

Waseda University Doctoral Dissertation

Research on Approximate Multipliers Based on

Probability-Driven Carry-Restricted Compressors for

Error-Tolerant Applications

Yi GUO

Graduate School of Information, Production and Systems

Waseda University

April 2021

Abstract

III

Abstract

Along with the emergence of more and more complex applications in computing

systems, the overall computational workloads and energy consumption of the systems

are continuously increasing. Lots of applications include huge number of computations

and small accuracy loss can be accepted. Such applications are defined as error-tolerant

applications. To realize the good product of applications, LSI implementation is

necessary. Among implementation, optimized multiplier is important because it is as

the basic unit of lots of applications. During the application design, accuracy and

hardware resource need to be considered. Approximate computing has been a promising

technique to balance the accuracy quality and hardware resource. 8-bit multiplications

are utilized in applications for manipulating images such as filtering operations and

classification using convolutional neural networks. Therefore, 8x8 approximate

multiplier design has attracted lots of attentions. There are mainly two important kinds

of approximate multiplier: ASIC-based approximate multiplier, which is main focus

and the most intuitive methodology; and FPGA-based approximate multiplier, which is

a popular choice as changes of applications due to the reconfigurability and fast

development round of FPGA. Approximation certainly incurs the accuracy loss in the

design, therefore the trade-off between accuracy loss and hardware saving is the key

target of approximate multiplier.

Approximate multiplier is designed based on three steps of conventional exact

multipliers, partial product generation, accumulation and final carry propagate adder.

Firstly, a partial product matrix of 8 rows and 8 columns is generated by AND operation

on two 8-bit input operands. Secondly, partial product matrix is accumulated and

reduced to 2 rows by adding partial products at the same position using full adders or

compressors. A full adder can add (compress) three partial products and generate 1-bit

result (i.e. sum) at the same position and another bit result (i.e. carry) at 1-bit higher

position. Thirdly, final carry propagate adder processes 2 rows and produces the

multiplication result.

Abstract

IV

As for ASIC-based approximate multiplier, method of propagation restriction using

only OR operation was discussed in Qiqieh’s work [DATE, 2017] and Yadav’s work

[MWSCAS, 2018]. The method is simple to reduce the circuit complexity, but the error

is high. Another method of propagation restriction was discussed in Boroumand’s work

[ASP-DAC, 2018] by dividing the carry to two inexact parts. The parallel operation of

two semi-carries simplifies the computation, but this method is limited to 3-input

compressor. The method of less-XOR compressors was discussed in three approximate

multipliers of Yang’s work [ICCD, 2017], Venkatachalam’s work [TVLSI, 2017], and

Jiang’s work [TCAS-I, 2019]. All can simplify the compressor with less XOR gates,

but the remaining XOR gates limits the potential of effective synthesis.

As for FPGA-based approximate multipliers, Look-Up-Table (LUT) based

accumulation and special carry chain for the carry propagation are considered. One

multiplier was introduced by Ullah [DAC, 2018], which used inexactly predicted carry-

in as one input of approximate compressor. Thus, the computation of each position is

independent with each other. The same author discussed another approximate multiplier

in [DAC, 2018], by omitting one input in the compressor to save LUTs. Two approaches

both can optimize the hardware utilization. However, they have a common issue that

the approximation on input would affect both of two outputs of one compressor. It

incurs the high accuracy loss.

To achieve trade-off between accuracy loss and hardware saving, and to solve the

limitation of previous works, probability-driven carry-restricted compressors are

proposed. Because the carry of compressor occurs in rare cases, the major

approximation on carry can save the hardware and ensure the low error. As for ASIC-

based multiplier, the compressor is implemented by logic gates. The conventional

compressor usually generates the carry to higher position. By caring about the low 1-

probability of one partial product, new compressors with large size (4 to 2, 8 to 2, etc.)

have been developed to generate 2-bit outputs at the same position without generating

a carry to higher position. ASIC circuit can be simplified by avoiding XOR gates which

are most consuming gate among all logic gates. As for FPGA-based multiplier, the

compressors are implemented with LUTs. Each carry of a compressor costs one

Abstract

V

corresponding LUT. Because the carry probability of each position to high position is

low, the carry computation is omitted in the proposed compressor. By doing so, the

LUT resource can be saved. Moreover, three types of multipliers are proposed by using

different number of proposed compressors.

This dissertation is organized as follows:

In Chapter 1 [Introduction], background of approximate computing and the

necessity of approximate multiplier are introduced. Then, the research status on

approximate multiplier and existing issues are discussed. Finally, the motivations, target

and proposed concept are given.

In Chapter 2 [ASIC-Based Approximate Multiplier using Probability-Driven

Inexact Compressors], an ASIC-based multiplier with inexact compressors and error

recovery is proposed, which efficiently trades accuracy for hardware efficiency. To

accumulate partial products with low-cost circuits, inexact compressors are proposed

by analyzing the probability of partial product matrix and restricting carry generation.

This compressor design can reduce eight rows into two rows with only one stage. In

addition, an error-recovery scheme is proposed to compensate error. Different from the

existing bit-wise error recovery, the proposed error-recovery scheme processes the error

elements in the form of group. Thus, the critical path of multiplier can be shortened. As

a result, in terms of mean relative error distance (MRED), the accuracy loss of the

proposed multiplier is as low as 1.07%. Compared with the exact multiplier using 40nm

process, the proposed multiplier can reduce power by 59.75% and area by 42.47%. The

delay reduction is larger than 12.78%. Compared with the previous approximate

multipliers, the proposed multiplier has a better accuracy-hardware result.

In Chapter 3 [FPGA-Based Approximate Multiplier using Carry-Inexact

Elementary Modules], an 8x8 FPGA-based multiplier is proposed based on 4x4 carry-

inexact multipliers and one inexact adder. In the proposed 4×4 multiplier, the

compressor accumulating partial products is implemented by LUTs. Because the carry

result of compressor occurs in rare situation, the carry computation is omitted in

proposed design. Approximate 8×8 multiplier is built from four 4×4 multipliers with an

adder. To fast produce the final product, two types of inexact adder are proposed, where

Abstract

VI

the result of each bit is produced in parallel and the critical path is shortened. In terms

of MRED, the error of the proposed 8×8 multiplier is as low as 1.06%. Compared with

the exact multiplier, the proposed design can reduce area by 43.66% and power by

24.24%. The delay saving is up to 29.50%. To comprehensively evaluate the

performance of approximate multipliers, a Pareto-optimal analysis is discussed. The

proposed design has more Pareto-optimal points, which means the proposed design has

a better accuracy-hardware result than previous approximate multipliers.

In Chapter 4 [Conclusion and Future Work], the overall dissertation is summarized

and the future works are presented. To realize approximate multiplier with a

considerable accuracy-hardware trade-off, approach for ASIC-based and FPGA-based

multiplier is proposed. In the future, large-size multiplier, floating-point multiplier will

be extended.

Acknowledgement

VII

Acknowledgement

First of all, I would like to show my great respect and thanks to my supervisor,

Professor Shinji Kimura, for his guidance in my research work. Pursing a doctoral

degree is a hard and long journey, which I obviously can’t finish without his patient

instruction. Professor Kimura talks with me about my research topic, which broadens

my views and enlightens me for my research. Every time when I did the seminars or

the communication with him, Professor Kimura always gives me meaningful advices.

I feel so grateful and lucky that I could be one of the students of Professor Kimura. The

past five years of studying in Professor Kimura’s Lab. are the years I have harvested

the most and grown the fastest.

Secondly, I would like to express my sincere thanks to Professor Takahiro

Watanabe and Professor Kiyoto Takahata, who spent a lot of time to help me improving

this dissertation and preparing the presentation. I also would like to owe my many

thanks to Professor Toshinori Sato in Fukuoka University, for his valuable comments

and insightful suggestions.

Thirdly, I would like to thank all members in Professor Kimura’s Lab. in past and

present, who provide a wonderful and positive research environment. They made my

life in Japan gorgeous. Especially, I would like to thank Dr. Heming Sun for his

comments in my research and Dr. Li Guo for her help in my daily life during my study

in Waseda University.

 Fourthly, I would like to thank the China Scholarship Council, and the Young

Researcher Program by Waseda University and KIOXIA Corporation (former Toshiba

Memory Corporation), for their support.

 Finally, I conserve my deepest thanks to my family, especially my grandmother in

the heaven. It was their love and encouragement that supported me to pursue dreams

and never give up.

Acknowledgement

VIII

Contents

IX

Contents

Abstract ... III

Acknowledgement ...VII

Contents ... IX

Index of Figures .. XI

Index of Tables ... XIII

List of Abbreviations ... XV

1. Introduction .. 1

1.1 Background .. 1

1.1.1 LSI Implementation of Error-Tolerant Application ... 1

1.1.2 Approximate Computing ... 3

1.1.3 Necessity of 8-Bit Approximate Multipliers .. 6

1.2 Research Status on 8×8 Approximate Multiplier .. 7

1.2.1 Preliminaries of 8×8 Conventional Multiplier .. 7

1.2.2 Research Challenge of 8×8 Approximate Multiplier .. 8

1.2.3 Research Status and Problems ... 10

1.3 Proposed Concept .. 12

1.4 Organization of Dissertation .. 14

2. ASIC-Based Approximate Multiplier using Probability-

Driven Inexact Compressors ..16

2.1 Introduction ... 17

2.1.1 Background .. 17

2.1.2 Previous Works .. 18

2.1.3 Research Motivations and Contributions ... 19

2.2 Proposed Probability-Driven Compressors for Approximate Multiplier 21

2.2.1 Overview of the Proposed Multiplier Design .. 21

2.2.2 Definition of the Compressor .. 22

2.2.3 Probability Distribution Analysis .. 23

2.2.4 Design of Probability-Driven Inexact 𝑚:2 Compressor ... 25

2.3 Approximate Multiplier Design using Proposed Inexact Compressor 31

2.3.1 An 8×8 Multiplier with Different Approximation Levels on 4×4 Multipliers 31

2.3.2 Accumulating Results of Three Blocks in Parallel .. 32

2.3.3 A Grouped Error Recovery Scheme .. 33

Contents

X

2.4 Performance Evaluation .. 34

2.4.1 Evaluation for the Impact of Inexact Compressors.. 35

2.4.2 Accuracy Evaluation .. 39

2.4.3 Hardware Analysis ... 41

2.4.4 Application of Approximate Multipliers to Image Processing 47

2.5 Discussion on Extension to Signed Approximate Multiplier 50

2.5.1 Optimizing the Proposed Inexact Compressors for Signed Multiplier 50

2.5.2 Extension to Signed Approximate Multiplier .. 55

2.5.3 Experiment for Signed Approximate Multipliers .. 57

2.6 Summary .. 61

3. FPGA-Based Approximate Multiplier using Carry-Inexact

Elementary Modules ..62

3.1 Introduction ... 63

3.1.1 Background .. 63

3.1.2 Necessity of FPGA-Based Approximate Multipliers ... 64

3.1.3 Research Motivations and Contributions ... 66

3.2 Preliminaries of FPGA-fabric .. 68

3.3 Proposed Approximate 4×4 Multipliers .. 70

3.3.1 Occurrence Probability of Carry .. 71

3.3.2 Approximate 4×4 Multiplier 1 (AFM1) .. 71

3.3.3 Approximate 4×4 Multiplier 2 (AFM2) .. 74

3.3.4 Approximate 4×4 Multiplier 3 (AFM3) .. 76

3.4 Approximate Large Multipliers using Proposed Approximate 4× 4 Multipliers as

Elementary Modules ... 79

3.5 Experiment Results and Discussion ... 81

3.5.1 Experiment Setup .. 81

3.5.2 Evaluation of 4×4 Multipliers ... 82

3.5.3 Evaluation of 8×8 Multipliers ... 83

3.5.4 Image Processing Application ... 90

3.6 Summary .. 92

4. Conclusion and Future Work ...93

4.1 Conclusion ... 93

4.2 Future Work ... 94

Reference ..96

Publications ..106

Index of Figures

XI

Index of Figures

Figure 1-1 Various factors cause inherently error-tolerant feature. ... 2

Figure 1-2 LSI implementation of applications. ... 3

Figure 1-3 Comparison of traditional computing and approximate computing. 4

Figure 1-4 Three basic steps in 8×8 conventional multiplier. ... 8

Figure 1-5 Research challenge of approximate multiplier: trade-off between accuracy loss and

hardware saving. ... 9

Figure 1-6 Research status on ASIC-based approximate multipliers and existing problems. . 11

Figure 1-7 Research status on FPGA-based approximate multiplier and existing problems. . 12

Figure 1-8 Proposed concept: probability-driven carry-restricted compressors. 13

Figure 2-1 Example of approximate approaches in ASIC-based approximate multiplier. (a)

Basic strcuture of the 4:2 compressor. (b) Approximate 4:2 compressor by Karnaugh map

approximation [43]. (c) Approximate 4:2 compressor by function simplification [50]. . 17

Figure 2-2 Overview of the proposed ASIC-based approximate multiplier. 21

Figure 2-3 Exact 4:2 compressor. (a) Basic architecture. (b) Implementaion. 22

Figure 2-4 Example of partial product matrix of an unsigned 8×8 multiplier. 23

Figure 2-5 Example of partial products in the column of bit 5. .. 24

Figure 2-6 Probability distribution of the arithmetic sum result of 𝑚 partial products in an

8×8 multiplier. .. 25

Figure 2-7 Probability distribution of the arithmetic sum result of 𝑚 partial products in an

image processing. .. 25

Figure 2-8 Architecture of the 𝑚:2 Com. .. 27

Figure 2-9 Dot notation for Mid_Block, where the proposed inexact compressors are used in

partial product accumulation. .. 32

Figure 2-10 Overall structure of an 8×8 multiplier. .. 33

Figure 2-11 A grouped error recovery scheme. (a) The function of each group. (b) Overall

structure. .. 34

Figure 2-12 Hardware saving versus error rate for the approximate multipliers with/without

proposed probability-driven inexact 𝑚:2 Coms. (a) Power saving vs. ER. (b) Area saving

vs. ER. (c) Delay saving vs. ER. ... 36

Figure 2-13 4:2 Compressor (4:2 Com). (a) Logical AND-OR structure. (b) Cell structure after

synthesis. ... 38

Figure 2-14 MRED and PDP for exact multiplier and approximate multipliers. 46

Figure 2-15 Images processd by (a) Exact multiplier. (b) MGER-0g. (c) MGER-1g. (d) MGER-

2g. (e) MGER-3g. (f) MGER-4g. .. 48

Figure 2-16 The trade-off between PDP saving and SSIM degradation for image sharpening

application. .. 49

Figure 2-17 Partial product matrix of an 8-bit signed multiplier... 51

Figure 2-18 The structure of optimized 4:3 Com. ... 54

Figure 2-19 The structure of 8-bit approximate signed multipliers. Stage 1 is partial product

accumulation step, where ● and ○ indicates the partial products generated by AND and

NAND gates, respectively. Exact HA and FA are used as CSA step in Stage 2, where ▲

Index of Figures

- XII-

and ■ means the exact and inexact elements, respectively. A CLA is employed in Stage 3.

(a) AMSC1: The functionality of 𝑚:3 Com is fully used in Stage 1. (b) AMSC2: Only the

first and second output bits of 𝑚:3 Com are used on low part in Stage 1. (c) AMSC3:

Only the first output bit is used on low part in Stage 1. .. 56

Figure 2-20 Schematic for 4:3 Com. The dotted block with gray background indicates the

compound gate cell. .. 60

Figure 2-21 PDP versus NED for approximate signed multipliers. .. 60

Figure 3-1 A comparison of ASIC-based implementation and FPGA-based implementation for

five state-of-the-art ASIC-based approximate multipliers [48]. 65

Figure 3-2 Overview of the FPGA-based approximate multiplier. ... 68

Figure 3-3 The structure of 6-input LUT [71]. .. 69

Figure 3-4 Example of INIT value for LUT6.. 69

Figure 3-5 The structure of carry chain [71]. .. 70

Figure 3-6 Occurrence probability of carry in 4×4 multiplier. ... 71

Figure 3-7 The structure of AFM1. Layer 1 computes the carry result from the preceding

column while Layer 2 generates the sum result for the current column. Layer 3 produces

the carry-propagate and carry-generate signals for the carry chain. 72

Figure 3-8 The structure of AFM2. ... 75

Figure 3-9 The structure of AFM3. Eight LUTs are used to produce the results in parallel. .. 77

Figure 3-10 The dot diagrams of three types of proposed 4×4 multipliers. 78

Figure 3-11 Two proposed inexact adders. The dots of ■, ●, ▲ and indicates the products

from 𝐴𝐿 × 𝐵𝐿 , 𝐴𝐿 × 𝐵𝐻 , 𝐴𝐻 × 𝐵𝐿 , and 𝐴𝐻 × 𝐵𝐻 , respectively. (a) IA1: inexact

operation is used on columns 4~7, while exact operation is used on columns 8~15. (b)

IA2: eight LUTs are used to produce the results in parallel. ... 80

Figure 3-12 The delay and area of all configurations for the proposed 8×8 multiplier. (a) Delay

vs. MRED. (b) Area vs. MRED. The dots on the green line have the best area-MRED

tradeoff, and the dots with red circles are selected. ... 84

Figure 3-13 Accuracy comparison for approximate multipliers. .. 85

Figure 3-14 Hardware performance of the exact 8× 8 multipliers and approximate 8× 8

multipliers. (a) Power (b) Latency (c) Area. ... 86

Figure 3-15 MRED and PDP for 8×8 multipliers. .. 87

Figure 3-16 Pareto optimal analysis for the 8×8 multipliers. (a) MRED vs. delay. (b) MRED

vs. area. ... 89

Figure 3-17 Processed images by exact multiplier and proposed multipliers. 90

Figure 3-18 PSNR and SSIM values of processed images by approximate multipliers. 91

Figure 3-19 SSIM degradation and PDP saving of all multipliers. ... 91

Index of Tables

XIII

Index of Tables

Table 2-1 The behavior of ineact half-adder (inHA). .. 28

Table 2-2 The behavior of ineact 4:2 compressor (4:2 Com). ... 29

Table 2-3 The behavior of ineact 6:2 compressor (6:2 Com). ... 30

Table 2-4 The behavior of ineact 8:2 compressor (8:2 Com). ... 30

Table 2-5 Five variants of error recovery. ... 34

Table 2-6 Comparison of synthesized results for inexact compressors. 37

Table 2-7 Accuracy comparisons for approximate multipliers. ... 40

Table 2-8 Area and delay esitimation. ... 43

Table 2-9 Synthesized results comparison. ... 43

Table 2-10 Number of XOR and XNOR gates.. 45

Table 2-11 PSNR and SSIM values for the image sharpening application. 49

Table 2-12 Occurrence probability of arithmetic sum results in the signed multiplier 52

Table 2-13 The behavior of 4:3 Com .. 54

Table 2-14 Accuracy comparisons for signed approximate multipliers 58

Table 2-15 Hardware performance of signed multipliers .. 59

Table 3-1 Comparison of DSP blocks and LUTs based implemenations [47]. 66

Table 3-2 Input and output configurations for each LUT in AFM1. 73

Table 3-3 The expression of LUTs in AFM1... 73

Table 3-4 Error occurrences of AFM1 and Ca [47]. .. 74

Table 3-5 Input and output configurations for each LUT in AFM2. 75

Table 3-6 The expression of LUTs in AFM2... 76

Table 3-7 Input and output configurations for each LUT in AFM3. 77

Table 3-8 The expression of LUTs in AFM3... 78

Table 3-9 Accuracy comparison of 4×4 multipliers. .. 82

Table 3-10 Area, latency, power and PDP of 4×4 multipliers... 83

Table 3-11 Configurations for the proposed 8×8 multipliers. ... 85

Index of Tables

- XIV-

List of Abbreviations

XV

List of Abbreviations

ADP Area-Delay Product

AFM1 Approximate 4×4 Multiplier 1

AFM2 Approximate 4×4 Multiplier 2

AFM3 Approximate 4×4 Multiplier 3

AM1 Approximate Multiplier 1

AMLC Approximate Multiplier with significance-driven Logic Compression

AMSC Approximate Multiplier with Sign-focused Compressors

ATC Approximate Tree Compressor

ATCM Multiplier with Approximate Tree Compressor

ASIC Application Specific Integrated Circuit

CLA Carry Look-ahead Adder

CLB Configurable Logic Block

CNN Convolutional Neural Network

CPA Carry Propagate Adder

CSA Carry Save Adder

ED Error Distance

ER Error Rate

FA Full-Adder

FPGA Field Programmable Gate Array

HA Half-Adder

ISA Instruction Set Architecture

inHA inexact Half-Adder

IA1 Inexact Adder 1

IA2 Inexact Adder 2

LUT Look-Up-Table

LSI Large Scale Integration

MAC Multiply-And-Accumulate

List of Abbreviations

- XVI-

MED Mean Error Distance

MGER Multiplier with Grouped Error Recovery

MRED Mean Relative Error Distance

MSE Mean Squared Error

MUL1 Multiplier 1

MUL2 Multiplier 2

MSB Most Significant Bit

m:3 Com m to 3 Compressor

NED Normalized Error Distance

NMED Normalized Mean Error distance

NWCE Normalized Worst Case Error distance

PDP Power-Delay Product

PSNR Peak Signal-to-Noise Ratio

RED Relative Error Distance

R4ABM Radix-4 Approximate Booth Multiplier

SH Sum result of High block

SL Sum result of Low block

SM1 Sum result of Middle block-1

SM2 Sum result of Middle block-2

SSIM Structural Similarity

TPU Tensor Processing Unit

UDM Underdesigned Multiplier

VOS Voltage Over Scaling

WCRE Worst Case Relative Error

4:2 Com inexact 4:2 Compressor

6:2 Com inexact 6:2 Compressor

8:2 Com inexact 8:2 Compressor

Introduction

1

1. Introduction

1.1 Background

1.1.1 LSI Implementation of Error-Tolerant Application

Despite the advancement in semiconductor technologies and development of

computational system techniques, the overall energy consumption of large-scale

applications is still rapidly growing due to an ever-increasing amount of information.

Today, lots of computation-massive applications such as image processing, machine

learning, data mining/analytics, web search and wireless communication are used more

and more. Their computational and storage demands on modern systems have far

exceeded the available resources. In addition, the electricity consumption is increasing

of the data center which store and run these applications. As reported in [6], the

electricity consumption of just US data centers is estimated to increase from 61 billion

kWh in 2006 to 140 billion kWh in 2020. This not only brings the fiscal expenditure

but also the environment issues. It trends to pose severe technology challenges, such as

energy efficiency, circuits reliability, and high performance. Therefore, there is a

genuine need to improve the resource efficiency for these emerging workloads in order

to reduce the energy consumption and to keep pace with the growth of information that

needs to be processed.

Fortunately, such computation-massive applications usually have an inherently

error-tolerance property, that is, they don’t require fully exact computation results. In

general, these applications are demonstrated and defined as error-tolerant applications

[1][2], such as data mining, robotics, search, image processing, pattern recognition and

so on. Error-tolerant applications are very common and close to human.

This inherent feature of error-tolerant applications arises due to following factors,

as shown in Figure 1-1: (i) For the applications such as search and classification, they

Introduction

2

usually return a range of answers, rather than a unique and golden output. This means

multiple answers are equally suitable for users. Therefore, it is acceptable that very few

inexact outputs and most exact outputs are in a wide range of outputs. For other

applications, even a completely prefect result exists, the algorithms in applications may

not be able to find it, because it might cause a huge hardware effort. (ii) Besides, the

perceptual limitation of humans determines that the inexact yet good enough result is

acceptable. The common examples are most machine learning, image processing and

recognition applications. The tiny change in pixel value or similar effects may not be

perceived by humans due to their psycho-visual limits. (iii) In addition, noise usually

exists in real input data, which is naturally propagated to the intermediate and final

results. This is the robustness of the application. In another word, the robustness to

noise in traditional paradigm provides the robustness to approximation. (iv) In

computation-massive applications, most algorithms used have redundant set and self-

healing property, such as aggregation and iterative-refinement. This feature could

recover the accuracy loss by approximations.

Figure 1-1 Various factors cause inherently error-tolerant feature.

Take image processing application as an example, occasional errors such as

dropping a particular pixel or a small image quality loss rarely affect user’s satisfaction.

Human eyes cannot recognize the missing information and still correctly perceive an

approximately processed image. This is caused by the perceptual limitation of humans

and noise or redundant data in image.

For good product of applications, large scale integration (LSI) implementation is

important because of huge computation complexity in applications and limited

Error-Tolerant
Applications

Probabilistic Computations Iterative Algorithms

Noise in Input

Redundant Data

Perceptual Limitation

No Golden Output

Introduction

3

resources in hardware. However, most original approaches designing applications are

software oriented, which didn’t consider the LSI implementation. Generally, the

performance of circuits has been improved as the guidance of Moore’s law [3] and

Dennard’s scaling [4]. As Dennard’s scaling tends to an end, the performance

improvement is slow and may stop in near future. Therefore, LSI implementation is

very important. This dissertation focuses on optimized LSI implementation or hardware

approaches.

To implement applications into VLSI, there are several steps as shown in Figure 1-

2 including VLSI oriented algorithm, designing hardware architecture and LSI

implementation. Among hardware architecture, multiplier is very important because

basic units of lots of applications are implemented by multiplier and adder. Multiplier

usually costs more hardware than adder. Therefore, optimized multiplier is the focus of

this dissertation. By optimizing the basic unit of lots of applications, it is promising to

reduce the energy consumption of the application and further reduce the resource cost

of the whole systems or data centers.

Figure 1-2 LSI implementation of applications.

1.1.2 Approximate Computing

During the whole design process of applications, there are many factors need to be

considered, such as accuracy or quality and hardware performance like power, delay

and circuit size. The balance of these factors is necessary. Approximate computing is

one approach to trade accuracy to hardware saving, which is motivated by efficient

Introduction

4

hardware implementation and exactness relaxation in error-tolerant applications. This

computing technique returns an inexact result by skipping or simplifying some

operations. It can reduce hardware consumption.

Approximate computing can be applied inside digital computers, where the inexact

computations have been done with respect to inputs with noise and for users who have

the perception limitation. Figure 1-3 illustrates the comparison of traditional computing

and approximate computing. The accuracy is decreased with approximate computing,

but the power efficiency and performance can be improved. This methodology has

attracted a surge of interest from both academic and industry [5]-[7], as a promising

technique to achieve diverse optimizations, such as energy saving, smaller design area

and high speed.

Figure 1-3 Comparison of traditional computing and approximate computing.

Approximate computing can be applied at software, architecture and circuit levels:

At software or algorithm level, one of the most efficient approximation approaches

is precision scaling [8]-[10]. This technique alters the precision (bit-width) of the input

to shorten the width of an operand utilized in the applications. Skipping computation is

another popular technique which works by skipping some iterations of a loop to reduce

the execution time and save the resources [11][12].

At architecture level, there are many approximate computing techniques are

explored, such as approximate memories [13][14], approximate computing in

programmable processors [15], approximate accelerators [16], and approximate

instruction set architecture (ISA) [17].

Introduction

5

At circuit level, approximate arithmetic units [18]-[21], approximate circuit

synthesis [22][23] and voltage over scaling (VOS) [24][25] are the commonly studied

techniques. For a given circuit, energy consumption could be saved by reducing the

logic gates, approximating the functions and lowering its supply voltage. VOS is a

technique reducing the supply voltage, it is one of the most direct techniques to save

power consumptions, especially dynamical power consumptions. However, this

technique has a very high implementation cost to control voltage, because it requires

carefully allocate higher supply voltage to critical part to ensure the accuracy, along

with lower the supply voltage for the less significant part. Consequently, the majority

of approximate circuits are designed on approximate arithmetic units.

Many researches from academic area and industries have been show the feasibility

of approximate computing [26]-[30]. Convolution neural network (CNN) targets brain-

like functionality and is based on a simple artificial neuron. Its basic operation is

convolution where the input is multiplied and accumulated with the weight. Recently,

CNNs could achieve high accuracy for many tasks. However, CNNs usually require

significant computational resources, along with the huge hardware consumption. To

effectively train and use CNNs, IBM and Google have exploited approximate

computing for CNNs [26]-[28]. Especially, the Tensor Processing Unit (TPU) [28]

which changes the floating-point number to 8-bit fixed-point number, has been

successfully used for Google photo, Google translation and AlphaGo. In addition,

approximate CNNs with optimized computation units (e.g. approximate multiplier)

have been tested the effectiveness of approximate computing. For example, for image

classification, in [30], the CNNs with approximate computing have been introduced by

using approximate multiplier. The conventional multiplier in quantized CNN is changed

to two short-size multipliers with one inexact adder. The quantized CNN on ImageNet

dataset was evaluated. The accuracy loss is 3%, but the latency saving is 17% and power

saving is 15%. For the applications like handwritten digit recognition, [27] has

proposed approximation methods for CNNs to do this task. The floating-point number

in CNN is changed to 16-bit fixed-point number. For the approximate LeNet-5 on

MNIST dataset, the accuracy loss is only 0.07%. For the application like web search,

Introduction

6

PageRank is a typical method, [29] introduced approximation for this application by

altering the mantissa width in double floating-point number (i.e. 52-bit mantissa to 16-

bit mantissa). Such researches on CNNs and applications show the feasibility of

approximate computing.

1.1.3 Necessity of 8-Bit Approximate Multipliers

Among three commonly studied levels (software/algorithm level, architecture level

and circuit level) of approximate computing, approximation at circuit level has recently

attracted more and more attentions. This is because in error-tolerant applications,

multiply-and-accumulate (MAC) operations ∑ 𝑋𝑖 ∗ 𝑌𝑖𝑖 is widely used where 𝑋𝑖 is

weight and 𝑌𝑖 is input. For example, 90% of the computation in convolution operation

are MAC operations; filtering an image of 512× 512 pixels costs 262144 MAC

operations [31]. The basic computations of MAC operations are multiplication and

addition. Therefore, approximation applied at addition and multiplication plays a

pivotal role in determining the performance of many computation-massive applications.

The energy efficiency of this level could contribute to the overall system. More

importantly, the quality losses arose by the approximation at circuit level is more

controllable than that at other levels.

As the key and basic circuit, approximate adders both at gate level and transistor

level have been extensively studied [32]-[35]. In general, approximate adders can be

classified into two types: segmented adder and non-segmented adder. They both mainly

reduce the carry propagation delay, while the power and area reductions are slight. In

addition, approximate adders have relatively high accuracy loss, because the error in

their simple structures would have a significant impact to overall result.

Another important arithmetic unit, multiplier, has become hot and principal

research domain in approximate computing [36]-[55]. As the basic arithmetic unit, a

multiplier is more energy-hungry than an adder, hence multipliers are characterized by

high-complexity logic design and have high energy consumption. In addition, a lot of

8-bit multiplications are utilized in applications for manipulating images such as

Introduction

7

filtering operations and classification using convolutional neural networks. Moreover,

8-bit multipliers are also used to construct larger multiplier as basic modules. Therefore,

8-bit approximate multiplier design has been a focus of approximate circuit, and it is

vital to propose low-cost approximate multiplier under insignificant accuracy loss.

1.2 Research Status on 8×8 Approximate Multiplier

1.2.1 Preliminaries of 8×8 Conventional Multiplier

Generally, a multiplier consists of three steps, as shown in Figure 1-4: partial

product generation, partial product accumulation and final carry propagate adder.

Partial product accumulation step occupies the dominated energy consumption and

circuit complexity in a multiplier.

In partial product generation, partial product matrix including 64 partial products

is generated by AND operation. Then, 8 rows of partial product matrix are accumulated

and reduced into 2 rows by adders or compressors. In this step, compressors are key

components to accumulate partial products, which are defined as the circuits to

compressor/reduce several elements to less elements. Half adder and full adder are

usual compressors in exact multipliers, which is regarded as 2 to 2 compressor and 3 to

2 compressor, respectively. For example, a full adder can add (compress) three partial

products and generate 1-bit result (i.e. sum) at the same position with input, along with

another bit result (i.e. carry) at 1-bit higher position. By repeatedly applying such

compressors, 2-bit results at each column are computed. Finally, carry propagate adder

processes 2 rows and produces 16-bit product.

Introduction

8

Figure 1-4 Three basic steps in 8×8 conventional multiplier.

1.2.2 Research Challenge of 8×8 Approximate Multiplier

Approximate multiplier is designed based on the three conventional steps as

introduced in the last section. Recently, there are two major platforms to run designed

multiplier: one is ASIC (Application Specific Integrated Circuit) and the other is FPGA

(Field Programmable Gate Array). Both platforms have special features and multiplier

circuits need to be optimized for each platform. Depending on platform, approximate

multipliers are called as ASIC-based approximate multiplier and FPGA-based

approximate multiplier. They both are of great importance with worth deep

investigation. In ASIC-based designs, logic gates are deployed for the implementation

of different logic circuits. For approximation, circuits could be simplified by using

simpler logic gates. This is the most intuitive methodology to approximate the function

of one multiplier, hence ASIC-based approximate multiplier is an attractive topic both

now and in the future. On the other hand, FPGA has emerged as a potential platform to

accelerate amount of computations, because of its short turnaround time. The

Introduction

9

architectural difference between ASIC and FPGA determines that the ASIC-based

multiplier design is not effective to FPGA. FPGA-specific approximate multipliers

have been a hottest research domain for recent years. Thus, both of ASIC-based

approximate multiplier and FPGA-based approximate multiplier are extremely

necessary.

Figure 1-5 Research challenge of approximate multiplier: trade-off between accuracy

loss and hardware saving.

ASIC-based approximate multiplier and FPGA-based approximate multiplier both

face a common challenge, how to trade off the accuracy loss with hardware saving. This

is determined by the nature of approximate computing. Figure 1-5 shows the rough

trade-off relation among energy, error and area. An exact multiplier has error of 0 but

its energy is high and area is large. Depending on the acceptable error, approximate

multipliers can reduce energy and area as shown in the figure. For example, a design

may be very exact yet with a high energy consumption or large design area; or a very

energy-efficient design may have an extremely low accuracy. It is difficult to achieve

the best result of the trade-off, but it is still an urgent requirement to propose an

approximate design, which achieves power, area and delay savings under insignificant

accuracy loss.

Introduction

10

1.2.3 Research Status and Problems

The investigations of approximate multipliers have been carried on for recent years,

and many significant researches have been made for approximate multipliers. The

majority of researches focused on the second step (i.e. partial product accumulation).

The following shows a brief review of previously proposed approximate

multipliers for ASIC platform and FPGA platform and their remaining problems.

ASIC-based approximate multipliers: Circuit functions can be implemented and

mapped by logic gates on ASIC platform. By simplifying the logic function, the

complexity of circuit can be reduced. This is the most intuitive methodology, because

it can foresee the low complexity of circuit from the simplification/approximation of

the logic function. As pointed out in Section 1.2.1, the partial product accumulation

step has the primary resource consumption in multiplier. This is mainly caused by the

compressors, which are characterized as XOR-rich circuits. Thus, there are many

researches on ASIC-based multiplier with approximate compressors [39][45-

47][50][52-54]. As illustrated in Figure 1-6, those works can be concluded into two

categories: propagation restriction, and less-XOR computation. As for propagation

restriction, there are two methods. The first method is to use OR gate to extremely

approximate the compressor. The 2-input operation is focused by [39] and 3-input

operation is focused by [53]. The second method is to divide the carry to two inexact

parts [54]. The operations of two parts are in parallel. As for the method category of

computation with less XOR gate, the operations of exact 2-input, 3-input and 4-input

compressors are simplified by reducing XOR gates. For example, some terms including

XOR operation in the function are deleted.

Introduction

11

Figure 1-6 Research status on ASIC-based approximate multipliers and existing

problems.

Existing issue: Approximate compressors have been proposed in most

approximate multipliers to accumulate partial products. They all can achieve hardware

reduction, while they still have some issues. The input size of previous approximate

compressors is limited to 4-bit. To accumulate the fixed elements, the smaller

compressors lead to more accumulation stages, which further limit the potential of

hardware reduction. In addition, most of previous approximate compressors still

include XOR gates, which is difficult to be synthesized.

FPGA-based approximate multipliers: Recently, FPGA has become a promising

choice for computing systems because of its reconfigurability and fast development

time. For computation-massive applications on FPGA, it is vital to explore the FPGA-

based approximate multipliers by considering look-up-tables (LUTs) and special carry

chain. For recent years, it has been the newest and hottest topic for many applications

and attracted more and more attentions [46]-[48]. The focus of FPGA-based

approximate multiplier is also in Step 2 (i.e. partial product accumulation), while the

compressors in this step are implemented by LUTs and carry chain. Figure 1-7 views

the recent state-of-the-art FPGA-based approximate multipliers. One method is

introduced in [46], where the carry-in result from preceding bit is inexactly predicted

Introduction

12

and used as one input for compressor. Thus, the computation of each position is

independent with each other. The same author discussed another approximate multiplier

in [47] by omitting one input in the compressor to save LUTs.

Figure 1-7 Research status on FPGA-based approximate multiplier and existing

problems.

Existing issue: The existing methods could save the FPGA resource by

approximation, but there is one common issue for the state-of-the-art FPGA-based

approximate multipliers. The approximation (i.e. inexactly predicted carry-in and

omitting one input) on the input of compressor affects both of two outputs of the

compressor. It incurs the high accuracy loss.

1.3 Proposed Concept

To achieve the target of approximate multiplier (i.e. trade-off between accuracy

and hardware), and to solve the existing limitations in approximate multipliers, this

dissertation proposes probability-driven carry-restricted compressors for two important

types of approximate multipliers, ASIC-based approximate multiplier and FPGA-based

approximate multiplier. The compressors are the main units of multiplier, and they cost

the primary hardware in the multiplier. Therefore, new compressor design is proposed

in this dissertation. By considering the low occurrence probability of carry in the

compressor, the approximation is applied on the carry. The proposed method could save

Introduction

13

the hardware of the compressor and ensure that the accuracy loss is small as well (due

to low occurrence probability of carry).

Figure 1-8 Proposed concept: probability-driven carry-restricted compressors.

As for ASIC-based multiplier, in the accumulation/compression step, compressor

is implemented by logic gates. It usually generates the carry to higher position. The

carry costs the hardware yet occurs in rare cases. By caring about the low 1-probability

of one partial product and further the low 1-probability of carry, new compressors have

been developed to generate 2-bit outputs at the same position by restricting (i.e.

converting) the carry to the position as the sum. Different from small compressors (i.e.

the largest size is 4-bit) in previous approximate multiplier, this proposal is the first

attempt to introduce a unified expression to extend to large compressor (i.e. the largest

size is 8-bit). It solves the problem of slight hardware saving by more compressor stages

caused by small compressors. Moreover, the proposed compressor design does not

include the XOR gates while most of previous works still include XOR gates. XOR

gates are most energy-consuming gates among logic gates in ASIC circuit. Therefore,

by avoiding XOR gates, the proposed compressor is easily and effectively to be

synthesized and ASIC circuit can be simplified.

Introduction

14

As for FPGA-based approximate multiplier, the compressors in accumulation step

are implemented by LUTs. One carry computation with FPGA-fabric usually costs one

corresponding LUT. By considering that the occurrence probability of carry from one

bit to higher one bit is low, the computation of carry result is omitted, along with the

sum result is computed in the exact manner. Such compressor is without carry. By doing

so, the LUT resource for carry can be saved and the low error can be guaranteed at the

same time. To provide multiple choices for FPGA’s reconfiguration feature, difference

approximation degrees are applied where three proposed multipliers are implemented

with different number of no-carry compressors.

1.4 Organization of Dissertation

The contents of this dissertation are organized as follows.

In Chapter 1, the background of this dissertation is introduced, including error-

tolerant applications, approximate computing and the necessity of 8×8 approximate

multipliers. The research states and existing problems on approximate multipliers are

stated. To achieve the trade-off between accuracy loss and hardware saving,

approximate multipliers with probability-driven carry-restricted compressors are

proposed.

In Chapter 2, an ASIC-based approximate multiplier design is proposed, which is

based on a novel probability-driven inexact compressor design by focusing restriction

on the carry. The proposed compressor methodology reduces the height of partial

product matrix to two rows with one stage. To compensate accuracy loss, a grouped

error-recovery scheme is proposed to produce the final product. Such grouped error

recovery is the derivate of probability-driven compressor. To demonstrate the feasibility

that the proposed unsigned approximation technique can be extended to signed integer

operation, signed approximate multiplier with optimized probability-driven inexact

compressor is also discussed.

In Chapter 3, an FPGA-based approximate multiplier design is introduced. This

FPGA-based approximate multiplier is proposed by carefully considering the structure

Introduction

15

of FPGA (i.e. LUT and special carry chain). The proposed approximate multiplier is

constructed from four optimized 4×4 multiplier. In each 4×4 multiplier, the compressor

is implemented by LUTs. By considering the low occurrence probability of carry, the

no-carry compressor is proposed to accumulate partial products. Three types of 4×4

multipliers are introduced. To sum four 4× 4 approximate multipliers, two types of

inexact adders are proposed. To provide multiple configurations of FPGA-based

approximate multipliers, all possible combinations from elementary modules are

discussed in this chapter.

In Chapter 4, this dissertation is concluded and some future works are given.

ASIC-Based Approximate Multiplier using Probability-Driven Inexact Compressors

16

2. ASIC-Based Approximate Multiplier using

Probability-Driven Inexact Compressors

In this chapter, ASIC-based approximate multiplier design is to be discussed.

Section 2.1 detailly states the research status and problems on ASIC-based

approximate multipliers, and the motivations and contributions of this work also are

introduced in this section.

A novel probability-driven inexact compressor design is proposed in Section 2.2,

which is based on the probability distribution and restricts the carry. This compressor

design is utilized in the multiplier to accumulate partial products and the height of

partial product matrix is reduced to two rows.

After the design of inexact compressors, approximate multiplier with the inexact

compressors is proposed in Section 2.3. To compensate the accuracy loss of the

multiplier, a grouped error-recovery scheme is exploited to achieve different levels of

accuracy.

Section 2.4 presents the experiment results in terms of accuracy evaluation and

hardware performance for the exact multiplier, existing state-of-the-art approximate

multipliers and proposed multiplier. In terms of mean relative error distance (MRED),

the accuracy losses of the proposed multipliers are from 1.07% to 7.86%. Compared

with the exact multiplier using 40nm process, the most accurate variant of the proposed

multipliers can reduce power by 59.75% and area by 42.47%. The critical path delay

reduction is larger than 12.78%. The proposed multiplier design has a better accuracy-

hardware result than other designs with a comparable accuracy, which achieves the

target of this research.

In Section 2.5, the proposed restricted carry generation and propagation approach

is extended to signed approximate multiplier, which achieves low energy consumption

under the similar accuracy loss with other existing signed approximate multipliers.

Section 2.6 concludes the ASIC-based approximate multiplier.

ASIC-Based Approximate Multiplier using Probability-Driven Inexact Compressors

17

2.1 Introduction

2.1.1 Background

As introduced before, approximate computing has been considered as a potential

approach to achieve significant reduction in energy cost by exploiting the exactness

relaxation in error-tolerant applications, while still produces sufficiently exact results.

ASIC-based approximate multiplier design is one of the most attractive topics, because

it provides a fine granularity control of the circuits at gate level. There are many

commonly exploited techniques in ASIC-based approximate multiplier, such as

function simplification, Karnaugh map approximation and truncation.

(a)

(b)

(c)

Figure 2-1 Example of approximate approaches in ASIC-based approximate multiplier.

(a) Basic strcuture of the 4:2 compressor. (b) Approximate 4:2 compressor by Karnaugh

map approximation [43]. (c) Approximate 4:2 compressor by function simplification

[50].

Take the key component (i.e. 4:2 compressor) in the multiplier as an example to

introduce the approximation techniques for ASIC-based multiplier. The structure of

accumulation with 4:2 compressor in the multiplier is shown in Figure 2-1 (a).

ASIC-Based Approximate Multiplier using Probability-Driven Inexact Compressors

18

Karnaugh map approximation considers the output which has the different bit-width, to

change the exact output to the smaller output, as shown in Figure 2-1 (b). Figure 2-1 (c)

shows function simplification which usually ignores some items in the function to

simplify the expression. Another approach is truncation, which usually skips or ignores

the least significant part in the multiplier [51].

The function of a multiplier can be directly approximated to map the logic gates

and design the optimized circuit. Therefore, most of existing researches focused on the

ASIC-based approximate multiplier design.

2.1.2 Previous Works

As introduced in Section 1.2,1, a multiplier usually includes partial product

generation, partial product accumulation and final carry propagate adder. The step of

partial product accumulation occupies the primary hardware consumption and circuit

complexity in a multiplier, hence most of studies focus on the approximation of this

step.

Here is detailed review of existing ASIC-based approximate multipliers related to

this research. The methods of previous works could be concluded as two categories:

propagation restriction [39, 53, 54] and computation with less XOR gates [45, 50, 52].

The propagation restriction with OR operation is discussed in [39] and [53]: In [39], a

significance-driven logic compression for approximate multipliers (AMLC) is

discussed, where this compression uses 2-input OR operation to replace the exact half

adder. 3-input OR gates used in LSB part as propagation restriction is introduced in

[53]. Propagation restriction by dividing carry is discussed in [54], where the carry of

compressor is divided to two semi-carries for parallel generation. As for the less-XOR

computation, inexact 4-input compressor with 2 XOR gates is introduced in [45]. In

[50], two approximate multipliers (MUL1 and MUL2) are explored using inexact half-

adder, full-adder and 4:2 compressors by deleting the terms including XOR operation

in the function. In [52], an approximate tree compressor (ATC) constructed from

incomplete adder cells is introduced to reduce the partial product matrix by half,

ASIC-Based Approximate Multiplier using Probability-Driven Inexact Compressors

19

resulting in two approximate multipliers with ATC, they are named as ATCM1 and

ATCM2.

To compensate the accuracy loss of overall multiplier, error recovery strategies

have been discussed. In [45], an inexact half-adder is proposed to accumulate partial

products in parallel; a conventional adder is used to recovery error of approximate

multipliers (AM1 and AM2). The 4:2 compressor with an error recovery modular is

proposed and used in multiplier in [40].

A reconfigurable construction is another approach for accumulating partial

products. In [55], an inexact 2×2 multiplier is proposed by simplifying its Karnaugh-

Map expression and used in larger multipliers. Approximate 4:2 compressors are

introduced in [43] by approximating the Karnaugh map, then compressors are utilized

in the multiplier to accumulate partial products.

In general, compressors are XOR-rich circuits in the multiplier, and XOR gate costs

more power and area than AND and OR gates. High energy consumption in a multiplier

is usually caused by compressors with a lot of XOR gates. The inexact compressors

have been introduced in previous works. However, they still have high complexity

because of the remaining XOR gates. In addition, above previous works just discussed

compressors with the input width up to 4-bit, which incurs more compressor stages than

large-size compressors.

Error-recovery strategy is important to compensate accuracy loss. However,

previous works employed conventional adders to compensate error bit by bit. It usually

causes the hardware overhead and extra delay.

2.1.3 Research Motivations and Contributions

Motivated by the demand of considerable trade-off between hardware saving and

accuracy loss, this research aims to achieve better energy saving than existing works

under the same accuracy loss. To further reduce the hardware consumption in the

multiplier, this research explores large-size compressors without XOR gates. To

compensate accuracy loss, error recovery is an important approach.

ASIC-Based Approximate Multiplier using Probability-Driven Inexact Compressors

20

In this research, an approximate multiplier design is proposed by using probability-

driven compressors with only AND and OR gates (no XOR gates), which can be

synthesized to energy- and area-efficient cells, compound gates. In addition, a unified

expression is proposed to extend the input of compressor to larger size (8-input), while

the previous approximate multipliers focus on small compressor (i.e. largest size is 4-

input). Different from the propagation restriction with only OR gates in [39, 53] and

two semi-carries in [54], the proposal considers the low probability of carry and

converts it to the position with the sum to restrict the upper carry. By caring the

probability of carry, the proposed method could save the hardware and ensure the

accuracy. To compensate the accuracy loss of the multiplier, a grouped error recovery

scheme is proposed. Different from bit-wise error-recovery approach, this proposed

scheme processes the error compensation elements in the form of group for reducing

critical path. Area and delay of the proposed multipliers are estimated theoretically.

Moreover, accuracy evaluation and circuit simulation are provided. To test the validity

of the approximate multipliers, image sharpening is considered. The primary

contributions of this research are as follows:

i) A novel probability-driven inexact 𝒎:2 compressor design is proposed

without XOR gates to accumulate 𝑚 partial products into 2 bits (𝑚 = 2,

3, …, 8). There needs only one compressor stage before the final addition.

Besides, a general expression for 𝑚:2 compressor is conducted to extend

the input to larger size.

ii) A new approximate structure for 8× 8 multiplier is introduced, which is

divided into four 4×4 multipliers with different precision operations. The

highest 4×4 multiplier is exact and OR operation is used on the lowest one,

while the proposed compressors are used on middle two multipliers.

iii) A grouped error recovery scheme is proposed to compensate accuracy

loss. The proposed scheme processes error elements in the form of group

which can shorten the delay. Five variants of error recovery are presented

for different accuracy requirements.

ASIC-Based Approximate Multiplier using Probability-Driven Inexact Compressors

21

2.2 Proposed Probability-Driven Compressors for

Approximate Multiplier

2.2.1 Overview of the Proposed Multiplier Design

A 2n×2n multiplier (denoted as 𝐴 × 𝐵) can be divided into four n×n multipliers

as described by

𝐴 × 𝐵 = (𝐴𝐻 × 2𝑛 + 𝐴𝐿) × (𝐵𝐻 × 2𝑛 + 𝐵𝐿)

 = 𝐴𝐻 × 𝐵𝐻 × 22𝑛 + (𝐴𝐻 × 𝐵𝐿 + 𝐴𝐿 × 𝐵𝐻) × 2𝑛 + 𝐴𝐿 × 𝐵𝐿 . (2-1)

where, 𝐴𝐻 (𝐵𝐻) and 𝐴𝐿 (𝐵𝐿) are an upper- and a lower-half of A (B), respectively.

By using this structure, an 8×8 multiplier can be built from four 4×4 multipliers.

Figure 2-2 Overview of the proposed ASIC-based approximate multiplier.

The overview of the proposed approximate multiplier design is illustrated in Figure

2-2. A multiplier is divided into four small-size multipliers. Approximation are applied

Different precision operations on four 4×4 multipliers (Section 2.3.1)

Exact operation

1 0234567810 91112131415

OR operation

Proposed compressors
(Section 2.2.4)

1 0234567810 91112131415

Addition for the resulting rows from four 4×4 multipliers (Section 2.3.2)

A grouped error recovery scheme (Section 2.3.3)

Final 16-bit product

 ×

 ×

 ×

 ×

8-bit A 8-bit B

ASIC-Based Approximate Multiplier using Probability-Driven Inexact Compressors

22

on multipliers of 𝐴𝐿 × 𝐵𝐻 , 𝐴𝐻 × 𝐵𝐿 and 𝐴𝐿 × 𝐵𝐿 , along with keeping the highest

block as exact. This allocation approach trades the accuracy for the hardware reduction.

To accumulate the partial products in multipliers of 𝐴𝐿 × 𝐵𝐻 and 𝐴𝐻 × 𝐵𝐿, a novel

inexact compressor design is proposed in Section 2.2.4. This is another and important

technique to achieve the good balance among hardware performance and accuracy

quality. Section 2.3.1 detailly introduces the different precision operations applied on

four multipliers, based on the significances of each multipliers. To improve accuracy, a

grouped error-recovery scheme is proposed in Section 2.3.3 and used in the final step

of a multiplier.

2.2.2 Definition of the Compressor

Compressor is a circuit that reduces several operands into less operands. In a

multiplier, compressors are used to accumulate several rows of partial products into two

rows. It is worth mentioning that, a full-adder processes 3 elements and generate 2

outputs, hence it is generally called as a 3:2 compressor.

To lower the latency of partial product accumulation step, large-size compressors

are also widely used in the multiplier, such as 4:2 compressor. Figure 2-3 shows the

structure of a 4:2 compressor [42].

Figure 2-3 Exact 4:2 compressor. (a) Basic architecture. (b) Implementaion.

The function of a 4:2 compressor is given by

 𝒎

Full adder

Full adder

 𝒎

ASIC-Based Approximate Multiplier using Probability-Driven Inexact Compressors

23

𝑠𝑢𝑚 = 𝑥1⨁𝑥2⨁𝑥3⨁𝑥4⨁𝐶𝑖𝑛,

𝐶𝑜𝑢𝑡 = (𝑥1⨁𝑥2) ∙ 𝑥3 + (𝑥1⨁𝑥2)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ ∙ 𝑥1,

𝑐𝑎𝑟𝑟𝑦 = (𝑥1⨁𝑥2⨁𝑥3⨁𝑥4) ⋅ 𝐶𝑖𝑛 + (𝑥1⨁𝑥2⨁𝑥3⨁𝑥4)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ∙ 𝑥4 (2-2)

where ‘+’ indicates OR operation and ‘∙’ means AND operation.

The output 𝑠𝑢𝑚 has the same weight with four inputs 𝑥1, 𝑥2, 𝑥3, 𝑥4, while the

output 𝑐𝑎𝑟𝑟𝑦 is weighted one-bit-higher position. A 4:2 compressor receives a carry-

in signal 𝐶𝑖𝑛 from the preceding module on one-bit-lower position and produces a

carry out signal 𝐶𝑜𝑢𝑡 to the next one-bit-higher module. A 4:2 compressor is usually

implemented with two serially connected full adders, as shown in Figure 2-3 (b).

2.2.3 Probability Distribution Analysis

Consider two unsigned 𝑛-bit operands 𝛼 = ∑ 2𝑖 × 𝛼𝑖
𝑛−1
𝑖=0 and 𝛽 = ∑ 2𝑗 × 𝛽𝑗

𝑛−1
𝑗=0 .

The partial product is the result of AND operation of the bits of 𝛼𝑖 and 𝛽𝑗. Figure 2-

4 shows the partial product matrix of an unsigned 8×8 multiplier.

Figure 2-4 Example of partial product matrix of an unsigned 8×8 multiplier.

Partial products belonging to one column from top to bottom are donated as:

𝑝1, 𝑝2, … , 𝑝𝑚, and 𝑚 is the number of partial products in this column. For example, as

shown in Figure 2-5, partial products in the column of bit 5 are denoted as 𝑝1, 𝑝2, … , 𝑝6,

where 𝑝1 = 𝛼5 ∙ 𝛽0, 𝑝2 = 𝛼4 ∙ 𝛽1, … , 𝑝6 = 𝛼0 ∙ 𝛽5.

×

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ASIC-Based Approximate Multiplier using Probability-Driven Inexact Compressors

24

Figure 2-5 Example of partial products in the column of bit 5.

The arithmetic sum result of 𝑚 partial products belonging to the same column,

𝑅𝑚, is described as:

𝑅𝑚 = ∑(𝑝1, 𝑝2, … , 𝑝𝑚). (2-3)

where notation Σ means the summation of these elements. 𝑅𝑚 ranges from 0 to 𝑚.

Assume that two inputs of the multiplier are uniformly and independently distributed,

hence the probability is 0.75 and 0.25 for the cases that one partial product is equal to

‘0’ and ‘1’, respectively.

In a multiplier, compressors and adders are usually used to accumulate partial

products. The inputs of compressor are all partial products belonging to one column.

The probability distribution of the arithmetic sum results of 𝑚 partial products in an

8×8 multiplier is illustrated in Figure 2-6.

Consider that different cases that the number of partial products, that is 𝑚, ranges

from 2 to 8. For all cases, the probability concentrates on the range from 0 to 2 of 𝑅𝑚,

and decreases on the range from 2 to 𝑚.

Furthermore, the probability distribution on the multiplications in image

sharpening filter on LENA image is shown in Figure 2-7. The tendency in Figure 2-7 is

a bit different with that in Figure 2-6, but the probability also concentrates on the range

from 0 to 2 of 𝑅𝑚. The probability is close to 0 for the range of 𝑅𝑚 is larger than 2.

 5

 4

 3

 2

 1 4

 0 5

5

m partial products (m = 6)

ASIC-Based Approximate Multiplier using Probability-Driven Inexact Compressors

25

Figure 2-6 Probability distribution of the arithmetic sum result of 𝑚 partial products

in an 8×8 multiplier.

Figure 2-7 Probability distribution of the arithmetic sum result of 𝑚 partial products

in an image processing.

2.2.4 Design of Probability-Driven Inexact 𝑚:2 Compressor

According to the analysis in the last section, two primary observations are

concluded:

0

10

20

30

40

50

60

0 1 2 3 4 5 6 7 8

P
ro

b
ab

ili
ty

 (
%

)

m=2 m=3 m=4 m=5 m=6 m=7 m=8

Arithmetic sum result (𝒎)

0

10

20

30

40

50

60

70

80

90

0 1 2 3 4 5 6 7 8

P
ro

b
ab

ili
ty

 (
%

)

m=2 m=3 m=4 m=5 m=6 m=7 m=8

Arithmetic sum result (𝒎)

ASIC-Based Approximate Multiplier using Probability-Driven Inexact Compressors

26

i) the probability is low for the case that the sum result 𝑅𝑚 is greater than 2;

ii) the probability of 𝑅𝑚 on range 0~1 is higher than that on 2.

For inexact compressor design, based on the observation (i), two bits are sufficient

to calculate the sum result of 𝑚 partial products. Moreover, based on the observation

(ii), one bit is sufficient for most situations. Therefore, one constraint is conducted

based on the observation (ii), that is, if only one bit is equal to ‘1’, then this ‘1’ is

distributed on the first bit (i.e. 𝑊1
𝑚 in the following). By the constraint, an inexact

half-adder with low error probability is proposed.

The design rule of the inexact 𝑚 :2 compressor (𝑚 :2 Com) that calculates the

arithmetic sum result of 𝑚 partial products using two bits is given by

𝑅𝑚̃ =∑(𝑊1
𝑚,𝑊2

𝑚),

𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡:𝑊1
𝑚 ≥ 𝑊2

𝑚, (2-4)

where 𝑅𝑚̃ indicates the inexact sum result of 𝑚 partial products. 𝑊1
𝑚 and 𝑊2

𝑚

have the same weights as 𝑚 partial products. The value assignment of 𝑊1
𝑚 and 𝑊2

𝑚

are determined by 𝑅𝑚. When 𝑅𝑚 is less than 2, one bit is sufficient to the sum result,

hence 𝑊1
𝑚 is equal to 𝑅𝑚. When 𝑅𝑚 is equal to or greater than 2, both of two bits

are ‘1’. The value assignment of 𝑊1
𝑚 and 𝑊2

𝑚 is given by

𝑊1
𝑚 = {

0 𝑅𝑚 < 1
1 𝑅𝑚 ≥ 1

 (2-5)

𝑊2
𝑚 = {

0 𝑅𝑚 < 2
1 𝑅𝑚 ≥ 2

 (2-6)

According to Eq. 2-5 and 2-6, the logic functions of 𝑊1
𝑚 and 𝑊2

𝑚 can be

deduced. In Eq. 2-5, 𝑅𝑚 is equal to or greater than 1, that is, at least one of 𝑚 partial

products is ‘1’. Therefore, 𝑊1
𝑚 can be calculated as the result of OR operation of all

𝑚 partial products. For the value assignment of 𝑊2
𝑚 in Eq. 2-6, 𝑅𝑚 is equal to or

greater than 2, that is, at least two partial products are ‘1’. Thus, 𝑊2
𝑚 can be calculated

as the result of AND operation of any two partial products. The logic functions of 𝑊1
𝑚

and 𝑊2
𝑚 can be expressed as:

𝑊1
𝑚 = 𝑝1 + 𝑝2 +⋯+ 𝑝𝑚,

𝑊2
𝑚 = 𝑝1 ∙ (𝑝2 +⋯+ 𝑝𝑚) +⋯+ 𝑝𝑖 ∙ (𝑝𝑖+1 +⋯+ 𝑝𝑚) + ⋯+𝑝𝑚−1 ∙ 𝑝𝑚, (2-7)

where ‘+’ indicates OR operation and ‘∙’ means AND operation. In the functions of

ASIC-Based Approximate Multiplier using Probability-Driven Inexact Compressors

27

𝑊1
𝑚 and 𝑊2

𝑚, no XOR gates are required, hence we foresee the possibility of simpler

circuit. Figure 2-8 shows the structure for 𝑚:2 Com. When m is equal to 2, the circuit

includes one AND gate and one OR gate. When m is greater than 2-input, there is a

common architecture as shown in Figure 2-8(b).

(a) 2:2 Com.

(b) m:2 Com (m>=3). Dotted box indicates the reduplicative operation.

Figure 2-8 Architecture of the 𝑚:2 Com.

When 𝑚 is equal to 2, the compressor can be regarded as inexact half-adder

(inHA). In the following, inHA, 4:2 compressor (4:2 Com) ,6:2 compressor (6:2 Com)

and 8:2 compressor (8:2 Com) are discussed in detail, because these four are employed

in the proposed approximate multiplier.

1) Inexact half-adder (inHA)

Consider two partial products belonging to the same column, the exact sum result

𝑅2 is calculated as:

 𝑅2 = ∑(𝑝1, 𝑝2). (2-8)

The maximum value of 𝑅2 is 2. With the help of Eq. 2-4, 2-5 and 2-6, the behavior

of inHA can be obtained, as shown in Table 2-1.

 𝒎−

 𝒎

𝒎

𝒎

ASIC-Based Approximate Multiplier using Probability-Driven Inexact Compressors

28

Table 2-1 The behavior of ineact half-adder (inHA).

inputs exact result inHA
probability

 ̃

0 0 0 0 0 0 0.5625

0 1 1 1 0 1 0.1875

1 0 1 1 0 1 0.1875

1 1 2 1 1 2 0.0625

As illustrated in Table 2-1, the first output 𝑊1
2 of inHA is equal to the exact result

𝑅2, for three input combinations (‘00’, ‘01’ and ‘10’), with the occurrence probability

of 0.9375. Thus, 𝑊1
2 is sufficient for these combinations. In addition, 𝑅2̃ of inHA is

always equal to the exact result 𝑅2 for all combinations. It is a feature of inHA that

𝑊2
2 can be regarded as an error compensation bit to sum with 𝑊1

2 as error recovery.

With the help of Eq. 2-7, the function of inHA is given by

𝑊1
2 = 𝑝1 + 𝑝2,

𝑊2
2 = 𝑝1 ∙ 𝑝2. (2-9)

Compared with the conventional half-adder, the functions of two outputs in inHA

are simpler. One XOR gate in conventional half-adder is replaced by one OR gate in

the proposed inHA.

2) Inexact 4:2 compressor (4:2 Com)

The exact sum result of four partial products is calculated as:

𝑅4 = ∑(𝑝1, 𝑝2, 𝑝3, 𝑝4). (2-10)

𝑅4 ranges from 0 to 4. The behavior of 4:2 Com is shown in Table 2-2, with the help

of Eq. 2-4, 2-5 and 2-6. The combination that 𝑅4 is equal to 3 occurs with the

probability of 0.0117. In addition, another input combination, ‘1111’, occurs with the

probability of 0.0039. Thus, the total probability that 𝑅4 is greater than 2 is 0.0507. It

indicates the error probability, which is the occurrence probability of difference

between the exact result and inexact result.

The function of 4:2 Com can be written as:

ASIC-Based Approximate Multiplier using Probability-Driven Inexact Compressors

29

Table 2-2 The behavior of ineact 4:2 compressor (4:2 Com).

inputs exact result 4:2 Com
probability

 ̃

0 0 0 0 0 0 0 0 0.3164

0 0 0 1 1 1 0 1 0.1055

0 0 1 0 1 1 0 1 0.1055

0 0 1 1 2 1 1 2 0.0352

0 1 0 0 1 1 0 1 0.1055

0 1 0 1 2 1 1 2 0.0352

0 1 1 0 2 1 1 2 0.0352

0 1 1 1 3 1 1 2 0.0117

1 0 0 0 1 1 0 1 0.1055

1 0 0 1 2 1 1 2 0.0352

1 0 1 0 2 1 1 2 0.0352

1 0 1 1 3 1 1 2 0.0117

1 1 0 0 2 1 1 2 0.0352

1 1 0 1 3 1 1 2 0.0117

1 1 1 0 3 1 1 2 0.0117

1 1 1 1 4 1 1 2 0.0039

* Gray background indicates error occurrence.

𝑊1
4 = 𝑝1 + 𝑝2 + 𝑝3 + 𝑝4,

𝑊2
4 = 𝑝1 ∙ (𝑝2 + 𝑝3 + 𝑝4) + 𝑝2 ∙ (𝑝3 + 𝑝4) + 𝑝3 ∙ 𝑝4. (2-11)

Equation 2-11 shows the possibility of simplifying the circuit complexity due to no

XOR gates in 4:2 Com.

3) Inexact 6:2 compressor (6:2 Com)

Similar as the inHA and 4:2 Com, the function of 6:2 Com can be conducted based

on the Eq. 2-7. Firstly, the exact sum result (i.e. 𝑅6) of six partial products can be

expressed as

𝑅6 = ∑(𝑝1, 𝑝2, 𝑝3, 𝑝4, 𝑝5, 𝑝6). (2-12)

Table 2-3 illustrates the behavior of 6:2 Com. Because the space limitation, input

combinations are not included in this table. The term of exact result indicates the

corresponding combinations. 𝑅6 ranges from 0 to 6. Error occurs when the exact

ASIC-Based Approximate Multiplier using Probability-Driven Inexact Compressors

30

results is greater than 2, which means there are more than two ‘1’ in the input

combinations. The error probability of 6:2 Com is 0.1694. The function of 6:2 Com is

given as:

𝑊1
6 = 𝑝1 + 𝑝2 + 𝑝3 + 𝑝4 + 𝑝5 + 𝑝6,

𝑊2
6 = 𝑝1 ∙ (𝑝2 + 𝑝3 + 𝑝4 + 𝑝5 + 𝑝6) + 𝑝2 ∙ (𝑝3 + 𝑝4 + 𝑝5 + 𝑝6)

 +𝑝3 ∙ (𝑝4 + 𝑝5 + 𝑝6) + 𝑝4 ∙ (𝑝5 + 𝑝6) + 𝑝5 ∙ 𝑝6. (2-13)

Table 2-3 The behavior of ineact 6:2 compressor (6:2 Com).

Exact result 6:2 Com
probability

 6
6

6 6̃

0 0 0 0 0.1780

1 1 0 1 0.3560

2 1 1 2 0.2966

3 1 1 2 0.1318

4 1 1 2 0.0330

5 1 1 2 0.0043

6 1 1 2 0.0003

* Gray background indicates error occurrence.

Table 2-4 The behavior of ineact 8:2 compressor (8:2 Com).

Exact result 8:2 Com
probability

 𝟖
𝟖

𝟖 𝟖̃

0 0 0 0 0.1001

1 1 0 1 0.2670

2 1 1 2 0.3115

3 1 1 2 0.2076

4 1 1 2 0.0865

5 1 1 2 0.0231

6 1 1 2 0.0038

7 1 1 2 0.0004

8 1 1 2 0.00002

* Gray background indicates error occurrence.

4) Inexact 8:2 compressor (8:2 Com)

ASIC-Based Approximate Multiplier using Probability-Driven Inexact Compressors

31

8:2 Com has the similar design as inHA, 4:2 Com and 6:2 Com. Using Eq. 2-3, we

first consider the exact sum result (i.e. 𝑅8) of eight partial products. The range of 𝑅8

is 0~8. Using the proposed approach presented in Eq. 2-4, 2-5 and 2-6, 8:2 Com is

explored.

The behavior of 8:2 Com is shown in Table 2-4. In 8:2 Com, error occurs when 𝑅8

is greater than 2, with a probability of 0.3214. The dominant part of the error probability

is from combinations that 𝑅8 is equal to 3, which is up to 0.2076. However, the error

distance for this combination is small as 1 (= |3 – 2|). More importantly, the utilization

of 8:2 Com is limited in the proposed multiplier, which also decreases the impact of

error from 8:2 Com.

2.3 Approximate Multiplier Design using Proposed

Inexact Compressor

The approximate multiplier design is proposed by utilizing proposed inexact

compressors. This approximate multiplier includes three steps. Firstly, one multiplier is

divided into three blocks with architectural-space construction. Then, results from three

blocks are accumulated in parallel. Finally, a grouped error recovery scheme is explored

to improve accuracy.

2.3.1 An 8×8 Multiplier with Different Approximation Levels

on 4×4 Multipliers

An 8×8 multiplier can be constructed from four 4×4 multipliers following Eq. 2-

1. Four 4× 4 multipliers are classified into three multiplication blocks (High_block,

Low_block and Mid_block), according to their significances.

i) High_block: This block contains 𝐴𝐻 × 𝐵𝐻 which is the most important. A

Wallace tree is used to compute the resulting row (named as 𝑆𝐻).

ASIC-Based Approximate Multiplier using Probability-Driven Inexact Compressors

32

iii) Low_block: This block involves 𝐴𝐿 × 𝐵𝐿 and is the least important. OR

gates are used to compute the result (named as 𝑆𝐿) of this block.

iv) Mid_block: Figure 2-9 shows Mid_block containing 𝐴𝐿 × 𝐵𝐻 and 𝐴𝐻 ×

𝐵𝐿. Two 4:2 Coms are used on bits 1 and 5, along with two 6:2 Coms are

employed on bits 2 and 4. Elements of bit 3 are accumulated by one 8:2

Com. Eight rows are reduced to two rows (named as 𝑆𝑀1 and 𝑆𝑀2)

using the proposed inexact compressors.

01234567

01234567

01234567

Mid_block

AL X BH

AH X BL

8:2 Com
6:2 Com
4:2 Com

SM1
SM2

Figure 2-9 Dot notation for Mid_Block, where the proposed inexact compressors are

used in partial product accumulation.

2.3.2 Accumulating Results of Three Blocks in Parallel

Figure 2-10 shows the overall structure of an approximate 8×8 multiplier. Note

that the partial product generation and error-recovery scheme are not shown.

In Stage 1, an 8×8 multiplier is divided into three blocks with different precision

operations, as described in Section 2.3.1. The results are 𝑆𝐻, 𝑆𝐿, 𝑆𝑀1 and 𝑆𝑀2.

In Stage 2, three rows from three blocks are reduced into two rows using carry save

adder (CSA) without carry propagation. Six full-adders (FAs) are used on the bits 4 to

10, except the bit 7. One half-adder (HA) is required for the bit 7. The results of this

stage are named as 𝑆3 and 𝐶.

ASIC-Based Approximate Multiplier using Probability-Driven Inexact Compressors

33

In Stage 3, 𝑆3 and 𝐶 are processed by the proposed inHAs. According to the

feature of inHA, the second output 𝑊2
2 of an inHA can be regarded as error

compensation bit. The results of this stage are one sum result row (named as 𝑆) and

one error compensation row (named as 𝐸).

0123456789101112131415

0123456789101112131415

S3

C

SH SL

SM1

SM2

inHA

0123456789101112131415

S

E

FA HA

High_block

Mid_block

AL X BL

 AL X BH

AH X BL

Low_blockAH X BHStage 1

Stage 2

Stage 3

Figure 2-10 Overall structure of an 8×8 multiplier.

2.3.3 A Grouped Error Recovery Scheme

To improve accuracy, a grouped error recovery scheme is proposed, which is

explored based on the feature of the proposed inHA.

𝑆 and 𝐸 in Stage 3 are produced by inHAs. 𝑆 must be ‘1’ when 𝐸 is ‘1’

(determined by Equation 2-9). Thus, the function of conventional adder for summing

𝑆 and 𝐸 can be simplified. This error recovery scheme can be implemented by

simplified adders to add 𝐸 into 𝑆. As shown in Figure 2-11, seven 𝐸 bits are divided

into four groups. The carry results between two adjacent groups are produced in serial,

while the sum results in one group are produced in parallel. The function of carry result

is simplified, hence the critical path is shortened.

ASIC-Based Approximate Multiplier using Probability-Driven Inexact Compressors

34

t v

S
E

Ci-1 Ci

Zt Zv

𝑍𝑣 = 𝐸𝑣̅̅ ̅&(𝑆𝑣⨁𝐶𝑖)||(𝐸𝑣&𝐶𝑖)

𝑍𝑡 = (𝑆𝑡&𝐸𝑡̅̅̅)⨁(𝑆𝑣&𝐶𝑖||𝐸𝑣)

𝐶𝑖−1 = 𝐸𝑡||(𝐸𝑣&𝑆𝑡)||(𝑆𝑣&𝑆𝑡&𝐶𝑖)

(a)

S
E

C2 C3 C4C1

group4

Z
0123456789101112131415

group3group2group1

Error recovery part4 HAs No operation part

(b)

Figure 2-11 A grouped error recovery scheme. (a) The function of each group. (b)

Overall structure.

Table 2-5 Five variants of error recovery.

Designs
Group numbers of error

compensation bits
Corresponding bit-positions

MGER-0g No error recovery Null

MGER-1g group1 11

MGER-2g group1 group2 9-11

MGER-3g group1 group2 group3 7-11

MGER-4g group1 group2 group3 group4 5-11

Table 2-5 illustrates all variants of error recovery. A variant of the approximate

multiplier with grouped error recovery is referred as MGER-𝑘 g, where 𝑘 is the

number of groups of error compensation elements. For example, MGER-3g means that

three error compensation groups (bits 7 to 11 in 𝐸) are used to compensate error. Four

accurate HAs generate the values from bits 12 to 15, along with the values of bits 0 to

6 are kept as these bits in 𝑆.

2.4 Performance Evaluation

In this section, the impact of probability-driven inexact compressors is firstly

evaluated. Then, the accuracy evaluation of approximate multipliers is presented,

ASIC-Based Approximate Multiplier using Probability-Driven Inexact Compressors

35

followed by the hardware theoretical analysis and synthesized results. The proposed

multipliers (MGER-0g, MGER-1g, …, MGER-4g) were compared with the Wallace

multiplier and approximate multipliers proposed in [52] (ATCM1, ATCM2), [50]

(MUL1), [39] (AMLC2) and [45] (AM1-t). In [39], the value 2 for AMLC2 means that

the 2-cluster logic compression is used to accumulate partial products. In [45], the

parameter t for AM1-t is the number of MSBs for error recovery.

2.4.1 Evaluation for the Impact of Inexact Compressors

a) Comparison of proposed multipliers with/without proposed compressors

In order to evaluate the effectiveness of proposed inexact compressors in the

multiplier, proposed approximate multipliers with/without 𝑚 :2 Coms (the proposed

compressors) are implemented. Approximate multipliers with 𝑚:2 Coms are the design

of MGER-𝑘g presented in Section 2.3. Approximate multipliers without 𝑚:2 Coms

mean that operation using m:2 Coms is replaced with exact full-adders and half-adders

while other operations are unchanged.

Approximate multipliers with different cases have been designed in Verilog and

synthesized using the Synopsys Design Compiler with SMIC 40nm process library. The

exact multiplier has been synthesized and evaluated in the same environment. The

operating condition for synthesis was typical condition, where the process factor is 1.00,

the power supply is 1.1v, and the operating temperature is 25℃. All multipliers were

synthesized and optimized with default compile options. For power evaluation, the

power consumption was evaluated at 0.5GHz frequency using the Synopsys Power

Compiler with a switching activity interchange format file generated from all input

combinations of 65536 cases for 8×8 multipliers. Error rate (ER) is the percentage of

the erroneous result produced by approximate multipliers among all results, which

shows the accuracy loss compared with the exact multiplier.

Figure 2-12 shows the savings of power, area and delay achieved by the

approximate multipliers, compared with the exact multiplier. Red line shows the

evaluation of multipliers with 𝑚:2 Coms and blue line shows the approximate

ASIC-Based Approximate Multiplier using Probability-Driven Inexact Compressors

36

(a)

(b)

(c)

Figure 2-12 Hardware saving versus error rate for the approximate multipliers

with/without proposed probability-driven inexact 𝑚:2 Coms. (a) Power saving vs. ER.

(b) Area saving vs. ER. (c) Delay saving vs. ER.

multipliers without 𝑚:2 Coms. Approximate multipliers with 𝑚:2 Coms incur more

than 11.66% accuracy loss on average, compared with those without 𝑚 :2 Coms.

However, in all evaluations, red lines are above blue lines, which shows the multipliers

0

10

20

30

40

50

60

70

80

30 40 50 60 70 80 90

P
o

w
e

r
sa

vi
n

g
(%

)

ER (%)

with m:2 Coms
without m:2 Coms

0

10

20

30

40

50

60

30 40 50 60 70 80 90

A
re

a
sa

vi
n

g
(%

)

ER (%)

with m:2 Coms
without m:2 Coms

0

10

20

30

40

50

60

30 40 50 60 70 80 90

D
e

la
y

sa
vi

n
g

(%
)

ER (%)

with m:2 Coms
without m:2 Coms

ASIC-Based Approximate Multiplier using Probability-Driven Inexact Compressors

37

employing 𝑚 :2 Coms achieves more savings than those without 𝑚 :2 Coms. For

example, approximate multipliers without 𝑚:2 Coms achieves area saving of 21.20%

on average, while the area saving by approximate multipliers with 𝑚:2 Coms is up to

47.48%. More hardware savings can be achieved by using 𝑚 :2 Coms, while the

accuracy loss is acceptable. This shows the effectiveness of the proposed 𝑚:2 Coms in

the multiplier.

b) Comparison of the proposed compressors with previous approximate compressors

 In this subsection, a hardware comparison of proposed compressors and previous

inexact compressors is presented to further show the advantage of the proposed inexact

compressor design. The proposed design was implemented and evaluated at the

condition reported in Section 2.4.1 a). All previous compressors were implemented

based on the logic function presented in their papers. The proposed compressors and

previous compressors were evaluated and compared under the same condition. Table 2-

6 shows the synthesized results.

Table 2-6 Comparison of synthesized results for inexact compressors.

Designs Power () Area (𝒎) Delay ()

2-input compressor in proposed design 0.43 3.19 0.09

4-input compressor in proposed design 0.36 7.34 0.32

6-input compressor in proposed design 0.46 12.45 0.54

8-input compressor in proposed design 0.38 15.64 0.46

2-input compressor in [39] 0.08 1.28 0.05

4-input compressor in [45] 0.55 6.38 0.15

2-input compressor in [50] 0.43 3.19 0.09

3-input compressor in [50] 0.66 4.79 0.16

4-input compressor in [50] 0.51 9.58 0.17

2-input compressor in [52] 0.43 3.19 0.09

4-input compressor in [52] 1.13 12.45 0.40

For inexact compressors, the hardware performance of power and area are more

important than delay. There are two reasons: firstly, the partial product accumulation

usually includes exact compressors and inexact compressors. The delay in this step is

ASIC-Based Approximate Multiplier using Probability-Driven Inexact Compressors

38

determined by the exact compressor, rather than inexact compressor. The second reason

is the primary reason, which the major delay of one multiplier is caused by the final

carry propagate adder. Thus, the delay of inexact compressor has minor effect to the

delay of the overall multiplier.

Therefore, here the discussion on power and area are stated. Regarding the power

consumption shown in Table 2-6, the proposed design has less power consumption than

previous compressors. More importantly, the proposed design first extends the input-

size to 6- and 8-bit. It can be observed that the proposed large compressor even has less

power consumption than 4-bit compressors [45, 50, 52]. As for area, the proposed 6-

and 8-input compressors have the large area. However, accumulating the fixed elements

with the small compressor requires more compressors. For example, there needs two 4-

input compressors to accumulate 8 elements, which roughly costs 19.16 𝑢𝑚2 for [50],

and 24.9 𝑢𝑚2 for [52]. In [45], the 4-input compressor actually processes two bits at

the current column and two bits at the preceding column (as the predict carry).

Therefore, to accumulate 8 elements at the same column, it requires four compressors

and area is 25.52 𝑢𝑚2. In contrast, accumulating 8 elements with the proposed 8-input

compressor requires 15.42 𝑢𝑚2 . Therefore, the proposed compressors cost smaller

area than previous compressors to accumulate the fixed number of elements.

(a) (b)

Figure 2-13 4:2 Compressor (4:2 Com). (a) Logical AND-OR structure. (b) Cell

structure after synthesis.

To explain this superiority, feature of the proposed design is explored. The power

and area savings by the proposed design are mainly due to the feature that compressors

only comprise AND and OR gates. During the synthesis, AND and OR gates can be

ASIC-Based Approximate Multiplier using Probability-Driven Inexact Compressors

39

synthesized to compound gate, which has less transistors as a power- and area-efficient

cell. To demonstrate this feature, the logic circuit based on function and schematic

circuit from synthesis are illustrated. Take the proposed 4:2 Com as an example to

explain, Figure 2-13 (a) shows the logical AND-OR circuit drawn from the function of

4:2 Com as stated in Eq. 2-11 (Section 2.2.4). The schematic circuit extracted after the

synthesis is shown in Figure 2-13 (b). It can be observed that the synthesized inexact

compressor is simpler than original circuit due to the compound gates. In this example,

the compound gate AOI222 is included, which has less transistors.

2.4.2 Accuracy Evaluation

a) Metrics for accuracy analysis

Here gives several metrics to evaluate the accuracy of approximate multipliers. For

multiplier, the error distance (ED) is defined as the arithmetic absolute difference

between the exact product (𝑌) and the inexact product (𝑌̃), that is,

𝐸𝐷 = |𝑌̃ − 𝑌|. (2-14)

MED is the average value of EDs for a set of outputs. The normalized mean error

distance (NMED) is developed in [57], which is applicable to compare multipliers with

different sizes, as defined as

𝑁𝑀𝐸𝐷 = 𝑀𝐸𝐷/𝑌𝑚𝑎𝑥. (2-15)

where 𝑌𝑚𝑎𝑥 is the maximum output of an exact multiplier, that is, (2𝑛 − 1)2 for an

𝑛 × 𝑛 multiplier. The relative error distance (RED) is calculated as

𝑅𝐸𝐷 = 𝐸𝐷/𝑌. (2-16)

The average value of REDs is mean RED (MRED).

In addition, normalized worst case error distance (NWCE) and worst case relative

error (WCRE) also are important metrics. This is because low mean error but

excessively high ED in some cases also could cause the unacceptable results. NWCE

is defined as the normalized value of the maximum ED, expressed as

 𝑁𝑊𝐶𝐸 = 𝐸𝐷𝑚𝑎𝑥/𝑌𝑚𝑎𝑥. (2-17)

WCRE is the maximum value of RED among all results. The functional models for

ASIC-Based Approximate Multiplier using Probability-Driven Inexact Compressors

40

approximate multipliers were implemented using Matlab. An exhaustive simulation

was performed for each 8×8 multiplier (65536 patterns).

b) Accuracy analysis

Table 2-7 illustrates the NMED, MRED, ER, NWCE and NWCE results for the

existing approximate multipliers and the proposed multiplier. For the proposed

multiplier design, error varies with error recovery configurations. Error decreases

drastically from MGER-1g to MGER-2g. For example, the MRED decreases from 6.19%

(MGER-1g) to 2.87% (MGER-2g). The reason is that the additional error compensation

part is group 2, whose corresponding weights are 29 and 210 . These weights are

significant for overall multiplication result. Regarding the mean error metrics (NMED,

MRED and ER), error of AM1-10 is the lowest. In terms of NMED, ATCM2 also

achieves the lowest value as 0.21%. The mean error of the proposed MGER-4g is

slightly higher than that of AM1-10.

Table 2-7 Accuracy comparisons for approximate multipliers.

Designs NMED (%) MRED (%) ER (%) NWCE (%) WCRE (%)

MGER-0g 1.30 7.86 80.00 8.81 56.58

MGER-1g 0.94 6.19 78.79 6.40 56.58

MGER-2g 0.40 2.87 71.38 5.51 56.58

MGER-3g 0.28 1.44 60.26 5.12 49.46

MGER-4g 0.25 1.07 54.18 4.97 43.56

ATCM1 [52] 0.28 1.64 55.44 11.92 44.44

ATCM2 [52] 0.21 1.21 47.33 11.23 44.44

MUL1 [50] 2.58 7.86 81.79 27.60 33.86

AMLC2 [39] 0.35 1.99 49.11 5.64 33.20

AM1-4 [45] 1.85 10.32 81.06 13.63 61.36

AM1-6 [45] 0.73 5.08 76.41 12.06 59.59

AM1-8 [45] 0.30 1.87 61.55 10.88 57.44

AM1-10 [45] 0.21 0.79 40.97 10.78 57.14

In terms of worst case, MGER-4g has smaller NWCE than ATCM2 and AM1-10,

whose mean errors are smaller than MGER-4g. In the proposed design, the High_block

ASIC-Based Approximate Multiplier using Probability-Driven Inexact Compressors

41

is fully accurate, hence this part ensures the low error in columns with large weights.

In addition, the approximation in MGER-4g is applied on columns from 20 to 210.

However, the approximate compression is used on columns from 20 to 213 in

ATCM2, and all columns in AM1-10, which incurs the error in columns with large

weights. On the other hand, the maximum weight of bit difference mainly causes the

maximum ED. We further explored the input combination for the maximum ED, where

(255×255) are both for ATCM2 and MGER-4g, and (238×255) is for AM1-10. The

maximum weight of bit difference is 212 in ATCM2, yet 211 in MGER-4g. The

compression logic in AM1-10 considers the lower one bit, hence the input operands for

worst case is less than 255. The maximum weight of bit difference is 213 in AM1-10.

In terms of WCRE, the value of MGER-4g ranks third among all approximate

multipliers. In general, the maximum RED occurs in the multiplication of two small

numbers, such as (15×15) in MGER-4g. The higher degrees of approximation in low

part cause the larger WCRE. In the proposed design, all bits in lower half part are

accumulated approximately, while some bits in MUL1 and AMLC2 keep accurate.

Therefore, AMLC2 and MUL1 have the lower WCREs than MGER-4g. The mean error

combined with the error in the worst case indicates the comprehensive accuracy loss.

On the whole, MGER-4g achieves the better performance on accuracy than other

designs.

2.4.3 Hardware Analysis

a) Area and Delay Estimation

Here shows the evaluation of area and delay by the number of gates. Consider a 2-

input gate (e.g. AND gate) as a unit. For one unit, the area is 𝛼0 and the delay is 𝜏0.

The 2-input XOR gate is regarded as two units, with 2𝛼0 area and 2𝜏0 delay. The

area for FA and HA is 7𝛼0 and 3𝛼0, and the delay for FA and HA is 4𝜏0 and 2𝜏0,

respectively [45][52]. Note that the carry propagation delay of FA and HA in an adder

chain is 2𝜏0 and 𝜏0, respectively.

For area estimation, all operations are converted to units and count the total number

ASIC-Based Approximate Multiplier using Probability-Driven Inexact Compressors

42

of units. The partial product accumulation of MGER-kg includes three operations on

three blocks (i.e. Stage 1), CSA stage (i.e. Stage 2) and inHA stage (i.e. Stage 3). In

Stage 1, High_block consists of nine FAs and three HAs which are converted into 72

units, along with nine OR gates in Low_block. Mid_block involves 16 units for two 4:2

Coms, 28 units for two 6:2 Coms, and 20 units for one 8:2 Com. Therefore, the number

of units of High_block, Mid_block and Low_block is 72, 64 and 9, respectively. The

total area of Stage 1 is 145𝛼0. In Stage 2, six FAs and one HA are converted to 45

units, hence the area is 45𝛼0. Stage 3 involves seven inHAs with the area of 14𝛼0.

Therefore, the area of partial product accumulation step is 204𝛼0.

The cost of error recovery step in MGER-kg is determined by the number of error

compensation groups. The area of MGER-kg is the total area of both partial product

accumulation step and error recovery step, i.e.,

𝐴𝑀𝐺𝐸𝑅−𝑘𝑔 = 204𝛼0 + 𝛼𝑘𝑔, (2-18)

where 𝛼𝑘𝑔 is the area of error recovery step in MGER-kg.

For delay estimation, the critical path of MGER-kg is throughout the partial

product accumulation step and error recovery step. Note that, only lower three LSBs in

High_block are used by CSAs in Stage 2. Thus, the critical path of Stage 1 is determined

by the 8:2 Com in Mid_block, which is 13𝜏0. For Stage 2 and Stage 3, the delay is

4𝜏0 (FA) and 𝜏0 (inHA), respectively. The delay of partial product accumulation step

is 18𝜏0. The total delay of MGER-kg is calculated as:

𝐷𝑀𝐺𝐸𝑅−𝑘𝑔 = 18𝜏0 + 𝜏𝑘𝑔, (2-19)

where 𝜏𝑘𝑔 is the delay of error recovery step in MGER-kg.

In an 8× 8 Wallace multiplier, four CSA stages including 38 FAs and 15 HAs

compresses eight rows of partial products into two rows. These adders are converted to

311 units and the delay is 16𝜏0 . The final CPA involving 10 FAs and 1 HAs is

converted into 73 units and the area is 73𝛼0. The delay of this CPA is determined by

the carry propagation chain, thereby the delay is 22𝜏0.

Table 2-8 shows the estimated area and delay of the Wallace multiplier and the

proposed multipliers. The dominated delay consumption of the proposed multipliers is

determined by partial product accumulation step. In this step, the proposed multipliers

ASIC-Based Approximate Multiplier using Probability-Driven Inexact Compressors

43

have larger estimated delay than the Wallace multiplier. However, the circuit

complexity of the error recovery step is much simpler than that of conventional CPA.

Therefore, the proposed multipliers have less total delay than the Wallace multiplier.

Table 2-8 Area and delay esitimation.

Designs

Partial product

accumulation

Final

addition
Total

Area

()
Delay (𝝉)

Area

()

Delay

(𝝉)

Area

()

Delay

(𝝉)

Wallace 311 16 73 22 384 38

MGER-0g 204 18 0 0 204 18

MGER-1g 204 18 13 5 217 23

MGER-2g 204 18 25 9 229 27

MGER-3g 204 18 40 12 244 30

MGER-4g 204 18 55 15 259 33

Table 2-9 Synthesized results comparison.

Designs Area (𝒎) Power () Delay () PDP (𝒇𝑱) ADP (𝒎 ∙)

Wallace 496.04 92.03 2.27 208.91 1126.01

MGER-0g 243.23 26.92 1.08 29.07 262.69

MGER-1g 245.46 26.07 1.23 32.07 301.92

MGER-2g 263.02 27.16 1.37 37.21 360.34

MGER-3g 264.62 29.40 1.64 48.22 433.98

MGER-4g 285.36 37.04 1.98 73.34 565.01

ATCM1 [52] 281.53 44.86 1.71 76.71 481.42

ATCM2 [52] 314.73 49.00 1.72 84.28 541.34

MUL1 [50] 261.74 48.14 1.77 85.21 463.28

AMLC2 [39] 277.07 45.10 1.71 77.12 473.79

AM1-4 [45] 267.81 38.56 1.25 48.20 334.76

AM1-6 [45] 301.96 40.37 1.61 65.00 486.16

AM1-8 [45] 344.42 49.71 1.99 98.92 685.40

AM1-10 [45] 385.27 61.39 2.42 148.56 932.35

b) Synthesis Results

The proposed multipliers (MGER-𝑘g) have been simulated and synthesized under

the same conditions as Section 2.4.1. Existing approximate multipliers and the Wallace

multiplier (exact) were implemented based on algorithms in their papers, which were

ASIC-Based Approximate Multiplier using Probability-Driven Inexact Compressors

44

synthesized and evaluated in the same environment as the proposed design. All designs

were synthesized without the timing and area constraints. The condition for the power

evaluation was the same as Section 2.4.1. Table 2-9 shows the synthesized results for

power consumption, circuit area, critical path delay, power-delay product (PDP) and

area-delay product (ADP).

Compared with the Wallace multiplier, the proposed multipliers deliver power

reduction of 59.75%~70.75%. The area and delay reduction is up to 50.97% and

52.42%, respectively. Compared with the theoretical results shown in Table 2-7, the

hardware reduction after synthesis is larger than the estimated result. Take MGER-3g

as an example, for the area (delay) reduction, the experimental result is 46.65%

(27.75%), while the estimated result is 36.46% (21.05%).

Here are two primary reasons might cause these differences, which were found

from netlist and critical path reports. Firstly, the majority of gates in the Wallace

multiplier are XOR gates, which is 91 2-input XOR gates in partial product

accumulation. During DC synthesis, XOR gates are difficult to be synthesized to

compound gates. In contrast, in the proposed design, the majority of gates in partial

product accumulation are AND and OR gates, which can be synthesized to compound

gates, such as OAI222. Secondly, in terms of critical path, the Wallace multiplier in

partial product accumulation involves 8 2-input XOR gates, while the proposed

multiplier has 2 2-input XOR gates. Although the estimated delay for two multipliers

is close, the proposed multiplier includes more basic gates (AND and OR gates), which

can be synthesized to compound gates. It also demonstrates the validity of the proposed

compressors, which does not include XOR gates.

Then, the number of XOR and XNOR gates of multipliers is shown to explain the

advantage of the proposed compressors. The XOR and XNOR gates of each multiplier

was obtained from the synthesized netlists shown in Table 2-10. The total number of

XOR and XNOR gates of MGER-0g is the smallest among all multipliers. The number

of XOR2 gate in MGER-0g is the smallest among all multipliers, and the number of

XNOR2 gate is only 1. In terms of XNOR3 gate, the number in MGER-0g is greater

than those in MUL1 and AM1-t. However, the number of XOR2 gate in those two

ASIC-Based Approximate Multiplier using Probability-Driven Inexact Compressors

45

designs even four or fifteen times of that in MGER-0g.

Table 2-10 Number of XOR and XNOR gates.

Designs XOR2 XNOR2 XNOR3 Total

Wallace 14 3 46 63

MGER-0g 2 1 12 15

MGER-1g 5 1 13 19

MGER-2g 6 1 14 21

MGER-3g 8 3 12 23

MGER-4g 10 3 11 24

ATCM1 [52] 5 0 16 21

ATCM2 [52] 8 1 20 29

MUL1 [50] 8 1 11 20

AMLC2 [39] 6 0 26 32

AM1-4 [45] 19 8 0 27

AM1-6 [45] 20 12 2 34

AM1-8 [45] 29 4 4 37

AM1-10 [45] 31 4 6 41

*XOR3 cell was not comprised in netlist.

The dynamic power usually accounts for a large percentage of the total power

consumption in a combinational circuit. The dynamic power obtained by Power

Compiler is the sum of switching power and internal power [58]. The simpler circuit

leads to the less internal power. For the switching activity power (𝑃𝑠), it is calculated as

𝑃𝑠 =
𝑉𝑑𝑑2

2
∑ (𝐶𝑙𝑜𝑎𝑑𝑖 × 𝑇𝑅𝑖)∀𝑛𝑒𝑡(𝑖) , (2-20)

where 𝐶𝑙𝑜𝑎𝑑𝑖 indicates the capacitive load of net 𝑖 and 𝑇𝑅𝑖 means the toggle rate of

net 𝑖. In general, the circuit complexity and switching activity of XNOR3 gate is larger

than those of XNOR2/XOR2 gate. In addition, XNOR2/XOR2 gate has larger circuit

complexity and switching activity than AND and OR gates. This is because that control

signal for AND/OR gate is one input as ‘0’/‘1’, respectively. For example, when one

input is ‘1’, the output of OR gate is determined as ‘1’. Hence, the switching transition

on another input will not affect the output. However, there must be two control signals

for 2-input XOR gate and three control signals for 3-input XOR gate. The switching

ASIC-Based Approximate Multiplier using Probability-Driven Inexact Compressors

46

transition on one input of XOR gate usually affects a transition on the output. Therefore,

the switching activity of XOR gate is higher than that of AND or OR gate. The small

number of XOR gates in the proposed multiplier leads to low toggle rate. In addition,

the proposed multipliers have the small capacitive load because of the small number of

XOR gates. Therefore, the proposed multipliers have the lower power and PDP.

Figure 2-14 MRED and PDP for exact multiplier and approximate multipliers.

Figure 2-14 shows the overall comparison for different multiplier in terms of

MRED and PDP. This is an intuitive comparison to show the trade-off between energy

saving and accuracy loss. In general, MRED indicates the error distribution of

approximate multipliers. In terms of the MRED-PDP, the proposed multipliers design

achieves the better trade-off between MRED and PDP than other designs. Our design

shows the smallest MRED on the same PDP, and the smallest PDP on the same MRED.

It demonstrates that the proposed approximate multiplier design achieves the better

balance than existing designs, and also achieves the target of this research.

ASIC-Based Approximate Multiplier using Probability-Driven Inexact Compressors

47

2.4.4 Application of Approximate Multipliers to Image

Processing

Approximate circuits can be used in error-tolerant applications. The image

sharpening algorithm is widely used to evaluate approximate multipliers as shown in

[59]. The image sharpening algorithm is given by

𝑃(𝑥, 𝑦) = 2𝐼(𝑥, 𝑦) −
1

273
∑ ∑ 𝐺(𝑖 + 3, 𝑗 + 3)𝐼(𝑥 − 𝑖, 𝑦 − 𝑗),2

𝑗=−2
2
𝑖=−2 (2-21)

where G is a 5×5 matrix, given by

𝐺 =

[

1 4 7 4 1
4 16 26 16 4
7 26 41 26 7
4 16 26 16 4
1 4 7 4 1]

In this application, 𝐺 operates on 5×5 block in the image. I(x,y) indicates the original

image, and P(x,y) is the processed image. The peak signal-to-noise ratio (PSNR) is a

metric to measure the quality of processed image compared with the exact image, that

is based on the mean squared error (MSE) [42], defined as:

𝑀𝑆𝐸 =
1

𝑝𝑞
∑ ∑ [𝑃̂(𝑥, 𝑦) − 𝑃(𝑥, 𝑦)]2𝑞−1

𝑦=0
𝑝−1
𝑥=0 , (2-22)

𝑃𝑆𝑁𝑅 = 10 × 𝑙𝑜𝑔10(
𝑀𝐴𝑋𝐼

2

𝑀𝑆𝐸
), (2-23)

where 𝑃 and 𝑃̂ denotes the processed images using the exact multiplier and

approximate multiplier, and 𝑝 and 𝑞 are the image dimensions. The input image for

this application is 512×512 grayscale bitmap image with 8-bit pixels.

Another metric quantifies the difference between the processed images using the

exact multiplier and approximate multiplier is structural similarity (SSIM). SSIM is a

weighted combination of three comparison measurements [73] between 𝑃 and 𝑃̂

which is processed images using the exact multiplier and approximate multiplier,

respectively. Three comparative measures are luminance (𝑙), contract (𝑐) and structure

(𝑠), which are calculated as:

𝑙(𝑃, 𝑃̂) =
2𝜇𝑃𝜇𝑃̂+𝑐1

𝜇𝑃
2+𝜇

𝑃̂
2+𝑐1

 (2-24)

ASIC-Based Approximate Multiplier using Probability-Driven Inexact Compressors

48

𝑐(𝑃, 𝑃̂) =
2𝜎𝑃𝜎𝑃̂+𝑐2

𝜎𝑃
2+𝜎

𝑃̂
2+𝑐2

 (2-25)

𝑠(𝑃, 𝑃̂) =
𝜎𝑃𝑃̂+𝑐3

𝜎𝑃𝜎𝑃̂+𝑐3
 (2-26)

where, 𝜇𝑃 and 𝜇𝑃̂ is the average of image 𝑃 and image 𝑃̂ , respectively. 𝜎𝑃
2 and

𝜎𝑃̂
2 is the variance of image 𝑃 and image 𝑃̂, respectively, and 𝜎𝑃𝜎𝑃̂ is the covariance

of images 𝑃 and 𝑃̂. In addition, 𝑐1, 𝑐2 and 𝑐3 are constants to stabilize the division.

For 8-bit pixels, 𝑐1 , 𝑐2 and 𝑐3 is set by default to 6.5025, 58.5525, and 29.2613,

respectively. Then, the SSIM is the combination of those comparative measures as:

𝑆𝑆𝐼𝑀(𝑃, 𝑃̂) = [𝑙(𝑃, 𝑃̂) ∙ 𝑐(𝑃, 𝑃̂) ∙ 𝑠(𝑃, 𝑃̂)] (2-27)

Figure 2-15 shows the processed images of exact multiplier and the proposed

approximate multipliers. Table 2-10 illustrates the PSNR and SSIM values of processed

images of all approximate multipliers.

(a) (b) (c)

(d) (e) (f)

Figure 2-15 Images processd by (a) Exact multiplier. (b) MGER-0g. (c) MGER-1g. (d)

MGER-2g. (e) MGER-3g. (f) MGER-4g.

ASIC-Based Approximate Multiplier using Probability-Driven Inexact Compressors

49

Table 2-11 PSNR and SSIM values for the image sharpening application.

Designs PSNR (dB) SSIM (%)

MGER-0g 23.40 94.09

MGER-1g 25.82 94.80

MGER-2g 34.65 99.07

MGER-3g 44.26 99.71

MGER-4g 48.29 99.81

ATCM1 [52] 49.48 99.85

ATCM2 [52] 52.37 99.85

MUL1 [50] 31.23 99.00

AMLC2 [39] 48.96 99.89

AM1-4 [45] 22.22 92.97

AM1-6 [45] 28.83 97.88

AM1-8 [45] 39.61 99.61

AM1-10 [45] 52.13 99.86

Figure 2-16 The trade-off between PDP saving and SSIM degradation for image

sharpening application.

An intuitive comparison for all approximate multiplier with respect to the quality-

power trade-off is shown in Figure 2-16. In this figure, x-axis reports the SSIM

degradation, while y-axis reports the PDP saving delivered by the approximate

ASIC-Based Approximate Multiplier using Probability-Driven Inexact Compressors

50

multiplier. We can observe that (i) for the range that SSIM reduction is less than 0.5%,

MGER-3g achieves the highest PDP saving (76.92%); (ii) the proposed approximate

multiplier design offers different configurations, which has a better quality-power

trade-off than AM1.

2.5 Discussion on Extension to Signed Approximate

Multiplier

Previous sections have presented the proposed ASIC-based approximates, mainly

focusing on the unsigned multiplier. Currently, most research studied on the unsigned

approximate multiplier, because the signed integer multipliers can be extended from the

unsigned approximation methodologies. In this section, the extension of the proposed

approach is to be discussed. It reveals the feasibility of the proposed approximation

techniques on the signed multiplier.

2.5.1 Optimizing the Proposed Inexact Compressors for Signed

Multiplier

This section focuses on the design of approximate signed multipliers with inexact

compressors. To compress partial products by using low-cost circuits, an inexact 𝑚:3

compressor design is optimized for signed partial product matrix based on the proposed

𝑚:2 Com (Section 2.2), which comprises only AND and OR gates. A general expression

for inexact compressors is introduced, followed by an example of a 4:3 compressor.

The height of partial product matrix is reduced by compressors to three rows, which

leads to fewer accumulation stages in the overall multiplier. To achieve different levels

of hardware performance, three approximate signed multipliers that have almost the

same accuracy are introduced.

1) Design of sign-focused m:3 compressors

ASIC-Based Approximate Multiplier using Probability-Driven Inexact Compressors

51

Figure 2-17 Partial product matrix of an 8-bit signed multiplier.

Consider the signed multiplication with two 𝑛-bit inputs, i.e., a multiplicand 𝐴

and a multiplier 𝐵, both are in two’s complement. The inputs are given as

𝐴 = −𝛼𝑛−1 × 2𝑛−1 + ∑ 𝛼𝑖 × 2𝑖𝑛−2
𝑖=0 , (2-28)

𝐵 = −𝛽𝑛−1 × 2𝑛−1 + ∑ 𝛽𝑗 × 2𝑗𝑛−2
𝑗=0 . (2-29)

The partial product matrix for an 8-bit signed multiplier is generated using the

Baugh-Wooley algorithm [60], as shown in Figure 2-17. Some partial products are

generated by NAND gates, which are associated with the sign bit in operand input.

Assume that the inputs 𝐴 and 𝐵 are uniformly and independently distributed, hence

the probabilities of partial products (i.e. 𝑞) generated by AND and NAND gates can be

calculated as:

P(𝑞𝐴𝑁𝐷 = 1) = 1/4, (2-30)

P(𝑞𝑁𝐴𝑁𝐷 = 1) = 3/4. (2-31)

Similar with the Section 2.2.3, the partial products belonging to the same column

from top to bottom are named as 𝑞1, 𝑞2, … , 𝑞𝑚 ,where 𝑚 is the number of partial

products in this column. In the signed multiplier, the arithmetic sum result of partial

products in this column, 𝑅𝑠
𝑚, is calculated as

𝑅𝑠
𝑚 = ∑ (𝑞1, 𝑞2, … , 𝑞𝑚).

𝑚
1 (2-32)

 7 6 5 4

× 7 6 5 4

1 7 6 5 4 0

 7 6 5 4

 7 6 5 4

 7 6 5 4

 7 4 6 4 5 4 4 4 4 4 4 0 4

 7 5 6 5 5 5 4 5 5 5 5 5

 7 6 6 6 5 6 4 6 6 6 6 6

1 7 7 6 7 5 7 4 7 7 7 7 7

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ASIC-Based Approximate Multiplier using Probability-Driven Inexact Compressors

52

Table 2-12 Occurrence probability of arithmetic sum results in the signed multiplier

Probability 𝒎 = 4 𝒎 = 5 𝒎 = 6 𝒎 = 7 𝒎 = 8

P (𝑅𝑠
𝑚= 0) 3.52% 2.64% 1.98% 1.48% 1.11%

P (𝑅𝑠
𝑚= 1) 23.43% 18.45% 14.50% 11.37% 8.90%

P (𝑅𝑠
𝑚= 2) 46.09% 40.43% 34.94% 29.84% 25.21%

P (𝑅𝑠
𝑚= 3) 23.44% 29.10% 31.93% 32.68% 31.97%

P (𝑅𝑠
𝑚= 4) 3.52% 8.50% 13.65% 18.22% 21.84%

P (𝑅𝑠
𝑚= 5) - 0.88% 2.78% 5.50% 8.68%

P (𝑅𝑠
𝑚= 6) - - 0.22% 0.86% 2.02%

P (𝑅𝑠
𝑚= 7) - - - 0.05% 0.26%

P (𝑅𝑠
𝑚= 8) - - - - 0.01%

Table 2-12 shows the occurrence probability of the arithmetic sum result 𝑅𝑠
𝑚

when 𝑚 ranges from 4 to 8., for the signed multiplier. As it can be observed in Table

2-12, the probability is low that 𝑅𝑠
𝑚 is greater than 3. For example, when 𝑚 is 5, the

probability that 𝑅𝑠
5 is greater than 3 is 9.38%. It shows the possibility that 𝑚 partial

products can be inexactly calculated using three bits. Therefore, the design of 𝑚 :3

compressor (m:3 Com) is introduced to compress 𝑚 partial products into three bits

with the same weights.

Three output bits of 𝑚:3 Com are denoted as 𝑤1
𝑚, 𝑤2

𝑚, and 𝑤3
𝑚. These three

bits have the same weights with the input values. Generally, the compressor is a circuit

logic to count the number of ‘1’ in the inputs. Therefore, 𝑤1
𝑚, 𝑤2

𝑚, and 𝑤3
𝑚 are

designed in turn for the cases when there is at least one, two and three ‘1’ is in one

column, respectively.

Function of the first output bit 𝑤1
𝑚: The first output bit is designed for the case that

the number of ‘1’ in inputs is 1. Therefore, when any one partial product is ‘1’ among

𝑚 partial products, 𝑤1
𝑚 is ‘1’. The value of 𝑤1

𝑚 can be calculated as the result of

OR operation of 𝑚 partial products, expressed as

 𝑤1
𝑚 = 𝑞1 + 𝑞2 +⋯+ 𝑞𝑚 . (2-33)

Function of the second output bit 𝑤2
𝑚: The second output bit 𝑤2

𝑚 is designed to

calculate the number of ‘1’ as 2 in one column. Any two partial products among 𝑚

partial products are ‘1’ meaning the number of ‘1’ is 2. It can be calculated as the result

ASIC-Based Approximate Multiplier using Probability-Driven Inexact Compressors

53

of AND operation of any two partial products, as

𝑤2
𝑚 = 𝑞1 ∙ (𝑞2 +⋯+ 𝑞𝑚) + ⋯+ 𝑞𝑖 ∙ (𝑞𝑖+1 +⋯+ 𝑞𝑚) +⋯+𝑞𝑚−1 ∙ 𝑞𝑚. (2-34)

where, ‘∙’ means AND operation and ‘+’ indicates OR operation.

Function of the third output bit 𝑤3
𝑚: The third bit is further designed on 𝑤1

𝑚 and

𝑤2
𝑚 to calculate the number of ‘1’ as 3. Similar to the above analysis, 𝑤3

𝑚 can be

obtained when any three partial products are ‘1’. Moreover, 𝑤3
𝑚 is specially designed

for the signed multipliers. When use 𝑚 :3 Com on partial product matrix shown in

Figure 2-17, 𝑞1 and 𝑞𝑚 of 𝑚:3 Com are the partial products generated by NAND

gates. The probability is 3/4 that the partial product generated by NAND gate is ‘1’.

Therefore, we consider these two partial products specially and count the number of ‘1’

as 3. That is (i) when 𝑞1 and 𝑞𝑚 both are ‘1’, one partial product from 𝑞2 to 𝑞𝑚−1

is ‘1’; and (ii) when 𝑞1 or 𝑞𝑚 is ‘1’, two partial products from 𝑞2 to 𝑞𝑚−1 are ‘1’.

For the (ii), we use the AND gate on two adjacent elements to further inexactly express

the condition that two partial products from 𝑞2 to 𝑞𝑚−1 are ‘1’. The function of 𝑤3
𝑚

is given as:

𝑤3
𝑚 = 𝑞1 ∙ 𝑞m ∙ (𝑞2 +⋯+ 𝑞𝑚−1) + 𝑞1 ∙ (𝑞2 ∙ 𝑞3 +⋯+ 𝑞m−2 ∙ 𝑞𝑚−1)

 +𝑞m ∙ (𝑞2 ∙ 𝑞3 +⋯+ 𝑞m−2 ∙ 𝑞𝑚−1). (2-35)

2) Example of optimized 4:3 compressor

In this subsection, an example of the sign-focused 𝑚:3 Com is shown to illustrate

the optimized compressor in detail.

With the help of Eq. 2-29, 2-30 and 2-31, the function of 4:3 Com can be expressed

as:

𝑤1
4 = 𝑞1 + 𝑞2 + 𝑞3 + 𝑞4,

𝑤2
4 = 𝑞1 ∙ (𝑞2 + 𝑞3 + 𝑞4) + 𝑞2 ∙ (𝑞3 + 𝑞4)+𝑞3 ∙ 𝑞4,

𝑤3
4 = 𝑞1 ∙ 𝑞4 ∙ (𝑞2 + 𝑞3) + 𝑞1 ∙ (𝑞2 ∙ 𝑞3) + 𝑞4 ∙ (𝑞2 ∙ 𝑞3). (2-36)

Figure 2-18 shows the structure of 4:3 Com based on Eq. 2-32. An XOR gate costs

more power and delay than AND and OR gates. Although the function of 4:3 Com

seems complex, it only consists of AND and OR gates. These basic gates are easily to

be synthesized to power- and area-efficient compound logic cell.

ASIC-Based Approximate Multiplier using Probability-Driven Inexact Compressors

54

Figure 2-18 The structure of optimized 4:3 Com.

Table 2-13 The behavior of 4:3 Com

𝒒 𝒒 𝒒 𝒒 𝒘
 𝒘

 𝒘

 ̃ Probability

0 0 0 0 0 0 0 0 0 0.03516

0 0 0 1 1 0 0 1 1 0.10547

0 0 1 0 1 0 0 1 1 0.01172

0 0 1 1 1 1 0 2 2 0.03516

0 1 0 0 1 0 0 1 1 0.01172

0 1 0 1 1 1 0 2 2 0.03516

0 1 1 0 1 1 0 2 2 0.00391

0 1 1 1 1 1 1 3 3 0.01172

1 0 0 0 1 0 0 1 1 0.10547

1 0 0 1 1 1 0 2 2 0.31641

1 0 1 0 1 1 0 2 2 0.03516

1 0 1 1 1 1 1 3 3 0.10547

1 1 0 0 1 1 0 2 2 0.03516

1 1 0 1 1 1 1 3 3 0.10547

1 1 1 0 1 1 1 3 3 0.01172

1 1 1 1 1 1 1 4 3× 0.03516

* 𝑅𝑠
4 indicates the exact sum result of four partial products, calculated as 𝑅𝑠

4 =
∑(𝑝1, 𝑝2, 𝑝3, 𝑝4).

*𝑤1
4, 𝑤2

4, and 𝑤3
4 are the output bits of 4:3 Com. 𝑅𝑠

4̃ means the inexact sum result.

Table 2-13 shows the behavior of 4:3 Com, where 𝑅𝑠4̃ indicates the inexact sum

result, given by

𝑅𝑠4̃ = ∑(𝑤1
4, 𝑤2

4, 𝑤3
4). (2-37)

𝒒
𝒒 𝒒 𝒒

𝒘

𝒘

𝒒
𝒒

𝒒

𝒒

𝒒

𝒘

ASIC-Based Approximate Multiplier using Probability-Driven Inexact Compressors

55

It can be seen in Table 2-12, the 4:3 Com can produce the exact sum result for most

input combinations. The error occurs when the input combination is ‘1111’, and the

probability is 3.52%.

2.5.2 Extension to Signed Approximate Multiplier

In this section, similarly, 𝑚:3 Coms are selectively applied on the partial product

matrix to accumulate partial products in the signed multiplier. This step corresponds to

common technique of the inexact partial product accumulation. Then, a carry-save

adder (CSA) is used to accumulate results from compressors to fed to the final addition.

In the last step, a carry look-ahead adder (CLA) is employed to produce the final

multiplication result.

Figure 2-19 shows the structure of approximate signed multiplier design. The

partial product matrix is divided into two parts according to the bit significances. High

part includes the partial products from bit 7 to 15, while low part involves the partial

products from bit 0 to 6.

Because the 𝑚:3 Com is specially designed for partial products associated with

the sign bit (these partial products are only on high part), the functionality of 𝑚:3 Com

is fully utilized on high part. For the operation of low part, three types of approximate

multipliers with sign-focused compressors (AMSC) are proposed:

a) AMSC1

As shown in Figure 2-19 (a) of AMSC1, in the Stage 1, the functionality of 𝑚:3

Com is completely used on partial product matrix. Eight rows of partial products are

reduced into three rows by 𝑚:3 Coms. In Stage 2, a CSA includes ten full-adders (FAs)

and one half-adder (HA). Finally, a CLA gives the final multiplication result. The

ASIC-Based Approximate Multiplier using Probability-Driven Inexact Compressors

56

1

1

1

1

Stage 1

Stage 3

Stage 2

High part Low part
X
X
X

X
X

HA FA m:3 Com

(a)

1

1
Stage 3

Stage 2

(b)

1

1
Stage 3

Stage 2

(c)

Figure 2-19 The structure of 8-bit approximate signed multipliers. Stage 1 is partial

product accumulation step, where ● and ○ indicates the partial products generated by

AND and NAND gates, respectively. Exact HA and FA are used as CSA step in Stage

2, where ▲ and ■ means the exact and inexact elements, respectively. A CLA is

employed in Stage 3. (a) AMSC1: The functionality of 𝑚:3 Com is fully used in Stage

1. (b) AMSC2: Only the first and second output bits of 𝑚:3 Com are used on low part

in Stage 1. (c) AMSC3: Only the first output bit is used on low part in Stage 1.

ASIC-Based Approximate Multiplier using Probability-Driven Inexact Compressors

57

accumulation stages and circuit complexity are reduced significantly by the proposed

compressors that comprise only AND and OR gates.

b) AMSC2

The third output bit of 𝑚 :3 Com is specially designed for the partial products

generated by NAND gates. Partial products on low part are all generated by AND gates,

hence the third output bit is not necessary for low part. As shown in Figure 2-19 (b),

the first and the second output bits are used to represent the result of accumulation on

low part, while the third output bit is ignored. Note that, AMSC2 needs one 3:3 Com

on bit 2. Therefore, eight rows of partial products are accumulated into three rows on

high part and two rows on low part. The adders in CSA stage are reduced with the

decreased elements in Stage 2.

c) AMSC3

Compared with AMSC1 and AMSC2, the approximation is further applied on

AMSC3. As shown in Figure 2-19 (c), only the first output bit of 𝑚:3 Com is remained

to represent the result of low part. In addition, one OR gate is used on bit 1. Therefore,

eight rows of partial products are reduced into three rows on high part and one row on

low part, by fully using 𝑚:3 Com and partly using 𝑚:3 Com, respectively.

2.5.3 Experiment for Signed Approximate Multipliers

In this section, the accuracy and hardware performance of the signed multipliers

are evaluated. To investigate the trade-off between accuracy loss and hardware gaining,

the proposed multipliers were implemented and compared with the exact signed

multiplier and approximate signed multiplier introduced in [37] (R4ABM1-𝑘 and

R4ABM2-𝑘). Note that the parameter 𝑘 of the designs in [37] is the bit-size of

approximation from the lowest significant bit.

a) Accuracy analysis

ASIC-Based Approximate Multiplier using Probability-Driven Inexact Compressors

58

The error distance (ED), the normalized worst case error (NWCE) and the error

rate (ER) are defined in Eq. 2-14 (Section 2.4.2). The normalized error distance (NED)

are defined to evaluate the averaging effect of a set of output for a multiplier [57]. The

NED is useful in the reliability assessment of a design and is defined as MED

normalized by the maximum possible error.

Table 2-14 Accuracy comparisons for signed approximate multipliers

Designs NED (%) NWCE (%) ER (%)

AMSC1 0.99 12.12 77.29

AMSC2 1.01 12.31 77.51

AMSC3 1.10 12.50 87.22

R4ABM1-10 [37] 0.70 4.29 78.15

R4ABM1-12 [37] 2.07 13.00 78.69

R4ABM1-14 [37] 5.20 33.02 78.81

R4ABM2-10 [37] 0.78 5.34 96.12

R4ABM2-12 [37] 2.46 16.28 96.57

R4ABM2-14 [37] 6.33 41.28 96.66

Table 2-14 shows the accuracy comparisons for different signed multipliers in terms

of NED, NWCE and ER. Because the different functionality of the proposed

compressor is used, the proposed multipliers can achieve different levels of accuracy.

In addition, the accuracies of three proposed multipliers are close. In terms of ER,

AMSC1 has the lowest value among all multipliers as 77.29%. R4ABM1-10 has the

lowest accuracy losses in terms of NED and NWCE.

b) Hardware performance analysis

Exact signed multiplier [61], previous approximate multipliers [37], and the

proposed design in this work were implemented in Verilog HDL and synthesized by

using the Synopsys Design Complier. All designs were evaluated at the same condition

with Section 2.4.1.

ASIC-Based Approximate Multiplier using Probability-Driven Inexact Compressors

59

Table 2-15 Hardware performance of signed multipliers

Designs Power (u𝐖) Area (𝒎) Delay (𝐧𝐬) PDP (𝐟𝐉)

Exact 235.9 531.47 2.71 639.29

AMSC1 112.2 329.73 2.11 236.74

AMSC2 91.8 283.13 1.72 157.90

AMSC3 66.3 205.88 1.52 100.78

R4ABM1-10 [37] 165.7 398.68 2.25 372.83

R4ABM1-12 [37] 150.0 370.27 2.07 310.50

R4ABM1-14 [37] 142.1 355.91 2.07 294.15

R4ABM2-10 [37] 166.5 376.34 1.86 309.69

R4ABM2-12 [37] 151.4 341.54 1.82 275.55

R4ABM2-14 [37] 141.9 317.28 1.72 244.07

Table 2-15 shows the power, area, delay and power-delay product (PDP) for all

signed multipliers. As it can be observed, the proposed approximate multiplier design

gives the significant advantages compared with the exact signed multiplier. Particularly,

AMSC3 achieves the lowest hardware consumption. In terms of area improvement, the

proposed design can reduce area of the exact multiplier by 37.96%~61.26%. Compared

with the exact one, the proposed design achieves 22.14%~43.91% delay saving. The

proposed most accurate multiplier (AMSC1) can save power of the exact multiplier by

52.44%.

For these improvements by the proposed multipliers, we can consider the

construction of multiplier to explain. In the experiment, we chose the modified Booth

multiplier as the exact one, which needs one partial product generation stage with Booth

encoding, one exact 4:2 compressor stage, one CSA stage and one CLA. In [37], there

are one inexact partial product generation stage, one exact 4:2 compressor stage and

one CLA. The 4:2 compressors are serial both in exact multiplier and in multipliers of

[37]. These two designs employ XOR gates in each stage. On the contrast, the proposed

design includes partial product generation stage using AND and NAND gates, one

inexact 𝑚 :3 Com stage, one CSA stage and one CLA. The 𝑚 :3 Coms process in

parallel, and they comprise only AND and OR gates, which can be synthesized into

compound gates. For example, Figure 2-20 shows the schematic for 4:3 Com obtained

after synthesis. Compared with the original structure of 4:3 Com shown in Figure 2-18,

ASIC-Based Approximate Multiplier using Probability-Driven Inexact Compressors

60

the structure is simpler. Some AND and OR gates are synthesized into compound gate,

such as OAI21. It demonstrates the validity of the 𝑚:3 Com whose feature is no-XOR

gate.

Figure 2-20 Schematic for 4:3 Com. The dotted block with gray background indicates

the compound gate cell.

Figure 2-21 PDP versus NED for approximate signed multipliers.

An intuitive comparison for all approximate multipliers in terms of PDP and NED

is shown in Figure 2-21. R4ABM1, R4ABM2 and the proposed multipliers all have

various NED-PDP configurations. The accuracy ranges of R4ABM1 and R4ABM2

𝒒
𝒒

𝒒

𝒒

𝒘

𝒘

𝒘

CGENI

OAI21

OAI21

50

100

150

200

250

300

350

400

450

0 1 2 3 4 5 6 7

P
D

P
 (

fJ
)

NED (%)

AMSC3

AMSC1

AMSC2

R4ABM1-10

R4ABM2-10

R4ABM1-12

R4ABM2-12
R4ABM1-14

R4ABM2-14

ASIC-Based Approximate Multiplier using Probability-Driven Inexact Compressors

61

both are larger than that of the proposed design. However, the energy is becoming the

first concern when the accuracy loss is acceptable. The PDPs of the proposed multiplier

design change drastically with the configurations changing. AMSC1, AMSC2 and

AMSC3 all have NED around 1%, while they deliver the PDP range from 100.72 fJ to

236.74 fJ. Moreover, when the NED is around 1%, the proposed multipliers provide the

lower PDP than R4ABM1-10 and R4ABM2-10.

2.6 Summary

In this chapter, an approximate multiplier design is proposed with inexact

compressors that costs lower hardware consumption than accurate multiplier. Firstly,

inexact compressors with no-XOR gates for partial product reduction step is proposed.

Then, an 8× 8 multiplier is divided into three blocks. To employ high precision

operations on significant bits and use low precision operations on insignificant bits,

three different precision operations are applied. Finally, to improve accuracy, a grouped

error recovery scheme with a shorter critical path is introduced. The theoretical analysis

on area and delay is provided for the proposed multipliers. Moreover, the experimental

results demonstrate that the proposed multiplier design significantly reduces the

hardware consumption of exact multiplier. The power reduction is 59.75%~70.75%, the

delay reduction is 12.78%~52.42%, and the area reduction is 42.47%~50.97%.

Compared with the state-of-the-art ASIC-based approximate multipliers, the proposed

design delivers more hardware reduction under a comparable accuracy. The proposed

inexact compressors are optimized for signed approximate multiplier, which shows the

feasibility of the proposed approximation.

FPGA-Based Approximate Multiplier using Carry-Inexact Elementary Modules

62

3. FPGA-Based Approximate Multiplier using

Carry-Inexact Elementary Modules

In this chapter, low-cost FPGA-based approximate multiplier design, is to be

discussed, which is designed to achieve the energy efficiency by carefully considering

the construct of FPGA.

The background and necessity of FPGA-based approximate multipliers are

presented in Section 3.1. The motivations driven from the existing issues and

contributions of this work are also stated in this section.

The preliminaries of FPGA are to be introduced in Section 3.2 for easily

understanding the FPGA-fabric utilized in this research.

Section 3.3 presents the three types of approximate 4×4 multipliers with different

performances. The occurrence probability of carry from current bit to higher bit is

analyzed first. The calculation of carry result in these three multipliers are approximated

to shorten the critical path and reduce the circuit complexity.

By taking the proposed approximate 4×4 multipliers as the elementary modules,

the large size multiplier can be constructed from small size multipliers. Section 3.4

introduces the design of approximate 8×8 multipliers. To fast produce the final product,

two inexact additions are proposed.

Section 3.5 discusses the evaluation of 4×4 multipliers and 8×8 multipliers. Firstly,

the accuracy and hardware performance of 4×4 multipliers are to be evaluated. Then,

all configurations of the proposed 8 × 8 multipliers are discussed, and eight

configurations are selected to further evaluate and compare with existing approximate

multipliers. Moreover, to demonstrate the efficiency of the proposed approximate

multiplier design, Pareto-optimal analysis is to be conducted in this section. In terms of

mean relative error distance (MRED), the error of the proposed 8×8 multiplier is as

low as 1.06%. Compared with the exact multiplier, the proposed design can reduce area

by 43.66% and power by 24.24%. The critical path latency reduction is up to 29.50%.

FPGA-Based Approximate Multiplier using Carry-Inexact Elementary Modules

63

The proposed multiplier design has a better accuracy-hardware result than other designs

with comparable accuracy. Finally, image sharpening processing is used to assess the

efficiency of approximate multipliers on application.

Section 3.6 concludes the FPGA-based approximate multipliers.

3.1 Introduction

3.1.1 Background

There are increasing demands of power- and area-efficient designs for lots of

applications such as multimedia processing, data mining and machine learning. For

most of these applications, approximate multiplier design has been considered as a

potential approach to reduce energy by exploiting the exactness relaxation in error-

tolerant applications.

In order to provide hardware-efficient and high-performance multipliers, previous

works have proposed various designs of approximate multipliers, mainly for ASIC-

based systems. Here are the review of state-of-the-art approximate ASIC-based

multipliers related to this part. An approximation technique employing Karnaugh map

for the multiplier has been discussed in [55]. Based on [55], several variants of

approximate addition and multiplication units have been discussed in [63]. An open-

source library of 8× 8 approximate adders and multipliers, EvoApprox8b, has been

presented in [64], by utilizing different approximate adders and multipliers from

literatures.

However, due to the non-reconfiguration and slow development round, ASIC-

based approximate multipliers are usually dedicated for one particular application and

not efficient for extensive applications. In contrast, FPGA has been a promising

platform for lots of applications, because it has advantages of high energy efficiency,

capability of reconfiguration and fast development round [65].

Unfortunately, little study has been conducted to FPGA-specific approximate

multiplier design [46][47][66][67]. Two state-of-art FPGA-based approximate

FPGA-Based Approximate Multiplier using Carry-Inexact Elementary Modules

64

multipliers are proposed in [46][47], while exact adder used in them might cause high

power and latency consumptions. In [46], three designs for approximate n × n

multipliers are proposed, and large multipliers are constructed from four n × n

multipliers along with exact adder. In [47], an inexact 4×2 multiplier is proposed by

using four LUTs; then, approximate 4×4 multipliers and 8×8 multipliers (Cc, Ca) are

constructed from 4×2 multipliers. In Ca, the adder for summing small-size multipliers

is exact. The exact adder in [46][47] has serial carry propagation path, which still causes

high latency and energy consumptions.

3.1.2 Necessity of FPGA-Based Approximate Multipliers

In this section, the necessity of FPGA-based approximate design is stated as

follows. Also, the necessity of research on LUT-based operation is presented.

1) Necessity of FPGA-based approximate design

FPGA has been a promising platform for lots of applications, because it has

advantages of high energy efficiency, capability of reconfiguration and fast

development round. It is common to employ FPGA as accelerator for many applications

which have lots of multiplications. Therefore, it is expected to design low-cost FPGA-

specific approximate multipliers.

However, due to the architectural differences between ASICs and FPGAs, the

savings achieved by ASIC-based defined designs might not comparably translate to the

savings on FPGA-based implementation. In another word, the ASIC-based

approximation techniques are less effective like energy, latency and area, when used for

FPGA-based system.

A comparison of ASIC-based and FPGA-based implementation for ASIC-based

defined approximate multiplier has been reported in [48], which pointed out this issue.

Figure 3-1 illustrates this comparison results for four multipliers, in which D1-D4 were

randomly selected from EvoApprox8b library [64] and a variant of approximate

multiplier was selected as D5 from [63]. The gains in y-axis indicates the performance

FPGA-Based Approximate Multiplier using Carry-Inexact Elementary Modules

65

gains of different approximate multipliers compared with an exact multiplier

implementation. It can be observed that, the performance gains reported for ASIC-

based implementations, are not comparably translated for FPGA-based

implementations. The primary reason for this deviation is the architectural differences

between ASICs and FPGAs. Logic gates are main factors should be considered when

designing ASIC-based approximate multiplier. However, FPGAs consists of

completely different entities, that is, look-up-tables (LUTs) and carry chains.

Consequently, any approximation techniques, optimized for FPGA-based systems,

must consider the structure of FPGA-fabric.

Figure 3-1 A comparison of ASIC-based implementation and FPGA-based

implementation for five state-of-the-art ASIC-based approximate multipliers [48].

2) Necessity of research on LUT-based operation

Furthermore, on modern FPGA, both DSP blocks and LUT-based blocks are

necessary when performing arithmetic operations. The statistics reported in [47] have

shown the necessity of LUT-based operations, the results are illustrated in Table 3-1.

The authors compared two applications of Reed-Solomon and JPEG encoders with

LUTs and DSP blocks using Xilinx Vivado 17.1 for Virtex-7 series FPGA (7VX330T

device).

Here are two observations can be concluded: (i) The delay for DSP blocks enabled

situation is larger than that of disabled situation, because the location of the allocated

DSP blocks incurs the routing delay. For small-size applications, to improve the overall

FPGA-Based Approximate Multiplier using Carry-Inexact Elementary Modules

66

performance of an application, manual Floorplanning is feasible to be processed.

However, for complex or large-size applications that have competitive requirements for

FPGA resources, it is difficult to process the placement optimization on the required

FPGA resources to improve performance. (ii) As shown in Table 3-1, the

implementation of the JPEG-encoder has a large number of DSP blocks, which

corresponds to 56% of the total available DSP blocks. Such applications could exhaust

the available DSP blocks for critical operations, while other applications on the same

FPGA will trend to use the LUT-based blocks [68].

Table 3-1 Comparison of DSP blocks and LUTs based implemenations [47].

Design
DSP blocks enables DSP blocks disabled

Delay [ns] #LUTs #DSP blocks Delay [ns] #LUTs #DSP blocks

Reed-Solomon

encoder
5.115 2826 22 4.358 2867 0

JPEG encoder 8.637 71362 631 9.732 14780 0

This is why, despite the availability of DSP blocks, Xilinx and Intel also provide

LUT-based multipliers [69][70]. Moreover, 8-bit integer multiplier is synthesized as

LUT-based implementation under default conditions. Therefore, operations with LUT-

based blocks are valuable to be explored.

3.1.3 Research Motivations and Contributions

Motivated by the demand of approximate multiplier for FPGA-based systems, as

pointed out in Section 3.1.2, a novel methodology for designing approximate

multipliers by employing the FPGA-based fabrics (primarily look-up tables and carry

chains), is discussed in this chapter. In addition, to solve the problem of slight energy

and latency savings in existing FPGA-based approximate multipliers, as pointed as in

Section 3.1.1, this work aims to propose an FPGA-based multiplier design with low-

cost. Moreover, considering the configurability of FPGA, wide-range of multiplier

configurations are also discussed in this work.

FPGA-Based Approximate Multiplier using Carry-Inexact Elementary Modules

67

In this work, low-cost FPGA-based approximate multipliers are proposed, whereas

most of previous works focused on ASIC-based approximate multipliers. Different

from the exact adder in FPGA-based multipliers in [41][42], this proposed design

introduces two inexact adders for lowering hardware cost on FPGA. The carry

propagation path usually occupies the primary hardware consumptions in the multiplier,

hence this work focuses on the approximation of carry results. The primary

contributions are as follows:

i) Three types of approximate 4×4 multipliers implemented with LUTs and

associated carry chain, are proposed in this work. The critical path is

shortened by restricting the carry generation in the multiplier.

ii) The large-size multipliers are exploited on architectural space and

provide a wide-range of approximate 8× 8 multipliers by using the

proposed 4×4 multipliers as elementary modules. Eight configurations for

approximate 8×8 multipliers are presented for different accuracy-hardware

requirements.

Figure 3-2 illustrates the overview of methodologies in this work. Necessary

preliminaries of this work are introduced in Section 3.2. In this work, the LUTs and

carry chain are employed for the proposed approximate multiplier, hence these two

structures are introduced detailly. Three types of approximate 4× 4 multipliers are

proposed in Section 3.3, where the carry of accumulation is restricted. Then, in Section

3.4, take the proposed 4× 4 multipliers as elementary modules, by utilizing the

architectural-space construction, large approximate multipliers are constructed from the

proposed 4×4 multipliers. In addition, to reduce the delay consumption of the multiplier,

two inexact additions are also proposed in Section 3.4, which are used to sum the

products from small multipliers.

FPGA-Based Approximate Multiplier using Carry-Inexact Elementary Modules

68

Figure 3-2 Overview of the FPGA-based approximate multiplier.

3.2 Preliminaries of FPGA-fabric

This works targets the devices of Xilinx 7-series FPGA family. The proposed

design can also be implemented on FPGAs from other vendors, which provide 6-input

LUTs and carry chains.

The configurable logic blocks (CLBs) are the main logic resources for

implementations of sequential as well as combinational circuits, and one CLB consists

of two slices. Each slice has four 6-input look-up tables (LUTs), eight storage elements

to register the outputs of LUTs, wide-function multiplexers, and a fast 4-bit carry chain

[64]. A 6-input LUT can be configurated as one of the following two implementations.

One implementation is a single 6-input combinational function with one output O6 as

shown in Figure 3-3 (a), commonly referred as LUT6. Another implementation is

FPGA-Based Approximate Multiplier using Carry-Inexact Elementary Modules

69

named as LUT6_2, which has two 5-input combinational functions with O5 and O6

outputs as shown in Figure 3-3 (b).

(a) (b)

Figure 3-3 The structure of 6-input LUT [71].

A LUT is instantiated with an INIT attribute which specifies the logic function of

one LUT. An INIT attribute consists of 16 hexadecimal values (i.e. 64 binary values for

64 input combinations). The INIT value can be determined by creating a binary logic

table of all input combinations. It indicates that the logic value ‘1’ occurs on the outputs

among all 64 combinations. For example, as shown in Figure 3-4, only the output for

input combination ‘000010’ is ‘1’. From the bottom combination to the top combination,

the value of output is ‘0000000000000004’ (hex). This hexadecimal value is the INIT

value for the function of LUT6, it means that the output O6 is ‘1’ for the input

combination ‘000010’.

Figure 3-4 Example of INIT value for LUT6.

LUT5

LUT5

LUT6I5
I4
I3

I2
I1
I0

O6

LUT5

LUT5

LUT6_2
I5
I4
I3

I2
I1
I0

O6

O5

FPGA-Based Approximate Multiplier using Carry-Inexact Elementary Modules

70

The structure of the carry chain is shown in Figure 3-5. The outputs of LUT drive

the inputs of the carry chain. It comprises multiplexers with bypass signals

(AX/BX/CX/DX) and XOR gates. The carry chain usually implements as a 4-bit carry-

look ahead adder to perform fast function with O5 as carry-generate signal and O6 as

carry-propagate signal.

Figure 3-5 The structure of carry chain [71].

3.3 Proposed Approximate 4×4 Multipliers

This work presents three novel approximate 4×4 multiplier designs which provide

different accuracy-hardware tradeoffs. The occurrence probability of carry is analyzed

in Section 3.3.1. Based on low probability of carry, three approximate multipliers are

introduced with no-carry compressors. The first multiplier with low-error feature is

introduced in Section 3.3.2. The second multiplier has an optimized structure on the

first design and is introduced in Section 3.3.3. Section 3.3.4 presents the third design

which is implemented by only LUTs.

LUT6_2

DX

CX

BX

AX

S3

S2

S1

S0

carry chain

Cout

Cin

O6

O5

O6

O5

O6

O5

O6

O5

LUT6_2

LUT6_2

LUT6_2

FPGA-Based Approximate Multiplier using Carry-Inexact Elementary Modules

71

3.3.1 Occurrence Probability of Carry

In the FPGA-based multiplier, the compressors in partial product accumulation are

implemented by LUTs, and their inputs are partial product. Each partial product is

generated by AND gate. Assume that two inputs of the multiplier are uniformly and

independently distributed, hence the probability of one partial product equaling to ‘1’

is 0.25. Figure 3-6 shows the occurrence probability of each column in 4×4 multiplier.

It can be observed that the carry is generated in rare cases. Therefore, by applying

approximation on carry could save the LUT and also guarantee the accuracy.

Figure 3-6 Occurrence probability of carry in 4×4 multiplier.

3.3.2 Approximate 4×4 Multiplier 1 (AFM1)

The high complexity of the multiplier is usually caused by the carry propagation

path during accumulating partial products. To reduce the complexity of the multiplier,

we do approximation on the carry signals.

The structure of approximate 4×4 multiplier 1 (AFM1) are shown in Figure 3-7,

where three layers of LUTs are used to accumulate partial products and the carry chain

is used to produce the multiplication result. The expression of each LUT in AFM1 is

shown in Table 3-2.

In AFM1, Layer 1 computes the carry result from the preceding column. For

example, column 4 consists of six elements 𝐵3 , 𝐵2 , 𝐵1 , 𝐴3 , 𝐴2 and 𝐴1 . LUT9 is

fully used to compute the carry result from column 4, that is, six inputs of LUT9 are

FPGA-Based Approximate Multiplier using Carry-Inexact Elementary Modules

72

Figure 3-7 The structure of AFM1. Layer 1 computes the carry result from the preceding

column while Layer 2 generates the sum result for the current column. Layer 3 produces

the carry-propagate and carry-generate signals for the carry chain.

completely used for six elements. However, there are eight elements on column 3,

which exceeds the input number of one 6-input LUT. Therefore, LUT6 inexactly

computes the carry result from column 3 by ignoring one partial product. The carry

result from columns 1 and 2 is computed by LUT3. When 𝐵2, 𝐵1, 𝐵0, 𝐴2, 𝐴1 and

𝐴0 on columns 1 and 2 all are ‘1’, the exact carry result is 2-bit ‘10’ (bin). In AFM1,

this carry result is inexactly computed as 1-bit ‘1’ (bin) by LUT3.

Layer 2 computes the sum result generated from the current column, while Layer

3 produces the carry-propagate and carry-generate signals for the associated carry chain.

Particularly, to fully utilize the LUT resource, a LUT6_2 with two outputs (i.e. LUT10)

is employed in Layer 2 to generate both the carry result (i.e. c4) and the sum result (i.e.

s3) from column 5. Table 3-3 illustrates the expression of each LUTs in AFM1.

LUT6_2
12

A3B3c3c41 s3

gen3

LUT6_2

c2c3s21 s31

gen2

11

A3B0 A2B0 A1B0 A0B0

A3B1 A2B1 A1B1 A0B1

A3B2 A2B2 A1B2 A0B2

A3B0 A2B3 A1B3 A0B3

7 6 5 4 3 2 1 0

gen1

A0A111

LUT6_2

P1 P0

1

B1B0

LUT6

P2

2

A0A1B0A2B1B2

c1

LUT6
3

A0A1B0A2B1B2

6

A1A2A3

c2

LUT6

B1B2 B0

LUT6

c3

9

A1A2A3B2B3 B1

LUT6

s1

4

A1A2A3B1B2 B0

LUT6

s2

7

A1A2A3B2B3 B1

LUT6_2

c4 s3

10

A2A3B211 B3

c1

LUT6_2
8

s1c21 s21

prop1prop2

LUT6_2
5

A0B3c11 s11

prop0 gen0

4-bit carry chain

P3P4P5P6P7

prop3

6
Layer 1

Layer 2

Layer 3

FPGA-Based Approximate Multiplier using Carry-Inexact Elementary Modules

73

Table 3-2 Input and output configurations for each LUT in AFM1.

LUT
Input configuration

Output

configuration INIT value (Hex)

I5 I4 I3 I2 I1 I0 O6 O5

LUT1 1 1 𝐵1 𝐵0 𝐴1 𝐴0 𝑃1 𝑃0 6AC06AC0A0A0A0A0

LUT2 𝐵2 𝐵1 𝐵0 𝐴2 𝐴1 𝐴0 𝑃2 1E665AAAB4CCF000

LUT3 𝐵2 𝐵1 𝐵0 𝐴2 𝐴1 𝐴0 𝑐1 E888A000C8000000

LUT4 𝐵2 𝐵1 𝐵0 𝐴3 𝐴2 𝐴1 𝑠1 96665AAA3CCCF000

LUT5 1 1 𝑠1 𝑐1 𝐵3 𝐴0 𝑝𝑟𝑜𝑝0 𝑔𝑒𝑛0 8778877808800880

LUT6 𝐵2 𝐵1 𝐵0 𝐴3 𝐴2 𝐴1 𝑐2 E888A000C0000000

LUT7 𝐵3 𝐵2 𝐵1 𝐴3 𝐴2 𝐴1 𝑠2 96665AAA3CCCF000

LUT8 1 1 𝑠2 𝑐2 𝑠1 𝑐1 𝑝𝑟𝑜𝑝1 𝑔𝑒𝑛1 8778877808800880

LUT9 𝐵3 𝐵2 𝐵1 𝐴3 𝐴2 𝐴1 𝑐3 E888A000C0000000

LUT10 1 1 𝐵3 𝐵2 𝐴3 𝐴2 𝑐4 𝑠3 800080006AC06AC0

LUT11 1 1 𝑠3 𝑠2 𝑐3 𝑐2 𝑝𝑟𝑜𝑝2 𝑔𝑒𝑛2 936C936C20802080

LUT12 1 𝑐4 𝑠3 𝑐3 𝐵3 𝐴3 𝑝𝑟𝑜𝑝3 𝑔𝑒𝑛3 87777888F8888000

Table 3-3 The expression of LUTs in AFM1

LUT INIT value (Hex) Expression

LUT1 6AC06AC0A0A0A0A0
𝑃0 = 𝐴0𝐵0

𝑃1 = (𝐴1𝐵0)⨁(𝐴0𝐵1)

LUT2 1E665AAAB4CCF000 𝑃2 = (𝐴1𝐴0𝐵1𝐵0)⨁(𝐴2𝐵0)⨁(𝐴1𝐵1)⨁(𝐴0𝐵2)

LUT3 E888A000C8000000 𝑐1= 𝐴2𝐴1𝐵1𝐵0+𝐴2𝐴0𝐵2𝐵0+𝐴1𝐴0𝐵2𝐵1+𝐴1𝐴0𝐵1𝐵0

LUT4 96665AAA3CCCF000 𝑠1 = (𝐴3𝐵0)⨁(𝐴2𝐵1)⨁(𝐴1𝐵2)

LUT5 8778877808800880
𝑝𝑟𝑜𝑝0 = (𝑠1⨁𝑐1)⨁(𝐴0𝐵3)

𝑔𝑒𝑛0 = (𝑠1⨁𝑐1)(𝐴0𝐵3)

LUT6 E888A000C0000000 𝑐2= 𝐴3𝐴2𝐵1𝐵0+𝐴3𝐴1𝐵2𝐵0+𝐴2𝐴1𝐵2𝐵1

LUT7 96665AAA3CCCF000 𝑠2 = (𝐴3𝐵1)⨁(𝐴2𝐵2)⨁(𝐴1𝐵3)

LUT8 8778877808800880
𝑝𝑟𝑜𝑝1 = (𝑠2⨁𝑐2)⨁(𝑠1𝑐1)

𝑔𝑒𝑛1 = (𝑠2⨁𝑐2)(𝑠1𝑐1)

LUT9 E888A000C0000000 𝑐3= 𝐴3𝐴2𝐵2𝐵1+𝐴3𝐴1𝐵3𝐵1+𝐴2𝐴1𝐵3𝐵2

LUT10 800080006AC06AC0
𝑠3 = (𝐴3𝐵2)⨁(𝐴2𝐵3)

𝑐4 = 𝐴3𝐵2𝐴2𝐵3

LUT11 936C936C20802080
𝑝𝑟𝑜𝑝2 = (𝑠3⨁𝑐3)⨁(𝑠2𝑐2)

𝑔𝑒𝑛2 = (𝑠3⨁𝑐3)(𝑠2𝑐2)

LUT12 87777888F8888000
𝑝𝑟𝑜𝑝3 = (𝑠3𝑐3)⨁(𝐴3𝐵3)⨁𝑐4

𝑔𝑒𝑛3 = (𝑠3𝑐3)⨁(𝐴3𝐵3)𝑐4 + 𝑠3𝑐3𝐴3𝐵3

FPGA-Based Approximate Multiplier using Carry-Inexact Elementary Modules

74

Table 3-4 Error occurrences of AFM1 and Ca [47].

Design Input combinations Exact result Approximate result Difference

AFM1

7×7 49 41 8

7×15 105 97 8

15×7 105 97 8

15×15 225 217 8

Ca [47]

5×15 75 67 8

6×7 42 34 8

6×15 90 82 8

7×15 105 97 8

13×13 169 161 8

15×5 75 67 8

In AFM1, Layer 1 is inexact by approximating the carry and Layer2 is also inexact

by partly calculating the sum results but the Layer 3 could recover the approximation

in Layer 2. Table 3-4 illustrates the error occurrences of AFM1. Assume that two inputs

of the multiplier are uniformly and independently distributed. The maximum error

distance is ‘8’ for all input combinations and the error probability of AFM1 is 0.0156

(= 4/256). The total number of LUTs in AFM1 is 12 and the critical path consists of 2

LUTs along with a carry chain.

3.3.3 Approximate 4×4 Multiplier 2 (AFM2)

Approximate 4×4 multiplier 2 (AFM2) is proposed by optimizing the structure of

AFM1 to further reduce the area.

Figure 3-8 shows the structure of AFM2 which has the similar structure with AFM1.

The carry result from preceding column and the sum result for the current column is

computed by Layer 1 and Layer 2, respectively. For a uniform and independent

distribution of the inputs of a 4×4 multiplier, the probability is as low as 7/64 that the

carry is generated from columns 1 and 2. Therefore, the carry result from columns 1

and 2 is omitted by eliminating LUT3 in AFM1. Another optimization is eliminating

LUT6 in AFM1, where both the carry result and the sum result from column 3 are

computed by one LUT6_2 (i.e. LUT3 in AFM2). The functions of LUT5 and

FPGA-Based Approximate Multiplier using Carry-Inexact Elementary Modules

75

LUT7~LUT10 in AFM2 are the same as those of LUTs in the same positions in AFM1.

Figure 3-8 The structure of AFM2.

Table 3-5 Input and output configurations for each LUT in AFM2.

LUT
Input configuration

Output

configuration INIT value (Hex)

I5 I4 I3 I2 I1 I0 O6 O5

LUT1 1 1 𝐵1 𝐵0 𝐴1 𝐴0 𝑃1 𝑃0 6AC06AC0A0A0A0A0

LUT2 𝐵2 𝐵1 𝐵0 𝐴2 𝐴1 𝐴0 𝑃2 1E665AAAB4CCF000

LUT3 1 1 𝐵1 𝐵0 𝐴3 𝐴2 𝑠1 𝑐2 6AC06AC080008000

LUT4 1 𝑠1 𝐵3 𝐵2 𝐴1 𝐴0 𝑝𝑟𝑜𝑝0 𝑔𝑒𝑛0 953F6AC02A008000

LUT5 𝐵3 𝐵2 𝐵1 𝐴3 𝐴2 𝐴1 𝑠2 96665AAA3CCCF000

LUT6 1 𝑠2 𝑐2 𝑠1 𝐵2 𝐴1 𝑝𝑟𝑜𝑝1 𝑔𝑒𝑛1 807F7F8000808000

LUT7 𝐵3 𝐵2 𝐵1 𝐴3 𝐴2 𝐴1 𝑐3 E888A000C0000000

LUT8 1 1 𝐵3 𝐵2 𝐴3 𝐴2 𝑐4 𝑠3 800080006AC06AC0

LUT9 1 1 𝑠3 𝑠2 𝑐3 𝑐2 𝑝𝑟𝑜𝑝2 𝑔𝑒𝑛2 936C936C20802080

LUT10 1 𝑐4 𝑠3 𝑐3 𝐵3 𝐴3 𝑝𝑟𝑜𝑝3 𝑔𝑒𝑛3 87777888F8888000

A0A111

LUT6_2

P1 P0

1

B1B0

LUT6

P2

2

A0A1B0A2B1B2

LUT6

c3

7

A1A2A3B2B3 B1

LUT6

s2

5

A1A2A3B2B3 B1

LUT6_2

c4 s3

8

A2A3B211 B3

LUT6_2
4

A0A1B21 B3s1A1

LUT6_2
6

B2s11 c2s2

LUT6_2
9

c2c3s21 s31

LUT6_2
10

A3B3c3c41 s3

LUT6_2

s1 c2

3

A2A3B011 B1

gen1prop1prop2

4-bit carry chain

P3P4P5P6P7

prop3 prop0 gen0gen2gen3

A3B0 A2B0 A1B0 A0B0

A3B1 A2B1 A1B1 A0B1

A3B2 A2B2 A1B2 A0B2

A3B0 A2B3 A1B3 A0B3

7 6 5 4 3 2 1 0

Layer 1

Layer 2

Layer 3

FPGA-Based Approximate Multiplier using Carry-Inexact Elementary Modules

76

Table 3-6 The expression of LUTs in AFM2

LUT INIT value (Hex) Expression

LUT1 6AC06AC0A0A0A0A0
𝑃0 = 𝐴0𝐵0

𝑃1 = (𝐴1𝐵0)⨁(𝐴0𝐵1)

LUT2 1E665AAAB4CCF000 𝑃2 = (𝐴1𝐴0𝐵1𝐵0)⨁(𝐴2𝐵0)⨁(𝐴1𝐵1)⨁(𝐴0𝐵2)

LUT3 6AC06AC080008000
𝑐2 = 𝐴3𝐵1𝐴2𝐵0

𝑠1 = (𝐴3𝐵0)⨁(𝐴2𝐵1)

LUT4 953F6AC02A008000
𝑝𝑟𝑜𝑝0 = (𝑠1⨁(𝐴1⨁𝐵2))⨁(𝐴0𝐵3)

𝑔𝑒𝑛0 = (𝑠1⨁(𝐴1𝐵2))(𝐴0𝐵3)

LUT5 96665AAA3CCCF000 𝑠2 = (𝐴3𝐵1)⨁(𝐴2𝐵2)⨁(𝐴1𝐵3)

LUT6 807F7F8000808000
𝑝𝑟𝑜𝑝1 = (𝑠2⨁𝑐2)⨁(𝑠1𝐴1𝐵2)

𝑔𝑒𝑛1 = (𝑠2⨁𝑐2)(𝑠1𝐴1𝐵2)

LUT7 E888A000C0000000 𝑐3= 𝐴3𝐴2𝐵2𝐵1+𝐴3𝐴1𝐵3𝐵1+𝐴2𝐴1𝐵3𝐵2

LUT8 800080006AC06AC0
𝑠3 = (𝐴3𝐵2)⨁(𝐴2𝐵3)

𝑐4 = 𝐴3𝐵2𝐴2𝐵3

LUT9 936C936C20802080
𝑝𝑟𝑜𝑝2 = (𝑠3⨁𝑐3)⨁(𝑠2𝑐2)

𝑔𝑒𝑛2 = (𝑠3⨁𝑐3)(𝑠2𝑐2)

LUT10 87777888F8888000
𝑝𝑟𝑜𝑝3 = (𝑠3𝑐3)⨁(𝐴3𝐵3)⨁𝑐4

𝑔𝑒𝑛3 = (𝑠3𝑐3)⨁(𝐴3𝐵3)𝑐4 + 𝑠3𝑐3𝐴3𝐵3

Table 3-5 shows the input and output configurations for each LUT in AFM2, along

with the INIT value for each LUT. The total area of AFM2 is 10 LUTs and the critical

path involves 2 LUTs and a carry chain. Table 3-6 illustrates the expressions of each

LUT in AFM2.

3.3.4 Approximate 4×4 Multiplier 3 (AFM3)

Although the carry chain is fast to perform the arithmetic function, it still causes

larger hardware consumptions than stand-alone LUT. Therefore, to further improve the

hardware performance of approximate multiplier, approximate 4×4 multiplier 3 (AFM3)

is proposed by using only LUTs.

Figure 3-9 shows the structure of AFM3, which does not include the carry chain.

In each LUT, the inexact carry result from preceding column is computed inexactly as

the result of AND operation as shown in the shadow part in Figure 3-9. For example,

FPGA-Based Approximate Multiplier using Carry-Inexact Elementary Modules

77

column 2 consists of elements 𝐵2 , 𝐵1 , 𝐵0 , 𝐴2 , 𝐴1 and 𝐴0 . Five AND gates in

shadow part in LUT3 compute the inexact carry result from column 2. In AFM3, the

multiplication results of 𝑃0, 𝑃1,..., 𝑃7 are computed in parallel and the critical path is

shortened to 2 LUTs. The input and output configurations and INIT values are shown

in Table 3-7. Table 3-8 shows the expressions of AFM3, which is simpler than previous

two designs.

Figure 3-9 The structure of AFM3. Eight LUTs are used to produce the results in parallel.

Table 3-7 Input and output configurations for each LUT in AFM3.

LUT
Input configuration

Output

configuration INIT value (Hex)

I5 I4 I3 I2 I1 I0 O6 O5

LUT1 1 1 𝐵1 𝐵0 𝐴1 𝐴0 𝑃1 𝑃0 6AC06ACA0A0A0A0

LUT2 𝐵2 𝐵1 𝐵0 𝐴2 𝐴1 𝐴0 𝑃2 1E665AAAB4CCF000

LUT3 𝐵2 𝐵1 𝐵0 𝐴2 𝐴1 𝐴0 temp1 94B46CCCF0F00000

LUT4 1 temp1 𝐵3 𝐵0 𝐴3 𝐴0 𝑃3 953F6AC0953F6AC0

LUT5 𝐵2 𝐵1 𝐵0 𝐴3 𝐴2 𝐴1 temp2 64446CCC00000000

LUT6 1 temp2 𝐵3 𝐵1 𝐴3 𝐴1 𝑃4 953F6AC0953F6AC0

LUT7 𝐵3 𝐵2 𝐵1 𝐴3 𝐴2 𝐴1 𝑃5 94B46CCCF0F00000

LUT8 1 1 𝐵3 𝐵2 𝐴3 𝐴2 𝑃7 𝑃6 800080004C004C00

B3

B1A1B2B0 A0

A3B0A0

A2

3

4

A1

P5

A3B2A2B3B1

7

A2B0A1B1A0B2

P2

2

P7 P6

A2 B2 A3B3

8

B3

P4

B2A3B0 A2B1A1

A3B1A1

6

5

A3B0 A2B0 A1B0 A0B0

A3B1 A2B1 A1B1 A0B1

A3B2 A2B2 A1B2 A0B2

A3B0 A2B3 A1B3 A0B3

7 6 5 4 3 2 1 0

A1B0A0B1

P0P1

1

P3

FPGA-Based Approximate Multiplier using Carry-Inexact Elementary Modules

78

Table 3-8 The expression of LUTs in AFM3.

LUT INIT value (Hex) Expression

LUT1 6AC06ACA0A0A0A0
𝑃0 = 𝐴0𝐵0

𝑃1 = (𝐴1𝐵0)⨁(𝐴0𝐵1)

LUT2 1E665AAAB4CCF000 𝑃2 = ((𝐴1𝐵0𝐴0𝐵1)⨁𝐴2𝐵0)⨁(𝐴1𝐵1)⨁(𝐴0𝐵2)

LUT3 94B46CCCF0F00000 temp1 = ((𝐴2𝐵0|𝐴1𝐵1)𝐴0𝐵2)⨁(𝐴2𝐵1)⨁(𝐴1𝐵2)

LUT4 953F6AC0953F6AC0 𝑃3 = (𝐴3𝐵0)⨁(𝐴0𝐵3)⨁𝑡𝑒𝑚𝑝1

LUT5 64446CCC00000000 Temp2 = ((𝐴3𝐵0|𝐴2𝐵1)𝐴1𝐵2)⨁(𝐴2𝐵2)

LUT6 953F6AC0953F6AC0 𝑃4 = (𝐴3𝐵1)⨁(𝐴1𝐵3)⨁𝑡𝑒𝑚𝑝2

LUT7 94B46CCCF0F00000 𝑃5 = ((𝐴3𝐵1|𝐴2𝐵2)𝐴1𝐵3)⨁(𝐴3𝐵2)⨁(𝐴2𝐵3)

LUT8 800080004C004C00
𝑃6 = (𝐴2𝐴3)(𝐴1𝐵1)(𝐴2𝐵1)

𝑃7 = (𝐴3𝐵2|𝐴2𝐵3)⨁(𝐴2𝐵1)

Therefore, the dot diagrams of three types of proposed 4× 4 multipliers can be

expressed in the Figure 3-10. AFM1 restricts the carry from column 2 to 3, and AFM2

is optimized on AFM1. AFM3 processes the elements in parallel with eight LUTs.

Figure 3-10 The dot diagrams of three types of proposed 4×4 multipliers.

FPGA-Based Approximate Multiplier using Carry-Inexact Elementary Modules

79

3.4 Approximate Large Multipliers using Proposed

Approximate 4×4 Multipliers as Elementary Modules

Recall the approach of architectural-space construction to construct large multiplier,

as introduced in Eq. 2-1 (Section 2.2.1). The proposed approximate 4×4 multipliers are

regarded as the elementary modules to construct larger multiplier. In this work, 8×8

multiplier design is built from 4× 4 multipliers on architectural space. It is worth

mentioning that, this approach is amenable to other size multipliers, it means the

proposed 4× 4 multiplier can further construct larger multiplier, such as 16× 16 and

32× 32 multiplier. It provides the possibility that the proposed methodology with

architectural-space construction could be extended to larger multiplier.

Firstly, four 8-bit products are generated from four 4×4 multipliers (i.e. 𝐴𝐿 × 𝐵𝐿,

𝐴𝐿 × 𝐵𝐻 , 𝐴𝐻 × 𝐵𝐿 , 𝐴𝐻 × 𝐵𝐻). Then, the adder is used to sum four 8-bit products.

Generally, the exact adder for summing four 8-bit products consists of nine LUTs and

three carry chains [47]. The hardware consumptions of exact adder, especially delay

consumption, are large because of the serial carry propagation path. To produce the

final 8× 8 multiplication product with low cost, we propose two inexact adders to

compute the result.

1) Inexact adder 1 (IA1)

Figure 3-11 (a) shows inexact adder 1 (IA1) which is proposed based on the

column-significance. Columns 4~7 are positioned at low part of the 8×8 multiplier, and

the highest weight of this part is 27 . The significance of this part to overall

multiplication result is low. Therefore, the results of these columns are inexactly

accumulated by cutting the carry propagation of adjacent columns. OR operation is

usually the most appropriate choice for designing inexact adder. This is because the

result is only one binary number when the carry is cut, and OR operation could produce

the result as ‘1’ when one element among inputs is ‘1’. Therefore, in IA1, 4 LUTs

FPGA-Based Approximate Multiplier using Carry-Inexact Elementary Modules

80

configured with OR operation are used on columns 4~7, while the exact adder is used

on columns 8~15.

(a)

(b)

Figure 3-11 Two proposed inexact adders. The dots of ■, ●, ▲ and indicates the

products from 𝐴𝐿 × 𝐵𝐿 , 𝐴𝐿 × 𝐵𝐻 , 𝐴𝐻 × 𝐵𝐿 , and 𝐴𝐻 × 𝐵𝐻 , respectively. (a) IA1:

inexact operation is used on columns 4~7, while exact operation is used on columns

8~15. (b) IA2: eight LUTs are used to produce the results in parallel.

2) Inexact adder 2 (IA2)

Based on IA1, a highly-inexact adder is proposed to further reduce hardware

consumptions. Inexact adder 2 (IA2) is shown in Figure 3-11 (b), where eight LUTs are

used to produce the results in parallel. The carry propagation among columns is cut by

the LUTs. The logic function for each LUT is OR operation and the INIT value is

‘FEFEFEFEFEFEFEFE’ (hex). The latency of the adder is efficiently reduced by

producing the results in parallel.

LUT6

LUT6_2

carry chaincarry chain

115 14 13 12 11 10 9 8 7 6 5 4 3 2 0

115 14 13 12 11 10 9 8 7 6 5 4 3 2 0

LUT6

FPGA-Based Approximate Multiplier using Carry-Inexact Elementary Modules

81

3.5 Experiment Results and Discussion

In this section, 4×4 multipliers are firstly evaluated, followed by the evaluation of

8× 8 multipliers. Finally, approximate designs are assessed on image sharpening

processing.

3.5.1 Experiment Setup

To clarify the contributions of the proposed multipliers, the proposed FPGA-based

approximate multiplier design was implemented and compared with the default exact

multiplier, Xilinx multiplier IP [69], and approximate multipliers in [55] (UDM), [63]

(C3), [46] (SMA), [47] (Cc, Ca). Among them, UDM and C3 are ASIC-based

approximate multipliers, while SMA, Cc and Ca are the state-of-the-art FPGA-based

approximate multipliers. In [47], the approaches for 8-bit Ca, Cc both are extended from

the 4-bit approximate multiplier (Ca). The difference in 8-bit Ca and Ca is on the adder.

Therefore, the evaluation of 4-bit approximate multiplier of [47] is on Ca.

For accuracy analysis, approximate multipliers were evaluated in terms of mean

error distance (MED), mean relative error distance (MRED) and error rate (ER). These

three metrics have been defined in Section 2.4.2. The functional models of proposed

multipliers were implemented using Matlab and an exhaustive simulation (i.e. 256

patterns for 4×4 multiplier and 65536 patterns for 8×8 multiplier) was performed for

all approximate multipliers.

For evaluation of hardware performance, the proposed design was coded in Verilog.

Then, the design was synthesized and implemented using Xilinx Vivado 18.3 for

XC7VX330T device of Virtex-7 family. We implemented approximate multipliers C3,

SMA, Cc and Ca using the open-source codes provided by [63], [46] and [47],

respectively. UDM is one of variants in [63], hence we implemented it according to the

open-source codes provided by [63]. All multipliers were synthesized and implemented

in the same environment with default options. To precisely evaluate power, switching

activity interchange format (.saif) file was captured during post place and route

FPGA-Based Approximate Multiplier using Carry-Inexact Elementary Modules

82

functional simulation then the file was used to report power consumptions.

3.5.2 Evaluation of 4×4 Multipliers

Table 3-9 shows the accuracy comparison of approximate 4×4 multipliers. The

proposed multiplier AFM1 achieves the lowest accuracy loss in terms of MED, MRED

and ER. This is because the approximation is performed on only two columns in AFM1,

while the approximation is applied on all columns in other deigns.

Table 3-9 Accuracy comparison of 4×4 multipliers.

Designs MED MRED (%) ER (%)

AFM1 0.13 0.14 1.56

AFM2 1.50 2.94 17.19

AFM3 11.25 13.53 32.81

UDM [55] 3.13 2.61 19.14

C3 [63] 4.69 13.97 46.48

SMA [46] 10.75 12.62 35.94

Ca [47] 0.19 0.24 2.34

The hardware performance is shown in Table 3-10. The proposed AFM3 has the

shortest latency and the smallest PDP, because it produces the final product in parallel.

AFM2 is optimized on AFM1, while the latency of AFM2 is larger than that of AFM1.

We found the reason from placed and routed schematic, which might cause the latency

increase. In general, the total delay of a circuit is the summation of logic delay and net

delay. The logic delays of AFM1 and AFM2 are almost same, because they both have

one LUT6, one LUT6_2 and one carry chain on critical path. However, the net delay of

AFM2 is larger than that of AFM1, because the connection of two LUTs in AFM2 is

longer than that in AFM1. In other word, the actual hardware delay of routed

interconnect in AFM2 is larger than that in AFM1. Therefore, AFM2 has a larger total

delay than AFM1.

FPGA-Based Approximate Multiplier using Carry-Inexact Elementary Modules

83

Table 3-10 Area, latency, power and PDP of 4×4 multipliers.

Designs Area [LUTs] Delay (ns) Power (W) PDP (nJ)

Exact 16 5.771 0.248 1.431

Xilinx Multiplier IP 15 5.975 0.245 1.464

AFM1 12 5.529 0.242 1.338

AFM2 10 5.880 0.240 1.411

AFM3 8 4.870 0.230 1.120

UDM [55] 13 5.683 0.235 1.336

C3 [63] 15 6.032 0.227 1.369

SMA [46] 7 5.174 0.229 1.185

Ca [47] 12 5.783 0.243 1.405

Combining with the results in Table 3-9 and 3-10, it is can be observed that the

proposed 4× 4 design outperforms other approximate multipliers with comparable

accuracy. For example, both AFM1 and Ca have the MREDs which are less than 1%.

However, the latency, power and PDP consumptions of AFM1 are lower than those of

Ca. The same observation can be found for AFM2 with UDM, AFM3 with C3.

3.5.3 Evaluation of 8×8 Multipliers

In this subsection, first all configurations for 8×8 multiplier are discussed which is

constructed from proposed 4×4 multipliers and proposed inexact adders. Then, eight

configurations are selected and implemented to evaluate the accuracy loss and hardware

performance.

1) Latency and area evaluation to select configurations for the proposed design

Figure 3-11 shows the latency and area of all configurations (i.e. 162 cases) for the

8×8 multiplier, with respect to MRED. The x-axis indicates the MRED value of each

configuration and the y-axis indicates the latency in Figure 3-12 (a) and area in Figure

3-12 (b), respectively.

Different accuracy-hardware results can be achieved by different configurations.

The tendency of area-MRED is more obvious than that of latency-MRED. Therefore,

based on the area-MRED tendency shown in Figure 3-12 (b), select eight configurations

FPGA-Based Approximate Multiplier using Carry-Inexact Elementary Modules

84

are selected for the proposed 8×8 multiplier. The green line indicates the best area-

(a)

(b)

Figure 3-12 The delay and area of all configurations for the proposed 8×8 multiplier.

(a) Delay vs. MRED. (b) Area vs. MRED. The dots on the green line have the best area-

MRED tradeoff, and the dots with red circles are selected.

5

5.5

6

6.5

7

7.5

8

8.5

9

0 0.05 0.1 0.15 0.2 0.25

D
e

la
y

(n
s)

MRED

with IA1

with IA2

40

42

44

46

48

50

52

54

56

58

0 0.05 0.1 0.15 0.2 0.25

A
re

a[
LU

Ts
]

MRED

with IA1

with IA2

FPGA-Based Approximate Multiplier using Carry-Inexact Elementary Modules

85

MRED tradeoff. Five dots are selected for configurations with IA1, and three dots are

selected for configurations with IA2. Table 3-11 illustrates the eight selected

configurations, where T1 to T8 correspond to eight dots with red circles from left to

right in Figure 3-12 (b).

Table 3-11 Configurations for the proposed 8×8 multipliers.

Designs
Configuration

𝐴𝐻 × 𝐵𝐻 𝐴𝐻 × 𝐵𝐿 𝐴𝐿 × 𝐵𝐻 𝐴𝐿 × 𝐵𝐿 adder

T1 AFM1 AFM1 AFM1 AFM2 IA1

T2 AFM1 AFM2 AFM2 AFM3 IA1

T3 AFM1 AFM2 AFM3 AFM3 IA1

T4 AFM1 AFM3 AFM3 AFM3 IA1

T5 AFM2 AFM3 AFM3 AFM3 IA1

T6 AFM1 AFM3 AFM3 AFM3 IA2

T7 AFM2 AFM3 AFM3 AFM3 IA2

T8 AFM3 AFM3 AFM3 AFM3 IA2

2) Accuracy analysis and hardware evaluation

Figure 3-13 shows the accuracy comparison of approximate 8×8 multipliers. The

proposed 8×8 multipliers have the wide-range of accuracy, which provide the several

choices for applications with different requirements. In terms of MED and MRED, T1

ranks second among all multipliers. Ca has the lowest error among all designs, because

Ca employs the exact adder in the multiplier.

Figure 3-13 Accuracy comparison for approximate multipliers.

0
10
20
30
40
50
60
70
80
90
100

0

5

10

15

20

25

30

35

40 MRED MED ER

M
R

ED
(%

)
M

ED
(

)

ER
(%

)

0

1

Ca [47] T1 T2

FPGA-Based Approximate Multiplier using Carry-Inexact Elementary Modules

86

(a)

(b)

(c)

Figure 3-14 Hardware performance of the exact 8×8 multipliers and approximate 8×8

multipliers. (a) Power (b) Latency (c) Area.

FPGA-Based Approximate Multiplier using Carry-Inexact Elementary Modules

87

Figure 3-15 MRED and PDP for 8×8 multipliers.

The proposed 8×8 multipliers with selected configurations were synthesized and

implemented under the same condition as Section 3.5.1. Exact multipliers and other

previous approximate multipliers were evaluated under the same environment as the

proposed design. Figure 3-14 shows the power, delay and area of all multipliers with 8-

bit input.

The proposed multiplier T8 achieves the lowest power, latency and area among all

multipliers. Compared with the exact multiplier, T8 has the power saving of 24.24%,

latency saving of 29.50% and area saving of 43.66%. UDM and C3 are both ASIC-

based designs and their LUTs on FPGA-based implementation are even larger than the

area of the exact multiplier. The proposed design achieves more hardware

improvements than SMA and Ca, which are FPGA-based approximate multipliers. For

these improvements by the proposed multipliers, we can consider the construction of

multipliers to explain. In SMA and Ca, exact adder is used to sum four partial products

from four 4×4 multipliers. Exact adder consists of several carry chains and the serial

carry propagation path, which leads to small area yet high power consumption. In

contrast, in the proposed 8×8 multiplier design, the inexact adder is used to sum four

8-bit products. It significantly improves hardware performance, especially power and

FPGA-Based Approximate Multiplier using Carry-Inexact Elementary Modules

88

delay efficiency.

An intuitive comparison of accuracy-hardware tradeoff in terms of MRED and PDP

for all approximate multipliers is shown in Figure 3-15. The proposed design has the

lowest PDP on the same MRED, and the smallest MRED on the same PDP. For example,

the MREDs of T3 and SMA are around 0.03. The PDP of T3 is 2.07nJ, while SMA has

PDP of 2.56nJ. Overall, the proposed design has a better MRED-PDP result than other

approximate designs.

3) Pareto-optimal analysis

Pareto-optimal analysis is a statistical technique to search the best results in terms

of two related metrics. Figure 3-16 compares all possible configurations of the proposed

8×8 multiplier, exact multipliers and other approximate multipliers in [55] (UDM), [63]

(C3), [46] (SMA), [47] (Cc, Ca) and [64] (EvoApp). All configurations were evaluated

under the same condition as Section 3.5.1. In Figure 3-16, y-axis indicates the MRED,

and x-axis indicates the area result in Figure 3-16 (a) and the latency result in Figure 3-

16 (b), respectively.

The pareto optimal analysis reveals that the EvoApp design has the smaller area

than other designs for MRED on the range of 0.05~0.1. However, when MRED is lower

than 0.05, the proposed design requires less LUTs. For MRED-latency result shown in

Figure 3-16 (b), the proposed design has more pareto points than other designs. Actually,

in the proposed design, all non-dominated configurations are the configurations with

the proposed adder IA2 in which eight LUTs are processed in parallel. This causes that

EvoApp requires smaller area than the proposed design, while the proposed design costs

shorter delay.

FPGA-Based Approximate Multiplier using Carry-Inexact Elementary Modules

89

(a)

(b)

Figure 3-16 Pareto optimal analysis for the 8×8 multipliers. (a) MRED vs. delay. (b)

MRED vs. area.

FPGA-Based Approximate Multiplier using Carry-Inexact Elementary Modules

90

3.5.4 Image Processing Application

(a) exact (b) T1 (c) T2

(d) T3 (e) T4 (f) T5

(g) T6 (h) T7 (i) T8

Figure 3-17 Processed images by exact multiplier and proposed multipliers.

To test approximate multipliers on application, image sharpening algorithm [58] is

selected, because it is widely utilized to evaluate approximate multipliers. The

introduction and function of this application have been introduced in Section 2.4.4. The

peak signal-to-noise ratio (PSNR) is a metric to assess the quality of processed image

compared with the exact image and defined in [42]. The input image for this application

is 512×512 grayscale bitmap image with 8-bit pixels. Structural similarity index (SSIM)

is another metric to measure the quality of processed image and we used the Matlab

function 𝑠𝑠𝑖𝑚 to calculate it.

Figure 3-17 shows the processed images from the exact multiplier and proposed

approximate multipliers. The difference is imperceptible among the images processed

FPGA-Based Approximate Multiplier using Carry-Inexact Elementary Modules

91

by exact multiplier and the proposed multipliers of T1~T3. Figure 3-18 shows the

PSNR and SSIM results of all approximate multipliers. The SSIM results of T1~T3 are

higher than 99.0%. T8 is the worst case in the proposed design which is still sufficiently

exact for error-tolerant applications, because the PSNR of 20dB can be regarded as

acceptable [72].

Figure 3-18 PSNR and SSIM values of processed images by approximate multipliers.

Figure 3-19 SSIM degradation and PDP saving of all multipliers.

FPGA-Based Approximate Multiplier using Carry-Inexact Elementary Modules

92

The SSIM degradation and PDP saving achieved by all approximate multipliers are

shown in Figure 3-19. On the same range of SSIM degradation, the proposed design

has the higher PDP saving than other designs. Overall, T3 among the proposed

multipliers is recommended for error-tolerant applications.

3.6 Summary

In this chapter, approximate FPGA-based 8× 8 multiplier design is proposed to

achieve lower hardware consumptions than exact multiplier. Firstly, this work proposes

approximate 4×4 multipliers with LUTs and carry chain. The approximation is mainly

on the carry propagation path. Then, the design of 8×8 multipliers is explored by using

proposed 4×4 multipliers as elementary modules. For the adder summing the products

from small multipliers, two types of inexact adders are proposed. This first adder

approximates the result on low columns, while the second adder produces the product

in parallel. The critical path is shortened by inexact adders. A wide-range of

approximate 8× 8 multipliers is provided for applications with different accuracy-

hardware requirements. The experimental results demonstrate that the proposed

multiplier design can significantly reduce the hardware consumptions. Compared with

exact multiplier, 20.18%~46.59% PDP saving and 22.54%~43.66% area savings can be

achieved by the proposed design. Compared with the state-of-the-art FPGA-based

multiplier [47], the proposed delivers more 18.07% PDP saving under the similar error

(MRED) of 1%; compared with [46], more 19.24% PDP savings can be achieved by

the proposed design with the similar MRED of 3%.

Conclusion and Future Work

93

4. Conclusion and Future Work

4.1 Conclusion

This dissertation targets at the approximate multipliers for error-tolerant

applications. The proposals focus on probability-driven carry-restricted compressors

for ASIC-based approximate multiplier and FPGA-based approximate multiplier. They

both can achieve considerable trade-off between accuracy loss and hardware saving.

Chapter 2 presents the ASIC-based approximate multiplier. There are two

contributions. Firstly, probability-driven inexact compressors are proposed by

analyzing the probability distribution of partial products. The carry of this compressor

is restricted (converted) to the same position with the sum. This compressor design

does not include XOR gates, hence it is easily synthesized to area- and energy-efficient

cells. More importantly, this is first attempt to introduce a unified expression and

extend the input-width of inexact compressor up to 8-bit, which reduces the

accumulation stage. By utilizing the proposed compressors, the approximate

multiplier achieves more 26.28% area saving, 25.48% power saving and 16.39% delay

saving, compared with multiplier without the proposed compressors. The second

contribution is a grouped error-recovery scheme which is proposed to compensate

error. This error recovery method is a derivate of probability-driven compressor, and

the conventional adder can be optimized. The operation in this method is in the form

of group. Compared with the previous error-recovery approaches implemented by

conventional adder in bit-wise, the proposed scheme employs a simplified adder and

significantly shortens the critical path. In addition, this error recovery scheme provides

five variants of the proposed multiplier to achieve different accuracy-hardware results.

Compared with the exact multiplier, the most efficient variant reduces the area by

50.97%, power by 70.75% and delay by 52.42%. Compared with the previous

approximate multiplier with error recovery, under the similar accuracy loss of 1% (in

terms of MRED), the proposed design achieves more 50.63% PDP saving.

Conclusion and Future Work

94

Chapter 3 proposes an FPGA-based approximate multiplier. There are two

contributions. Firstly, this research carefully considers the structure of FPGA-fabric,

whereas the most approximate multipliers focused on the ASICs. Three types of

approximate 4× 4 multipliers with different performance are proposed, which are

elementary module for the proposed approximate 8×8 multiplier. In 4×4 multiplier, the

partial products are accumulated with compressor implemented by LUTs. By

considering the low probability of carry, the carry computation is deleted in the

compressor. The approximation on carry result significantly reduces the delay

consumption. As a result, compared with the exact multiplier, the proposed 4× 4

multiplier saves area up to 8 LUTs and delay of 15.62%. The second contribution is that

an 8×8 multiplier design is constructed from elementary modules and the proposed

inexact adders. These two inexact adders are proposed to cut the carry propagation

when summing the products from four small multipliers. More importantly, all possible

combinations are discussed to provides multiplier choices for the reconfigurability of

FPGAs. As a result, the Pareto-optimal analysis is discussed to demonstrate that the

proposed design has a better accuracy-hardware performance than previous works.

Compared with the exact multiplier, the proposed design can reduce area by 43.66%

and power by 24.24%. The critical path latency reduction is up to 29.50%. Compared

with the state-of-the-art FPGA-based multiplier [47], the proposed one achieves more

18.07% PDP saving when MRED is around 1%; compared with [46], more 19.24%

PDP savings can be achieved by the proposed design with the similar MRED of 3%.

4.2 Future Work

In this research, 8×8 integer approximate multipliers have been studied. There are

three future works need to be considered. Firstly, the proposed approach is easily to be

extended to signed integer number multipliers and floating-point number multipliers.

In this dissertation, the method of the extension to signed integer number multiplier is

discussed. To further show the potential of the approximate signed multiplier, more

applications such as CNNs should be considered to test. Recently, to effectively balance

Conclusion and Future Work

95

the huge computations in CNNs and limited hardware resource, floating-point numbers

in networks are replaced by signed integer numbers. It provides the opportunity to apply

approximate signed multipliers. To fully provide the choices for wide-range

applications, approximate floating-point multipliers also need to be considered. In

floating-point number multiplier, the mantissa part is the integer multiplication, which

could use the proposed unsigned integer multiplier. Secondly, developing a construction

method of higher order approximate multipliers such as 16-bit or 32-bit based on the

proposed idea is another future work. The current research work is easily extended to

16-bit with four 8-bit multipliers. Thirdly, more applications will be considered to test

the quality of the proposed method. Especially, this dissertation discussed approximate

FPGA-based multiplier and FPGA has becoming a promising platform to accelerate a

lot of data. Therefore, more applications using FPGA need to be considered.

96

Reference

[1] V. K. Chippa, S. T. Chakradhar, K. Roy, and A. Raghunathan, “Analysis and

characterization of inherent application resilience for approximate computing,”

in Proceedings of the 50th Annual Design Automation Conference (DAC), pp. 1-9, May

2013.

[2] J. Han and M. Orshansky, “Approximate computing: An emerging paradigm for

energy-efficient design,” in Proceedings of the IEEE European Test Symposium (ETS),

pp. 1-6, May 2013.

[3] G. E. Moore, “Cramming more components onto integrated circuits”, Proc. IEEE,

vol. 86, no. 1, pp. 82-85, Jan. 1998.

[4] R. H. Dennard, F. H. Gaensslen, H. N. Yu, V. L. Rideout, E. Bassous, and A. R.

LeBlanc, “Design of ion-implanted MOSFET's with very small physical

dimensions,” IEEE Journal of Solid-State Circuits (JSSC), vol. 9, no. 5, pp. 256-268,

1974.

[5] Q. Xu, T. Mytkowicz, and N. S. Kim, “Approximate computing: A survey,” IEEE

Design & Test, vol. 33, no. 1, pp. 8-22, Feb. 2016

[6] S. Mittal, “A survey of techniques for approximate computing,” ACM Computing

Surveys, Article No. 62, pp. 1-33, Mar. 2016.

[7] A. Agrawal, J. Choi, K. Gopalakrishnan, S. Gupta, R. Nair, J. Oh, D. A. Prener,

S. Shukla, V. Srinivasan, and Z. Sura, “Approximate computing: Challenges and

opportunities,” in IEEE International Conference on Rebooting Computing (ICRC), pp.

1-8, Oct. 2016.

[8] S. Venkataramani, S. T. Chakradhar, K. Roy, and A. Raghunathan, “Approximate

computing and the quest for computing efficiency,” in 52nd ACM/EDAC/IEEE Design

97

Automation Conference (DAC), pp. 1-6, July 2015.

[9] Q. Zhang, T. Wang, Y. Tian, F. Yuan, and Q. Xu, “ApproxANN: An approximate

computing framework for artificial neural network,” in Design, Automation & Test in

Europe Conference & Exhibition (DATE), pp. 701-706, Mar. 2015.

[10] V. K. Chippa, H. Jayakumar, D. Mohapatra, K. Roy, and A. Raghunathan,

“Energy-efficient recognition and mining processor using scalable effort design,”

in Proceedings of the IEEE 2013 Custom Integrated Circuits Conference (CICC), pp.

1-4, Sept. 2013.

[11] S. Misailovic, S. Sidiroglou, H. Hoffmann, and M. Rinard, “Quality of service

profiling,” in Proceedings of the 32nd ACM/IEEE International Conference on Software

Engineering-Volume 1, pp. 25-34, May 2010.

[12] J. Meng, S. Chakradhar, and A. Raghunathan, “Best-effort parallel execution

framework for recognition and mining applications,” in IEEE International Symposium

on Parallel & Distributed Processing (IPDPS), pp. 1-12, May 2009.

[13] A. Sampson, J. Nelson, K. Strauss, and L. Ceze, “Approximate storage in solid-

state memories,” ACM Transactions on Computer Systems (TOCS), vol.32, no.3, pp.1-

23, Sept. 2014.

[14] A. Yazdanbakhsh, G. Pekhimenko, B. Thwaites, H. Esmaeilzadeh, O. Mutlu, and

T. C. Mowry, “RFVP: Rollback-free value prediction with safe-to-approximate

loads,” ACM Transactions on Architecture and Code Optimization (TACO), vol.12 no.4,

pp.1-26, Jan. 2016.

[15] S. Venkataramani, V. K. Chippa, S. T. Chakradhar, K. Roy, and A. Raghunathan,

“Quality programmable vector processors for approximate computing,” in 46th Annual

IEEE/ACM International Symposium on Microarchitecture (MICRO), pp. 1-12, Dec.

2013.

98

[16] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger, “Neural acceleration for

general-purpose approximate programs,” in 45th Annual IEEE/ACM International

Symposium on Microarchitecture, pp. 449-460, Dec. 2012.

[17] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger, “Architecture support for

disciplined approximate programming,” in Proceedings of the seventeenth international

conference on Architectural Support for Programming Languages and Operating

Systems, pp. 301-312, Mar. 2012.

[18] V. Gupta, D. Mohapatra, S. P. Park, A. Raghunathan, and K. Roy, “IMPACT:

imprecise adders for low-power approximate computing,” in IEEE/ACM International

Symposium on Low Power Electronics and Design (ISLPED), pp. 409-414, Aug. 2011.

[19] C. Liu, J. Han, and F. Lombardi, “A low-power, high-performance approximate

multiplier with configurable partial error recovery,” in Design, Automation & Test in

Europe Conference & Exhibition (DATE), pp. 1-4, Mar. 2014.

[20] V. Leon, G. Zervakis, D. Soudris and K. Pekmestzi, “Approximate Hybrid High

Radix Encoding for Energy-Efficient Inexact Multipliers,” IEEE Transactions on Very

Large Scale Integration (VLSI) Systems, vol. 26, no. 3, pp. 421-430, Mar. 2018.

[21] H. Jiang, F. Lombardi, and J. Han, “Low-Power Unsigned Divider and Square

Root Circuit Designs Using Adaptive Approximation,” IEEE Transactions on

Computers (TC), vol. 68. No.11, pp.1635-1646, May 2019.

[22] D. Shin, and S. K. Gupta, “Approximate logic synthesis for error tolerant

applications,” in Design, Automation & Test in Europe Conference & Exhibition (DATE),

pp. 957-960, Mar. 2010.

[23] J. Miao, A. Gerstlauer, and M. Orshansky, “Approximate logic synthesis under

general error magnitude and frequency constraints,” in IEEE/ACM International

Conference on Computer-Aided Design (ICCAD), pp. 779-786, Nov. 2013.

99

[24] D. Mohapatra, V. K. Chippa, A. Raghunathan, and K. Roy, “Design of voltage-

scalable meta-functions for approximate computing,” in Design, Automation & Test in

Europe (DATE), pp. 1-6, Mar. 2011.

[25] K. Palem, and A. Lingamneni, “Ten years of building broken chips: The physics

and engineering of inexact computing,” ACM Transactions on Embedded Computing

Systems (TECS), no.87, pp. 1-23, May 2013.

[26] C. Y. Chen, J. Choi, K. Gopalakrishnan, V. Srinivasan, and S. Venkataramani,

“Exploiting approximate computing for deep learning acceleration,” in Design,

Automation & Test in Europe Conference & Exhibition (DATE), pp. 821-826, Mar. 2018.

[27] S. Gupta, A. Agrawal, K. Gopalakrishnan, and P. Narayanan, “Deep learning with

limited numerical precision,” in International Conference on Machine Learning

(ICML), pp. 1737-1746, June. 2015.

[28] N. P. Jouppi, et al., “In-datacenter performance analysis of a tensor processing

unit,” in Proceedings of the 44th Annual International Symposium on Computer

Architecture (ISCA), pp. 1-12, June 2017.

[29] P. Düben, S. Yenugula, J. Augustine, K. Palem, J. Schlachter, C. Enz, and T. N.

Palmer, “Opportunities for energy efficient computing: A study of inexact general

purpose processors for high-performance and big-data applications,” in Design,

Automation & Test in Europe Conference & Exhibition (DATE), pp. 764-769, Mar. 2015.

[30] C. Guo, L. Zhang, X. Zhou, W. Qian, and C. Zhuo, “A Reconfigurable

Approximate Multiplier for Quantized CNN Applications,” in Asia and South Pacific

Design Automation Conference (ASP-DAC), pp. 235-240, Jan. 2020.

[31] M. Masadeh, O. Hasan, and S. Tahar, “Input-conscious approximate multiply-

accumulate (MAC) unit for energy-efficiency,” IEEE Access, vol. 7, pp. 147129-

147142, Oct. 2019.

100

[32] V. Gupta, D. Mohapatra, A. Raghunathan, and K. Roy, “Low-power digital signal

processing using approximate adders,” IEEE Transactions on Computer-Aided Design

of Integrated Circuits and Systems (TCAD), vol. 32, no.1, pp. 124-137, Dec. 2012.

[33] H. Jiang, J. Han, and F. Lombardi, “A comparative review and evaluation of

approximate adders,” in Proceedings of the 25th edition on Great Lakes Symposium on

VLSI (GLSVLSI), pp. 343-348, May 2015.

[34] R. Ye, T. Wang, F. Yuan, R. Kumar, and Q. Xu, “On reconfiguration-oriented

approximate adder design and its application,” in IEEE/ACM International Conference

on Computer-Aided Design (ICCAD), pp. 48-54, Nov. 2013.

[35] Z. Yang, A. Jain, J. Liang, J. Han, and F. Lombardi, “Approximate XOR/XNOR-

based adders for inexact computing,” in 13th IEEE International Conference on

Nanotechnology (IEEE-NANO), pp. 690-693, Aug. 2013.

[36] H. Jiang, J. Han, F. Qiao, and F. Lombardi, “Approximate radix-8 booth

multipliers for low-power and high-performance operation,” IEEE Transactions on

Computers (TC), vol. 65, no. 8, pp. 2638-2644, Oct. 2015.

[37] W. Liu, L. Qian, C. Wang, H. Jiang, J. Han, and F. Lombardi, “Design of

approximate radix-4 booth multipliers for error-tolerant computing,” IEEE

Transactions on Computers (TC), vol. 66, no. 8, pp. 1435-1441, Feb. 2017.

[38] S. Hashemi, R. I. Bahar, and S. Reda, “DRUM: A dynamic range unbiased

multiplier for approximate applications,” in IEEE/ACM International Conference on

Computer-Aided Design (ICCAD), pp. 418-425, Nov. 2015.

[39] I. Qiqieh, R. Shafik, G. Tarawneh, D. Sokolov, and A. Yakovlev, “Energy-

efficient approximate multiplier design using bit significance-driven logic compression,”

in Design, Automation & Test in Europe Conference & Exhibition (DATE), pp. 7-12,

Mar. 2017.

101

[40] M. Ha, and S. Lee, “Multipliers with approximate 4–2 compressors and error

recovery modules,” IEEE Embedded Systems Letters, vol. 10, no. 1, pp. 6-9, Mar. 2018.

[41] M. S. Ansari, H. Jiang, B. F. Cockburn, and J. Han, “Low-power approximate

multipliers using encoded partial products and approximate compressors,” IEEE

Journal on Emerging and Selected Topics in Circuits and Systems (JETCAS), vol. 8, no.

3, pp. 404-416, May 2018.

[42] A. Momeni, J. Han, and F. Lombardi, “Design and analysis of approximate

compressors for multiplication,” IEEE Transactions on Computers (TC), vol.64, no.4,

pp.984–994, Apr. 2015.

[43] Z. Yang, J Han, and F. Lombardi, “Approximate compressors for error-resilient

multiplier design,” in IEEE International Symposium on Defect and Fault Tolerance in

VLSI and Nanotechnology Systems (DFTS), pp. 183-186, Oct. 2015.

[44] D. Esposito, A. G. M. Strollo, E. Napoli, D. De Caro, and N. Petra, “Approximate

multipliers based on new approximate compressors,” IEEE Transactions on Circuits

and Systems I: Regular Papers (TCAS-I), vol. 65, no. 12, pp. 4169-4182, June 2018.

[45] H. Jiang, C. Liu, F. Lombardi, and J. Han, “Low-power approximate unsigned

multipliers with configurable error recovery,” IEEE Transactions on Circuits and

Systems I: Regular Papers (TCAS-I), vol. 66, no. 1, pp. 189-202, Jan. 2019.

[46] S. Ullah, S. S. Murthy, and A. Kumar, “SMApproxlib: library of FPGA-based

approximate multipliers,” in Proceedings of the 55th Annual Design Automation

Conference (DAC), Article No. 157, pp. 1-6, June 2018.

[47] S. Ullah, S. Rehman, B. S. Prabakaran, F. Kriebel, M. A. Hanif, M. Shafique, and

A. Kumar, “Area-optimized low-latency approximate multipliers for FPGA-based

hardware accelerators,” in Proceedings of the 55th Annual Design Automation

Conference (DAC), Article No. 159, pp. 1-6, June 2018.

102

[48] S. Ullah, H. Schmidl, S. S. Sahoo, S. Rehman, and A. Kumar, “Area-optimized

Accurate and Approximate Softcore Signed Multiplier Architectures,” IEEE

Transactions on Computers (TC), 2020. (Early Access)

[49] T. Yang, T. Ukezono, and T. Sato, “A low-power high-speed accuracy-

controllable approximate multiplier design,” in Asia and South Pacific Design

Automation Conference (ASP-DAC), pp. 605-610, Jan. 2018.

[50] S. Venkatachalam, and S. B. Ko, “Design of power and area efficient

approximate multipliers,” IEEE Transactions on Very Large Scale Integration Systems

(TVLSI), vol. 25, no. 5, pp. 1782-1786, May 2017.

[51] K. Y. Kyaw, W. L. Goh and K. S. Yeo, “Low-power high-speed multiplier for

error-tolerant application,” in IEEE International Conference of Electron Devices and

Solid-State Circuits (EDSSC), pp. 1-4, Dec. 2010.

[52] T. Yang, T. Ukezono, and T. Sato, “Low-power and high-speed approximate

multiplier design with a tree compressor,” in IEEE International Conference on

Computer Design (ICCD), pp. 89-96, Nov. 2017.

[53] P. Yadav, A. Pandey, K. R. Prasad, M. H. Vasantha, and Y. N. Kumar, “Low power

approximate multipliers with truncated carry propagation for LSBs,” in IEEE

International Midwest Symposium on Circuits and Systems (MWSCAS), pp. 500-503,

Aug. 2018.

[54] S. Boroumand, H. P. Afshar, P. Brisk, and S. Mohammadi, “Exploration of

approximate multipliers design space using carry propagation free compressors,”

in Asia and South Pacific Design Automation Conference (ASP-DAC), pp. 611-616, Jan.

2018.

[55] P. Kulkarni, P. Gupta, and M. Ercegovac, “Trading accuracy for power with an

underdesigned multiplier architecture,” in International Conference on VLSI Design

(VLSID), pp. 346-351, Jan. 2011.

103

[56] C. H. Chang, J. Gu, and M. Zhang, “Ultra low-voltage low-power CMOS 4-2

and 5-2 compressors for fast arithmetic circuits,” IEEE Transactions on Circuits and

Systems I: Regular Papers (TCAS-I), vol. 51, no. 10, pp. 1985-1997, Oct. 2004.

[57] J. Liang, J. Han, and F. Lombardi, “New metrics for the reliability of approximate

and probabilistic adders,” IEEE Transactions on computers (TC), vol. 62, no. 9, pp.

1760-1771, June 2012.

[58] Synopsys, Power Compiler User Guide, Version D-2010.03-SP2, 2010.

[59] M. S. Lau, K. V. Ling, and Y. C. Chu, “Energy-aware probabilistic multiplier:

design and analysis,” in Proceedings of the international conference on Compilers,

architecture, and synthesis for embedded systems (CASES), pp. 281-290, Oct. 2009.

[60] C. R. Baugh, and B. A. Wooley, “A two's complement parallel array

multiplication algorithm,” IEEE Transactions on computers (TC), vol. 100, no. 12, pp.

1045-1047, Dec. 1973.

[61] O. L. MacSorley, “High-speed arithmetic in binary computers,” Proceedings of

the IRE, vol. 49, no. 1, pp. 67-91, Jan. 1961.

[62] S. Narayanamoorthy, H. A. Moghaddam, Z. Liu, T. Park, and N. S. Kim,

“Energy-Efficient Approximate Multiplication for Digital Signal Processing and

Classification Applications,” IEEE Transactions on Very Large Scale Integration

Systems (TVLSI), vol. 23, no. 6, pp. 1180-1184, June 2015.

[63] S. Rehman, W. El-Harouni, M. Shafique, A. Kumar, and J. Henkel,

“Architectural-space exploration of approximate multipliers,” in Proceedings of the

IEEE/ACM International Conference on ComputerAided Design (ICCAD), pp.1-8, Jan.

2016.

[64] V. Mrazek, R. Hrbacek, Z. Vasicek, and L. Sekanina, “EvoApproxSb: Library of

approximate adders and multipliers for circuit design and benchmarking of

104

approximation methods,” in Design, Automation & Test in Europe Conference &

Exhibition (DATE), pp. 258-261, Mar. 2017.

[65] H. Parandeh-Afshar and P. Ienne, “Measuring and Reducing the Performance

Gap between Embedded and Soft Multipliers on FPGAs,” in 21st International

Conference on Field Programmable Logic and Applications (FPL), pp. 225-231, Sept.

2011.

[66] N. Van Toan, and J. G. Lee, “FPGA-Based Multi-Level Approximate Multipliers

for High-Performance Error-Resilient Applications,” IEEE Access, vol. 8, pp. 25481-

25497, Feb. 2020.

[67] Z. Ebrahimi, S. Ullah, and A. Kumar, “LeAp: Leading-one Detection-based

Softcore Approximate Multipliers with Tunable Accuracy,” in Asia and South Pacific

Design Automation Conference (ASP-DAC), pp. 605-610, Jan. 2020.

[68] I. Kuon, and J. Rose, “Measuring the gap between FPGAs and ASICs,” IEEE

Transactions on computer-aided design of integrated circuits and systems (TCAD), vol.

26, no. 2, pp. 203-215, Jan. 2007.

[69] Intel, Integer Arithmetic IP Cores User Guide, https://www.altera.com

/en_US/pdfs/literat ure/ug/ug_lpm_alt_mfug.pdf, 2017.

[70] Xilinx, LogiCORE IP Multiplier v11.2., https://www.xilinx.com/support/

documentation/ip_documentation/mult_gen_ds255.pdf, 2017.

[71] Xilinx, 7 Series FPGAs Configurable Logic Block User Guide, https://

www.xilinx.com/ support/documentation/user_guides/ ug474_7Series_CLB.pdf, 2016.

[72] R. Zendegani, M. Kamal, M. Bahadori, A. Afzali-Kusha, and M. Pedram, “RoBA

multiplier: A rounding-based approximate multiplier for high-speed yet energy-efficient

digital signal processing,” IEEE Transactions on Very Large Scale Integration Systems

(TVLSI), vol. 25, no. 2, pp.393-401, Feb. 2017.

105

[73] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality

assessment: from error visibility to structural similarity,” IEEE transactions on image

processing, vol. 13, no. 4, pp. 600-612, 2004.

106

Publications

Journals:

[1] Yi Guo, Heming Sun, Ping Lei, and Shinji Kimura, “Approximate FPGA-Based

Multipliers using Carry-Inexact Elementary Modules,” IEICE Transactions on

Fundamentals of Electronics, Communications and Computer Sciences, Vol.

E103-A, No. 09, pp. 1054-1062, Sept. 2020.

[2] Yi Guo, Heming Sun, Ping Lei, and Shinji Kimura, “Design of Low-Cost

Approximate Multipliers Based on Probability-Driven Inexact Compressors,”

IEICE Transactions on Fundamentals of Electronics, Communications and

Computer Sciences, Vol. E102-A, No. 12, pp. 1781-1791, Dec. 2019.

International Conferences:

[1] Jie Li, Yi Guo, and Shinji Kimura, “Accuracy-Configurable Low-Power

Approximate Floating-Point Multiplier Based on Mantissa Bit Segmentation”,

IEEE Region 10 Conference (TENCON), Osaka, Japan, pp. 1311-1316, Nov.

2020.

[2] Yi Guo, Heming Sun, and Shinji Kimura, “Small-Area and Low-Power FPGA-

Based Multipliers using Approximate Elementary Modules,” Asia and South

Pacific Design Automation Conference (ASP-DAC), Beijing, China, pp. 599-

604, Jan. 2020.

[3] Yufeng Xu, Yi Guo, and Shinji Kimura, “Approximate Multiplier Using

Reordered 4–2 Compressor with OR-based Error Compensation,” IEEE

International Conference on ASIC (ASICON), Chongqing, China, pp. 1-4, Oct.

2019.

107

[4] Yi Guo, Heming Sun, and Shinji Kimura, “Energy-Efficient and High-Speed

Approximate Signed Multipliers with Sign-Focused Compressors,” IEEE

International System-on-Chip Conference (SOCC), Singapore, pp. 330-335,

Sept. 2019.

[5] Xiaoting Sun, Yi Guo, Zhenhao Liu, and Shinji Kimura, “A Radix-4 Partial

Product Generation-Based Approximate Multiplier for High-speed and Low-

power Digital Signal Processing,” IEEE International Conference on

Electronics, Circuits and Systems (ICECS), Bordeaux, France, pp. 777-780,

Dec. 2018.

[6] Yi Guo, Heming Sun, Li Guo, and Shinji Kimura, “Low-Cost Approximate

Multiplier Design using Probability-Driven Inexact Compressors,” IEEE Asia

Pacific Conference on Circuits and Systems (APCCAS), Chengdu, China, pp.

291-294, Oct. 2018.

[7] Yi Guo, Heming Sun, and Shinji Kimura, “Design of Power and Area Efficient

Lower-Part-OR Approximate Multiplier,” IEEE Region 10 Conference

(TENCON), Jeju, Korea, pp. 2110-2115, Oct. 2018.

[8] Zhenhao Liu, Yi Guo, Xiaoting Sun, and Shinji Kimura, “Energy-Efficient and

High-Performance Approximate Multiplier Using Compressors Based on Input

Reordering,” IEEE Region 10 Conference (TENCON), Jeju, Korea, pp. 0545-

0550, Oct. 2018.

Award:

[1] Yi Guo, Heming Sun, and Shinji Kimura, “Small-Area and Low-Power

FPGA-Based Multipliers using Approximate Elementary Modules,” IEICE

VLD Excellent Student Author Award for ASP-DAC 2020, 2020.

