base resolution.

m6A participates in essential RNA activities including alternative splicing, export,
translation, and decay. During these biological processes, m6A exerts its function through
interaction with several RNA binding proteins (RBPs) that can be considered as
m6A-associated RBPs. There are three main types of m6A-associated RPBs, i.e. writer,
eraser, and reader. m6A writer is methyltransferase including METTL3, METTL14,
WTAP, RBM15/15B; m6 eraser is demethyltransferase including FTO, ALKBH5; m6A
reader is proteins that can recognize m6A including YTH domain-containing proteins
(YTHDF1/2/3), EIF3, FMR1. m6A writers and erasers can be considered as m6A
regulators which directly regulate m6A while m6A readers can be considered as m6A
e�ectors which participate in m6A regulatory network. These m6A-associated RBPs
cooperate with each other to facilitate both temporal and spatial regulation. On the other
hand, given m6A’s essential roles in gene regulation, it has been found that dysfunction of
m6A-associated RBPs is related to cancer progression. Therefore, the study of m6A and
m6A-associated RBPs enables us to develop a better understanding of gene regulation
mechanism and leads to potential therapeutic opportunities.

For m6A data analysis, I would like to be focused on two main challenges that researchers
are interested in, one is the signal detection and the other is the biological feature extraction.
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For the signal detection, it means to apply statistical models to detect genomic regions with
m6A from MeRIP-Seq data. Commonly used tools for m6A signal detection either require
a long time or do not fully utilize features of RNA sequencing such as strand information
which could cause ambiguous calling. In addition, with more attention on the treatment
experiments (perturbation of methyltransferases) of MeRIP-Seq, biologists need intuitive
evaluation on the treatment e�ect from comparison. Therefore, e�cient and user-friendly
software that can solve these tasks must be developed.

For the biological feature extraction, it means to identify biological features surrounding
m6A-containing sequences using machine learning. Some tools built prediction models using
random forest (RF) or support vector machine (SVM) algorithm with existing knowledge as
feature input like a combination of k-mers and chemical properties, however these features
are not easily interpretable, therefore it needs a prediction model for extracting meaningful
biological information such as RNA binding proteins that can assist biologists in studying
regulation mechanism of m6A. In that case, a deep learning model equipped with a motif
(sequences recognized by certain proteins) detector is a good choice. In addition, although
motifs learned from a deep learning model can help identify potential m6A-associated RBPs,
the sequence-based feature has its limitation because not all the motifs of RBPs are available
and sequences cannot reflect actual protein binding. Therefore, it also needs to integrate with
other kinds of data like RBPs’ binding data to extract biological information beyond sequence
level.

The purpose of this thesis is to develop e�cient and user-friendly software for detection
of m6A signal and extract biological features surrounding m6A by applying statistical
models and state-of-the-art machine learning methods. The main contributions of this
thesis can be summarized into three aspects. 1) I developed DeepM6ASeq, a deep learning
framework, to predict m6A-containing sequences and characterize biological features
surrounding m6A sites. DeepM6ASeq is a sequence-based predictor that showed
competitive performance of prediction, learned known m6A readers and a newly recognized
one, FMR1, and also helped to visualize locations of m6A sites with a saliency map. 2) I
developed MoAIMS (model-based analysis and inference of MeRIP-Seq), an e�cient and
easy-to-use software for analysis of MeRIP-Seq. For detection of m6A regions, MoAIMS
achieves excellent speed and competitive performance compared with other tools, and
provides user-friendly outputs for downstream analysis. MoAIMS also provides intuitive
evaluation on treatment e�ects for MeRIP-Seq treatment datasets. 3) I designed an
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integrative computational framework for the identification of m6A-associated RBPs from
reproducible m6A regions. The framework is composed of an enrichment analysis and a
classification model. Utilizing the RBPs’ binding data, the framework is able to identify
known m6A-associated RBPs and also found some potential m6A-associated RBPs like
RBM3 for mouse. Besides, it also helps infer interaction between m6A and m6A-associated
RBPs including actions of reading and repelling beyond sequence level.

The thesis is composed of five chapters, which are demonstrated briefly in the followings,

[Chapter 1] Introduction presents the research background of m6A, one of the most
abundant RNA modification, including its essential roles in gene regulation with
m6A-associated RBPs, its detection methods of high-throughput sequencing technologies,
overview of algorithms for m6A data analysis. Next, research objectives are proposed and
the contribution of the thesis is described. Finally, the organization of the thesis is
demonstrated.

[Chapter 2] DeepM6ASeq: prediction and characterization of
m6A-containing sequences using deep learning presents the work on m6A biological
features extraction at sequence level. Existing tools can predict m6A at single-base
resolution, however, the features they used for prediction such as k-mers and chemical
properties are less interpretable. It needs a model to extract meaningful biological
information like RNA binding proteins in the m6A-containing sequences in order to provide
more insights for the biologists, therefore I implemented a deep learning framework, named
DeepM6ASeq, to predict m6A-containing sequences and characterize surrounding biological
features based on miCLIP-Seq data, which detects m6A sites at single-base resolution.
DeepM6ASeq showed better performance as compared to other machine learning classifiers.
Moreover, an independent test on MeRIP-Seq data, which identifies m6A-containing
genomic regions, revealed that our model is competitive in predicting m6A-containing
sequences. DeepM6ASeq utilized the convolutional neural network (CNN) layer as a motif
detector and identified known m6A readers. Notably, DeepM6ASeq also identifies a newly
recognized m6A reader: FMR1. Besides, I found that a saliency map in the deep learning
model could be utilized to visualize locations of m6A sites.

[Chapter 3] MoAIMS: e�cient software for detection of enriched regions of
MeRIP-Seq presents the work on m6A signal detection of MeRIP-Seq(Methylated RNA
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immunoprecipitation sequencing). MeRIP-Seq is an economical and popular
high-throughput sequencing method for studying m6A. The signal detection is a main
challenge for data analysis of MeRIP-Seq, however current tools either require a long time
or do not fully utilize features of RNA sequencing such as strand information which could
cause ambiguous calling. On the other hand, with more attention on the treatment
experiments of MeRIP-Seq, biologists need intuitive evaluation on the treatment e�ect
from comparison. Therefore, e�cient and user-friendly software that can solve these tasks
must be developed. I developed a software named “model-based analysis and inference of
MeRIP-Seq (MoAIMS)” to detect enriched regions of MeRIP-Seq and infer signal
proportion based on a mixture negative-binomial model. MoAIMS is designed for
transcriptome immunoprecipitation sequencing experiments; therefore, it is compatible
with di�erent RNA sequencing protocols. MoAIMS o�ers excellent processing speed (nearly
ten times faster) and competitive performance on motif occurrence in the m6A regions and
the overlapping percentage with miCLIP-Seq data when compared with other tools.
Furthermore, signal proportion inferred from MoAIMS showed a decreasing trend for m6A
treatment dataset (perturbation of m6A methyltransferases) compared with m6A wild-type
dataset, which is consistent with experimental observations, suggesting that the signal
proportion can be used as an intuitive indicator of treatment e�ect.

[Chapter 4] Identification of m6A-associated RNA binding proteins using an
integrative computational framework presents the work on m6A biological features
extraction at protein-binding level. Existing tools for extracting m6A biological features are
sequence-based ones which are limited because not all the motifs of RBPs are available and
sequences cannot reflect actual protein binding, therefore in this study I designed an
integrative computational framework to extract m6A biological features, i.e.
m6A-associated RBPs, utilizing RBP’s binding data. I identified reproducible m6A regions
from independent studies in certain cell lines and then utilized RBPs’ binding data of the
same cell line to identify m6A-associated RBPs. The computational framework is composed
of an enrichment analysis and a classification model. The enrichment analysis identified
known m6A-associated RBPs including YTH domain-containing proteins; it also identified
a potential m6A-associated RBP, RBM3, for mouse. I observed a significant correlation for
the identified m6A-associated RBPs at the protein expression level rather than the gene
expression. In addition, I built a Random Forest classification model for the reproducible
m6A regions using the information of RBPs’ binding. The RBP-based predictor not only
demonstrated competitive performance compared with sequence-based ones and but also
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helped identify m6A-repelled RBP. These results suggested that the framework enabled us
to infer interaction between m6A and m6A-associated RBPs beyond sequence level when
utilizing RBPs’ binding data.

[Chapter 5] General conclusions and future work presents general conclusion for
the thesis and future work. The future work has main three parts, including model
improvement for the signal detection, algorithms and data worth investigating for
biological feature extraction and application in other RNA modifications.

In conclusion, the key contribution of the thesis is to extract meaningful biological
features like m6A-associated RBPs by applying mathematical models in the analysis of
m6A high-throughput data so that it could help biologists develop more insights into
regulation mechanism of m6A.
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Chapter 1

Introduction

1.1 Research Background

1.1.1 m6A’s essential roles in gene regulation

RNA modification is biochemical modifications of RNA and plays their roles in gene
regulation at post-transcription level, which is also known as epitranscriptome [1]. So far,
more than 150 types of RNA modifications have been discovered [2]. Among them,
N6-methyladenosine (m6A) [3], firstly reported in 1970 [4], is one of the most abundant
types found in various species, including human, mouse, and yeast [5–7]. m6A is featured
with its preferential location near 3’ untranslated regions (3’ UTR) and its nearby
sequences mostly conforming to a certain motif, i.e., DRACH (where D = A, G or U; R =
A or G; H= A, C or U) in the mammalian genome [8].

Several RNA binding proteins (RBPs) have been found to be associated with regulation
of m6A modification, which can be considered as m6A-associated RBPs. There are three
main kinds of m6A-associated RBPs, i.e. writer, eraser, and reader [9]. m6A writer is
methyltransferase responsible for the formation of m6A. METTL3 is the first writer
discovered in the 1980s [10]. Then, other writers including partners of METTL3 were found
such as METTL14 [11], WTAP [12], RBM15/15B [13]. m6 eraser is demethyltransferase
that facilitates removing the methylation. The identified m6A erasers are FTO [14] and
ALKBH5 [15]. m6A reader is proteins that can recognize m6A and influence activities of

1
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targeted RNA. A representative m6A reader group is YTH proteins (YTHDF1/2/3,
YTHDC1/2) [6,16]. YTH proteins have a YTH domain that forms a hydrophobic pocket to
promote the binding of m6A [17]. Other readers were also discovered including EIF3 and
its subunit [18], FMR1 [19]. m6A writers and erasers can be considered as m6A regulators
which directly regulate m6A while m6A readers can be considered as m6A e�ectors which
participate in m6A regulatory network. These m6A-associated RBPs cooperate with each
other to facilitate both temporal and spatial regulation where writers work in the nucleus
to introduce the m6A modification which is then recognized by various readers in the
nucleus and cytoplasm, which can influence activities of their target RNAs as shown in the
Figure 1.1.

Nucleus Cytoplasm 
writer complex

RNA
RNA

eraser

m6A
m6A m6A

m6A m6A

m6A

Fig. 1.1 Illustration of m6A modification and m6A-associated RBPs. In the nucleus,
m6A modification is a dynamic process where m6A can be installed by writer
complex or removed by erasers. In both the nucleus and cytoplasm, m6A can be
recognized by readers.

m6A and m6A-associated RBPs have influence on several essential RNA activities. First,
because m6A is preferentially located near 3’ UTR, which is the region of mRNA behind
translation termination codon, some m6A-associated RBPs participate in RNA activities
related to regulatory roles of 3’ UTR like translation, export, and decay [18]. For example, the
reader YTHDC1 is related to export of methylated mRNA from the nucleus to the cytoplasm
out of the observation that knock-down of YTHDC1 leaded to the accumulation of transcripts
in the nucleus and the depletion within the cytoplasm [20]. The reader YTHDF3 is reported
to a�ect methylated mRNA decay with the observation that knockdown of YTHDF3 resulted
in decreased translation e�ciency and increased cellular m6A level [21]. Besides, m6A is also
related to alternative splicing [22,23]. A study found that the reader YTHDC1, which works
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as a recruiter for splicing factors, impacted massive alternative splicing defects in mouse
oocytes when it was lost [23].

Given the essential roles of m6A and m6A-associated RBPs in gene regulation, their
roles in cancer are getting attention. The writer METTL3 was early noticed because of its
overexpression in acute myeloid leukemia (AML). It was found that m6A promotes the
translation of oncogenes like c-MYC, BCL2, and PTEN in the human acute myeloid
leukemia MOLM-13 cell line [24]. Knock-down of METTL3 induced di�erentiation and
failure to establish leukaemia in immuno-deficient mice [25]. Because of necessity of
METTL3 in the maintain the leukaemic state, it is identified as a potential therapeutic
target for AML. In addition, in human hepatocellular carcinoma (HCC), METTL3 is also
significantly up-regulated and METTL3-mediated m6A modification repressed the
expression of SOCS2 (suppressor of cytokine signaling 2) in HCC. Knockout of METTL3
showed remarkable suppression of HCC tumorigenicity and lung metastasis in mice [26].
Apart from METTL3, a study found that the reader YTHDF2 silenced in HCC cells can
provoke inflammation, vascular reconstruction, and metastatic progression [27].
Furthermore, m6A and the reader YTHDF1 have been reported to control anti-tumor
immunity. YTHDF1 deficient mice had enhanced therapeutic e�cacy of PD-1 checkpoint
blockade which suggested YTHDF1’s potential in anti-cancer immunotherapy [28].
Therefore, the study of m6A and m6A-associated RBPs enables us to develop a better
understanding of gene regulation mechanism and leads to potential therapeutic
opportunities.

1.1.2 Transcriptome-wide mapping of m6A

With the rapid development of high-throughput sequencing technologies, there are two
methods for mapping transcriptome-wide m6A. One is named as MeRIP-Seq (Methylated
RNA immunoprecipitation sequencing, also known as m6A-seq) and the other is
miCLIP-Seq (m6A individual-nucleotide-resolution cross-linking and immunoprecipitation).
The m6A data used in this thesis is from these two kinds of high-throughput sequencing
technologies. The experimental procedures are shown in Figure 1.2 and Figure 1.3.
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Fragmentation

m6A peak

Library construction and sequencing

AAA

Immunoprecipitation
m6A antibody

m6A

Fig. 1.2 Schematics of experimental procedures for MeRIP-Seq. In MeRIP-Seq,
fragmented RNA is recognized by antibody specific to m6A and then captured for
high-throughput sequencing. Peaks in sequencing reads signal indicate the regions
with m6A.
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AAA

Fragmentation and crosslink
UV crosslink

Immunoprecipitation

Digestion with proteinase K 
reverse transcription 

GAC

CTA

X

5’ 3’
Mutation pattern
Truncation pattern

Library construction and
sequencing

GAC
GAT
GAT
C
C

Mutation

Truncation
Detection of m6A at single-base

m6A antibody

m6A

Fig. 1.3 Schematics of experimental procedures for miCLIP. In miCLIP, m6A
antibody is firstly cross-linked to methylated RNA, which is then followed by
immunoprecipitation. Digestion with proteinase K and reverse transcription detect
truncations or mutations signal close to m6A sites so as to identify precise locations
of m6A.

MeRIP-Seq was developed independently by two research groups in 2012 [5,6]. In MeRIP-
Seq, an antibody specific to m6A is used to immunoprecipitate fragmented RNAs, then
targeted RNAs are subjected to sequencing. Three years later in 2015, miCLIP aimed to
detect m6A at single-base resolution appeared [8,29]. miCLIP-Seq is a UV-based sequencing
method in that m6A antibody is firstly cross-linked to methylated RNA, which is then
followed by immunoprecipitation. miCLIP utilized the truncations or mutations signal close
to m6A sites during the process of digestion with proteinase K and reverse transcription to
locate precise m6A site. MeRIP-Seq can detect genomic regions containing m6A sites at a
resolution of 100-200 bp which is lower than miCLIP-Seq that calls m6A sites at single-base
resolution, however, because of simpler experimental procedures and the economical feature,
MeRIP-Seq is still more popular in the m6A research.
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1.1.3 Overview of algorithms for m6A data analysis

For m6A data analysis, researchers are faced with several key issues to be answered, and I
decided to be focused on the two main challenges, one is the signal detection and the other
is the biological feature extraction. The algorithms for these two challenges are discussed in
the following sections.

Signal detection

For the signal detection, it means to apply statistical models to detect genomic regions
with m6A from MeRIP-Seq data. E�cient analysis fo MeRIP-Seq data helps biologists
study which genes are regulated by m6A. In high-throughput sequencing technologies like
MeRIP-Seq, data is in the form of tag counts, therefore one common statistical model is
Poisson distribution. Poisson distribution assumes that the discrete variable, i.e. tag count,
follows the probability distribution Pr(X = k) = ⁄

k
e

≠⁄

k! with a parameter mean ⁄.
Commonly used computational tools for MeRIP-Seq such as MACS [30], exomePeak [31],
and MeTPeak [32] assume the Poisson distribution for tag counts, however, negative
binomial(NB) model distribution is considered as a better choice. NB distribution follows
the probability distribution Pr(X = k) = �(k+r)

k!�(r) p
r(1≠ p)k with two parameters r and p,

representing size and probability. Because NB distribution has an extra parameter to
model for variance while Poisson distribution assuming equal mean and variance, NB
distribution is more suitable for RNA sequencing data with higher variance than mean.

To model MeRIP-Seq data better and improve three points in the existing tools, they
are: 1) require a long time for analysis; 2) do not fully utilize features of RNA sequencing
such as strand information which could cause ambiguous calling; 3) cannot provide intuitive
evaluation on treatment e�ect of treatment experiments (perturbation of methyltransferases)
for biologists, it needs to develop e�cient and user-friendly software that can solve these
tasks.

Biological feature extraction

For the biological feature extraction, it means to identify biological features surrounding
m6A-containing sequences using machine learning, which can assist biologists in studying
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regulation mechanism of m6A like which RPBs interact with m6A and influence RNA
activities. miCLIP-Seq is useful data for prediction of m6A because it provides precise
locations of m6A sites. Traditional machine learning classifiers like Random forest (RF)
and support vector machine (SVM) have been applied by existing tools for the
prediction [33, 34]. RF is an ensemble model consisting of many decision trees. It makes
prediction using bootstrapping, random selection of features, and average votes [35]. For
SVM, the basic idea is to find a decision boundary that can separate data into di�erent
classes with the maximum margins between them [36]. One drawback of traditional
classifiers is that they require existing knowledge as feature input. Features like
combinations of k-mers and chemical properties have been used for the prediction of m6A
but they are not easily interpretable [33, 34], therefore it needs a prediction model that can
extract meaningful biological information like which RBPs appear near m6A sites. In that
case, a deep learning model equipped with a motif (sequences recognized by certain
proteins) detector is a good choice [37].

In recent years, deep learning models are getting unprecedented attention in the research
field owing to its excellent performance with convolutional neural network (CNN) [38] and
recurrent neural network (RNN) [39] as being popular models. The CNN model is widely used
in the computer vision [40]. Figure 1.4 shows an example of how a CNN model recognizes a
picture of a dog. The advantage of CNN model is that the neural network itself can learn how
to detect the important features specific to the corresponding classes. With this strength,
CNN models have been applied to solve recognition of biological sequence motifs in the
computational biology [37,41,42] in the way of utilizing the CNN layer for learning position
specific scoring matrix(PSSM) [43]. The RNN model including its variation long short-term
memory(LSTM) [44] is popular in speech recognition because it is a model designed to
utilize sequential information of input data with cyclic connections [43]. Combining CNN
with LSTM can enable us to identify biological sequence motifs and capture latent sequential
structures, therefore I would like to use deep learning models to extract biological information
such as m6A-associated RBPs from m6A miCLIP-Seq data.

In addition, although motifs learned from a deep learning model can help identify
potential m6A-associated RBPs, there is limitation for their utility because not all the
motifs of RBPs are available, and sequences cannot reflect actual protein binding.
Therefore, it also needs to integrate with other kinds of data like RBPs’ binding data to
extract biological information beyond sequence level.
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……
Pooling layer

Fully connected layers

Convolution layer

Prediction

Dog 0.95

Cat 0.05

Fig. 1.4 A simplified CNN model for recognition of a dog. The network is composed
of a convolution layer, a pooling layer, and fully connected layers. The convolution
layer contains multiple filters similar to response of neurons. This layer enables the
model to automatically learn the important features specific to the corresponding
classes. The pooling layer is used for reducing redundant features. The fully
connected layer is to take the results of the previous layers for final classification.

1.2 Research Objectives

The purpose of this thesis is to develop e�cient and user-friendly software for detection of
m6A signal and extract biological features surrounding m6A by using statistical models and
state-of-the-art machine learning algorithms. To achieve these goals, the main contributions
of this thesis are summarized as following,

• I developed DeepM6ASeq, a deep learning framework, to predict m6A-containing
sequences and characterize biological features surrounding m6A sites. DeepM6ASeq is
a sequence-based predictor that showed competitive performance of prediction,
learned known m6A readers and a newly recognized one, FMR1, and also helped to
visualize locations of m6A sites with a saliency map.

• I developed MoAIMS(model-based analysis and inference of MeRIP-Seq), an e�cient
and easy-to-use software for analysis of MeRIP-Seq. For detection of m6A regions,
MoAIMS achieves excellent speed and competitive performance compared with other
tools, and provides user-friendly outputs for downstream analysis. MoAIMS also
provides intuitive evaluation on treatment e�ects for MeRIP-Seq treatment datasets
(perturbation of m6A methyltransferases).

• I designed an integrative computational framework for the identification of
m6A-associated RBPs from reproducible m6A regions. The framework is composed of
an enrichment analysis and a classification model. Utilizing the RBPs’ binding data,
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the framework is able to identify known m6A-associated RBPs and also found some
potential m6A-associated RBPs such as RBM3 for mouse. Besides, it also helps infer
interaction between m6A and m6A-associated RBPs like actions of reading and
repelling beyond sequence level.

1.3 Dissertation Organization

The thesis is composed of five chapters and the relationship between chapters is summarized
in the Figure 1.5.

[Chapter 1] Introduction

[Chapter 5] General conclusions and future work

[Chapter 2] DeepM6ASeq: prediction and
characterization of m6A-containing
sequencing using deep learning

Feature extraction at sequence level

[Chapter 4] Identification of m6A-associated RPBs
from an integrative computational framework

[Chapter 3] MoAIMS: efficient
software for detection of enriched

regions of MeRIP-Seq

Apply

Feature extraction at protein-binding level

Signal detection

miCLIP-Seq MeRIP-Seq
High-throughput data of m6A

Fig. 1.5 Illustration of the thesis organization.

The content of the chapters are demonstrated briefly in the followings,

[Chapter 1] Introduction presents the research background of m6A, one of the most
abundant RNA modification, including its essential roles in gene regulation with
m6A-associated RBPs, its detection methods of high-throughput sequencing technologies,
overview of algorithms for m6A data analysis. Next, research objectives are proposed and
the contribution of the thesis is described. Finally, the organization of the thesis is
demonstrated.

[Chapter 2] DeepM6ASeq: prediction and characterization of m6A-containing



1.3 Dissertation Organization 10

sequences using deep learning presents the work on m6A biological features extraction at
sequence level. Existing tools can predict m6A at single-base resolution, however, the features
they used for prediction such as k-mers and chemical properties are less interpretable. It
needs a model to extract meaningful biological information like RNA binding proteins in
the m6A-containing sequences in order to provide more insights for the biologists, therefore
I implemented a deep learning framework, named DeepM6ASeq, to predict m6A-containing
sequences and characterize surrounding biological features based on miCLIP-Seq data, which
detects m6A sites at single-base resolution. DeepM6ASeq showed better performance as
compared to other machine learning classifiers. Moreover, an independent test on MeRIP-
Seq data, which identifies m6A-containing genomic regions, revealed that DeepM6ASeq is
competitive in predicting m6A-containing sequences. DeepM6ASeq utilized the convolutional
neural network(CNN) layer as a motif detector and identified known m6A readers. Notably,
DeepM6ASeq also identifies a newly recognized m6A reader: FMR1. Besides, I found that
a saliency map in the deep learning model could be utilized to visualize locations of m6A
sites.

[Chapter 3] MoAIMS: e�cient software for detection of enriched regions of
MeRIP-Seq presents the work on m6A signal detection of MeRIP-Seq(Methylated RNA
immunoprecipitation sequencing). MeRIP-Seq is an economical and popular
high-throughput sequencing method for studying m6A. The signal detection is a main
challenge for data analysis of MeRIP-Seq, however current tools either require a long time
or do not fully utilize features of RNA sequencing such as strand information which could
cause ambiguous calling. On the other hand, with more attention on the treatment
experiments of MeRIP-Seq, biologists need intuitive evaluation on the treatment e�ect
from comparison. Therefore, e�cient and user-friendly software that can solve these tasks
must be developed. I developed a software named “model-based analysis and inference of
MeRIP-Seq (MoAIMS)” to detect enriched regions of MeRIP-Seq and infer signal
proportion based on a mixture negative-binomial model. MoAIMS is designed for
transcriptome immunoprecipitation sequencing experiments; therefore, it is compatible
with di�erent RNA sequencing protocols. MoAIMS o�ers excellent processing speed (nearly
ten times faster) and competitive performance on motif occurrence in the m6A regions and
the overlapping percentage with miCLIP-Seq data when compared with other tools.
Furthermore, signal proportion inferred from MoAIMS showed a decreasing trend for m6A
treatment dataset (perturbation of m6A methyltransferases) compared with m6A wild-type
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dataset, which is consistent with experimental observations, suggesting that the signal
proportion can be used as an intuitive indicator of treatment e�ect.

[Chapter 4] Identification of m6A-associated RBPs with an integrative
computational framework presents the work on m6A biological features extraction at
protein-binding level. Existing tools for extracting m6A biological features are
sequence-based ones which are limited because not all the motifs of RBPs are available and
sequences cannot reflect actual protein binding, therefore in this study I designed an
integrative computational framework to extract m6A biological features, i.e.
m6A-associated RBPs, utilizing RBP’s binding data. I identified reproducible m6A regions
from independent studies in certain cell lines and then utilized RBPs’ binding data of the
same cell line to identify m6A-associated RBPs. The computational framework is composed
of an enrichment analysis and a classification model. The enrichment analysis identified
known m6A-associated RBPs including YTH domain-containing proteins; it also identified
a potential m6A-associated RBP, RBM3, for mouse. I observed a significant correlation for
the identified m6A-associated RBPs at the protein expression level rather than the gene
expression. In addition, I built a Random Forest classification model for the reproducible
m6A regions using the information of RBPs’ binding. The RBP-based predictor not only
demonstrated competitive performance compared with sequence-based ones and but also
helped identify m6A-repelled RBP. These results suggested that the framework enabled us
to infer interaction between m6A and m6A-associated RBPs beyond sequence level when
utilizing RBPs’ binding data.

[Chapter 5] General conclusions and future work presents general conclusion for
the thesis and future work. The future work has main three aspects, including model
improvement for the signal detection, algorithms and data worth investigating for
biological feature extraction, and application in other RNA modifications.

In summary, in Chapter 2, DeepM6A-Seq was developed to extract biological features at
sequence level using miCLIP-Seq data; In Chapter 3, MoAIMS was developed to detect m6A
signal from MeRIP-Seq data; In Chapter 4, An integrative computational framework was
designed to extract biological features at protein-binding level in reproducible m6A regions
which were identified by applying MoAIMS.



Chapter 2

DeepM6ASeq: prediction and
characterization of m6A-containing
sequences using deep learning

2.1 Abstract

N6-methyladensine (m6A) is a common and abundant RNA methylation modification found
in various species. As a type of post-transcriptional methylation, m6A plays an important
role in diverse RNA activities such as alternative splicing, an interplay with microRNAs, and
translation e�ciency. Although existing tools can predict m6A at single-base resolution, it
is still challenging to extract the biological information surrounding m6A sites.

I implemented a deep learning framework, named DeepM6ASeq, to predict
m6A-containing sequences and characterize surrounding biological features based on
miCLIP-Seq data, which detects m6A sites at single-base resolution. DeepM6ASeq showed
better performance as compared to other machine learning classifiers. Moreover, an
independent test on m6A-Seq data, which identifies m6A-containing genomic regions,
revealed that DeepM6ASeq is competitive in predicting m6A-containing sequences. The
learned motifs from DeepM6ASeq correspond to known m6A readers. Notably,
DeepM6ASeq also identifies a newly recognized m6A reader: FMR1. Besides, I found that a
saliency map in the deep learning model could be utilized to visualize locations of m6A

*Chapter 2 is adapted from the publication [45]



sites.

In conclusion, I developed a deep-learning-based framework to predict and characterize
m6A-containing sequences and hope to help investigators to gain more insights for m6A
research. The source code is available at https://github.com/rreybeyb/DeepM6ASeq

2.2 Introduction

More than 100 types of RNA modification have been discovered in eukaryotic RNAs [2];
among them, N6-methyladenosine (m6A) is a common and abundant RNA modification
type found in various species, such as human, mouse, and yeast [5–7]. m6A is preferentially
located near 3’ untranslated regions (3’ UTR) and its nearby sequences mostly conform
to certain motifs, i.e., DRACH (where D = A, G or U; R = A or G; H= A, C or U) in
the mammalian genome [8] and RAC in the yeast genome [46]. m6A is involved in diverse
RNA activities including alternative splicing [47], an interplay with microRNAs [48] and
translation e�ciency [49]. In addition, m6A has been linked with cancer progression. It
is reported that METTL3 and METTL4, which are both m6A-forming enzymes, have an
impact on di�erentiation and apoptosis of human myeloid leukemia cell lines [24,50].

m6A can be detected in a high-throughput manner owing to the rapid development of
high-throughput sequencing technologies. m6A-Seq and Methylated RNA
immunoprecipitation sequencing (MeRIP-Seq) [5, 6] are the main sequencing methods for
detection of genomic regions with m6A sites via antibody capturing. Recently, m6A
individual-nucleotide-resolution cross-linking and immunoprecipitation (miCLIP-Seq)
enables detection of m6A at single-base resolution [8, 29]. Several bioinformatics tools have
been developed to predict m6A sites in di�erent species, e.g., m6Apred [51] and
iRNA-Methyl [52] for the yeast genome, SRAMP [33] for the mammalian genome. These
tools mainly apply existing knowledge as feature input such as a combination of k-mers
and chemical properties to build models using random forest (RF) or support vector
machine (SVM) algorithm. Although these tools can predict single-base m6A, the
biological information surrounding m6As is still limited; this situation poses a challenge for
researchers. Therefore, here I implemented a deep-learning-based framework, named
DeepM6ASeq, to predict m6A-containing sequences and characterize biological features
surrounding m6A. In recent years, deep learning became an state-of-the-art technology and

13

https://github.com/rreybeyb/DeepM6ASeq


is now employed more and more in the field of biology [37, 42, 53]. The strength of deep
learning is not only in its better prediction power (in comparison with traditional machine
learning classifiers), but also its ability to recognize motifs in genomic sequences. Because
miCLIP-Seq data revealed precise locations of m6A sites, I explored on such data by
utilizing convolutional neural network (CNN) layer as a motif detector to characterize
biological features surrounding m6A, then capturing m6A’s positional preference out of the
deep learning model I built. In addition, I made use of a saliency map to visualize locations
of m6A sites in the sequences. The development of DeepM6ASeq, model performance and
analysis of biological information will be discussed in details in the following sections.

2.3 Methods

2.3.1 Datasets

The miCLIP-Seq dataset

Given that miCLIP-Seq data can pinpoint m6A sites at single-base resolution, these data
provide us with ideal conditions to study sequences surrounding m6A sites. I collected
miCLIP-Seq data from human, mouse, and zebrafish [8,29,54]. Human and mouse data are
from the same source as SRAMP, which included five cell line and tissue types, that is
A549(adenocarcinomic human alveolar basal epithelial cells), CD8T(cytotoxic T cells),
HEK293(human embryonic kidney 293 cells), brain and liver. For zebrafish, the data
consisted of two biological replicates from embryonic stem cells.

For positive samples, I defined sequences with the window size of 101 bp containing
m6A sites. First, all m6A sites were mapped to the longest transcripts of genes using the
ENSEMBL database (release 91, http://www.ensembl.org/). Then, I randomly located m6A
sites in the fixed-size windows and extracted the surrounding sequences with length up
to 101 bp (if m6A sites are near a terminus of a transcript, I sliced 101-bp-size windows
from the terminus). To avoid sample redundancy (because m6A sites are reported to cluster
together [5]), before randomly locating I merged m6A sites within 50 bp and chose the
centered one among the merged sites. Because zebrafish data consisted of two replicates, I
chose common sites as positive samples.
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For negative samples, I used nearby windows (with the same fixed window size) not
containing any m6A sites. The nearby negative controls are from the windows 100 bp
upstream or downstream the positive windows; these windows are generated by a stride of
10 bp and 100 steps. I chose the closest one for each positive sample. (If there were two
closest ones on both sides of a positive sample, I randomly picked one of the two.) In rare
cases, there were no control windows nearby because m6A sites are mapped to very short
transcripts. Nevertheless, the ratio of positive to negative samples was approximately 1:1.
For each species, I split the dataset into an 80% part (as training data) and a 20% part (as
independent test data). The dataset information is listed in Table 2.1.

Table 2.1 A summary of dataset size

Training Independent test
Human 49050 12611
Mouse 37716 9401

Zebrafish 22108 5651

The m6A-Seq dataset

To test DeepM6ASeq on real peaks data, I used m6A-Seq data from the HepG2 (human liver
cancer) cell line and human brain (two di�erent cell types from those used in the model)
from Dominissini’s study [6] and processed this dataset according to their protocol [55]. For
positive samples, I retrieved the top 1000 positive peaks detected by MACS [30] with the
highest fold enrichment and the false discovery rate (FDR) Æ 0.05. I extracted sequences of
101 bp around the peak summits and overlapped these regions with peaks from MeT-DB
database [56] (The MeT-DB peak score greater than 6 was required, which is the median
score for human data.) to obtain reliable m6A-containing sequences. As negative samples,
I used negative peaks detected by MACS (MACS identifies negative peaks by swapping
immunoprecipitation samples and control samples) and split each peak into bins with a size
of 101 bp (because HepG2 has limited negative peaks, I used a sliding window with a step of
20 bp when splitting peaks for data augmentation). I chose bins overlapping with exon regions
and not overlapping with peaks from MeT-DB database. To evaluate the generalization of
DeepM6ASeq and to conduct a fair comparison with SRAMP, I used CD-HIT [57] to remove
test sequence redundancy with the training data of both DeepM6ASeq and SRAMP at an
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80% similarity threshold, which is the lowest threshold provided by CD-HIT. Besides, I kept
only sequences with DRACH motifs because SRAMP scans only A sites with DRACH motifs
in given sequences. Finally, I got 663 positive samples and 413 negative samples in total.

2.3.2 Models

The development of deep learning models

The sequences were one-hot encoded as inputs with the padding of half filter size on each
side, that is, A, C, G, U, and N were encoded as (1,0,0,0), (0,1,0,0), (0,0,1,0), (0,0,0,1), and
(0,0,0,0) respectively. The main structure of the deep learning model consists of two layers
of CNN [40], one bidirectional long short-term memory (BLSTM) layer [44], and one fully
connected (FC) layer as presented in Figure 2.1. The first convolution layer works as a motif
detector, while the second convolution layer captures higher-level features. The BLSTM layer
is useful to get sequential-order information embedded in the sequences.
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Fig. 2.1 A graphic illustration of DeepM6ASeq model structure. The genome
sequence (A in red represents an m6A site) is first one-hot encoded as input, then
the input is sequentially fed into two layers of CNN in order. The first CNN layer
functions as a motif detector while the second CNN layer captures features of a
higher level. After the CNN layers is one BLSTM layer to capture sequential order.
The output units of the BLSTM layer are followed by the fully connected layer, and
finally the model outputs the prediction result.

17



During the process of model construction, I chose the filter sizes of 10 and 5, the filter
numbers of 256 and 128 for each convolution layer. The activation function for CNN layers
is rectified linear unit (ReLU) , tanh for the BLSTM layer, and sigmoid activation after
the FC layer to obtain prediction output. Additionally, I applied batch normalization and
dropout [58] after each convolutional procedure to accelerate training and avoid overfitting
separately. I used binary cross entropy as a loss function to measure the di�erence between
the target and the predicted output and Adam as an optimization algorithm. The deep
learning framework is implemented using Pytorch (https://pytorch.org).

There are three phases during the process of model building. First, I performed five-
fold cross-validation on training data for optimization of hyperparameters. In this phase,
I used the grid-search strategy for optimization of hyperparameters. The details of tuning
parameters are given in Table 2.2. Then, I used 1/8 of training data, which equals to 10% of
the whole dataset, as validation data and fed the best parameters from the previous phase
to the training phase. In the last phase, I applied the model to the independent dataset. I
selected a batch size of 256, 50 maximum epochs and an early stopping strategy of patience
to 5 in the first two phases.

Table 2.2 Optimization of hyperparameters of DeepM6ASeq

Hyper-parameter Choices
Maxpooling 0,2
Dropout ratio 0.25,0.5

Output units of BLSTM layer 32◊2,64◊2
Neurons of FC layer* 32,64

Learning rate 0.01,0.001
*Number of neurons corresponds to 1/2 output units of BLSTM layer

Conversion of filters to motifs

I employed the method from previous papers [37, 42] to convert filters to motifs in position
weight matrix (PWM) format. For each input sequence, the subsequence with the filter
length that responds to the corresponding filter maximally is extracted in a one-hot encoded
matrix, which is then multiplied by the responding score from ReLU in the first CNN layer
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as follows

M

(k)
l,4 =

nÿ

i=1
–

(k)
i

X

(i)
l,4 (2.1)

where X is the subsequence matrix, – is the responding score, l represents the filter length, k
denotes the motif detector, and n is the number of input sequences. The cumulative matrix
of these subsequences forms a PWM, each element of which is then normalized as described
below

m

p,q

= m

p,q

q4
q=1mp,q

(2.2)

where m stands for each element in M , and p and q are the row number and column number
respectively.

The saliency map

A saliency map is used to determine which nucleotide makes the most contribution to the
prediction score for a class (S

c

). I calculated the saliency map according to the method
described by Lanchantin et al. [59]. First, the class score could be approximated with a liner
function by computing the first-order Taylor expansion:

S

c

(X) ¥ w(X)TX+ b. (2.3)

Then, for a given sequence X in one-hot encoding, the saliency score S was obtained by
a point-wise multiplication of the absolute value of a derivative of S

c

(X) and its one-hot
encoding formally expressed as

w(X) = ˆS

c

ˆX

(2.4)

and

S(X) = |w(X)|úX (2.5)

Derivation of other classifiers

I built models of RF, Logistic Regression (LR), and SVM on mammalian dataset using
sklearn (http://scikit-learn.org). For RF and LR, the feature inputs were normalized counts
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of kmers of 1-5. For SVM, the feature inputs were commonly used 4-mer for saving training
time. I applied the grid-search strategy on hyperparameter optimization for each classifier
and chose the parameters with the best performance. The parameters used in the grid-search
were listed in the Table 2.3.

Table 2.3 Hyper-parameters optimization of other classifiers

Classifiers Hyper-parameters optimization
RF tree number: 300,400,500,600,700,800,900
LR regularization strength: 0.001, 0.01, 0.1, 1, 10, 100, 1000; penalty: L1, L2
SVM C: 1,10,100; gamma: 0.01,0.001; kernel: linear, polynomial, rbf

Evaluation metrics

To measure performance of the models, I calculated accuracy, sensitivity, specificity, the
F1-score, and the Matthews correlation coe�cient (MCC) as follows:

Accuracy = TP +TN

TP +TN +FP +FN

(2.6)

Sensitivity = TP

TP +FN

(2.7)

Specificity = TN

TN +FP

(2.8)

F1≠score= 2TP
2TP +FP +FN

(2.9)

MCC = TP ◊TN ≠FP ◊FN

Ò
(TP +FP )◊ (TP +FN)◊ (TN +FP )◊ (TN +FN)

(2.10)

where TP is true positive, TN is true negative, FP is false positive, and FN is false negative.
Additionally, I plotted Receiver Operating Characteristic (ROC) curves and Precision-Recall
(PR) curves and calculated the areas under the curves, which are denoted by AUROC and
AUPR, respectively.
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2.4 Results

2.4.1 Prediction of m6A-containing sequences

Model training and hyperparameter optimization

I used the mammalian dataset that consists of both human and mouse miCLIP-seq data,
for optimizing the hyperparameters during the development of the model. The details of the
model development are described in the Materials and Methods section. In brief, I built a
deep-learning-based model that mainly consists of two CNN layers, one BLSTM layer, and
one FC layer, to predict whether a sequence contains m6A sites. During hyperparameter
optimization, the grid-search strategy was applied to find the best parameter combination
of maxpooling size, dropout rate, learning rate, units of the BLSTM layer, and the FC layer.
The metrics of mean performance for di�erent parameters settings are shown in the Table
2.4. I found that no maxpooling, a higher dropout rate, and a more complicated model
structure contribute to the improvement of performance. Then, I chose the best parameter
setting to train the model on the mammalian validation dataset and got AUROC = 0.843
and AUPR = 0.832 for validation as illustrated in the Figure 2.2.

Table 2.4 Metrics of mean performance for hyper-parameters tuning

Maxpooling Dropout Layers Learning rate AUROC AUPR Accuracy MCC F1-score
Model1 0 0.25 BLSTM:32; FC:32 0.001 0.846 0.833 0.768 0.538 0.775
Model2 0 0.25 BLSTM:32; FC:32 0.01 0.847 0.834 0.770 0.541 0.775
Model3 0 0.25 BLSTM:64; FC:64 0.001 0.847 0.835 0.771 0.543 0.777
Model4 0 0.25 BLSTM:64; FC:64 0.01 0.846 0.833 0.769 0.540 0.777
Model5 0 0.5 BLSTM:32; FC:32 0.001 0.848 0.835 0.772 0.544 0.776
Model6 0 0.5 BLSTM:32; FC:32 0.01 0.847 0.834 0.770 0.542 0.778
Model7 0 0.5 BLSTM:64; FC:64 0.001 0.850 0.838 0.772 0.546 0.777
Model8 0 0.5 BLSTM:64; FC:64 0.01 0.849 0.836 0.773 0.546 0.780
Model9 2 0.25 BLSTM:32; FC:32 0.001 0.844 0.830 0.767 0.536 0.776
Model10 2 0.25 BLSTM:32; FC:32 0.01 0.843 0.830 0.768 0.536 0.774
Model11 2 0.25 BLSTM:64; FC:64 0.001 0.844 0.832 0.767 0.535 0.775
Model12 2 0.25 BLSTM:64; FC:64 0.01 0.844 0.831 0.767 0.535 0.772
Model13 2 0.5 BLSTM:32; FC:32 0.001 0.848 0.836 0.771 0.543 0.777
Model14 2 0.5 BLSTM:32; FC:32 0.01 0.846 0.832 0.770 0.541 0.776
Model15 2 0.5 BLSTM:64; FC:64 0.001 0.849 0.836 0.771 0.542 0.776
Model16 2 0.5 BLSTM:64; FC:64 0.01 0.847 0.834 0.770 0.541 0.774

21



(a)

(b)

Fig. 2.2 Performance of the mammalian model on the validation dataset. The
performance is shown by (a) plot of ROC and (b) plot of precision-recall curve.
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The comparison of DeepM6ASeq with other classifiers

I evaluated the mammalian model on the mammalian independent dataset and compared
the model with other classifiers, including LR, RF, and SVM. The hyperparameter
optimization was performed too for each of these traditional classifiers which as presented
in Table 2.3. DeepM6ASeq showed improved performance, with AUROC = 0.844 and
AUPR = 0.831 (Figure 2.3). The performance metrics are listed in the Table 2.5 in which
DeepM6ASeq ranks first in terms of all the evaluation metrics. To check the statistical
significance of the improved performance, I applied the t-test on ROC values from five-fold
cross-validation results between DeepM6ASeq and other three classifiers. The mean and
standard deviation of ROC values were 0.8504±0.0025, 0.8304±0.0030, 0.8298±0.0031,
0.8258±0.0037 for DeepM6ASeq, RF, LR, and SVM respectively. All the t-test yielded
p-value less than 4.5*10e-6, which is indicative of DeepM6ASeq’s superiority. Besides, I
also tested the mammalian model on an unbalanced mammalian dataset, consisting of the
closest nearby windows without any m6A sites on both sides of the positive samples; this
arrangement results in the ratio of positives to negatives nearly 1:2. The performance
metrics of the mammalian model on the unbalanced independent dataset are compiled in
the Table 2.6: DeepM6ASeq showed the stable performance on the unbalanced dataset and
still outperformed the other classifiers. The deep learning model has its strengths: it does
not require existing knowledge as input and extracts the features automatically, whereas
traditional classifiers need predefined features. Additionally, DeepM6ASeq also takes into
account the sequential-order information by applying the BLSTM layer. In summary, the
results indicate that DeepM6ASeq performs better than the other three algorithms with
only sequence-based feature input.
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(a)

(b)

Fig. 2.3 The comparison of DeepM6ASeq with other classifiers, including random
forest (RF), logistic regression (LR), and support vector machine (SVM), on the
mammalian independent dataset. The performance is presented as (a) a plot of
ROC and (b) a graph of precision-recall curves.
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Table 2.5 Performance metrics for comparison of DeepM6ASeq with other classifiers
on the mammalian independent dataset

Accuracy F1-score AUROC AUPR MCC
DeepM6ASeq 0.764 0.762 0.844 0.831 0.528
Random Forest 0.747 0.756 0.826 0.809 0.494

Logistic Regression 0.743 0.736 0.824 0.807 0.487
Support Vector Machine 0.736 0.732 0.818 0.802 0.472

The highest value for each accuracy measure is highlighted in bold.

Table 2.6 Performance metrics for comparison of DeepM6ASeq with other classifiers
on the mammalian unbalanced independent dataset

Accuracy F1-score AUROC AUPR MCC
DeepM6ASeq 0.763 0.687 0.841 0.725 0.505
Random Forest 0.732 0.667 0.822 0.692 0.466

Logistic Regression 0.750 0.662 0.821 0.694 0.469
Support Vector Machine 0.740 0.654 0.815 0.687 0.453

The highest value for each accuracy measure is highlighted in bold.

DeepM6ASeq performance on m6A-Seq data

Given that independent test samples are generated by a stochastic process, I wondered how
the model performs on the real m6A-Seq peak data. I retrieved m6A-Seq peak data from
HepG2 cell line and human brain (see the Materials and Methods section) and compared the
performance of the mammalian model with that of SRAMP, which is also a sequence-based
predictor built for the mammalian genome. Both the full mode and mature mode of SRAMP
were compared, where the full mode is for whole transcripts and the mature mode for cDNA
sequences. I used SRAMP’s highest score among all the scores for predicted A sites as the
prediction score for a given sequence. DeepM6ASeq showed better performance in terms
of AUROC and AUPR as presented in Figure 2.4, and I list performance metrics in Table
2.7. The results indicate that DeepM6ASeq is competitive in predicting m6A-containing
sequences.
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(a)

(b)

Fig. 2.4 Comparison of DeepM6ASeq with SRAMP in full mode and mature mode
(the full mode for whole-transcript sequences and the mature model for cDNA
sequences) on the m6A-Seq dataset. The performance is shown as (a) a plot of
ROC and (b) a graph of precision-recall curves.
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Table 2.7 Performance metrics for comparison of DeepM6ASeq with SRAMP on
the m6A-Seq dataset

Accuracy F1-score AUROC AUPR MCC
DeepM6ASeq 0.763 0.808 0.828 0.881 0.499

SRAMP-Mature 0.732 0.787 0.785 0.841 0.428
SRAMP-Full 0.762 0.824 0.818 0.863 0.483

Cross-species performance

I built models for human, mouse, and zebrafish separately. The cross-species performance is
illustrated in Figure 2.5. As expected, the cross-species prediction was stable between human
and mouse; however, there was a gap in the prediction of the mouse and human dataset by
the zebrafish model and vice versa. Because the zebrafish dataset is from one cell line, it is
possible that models from other species have limitations in terms of generalization due to
the cell-line specificity.
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Fig. 2.5 Cross-species performance. The rows of heatmaps represent a model type
and the columns indicate a dataset type. Values in the heatmaps are (a) AUROC
(b) AUPR.
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2.4.2 Biological information on sequences surrounding m6A sites

Learned motifs for each species

The first CNN layer of the deep learning model is a motif detector, thus I wondered what
biological information could be captured by models for di�erent species. The filters of the
first CNN layer are converted to the motifs in the ways described in refs. [37,42], in which I
extracted the subsequences with the filter length that respond to the filters maximally from
positive training sequences and converted these subsequences to PWMs.These learned motifs
were aligned to known motifs using TOMTOM [60]. Under the threshold of E-value=0.05,
were 18, 21, 15 out of 256 convolutional filters (7%, 8%, and 6%) corresponding to known
motifs for human, mouse, and zebrafish respectively. As depicted in Figure 2.6, among the
most significant motifs (E-value Æ 0.01), I found Rbmx (also known as HNRNPG) in both
the human and mouse model, which is a known m6A reader [61]. Interestingly, the human
predictor detects FMR1, which is a recently discovered m6A reader [19]. FMR1 has been
detected in the mouse predictor, albeit not so significant as that in the human predictor (E-
value = 0.013). In the zebrafish predictor, the most significant motif was LIN28A, which is
one of the core pluripotency regulators. Because the zebrafish data came from embryotic cell
line, this outcome is consistent with m6A’s role in controlling cell fate development [62]. The
results above suggest that DeepM6ASeq could capture meaningful biological information
surrounding m6A sites which is also consistent with biological experiments. Furthermore,
I used RSAT [63] for clustering motifs and got 161, 158, and 177 clusters separately for
human, mouse, and zebrafish (Figure 2.7). The detailed information on motifs and clusters
information can be found at https://github.com/rreybeyb/DeepM6ASeq.

29

https://github.com/rreybeyb/DeepM6ASeq


Human Mouse

Zebrafish

LIN28A
1.92e-4

ACO1
5.26e-3

RBMX(HNRNPG)
8.95e-3

FMR1
8.22e-3

Hnrnpk
3.57e-3

Pcbp1
3.21e-3

Sfpq
3.27e-3

Dazap1
5.26e-3

RBMX(HNRNPG)
5.26e-3

Fig. 2.6 Significant learned motifs (E-value < 0.01) in human, mouse, and zebrafish.
The learned motifs from the first CNN layer of each species model are aligned with
known motifs by means of TOMTOM. For each aligned result, the upper panel is
the known motif, while the bottom panel is the learned motif. The names of known
motifs and the significant scores (E-value) are shown on the side.
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Fig. 2.7 The clusters of learned motifs from RSAT for (a) Human, (b) Mouse and
(c) Zebrafish. The blocks of di�erent colors along the heatmaps represent di�erent
clusters.

Location preference for m6A-containing sequences

m6A is characterized by enrichment near 3’ UTR of transcripts, thus I wanted to know if
DeepM6ASeq could capture such location information. I performed the position analysis in a
way without prior knowledge in which I split the transcripts of the independent test dataset
into bins of 101-bp size, get bins with confident prediction scores and check if these bins have
location preference with regard to the transcript structure. I established three confidence
categories (moderate, high, and very high) for prediction scores, which corresponds to 90%,
95%, and 99% specificity respectively in the validation datasets (see Table 2.8).
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Table 2.8 Prediction scores at di�erent confidence thresholds for species models

Moderate* High* Very high*
Mammalian 0.725 0.818 0.929
Human 0.772 0.841 0.920
Mouse 0.724 0.813 0.890

Zebrafish 0.715 0.820 0.90
*Moderate, High, and Very high correspond to 90%, 95%, and 99% specificity respectively.
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First, I computed the percentage of potential m6A-containing bins with scores above
moderate confidence in the bins of the whole transcripts including introns, all exons, and
last exons. The result indicated that these potential m6A-containing bins are not enriched
in the last exons. This finding suggests that sequences with a potential to contain m6A sites
are widely distributed along the exons of transcripts (Figure 2.8).
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Fig. 2.8 A comparison of percentages of potential bins in di�erent categories for
human, mouse, and zebrafish. The X-axis represents di�erent categories, including
all bins, exon bins, and last exon bins. Potential bins are the ones with confidence
above the moderate threshold.

Then, I checked the relative position of bins of moderate-to-very high confidence in the
last exons toward 3’ UTR. I profiled the relative distances from the center of these bins to
the start of 3’ UTR as shown in Figure 2.9. (The distance was normalized to the length of
3’ UTR.) The relative distance less than -2 is not shown in the figure because some values
are huge owing to the small size of 3’ UTR, and because such bins account for less than
3% in the mammal and 7% in the zebrafish. This finding suggests that predicted potential
m6A-containing bins were enriched near the start of 3’ UTR as the confidence level increased.
This result is consistent with the known m6A location bias.
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Fig. 2.9 Position profiles of potential m6A-containing bins with a size of 101bp in
the last exons for human, mouse, and zebrafish. The X-axis represents the relative
distances from m6A-containing bins in the last exons to 3‘ UTR, which is the
distance from bins’ center to the start of 3’ UTR normalized to the length of the
3’ UTR. Di�erent colors of lines represent confidence levels from moderate to very
high, which corresponds to 90%, 95%, and 99% specificity respectively.
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In summary, the location analysis indicates that sequences with a potential to contain
m6A sites are widely distributed along the exons of transcripts, in particular, the potential
m6A-containing sequences in the last exons are preferentially located near the start of 3’
UTR.

The saliency map for visualizing m6A sites

A saliency map is commonly used in computation version for showing each pixels’ unique
quality. In the context of a genome sequence, a saliency map can measure the nucleotide
importance which can have an impact on the prediction scores. Given that I had precise
m6A locations from miCLIP-Seq data, I was curious whether locations of m6A sites could
be uncovered by way of a saliency map. I obtained saliency maps for potential
m6A-containing sequences in the independent datasets with prediction scores with
higher-than-moderate confidence via the method described by Lanchantin et al. [59],
which, in briefly, performs point-wise multiplication of the absolute derivative of the input
sequences from back-propagation and their one-hot encoding.

First, I checked the distribution of the types of the most salient nucleotides in the
sequences. I extracted the nucleotides with the highest saliency score for each sequence and
plotted the distribution. As shown in Figure 2.10, nucleotide type A accounted for the
majority among all the most salient nucleotides. For those most salient nucleotides rather
than A, I plotted the distribution of the distance from these non-A nucleotides to the
closest mapped miCLIP m6A sites as depicted in Figure 2.11, in which the majority of
these most salient non-A nucleotides are located near mapped miCLIP m6A sites.
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Fig. 2.10 The distribution of nucleotide types of the most salient nucleotides in
the independent test sequences with confidence above the moderate threshold for
human, mouse, and zebrafish. The X-axis represents the nucleotide types A, C, G,
and U.
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Fig. 2.11 The distribution of distances from the most salient non-A nucleotides
in the independent test sequences with confidence above the moderate threshold
to mapped miCLIP m6A in human, mouse, and zebrafish. The X-axis denotes the
distance.

After that, I wondered how many of these most salient As are overlapped with known
m6A sites. It is revealed that nearly 40%–50% of these As belong to known m6A sites from
miCLIP-data as shown in Figure 2.12. Besides, some of non-miCLIP m6A could be mapped
to the predicted m6A sites in the Met-DB single-base m6A database. Although in zebrafish,
the most salient As overlapping neither with miCLIP-Seq data nor Met-DB are more than
those in human and mouse, actually, over 30% of these As belongs to the miCLIP m6A sites
of one of the replicate zebrafish samples.
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Fig. 2.12 The distribution of the most salient As (in the independent test sequences
with confidence above the moderate threshold) by di�erent categories, including
miCLIP-Seq m6A, Met-DB predicted m6A and the other in human, mouse, and
zebrafish.

Even though most salient nucleotides are overlapped with known miCLIP m6A sites to
some extent, I wonder if these known miCLIP m6A sites have higher saliency scores as
compared to the other As in the sequences. Thus, I evaluated the ranking percentile of
the saliency scores for known miCLIP-Seq m6A sites in the sequences. I found that most
of miCLIP m6A sites ranked ahead as shown in Figure 2.13. I also provide examples of
visualization of saliency maps as illustrated in Figure 2.14, in which obvious red bands for
As are consistent with mapped miCLIP-Seq m6A sites. In the saliency map example for
mouse, even though one miCLIP-Seq m6A was missing, I found that this m6A site conforms
to a non-DRACH motif and is located between two more significant m6A sites. All the above
results indicate that a saliency map could serve as an e�cient tool to visualize locations of
m6A sites.
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Fig. 2.13 The distribution of ranking percentiles of saliency scores of miCLIP-Seq
m6A sites in human, mouse, and zebrafish. The X-axis is the ranking percentile of
saliency scores of miCLIP-Seq m6As among those of all the As in the independent
test sequences with confidence above a moderate threshold.
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2.5 Discussion and Conclusion

I propose DeepM6ASeq as a framework useful for identifying m6A-containing sequences.
Nonetheless, I have some thoughts about the future research. First, although the zebrafish
model has higher predictive power, biological information extracted from this model is limited
probably due to the single source of the cell type. I expect additional miCLIP-Seq data to
become available for zebrafish in the future to improve the current model and provide more
biological information. Second, because the second CNN layer detects the combination of
motifs at a higher level, it would be interesting to explore what the deep learning model
could detect in this layer. An alternative approach is to apply word-embedding, a strategy
widely used in the natural language processing. In this way, input sequences can be converted
to words and then a deep learning model can be built to discern some patterns among the
sequence words. The word-embedding strategy has been utilized for identifying chromatin
accessibility [64]. Finally, to characterize biological features surrounding m6A sites in some
way without prior knowledge, I employed all the m6A sites rather than being limited to
m6A sites with DRACH motifs. I believe that deep leaning method may also exert its power
for predicting single-base m6A sites with DRACH motifs, in particular combined with other
features such as secondary structure and conservation score.

In conclusion, I developed DeepM6ASeq, a model based on deep learning framework, to
predict m6A-containing sequences and characterize biological features surrounding m6A
sites. DeepM6ASeq showed better performance as compared to other machine learning
classifiers and is competitive at predicting m6A-containing sequences. In addition,
DeepM6ASeq can recognize the position preference of sequences harboring m6A sites. All
these data corroborate the e�ectiveness of DeepM6ASeq. Furthermore, taking advantage of
function of motif detectors and saliency maps in the deep learning model, DeepM6ASeq
learned a newly recognized m6A reader, FMR1 and helped to visualize mapped and
potential m6A sites. I hope that DeepM6ASeq will provide more insights for m6A research.
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Chapter 3

MoAIMS: e�cient software for
detection of enriched regions of
MeRIP-Seq

3.1 Abstract

Methylated RNA immunoprecipitation sequencing (MeRIP-Seq) is a popular sequencing
method for studying RNA modifications and, in particular, for N6-methyladenosine (m6A),
the most abundant RNA methylation modification found in various species. The detection
of enriched regions is a main challenge of MeRIP-Seq analysis, however current tools either
require a long time or do not fully utilize features of RNA sequencing such as strand
information which could cause ambiguous calling. On the other hand, with more attention
on the treatment experiments of MeRIP-Seq, biologists need intuitive evaluation on the
treatment e�ect from comparison. Therefore, e�cient and user-friendly software that can
solve these tasks must be developed.

I developed a software named “model-based analysis and inference of MeRIP-Seq
(MoAIMS)” to detect enriched regions of MeRIP-Seq and infer signal proportion based on
a mixture negative-binomial model. MoAIMS is designed for transcriptome
immunoprecipitation sequencing experiments; therefore, it is compatible with di�erent
RNA sequencing protocols. MoAIMS o�ers excellent processing speed and competitive

*Chapter 3 is adapted from the publication [65]



performance when compared with other tools. When MoAIMS is applied to studies of
m6A, the detected enriched regions contain known biological features of m6A.
Furthermore, signal proportion inferred from MoAIMS for m6A treatment datasets
(perturbation of m6A methyltransferases) showed a decreasing trend that is consistent with
experimental observations, suggesting that the signal proportion can be used as an
intuitive indicator of treatment e�ect.

In conclusion, MoAIMS is e�cient and easy-to-use software implemented in R. MoAIMS
can not only detect enriched regions of MeRIP-Seq e�ciently but also provide intuitive
evaluation on treatment e�ect for MeRIP-Seq treatment datasets.

3.2 Introduction

RNAmodification refers to biochemical modifications of RNAs that are involved in functional
regulations such as translation e�ciency and mRNA stability without a change in the RNA
sequence, which is also known as epitranscriptome [1]. Over 100 types of RNA modifications
have been reported [2]. Among them, researchers have recently focused on certain abundant
modifications such as N6-methyladenosine (m6A) [3], N1-methyladenosine (m1A) [66], and
5-methylcytidine (m5C) [67].

With the fast growth of next-generation sequencing (NGS), scientists can study RNA
modifications at a whole-transcriptome scale. Methylated RNA immunoprecipitation
sequencing (MeRIP-Seq) is a type of NGS technology for studying RNA modifications and
is particularly widely used to detect m6A, a modification found in various species including
human, mouse, and zebrafish [5, 6, 54]. In MeRIP-Seq, an antibody specific to a certain
type of RNA modification (such as m6A or m1A) is used to immunoprecipitate RNA; it is
similar to another popular sequencing technology, i.e., ChIP-Seq (Chromatin
immunoprecipitation sequencing) [68], which is used in studies of transcription factor
binding. However, based on the inherent features of DNA and RNA, there is some
di�erence between MeRIP-Seq and ChIP-Seq data. First, the distribution of ChIP-Seq read
counts is relatively uniform while that of MeRIP-Seq is more variable owing to transcript
abundance so that MeRIP-Seq requires an input RNA-Seq sample as a control. Second,
high duplication rate is often observed in RNA sequencing data due to highly expressed
genes, which must be considered in preprocessing MeRIP-Seq data. Third, because RNA

43



sequencing can store strand information, which provides more accurate transcriptome
profiling by strand-specific protocols [69], strand information must be well utilized when
analyzing MeRIP-Seq data.

Commonly used tools for identifying enriched regions of MeRIP-Seq include MACS [30],
exomePeak [31], and MeTPeak [32]. MACS, which is a popular software in ChIP-Seq
analysis, assumes the Poisson distribution for read counts. Applying MACS in MeRIP-Seq
analysis requires the genome size to be set [55]; furthermore, because no gene information
is considered, the enriched regions contain ambiguous annotations. exomePeak and
MeTPeak are both exome-based peak callers that also assuming the Poisson distribution
for read counts, and MeTPeak is developed based on exomePeak by integrating a hidden
Markov Model (HMM). Although these two tools are exome-based, they do not process
strand-specific and paired-end cases and are time consuming. Besides, with more attention
on the treatment experiments of MeRIP-Seq, these tools cannot satisfy the need for
intuitive evaluation on the treatment e�ect from the comparison.

To facilitate the analysis of MeRIP-Seq, I developed “model-based analysis and
inference of MeRIP-Seq (MoAIMS),” which is e�cient and user-friendly software designed
for transcriptome immunoprecipitation sequencing. MoAIMS can detect enriched regions
and infer the signal proportion of MeRIP-Seq based on a mixture negative-binomial(NB)
model. It is compatible with di�erent RNA sequencing protocols including
paired/single-end and non-strand/strand-specific sequencing. The results demonstrated the
excellent processing speed (it only takes several minutes to finish analysis of one dataset)
and competitive performance of MoAIMS compared with other tools. When MoAIMS is
applied to studies of m6A, the detected enriched regions contain known biological features
of m6A. Furthermore, MoAIMS can provide an intuitive indicator of treatment e�ect for
treatment experiments. The signal proportion inferred from MoAIMS for m6A treatment
datasets (perturbation of m6A methyltransferases) showed a decreasing trend, consistent
with experimental observations. Finally, functional analysis on the m6A perturbation
datasets reveals the interplay between m6A and histone modification. In conclusion, I
developed e�cient and user-friendly software for MeRIP-seq analysis.
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3.3 Implementation

A MeRIP-Seq dataset consists of one immunoprecipitation (IP) sample and one input sample
(used as control). MoAIMS takes aligned IP and input bams as input. Aligned bams are
generated from pre-processing as shown in the workflow of MeRIP-Seq analysis (Figure 3.1).
In the pre-processing, reads are aligned to a target genome by transcriptome-based aligners
such as STAR [70], Tophat [71], and HISAT [72]. Only uniquely mapped reads are kept.
Then, reads are sorted and marked for duplication using PicardTools [73] or samtools [74].
Given the RNA sequencing protocol (single-end or paired-end, strand-specific or not) and
a target genome annotation (in GTF format), MoAIMS is ready for analysis. Typically,
MoAIMS requires several minutes to complete the analysis of one MeRIP-Seq dataset. The
primary outputs of MoAIMS contain enriched regions (in BED12 format), goodness of fitting
(GOF) plot (Figure 3.2), and a summary table of the fitted models (Table 3.1). The source
code and the user’s manual are available at https://github.com/rreybeyb/MoAIMS

Map reads using
transcriptome-based aligners

Keep uniquely mapped reads,
sort, and mark duplicates

• RNA sequencing protocol
• Annotation of genes(in GTF)

Detect enriched regions by
MoAIMS

• Enriched regions
• GOF plot
• Summary table

Fig. 3.1 Workflow of MeRIP-Seq analysis using MoAIMS. Reads are pre-processed
through alignment, sort (by coordinates), and mark-duplication. Given the RNA
sequencing protocol and annotation of genes in GTF format, MoAIMS is ready for
analysis. The primary outputs include detected enriched regions (in BED12 format),
goodness of fitting (GOF) plots, and a model summary table.
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Fig. 3.2 Examples of goodness of fitting (GOF) plots for a human and a mouse
dataset. X-axis is bin count and Y-axis is frequency. Real data, simulation data of
1S (one-signal) mode, and simulation data of 2S (two-signal) mode, are plotted in
black, red, and blue lines, respectively.
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Table 3.1 An example of the model summary table

Dataset fi

s

BIC_1S BIC_2S optim_k optim_reg

WT_rep1 0.138 1679168 1678590 2 rlm
WT_rep2 0.11 1212063 1212005 2 rlm

The columns represent dataset names, signal proportion, BIC values for 1S (one-signal)
mode, BIC values for 2S (two-signal) mode, optimized k, and optimized regression methods.

In the analysis performed by MoAIMS, it firstly obtains transcriptome bins by
concatenating all exons for the expressed genes. Then, it uses featureCounts for counting
reads in the bins. Subsequently, it models the distribution of the bin counts by a mixture
NB distribution and detects the enriched regions. The details are described as follows.

3.3.1 Read counts of bins

Counting reads in bins was performed for the transcriptome of expressed genes because
unexpressed genes provide little information for signal detection. The default threshold for
expressed genes is 0.5 TPM(transcripts per million). All exons for the expressed genes were
concatenated and split into bins with size 200 bp(default setting). Subsequently,
featureCounts [75] was used for counting reads in the bins. The parameters used in
featureCounts include the following: requireBothEndsMapped=TRUE (for paired-end
sequencing), read2pos=5, ignoreDup=T, allowMultiOverlap=T.

3.3.2 Model construction

A negative-binomial mixture model

MoAIMS implements and extends the statistical framework proposed by MOSAiCS [76],
which is used to detect ChIP-Seq enriched regions and cannot be directly applied to MeRIP-
Seq data because it is designed for processing DNA Sequencing and models the bin counts
on the whole-genome scale. The statistical framework uses the negative-binomial to model
the distribution of background reads distribution (bin counts) in an individual sample. It
assumes that the observed bin counts of an IP sample follows a mixture negative-binomial

47



model composed of a background component and a signal component that are unobserved.
Let Z represent the components, where Z œ {0,1} (0 for the background component and 1
for the signal component) and Y

j

is the observed read count of the jth bin; therefore, the
mixture model can be written as Equation(3.1),

P (Y
j

) = (1≠fi

s
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of which fi
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is the signal proportion(fi
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œ [0,1]), i.e. the proportion of bins from the signal
component with s representing signal, equal to P (Z
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are parameters of background and signal distribution respectively.

When the bin is from the background component, the read count follows the distribution
NB(a, a

a+µj
), with a the size parameter and a

a+µj
the probability parameter of the NB

distribution. When the bin is from the signal component, the read count is represented as Y
j

=
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+ k, where N

j

is the count from a non-specific background following NB(a, a

a+µj
),

S

j

is the count from an actual enrichment, and k is the minimal read count required for the
signal component. Thus, the distribution of the signal component is a convolution of negative
binomials. There are two modes for the distribution of S

j

, named one-signal (1S) mode and
two-signal (2S) mode. In the 1S mode, S

j

follows NB(b, c

c+1) (c=
b

µ

, µ is the mean). Details
of the distributions are provided in the Appendix A. In the 2S mode, S

j

follows a mixture NB
distribution, i.e. fi

s1NB(b1, c1
c1+1)+(1≠fi

s1)NB(b2, c2
c2+1), with fi

s1 (fis1 œ [0,1]) representing
the first signal proportion. MoAIMS implements 2S mode from MOSAiCS. The di�erence
between 1S mode and 2S is that 1S mode assumes a single NB distribution for the actual
enrichment while 2S model assumes a mixture NB distribution that considers the complexity
of the signal component.

Parameters estimation

The parameters of NB to be estimated in the model are represented as � = {�
B

,�
s1,�s2},

where �
B

= (a,µ
j

) for the background component, �
s1 = (b,c) for the signal component in

1S mode and �
s2 = (b1, c1, b2, c2) for the signal component in 2S mode.

First, the parameters of the background component, �
B

= (a,µ
j

) are estimated. µ
j

is
the expected bin counts of the jth bin and estimated by regression using the input bin
count data. A simple illustrative figure for the regression process is shown in Figure 3.3. The
detailed explanation is described as follows.
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Steps
• Group IP count(Y) according to input count(X), !" is the 
group value: 

• Get median Y value of each group

• To estimate the mean background count of each bin from 
IP sample, regression is performed using !" as the 
predictor variable and #"as the response variable

Gene1:IP 1 2 5 1 1
Gene1:input 3 3 3 3 3

Gene2:IP 2 2 3 2
Gene2:input 6 6 6 6

S1 = {Y = 1, 2, 5, 1, 1|X = x1 = 3}

S2 = {Y = 2, 2, 3, 2|X = x2 = 6}

µ1 = E(S1) = 1

µ2 = E(S2) = 2

Fig. 3.3 A simple illustration on estimating background means. Tables list the IP
and input bin counts for Gene1 and Gene2 as examples. Cells with numbers represent
bins. The following steps show how to estimate the mean background count of each
bin from in sample in brief.

Each IP bin count Y

j

has a corresponding input bin count X

j

. For the bins from the
background component, it is assumed that {Y

j

}(j = 1,2, ...,T ) with the same input bin
count from the same distribution; thus, {Y

j

} are grouped by the input bin count to S
i

=
{Y

j

|X
j

= x

i

} (x
i

is the group value equal to available and unique bin count value, i.e. 0,1,2,...,
in input sample and i is the group index) in the transcriptome-wide. Figure 3.3 gives an
example of how to estimate background means. For Y

j

œ S
i

, it follows that NB(a, a

a+µi
). In

another word, the expected bin counts µ
j

of Y
j

is decided by the group S
i

which Y

j

belongs
to. Subsequently, regression is performed with x

i

as the predictor variable and µ

i

(euqal to
E(S

i

), the median value of Y
j

œ S
i

. Median is a robust and e�cient estimator because there
are both background and signal bins in an IP sample.) as the response variable. For the
regression method, MOSAiCS uses the weighted robust fitting of linear model (RLM) [77]
with the function log(µ

i

) = —0+—1 log(xi), of which —0 and —1 are the coe�cients. However,
in some cases of RNA sequencing, I found that the generalized additive model (GAM) [78]
can provide better fitting as shown in Figure 3.4. GAM is a flexible model that uses a
sum of unspecified smooth functions q

G

s=1 fs(vs) to replace the linear form q
G

s=1—

s

v

s

in
the generalized linear model where v is predictor variable and G is the number of predictor
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variables. Here, I used only one predictor variable, that is, the input bin count. Therefore,
when using GAM, µ

i

can be estimated by log(µ
i

) = —0+f(log(x
i

)|b), where f is represented
using smoothing splines and b is a vector of coe�cients for the spline term with length of 9
as default. I implemented GAM using R package mgcv [79] and set the restricted maximum
likelihood [80] as the method for estimating the smoothing parameters. To optimize the
model, MoAIMS implements both RLM and GAM and subsequently uses that with a lower
BIC (Bayesian Information Criterion) [81]. BIC scores were calculated in the general method
by r ln(T )≠2ln(L̂), where r is the number of parameters, T the number of bins, and L̂ the
maximum likelihood.
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Fig. 3.4 Comparison of generalized additive model (GAM) and robust fitting
of linear model (RLM) regression for estimating the distribution means of the
background component. X-axis is the available and unique read count for input
sample and Y-axis is the median read count of the IP bins of which corresponding
input bins have the same read count. Both are log transformed.

The size parameter a is a weighted value estimated by â = q
i

n

i

â

i

/

q
i

n

i

, where â

i

=
[E(S

i

)]2/[V ar(S
i

)≠E(S
i

)] (i is the group index; the expectation is calculated using median
value; the variation is calculated using the median absolute deviation) and n

i

is the number
of bins.

Then, after estimating the parameters of the background component, the parameters
of the signal component in 1S mode, �

s1 = (b,c), and fi

s

are estimated using expectation
maximization (EM) algorithm [82]. For the parameters b and c, the method of moments is
used as MOSAiCS. For fi

s

, it is estimated in the maximization step with optimized k value
rather than based on a pre-defined k value in MOSAiCS. The details of modified EM process
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for 1S mode are provided in the Appendix A. Finally, the parameters of the signal component
in 2S mode, �

s2 = (b1, c1, b2, c2), and fi

s1 are estimated in the way of MOSAiCS.

Model design for MeRIP-Seq analysis

I developed MoAIMS based on the statistical framework proposed by MOSAiCS and made
some modification and extension in order that MoAIMS is more suitable for MeRIP-Seq
analysis. This framework applies the negative-binomial distribution that is commonly used
to deal with the overdispersion, and uses input read counts as covariates to estimate
background means in the IP sample, which is an e�cient way that helps provide
information like transcript abundance and regional bias. In addition, to check if signal
detection is influenced for genes with higher expression, I plotted the residuals between IP
signal and estimated background corresponding to the gene expression. As Figure 3.5
shows, IP signal increases as the gene expression increases, which indicates that the model
can detect enrichment for highly-expressed genes.
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Fig. 3.5 Diagnostic plots of a human dataset shGFP_rep1 and a mouse
dataset WT_rep1 for the residuals between IP signal and estimated background
corresponding to the gene expression. X-axis is the rank of gene expression(TPM)
from lowest to highest. Y-axis is the residuals between IP signal and estimated
background in log2 scale.
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The modification and extension involved three aspects. First, I used log-transformation
in estimating the background means instead of power-transformation in MOSAiCS.
Log-transformation is often used for covariates with skewed distribution in the regression
analysis [83]. It can simplify the parameter tuning required in power transformation.
Second, I set k, the minimum count in the signal regions, flexible instead of pre-defined in
MOSAiCS. Because k may depend on the library size and signal-to-background ratio of the
experiments [84] , I set k flexible and optimized in the model fitting. With the optimized k,
the signal proportion (fi

s

) was estimated by EM rather than based on a pre-defined k value
in MOSAiCS. Third, in addition to the RLM used by MOSAiCS in estimating background
means, I applied GAM for regression to obtain better fitting for some cases of RNA
sequencing data, as shown in Figure 3.4. An example of summary table of the fitted models
is shown as Table 3.1 that provides signal proportion, BIC values for 1S (one-signal) mode,
BIC values for 2S (two-signal) mode, optimized k, and optimized regression methods.

3.3.3 Detection of enriched regions

The enriched regions were decided under the threshold of the false discovery rate (FDR),
which was calculated as in [84, 85]. In this study, false discovery means a genomic region
that is claimed to be significant when it is not. For a set M of m enriched regions that
satisfies a defined cut-o� (default is 0.05), the estimated FDR is equal to
(1/m)�

jœMP (Z = 0|Y
j

), where P (Z = 0|Y
j

) is equal to (1≠fîs)p̂0,j
(1≠fîs)p̂0,j+fîsp̂1,j

for the 1S mode

and (1≠fîs)p̂0,j
(1≠fîs)p̂0,j+fîs[fîs1p̂1,j+(1≠fîs1)p̂1,j ] for the 2S mode with p̂0,j and p̂1,j as the post

probability for the jth bin from the background component and the signal component
respectively. Finally, the enriched regions were merged and output in the BED12 format
with the highest bin count of merged regions as the score, which can be used as a filter to
obtain higher confident signal region candidates.

3.3.4 Goodness of fitting (GOF)

To display the goodness of fitting (GOF), the simulations is performed using the estimated
parameters. For the simulation of the 1S mode, m background bins and n signal bins were
randomly sampled according to fi

s

, where m+n= T . The background read count of T bins
were generated from the background distribution NB(a, a

a+µj
)(j = 1, ...,T ). Subsequently,
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for n signal bins, the read count was composed of the background read count, the count
sampled from the signal distributionNB(b, c

c+1), and the minimal count k. For the simulation
of the 2S mode, m background bins, n1 first-signal bins, and n2 second-signal bins were
randomly sampled according to fi

s

and fi

s1, where m+n1+n2 = T . The background read
count of T bins were generated from the background distribution NB(a, a

a+µj
)(j = 1, ...,T ).

Subsequently, for the signal bins, the read count was composed of the background read count,
the count sampled from the corresponding signal distribution NB(b1, c1

c1+1) or NB(b2, c2
c2+1),

and the minimal count k. Figure 3.2 gives examples of GOF plot.

3.4 Results

3.4.1 Comparison with other tools

Detection of m6A-enriched regions

I performed analysis on two m6A MeRIP-Seq studies. One is from mouse embryonic stem
cell [62] that uses the single-end and strand-specific sequencing protocol. The mouse
datasets include the wild type and knock-out of Mettl3 (an m6A methyltransferase), of
which each has two biological replicates. The other is from human A549(adenocarcinomic
human alveolar basal epithelial cells) cell line [86] that uses the paired-end and
strand-specific sequencing protocol. The human datasets contain negative control (shGFP)
and perturbation of three types of m6A methyltransferases including Mettl14, Mettl3, and
WTAP, of which each has two replicates. Table 3.2 summarized the information of
datasets. Raw fastq files were retrieved from Gene Expression Omnibus [87] with accession
numbers GSE52662 and GSE54365. Reads were aligned to human (hg19) and mouse
(mm10) genome using STAR (version 2.6.0c, default setting) [70] with annotation files of
GENCODE (human release19 and mouse release M19) [88]. Only uniquely mapped reads
were kept. The sorted (by coordinates) and duplication-marked bam files were generated
by Picard (version 2.18.1) and subsequently used as input for MoAIMS.
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Table 3.2 Information of MeRIP-Seq datasets

Name Species Type Replicates

WT Mouse Wild 2
KO_Mettl3 Mouse Treated 2
shGFP Human Negative control 2
shWTAP Human Treated 2
shMettl3 Human Treated 2
shMettl14_1 Human Treated 2
shMettl14_3 Human Treated 2

Three commonly-used tools for comparison are MACS(version MACS2),
exomePeak(v2.13.2), and MeTPeak(v1.0.0). Duplication-removed bam files were used as
input for the three tools. For MACS, I specified parameters “–nomodel –extsize=100
–keep-dup=all -g 286,000,000 (for human)/221,000,000 (for mouse)’. ’I kept the peaks
called by MACS overlapped with exonic regions for comparison. For exomePeak and
MeTPeak, I used the default setting.

First, I compared the m6A-enriched regions called by MoAIMS with MACS, exomePeak,
and MeTPeak. I verified to what extent the enriched regions called by the four tools agree
with each other using BEDTools [89]. To obtain higher confident regions, I chose the enriched
regions (FDRÆ0.05) called by MoAIMS with score Ø10. Table 3.3 shows the results for the
mouse wild-type datasets. Each cell of the table represents the percentage of enriched regions
of tools in the columns detected by tools in the rows; the number in bracket is the number
of enriched regions called by each tool. It is indicated that enriched regions of MoAIMS are
overlapped more with MACS and exomePeak. Additionally, MeTPeak called relatively less
peaks and, in some cases, could miss enriched regions, as shown in Figure 3.6.
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Table 3.3 Consistency of enriched regions called by MoAIMS, MACS, exomePeak,
and MeTPeak

Mouse WT_rep1 MoAIMS MACS exomePeak MeTPeak

MoAIMS 100(11869) 72.9 64.8 71.0
MACS 81.3 100(14681) 69.2 80.9
exomePeak 96.4 96.6 100(19698) 91.5
MeTPeak 44.0 48.4 37.8 100(9049)

Mouse WT_rep2 MoAIMS MACS exomePeak MeTPeak

MoAIMS 100(9411) 81.3 61.7 69.7
MACS 88.2 100(11161) 66.8 70.8
exomePeak 97.8 98.1 100(16190) 85.5
MeTPeak 61.9 61.9 49.7 100(10133)

WT_rep1 and WT_rep2 are two replicates of wild-type mouse datasets. Each cell is shown
in percentage(%) and the number in bracket is the number of enriched regions.
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Fig. 3.6 Example of an enriched region missed by MeTPeak. The plot is generated
using IGV showing the enriched region called by MACS, exomePeak, MeTPeak, and
MoAIMS in the first four tracks. The following tracks are the coverage for IP and
input sample and the genome annotation.

Subsequently, I verified the occurrence of the core m6A motif ‘GGAC’ [90] in the top-5000
enriched regions. The ranking scheme for MACS, exomePeak, and MeTPeak is fold change.
For MoAIMS, the ranking scheme of fold change(FC) and score are both used for comparison.
Sequences of length 200 bp were extracted around the summits of the enriched regions. For
MACS, I used the summits it provided; for MoAIMS, exomePeak, and MeTPeak, the summits
were defined as the positions with the highest read coverage. Because I had the strand-
specific sequencing data, I only counted the motifs that occurred in the expressed genes
with coverages (for MACS, only motifs with coverages were counted). Figure 3.7 compares
the percentage of motif occurrence in the decreasing peak ranks for two wild-type mouse
datasets and two human negative control datasets. The results indicated that MoAIMS
achieved comparable performance to the other three tools.
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Fig. 3.7 Comparison of ‘GGAC’ motif occurrence for MACS, exomePeak, MeTPeak,
and MoAIMS for datasets: (a) WT_rep1 and (b) WT_rep2 (two replicates of mouse
wild type), (c) shGFP_rep1 and (d) shGFP_rep2 (two replicates of human negative
control). X-axis is the decreasing rank of the enriched regions from the top 1000 to
top 5000. The ranking scheme for MACS, exomePeak, and MeTPeak is fold change.
For MoAIMS, the ranking scheme of fold change (FC) and score are both used for
comparison. Y-axis is the percentage of motif occurrence.
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Next, I was interested to know to what extent the m6A miCLIP sites agree with the
MeRIP-Seq enriched regions. I collected miCLIP-Seq data of human A549 cell line from [29],
which maps m6A sites at single-base resolution.I counted the number of regions containing
miCLIP sites in the top-5000 enriched regions detected by the four tools (The ranking scheme
is the same as that for counting motif occurrence). MoAIMS with score ranking has the most
number of regions with m6A miCLIP sites in the decreasing peak ranks in Figure 3.8 (a)
while has the second most in Figure 3.8 (b). To determine whether the number was a�ected
by the length of the enriched regions, I compared the length of the top-5000 enriched regions
between the tools, as shown in Table 3.4. The result shows that compared with MeTPeak,
which ranks second with regard to consistency with miLCIP sites, MoAIMS can detect more
regions with m6A miCLIP sites under the similar resolution.
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Fig. 3.8 Comparison of top enriched regions with m6A miCLIP sites called
by MACS, exomePeak, MeTPeak, and MoAIMS for two human negative control
datasets. X-axis is the decreasing rank of the enriched regions from the top 1000 to
top 5000. The ranking scheme for MACS, exomePeak, and MeTPeak is fold change.
For MoAIMS, the ranking scheme of fold change (FC) and score are both used for
comparison. Y-axis is the number of enriched regions with m6A miCLIP sites.
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Table 3.4 Length comparison of top-5000 enriched regions

Dataset MoAIMS(score) MoAIMS(FC) MeTPeak exomePeak MACS

shGFP_rep1 400(400) 400(473) 399(458) 297(386) 244(297)
shGFP_rep2 400(549) 600(653) 300(365) 300(400) 221(271)

shGFP_rep1 andshGFP_rep2 are two replicates of the human negative control datasets.
Each cell represents the median length, and the number in bracket is the mean length. The
ranking scheme for MACS, exomePeak, and MeTPeak is fold change. For MoAIMS, the
ranking scheme of fold change(FC) and score are both used for comparison.

Features of MoAIMS

MoAIMS is e�cient software with appealing features, as shown in Table 3.5. Thus, I
performed comparison analysis with regard to those features. First, because MoAIMS is
compatible with general RNA sequencing protocols in counting reads, I investigated how
the methods of counting reads a�ected the detection of enriched regions for pair-end RNA
sequencing. The comparison was conducted for the human shGFP (negative control)
datasets among exome-based callers: MoAIMS, exomePeak, and MeTPeak. Table 3.6 lists
the number of enriched regions detected by these three tools using pair-end reads and
first-in-pair reads, separately. The result indicates that exomePeak and MeTPeak di�er in
the method of counting paired-end reads, while the di�erence is limited for MoAIMS.

Table 3.5 Features of MoAIMS compared with other tools

Features MoAIMS exomePeak MeTPeak MACS

Exome-based Y Y Y N
Strand-specific/Paired-end Y N N N
Time-consuming N Y Y N
Inference of signal proportion Y N N N
Visualization of model fitting Y N N N
Output in BED12 format Y Y Y N
Support for di�erential methylation analysis N Y N N
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Table 3.6 Comparison of methods of counting reads in bins for pair-end sequencing

MoAIMS exomePeak MeTPeak
Dataset Pair-end First-read-in-pair Pair-end First-read-in-pair Pair-end First-read-in-pair

shGFP_rep1 14137 15319 24009 17573 14478 9213
shGFP_rep2 21603 24300 26741 18418 13610 7401

shGFP_rep1 and shGFP_rep2 are two human negative control datasets. Pair-end means
using both reads in pair-end sequencing as input, while first-read-in-pair means using only
the first read in pair-end sequencing. Each cell shows the number of enriched regions.

Next, MoAIMS is a strand-aware caller; thus, it can avoid calling ambiguous regions that
are overlapped with other regions on di�erent strands. Figure 3.9 shows an example of how
MoAIMS called strand-specific enriched regions. As shown in the figure, a protein-coding
gene Mtmr10 and an antisense gene RP23-84M17.2 are partially overlapped. The coverage
track in red (colored by strand) indicates the signal in Mtmr10, not the antisense gene. For
this case, exomePeak and MeTPeak have callings on both genes, but MoAIMS can avoid the
ambiguous callings.

Fig. 3.9 Example of detection of strand-specific enriched regions. The plot is
generated using IGV [91], showing the enriched region called by MACS, exomePeak,
MeTPeak, and MoAIMS in the first four tracks. The following tracks are coverage
and aligned reads (strand orientation is colored) for the IP and input sample,
respectively, and the genome annotation.
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Finally, MoAIMS o�ers excellent processing speed compared with exome-based callers
exomePeak and MeTPeak, which require approximately 2 hours to analyze one dataset
(MeTPeak needs even more time because it applies HMM). Table 3.7 lists the time cost for
a human and a mouse dataset, indicating that MoAIMS is competitive as it only requires
several minutes and can yield comparable performance.

Table 3.7 Performance on the time cost

Dataset MoAIMS exomePeak MeTPeak

Human shGFP_rep1 14.1 141.0 176.4
Mouse WT_rep1 10.6 110.4 143.4

shGFP_rep1 is one human negative control dataset. WT_rep1 is one wild-type mouse
dataset. The units of time is minute.

3.4.2 Application on feature and functional analysis of m6A

m6A is characterized by its location preference close to three prime untranslated regions
(3’ UTRs); thus, I verified the position preference of the enriched regions (with score Ø10)
called by MoAIMS. For the wild-type mouse datasets, as shown in Figure 3.10 (a) and (b),
the enriched regions exhibit location bias near 3’ UTRs, which is consistent with the results
of the original study [62]. For the human negative control datasets, I observed that enriched
regions appeared near 5’ UTRs, as shown in Figures 3.10 (c) and (d), which agrees with the
findings of the original study [86] regarding methylated m6A at transcription start sites.
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Fig. 3.10 Position profile of m6A-enriched regions for the following datasets: (a)
WT_rep1 and (b) WT_rep2 (two replicates of mouse wild type), (c) shGFP_rep1,
and (d) shGFP_rep2 (two replicates of human negative control). X-axis is the
relative position coordinates and Y-axis is the mean coverage of the enriched regions.
The plot is generated using RCAS [92].
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Because MoAIMS infers the signal proportion from the mixture NB model, I assumed
that this value can reflect the treatment e�ect; for example, the knocking-down/out of
methyltransferases (such as WTAP, METTL3, or METTL14) can cause decreased signal
proportion. For the mouse datasets, as shown in Figure 3.11, Mettl3 knock-out exhibits a
clear decreasing trend for signal proportion, which agrees with the findings of a recent
study [93] that include a discussion on the m6A methyltransferase treatment experiments
and the e�ect of treatment in this dataset. For the human datasets, as shown in Figure
3.12, WTAP shows a relatively clear e�ect after perturbation, while Mettl3 and Mettl14
shows less e�ect. This trend is consistent with the original study [86], in which the authors
observed the necessity of WTAP for m6A methylation, while perturbation of Mettl3 and
Mettl14 exhibited milder e�ects in decreasing methylation level. These results suggest that
the signal proportion can be used as an intuitive indicator of the m6A treatment e�ect,
which can facilitate biologists’ evaluation on the treatment experiments.
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Fig. 3.11 Signal proportion for m6A treatment experiments. X-axis represents
MeRIP-Seq datasets, i.e. mouse wild type (WT) and knock-out of METT13
(KO_Mettl3) with blue for replicate 1 and yellow for replicate 2. Y-axis represents
the signal proportion.
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Fig. 3.12 Signal proportion for m6A treatment experiments. X-axis represents
MeRIP-Seq datasets, i.e. human negative control(shGFP) and perturbation of
WTAP, METTL3, METTL14_1, and METTL14_3 with blue for replicate 1 and
yellow for replicate 2. Y-axis represents the signal proportion.

Finally, I conducted a functional analysis on the genes a�ected by the perturbation of
methyltransferases. I performed gene ontology (GO) analysis by RCAS [92] on genes with
lost m6A-enriched regions. The loss of m6A-enriched regions is defined as a state from being
detected in all the replicates of the wild type to being undetected in all the replicates of the
treated type. The GO results of enriched biological process (BP) terms are shown in Figure
3.13. For the mouse datasets of the wild type and Mettl3 knock-out, the enriched BP terms
are related to planar polarity and polarity as shown in Figure 3.13 (a), thus suggesting that
the loss of m6A a�ects the development of embryo cells. For the human datasets of negative
control and WTAP perturbation, the enriched BP terms are related to histone methylation
and acetylation as shown in Figure 3.13 (b), which also appeared in the term list for mouse.
This observation agrees with that of [94] regarding m6A’s function in destabilizing transcripts
that encode histone modification enzymes.
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Fig. 3.13 Enriched biological process (BP) term for genes impacted by perturbation
of m6A methyltransferase for (a) KO_Mettl3 vs WT (Mouse) and (b) shWTAP vs.
shGFP (Human) . The threshold of the adjusted p-value for the terms are set as
0.05.
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3.5 Discussion and Conclusion

MoAIMS is an e�cient and user-friendly software for the analysis of MeRIP-Seq, which
applies a statistical framework with negative-binomial model for signal detection. The NB
model is commonly used in the di�erential expression analysis to model the distribution of
counts for a gene across replicates [95, 96]. Besides, NB is also used to model the
background read distribution in an individual sample in the analysis of ChIP-Seq [84, 97]
and CLIP-Seq [98–100]. A main di�erence between ChIP-Seq and CLIP-Seq is that
transcript abundance has a large impact on CLIP-Seq, which also exists in MeRIP-Seq.
Nevertheless, it has been found that NB model can appropriately account for the
overdispersion and incorporating input sample can improve the background estimation for
CLIP-Seq [100]. This inspired the development of MoAIMS. Though there is no guarantee
that NB can work well on all the MeRIP-Seq datasets, a goodness of fitting plot generated
by MoAIMS can help check the model fitting.

There are some thoughts for improvements. First, MoAIMS currently supports only the
analysis of single samples. For replicate samples, although enriched regions common in all the
replicates can be easily extracted using MoAIMS, a joint statistical model can be developed
as an alternative that considers the variance among replicates. Next, apart from the NB
distribution, other statistical distributions are worth being tested owing to the wide diversity
of RNA sequencing data. For example, Poisson-Tweedie is a more general family of count
data distributions that can fit RNA sequencing data under situations of heavy tail or zero
inflation [101]. Last but not least, because MoAIMS can provide user-friendly outputs for
downstream analysis, it is feasible to integrate MeRIP-Seq datasets with other biological data
for a comprehensive functional analysis, especially for MeRIP-Seq-treatment experiments.

I developed MoAIMS, which is an e�cient and user-friendly software for analysis of
MeRIP-Seq. MoAIMS is compatible with general RNA sequencing protocols, achieves
excellent speed and competitive performance, and provides user-friendly outputs for
downstream analysis. When MoAIMS was applied to studies of m6A, m6A’s known
biological features and its interplay with histone modification was revealed. Furthermore,
the signal proportion inferred from MoAIMS can be used as an intuitive indicator of
treatment e�ect. I hope that MoAIMS would facilitate MeRIP-Seq analysis and provide
more insights into studies of RNA modification.
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Chapter 4

Identification of m6A-associated RNA
binding proteins using an integrative
computational framework

4.1 Abstract

N6-methyladenosine (m6A) is one of the most abundant RNA modifications found in various
species. Several wet lab studies have identified some RNA binding proteins (RBPs) that is
associated with m6A regulation. The objective of this study was to identify potential m6A-
associated RBPs using an integrative computational framework.

I identified reproducible m6A regions from independent studies in certain cell lines and
then utilized RBPs’ binding data of the same cell line to identify m6A-associated RBPs.
The computational framework was composed of an enrichment analysis and a classification
model. The enrichment analysis identified known m6A-associated RBPs including YTH
domain-containing proteins; it also identified a potential m6A-associated RBP, RBM3, for
mouse. I observed a significant correlation for the identified m6A-associated RBPs at the
protein expression level rather than the gene expression. In addition, I built a Random
Forest classification model for the reproducible m6A regions using RBPs’ binding data.
The RBP-based predictor demonstrated not only competitive performance when compared
with sequence-based predictions but also helped to identify m6A-repelled RBP. These
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results suggested that this framework allowed us to infer interaction between m6A and
m6A-associated RBPs beyond sequence level when utilizing RBPs’ binding data.

I designed an integrative computational framework for the identification of known and
potential m6A-associated RBPs. I hope the analysis will provide more insights on the studies
of m6A and RNA modification.

4.2 Introduction

In recent years, RNA modification has emerged as a mode of post-transcriptional gene
regulation and has been gaining increasing attention from researchers around the globe.
More than 100 types of post-transcriptional modification have been discovered, with
N6-methyladenosine (m6A) as being one of the most abundant RNA modification [67].
m6A is featured with the DRACH motif(where D=A,G or U;R=A or G;H=A,C or U) and
is preferentially located near 3’ untranslated regions (3’ UTR) [8]. It has been reported
that m6A participates in essential RNA activities including alternative splicing, export,
translation, and decay [18].

m6A exerts its function through interaction with several RNA binding proteins referred
to as m6A-associated RBPs. There are three main kinds of m6A-associated RBPs, they are
writer, eraser, and reader. m6A writers are methyltransferases like METTL3, METTL14,
WTAP, RBM15/15B, while m6 erasers are demethyltransferases like FTO, ALKBH5 and
m6A readers are the proteins that can recognize m6A like the YTH domain-containing
proteins (YTHDF1/2/3), EIF3 [18], FMR1 [19]. m6A writers and erasers can be considered
as m6A regulators which directly regulate m6A while m6A readers can be considered as
m6A e�ectors which participate in m6A regulatory network. These m6A-associated RBPs
cooperate with each other to facilitate both temporal and spatial regulation where writers
work in the nucleus to introduce the m6A modification which is then recognized by various
readers in the nucleus and cytoplasm, which can influence activities of their target RNAs.

There are some computational methods that can be used to identify m6A-associated
RBPs. One such method is to build a prediction model based on deep learning and then
extract the sequence features [45, 102]. However, not all RBP motifs are available and
sequences cannot reflect actual binding, thus limiting their utility in the identification of
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m6A-associated RBPs. Another group developed an analysis framework to identify
cell-specific trans regulators of m6A [103]. Because there exists the considerable variation
among MeRIP-Seq datasets (about 30 to 60% between studies, even in the same cell
type) [104], I decided to focus on the use of reproducible m6A regions in order to identify
m6A-associated RBPs.

Here, I aimed to identify m6A-associated RBPs from reproducible m6A regions. I
developed an integrative computational framework composed of an enrichment analysis
and a classification model. The enrichment analysis allows us to identify RBPs enriched in
the m6A regions. I was able to identify not only the known m6A-associated RBPs like
YTH domain-containing proteins, but also a potential m6A-associated RBP, RBM3, for
mouse. I went on to evaluate the correlation of these identified m6A-associated RBPs with
some known m6A regulators/e�ectors and compared these to other RBPs. I observed a
significant correlation in the protein expression level rather than the gene expression, which
suggested that the m6A-associated RBPs cooperate at the protein-level in regulating the
process of modification. In addition, I built a Random Forest classification model for the
reproducible m6A regions using RBPs’ binding data in an e�ort to understand how RBPs
contribute to the profiling of m6A regions. This RBP-based predictor demonstrated
competitive performance when compared with sequence-based methods. Furthermore, the
feature importance inferred from this model can be used to help identify m6A-repelled
RBP. These results suggested that this framework could enable researchers to infer
interaction between m6A and m6A-associated RBPs beyond sequence level when utilizing
RBPs’ binding data. I hope that the analysis could be used to provide more meaningful
insight in future m6A and RNA modification studies.

4.3 Materials and methods

4.3.1 MeRIP-Seq data collection and processing

I collected the raw MeRIP-Seq FASTA files from four independent studies using the human
HEK293T(Human embryonic kidney 293T cells) cell line from European Nucleotide Archive
with accession numbers SRP090687 [105], SRP039397 [86], SRP007335 [5], and SRP162223.
I also collected the MeRIP-Seq data from four independent studies using mouse embryonic
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fibroblasts(MEF) with accession numbers SRP039402 [86], SRP048596 [106], SRP115436
[107], and SRP061617 [108].

To detect m6A regions from MeRIP-Seq data, I used MoAIMS [65], an e�cient software
I developed based on a statistical framework of a mixture negative-binomial distribution.
After quality control using FastQC [109] and adapter-trimming with Cutadpat [110], I
processed and analyzed the MeRIP-Seq using the method described in the MoAIMS paper.
MoAIMS was performed using the default parameters except that I set sep_bin_info=F
when analyzing studies with replicates. MoAIMS split genes to bins for signal detection,
therefore the output is m6A regions with a size of 200bp as default. After that, I identified
reproducible m6A regions that were called in at least 60% of the replicates in any one
study and further in at least three studies.

4.3.2 The enrichment analysis

I retrieved the binding site data of RBPs from the POSTAR2 database [111] and identified
RBPs enriched in the reproducible m6A regions. A permutation test was adopted to assess
the significance of the RBP binding in the m6A regions. The rest of regions in genes with
m6A was used as control and then sampled 1000 times. I kept the ratio of the number of bins
in exons to the number of bins spanning exons the same for both m6A and control regions
to avoid the regions’ position being a confounding factor. For each RBP, I calculated the
enrichment ratio using the Equation (4.1) where N

t

is the number of m6A regions with the
RBP and E(N

c

) is the average number of control regions with the RBP from 1000 times of
sampling. Then, a p-value was calculated as the proportion of N

c

which were greater than or
equal to N

t

. After that, multiple testing was performed using Benjamini & Hochberg [112].

R = N

t

E(N
c

) (4.1)

4.3.3 The classification model

I built a Random Forest (RF) classifier to evaluate how much RBPs contribute in
discriminating reproducible m6A regions. I used the human m6A regions with RBPs’
binding as the positive data (13978 in total) and generated 10 sets of control data from the
control regions which were set to be an equal data size. I kept the ratio of the number of
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bins in exons to the number of bins spanning exons the same in both m6A and control
regions. The binding information (1 for binding, 0 for non-binding) of RBPs was used as
the input features. The data was divided into training and test groups at a ratio of 80:20. I
implemented the RF classifier using the R package caret [113] and randomForest [114] with
5-fold cross validations and ‘mtry’ (the tuning parameters) as 8 (nearly the square root of
the number of features). I used the accuracy to measure the performance of the models as
shown in the Equation (4.2) where TP is true positive, TN is true negative, FP is false
positive and FN is false negative.

Accuracy = TP +TN

TP +TN +FP +FN

(4.2)

4.4 Results

4.4.1 Identification of m6A-associated RBPs enriched in
reproducible m6A regions

Because of the considerable variation in the m6A datasets [104], I collected the data from nine
samples of human HEK293T cell line from four independent studies and six samples of mouse
MEF cell line from four independent studies to generate the reproducible m6A regions used
in this study. The details of the detection of these m6A regions is provided in the Methods
section. I required that the m6A regions were called in at least 60% of replicates within each
study and that they appeared in at least three of the total studies analyzed for them to be
qualified as reproducible. Under these criteria, I finally obtained 14803 reproducible m6A
regions for the HEK293T cell line and 5576 reproducible m6A regions for the MEF cell line.

To identify the RBPs enriched in these m6A regions, 71 RBPs for HEK293T/HEK293 and
nine RBPs for MEF were retrieved from the POSTAR2 database. For each RBP, I calculated
an enrichment score and assessed its significance using a permutation test as described in
Methods section. When setting the threshold for the enrichment ratio to Ø1.3 and FDR
(false discovery rate) adjusted p-value to Æ0.05, I obtained the enriched RBPs listed in
Table 4.1. For HEK293T, I identified several known m6A readers including YTH family
proteins, FMR1, EIF3, and m6A writers RBM15/15B [18]. For MEF, I found a common
RBP, CPSF6, which is enriched for both human and mouse. CPSF6 has been reported to
interact with VIRMA, which mediates preferential m6A methylation in the 3’ UTR and
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near stop codon and is associated with alternative polyadenylation (APA) in human [115].
In addition, I noticed that RBM3 was highly enriched in m6A regions of MEF. RBM3 is
an important regulator of circadian gene expression by controlling APA [116]. This suggests
that RBM3 could participate in m6A regulation which is associated with APA. The full
list of enrichment ratios for each of the RBPs (including raw p-values and FDR adjusted
p-values) is provided in Table B.1 and B.2 of Appendix B. Besides, for each enriched RBP
(overlap with more than 100 m6A regions), I also listed the RBPs that more than 60% of the
enriched RPB is overlapped with for HEK293T in Table B.3 of Appendix B. As expected,
YTHDF1 and DDX3X were shown to have the highest overlapping percentage as they have
a considerable overlap with m6A regions.
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Table 4.1 RNA binding proteins (RBPs) enriched in reproducible m6A regions

HEK293T Enrichment ratiosú # m6A regions with RBPs p-valueúú FDR adjusted p-value

YTHDF2 3.90 6964 <0.001 <0.003
RBM15 2.73 3534 <0.001 <0.003
YTHDF3 2.70 52 <0.001 <0.003
YTHDF1 2.49 9196 <0.001 <0.003
RBM15B 2.32 6375 <0.001 <0.003
YTHDC1 2.15 7224 <0.001 <0.003
EIF3D 1.88 593 <0.001 <0.003
NOP58 1.74 159 <0.001 <0.003
HNRNPH1 1.57 47 0.002 0.006
NUDT21 1.48 5201 <0.001 <0.003
FMR1 1.46 4443 <0.001 <0.003
DDX3X 1.44 9470 <0.001 <0.003
EIF3A 1.39 293 <0.001 <0.003
CPSF6 1.34 3593 <0.001 <0.003
CPSF7 1.31 4413 <0.001 <0.003

MEF Enrichment ratioú # m6A regions with RBPs p-valueúú FDR adjusted p-value

RBM3 5.81 485 <0.001 <0.001
CREBBP 2.47 24 <0.001 <0.001
SRSF2 2.24 793 <0.001 <0.001
SRSF1 2.13 467 <0.001 <0.001
CPSF6 2.07 94 <0.001 <0.001
CIRBP 1.76 401 <0.001 <0.001

ú RBPs are ranked by their enrichment ratios. úú P-values were calculated from 1000 times of
permutation. When p-value is zero, it is shown in the table as < 0.001 becasue it is possible
that the p-value is actually less than 0.001 if times of permutation were increased.
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The RBPs in Table 4.1 are considered as m6A-associated RBPs, therefore I wondered
how these identified m6A-associated RBPs are correlated with known m6A
regulators/e�ectors when compared with other RPBs at both the transcription and the
protein expression level. I performed a correlation analysis for all the human RBPs. To do
the correlation analysis at the transcription level, I downloaded Illumina Body Map
(HBM) [117–119] from ArrayExpress [120] with the accession number E-MTAB-513, which
provides gene expression data for 16 human tissues. For the correlation analysis at the
protein level, I downloaded mass spectrometry data from Human Proteome Map
(HPM) [121] for 30 human tissues/cell lines. I checked some known m6A
regulators/e�ectors including YTHDF2, RBM15, EIF3D which ranked at the top of
Table 4.1 and METTL3 of which binding data is not available but is a well-known m6A
writer, and compared their correlation with the identified m6A-associated RBPs (15 in
total) or with the rest of RBPs (56 in total). Correlation was calculated using the
Spearman’s correlation coe�cient. I observed a similar trend in all the investigated known
m6A regulators/e�ectors which showed that the identified m6A-associated RBPs are more
correlated with them at the protein-level than the transcription level (Figure 4.1). Because
the protein data included more tissues/cell lines than the transcription data, I chose to
compare a subset of 17 adult tissues to check the correlation values for avoiding any biased
introduced by di�erent dataset sizes. The higher correlation at the protein level was still
observed in this subset evaluation as shown in Figure 4.1. This observation supports the
hypothesis that m6A-associated RBPs are more likely to cooperate at the protein level.
Then, I went on to confirm to if these higher correlation values are the result of
protein-protein interactions. To do this I retrieved the protein-protein interaction data
from STRING [122]. The interaction scores do not show significant di�erence between
m6A-associated RBPs and other RBPs except for METTL3 (Figure 4.2), which suggests
that the higher correlation at the protein-level is only marginally related to protein-protein
interaction. This indicates that the regulation of the m6A modification is a dynamic
process involving both temporal and spatial interactions between the m6A-associated
RBPs.
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Fig. 4.1 Comparison of the correlation values for known m6A regulators/e�ectors
(YTHDF2, RBM15, EIF3D, and METTL3) with identified m6A-associated RBPs
(15 in total) or other RBPs. The boxplot shows the distribution of the Spearman’s
correlation coe�cient between known m6A regulators/e�ectors and identified m6A-
associated RBPs/other RBPs at the protein- and transcript-level (the subset
protein-level results describe the correlation coe�cients calculated from a subset
of the protein data which included only 17 adult tissues). Significance was evaluated
using a one-sided Wilcoxon test.
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Fig. 4.2 Comparison of protein-protein interactions between known m6A
regulators/e�ectors (YTHDF2, RBM15, EIF3D, and METTL3) and identified m6A-
associated RBPs (15 in total)/other RBPs. The boxplot shows the distribution of
the interaction scores between known m6A regulators/e�ectors and identified m6A-
associated RBPs/other RBPs. Significance was evaluated using a one-sidedWilcoxon
test.

4.4.2 Identification of m6A-associated RBPs contributing to the
classification of m6A regions

Although I identified RBPs enriched in the reproducible m6A regions, I wanted to develop
a more comprehensive understanding of how the RBPs contribute to the profile of the m6A
regions. To do this, I performed a further analysis on the human RBPs. First, I
investigated the overall profile of the binding information of RBPs (0 for non-binding and 1
for binding) in the reproducible m6A regions. I calculated the pairwise distance between
RBPs using cosine similarity and performed clustering (Figure 4.3). The result of the
clustering analysis demonstrated the co-occurrence of YTH family proteins and RBM15B
which all ranked in the top of the enrichment analysis. Then, I built a Random Forest
classifier which incorporated the binding information for each of the RBPs as features. The
details of models are described in the Methods section. The classifier achieved an average
accuracy of 0.736 and AUROC (Area Under Receiver Operating Characteristic) of 0.788 as
shown in Figure 4.4. I also compared the RBP-based classifier with two sequence-based
predictors SRAMP [33] in mature mRNA mode and DeepM6ASeq which showed an
accuracy of 0.660 and 0.686, respectively (Figure 4.4). I plotted top10 most important
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features as shown in Figure 4.5 and found that apart from the known m6A-associated
RPBs such as the readers YTHDF1/2, YTHDC1, the writers RBM15/15B that have been
shown to be enriched in the m6A regions, ELAVL1, which is reported to have action of
being repelled by m6A [123], also contributed to the classification of m6A regions to some
extent. The repelling action of m6A against ELAVL1 is consistent with the enrichment
results, which show that its enrichment ratio is 0.816. In summary, the RBP-based
classifier not only demonstrated competitive performance in the prediction of reproducible
m6A regions but also helped to infer interaction between m6A and m6A-associated RBPs
beyond sequence level when combined with the results of the enrichment analysis.
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Fig. 4.3 Clustering of RNA binding proteins (RBPs) in the m6A regions of
HEK293T cells. X-axis and Y-axis represent the names of the RBPs. The color
scale indicates the cosine similarity between the RBPs.
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Fig. 4.4 Comparison of AUROC between the RBPs (RNA binding proteins)-based
predictor, DeepM6ASeq, and SRAMP in mature mRNA mode for the classification
of HEK293T m6A regions. The plot represents average ROC from ten times of
sampling control regions for each predictor.
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Fig. 4.5 Top 10 RNA binding proteins (RBPs) identified from the classification of
the HEK293T reproducible m6A regions. The bar graph shows the top 10 RBPs
extracted from the classifier for the m6A regions. X-axis represents the name of
RBPs and Y-axis represents the average importance score from ten times of sampling
control regions.

4.5 Discussion and Conclusion

This computational framework enabled us to identify potential m6A-associated RBPs and
infer interaction between m6A and m6A-associated RBPs. Some studies have reported the
connection of dysfunction of m6A-associated RBPs to disease. Fox example, YTHDF2
silenced in human hepatocellular carcinoma(HCC) cells can provoke inflammation, vascular
reconstruction and metastatic progression [27]. Therefore, it is expected that the study of
m6A and m6A-associated RBPs can lead to a better understanding of gene regulation
mechanism and potential therapeutic opportunities.

This analysis serves as a first step, and future analyses may include some improvements
and expansions. First, this framework was designed and tested on a limited number of cell
types and organisms. With the increasing amount of data available for m6A and RBPs in
more cell lines and tissues, this framework could be tested on much larger datasets and
may provide valuable insights into the m6A regulatory network. In addition, this framework
could be applied to other RNA modifications such as N1-methyladenosine (m1A) [66] and 5-
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methylcytidine(m5C) [67], which have also been identified as critical RNA modification. Such
analyses could help improve experimental design in wet lab applications and help researchers
narrow their focus. Third, apart from RBPs, other genomic features like transcription factors
and histone modification are worth inspecting for studying the m6A regulation networks at
multiple layers. These applications highlight the future utility of this framework and its value
in the current research climate.

I designed an integrative computational framework for the identification of
m6A-associated RBPs in reproducible m6A regions. This computational framework is
composed of an enrichment analysis and a classification model. Using the enrichment
analysis, I was able to identify known m6A-associated RBPs and several potential
m6A-associated RBPs including RBM3 from mouse. These identified m6A-associated
RBPs show a significant degree of correlation at their protein level, although this is not
seen in their transcriptional profile, which suggests that these m6A-associated RBPs
cooperate at the protein-level to regulate the process of modification. In addition, I built a
classification model for m6A regions using a Random Forest algorithm that uses RBPs’
binding information as its input features. The RBP-based predictor not only demonstrated
comparable performance to sequence-based predictions but also helped infer interaction
between m6A and m6A-associated RBPs like actions of reading and repelling beyond
sequence level. I hope that this analysis framework can assist biologists in their study of
RNA modifications.
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Chapter 5

General conclusions and future work

5.1 Conclusions

To solve the key issues of signal detection and biological feature extraction in the analysis
of high-throughput m6A data, I present two softwares and one analysis framework in this
thesis.

In Chapter 2, I developed DeepM6ASeq, a deep learning framework, to predict
m6A-containing sequences and characterize biological features surrounding m6A sites at
sequence level. DeepM6ASeq showed competitive performance of prediction, learned known
m6A readers and a newly recognized one, FMR1, and also helped to visualize positions of
m6A sites.

In Chapter 3, I developed MoAIMS, an e�cient and easy-to-use software for analysis
of MeRIP-Seq. MoAIMS achieves excellent speed and competitive performance in detection
of m6A regions, and provides user-friendly outputs for downstream analysis. MoAIMS also
provide intuitive evaluation on treatment e�ect for MeRIP-Seq treatment datasets.

In Chapter 4, I designed an integrative computational framework for the identification of
m6A-associated RBPs in the reproducible m6A regions. Utilizing RBP’s binding data, the
framework is able to identify known m6A-associated RBPs and also found some potential
ones such as RBM3 for mouse. Besides, it also helps infer interaction between m6A and
m6A-associated RBPs like actions of reading and repelling beyond sequence level.
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In conclusion, this thesis presents state-of-the-art prediction models and statistical
methods for the systematic analysis of high-throughput m6A data and it is expected that
the thesis can provide more insights for the research on m6A and assist biologists in
studying the regulation mechanism of m6A.

5.2 Future Work

About the future work, there are three main aspects. First, in the aspect of signal detection,
HMM(hidden Markov model) [124] can be applied in the future which is a statistical model
of sequential data. HMM takes into consideration the dependency between bins and works
well for smaller bin size. Besides, it needs to develop a joint model that considers the variance
among sample replicates. Furthermore, it needs to apply other statistical distributions like
Poisson-Tweedie [101] in order to deal with the wide diversity of RNA sequencing data.

Second, in the aspect of biological feature extraction, several algorithms and
high-throughput data requires further studies. At sequence level, it needs to develop
models that are more competitive and interpretable. Models in the field of natural
language processing(NLP) are inspiring for the analysis of biological sequence data.
Especially, the state-of-the-art model ‘BERT’(Bidirectional Encoder Representations from
Transformers) [125] is a promising one. BERT is a pre-training language model based on
Transformer model [126] and can learn information from both left and right sides of
sequences. If an appropriate pre-trained model is used to learn the language of
transcriptome, it is possible to improve the prediction power. With regard to the
interpretability of models, at sequence level, word-embedding [127] is a feasible strategy.
With word-embedding, the features are k-mer sequences as motif, and the deep learning
model can learn the combinations of motifs, which makes the model more interpretable.

At the feature level beyond sequences, other genomic features like transcription factors
and histone modification are worth inspecting for studying the m6A regulation networks at
multiple layers. Besides, it needs to pay attention to the dependency of features in the
interpretation of prediction models, although feature importance extracted from the
random forest model built on the protein-binding data in my study did revealed some
known and important biological features. For the possible dependency between features like
multicollinearity, some nonparametric classifiers like SVM(support vector machine) with
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non-linear kernel are less sensitive, and feature selection(for example, the leave-one-out
procedure can be used to check the change on prediction) needs to be applied to get
important features.

The last aspect is about the application of the systematic analysis framework, which
is presented in the thesis including prediction and feature extraction, on the study of other
RNA modifications such as N1-methyladenosine (m1A) [66] and 5-methylcytidine(m5C) [67].
I hope my study to facilitate biologists’ experiment design in the future.
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Appendix A.

Chapter 3 Supplementary Materials

Supplementary Text

Negative-Binomial distribution

A negative binomial distribution is defined as NB(r,p) with two parameters r and p,
representing size (a shape parameter) and probability, respectively. The density function is

P (Y = y) = �(y+ r)
y!�(r) p

r(1≠p)y (S1.1)

with y = 0,1,2, ..., r > 0, and 0< p Æ 1.

As p can be represented by p= r

r+µ

, where µ is the mean, the density function can
be written as

P (Y = y) = �(y+ r)
y!�(r)

A
r

r+µ

B
r

A
µ

r+µ

B
y

. (S1.2)

Implementation and extension of 1S mode of MOSAiCS[1]

MoAIMS implements and extends the statistical framework proposed by MOSAiCS. The
followings provide details of modified 1S mode of MOSAiCS.

A MeRIP-Seq dataset consists of one (IP) sample and one input sample. It is assumed
that the observed bin counts of an IP sample follow a mixture (NB) model composed of
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a background component and a signal component that are unobserved. Let Z represent
the components, where Z œ {0,1}(0 for the background component and 1 for the signal
component), and Y

j

is the observed read count of the jth bin; therefore, the mixture model
can be written as the following equation,

P (Y
j

) = (1≠fi

s

)P (Y
j

|Z
j

= 0,�
B

)+fi

s

P (Y
j

|Z
j

= 1,�
s

), (S2)

where fi

s

is the signal proportion(fi
s

œ [0,1]), equal to P (Z
j

= 1), and (1≠ fi

s

) is equal to
P (Z

j

= 0); �
B

and �
s

are parameters of background and signal distribution respectively.

When the bin is from the background component, the read count follows the
distribution NB(a, a

a+µj
) which can be written as

P (Y
j

= y|Z
j

= 0) = �(y+a)
y!�(a)

A
a

a+µ

j

B
a

A
µ

j

a+µ

j

B
y

. (S3)

When the bin is from the signal component, the read count can be represented as
Y

j

= N

j

+ S

j

+ k, where N

j

is the count from a non-specific background following
NB(a, a

a+µj
) as defined in Equation(S3), S

j

is the count from an actual enrichment
following NB(b, c

c+1)(c =
b

µ

,µ is the mean), and k is the minimal read count required for
the signal component. Thus, the distribution of the signal component is a convolution of
negative binomials. The convolution of two discrete distributions is defined as
P (X = X1 +X2) = P (X1) ú P (X2) =

q
x

n=0P1(n)P2(x ≠ n), when X1 and X2 are two
random variables with distributions P1(X1) and P2(X2), respectively; therefore, the
distribution of the signal component can be written as

P (Y
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= y≠k|Z
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(S4)

For estimating the parameters, a and µ

j

of the background component are estimated
by regression using the input bin counts, while b and c of the signal component and fi

s

are
estimated by expectation maximization(EM).

Each IP bin count Y
j

has a corresponding input bin count X
j

. For the bins from the
background component, it is assumed that {Y

j

}(j = 1,2, ...,T ) with the same input bin count
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from the same distribution; thus, {Y
j

} are grouped by the input bin count to S
i

= {Y
j

|X
j

=
x

i

}(x
i

is the group value equal to available and unique input bin count value(0,1,2,...) and
i is the group index). For Y

j

œ S
i

, it follows that NB(a, a

a+µi
). Let µ

i

be E(S
i

) (the median
value of Y

j

œ S
i

); then, the regression is fitted through RLM or GAM as Equations (S5) and
(S6),

log(µ
i

) = —0+—1 log(xi), (S5)

where —0 and —1 are coe�cients, and

log(µ
i

) = —0+f(log(x
i

)|b), (S6)

where f is represented using thin plate regression splines and b is a vector of coe�cients for
the spline term with length of 9 as default. The regression method is optimized in MoAIMS
based on the BIC value.

a is estimated by â = q
i

n

i

â

i

/

q
i

n

i

, where â

i

= [E(S
i

)]2/[V ar(S
i

)≠E(S
i

)] (the
expectation is calculated using the median value; the variation is calculated using the median
absolute deviation) and n

i

is the number of bins.

The estimations of fi

s

, b, and c using EM are shown as follows with the initiation
values for fi

s

, b, and c set empirically to 0.02, 0.2, and 2, respectively. Because this algorithm
employed various approximated estimations for e�cient calculation, EM cannot ensure the
monotonic increase of likelihood. I set the initiation value of the signal proportion low enough
so that it is expected to be closer to the real value after each iteration.

The complete data likelihood can be written as Equations (S7),(S8), where T is the
number of bins and I(Z) is the indicator function,
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The expected complete data likelihood is
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j

|Z
j

= 1,�(t)
s

)
(1≠fi

(t)
s

)P (Y
j

|Z
j

= 0,�(t)
B

)+fi

(t)
s

P (Y
j

|Z
j

= 1,�(t)
s

)
,

(S10)

z

(t)
0,j = P (Z

j

= 0|Y
j

)

= 1≠ z

(t)
1,j .

(S11)

M-step:

For the parameter fi

s

, to maximize the expected log likelihood with respect to fi

s

, I
obtained

ˆQ

ˆfi

s

=
q

T

j=1P (Z
j

= 0|Y
j

)
1≠fi

s

≠
q

T

j=1P (Z
j

= 1|Y
j

)
fi

s

= 0. (S12)

Solving Equation (S12), I obtained

fi

(t+1)
s

= 1
T

Tÿ

j=1
z

(t)
1,j . (S13)

For the parameters b and c, the method of moments is used by utilizing

V ar(S
j

) = V ar(Y
j

|Z
j

= 1)≠V ar(N
j

)

= E(S
j

)+ E(S
j

)2

b

(t) ,

(S14)

c

(t) = b

(t)

E(S
j

) .
(S15)

Solving Equations (S14) and (S15), I obtained

b

(t+1) = E(S
j

)2

V ar(Y
j

|Z
j

= 1)≠V ar(N
j

)≠E(S
j

) , (S16)

c

(t+1) = E(S
j

)
V ar(Y

j

|Z
j

= 1)≠V ar(N
j

)≠E(S
j

) , (S17)
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where E(S
j

) = E(Y
j

|Z
j

= 1)≠E(N
j

)≠ k. I calculate E(Y
j

|Z
j

= 1),V ar(Y
j

|Z
j

= 1),E(N
j

)
and V ar(N

j

) by,

E(Y
j

|Z
j

= 1) =
q

T

j=1 z
(t)
1,jYj

q
T

j=1 z
(t)
1,j

,

V ar(Y
j

|Z
j

= 1) =
q

T

j=1 z
(t)
1,j [Yj ≠E(Y

j

|Z
j

= 1)]2
q

T

j=1 z
(t)
1,j

,

E(N
j

) = µ̂0 =
q

T

j=1 µ̂j
T

,

V ar(N
j

) = µ̂0(1+ µ̂0/â),

in that E(Y
j

|Z
j

= 1) and V ar(Y
j

|Z
j

= 1) are the weighted mean and variance, respectively;
E(N

j

) and V ar(N
j

) are calculated using the method of moments with µ̂

j

and â estimated

from the previous steps, of which µ̂

j

is equal to
qT

j=1 exp[—̂0+—̂1 log(xj)]
T

using RLM or
qT

j=1 exp[—̂0+f(log(xj)|—̂——)]
T

using GAM.
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Appendix B.

Chapter 4 Supplementary Materials

Supplementary Tables

Table B..1 Enrichment ratios for RNA binding proteins (RBPs) associated with
the reproducible m6A regions identified in the HEK293T datasets

HEK293T Enrichment ratio # m6A regions with RBP p-valueú FDR adjusted p-value
ALKBH5 1.09 265 0.065 0.171
ATXN2 1.04 5378 <0.001 <0.003

CAPRIN1 1.17 2331 <0.001 <0.003
CNBP 1.34 32 0.052 0.142
CPSF1 0.96 558 0.850 1.000
CPSF2 1.09 124 0.157 0.384
CPSF3 0.93 680 0.988 1.000
CPSF4 0.89 506 1.000 1.000
CPSF6 1.34 3593 <0.001 <0.003
CPSF7 1.31 4413 <0.001 <0.003
CSTF2 0.68 1104 1.000 1.000
CSTF2T 0.86 2738 1.000 1.000
DDX3X 1.44 9470 <0.001 <0.003
DGCR8 1.07 67 0.273 0.606
DICER1 0.94 92 0.773 1.000
DIS3L2 0.46 11 1.000 1.000
EIF3A 1.39 293 <0.001 <0.003
EIF3B 1.10 255 0.073 0.185
EIF3D 1.88 593 <0.001 <0.003

Continued on next page
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Table B..1 – Continued from previous page

HEK293T Enrichment ratio # m6A regions with RBP p-valueú FDR adjusted p-value
EIF3G 1.14 453 0.001 0.003
ELAVL1 0.82 4594 1.000 1.000
EWSR1 0.75 853 1.000 1.000
FBL 1.22 88 0.026 0.074

FIP1L1 1.16 3419 <0.001 <0.003
FMR1 1.46 4443 <0.001 <0.003
FUS 0.79 1179 1.000 1.000
FXR1 0.95 178 0.795 1.000
FXR2 1.23 966 <0.001 <0.003

HNRNPA1 0.60 53 1.000 1.000
HNRNPA2B1 0.67 11 0.948 1.000
HNRNPC 0.95 5404 1.000 1.000
HNRNPD 0.29 123 1.000 1.000
HNRNPF 0.95 35 0.661 1.000
HNRNPH1 1.57 47 0.002 0.006
HNRNPM 0.34 7 1.000 1.000
HNRNPU 0.31 2 0.996 1.000
IGF2BP1 1.07 1847 <0.001 <0.003
IGF2BP2 0.91 1583 1.000 1.000
IGF2BP3 0.77 1796 1.000 1.000
LIN28A 1.01 791 0.426 0.864
LIN28B 1.06 4997 <0.001 <0.003
MOV10 0.60 2001 1.000 1.000
NCBP3 1.29 529 <0.001 <0.003
NOP56 0.82 20 0.860 1.000
NOP58 1.74 159 <0.001 <0.003
NUDT21 1.48 5201 <0.001 <0.003
PRKRA 1.65 5 0.176 0.417
PTBP1 0.61 1397 1.000 1.000
PUM2 0.41 108 1.000 1.000
QKI 0.48 32 1.000 1.000

RBM10 1.20 17 0.251 0.575
RBM15 2.73 3534 <0.001 <0.003
RBM15B 2.32 6375 <0.001 <0.003
RBPMS 0.68 87 0.999 1.000
RTCB 1.17 619 <0.001 <0.003
SRRM4 0.95 490 0.908 1.000
SSB 1.06 73 0.319 0.686

Continued on next page
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Table B..1 – Continued from previous page

HEK293T Enrichment ratio # m6A regions with RBP p-valueú FDR adjusted p-value
STAU1 0.23 43 1.000 1.000
TAF15 0.76 239 1.000 1.000
TARBP2 0.66 3 0.848 1.000
TARDBP 0.90 4194 1.000 1.000
TNRC6A 1.05 9 0.478 0.943
TNRC6B 1.18 11 0.338 0.706
TNRC6C 0.38 2 0.981 1.000
WDR33 0.58 650 1.000 1.000
YTHDC1 2.15 7224 <0.001 <0.003
YTHDC2 0.96 36 0.636 1.000
YTHDF1 2.49 9196 <0.001 <0.003
YTHDF2 3.90 6964 <0.001 <0.003
YTHDF3 2.70 52 <0.001 <0.003
ZC3H7B 0.62 1889 1.000 1.000

ú P-values were calculated from 1000 times of permutation. When p-value is zero,
it is shown in the table as < 0.001 becasue it is possible that the p-value is actually
less than 0.001 if times of permutation were increased.

Table B..2 Enrichment ratios for RNA binding proteins (RBPs) in the reproducible
m6A regions identified in MEF studies

MEF Enrichment ratio # m6A regions with RBP p-valueú FDR adjusted p-value
CIRBP 1.76 401 <0.001 <0.001
CPSF6 2.07 94 <0.001 <0.001

CREBBP 2.47 24 <0.001 <0.001
MBNL1 2.16 8 0.040 0.045
MBNL2 1.55 5 0.216 0.216
MBNL3 NA 1 NA NA
RBM3 5.81 485 <0.001 <0.001
SRSF1 2.13 467 <0.001 <0.001
SRSF2 2.24 793 <0.001 <0.001

ú P-values were calculated from 1000 times of permutation. When p-value is zero,
it is shown in the table as < 0.001 becasue it is possible that the p-value is actually
less than 0.001 if times of permutation were increased.
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Table B..3 Overlapped RNA binding proteins (RBPs) for proteins enriched in the
m6A-HEK293T dataset

RBPs enriched in m6A RBPs with overlapping ratio more than 60%*

YTHDF2 YTHDF1(89.7%), DDX3X(80.5%), YTHDC1(68.5%), RBM15B(60.6%)

RBM15 YTHDF1(86.8%), RBM15B(83.6%), DDX3X(82.8%), YTHDC1(81.7%),
YTHDF2(74.6%)

YTHDF1 DDX3X(77.4%), YTHDF2(67.9%), YTHDC1(63.0%)

RBM15B YTHDF1(80.4%), DDX3X(76.9%), YTHDC1(75.7%), YTHDF2(66.2%)

YTHDC1 YTHDF1(80.2%), DDX3X(76.3%), RBM15B(66.8%), YTHDF2(66.0%)

EIF3D DDX3X(87.0%), YTHDF1(83.1%), YTHDC1(72.0%), YTHDF2(68.3%),
RBM15B(65.6%)

NOP58 DDX3X(81.1%), YTHDC1(77.4%), YTHDF1(75.5%), RBM15B(74.2%),
CPSF7(73.0%), NUDT21(71.1%), HNRNPC(70.4%), LIN28B(66.7%),
YTHDF2(63.9%), FMR1(62.3%), CPSF6(60.4%)

NUDT21 DDX3X(76.7%), YTHDF1(75.7%), YTHDC1(67.7%), YTHDF2(60.5%)

FMR1 DDX3X(87.2%), YTHDF1(83.1%), YTHDF2(69.5%), YTHDC1 (69.1%)

DDX3X YTHDF1(75.1%)

EIF3A DDX3X(85.0%), YTHDF1(80.9%), YTHDC1(70.3%), YTHDF2(68.9%),
RBM15B(68.6%)

CPSF6 DDX3X(84.5%), YTHDF1(82.0%), YTHDC1(72.6%), YTHDF2(68.7%),
CPSF7(67.2%), HNRNPC(65.0%), RBM15B(63.9%), NUDT21(61.9%)

CPSF7 DDX3X(83.3%), YTHDF1(82.4%), YTHDC1(75.0%), YTHDF2(68.5%),
HNRNPC(64.4%), RBM15B(63.4%), NUDT21(60.5%)

*Numbers in brackets indicate the percentage of overlap and are listed in decreasing order.
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