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A B S T R A C T

First, we examine if a team of robots or agents can develop geometric
and tactical group formations by using deep reinforcement learning in
adversarial multi-agent systems. This is a significant point underlying
the control and coordination of multiple autonomous and intelligent
agents. Although there are several possible techniques to solving
this challenge, we are particularly interested in a fully end-to-end
learning method where agents do not have any prior knowledge of the
environment and its dynamics. We propose a scalable and distributed
double DQN framework to train adversarial multi-agent systems. We
show that a large number of agents can learn to maneuver, attack,
and protect themselves cooperatively in diverse geometric shapes and
battle tactics like encirclement, guerrilla warfare, frontal attack, flanking
maneuver, and so on. We finally show that agents create emergent and
collective flocking behaviors by using local views from the environment
only.

Then, we propose a method using several variants of deep Q-network
for learning strategic formations in large-scale adversarial multi-agent
systems. The goal is to learn how to maximize the probability of
acting jointly as coordinated as possible. This method is called the
centralized training and decentralized testing (CTDT) framework that is
based on the POMDP during training and dec-POMDP during testing.
During the training phase, the centralized neural network’s inputs
are the collections of local observations of agents of the same team.
Although agents only know their actions, the centralized network
decides the joint action and subsequently distributes these actions to
the individual agents. During the test, however, each agent uses a copy
of the centralized network and independently decides its action based
on its policy and local view. We show that deep reinforcement learning
techniques using the CTDT framework can converge and generate
several strategic group formations in large-scale multi-agent systems.
We also compare the results using the CTDT with those derived from a
centralized shared DQN and then we investigate the characteristics of
the learned behaviors.
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Finally, we investigate how a large-scale system of independently
learning agents can collectively form acceptable two-dimensional pat-
terns (pattern formation) from any initial configuration. We propose
a decentralized multi-agent deep reinforcement learning architecture
MAPF-DQN (Multi-Agent Pattern Formation DQN) in which a set of
independent and distributed agents capture their local visual field and
learn how to act to collectively form target shapes. Agents exploit their
networks with a central replay memory and target networks that are
used to store and update the representation of the environment as well
as learning the dynamics of the other agents. We then show that agents
trained on random patterns using MAPF-DQN can organize themselves
into very complex shapes in large-scale environments. Our results sug-
gest that the proposed framework achieves zero-shot generalization on
most of the environments independently of the depth of view of agents.
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1
I N T R O D U C T I O N

1.1 multi-agent systems

Multi-agent systems (Wooldridge 2009; Weiss 1999; Ferber 1999; Shoham
and Leyton-Brown 2008) are systems that contain many autonomous
agents in the same environment. They can be used to collectively solve
a problem that is very difficult and complex or even impossible to
solve by a single agent (Buşoniu, Babuška, and De Schutter 2010; Claus
and Boutilier 1998; Panait and Luke 2005). Multi-agent systems are
very useful in the sense that many systems can be modeled to cope
with the limitations of the processing power of a single agent and to
profit from many advantages of distributed systems such as robustness,
parallelism, and scalability (Weiss 1993). For instance, many real-world
systems are achieved by collective and cooperative effort. The need for
collaboration between agents becomes even more evident when looking
at examples such as traffic control (Dresner and Stone 2005; Wiering
2000; Tomlin, Pappas, and Sastry 1998), task allocation (Gerkey and
Matarić 2004; Shapley 1953; Iijima et al. 2016; Miyashita, Hayano, and
Toshiharu Sugawara 2015), ant colonies (Yeh and Toshiharu Sugawara
2016; Xiang and Lee 2008), and biological cells (Khan et al. 2003).

Definition 1.1. An agent is a software or robot system that can execute
actions autonomously to reach a predefined goal. Intelligent agents act
without the intervention of humans and have the ability to adapt their
behavior to the changes of the environment dynamics. In a general
MAS setting, agents are social in the sense that they can interact and
communicate with each other to reach global or local goals.

Multi-agent systems (MASs) arise in a variety of domains including
robotics (Dudek et al. 1996), distributed control (Aguilar et al. 2005),
telecommunications (Hayzelden and Bigham 1998; Velthuijsen 1993;
Toshiharu Sugawara 1990), and economics (Kaihara 2003; Lux and
Marchesi 1999; Boutilier, Shoham, and Wellman 1997). The common
pattern among all of the aforementioned examples is that the system
consists of many agents that wish to reach certain global or individual
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2 introduction

goals. While these agents can often communicate with each other by
various means, such as observing each other and exchanging messages,
decision-making in an intelligent MAS is challenging because the appro-
priate behavior of one agent is inevitably influenced by the behaviors
of others, which are often uncertain and not observable.

In general, the preferences and (probabilistic) beliefs drive agents’
behaviors. The state belief of an agent is important in the sense that
each agent has a different attitude vis-à-vis teammates or opponents.
An agent may generally have a very positive cooperative strategy, but
if the agent believes that other agents will not cooperate or will get
out the already established cooperation, she may probably slide out
of the group formation. In short, the goal can only be reached if most
of the agents work together, while the self-interested agents should be
prevented from ruining the global task for the rest.

1.2 challenges of multi-agent learning

Intelligent agents can learn some interesting behaviors from nature and
society, such as flocking (Reynolds 1987; Olfati-Saber 2006; Choi, Oh,
and Horowitz 2009), group formation (J. P. Desai, J. Ostrowski, and
Kumar 1998). For instance, in an adversarial environment, agents can
learn how to limit interactions with adversaries by deliberately forming
groups and integrating their know-hows of the world to optimize the
likelihood of escaping adversaries and barriers. This behavior is very
important in complex environments populated by a large number of
agents that can sense only a very limited view (partial observability)
of their environment. This collective behavior can be seen as the
same strategy used by a group of humans or animals in real life to
avoid starving and predators. The individual members of the team
coordinate between them and generate collective behaviors that can be
seen as collective intelligence because the knowledge or behavior of
an isolated individual agent is not sufficient enough to learn anything
useful from the environment. Hence, collective intelligence in MAS is
preferred to the summation of the abilities of all agents when they work
individually(Mataric 1993).

Although many studies addressed the issue of strategic group for-
mation for coordination in the agent-based context. They usually
implement predefined strategies to mimic animal’s behavior. Thus,
one main question is “How can agents learn to survive, defeat their
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opponents, form a group by themselves without hand-designed strate-
gies?”. Unfortunately, it is not an easy task because it’s hard to design
a good reward scheme that makes a group of agents learn how to form
a specific strategy rather than a different one. It is even harder because
if agents decide to change their current strategy, they are taking the risk
of annealing the already learned behaviors. In general, policies are goal-
directed and can last for a relatively long time. These policies might
just cease to exist when the goal no longer exists or agents achieved
their predefined goal. Even if the agents do not generally have a global
view of their environment, the local behavior of an individual agent
can result in very complex global behaviors of the team.

In addition, scalability is very important in multi-agent systems (Rana
and Stout 2000), particularly in learning systems where the environment
is non-stationary because the dynamics change frequently and agents
have to adapt their behaviors accordingly. Because agents are learning
at the same time, any learned behavior could lead to a dynamical
system, and occasionally even very basic configurations of the agents
do lead to sophisticated behaviors (Shoham and Leyton-Brown 2008).
Furthermore, if we have a lead agent – decision-maker – that decides
which action should be taken by agents, the performance of the system
might slow down.

Multi-agent learning (Stone and Veloso 2000; Buşoniu, Babuška, and
De Schutter 2010; Tuyls and Weiss 2012; Panait and Luke 2005; Tan
1993) is a key technique in distributed artificial intelligence, and thus,
computer scientists have been working on extending reinforcement
learning (RL) (Sutton and Barto 1998) to multi-agent systems to iden-
tify appropriate behavior in complex systems, where Markov games
(Littman 1994) have been recognized as the prevalent model of multi-
agent reinforcement learning (MARL). We have two types of learning
in multi-agent systems: centralized (the learning is done by an inde-
pendent agent on its own) and distributed collective learning (learning
is done by the agents as a group). Modeling multi-agent systems is
a complex task due to the environmental dynamics, the action, and
state spaces, as well as the type of agents because many real-world
domains have very large state spaces and complex dynamics, requiring
agents to reason over extremely high-dimensional observations, and
thus, making optimal decisions in MAS intractable.

Recently, the so-called deep-Q-network achieved unexpected results
by playing a set of Atari games, receiving only visual states (Mnih,
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Kavukcuoglu, Silver, Graves, et al. 2013; Mnih, Kavukcuoglu, Silver,
Rusu, et al. 2015). The same model architecture was used to learn
different Atari games, and in some of them, the algorithm performed
even better than a human player.

Definition 1.2. Multi-agent deep reinforcement learning (MADRL)
is the learning technique of multiple agents trying to maximize their
expected total discounted reward while coexisting within a Markov
game environment whose underlying transition and reward models are
usually unknown or noisy. Formally, agents use neural networks with
a large number of layers as a function approximator to estimate their
action values.

In MADRL, an agent’s optimal behavior will be determined not just
by the environment, but also by the behaviors of all other agents as well.
Consequently, cooperativeness in multi-agent learning is a problem of
great interest within game theory and AI. Despite the success of deep
RL, research has not sufficiently been done to extend these techniques
in a multi-agent context except in some specific studies (Foerster et al.
2017; Peng et al. 2017; Omidshafiei et al. 2017).

1.3 state-of-the-art

The number of publications related to deep reinforcement learning
and multi-agent systems continues to increasingly grow since deep
reinforcement learning was proven to work in complex single-agent
cases. These studies often focused on analyzing multi-agent systems
and their challenges, exploring cooperative behaviors. Recent surveys
are related to non-stationary environments, agent modeling, transfer
learning in multi-agent settings, and critique of multi-agent learning.

Recent multi-agent studies can be classified in four different cate-
gories (Hernandez-Leal, Kartal, and Matthew E Taylor 2019):

• Category 1: analysis of emergent behaviors. In practice, papers
in this category, typically do not present novel algorithms; instead,
they study and assess DRL techniques in a multi-agent setting,
such as DQN, PPO, and others. We can discover publications
in this category that looked at emergent behaviors in the three
different multi-agent scenarios: cooperative, competitive, and
mixed competition-cooperation strategy.
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• Category 2: learning to communicate. These studies look at a
sub-field wherein agents could exchange messages via ordinary
communication methods or through a global experience replay
memory. This topic is slowly gaining some traction, yet it hasn’t
gotten much of the deserved exposure in the multi-agent learning
literature.

• Category 3: Learning to cooperate.

While learning to communicate is a nascent area of research,
enabling collaboration in learning agents has a long history in
multi-agent systems. Most of the research in this area is studied
in either cooperative or mixed competition-cooperation settings.
Furthermore, the literature on this topic often uses ideas from
classical multi-agent learning and adapt them to multi-agent deep
reinforcement learning techniques.

• Category 4: Agents modeling.

Understanding other agents is beneficial not just for cooperating,
but also for modeling opponents, predicting their strategies and
objectives, and accounting for other agents’ learning behavior.

For a thorough review of the different categories, see (Hernandez-
Leal, Kartal, and Matthew E Taylor 2019). The contributions of
this thesis belong mainly to categories 1 and 3.

1.4 contributions and outline of this thesis

Throughout this thesis, we will address the fundamental question: can
deep reinforcement learning agents find the strategic group formation
by combining the local views of individual agents in a multi-agent
context and adapt to the change of opponent strategies in an adversarial
environment. When we apply deep reinforcement learning techniques
in MAS, we should always ask the following questions:

• What will happen when the number of agents drastically in-
creases?

• Will the network converge?

• Will the agents be able to learn interesting strategies or policies
that help them to achieve their goal or sub-goal?
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• How much cooperation is required and can be achieved by the
agents?

• how can agents learn which action they shall perform under given
circumstances?

On one end, we have independent learners trying to optimize their
own behavior without any form of communication with the other
agents, and they only use the feedback received from the environment.
Whereas on the other end, we have joint learners where every agent
reports every step they take to every other agent before proceeding to
the next step.

These are very important questions since the complexity and dimen-
sionality of the environment grow rapidly as the population of agents
increases. This thesis is an attempt to explore how agents can dynam-
ically learn cooperative and coordinated behavior using deep RL in
adversarial and cooperative MAS (Panait and Luke 2005) with a large
number of agents and huge state space.

Chapter 2 is an introductory chapter that introduces general deep
reinforcement learning techniques. It loosely provides the mathematical
background of recent deep reinforcement learning algorithms and the
importance of exploration and exploitation in RL. The next chapters
outline the main contributions of this thesis.

In chapter 3, we examine whether a team of agents can learn geomet-
ric and strategic group formation by using deep reinforcement learning
in a large-scale mixed cooperation-competition strategy multi-agent
environment. We proposed a fully end-to-end scalable and distributed
DRL framework to train and test agents without any prior knowledge
of the environment and its dynamics. The results show that agents
using our fully end-to-end framework create emergent and collective
flocking behaviors by using local views only. This chapter is based
on the following papers: (Elhadji Amadou Oury Diallo and Toshiharu
Sugawara 2018a) and (Elhadji Amadou Oury Diallo and Toshiharu
Sugawara 2018b).

In chapter 4, we propose a plug-and-play framework to improve
the previous framework. This framework is called centralized training
and decentralized testing (CTDT). The environment is modeled as a
POMDP during training and dec-POMDP during testing. The results
proved that CTDT agents could optimally generate better strategies in
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a shorter training time. This chapter is based on the following papers:
(Elhadji Amadou Oury Diallo and Toshiharu Sugawara 2019)

In chapter 5, we propose MAPF-DQN (multi-agent pattern forma-
tion DQN) to investigate how a large-scale system of independently
learning agents can collectively form 2D patterns (pattern formation)
from any initial configuration. The results suggest that the MAPF-DQN
framework achieves zero-shot generalization on most of the tested
environments independently of agents’ configurations. This chapter
is based on the following papers: (Elhadji Amadou Oury Diallo and
Toshiharu Sugawara 2020b) and (Elhadji Amadou Oury Diallo and
Toshiharu Sugawara 2020a)

In all proposed frameworks, agents have individual goals that they
should achieve by themselves without any supervision. We also investi-
gate how the learned behaviors change according to the environment
dynamics including reward schemes and learning techniques. More-
over, we extended different deep reinforcement learning techniques
such as DQN (Mnih, Kavukcuoglu, Silver, Graves, et al. 2013; Mnih,
Kavukcuoglu, Silver, Rusu, et al. 2015), double DQN (Hasselt 2010;
Van Hasselt, Guez, and Silver 2016), dueling network architectures
(Wang et al. 2015) and dueling architectures combined with double
DQN by proposing a distributed and scalable MAS framework that can
handle a very large number of agents.

The results will help us better understand how agents behave and
interact with each other in complex environments and how agents
coherently choose their actions such that the resulting joint actions
are optimal. Moreover, the findings of this research can probably be
applied to solve a wide range of domain-specific problems with little
effort (Matthew E. Taylor and Stone 2009; Boutsioukis, Partalas, and
Vlahavas 2011). The next chapter will give the necessary mathematical
background of deep reinforcement learning.





2
B A C K G R O U N D

This chapter contains material from (Elhadji Amadou Oury Diallo,
Ayumi Sugiyama, and Toshiharu Sugawara 2020). The function of RL is
to learn what to do next, and how to map conditions to suitable actions
in order to boost a cumulative numerical feedback through a continuous
interaction between agents and the environment. Essentially, The main
goal of RL is to find the optimal action-selection policy.

2.1 model free deep reinforcement learning

In RL, agent i learns an optimal control policy π. At each step, i
observes the current state s, chooses an action a using π, and receives
a reward r. Then, the environment transits to the next state st+1. The
cumulative discounted future reward to be maximized at time t is:

Rt =
T

∑
t=t0

γt−t0rt, (2.1)

where T is the terminal time step and γ ∈ [0, 1]. The Q-value of a given
policy π represents the utility of action a at state s, where the utility is:

Qπ (s, a) = E [Rt+1 | st = s, at = a] (2.2)

The optimal Q-value Q∗ is traditionally expressed as

Q∗ (s, a) = max
π

E [Rt+1 | st = s, at = a] (2.3)

Q-learning (Watkins 1989) is an approach that iteratively estimates the
Q-function using the Bellman equation:

Q∗ (s, a) = E

[
Rt+1 + γ max

at+1
Q∗ (st+1, at+1) | s, a

]
(2.4)

2.2 deep q network (dqn)

Originally, Q-learning uses a table containing the Q-values of state-
action pairs where we assume that a state is the screen image of a

9
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pong game. If we apply the same preprocessing as in (Silver et al.
2016), which takes four last screen images, resizes them to 84× 84,
and converts them to grayscale with 256 gray levels, we would have
25684×84×4 ≈ 1067970 possible game states. In the problem we try
to solve, the state also usually consists of several numbers (position,
velocity, RGB values) and so our state space would be almost infinite.

Because we cannot use any table to store such a huge numbers of
values, we can directly extend tabular Q-learning (Watkins 1989) to
deep reinforcement learning framework by using a neural network
function approximator with the collection of weights θ. The weights θ
can be trained by minimizing a sequence of loss functions Lt(θt) that
changes at each time step t:

L (θt) = Es,a,r,st+1

[
(yt −Q (s, a;θt))

2
]

, (2.5)

where yt is the target Q-value and is defined as

yt = E
[

Rt+1 + γ max
a

Q∗ (st+1, a;θt) | s, a
]

(2.6)

= Rt+1 + γ max
a

Q (st+1, a;θt) (2.7)

= Rt+1 + γQ
(

st+1, arg max
a

Q (st+1, a;θt) ;θt

)
(2.8)

A target network (Mnih, Kavukcuoglu, Silver, Rusu, et al. 2015) with pa-
rameters θ−, updated every K steps from the online network, improves
the stability of DQN. Hence, yt becomes

yt = Rt+1 + γQ
(

st+1, arg max
a

Q
(
st+1, a;θ−t

)
;θ−t

)
(2.9)

The derivative of the loss function with respect to the weights is given
by ∇θtL(θt):

∇θtL(θt) = Es,a,r,st+1 [(yt −Q (s, a;θt))∇θt Q (s, a;θt)] (2.10)

Instead of using an accurate estimate of the above gradient, it is often
convenient and practical to use Stochastic Gradient Descent to optimize
the weights of the loss function. Therefore, we can update the weights
of the online network after every timestep. We also replace the expec-
tations by a tuple of experiences 〈s, a, r, st+1〉 sampled from a replay
memory such that the current parameter θ is adjusted in the direction
of the loss with respect to θ as follows

∇θtL(θt) = (yt −Q (s, a;θt))∇θt Q (s, a;θt) . (2.11)
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2.3 dqn with double q-learning (ddqn)

The conventional Q-learning (Watkins 1989) algorithm overestimates
the action-state values (Hasselt 2010). This is due to the use of the
max function when updating the Q-values. One solution is Double
DQN (Van Hasselt, Guez, and Silver 2016), which consists of using
two independent value functions that are randomly updated, resulting
in two sets of weights, θ and θ

′
. Then we use one set of weights to

determine the greedy policy and the other to determine its value. Given
the fact that we already have two different value functions in DQN,
yDDQN

t becomes

y(DDQN)
t = Rt+1 + γQ

(
st+1, arg max

a
Q (st+1, a;θt) ;θ−t

)
(2.12)

Double DQN sometimes underestimates rather than overestimates the
expected Q-values. However, the chance of both estimators underesti-
mating or overestimating at the same action is low.

2.4 dqn dueling network architectures (dueldqn)

In many reinforcement learning problems, it is unnecessary to estimate
the action value for each action, as some actions have little to no value
for a given state. Dueling networks (Wang et al. 2015) decompose the
Q-Network into a value stream V(s;θ, β) and an advantage stream
A(s, a;θ, α). The value stream expresses how desirable a state would
be for an agent while the advantage stream compares how much better
taking a certain action would be compared to the others. The relation-
ship between value and advantage streams is expressed in the following
formula:

Aπ(s, a) = Qπ (s, a)−Vπ (s) . (2.13)

This decomposition helps to generalize the learning for the state values.
The output layer of this architecture is a combination of the value stream
output and the advantage streams output. The aggregator is given by

Q (s, a;θ, ζ, β) = V (s;θ, β) +

(
A (s, a;θ, ζ)− 1

|A|∑a
A (s, a;θ, ζ)

)
,

(2.14)
where β is a parameter of V, ζ is a parameter of A, and |A| represents
the length of the advantage stream.
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2.5 exploration and exploitation

Exploration vs. exploitation is one of the main dilemmas in RL. The
optimal policy for an agent is to always select the action found to be
most effective based on history (exploitation). On the other hand, to
improve or learn a policy, the agent must explore a new state it has
never observed before (exploration) by taking non-optimal actions. We
use ε-greedy to balance between exploration and exploitation with
0 ≤ ε ≤ 1. At every timestep, the agent acts randomly with probability
ε and acts according to the current policy with probability 1− ε. In
practice, it is common to start with ε = 1 and to progressively decay ε

as the training progresses until we reach the desired ε.



3
D E C E N T R A L I Z E D T R A I N I N G A N D D E C E N T R A L I Z E D
T E S T I N G F R A M E W O R K

This chapter contains material from (Elhadji Amadou Oury Diallo and
Toshiharu Sugawara 2018a) and (Elhadji Amadou Oury Diallo and
Toshiharu Sugawara 2018b).

3.1 introduction

We address the fundamental question: can deep reinforcement learning
agents find the strategic group formation by combining the local views
of individual agents in a multi-agent context and adapt to the change
of opponent strategies in an adversarial environment. When we apply
deep reinforcement learning techniques in MAS, we always ask what
will happen when the number of agents drastically increases. Will the
network converge? Will the agents be able to learn interesting strategies
or policies that help them to achieve their goal or sub-goal? These are
very important questions since the complexity rises as the population
of agents increases.

Although the main goal of this paper is to investigate the afore-
mentioned questions in adversarial multi-agent systems with a large
number of agents and state space. We assume that a single network is
shared with all team members in our implementation. This means that
the existence of a centralized manager like a general, but we believe
that there are still a number of challenges to control the coordination of
so many agents (100 to 400 agents in our experiments). It is not obvious
the coordinated behavior can really emerge using deep reinforcement
learning techniques. It also seems that having a network for each agent
is not optimal in a large scale environment in which we have up to 400
agents per team. We would need a larger cluster of GPUs to train the
system. So having teammates share the same network is adapted to
quite complicated situations in which agents have to learn complicated
and difficult group strategies by themselves.

13
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3.2 related work

In previous research, some parts of the process were hand-designed.
They generally calculate the expected outcome that could be derived if
a group or flock was formed. Then, they select the optimal groups to
form after estimating all possible outcomes. And finally, they divide
the set of agents into exhaustive and disjoint groups. One drawback of
this method is that the system becomes very complex as the number of
agents increases. In addition, we cannot always design and predict all
possible and useful formations in a complex environment.

Balch and Arkin (1998) presented a behavior-based multi-robot team
formation and formation-keeping. They demonstrated that robots could
form teams to reach navigational goals, avoid hazards and simultane-
ously remain in formation. J. P. Desai, J. Ostrowski, and Kumar (1998),
J. P. Desai, J. P. Ostrowski, and Kumar (2001), and Jaydev P Desai (1998)
proposed a graph theoretical method of modeling a multi-pattern for-
mation of robotic agents. They dealt with situations where agents
have to briefly cease their formation to avoid obstacles. Barfoot and
Clark (2004) studied the motion planning for formations of mobile
robots, where the robots used predetermined geometrical constraints
throughout their travel.

In general, flocking is studied so many in physics (Toner and Tu
1998; Levine, Rappel, and Cohen 2000) (or biophysics) using multi-
agent simulations. For instance, Nathan and Barbosa (2006) studied
the emergence of V-like formations during bird flight by introducing a
distributes positioning rules to guide agents’ movements. They also try
to find the basic behavior that generates a flock and collective behavior
strategies using mathematical framework. One drawback of these
methods is that the strategies are always given. In other words, the
agents cannot generally discover a set of new strategies. Unfortunately,
defining such behaviors manually is tedious and complex.

In the aforementioned papers, the shape of formation is important
and agents do not learn how to behave by themselves. In our case,
how to behave is much more important and our number of agents is
significantly larger. In that sense, we propose a scalable and distributed
end-to-end double DQN (Van Hasselt, Guez, and Silver 2016) frame-
work that can handle a very large number of agents. We also propose a
method to constitute the input of the neural network function approxi-
mator by stacking the local view of each agent. We then explore how
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agents can dynamically learn cooperative and coordinated behavior
which motivates strategic team formations in an adversarial MAS. We
finally address the question of whether agents can build formation,
alliances or groups by using their local views only. We think that ap-
plying deep reinforcement learning techniques to multi-agent systems
(Elhadji A. O. Diallo, A. Sugiyama, and T. Sugawara 2017; Leibo et al.
2017; Tampuu et al. 2017; Foerster et al. 2017; Omidshafiei et al. 2017)
can have various applications. However, these techniques are very hard
to train and their convergence is not always guaranteed.

3.3 problem

3.3.1 Multi-agent reinforcement learning

A Multi-agent Markov game is defined as 〈N, S, A, R, T〉, where N =

{1, . . . , n} contains n agents, S is the state space, A = A1 × · · · × An

represents the joint action space of agents (where Ai is the action space
of agent i), R : S× A → R is the common expected reward function;
and T : S × A × S → [0, 1] is a probabilistic transition function. At
each timestep t, agent i takes action ai

t sampled from the policy πi
t in

state st ∈ S, where πi : S × Ai and st =
(
s1

t , . . . , sn
t
)

. When a joint
action at =

(
a1

t , . . . an
t
)

is executed, the environment transits from st to
st+1 with a probability p(st+1|st, at) ∈ T and agent i receives a reward
ri

t = R(st+1|si
t, ai

t). The goal of the agents is to find a deterministic joint
policy π =

(
π1, . . . πn) so as to maximize the sum of their individual

reward rt = ∑n
i=1 ri

t.

3.3.2 Adversarial MAS environment

In this paper, we used a well-known adversarial multi-agent domain,
the so-called “Battle game” (Sukhbaatar, Szlam, and Fergus 2016), in
which two teams of many agents are fighting against each other. Agents
of the same team cooperate with their teammates to find some strategies
in order to defeat the opponent team. The main goal is to kill as much
opponents as possible by invading the neighbor territories and by using
some warfare strategies.

Our environment operates on two (2) teams of n agents and runs
from some initial positioning of the agents inside a square in two-
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Figure 3.1: Initial state

dimensional space for each team. Each agent is randomly assigned a
unique ID initially and keeps the same ID during the whole training.
During each episode, the agents start at a random position inside the
initially allocated area (see Fig. 3.1. The IDs of alive and dead agents
are recorded in order to constitute the input of each team’s network at
any given timestep.

An agent can take up to 7 actions: going up, going down, going
left, going right, turning left, turning right and shooting. An agent
is dead after being attacked three (3) times. Agents can only attack
the nearby opponents located one cell ahead its current position. To
simplify the environment dynamics, an agent is not able to attack an
opponent located outside of its own field of view.

In this environment, we consider homogeneous agents with same
speed and action space. They also have the same capabilities to sense
the environment by direct perception. Each network has a Double DQN
to give each agent the instruction for strategic attack or defense. The
game ends when all agents on one team have been killed or after 1, 000
timesteps. The winning team is the one who has the highest number of
alive agents.

3.3.3 Reward scheme

Each agent receives a reward of −0.01 after each step. An agent gets
+5 when it kills an opponent, and receives −5 when the agent is killed
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Figure 3.2: Scalable adversarial MAS architecture. The environment consti-
tutes of two teams of n agents (n = 100, 200, 300, 400) each at the
beginning of each episode.

by an opponent. An agent receives a small negative reward of −0.01
whenever it attacks an empty position. This reduces the number of
attempts an agent can attack empty positions, and thus making the
training slightly faster. By reward shaping (Ng 2003; Skinner 1990),
an agent receives +1 for attacking an opponent, and −1 if it is being
attacked. The global reward of each team is the sum of all the rewards
received by agents of the same time at any timestep t, rt = ∑n

i=1 ri
t.

3.4 method

3.4.1 Proposed learning framework

We proposed a distributed learning framework for training adversarial
multi-agent systems with a large number of agents (Fig. 3.2). In our
framework, each agent has its own local view si

t, its own action space
ai

t and its own reward ri
t. At every timestep t, an individual agent

observes its local environment, takes an action, and receives a local
scalar reward. Agents exclusively observe their unique actions and
therefore do not watch each other’s actions. At every timestep, one
joint action at =

(
a1, . . . , an) is taken and the environment generates

a global state st =
(
s1, . . . , sn) from wherein every individual agent i

receives its local view si. We assume that an agent acts on the basis of its
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2k + 1

2k
 +
 1

...

Figure 3.3: 3D Tensor observation.

individual policy and local view, and we do not assume any additional
communication between agents. This seems to embed communication
implicitly through the actions, local observations and states. Recall that
agents have the same speed and equal processing capabilities.

In this model, all members of the same team use the same neural
network. The deep Q network of each team receives a “tensorized”
observation at time t (see section 3.4.2). Each agent asynchronously
infers its action from the output of the network which contains the
Q-values of every possible action for agents. Agents have the capacity
to rapidly reach proficiency by using our proposed framework. Because
the network outputs all possible q-values for each agent, we can apply
different exploration strategies or learning techniques. For example,
we can use a greedy exploitation strategy where the agents take the
maximum q-values, or by using ε-greedy. We can also use different
neural network structures for each team such as deep recurrent Q-
network (Hausknecht and Stone 2015), dueling networks (Wang et al.
2015), or deep deterministic policy gradient (Lillicrap et al. 2015).

3.4.2 Observation

The main environment is represented as a square grid. The image is
converted into grayscale. And then every agent uses a filtering method
to delimit its local view controlled by the parameter k from Fig. 3.3. The
input of each network is a tensorized stack of all local views of agents at
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any given timestep. Each agent senses distances to neighboring agents
within a radius k from its current position. Each channel represents the
local view si

t of each individual agent of the same team. Using only
this information, a network can learn a policy that is able to establish
and maintain a certain group formation and to cooperatively locate and
eliminate the opponents.

This representation can be thought of as an aggregation of all inputs
from different sensors of many robots. For instance, if we have many
cleaning or patrolling robots, we could use this method to represent the
input of their learning techniques. One advantage of this representation
is that we can simulate, for example, the state availability of any robot,
by including a probabilistic function that selects the availability of a
robot state. In our implementation, the local view si

t of a dead agent
is si

t = 1(2k+1,2k+1), an identity matrix of size (2k + 1, 2k + 1) whose
entries are 1. This practically means that the local views of a dead agent
is white as is the background.

3.4.3 Exploration vs exploitation

Exploration vs. exploitation is one of the main dilemmas in RL. The
optimal policy for an agent is to always select the action found to be
most effective based on history (exploitation). On the other hand, to
improve or learn a new policy, the agent must explore new state it has
never observed before (exploration) by taking non-optimal actions. We
use ε-greedy (Sutton and Barto 1998) to balance between exploration
and exploitation with 0 ≤ ε(t) ≤ 1. At every timestep, the agent acts
randomly with probability ε and acts according to current policy with
probability 1− ε(t). In practice, it is common to start with ε = 1 and to
progressively decay ε as the training is going until we reach the desired
ε. In general, we could use a fixed ε value. However, this is not always
an optimal choice, because after many episodes of training, we would
have a more accurate estimation of the policies and we could reduce
the amount of exploration.

We decayed the values of ε based on the piecewise linear decay function
by dividing the training episodes into many subsets and then linearly
decreasing the value of ε from the maximum to the minimum prede-
fined ε value for each interval. However, this is rarely done in reality,
as determining a decay function requires a tedious parameter search,
and is extremely domain dependent. The resulting values are shown
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Figure 3.4: ε-greedy piecewise linear decay.

in Fig. 3.4. The initial and final value of ε are, respectively, 1 and 0.01.
In this case, our agents will be able to extensively explore during the
first episodes and use the optimal policy without much exploration
in the end of the training as agents get more knowledge about the
environment.

3.4.4 Double DQN

Recall that, in RL, agent i learns an optimal control policy πi with a
goal of maximizing cumulative discounted future reward at time t0 as
Rt = ∑T

t=t0
γt−t0rt, where T is the terminal timestep and γ ∈ [0, 1].

Q-learning (Watkins 1989) is an approach that iteratively estimate the
Q-function using the Bellman optimality Q∗(s, a) = E [r + γ maxa Q∗(st+1, a)|s, a].
We can use a parameterized value function Q(s, a;θt) to estimate the Q-
values when the task is complex. Then, we update the parameters by us-
ing the following formula: θt+1 = θt + η(yt−Q(st, at;θt))∇θt Q(st, at;θt),
where α is a scalar step size and yQ

t is the target value function.

yQ
t = Rt+1 + γ max

a
Q(st+1, a;θt) (3.1a)

= Rt+1 + γQ(st+1, arg max
a

Q(st+1, a;θt);θt) (3.1b)

DQN Mnih, Kavukcuoglu, Silver, Graves, et al. 2013; Mnih, Kavukcuoglu,
Silver, Rusu, et al. 2015 is an extension of Q-learning that uses a stack
of convolutional neural network and fully connected layers to estimate
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Q(s, a;θ), where θ are the weights of the network network function ap-
proximator. We use a separate network to compute yDQN

t . The second
or target network would have the exact same design as that of the DQN
network, but with fixed properties θ− that are updated after every τ

from the online network. This leads to more stable training because it
keeps the target θ− fixed for a while. Now, we can can rewrite Eq. 3.1
as:

yDQN
t = Rt+1 + γ max

a
Q(st+1, a;θt) (3.2a)

= Rt+1 + γQ(st+1, arg max
a

Q(st+1, a;θ−);θ−) (3.2b)

And we finally update the neural network weights by:

θt+1 = θt + η(yDQN
t (st, at;θt))∇θt Q(st, at;θt) (3.3)

The traditional Q-learning (Watkins 1989) algorithm overestimates
the action-state values (Hasselt 2010). This is due to the use of the
max function when updating the Q-values. One solution is Double
DQN (Van Hasselt, Guez, and Silver 2016) that consists of using two
independent value functions that are randomly update, resulting in two
sets of weights, θ1 and θ2. Then we use one set of weights to determine
the greedy policy and the other to determine its value. Given the fact
that we already have two different value functions in DQN, yDDQN

t
becomes:

yDDQN
t = Rt+1 + γQ(st+1, arg max

a
Q(st+1, a;θt);θ−) (3.4)

We stored the experience (s, a, r, st+1) in a replay buffer D and sampled
mini-batches (L.-J. Lin 1992) from it to train the network by using the
standard mean squared error (MSE) loss. In the beginning, the buffer is
filled with experiences played by random agents.

L(θt) = Es,a,r,st+1∼D

[(
yDDQN

t −Q(s, a,θt)
)2
]

(3.5)

Double DQN is shown to sometimes underestimate rather than overes-
timate the expected Q-values. However, the chance of both estimators
underestimating or overestimating at the same action is low. See Algo-
rithm 1 for more details.
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Algorithm 1: Adversarial multi-agent concurrent DQN with
Double Q-learning
1 for team k = 1 to 2 do
2 Initialize online network and target network with random weights

θk = θ(k,−)

3 Initialize experience replay memory Dk

4 for episode = 1 to number episodes do
5 Populate team k with n agents
6 for timestep t = 1 to max timesteps do
7 for agent i = 1 to n do
8 compute the current state of agent si

t

9 ai
t ←

{
Select random action ai

t with probability ε

arg maxai
t
Q
(
si

t, ai
t;θ

k) with probability 1− ε

10 Apply action ai
t and observe reward ri

t and next state si
t+1

11 Store transition 〈si
t, ai

t, ri
t, si

t+1〉 in the experience buffer Dk

12 Uniformly sample batch of transitions 〈si
j, ai

j, ri
j, si

j+1〉 from Dk

13 if si
j+1 is terminal then

14 yi
j ← ri

j

15 else
16 yi

j ← ri
j + γQ

(
si

t+1, arg maxai Q
(

si
t+1, ai;θk

t

)
;θk,−

t

)
17 end

18 if
∣∣∣yj −Q

(
s, a;θk

t

) ∣∣∣ < δ then

19 L(θk
t )← 1

2

(
yt −Q

(
s, a;θk

t

))2

20 else

21 L(θk
t )← δ

∣∣∣yj −Q
(

s, a;θk
t

) ∣∣∣− 1
2 δ2

22 end

23 ∇θL(θk
t ) =

(
yj −Q

(
s, a;θk

t

))
∇θQ

(
s, a;θk

t

)
24 ξk

t = (1− γ1)∇θL(θk
t ) + γ1ξk

t−1

25 κk
t = (1− γ2)

(
∇θL(θk

t )
)2

+ γ2κk
t−1

26 ξ̂k
t =

ξk
t

(1−(1−γ1)t)

27 κ̂k
t =

κk
t

(1−(1−γ2)t)

28 vk
t = η ξ̂k√

κ̂k
t +ε

29 θk
t+1 = θk

t − vk
t

30 end
31 Clear dead agents
32 Decay the health of agents who have been shot
33 Every τ step set θ(k,−) ← θk

34 end
35 Clear the replay memory Dk

36 end
37 end
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3.4.5 Adam Optimizer

One approach to adaptively calculate the learning rates is Adam or
Adaptive Moment Estimation (Kingma and Ba 2014). Adam (Kingma
and Ba 2014), like Adadelta (Zeiler 2012), Adagrad (Duchi, Hazan,
and Singer 2011), and RMSprop (Tieleman and Hinton 2012) not only
preserves an exponentially decreasing mean of previous gradients ξt

similar to a momentum, but also the previous residual gradients κ.
These gradients are calculated as follows:

ξt = (1− γ1)gt + γ1ξt−1 (3.6)

κt = (1− γ2)g2
t + γ2κt−1 (3.7)

As ξt and κt are initialized as vectors of 0’s, Kingma and Ba (2014)
discovered that the gradients are particularly skewed towards zero
during the beginning, more so when both γ1 and γ2 are nearly equal
to 1. They corrected the bias of the first and second derivatives, to
compensate for the aforementioned distortions, as

ξ̂t =
ξt

(1− (1− γ1)t)
(3.8)

κ̂t =
κt

(1− (1− γ2)t)
(3.9)

Finally, the weights are updated as

vt = η
ξ̂√

κ̂t + ε
(3.10)

θt+1 = θt − vt (3.11)

3.5 experiments and discussion

3.5.1 Experimental settings

In this experiment, we train all networks from scratch to ensure a
smooth convergence in the learning process by using stochastic gradient
descent and ADAM optimizer (Kingma and Ba 2014). We use the
following parameters for all our experiments: learning rate α = 0.00025,
discount factor γ = 0.99, an input of shape (n, 2k + 1, 2k + 1). We
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Figure 3.5: Training result of our adversarial multi-agent with n = 100 and
k = 3.

update the target network every 10, 000 timesteps. To stabilize learning,
we feed the network with medium size mini-batches of 250 samples.
An episode is terminated after 1, 000 even if we still have alive agents
on both teams. The double DQN (Van Hasselt, Guez, and Silver 2016)
network structure is similar to the one from (Mnih, Kavukcuoglu, Silver,
Rusu, et al. 2015) with slightly different parameters. The experimental
results in the following sections describe the average values of ten (10)
experimental runs with different random seeds.

3.5.2 Convergence and improvement of group behaviors

Fig. 3.5 represents the training performance of our baseline implemen-
tation where we have 100 agents per team with a narrow local field
of view (k = 3). The average squared error of each team after each
individual episode is shown in Fig. 3.5a. In the beginning, the losses
were high because of the high values of ε(t). After more or less than
1, 000 episodes and smaller values of ε(t), each network’s training loss
converges to a very low value close to null. The environment is non-
stationary because both teams are simultaneously learning. The best
way to know if teams are learning strategic formations is to check if
both networks converge to approximately the same values. In this case,
the difference between the two errors is negligible.

By using double DQN (Van Hasselt, Guez, and Silver 2016), we
make sure that the networks do not overestimate the Q-values, and
consequently, the action-state values will converge to the actual Q-
values. The average Q-values of each team is shown in Fig. 3.5b. Agents
were taking some random actions by sampling from high values of ε(t)
in the beginning. After training sufficiently enough, agents started to
take good actions based on their near-optimal policies.
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Fig. 3.5c shows the average reward per episode for each team during
training time. We see that both networks tend to have approximately
the same reward. Our reward scheme could make a group of agents
learn how to efficiently form various strategic group formations based
on their opponents’ strategies.

Fig. 3.5d shows the number of remaining (alive) agents at the end
of each episode for each team. This helps us evaluate how often each
team wins and to know exactly how many agents are still alive at
the end of an episode. First, the team with the largest number of
agents at time t uses some tactics to eliminate as many opponents
as possible in a very short time before the opponents’ counter-attack.
Then, both teams reach a kind of equilibrium in which they use similar
group formation strategies (mainly frontal attack). And finally, agents
periodically update their strategies to effectively defend themselves
against the opponents. It is worth to mention that the training is a bit
slow when k = 3(see Fig. 3.5e)

3.5.3 Scalability

The input of each network is smaller when k is smaller because the
input shape is (n, (2k + 1), (2k + 1)). That mainly justified why we
observed low loss values for k = 3, 4 (Fig. 3.5a, Fig. 3.6a, Fig. 3.6f and
Fig. 3.6k). Moreover, all networks started to use their optimal policies
after 1, 000 episodes. From a practical perspective, this is a good sign
because the performance of MAS often depends on how quickly the
agents reach a global convergence. No matter what the values of k
are, all networks converge to the same Q-values soon or late (Fig. 3.6b,
Fig. 3.6g, and Fig. 3.6l). As the number of agents increases, the networks
converge to the actual Q-values independently to their local field of
views.
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Despite the fact that all settings did converge, we can see that the
agents with k = 3 take much longer to learn a new strategy or to adapt
their behaviors. This can be explained by the fact that with a small field
of views, agents cannot see the surrounding opponents, hence their lack
of good defense strategies. As k increases, the average number of steps
is much lower for k = 5, 6. After 1, 000 episodes, both teams started
to learn not only how to attack but how to defend themselves for a
relatively longer period. That’s why the number of steps increased for
k = 4, 5, 6 and not for k = 3 (Fig. 3.6e, Fig. 3.6j, and Fig. 3.6o). A wider
range of view allows agents to acquire excellent assault and defensive
methods at the same time.

Even though both sides acquired similar behaviors and can kill about
the same amount of enemies with a a wider range of view k, they
likewise swiftly co-adapt themselves based on the enemies’ actions
by developing some strong defense techniques. We should also note
all networks have approximately the same values as the number of
agents increases (n = 100, 200, 300, 400). From Fig. 3.5, Fig. 3.6, and
Table 3.1, we can conclude that our proposed learning framework is
scalable in non-stationary and adversarial learning environments with
a large number of agents.
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3.5.4 Learned team strategies

In the following, we describe the most common observed strategic
group formations learned by agents. It seems like most of the following
strategies always appeared in all experiments. As we train agents, we
might observe slightly variant tactics which do have the same roots.
For instance, it is not unusual to observe an improved attack and/or
defense tactics appear again. Agents prefer short-term and aggressive
strategies to long-term and safe ones sometimes.

(a) Initial (b) Encirclement (c) Guerrilla

(d) Frontal attack (e) Flanking (f) Pincer

Figure 3.7: Some learned team strategies.
Videos available at https://drive.google.com/drive/folders/

1QLdiLvO nSO2VLoYsJHngNwZwKvdqMgG?usp=sharing

Encirclement. This situation is highly dangerous for the encircled
team. The agents of the encircled team can be subject to an attack
from several sides. However, if there are some obstacles inside the
environment or on one side of it, it would be much harder to achieve a
full encirclement attack. (Fig. 3.7b)

https://drive.google.com/drive/folders/1QLdiLvO_nSO2VLoYsJHngNwZwKvdqMgG?usp=sharing
https://drive.google.com/drive/folders/1QLdiLvO_nSO2VLoYsJHngNwZwKvdqMgG?usp=sharing
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Guerrilla warfare. It is a strategy in which a small number of agent
use mobility tactics to fight a larger and less-mobile opponent team.
Agents tend to avoid confrontation with a larger number of agents
but seek and attack small groups while minimizing their losses. The
main goal is to inflict damage on a target and immediately move away
from the location from where the attack did happened to avoid the
opponents’ defense or counter-attack (hit-and-run tactics, fire-and-move,
shoot-and-scoot) (Fig. 3.7c).

Frontal attack. This is a straightforward and aggressive advance of
agents toward the enemy’s frontline. By attacking the enemy’s front,
the attacking team expose themselves to the enemy’s full defensive
capabilities. Unfortunately, this strategy is sometimes proved to be
increasingly suicidal when the team is outnumbered (Fig. 3.7d).

Flanking maneuver This consists of a movement of agents of the
same team around a flank to achieve an advantageous position over
enemies. This is a safe strategy in which agents are not risking them-
selves, while at the same time they gradually weaken the opponents.
Agents easily form echelons in which they are diagonally aligned. Each
agent is behind and to the right (left) of an ahead agent – right (left)
echelon. However, this strategy is not always safe when the team is
outnumbered. (Fig. 3.7e)

Pincer movement. Similarly to the flanking maneuver, this is a tactic
in which agents of the same team simultaneously attack both flanks
of the opponent team. This generally leads to a frontal attack on each
flank. By also attacking the opponent team from the rear, the opposing
team might be easily encircled. (Fig. 3.7f)

3.5.5 Discussion

Our reward structure appears to make this domain a negative-sum
game as points are lost for time and sores are balanced for attacks
and kills only during the beginning of the training. In other words,
the positive and negative rewards of all will add up to less than zero
only during the first episodes when the value of ε are high. Then, the
environment becomes a zero-sum game before generating positive-sum
outcomes in which the sum of positive and negative rewards is greater
than zero. This becomes possible when the policies of each network
are at least semi-optimal. In addition, it is interesting to observe that
random agents are not able to generate coordinated behaviors.
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In our framework, each agent has its own Q-values and they act
jointly in a decentralized manner. Therefore, the problem is much more
complex than having centralized learning, where two agents compete
with each other in a grid world. One of the main advantages of our
method is that we do not necessarily need to retrain the network from
scratch for a different number of agents. Even though our agents are
homogeneous, it is easy to see that our agents can adapt their strategies
against the change of opponents’ strategies. This is due to the fact
that agents are trained on a very large number of gameplay such that
they have seen nearly every scenario combination and have taken many
possible actions and know which ones have the most resultant value.





4
C E N T R A L I Z E D T R A I N I N G A N D D E C E N T R A L I Z E D
T E S T I N G F R A M E W O R K

This chapter contains material from (Elhadji Amadou Oury Diallo and
Toshiharu Sugawara 2019).

4.1 introduction

Many studies have addressed the issue of strategic group formation
for coordination in the agent-based context (J. P. Desai, J. P. Ostrowski,
and Kumar 2001; Barfoot and Clark 2004; Reynolds 1987), they usually
implement some predefined strategies by mimicking animal or human
behavior. One key question is how agents can learn to survive, defeat
their opponents, and form a group by themselves without any hand-
designed strategy. Unfortunately, it is not easy to design a good reward
scheme that makes a group of agents learn how to form a specific
strategy rather than individual ones (Elhadji Amadou Oury Diallo,
Ayumi Sugiyama, and Toshiharu Sugawara 2020). It is even harder if
agents decide to change their current strategy because they are taking
the risk of annealing the already learned behaviors. Besides, most of
the previous studies focused on an environment with a small number
of agents for the sake of simplicity, and they either assumed that
the environment is fully observable (Sukhbaatar, Szlam, and Fergus
2016; He et al. 2016) or the training and testing phases are somehow
centralized (Elhadji Amadou Oury Diallo and Toshiharu Sugawara
2018b).

This paper aims to propose an end-to-end learning framework that
can generate coordinated collective behaviors to control a very large
number of agents in an adversarial multi-agent system. We first propose
a framework for training variants multi-agent deep reinforcement learn-
ing techniques such as deep Q-network (DQN), double DQN (DDQN),
dueling DQN (duelDQN), and dueling double DQN (DuelDDQN) –
all of which are based on the dec-POMDP framework (Bernstein et al.
2002; Pynadath and Tambe 2002). In our framework, agents of the same
team use a centralized network during the training phase. The network

33
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receives a joint observation and outputs a joint action. However, during
the test phase, each agent uses its network and infers its action by
using its local observation only. This is called a centralized training and
decentralized framework (CTDT). We demonstrate that the CTDT method
can converge and generate strategic group formations for a large-scale
multi-agent system in a non-stationary and adversarial environment.
We then compare these experimental results with those derived from
the centralized DQN framework (Elhadji Amadou Oury Diallo and
Toshiharu Sugawara 2018b). Finally, we analyze the characteristics of
the learned strategies.

4.2 related work

Leibo et al. (2017) analyzed the dynamics of policies learned by multi-
ple independent learning agents, each of which used an independent
DQN. They introduced the concept of sequential social dilemmas in
fruit gathering and wolfpack hunting games and showed how differ-
ent behaviors can emerge from competition over shared resources in
conflicting situations. He et al. He et al. 2016 presented a neural-based
model that jointly learns a policy and the behavior of its opponent
and found that opponent modeling is often necessary for competitive
multi-agent systems. Then, they proposed a method that automatically
discovers different strategy patterns of the opponents without any extra
supervision from the system.

Lowe et al. (2017a) demonstrated the complexity of using deep rein-
forcement learning in non-stationary environments since each agent’s
policy is changing. They also proposed a framework utilizing an ensem-
ble of policies resulting in a more resilient overall policy that only uses
local information at execution time. Sukhbaatar, Szlam, and Fergus
(2016) proposed a framework in which agents need to communicate by
using specific communication protocols. In their framework, cooper-
ating agents learn to communicate amongst themselves before taking
any action. Because the protocol is learned, it is very hard to interpret
the language used by agents. It is also not easy to increase the number
of agents due to the communication cost between agents.

Nathan and Barbosa (2006) studied the emergence of V-like forma-
tions during bird flight by introducing distributed positioning rules to
guide agent movements. They also tried to identify the basic behavior
that characterizes a flock and collective behavior strategies using a
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mathematical framework. One drawback of this method is that the
strategies are always given. Unfortunately, the system becomes very
complex as the number of agents increases. Also, we cannot always
design and predict all possible and useful formations in a complex
environment.

Scalability is another important element in multi-agent systems (Rana
and Stout 2000; Elhadji Amadou Oury Diallo and Toshiharu Sugawara
2018b), particularly in learning systems where the environment is non-
stationary, as the dynamics change frequently and agents have to adapt
their behaviors accordingly. The simultaneous learning of the agents
means that every learning rule leads to a dynamic and complex system,
and sometimes even very simple learning rules can lead to very complex
global behaviors (Shoham and Leyton-Brown 2008). In contrast, in our
method, a large number of agents learn how to cooperate without any
explicit communication and opponent modelling strategies. This leads
to improved performance and scalability over communicative agents.

4.3 background

4.3.1 Dec-POMDP

An optimal approach to model this problem could be the dec-POMDP
(Bernstein et al. 2002; Pynadath and Tambe 2002) framework. A dec-
POMDP or decentralized partially observable Markov decision process
is expressed as 〈D,S ,A, T ,R, Ω,O, h, I〉, in which

• D is a set of n homogeneous and/or heterogeneous agents;

• S is defined as a finite set of all possible states s;

• A represents the joint actions of all agents, where A = A1 × ...×
An and Ai is the finite action of agent i ∈ D;

• T is a probabilistic transition;

• R is the reward agents get immediately;

• Ω contains the combined joint observations of agents, where
Ω = O1 × ...×On and Oi is the set of observations available to
any given agent;

• O is expressed as the observational probabilities function;
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• h is a positive integer specifying the given environment’s horizon;
and

• I initially contains the first states during the beginning.

When a joint action at = 〈a1
t , . . . an

t 〉 is executed, the state of the envi-
ronment transits from st to st+1 (where st, st+1 ∈ S) with a probability
p(st+1|st, at) ∈ T and a reward ri

t = R(st+1|si
t, ai

t). A state s can be
approximated by a kth order history approach which uses the last k ob-
servations and actions. In our case, st = 〈ot, ot−1, at−1〉. This approach
can manage any latent state information compared to using directly the
latest observation as the state.

The goal of the agents is to find a deterministic joint policy ß =

〈π1, . . . πn〉 so as to maximize the sum of their individual reward
rt = ∑n

i=1 ri
t. Agents act following their observation and no direct

communication is needed. In this framework, agents only have access
to their actions and do not observe each other’s actions or observations.
Hence, throughout execution, agents do not really have recourse to a
”Markovian” feedback (Bernstein et al. 2002). This means that agents
need to find an optimal way of summarizing their individual history. In
other words, they need to store and reuse the sequence of their previous
actions and observations.

4.4 methods

4.4.1 Environment and Reward Scheme

We used a well-known adversarial multi-agent domain, the battle or com-
bat game described in (Sukhbaatar, Szlam, and Fergus 2016), in which
two teams of agents are fighting against each other (Fig. 3.2). Agents
of the same team cooperate with their teammates to find strategies to
defeat the opponent team. The main goal is to kill as many opponents
as possible by invading the neighboring territories and by using various
warfare strategies. Our environment features two teams of n agents and
runs from the initial positioning of the agents inside a square in two-
dimensional space for each team. We should also mention that agents
since they also have the same capabilities to sense the environment by
direct perception, and have also the same speed and action space.

An agent can take up to seven actions: going up, going down, going
left, going right, turning left, turning right, and shooting. An agent is
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Table 4.1: Reward scheme of the adversarial environment.

Event Reward

Step −0.01
Death −5
Kill opponent +5
Attack empty position −0.01
Attack opponent +1
Attacked by opponent −1

dead after being attacked (shot) three times. An agent can only attack
the nearby opponents located one cell ahead of its current position. To
simplify the environment dynamics, an agent is not able to attack an
opponent located outside of its field of view. We also assumed that
an agent cannot shoot any of its teammates. An episode ends when all
agents on one team have been killed or after 1, 000 timesteps.

At the start of the first episode, each agent is randomly assigned a
unique ID and keeps the same ID during the whole training. During
each episode, the agents start at a random position inside the initially
allocated area. The IDs of alive and dead agents are recorded to
constitute the input of each team’s network at any given timestep. The
winning team is the one who has the highest number of alive agents.

The reward scheme is presented in detail in Table 4.1. Besides, an
agent receives +1 for attacking an opponent successfully and −1 if it
is being attacked. The global reward of each team is the sum of all
the rewards received by agents of the same team at any timestep t,
rt = ∑n

i=1 ri
t.

4.4.2 Proposed Learning Framework

The main environment is represented as a gridworld in which every
agent uses a filtering method to delimit its local view (Fig. 4.1). The
input of each network is a ”tensorized” stack of all local views of agents
at any given timestep. Each agent senses distances to neighboring
agents within a radius of k from its current position. Each channel
represents the local view oi

t of each agent of the same team. Using only
this information, a team can learn a policy that is able to establish and
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2k + 1

2k
 +
 1

...

Figure 4.1: 3D tensor observation. Each channel represents the local view oi
t

of an agent, which is an image-like screen extraction in grayscale.

maintain a certain group formation and to cooperatively locate and kill
most of its opponents.

This representation can be thought of as an aggregation of inputs
from the different sensors of many robots. For instance, if we have many
cleaning or patrolling robots, we could use this method to represent the
input of their learning techniques. One advantage of this representation
is that we can simulate, for example, the state of any robot, by including
a probabilistic function that selects the availability of a robot state.

We propose a centralized training (Fig. 4.2) and decentralized testing
(CTDT) framework for training adversarial multi-agent systems with a
large number of agents. This framework can be described as a POMDP
during the training phase and a dec-POMDP during the testing phase.
In our framework, each agent has its own local view oi

t, its own action
space ai

t, and its own reward ri
t. Agents only know their actions and

do not observe others’ actions. At every timestep, one joint action
at = 〈a1, . . . , an〉 is taken and the environment moves to a new state
(see Algorithm 2).

During the training phase in the CTDT, all members of the same team
use a centralized neural network. The deep Q-Network of each team
receives a “tensorized” observation at time t (see Figs. 4.3 and 4.4)
with the IDs as shown in Fig. 4.2. Each agent of the same team jointly
infers its action from the same network that outputs the Q-values of
every possible action for all agents. After all agents have received
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Figure 4.2: Scalable adversarial MAS architecture. The environment consti-
tutes two teams of n agents (n = 100, 200, 300, 400) each at the
beginning of each episode. During the training phase, agents use a
centralized network

their actions, we combine them to constitute the synchronous joint
action at = 〈ai, . . . , an〉 and apply it to the environment. This implicitly
embeds communication through the actions, local observations, and
states. Because the network outputs all possible Q-values for each agent,
we can apply different exploration strategies or learning techniques. For
example, we can use a greedy exploitation strategy where the agents
take the maximum Q-values, or by using ε-greedy (see section 4.4.5).

During the test phase of the CTDT, each agent acts based on its
policy and local view and no additional communication is required.
For this purpose, the agent copies the trained network into its local
memory. Then, the last fully-connected layer of the network is removed
and replaced by a layer with seven outputs (the number of actions).
Meanwhile, the remaining parts of the network are considered as a
fixed feature extractor. In other words, the weights of the centralized
networks are ”frozen” and only the weights of the output layer get
updated. The network independently receives the view of the local
agent with its ID and then it outputs an action for the agent. With this
way of fine-tuning, we could train the network with n agents, and test
it with a different number of agents per team, which greatly increases
the ability of our policy to generalize and avoid over-fitting.
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4.4.3 Prioritized Experience Replay

The learning process becomes smooth by storing an agent’s experiences
and uniformly sampling batches of them to train the network. This
helps the network to learn about immediate actions while considering
past experiences. We store the experiences as a tuple of 〈s, a, r, st+1〉
(see Fig. 4.2). Instead of randomly sampling experiences, prioritized
experience replay (Schaul et al. 2015) takes transitions that are not in
alignment with our current network estimate. Furthermore, we store
the residual error between the actual Q-value and the target Q-value of
a transition. In fact, the TD error δ,

δ =
∣∣∣yt −Q (s, a;θt)

∣∣∣, (4.1)

will be converted to a priority of the j-th experience τj using

τj = (δ + µ)λ , (4.2)

where 0 ≤ λ ≤ 1 determines how much prioritization is used and µ is
a very small positive value. We then use the priority as a probability
distribution for sampling an experience j (Schaul et al. 2015), in which
j is selected by

φ(j) =
τj

∑K
k τk

, (4.3)

where ∑K
k τk is the total of all priorities and K is the size of the mini-

batch. This is called proportional prioritization. Each team stores the most
recent experiences of all teammates in its own replay memory.

4.4.4 Network Architectures

Because we have two different teams fighting against each other, we
cannot use one neural network to control both teams. In a small-scale
problem, it would be easier to use a neural network for each agent.
Unfortunately, having a network for each agent is not optimal in a
large-scale environment in which we have up to 400 agents per team.
We would also have to find an optimal and distributed way of reducing
the communication delays between the environment and the agents.
Therefore, we believe that having a centralized network per team is still
a very complicated and challenging problem.
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Algorithm 2: Multi-agent DQN / DDQN.

1 Initialize online network and target network with random
weights θ = θ−

2 Initialize experience replay memory D
3 for episode = 1 to num episodes do
4 Populate the team with n agents
5 for timestep t = 1 to max timesteps do
6 Extract the joint observation ot = 〈o1, . . . , on〉

7 at ←
{

Select random action at with prob ε

arg maxat Q
(
st, at;θ

)
with prob 1− ε

Apply

action at and observe reward rt and next state st+1

8 Store transition 〈st, at, rt, st+1〉 in D
9 Sample a mini-batch of m transitions 〈sj, aj, rj, sj+1〉 from

D by using the prioritized experience replay mechanism.
10 if sj+1 is terminal then
11 yj ← rj
12 else
13 yj ← rj + γQ

(
st+1, arg maxa Q (st+1, a;θt) ;θ−t

)
14 end

15 if
∣∣∣yj −Q (s, a;θt)

∣∣∣ < δ then

16 L(θt)← 1
m (yt −Q (s, a;θt))

2

17 else

18 L(θt)← δ
∣∣∣yj −Q (s, a;θt)

∣∣∣− 1
m δ2

19 end
20 ∇θL(θt) =

(
yj −Q (s, a;θt)

)
∇θQ (s, a;θt)

21 ξt = (1− γ1)∇θL(θt) + γ1ξt−1

22 κt = (1− γ2) (∇θL(θt))
2 + γ2κt−1

23 ξ̂t = ξt
(1−(1−γ1)t)

24 κ̂t = κt
(1−(1−γ2)t)

25 vt = η ξ̂√
κ̂t+ε

26 θt+1 = θt − vt

27 Clear dead agents
28 Decay the lives of agents who have been shot
29 end
30 Every τ step set θ− ← θ

31 end
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Figure 4.3: DQN/DDQN network architecture.

The network architectures used in our experiment are shown in
Figs. 4.3 and 4.4. We used a stack of convolutional layers to consider
regions of an image and to maintain spatial relationships between the
pixels. The inputs are the observations at time t, t− 1 and the actions
at t− 1. The input implicitly contains all of the relevant information
about the controlled agents’ situations, along with their speeds and
directions. The output of our network is a joint action consisting of
elements that are one of the seven actions specified in 4.4.1.

4.4.5 Exploration

Exploration vs. exploitation is one of the main dilemmas in RL. The
optimal policy for an agent is to always select the action found to be
most effective based on history (exploitation). On the other hand, to
improve or learn a new policy, the agent must explore a new state it
has never observed before (exploration) by taking non-optimal actions.
We use ε-greedy (Sutton and Barto 1998) with decay to create a balance
between exploration and exploitation with 0 ≤ ε(t) ≤ 1. At every
timestep, the agent acts randomly with probability ε and acts according
to the current policy with probability 1− ε(t). In practice, it is common
to start with ε = 1 and to progressively decay ε as the training moves
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Figure 4.4: Dueling DQN/DDQN network architecture.

forward until we reach the desired ε. We could use a fixed ε value, but
this is not always an optimal choice because, after many episodes of
training, we would have a more accurate estimation of the policies and
could reduce the amount of exploration.

We decay the values of ε based on the piece-wise linear decay function
by dividing the training episodes into several subsets and then linearly
decreasing the value of ε from the maximum to the minimum prede-
fined ε value for each interval. However, this is rarely done in reality,
as determining a decay function requires a tedious parameter search,
and is extremely domain-dependent. The initial and final values of ε

are, respectively, 1 and 0.01. In this case, our agents will be able to
extensively explore during the first episodes and use the optimal policy
without much exploration at the end of the training.

4.5 experiments and discussion

We compare the results of the learned behaviors by the CTDT frame-
work with those trained by using the centralized network reported in
(Elhadji Amadou Oury Diallo and Toshiharu Sugawara 2018b). We
also investigate the performance of strategies learned by different deep
reinforcement learning techniques such as DDQN, DuelDQN, and
DuelDDQN.
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4.5.1 Parameter Settings

For all the experiments, we train the networks from scratch using
the following parameters: learning rate α = 0.00025, discount factor
γ = 0.99, and an input of shape (n, 2k + 1, 2k + 1). The loss function
is optimized by using the Adam optimizer (Kingma and Ba 2014). We
update the target network every 10, 000 timesteps. To stabilize learning,
we feed the network with medium size mini-batches of 256 samples.
First, we train each network against a copy of itself (self-play) during
5, 000 episodes by using the ε-greedy strategy. We then use the learned
weights to test the performance of each network against DQN agents
without ε-greedy exploration, which is the baseline of our evaluation.
The experiments were run on a single machine with 4 Nvidia GTX 1080

Ti (12 GB per GPU) and a Xeon processor of 48 cores with 128 GB of
RAM. The experimental results in the following sections describe the
average values of fifty experimental runs with different random seeds
during the test phase of the CTDT.

4.5.2 Performance evaluation

The environment is non-stationary because all agents are simultane-
ously learning. One way of evaluating the performance of each team is
to check the convergence rate. In addition, it is always useful to com-
pare other metrics such as the average reward per episode, the average
Q-values, and the number of steps to finish an episode. Figure 4.5 de-
scribes the average reward per episode during the test phase for teams
of n agents (n = 100, . . . , 400). All techniques perform similarly for a
smaller environment with 100 agents. We start noting discrepancies for
n > 100. As we can see, DuelDDQN agents always achieve the highest
reward during training and testing phases. Furthermore, if we omit
the small negative reward for each step, the network will converge.
This is simply a best practice for reducing the number of steps taken
by agents to solve the tasks, and it often accelerates the convergence
without any theoretical guarantee. It is highly likely that the learned
behaviors would be the same.

Figure 4.6 shows the ratio of alive agents at the end of each episode.
This ratio is calculated as ϕ = υ/ω, where υ is the number of alive
agents of the learning team at the end of each episode and ω is the
number of alive DQN agents at the end of each episode. The value
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Figure 4.5: Cumulative reward against DQN after 5, 000 training episodes.

of ϕ embeds how many opponents are killed and how much a team
is protecting itself against the opponents. A lower ratio means that
the team is taking too much risk and is only maximizing the reward
without minimizing the number of steps taken. Notwithstanding the
fact that all techniques have various ratios independent of the number
of agents, all teams have learned good strategies for helping them win
against DQN agents.

Figure 4.7 shows how many steps a team takes to finish each episode.
Recall that an episode ends after 1, 000 steps. As shown in the figure,
DuelDDQN networks take fewer steps to finish episodes and always
win against the DQN agents. From a practical perspective, this is a
good sign because it shows that the DuelDDQN network convergence is
faster and better compared to the results by using a centralized network
(Elhadji Amadou Oury Diallo and Toshiharu Sugawara 2018b).

From Figs. 4.8, we can see that the best technique in this specific
environment is DuelDDQN because it always achieves the highest
rewards in a very short time compared to the other techniques. DDQN
is the second-best method. This can be explained by the fact that they
both implement a double Q-learning update, which tends to converge
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Figure 4.6: Ratio of alive agents (ϕ) after 5, 000 training episodes.
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Figure 4.8: Average reward and number of steps after 5, 000 training episodes.

faster to the right Q-values. Splitting the Q-values into advantage and
value streams, in addition to the double Q-learning update, make the
network robust and accelerate its convergence. Furthermore, as we
can see from Tables 4.2 and 4.3, our proposed model outperforms the
POMDP model proposed in which agents always use a centralized
DQN (Elhadji Amadou Oury Diallo and Toshiharu Sugawara 2018b).
This improvement stems from the fact that our agents use their history
(st−1 and at−1) whenever they learn their actions. This helps them
to better optimize their strategies by selecting the best actions and
movements according to their prior history.

4.5.3 Learned Strategies

As we train agents, we might observe slightly variant tactics that have
the same roots. For instance, it is not unusual to observe an improved
attack and/or defense tactics appear again. First, the team with the
largest number of agents at time t uses some tactics to eliminate as
many opponents as possible in a very short time before the opponents’
counter-attack. Then, both teams reach a kind of equilibrium in which
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Table 4.2: Average rewards and standard deviations during the test phase, i.e.
after 5, 000 training episodes.

n agents POMDP DuelDQN DDQN DuelDDQN

100 332± 37 461± 14 503± 7 550± 4
200 548± 59 463± 25 695± 63 1044± 14
300 850± 97 1046± 23 1293± 22 1510± 16
400 1228± 129 1310± 10 1970± 23 2052± 28

Table 4.3: Average steps per episode and standard deviations during the test
phase, i.e. after 5, 000 training episodes.

n agents POMDP DuelDQN DDQN DuelDDQN

100 405± 89 166± 11 216± 10 140± 5
200 512± 57 800± 25 466± 40 474 ± 40

300 737± 94 670± 30 754± 43 366± 25
400 850± 83 1000± 0 680± 41 329± 22

they use similar group formation strategies. Finally, agents periodically
update their strategies to defend themselves against their opponents.
Agents often prefer short-term and aggressive strategies to long-term
and safe ones. It seems that most of the strategies shown in Fig. 4.9
always appeared in all experiments.

We also note that all networks have approximately the same strategies
as the number of agents increases. This is because agents are trained
on such a large number of game-plays that they have seen nearly
every scenario combination and have taken many possible actions, so
they know which ones have the most value. Agents tend to avoid
confrontation with a larger number of agents but seek and attack small
groups while minimizing their losses (encirclement). This is a safe
strategy in which agents are not risking themselves, while at the same
time they gradually weaken the opponents. Unfortunately, this strategy
sometimes proves to be suicidal when the team is outnumbered. In
addition, it is interesting to observe that random agents are not always
able to generate coordinated behaviors.
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Figure 4.9: Example of an encirclement strategy.
See Elhadji Amadou Oury Diallo and Toshiharu Sugawara 2018a and

Elhadji Amadou Oury Diallo and Toshiharu Sugawara 2018b for a
description of some strategies. A video is available at

https://drive.google.com/file/d/

19CAAh8tj9LKnFRq55C4QtLGxp0D6qJVS/view?usp=sharing.
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Figure 4.10: Kernel density estimation of the number of visits by team. DDQN,
after 2, 000 episodes, n = 400. Team 1: top row, team 2: bottom
row.
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5
M U LT I - A G E N T PAT T E R N F O R M AT I O N

This chapter contains material from (Elhadji Amadou Oury Diallo and
Toshiharu Sugawara 2020b) and (Elhadji Amadou Oury Diallo and
Toshiharu Sugawara 2020a).

5.1 introduction

Suppose, for an instance, that an instructor needs her n students in
the play area to form a 2D shape such as a circle so that, for example,
they can play a game. The instructor may draw a guideline on the
ground as a rule or even give every student a particular position to
move to. Now, imagine a scenario where the instructor does not give
such help. Indeed, even without such help, the kids may, in any case,
have the option to form an adequately decent estimation of the circle
if every one of them moves depending on the movement of others by
directly observing their neighborhood region. If successful, this method
can be called a distributed solution to the circle formation problem for
children (Suzuki and Yamashita 1999).

By analogy, we utilized a methodology based on the previous exam-
ple (Suzuki and Yamashita 1999) to control a large-scale multi-agent
systems of homogeneous teams. The principal idea is to give every
agent the opportunity to execute a straightforward estimation of its
states and accordingly plan its actions depending on the actions and
states of the remaining agents so that the agents as a team will coopera-
tively and collectively form the target pattern. This type of distributed
control of cooperative systems, in which mobile agents work together to
perform cooperative tasks, is challenging. The challenge is that such a
system is expected to have the ability to self-organize itself by learning
cooperative behaviours without any human intervention. It must be
emphasized that, self-organization of a real-world (drones, cars, ...)
multi-agent system is much harder to achieve as agents are required to
learn more complex tasks.

Our framework could be applied to many realistic problems such as
coordinated multi-robot exploration (Burgard et al. 2005), multi-robot

51
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navigation (Balch and Hybinette 2000), shape constraints in crowd simu-
lation (Gu and Deng 2011), and multi-robot animation for entertainment
(Alonso-Mora et al. 2012). In general, the ability for the multi-agent
team to cooperate appears to rely enormously upon (1) the character-
istics of the problem to solve, (2) the global properties assigned to the
team, and (3) the distinctive capabilities of each agent. Instances of the
global properties are the capacity to recognize at any rate their team
members, to concur on a common global direction (sense of direction),
or to concede to a typical handedness (Dieudonné, Petit, and Villain
2010).

In this paper, we investigate how a large-scale system of indepen-
dently learning agents can collectively form acceptable two-dimensional
patterns (pattern formation) from any initial pattern and configuration.
On our assumptions, an agent is to be regarded as a point in the plane
that autonomously moves according to a given rule. In general, an
agent observes the environment, computes its next position with a
given algorithm, and moves to its next position until it finds its goal
position. We assume that the agents are homogeneous and anonymous
in the sense that they have no identifiers. We also assume that the
agents are uniform in the sense that all agents synchronously execute a
common algorithm. Each agent has no access to the global state and
its actions are solely done in terms of its local observation (Yamauchi,
Uehara, and Yamashita 2015).

This research proposes an end-to-end decentralized learning archi-
tecture in which agents (1) do not explicitly communicate; (2) use a
centralized replay memory to share knowledge among agents who
share the same global goal; and (3) use a centralized target network to
take into account the dynamics of others and provide a quantitative
estimate of how each agent perceives and is perceived by its team
members. We call this method Multi-Agent Pattern Formation with Deep
Q-Network (MAPF-DQN). The goal is to control the overall shape of a
robot team by using only the local information provided by agents’ sen-
sors. Interestingly, the positions or goals of the individual agents in the
group are not explicitly controlled. An agent should concurrently and
independently learn to locate its goal position and consequently plan a
smooth trajectory towards it. Our model is invariant to the number of
agents per team. This makes it easier to transfer the learned behaviours
of one team to another one with different a number of agents. We fur-
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ther show that agents using MAPF-DQN can learn complex cooperative
strategies in environments with progressively increasing complexities.

5.2 related work

To date, the vast majority of current cooperative multi-agent approaches
have been based either on centralized methods in which a lead agent
predicts the behaviour of all agents or on a distributed approach in
which the agents have a full view and understanding of their environ-
ment and dynamics or sometimes on completely independent learning
systems that do not have anything in common (Gupta, Egorov, and
Kochenderfer 2017). The easiest way to implement the decentralized
method is to use Q-learning to estimate independent Q-value functions
of each agent by considering them to be part of the integral environment.
As others start to learn as well, the environment becomes non-stationary.
So, this uncertainty limits such approaches from expanding to more
than a few agents.

A handful of the latest works uses the centralized learning and decen-
tralized execution paradigm (Lowe et al. 2017b; Hüttenrauch, Adrian,
Neumann, et al. 2019). This consists of actor-critics methods in which
the critic is centralized and uses all the available information from the
environment during training. However, throughout execution, agents
use their independent network to compute their actions in a completely
distributed and independent fashion. For eample, MADDPG (Lowe
et al. 2017b) uses the joint actions and states with the critic and estab-
lishes strategies for each actor by using DDPG (Lillicrap et al. 2015) and
concatenating information from other agents.

Hüttenrauch, Adrian, Neumann, et al. (2019) argued that most of
the recent multi-agent deep reinforcement learning algorithms are
limited when they are applied to swarm systems without special care.
One of their argument is that concatenating the information received
from different agents is not optimal when you have an environment
with a dynamic number of agents. They also argued that this could
disregard the inherent permutation invariance of identical agents sine
qua non to swarm systems and that doing so would hardly scale
to large-scale systems. To remediate these limitations, Hüttenrauch,
Adrian, Neumann, et al. (2019) proposed a method in which they treat
the observation perceived from nearby agents as samples of a random
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variable and then encode the current distribution of the agents by using
mean feature embedding (Smola et al. 2007).

An alternative to learning systems would be optimization-based
algorithms. However, to control the strategies of agents, optimization-
based methods (J. Lin, Morse, and Anderson 2007; Jadbabaie, J. Lin,
and Morse 2003) often oversimplify the model of agents by assuming
unrealistic assumptions in well defined tasks or environments (J. Lin,
Morse, and Anderson 2007; Ranjbar-Sahraei et al. 2012; Zhou et al. 2016)
or having a full view of the environment (Zhou et al. 2016).

On the swarm optimization side, Xu et al. (2010) tackles the problem
of homogeneous multi-agent pattern formation by using a natural
swarm algorithm inspired by the particle swarm optimization and
by using a virtual pheromone as the messaging protocols. This was
proposed to limit the complexity of communication channels as the
number of agents increases. In their method, the agents leave virtual
pheromone in the environment. The pheromone is updated based
on their local observations. However, agents still have to explicitly
communicate by broadcasting the pheromone density to other agents
located in their communication range.

Regardless, in many real-world applications, most of these hypothe-
ses are infeasible or superfluous. As an example, when the number of
agents is large, it then becomes apparent that most of the centralized
methods will not scale because agents would have to share their data
to the lead agent. Therefore, in case of agents with communication
abilities, we cannot continually make sure that the communication
channels are maintained up-to-date and not congested.

5.3 preliminaries

5.3.1 Pattern formation problem

Given a pattern P = {p1, ..., pn}, or a set of landmarks on an envi-
ronment that is a two-dimensional grid, and R = {1, ..., n} a set of n
anonymous agents. Let F(t) = { f1(t), ..., fn(t)} be the formed pattern
by agents where fi(t) ∈ R2 are the coordinates of the agent i at time t
in the environment and R is the set of real numbers. The goal of the
pattern formation problem is to find a near-optimal and decentralized
algorithm to such an extent that from any initial distributions of the
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agents positions, they will, in the long run, organize themselves to form
the target shape.

In general, the initial configuration of the pattern in the environment
is unknown to the agents. Instead, they have to explore the environment
in its entirety in order to find the set of coordinates of the goal positions
before moving towards them. However, they have no access to a global
view of the environment. A consequence of the approach just outlined
is that agents will eventually maximize their rate of success. We say
that the agents successfully form a target pattern P from any initial
position of agents F(0) when their final positions F(T) is 85% similar to
the target pattern P, i.e. (F(T) ≈ P) where T is the terminal timestep of
an episode. Note that each agent can only observe a subset of P located
in its local view only.

5.3.2 Model

Most real-world problems can hardly be modeled as an (PO)MDP
because the agents have limited communication and partial or noisy
observations provided by their sensors. Clearly, they would have
to learn cooperative and coordinated behaviours by using only their
local information. For this reason, we use the dec-POMDP framework
(Bernstein et al. 2002).

At every step, the environment transits from st to st+1 with a prob-
ability p(st+1|st, at) ∈ T when all agents execute a joint action at =

〈a1
t , . . . an

t 〉. Then agent i receives a reward ri
t = R(st+1|st, ai

t). The obser-
vation o can be approximated by a zth order history approach which uses
the last z observations and actions (Elhadji Amadou Oury Diallo and
Toshiharu Sugawara 2018b). This is very important because the agents
no longer have a Markovian signal; they can’t neither observe the state
nor estimate the belief b as in POMDPs. Therefore, this approach can
manage any latent state information compared to using directly the
current observation as the input of an agent. Note that doing so makes
our agents non-oblivious because each agent ri uses the same algorithm
ψ and the past observations and actions of ψ. This gives the agents
the ability to remember important information such as the positions of
teammates and/or the target pattern.
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Figure 5.1: General architecture with one or more homogeneous teams.

5.4 methods

5.4.1 General multi-team architecture

We propose a decentralized system (Figs. 5.1 and 5.2) that can handle
a dynamic number of homogeneous teams for the problem of multi-
agent pattern formation. This is a concurrent team learning in which
agents are divided into teams in the two dimensional space. It is well-
suited to cooperative multi-agent systems in which a team needs to
have information about others in order to make their decisions, i.e.,
every team learns to improve parts of the global team by sharing its
experiences with others and reusing others’ experiences at the same
time (Fig. 5.1). Each agent has a limited visible visual field of depth k
(shape = [2k + 1, 2k + 1]) in the two dimensional space and an agent
can observe its teammates, the obstacles and the walls within its neigh-
borhood area. However, the interactions between the agents are not
explicitly modelled; they instead have to learn them by observing other
agents’ movements and reusing others’ experiences which are randomly
sampled from the centralized experience replay memory.

5.4.2 Distributed architecture of a team

The architecture of a team is shown in Fig. 5.2. Each agent concur-
rently and independently learns its behaviour based only on its local
observations (Fig. 5.3). In this framework, every agent has its own
neural network which is shown in Fig. 5.3. By using a centralized target
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Figure 5.2: Distributed model with centralized replay memory and averaged
target network.

network and replay memory, we naively mimic the team modeling
framework by learning about other agents in the environment so as to
make good estimates of their actions. By doing so, we alter the dynam-
ics such that every agent can perceive and co-adapt to the dynamics of
the environment. This also helps them estimate the current policies of
others and thus, achieve a better cooperation (Elhadji Amadou Oury
Diallo and Toshiharu Sugawara 2020a). This is equivalent to providing
to an agent the internal belief representation required to cooperate with
its teammate and potentially avoid conflicts.

The goal positions of individual agents are not defined and must be
instead collaboratively learned by agents. By doing that, agents learn to
agree on their tasks or assignments in a coordinated manner. We have
already seen that the only way they learn to coordinate is restricted to
using only their local observation which might contains the positions
of other agents and goal positions.

With our method the network continuously adapts and updates the
goals depending on the environment dynamics until all agents reach
their goals. An agent receives a reward of +10 if it finds a landmark
and decide to commit to it and receives a punishment of −0.05 at every
time step. The last part should potentially demotivate them to spend
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long time without finding goals. The key components of this framework
are: domain randomization, centralized experience replay memory, and a
common target network calculated by the average of each agent’s weights.

5.4.3 Domain randomization

It is well known that transfer learning is hard with reinforcement
learning policies. To avoid this trap, we use some ideas from robotics
domain randomization. The goal of domain randomization is to train
the agents on different environments with random properties and
dynamics. In our case, the agents are trained to form themselves into
randomly generated shapes. In other words, the positions of the target
shapes are randomly generated and scattered all over the environment
at the beginning of every episode with a variant number of targets up
to 600 simulated agents during training. This will help the system to
adapt to different shape during the test phase as they were trained on
so many different and variable shapess. Hence, the agents will learn to
generalize well to unseen pattern shapes.

5.4.4 Centralized experience replay memory and common target network

Each agent of the team has its own main network to behave au-
tonomously. It stores and updates its representation of the environment
by randomly sampling from the replay memory. As a consequence,
each agent independently computes its patrolling plan by taking ad-
vantage of other agents knowledge without exchanging coordination
messages. It is important to combine this approach with a good sam-
pling strategy because the existence of multiple agents accessing and
updating a centralized memory may result in earlier memories of some
agents to be overwritten.

The centralized target network is updated by the average weights of
individual agents’ networks. In other words, the target network θ− is a
single network that combines the individual agents’ networks (θ) of the
same team by taking the average of their weights.

θ− =
1
n

n

∑
i=1

θi. (5.1)
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The new target value becomes

yt = Rt+1 + γQ(st+1, arg max
a

Q(st+1, a; θ);θ−). (5.2)

By doing so, we also ensure that an agent can react to the previous
actions and rewards of others by taking into account their dynamics.
As a result, this somehow provides some sort of communication to
cope with the local view. Moreover, this framework seems to provide
the same characteristics of a team with implicit communication and
global view. This is still better than most actor-critic methods such
as MADDPG (Lowe et al. 2017b) in which the central critic limits the
ability of agents to generalize their learned behaviours to different
environments or even the same environment with different number of
agents or action space. The agents are homogeneous and anonymous,
so they cannot be distinguished by their appearance. Besides, our
framework works in a completely distributed mode and agents have no
preference for their goal destinations.

5.4.5 Observation and network architecture of an agent

With this approach, agents rely on themselves to make decisions instead
of a centralized leader. However, without centralized coordination, our
framework works in a complete distributed mode, using only the local
environmental information provided by the agents’ sensors. Agents do
not have a global knowledge of their environment and should achieve
good results with smooth motions in a relatively short time. The
observation of an agent (Fig. 5.3) is encoded as a multi-channel image
in which every channel represents a different feature from its view as
in (Zheng et al. 2018; Sunehag et al. 2018; Elhadji Amadou Oury Diallo
and Toshiharu Sugawara 2019).

Every channel is a binary matrix with 1 indicating the presence of
an object and 0 otherwise. The first channel represents positions of the
wall and obstacle. The second one represent the position of the agent
itself, and the third channel is the position of the goals in that local
view. If we have more than one team, we add a new channel for each
different team. Finally, the last channel contains all other information
such as the goal positions of all other teams. This representation could
be pushed further by using ideas from neural-symbolic computing
(Garcez et al. 2019) that provides the ability to learn from experiences
and at the same time the ability to reason from what has been learned.
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Figure 5.3: Left: Network architecture. Right: spatial observation of an agent.

The neural network architecture of each agent is shown in Fig. 5.3.
It consists of fully connected layers only. The inputs are the spatial
observations of agents (Fig. 5.3) at t and t− 1 and a feature vector f
from the environment containing the last action, last reward, relative
position, number of goal points in their local views. This is very similar
to the state representation in (Zheng et al. 2018) with the only difference
being that we reused the history to make it conform to our dec-POMDP
model.

5.5 experiments and discussion

5.5.1 Experimental settings

The following results are average of 10 experimental runs with different
random seeds by using our proposed framework. We assume that
there is no noise in agents’ observations and that the target shape is
static during every episode. In all experiments, the target network is
updated after every 10, 000 steps which also means that the average
target network is calculated at the same time. We set the learning rate
to 0.0001, γ = 0.9, batch size of 128 samples, and used ε-greedy as the
exploration strategies. The values of ε are linearly decayed from 0.5 to
0.01 during the first 5000 of the 10000 training episodes. The maximum
samples that the shared experience replay memory can have at a time
is 1, 000, 000.

We use a centralized system as a baseline, in which a team’s strategy
is computed by a central agent and subsequently communicated to all
teammates. We also compare our method against a discrete action space
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version of MADDPG (Lowe et al. 2017b). To improve the effectiveness
of our method and its ability to generalize on completely random and
unseen environment, the agents were trained on a large 2-dimensional
grid graph (150× 150) with utmost 700 randomly generated landmarks
at the beginning of each episode.

5.5.2 Results with one team

First, we trained our model with only one team of utmost 700 agents
during training and a varying number of agents during testing. Fig-
ure 5.4 shows the average reward and completion rate of agents with
different visual field depths. We do not provide the result of the central-
ized method when k = 1 as that would generate an observation range
of 3× 3 which would be too small for a convolutional layer with a 3× 3
kernel. With a smaller view range (k = 1), MADDPG achieved the
highest reward, followed by the centralized network while agents using
our method struggle to learn how to organize themselves into the target
shapes. As the view range increases (k ≥ 2), the proposed method
steadily improves while the performance of MADDPG becomes less
stable. The instability of MADDPG is due to the exchange of observa-
tion during training. Moreover, the centralized framework is not stable
either for a smaller view ranges. This is probably caused by the limited
scope of the information from their local observations. In summary,
with a large enough view range, agents can solve their tasks by using
either our proposed method or a centralized system with a lead agent.

While our method has a similar average success rate as the centralized
method for k ≥ 4, it also achieved the highest rewards among all of
the tested methods. This means that agents using MAPF-DQN take
less time to learn acceptable strategies. Surprisingly, we observe in all
methods, agents do prefer to finish most of their tasks during the first
hundred steps before slowly trying to complete and improve the global
shape (Fig. 5.9). In addition, MADDPG agents trained on randomly
generated patterns cannot generalize well on unseen and structured
patterns when the number of agents is large as in Fig 5.9.
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Figure 5.6: Multi-team average success rate.

5.5.3 Results with many teams

To evaluate the robustness of our method, we train it with a different
number of homogeneous teams. The advantage of a multi-team sys-
tem is that we could eventually use MAPF-DQN with heterogeneous
teams with different action spaces, velocities, and learning techniques.
The number of agents per team is equal to the number of landmarks
divided by the number of teams. Figures 5.6 and 5.5 show that our
method with 1 to 4 teams do also outperform all other methods during
training even though its performance keeps decreasing as the number
of teams increases. Surprisingly, we observe a sudden performance
drop when the number of teams is 5, which becomes even worse than
MADDPG(Lowe et al. 2017b).

Figure 5.7 shows the distribution of rewards for our framework in
environment with different number of teams. Our method is more
confident when we just have one group as the dimension of the obser-
vation is smaller and contains less noise as can be seen in the reward
density estimation. The confidence is slightly shrinking as the number
of teams increases and the distribution of the rewards starts varying
in a larger range. Finally, our method becomes less confident about
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its strategies as the number of teams becomes larger. It also shows
that our method works better with smaller number of teams (up to 4)
and does not scale for teams of more than four teams. Therefore, the
behaviours become less predictable for a team of five teams. Though,
this is not surprising because we know the dimension of the observation
of an agent increases as the number of teams increases. This make the
dynamics of the environment noisy and thus, very hard to predict. In
addition, Figure 5.8 shows that our method is robust up to 4 teams,
from which it becomes less stable and confident about its predictions.

5.5.4 Generalization

After evaluating the behaviours of our proposed method with different
team sizes with different number of agents, and different observation
range without any fine-tuning, our results suggest that the proposed
framework achieves zero-shot generalization on all environments inde-
pendently of the depth of view of agents. Figure 5.9 shows 550 agents
trying to organize themselves into an X shape in a 150× 150 grid-graph.
At the end of this episode, our proposed method achieves the high-
est completion rate of 94%, followed by the centralized architecture
with 87% and finally MADDPG (Lowe et al. 2017b) with 73%. Agents
tend to finish the large chunk of their tasks during the first few steps.
However, agents with different techniques have different behaviors of
representing the shape. For example, with our method, agents tend to
start from the center of the shape and progressively explore the rest of
the environment (Fig. 5.9), while with MADDPG (Lowe et al. 2017b),
the agents, do not really have any preferences, they start exploring the
environment in its entirety.

This difference can justify why MADDPG (Lowe et al. 2017b) agents
do not achieve a good result at the end in large-scale environment. The
other reason is that MADDPG (Lowe et al. 2017b) hardly scale in large
environment because agents have to share their information, i.e., the
more agents you have, the higher the complexity of the observation of an
agent is. In contrast, our agents hardly explore the whole environment
by starting from the center, which often a good behaviour, but you could
easily see the limitations when you have a disconnected or discontinue
shape. However, we still think that the behaviour of MADDPG (Lowe
et al. 2017b) could be well-suited for small-scale environment with less
agents and simple target shapes.
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Figure 5.10 shows n agents trying to organize themselves into dif-
ferent shapes in a 150× 150 grid-graph by using MAPF-DQN. These
shapes consist of an ”O” shape, a dolphin, a house, and a mandala. As
in Fig 5.9, the agents finish the bulk of the tasks during the very first
steps of an episode and then subsequently try to improve their cover-
age. Even though all teams have utmost 700 agents during training,
we can see that they can more or less generalize well in environment
with much larger number of agents during the test phase. We can also
see that the generalization is somewhat independent to the number
of agents but highly tied to the pattern themselves. For example, the
dolphin requires only 864 agents and mandala 1669, but our method
has a better result with the later.
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6
S O M E L E S S O N S L E A R N E D

In this chapter, I will try to put in writing some of the most important
lessons learned throughout some of the experiments during the exe-
cution of this thesis. It is an attempt to explain how the findings of
this thesis could be used in real-world applications and what could
potentially limit a wide adoption of multi-agent deep reinforcement
techniques.

6.1 importance of experience replay

It is well known that one could research deep reinforcement learning
without the need to use an experience replay buffer. However, it
has been shown that using an experience replay memory is generally
important. This is the place where you put additional information
that will help you rank the importance of an agent’s experiences. It is
worth mentioning that any probabilistic sampling methods but random
sampling appears to be better. This could be calculating the drift
between the predicted q-values and the actual ones and consequently
use that information to prioritize how the examples from the replay
memory are sampled.

6.2 robustness of centralized learning with decentral-
ized execution

Almost any real-world environment could potentially match this frame-
work. It could be argued that applying multi-agent actor-critic naively
performs poorly even in simplistic conditions. One advantage of this
paradigm is the ability to use any further information needed during
the learning phase and subsequently removed the extra information
during the execution phase.

69
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6.3 advantages of parameter sharing

The basic concept consists of training a single network wherein the
network’s weights are shared by agents. Indeed, this could easily lead
to all agents have nearly identical policies. Even though the policies are
similar, they are different since the observations of agents are different.
However, this could easily lead to overfitting whenever agents are near
each other, they might have the same observation, thus the same policy,
and consequently, bog down in local optima.

6.4 limitations of memory capability

Traditional reinforcement learning algorithms cannot memorize useful
information from the environment. This could be problematic and
the system cannot improve the long-term credit assignment issue. On
one hand, modeling the environment as a Dec-POMDP model could
help reduce the problem because dec-POMDP reuses part of an agent’s
history when they compute their new actions. A sweet spot would be
using Dec-POMDP in combination with LSTM as network structures
for sequential decision making.

6.5 danger of overfitting

Whenever agents are trained against rule-based agents in a competition
scenario, they have been shown to overfit by learning policing counter-
ing the rules of their opponents. However, when those rules are slightly
changed during execution, the performance of agents drops drastically.
There are many ways to counter this problem. You could implement
domain randomization by training agents on different environments
with random properties and dynamics. Or, the agents could be trained
to compete against simultaneously learning agents through self-play or
by implementing different learning algorithms.

6.6 unpredictability and safety issues

Among all of the problems of multi-agent deep reinforcement, the
unpredictability and safety issues are the main limit to the wide use
of these techniques in real-world applications. You would always
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expect the agents to select the most optimal policies after training,
however, there is neither a theoretical guarantee nor a practical one
that ascertains that agents would behave as predicted. From time to
time, you can observe agents forget everything they have learned from
the environment dynamics by just over-training them (training them
over a longer time horizon) or by introducing a simple and negligible
random event. One solution could be to model the environment with
constraints by incorporating some safeguards. An example of such a
constrained model would be constraint-MDP.

Also, it could be interesting to theoretically study, or at least investi-
gate a theory of equilibrium in large-scale MADRL. The results would
show us when it is opportune to stop the training phase and if there
is an equilibrium from which there are theoretical guarantees that the
system will act safely according to the principles of the designer.

There are many other lessons. However, it is worth mentioning that
some or most of these shortcomings are being mitigated right now.





7
C O N C L U S I O N

In chapter 3, we demonstrated that agents keep forming groups when-
ever new ones are necessary. Also, the formations are dissolved when-
ever it is beneficial to do so. The networks have learned how to effec-
tively position and move agents for the emergence of group formation
during and after training. This proves that grouping provides greater
protection against opponents. We confirmed that the local behavior of
an individual could conspire to determine very complex global behav-
iors of multi-agent systems. While we believe that our results show
how agents optimally choose their strategies to form alliances, we also
recognize that further investigations are needed. These include investi-
gating what will happen if we have obstacles inside the environment
and if agents don’t have the same speed or field of view.

In chapter 4, we demonstrated that the networks could generate strate-
gic group formations in a non-stationary and adversarial environment.
We also showed that our models outperformed the POMDP model in all
our experimental settings. This demonstrates the importance of reusing
previous actions and states to infer new actions. Moreover, combining
DDQN and DuelDQN generated better strategies. We conclude that
our results show how agents optimally choose their strategies to form
alliances, but we also recognize that further investigation is needed.
Such investigations would include examining what would happen if
we have obstacles inside the environment and if agents do not have the
same speed or fields of view. Future research could further study the
learned strategies by describing how they are modeled, or how they
can be represented as output from the system. It would be helpful to
do this, rather than simply implying that some strategies must exist
since we see them via direct observation.

In chapter 5, we showed that agents using our method can orga-
nize themselves into a complex 2-dimensional pattern even though they
were trained on random patterns. Our results showed that the proposed
framework achieved zero-shot generalization on unseen environments
without retraining the agents independently of the depth of their views.
We finally showed that our framework could generate complex strate-
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gies when the team is divided into independent homogeneous groups.
However, our method does not scale when we have a large number
of groups or teams. Finally, it would be interesting to investigate our
method for multi-pattern formations in which agents are expected to
achieve smooth transitions between given patterns. Also, it would be
interesting to explore our framework with heterogeneous instead of
homogeneous groups and further investigate the robustness of this
framework.
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