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Abstract 

 

In an advanced metering infrastructure (AMI), the utility collects power 

consumption data from smart meters to improve energy optimization and provides 

detailed information on power consumption to utility customers. However, AMI 

is vulnerable to data falsification attacks, which can be launched by organized 

adversaries. Such attacks can be detected by analysing fine-grained power 

consumption data from customers, however, they violate the privacy of each 

customer in the grid. To strike a balance between privacy and security, a 

framework for privacy-preserving anomaly-based attack detection was proposed 

in the previous work, which uses homomorphic encryption (HE) scheme to 

address the issue of data falsification.  

HE is a form of encryption that permits users to perform computations on the 

encrypted data without having to decrypt the data. However, the downside of HE 

is computational overhead in terms of execution time. This thesis proposes a 

method for privacy-preserving and attack detection of data generated by smart 

meters to shorten the execution time. Our method applies elliptic curve 

cryptography (ECC) based HE for anomaly-based attack detection for data 

falsification over encrypted data. Through ECC, we can achieve the same security 

as a 3,072-bit RSA key with a 256-bit ECC key. Therefore, ECC requires less 

memory space to implement the encryption and decryption algorithms, which in 

turn reduces the time required to perform encryption and decryption operations. 

The proposed scheme and the CKKS-based method are implemented on the same 

platform using Python 3.8.10 to compare the execution times for user-side 

computation, server-side computation, and utility-side computation. In the 

proposed scheme, the user side computation is 10 times faster and the server-side 

computation is more than 100 times faster compared to the CKKS (HE) scheme. 

 

 

 

 

 

 

 

  



Contents 

   1. Introduction …………………………………………………………………………...1  

2. Related Work ………………………………………………………………………….3 

2.1 Privacy-preserving techniques…………………………………………………3 

2.2 Privacy-preserving anomaly detection…………………………………………4 

   3. Preliminaries …………………………………………………………………………. 5 

3.1 Elliptic curves and Elgamal encryption………………………………………. 5 

3.2 Elliptic curve discrete logarithm problem (ECDLP) ………………………… 6 

3.3 Bilinear pairing ……………………………………………………………………………………………. 6 

3.4 Anomaly detection ratio ……………………………………………………….6 

3.5 Pseudo code for CKKS scheme………………………………………………..7 

  4. System Goals…………………………………………………………………………... 9  

4.1 System architecture ……................................................................................... 9 

4.2 Threat models… ………………………………………...................................10             

  5. Proposed Scheme........................................................................................................... 11 

5.1 System initialization......................................................................................... 13 

5.2 Meter report generation…................................................................................ 13 

5.3 HM-AM computation over encrypted data........................................................14 

5.4 Anomaly detection by utility……….……….....................................................15 

5.5 Security analysis……………………………………………………………….15 

5.6 Pseudo code for the proposed scheme…………………………………………16 

   6. Performance Evaluations............................................................................................... 18 

6.1 Experimental setup............................................................................................ 18 

6.2 Computation and communication performance results…………………..........19 

6.3 Summary of evaluation………………………………………………………...22 

   7. Conclusion......................................................................................................................23 

       References.......................................................................................................................24 

 

  



1 
 

1. Introduction 
 

Advanced Metering Infrastructure (AMI) refers to the entire infrastructure, from 

smart meters to two-way communication networks, to control electric appliances 

and all applications that enable the real-time gathering and transfer of energy 

usage data. AMI enables two-way communication with customers and serves as 

the smart grid's backbone. The smart grid provides an extraordinary opportunity 

to enhance the energy industry into a new era of reliability, availability, and 

efficiency that will contribute to our economic growth and sustainable 

environmental development. The objective of a smart grid is to provide a 

comprehensive architecture for the complete life-cycle management of energy 

resources based on the development of intelligent, dependable, secure, and cost-

effective technology. A smart grid allows bidirectional energy flow and integrates 

two-way communication and control capabilities, offering several new features 

and applications [1]. At the same time, consumers’ data from smart meters raises 

privacy concerns and confidentiality issues [2]. The major concern with the smart 

grid is that it is vulnerable to cyber-attacks. As the energy consumption data 

collected from smart meters are sensitive consumer information, providing data 

privacy is a key concern. Hence, the data generated by the smart meters must be 

protected from the malicious parties that attack the system to generate falsified 

data to manipulate the customers’ power consumption data. 

The information gathered by the smart meters could be used for an unforeseen 

purpose: invading users' privacy. According to current research, individual 

appliances (based on their load signatures [3]) can be recognized via extensive 

examination of energy usage traces [4]-[5]. Periodic meter readings can also be 

used to estimate a household's occupancy, and data mining algorithms can be used 

to violate users' privacy in more nuanced ways, such as by disclosing their 

activities and economic status [6]-[7]. Thus, it is crucial to ensure that malicious 

parties cannot access and modify the data in the smart meters. 

The data management of smart meters should fulfil several security requirements, 

which are as follows [8]: 

• Confidentiality: During transmission (data-in-transit), storage (data-at-

rest), and computing, meter data should not be exposed to unauthorized 

individuals or processes (data-in-use). To achieve cryptographic privacy, 

data-in-transit, data-at-rest, and data-in-use must all be kept confidential. 

• Integrity: During transmission, storage and computation, the accuracy and 

validity of the meter data should be preserved, and any modifications to 

the data should be detectable. 

• Authenticity: The meter data receiver should be able to authenticate the 

source of the data. 

• Non-Repudiation: The meter data source should not be able to refuse that 

it is the source of the data. It conveys authenticity and integrity. 



2 
 

• Auditability: The response to a request (meter data or a computation based 

on meter data) should be able to be verified. 
 

Ishimaki et al. [9] proposed a framework for privacy-preserving anomaly-based attack 

detection. The proposed scheme uses the CKKS scheme for privacy-preserving anomaly 

detection by adopting a homomorphic encryption (HE) scheme based on the harmonic to 

the arithmetic mean (HM-AM) ratio. The HM-AM ratio is a metric that has been recently 

demonstrated as an effective indicator for detecting anomalous behaviour in smart 

metering data [9]. Wen et al. [10] performed privacy-preserving anomaly detection for 

power grids by using a local differential privacy (LDP) scheme and a deep learning model 

called temporal convolutional network (TCN). Keshk et al. [11] used blockchain 

technology to verify the integrity of the data and deep learning technology to perform 

anomaly detection. The previous methods, [9]-[11] focus on protecting the security and 

privacy of the consumers’ data. However, the computational overhead depending on 

previous work is still an issue. 

 Therefore, in this thesis, elliptic curve cryptography (ECC) based HE scheme that not 

only ensures the security of the data but also detects data falsification over encrypted data 

is proposed. Through ECC, we can achieve the same security as a 3,072-bit RSA key with 

a 256-bit ECC key. Thus, ECC takes less memory space compared to the HE schemes to 

implement the encryption and decryption algorithms, which reduces the time required to 

perform encryption and decryption operations. Whereas homomorphic operations can be 

performed on encrypted data, which safeguards the secret information from unauthorized 

access. Thus, the ECC based HE scheme provides faster computations while ensuring the 

security of the data. 

 

Contributions: The proposed scheme makes the following contributions: 

i. The proposed scheme provides an ECC-based HE scheme for privacy-preserving 

data falsification detection in smart grids. 

ii. It performs validation checking for different encryptions using pairing operations 

over encrypted data. The solution uses the bilinear pairing property of ECC 

(which is not possible for other encryption schemes). 

iii. For a fair comparison, the proposed scheme and the CKKS based method are 

implemented on the same platform. 

 

The rest of the thesis is organized as follows. The related work is introduced in Section 2. 

The preliminaries are described in Section 3. The system goals are explained in Section 

4. The details of the proposed scheme are in Section 5. The experimental evaluation of 

the proposed scheme is in Section 6. Finally, the conclusion of the work is in Section 7. 
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2. Related Work 

 

In this section, the existing privacy-preserving techniques and privacy-preserving 

anomaly detection schemes are briefly reviewed. 

2.1 Privacy-Preserving Techniques 

Privacy-preserving is an important concept because when the data is transferred between 

different parties, it is necessary to provide security to that data. Providing security ensures 

that data being communicated between the original parties is protected from untrusted 

third parties. There are various types of privacy-preserving schemes that use different 

methods to achieve privacy preservation. 

 

We will address three types of privacy-preserving schemes, which are as follows: 

(i) differential privacy (DP), (ii) secure multiparty computation (SMC), and  

(iii) homomorphic encryption (HE). 
 

In a DP scheme, privacy is preserved by adding a controlled amount of randomness 

(noise) to the data. As the randomness is controlled, the resulting data is still accurate and 

sensitive information is not revealed. But the downfall of DP is that it only works for 

interactive scenarios (where users can directly send the queries to the original database) 

and cannot provide good results for complex queries. When there is diversity in data, DP 

includes too much noise, which ultimately reduces the data utility. Moreover, balancing 

the best trade-off is an open problem [8]. 

Secure multi-party computation (also known as multi-party computation, SMPC, or 

MPC) is a cryptographic approach that allows two or more parties to do a computation 

using their private data without revealing their private information to one another. While 

smart meters can outsource the desired computation to several servers in a reasonable 

amount of time, it is assumed non-colluding servers are controlled by distinct third parties 

[12]-[13]. The disadvantages of SMC are (i) communication overhead: The SMC method 

requires communication between parties, which can lead to high communication costs. 

(ii) It is vulnerable to attacks from colluding parties; when the parties collude, data might 

be leaked. 

To perform data aggregation [14] and billing [15] computations in smart grids, Additive 

HE (AHE) which can perform addition and constant multiplication is sufficient. However, 

for identifying anomalous behaviour in smart metering data, it is necessary to perform 

operations like division and logarithms. 
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2.2 Privacy-Preserving Anomaly Detection 

 

A framework for privacy-preserving anomaly-based attack detection was proposed by 

Ishimaki et al. [9]. The proposed uses the CKKS scheme for privacy-preserving anomaly 

detection by adopting HE based on the harmonic to arithmetic mean (HM-AM) ratio. The 

HM-AM ratio involves various HE-incompatible operations. As a result, naive adoption 

of the HE results in inefficiency in regard to memory, communication cost and 

computational cost. The CKKS scheme optimizes both encoding and encryption 

procedures. In the CKKS scheme, the major issue is computational overheads in terms of 

efficiency and execution time. Adversarial assumptions for security threat model and 

security analysis in the related work [9] are as follows: 

 

The adversarial assumption for the security threat model: An adversary can give a 

falsified reading as input to the smart meter but cannot modify the program within the 

smart meter. 

Security analysis: CKKS encryption scheme (HE scheme) is used to ensure no 

information about the underlying messages is revealed to the semi-honest stakeholder, 

and smart meter readings of individual customers are not revealed to anyone at any stage. 

The paper uses an anomaly detection ratio for anomaly-based attack detection. 

Wen et al. related work [10] tackles the issue of energy theft detection in smart grids. In 

this paper, a novel privacy-preserving federated learning framework, FedDetect is used 

for energy theft detection. A local differential privacy (LDP) scheme has been used to 

preserve the privacy of local consumers’ data. A deep learning model called the temporal 

convolutional network (TCN) has been used for detecting energy thefts in smart grids. 

 

Keshk et al. [11] addressed the security and privacy issues in smart power networks. A 

privacy-preserving framework to protect data and find anomalous behaviour in smart 

power networks has been introduced. To achieve privacy and security, a privacy module 

that consists of two levels and an anomaly detection module is proposed. This scheme 

uses blockchain technology to verify the integrity of the data and deep learning technique 

to perform anomaly detection. 

 

 To summarize, the aforementioned privacy-preserving techniques focus on protecting 

the security and privacy of the consumers’ data. But the computational overhead 

depending on the mentioned privacy-preserving schemes is still an issue. Hence, in the 

proposed scheme, ECC based HE scheme for privacy-preserving data falsification 

detection in smart grids is adopted to reduce the computational overhead of execution 

time. 
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3. Preliminaries 

 

In this section, the fundamental concepts required for the proposed scheme are explained. 

This section contains preliminaries of ECC, Elliptic Curve Discrete Logarithm Problem 

(ECDLP), bilinear pairing and anomaly detection ratio metric. 

3.1 Elliptic curves and the Elgamal encryption 

Elliptic curve cryptography is based on the properties of algebraic curves over fields [16]. 

To keep the comprehensiveness of this thesis, the Elliptic curves and Elgamal encryption 

is described by quoting the explanation by Deepak et al. [16]. 

Mathematically, an elliptic curve is represented by an equation of the form: 

 y2 = x3 + ax + b  

with a constraint that the determinant ∆ = −16(4a3+27b2) is non-zero. The security of 

elliptic curve cryptography is based on the ECDLP [17]. In other words, given two points 

A and B on the curve such that one is a scalar multiple of the other, i.e. A = k.B (here ‘.’ 

(dot) represents scalar multiplication), it is computationally difficult to find k. 

The Elgamal encryption scheme with additive homomorphism can be implemented using 

elliptic curve cryptography as follows: 

Key Generation: 

• Choose a base point P of order N on an elliptic curve E over a finite field. 

• Choose f: x → Px, which converts plaintexts x into points Px on E. To realize the 

properties of additive homomorphism, the function f is defined as f(x) = x.P, where 

‘.’ (dot) represents the scalar multiplication of the point P with x 

• Select a random secret key k ∈ ZN. The points P and Y = k.P are published as the 

public key.  

Encryption: 

• Choose a random number a ∈ ZN. Calculate Px = f(x), where x is the plain text to 

be encrypted. 

• The ciphertext is the pair of points (a.P, a.Y + Px)  

Decryption: 

• From the received ciphertext (B1, B2), calculate  𝐵1
′  = k.B1 using the private key k. 

• Compute Px = B2 − 𝐵1
′   and retrieve the original plaintext x as 𝑓−1(Px) 

 

Additive Homomorphism: 

• Consider two ciphertexts c = (c1, c2), d = (d1, d2), where c and d are the encryptions 

of messages x and y respectively under the same key k. For random a and b,  
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             let c = (a.P, a.Y + x.P), d = (b.P, b.Y + y.P) 

• Compute the new ciphertext e = c + d = ((a + b).P, (a + b).Y + (x + y).P) 

corresponding to the encryption of the message (x + y) under key k [16]. 

 

3.2  Elliptic curve discrete logarithm problem (ECDLP) 

 

The ECDLP [17], is the fundamental assumption for elliptic-curve-based protocols. 

Computing the discrete logarithm of a random elliptic curve element concerning a 

publicly known base point is infeasible. The potential to compute an elliptic curve scalar 

multiplication and the inability to compute the multiplicand given the original and product 

points are both required for elliptic curve encryption to be secure. The difficulty of the 

problem is determined by the size of the elliptic curve, as measured by the total number 

of discrete integer pairs satisfying the curve equation. 

 

Consider an elliptic curve E which is defined over a finite field 𝐹𝑝. Let A be a point of 

order n on the elliptic curve, where A ∈ E (𝐹𝑝). The ECDLP is based on identifying the 

integer z, where z is in the range, 0 ≤ 𝑧 ≤ n − 1. For a given point B on the elliptic curve,  

B ∈ ⟨A⟩ and B is a scalar multiplication of the integer z and the point on elliptic curve A, 

such that B = z∙A. Here ‘∙’ is the scalar multiplication. 

 

3.3 Bilinear Pairing 

Let G1 be an additively written group of order n with identity ∞, and let GT be a 

multiplicatively written group of order n with identity 1. A bilinear pairing on (G1, GT) is 

a map ê: G1 × G1 → GT that satisfies the following conditions [18]. 

i. (bilinearity) For all R, S, T ∈ G1, ê (R + S, T) = ê (R, T), ê (S, T). This is equivalent 

to ê (aS, bT) = ê (S, T)ab 

ii. (non-degeneracy) ê (P, P) ≠ 1 

iii. (computability) ê can be efficiently computed. 

 

3.4 Anomaly Detection Ratio Metric 

The harmonic to arithmetic mean (HM-AM) ratio has subsequently proven to be an 

efficient standard for identifying anomalous behavior in smart grid data [9]. Hence, the 

HM-AM ratio has been used for anomaly-based attack detection in the proposed scheme 

because i) it deals with numerous attacks such as additive, deductive and camouflage 

attacks and (ii) it can detect the minute changes in data that occurred due to data 

falsification attacks. 

Here, N is denoted as the total number of smart meters in an AMI located in a 

neighbourhood area network and each timeslot is denoted by t. A set of timeslots t is 
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represented by T, where (∀𝑡∈𝑇). The power consumption of the  𝑖𝑡ℎ  smart meter is 

represented as  𝑝𝑡
(𝑖)

, where 𝑝𝑡
(𝑖)

∈ 𝑅+ . The 𝑖𝑡ℎ  smart meter performs natural logarithm 

transformation (𝑃𝑡
(𝑖)

) on each power consumption 𝑝𝑡
(𝑖)

 and computes the inverse of the 

natural logarithm transformation (𝑃𝑡
′(𝑖)

) as follows: 𝑃𝑡
(𝑖)

= 𝑙𝑜𝑔(𝑝𝑡
(𝑖)

+  2), 𝑃𝑡
′(𝑖)

= 1/𝑃𝑡
(𝑖)

. 

Finally, the HM-AM ratio 𝑄𝑑   for the 𝑑𝑡ℎ date is computed by 

 𝑄𝑑 = 
∑ 𝐻𝑀𝑡𝑡∈  𝑇

∑ 𝐴𝑀𝑡𝑡∈  𝑇
                       .…. (1) 

where,                            𝐴𝑀𝑡 = 
∑ (𝑃𝑡

(𝑖)
)𝑁

𝑖=1

𝑁
                           ...… (2) 

                                      𝐻𝑀𝑡 = 
𝑁

∑ (
1

𝑃𝑡
(𝑖))𝑁

𝑖=1

                            ……(3) 

3.5 Pseudo code for the CKKS scheme [9] 

The following are the pseudo code for the CKKS schemes proposed by Ishimaki et al. [9] 

Algorithm 1 Homomorphic Evaluation of the Daily Ratios [9] 

Input:  

• Encrypted log power consumption in an area, {Enc(𝑃𝑡
(𝑖)

)}
𝑖∈[𝑁],𝑡∈𝑇

 

• Encrypted inverse log power consumption in an area, {Enc(𝑃𝑡
′(𝑖)

)}
𝑖∈[𝑁],𝑡∈𝑇

 

Output: Encrypted HM-AM ratio 

1: HM ← 0, AM ← 0 

2: for 𝑡 ∈ 𝑇 do 

3: fracsumt ← 0, sumt ← 0 

4: for i←1 to N do 

5:             sumt ← sumt ⊞ Enc(𝑃𝑡
(𝑖)

) 

6:             fracsumt ← fracsumt ⊞ Enc(𝑃𝑡
′(𝑖)

) 

7:           end for 

8:           HM ← HM ⊞ (Inv(fracsumt)  ∙  N) 

9:           AM ← AM ⊞ (sumt    ∙   
1

𝑁
)      

10:    end for 

11:     return HM  ∙   Inv (AM) 
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Algorithm 2 Privacy-preserving Anomaly Detection Protocol [9] 

 

1) Data Transmission: In a year y on the d-th date at each timeslot t in an area, 

the i-th smart meter 𝑆𝑀𝑖 does the following: 

• Obtain the power consumption 𝑝𝑦,𝑑,𝑡
(𝑖)

 

• Compute 𝑃𝑦,𝑑,𝑡
(𝑖)

 ∶= ln (𝑝𝑦,𝑑,𝑡
(𝑖)

+ 2) and 𝑃𝑦,𝑑,𝑡
′(𝑖)

 ∶= 
1

𝑃𝑦,𝑑,𝑡
(𝑖)  

 

• Encrypt 𝑝𝑦,𝑑,𝑡
(𝑖)

 , 𝑃𝑦,𝑑,𝑡
(𝑖)

 and 𝑃𝑦,𝑑,𝑡
′(𝑖)

 using preinstalled pk 

• Send Enc(𝑝𝑦,𝑑,𝑡
(𝑖)

 ), Enc(𝑃𝑦,𝑑,𝑡
(𝑖)

 ) and Enc(𝑃𝑦,𝑑,𝑡
′(𝑖)

 ) to the computational 

server through a data collector in NAN and other higher-level network 

 

2) Homomorphic Evaluation of HM-AM Ratio: Upon receiving the ciphertexts, 

the computational server does the following: 

• Call Algorithm 1 and obtain Enc( 𝑄𝑑) if the daily amount of ciphertexts is 

available (Enc(𝑝𝑦,𝑑,𝑡
(𝑖)

 )) is used for other tasks as discussed 

• Send Enc ( 𝑄𝑑)  to the utility 

 

3) Anomaly Detection: The utility does the followings: 

• Decrypt Enc( 𝑄𝑑)   using sk, and locally save 𝑄𝑑   

• Perform training if a sufficient amount of  𝑄𝑑’s   is available 

• Perform test if the training phase has been performed, and obtain a decision bit 
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4. System Goal 

 

This section provides the system goal, system architecture, and threat model for the 

proposed system. In the proposed scheme, the same architecture, and the threat model as 

in the paper by Yu Ishimaki et al. [9] are used. 

The goal of our proposed scheme is as follows: 

• Perform anomaly-based attack detection in a secured manner without disclosing 

the consumers’ power usage details to the server and the utility. 

 

• Verification of the validity of the encrypted data to ensure that the consumers’ 

data is not manipulated to pass through the anomaly-based detection process. 

 

4.1 System Architecture 

  

The system architecture of the proposed system is the same as that in the paper by Yu 

Ishimaki et al. [9]. The system architecture shown in Figure 1 consists of three main 

components: the utility, a computational server (operated by a third party) and N smart 

meters. 

 

   

Figure 1: System overview 

(Traced from Figure 1 in [9]) 
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 The function of each component is as follows: 

Utility:  

• The utility performs the system initialization step of key generation. 

• The utility sends the public key (only known to the smart meters) to the smart 

meters to perform encryption operations and keeps the secret key with itself. 

• The utility computes the HM-AM ratio (Equation 1) and performs the anomaly 

detection ratio. 

Smart meters:  

• The smart meters use the public key provided by the utility to encrypt the smart 

meter readings and send the encrypted reading to the computational server. 

Computational server: 

• The computational server receives the encrypted reading from the smart meters 

and evaluates the encrypted data to compute the summation of AM and HM. 

• The computed summation of AM (Equation 2) and HM (Equation 3) is then sent 

to the utility to perform anomaly detection. 

 

The details of the scheme are provided in Section 5. 

 

4.2 Threat Model 

 

The proposed system attempts to protect the consumers’ private data from both the 

computational server and the utility. It is assumed that the utility, computational server, 

and smart meters are semi-honest (honest but curious) [9]. They obey the protocol but as 

they are curious, they try to collect the consumers’ data while communicating the data 

from the smart meters to the utility through the computational server. Another assumption 

is that the computational server does not collude with the utility that has the secret key. 

Moreover, if the server and a subset of smart meters collude, only the meters reading of 

those smart meters are revealed, whereas readings from other smart meters are protected. 

Data integrity threat where an adversary attacks the smart meters to falsify the meter 

readings is assumed to occur before the encryption of power consumption data by the 

smart meters. Thus, the privacy requirement can be ensured if the assumptions such as 

the smart meters are honest but curious, the utility and the server do not collude and even 

when the server and the subset of smart meters collude, only readings of the colluded 

subset of smart meters are revealed are satisfied. 
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5. Proposed Scheme 

 

In this section, a new privacy-preserving data falsification detection scheme is proposed.  

An ECC based HE scheme to encrypt data and perform HM-AM ratio over encrypted 

data is proposed. ECC based encryption is additively homomorphic. Moreover, the 

bilinear pairing function over the elliptic curve group allows us to check the validity of 

the encrypted data without decrypting it.  

The four phases of the proposed scheme are system initialization (performed by the 

utility), meter report generation (performed by smart meters), HM-AM computation over 

encrypted data (performed by the computational server), and anomaly attack detection 

(performed by the utility). 

 

 

 

 

                                                              

                                                              Figure 2: Proposed Scheme 

 

 

 

 

 

System 
initialization 

• Performed by the utility (key generation)

Meter report 
generation • Performed by the smart meters (encryption)

HM-AM 
computation over 

encrypted data 
• Performed by the computational server

Anomaly detection
• Performed by the utility (decryption and anomaly 

detection)
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Table 1: Variable and Description 

Variable Description 

P Independent point on the elliptic curve 

Q Independent point on the elliptic curve 

G1 Elliptic curve group 

T A set of timeslots in a day 

t Each timeslot 

𝑟𝑡 The random value generated for timeslot t  

𝑝𝑡
(𝑖)

 Power consumption of 𝑖𝑡ℎ smart meter (1 ≤ 𝑖 ≤ N)  

for timeslot t 

𝑃𝑡
(𝑖)

 Natural log transformation of  𝑝𝑡
(𝑖)

 (𝑙𝑜𝑔(𝑝𝑡
(𝑖)

+  2)) 

for 𝑖𝑡ℎ smart meter 

𝑃𝑡
′(𝑖)

 The inverse of natural log transformation 1/𝑃𝑡
(𝑖)

 for  

𝑖𝑡ℎ smart meter 

SHA-256 A cryptographic hash function that outputs a 256 bits 

long value 

ê Bilinear map 

𝐴𝑀𝑠𝑢𝑚
𝑡  Summation of Enc (𝑃𝑡

(𝑖)
) at timeslot t (1 ≤ 𝑖 ≤ N) 

𝐻𝑀𝑠𝑢𝑚
𝑡  Summation of Enc (𝑃𝑡

′(𝑖)
) at timeslot t (1 ≤ 𝑖 ≤ N) 

N Total number of smart meters 

𝑄𝑑 HM-AM ratio for the day 
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5.1 System initialization 

 

The initial setup is performed by the utility. It selects appropriate elliptic curve group G1 

and two independent points on the elliptic curve P, Q ∈ G1 of order n. 

After this setup, the utility generates two keys key1 and key2 which will be shared between 

the smart meters and the utility only. Both the keys will be kept secret from the 

computation server. 

5.2 Meter report generation 

 

Note that HM-AM ratio involves log ( 𝑝𝑡
(𝑖)

+ 2) and its inverses which are not 

HE-friendly operations. Therefore, we first need to compute 𝑃𝑡
(𝑖)

= 𝑙𝑜𝑔(𝑝𝑡
(𝑖)

+  2)  and 

𝑃𝑡
′(𝑖)

= 1/𝑃𝑡
(𝑖)

 for 𝑖𝑡ℎ smart meter. 

Log-transformation always results in decimal places, and we can perform encryption over 

integers only. Therefore, we first round both 𝑃𝑡
(𝑖)

 and 𝑃𝑡
′(𝑖)

 up to certain decimal places 

and then remove decimal points to make it an integer. 

Now to encrypt 𝑃𝑡
(𝑖)

, the 𝑖𝑡ℎ smart meter first computes 𝑟𝑡 using the shared key key1 and 

corresponding timeslot t. 

𝑟𝑡 = SHA256(key1||t) ….. (4) 

 

We need to encode 𝑃𝑡
(𝑖)

 into group element to apply ECC based Elgamal encryption. We 

round 𝑃𝑡
(𝑖)

 to three decimal places and then convert 𝑃𝑡
(𝑖)

 into integer. After that, we 

encode it as (𝑃𝑡
(𝑖)

− 1)𝑟𝑡 P where 𝑟𝑡  is a random value generated for timeslot t. The 

corresponding encryption of 𝑃𝑡
(𝑖)

 is 

                                          Enc (𝑃𝑡
(𝑖)

) = (𝑟𝑡𝑃, ((𝑃𝑡
(𝑖)

− 1)𝑟𝑡𝑃 + 𝑟𝑡𝑃 ) = (𝑟𝑡𝑃, 𝑃𝑡
(𝑖)

𝑟𝑡) ...(5) 

 

Note that for a timeslot t, each smart meter uses the same random value 𝑟𝑡 as each has 

access to the shared key key1 and without the key key1 others cannot learn about 𝑟𝑡. 

 

 

 



14 
 

Similarly, encryption of  𝑚′ =  𝑃𝑡
′(𝑖)

 is 

Enc (m′) = (𝑟𝑡′Q, m′𝑟𝑡′Q)  …..(6) 

      where, 

 

𝑟𝑡′ = SHA256(key2||t)  …….(7) 

5.3 HM-AM computation over encrypted data 

 

After receiving encrypted values from each smart meter, the computation server first 

checks for the validity of each pair (Enc (𝑃𝑡
(𝑖)

), Enc (𝑃𝑡
′(𝑖)

)) using bilinear pairing as 

follows: 

ê (𝑟𝑡P,𝑟𝑡′Q) = ê (m𝑟𝑡P, m′𝑟𝑡′Q)  …..(8) 

 

 where,  𝑚 = 𝑃𝑡
(𝑖)

 and 𝑚′ =  𝑃𝑡
′(𝑖)

 

 

Note that since m ∗ 𝑚′= 1, we have 

ê (m𝑟𝑡P, m′𝑟𝑡′ Q) = ê (𝑃, Q)𝑚𝑟𝑡𝑚′𝑟𝑡′   = ê (𝑃, Q)𝑟𝑡𝑟𝑡′  = ê (𝑟𝑡P, 𝑟𝑡′Q)  …...(9) 

If the above equation does not hold for any readings, then it means that the data had been 

manipulated. After this, for each timeslot t, it computes 

           𝐴𝑀𝑠𝑢𝑚
𝑡  = ∑ Enc (𝑃𝑡

(𝑖)
)

N

i=1

  …….(10) 

 

             𝐻𝑀𝑠𝑢𝑚
𝑡 = ∑ Enc (𝑃𝑡

′(𝑖)
)

N

i=1

  …….(11) 

 

Here N is the total number of smart meters.  

 

The computational server then sends {𝐴𝑀𝑠𝑢𝑚
𝑡 ,  𝐻𝑀𝑠𝑢𝑚

𝑡 }∀𝑡∈𝑇 to the utility to calculate the 

HM-AM ratio. 
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5.4 Anomaly Detection by the Utility 

 

After receiving {𝐴𝑀𝑠𝑢𝑚
𝑡 ,  𝐻𝑀𝑠𝑢𝑚

𝑡 }𝑡∈𝑇 from the computation server, the utility first 

decrypts them and then computes AMt   and HMt   as follows:   

                𝐴𝑀𝑡 = 
𝐷𝑒𝑐(𝐴𝑀𝑠𝑢𝑚

𝑡 )

𝑁
    …. (12)           𝐻𝑀𝑡 = 

𝑁

𝐷𝑒𝑐( 𝐻𝑀𝑠𝑢𝑚
𝑡 )

    …. (13) 

 

Here, N is the total number of smart meters. 

  

Finally, it computes the HM-AM ratio as follows: 

 

                                          𝑄𝑑 = 
∑ 𝐻𝑀𝑡𝑡∈  𝑇

∑ 𝐴𝑀𝑡𝑡∈  𝑇
      ….. (14) 

 

5.5    Security Analysis 

The proposed system ensures the security of the consumers’ data from both the 

computational server and the utility. 

• The proposed system uses ECC based El-Gamal system, and its security depends 

on the discrete logarithm (DL) problem in the elliptic curve (EC) group. Therefore, 

the proposed scheme is as secure as the DL in the EC group. 

 

• As the computational server evaluates encrypted data, the privacy of the data is 

maintained, and consumers’ data is protected from leaking. 

 

• In the proposed scheme, 𝐴𝑀𝑡 and 𝐻𝑀𝑡  will be visible for each time slot (that is 

summations of each time slot will be visible) to the utility. 

 

• However, this does not leak individual readings of the meter and the utility cannot 

find the reading of any meter from either  𝐴𝑀𝑡 or 𝐻𝑀𝑡 

 

Hence, the proposed system does not leak any private data of the consumers either to the 

server or to the utility. 
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5.6   Pseudo code for the proposed scheme 

The pseudo codes for the proposed scheme are shown as follows. 

Algorithm 1 (Smart meter encryption) 

Input:  

• Data at time t, 𝑝𝑡
(𝑖)

,  

• Elgamal public key, pk 

Output: 𝐸𝑛𝑐(𝑝𝑡
(𝑖)

), 𝐸𝑛𝑐(𝑃𝑡
(𝑖)

), 𝐸𝑛𝑐(𝑃𝑡
′(𝑖)

) 

1: 𝑐1 = 𝐸𝑛𝑐𝑝𝑘 (𝑝𝑡
(𝑖)

) 

2: Compute 𝑃𝑡
(𝑖)

= 𝑙𝑜𝑔(𝑝𝑡
(𝑖)

+  2)   

3: 𝑐2 = 𝐸𝑛𝑐𝑝𝑘 (𝑃𝑡
(𝑖)

) 

4: Compute 𝑃𝑡
′(𝑖)

= 1/𝑃𝑡
(𝑖)

 

5: 𝑐3 = 𝐸𝑛𝑐𝑝𝑘 (𝑃𝑡
′(𝑖)

) 

6: return 𝑐1, 𝑐2, 𝑐3 

 

Algorithm 2 (Server Computation for each timeslot) 

Input:  

• Encrypted log power consumption in an area, {𝐸𝑛𝑐(𝑃𝑡
(𝑖)

)}
1≤𝑖≤𝑁

 

• Encrypted inverse log power consumption in an area, {𝐸𝑛𝑐(𝑃𝑡
′(𝑖)

)}
1≤𝑖≤𝑁

 

Output: 𝐸𝑛𝑐(∑ 𝑃𝑡
(𝑖)𝑁

𝑖=1 ), 𝐸𝑛𝑐(∑ 𝑃𝑡
′(𝑖)𝑁

𝑖=1 ) 

1: fracsumt ← 0, sumt ← 0 

2: for 𝑖 ← 1 to 𝑁 do 

3: sumt ← sumt ⊞ 𝐸𝑛𝑐(𝑃𝑡
(𝑖)

) 

4: fracsumt ← fracsumt ⊞ 𝐸𝑛𝑐(𝑃𝑡
′(𝑖)

) 

5: end for 

6: return sumt, fracsumt  
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Algorithm 3 (Utility computation) 

Input:  

• Encrypted sum of log power consumption in an area, {𝒔𝒖𝒎𝒕}𝑡∈𝑇 

• Encrypted sum of inverse log power consumption in an area, {𝒇𝒓𝒂𝒄𝒔𝒖𝒎𝒕}𝑡∈𝑇 

Output: HM-AM ration (𝑄𝑑) 

1: HM ← 0, AM ← 0 

2: for 𝑡 ∈ 𝑇 do 

3:  AM ← AM + 
𝐷𝑒𝑐(𝑠𝑢𝑚𝑡)

𝑁
 

4: 𝐻𝑀 ← HM + 
𝑁

𝐷𝑒𝑐(𝑓𝑟𝑎𝑐𝑠𝑢𝑚𝑡)
 

5: return 
𝐻𝑀

𝐴𝑀
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6. Evaluation 

 

 

6.1 Experimental setup  

 

For all the experiments, a computer with the specifications mentioned in Table 2 is used. 

 

Table 2: Experimental setup                             

Operating system and version Windows 10  

Processor 11th Gen Intel(R) Core (TM) i5 (2.4 GHz) 

RAM 8 GB 

L1 cache size 320 KB 

L2 cache size 5.0 MB 

L3 cache size 8.0 MB 

Compiler and version SageMath 9.2 

Programming language Python 3.8.10 

 

The proposed system is implemented in Jupyter Notebook and NumPy library in Python-

based SageMath1. The proposed scheme uses elliptic curve E: 𝑦2 = 𝑥3 − 4 over a finite 

field 𝐹𝑝  with prime of form p = 36𝑢4 +  36𝑢3 +  24𝑢2 + 6𝑢 + 1 where 𝑢 = 2114 + 2101 

−  214 −1 which are the recommended parameters to achieve 128-bit security for bilinear 

pairing and ECC based encryption [19]. 

For CKKS based method, the HEAAN Python library2is used. It is Python binding for a 

HEAAN Library, an open-source implementation of the CKKS scheme in C++.  

To implement the CKKS method on the same platform, a Python wrapper3  for the 

HEAAN C++ library4 is used. Through the Python wrapper, we can import HEAAN 

functions in Python. For division over ciphertext operation, an inbuilt cipher inverse 

function of the HEAAN library is used. Parameter set as (n, log Q, p) = (215, 491, 35), in 

which a fresh ciphertext size is calculated as 2n log Q bits is used. As 215 = 32,768, it 
supports 128-bit security [20]. HEAAN related libraries are listed in Table 3. 

The same dataset used in the paper Ishimaki et al. [9] is a smart grid dataset collected 

from the Pecan Street Project, which consists of a dataset from 200 households in Texas, 

USA over three years (2014–2016) is used for implementation. 

 

 
1 https://www.sagemath.org/download.html 
2 https://awesomeopensource.com/project/Huelse/HEAAN-Python 
3 https://github.com/Huelse/HEAAN-Python 
4 https://github.com/snucrypto/HEAAN 

https://github.com/Huelse/HEAAN-Python
https://github.com/snucrypto/HEAAN


19 
 

Table 3: HEAAN related libraries 

Library Version 

HEAAN HEAAN-2.1 

GMP gmp-6.1.2 

NTL ntl-11.4.3 

pybind pybind11 

 

Table 4: Differences in implementation of proposed scheme and CKKS scheme 

 

 Proposed Scheme CKKS scheme 

Library NumPy HEAAN C++  

Tool Python binding for C++ libraries Python based SageMath 

Functionality Does not support inverse operation 

over ciphertext 

Supports inverse operation 

over ciphertext 

Linking Supports linking through bilinear 

pairing 

Does not support linking 

HM-AM ratio  Computed by the utility Computed by the server 

 

6.2 Computation and communication performance results 

There are six important points in the evaluation part: comparison of user side encryption, 

comparison of server-side computation, comparison of utility side decryption, 

comparison of total execution time, comparison of ciphertext size for anomaly detection 

and maximum memory usage.  

 

6.2.1 Comparison of user-side computation  

 

Each smart meter performs three encryptions per timeslot Enc (𝑝𝑡
(𝑖)

), Enc (𝑃𝑡
(𝑖)

) and Enc 

(𝑃𝑡
′(𝑖)

) in both CKKS and ECC based HE schemes. As shown in Table 5 the proposed 

scheme (ECC based HE scheme) performs 10 times better than the CKKS scheme for 

user-side encryption. In the CKKS method, to speed up the encryption time, the pre-

computation of Enc (0) is performed and the optimized encryption is performed by adding 

power consumption data to Enc (0). 

 

 Table 5: Runtime comparison of user-side encryption in seconds 

 

Scheme Runtime of user-side encryption  

(in seconds) 

ECC based HE 0.148 

CKKS 2.112 

Pre-computation (Enc (0)) 0.984 

Optimized Encryption (Enc (0) + m) 0.016 
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6.2.2 Comparison of server-side computation 

 

In the CKKS scheme, the server computes the HM-AM ratio as the inverse function in 

the HEAAN library supports the computation of inverse operation over encrypted data. 

Whereas in ECC based HE scheme, division operation over encrypted data is not possible. 

Therefore, the server just calculates the summation of HM and AM and sends it to the 

utility to compute the HM-AM ratio. In the proposed scheme, we also perform bilinear 

pairing on the server-side to check if the individual encryptions Enc (𝑃𝑡
(𝑖)

)  and Enc 

(𝑃𝑡
′(𝑖)

)  are related to each other. In the CKKS scheme, in the last time slot, the HM-AM 

ratio is calculated. As shown in Table 6, the proposed scheme performs better both with 

and without bilinear pairing operation on the server-side. The proposed scheme performs 

100 times better than the CKKS scheme for server-side computation. 

 

 

 

 

 

ECC based HE 

scheme 

Runtime  

(in seconds) 

Server computation 

(without bilinear 

pairing) 

0.051 

Server computation 

(with bilinear 

pairing) 

112.457 

 

6.2.3 Comparison of utility-side decryption 

 

In the CKKS scheme, the utility decrypts the HM- AM ratio (𝑄𝑑) to perform anomaly 

detection. Whereas in the proposed scheme, the utility computes the HM-AM ratio and 

performs decryption operation as well. Hence, as shown in Table 8, the CKKS scheme 

performs better for utility side computation. 

 

Table 8: Runtime comparison of utility-side decryption in seconds 

 

Scheme Runtime of utility-side decryption  

(in seconds) 

ECC based HE 10.377 

CKKS 0.273 

 

 

 

 

 

CKKS scheme Runtime 

 (in seconds) 

Server computation 

(per time slot) 

63.962 

Server computation 

(for last time slot) 

127.628 

Table 6: Runtime for server-side computation 

(in seconds) for the ECC based HE scheme 

Table 7: Runtime for server-side computation 

(in seconds) for the CKKS scheme 
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6.2.4 Comparison of total execution time 

 

The total execution time of the proposed scheme as shown in Table 9, both with and 

without bilinear pairing is much better compared to the CKKS scheme. 

 

 

 

 

ECC based HE 

scheme 

Runtime  

(in seconds) 

Total execution time 

(without bilinear 

pairing) 

10.576 

Total execution time 

(with bilinear 

pairing) 

122.982 

 

 

6.2.5 Comparison of ciphertext size for anomaly detection 

 

Table 11 shows the ciphertext size for the proposed scheme and the CKKS scheme. The 

ciphertext in both the schemes is first transferred from a household to the server and then 

from the server to the utility. As shown in Table 11, the ciphertext size for the proposed 

scheme is much smaller compared to the ciphertext size of the CKKS scheme. Hence, the 

cost of ciphertext size for the proposed scheme is less compared to the CKKS scheme. 

 

Table 11: Comparison of ciphertext size for anomaly detection 

 

Scheme Household         Server Server          Utility 

ECC based HE 3 ∙ 2 ∙ 2 ∙ 464 bit = 0.696 KB 24 ∙ 2 ∙ 2 ∙ 2 ∙ 464 bit = 11.136 KB 

CKKS 3 ∙ 2 ∙ 215 ∙ 491 bit = 11,784 KB 2 ∙ 215 ∙ 36 bit = 288 KB 

 

6.2.6 Comparison of maximum memory usage 

 

Table 12 shows the comparison of maximum memory usage of the proposed scheme and 

the CKKS scheme. As shown in the table, the proposed scheme performs better than the 

CKKS scheme in terms of maximum memory usage. 

 

Table 12: Comparison of maximum memory usage 

 

Scheme Maximum Memory Usage (in MB) 

ECC based HE 2.088 MB 

CKKS 33.783 MB 

 

CKKS scheme Runtime 

 (in seconds) 

Total execution time 

(without optimized 

encryption) 

196.087 

Total execution time 

(without optimized 

encryption) 

191.879 

Table 9: Total execution time (in seconds) 

for the ECC based HE scheme 

 

Table 10: Total execution time (in seconds) 

for the CKKS scheme 
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6.3 Summary of evaluation 

To summarize, the proposed scheme performs better than the CKKS scheme in terms of 

encryption time, server-side computation, total execution time, the cost of ciphertext size 

and the maximum memory usage. The proposed scheme is as secure as the CKKS scheme 

and ensures that the consumers’ private data is protected from the server and the utility.  
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7.  Conclusion 

 

In this thesis, I have proposed an elliptic curve-based privacy-preserving anomaly 

detection scheme for data falsification in smart metering. I have compared our 

proposed scheme with the existing CKKS based method by implementing both 

the schemes on a similar platform and system. The proposed scheme is 

computationally efficient compared to the CKKS method for user side 

computation and server-side computation as well. For our proposed scheme, the 

user side computation is 10 times faster and the server-side computation is more 

than 100 times faster. 
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