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Abstract 

Along with the emergence of more and more complex applications in computing 

systems, the overall computational workloads and energy consumption of the systems 

are continuously increasing. Lots of applications include huge number of computations 

and small accuracy loss can be accepted. Such applications are defined as error-tolerant 

applications. To realize the good product of applications, LSI implementation is 

necessary. Among implementation, optimized multiplier is important because it is as 

the basic unit of lots of applications. During the application design, accuracy and 

hardware resource need to be considered. Approximate computing has been a promising 

technique to balance the accuracy quality and hardware resource. 8-bit multiplications 

are utilized in applications for manipulating images such as filtering operations and 

classification using convolutional neural networks. Therefore, 8x8 approximate 

multiplier design has attracted lots of attentions. There are mainly two important kinds 

of approximate multiplier: ASIC-based approximate multiplier, which is main focus 

and the most intuitive methodology; and FPGA-based approximate multiplier, which is 

a popular choice as changes of applications due to the reconfigurability and fast 

development round of FPGA. Approximation certainly incurs the accuracy loss in the 

design, therefore the trade-off between accuracy loss and hardware saving is the key 

target of approximate multiplier. 

Approximate multiplier is designed based on three steps of conventional exact 

multipliers, partial product generation, accumulation and final carry propagate adder. 

Firstly, a partial product matrix of 8 rows and 8 columns is generated by AND operation 

on two 8-bit input operands. Secondly, partial product matrix is accumulated and 

reduced to 2 rows by adding partial products at the same position using full adders or 

compressors. A full adder can add (compress) three partial products and generate 1-bit 

result (i.e. sum) at the same position and another bit result (i.e. carry) at 1-bit higher 

position. Thirdly, final carry propagate adder processes 2 rows and produces the 

multiplication result.   
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As for ASIC-based approximate multiplier, method of propagation restriction using 

only OR operation was discussed in Qiqieh’s work [DATE, 2017] and Yadav’s work 

[MWSCAS, 2018]. The method is simple to reduce the circuit complexity, but the error 

is high. Another method of propagation restriction was discussed in Boroumand’s work 

[ASP-DAC, 2018] by dividing the carry to two inexact parts. The parallel operation of 

two semi-carries simplifies the computation, but this method is limited to 3-input 

compressor. The method of less-XOR compressors was discussed in three approximate 

multipliers of Yang’s work [ICCD, 2017], Venkatachalam’s work [TVLSI, 2017], and 

Jiang’s work [TCAS-I, 2019]. All can simplify the compressor with less XOR gates, 

but the remaining XOR gates limits the potential of effective synthesis. 

As for FPGA-based approximate multipliers, Look-Up-Table (LUT) based 

accumulation and special carry chain for the carry propagation are considered. One 

multiplier was introduced by Ullah [DAC, 2018], which used inexactly predicted carry-

in as one input of approximate compressor. Thus, the computation of each position is 

independent with each other. The same author discussed another approximate multiplier 

in [DAC, 2018], by omitting one input in the compressor to save LUTs. Two approaches 

both can optimize the hardware utilization. However, they have a common issue that 

the approximation on input would affect both of two outputs of one compressor. It 

incurs the high accuracy loss. 

To achieve trade-off between accuracy loss and hardware saving, and to solve the 

limitation of previous works, probability-driven carry-restricted compressors are 

proposed. Because the carry of compressor occurs in rare cases, the major 

approximation on carry can save the hardware and ensure the low error. As for ASIC-

based multiplier,  the compressor is implemented by logic gates. The conventional 

compressor usually generates the carry to higher position. By caring about the low 1-

probability of one partial product, new compressors with large size (4 to 2, 8 to 2, etc.) 

have been developed to generate 2-bit outputs at the same position without generating 

a carry to higher position. ASIC circuit can be simplified by avoiding XOR gates which 

are most consuming gate among all logic gates. As for FPGA-based multiplier, the 

compressors are implemented with LUTs. Each carry of a compressor costs one 
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corresponding LUT. Because the carry probability of each position to high position is 

low, the carry computation is omitted in the proposed compressor. By doing so, the 

LUT resource can be saved. Moreover, three types of multipliers are proposed by using 

different number of proposed compressors. 

This dissertation is organized as follows: 

In Chapter 1 [Introduction], background of approximate computing and the 

necessity of approximate multiplier are introduced. Then, the research status on 

approximate multiplier and existing issues are discussed. Finally, the motivations, target 

and proposed concept are given. 

In Chapter 2 [ASIC-Based Approximate Multiplier using Probability-Driven 

Inexact Compressors], an ASIC-based multiplier with inexact compressors and error 

recovery is proposed, which efficiently trades accuracy for hardware efficiency. To 

accumulate partial products with low-cost circuits, inexact compressors are proposed 

by analyzing the probability of partial product matrix and restricting carry generation. 

This compressor design can reduce eight rows into two rows with only one stage. In 

addition, an error-recovery scheme is proposed to compensate error. Different from the 

existing bit-wise error recovery, the proposed error-recovery scheme processes the error 

elements in the form of group. Thus, the critical path of multiplier can be shortened. As 

a result, in terms of mean relative error distance (MRED), the accuracy loss of the 

proposed multiplier is as low as 1.07%. Compared with the exact multiplier using 40nm 

process, the proposed multiplier can reduce power by 59.75% and area by 42.47%. The 

delay reduction is larger than 12.78%. Compared with the previous approximate 

multipliers, the proposed multiplier has a better accuracy-hardware result.  

In Chapter 3 [FPGA-Based Approximate Multiplier using Carry-Inexact 

Elementary Modules], an 8x8 FPGA-based multiplier is proposed based on 4x4 carry-

inexact multipliers and one inexact adder. In the proposed 4×4 multiplier, the 

compressor accumulating partial products is implemented by LUTs. Because the carry 

result of compressor occurs in rare situation, the carry computation is omitted in 

proposed design. Approximate 8×8 multiplier is built from four 4×4 multipliers with an 

adder. To fast produce the final product, two types of inexact adder are proposed, where 
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the result of each bit is produced in parallel and the critical path is shortened. In terms 

of MRED, the error of the proposed 8×8 multiplier is as low as 1.06%. Compared with 

the exact multiplier, the proposed design can reduce area by 43.66% and power by 

24.24%. The delay saving is up to 29.50%. To comprehensively evaluate the 

performance of approximate multipliers, a Pareto-optimal analysis is discussed. The 

proposed design has more Pareto-optimal points, which means the proposed design has 

a better accuracy-hardware result than previous approximate multipliers.  

In Chapter 4 [Conclusion and Future Work], the overall dissertation is summarized 

and the future works are presented. To realize approximate multiplier with a 

considerable accuracy-hardware trade-off, approach for ASIC-based and FPGA-based 

multiplier is proposed. In the future, large-size multiplier, floating-point multiplier will 

be extended. 
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1. Introduction 

1.1 Background 

1.1.1 LSI Implementation of Error-Tolerant Application 

Despite the advancement in semiconductor technologies and development of 

computational system techniques, the overall energy consumption of large-scale 

applications is still rapidly growing due to an ever-increasing amount of information. 

Today, lots of computation-massive applications such as image processing, machine 

learning, data mining/analytics, web search and wireless communication are used more 

and more. Their computational and storage demands on modern systems have far 

exceeded the available resources. In addition, the electricity consumption is increasing 

of the data center which store and run these applications. As reported in [6], the 

electricity consumption of just US data centers is estimated to increase from 61 billion 

kWh in 2006 to 140 billion kWh in 2020. This not only brings the fiscal expenditure 

but also the environment issues. It trends to pose severe technology challenges, such as 

energy efficiency, circuits reliability, and high performance. Therefore, there is a 

genuine need to improve the resource efficiency for these emerging workloads in order 

to reduce the energy consumption and to keep pace with the growth of information that 

needs to be processed.  

Fortunately, such computation-massive applications usually have an inherently 

error-tolerance property, that is, they don’t require fully exact computation results. In 

general, these applications are demonstrated and defined as error-tolerant applications 

[1][2], such as data mining, robotics, search, image processing, pattern recognition and 

so on. Error-tolerant applications are very common and close to human.  

This inherent feature of error-tolerant applications arises due to following factors, 

as shown in Figure 1-1: (i) For the applications such as search and classification, they 
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usually return a range of answers, rather than a unique and golden output. This means 

multiple answers are equally suitable for users. Therefore, it is acceptable that very few 

inexact outputs and most exact outputs are in a wide range of outputs. For other 

applications, even a completely prefect result exists, the algorithms in applications may 

not be able to find it, because it might cause a huge hardware effort. (ii) Besides, the 

perceptual limitation of humans determines that the inexact yet good enough result is 

acceptable. The common examples are most machine learning, image processing and 

recognition applications. The tiny change in pixel value or similar effects may not be 

perceived by humans due to their psycho-visual limits. (iii) In addition, noise usually 

exists in real input data, which is naturally propagated to the intermediate and final 

results. This is the robustness of the application. In another word, the robustness to 

noise in traditional paradigm provides the robustness to approximation. (iv) In 

computation-massive applications, most algorithms used have redundant set and self-

healing property, such as aggregation and iterative-refinement. This feature could 

recover the accuracy loss by approximations.  

 

 

Figure 1-1 Various factors cause inherently error-tolerant feature. 

 

Take image processing application as an example, occasional errors such as 

dropping a particular pixel or a small image quality loss rarely affect user’s satisfaction. 

Human eyes cannot recognize the missing information and still correctly perceive an 

approximately processed image. This is caused by the perceptual limitation of humans 

and noise or redundant data in image. 

For good product of applications, large scale integration (LSI) implementation is 

important because of huge computation complexity in applications and limited 

Error-Tolerant 
Applications

Probabilistic Computations Iterative Algorithms

Noise in Input

Redundant Data

Perceptual Limitation

No Golden Output
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resources in hardware. However, most original approaches designing applications are 

software oriented, which didn’t consider the LSI implementation. Generally, the 

performance of circuits has been improved as the guidance of Moore’s law [3] and 

Dennard’s scaling [4]. As Dennard’s scaling tends to an end, the performance 

improvement is slow and may stop in near future. Therefore, LSI implementation is 

very important. This dissertation focuses on optimized LSI implementation or hardware 

approaches. 

To implement applications into VLSI, there are several steps as shown in Figure 1-

2 including VLSI oriented algorithm, designing hardware architecture and LSI 

implementation. Among hardware architecture, multiplier is very important because 

basic units of lots of applications are implemented by multiplier and adder. Multiplier 

usually costs more hardware than adder. Therefore, optimized multiplier is the focus of 

this dissertation. By optimizing the basic unit of lots of applications, it is promising to 

reduce the energy consumption of the application and further reduce the resource cost 

of the whole systems or data centers. 

 

 

Figure 1-2 LSI implementation of applications. 

1.1.2 Approximate Computing 

During the whole design process of applications, there are many factors need to be 

considered, such as accuracy or quality and hardware performance like power, delay 

and circuit size. The balance of these factors is necessary. Approximate computing is 

one approach to trade accuracy to hardware saving, which is motivated by efficient 
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hardware implementation and exactness relaxation in error-tolerant applications. This 

computing technique returns an inexact result by skipping or simplifying some 

operations. It can reduce hardware consumption.  

Approximate computing can be applied inside digital computers, where the inexact 

computations have been done with respect to inputs with noise and for users who have 

the perception limitation. Figure 1-3 illustrates the comparison of traditional computing 

and approximate computing. The accuracy is decreased with approximate computing, 

but the power efficiency and performance can be improved. This methodology has 

attracted a surge of interest from both academic and industry [5]-[7], as a promising 

technique to achieve diverse optimizations, such as energy saving, smaller design area 

and high speed.  

  

 

Figure 1-3 Comparison of traditional computing and approximate computing. 

 

Approximate computing can be applied at software, architecture and circuit levels:  

At software or algorithm level, one of the most efficient approximation approaches 

is precision scaling [8]-[10]. This technique alters the precision (bit-width) of the input 

to shorten the width of an operand utilized in the applications. Skipping computation is 

another popular technique which works by skipping some iterations of a loop to reduce 

the execution time and save the resources [11][12].  

At architecture level, there are many approximate computing techniques are 

explored, such as approximate memories [13][14], approximate computing in 

programmable processors [15], approximate accelerators [16], and approximate 

instruction set architecture (ISA) [17]. 
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At circuit level, approximate arithmetic units [18]-[21], approximate circuit 

synthesis [22][23] and voltage over scaling (VOS) [24][25] are the commonly studied 

techniques. For a given circuit, energy consumption could be saved by reducing the 

logic gates, approximating the functions and lowering its supply voltage. VOS is a 

technique reducing the supply voltage, it is one of the most direct techniques to save 

power consumptions, especially dynamical power consumptions. However, this 

technique has a very high implementation cost to control voltage, because it requires 

carefully allocate higher supply voltage to critical part to ensure the accuracy, along 

with lower the supply voltage for the less significant part. Consequently, the majority 

of approximate circuits are designed on approximate arithmetic units. 

Many researches from academic area and industries have been show the feasibility 

of approximate computing [26]-[30]. Convolution neural network (CNN) targets brain-

like functionality and is based on a simple artificial neuron. Its basic operation is 

convolution where the input is multiplied and accumulated with the weight. Recently, 

CNNs could achieve high accuracy for many tasks. However, CNNs usually require 

significant computational resources, along with the huge hardware consumption. To 

effectively train and use CNNs, IBM and Google have exploited approximate 

computing for CNNs [26]-[28]. Especially, the Tensor Processing Unit (TPU) [28] 

which changes the floating-point number to 8-bit fixed-point number, has been 

successfully used for Google photo, Google translation and AlphaGo. In addition, 

approximate CNNs with optimized computation units (e.g. approximate multiplier) 

have been tested the effectiveness of approximate computing. For example, for image 

classification, in [30], the CNNs with approximate computing have been introduced by 

using approximate multiplier. The conventional multiplier in quantized CNN is changed 

to two short-size multipliers with one inexact adder. The quantized CNN on ImageNet 

dataset was evaluated. The accuracy loss is 3%, but the latency saving is 17% and power 

saving is 15%. For the applications like handwritten digit recognition, [27] has 

proposed approximation methods for CNNs to do this task. The floating-point number 

in CNN is changed to 16-bit fixed-point number. For the approximate LeNet-5 on 

MNIST dataset, the accuracy loss is only 0.07%. For the application like web search, 
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PageRank is a typical method, [29] introduced approximation for this application by 

altering the mantissa width in double floating-point number (i.e. 52-bit mantissa to 16-

bit mantissa). Such researches on CNNs and applications show the feasibility of 

approximate computing.  

1.1.3 Necessity of 8-Bit Approximate Multipliers  

Among three commonly studied levels (software/algorithm level, architecture level 

and circuit level) of approximate computing, approximation at circuit level has recently 

attracted more and more attentions. This is because in error-tolerant applications, 

multiply-and-accumulate (MAC) operations ∑ 𝑋𝑖 ∗ 𝑌𝑖𝑖   is widely used where 𝑋𝑖  is 

weight and 𝑌𝑖 is input. For example, 90% of the computation in convolution operation 

are MAC operations; filtering an image of 512× 512 pixels costs 262144 MAC 

operations [31]. The basic computations of MAC operations are multiplication and 

addition. Therefore, approximation applied at addition and multiplication plays a 

pivotal role in determining the performance of many computation-massive applications. 

The energy efficiency of this level could contribute to the overall system. More 

importantly, the quality losses arose by the approximation at circuit level is more 

controllable than that at other levels. 

As the key and basic circuit, approximate adders both at gate level and transistor 

level have been extensively studied [32]-[35]. In general, approximate adders can be 

classified into two types: segmented adder and non-segmented adder. They both mainly 

reduce the carry propagation delay, while the power and area reductions are slight. In 

addition, approximate adders have relatively high accuracy loss, because the error in 

their simple structures would have a significant impact to overall result.  

Another important arithmetic unit, multiplier, has become hot and principal 

research domain in approximate computing [36]-[55]. As the basic arithmetic unit, a 

multiplier is more energy-hungry than an adder, hence multipliers are characterized by 

high-complexity logic design and have high energy consumption. In addition, a lot of 

8-bit multiplications are utilized in applications for manipulating images such as 



Introduction 

7 

 

filtering operations and classification using convolutional neural networks. Moreover, 

8-bit multipliers are also used to construct larger multiplier as basic modules. Therefore, 

8-bit approximate multiplier design has been a focus of approximate circuit, and it is 

vital to propose low-cost approximate multiplier under insignificant accuracy loss. 

1.2 Research Status on 8×8 Approximate Multiplier 

1.2.1 Preliminaries of 8×8 Conventional Multiplier 

Generally, a multiplier consists of three steps, as shown in Figure 1-4: partial 

product generation, partial product accumulation and final carry propagate adder. 

Partial product accumulation step occupies the dominated energy consumption and 

circuit complexity in a multiplier.  

In partial product generation, partial product matrix including 64 partial products 

is generated by AND operation. Then, 8 rows of partial product matrix are accumulated 

and reduced into 2 rows by adders or compressors. In this step, compressors are key 

components to accumulate partial products, which are defined as the circuits to 

compressor/reduce several elements to less elements. Half adder and full adder are 

usual compressors in exact multipliers, which is regarded as 2 to 2 compressor and 3 to 

2 compressor, respectively. For example, a full adder can add (compress) three partial 

products and generate 1-bit result (i.e. sum) at the same position with input, along with 

another bit result (i.e. carry) at 1-bit higher position. By repeatedly applying such 

compressors, 2-bit results at each column are computed. Finally, carry propagate adder 

processes 2 rows and produces 16-bit product.    
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Figure 1-4 Three basic steps in 8×8 conventional multiplier. 

 

1.2.2 Research Challenge of 8×8 Approximate Multiplier 

Approximate multiplier is designed based on the three conventional steps as 

introduced in the last section. Recently, there are two major platforms to run designed 

multiplier: one is ASIC (Application Specific Integrated Circuit) and the other is FPGA 

(Field Programmable Gate Array). Both platforms have special features and multiplier 

circuits need to be optimized for each platform. Depending on platform, approximate 

multipliers are called as ASIC-based approximate multiplier and FPGA-based 

approximate multiplier. They both are of great importance with worth deep 

investigation. In ASIC-based designs, logic gates are deployed for the implementation 

of different logic circuits. For approximation, circuits could be simplified by using 

simpler logic gates. This is the most intuitive methodology to approximate the function 

of one multiplier, hence ASIC-based approximate multiplier is an attractive topic both 

now and in the future. On the other hand, FPGA has emerged as a potential platform to 

accelerate amount of computations, because of its short turnaround time. The 
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architectural difference between ASIC and FPGA determines that the ASIC-based 

multiplier design is not effective to FPGA. FPGA-specific approximate multipliers 

have been a hottest research domain for recent years. Thus, both of ASIC-based 

approximate multiplier and FPGA-based approximate multiplier are extremely 

necessary.   

 

 

Figure 1-5 Research challenge of approximate multiplier: trade-off between accuracy 

loss and hardware saving.  

 

ASIC-based approximate multiplier and FPGA-based approximate multiplier both 

face a common challenge, how to trade off the accuracy loss with hardware saving. This 

is determined by the nature of approximate computing. Figure 1-5 shows the rough 

trade-off relation among energy, error and area. An exact multiplier has error of 0 but 

its energy is high and area is large. Depending on the acceptable error, approximate 

multipliers can reduce energy and area as shown in the figure. For example, a design 

may be very exact yet with a high energy consumption or large design area; or a very 

energy-efficient design may have an extremely low accuracy. It is difficult to achieve 

the best result of the trade-off, but it is still an urgent requirement to propose an 

approximate design, which achieves power, area and delay savings under insignificant 

accuracy loss. 
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1.2.3 Research Status and Problems 

The investigations of approximate multipliers have been carried on for recent years, 

and many significant researches have been made for approximate multipliers. The 

majority of researches focused on the second step (i.e. partial product accumulation).  

The following shows a brief review of previously proposed approximate 

multipliers for ASIC platform and FPGA platform and their remaining problems.  

ASIC-based approximate multipliers: Circuit functions can be implemented and 

mapped by logic gates on ASIC platform. By simplifying the logic function, the 

complexity of circuit can be reduced. This is the most intuitive methodology, because 

it can foresee the low complexity of circuit from the simplification/approximation of 

the logic function. As pointed out in Section 1.2.1, the partial product accumulation 

step has the primary resource consumption in multiplier. This is mainly caused by the 

compressors, which are characterized as XOR-rich circuits. Thus, there are many 

researches on ASIC-based multiplier with approximate compressors [39][45-

47][50][52-54]. As illustrated in Figure 1-6, those works can be concluded into two 

categories: propagation restriction, and less-XOR computation. As for propagation 

restriction, there are two methods. The first method is to use OR gate to extremely 

approximate the compressor. The 2-input operation is focused by [39] and 3-input 

operation is focused by [53]. The second method is to divide the carry to two inexact 

parts [54]. The operations of two parts are in parallel. As for the method category of 

computation with less XOR gate, the operations of exact 2-input, 3-input and 4-input 

compressors are simplified by reducing XOR gates. For example, some terms including 

XOR operation in the function are deleted.  
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Figure 1-6 Research status on ASIC-based approximate multipliers and existing 

problems.  

 

Existing issue: Approximate compressors have been proposed in most 

approximate multipliers to accumulate partial products. They all can achieve hardware 

reduction, while they still have some issues. The input size of previous approximate 

compressors is limited to 4-bit. To accumulate the fixed elements, the smaller 

compressors lead to more accumulation stages, which further limit the potential of 

hardware reduction. In addition, most of previous approximate compressors still 

include XOR gates, which is difficult to be synthesized.  

FPGA-based approximate multipliers: Recently, FPGA has become a promising 

choice for computing systems because of its reconfigurability and fast development 

time. For computation-massive applications on FPGA, it is vital to explore the FPGA-

based approximate multipliers by considering look-up-tables (LUTs) and special carry 

chain. For recent years, it has been the newest and hottest topic for many applications 

and attracted more and more attentions [46]-[48]. The focus of FPGA-based 

approximate multiplier is also in Step 2 (i.e. partial product accumulation), while the 

compressors in this step are implemented by LUTs and carry chain. Figure 1-7 views 

the recent state-of-the-art FPGA-based approximate multipliers. One method is 

introduced in [46], where the carry-in result from preceding bit is inexactly predicted 
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and used as one input for compressor. Thus, the computation of each position is 

independent with each other. The same author discussed another approximate multiplier 

in [47] by omitting one input in the compressor to save LUTs.  

 

 

Figure 1-7 Research status on FPGA-based approximate multiplier and existing 

problems. 

 

Existing issue: The existing methods could save the FPGA resource by 

approximation, but there is one common issue for the state-of-the-art FPGA-based 

approximate multipliers. The approximation (i.e. inexactly predicted carry-in and 

omitting one input) on the input of compressor affects both of two outputs of the 

compressor. It incurs the high accuracy loss.  

1.3 Proposed Concept  

To achieve the target of approximate multiplier (i.e. trade-off between accuracy 

and hardware), and to solve the existing limitations in approximate multipliers, this 

dissertation proposes probability-driven carry-restricted compressors for two important 

types of approximate multipliers, ASIC-based approximate multiplier and FPGA-based 

approximate multiplier. The compressors are the main units of multiplier, and they cost 

the primary hardware in the multiplier. Therefore, new compressor design is proposed 

in this dissertation. By considering the low occurrence probability of carry in the 

compressor, the approximation is applied on the carry. The proposed method could save 
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the hardware of the compressor and ensure that the accuracy loss is small as well (due 

to low occurrence probability of carry). 

 

 

Figure 1-8 Proposed concept: probability-driven carry-restricted compressors. 

 

As for ASIC-based multiplier, in the accumulation/compression step, compressor 

is implemented by logic gates. It usually generates the carry to higher position. The 

carry costs the hardware yet occurs in rare cases. By caring about the low 1-probability 

of one partial product and further the low 1-probability of carry, new compressors have 

been developed to generate 2-bit outputs at the same position by restricting (i.e. 

converting) the carry to the position as the sum. Different from small compressors (i.e. 

the largest size is 4-bit) in previous approximate multiplier, this proposal is the first 

attempt to introduce a unified expression to extend to large compressor (i.e. the largest 

size is 8-bit). It solves the problem of slight hardware saving by more compressor stages 

caused by small compressors. Moreover, the proposed compressor design does not 

include the XOR gates while most of previous works still include XOR gates. XOR 

gates are most energy-consuming gates among logic gates in ASIC circuit. Therefore, 

by avoiding XOR gates, the proposed compressor is easily and effectively to be 

synthesized and ASIC circuit can be simplified. 
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As for FPGA-based approximate multiplier, the compressors in accumulation step 

are implemented by LUTs. One carry computation with FPGA-fabric usually costs one 

corresponding LUT. By considering that the occurrence probability of carry from one 

bit to higher one bit is low, the computation of carry result is omitted, along with the 

sum result is computed in the exact manner. Such compressor is without carry. By doing 

so, the LUT resource for carry can be saved and the low error can be guaranteed at the 

same time. To provide multiple choices for FPGA’s reconfiguration feature, difference 

approximation degrees are applied where three proposed multipliers are implemented 

with different number of no-carry compressors. 

1.4 Organization of Dissertation 

The contents of this dissertation are organized as follows.  

In Chapter 1, the background of this dissertation is introduced, including error-

tolerant applications, approximate computing and the necessity of 8×8 approximate 

multipliers. The research states and existing problems on approximate multipliers are 

stated. To achieve the trade-off between accuracy loss and hardware saving, 

approximate multipliers with probability-driven carry-restricted compressors are 

proposed.  

In Chapter 2, an ASIC-based approximate multiplier design is proposed, which is 

based on a novel probability-driven inexact compressor design by focusing restriction 

on the carry. The proposed compressor methodology reduces the height of partial 

product matrix to two rows with one stage. To compensate accuracy loss, a grouped 

error-recovery scheme is proposed to produce the final product. Such grouped error 

recovery is the derivate of probability-driven compressor. To demonstrate the feasibility 

that the proposed unsigned approximation technique can be extended to signed integer 

operation, signed approximate multiplier with optimized probability-driven inexact 

compressor is also discussed. 

In Chapter 3, an FPGA-based approximate multiplier design is introduced. This 

FPGA-based approximate multiplier is proposed by carefully considering the structure 
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of FPGA (i.e. LUT and special carry chain). The proposed approximate multiplier is 

constructed from four optimized 4×4 multiplier. In each 4×4 multiplier, the compressor 

is implemented by LUTs. By considering the low occurrence probability of carry, the 

no-carry compressor is proposed to accumulate partial products. Three types of 4×4 

multipliers are introduced. To sum four 4× 4 approximate multipliers, two types of 

inexact adders are proposed. To provide multiple configurations of FPGA-based 

approximate multipliers, all possible combinations from elementary modules are 

discussed in this chapter. 

In Chapter 4, this dissertation is concluded and some future works are given.  
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2.  ASIC-Based Approximate Multiplier using 

Probability-Driven Inexact Compressors 

In this chapter, ASIC-based approximate multiplier design is to be discussed. 

Section 2.1 detailly states the research status and problems on ASIC-based 

approximate multipliers, and the motivations and contributions of this work also are 

introduced in this section.  

A novel probability-driven inexact compressor design is proposed in Section 2.2, 

which is based on the probability distribution and restricts the carry. This compressor 

design is utilized in the multiplier to accumulate partial products and the height of 

partial product matrix is reduced to two rows.  

After the design of inexact compressors, approximate multiplier with the inexact 

compressors is proposed in Section 2.3. To compensate the accuracy loss of the 

multiplier, a grouped error-recovery scheme is exploited to achieve different levels of 

accuracy.  

Section 2.4 presents the experiment results in terms of accuracy evaluation and 

hardware performance for the exact multiplier, existing state-of-the-art approximate 

multipliers and proposed multiplier. In terms of mean relative error distance (MRED), 

the accuracy losses of the proposed multipliers are from 1.07% to 7.86%. Compared 

with the exact multiplier using 40nm process, the most accurate variant of the proposed 

multipliers can reduce power by 59.75% and area by 42.47%. The critical path delay 

reduction is larger than 12.78%. The proposed multiplier design has a better accuracy-

hardware result than other designs with a comparable accuracy, which achieves the 

target of this research. 

In Section 2.5, the proposed restricted carry generation and propagation approach 

is extended to signed approximate multiplier, which achieves low energy consumption 

under the similar accuracy loss with other existing signed approximate multipliers. 

Section 2.6 concludes the ASIC-based approximate multiplier. 
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2.1 Introduction  

2.1.1 Background 

As introduced before, approximate computing has been considered as a potential 

approach to achieve significant reduction in energy cost by exploiting the exactness 

relaxation in error-tolerant applications, while still produces sufficiently exact results. 

ASIC-based approximate multiplier design is one of the most attractive topics, because 

it provides a fine granularity control of the circuits at gate level. There are many 

commonly exploited techniques in ASIC-based approximate multiplier, such as 

function simplification, Karnaugh map approximation and truncation. 

 

 

(a) 

 
(b) 

 
(c) 

Figure 2-1 Example of approximate approaches in ASIC-based approximate multiplier. 

(a) Basic strcuture of the 4:2 compressor. (b) Approximate 4:2 compressor by Karnaugh 

map approximation [43]. (c) Approximate 4:2 compressor by function simplification 

[50]. 

 

Take the key component (i.e. 4:2 compressor) in the multiplier as an example to 

introduce the approximation techniques for ASIC-based multiplier. The structure of 

accumulation with 4:2 compressor in the multiplier is shown in Figure 2-1 (a). 
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Karnaugh map approximation considers the output which has the different bit-width, to 

change the exact output to the smaller output, as shown in Figure 2-1 (b). Figure 2-1 (c) 

shows function simplification which usually ignores some items in the function to 

simplify the expression. Another approach is truncation, which usually skips or ignores 

the least significant part in the multiplier [51].  

The function of a multiplier can be directly approximated to map the logic gates 

and design the optimized circuit. Therefore, most of existing researches focused on the 

ASIC-based approximate multiplier design.  

2.1.2 Previous Works 

As introduced in Section 1.2,1, a multiplier usually includes partial product 

generation, partial product accumulation and final carry propagate adder. The step of 

partial product accumulation occupies the primary hardware consumption and circuit 

complexity in a multiplier, hence most of studies focus on the approximation of this 

step.  

Here is detailed review of existing ASIC-based approximate multipliers related to 

this research. The methods of previous works could be concluded as two categories: 

propagation restriction [39, 53, 54] and computation with less XOR gates [45, 50, 52]. 

The propagation restriction with OR operation is discussed in [39] and [53]: In [39], a 

significance-driven logic compression for approximate multipliers (AMLC) is 

discussed, where this compression uses 2-input OR operation to replace the exact half 

adder. 3-input OR gates used in LSB part as propagation restriction is introduced in 

[53]. Propagation restriction by dividing carry is discussed in [54], where the carry of 

compressor is divided to two semi-carries for parallel generation. As for the less-XOR 

computation, inexact 4-input compressor with 2 XOR gates is introduced in [45]. In 

[50], two approximate multipliers (MUL1 and MUL2) are explored using inexact half-

adder, full-adder and 4:2 compressors by deleting the terms including XOR operation 

in the function. In [52], an approximate tree compressor (ATC) constructed from 

incomplete adder cells is introduced to reduce the partial product matrix by half, 
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resulting in two approximate multipliers with ATC, they are named as ATCM1 and 

ATCM2.  

To compensate the accuracy loss of overall multiplier, error recovery strategies 

have been discussed. In [45], an inexact half-adder is proposed to accumulate partial 

products in parallel; a conventional adder is used to recovery error of approximate 

multipliers (AM1 and AM2). The 4:2 compressor with an error recovery modular is 

proposed and used in multiplier in [40].  

A reconfigurable construction is another approach for accumulating partial 

products. In [55], an inexact 2×2 multiplier is proposed by simplifying its Karnaugh-

Map expression and used in larger multipliers. Approximate 4:2 compressors are 

introduced in [43] by approximating the Karnaugh map, then compressors are utilized 

in the multiplier to accumulate partial products. 

In general, compressors are XOR-rich circuits in the multiplier, and XOR gate costs 

more power and area than AND and OR gates. High energy consumption in a multiplier 

is usually caused by compressors with a lot of XOR gates. The inexact compressors 

have been introduced in previous works. However, they still have high complexity 

because of the remaining XOR gates. In addition, above previous works just discussed 

compressors with the input width up to 4-bit, which incurs more compressor stages than 

large-size compressors.  

Error-recovery strategy is important to compensate accuracy loss. However, 

previous works employed conventional adders to compensate error bit by bit. It usually 

causes the hardware overhead and extra delay.  

2.1.3 Research Motivations and Contributions 

Motivated by the demand of considerable trade-off between hardware saving and 

accuracy loss, this research aims to achieve better energy saving than existing works 

under the same accuracy loss. To further reduce the hardware consumption in the 

multiplier, this research explores large-size compressors without XOR gates. To 

compensate accuracy loss, error recovery is an important approach. 
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In this research, an approximate multiplier design is proposed by using probability-

driven compressors with only AND and OR gates (no XOR gates), which can be 

synthesized to energy- and area-efficient cells, compound gates. In addition, a unified 

expression is proposed to extend the input of compressor to larger size (8-input), while 

the previous approximate multipliers focus on small compressor (i.e. largest size is 4-

input). Different from the propagation restriction with only OR gates in [39, 53] and 

two semi-carries in [54], the proposal considers the low probability of carry and 

converts it to the position with the sum to restrict the upper carry. By caring the 

probability of carry, the proposed method could save the hardware and ensure the 

accuracy. To compensate the accuracy loss of the multiplier, a grouped error recovery 

scheme is proposed. Different from bit-wise error-recovery approach, this proposed 

scheme processes the error compensation elements in the form of group for reducing 

critical path. Area and delay of the proposed multipliers are estimated theoretically. 

Moreover, accuracy evaluation and circuit simulation are provided. To test the validity 

of the approximate multipliers, image sharpening is considered. The primary 

contributions of this research are as follows: 

i) A novel probability-driven inexact 𝒎:2 compressor design is proposed 

without XOR gates to accumulate 𝑚 partial products into 2 bits (𝑚 = 2, 

3, …, 8). There needs only one compressor stage before the final addition. 

Besides, a general expression for 𝑚:2 compressor is conducted to extend 

the input to larger size.  

ii) A new approximate structure for 8× 8 multiplier is introduced, which is 

divided into four 4×4 multipliers with different precision operations. The 

highest 4×4 multiplier is exact and OR operation is used on the lowest one, 

while the proposed compressors are used on middle two multipliers. 

iii) A grouped error recovery scheme is proposed to compensate accuracy 

loss. The proposed scheme processes error elements in the form of group 

which can shorten the delay. Five variants of error recovery are presented 

for different accuracy requirements. 
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2.2 Proposed Probability-Driven Compressors for 

Approximate Multiplier 

2.2.1 Overview of the Proposed Multiplier Design 

A 2n×2n multiplier (denoted as 𝐴 × 𝐵) can be divided into four n×n multipliers 

as described by 

𝐴 × 𝐵 = (𝐴𝐻 × 2𝑛 + 𝐴𝐿) × (𝐵𝐻 × 2𝑛 + 𝐵𝐿) 

             = 𝐴𝐻 × 𝐵𝐻 × 22𝑛 + (𝐴𝐻 × 𝐵𝐿 + 𝐴𝐿 × 𝐵𝐻) × 2𝑛 + 𝐴𝐿 × 𝐵𝐿 .           (2-1) 

where, 𝐴𝐻  (𝐵𝐻) and 𝐴𝐿 (𝐵𝐿) are an upper- and a lower-half of A (B), respectively. 

By using this structure, an 8×8 multiplier can be built from four 4×4 multipliers.  

 

Figure 2-2 Overview of the proposed ASIC-based approximate multiplier. 

 

The overview of the proposed approximate multiplier design is illustrated in Figure 

2-2. A multiplier is divided into four small-size multipliers. Approximation are applied 

Different precision operations on four 4×4 multipliers (Section 2.3.1)

Exact operation

1 0234567810 91112131415

OR operation

Proposed compressors
(Section 2.2.4)

1 0234567810 91112131415

Addition for the resulting rows from four 4×4 multipliers (Section 2.3.2)

A grouped error recovery scheme (Section 2.3.3) 

Final 16-bit product

  ×   

  ×   

  ×   

  ×   

8-bit A 8-bit B
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on multipliers of 𝐴𝐿 × 𝐵𝐻 , 𝐴𝐻 × 𝐵𝐿  and 𝐴𝐿 × 𝐵𝐿 , along with keeping the highest 

block as exact. This allocation approach trades the accuracy for the hardware reduction. 

To accumulate the partial products in multipliers of 𝐴𝐿 × 𝐵𝐻 and 𝐴𝐻 × 𝐵𝐿, a novel 

inexact compressor design is proposed in Section 2.2.4. This is another and important 

technique to achieve the good balance among hardware performance and accuracy 

quality. Section 2.3.1 detailly introduces the different precision operations applied on 

four multipliers, based on the significances of each multipliers. To improve accuracy, a 

grouped error-recovery scheme is proposed in Section 2.3.3 and used in the final step 

of a multiplier. 

2.2.2 Definition of the Compressor 

Compressor is a circuit that reduces several operands into less operands. In a 

multiplier, compressors are used to accumulate several rows of partial products into two 

rows. It is worth mentioning that, a full-adder processes 3 elements and generate 2 

outputs, hence it is generally called as a 3:2 compressor.  

To lower the latency of partial product accumulation step, large-size compressors 

are also widely used in the multiplier, such as 4:2 compressor. Figure 2-3 shows the 

structure of a 4:2 compressor [42]. 

 

  

Figure 2-3 Exact 4:2 compressor. (a) Basic architecture. (b) Implementaion. 

 

The function of a 4:2 compressor is given by 
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Full adder

Full adder
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𝑠𝑢𝑚 =  𝑥1⨁𝑥2⨁𝑥3⨁𝑥4⨁𝐶𝑖𝑛, 

𝐶𝑜𝑢𝑡 = (𝑥1⨁𝑥2) ∙ 𝑥3 + (𝑥1⨁𝑥2)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ ∙ 𝑥1, 

𝑐𝑎𝑟𝑟𝑦 =  (𝑥1⨁𝑥2⨁𝑥3⨁𝑥4) ⋅ 𝐶𝑖𝑛 + (𝑥1⨁𝑥2⨁𝑥3⨁𝑥4)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ∙ 𝑥4      (2-2) 

where ‘+’ indicates OR operation and ‘∙’ means AND operation.  

The output 𝑠𝑢𝑚 has the same weight with four inputs 𝑥1, 𝑥2, 𝑥3, 𝑥4, while the 

output 𝑐𝑎𝑟𝑟𝑦 is weighted one-bit-higher position. A 4:2 compressor receives a carry-

in signal 𝐶𝑖𝑛  from the preceding module on one-bit-lower position and produces a 

carry out signal 𝐶𝑜𝑢𝑡 to the next one-bit-higher module. A 4:2 compressor is usually 

implemented with two serially connected full adders, as shown in Figure 2-3 (b). 

2.2.3 Probability Distribution Analysis 

Consider two unsigned 𝑛-bit operands 𝛼 = ∑ 2𝑖 × 𝛼𝑖
𝑛−1
𝑖=0  and 𝛽 = ∑ 2𝑗 × 𝛽𝑗

𝑛−1
𝑗=0 . 

The partial product is the result of AND operation of the bits of 𝛼𝑖 and 𝛽𝑗. Figure 2-

4 shows the partial product matrix of an unsigned 8×8 multiplier.  

 

 

Figure 2-4 Example of partial product matrix of an unsigned 8×8 multiplier. 

 

 

Partial products belonging to one column from top to bottom are donated as: 

𝑝1, 𝑝2, … , 𝑝𝑚, and 𝑚 is the number of partial products in this column. For example, as 

shown in Figure 2-5, partial products in the column of bit 5 are denoted as 𝑝1, 𝑝2, … , 𝑝6, 

where 𝑝1 = 𝛼5 ∙ 𝛽0,  𝑝2 = 𝛼4 ∙ 𝛽1, … , 𝑝6 = 𝛼0 ∙ 𝛽5.  

 

                

×                 

                                                                                        

                                                                                       

                                                    

                                        

                                        

                                        

                                        

                                        

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
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Figure 2-5 Example of partial products in the column of bit 5. 

 

The arithmetic sum result of 𝑚 partial products belonging to the same column, 

𝑅𝑚, is described as: 

𝑅𝑚 = ∑(𝑝1, 𝑝2, … , 𝑝𝑚).                           (2-3) 

where notation Σ means the summation of these elements. 𝑅𝑚 ranges from 0 to 𝑚. 

Assume that two inputs of the multiplier are uniformly and independently distributed, 

hence the probability is 0.75 and 0.25 for the cases that one partial product is equal to 

‘0’ and ‘1’, respectively.  

In a multiplier, compressors and adders are usually used to accumulate partial 

products. The inputs of compressor are all partial products belonging to one column. 

The probability distribution of the arithmetic sum results of 𝑚 partial products in an 

8×8 multiplier is illustrated in Figure 2-6.  

Consider that different cases that the number of partial products, that is 𝑚, ranges 

from 2 to 8. For all cases, the probability concentrates on the range from 0 to 2 of 𝑅𝑚, 

and decreases on the range from 2 to 𝑚.  

Furthermore, the probability distribution on the multiplications in image 

sharpening filter on LENA image is shown in Figure 2-7. The tendency in Figure 2-7 is 

a bit different with that in Figure 2-6, but the probability also concentrates on the range 

from 0 to 2 of 𝑅𝑚. The probability is close to 0 for the range of 𝑅𝑚 is larger than 2. 
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Figure 2-6 Probability distribution of the arithmetic sum result of 𝑚 partial products 

in an 8×8 multiplier. 

 

 

Figure 2-7 Probability distribution of the arithmetic sum result of 𝑚 partial products 

in an image processing. 

2.2.4 Design of Probability-Driven Inexact 𝑚:2 Compressor 

According to the analysis in the last section, two primary observations are 

concluded: 
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i) the probability is low for the case that the sum result 𝑅𝑚 is greater than 2; 

ii) the probability of 𝑅𝑚 on range 0~1 is higher than that on 2.  

For inexact compressor design, based on the observation (i), two bits are sufficient 

to calculate the sum result of 𝑚 partial products. Moreover, based on the observation 

(ii), one bit is sufficient for most situations. Therefore, one constraint is conducted 

based on the observation (ii), that is, if only one bit is equal to ‘1’, then this ‘1’ is 

distributed on the first bit (i.e. 𝑊1
𝑚 in the following). By the constraint, an inexact 

half-adder with low error probability is proposed. 

The design rule of the inexact 𝑚 :2 compressor (𝑚 :2 Com) that calculates the 

arithmetic sum result of 𝑚 partial products using two bits is given by 

𝑅�̃� =∑(𝑊1
𝑚,𝑊2

𝑚), 

𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡:𝑊1
𝑚 ≥ 𝑊2

𝑚,                    (2-4) 

where 𝑅�̃�  indicates the inexact sum result of 𝑚  partial products. 𝑊1
𝑚  and 𝑊2

𝑚 

have the same weights as 𝑚 partial products. The value assignment of 𝑊1
𝑚 and 𝑊2

𝑚 

are determined by 𝑅𝑚. When 𝑅𝑚 is less than 2, one bit is sufficient to the sum result, 

hence 𝑊1
𝑚 is equal to 𝑅𝑚. When 𝑅𝑚 is equal to or greater than 2, both of two bits 

are ‘1’. The value assignment of 𝑊1
𝑚 and 𝑊2

𝑚 is given by 

𝑊1
𝑚  = {

0       𝑅𝑚 < 1
1       𝑅𝑚 ≥ 1

                        (2-5) 

𝑊2
𝑚  = {

0       𝑅𝑚 < 2
1       𝑅𝑚 ≥ 2

                        (2-6) 

According to Eq. 2-5 and 2-6, the logic functions of 𝑊1
𝑚  and 𝑊2

𝑚  can be 

deduced. In Eq. 2-5, 𝑅𝑚 is equal to or greater than 1, that is, at least one of 𝑚 partial 

products is ‘1’. Therefore, 𝑊1
𝑚 can be calculated as the result of OR operation of all 

𝑚 partial products. For the value assignment of 𝑊2
𝑚 in Eq. 2-6, 𝑅𝑚 is equal to or 

greater than 2, that is, at least two partial products are ‘1’. Thus, 𝑊2
𝑚 can be calculated 

as the result of AND operation of any two partial products. The logic functions of 𝑊1
𝑚 

and 𝑊2
𝑚 can be expressed as: 

𝑊1
𝑚 = 𝑝1 + 𝑝2 +⋯+ 𝑝𝑚,                                            

𝑊2
𝑚 = 𝑝1 ∙ (𝑝2 +⋯+ 𝑝𝑚) +⋯+ 𝑝𝑖 ∙ (𝑝𝑖+1 +⋯+ 𝑝𝑚)  + ⋯+𝑝𝑚−1 ∙ 𝑝𝑚,      (2-7) 

where ‘+’ indicates OR operation and ‘∙’ means AND operation. In the functions of 
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𝑊1
𝑚 and 𝑊2

𝑚, no XOR gates are required, hence we foresee the possibility of simpler 

circuit. Figure 2-8 shows the structure for 𝑚:2 Com. When m is equal to 2, the circuit 

includes one AND gate and one OR gate. When m is greater than 2-input, there is a 

common architecture as shown in Figure 2-8(b). 

 

 

(a) 2:2 Com. 

 

(b) m:2 Com (m>=3). Dotted box indicates the reduplicative operation. 

Figure 2-8 Architecture of the 𝑚:2 Com. 

 

When 𝑚  is equal to 2, the compressor can be regarded as inexact half-adder 

(inHA). In the following, inHA, 4:2 compressor (4:2 Com) ,6:2 compressor (6:2 Com) 

and 8:2 compressor (8:2 Com) are discussed in detail, because these four are employed 

in the proposed approximate multiplier. 

 

1) Inexact half-adder (inHA) 

Consider two partial products belonging to the same column, the exact sum result 

𝑅2 is calculated as: 

 𝑅2 = ∑(𝑝1, 𝑝2).                     (2-8) 

The maximum value of 𝑅2 is 2. With the help of Eq. 2-4, 2-5 and 2-6, the behavior 

of inHA can be obtained, as shown in Table 2-1. 
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Table 2-1 The behavior of ineact half-adder (inHA). 

inputs exact result inHA 
probability 

           
    

    ̃ 

0 0 0 0 0 0 0.5625 

0 1 1 1 0 1 0.1875 

1 0 1 1 0 1 0.1875 

1 1 2 1 1 2 0.0625 

 

As illustrated in Table 2-1, the first output 𝑊1
2 of inHA is equal to the exact result 

𝑅2, for three input combinations (‘00’, ‘01’ and ‘10’), with the occurrence probability 

of 0.9375. Thus, 𝑊1
2 is sufficient for these combinations. In addition, 𝑅2̃ of inHA is 

always equal to the exact result 𝑅2 for all combinations. It is a feature of inHA that 

𝑊2
2 can be regarded as an error compensation bit to sum with 𝑊1

2 as error recovery.  

With the help of Eq. 2-7, the function of inHA is given by 

𝑊1
2 = 𝑝1 + 𝑝2, 

𝑊2
2 = 𝑝1 ∙ 𝑝2.                         (2-9) 

Compared with the conventional half-adder, the functions of two outputs in inHA 

are simpler. One XOR gate in conventional half-adder is replaced by one OR gate in 

the proposed inHA. 

 

2) Inexact 4:2 compressor (4:2 Com) 

The exact sum result of four partial products is calculated as: 

𝑅4 = ∑(𝑝1, 𝑝2, 𝑝3, 𝑝4).                      (2-10) 

𝑅4 ranges from 0 to 4. The behavior of 4:2 Com is shown in Table 2-2, with the help 

of Eq. 2-4, 2-5 and 2-6. The combination that 𝑅4  is equal to 3 occurs with the 

probability of 0.0117. In addition, another input combination, ‘1111’, occurs with the 

probability of 0.0039. Thus, the total probability that 𝑅4 is greater than 2 is 0.0507. It 

indicates the error probability, which is the occurrence probability of difference 

between the exact result and inexact result.  

The function of 4:2 Com can be written as: 



ASIC-Based Approximate Multiplier using Probability-Driven Inexact Compressors 

29 

 

Table 2-2 The behavior of ineact 4:2 compressor (4:2 Com). 

inputs exact result 4:2 Com 
probability 

                 
    

    ̃ 

0 0 0 0 0 0 0 0 0.3164 

0 0 0 1 1 1 0 1 0.1055 

0 0 1 0 1 1 0 1 0.1055 

0 0 1 1 2 1 1 2 0.0352 

0 1 0 0 1 1 0 1 0.1055 

0 1 0 1 2 1 1 2 0.0352 

0 1 1 0 2 1 1 2 0.0352 

0 1 1 1 3 1 1 2 0.0117 

1 0 0 0 1 1 0 1 0.1055 

1 0 0 1 2 1 1 2 0.0352 

1 0 1 0 2 1 1 2 0.0352 

1 0 1 1 3 1 1 2 0.0117 

1 1 0 0 2 1 1 2 0.0352 

1 1 0 1 3 1 1 2 0.0117 

1 1 1 0 3 1 1 2 0.0117 

1 1 1 1 4 1 1 2 0.0039 

* Gray background indicates error occurrence. 

 

𝑊1
4 = 𝑝1 + 𝑝2 + 𝑝3 + 𝑝4, 

𝑊2
4 = 𝑝1 ∙ (𝑝2 + 𝑝3 + 𝑝4) + 𝑝2 ∙ (𝑝3 + 𝑝4) + 𝑝3 ∙ 𝑝4.     (2-11) 

Equation 2-11 shows the possibility of simplifying the circuit complexity due to no 

XOR gates in 4:2 Com.  

 

3) Inexact 6:2 compressor (6:2 Com) 

Similar as the inHA and 4:2 Com, the function of 6:2 Com can be conducted based  

on the Eq. 2-7. Firstly, the exact sum result (i.e. 𝑅6) of six partial products can be 

expressed as  

𝑅6 = ∑(𝑝1, 𝑝2, 𝑝3, 𝑝4, 𝑝5, 𝑝6).                      (2-12) 

Table 2-3 illustrates the behavior of 6:2 Com. Because the space limitation, input 

combinations are not included in this table. The term of exact result indicates the 

corresponding combinations. 𝑅6  ranges from 0 to 6. Error occurs when the exact 
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results is greater than 2, which means there are more than two ‘1’ in the input 

combinations. The error probability of 6:2 Com is 0.1694. The function of 6:2 Com is 

given as: 

𝑊1
6 = 𝑝1 + 𝑝2 + 𝑝3 + 𝑝4 + 𝑝5 + 𝑝6, 

𝑊2
6 = 𝑝1 ∙ (𝑝2 + 𝑝3 + 𝑝4 + 𝑝5 + 𝑝6) + 𝑝2 ∙ (𝑝3 + 𝑝4 + 𝑝5 + 𝑝6) 

                               +𝑝3 ∙ (𝑝4 + 𝑝5 + 𝑝6) + 𝑝4 ∙ (𝑝5 + 𝑝6) + 𝑝5 ∙ 𝑝6.           (2-13) 

 

Table 2-3 The behavior of ineact 6:2 compressor (6:2 Com). 

Exact result 6:2 Com 
probability 

 6   
6   

6  6̃ 

0 0 0 0 0.1780 

1 1 0 1 0.3560 

2 1 1 2 0.2966 

3 1 1 2 0.1318 

4 1 1 2 0.0330 

5 1 1 2 0.0043 

6 1 1 2 0.0003 

* Gray background indicates error occurrence. 

 

Table 2-4 The behavior of ineact 8:2 compressor (8:2 Com). 

Exact result 8:2 Com 
probability 

 𝟖   
𝟖   

𝟖  �̃� 

0 0 0 0 0.1001 

1 1 0 1 0.2670 

2 1 1 2 0.3115 

3 1 1 2 0.2076 

4 1 1 2 0.0865 

5 1 1 2 0.0231 

6 1 1 2 0.0038 

7 1 1 2 0.0004 

8 1 1 2 0.00002 

* Gray background indicates error occurrence. 

 

4) Inexact 8:2 compressor (8:2 Com) 
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8:2 Com has the similar design as inHA, 4:2 Com and 6:2 Com. Using Eq. 2-3, we 

first consider the exact sum result (i.e. 𝑅8) of eight partial products. The range of 𝑅8 

is 0~8. Using the proposed approach presented in Eq. 2-4, 2-5 and 2-6, 8:2 Com is 

explored.  

The behavior of 8:2 Com is shown in Table 2-4. In 8:2 Com, error occurs when 𝑅8 

is greater than 2, with a probability of 0.3214. The dominant part of the error probability 

is from combinations that 𝑅8 is equal to 3, which is up to 0.2076. However, the error 

distance for this combination is small as 1 (= |3 – 2|). More importantly, the utilization 

of 8:2 Com is limited in the proposed multiplier, which also decreases the impact of 

error from 8:2 Com. 

2.3 Approximate Multiplier Design using Proposed 

Inexact Compressor 

The approximate multiplier design is proposed by utilizing proposed inexact 

compressors. This approximate multiplier includes three steps. Firstly, one multiplier is 

divided into three blocks with architectural-space construction. Then, results from three 

blocks are accumulated in parallel. Finally, a grouped error recovery scheme is explored 

to improve accuracy. 

2.3.1 An 8×8 Multiplier with Different Approximation Levels 

on 4×4 Multipliers 

An 8×8 multiplier can be constructed from four 4×4 multipliers following Eq. 2-

1. Four 4× 4 multipliers are classified into three multiplication blocks (High_block, 

Low_block and Mid_block), according to their significances. 

i) High_block: This block contains 𝐴𝐻 × 𝐵𝐻 which is the most important. A 

Wallace tree is used to compute the resulting row (named as 𝑆𝐻). 
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iii) Low_block: This block involves 𝐴𝐿 × 𝐵𝐿 and is the least important. OR 

gates are used to compute the result (named as 𝑆𝐿) of this block. 

iv) Mid_block: Figure 2-9 shows Mid_block containing 𝐴𝐿 × 𝐵𝐻 and 𝐴𝐻 ×

𝐵𝐿. Two 4:2 Coms are used on bits 1 and 5, along with two 6:2 Coms are 

employed on bits 2 and 4. Elements of bit 3 are accumulated by one 8:2 

Com. Eight rows are reduced to two rows (named as 𝑆𝑀1  and 𝑆𝑀2 ) 

using the proposed inexact compressors. 

 

01234567

01234567

01234567

Mid_block

AL X BH

AH X BL

8:2 Com
6:2 Com
4:2 Com

SM1
SM2

 

Figure 2-9 Dot notation for Mid_Block, where the proposed inexact compressors are 

used in partial product accumulation. 

2.3.2 Accumulating Results of Three Blocks in Parallel  

Figure 2-10 shows the overall structure of an approximate 8×8 multiplier. Note 

that the partial product generation and error-recovery scheme are not shown. 

In Stage 1, an 8×8 multiplier is divided into three blocks with different precision 

operations, as described in Section 2.3.1. The results are 𝑆𝐻, 𝑆𝐿, 𝑆𝑀1 and 𝑆𝑀2. 

In Stage 2, three rows from three blocks are reduced into two rows using carry save 

adder (CSA) without carry propagation. Six full-adders (FAs) are used on the bits 4 to 

10, except the bit 7. One half-adder (HA) is required for the bit 7. The results of this 

stage are named as 𝑆3 and 𝐶. 
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In Stage 3, 𝑆3  and 𝐶  are processed by the proposed inHAs. According to the 

feature of inHA, the second output 𝑊2
2  of an inHA can be regarded as error 

compensation bit. The results of this stage are one sum result row (named as 𝑆) and 

one error compensation row (named as 𝐸). 

 

0123456789101112131415

0123456789101112131415

S3

C

SH SL

SM1

SM2

inHA

0123456789101112131415

S

E

FA HA

High_block

Mid_block

AL X BL

 AL X BH

AH X BL

Low_blockAH X BHStage 1

Stage 2

Stage 3

 

Figure 2-10 Overall structure of an 8×8 multiplier. 

2.3.3 A Grouped Error Recovery Scheme 

To improve accuracy, a grouped error recovery scheme is proposed, which is 

explored based on the feature of the proposed inHA. 

𝑆  and 𝐸  in Stage 3 are produced by inHAs. 𝑆  must be ‘1’ when 𝐸  is ‘1’ 

(determined by Equation 2-9). Thus, the function of conventional adder for summing 

𝑆  and 𝐸  can be simplified. This error recovery scheme can be implemented by 

simplified adders to add 𝐸 into 𝑆. As shown in Figure 2-11, seven 𝐸 bits are divided 

into four groups. The carry results between two adjacent groups are produced in serial, 

while the sum results in one group are produced in parallel. The function of carry result 

is simplified, hence the critical path is shortened.  
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(b) 

Figure 2-11 A grouped error recovery scheme. (a) The function of each group. (b) 

Overall structure. 

 

Table 2-5 Five variants of error recovery. 

Designs 
Group numbers of error 

compensation bits 
Corresponding bit-positions 

MGER-0g No error recovery Null 

MGER-1g group1 11 

MGER-2g group1 group2 9-11 

MGER-3g group1 group2 group3 7-11 

MGER-4g group1 group2 group3 group4 5-11 

 

Table 2-5 illustrates all variants of error recovery. A variant of the approximate 

multiplier with grouped error recovery is referred as MGER-𝑘 g, where 𝑘  is the 

number of groups of error compensation elements. For example, MGER-3g means that 

three error compensation groups (bits 7 to 11 in 𝐸) are used to compensate error. Four 

accurate HAs generate the values from bits 12 to 15, along with the values of bits 0 to 

6 are kept as these bits in 𝑆. 

2.4 Performance Evaluation 

In this section, the impact of probability-driven inexact compressors is firstly 

evaluated. Then, the accuracy evaluation of approximate multipliers is presented, 
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followed by the hardware theoretical analysis and synthesized results. The proposed 

multipliers (MGER-0g, MGER-1g, …, MGER-4g) were compared with the Wallace 

multiplier and approximate multipliers proposed in [52] (ATCM1, ATCM2), [50] 

(MUL1), [39] (AMLC2) and [45] (AM1-t). In [39], the value 2 for AMLC2 means that 

the 2-cluster logic compression is used to accumulate partial products. In [45], the 

parameter t for AM1-t is the number of MSBs for error recovery. 

2.4.1 Evaluation for the Impact of Inexact Compressors 

a) Comparison of proposed multipliers with/without proposed compressors 

In order to evaluate the effectiveness of proposed inexact compressors in the 

multiplier, proposed approximate multipliers with/without 𝑚 :2 Coms (the proposed 

compressors) are implemented. Approximate multipliers with 𝑚:2 Coms are the design 

of MGER-𝑘g presented in Section 2.3. Approximate multipliers without 𝑚:2 Coms 

mean that operation using m:2 Coms is replaced with exact full-adders and half-adders 

while other operations are unchanged. 

Approximate multipliers with different cases have been designed in Verilog and 

synthesized using the Synopsys Design Compiler with SMIC 40nm process library. The 

exact multiplier has been synthesized and evaluated in the same environment. The 

operating condition for synthesis was typical condition, where the process factor is 1.00, 

the power supply is 1.1v, and the operating temperature is 25℃. All multipliers were 

synthesized and optimized with default compile options. For power evaluation, the 

power consumption was evaluated at 0.5GHz frequency using the Synopsys Power 

Compiler with a switching activity interchange format file generated from all input 

combinations of 65536 cases for 8×8 multipliers. Error rate (ER) is the percentage of 

the erroneous result produced by approximate multipliers among all results, which 

shows the accuracy loss compared with the exact multiplier. 

Figure 2-12 shows the savings of power, area and delay achieved by the 

approximate multipliers, compared with the exact multiplier. Red line shows the 

evaluation of multipliers with 𝑚:2 Coms and blue line shows the approximate  
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(a) 

 

(b) 

 

(c) 

Figure 2-12 Hardware saving versus error rate for the approximate multipliers 

with/without proposed probability-driven inexact 𝑚:2 Coms. (a) Power saving vs. ER. 

(b) Area saving vs. ER. (c) Delay saving vs. ER. 

 

multipliers without 𝑚:2 Coms. Approximate multipliers with 𝑚:2 Coms incur more 

than 11.66% accuracy loss on average, compared with those without 𝑚 :2 Coms. 

However, in all evaluations, red lines are above blue lines, which shows the multipliers 
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employing 𝑚 :2 Coms achieves more savings than those without 𝑚 :2 Coms. For 

example, approximate multipliers without 𝑚:2 Coms achieves area saving of 21.20% 

on average, while the area saving by approximate multipliers with 𝑚:2 Coms is up to 

47.48%. More hardware savings can be achieved by using 𝑚 :2 Coms, while the 

accuracy loss is acceptable. This shows the effectiveness of the proposed 𝑚:2 Coms in 

the multiplier. 

 

b) Comparison of the proposed compressors with previous approximate compressors 

   In this subsection, a hardware comparison of proposed compressors and previous 

inexact compressors is presented to further show the advantage of the proposed inexact 

compressor design. The proposed design was implemented and evaluated at the 

condition reported in Section 2.4.1 a). All previous compressors were implemented 

based on the logic function presented in their papers. The proposed compressors and 

previous compressors were evaluated and compared under the same condition. Table 2-

6 shows the synthesized results.  

 

Table 2-6 Comparison of synthesized results for inexact compressors. 

Designs Power (  ) Area ( 𝒎 ) Delay (  ) 

2-input compressor in proposed design 0.43 3.19 0.09 

4-input compressor in proposed design 0.36 7.34 0.32 

6-input compressor in proposed design 0.46 12.45 0.54 

8-input compressor in proposed design 0.38 15.64 0.46 

2-input compressor in [39] 0.08 1.28 0.05 

4-input compressor in [45] 0.55 6.38 0.15 

2-input compressor in [50] 0.43 3.19 0.09 

3-input compressor in [50] 0.66 4.79 0.16 

4-input compressor in [50] 0.51 9.58 0.17 

2-input compressor in [52] 0.43 3.19 0.09 

4-input compressor in [52] 1.13 12.45 0.40 

 

For inexact compressors, the hardware performance of power and area are more 

important than delay. There are two reasons: firstly, the partial product accumulation 

usually includes exact compressors and inexact compressors. The delay in this step is 



ASIC-Based Approximate Multiplier using Probability-Driven Inexact Compressors 

38 

 

determined by the exact compressor, rather than inexact compressor. The second reason 

is the primary reason, which the major delay of one multiplier is caused by the final 

carry propagate adder. Thus, the delay of inexact compressor has minor effect to the 

delay of the overall multiplier.  

Therefore, here the discussion on power and area are stated. Regarding the power 

consumption shown in Table 2-6, the proposed design has less power consumption than 

previous compressors. More importantly, the proposed design first extends the input-

size to 6- and 8-bit. It can be observed that the proposed large compressor even has less 

power consumption than 4-bit compressors [45, 50, 52]. As for area, the proposed 6- 

and 8-input compressors have the large area. However, accumulating the fixed elements 

with the small compressor requires more compressors. For example, there needs two 4-

input compressors to accumulate 8 elements, which roughly costs 19.16 𝑢𝑚2 for [50], 

and 24.9 𝑢𝑚2 for [52]. In [45], the 4-input compressor actually processes two bits at 

the current column and two bits at the preceding column (as the predict carry). 

Therefore, to accumulate 8 elements at the same column, it requires four compressors 

and area is 25.52 𝑢𝑚2. In contrast, accumulating 8 elements with the proposed 8-input 

compressor requires 15.42 𝑢𝑚2 . Therefore, the proposed compressors cost smaller 

area than previous compressors to accumulate the fixed number of elements. 

 

 

 

(a) (b) 

Figure 2-13 4:2 Compressor (4:2 Com). (a) Logical AND-OR structure. (b) Cell 

structure after synthesis. 

 

To explain this superiority, feature of the proposed design is explored. The power 

and area savings by the proposed design are mainly due to the feature that compressors 

only comprise AND and OR gates. During the synthesis, AND and OR gates can be 
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synthesized to compound gate, which has less transistors as a power- and area-efficient 

cell. To demonstrate this feature, the logic circuit based on function and schematic 

circuit from synthesis are illustrated. Take the proposed 4:2 Com as an example to 

explain, Figure 2-13 (a) shows the logical AND-OR circuit drawn from the function of 

4:2 Com as stated in Eq. 2-11 (Section 2.2.4). The schematic circuit extracted after the 

synthesis is shown in Figure 2-13 (b). It can be observed that the synthesized inexact 

compressor is simpler than original circuit due to the compound gates. In this example, 

the compound gate AOI222 is included, which has less transistors.  

2.4.2 Accuracy Evaluation 

a) Metrics for accuracy analysis 

Here gives several metrics to evaluate the accuracy of approximate multipliers. For 

multiplier, the error distance (ED) is defined as the arithmetic absolute difference 

between the exact product (𝑌) and the inexact product (�̃�), that is, 

𝐸𝐷 = |�̃� − 𝑌|.                        (2-14) 

MED is the average value of EDs for a set of outputs. The normalized mean error 

distance (NMED) is developed in [57], which is applicable to compare multipliers with 

different sizes, as defined as  

𝑁𝑀𝐸𝐷 = 𝑀𝐸𝐷/𝑌𝑚𝑎𝑥.                 (2-15) 

where 𝑌𝑚𝑎𝑥 is the maximum output of an exact multiplier, that is, (2𝑛 − 1)2 for an 

𝑛 × 𝑛 multiplier. The relative error distance (RED) is calculated as  

𝑅𝐸𝐷 = 𝐸𝐷/𝑌.                     (2-16) 

The average value of REDs is mean RED (MRED).  

In addition, normalized worst case error distance (NWCE) and worst case relative 

error (WCRE) also are important metrics. This is because low mean error but 

excessively high ED in some cases also could cause the unacceptable results. NWCE 

is defined as the normalized value of the maximum ED, expressed as 

 𝑁𝑊𝐶𝐸 = 𝐸𝐷𝑚𝑎𝑥/𝑌𝑚𝑎𝑥.                  (2-17)   

WCRE is the maximum value of RED among all results. The functional models for 
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approximate multipliers were implemented using Matlab. An exhaustive simulation 

was performed for each 8×8 multiplier (65536 patterns).  

 

b) Accuracy analysis 

Table 2-7 illustrates the NMED, MRED, ER, NWCE and NWCE results for the 

existing approximate multipliers and the proposed multiplier. For the proposed 

multiplier design, error varies with error recovery configurations. Error decreases 

drastically from MGER-1g to MGER-2g. For example, the MRED decreases from 6.19% 

(MGER-1g) to 2.87% (MGER-2g). The reason is that the additional error compensation 

part is group 2, whose corresponding weights are 29  and 210 . These weights are 

significant for overall multiplication result. Regarding the mean error metrics (NMED, 

MRED and ER), error of AM1-10 is the lowest. In terms of NMED, ATCM2 also 

achieves the lowest value as 0.21%. The mean error of the proposed MGER-4g is 

slightly higher than that of AM1-10.  

 

Table 2-7 Accuracy comparisons for approximate multipliers. 

Designs NMED (%) MRED (%) ER (%) NWCE (%) WCRE (%) 

MGER-0g 1.30 7.86 80.00 8.81 56.58 

MGER-1g 0.94 6.19 78.79 6.40 56.58 

MGER-2g 0.40 2.87 71.38 5.51 56.58 

MGER-3g 0.28 1.44 60.26 5.12 49.46 

MGER-4g 0.25 1.07 54.18 4.97 43.56 

ATCM1 [52] 0.28 1.64 55.44 11.92 44.44 

ATCM2 [52] 0.21 1.21 47.33 11.23 44.44 

MUL1 [50] 2.58 7.86 81.79 27.60 33.86 

AMLC2 [39] 0.35 1.99 49.11 5.64 33.20 

AM1-4 [45] 1.85 10.32 81.06 13.63 61.36 

AM1-6 [45] 0.73 5.08 76.41 12.06 59.59 

AM1-8 [45] 0.30 1.87 61.55 10.88 57.44 

AM1-10 [45] 0.21 0.79 40.97 10.78 57.14 

 

In terms of worst case, MGER-4g has smaller NWCE than ATCM2 and AM1-10, 

whose mean errors are smaller than MGER-4g. In the proposed design, the High_block 
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is fully accurate, hence this part ensures the low error in columns with large weights. 

In addition, the approximation in MGER-4g is applied on columns from 20 to 210. 

However, the approximate compression is used on columns from 20  to 213  in 

ATCM2, and all columns in AM1-10, which incurs the error in columns with large 

weights. On the other hand, the maximum weight of bit difference mainly causes the 

maximum ED. We further explored the input combination for the maximum ED, where 

(255×255) are both for ATCM2 and MGER-4g, and (238×255) is for AM1-10. The 

maximum weight of bit difference is 212  in ATCM2, yet 211  in MGER-4g. The 

compression logic in AM1-10 considers the lower one bit, hence the input operands for 

worst case is less than 255. The maximum weight of bit difference is 213 in AM1-10. 

In terms of WCRE, the value of MGER-4g ranks third among all approximate 

multipliers. In general, the maximum RED occurs in the multiplication of two small 

numbers, such as (15×15) in MGER-4g. The higher degrees of approximation in low 

part cause the larger WCRE. In the proposed design, all bits in lower half part are 

accumulated approximately, while some bits in MUL1 and AMLC2 keep accurate. 

Therefore, AMLC2 and MUL1 have the lower WCREs than MGER-4g. The mean error 

combined with the error in the worst case indicates the comprehensive accuracy loss. 

On the whole, MGER-4g achieves the better performance on accuracy than other 

designs. 

2.4.3 Hardware Analysis 

a) Area and Delay Estimation 

Here shows the evaluation of area and delay by the number of gates. Consider a 2-

input gate (e.g. AND gate) as a unit. For one unit, the area is 𝛼0 and the delay is 𝜏0. 

The 2-input XOR gate is regarded as two units, with 2𝛼0 area and 2𝜏0 delay. The 

area for FA and HA is 7𝛼0 and 3𝛼0, and the delay for FA and HA is 4𝜏0 and 2𝜏0, 

respectively [45][52]. Note that the carry propagation delay of FA and HA in an adder 

chain is 2𝜏0 and 𝜏0, respectively.  

For area estimation, all operations are converted to units and count the total number 
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of units. The partial product accumulation of MGER-kg includes three operations on 

three blocks (i.e. Stage 1), CSA stage (i.e. Stage 2) and inHA stage (i.e. Stage 3). In 

Stage 1, High_block consists of nine FAs and three HAs which are converted into 72 

units, along with nine OR gates in Low_block. Mid_block involves 16 units for two 4:2 

Coms, 28 units for two 6:2 Coms, and 20 units for one 8:2 Com. Therefore, the number 

of units of High_block, Mid_block and Low_block is 72, 64 and 9, respectively. The 

total area of Stage 1 is 145𝛼0. In Stage 2, six FAs and one HA are converted to 45 

units, hence the area is 45𝛼0. Stage 3 involves seven inHAs with the area of 14𝛼0. 

Therefore, the area of partial product accumulation step is 204𝛼0. 

The cost of error recovery step in MGER-kg is determined by the number of error 

compensation groups. The area of MGER-kg is the total area of both partial product 

accumulation step and error recovery step, i.e., 

𝐴𝑀𝐺𝐸𝑅−𝑘𝑔 = 204𝛼0 + 𝛼𝑘𝑔,                 (2-18) 

where 𝛼𝑘𝑔 is the area of error recovery step in MGER-kg. 

For delay estimation, the critical path of MGER-kg is throughout the partial 

product accumulation step and error recovery step. Note that, only lower three LSBs in 

High_block are used by CSAs in Stage 2. Thus, the critical path of Stage 1 is determined 

by the 8:2 Com in Mid_block, which is 13𝜏0. For Stage 2 and Stage 3, the delay is 

4𝜏0 (FA) and 𝜏0 (inHA), respectively. The delay of partial product accumulation step 

is 18𝜏0. The total delay of MGER-kg is calculated as:  

𝐷𝑀𝐺𝐸𝑅−𝑘𝑔 = 18𝜏0 + 𝜏𝑘𝑔,             (2-19) 

where 𝜏𝑘𝑔 is the delay of error recovery step in MGER-kg. 

In an 8× 8 Wallace multiplier, four CSA stages including 38 FAs and 15 HAs 

compresses eight rows of partial products into two rows. These adders are converted to 

311 units and the delay is 16𝜏0 . The final CPA involving 10 FAs and 1 HAs is 

converted into 73 units and the area is 73𝛼0. The delay of this CPA is determined by 

the carry propagation chain, thereby the delay is 22𝜏0.  

Table 2-8 shows the estimated area and delay of the Wallace multiplier and the 

proposed multipliers. The dominated delay consumption of the proposed multipliers is 

determined by partial product accumulation step. In this step, the proposed multipliers 
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have larger estimated delay than the Wallace multiplier. However, the circuit 

complexity of the error recovery step is much simpler than that of conventional CPA. 

Therefore, the proposed multipliers have less total delay than the Wallace multiplier. 

 

Table 2-8 Area and delay esitimation. 

Designs 

Partial product 

accumulation 

Final  

addition 
Total 

Area 

(  ) 
Delay (𝝉 ) 

Area 

(  ) 

Delay 

(𝝉 ) 

Area 

(  ) 

Delay 

(𝝉 ) 

Wallace 311 16 73 22 384 38 

MGER-0g 204 18 0 0 204 18 

MGER-1g 204 18 13 5 217 23 

MGER-2g 204 18 25 9 229 27 

MGER-3g 204 18 40 12 244 30 

MGER-4g 204 18 55 15 259 33 

 

Table 2-9 Synthesized results comparison. 

Designs Area ( 𝒎 ) Power (  ) Delay (  ) PDP (𝒇𝑱) ADP ( 𝒎 ∙   ) 

Wallace 496.04 92.03 2.27 208.91 1126.01 

MGER-0g 243.23 26.92 1.08 29.07 262.69 

MGER-1g 245.46 26.07 1.23 32.07 301.92 

MGER-2g 263.02 27.16 1.37 37.21 360.34 

MGER-3g 264.62 29.40 1.64 48.22 433.98 

MGER-4g 285.36 37.04 1.98 73.34 565.01 

ATCM1 [52] 281.53 44.86 1.71 76.71 481.42 

ATCM2 [52] 314.73 49.00 1.72 84.28 541.34 

MUL1 [50] 261.74 48.14 1.77 85.21 463.28 

AMLC2 [39] 277.07 45.10 1.71 77.12 473.79 

AM1-4 [45] 267.81 38.56 1.25 48.20 334.76 

AM1-6 [45] 301.96 40.37 1.61 65.00 486.16 

AM1-8 [45] 344.42 49.71 1.99 98.92 685.40 

AM1-10 [45] 385.27 61.39 2.42 148.56 932.35 

 

b) Synthesis Results 

The proposed multipliers (MGER-𝑘g) have been simulated and synthesized under 

the same conditions as Section 2.4.1. Existing approximate multipliers and the Wallace 

multiplier (exact) were implemented based on algorithms in their papers, which were 
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synthesized and evaluated in the same environment as the proposed design. All designs 

were synthesized without the timing and area constraints. The condition for the power 

evaluation was the same as Section 2.4.1. Table 2-9 shows the synthesized results for 

power consumption, circuit area, critical path delay, power-delay product (PDP) and 

area-delay product (ADP).  

Compared with the Wallace multiplier, the proposed multipliers deliver power 

reduction of 59.75%~70.75%. The area and delay reduction is up to 50.97% and 

52.42%, respectively. Compared with the theoretical results shown in Table 2-7, the 

hardware reduction after synthesis is larger than the estimated result. Take MGER-3g 

as an example, for the area (delay) reduction, the experimental result is 46.65% 

(27.75%), while the estimated result is 36.46% (21.05%).  

Here are two primary reasons might cause these differences, which were found 

from netlist and critical path reports. Firstly, the majority of gates in the Wallace 

multiplier are XOR gates, which is 91 2-input XOR gates in partial product 

accumulation. During DC synthesis, XOR gates are difficult to be synthesized to 

compound gates. In contrast, in the proposed design, the majority of gates in partial 

product accumulation are AND and OR gates, which can be synthesized to compound 

gates, such as OAI222. Secondly, in terms of critical path, the Wallace multiplier in 

partial product accumulation involves 8 2-input XOR gates, while the proposed 

multiplier has 2 2-input XOR gates. Although the estimated delay for two multipliers 

is close, the proposed multiplier includes more basic gates (AND and OR gates), which 

can be synthesized to compound gates. It also demonstrates the validity of the proposed 

compressors, which does not include XOR gates. 

Then, the number of XOR and XNOR gates of multipliers is shown to explain the 

advantage of the proposed compressors. The XOR and XNOR gates of each multiplier 

was obtained from the synthesized netlists shown in Table 2-10. The total number of 

XOR and XNOR gates of MGER-0g is the smallest among all multipliers. The number 

of XOR2 gate in MGER-0g is the smallest among all multipliers, and the number of 

XNOR2 gate is only 1. In terms of XNOR3 gate, the number in MGER-0g is greater 

than those in MUL1 and AM1-t. However, the number of XOR2 gate in those two 
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designs even four or fifteen times of that in MGER-0g.  

 

Table 2-10 Number of XOR and XNOR gates. 

Designs XOR2 XNOR2 XNOR3 Total 

Wallace 14 3 46 63 

MGER-0g 2 1 12 15 

MGER-1g 5 1 13 19 

MGER-2g 6 1 14 21 

MGER-3g 8 3 12 23 

MGER-4g 10 3 11 24 

ATCM1 [52] 5 0 16 21 

ATCM2 [52] 8 1 20 29 

MUL1 [50] 8 1 11 20 

AMLC2 [39] 6 0 26 32 

AM1-4 [45] 19 8 0 27 

AM1-6 [45] 20 12 2 34 

AM1-8 [45] 29 4 4 37 

AM1-10 [45] 31 4 6 41 

*XOR3 cell was not comprised in netlist. 

 

The dynamic power usually accounts for a large percentage of the total power 

consumption in a combinational circuit. The dynamic power obtained by Power 

Compiler is the sum of switching power and internal power [58]. The simpler circuit 

leads to the less internal power. For the switching activity power (𝑃𝑠), it is calculated as  

𝑃𝑠 =
𝑉𝑑𝑑2

2
∑ (𝐶𝑙𝑜𝑎𝑑𝑖 × 𝑇𝑅𝑖)∀𝑛𝑒𝑡(𝑖) ,              (2-20) 

where 𝐶𝑙𝑜𝑎𝑑𝑖 indicates the capacitive load of net 𝑖 and 𝑇𝑅𝑖 means the toggle rate of 

net 𝑖. In general, the circuit complexity and switching activity of XNOR3 gate is larger 

than those of XNOR2/XOR2 gate. In addition, XNOR2/XOR2 gate has larger circuit 

complexity and switching activity than AND and OR gates. This is because that control 

signal for AND/OR gate is one input as ‘0’/‘1’, respectively. For example, when one 

input is ‘1’, the output of OR gate is determined as ‘1’. Hence, the switching transition 

on another input will not affect the output. However, there must be two control signals 

for 2-input XOR gate and three control signals for 3-input XOR gate. The switching 
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transition on one input of XOR gate usually affects a transition on the output. Therefore, 

the switching activity of XOR gate is higher than that of AND or OR gate. The small 

number of XOR gates in the proposed multiplier leads to low toggle rate. In addition, 

the proposed multipliers have the small capacitive load because of the small number of 

XOR gates. Therefore, the proposed multipliers have the lower power and PDP. 

 

 

Figure 2-14 MRED and PDP for exact multiplier and approximate multipliers. 

 

Figure 2-14 shows the overall comparison for different multiplier in terms of 

MRED and PDP. This is an intuitive comparison to show the trade-off between energy 

saving and accuracy loss. In general, MRED indicates the error distribution of 

approximate multipliers. In terms of the MRED-PDP, the proposed multipliers design 

achieves the better trade-off between MRED and PDP than other designs. Our design 

shows the smallest MRED on the same PDP, and the smallest PDP on the same MRED. 

It demonstrates that the proposed approximate multiplier design achieves the better 

balance than existing designs, and also achieves the target of this research. 



ASIC-Based Approximate Multiplier using Probability-Driven Inexact Compressors 

47 

 

2.4.4 Application of Approximate Multipliers to Image 

Processing 

Approximate circuits can be used in error-tolerant applications. The image 

sharpening algorithm is widely used to evaluate approximate multipliers as shown in 

[59]. The image sharpening algorithm is given by 

𝑃(𝑥, 𝑦) = 2𝐼(𝑥, 𝑦) −
1

273
∑ ∑ 𝐺(𝑖 + 3, 𝑗 + 3)𝐼(𝑥 − 𝑖, 𝑦 − 𝑗),2

𝑗=−2
2
𝑖=−2      (2-21) 

where G is a 5×5 matrix, given by 

𝐺 =

[
 
 
 
 
1 4    7       4    1
4 16     26 16 4
7  26    41 26 7
4 16     26 16 4
1  4        7   4  1]

 
 
 
 

 

In this application, 𝐺 operates on 5×5 block in the image. I(x,y) indicates the original 

image, and P(x,y) is the processed image. The peak signal-to-noise ratio (PSNR) is a 

metric to measure the quality of processed image compared with the exact image, that 

is based on the mean squared error (MSE) [42], defined as:  

𝑀𝑆𝐸 =
1

𝑝𝑞
∑ ∑ [�̂�(𝑥, 𝑦) − 𝑃(𝑥, 𝑦)]2𝑞−1

𝑦=0
𝑝−1
𝑥=0 ,              (2-22) 

𝑃𝑆𝑁𝑅 = 10 × 𝑙𝑜𝑔10(
𝑀𝐴𝑋𝐼

2

𝑀𝑆𝐸
),                     (2-23) 

where 𝑃  and �̂�  denotes the processed images using the exact multiplier and 

approximate multiplier, and 𝑝 and 𝑞 are the image dimensions. The input image for 

this application is 512×512 grayscale bitmap image with 8-bit pixels. 

Another metric quantifies the difference between the processed images using the 

exact multiplier and approximate multiplier is structural similarity (SSIM). SSIM is a 

weighted combination of three comparison measurements [73] between 𝑃  and �̂� 

which is processed images using the exact multiplier and approximate multiplier, 

respectively. Three comparative measures are luminance (𝑙), contract (𝑐) and structure 

(𝑠), which are calculated as: 

𝑙(𝑃, �̂�) =
2𝜇𝑃𝜇�̂�+𝑐1

𝜇𝑃
2+𝜇

�̂�
2+𝑐1

                         (2-24) 
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𝑐(𝑃, �̂�) =
2𝜎𝑃𝜎�̂�+𝑐2

𝜎𝑃
2+𝜎

�̂�
2+𝑐2

                         (2-25) 

𝑠(𝑃, �̂�) =
𝜎𝑃�̂�+𝑐3

𝜎𝑃𝜎�̂�+𝑐3
                         (2-26) 

where, 𝜇𝑃  and 𝜇�̂�  is the average of image 𝑃  and image �̂� , respectively. 𝜎𝑃
2  and 

𝜎�̂�
2 is the variance of image 𝑃 and image �̂�, respectively, and 𝜎𝑃𝜎�̂� is the covariance 

of images 𝑃 and �̂�. In addition, 𝑐1, 𝑐2 and 𝑐3 are constants to stabilize the division. 

For 8-bit pixels, 𝑐1 , 𝑐2  and 𝑐3  is set by default to 6.5025, 58.5525, and 29.2613, 

respectively. Then, the SSIM is the combination of those comparative measures as: 

𝑆𝑆𝐼𝑀(𝑃, �̂�) = [𝑙(𝑃, �̂�) ∙ 𝑐(𝑃, �̂�) ∙ 𝑠(𝑃, �̂�)]         (2-27) 

Figure 2-15 shows the processed images of exact multiplier and the proposed 

approximate multipliers. Table 2-10 illustrates the PSNR and SSIM values of processed 

images of all approximate multipliers.  

 

 

   

(a) (b) (c) 

   

(d) (e) (f) 

Figure 2-15 Images processd by (a) Exact multiplier. (b) MGER-0g. (c) MGER-1g. (d) 

MGER-2g. (e) MGER-3g. (f) MGER-4g. 
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Table 2-11 PSNR and SSIM values for the image sharpening application. 

Designs PSNR (dB) SSIM (%) 

MGER-0g 23.40 94.09 

MGER-1g 25.82 94.80 

MGER-2g 34.65 99.07 

MGER-3g 44.26 99.71 

MGER-4g 48.29 99.81 

ATCM1 [52] 49.48 99.85 

ATCM2 [52] 52.37 99.85 

MUL1 [50] 31.23 99.00 

AMLC2 [39] 48.96 99.89 

AM1-4 [45] 22.22 92.97 

AM1-6 [45] 28.83 97.88 

AM1-8 [45] 39.61 99.61 

AM1-10 [45] 52.13 99.86 

 

 

Figure 2-16 The trade-off between PDP saving and SSIM degradation for image 

sharpening application. 

 

An intuitive comparison for all approximate multiplier with respect to the quality-

power trade-off is shown in Figure 2-16. In this figure, x-axis reports the SSIM 

degradation, while y-axis reports the PDP saving delivered by the approximate 
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multiplier. We can observe that (i) for the range that SSIM reduction is less than 0.5%, 

MGER-3g achieves the highest PDP saving (76.92%); (ii) the proposed approximate 

multiplier design offers different configurations, which has a better quality-power 

trade-off than AM1. 

2.5 Discussion on Extension to Signed Approximate 

Multiplier 

Previous sections have presented the proposed ASIC-based approximates, mainly 

focusing on the unsigned multiplier. Currently, most research studied on the unsigned 

approximate multiplier, because the signed integer multipliers can be extended from the 

unsigned approximation methodologies. In this section, the extension of the proposed 

approach is to be discussed. It reveals the feasibility of the proposed approximation 

techniques on the signed multiplier.  

2.5.1 Optimizing the Proposed Inexact Compressors for Signed 

Multiplier 

This section focuses on the design of approximate signed multipliers with inexact 

compressors. To compress partial products by using low-cost circuits, an inexact 𝑚:3 

compressor design is optimized for signed partial product matrix based on the proposed 

𝑚:2 Com (Section 2.2), which comprises only AND and OR gates. A general expression 

for inexact compressors is introduced, followed by an example of a 4:3 compressor. 

The height of partial product matrix is reduced by compressors to three rows, which 

leads to fewer accumulation stages in the overall multiplier. To achieve different levels 

of hardware performance, three approximate signed multipliers that have almost the 

same accuracy are introduced.  

 

1) Design of sign-focused m:3 compressors 
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Figure 2-17 Partial product matrix of an 8-bit signed multiplier. 

 

Consider the signed multiplication with two 𝑛-bit inputs, i.e., a multiplicand 𝐴 

and a multiplier 𝐵, both are in two’s complement. The inputs are given as 

𝐴 =  −𝛼𝑛−1 × 2𝑛−1 + ∑ 𝛼𝑖 × 2𝑖𝑛−2
𝑖=0 ,                (2-28) 

𝐵 =  −𝛽𝑛−1 × 2𝑛−1 + ∑ 𝛽𝑗 × 2𝑗𝑛−2
𝑗=0 .                (2-29) 

The partial product matrix for an 8-bit signed multiplier is generated using the 

Baugh-Wooley algorithm [60], as shown in Figure 2-17. Some partial products are 

generated by NAND gates, which are associated with the sign bit in operand input. 

Assume that the inputs 𝐴 and 𝐵 are uniformly and independently distributed, hence 

the probabilities of partial products (i.e. 𝑞) generated by AND and NAND gates can be 

calculated as: 

P(𝑞𝐴𝑁𝐷 = 1) = 1/4,                           (2-30) 

P(𝑞𝑁𝐴𝑁𝐷 = 1) = 3/4.                           (2-31) 

Similar with the Section 2.2.3, the partial products belonging to the same column 

from top to bottom are named as 𝑞1, 𝑞2, … , 𝑞𝑚 ,where 𝑚  is the number of partial 

products in this column. In the signed multiplier, the arithmetic sum result of partial 

products in this column, 𝑅𝑠
𝑚, is calculated as  

𝑅𝑠
𝑚 = ∑ (𝑞1, 𝑞2, … , 𝑞𝑚).

𝑚
1                           (2-32) 
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Table 2-12 Occurrence probability of arithmetic sum results in the signed multiplier         

Probability 𝒎 = 4 𝒎 = 5 𝒎 = 6 𝒎 = 7 𝒎 = 8 

P (𝑅𝑠
𝑚= 0) 3.52% 2.64% 1.98% 1.48% 1.11% 

P (𝑅𝑠
𝑚= 1) 23.43% 18.45% 14.50% 11.37% 8.90% 

P (𝑅𝑠
𝑚= 2) 46.09% 40.43% 34.94% 29.84% 25.21% 

P (𝑅𝑠
𝑚= 3) 23.44% 29.10% 31.93% 32.68% 31.97% 

P (𝑅𝑠
𝑚= 4) 3.52% 8.50% 13.65% 18.22% 21.84% 

P (𝑅𝑠
𝑚= 5) - 0.88% 2.78% 5.50% 8.68% 

P (𝑅𝑠
𝑚= 6) - - 0.22% 0.86% 2.02% 

P (𝑅𝑠
𝑚= 7) - - - 0.05% 0.26% 

P (𝑅𝑠
𝑚= 8) - - - - 0.01% 

 

Table 2-12 shows the occurrence probability of the arithmetic sum result 𝑅𝑠
𝑚 

when 𝑚 ranges from 4 to 8., for the signed multiplier. As it can be observed in Table 

2-12, the probability is low that 𝑅𝑠
𝑚 is greater than 3. For example, when 𝑚 is 5, the 

probability that 𝑅𝑠
5 is greater than 3 is 9.38%. It shows the possibility that 𝑚 partial 

products can be inexactly calculated using three bits. Therefore, the design of 𝑚 :3 

compressor (m:3 Com) is introduced to compress 𝑚 partial products into three bits 

with the same weights.  

Three output bits of 𝑚:3 Com are denoted as 𝑤1
𝑚, 𝑤2

𝑚, and 𝑤3
𝑚. These three 

bits have the same weights with the input values. Generally, the compressor is a circuit 

logic to count the number of ‘1’ in the inputs. Therefore, 𝑤1
𝑚,  𝑤2

𝑚,  and 𝑤3
𝑚  are 

designed in turn for the cases when there is at least one, two and three ‘1’ is in one 

column, respectively. 

Function of the first output bit 𝑤1
𝑚: The first output bit is designed for the case that 

the number of ‘1’ in inputs is 1. Therefore, when any one partial product is ‘1’ among 

𝑚 partial products,  𝑤1
𝑚 is ‘1’. The value of 𝑤1

𝑚 can be calculated as the result of 

OR operation of 𝑚 partial products, expressed as  

  𝑤1
𝑚 = 𝑞1 + 𝑞2 +⋯+ 𝑞𝑚 .                         (2-33) 

Function of the second output bit 𝑤2
𝑚: The second output bit 𝑤2

𝑚 is designed to 

calculate the number of ‘1’ as 2 in one column. Any two partial products among 𝑚 

partial products are ‘1’ meaning the number of ‘1’ is 2. It can be calculated as the result 
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of AND operation of any two partial products, as 

𝑤2
𝑚 = 𝑞1 ∙ (𝑞2 +⋯+ 𝑞𝑚) + ⋯+ 𝑞𝑖 ∙ (𝑞𝑖+1 +⋯+ 𝑞𝑚) +⋯+𝑞𝑚−1 ∙ 𝑞𝑚.    (2-34)                                                    

where, ‘∙’ means AND operation and ‘+’ indicates OR operation. 

Function of the third output bit 𝑤3
𝑚: The third bit is further designed on 𝑤1

𝑚 and 

𝑤2
𝑚 to calculate the number of ‘1’ as 3. Similar to the above analysis, 𝑤3

𝑚 can be 

obtained when any three partial products are ‘1’. Moreover, 𝑤3
𝑚 is specially designed 

for the signed multipliers. When use 𝑚 :3 Com on partial product matrix shown in 

Figure 2-17, 𝑞1 and 𝑞𝑚 of 𝑚:3 Com are the partial products generated by NAND 

gates. The probability is 3/4 that the partial product generated by NAND gate is ‘1’. 

Therefore, we consider these two partial products specially and count the number of ‘1’ 

as 3. That is (i) when 𝑞1 and 𝑞𝑚 both are ‘1’, one partial product from 𝑞2 to 𝑞𝑚−1 

is ‘1’; and (ii) when 𝑞1 or 𝑞𝑚 is ‘1’, two partial products from 𝑞2 to 𝑞𝑚−1 are ‘1’. 

For the (ii), we use the AND gate on two adjacent elements to further inexactly express 

the condition that two partial products from 𝑞2 to 𝑞𝑚−1 are ‘1’. The function of 𝑤3
𝑚 

is given as: 

𝑤3
𝑚 = 𝑞1 ∙ 𝑞m ∙ (𝑞2 +⋯+ 𝑞𝑚−1) + 𝑞1 ∙ (𝑞2 ∙ 𝑞3 +⋯+ 𝑞m−2 ∙ 𝑞𝑚−1) 

                +𝑞m ∙ (𝑞2 ∙ 𝑞3 +⋯+ 𝑞m−2 ∙ 𝑞𝑚−1).                        (2-35)   

 

2) Example of optimized 4:3 compressor 

In this subsection, an example of the sign-focused 𝑚:3 Com is shown to illustrate 

the optimized compressor in detail.  

With the help of Eq. 2-29, 2-30 and 2-31, the function of 4:3 Com can be expressed 

as: 

𝑤1
4 = 𝑞1 + 𝑞2 + 𝑞3 + 𝑞4,                                                      

𝑤2
4 = 𝑞1 ∙ (𝑞2 + 𝑞3 + 𝑞4) + 𝑞2 ∙ (𝑞3 + 𝑞4)+𝑞3 ∙ 𝑞4,            

𝑤3
4 = 𝑞1 ∙ 𝑞4 ∙ (𝑞2 + 𝑞3) + 𝑞1 ∙ (𝑞2 ∙ 𝑞3)  + 𝑞4 ∙ (𝑞2 ∙ 𝑞3).                (2-36) 

Figure 2-18 shows the structure of 4:3 Com based on Eq. 2-32. An XOR gate costs 

more power and delay than AND and OR gates. Although the function of 4:3 Com 

seems complex, it only consists of AND and OR gates. These basic gates are easily to 

be synthesized to power- and area-efficient compound logic cell.  
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Figure 2-18 The structure of optimized 4:3 Com. 

 

Table 2-13 The behavior of 4:3 Com  

𝒒  𝒒  𝒒  𝒒  𝒘 
  𝒘 

  𝒘 
    

    
 ̃ Probability 

0 0 0 0 0 0 0 0 0 0.03516 

0 0 0 1 1 0 0 1 1 0.10547 

0 0 1 0 1 0 0 1 1 0.01172 

0 0 1 1 1 1 0 2 2 0.03516 

0 1 0 0 1 0 0 1 1 0.01172 

0 1 0 1 1 1 0 2 2 0.03516 

0 1 1 0 1 1 0 2 2 0.00391 

0 1 1 1 1 1 1 3 3 0.01172 

1 0 0 0 1 0 0 1 1 0.10547 

1 0 0 1 1 1 0 2 2 0.31641 

1 0 1 0 1 1 0 2 2 0.03516 

1 0 1 1 1 1 1 3 3 0.10547 

1 1 0 0 1 1 0 2 2 0.03516 

1 1 0 1 1 1 1 3 3 0.10547 

1 1 1 0 1 1 1 3 3 0.01172 

1 1 1 1 1 1 1 4 3× 0.03516 

* 𝑅𝑠
4 indicates the exact sum result of four partial products, calculated as 𝑅𝑠

4 =
∑(𝑝1, 𝑝2, 𝑝3, 𝑝4). 

*𝑤1
4, 𝑤2

4, and  𝑤3
4 are the output bits of 4:3 Com. 𝑅𝑠

4̃ means the inexact sum result. 

 

Table 2-13 shows the behavior of 4:3 Com, where 𝑅𝑠4̃ indicates the inexact sum 

result, given by  

𝑅𝑠4̃ = ∑(𝑤1
4, 𝑤2

4, 𝑤3
4).                          (2-37) 

𝒒 
𝒒 𝒒 𝒒 

𝒘 
 

𝒘 
 

𝒒 
𝒒 

𝒒 

𝒒 

𝒒 

𝒘 
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It can be seen in Table 2-12, the 4:3 Com can produce the exact sum result for most 

input combinations. The error occurs when the input combination is ‘1111’, and the 

probability is 3.52%.  

2.5.2 Extension to Signed Approximate Multiplier 

In this section, similarly, 𝑚:3 Coms are selectively applied on the partial product 

matrix to accumulate partial products in the signed multiplier. This step corresponds to 

common technique of the inexact partial product accumulation. Then, a carry-save 

adder (CSA) is used to accumulate results from compressors to fed to the final addition. 

In the last step, a carry look-ahead adder (CLA) is employed to produce the final 

multiplication result. 

Figure 2-19 shows the structure of approximate signed multiplier design. The 

partial product matrix is divided into two parts according to the bit significances. High 

part includes the partial products from bit 7 to 15, while low part involves the partial 

products from bit 0 to 6.  

Because the 𝑚:3 Com is specially designed for partial products associated with 

the sign bit (these partial products are only on high part), the functionality of 𝑚:3 Com 

is fully utilized on high part. For the operation of low part, three types of approximate 

multipliers with sign-focused compressors (AMSC) are proposed: 

 

a) AMSC1 

As shown in Figure 2-19 (a) of AMSC1, in the Stage 1, the functionality of 𝑚:3 

Com is completely used on partial product matrix. Eight rows of partial products are 

reduced into three rows by 𝑚:3 Coms. In Stage 2, a CSA includes ten full-adders (FAs) 

and one half-adder (HA). Finally, a CLA gives the final multiplication result. The  
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X
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X
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X

HA FA m:3 Com

 

(a) 

 

1

1
Stage 3

Stage 2

 

(b) 

 

1

1
Stage 3

Stage 2

 

(c) 

Figure 2-19 The structure of 8-bit approximate signed multipliers. Stage 1 is partial 

product accumulation step, where ● and ○ indicates the partial products generated by 

AND and NAND gates, respectively. Exact HA and FA are used as CSA step in Stage 

2, where ▲ and ■ means the exact and inexact elements, respectively. A CLA is 

employed in Stage 3. (a) AMSC1: The functionality of 𝑚:3 Com is fully used in Stage 

1. (b) AMSC2: Only the first and second output bits of 𝑚:3 Com are used on low part 

in Stage 1. (c) AMSC3: Only the first output bit is used on low part in Stage 1. 
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accumulation stages and circuit complexity are reduced significantly by the proposed 

compressors that comprise only AND and OR gates. 

 

b) AMSC2 

The third output bit of 𝑚 :3 Com is specially designed for the partial products 

generated by NAND gates. Partial products on low part are all generated by AND gates, 

hence the third output bit is not necessary for low part. As shown in Figure 2-19 (b), 

the first and the second output bits are used to represent the result of accumulation on 

low part, while the third output bit is ignored. Note that, AMSC2 needs one 3:3 Com 

on bit 2. Therefore, eight rows of partial products are accumulated into three rows on 

high part and two rows on low part. The adders in CSA stage are reduced with the 

decreased elements in Stage 2. 

 

c) AMSC3 

Compared with AMSC1 and AMSC2, the approximation is further applied on 

AMSC3. As shown in Figure 2-19 (c), only the first output bit of 𝑚:3 Com is remained 

to represent the result of low part. In addition, one OR gate is used on bit 1. Therefore, 

eight rows of partial products are reduced into three rows on high part and one row on 

low part, by fully using 𝑚:3 Com and partly using 𝑚:3 Com, respectively.  

2.5.3 Experiment for Signed Approximate Multipliers 

In this section, the accuracy and hardware performance of the signed multipliers 

are evaluated. To investigate the trade-off between accuracy loss and hardware gaining, 

the proposed multipliers were implemented and compared with the exact signed 

multiplier and approximate signed multiplier introduced in [37] (R4ABM1-𝑘  and 

R4ABM2-𝑘 ). Note that the parameter 𝑘  of the designs in [37] is the bit-size of 

approximation from the lowest significant bit. 

 

a) Accuracy analysis 
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The error distance (ED), the normalized worst case error (NWCE) and the error 

rate (ER) are defined in Eq. 2-14 (Section 2.4.2). The normalized error distance (NED) 

are defined to evaluate the averaging effect of a set of output for a multiplier [57]. The 

NED is useful in the reliability assessment of a design and is defined as MED 

normalized by the maximum possible error.   

 

Table 2-14 Accuracy comparisons for signed approximate multipliers          

Designs NED (%) NWCE (%) ER (%) 

AMSC1 0.99 12.12 77.29 

AMSC2 1.01 12.31 77.51 

AMSC3 1.10 12.50 87.22 

R4ABM1-10 [37] 0.70 4.29 78.15 

R4ABM1-12 [37] 2.07 13.00 78.69 

R4ABM1-14 [37] 5.20 33.02 78.81 

R4ABM2-10 [37] 0.78 5.34 96.12 

R4ABM2-12 [37] 2.46 16.28 96.57 

R4ABM2-14 [37] 6.33 41.28 96.66 

 

Table 2-14 shows the accuracy comparisons for different signed multipliers in terms 

of NED, NWCE and ER. Because the different functionality of the proposed 

compressor is used, the proposed multipliers can achieve different levels of accuracy. 

In addition, the accuracies of three proposed multipliers are close. In terms of ER, 

AMSC1 has the lowest value among all multipliers as 77.29%. R4ABM1-10 has the 

lowest accuracy losses in terms of NED and NWCE.  

 

b) Hardware performance analysis 

Exact signed multiplier [61], previous approximate multipliers [37], and the 

proposed design in this work were implemented in Verilog HDL and synthesized by 

using the Synopsys Design Complier. All designs were evaluated at the same condition 

with Section 2.4.1. 
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Table 2-15 Hardware performance of signed multipliers       

Designs Power (u𝐖) Area ( 𝒎 ) Delay (𝐧𝐬) PDP (𝐟𝐉) 

Exact 235.9 531.47 2.71 639.29 

AMSC1 112.2 329.73 2.11 236.74 

AMSC2 91.8 283.13 1.72 157.90 

AMSC3 66.3 205.88 1.52 100.78 

R4ABM1-10 [37] 165.7 398.68 2.25 372.83 

R4ABM1-12 [37] 150.0 370.27 2.07 310.50 

R4ABM1-14 [37] 142.1 355.91 2.07 294.15 

R4ABM2-10 [37] 166.5 376.34 1.86 309.69 

R4ABM2-12 [37] 151.4 341.54 1.82 275.55 

R4ABM2-14 [37] 141.9 317.28 1.72 244.07 

 

Table 2-15 shows the power, area, delay and power-delay product (PDP) for all 

signed multipliers. As it can be observed, the proposed approximate multiplier design 

gives the significant advantages compared with the exact signed multiplier. Particularly, 

AMSC3 achieves the lowest hardware consumption. In terms of area improvement, the 

proposed design can reduce area of the exact multiplier by 37.96%~61.26%. Compared 

with the exact one, the proposed design achieves 22.14%~43.91% delay saving. The 

proposed most accurate multiplier (AMSC1) can save power of the exact multiplier by 

52.44%.  

For these improvements by the proposed multipliers, we can consider the 

construction of multiplier to explain. In the experiment, we chose the modified Booth 

multiplier as the exact one, which needs one partial product generation stage with Booth 

encoding, one exact 4:2 compressor stage, one CSA stage and one CLA. In [37], there 

are one inexact partial product generation stage, one exact 4:2 compressor stage and 

one CLA. The 4:2 compressors are serial both in exact multiplier and in multipliers of 

[37]. These two designs employ XOR gates in each stage. On the contrast, the proposed 

design includes partial product generation stage using AND and NAND gates, one 

inexact 𝑚 :3 Com stage, one CSA stage and one CLA. The 𝑚 :3 Coms process in 

parallel, and they comprise only AND and OR gates, which can be synthesized into 

compound gates. For example, Figure 2-20 shows the schematic for 4:3 Com obtained 

after synthesis. Compared with the original structure of 4:3 Com shown in Figure 2-18, 



ASIC-Based Approximate Multiplier using Probability-Driven Inexact Compressors 

60 

 

the structure is simpler. Some AND and OR gates are synthesized into compound gate, 

such as OAI21. It demonstrates the validity of the 𝑚:3 Com whose feature is no-XOR 

gate.  

 

 

Figure 2-20 Schematic for 4:3 Com. The dotted block with gray background indicates 

the compound gate cell. 

 

 

Figure 2-21 PDP versus NED for approximate signed multipliers.  

 

An intuitive comparison for all approximate multipliers in terms of PDP and NED 

is shown in Figure 2-21. R4ABM1, R4ABM2 and the proposed multipliers all have 

various NED-PDP configurations. The accuracy ranges of R4ABM1 and R4ABM2 
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both are larger than that of the proposed design. However, the energy is becoming the 

first concern when the accuracy loss is acceptable. The PDPs of the proposed multiplier 

design change drastically with the configurations changing. AMSC1, AMSC2 and 

AMSC3 all have NED around 1%, while they deliver the PDP range from 100.72 fJ to 

236.74 fJ. Moreover, when the NED is around 1%, the proposed multipliers provide the 

lower PDP than R4ABM1-10 and R4ABM2-10. 

2.6 Summary 

In this chapter, an approximate multiplier design is proposed with inexact 

compressors that costs lower hardware consumption than accurate multiplier. Firstly, 

inexact compressors with no-XOR gates for partial product reduction step is proposed. 

Then, an 8× 8 multiplier is divided into three blocks. To employ high precision 

operations on significant bits and use low precision operations on insignificant bits, 

three different precision operations are applied. Finally, to improve accuracy, a grouped 

error recovery scheme with a shorter critical path is introduced. The theoretical analysis 

on area and delay is provided for the proposed multipliers. Moreover, the experimental 

results demonstrate that the proposed multiplier design significantly reduces the 

hardware consumption of exact multiplier. The power reduction is 59.75%~70.75%, the 

delay reduction is 12.78%~52.42%, and the area reduction is 42.47%~50.97%. 

Compared with the state-of-the-art ASIC-based approximate multipliers, the proposed 

design delivers more hardware reduction under a comparable accuracy. The proposed 

inexact compressors are optimized for signed approximate multiplier, which shows the 

feasibility of the proposed approximation. 
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3. FPGA-Based Approximate Multiplier using 

Carry-Inexact Elementary Modules 

In this chapter, low-cost FPGA-based approximate multiplier design, is to be 

discussed, which is designed to achieve the energy efficiency by carefully considering 

the construct of FPGA. 

The background and necessity of FPGA-based approximate multipliers are 

presented in Section 3.1. The motivations driven from the existing issues and 

contributions of this work are also stated in this section. 

The preliminaries of FPGA are to be introduced in Section 3.2 for easily 

understanding the FPGA-fabric utilized in this research. 

Section 3.3 presents the three types of approximate 4×4 multipliers with different 

performances. The occurrence probability of carry from current bit to higher bit is 

analyzed first. The calculation of carry result in these three multipliers are approximated 

to shorten the critical path and reduce the circuit complexity. 

By taking the proposed approximate 4×4 multipliers as the elementary modules, 

the large size multiplier can be constructed from small size multipliers. Section 3.4 

introduces the design of approximate 8×8 multipliers. To fast produce the final product, 

two inexact additions are proposed.  

Section 3.5 discusses the evaluation of 4×4 multipliers and 8×8 multipliers. Firstly, 

the accuracy and hardware performance of 4×4 multipliers are to be evaluated. Then, 

all configurations of the proposed 8 × 8 multipliers are discussed, and eight 

configurations are selected to further evaluate and compare with existing approximate 

multipliers. Moreover, to demonstrate the efficiency of the proposed approximate 

multiplier design, Pareto-optimal analysis is to be conducted in this section. In terms of 

mean relative error distance (MRED), the error of the proposed 8×8 multiplier is as 

low as 1.06%. Compared with the exact multiplier, the proposed design can reduce area 

by 43.66% and power by 24.24%. The critical path latency reduction is up to 29.50%. 
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The proposed multiplier design has a better accuracy-hardware result than other designs 

with comparable accuracy. Finally, image sharpening processing is used to assess the 

efficiency of approximate multipliers on application. 

Section 3.6 concludes the FPGA-based approximate multipliers. 

3.1 Introduction 

3.1.1 Background 

There are increasing demands of power- and area-efficient designs for lots of 

applications such as multimedia processing, data mining and machine learning. For 

most of these applications, approximate multiplier design has been considered as a 

potential approach to reduce energy by exploiting the exactness relaxation in error-

tolerant applications.  

In order to provide hardware-efficient and high-performance multipliers, previous 

works have proposed various designs of approximate multipliers, mainly for ASIC-

based systems. Here are the review of state-of-the-art approximate ASIC-based 

multipliers related to this part. An approximation technique employing Karnaugh map 

for the multiplier has been discussed in [55]. Based on [55], several variants of 

approximate addition and multiplication units have been discussed in [63]. An open-

source library of 8× 8 approximate adders and multipliers, EvoApprox8b, has been 

presented in [64], by utilizing different approximate adders and multipliers from 

literatures.   

However, due to the non-reconfiguration and slow development round, ASIC-

based approximate multipliers are usually dedicated for one particular application and 

not efficient for extensive applications. In contrast, FPGA has been a promising 

platform for lots of applications, because it has advantages of high energy efficiency, 

capability of reconfiguration and fast development round [65]. 

Unfortunately, little study has been conducted to FPGA-specific approximate 

multiplier design [46][47][66][67]. Two state-of-art FPGA-based approximate 



FPGA-Based Approximate Multiplier using Carry-Inexact Elementary Modules 

64 

 

multipliers are proposed in [46][47], while exact adder used in them might cause high 

power and latency consumptions. In [46], three designs for approximate n × n 

multipliers are proposed, and large multipliers are constructed from four n × n 

multipliers along with exact adder. In [47], an inexact 4×2 multiplier is proposed by 

using four LUTs; then, approximate 4×4 multipliers and 8×8 multipliers (Cc, Ca) are 

constructed from 4×2 multipliers. In Ca, the adder for summing small-size multipliers 

is exact. The exact adder in [46][47] has serial carry propagation path, which still causes 

high latency and energy consumptions.  

3.1.2 Necessity of FPGA-Based Approximate Multipliers 

In this section, the necessity of FPGA-based approximate design is stated as 

follows. Also, the necessity of research on LUT-based operation is presented. 

 

1) Necessity of FPGA-based approximate design 

FPGA has been a promising platform for lots of applications, because it has 

advantages of high energy efficiency, capability of reconfiguration and fast 

development round. It is common to employ FPGA as accelerator for many applications 

which have lots of multiplications. Therefore, it is expected to design low-cost FPGA-

specific approximate multipliers.  

However, due to the architectural differences between ASICs and FPGAs, the 

savings achieved by ASIC-based defined designs might not comparably translate to the 

savings on FPGA-based implementation. In another word, the ASIC-based 

approximation techniques are less effective like energy, latency and area, when used for 

FPGA-based system.  

A comparison of ASIC-based and FPGA-based implementation for ASIC-based 

defined approximate multiplier has been reported in [48], which pointed out this issue. 

Figure 3-1 illustrates this comparison results for four multipliers, in which D1-D4 were 

randomly selected from EvoApprox8b library [64] and a variant of approximate 

multiplier was selected as D5 from [63]. The gains in y-axis indicates the performance 
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gains of different approximate multipliers compared with an exact multiplier 

implementation. It can be observed that, the performance gains reported for ASIC-

based implementations, are not comparably translated for FPGA-based 

implementations. The primary reason for this deviation is the architectural differences 

between ASICs and FPGAs. Logic gates are main factors should be considered when 

designing ASIC-based approximate multiplier. However, FPGAs consists of 

completely different entities, that is, look-up-tables (LUTs) and carry chains. 

Consequently, any approximation techniques, optimized for FPGA-based systems, 

must consider the structure of FPGA-fabric. 

 

 

Figure 3-1 A comparison of ASIC-based implementation and FPGA-based 

implementation for five state-of-the-art ASIC-based approximate multipliers [48]. 

 

2) Necessity of research on LUT-based operation 

Furthermore, on modern FPGA, both DSP blocks and LUT-based blocks are 

necessary when performing arithmetic operations. The statistics reported in [47] have 

shown the necessity of LUT-based operations, the results are illustrated in Table 3-1. 

The authors compared two applications of Reed-Solomon and JPEG encoders with 

LUTs and DSP blocks using Xilinx Vivado 17.1 for Virtex-7 series FPGA (7VX330T 

device). 

Here are two observations can be concluded: (i) The delay for DSP blocks enabled 

situation is larger than that of disabled situation, because the location of the allocated 

DSP blocks incurs the routing delay. For small-size applications, to improve the overall 
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performance of an application, manual Floorplanning is feasible to be processed. 

However, for complex or large-size applications that have competitive requirements for 

FPGA resources, it is difficult to process the placement optimization on the required 

FPGA resources to improve performance. (ii) As shown in Table 3-1, the 

implementation of the JPEG-encoder has a large number of DSP blocks, which 

corresponds to 56% of the total available DSP blocks. Such applications could exhaust 

the available DSP blocks for critical operations, while other applications on the same 

FPGA will trend to use the LUT-based blocks [68]. 

 

Table 3-1 Comparison of DSP blocks and LUTs based implemenations [47]. 

Design 
DSP blocks enables DSP blocks disabled 

Delay [ns] #LUTs #DSP blocks Delay [ns]  #LUTs #DSP blocks 

Reed-Solomon 

encoder 
5.115 2826 22 4.358 2867 0 

JPEG encoder 8.637 71362 631 9.732 14780 0 

 

This is why, despite the availability of DSP blocks, Xilinx and Intel also provide 

LUT-based multipliers [69][70]. Moreover, 8-bit integer multiplier is synthesized as 

LUT-based implementation under default conditions. Therefore, operations with LUT-

based blocks are valuable to be explored. 

3.1.3 Research Motivations and Contributions 

Motivated by the demand of approximate multiplier for FPGA-based systems, as 

pointed out in Section 3.1.2, a novel methodology for designing approximate 

multipliers by employing the FPGA-based fabrics (primarily look-up tables and carry 

chains), is discussed in this chapter. In addition, to solve the problem of slight energy 

and latency savings in existing FPGA-based approximate multipliers, as pointed as in 

Section 3.1.1, this work aims to propose an FPGA-based multiplier design with low-

cost. Moreover, considering the configurability of FPGA, wide-range of multiplier 

configurations are also discussed in this work.  
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In this work, low-cost FPGA-based approximate multipliers are proposed, whereas 

most of previous works focused on ASIC-based approximate multipliers. Different 

from the exact adder in FPGA-based multipliers in [41][42], this proposed design 

introduces two inexact adders for lowering hardware cost on FPGA. The carry 

propagation path usually occupies the primary hardware consumptions in the multiplier, 

hence this work focuses on the approximation of carry results. The primary 

contributions are as follows: 

i) Three types of approximate 4×4 multipliers implemented with LUTs and 

associated carry chain, are proposed in this work. The critical path is 

shortened by restricting the carry generation in the multiplier. 

ii) The large-size multipliers are exploited on architectural space and 

provide a wide-range of approximate 8× 8 multipliers by using the 

proposed 4×4 multipliers as elementary modules. Eight configurations for 

approximate 8×8 multipliers are presented for different accuracy-hardware 

requirements. 

Figure 3-2 illustrates the overview of methodologies in this work. Necessary 

preliminaries of this work are introduced in Section 3.2. In this work, the LUTs and 

carry chain are employed for the proposed approximate multiplier, hence these two 

structures are introduced detailly. Three types of approximate 4× 4 multipliers are 

proposed in Section 3.3, where the carry of accumulation is restricted. Then, in Section 

3.4, take the proposed 4× 4 multipliers as elementary modules, by utilizing the 

architectural-space construction, large approximate multipliers are constructed from the 

proposed 4×4 multipliers. In addition, to reduce the delay consumption of the multiplier, 

two inexact additions are also proposed in Section 3.4, which are used to sum the 

products from small multipliers.  
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Figure 3-2 Overview of the FPGA-based approximate multiplier. 

 

3.2 Preliminaries of FPGA-fabric 

This works targets the devices of Xilinx 7-series FPGA family. The proposed 

design can also be implemented on FPGAs from other vendors, which provide 6-input 

LUTs and carry chains. 

The configurable logic blocks (CLBs) are the main logic resources for 

implementations of sequential as well as combinational circuits, and one CLB consists 

of two slices. Each slice has four 6-input look-up tables (LUTs), eight storage elements 

to register the outputs of LUTs, wide-function multiplexers, and a fast 4-bit carry chain 

[64]. A 6-input LUT can be configurated as one of the following two implementations. 

One implementation is a single 6-input combinational function with one output O6 as 

shown in Figure 3-3 (a), commonly referred as LUT6. Another implementation is 
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named as LUT6_2, which has two 5-input combinational functions with O5 and O6 

outputs as shown in Figure 3-3 (b). 

 

  

(a) (b) 

Figure 3-3 The structure of 6-input LUT [71]. 

 

A LUT is instantiated with an INIT attribute which specifies the logic function of 

one LUT. An INIT attribute consists of 16 hexadecimal values (i.e. 64 binary values for 

64 input combinations). The INIT value can be determined by creating a binary logic 

table of all input combinations. It indicates that the logic value ‘1’ occurs on the outputs 

among all 64 combinations. For example, as shown in Figure 3-4, only the output for 

input combination ‘000010’ is ‘1’. From the bottom combination to the top combination, 

the value of output is ‘0000000000000004’ (hex). This hexadecimal value is the INIT 

value for the function of LUT6, it means that the output O6 is ‘1’ for the input 

combination ‘000010’. 

 

 

Figure 3-4 Example of INIT value for LUT6. 
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The structure of the carry chain is shown in Figure 3-5. The outputs of LUT drive 

the inputs of the carry chain. It comprises multiplexers with bypass signals 

(AX/BX/CX/DX) and XOR gates. The carry chain usually implements as a 4-bit carry-

look ahead adder to perform fast function with O5 as carry-generate signal and O6 as 

carry-propagate signal. 

 

 

Figure 3-5 The structure of carry chain [71]. 

 

3.3 Proposed Approximate 4×4 Multipliers 

This work presents three novel approximate 4×4 multiplier designs which provide 

different accuracy-hardware tradeoffs. The occurrence probability of carry is analyzed 

in Section 3.3.1. Based on low probability of carry, three approximate multipliers are 

introduced with no-carry compressors. The first multiplier with low-error feature is 

introduced in Section 3.3.2. The second multiplier has an optimized structure on the 

first design and is introduced in Section 3.3.3. Section 3.3.4 presents the third design 

which is implemented by only LUTs. 
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3.3.1 Occurrence Probability of Carry 

In the FPGA-based multiplier, the compressors in partial product accumulation are 

implemented by LUTs, and their inputs are partial product. Each partial product is 

generated by AND gate. Assume that two inputs of the multiplier are uniformly and 

independently distributed, hence the probability of one partial product equaling to ‘1’ 

is 0.25. Figure 3-6 shows the occurrence probability of each column in 4×4 multiplier. 

It can be observed that the carry is generated in rare cases. Therefore, by applying 

approximation on carry could save the LUT and also guarantee the accuracy. 

  

 

Figure 3-6 Occurrence probability of carry in 4×4 multiplier. 

 

3.3.2 Approximate 4×4 Multiplier 1 (AFM1) 

The high complexity of the multiplier is usually caused by the carry propagation 

path during accumulating partial products. To reduce the complexity of the multiplier, 

we do approximation on the carry signals. 

The structure of approximate 4×4 multiplier 1 (AFM1) are shown in Figure 3-7, 

where three layers of LUTs are used to accumulate partial products and the carry chain 

is used to produce the multiplication result. The expression of each LUT in AFM1 is 

shown in Table 3-2.  

In AFM1, Layer 1 computes the carry result from the preceding column. For 

example, column 4 consists of six elements 𝐵3 , 𝐵2 , 𝐵1 , 𝐴3 , 𝐴2  and 𝐴1 . LUT9 is 

fully used to compute the carry result from column 4, that is, six inputs of LUT9 are  
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Figure 3-7 The structure of AFM1. Layer 1 computes the carry result from the preceding 

column while Layer 2 generates the sum result for the current column. Layer 3 produces 

the carry-propagate and carry-generate signals for the carry chain. 

 

completely used for six elements. However, there are eight elements on column 3, 

which exceeds the input number of one 6-input LUT. Therefore, LUT6 inexactly 

computes the carry result from column 3 by ignoring one partial product. The carry 

result from columns 1 and 2 is computed by LUT3. When 𝐵2, 𝐵1, 𝐵0, 𝐴2, 𝐴1 and 

𝐴0 on columns 1 and 2 all are ‘1’, the exact carry result is 2-bit ‘10’ (bin). In AFM1, 

this carry result is inexactly computed as 1-bit ‘1’ (bin) by LUT3. 

Layer 2 computes the sum result generated from the current column, while Layer 

3 produces the carry-propagate and carry-generate signals for the associated carry chain. 

Particularly, to fully utilize the LUT resource, a LUT6_2 with two outputs (i.e. LUT10) 

is employed in Layer 2 to generate both the carry result (i.e. c4) and the sum result (i.e. 

s3) from column 5. Table 3-3 illustrates the expression of each LUTs in AFM1. 
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Table 3-2 Input and output configurations for each LUT in AFM1. 

LUT 
Input configuration 

Output 

configuration INIT value (Hex) 

I5 I4 I3 I2 I1 I0 O6 O5 

LUT1 1 1 𝐵1 𝐵0 𝐴1 𝐴0 𝑃1 𝑃0 6AC06AC0A0A0A0A0 

LUT2 𝐵2 𝐵1 𝐵0 𝐴2 𝐴1 𝐴0 𝑃2  1E665AAAB4CCF000 

LUT3 𝐵2 𝐵1 𝐵0 𝐴2 𝐴1 𝐴0 𝑐1  E888A000C8000000 

LUT4 𝐵2 𝐵1 𝐵0 𝐴3 𝐴2 𝐴1 𝑠1  96665AAA3CCCF000 

LUT5 1 1 𝑠1 𝑐1 𝐵3 𝐴0 𝑝𝑟𝑜𝑝0 𝑔𝑒𝑛0 8778877808800880 

LUT6 𝐵2 𝐵1 𝐵0 𝐴3 𝐴2 𝐴1 𝑐2  E888A000C0000000 

LUT7 𝐵3 𝐵2 𝐵1 𝐴3 𝐴2 𝐴1 𝑠2  96665AAA3CCCF000 

LUT8 1 1 𝑠2 𝑐2 𝑠1 𝑐1 𝑝𝑟𝑜𝑝1 𝑔𝑒𝑛1 8778877808800880 

LUT9 𝐵3 𝐵2 𝐵1 𝐴3 𝐴2 𝐴1 𝑐3  E888A000C0000000 

LUT10 1 1 𝐵3 𝐵2 𝐴3 𝐴2 𝑐4 𝑠3 800080006AC06AC0 

LUT11 1 1 𝑠3 𝑠2 𝑐3 𝑐2 𝑝𝑟𝑜𝑝2 𝑔𝑒𝑛2 936C936C20802080 

LUT12 1 𝑐4 𝑠3 𝑐3 𝐵3 𝐴3 𝑝𝑟𝑜𝑝3 𝑔𝑒𝑛3 87777888F8888000 

 

Table 3-3 The expression of LUTs in AFM1 

LUT INIT value (Hex) Expression 

LUT1 6AC06AC0A0A0A0A0 
𝑃0 = 𝐴0𝐵0 

𝑃1 = (𝐴1𝐵0)⨁(𝐴0𝐵1) 

LUT2 1E665AAAB4CCF000 𝑃2 = (𝐴1𝐴0𝐵1𝐵0)⨁(𝐴2𝐵0)⨁(𝐴1𝐵1)⨁(𝐴0𝐵2) 

LUT3 E888A000C8000000 𝑐1= 𝐴2𝐴1𝐵1𝐵0+𝐴2𝐴0𝐵2𝐵0+𝐴1𝐴0𝐵2𝐵1+𝐴1𝐴0𝐵1𝐵0 

LUT4 96665AAA3CCCF000 𝑠1 = (𝐴3𝐵0)⨁(𝐴2𝐵1)⨁(𝐴1𝐵2) 

LUT5 8778877808800880 
𝑝𝑟𝑜𝑝0 = (𝑠1⨁𝑐1)⨁(𝐴0𝐵3) 

𝑔𝑒𝑛0 = (𝑠1⨁𝑐1)(𝐴0𝐵3) 

LUT6 E888A000C0000000 𝑐2= 𝐴3𝐴2𝐵1𝐵0+𝐴3𝐴1𝐵2𝐵0+𝐴2𝐴1𝐵2𝐵1 

LUT7 96665AAA3CCCF000 𝑠2 = (𝐴3𝐵1)⨁(𝐴2𝐵2)⨁(𝐴1𝐵3) 

LUT8 8778877808800880 
𝑝𝑟𝑜𝑝1 = (𝑠2⨁𝑐2)⨁(𝑠1𝑐1) 

𝑔𝑒𝑛1 = (𝑠2⨁𝑐2)(𝑠1𝑐1) 

LUT9 E888A000C0000000 𝑐3= 𝐴3𝐴2𝐵2𝐵1+𝐴3𝐴1𝐵3𝐵1+𝐴2𝐴1𝐵3𝐵2 

LUT10 800080006AC06AC0 
𝑠3 = (𝐴3𝐵2)⨁(𝐴2𝐵3) 

𝑐4 = 𝐴3𝐵2𝐴2𝐵3 

LUT11 936C936C20802080 
𝑝𝑟𝑜𝑝2 = (𝑠3⨁𝑐3)⨁(𝑠2𝑐2) 

𝑔𝑒𝑛2 = (𝑠3⨁𝑐3)(𝑠2𝑐2) 

LUT12 87777888F8888000 
𝑝𝑟𝑜𝑝3 = (𝑠3𝑐3)⨁(𝐴3𝐵3)⨁𝑐4 

𝑔𝑒𝑛3 = (𝑠3𝑐3)⨁(𝐴3𝐵3)𝑐4 + 𝑠3𝑐3𝐴3𝐵3 
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Table 3-4 Error occurrences of AFM1 and Ca [47]. 

Design Input combinations Exact result Approximate result Difference 

AFM1 

7×7 49 41 8 

7×15 105 97 8 

15×7 105 97 8 

15×15 225 217 8 

Ca [47] 

5×15 75 67 8 

6×7 42 34 8 

6×15 90 82 8 

7×15 105 97 8 

13×13 169 161 8 

15×5 75 67 8 

 

In AFM1, Layer 1 is inexact by approximating the carry and Layer2 is also inexact 

by partly calculating the sum results but the Layer 3 could recover the approximation 

in Layer 2. Table 3-4 illustrates the error occurrences of AFM1. Assume that two inputs 

of the multiplier are uniformly and independently distributed. The maximum error 

distance is ‘8’ for all input combinations and the error probability of AFM1 is 0.0156 

(= 4/256). The total number of LUTs in AFM1 is 12 and the critical path consists of 2 

LUTs along with a carry chain. 

3.3.3 Approximate 4×4 Multiplier 2 (AFM2) 

Approximate 4×4 multiplier 2 (AFM2) is proposed by optimizing the structure of 

AFM1 to further reduce the area.  

Figure 3-8 shows the structure of AFM2 which has the similar structure with AFM1. 

The carry result from preceding column and the sum result for the current column is 

computed by Layer 1 and Layer 2, respectively. For a uniform and independent 

distribution of the inputs of a 4×4 multiplier, the probability is as low as 7/64 that the 

carry is generated from columns 1 and 2. Therefore, the carry result from columns 1 

and 2 is omitted by eliminating LUT3 in AFM1. Another optimization is eliminating 

LUT6 in AFM1, where both the carry result and the sum result from column 3 are 

computed by one LUT6_2 (i.e. LUT3 in AFM2). The functions of LUT5 and 
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LUT7~LUT10 in AFM2 are the same as those of LUTs in the same positions in AFM1. 

 

Figure 3-8 The structure of AFM2. 

 

Table 3-5 Input and output configurations for each LUT in AFM2. 

LUT 
Input configuration 

Output 

configuration INIT value (Hex) 

I5 I4 I3 I2 I1 I0 O6 O5 

LUT1 1 1 𝐵1 𝐵0 𝐴1 𝐴0 𝑃1 𝑃0 6AC06AC0A0A0A0A0 

LUT2 𝐵2 𝐵1 𝐵0 𝐴2 𝐴1 𝐴0 𝑃2  1E665AAAB4CCF000 

LUT3 1 1 𝐵1 𝐵0 𝐴3 𝐴2 𝑠1 𝑐2 6AC06AC080008000 

LUT4 1 𝑠1 𝐵3 𝐵2 𝐴1 𝐴0 𝑝𝑟𝑜𝑝0 𝑔𝑒𝑛0 953F6AC02A008000 

LUT5 𝐵3 𝐵2 𝐵1 𝐴3 𝐴2 𝐴1 𝑠2  96665AAA3CCCF000 

LUT6 1 𝑠2 𝑐2 𝑠1 𝐵2 𝐴1 𝑝𝑟𝑜𝑝1 𝑔𝑒𝑛1 807F7F8000808000 

LUT7 𝐵3 𝐵2 𝐵1 𝐴3 𝐴2 𝐴1 𝑐3  E888A000C0000000 

LUT8 1 1 𝐵3 𝐵2 𝐴3 𝐴2 𝑐4 𝑠3 800080006AC06AC0 

LUT9 1 1 𝑠3 𝑠2 𝑐3 𝑐2 𝑝𝑟𝑜𝑝2 𝑔𝑒𝑛2 936C936C20802080 

LUT10 1 𝑐4 𝑠3 𝑐3 𝐵3 𝐴3 𝑝𝑟𝑜𝑝3 𝑔𝑒𝑛3 87777888F8888000 
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Table 3-6 The expression of LUTs in AFM2 

LUT INIT value (Hex) Expression 

LUT1 6AC06AC0A0A0A0A0 
𝑃0 = 𝐴0𝐵0 

𝑃1 = (𝐴1𝐵0)⨁(𝐴0𝐵1) 

LUT2 1E665AAAB4CCF000 𝑃2 = (𝐴1𝐴0𝐵1𝐵0)⨁(𝐴2𝐵0)⨁(𝐴1𝐵1)⨁(𝐴0𝐵2) 

LUT3 6AC06AC080008000 
𝑐2 = 𝐴3𝐵1𝐴2𝐵0 

𝑠1 = (𝐴3𝐵0)⨁(𝐴2𝐵1) 

LUT4 953F6AC02A008000 
𝑝𝑟𝑜𝑝0 = (𝑠1⨁(𝐴1⨁𝐵2))⨁(𝐴0𝐵3) 

𝑔𝑒𝑛0 = (𝑠1⨁(𝐴1𝐵2))(𝐴0𝐵3) 

LUT5 96665AAA3CCCF000 𝑠2 = (𝐴3𝐵1)⨁(𝐴2𝐵2)⨁(𝐴1𝐵3) 

LUT6 807F7F8000808000 
𝑝𝑟𝑜𝑝1 = (𝑠2⨁𝑐2)⨁(𝑠1𝐴1𝐵2) 

𝑔𝑒𝑛1 = (𝑠2⨁𝑐2)(𝑠1𝐴1𝐵2) 

LUT7 E888A000C0000000 𝑐3= 𝐴3𝐴2𝐵2𝐵1+𝐴3𝐴1𝐵3𝐵1+𝐴2𝐴1𝐵3𝐵2 

LUT8 800080006AC06AC0 
𝑠3 = (𝐴3𝐵2)⨁(𝐴2𝐵3) 

𝑐4 = 𝐴3𝐵2𝐴2𝐵3 

LUT9 936C936C20802080 
𝑝𝑟𝑜𝑝2 = (𝑠3⨁𝑐3)⨁(𝑠2𝑐2) 

𝑔𝑒𝑛2 = (𝑠3⨁𝑐3)(𝑠2𝑐2) 

LUT10 87777888F8888000 
𝑝𝑟𝑜𝑝3 = (𝑠3𝑐3)⨁(𝐴3𝐵3)⨁𝑐4 

𝑔𝑒𝑛3 = (𝑠3𝑐3)⨁(𝐴3𝐵3)𝑐4 + 𝑠3𝑐3𝐴3𝐵3 

 

Table 3-5 shows the input and output configurations for each LUT in AFM2, along 

with the INIT value for each LUT. The total area of AFM2 is 10 LUTs and the critical 

path involves 2 LUTs and a carry chain. Table 3-6 illustrates the expressions of each 

LUT in AFM2.  

3.3.4 Approximate 4×4 Multiplier 3 (AFM3) 

Although the carry chain is fast to perform the arithmetic function, it still causes 

larger hardware consumptions than stand-alone LUT. Therefore, to further improve the 

hardware performance of approximate multiplier, approximate 4×4 multiplier 3 (AFM3) 

is proposed by using only LUTs. 

Figure 3-9 shows the structure of AFM3, which does not include the carry chain. 

In each LUT, the inexact carry result from preceding column is computed inexactly as 

the result of AND operation as shown in the shadow part in Figure 3-9. For example, 
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column 2 consists of elements 𝐵2 , 𝐵1 , 𝐵0 , 𝐴2 , 𝐴1  and 𝐴0 . Five AND gates in 

shadow part in LUT3 compute the inexact carry result from column 2. In AFM3, the 

multiplication results of 𝑃0, 𝑃1,..., 𝑃7 are computed in parallel and the critical path is 

shortened to 2 LUTs. The input and output configurations and INIT values are shown 

in Table 3-7. Table 3-8 shows the expressions of AFM3, which is simpler than previous 

two designs. 

 

Figure 3-9 The structure of AFM3. Eight LUTs are used to produce the results in parallel. 

 

Table 3-7 Input and output configurations for each LUT in AFM3. 

LUT 
Input configuration 

Output 

configuration INIT value (Hex) 

I5 I4 I3 I2 I1 I0 O6 O5 

LUT1 1 1 𝐵1 𝐵0 𝐴1 𝐴0 𝑃1 𝑃0 6AC06ACA0A0A0A0 

LUT2 𝐵2 𝐵1 𝐵0 𝐴2 𝐴1 𝐴0 𝑃2  1E665AAAB4CCF000 

LUT3 𝐵2 𝐵1 𝐵0 𝐴2 𝐴1 𝐴0 temp1  94B46CCCF0F00000 

LUT4 1 temp1 𝐵3 𝐵0 𝐴3 𝐴0 𝑃3  953F6AC0953F6AC0 

LUT5 𝐵2 𝐵1 𝐵0 𝐴3 𝐴2 𝐴1 temp2  64446CCC00000000 

LUT6 1 temp2 𝐵3 𝐵1 𝐴3 𝐴1 𝑃4  953F6AC0953F6AC0 

LUT7 𝐵3 𝐵2 𝐵1 𝐴3 𝐴2 𝐴1 𝑃5  94B46CCCF0F00000 

LUT8 1 1 𝐵3 𝐵2 𝐴3 𝐴2 𝑃7 𝑃6 800080004C004C00 
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Table 3-8 The expression of LUTs in AFM3. 

LUT INIT value (Hex) Expression 

LUT1 6AC06ACA0A0A0A0 
𝑃0 = 𝐴0𝐵0 

𝑃1 = (𝐴1𝐵0)⨁(𝐴0𝐵1) 

LUT2 1E665AAAB4CCF000 𝑃2 = ((𝐴1𝐵0𝐴0𝐵1)⨁𝐴2𝐵0)⨁(𝐴1𝐵1)⨁(𝐴0𝐵2)  

LUT3 94B46CCCF0F00000 temp1 = ((𝐴2𝐵0|𝐴1𝐵1)𝐴0𝐵2)⨁(𝐴2𝐵1)⨁(𝐴1𝐵2)   

LUT4 953F6AC0953F6AC0 𝑃3 = (𝐴3𝐵0)⨁(𝐴0𝐵3)⨁𝑡𝑒𝑚𝑝1  

LUT5 64446CCC00000000 Temp2 = ((𝐴3𝐵0|𝐴2𝐵1)𝐴1𝐵2)⨁(𝐴2𝐵2) 

LUT6 953F6AC0953F6AC0 𝑃4 = (𝐴3𝐵1)⨁(𝐴1𝐵3)⨁𝑡𝑒𝑚𝑝2  

LUT7 94B46CCCF0F00000 𝑃5 = ((𝐴3𝐵1|𝐴2𝐵2)𝐴1𝐵3)⨁(𝐴3𝐵2)⨁(𝐴2𝐵3)   

LUT8 800080004C004C00 
𝑃6 = (𝐴2𝐴3)(𝐴1𝐵1)(𝐴2𝐵1) 

𝑃7 = (𝐴3𝐵2|𝐴2𝐵3)⨁(𝐴2𝐵1) 

 

Therefore, the dot diagrams of three types of proposed 4× 4 multipliers can be 

expressed in the Figure 3-10. AFM1 restricts the carry from column 2 to 3, and AFM2 

is optimized on AFM1. AFM3 processes the elements in parallel with eight LUTs. 

 

 

Figure 3-10 The dot diagrams of three types of proposed 4×4 multipliers. 
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3.4 Approximate Large Multipliers using Proposed 

Approximate 4×4 Multipliers as Elementary Modules 

Recall the approach of architectural-space construction to construct large multiplier, 

as introduced in Eq. 2-1 (Section 2.2.1). The proposed approximate 4×4 multipliers are 

regarded as the elementary modules to construct larger multiplier. In this work, 8×8 

multiplier design is built from 4× 4 multipliers on architectural space. It is worth 

mentioning that, this approach is amenable to other size multipliers, it means the 

proposed 4× 4 multiplier can further construct larger multiplier, such as 16× 16 and 

32× 32 multiplier. It provides the possibility that the proposed methodology with 

architectural-space construction could be extended to larger multiplier.   

Firstly, four 8-bit products are generated from four 4×4 multipliers (i.e. 𝐴𝐿 × 𝐵𝐿, 

𝐴𝐿 × 𝐵𝐻 , 𝐴𝐻 × 𝐵𝐿 , 𝐴𝐻 × 𝐵𝐻 ). Then, the adder is used to sum four 8-bit products. 

Generally, the exact adder for summing four 8-bit products consists of nine LUTs and 

three carry chains [47]. The hardware consumptions of exact adder, especially delay 

consumption, are large because of the serial carry propagation path. To produce the 

final 8× 8 multiplication product with low cost, we propose two inexact adders to 

compute the result.  

 

1) Inexact adder 1 (IA1)  

Figure 3-11 (a) shows inexact adder 1 (IA1) which is proposed based on the 

column-significance. Columns 4~7 are positioned at low part of the 8×8 multiplier, and 

the highest weight of this part is 27 . The significance of this part to overall 

multiplication result is low. Therefore, the results of these columns are inexactly 

accumulated by cutting the carry propagation of adjacent columns. OR operation is 

usually the most appropriate choice for designing inexact adder. This is because the 

result is only one binary number when the carry is cut, and OR operation could produce 

the result as ‘1’ when one element among inputs is ‘1’. Therefore, in IA1, 4 LUTs 
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configured with OR operation are used on columns 4~7, while the exact adder is used 

on columns 8~15. 

 

 

(a) 

 

(b) 

Figure 3-11 Two proposed inexact adders. The dots of ■, ●, ▲ and  indicates the 

products from 𝐴𝐿 × 𝐵𝐿 , 𝐴𝐿 × 𝐵𝐻 , 𝐴𝐻 × 𝐵𝐿 , and 𝐴𝐻 × 𝐵𝐻 , respectively. (a) IA1: 

inexact operation is used on columns 4~7, while exact operation is used on columns 

8~15. (b) IA2: eight LUTs are used to produce the results in parallel. 

 

2) Inexact adder 2 (IA2)  

Based on IA1, a highly-inexact adder is proposed to further reduce hardware 

consumptions. Inexact adder 2 (IA2) is shown in Figure 3-11 (b), where eight LUTs are 

used to produce the results in parallel. The carry propagation among columns is cut by 

the LUTs. The logic function for each LUT is OR operation and the INIT value is 

‘FEFEFEFEFEFEFEFE’ (hex). The latency of the adder is efficiently reduced by 

producing the results in parallel. 
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3.5 Experiment Results and Discussion 

In this section, 4×4 multipliers are firstly evaluated, followed by the evaluation of 

8× 8 multipliers. Finally, approximate designs are assessed on image sharpening 

processing. 

3.5.1 Experiment Setup 

To clarify the contributions of the proposed multipliers, the proposed FPGA-based 

approximate multiplier design was implemented and compared with the default exact 

multiplier, Xilinx multiplier IP [69], and approximate multipliers in [55] (UDM), [63] 

(C3), [46] (SMA), [47] (Cc, Ca). Among them, UDM and C3 are ASIC-based 

approximate multipliers, while SMA, Cc and Ca are the state-of-the-art FPGA-based 

approximate multipliers. In [47], the approaches for 8-bit Ca, Cc both are extended from 

the 4-bit approximate multiplier (Ca). The difference in 8-bit Ca and Ca is on the adder. 

Therefore, the evaluation of 4-bit approximate multiplier of [47] is on Ca. 

For accuracy analysis, approximate multipliers were evaluated in terms of mean 

error distance (MED), mean relative error distance (MRED) and error rate (ER). These 

three metrics have been defined in Section 2.4.2. The functional models of proposed 

multipliers were implemented using Matlab and an exhaustive simulation (i.e. 256 

patterns for 4×4 multiplier and 65536 patterns for 8×8 multiplier) was performed for 

all approximate multipliers.  

For evaluation of hardware performance, the proposed design was coded in Verilog. 

Then, the design was synthesized and implemented using Xilinx Vivado 18.3 for 

XC7VX330T device of Virtex-7 family. We implemented approximate multipliers C3, 

SMA, Cc and Ca using the open-source codes provided by [63], [46] and [47], 

respectively. UDM is one of variants in [63], hence we implemented it according to the 

open-source codes provided by [63]. All multipliers were synthesized and implemented 

in the same environment with default options. To precisely evaluate power, switching 

activity interchange format (.saif) file was captured during post place and route 
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functional simulation then the file was used to report power consumptions. 

3.5.2 Evaluation of 4×4 Multipliers 

Table 3-9 shows the accuracy comparison of approximate 4×4 multipliers. The 

proposed multiplier AFM1 achieves the lowest accuracy loss in terms of MED, MRED 

and ER. This is because the approximation is performed on only two columns in AFM1, 

while the approximation is applied on all columns in other deigns. 

 

Table 3-9 Accuracy comparison of 4×4 multipliers. 

Designs MED MRED (%) ER (%) 

AFM1 0.13 0.14 1.56 

AFM2 1.50 2.94 17.19 

AFM3 11.25 13.53 32.81 

UDM [55] 3.13 2.61 19.14 

C3 [63] 4.69 13.97 46.48 

SMA [46] 10.75 12.62 35.94 

Ca [47] 0.19 0.24 2.34 

 

The hardware performance is shown in Table 3-10. The proposed AFM3 has the 

shortest latency and the smallest PDP, because it produces the final product in parallel. 

AFM2 is optimized on AFM1, while the latency of AFM2 is larger than that of AFM1. 

We found the reason from placed and routed schematic, which might cause the latency 

increase. In general, the total delay of a circuit is the summation of logic delay and net 

delay. The logic delays of AFM1 and AFM2 are almost same, because they both have 

one LUT6, one LUT6_2 and one carry chain on critical path. However, the net delay of 

AFM2 is larger than that of AFM1, because the connection of two LUTs in AFM2 is 

longer than that in AFM1. In other word, the actual hardware delay of routed 

interconnect in AFM2 is larger than that in AFM1. Therefore, AFM2 has a larger total 

delay than AFM1. 
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Table 3-10 Area, latency, power and PDP of 4×4 multipliers. 

Designs Area [LUTs] Delay (ns) Power (W) PDP (nJ) 

Exact 16 5.771 0.248 1.431 

Xilinx Multiplier IP 15 5.975 0.245 1.464 

AFM1 12 5.529 0.242 1.338 

AFM2 10 5.880 0.240 1.411 

AFM3 8 4.870 0.230 1.120 

UDM [55] 13 5.683 0.235 1.336 

C3 [63] 15 6.032 0.227 1.369 

SMA [46] 7 5.174 0.229 1.185 

Ca [47] 12 5.783 0.243 1.405 

 

Combining with the results in Table 3-9 and 3-10, it is can be observed that the 

proposed 4× 4 design outperforms other approximate multipliers with comparable 

accuracy. For example, both AFM1 and Ca have the MREDs which are less than 1%. 

However, the latency, power and PDP consumptions of AFM1 are lower than those of 

Ca. The same observation can be found for AFM2 with UDM, AFM3 with C3.  

3.5.3 Evaluation of 8×8 Multipliers  

In this subsection, first all configurations for 8×8 multiplier are discussed which is 

constructed from proposed 4×4 multipliers and proposed inexact adders. Then, eight 

configurations are selected and implemented to evaluate the accuracy loss and hardware 

performance. 

 

1) Latency and area evaluation to select configurations for the proposed design 

Figure 3-11 shows the latency and area of all configurations (i.e. 162 cases) for the 

8×8 multiplier, with respect to MRED. The x-axis indicates the MRED value of each 

configuration and the y-axis indicates the latency in Figure 3-12 (a) and area in Figure 

3-12 (b), respectively. 

Different accuracy-hardware results can be achieved by different configurations. 

The tendency of area-MRED is more obvious than that of latency-MRED. Therefore, 

based on the area-MRED tendency shown in Figure 3-12 (b), select eight configurations 
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are selected for the proposed 8×8 multiplier. The green line indicates the best area- 

 

 

(a) 

 

(b) 

Figure 3-12 The delay and area of all configurations for the proposed 8×8 multiplier. 

(a) Delay vs. MRED. (b) Area vs. MRED. The dots on the green line have the best area-

MRED tradeoff, and the dots with red circles are selected. 

5

5.5

6

6.5

7

7.5

8

8.5

9

0 0.05 0.1 0.15 0.2 0.25

D
e

la
y 

(n
s)

MRED

with IA1

with IA2

40

42

44

46

48

50

52

54

56

58

0 0.05 0.1 0.15 0.2 0.25

A
re

a[
LU

Ts
]

MRED

with IA1

with IA2



FPGA-Based Approximate Multiplier using Carry-Inexact Elementary Modules 

85 

 

 

MRED tradeoff. Five dots are selected for configurations with IA1, and three dots are 

selected for configurations with IA2. Table 3-11 illustrates the eight selected 

configurations, where T1 to T8 correspond to eight dots with red circles from left to 

right in Figure 3-12 (b). 

 

Table 3-11 Configurations for the proposed 8×8 multipliers. 

Designs 
Configuration 

𝐴𝐻 × 𝐵𝐻 𝐴𝐻 × 𝐵𝐿 𝐴𝐿 × 𝐵𝐻 𝐴𝐿 × 𝐵𝐿 adder 

T1 AFM1 AFM1 AFM1 AFM2 IA1 

T2 AFM1 AFM2 AFM2 AFM3 IA1 

T3 AFM1 AFM2 AFM3 AFM3 IA1 

T4 AFM1 AFM3 AFM3 AFM3 IA1 

T5 AFM2 AFM3 AFM3 AFM3 IA1 

T6 AFM1 AFM3 AFM3 AFM3 IA2 

T7 AFM2 AFM3 AFM3 AFM3 IA2 

T8 AFM3 AFM3 AFM3 AFM3 IA2 

 

2) Accuracy analysis and hardware evaluation 

Figure 3-13 shows the accuracy comparison of approximate 8×8 multipliers. The 

proposed 8×8 multipliers have the wide-range of accuracy, which provide the several 

choices for applications with different requirements. In terms of MED and MRED, T1 

ranks second among all multipliers. Ca has the lowest error among all designs, because 

Ca employs the exact adder in the multiplier.  

 

 

Figure 3-13 Accuracy comparison for approximate multipliers. 
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(a) 

   

(b) 

   

(c) 

Figure 3-14 Hardware performance of the exact 8×8 multipliers and approximate 8×8 

multipliers. (a) Power (b) Latency (c) Area. 
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Figure 3-15 MRED and PDP for 8×8 multipliers. 

 

The proposed 8×8 multipliers with selected configurations were synthesized and 

implemented under the same condition as Section 3.5.1. Exact multipliers and other 

previous approximate multipliers were evaluated under the same environment as the 

proposed design. Figure 3-14 shows the power, delay and area of all multipliers with 8-

bit input.  

The proposed multiplier T8 achieves the lowest power, latency and area among all 

multipliers. Compared with the exact multiplier, T8 has the power saving of 24.24%, 

latency saving of 29.50% and area saving of 43.66%. UDM and C3 are both ASIC-

based designs and their LUTs on FPGA-based implementation are even larger than the 

area of the exact multiplier. The proposed design achieves more hardware 

improvements than SMA and Ca, which are FPGA-based approximate multipliers. For 

these improvements by the proposed multipliers, we can consider the construction of 

multipliers to explain. In SMA and Ca, exact adder is used to sum four partial products 

from four 4×4 multipliers. Exact adder consists of several carry chains and the serial 

carry propagation path, which leads to small area yet high power consumption. In 

contrast, in the proposed 8×8 multiplier design, the inexact adder is used to sum four 

8-bit products. It significantly improves hardware performance, especially power and 
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delay efficiency.  

An intuitive comparison of accuracy-hardware tradeoff in terms of MRED and PDP 

for all approximate multipliers is shown in Figure 3-15. The proposed design has the 

lowest PDP on the same MRED, and the smallest MRED on the same PDP. For example, 

the MREDs of T3 and SMA are around 0.03. The PDP of T3 is 2.07nJ, while SMA has 

PDP of 2.56nJ. Overall, the proposed design has a better MRED-PDP result than other 

approximate designs. 

 

3) Pareto-optimal analysis  

Pareto-optimal analysis is a statistical technique to search the best results in terms 

of two related metrics. Figure 3-16 compares all possible configurations of the proposed 

8×8 multiplier, exact multipliers and other approximate multipliers in [55] (UDM), [63] 

(C3), [46] (SMA), [47] (Cc, Ca) and [64] (EvoApp). All configurations were evaluated 

under the same condition as Section 3.5.1. In Figure 3-16, y-axis indicates the MRED, 

and x-axis indicates the area result in Figure 3-16 (a) and the latency result in Figure 3-

16 (b), respectively.  

The pareto optimal analysis reveals that the EvoApp design has the smaller area 

than other designs for MRED on the range of 0.05~0.1. However, when MRED is lower 

than 0.05, the proposed design requires less LUTs. For MRED-latency result shown in 

Figure 3-16 (b), the proposed design has more pareto points than other designs. Actually, 

in the proposed design, all non-dominated configurations are the configurations with 

the proposed adder IA2 in which eight LUTs are processed in parallel. This causes that 

EvoApp requires smaller area than the proposed design, while the proposed design costs 

shorter delay.  
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(a) 

 

(b) 

Figure 3-16 Pareto optimal analysis for the 8×8 multipliers. (a) MRED vs. delay. (b) 

MRED vs. area. 
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3.5.4 Image Processing Application 

 

   

(a) exact (b) T1 (c) T2 

   

(d) T3 (e) T4 (f) T5 

   

(g) T6 (h) T7 (i) T8 

Figure 3-17 Processed images by exact multiplier and proposed multipliers. 

 

To test approximate multipliers on application, image sharpening algorithm [58] is 

selected, because it is widely utilized to evaluate approximate multipliers. The 

introduction and function of this application have been introduced in Section 2.4.4. The 

peak signal-to-noise ratio (PSNR) is a metric to assess the quality of processed image 

compared with the exact image and defined in [42]. The input image for this application 

is 512×512 grayscale bitmap image with 8-bit pixels. Structural similarity index (SSIM) 

is another metric to measure the quality of processed image and we used the Matlab 

function 𝑠𝑠𝑖𝑚 to calculate it.  

Figure 3-17 shows the processed images from the exact multiplier and proposed 

approximate multipliers. The difference is imperceptible among the images processed 
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by exact multiplier and the proposed multipliers of T1~T3. Figure 3-18 shows the 

PSNR and SSIM results of all approximate multipliers. The SSIM results of T1~T3 are 

higher than 99.0%. T8 is the worst case in the proposed design which is still sufficiently 

exact for error-tolerant applications, because the PSNR of 20dB can be regarded as 

acceptable [72].  

 

 

Figure 3-18 PSNR and SSIM values of processed images by approximate multipliers. 

 

 

Figure 3-19 SSIM degradation and PDP saving of all multipliers. 
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The SSIM degradation and PDP saving achieved by all approximate multipliers are 

shown in Figure 3-19. On the same range of SSIM degradation, the proposed design 

has the higher PDP saving than other designs. Overall, T3 among the proposed 

multipliers is recommended for error-tolerant applications.   

3.6 Summary 

In this chapter, approximate FPGA-based 8× 8 multiplier design is proposed to 

achieve lower hardware consumptions than exact multiplier. Firstly, this work proposes 

approximate 4×4 multipliers with LUTs and carry chain. The approximation is mainly 

on the carry propagation path. Then, the design of 8×8 multipliers is explored by using 

proposed 4×4 multipliers as elementary modules. For the adder summing the products 

from small multipliers, two types of inexact adders are proposed. This first adder 

approximates the result on low columns, while the second adder produces the product 

in parallel. The critical path is shortened by inexact adders. A wide-range of 

approximate 8× 8 multipliers is provided for applications with different accuracy-

hardware requirements. The experimental results demonstrate that the proposed 

multiplier design can significantly reduce the hardware consumptions. Compared with 

exact multiplier, 20.18%~46.59% PDP saving and 22.54%~43.66% area savings can be 

achieved by the proposed design. Compared with the state-of-the-art FPGA-based 

multiplier [47], the proposed delivers more 18.07% PDP saving under the similar error 

(MRED) of 1%; compared with [46], more 19.24% PDP savings can be achieved by 

the proposed design with the similar MRED of 3%. 
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4. Conclusion and Future Work 

4.1 Conclusion 

This dissertation targets at the approximate multipliers for error-tolerant 

applications. The proposals focus on probability-driven carry-restricted compressors  

for ASIC-based approximate multiplier and FPGA-based approximate multiplier. They 

both can achieve considerable trade-off between accuracy loss and hardware saving. 

Chapter 2 presents the ASIC-based approximate multiplier. There are two 

contributions. Firstly, probability-driven inexact compressors are proposed by 

analyzing the probability distribution of partial products. The carry of this compressor 

is restricted (converted) to the same position with the sum. This compressor design 

does not include XOR gates, hence it is easily synthesized to area- and energy-efficient 

cells. More importantly, this is first attempt to introduce a unified expression and 

extend the input-width of inexact compressor up to 8-bit, which reduces the 

accumulation stage. By utilizing the proposed compressors, the approximate 

multiplier achieves more 26.28% area saving, 25.48% power saving and 16.39% delay 

saving, compared with multiplier without the proposed compressors. The second 

contribution is a grouped error-recovery scheme which is proposed to compensate 

error. This error recovery method is a derivate of probability-driven compressor, and 

the conventional adder can be optimized. The operation in this method is in the form 

of group. Compared with the previous error-recovery approaches implemented by 

conventional adder in bit-wise, the proposed scheme employs a simplified adder and 

significantly shortens the critical path. In addition, this error recovery scheme provides 

five variants of the proposed multiplier to achieve different accuracy-hardware results. 

Compared with the exact multiplier, the most efficient variant reduces the area by 

50.97%, power by 70.75% and delay by 52.42%. Compared with the previous 

approximate multiplier with error recovery, under the similar accuracy loss of 1% (in 

terms of MRED), the proposed design achieves more 50.63% PDP saving.   



Conclusion and Future Work 

94 

 

Chapter 3 proposes an FPGA-based approximate multiplier. There are two 

contributions. Firstly, this research carefully considers the structure of FPGA-fabric, 

whereas the most approximate multipliers focused on the ASICs. Three types of 

approximate 4× 4 multipliers with different performance are proposed, which are 

elementary module for the proposed approximate 8×8 multiplier. In 4×4 multiplier, the 

partial products are accumulated with compressor implemented by LUTs. By 

considering the low probability of carry, the carry computation is deleted in the 

compressor. The approximation on carry result significantly reduces the delay 

consumption. As a result, compared with the exact multiplier, the proposed 4× 4 

multiplier saves area up to 8 LUTs and delay of 15.62%. The second contribution is that 

an 8×8 multiplier design is constructed from elementary modules and the proposed 

inexact adders. These two inexact adders are proposed to cut the carry propagation 

when summing the products from four small multipliers. More importantly, all possible 

combinations are discussed to provides multiplier choices for the reconfigurability of 

FPGAs. As a result, the Pareto-optimal analysis is discussed to demonstrate that the 

proposed design has a better accuracy-hardware performance than previous works. 

Compared with the exact multiplier, the proposed design can reduce area by 43.66% 

and power by 24.24%. The critical path latency reduction is up to 29.50%. Compared 

with the state-of-the-art FPGA-based multiplier [47], the proposed one achieves more 

18.07% PDP saving when MRED is around 1%; compared with [46], more 19.24% 

PDP savings can be achieved by the proposed design with the similar MRED of 3%. 

4.2 Future Work 

In this research, 8×8 integer approximate multipliers have been studied. There are 

three future works need to be considered. Firstly, the proposed approach is easily to be 

extended to signed integer number multipliers and floating-point number multipliers. 

In this dissertation, the method of the extension to signed integer number multiplier is 

discussed. To further show the potential of the approximate signed multiplier, more 

applications such as CNNs should be considered to test. Recently, to effectively balance 
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the huge computations in CNNs and limited hardware resource, floating-point numbers 

in networks are replaced by signed integer numbers. It provides the opportunity to apply 

approximate signed multipliers. To fully provide the choices for wide-range 

applications, approximate floating-point multipliers also need to be considered. In 

floating-point number multiplier, the mantissa part is the integer multiplication, which 

could use the proposed unsigned integer multiplier. Secondly, developing a construction 

method of higher order approximate multipliers such as 16-bit or 32-bit based on the 

proposed idea is another future work. The current research work is easily extended to 

16-bit with four 8-bit multipliers. Thirdly, more applications will be considered to test 

the quality of the proposed method. Especially, this dissertation discussed approximate 

FPGA-based multiplier and FPGA has becoming a promising platform to accelerate a 

lot of data. Therefore, more applications using FPGA need to be considered. 
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