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Chapter 1

Introduction

1.1 Background

The rapid development of computer technology has made the numerical approaches

more practical, applicable and useful in the past decades. This has made compu-

tational modeling more preferable in the field that investigates the flow behavior

of a fluid. Computational Fluid Dynamics (CFD) is a branch of fluid mechan-

ics developed to solve fluid flow problems in engineering applications. There are

numerous open-source and commercial CFD software developed by engineers and

mathematicians in this field. Most of these tools are able to predict a flow accurately

comparing to the real behavior of a fluid by solving relevant formulations by differ-

ent mathematical approaches. Nevertheless, these approaches have been attracting

engineers’ and mathematicians’ attention in order to make them more efficient, such

as decreasing the cost of a computation while maintaining high accuracy.

Formulations of fluid dynamics usually contain linear and nonlinear differential

equations which can only be solved by evaluating them in a system of algebraic

equations. One of the main methods used for this purpose is the Finite Element

Method (FEM). For the solution of a system of differential equations, the FEM

is set over two main components. The first is the weak (variational) form of the

problem and the second is the approximation of the equations in the weak form to

the solution. The variational form of the Navier–Stokes equations is given in the

following chapters in this dissertation. Even though there is a common belief that

FEM has some disadvantages for solving fluid problems, stabilized and multiscale

FE techniques address these shortcomings [1–4]. Deeper information about these
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techniques is given in Section 1.3.

One of the steps of CFD is the representation of a flow domain. It can be

represented by dividing the whole domain into a finite number of elements. In the

FEM, these elements are usually constructed by lines. However, a circular-shape

computational domain cannot be represented exactly by using straight lines. To

approach the actual geometry as much as possible, a large number of the straight

lines should be used. Isogeometric Analysis (IGA) was introduced in [5]. With

the IGA, the difference between Computer-Aided Design (CAD) of a model and

the computational domain in CFD analysis is aimed to be removed. Non-Uniform

Rational B-Spline (NURBS) (see [6]) is one of the most common mathematical

model used in CAD as well as in CFD analysis with IGA. Usage of the NURBS

in CFD analyzes with high-order basis functions makes exact geometry and motion

representation possible, and accordingly, it improves the efficiency.

1.2 CFD for turbomachinery flows

Turbomachinery usually has a complicated geometry with high curvatures. Typi-

cally, it contains circular shapes and high-speed rotating parts. The flow is multi-

scale, including a thin boundary layer, flow separation, recirculation and turbulence

behavior. In order to address these difficulties, precise representation of the geome-

try and motion is essential.

The flow pattern around some critical parts, the pressure change along turbo-

machinery or a power generated can be calculated in CFD during its design process.

This enables engineers to make optimizations in turbomachinery geometry or ad-

justments in working conditions. Use of turbomachinery at its best efficiency point

can also increase its life span. Flow separation or recirculation around an impeller,

for example, could decrease the performance or cause some other physical problems

reducing its life. The usage of CFD plays an important role to minimize these kinds
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problems detecting them in their design process.

The Space–Time (ST) framework, which have been generally developed for flow

computations with moving domains, has some efficient and accurate methods for

numerical analysis of turbomachinery flows.

1.3 ST methods

The ST methods, introduced in [7], have been developed and used in a large number

of practical engineering problems in the recent decades [8]. In the ST framework,

formulations of the ST methods written on the ST slabs [9] will be given in the

following chapters.

CFD analysis of turbomachinery flows are classified into two categories in this

dissertation. One is the turbulent flow and the other is the flow around rotating

components. In both of these classes of flow problems, the stability and accuracy of

the computations significantly depend on the geometry, motion and boundary con-

dition representations as well as the formulations used to resolve the multiscale flow.

The latest versions of the ST methods, with the IGA feature named as “ST-IGA”

in [10], the ST Slip Interface (ST-SI), introduced in [11, 12] and the ST Variational

Multiscale (ST-VMS), proposed in [10,13], respond to these difficulties successfully.

1.3.1 ST-IGA

The ST-IGA is a powerful tool to represent a flow domain and its motion accurately

using NURBS basis functions. In the ST framework, this higher-order basis functions

are employed in both spatial and temporal dimensions. An accurate representation

of geometry and motion increases accuracy of the solution making the computations

more stable. Moreover, using NURBS basis functions, geometry and motion can be

represented exactly, only by a few numbers of degrees of freedom (see Figure 1.1).

Representation of a domain by the smaller number of degrees of freedom enables
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Figure 1.1: Exact representation of a cylinder. From left to right, the CAD geometry,
the control mesh, and the physical mesh of four elements constructed by NURBS.
The red points are the control points

the use of the larger time-step sizes, keeping the Courant number at reasonable

levels [14]. This feature significantly improves the efficiency of the computations

reducing the computational costs.

In CFD, a flow is mostly investigated after it reaches to a time-periodic regime [1].

The developing flow part of the computations, which are sometimes not useful, might

be time-consuming. In this situation, a common way to reduce the costs is the

utilization of a small number of elements in that part of the computations. Later, a

mesh refinement can be made to obtain a more accurate solution in the time-periodic

part. Because the ST-IGA also enables us to make the mesh refinement without

changing the flow domain, both the initial computations with a coarse mesh and the

time-periodic part with finer meshes are solved in the same computational domain,

and it increases the accuracy. This cannot be done with traditional methods in

complex geometries (see Figure 1.2).

The rotation at a constant angular velocity and the arc path of the rotating

parts of turbomachinery can be represented exactly in time. The ST/NURBS Mesh

Update Method (STNMUM) was introduced in [15–17] for exact representation of

rotation using higher-order basis functions in time. In the traditional methods, the

4



Figure 1.2: An example mesh refinement. NURBS (left) and FE (right)

stability of the computations of a flow around rotating parts significantly depends

on the rotational angle per time step. Use of the STNMUM increases the stability

of the computations decreasing this dependency [18].

1.3.2 ST-SI method

Rotation can be represented in several methods as it is explained in Section 1.4. In

one of those methods, we compute by moving the mesh surrounding the rotating

parts of a computational domain. In this case, the ST-SI method is used to connect

the rotating part of a domain to remaining neighbor parts. An interface, which can

be an arc and represented exactly by NURBS, is placed between multiple rotating

and stationary domains (see Figure 1.3). The ST-SI can also be used between

multiple fluid domains with non-matching mesh structures. This enables us to

decrease computation costs using coarser meshes in some domains where we have

larger scale flow dynamics or with less complex geometries (for example, see [19]).

With the ST-SI, the interface can also be placed between solid and fluid parts of a

computational domain. The Dirichlet boundary conditions can be enforced weakly,

as introduced in [20] and used in the ST framework in [11,12]. The details are given

in the following parts of this dissertation. The weak enforcement is a powerful tool

to obtain the boundary layer effect without actually resolving the flow [20]. A trans-
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Figure 1.3: An SI (the black line) between two rotating (red and blue) flow domains

D ∞

Figure 1.4: An infinite channel (top) and a cylindrical computational domain (bot-
tom) represented by a translational-periodicity and a rotational-periodicity. The red
lines represent the boundaries where the periodicity is enforced by the ST-SI. The
blue arrows denote the translation of the SIs

lational or a rotational-periodicity of a computational domain can be represented

by the ST-SI. This, for example, enables calculating a flow independently of the

computational domain length [1] or its angle [2] (see Figure 1.4).

1.3.3 ST-VMS method

In turbomachinery flow analysis, the stability of the turbulent flow computations

plays an important role on the accuracy and efficiency. The well known stabi-
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lization formulations, Streamline-Upwind/Petrov-Galerkin (SUPG) [21], Pressure-

Stabilizing/Petrov-Galerkin (PSPG) [22,23] and more accurate VMS [24] are widely

used with this purpose. In the ST framework, the SUPG and PSPG stabilizations

are used together. This method is named as “ST-SUPS” in [10]. The main tool used

in this dissertation to deal with the turbulent flow occurring in turbomachinery flows

is the ST-VMS. The ST-VMS with isogeometric discretization is a stabilized formu-

lation and serves as a reliable turbulence model. It contains some additional terms

compared to the ST-SUPS and these terms make the ST-VMS more accurate es-

pecially in solving the small scale flow dynamics. The VMS with the Arbitrary

Lagrangian–Eulerian (ALE) (see [25]) FEM, which is called “ALE-VMS” [26–29], is

similar in many aspects to the ST-VMS [30,31].

One of the studies performed to test a turbulent flow computation by the ST-

VMS method is [32]. In this study, high Reynolds number (Re = 3×106 and 6×106)

turbulent flows were calculated around airfoils, with variable angle of attack values.

The flow domain was represented by different mesh types, and both the conservative

and the nonconservative versions of the ST-VMS formulation were used. The numer-

ical results for the lift and drag coefficients were compared with an experiment and a

good agreement was observed. In another study [33], a flow of Re = 12×106 around

wind turbine rotor was calculated using an older version of the ST-VMS, which

was proposed in [7, 22, 34–36] and named as Deforming-Spatial-Domain/Stabilized

ST (DSD/SST). The torque applied on the wind turbine blades were calculated

using various stabilized formulations and compared with a reference study [37] per-

formed using the VMS ALE method. This study, [33], is one of the earliest studies

among [38–40] in which a computational domain was represented using a rotational-

periodicity with the ST methods. A more recent computation of a turbulent flow

around a turbine rotor was performed in [41]. In this study Re = 1.1×105 was uti-

lized by the ST-VMS. The geometry was represented by NURBS. The performance
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of the turbine was calculated.

Flows around a wind turbine rotor and its tower were computed in [18, 31, 42].

In [18], the effect of mesh and time-step size on the numerical torque values were

analyzed. The STNMUM method was also introduced to represent the rotation

exactly. In [42], the results from the ST-VMS were compared with the results from

the ALE-VMS. In [43–45], flow in a turbocharger turbine and exhaust manifold

was analyzed. Here the computational domains were also represented accurately

using NURBS with a general purpose NURBS mesh generation method introduced

in [43]. The ST-SI method was used to connect the rotating turbine impeller to

the rest of the computational domain. Rotation of the impeller was represented

exactly by STNMUM moving the surrounding mesh. In the other recent studies,

where the rotation was represented exactly, geometry was represented accurately by

NURBS and the ST-VMS was used as a core method, a flow in a vertical axis wind

turbine [11, 46], in a fan [47], and in a pump with FSI analysis of a string [48–51]

were computed.

In [52], a flow around a vehicle and its tires, and in [53] around a disc break,

including a thermo-fluid analysis were studied. In [12], the ST-SI Topology Change

(ST-SI-TC) method was introduced, and in [12,19,54], tire aerodynamics with actual

tire geometry and road contact were computed. This method improves the resolution

in a boundary layer and can be used in computations with topology changes such

as contact between solid surfaces.

In [55–57], heart valve flow computations were computed. The ST-SI-TC method

was also used in [58, 59] in more recent heart valve flow computations representing

a contact between the valves more accurately. The ST framework was used in some

other moving-mesh computations of real-world flow problems. In the flow com-

putations around flapping wings of a locust [15, 60, 61], an accurate geometry and

motion representation by NURBS were described from an experiment. Aerodynam-
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ics analysis of some space-craft, drogue and ram air parachutes [9, 60, 62–69] was

also performed using the ST methods.

1.4 Rotation representation

Motion of the rotating components of turbomachinery can be represented in several

ways in the CFD. In two mainly used methods, the reference frame, in which the

measurements are made, can be attached outside or inside of the rotating parts. If

the reference frame is not attached on a domain, but the domain moves, it is the

inertial reference frame (IRF). There are two essential representations, i) the rota-

tional motion and ii) the boundary condition on that. Both representations may

not be easily represented exactly. If the reference frame is attached on a domain

and rotates with that domain, it is a non-inertial reference frame (NRF). It is useful

because the domain does not move on that frame, and rotational motion is repre-

sented exactly. However, NRF requires fictitious force in the governing equation,

which includes the coupling with the solution. In addition, if there are stationary

components, the problem cannot be represented in only the NRF.

1.5 Motivation

This dissertation aims to evaluate the stability and accuracy of the combinations of

the ST methods in turbomachinery flow analysis. The conservative and nonconser-

vative forms of the ST-VMS method are evaluated both in the IRF, and also in the

NRF for the first time in this dissertation. This research is done considering the pre-

ciseness of the geometry representation, rotation representation, boundary condition

representations, and conservation properties. A turbulent flow and a flow around

rotating parts, which are dominant in turbomachinery flows, are investigated.

First, we started with a challenging turbulent flow analysis [1]. The ST-VMS

method was evaluated previously for turbulent-flow analysis in the studies [32,33,41],
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however, [41] was a milder test problem, and the others were performed without iso-

geometric discretization. In this dissertation we computed a turbulent-flow in a

U-duct model with a high curvature. The ST-VMS method is used to deal with

the multiscale flow, which includes a thin boundary layer, flow separation, recircu-

lation and turbulence behavior. A circular-arc geometry is represented exactly by

NURBS using the ST-IGA. A fully-developed flow field is calculated by enforcing a

translational-periodicity by the ST-SI method. The numerical output is compared

with an experiment.

Next, we focused on rotational geometries [2]. The conservative and noncon-

servative forms of the ST-VMS method is used in the IRF, as well as in the NRF

introduced in the ST framework in this dissertation. A circular-arc geometry is

represented exactly by NURBS in space using the ST-IGA. An exact representation

of rotation is also utilized by the STNMUM. The problem geometry is represented

using the translational-periodicity and rotational-periodicity enforced by the ST-SI.

Two different representations of the boundary conditions are also tested. Results

are evaluated in terms of flow patterns comparing them with an experiment.

Finally, we employ most of these methods evaluated above in a real-world flow

problem. The ST-VMS method is used to solve a high Reynolds number turboma-

chinery flow in both reference frames with a relatively coarse mesh representing the

circular geometries accurately using the ST-IGA. The output of this study is also

evaluated with an experiment.

1.6 Dissertation overview

In Chapter 2, the governing equations of the incompressible flow in the IRF will

be provided. Then the transformation of the governing equations from the IRF to

NRF will be explained. Finally, the governing equations in the NRF will be given.

In Chapter 3, the ST-VMS formulation in the IRF will be derived step by step
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from the weak form of the Navier–Stokes equations. Both the conservative and

nonconservative forms of the ST-VMS will be achieved. Following, the ST-SI for-

mulation will be provided for the SIs between both two fluid domains and also fluid

and solid domains. The rotational-periodicity enforcement with the ST-SI will be

shown mathematically. In the last section of this chapter, general information about

exact representation of geometry, rotation and prescribed velocity will be given with

weight definitions and NURBS basis functions in space and time.

In Chapter 4, the ST formulation in the NRF will be derived step by step in the

NRF. Both the conservative and nonconservative forms of the ST-VMS formulation

will be achieved. In the last section, the global conservation of mass, linear momen-

tum and angular momentum will be provided on the ST-VMS formulation in both

reference frames. The test functions used to obtain the balance equations in global

space will be provided in detail.

In Chapter 5, a U-duct turbulent flow analysis will be presented. After providing

some definitions used for data analysis during this study, the computation results

in the periodic straight duct performed to obtain a fully-developed flow profile will

be shown. Here the results will be compared with some reference studies. Later,

information about problem setup, mesh generation, boundary conditions and com-

putational conditions for the U-duct will be given. Finally, the numerical results,

after providing flow development in the U-duct, for the averaging range, mesh re-

finement and Courant number effects on the solution will be given and compared to

experimental data.

In Chapter 6, the well known Taylor–Couette flow analysis will be presented.

First, this well known problem and the setup for four different cases will be de-

scribed. Next, some information about geometry and rotation representation em-

ployed specifically for this problem will be provided. Following, the results will be

investigated case by case. In the last section, a detailed analysis of global conserva-
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tion of angular momentum will be presented.

In Chapter 7, flow analysis in a double-suction centrifugal pump will be shown.

First, a short general information about this pump and description of the cases, ini-

tial conditions, mesh and computational conditions will be given. Then, the results

for a flow development study will be provided. Later, the pump performance will be

defined and the output will be compared with an experiment. Some qualitative an-

alyzes will also be provided later, comparing the results at several discharge values.

Next, a computational domain with rotational-periodicity around a single blade will

be introduced and some numerical results obtained using this reduced domain will

be compared to the experiment.

In Chapter 8, the concluding remarks will be presented. All three studies with

their settings and results will be summarized in this last chapter.
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Chapter 2

Governing Equations

2.1 Navier–Stokes equations

The conservation of momentum and mass balance equations of incompressible flows

are written, adapting from [13], in the conservative form on Ωt as:

ρ

(
∂u

∂t
+∇∇∇ · (uu)− f

)

−∇∇∇ · σσσ = 0, (2.1)

∇∇∇ · u = 0, (2.2)

where Ωt ⊂ Rnsd is the spatial domain with the boundary, Γt, at an instant, t. Here

nsd is the number of spatial dimensions, ρ, u and f are fluid density, velocity and

external force. The stress tensor, σσσ, is defined by the velocity, dynamic viscosity, µ,

identity tensor, I, and pressure, p, as follows:

σσσ = −pI+ 2µεεε(u). (2.3)

Here, εεε(u) = 1
2

(

∇∇∇u+ (∇∇∇u)
ᵀ
)

is the strain-rate tensor. The boundary Γt is split

into its complementary subsets as (Γt)g and (Γt)h, which are defined as the essential

and natural boundaries. The boundary conditions are represented as u = g and

n ·σσσ = h. Here, g and h are the given functions, and n is the outward unit normal

vector.
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2.2 IRF and NRF

A frame of reference is a point of view from which measurements of a vectorial

quantity are made. In our field of study, a reference frame can be attached outside

of a rotating domain and the vectorial measurements are made considering the effect

of rotation. This kind of reference frames is known as IRF. Otherwise, a reference

frame can be attached on a rotating domain. This kind of reference frames is known

as NRF. As mentioned earlier, we can represent rotation in the IRF with a moving

mesh method, or in the NRF implementing the angular velocity into the governing

equations. In the NRF, the mesh can be stationary.

2.2.1 Velocity calculation in the NRF

Let us consider that a rectangular flow domain rotates with an angular velocity, ωωω,

as shown in Figure 2.1. If we observe the fluid flow from outside of the domain,

in the IRF, we also see the rotation of the domain. On the other hand, we can

! IRF
e1

e2

ωωω = R ·ωωωR

r = R · rR
R · uR

ωωω × r

u

e 1e 2

!
NR

F Stationary domain

ωωωR

rR

uR

R
ᵀ · u

ωωωR × rR

e1

e2

Figure 2.1: Velocity conversion between the IRF and NRF. Arrows represent the
vectorial quantities. The red point is the location where a measurement is made.
The symbol !, represents the position where the reference frame is located
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attach a camera on the rotating domain to observe the fluid flow in the NRF. We

denote the velocity of the fluid on the red point in the IRF with u, and, in the NRF

on a stationary domain with uR. Here,“R” represents the relative quantities with

respect to the stationary domain. The term r = x− x0 is the position vector from

the rotation center, x0. The tensor R = êiei is defined for transformation between

the rotating and stationary domains, where
dêi
dt

= ωωω × êi. For conversion from uR

to u, we use:

u = R · uR + (R ·ωωωR)× (R · rR)

= R · uR +ωωω × r. (2.4)

In this dissertation, we perform our computations in the IRF with a moving mesh,

and in the NRF with a stationary mesh. Hence, we derive ST formulations in a

stationary mesh in the NRF. Taking time derivative of both sides of Eq. (2.4), we

can write:

du

dt
= R ·

duR

dt
+

dR

dt
· uR +ωωω̇ × r+ωωω × u

= R ·
duR

dt
+

dêi
dt

ei · uR +ωωω̇ × r+ωωω × u

= R ·
duR

dt
+ωωω × êi (uR)i +ωωω̇ × r+ωωω × (R · uR +ωωω × r)

= R ·
duR

dt
+ωωω × (R · uR) .+ωωω̇ × r+ωωω × (R · uR) +ωωω × (ωωω × r)

= R ·
duR

dt
+ 2ωωω × (R · uR) +ωωω̇ × r+ωωω × (ωωω × r) , (2.5)

where ωωω̇ =
dωωω

dt
.

2.2.2 Multiple reference frames

In some engineering applications, the IRF and NRF should be used together when

there are both rotating and stationary parts. In this situation, the reference frames
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are named as multiple reference frames (MRF) or sometimes “frozen rotor” method

[70, 71]. In this method, flows in the rotating parts are computed in the NRF,

while the rest is computed in the IRF. These computations in the MRF should

be continuously transformed into each other during these computations. Using an

interface between these domains and solving some transformation equations, this

continuous conversion between multiple frames is performed.

2.3 Navier–Stokes equations in the NRF

Equation (2.1) can be written using Eq. (2.5) in the NRF as:

ρR ·
(
∂uR

∂t
+∇∇∇ · (uRuR) + 2

(

R
ᵀ ·ωωω

)

×
(
(

R
ᵀ ·R

)

· uR

)

+
(

R
ᵀ ·ωωω̇

)

×
(

R
ᵀ · r

)

+(Rᵀ ·ωωω)×
(

(Rᵀ ·ωωω)× (Rᵀ · r)
)

−R
ᵀ · f

)

−R · (∇∇∇ · σσσR) = 0, (2.6)

where we introduce fR = Rᵀ · f . From that we can write:

ρR ·
(
∂uR

∂t
+∇∇∇ · (uRuR) + 2ωωωR × uR +ωωω̇R × rR +ωωωR × (ωωωR × rR)− fR

)

−R · (∇∇∇ · σσσR) = 0, (2.7)

the stress tensor is expressed as:

σσσR = −pI+ 2µεεε (uR) . (2.8)

We note that the angular velocity does not appear in the strain rate tensor, which

is given by εεε (uR) =
1
2

(

∇∇∇(uR) + (∇∇∇uR)
ᵀ
)

, because of the fact that ∇∇∇ · (ωωω × r) = 0.
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Equation (2.2) can also be written applying Eq. (2.4) as follows:

∇∇∇ · (R · uR) +∇∇∇ · (ωωω × r) = 0, (2.9)

R ·∇∇∇ · uR = 0. (2.10)
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Chapter 3

ST Formulations

Most of the information given in this chapter is adapted from [1,2, 9–13].

3.1 ST variational formulations

The sets of infinite-dimensional trial functions (Su and Sp) and the corresponding

test functions (Vu and Vp) are used for velocity and pressure. Here, Eqs. (2.2)

and (2.1) are multiplied by the appropriate test functions w and q associated with

velocity and pressure, added, after that integrated over the spatial domain Ωt as:

find ∀ u ∈ Su and p ∈ Sp, such that ∀ w ∈ Vu and q ∈ Vp:

∫

Ωt

w · ρ
(
∂u

∂t
+∇∇∇ · (uu)− f

)

dΩ−
∫

Ωt

w · (∇∇∇ · σσσ) dΩ+

∫

Ωt

q∇∇∇ · udΩ = 0. (3.1)

ST methods are explained in Section 1.3. An ST slab, represented by Qn, is the

slice of the ST domain between tn and tn+1 as shown in Figure 3.1. The u+
n and u−

n

are the velocity and the w+
n and w−

n are the test function values at tn as approached

tn, Ωn

tn+1, Ωn+1

t

x

Qn Pn

(wh)−n

(wh)+n

(wh)−n+1

(uh)+n

(uh)−n

Figure 3.1: Diagram of an ST slab (figure is from [9])
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from above and below. Pn is the lateral boundary [9].

We can arrange Eq. (3.1) on Qn, and write the variational form from [10] as:

∫

Qn

w · ρ
(
∂u

∂t
+∇∇∇ · (uu)− f

)

dQ−
∫

Qn

w · (∇∇∇ · σσσ) dQ+

∫

Qn

q∇∇∇ · udQ = 0.

(3.2)

Integrating by parts all the terms of Eq. (3.2) except for the term with f , and

enforcing the boundary conditions, we write from [10]:

∫

Ωn+1

w−
n+1 · ρu−

n+1dΩ−
∫

Ωn

w+
n · ρu−

n dΩ−
∫

Qn

∂w

∂t
· ρudQ

−
∫

(Pn)h

(w · ρu) (n · v) dP +

∫

(Pn)h

(w · ρu) (n · u) dP −
∫

Qn

∇∇∇w : ρuudQ

−
∫

Qn

w · ρfdQ−
∫

(Pn)h

w · hdP +

∫

Qn

εεε (w) : σσσdQ

+

∫

Pn

qn · udP −
∫

Qn

∇∇∇q · udQ = 0, (3.3)

where v denotes the velocity of the spatial-domain boundary.

3.2 ST-VMS formulation

In the VMS techniques the scale separation of “coarse-scale” and “fine-scale” is

made (see [10, 14]) as:

u = u+ u′, (3.4)

w = w +w′, (3.5)

p = p+ p′, (3.6)

q = q + q′, (3.7)

where the overbar and prime shows the coarse-scale and fine-scales, such as u and

u′. Here, we can combine Eq. (3.3) with Eqs. (3.4)–(3.7), temporarily introduce
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σσσ′ ≡ σσσ − σσσ, assume that εεε (w) : 2µ∇∇∇u′ = 0 (see [72, 73]), and write from [13] as:

∫

Ωn+1

w−
n+1 · ρu−

n+1dΩ−
∫

Ωn

w+
n · ρu−

n dΩ−
∫

Qn

∂w

∂t
· ρ

(

u+ u′
)

dQ

+

∫

(Pn)h

(w · ρu)
(

n · (u− v)
)

dP −
∫

Qn

∇∇∇w : ρ
(

u+ u′
) (

u+ u′
)

dQ

−
∫

Qn

w · ρfdQ−
∫

(Pn)h

w · hdP +

∫

Qn

εεε (w) :
(

σσσ − p′I
)

dQ

+

∫

Pn

qn · udP −
∫

Qn

∇∇∇q ·
(

u+ u′
)

dQ = 0, (3.8)

where fine-scale solution is set to zero at the ST boundaries. After this step, the

fine-scale terms are collected in one place and written adapting from [13] as follows:

∫

Ωn+1

w−
n+1 · ρu−

n+1dΩ−
∫

Ωn

w+
n · ρu−

n dΩ−
∫

Qn

∂w

∂t
· ρudQ

+

∫

(Pn)h

(w · ρu)
(

n · (u− v)
)

dP −
∫

Qn

∇∇∇w : ρuudQ−
∫

Qn

w · ρfdQ

−
∫

(Pn)h

w · hdP +

∫

Qn

εεε (w) : σσσdQ+

∫

Pn

qn · udP −
∫

Qn

∇∇∇q · udQ

−
∫

Qn

(
(

ρ
∂w

∂t
+∇∇∇q

)

· u′ +∇∇∇w :
(

ρ
(

u′u+ uu′ + u′u′
)

+ p′I
)
)

dQ = 0. (3.9)

Equation (3.9) can be written in spatially discretized version to obtain the ST-VMS

formulation in the conservative form (see [2, 10, 13]) as follows: find ∀ uh ∈
(

Sh
u

)

n
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and ph ∈
(

Sh
p

)

n
, such that ∀ wh ∈

(

Vh
u

)

n
and qh ∈

(

Vh
p

)

n
:

∫

Qn

wh · ρ

(

∂uh

∂t
+∇∇∇ ·

(

uhuh
)

− fh

)

dQ

+

∫

Qn

εεε
(

wh
)

: σσσhdQ−
∫

(Pn)h

wh · hhdP

+

∫

Qn

qh∇∇∇ · uhdQ+

∫

Ωn

(

wh
)+

n
· ρ

(
(

uh
)+

n
−

(

uh
)−

n

)

dΩ

+

(nel)n∑

e=1

∫

Qe
n

τSUPS

ρ



ρ

(

∂wh

∂t
+ uh ·∇∇∇wh

)

+∇∇∇qh



 · rhMdQ

+

(nel)n∑

e=1

∫

Qe
n

νLSIC∇∇∇ ·whρrhCdQ

+

(nel)n∑

e=1

∫

Qe
n

τSUPSr
h
M ·

(

∇∇∇wh
)

· uhdQ

−
(nel)n∑

e=1

∫

Qe
n

τ 2SUPS

ρ
rhM ·

(

∇∇∇wh
)

· rhMdQ = 0. (3.10)

Here, the superscript “h” indicates the functions in a finite-dimensional space. The

number and the counter of the ST elements are denoted by nel and e. The fine-scale

solutions are represented with τSUPS and νLSIC as follows:

u′ = −
τSUPS

ρ
rhM, (3.11)

p′ = −ρνLSICr
h
C, (3.12)

where rhM and rhC are the residuals given by:

rhM =ρ

(

∂uh

∂t
+ uh ·∇∇∇uh − fh

)

−∇∇∇ · σσσh, (3.13)

rhC =∇∇∇ · uh. (3.14)

The stabilization parameters are given in Appendix A. For more details, see [74,75].
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There is a shortcut derivation, introduced in [13], to obtain the nonconservative

form of the ST-VMS from the conservative form given in Eq. (3.10). Integrating by

parts two pieces of the fifth expression in Eq. (3.9), following are written from [13]:

−
∫

Qn

∇∇∇w : ρuudQ =−
∫

(Pn)h

(w · ρu) (n · u) dP +

∫

Qn

w · ρ (u ·∇∇∇u) dQ

+

∫

Qn

(w · ρu)∇∇∇ · udQ (3.15)

−
∫

Qn

∇∇∇w : ρu′udQ =−
∫

(Pn)h

(w · ρu)
(

n · u′
)

dP +

∫

Qn

w · ρ
(

u′ ·∇∇∇u
)

dQ

+

∫

Qn

(w · ρu)∇∇∇ · u′dQ. (3.16)

Here, u′ = 0 on the lateral boundary and addition of the last terms is zero because

of Eqs. (2.2) and (3.4). The discrete form of the second term in Eq. (3.15), which

is in nonconseravtive form, replaces the advective term in Eq. (3.10) which is in

conservative form. Addition of the last term of Eq. (3.16) to the third piece of the

last term in Eq. (3.9) is also zero. From those, we can write the ST-VMS formulation

in the nonconservative form in the spatially discretized version as given in [2,10,13]
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by:

∫

Qn

wh · ρ

(

∂uh

∂t
+ uh ·∇∇∇uh − fh

)

dQ

+

∫

Qn

εεε
(

wh
)

: σσσhdQ−
∫

(Pn)h

wh · hhdP

+

∫

Qn

qh∇∇∇ · uhdQ+

∫

Ωn

(

wh
)+

n
· ρ

(
(

uh
)+

n
−

(

uh
)−

n

)

dΩ

+

(nel)n∑

e=1

∫

Qe
n

τSUPS

ρ



ρ

(

∂wh

∂t
+ uh ·∇∇∇wh

)

+∇∇∇qh



 · rhMdQ

+

(nel)n∑

e=1

∫

Qe
n

νLSIC∇∇∇ ·whρrCdQ

−
(nel)n∑

e=1

∫

Qe
n

τSUPSw
h ·

(

rhM ·∇∇∇uh
)

dQ

−
(nel)n∑

e=1

∫

Qe
n

τ 2SUPS

ρ
rhM ·

(

∇∇∇wh
)

· rhMdQ = 0. (3.17)

3.3 ST-SI formulation

Most of the information in this section is written from [11, 12], where the ST-SI

is proposed. The origin of the ST-SI method is the “sliding interface” method

introduced in [76] and used with the ALE-VMS (see, for example, [77]). Two sides

of the interface are named as “Side A” and “Side B”. The test functions of velocity

and pressure are defined for the Sides A, as wh
A and qhA, and B, as wh

B and qhB, and
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the ST-SI formulation is written from [1] as follows:

−
∫

(Pn)SI

(

qhBnB − qhAnA

)

·
1

2

(

uh
B − uh

A

)

dP

−
∫

(Pn)SI

ρwh
B ·

1

2

(
(

Fh
B −

∣
∣
∣Fh

B

∣
∣
∣

)

uh
B −

(

Fh
B −

∣
∣
∣Fh

B

∣
∣
∣

)

uh
A

)

dP

−
∫

(Pn)SI

ρwh
A ·

1

2

(
(

Fh
A −

∣
∣
∣Fh

A

∣
∣
∣

)

uh
A −

(

Fh
A −

∣
∣
∣Fh

A

∣
∣
∣

)

uh
B

)

dP

+

∫

(Pn)SI

(

nB ·wh
B + nA ·wh

A

) 1

2

(

phB + phA

)

dP

−
∫

(Pn)SI

(

nB ·wh
B − nA ·wh

A

) 1

2
∆pdP

−
∫

(Pn)SI

(

wh
B −wh

A

)

·
(

n̂B · µ
(

εεε(uh
B) + εεε(uh

A)
)
)

dP

− γ

∫

(Pn)SI

n̂B · µ
(

εεε
(

wh
B

)

+ εεε
(

wh
A

)
)

·
(

uh
B − uh

A

)

dP

+

∫

(Pn)SI

µC

h

(

wh
B −wh

A

)

·
(

uh
B − uh

A

)

dP, (3.18)

where

Fh
B = nB ·

(

uh
B − vh

B

)

, (3.19)

Fh
A = nA ·

(

uh
A − vh

A

)

, (3.20)

n̂B =
nB − nA

‖nB − nA‖
, (3.21)

and, (Pn)SI is the interface between the periodic boundaries in the ST domain. The

outward unit normal vectors are denoted by nA and nB, γ = 1, and C is a dimension-

less constant. As it is stated in Remark 3 of [12] and studied in [1], a translational-

periodicity can be enforced in the ST-VMS computations. In such cases, an SI is

placed where the periodicity is enforced and the computations are carried out while

including the corresponding ST-SI term. The term, ∆p in Eq. (3.18), represents

the pressure change between the SIs. As given in the notation in [11, 68, 69, 78], a
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positive ∆p value shows higher pressure on Side A. The element length h is shown

in Appendix A.

When the SI is used between fluid and solid domains, replacing the Side A

velocity with the velocity gh, the weakly-enforced Dirichlet conditions (see [20]) are

obtained as follows:

−
∫

(Pn)SI

qhBnB · uh
BdP −

∫

(Pn)SI

ρwh
B · Fh

Bu
h
BdP +

∫

(Pn)SI

qhBnB · ghdP

+

∫

(Pn)SI

ρwh
B ·

1

2

(
(

Fh
B +

∣
∣
∣Fh

B

∣
∣
∣

)

uh
B +

(

Fh
B −

∣
∣
∣Fh

B

∣
∣
∣

)

gh

)

dP

−
∫

(Pn)SI

wh
B ·

(

nB · σσσh
B

)

dP − γ

∫

(Pn)SI

nB · 2µεεε
(

wh
B

)

·
(

uh
B − gh

)

dP

+

∫

(Pn)SI

µC

hB
wh

B ·
(

uh
B − gh

)

dP. (3.22)

The periodic boundary conditions can be enforced with the ST-SI. In that case,

the nA and nB become the normal vectors associated with the periodicity surfaces.

Then, we define tA and tB as unit vectors tangent to those surfaces, and RSI as the

tensor transforming the basis set (nA, tA, nA × tA) to (−nB, tB, −nB × tB). Then,

the ST-SI is described with RSI = −nBnA + tBtA − (nB × tB) (nA × tA) from [2] as
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follows:

−
∫

(Pn)SI

(

qhBnB −RSI · qhAnA

)

·
1

2

(

uh
B −RSI · uh

A

)

dP

−
∫

(Pn)SI

ρwh
B ·

1

2

(
(

Fh
B −

∣
∣
∣Fh

B

∣
∣
∣

)

uh
B −

(

Fh
B −

∣
∣
∣Fh

B

∣
∣
∣

)

RSI · uh
A

)

dP

−
∫

(Pn)SI

ρ
(

RSI ·wh
A

)

·
1

2

(
(

Fh
A −

∣
∣
∣Fh

A

∣
∣
∣

)

RSI · uh
A −

(

Fh
A −

∣
∣
∣Fh

A

∣
∣
∣

)

uh
B

)

dP

+

∫

(Pn)SI

(

nB ·wh
B + nA ·wh

A

) 1

2

(

phB + phA

)

dP

−
∫

(Pn)SI

(

nB ·wh
B − nA ·wh

A

) 1

2
∆pdP

−
∫

(Pn)SI

(

wh
B −RSI ·wh

A

)

·
(

n̂B · µ
(

εεε(uh
B) +RSI · εεε(uh

A) ·R
ᵀ

SI

)
)

dP

− γ

∫

(Pn)SI

n̂B · µ
(

εεε
(

wh
B

)

+RSI · εεε
(

wh
A

)

·Rᵀ

SI

)

·
(

uh
B −RSI · uh

A

)

dP

+

∫

(Pn)SI

µC

h

(

wh
B −RSI ·wh

A

)

·
(

uh
B −RSI · uh

A

)

dP, (3.23)

where

n̂B =
nB −RSI · nA

‖nB −RSI · nA‖
. (3.24)

3.4 Exact representation of geometry and prescribed-velocity

3.4.1 Geometry representation

Exact representation of a computational domain using NURBS is introduced in

[5]. Most of the information in this section is written from [2, 3]. An arc can be

represented exactly placing the control points as given in Figure 3.2 by a quadratic

NURBS element if its angle is less than π. The NURBS weights defined on the

26



q

x1

x3

x2

Figure 3.2: A circular-arc represented exactly by a quadratic NURBS element. This
figure was also shown in [2]

consisting control points are w1 = w3 = 1, and w2 = cos q, and

cos 2q =
x1 · x3

r2
, r = ‖x1‖ = ‖x3‖, (3.25)

and

‖x2‖ =
r

cos q
. (3.26)

With that, the circular arc can be represented with NURBS basis functions Na:

x(ξ) =
3

∑

a=1

Na(ξ)xa. (3.27)

If the arc angle is q = π
2 , for the exact representation we can use two elements,

with a uniform knot space, the weight values of w1 = w4 = 1, and w2 = w3 = 1
2

and placing the control points as illustrated in Figure 3.3. Here, the control points

satisfy the conditions

‖x1‖ = ‖x4‖ = r, (3.28)
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q =
π

2

x1

x3 x2

x4

Figure 3.3: A circular arc with q = π
2 represented exactly by two quadratic NURBS

elements. This figure was also shown in [2]

and

‖x2‖ = ‖x3‖ =

√
2

2
r. (3.29)

3.4.2 Rotation-generated prescribed velocity

The rotation-generated velocity gh can be represented exactly along an arc. For

both the cases q < π and q = π, the prescribed velocity is represented exactly as

follows.

gh(ξ) = ωωω × xh(ξ) (3.30)

= ωωω ×
3

∑

a=1

Na(ξ) (xa) (3.31)

=
3

∑

a=1

Na(ξ) (ωωω × xa) . (3.32)

and can also be written as gh(ξ) =
3

∑

a=1

Na(ξ)ga, where ga = ωωω × xa.

A circular-arc path and a rotation-generated prescribed velocity along the circular-

arc path can also be represented exactly. These are given in Appendix B in detail.
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Chapter 4

ST Formulations in the NRF

4.1 ST variational formulations in the NRF

ST variational formulation in a stationary ST domain, (QR)n is written using Eqs. (2.7)

and (2.10) in the NRF as follows:

∫

(QR)n

wR · ρ
(
∂uR

∂t
+∇∇∇ · (uRuR)− fR

)

dQ

+

∫

(QR)n

wR · ρ
(

2ωωωR × uR +ωωω̇R × rR +ωωωR × (ωωωR × rR)
)

dQ

−
∫

(QR)n

wR · (∇∇∇ · σσσR) dQ+

∫

(QR)n

q∇∇∇ · uRdQ = 0. (4.1)

Integrating Eq. (4.1) by parts all the terms except for the terms containing Coriolis,

centrifugal and external forces, and enforcing the essential and natural boundary

conditions,

∫

(ΩR)n+1

(wR)
−
n+1 · ρ (uR)

−
n+1 dΩ−

∫

(ΩR)n

(wR)
+
n · ρ (uR)

−
n dΩ−

∫

(QR)n

∂wR

∂t
· ρuRdQ

−
∫

((PR)n)h
(wR · ρuR) (n · vR) dP +

∫

((PR)n)h
(wR · ρuR) (n · uR) dP

−
∫

(QR)n

∇∇∇wR : ρuRuRdQ−
∫

(QR)n

wR · ρfRdQ

+

∫

(QR)n

wR · ρ
(

2ωωωR × uR +ωωω̇R × rR +ωωωR × (ωωωR × rR)
)

dQ

−
∫

((PR)n)h
wR · hRdP +

∫

(QR)n

εεε (wR) : σσσRdQ

+

∫

(PR)n

qn · uRdP −
∫

(QR)n

∇∇∇q · uRdQ = 0, (4.2)
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is obtained. Here, ΩR is the stationary spatial-domain and vR is the velocity of the

spatial-domain boundary, (PR)n. It is zero because the boundary does not move.

4.2 ST-VMS formulation in the NRF

Similar to Eq. (3.4), coarse-scale and fine-scale separation can be made for the

relative velocity vector and the corresponding test function in the stationary domain

as follows:

uR = uR + u′
R, (4.3)

wR = wR +w′
R. (4.4)

Scale separation for pressure and the corresponding test function q are the same

in the NRF as given in Eqs. (3.6) and (3.7) in the IRF. Therefore, temporarily

introducing σσσ′
R ≡ σσσR − σσσR, and assuming εεε (wR) : 2µ∇∇∇u′

R = 0 (see [72, 73]), the

scale separation is made in Eq. (4.2) as follows:

∫

(ΩR)n+1

(wR)
−
n+1 · ρ (uR)

−
n+1 dΩ−

∫

(ΩR)n

(wR)
+
n · ρ (uR)

−
n dΩ

−
∫

(QR)n

∂wR

∂t
· ρ

(

uR + u′
R

)

dQ+

∫

((PR)n)h
(wR · ρuR)

(

n · (uR − vR)
)

dP

−
∫

(QR)n

∇∇∇wR : ρ
(

uR + u′
R

) (

uR + u′
R

)

dQ−
∫

(QR)n

wR · ρfRdQ

+

∫

(QR)n

wR · ρ
(

2ωωωR ×
(

uR + u′
R

)

+ωωω̇R × rR +ωωωR × (ωωωR × rR)
)

dQ

−
∫

((PR)n)h
wR · hRdP +

∫

(QR)n

εεε (wR) :
(

σσσR − p′I
)

dQ

+

∫

(PR)n

qn · uRdP −
∫

(QR)n

∇∇∇q ·
(

uR + u′
R

)

dQ = 0, (4.5)

where fine-scale solution is set to zero at the spatial and temporal boundaries. After

this step, the fine-scale terms are collected in one place, and the formulation is
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written as follows:

∫

(ΩR)n+1

(wR)
−
n+1 · ρ (uR)

−
n+1 dΩ−

∫

(ΩR)n

(wR)
+
n · ρ (uR)

−
n dΩ

−
∫

(QR)n

∂wR

∂t
· ρuRdQ+

∫

((PR)n)h
(wR · ρuR)

(

n · (uR − vR)
)

dP

−
∫

(QR)n

∇∇∇wR : ρuRuRdQ−
∫

(QR)n

wR · ρfRdQ

+

∫

(QR)n

wR · ρ
(

2ωωωR × uR +ωωω̇R × rR +ωωωR × (ωωωR × rR)
)

dQ

−
∫

((PR)n)h
wR · hRdP +

∫

(QR)n

εεε (wR) : σσσRdQ

+

∫

(PR)n

qn · uRdP −
∫

(QR)n

∇∇∇q · uRdQ

−
∫

(QR)n

(
(

ρ
∂wR

∂t
+∇∇∇q

)

· u′
R

+∇∇∇wR :
(

ρ
(

u′
RuR + uRu

′
R + u′

Ru
′
R

)

+ p′I
)
)

dQ = 0. (4.6)

Equation (4.6) can be written in spatially discretized version to obtain the ST-VMS

equation in conservative form as follows (see [2, 10, 13]): find ∀ uh
R ∈

(

Sh
u

)

n
and
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ph ∈
(

Sh
p

)

n
, such that ∀ wh

R ∈
(

Vh
u

)

n
and qh ∈

(

Vh
p

)

n
:

∫

(QR)n

wh
R · ρ

(

∂uh
R

∂t
+∇∇∇ ·

(

uh
Ru

h
R

)

− fhR

)

dQ

+

∫

(QR)n

wh
R · ρ

(

2ωωωR × uh
R +ωωω̇R × rhR +ωωωR ×

(

ωωωR × rhR

)
)

dQ

+

∫

(QR)n

εεε
(

wh
R

)

: σσσh
RdQ−

∫

((PR)n)h
wh

R · hh
RdP

+

∫

(QR)n

qh∇∇∇ · uh
RdQ+

∫

(ΩR)n

(

wh
R

)+

n
· ρ

(
(

uh
R

)+

n
−

(

uh
R

)−

n

)

dΩ

+

(nel)n∑

e=1

∫

(QR)en

τSUPS

ρ



ρ

(

∂wh
R

∂t
+ uh

R ·∇∇∇wh
R

)

+∇∇∇qh



 ·
(

rhM

)

R
dQ

+

(nel)n∑

e=1

∫

(QR)en

νLSIC∇∇∇ ·wh
Rρ

(

rhC

)

R
dQ

+

(nel)n∑

e=1

∫

(QR)en

τSUPS

(

rhM

)

R
·
(

∇∇∇wh
R

)

· uh
RdQ

−
(nel)n∑

e=1

∫

(QR)en

τ 2SUPS

ρ

(

rhM

)

R
·
(

∇∇∇wh
R

)

·
(

rhM

)

R
dQ = 0. (4.7)

Here, the fine-scale solutions are represented in the NRF as follows:

u′
R = −

τSUPS

ρ

(

rhM

)

R
, (4.8)

p′ = −ρνLSIC
(

rhC

)

R
, (4.9)

where the residuals are given by:

(

rhM

)

R
=ρ

(

∂uh
R

∂t
+ uh

R ·∇∇∇uh
R + 2ωωωR × uh

R +ωωω̇R × rhR +ωωωR ×
(

ωωωR × rhR

)

− fhR

)

−∇∇∇ · σσσh
R, (4.10)
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and

(

rhC

)

R
=∇∇∇ · uh

R. (4.11)

The shortcut derivation to obtain the nonconservative form in the NRF is made, in

a similar way as given in Eqs. (3.15) and (3.16), using the fifth term in Eq. (4.6) as

follows:

−
∫

(QR)n

∇∇∇wR : ρuRuRdQ =−
∫

((PR)n)h
(wR · ρuR) (n · uR) dP

+

∫

(QR)n

wR · ρ (uR ·∇∇∇uR) dQ

+

∫

(QR)n

(wR · ρuR)∇∇∇ · uRdQ, (4.12)

−
∫

(QR)n

∇∇∇wR : ρu′
RuRdQ =−

∫

((PR)n)h
(wR · ρuR)

(

n · u′
R

)

dP

+

∫

(QR)n

wR · ρ
(

u′
R ·∇∇∇uR

)

dQ

+

∫

(QR)n

(wR · ρuR)∇∇∇ · u′
RdQ, (4.13)

where u′
R = 0 on the lateral boundary and addition of the last terms is zero because

of Eqs. (2.10) and (4.3). The discrete form of the second term in Eq. (4.12), which

is in nonconservative form, replaces the advective term in Eq. (4.7) which is in

conservative form. Addition of the last term of Eq. (4.13) to the third piece of the

last term in Eq. (4.6) is also zero. From those, we can write the spatially discretized
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version of the ST-VMS formulation in the nonconservative form in the NRF by:

∫

(QR)n

wh
R · ρ

(

∂uh
R

∂t
+ uh

R ·∇∇∇uh
R − fhR

)

dQ

+

∫

(QR)n

wh
R · ρ

(

2ωωωR × uh
R +ωωω̇R × rhR +ωωωR ×

(

ωωωR × rhR

)
)

dQ

+

∫

(QR)n

εεε
(

wh
R

)

: σσσh
RdQ−

∫

((PR)n)h
wh

R · hh
RdP

+

∫

(QR)n

qh∇∇∇ · uh
RdQ+

∫

(ΩR)n

(

wh
R

)+

n
· ρ

(
(

uh
R

)+

n
−

(

uh
R

)−

n

)

dΩ

+

(nel)n∑

e=1

∫

(QR)en

τSUPS

ρ



ρ

(

∂wh
R

∂t
+ uh

R ·∇∇∇wh
R

)

+∇∇∇qh



 ·
(

rhM

)

R
dQ

+

(nel)n∑

e=1

∫

(QR)en

νLSIC∇∇∇ ·wh
Rρ

(

rhC

)

R
dQ

−
(nel)n∑

e=1

∫

(QR)en

τSUPSw
h
R ·

(
(

rhM

)

R
·∇∇∇uh

R

)

dQ

−
(nel)n∑

e=1

∫

(QR)en

τ 2SUPS

ρ

(

rhM

)

R
·
(

∇∇∇wh
R

)

·
(

rhM

)

R
dQ = 0. (4.14)

4.3 Global conservation of mass and momentum

For global conservation of mass and momentum, we first transform the ST-VMS

formulation from the stationary domain to the same domain as in the IRF, then

convert from the NRF to IRF. With this purpose, we write from Section 2.2.1 as

follows:

R · uh
R = uh −ωωω × rh. (4.15)
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Equation (2.5) is arranged in the discrete space as:

R ·

(

∂uh
R

∂t
+∇∇∇ ·

(

uh
Ru

h
R

)

+ 2ωωωR × uh
R +ωωω̇R × rhR +ωωωR ×

(

ωωωR × rhR

)
)

=
∂uh

∂t
+∇∇∇ ·

(

uhuh
)

. (4.16)

Starting from Eq. (4.16) and using ∇∇∇ · uh
R =∇∇∇ · uh, we can write:

R ·

(

∂uh
R

∂t
+ uh

R ·∇∇∇uh
R + 2ωωωR × uh

R +ωωω̇R × rhR +ωωωR ×
(

ωωωR × rhR

)
)

=
∂uh

∂t
+∇∇∇ ·

(

uhuh
)

. (4.17)

The conservative form of the ST-VMS formulation given in Eq. (4.7), can be con-

verted into the IRF with Eqs. (4.15) and (4.16) as follows:

∫

Qn

wh · ρ

(

∂uh

∂t
+∇∇∇ ·

(

uhuh
)

− fh

)

dQ

+

∫

Qn

εεε
(

wh
)

: σσσhdQ−
∫

(Pn)h

wh · hhdP

+

∫

Qn

qh∇∇∇ · uhdQ+

∫

Ωn

(

wh
)+

n
· ρ

(
(

uh
)+

n
−

(

uh
)−

n

)

dΩ

+

∫

Qn

τSUPS

ρ



ρ

(

∂wh

∂t
+
(

uh −ωωω × rh
)

·∇∇∇wh

)

+∇∇∇qh



 · rhMdQ

+

∫

Qn

νLSIC∇∇∇ ·whρrhCdQ

+

∫

Qn

τSUPSr
h
M ·

(

∇∇∇wh
)

·
(

uh −ωωω × rh
)

dQ

−
∫

Qn

τ 2SUPS

ρ
rhM ·

(

∇∇∇wh
)

· rhMdQ = 0. (4.18)

Here, we remind that ∇∇∇ ·
(

ωωω × rh
)

= 0. We also note that the
(

rhM
)

R
is converted

by using Eq. (4.17) in Eq. (4.10), we obtain rhM as given in Eq. (3.13).

The nonconservative form of the ST-VMS formulation given in Eq. (4.14), can
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be converted into the IRF with Eqs. (4.15) and (4.17) as follows:

∫

Qn

wh · ρ

(

∂uh

∂t
+ uh ·∇∇∇uh − fh

)

dQ

+

∫

Qn

εεε
(

wh
)

: σσσhdQ−
∫

(Pn)h

wh · hhdP

+

∫

Qn

qh∇∇∇ · uhdQ+

∫

Ωn

(

wh
)+

n
· ρ

(
(

uh
)+

n
−

(

uh
)−

n

)

dΩ

+

∫

Qn

τSUPS

ρ



ρ

(

∂wh

∂t
+
(

uh −ωωω × rh
)

·∇∇∇wh

)

+∇∇∇qh



 · rhMdQ

+

∫

Qn

νLSIC∇∇∇ ·whρrhCdQ

−
∫

Qn

τSUPSw
h ·

(

rhM ·∇∇∇
(

uh −ωωω × rh
)
)

dQ

−
∫

Qn

τ 2SUPS

ρ
rhM ·

(

∇∇∇wh
)

· rhMdQ = 0. (4.19)

4.3.1 Global conservation of mass

The weighting functions are wh and qh we used in the discrete geometry. For global

conservation of mass, these functions can be set in the ST-VMS equations aswh ← 0

and qh ← 1. For similar studies, please see [26, 79–81]. Hence, the following can be

obtained with a simple calculation:

∫

Pn

n · uhdP = 0. (4.20)

This is true for both in the conservative and nonconservative forms of the ST-VMS

formulation in the both reference frames. Eq. (4.20) shows that both versions of the

ST-VMS formulations in both frames are globally mass conservative.
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4.3.2 Global conservation of linear momentum

Conservative version

We can set the weighting function used for mass balance equation to zero (qh ← 0)

to find the global momentum conservation formulation. Because wh is a vector

function, ith Cartesian basis vector ei is used (see [26,80,81]) to test the conservation

properties using the ST-VMS formulations.

In Eq. (4.18), replacing the test functions we obtain:

∫

Qn

ei · ρ

(

∂uh

∂t
+∇∇∇

(

uhuh
)

− fh

)

dQ

+

∫

Qn

εεε (ei) : σσσ
hdQ−

∫

(Pn)h

ei · hhdP

+

∫

Ωn

ei · ρ
(
(

uh
)+

n
−

(

uh
)−

n

)

dΩ

+

∫

Qn

τSUPS

ρ

(

ρ

(
∂ei
∂t

+
(

uh −ωωω × rh
)

·∇∇∇ei

)
)

· rhMdQ

+

∫

Qn

νLSIC∇∇∇ · eiρrhCdQ

+

∫

Qn

τSUPSr
h
M · (∇∇∇ei) ·

(

uh −ωωω × rh
)

dQ

−
∫

Qn

τ 2SUPS

ρ
rhM · (∇∇∇ei) · rhMdQ = 0. (4.21)

Here, applying
∂ei
∂t

= 0, ∇∇∇ei = 0 and εεε(ei) = 0, we can write:

∫

Qn

ei · ρ

(

∂uh

∂t
+∇∇∇ ·

(

uhuh
)

− fh

)

dQ

+

∫

Ωn

ei · ρ
(
(

uh
)+

n
−

(

uh
)−

n

)

dΩ−
∫

(Pn)h

ei · hhdP = 0. (4.22)
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We remind that

∫

Qn

ei · ρ∇∇∇ ·
(

uhuh
)

dQ =

∫

(Pn)h

(

ei · ρuh
)
(

n ·
(

uh − vh
)
)

dP

−
∫

Qn

∇∇∇ei : ρ
(

uhuh
)

dQ. (4.23)

Thus, we achieve:

∫

Qn

ei · ρ

(

∂uh

∂t
− fh

)

dQ+

∫

(Pn)h

(

ei · ρuh
)
(

n ·
(

uh − vh
)
)

dP

+

∫

Ωn

ei · ρ
(
(

uh
)+

n
−

(

uh
)−

n

)

dΩ−
∫

(Pn)h

ei · hhdP = 0. (4.24)

Remark 1

Equation (4.24) shows that the conservative form of the ST-VMS formulation in the

NRF globally conserves the linear momentum.

Remark 2

Equation (4.24) can also be obtained, in the IRF, using the weighting functions

qh ← 0 and wh ← ei in Eq. (3.10). This means that the conservative form of the

ST-VMS formulation in the IRF globally conserves the linear momentum.

Nonconservative version

In the nonconservative form of the ST-VMS formulation, we obtain two additional

terms when we use qh ← 0. Considering this, we replace the test functions with

qh ← ρuh · ei instead of zero (see also [26]) and wh ← ei in Eq. (4.19), and write as
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follows:

∫

Qn

ei · ρ

(

∂uh

∂t
+ uh ·∇∇∇uh − fh

)

dQ

+

∫

Qn

εεε (ei) : σσσ
hdQ−

∫

(Pn)h

ei · hhdP

+

∫

Qn

(

ρuh · ei
)

∇∇∇ · uhdQ+

∫

Ωn

ei · ρ
(
(

uh
)+

n
−

(

uh
)−

n

)

dΩ

+

∫

Qn

τSUPS

ρ

(

ρ

(
∂ei
∂t

+
(

uh −ωωω × rh
)

·∇∇∇ei

)

+∇∇∇
(

ρuh · ei
)
)

· rhMdQ

+

∫

Qn

νLSIC∇∇∇ · eiρrhCdQ

−
∫

Qn

τSUPSei ·
(

rhM ·∇∇∇
(

uh −ωωω × rh
)
)

dQ

−
∫

Qn

τ 2SUPS

ρ
rhM · (∇∇∇ei) · rhMdQ = 0. (4.25)

This formulation can be arranged with
∂ei
∂t

= 0, ∇∇∇ei = 0 and εεε(ei) = 0, as follows:

∫

Qn

ei · ρ

(

∂uh

∂t
+ uh ·∇∇∇uh − fh

)

dQ−
∫

(Pn)h

ei · hhdP

+

∫

Qn

(

ρuh · ei
)

∇∇∇ · uhdQ+

∫

Ωn

ei · ρ
(
(

uh
)+

n
−

(

uh
)−

n

)

dΩ

+

∫

Qn

τSUPS

ρ

(

∇∇∇
(

ρuh · ei
)
)

· rhMdQ

−
∫

Qn

τSUPSei ·
(

rhM ·∇∇∇uh
)

dQ+

∫

Qn

τSUPSei ·
(

rhM ·∇∇∇
(

ωωω × rh
)
)

dQ = 0. (4.26)

We can arrange the mass balance part of Eq. (4.26) as:

∫

Qn

τSUPS

ρ
∇∇∇

(

ρuh · ei
)

· rhMdQ+

∫

Qn

(

ρuh · ei
)

∇∇∇ · uhdQ

=

∫

Qn

τSUPSei ·
(

rhM ·∇∇∇uh
)

dQ+

∫

Qn

ei · ρ
(

∇∇∇ · uh
)

uhdQ, (4.27)
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and the following is obtained from the advective part:

∫

Qn

ei · ρ
(

uh ·∇∇∇uh
)

dQ =

∫

(Pn)h

(

ei · ρuh
)
(

n ·
(

uh − vh
)
)

dP

−
∫

Qn

ei · ρ
(

∇∇∇ · uh
)

uhdQ. (4.28)

The first term in the right side of Eq. (4.27) is equal with opposite sign to the

penultimate term of Eq. (4.26). The last terms of Eqs. (4.27) and (4.28) removes

each other. Hence, we can write:

∫

Qn

ei · ρ

(

∂uh

∂t
− fh

)

dQ+

∫

(Pn)h

(

ei · ρuh
)
(

n ·
(

uh − vh
)
)

dP

+

∫

Ωn

ei · ρ
(
(

uh
)+

n
−

(

uh
)−

n

)

dΩ−
∫

(Pn)h

ei · hhdP

= −
∫

Qn

τSUPSei ·
(

rhM · εijkωiejek

)

dQ. (4.29)

Remark 3

Equation (4.29) shows that the nonconservative form of the ST-VMS formulation

in the NRF does not conserve the linear momentum globally.

Using the test functions qh ← ρuh · ei and wh ← ei, in the nonconservative form

of the ST-VMS formulation in the IRF, given in Eq. (3.17), with Eqs. (4.27) and

(4.28), we can write:

∫

Qn

ei · ρ

(

∂uh

∂t
− fh

)

dQ+

∫

(Pn)h

(

ei · ρuh
)
(

n ·
(

uh − vh
)
)

dP

+

∫

Ωn

ei · ρ
(
(

uh
)+

n
−

(

uh
)−

n

)

dΩ−
∫

(Pn)h

ei · hhdP = 0. (4.30)

Remark 4

Equation (4.30) shows that the nonconservative form of the ST-VMS formulation
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in the IRF globally conserves the linear momentum.

4.3.3 Global conservation of angular momentum

Conservative version

For angular momentum conservation, we need to take the position vector rh into

account. We can also test the formulation just by taking cross product of the ith

Cartesian basis vector with the position vector, since the position vector is also in

the same discrete space. Writing qh ← 0 and wh ← ei × rh as the test functions in

Eq. (4.18) we obtain:

∫

Qn

(

ei × rh
)

· ρ

(

∂uh

∂t
+∇∇∇

(

uhuh
)

− fh

)

dQ

+

∫

Qn

εεε

(
(

ei × rh
)
)

: σσσhdQ−
∫

(Pn)h

(

ei × rh
)

· hhdP

+

∫

Ωn

(

ei × rh
)

· ρ
(
(

uh
)+

n
−

(

uh
)−

n

)

dΩ

+

∫

Qn

τSUPS

ρ



ρ

(

∂
(

ei × rh
)

∂t
+
(

uh −ωωω × rh
)

·∇∇∇
(

ei × rh
)
)


 · rhMdQ

+

∫

Qn

νLSIC∇∇∇ ·
(

ei × rh
)

ρrhCdQ

+

∫

Qn

τSUPSr
h
M ·

(

∇∇∇
(

ei × rh
)
)

·
(

uh −ωωω × rh
)

dQ

−
∫

Qn

τ 2SUPS

ρ
rhM ·

(

∇∇∇
(

ei × rh
)
)

· rhMdQ = 0. (4.31)

Here, the test function of ei × rh is written as follows:

ei × rh = εijkr
h
j ek, (4.32)

where εijk =
(

ei × ej
)

· ek is the Levi–Civita symbol, which is 1 if (i, j, k) is a cyclic

shift of (1,2,3), −1 if (i, j, k) is a cyclic shift of (3,2,1), and 0 otherwise. Taking the

gradient of the test function, we obtain:
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∇∇∇
(

εijkr
h
j ek

)

=
∂
(

εijkrhj

)

∂x
ek

=
∂
(

εijkrhj

)

∂xl
elek

= εijkδjlelek

= εijkejek, (4.33)

which results out a skew–symmetric tensor. Here, δjl = ej · el, and εεε(εijkrhj ek) = 0

because of that:

εεε(εijkr
h
j ek) =

1

2

(

∇∇∇
(

εijkr
h
j ek

)

+
(

∇∇∇εijkr
h
j ek

)ᵀ
)

=
1

2

(

εijkejek +
(

εijkejek
)ᵀ
)

=
1

2

(

εijkejek − εijkejek
)

= 0. (4.34)

The conservative form of the advective term can be written as:

∫

Qn

(

ei × rh
)

· ρ
(

∇∇∇ ·
(

uhuh
)
)

dQ

=

∫

(Pn)h

(
(

ei × rh
)

· ρuh

)(

n ·
(

uh − vh
)
)

dP −
∫

Qn

∇∇∇
(

ei × rh
)

: ρ
(

uhuh
)

dQ.

(4.35)

Addition of the last four terms of Eq. (4.31) and the last term of Eq. (4.35) is zero

since it is a symmetric tensor, which is orthogonal to the gradient of the test function

as given in Eq. (4.33). Considering this and using Eqs. (4.32)–(4.35) in Eq. (4.31),
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the following is obtained:

∫

Qn

ei · ρ
(

∂

∂t

(

rh × uh
)

− rh × fh
)

dQ

+

∫

(Pn)h

(

ei · ρ
(

rh × uh
)
)(

n ·
(

uh − vh
)
)

dP

+

∫

Ωn

ei · ρ
(
(

rh × uh
)+

n
−

(

rh × uh
)−

n

)

dΩ

−
∫

(Pn)h

ei ·
(

rh × hh
)

dP = 0. (4.36)

Remark 5

Equation (4.36) shows that the conservative form of the ST-VMS formulation in the

NRF globally conserves the angular momentum.

Remark 6

Equation (4.36) can also be obtained, in the IRF, using the weighting functions

qh ← 0 and wh ← ei × rh in Eq. (3.10). This means that the conservative form of

the ST-VMS formulation in the IRF globally conserves the angular momentum.

Nonconservative version

In the nonconservative form of the ST-VMS formulation, we obtain some additional

terms when we use qh ← 0. Considering this, we replace the test functions with

qh ← ρuh ·
(

ei × rh
)

instead of zero (see also [26]) and wh ←
(

ei × rh
)

in Eq. (4.19),
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and write as follows:

∫

Qn

(

ei × rh
)

· ρ

(

∂uh

∂t
+ uh ·∇∇∇uh − fh

)

dQ

+

∫

Qn

εεε

(
(

ei × rh
)
)

: σσσhdQ−
∫

(Pn)h

(

ei × rh
)

· hhdP

+

∫

Qn

(

ρuh ·
(

ei × rh
)
)

∇∇∇ · uhdQ+

∫

Ωn

(

ei × rh
)

· ρ
(
(

uh
)+

n
−

(

uh
)−

n

)

dΩ

+

∫

Qn

τSUPS

ρ



ρ

(

∂
(

ei × rh
)

∂t
+ uh ·∇∇∇

(

ei × rh
)
)

+∇∇∇
(

ρuh ·
(

ei × rh
)
)


 · rhMdQ

−
∫

Qn

τSUPS

(

ωωω × rh
)

·∇∇∇
(

ei × rh
)

· rhMdQ+

∫

Qn

νLSIC∇∇∇ ·
(

ei × rh
)

ρrhCdQ

−
∫

Qn

τSUPS

(

ei × rh
)

·
(

rhM ·∇∇∇uh
)

dQ

+

∫

Qn

τSUPS

(

ei × rh
)

·
(

rhM ·∇∇∇
(

ωωω × rh
)
)

dQ

−
∫

Qn

τ 2SUPS

ρ
rhM ·

(

∇∇∇
(

ei × rh
)
)

· rhMdQ = 0. (4.37)

Arranging the mass balance part, as follows:

∫

Qn

τSUPS

ρ
∇∇∇qh · rhMdQ+

∫

Qn

qh∇∇∇ · uhdQ

=

∫

Qn

τSUPS

(

ei × rh
)

·
(

rhM ·∇∇∇uh
)

dQ+

∫

Qn

(

ei × rh
)

· ρ
(

∇∇∇ · uh
)

uhdQ, (4.38)

and from the advective term:

∫

Qn

(

ei × rh
)

· ρ
(

uh ·∇∇∇uh
)

dQ =

∫

(Pn)h

(
(

ei × rh
)

· ρuh

)(

n ·
(

uh − vh
)
)

dP

−
∫

Qn

(

ei × rh
)

· ρ
(

∇∇∇ · uh
)

uhdQ, (4.39)

are acquired. The first term of Eq. (4.38) removes the ninth term of Eq. (4.37).

The last terms of Eqs. (4.38) and (4.39) equal with opposite signs. The last term

of Eq. (4.37) is zero because of the orhogonality of the skew–symmetric tensor (see
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Eq. (4.33)) to a symmetric tensor. Using all these and Eq. (4.34), from Eq. (4.37)

we achieve:

∫

Qn

ei · ρ
(

∂

∂t

(

rh × uh
)

− rh × fh
)

dQ

+

∫

(Pn)h

(

ei · ρ
(

rh × uh
)
)(

n ·
(

uh − vh
)
)

dP

+

∫

Ωn

ei · ρ
(
(

rh × uh
)+

n
−

(

rh × uh
)−

n

)

dΩ−
∫

(Pn)h

ei ·
(

rh × hh
)

dP

= −
∫

Qn

τSUPS

(
(

uh −ωωω × rh
)

· εijkejek
)

· rhMdQ

−
∫

Qn

τSUPSεijkrjek ·
(

rhM · εijkωiejek

)

dQ. (4.40)

Remark 7

Equation (4.40) shows that the nonconservative form of the ST-VMS formulation

in the NRF does not conserve the angular momentum globally.

Using the weighting functions qh ← ρ
(

ei × rh
)

·uh andwh ← ei×rh in Eq. (3.17),

with Eqs. (4.34), (4.38) and (4.39), the following is obtained:

∫

Qn

ei · ρ
(

∂

∂t

(

rh × uh
)

− rh × fh
)

dQ

+

∫

(Pn)h

(

ei · ρ
(

rh × uh
)
)(

n ·
(

uh − vh
)
)

dP

+

∫

Ωn

ei · ρ
(
(

rh × uh
)+

n
−

(

rh × uh
)−

n

)

dΩ−
∫

(Pn)h

ei ·
(

rh × hh
)

dP

= −
∫

Qn

τSUPS

(

uh · εijkejek
)

· rhMdQ. (4.41)

Remark 8

Equation (4.41) shows that the nonconservative form of the ST-VMS formulation

in the IRF does not conserve the angular momentum globally.
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Chapter 5

U-duct Turbulent-Flow Analysis

The U-duct turbulent-flow, which is a benchmark problem with an experimental

study [82], is computed and represented in this chapter. The high curvature of the

computational domain, the high Reynolds number of the flow and inflow profile de-

pendence of flow are the computational challenges. To encounter these challenges,

all computations in this chapter are performed on the computational domains rep-

resented by quadratic NURBS meshes, and using a fully-developed flow field on the

inflow of the U-duct. The flow is developed in a straight duct with translational-

periodicity condition applied with the ST-SI. The variation of results with the time-

averaging range, mesh refinement, and the Courant number are investigated. We

show how the ST-VMS with isogeometric discretization performs in this kind of a

turbulent-flow computation comparing the results to experimental data [82].

5.1 Definitions for the data analysis

5.1.1 Scale separation

The velocity is scaled as

u = u+ u′. (5.1)

Here the “ ” denotes the averaging over the period T = (T1, T2). We note that this

scale separation is different from that given in Eqs. (3.4)–(3.7) and it is only for
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post-processing. The time-averaging is calculated as:

f =
1

T2 − T1

∫ T2

T1

fdt. (5.2)

Here, f is any scalar or vector. This is extended to the ST context with

f =
1

∫

T

∫

Ωt
dΩdt

∫

T

∫

Ωt

fdΩdt (5.3)

=
1

∫

Q dQ

∫

Q

fdQ, (5.4)

where Q =
{

x(t) ∈ Ωt

∣
∣ t ∈ T

}

.

The Lq is norm of a scalar which is defined as:

‖f‖q,T =

(

1

T2 − T1

∫ T2

T1

|f |q dt

) 1
q

, (5.5)

and this is extended to the ST context with

‖f‖q,Q =

(

1
∫

T

∫

Ωt
dΩdt

∫

T

∫

Ωt

|f |q dΩdt

) 1
q

(5.6)

=

(

1
∫

Q dQ

∫

Q

|f |q dQ

) 1
q

. (5.7)

5.1.2 Nondimensionalization

The scaled quantities are defined with ρ, U and D, that are the scales for the density,

velocity and length,

u∗ =
u

U
, (5.8)

t∗ =
tU

D
, (5.9)

p∗ =
p

ρU2
. (5.10)
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5.1.3 Wall-related scaling

The friction velocity uτ is written as follows:

uτ =

√

‖hv‖
ρ

. (5.11)

Here, the wall shear stress is shown by hv. The streamwise component of the

velocity is nondimensionalized around the wall as u+ = us/uτ . The scaled wall-

normal coordinate is written as:

y+ =
yuτ

ν
, (5.12)

where y is the coordinate along the wall normal.

5.2 Straight duct with periodicity condition

5.2.1 Problem setup

The straight duct withD×D cross-sectional area and 5D length is the computational

model used in this study. The cases with Re = 4×104 and 105 are calculated. The

Reynolds number is defined by Re = UD
ν with the streamwise velocity averaged

in time and over the cross-section, U . e1, e2 and es in Figure 5.1 illustrates the

basis vectors. The data analysis is performed expressing the velocity components as

uk = u · ek, where k = 1, 2, s.

5.2.2 Mesh

The mesh used for the computations with both Re = 4×104 and 105, is demonstrated

in Figure 5.2. The uniform mesh in the streamwise direction is made of 723 quadratic

NURBS elements. Corresponding to the cases with Re = 4×104 and 105, the normal-

direction thickness for the first elements near the wall are y+ = 0.43 and 0.95. These
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values are calculated based on Eqs. (5.12) and (5.11), using the estimation of wall

shear stress ‖hv‖ with the pipe friction factor f as given in [83],

1

f 0.5
= 2 log

(

Re f 0.5
)

− 0.8. (5.13)

The friction factors for the Re = 4×104 and 105 are f = 2.2×10−2 and 1.8×10−2.

es

e1

e2

5D

D

D

Figure 5.1: Straight duct geometry. The red planes show the boundaries where the
periodicity condition is enforced. es, e1 and e2 are the coordinate basis vectors in
the streamwise and wall-normal directions. This figure was also shown in [1]

Figure 5.2: The control mesh (left) and the corresponding mesh (middle) with a
close view of it (right). The control points are shown by the yellow points. This
figure was also shown in [1]
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5.2.3 Boundary conditions

The no-slip conditions enforced weakly are employed on the walls. In both cases,

the pressure gradient specified along the model is arranged until the case Reynolds

number is approached enough. That approximate Reynolds number becomes the

actual value we compute.

5.2.4 Computational conditions

The ST-VMS formulation with the stabilization parameters given by Eqs. (A.1)–

(A.3), (A.12) and (A.13) are computed. The Courant number is defined as C∆t =

U∆t
hs

, to determine the time-step size ∆t. Here, hs is the streamwise directional

element length. The Courant number of C∆t = 0.322 is set. 3 nonlinear iterations

per time step and 500 GMRES iterations per nonlinear iteration are calculated. A

period of flow is defined as T = L/U , where L is the length of the straight duct.

20T of the flow after achieving the actual Reynolds number is calculated in 4, 474

time steps.

5.2.5 Results

The pressure difference specified across the SI is adjusted and the Reynolds number

values of 3.96×104 and 9.98×104 are achieved at the normalized pressure gradient

values of 5.6×10−2 and 4.7×10−2, respectively. In neither cases the variation of the

calculated Reynolds numbers from the expected ones are more than 1 %.

We compare us and ‖u′
s‖2,Q to the experimental data [82] in Figure 5.3, for

Re = 105. In the experiment published in 1994 by Cheah et. al [82], the turbulent

flow in a U-duct was investigated by the laser-Doppler anemometry (LDA) method.

The streamwise directional time-averaged velocity profiles and the root-mean-square

velocity fluctuations were some of the results reported on the center and a near-wall

planes along the U-duct (see Figure 5.6). The flow profiles were provided at the inlet
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‖u
′ s‖

2
,Q

x2/D

ST-VMS Experiment

Figure 5.3: us and ‖u′
s‖2,Q at Re = 105. Velocity profiles are calculated in the straight

duct with Q =
{

x = (0, x2, xs)
∣
∣ xs ∈ (0, 5D), t ∈ (8.5T, 20T )

}

. The reference study

is [82]. This figure was also shown in [1]

of the U-duct in the experimental study. However, for certainty, we use this fully-

developed inflow profile, which also has a reasonable agreement with the experiment

as shown in Figure 5.3. The ST-averaged streamwise velocity profiles near the wall,

u+, are shown Figure 5.4, for the flows at two different Reynolds numbers, which are

i) 4×104 and ii) 105. The reason is that we aim to evaluate our results with a reliable

reference study at the closest-possible value to 105, the Reynolds number used in

the U-duct. In [84], Pirozzoli et. al reported detailed results of flow computations

at four different Reynolds numbers. From this Direct Numerical Simulation (DNS)

study, the flow at the Reynolds number of 4×104 is taken reference. This is the

closest available data obtained in a square duct by DNS when our flow calculation

is performed, according to our search and as mentioned in [85].
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10−1 100 101 102 103 104
0

30

y+

u
+

Re= 4×104 Re= 105 DNS

Figure 5.4: u+ at Re = 4×104 and Re = 105. Velocity profiles are calculated

in the straight duct with Q =
{

x = (0, x2, xs)
∣
∣ xs ∈ (0, 5D), t ∈ (8.5T, 20T )

}

. The

reference study is [84] at Re = 4×104. This figure was also shown in [1]

5.3 U-duct

5.3.1 Problem setup

The geometry of the U-duct with the coordinate basis vectors are shown in Fig-

ure 5.5. The Reynolds number is Re = 105. The flow characteristics are reported

along the model at several locations which are shown in Figure 5.6.

5.3.2 Boundary conditions

The fully-developed velocity profile is averaged in space and in time, u, and it is

used as the inlet condition. The no-slip conditions enforced weakly are employed on

the walls and the zero-stress condition is used at the outlet.

5.3.3 Mesh

The geometry is represented exactly using four patches of quadratic NURBS meshes.

Figure 5.7 illustrates how we define the weights of the control points. Five different

meshes named Mesh A, B, C, D and E are generated by a sequence of knot insertions.
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es

e1

e2

6.5D

D

3D

1.15D

Figure 5.5: U-duct geometry. The red and blue planes show the inlet and outlet.
es, e1 and e2 are the coordinate basis vectors in the streamwise and wall-normal
directions. This figure was also shown in [1]

−3D

0◦

45◦

90◦

135◦

180◦
1.7D

3D

6D

Figure 5.6: The locations where the flow characteristics are reported. The red
plane is the near-wall (x1/D = 0.375) and the blue plane is the center (x1 = 0)
planes. The flow field is generated and investigated along the model on the red and
blue lines. This figure was also shown in [1]
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Table 5.1: The mesh details. nc, ne and neb are the number of control points,
quadratic NURBS elements in the whole model and along the bend. The hs,inlet and
hs,min are the first and minimum element lengths in the streamwise direction which
are located at the inlet and in the curvature

Mesh nc ne neb hs,inlet hs,min y+

Mesh A 202×60 182×55 12 2.77×10−1D 3.6×10−2D 3.79
Mesh B 382×115 362×110 24 1.39×10−1D 1.8×10−2D 1.90
Mesh C 562×170 542×165 36 0.93×10−1D 1.2×10−2D 1.26
Mesh D 742×225 722×220 48 0.69×10−1D 0.9×10−2D 0.95
Mesh E 742×278 722×273 96 0.69×10−1D 0.45×10−2D 0.95

First, Mesh A is generated. Later Mesh B, C and D are obtained by 2, 3 and 4

times the number of elements of Mesh A. The Mesh E is obtained by twice number

of elements in the curvature and additional 5 elements in both lower and upper

straight parts. Additional elements of Mesh E are used to keep the maximum ratio

between two adjacent elements lower than 2. The Mesh D and E have the same

cross-section mesh as the straight-duct (see Section 5.2) has. All five meshes are

illustrated in Figure 5.8, and the data for all five is given in Table 5.1.

+

1

1

1

1

1

1 1

1

cos(π/4)

cos(π/4)

1

Figure 5.7: Exact arc representation by NURBS. The weight values of cos(π/4) and
1 are set on the blue and the red points. This figure was also shown in [1]
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Figure 5.8: Mesh A, B, C, D and E on the U-duct. This figure was also shown in [1]
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5.3.4 Computational conditions

The ST-VMS formulation with the stabilization parameters given by Eqs. (A.1)–

(A.3), (A.12) and (A.13) are computed. The time-step size is decided from the

Courant number that is based on the minimum element length in the streamwise

direction (see Table 5.1). 3 nonlinear iterations per time step and 500 GMRES

iterations per nonlinear iteration are calculated. A period of flow is defined as

T = L/U , where L = (3 + 0.65π + 6.5)D is the length of the U-duct.

5.3.5 Results

Sequence of computations The Mesh A is employed initially to compute the

flow for T = (0, 40T ). Later, data at t = 29T is projected on Mesh B and used as

initial condition for Mesh B computations. Having computed one T of the flow with

Mesh B, the initial condition for Mesh C is obtained by least-squares projection at

t = 30T . Following the same procedure, the initial conditions are obtained for Mesh

D and E by least-squares projection, from Mesh C at t = 31T and D at t = 32T .

Effect of the time-averaging range The flow development and effect of the

time-averaging range is studied in this section using C∆t = 10. Flow development

is shown by the velocity and pressure distributions on the center plane along the

model in Figure 5.9. It is generated in different time-averaging ranges all spanning

10T . Significant differences are not observed for the time ranges after the flow

is developed in the first 10T . Figure 5.10 also represents the developing flow by

Fourier decomposition of u2 in various time ranges all for 10T . The plots obtained

from the time ranges beyond T = (0, 10T ) fluctuate similarly. We investigated the

time-averaging range effect on the results decomposing u2 into the frequency domain

in various time ranges in Figure 5.11. The lowest frequency of local maximum is

observed around 0.67 T−1, and is covered by all the ranges shown in the legend.
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0.00 1.25 2.50

Pressure

Figure 5.9: Flow development with the velocity magnitude (‖u‖) and pressure (p)
distributions along the U-duct on the center plane. The time-average is taken over
T = (0, 10T ), (10T, 20T ), (20T, 30T ), and (30T, 40T ) from top to bottom. This
figure was also shown in [1]

This frequency value approximately corresponds to a period of 1.5T . Accordingly,

3T is a long enough averaging period for taking the statistics of the flow field.
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Figure 5.10: Effect of the flow development by Fourier transform of u2 at the point
shown in blue on the center plane. The time intervals that the transformation is
performed are given in the legend. This figure was also shown in [1]

10−1 100 101
10−4

10−3

10−2

10−1

Frequency (1/T )
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+
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Figure 5.11: Effect of the averaging range by Fourier transform of u2 at the point
shown in blue on the center plane. The time intervals that the transformation
is performed are given in the legend. The lowest frequency of local maximum is
emphasized by the cyan line at 0.67T . This figure was also shown in [1]
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Figure 5.12: Effect of the mesh refinement by Fourier transform of u2 at the point
shown in blue on the center plane. The time range is T = (33T, 36T ). This figure
was also shown in [1]

Effect of the mesh refinement Data computed with five different meshes are

compared in this study at C∆t = 10. The u2 is decomposed into the frequency

domain by Fourier transform. It is shown in Figure 5.12 in the time range T =

(33T, 36T ). The results from Mesh A to E are in good agreement. The represen-

tation gets shorter at the higher end of the frequency as the coarser mesh is used.

The streamwise directional velocity, us on the center plane, along the U-duct is

shown in Figure 5.13. Here the results are time-averaged over T = (33T, 36T ), com-

pared to the experimental data from [82]. The effect of mesh refinement is observed

slightly between the results from Mesh A and the finer meshes up to Mesh D. A

good agreement is observed in the results obtained with Mesh B, C and D, while

those with Mesh E differ slightly around the curvature. A deeper investigation is

given in Section 5.3.5 about the differences between the results obtained with Mesh

D and E.
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Figure 5.13: Effect of the mesh refinement on the streamwise velocity along the
U-duct. us is calculated on the center plane. Time-average is taken over T =
(33T, 36T ). The reference results are adapted from [82]. Numerical results are
adapted from [1]

Effect of the Courant number The results computed with Mesh D and E are

compared in this study at C∆t = 10, 5 and 2.5, in T = (33T, 36T ). The isosurfaces

corresponding to a positive value of the second invariant of ∇∇∇u colored by velocity

magnitude are shown in Figure 5.14. Decreasing the Courant number, we do not

observe a significant difference in the results with Mesh D. The flow separation and

reverse flow region length is similar in the results with Mesh E at C∆t = 10. However,

with Mesh E at C∆t = 5 and 2.5, the flow separation occurs earlier and the length of
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0.0 1.0 2.0

Velocity magnitude

Figure 5.14: Effect of the Courant number by the isosurfaces corresponding to a
positive value of the second invariant of ∇∇∇u. Isosurfaces are colored by velocity
magnitude (‖u‖). Time-average is taken over T = (33T, 36T ). Results obtained
using Mesh D and E are given on the left and right. C∆t = 10, 5 and 2.5 from top to
bottom. The intersection between the isosurfaces and the center plane is represented
by the lines in yellow. This figure was also shown in [1]

reverse flow region becomes longer. This is observed more obviously in Figures 5.15

and 5.16 with us. Figures show the flow field together with the experimental results

of [82] on the center and near-wall planes. Figures 5.17 and 5.18 show ‖u′
s‖2,T on

those planes. To conclude, the results calculated using Mesh E at C∆t = 5 and

2.5 are in good agreement with the data from the experiment.
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Figure 5.15: Effect of the Courant number on the streamwise velocity along the
U-duct. Results are obtained using Mesh D and E. us is calculated on the center
plane. Time-average is taken over T = (33T, 36T ). The reference results are adapted
from [82]. Numerical results are adapted from [1]
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Figure 5.16: Effect of the Courant number on the streamwise velocity along the
U-duct. Results are obtained using Mesh D and E. us is calculated on the near-
wall plane. Time-average is taken over T = (33T, 36T ). The reference results are
adapted from [82]. Numerical results are adapted from [1]
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Figure 5.17: Effect of the Courant number on the root-mean-square fluctuating
velocity along the U-duct. Results are obtained using Mesh D and E. ‖u′

s‖2,T is
calculated on the center plane. Time-average is taken over T = (33T, 36T ). The
reference results are adapted from [82]. Numerical results are adapted from [1]

64



0.0

0.3

0.6

0.0

0.3

0.6

0.0

0.3

0.6

0 0.5 1
0.0

0.3

0.6

1 0.5 0

−3D

0◦

90◦

135◦ 180◦

D

3D

6D

+

10−3D

0◦

90◦
135◦

180◦

D

3D

6D
6.5D

1 0

x2/D

x2/D

x1 = 0.375D

Mesh D,C∆ t = 10 Mesh D,C∆ t = 5 Mesh D,C∆ t = 2.5

Mesh E,C∆ t = 10 Mesh E,C∆ t = 5 Mesh E,C∆ t = 2.5

Experiment

x2/D

‖u
′ s
‖ 2

,T

Figure 5.18: Effect of the Courant number on the root-mean-square fluctuating
velocity along the U-duct. Results are obtained using Mesh D and E. ‖u′

s‖2,T is
calculated on the near-wall plane. Time-average is taken over T = (33T, 36T ). The
reference results are adapted from [82]. Numerical results are adapted from [1]
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Chapter 6

Taylor–Couette Flow Analysis

The classical Taylor–Couette flow problem that presents a range of flow patterns at

different speeds of the inner and outer cylinders is studied and represented in this

chapter. Accurate and efficient solution of these flow patterns significantly depends

on the methods, with a reasonable computational cost, representing the geometry

and motion of the cylinders accurately. Computations for four different Reynolds

number combinations, in four different representations, including rotational-periodicity,

of the computational domain, with two different enforcement of the prescribed ve-

locities in two different reference frames using the conservative and nonconservative

forms of the ST-VMS are conducted. The ST-VMS method with isogeometric dis-

cretization is performed in this chapter to address these challenges of simulating the

Taylor–Couette flow. The cylindrical flow domain is exactly represented in space

using quadratic NURBS patches. Rotation is exactly represented in the computa-

tions with the reference frame choice of IRF using the ST/NURBS Mesh Update

Method, with temporal NURBS basis functions, and with NRF enforcing the angu-

lar velocity of the inner cylinder into the governing equations. With four different

combinations of the Reynolds numbers, we computed the cases leading to the Cou-

ette flow, the Taylor vortex flow and the wavy vortex flow, where the waves are in

motion. Our work shows that all these ST methods, integrated together, offer a

high-fidelity computational analysis platform for the Taylor–Couette flow and for

other classes of flow problems with similar features.
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6.1 Problem setup

The computational domain for the Taylor–Couette flow is given in Figure 6.1. The

flow conditions are represented by the cylinder radii are ri and ro for the inner and

outer cylinders, and η = ri
ro
. The local orthonormal basis set er, eθ and ez is used in

the cylindrical coordinate system. Accordingly, ur, uθ and uz denote the components

of u. With ωωω = ωez, the inner and outer cylinder velocities are written Ui = ωiri

and Uo = ωoro. Two different Reynolds numbers, Rei =
Ui(ro−ri)

ν and Reo =
Uo(ro−ri)

ν

are defined. Here, ν = µ
ρ is kinematic viscosity. A negative Reynolds number value

defined by the outer cylinder velocity represents that the outer cylinder rotates in

opposite direction to the inner cylinder. The time scale is defined as T = 2π
ωi−ωo

.

The ratio of cylinder radii, η = 0.883, is chosen the same as in [86]. Figure 6.2

illustrates the flow patterns depending on the inner and outer cylinder speeds. The

combinations for the different speeds of the cylinders are given in Table 6.1. The

reason why these cases are chosen is that the cylinders rotate in the same relative

ez

0
er

ri
η

ri

πri

eθ

Figure 6.1: Computational domain. The local orthonormal basis set er, eθ and ez
is used in the cylindrical coordinate system
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Figure 6.2: Taylor–Couette flow patterns. The Couette, Taylor vortex and wavy
vortex flow are shown in blue, red and gray regions. The cases calculated in this
study are marked by the red points. The inner cylinder rotation is given in the
counter-clockwise direction and the negative Reynolds number means that the outer
cylinder rotation in the clockwise direction. The figure has been adapted from [86]
and also shown in [2]

Table 6.1: The Reynolds number combinations used in the computations
Case Rei ηReo Flow pattern

1 250 0 Wavy vortex
2 200 −50 Wavy vortex
3 166.67 −83.33 Taylor vortex
4 0 −250 Couette

speed to each other. Accordingly, Rei − ηReo = 250 for all.

To test the effect of reference frame in the computations, the mesh is rotated in

the inner cylinder speed in the IRF. In the NRF, on the other hand, the rotation is

represented by the angular velocity of the inner cylinder. The outer cylinder motion
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Figure 6.3: The circular geometry representation with quadratic NURBS patches
that have quarter, one-third and half-domain sizes (left to right). This figure was
also shown in [2]

in both situations is given by the prescribed-velocity condition. The flow domain

is represented by axial periodicity over the length L = πri, and with both the full-

domain and rotational-periodicity representations in the circumferential direction.

6.2 Meshes

The circular geometry of the problem is exactly represented by quadratic NURBS

patches. The quarter, one-third and half-domain size models are represented by a

patch while the full-domain size model is represented using two half-domain patches

and connected in a C0 continuous fashion. Figure 6.3 shows how the circular ge-

ometry is represented by quadratic NURBS patches with the minimum number of

elements.

The quarter and one-third domain size patches are represented by using an ele-

ment each, while the half-domain size has two elements to define the NURBS weights

with positive values. Figure 6.4 shows the “coarse” meshes obtained from the meshes

given in Figure 6.3 and using the knot-insertion method. The “medium” and “fine”

meshes are obtained refining the coarse mesh twice and four times in all three spatial
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Figure 6.4: The coarse control meshes for the quarter, one-third, half-domain sizes
and the full domain (left to right, top to bottom). The control points are shown by
red circles

Table 6.2: Number of elements (ne) and control points (nc) in the radial, circum-
ferential and axial directions

Mesh Refinement ne nc

Quarter Coarse 4×6×32 6×8×34
One-third Coarse 4×8×32 6×10×34
Half Coarse 4×12×32 6×14×34
Half Medium 8×24×64 10×26×66
Half Fine 16×48×128 18×50×130
Full Coarse 4×24×32 6×26×34

dimensions. The number of elements and control points are shown in Table 6.2.
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Figure 6.5: The medium and fine control meshes for the patch that has half-domain
size. The control points are shown by red circles. This figure was also shown in [2]

6.3 Boundary conditions and mesh motions

The no-slip conditions are enforced strongly or weakly, depending on the test com-

putation, on the inner and outer cylinder surfaces. The periodicity is enforced with

the ST-SI in the axial direction. For the computations in the IRF, Uieθ and Uoeθ are

prescribed on the inner and outer surfaces, and the mesh is rotated at inner surface

rotational speed of ωωωi. For the computations in the NRF, zero and
(

Uo − Ui
1
η

)

eθ

are prescribed on the inner and outer surfaces, and the mesh is not moved. The

fictitious forces are inserted into the momentum equation based on the ωi.

6.4 Computational conditions

We use the conservative or nonconservative form of the ST-VMS, in different test

computations. The rotation is based on quadratic NURBS functions, while the flow

solution is based on linear functions in time. The time-step size is set ∆t = T
60 ,

T
120 and T

240 for the computations performed using the coarse, medium and fine

meshes. The mesh rotation in a time step is set 6◦, 4.8◦ and 4◦ in the Cases 1,

2 and 3 for the computations with the coarse mesh in the IRF. The amounts are
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halved for the medium mesh and quartered for the fine mesh considering the use

of the same Courant number. The time-step size is important in the computations

for the accuracy in representing the prescribed velocity. 500 GMRES iterations are

performed per nonlinear iteration which is 3 per time step in all variations except the

computations given in Section 6.5.6. In that section, we set the nonlinear iteration

number 5 per time step for a detailed investigation.

6.5 Results

The Taylor–Couette flow analysis is performed for different scenarios and the re-

sults are presented under flow development, rotational periodicity analysis, mesh

refinement, different flow patterns and different methods subsections of this section.

The conservative form of the ST-VMS is used and the prescribed velocity is

strongly enforced in all variations except the last subsection where we used both

conservative and nonconservative versions of the ST-VMS with both weak and strong

enforcements of the prescribed velocities.

Figure 6.6 shows the configurations we used for flow visualization. The axial

velocity isosurfaces and velocity magnitude are visualized in the volume and sections

given in Figure 6.6. The computation results obtained in the NRF are transformed

to the IRF, and the quarter, one-third and half-domain sizes are replicated for

visualization.

The notation T = (T1, T2) is used to indicate the time range to represent a time-

averaging period. The space or time average of a quantity is shown with an overbar,

for example ω, and if the average of a quantity is taken in both space and time, it

is shown with a double overbar, for example ω.

72



ro+ri
2

πri
2

π
2

Figure 6.6: Flow visualization configurations in a volume (left) and section (right).
1
4 of the flow field is subtracted in a volume visualization and the results are shown
in the remaining gray part. The red and green sections are placed at the center
along the radial and axial directions for a section visualization. This figure was also
shown in [2]

6.5.1 Flow development: Case 1

The domain is represented in the full size and the coarse mesh is used for all

computations given in this subsection. The flow development is visualized by the

uz/ (Ui − ηUo) at various instants and analyzed with the f -based Fourier decompo-

sition of uθ/ (Ui − ηUo) at r =
ro+ri

2 , θ = 0 in Figures 6.7 and 6.8. A space average

of the amplitude is taken to diminish the influence of the wave location in axial

direction. 4 waves in the circumferential direction are observed in both figures, and

7 waves can be counted in the axial direction in Figure 6.7. The waves move in the

circumferential direction with the same sign as ωi−ωo, and the lower-mode solutions

clearly reflect the motion of the waves. The time-periodic solution is obtained after

50T .
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6.5.2 Flow development: Case 4

In Case 4, the full-domain representation and the coarse mesh is used in the com-

putations. Figures 6.9 and 6.10 show velocity magnitude ‖u‖ at t = 9T and space-

averaged angular velocity ω at various instants.

The solution in Case 4 is the steady state in the circumferential direction and

there is no variation in the axial direction. The solution reaches the steady state

regime after t = 3T , when the initial velocity is set zero everywhere except the outer

cylinder surface.

6.5.3 Rotational periodicity: Case 1

In this section, the Taylor–Couette flow for Case 1 is computed in the periodic and

full-domain models using the coarse mesh. The isosurfaces of uz/ (Ui − ηUo) after the

solutions become periodic (in Figure 6.11), and the λ-based Fourier decomposition

of uθ/ (Ui − ηUo) at t = 80T (in Figure 6.12) are shown, for both the periodic models

and the full-domain representation in the IRF and NRF.

The amplitude is averaged in space along the axial direction. It is obvious in Fig-

ure 6.12 that the largest mean amplitude of the Fourier coefficients is at λ = π ro+ri
4 .

The results obtained using the one-third representation of the computational domain

do not agree with the results from full-domain as was foreseeable. Additionally, the

solutions achieved in the IRF and NRF are slightly different at higher modes. On

the other hand, with the model representing half-domain size, the solution has a

good settlement with the solution achieved by the full-domain. Following this fact,

in the rest of this chapter, the rotational-periodicity representation with the model

that has half-domain size is used.
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−0.15 0 0.15

Figure 6.7: Flow development in Case 1. Isosurfaces of uz/ (Ui − ηUo) in the IRF
(left) and NRF (right), with the full-domain representation of the flow field using
the coarse mesh, at t = 10T , 30T , 50T and 70T (from top to bottom). 16 isosurfaces
are used in −0.15 ≤ uz/ (Ui − ηUo) ≤ 0.15. This figure was also shown in [2]
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Figure 6.8: Flow development in Case 1 by the f -based Fourier decomposition of
uθ/ (Ui − ηUo) at r = ro+ri

2 , θ = 0. The different time ranges, all spanning 10T , are
given in the legend. The amplitude of the Fourier coefficients is averaged in space
along the axial direction at 56 equally-spaced points. This figure was also shown
in [2]
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Figure 6.9: ‖u‖ / (Ui − ηUo) at t = 9T for Case 4. This figure was also shown in [2]

0 0.25 0.5 0.75 1

1.00

0.75

0.50

0.25

0.00

r−ri
ro−ri

(ω
i
−

ω
)/

(ω
i
−

ω
o
)

t = 0.5T t = 1.0T t = 1.5T

t = 3.0T t = 6.0T t = 9.0T

Exact solution

Figure 6.10: Flow development by (ωi − ω) / (ωi − ωo) in Case 4. Velocity is averaged
in space in both axial and circumferential directions. This figure was also shown
in [2]
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−0.15 0 0.15

Figure 6.11: Isosurfaces of uz/ (Ui − ηUo) in Case 1 in the IRF (left) and NRF
(right), with the quarter, one-third, half-domain and full-domain representations
of the flow field (from top to bottom), after the solutions become periodic. 16
isosurfaces are used in −0.15 ≤ uz/ (Ui − ηUo) ≤ 0.15. This figure was also shown
in [2]
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Figure 6.12: λ-based Fourier decomposition of uθ/ (Ui − ηUo) at t = 80T , r = ro+ri
2

in Case 1, with the quarter, one-third, half-domain and full-domain representations
of the flow field The amplitude of the Fourier coefficients is averaged in space along
the axial direction at 56 equally-spaced points. This figure was also shown in [2]
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6.5.4 Mesh refinement: Case 1

Three levels of mesh refinement with the rotational-periodicity representation with

the model that has half-domain size are tested in this section. After the solutions

become periodic, the effect of mesh is investigated in Figures 6.13 and 6.14 both in

the IRF and NRF, by the isosurfaces of uz/ (Ui − ηUo) and ‖u‖ / (Ui − ηUo). The

ST-averaged angular velocity, (ωi−ω)/ (ωi − ωo) is shown in Figure 6.15, in the IRF

and NRF, for the coarse, medium and fine meshes. The solution convergence with

the mesh refinement is evident.

6.5.5 Flow patterns: Cases 2 and 3

We know from Figure 6.2 that Case 3 has no waves in the circumferential direction.

We also know from a prior computation we conducted for Case 2 with the full-

domain representation, which we do not report here, that the number of waves in

the circumferential direction is even. Therefore we compute both cases with the

rotational-periodicity representation with the patch that has half-domain size. We

use the medium mesh.

Figures 6.16 and 6.17 show, for Case 2, for both the IRF and NRF, the isosurfaces

of uz/ (Ui − ηUo) and section values of ‖u‖ / (Ui − ηUo) at various instants. For both

the IRF and NRF, we see eight waves in the circumferential direction. They move

in the circumferential direction with the same sign as ωi − ωo. Figure 6.18 shows,

for both the IRF and NRF, (ωi − ω)/ (ωi − ωo). It clearly indicates that the IRF

and NRF solutions are in very good agreement.

Figure 6.19 shows, for Case 3, for both the IRF and NRF, the isosurfaces of

uz/ (Ui − ηUo) at t = 15T . For both the IRF and NRF, we see the Taylor-vortex

flow pattern. Figure 6.20 shows, for both the IRF and NRF, (ωi − ω)/ (ωi − ωo),

which clearly indicates that the two solutions are in very good agreement.
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−0.15 0 0.15

Figure 6.13: Mesh refinement in Case 1. Isosurfaces of uz/ (Ui − ηUo) in the IRF
(left) and NRF (right), with the half-domain representation of the flow field, using
the coarse, medium and fine meshes (from top to bottom). 16 isosurfaces are used
in −0.15 ≤ uz/ (Ui − ηUo) ≤ 0.15. This figure was also shown in [2]
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Figure 6.14: Mesh refinement in Case 1. ‖u‖ / (Ui − ηUo) in the IRF (left) and
NRF (right), with the half-domain representation of the flow field, using the coarse,
medium and fine meshes (from top to bottom). This figure was also shown in [2]
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Figure 6.15: The ST-averaged angular velocity, (ωi − ω)/ (ωi − ωo) in Case 1 over
the range T = (97T, 100T ). The velocity is averaged in space along both axial and
circumferential directions This figure was also shown in [2]
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−0.15 0 0.15

Figure 6.16: Flow development in Case 2. Isosurfaces of uz/ (Ui − ηUo) in the IRF
(left) and NRF (right), with the half-domain representation of the flow field, using
the medium mesh, at t = 5T , 10T , 15T and 20T (from top to bottom). 16 isosurfaces
are used in −0.15 ≤ uz/ (Ui − ηUo) ≤ 0.15. This figure was also shown in [2]
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Figure 6.17: Flow development in Case 2. ‖u‖ / (Ui − ηUo) in the IRF (left) and
NRF (right), with the half-domain representation of the flow field, using the medium
mesh, at t = 5T , 10T , 15T and 20T (from top to bottom). This figure was also shown
in [2]
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Figure 6.18: The ST-averaged angular velocity, (ωi − ω)/ (ωi − ωo) in Case 2 over
the range T = (15T, 20T ). The velocity is averaged in space along both axial and
circumferential directions This figure was also shown in [2]

−0.15 0 0.15

Figure 6.19: Case 3. Isosurfaces of uz/ (Ui − ηUo) in the IRF (left) and NRF (right),
with the half-domain representation of the flow field, using the medium mesh, at
t = 15T . 16 isosurfaces are used in −0.15 ≤ uz/ (Ui − ηUo) ≤ 0.15. This figure was
also shown in [2]

86



0 0.25 0.5 0.75 1
0.00

0.25

0.50

0.75

1.00

r−ri
ro−ri

(

ω
i
−

ω
)

/
(ω

i
−

ω
o
)

IRF NRF

Figure 6.20: The ST-averaged angular velocity, (ωi − ω)/ (ωi − ωo) in Case 3 over
the range T = (10T, 15T ). The velocity is averaged in space along both axial and
circumferential directions This figure was also shown in [2]

6.5.6 Methods: Case 1

Eight different cases of the computations are compared in this section. All the

computations are performed over the rotational-periodicity representation with the

model of half-domain size by the medium mesh. The prescribed velocities are en-

forced both strongly and weakly, using both the conservative and nonconservative

versions of the ST-VMS, and both in the IRF and NRF. The number of GMRES it-

erations per nonlinear iteration is the same as the previous section and 500, while we

increased the number of nonlinear iterations to 5 in this section for detailed compari-

son purposes. Figure 6.21 shows the ST-averaged angular velocity (ωi−ω)/ (ωi − ωo).

All the cases are in a good agreement in terms of the velocity profiles.
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Figure 6.21: The ST-averaged angular velocity, (ωi − ω)/ (ωi − ωo) in Case 1 over
the range T = (105T, 110T ). The velocity is averaged in space along both axial and
circumferential directions. The solution computed using the fine mesh is also shown
as a reference, using the strong enforcement of the prescribed velocities, with the
conservative version of the ST-VMS, in the IRF. This figure was also shown in [2]
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In the rest of this section, the global conservation of angular momentum by the

torque acting on the cylinders is investigated. The global conservation formulations

are derived from the both form of the ST-VMS equation in both reference frames

in Section 4.3. But here, for simplicity, we define the angular momentum in the nth

time slab as follows:

L−
n =

∫

Ωn

r× u−
n dΩ, (6.1)

and the angular momentum time-averaged over the range T = (T1, T2) as

L =
1

T2 − T1

∫

Q

r× udQ, (6.2)

where Q is the ST domain between the times T1 and T2.The torques acting on the

cylinders are defined as follows:

(ΥΥΥn)IB =
1

∆t

∫

(Pn)IB

r× hdP, (6.3)

(ΥΥΥn)OB =
1

∆t

∫

(Pn)OB

r× hdP. (6.4)

Here, h, which is the boundary flux as given in previous chapters in detail, is com-

puted on the cylinder surfaces as a part of the flow solution, in different ways for

the strong and weak enforcements of the prescribed velocity. The definition (Υn)IB

and (Υn)OB are used to denote the axial components. The global conservation of

the angular momentum can be written as

L−
n+1 − L−

n

∆t
= (ΥΥΥn)IB + (ΥΥΥn)OB, (6.5)

for every time step. Theoretically, the angular momentum is only balanced in the

conservative version of the ST-VMS.
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Table 6.3: Angular momentum (L/LFINE) and torque ΥIBT/LFINE of the eight cases
with respect to angular momentum from fine mesh

Velocity enforcement Formulation
L/LFINE ΥIBT/LFINE

IRF NRF IRF NRF

Strong
Conservative 1.0066 1.0072 0.7102 0.7102
Nonconservative 1.0067 1.0066 0.7093 0.7083

Weak
Conservative 1.0080 1.0068 0.7469 0.7111
Nonconservative 1.0065 1.0102 0.7093 0.7334

In Table 6.3, L/LFINE and ΥIBT/LFINE are shown for all cases tested in this sec-

tion. The time-averaged torque is defined using the torque counterpart of Eq. (6.2).

The mean angular momentum from fine mesh LFINE, is calculated using strong en-

forcement of the prescribed velocities with the conservative version of the ST-VMS

in the IRF in T = (97T, 102T ). All L values are calculated quite close to LFINE,

while the ΥIB values vary slightly between the cases. The global angular momentum

balance given in Eq. (6.5) is shown in Figures 6.22–6.24, with some arrangements

for
(L−

n+1−L−

n )T

∆tLFINE
, (ΥIB+ΥOB)T

LFINE
. For comparison purpose, we also show the same with

the fine mesh in Figure 6.24. It is clear that, in all the cases, global angular mo-

mentum balanced practically at every time step. In all cases, there are fluctuations

with the same period with variable magnitude. Representation of the prescribed

velocities are exact in the computations with the NRF and in the computations

with weak enforcement. According to this, it can be said that the fluctuations are

not coming from how the prescribed velocities are presented. The reason of the

fluctuations can be explained by the inertia itself or nonuniform element lengths in

the circumferential direction. Even in the computation with nonconservative form

of the ST-VMS, weak enforcement of the prescribed velocities, and the NRF, where

we see the largest fluctuations in
(L−

n+1−L−

n )T
∆TLFINE

, the maximum fluctuation is 0.3 %.

Therefore, we consider these fluctuations to be acceptable in computation of the

wavy-vortex flows.
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Figure 6.22: Global angular momentum balance in Case 1, in the IRF. The blue
circles show a closer view for each case. Figure is adapted from [2]
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Figure 6.23: Global angular momentum balance in Case 1, in the NRF. The blue
circles show a closer view for each case. Figure is adapted from [2]
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Figure 6.24: Global angular momentum balance in Case 1, in the IRF and NRF
for the solution achieved using the fine mesh. The prescribed velocities are enforced
strongly and conservative version of the ST-VMS is used. The blue circles show a
closer view for each case. Figure is adapted from [2]
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Chapter 7

Computations in an Engineering Application

Flow analysis in a double-suction centrifugal pump is studied and represented in

this chapter. Fluid flow modeling in centrifugal pumps, involving turbulence, flow

separation and recirculation, is one of the most challenging subjects in CFD. Time

dependent impeller position with respect to the outer volute tongues causes strong

pressure fluctuations. Extremely distorted flow pattern and unsteady dynamic forces

occur due to the pressure fluctuations and it is known as the main source of noise

and vibration. This situation is also responsible for pump performance losses.

In order to address these challenges in this real-world turbomachinery flow prob-

lem, we used the ST-VMS method with isogeometric discretization which was found

accurate and efficient in turbulent-flow computations in Chapter 5 and in flow com-

putations with rotating components in Chapter 6. The geometry is represented

accurately with a reasonably coarse mesh using the power of the ST-IGA. The

rotation of the impeller in the IRF is represented exactly by quadratic NURBS

basis functions in time. The rotating components in this reference frame are con-

nected to the stationary parts by the ST-SI. For seven different flow rate values,

the pump performance is calculated and compared to some experimental results.

In addition, one-fifth of the impeller with hub and shroud is represented by the

rotational-periodicity by the ST-SI, and the symmetry in the axial direction is rep-

resented using a slip condition. The flow around impeller is calculated using this

flow domain in the NRF. The inflow velocity profile is used from the computations

with the full-domain at the impeller entrance. The shaft power obtained in this part

matched well with the reference data.
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7.1 Problem setup

The Reynolds number is more than that Re = ρUD
µ = 106, where D is suction volute

inlet diameter. U is calculated from the volumetric flow rate and inlet cross sectional

area as U = Q0/A at the best efficiency point. The computations are performed

for seven different cases with the flow rates as Q = 0.4 Q0, 0.6 Q0, 0.8 Q0, 1.0 Q0,

1.2 Q0, 1.4 Q0 and 1.6 Q0.

Inlet velocity is defined in the normal inward direction as an average speed.

Figure 7.1 represents the boundary conditions. The inflow and outflow surfaces, the

surfaces where the pump performance is calculated and the SIs between spinning

and non-moving parts and between multiple stationary parts, such as in the suction

volute, are given and explained in the caption.

Figure 7.1: Boundary conditions. SIs are represented by blue and red, inlet is green,
outlet is gray. Impeller parts are shown by yellow. The grass green and black are
the surfaces, where pump efficiency is measured between
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7.2 Mesh generation

The computational domain is divided into six parts (see Figure 7.2). One of the

reasons is to connect the moving parts of the mesh to the rest. The other reason is

that dividing the model at some places to split into NURBS patches, and connect

them without having the same tangential parametrization. This makes the mesh

generation process easier. Each patch is represented by two different colors. At

least one of the colors is changed on the patch boundaries, which have C0 continuity

fashion. The number of control points and the number of elements used in the

suction and outer volutes and around impeller are given in Table 7.1.

Table 7.1: Number of control points (nc) and elements (ne) in three different parts
of the flow domain

Part nc ne

Suction casing 58,480 31,872
Outer volute 22,176 9,462
Impeller 73,680 30,854
Total 154,336 72,188

Figure 7.2: Parts of the mesh. The patching strategy. Please note that a part of
the suction casing is not given because it is a confidential information. The mesh
and parametrization in that part is also similar to the other parts which are given
clearly
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7.3 Computational conditions

The convective form of the ST-VMS (see Eq. (3.17)) is used for the computations.

The rotation is employed with the mesh rotation in the IRF using the STNMUM.

The time-step size is set to ∆t = T
90 in the computations with all discharge values.

Here T is the time period for a full rotation of the impeller. 500 GMRES iterations

are performed per nonlinear iteration which is 3 per time step.

First, we computed the flow with Q = Q0 keeping the impeller stationary until

the flow reaches in a steady regime. This increases the stability of the computations

in the first couple of cycles. Later we used this flow as initial condition and computed

at least for 9T with seven different flow rates.

7.4 Flow development

In order to understand if our computations reach to a time-periodic solution, we

calculated f -based Fourier decomposition of pressure at the point around the top

tongue in outer volute as shown in Figure 7.3. A line is drawn from the center of

the impeller tangent to the top tongue on the symmetry plane. Pressure is reduced

in the middle of the intersection place and at the end point of the line. Figure 7.4

shows the f -based Fourier decomposition of pressure (|(p)f |/(ρU2)) for six different

cases. The time-periodic solution is reached after the first 3T mostly. However, as

Figure 7.3: The point location used for f -based Fourier decomposition
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expected, an unstable solution is observed with small discharge values in the first

6T . Therefore, we found the time period in (8T, 9T ) safe for pump performance

calculations.
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Figure 7.4: Flow development. f -based Fourier decomposition of p/(ρU2)
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7.5 Pump performance

The shaft power PS, hydraulic power PH, and efficiency η are defined as follows:

PS = 2πΥω, (7.1)

PH =

∫

Γinf

n · u
(
1

2
ρ‖u‖2 + p

)

dΓ

+

∫

Γout

n · u
(
1

2
ρ‖u‖2 + p

)

dΓ, (7.2)

η =
PH

PS
. (7.3)

Subscripts “inf” and “out” represent the inflow and outflow surfaces, where pump

performance is calculated between, as explained in Figure 7.1. The hydraulic head,

hH is defined as:

hH =
PH

Qρg
, (7.4)

where g is the gravitational acceleration.

Figure 7.5 shows the pump performance calculated by different discharge values.

The best efficiency point is plotted by the volumetric flow rate of Q = Q0 as ex-

pected. The head is also computed inversely proportional to the flow rate as it is

anticipated. Time average is taken in T = (8T, 9T ). The results are given dividing

by the reference performance values at Q = Q0, and the computational pump head

and efficiency differ smaller than 2 % from the reference values.

Figure 7.6 shows the shaft power, scaled with the experimental values (PSexp)

at Q = Q0, in (8T, 9T ) with seven different cases. At Q = Q0, a good agreement

is observed with the reference data. At the lower discharge values, it fluctuates

strongly, possibly because of the flow separation as shown in Figure 7.8.

Head drop rate increases at higher values of discharge (see Figure 7.5). This

behavior can also be seen in pressure distribution in Figure 7.7. The pressure change
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Figure 7.5: Pump efficiency (blue) and hydraulic head (red), scaled with the exper-
imental values, with seven different volumetric flow rates. Time average is taken in
T = (8T, 9T )

is shown along the whole pump. According to this figure, the pressure (and the head

loss) difference decreases by the raise of discharge. In Figure 7.8, the time-averaged

streamlines around impeller are shown. It is clear that small volumetric flow rates

cause large vortices around impeller.
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Figure 7.6: Shaft power, scaled with the experimental value, at Q = Q0, by various
volumetric flow rates in (8T, 9T )
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0 35 70

Figure 7.7: Time-averaged absolute pressure, p/(ρU2), on the symmetry plane.
Computations with different discharge values of Q = 0.4 Q, 0.6 Q, 0.8 Q, 1.0 Q,
1.2 Q and 1.4 Q are displayed from left to right and top to bottom. Results are
averaged in T = (8T, 9T )
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Figure 7.8: Time-averaged flow field around impeller by streamlines colored by
velocity magnitude, ‖uR‖ /U . Streamlines and velocity magnitude are calculated
relative to the impeller. Computations with different discharge values of Q = 0.4 Q,
0.6 Q, 0.8 Q, 1.0 Q, 1.2 Q and 1.4 Q are displayed from left to right and top to
bottom. Results are averaged in T = (8T, 9T )
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7.6 Flow around impeller in the NRF

Rotational-periodicity is explained in Chapter 2 and used in Chapter 6. Here we

analyzed flow around one-fifth of the impeller blades (see Figure 7.9) with rotational-

periodicity. We also used a slip condition to represent the symmetry in the axial

direction. Figure 7.10 shows the boundary conditions enforced on the computational

domain.

Figure 7.9: Computational domain

The coarse mesh used in this particular study is given in the computational

domain in Figure 7.11. A refinement is performed around the blade, hub and shroud

by the knot insertion algorithm as shown in Figure 7.11. The number of control

points and elements are shown in Table 7.2.
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Figure 7.10: Boundary conditions. The blue, red, green, cyan shows the inflow,
no-slip, periodic and slip boundaries

Table 7.2: Number of control points (nc) and elements (ne) in the coarse, medium
and fine meshes

Mesh nc ne

Coarse 19,390 10,280
Medium 38,424 24,520
Fine 58,144 39,872

7.7 Results

The computations performed with the periodic blade is for Q = Q0. The inflow ve-

locity profile is extracted from the computations with the full-domain in (10T, 15T )

at the same discharge value. Here T is also defined for the one full rotation of

the impeller in the actual situation as it is defined in the computations with the

full-domain representation. We compute with the coarse mesh for 15T using the

inflow profile (5T ) three times periodically. Having computed far enough period of

computations to reach a time-periodic solution, at t = 12T , the mesh is refined as

shown in Figure 7.11 as well as data. In (12T, 15T ) period, we compute with both

the coarse and finer meshes. Considering that the element with minimum size in

streamwise direction is divided into two and four elements by knot-insertion algo-
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Figure 7.11: The coarse mesh around blade left and the mesh refinement right, the
coarse, medium and fine meshes from top to bottom

rithm, the time-step sizes are set equivalent to 4◦, 2◦ and 1◦ rotation per step of the

impeller. The inflow profiles used in the computations with the medium and fine

meshes are obtained interpolating the initial profile used for the coarse mesh in time

considering the time-step size.

We show the shaft power with respect to the reference results in Table 7.3. Time

average is taken in T = (14T, 15T ).

Table 7.3: Shaft power (PS), scaled with the experimental value (PSexp), at Q = Q0.
The values are averaged in T = (14T, 15T )

Mesh PS(Q0)/PSexp(Q0)

Coarse 0.9425
Medium 0.9848
Fine 1.0167

Figure 7.12 shows the time-averaged streamlines colored by velocity magnitude.
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Flow field is calculated relative to the impeller in this figure. Results are at Q = Q0

and the pattern is in a good agreement with the results shown in Figure 7.8 from

the solution computed using the full-domain.

Figure 7.12: Time-averaged flow field around impeller by streamlines colored by
velocity magnitude, ‖uR‖ /U . Streamlines and velocity magnitude are calculated
relative to the impeller. Results are obtained using the coarse, medium and fine
meshes (from left to right) and averaged in T = (14T, 15T )
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Chapter 8

Concluding Remarks

CFD analysis of turbomachinery is challenging because of their complex geome-

tries with high curvature and high Reynolds number causing secondary flows. To

overcome the challenges involved in simulating this complex flow, accurate represen-

tations of the computational domain and motion of the rotating parts are essential.

In this thesis, a computational method for high-fidelity turbomachinery flow analy-

sis is developed, and the integration of this method with the existing ST methods

is validated. Two essential challenges in turbomachinery flow computation are fo-

cused on. Firstly, the accuracy of the ST framework in turbulent-flow computations

is shown with a high Reynolds number flow in a computational model with high

curvature. Secondly, we focused on rotating computational models. The method

developed during this research is used in computations with rotating boundaries

and validated with the existing methods which are used for turbomachinery flows

previously and provided good accuracy.

The ST-VMS with the ST isogeometric discretization has been tested using a

known benchmark problem, U-duct turbulent-flow. It is a high Reynolds number

flow, including high curvature geometry. These are the challenges in the problem. A

fully-developed flow field in a straight duct was computed with periodicity condition

and used as the inflow profile of the U-duct problem. The ST-IGA was used to enable

the analysis with the exact representation of the arc in the model. It increased the

accuracy of the solution. We calculated the time-averaged flow field and compared

to experimental data. We investigated the effect of the time-averaging range, mesh

refinement, and the Courant numbers. The flow development and the effect of the
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averaging range were evaluated by the Fourier decomposition of the velocity in time.

Furthermore, some qualitative analysis was performed by instantaneous and time-

averaged velocity and pressure distributions. The isosurfaces of the second invariant

of the velocity gradient tensor were used to visualize the flow, and separation around

the curvature and recirculation were investigated. We concluded that the ST-VMS

provides an accurate solution in turbulent-flow problems. The exact representation

of the arc by NURBS increased accuracy.

For the second investigation about the turbomachinery flows, we focused on the

computations with rotating domains. The Taylor–Couette flow, which is a classical

fluid mechanics problem, was chosen for testing the ST-VMS method with isoge-

ometric discretization both in the IRF and also in the NRF for the first time in

the ST framework in this research. We performed the computational analysis with

various combinations of the inner and outer cylinder angular velocities, resulting in

three different flow patterns. Computations were conducted in the full-domain as

well as three rotational-periodicity representations of the flow field. The conserva-

tive and nonconservative versions of the ST-VMS with two different enforcement of

the prescribed cylinder velocities were tested with different mesh refinements. The

ST isogeometric discretization was used to represent the circular geometry exactly.

In the computations where the mesh is rotating, the STNMUM, with NURBS basis

functions in time, enabled us to represent the mesh rotation exactly in terms of both

the paths of the mesh points and the velocity of the points along their paths. The

rotational-periodicity in the partial models was enforced with the ST-SI method.

The flow development was examined by the Fourier analysis of the circumferential

velocity fluctuations in time. Then, the effect of rotational-periodicity on the re-

sults was tested by Fourier analysis in space, comparing the circumferential velocity

fluctuations with the full-domain computation results. Additionally, the flow pat-

terns were evaluated by the ST-averaged velocity profiles. The instantaneous axial
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velocity isosurfaces and velocity magnitude distributions were investigated. The

angular momentum balance with torque acting on the solid boundaries was investi-

gated for eight different combinations. All the formulations solved in this study were

found globally angular momentum conservative in practice. All these methods in

the ST framework, integrated together in the IRF and NRF, offered a high-fidelity

computational analysis platform for this class of flow problems.

Finally, a sample turbomachinery flow analysis was shown. The ST framework

was employed to calculate the flow dynamics in a double-suction centrifugal pump

and its performance at various flow rate values. The representation of the com-

plex curved geometry was one of the challenges in this study. The flow around

the high-speed rotating parts and small-scale stationary parts, such as leakage flow,

increases the difficulty. The pressure fluctuations occurring because of the rotat-

ing parts’ relative motion with respect to the volute parts. The ST-VMS method

with isogeometric discretization was used as the method to address these difficulties

making the flow problem multiscale and unstable. The curved geometries were rep-

resented more accurately with the ST-IGA even in very coarse meshes. The mesh

rotation was represented by the STNMUM exactly. Interaction between the meshes

surrounding the rotating and stationary parts was provided by the ST-SI method.

The flow dynamics around the rotating parts, and the double-suction centrifugal

pump performance at seven different flow rates were calculated accurately with the

integration of these methods. In addition to the computations with full-domain

representation, one-fifth of the impeller blades were represented with rotational-

periodicity. The flow around this periodic domain was computed in the NRF. The

pump performance was compared with the experiments and a good agreement was

observed in both the computations with full-domain representation and with the

rotational-periodicity.
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Appendix A

Stabilization Parameters and Element Lengths

A.1 Stabilization parameters

The stabilization parameters for the momentum equation τSUPS and the incompress-

ibility constraint νLSIC are defined in different ways. Here, we define τSUPS mostly

from [1, 2, 74]:

τSUPS =
(

τ−2
SUGN12 + τ−2

SUGN3 + τ−2
SUGN4

)− 1
2 . (A.1)

The first two terms are written as:

τ−2
SUGN12 =






1

u











1

u




 : GST (A.2)

and

τ−1
SUGN3 = νrsrs : G. (A.3)

Here, rs is the solution direction given by:

rs =
∇∇∇‖u‖

∥
∥∇∇∇‖u‖

∥
∥
. (A.4)
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Here GST is the ST, and G is the space-only element metric tensors. We write:

GST =
(

Q̂
ST
)−ᵀ

·
(

Q̂
ST
)−1

, (A.5)

G = Q̂
−ᵀ

· Q̂
−1
, (A.6)

where

Q̂
ST

= QST ·
(

DST
)−1

, (A.7)

Q̂ = Q ·D−1. (A.8)

The consistent Jacobian tensors are written as follows:

QST =






∂t
∂θ

∂t
∂ξξξ

∂x
∂θ Q




 (A.9)

and

Q =
∂x

∂ξξξ
, (A.10)

where θ is the temporal and ξξξ is the spatial parametric coordinates. The transfor-

mation tensor is defined as follows:

DST =






Dθ 0ᵀ

0 D




 . (A.11)

The definitions used for Dθ and D play an important role, especially for higher-order

isogeometric discretization [74, 75] and simplex elements [87]. In this dissertation,

Dθ = 1 and we set D to its “RQD-MAX” version [75].
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The third component, originating from [52], is written as:

τSUGN4 =
∥
∥
∥∇∇∇uh

∥
∥
∥

−1

F
, (A.12)

where ‖ · ‖F is the Frobenius norm.

The stabilization parameter νLSIC associated with the incompressibility con-

straint is given in [18] as follows:

νLSIC =
h2
LSIC

τSUPS
. (A.13)

A.2 Element lengths

In Eq. (A.13), hLSIC is set equal to the minimum element length hMIN which is given:

hMIN = 2

(

max
rs

(rsrs : G)

)− 1
2

. (A.14)

The element length used in the ST-SI, in Eqs. (3.18) and (3.23) is written as:

h =

(

h−2
B + h−2

A

2

)− 1
2

, (A.15)

hB = 2 (nBnB : G)−
1
2 (for Side B), (A.16)

hA = 2 (nAnA : G)−
1
2 (for Side A), (A.17)

n̂B =
nB − nA

‖nB − nA‖
. (A.18)
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Appendix B

Path Representation

Most of the information in this section is written from [2, 3, 13, 15]. The exact

representation of a circular-arc path and a prescribed velocity along that path is

possible when the mesh is rotating with the secondary mappings Θt and Θx based

on quadratic NURBS basis functions in time.

B.1 A circular-arc path

A circular-arc path of a moving point can be represented exactly by NURBS basis

functions in time. Let us assume the point moves from x1 to x3, with ‖x1‖ = ‖x3‖,

as shown in Figure B.1. Similar to arc representation in space given in Section 3.4.1,

a circular-arc path can also be represented exactly by quadratic NURBS basis

functions in time with three control points if q < π
2 . The NURBS weights are

q

x
1

x
3

x
2

Figure B.1: A circular-arc path represented exactly by a quadratic NURBS element
in time. This figure was also shown in [2]
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w1 = w3 = 1, and w2 = cos q, where

cos 2q =
x1 · x3

r2
, r = ‖x1‖ = ‖x3‖. (B.1)

This results in the temporal basis functions

T 1 (Θ) =
(1−Θ)2

2
(

(1 +Θ2) + w2 (1−Θ2)
) , (B.2)

T 2 (Θ) =
w2(1−Θ2)

(1 +Θ2) + w2 (1−Θ2)
, (B.3)

T 3 (Θ) =
(1 +Θ)2

2
(

(1 +Θ2) + w2 (1−Θ2)
) . (B.4)

and the control points are x1,

x2 =
r

w2

x1 + x3

‖x1 + x3‖
(B.5)

=
1

2(w2)2
(

x1 + x3
)

, (B.6)

and x3. Therefore, the arc is represented as follows:

x (Θx) = x1T 1 (Θx) + x2T 2 (Θx) + x3T 3 (Θx) . (B.7)

In case a constant angular velocity, by combining Eqs. (B.6) and (B.7), we can

write as:

x (Θx) =

(

T 1(Θx) +
1

2w2
2

T 2(Θx)

)

︸ ︷︷ ︸

Q1(Θx)

x1 +

(

T 3(Θx) +
1

2w2
2

T 2(Θx)

)

︸ ︷︷ ︸

Q3(Θx)

x3, (B.8)

where Q1 and Q3 are introduced for notation convenience. Taking the cross product
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with the unit vector along x2, we get

x1 + x3

‖x1 + x3‖
× x(Θx) =

x1 × x3

r2 sin(2q)
r sin(ωt), (B.9)

where

−
∆t

2
≤ t ≤

∆t

2
, (B.10)

and ω∆t = 2q for notation convenience. From Eq. (B.9), we get

x1 + x3

2r cos q
× x(Θx) =

x1 × x3

2r sin q cos q
sin(ωt). (B.11)

From Eqs. (B.8) and (B.11), we write as:

Q3 −Q1 =
sin(ωt)

sin q
. (B.12)

From Eq. (B.12), it is written that

Θx =
sin q

1− cos q

sin(ωt)

1 + cos(ωt)
. (B.13)

Assuming time is represented with the same basis functions, we can write

t(Θt) =
∆t

2

(

T 3(Θt)− T 1(Θt)
)

(B.14)

=
∆tΘt

1 +Θ2
t + (1−Θ2

t ) cos q
. (B.15)

Selecting dt
dθ = ∆t

2 and with Eq. (B.10), we achieve t = ∆t
2 θ. We solve Eq. (B.15)

with that on the left-hand side, and obtain Θt as a function of θ:

Θt(θ) =
θ(1 + cos q)

1 +
√

1− (θ sin q)2
. (B.16)
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Differentiating that with respect to θ, we reach

dΘt

dθ
=

1 + cos q
√

1− (θ sin q)2
(

1 +
√

1− (θ sin q)2
) . (B.17)

For the circular-arc path of the moving point, the secondary mapping becomes

Θx =
sin q

1− cos q

sin(qθ)

1 + cos(qθ)
, (B.18)

and we can write

dΘx

dθ
=

sin q

1− cos q

1

1 + cos(qθ)
q. (B.19)

With this, the velocity of the point is obtained exactly as

v(θ) =
dx

dΘx

dΘx

dθ

2

∆t
. (B.20)

B.2 Prescribed velocity in the ST domain

The rotation-generated velocity can also be prescribed exactly along the circular

path. Assuming we have a set of control points xα
a with corresponding basis functions

T α and Na, a position in the ST domain is given with

xh(θ, ξ) =
3

∑

α=1

3
∑

a=1

T α(Θx(θ))Na(ξ)x
α
a . (B.21)
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From that, we can write the prescribed velocity as follows:

gh(θ, ξ) = ωωω × xh(θ, ξ) (B.22)

= ωωω ×
3

∑

α=1

3
∑

a=1

T α(Θx(θ))Na(ξ)x
α
a (B.23)

=
3

∑

α=1

3
∑

a=1

T α(Θx(θ))Na(ξ) (ωωω × xα
a ) . (B.24)

This implies gh(θ, ξ) =
3

∑

α=1

3
∑

a=1

T α(Θx(θ))Na(ξ)g
α
a , where

gα
a = ωωω × xα

a . (B.25)

The exact representation of the prescribed velocity is also possible when the mesh is

rotating with Θt and Θx. On the other hand, if the flow solution is based on linear

functions in time, the representation of the prescribed velocity is not exact in the

flow solution. This would cause lower accuracy at higher rotation angles per time

step.
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