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1. Viscous conservation laws
1.1 Inflow problem

Inflow and outflow problems in the half space for
a one-dimensional isentropic model system of
compressible viscous gas

Akitaka MATSUMURA

Department of Mathematics
Graduate School of Science
Osaka University
Osaka 560-0045, Japan

Abstract

We consider asymptotic behaviors in time of solutions to the initial
boundary value problems in the half space for a one-dimensional isen-
tropic model system of compressible viscous gas. In particular, we focus
our attention on inflow(or outflow) problems where the velocity on the
boundary is given as a constant inward(or outward) flow, and try to clas-
sify all asymptotic behaviors of the solutions. It turns out that depending
on the data both on the boundary and at far field (especially depending
on whether the state is subsonic, transonic, or supersonic), the asymp-
totic state variously consists of rarefaction waves, viscous shock waves,
and also stationary boundary layer. Moreover, we give a survey of our
recent results on some particular cases which justify our classification.

1 Introduction

The one-dimensional and isentropic motion of compressible viscous gas which
fills the half space is described by the following system in the Eulerian coordi-
nates:

pt + (pu)z =0,
(pu)e + (pu? +p(0))e = pize, >0, t >0, (1.1)
p(p) = ap”,

where p(> 0) is the density, v is the velocity, p is the pressure, all coefficients
p(> 0), a(> 0),and (> 1) are assumed to be constant. We study the initial
boundary value problems to the system (1.1) with the initial data

(p,u)(0,z) = (po,uo)(z), x>0, 11:1;%/)0(7:) >0, (1.2)
the boundary condition at far field z = +00

lim (p,u)(t, z) = (p1,us), >0, (1.3)



and also one of the following three types of conditions on the boundary z = 0.

Case 1 (zero velocity on the boundary):
u(t,0) =0, ¢t>0. (1.4),
Case 2 (negative velocity on the boundary):
u(t,0) =u- <0, t>0. (1.4)5

Case 3 (positive velocity on the boundary):

u(t,0) = u_ >0,
{ p(t,O) =0 >0, t>0. (1.4)3

Here ps and uy are prescribed constants, and we of course assume the initial
data satisfy the boundary conditions (1.3) and one of (1.4) as compatibility
condition. It is noted that the Case 1 means the wall is impermeable, and the
Case 2 (resp. Case 3) means the outflow (resp. inflow) constantly exists on the
wall. It is also noted that in the Cases 1 and 2 the condition on the density can’t
be imposed, but in the Case 3 it has to be imposed, so that the corresponding
problem to the first equation of (1.1) (conservation of mass density) is well
posed as a hyperbolic equation for the mass density p. In what follows, we call
the initial boundary value problem (1.1) ~ (1.4)1, (1.1) ~ (1.4)2, and (1.1) ~
(1.4)3, the impermeable wall problem, outflow problem, and inflow problem,
respectively. In this article, we are interested in the time-global existence of the
solutions of these three types of initial boundary value problems, especially the
large time asymptotic behaviors of the solutions in connection with the various
combinations of the data on the boundary and at far field.

There have been many works on the asymptotic behaviors of solutions to
the Cauchy problems for the system (1.1) where the boundary conditions at far
fields £ = +00 are given by

lim (p,u)(t,z) = (px,ux), t>0. (1.5)
T— oo

Refer to [9]~[11], [14], (7], etc., and the references therein. All these results
show that the large time asymptotic behaviors of solutions of the Cauchy prob-
lem with (1.5) are basically same as that of Riemann problem to the hyperbolic
part of (1.1)(Euler equation), if only we replace the shock wave with disconti-
nuity by the corresponding smooth viscous shock wave. Hence the asymptotic
behaviors are naturally classified into eight different patterns of combination
of the rarefaction and viscous shock waves. On the other hand, in the cases
of IBVP, the influence of viscosity is expected to emerge not only in smooth-
ing effect on discontinuous shock wave, but also in forming a boundary layer.
As for the question when the boundary layer forms, we propose a criterion as
follows by considering the Riemann problem for the Euler equation, where the
initial right state (p4,u4.) is given by the far field state (1.3), and the left state
(p-,u-) is given by all possible state which is consistent with the boundary
condition (1.4) on = = 0 (that is, in the cases of the impermeable wall and out-
flow problems, p_ is freely given). When the left state is uniquely determined so
that the value on the boundary = = 0 of the solution of the Riemann problem



is consistent with the boundary condition, that is when the solution consists
of only elementary waves with positive speed, we expect no boundary layers
emerge. On the other hand, when the value of the Riemann problem’s solution
on the boundary is not consistent with the boundary condition for any admis-
sible left state, that is the case when the solution includes an elementary wave
with negative speed or a stationary shock wave, we expect a boundary layer
which smoothly but steeply compensate the gap comes up. Roughly speaking,
inconsistency of the incoming or standing hyperbolic waves with the boundary
data as the hyperbolic-parabolic system does form a boundary layer. Thus, we
can easily imagine the situation crucially depends on whether the state either on
the boundary and at far field is subsonic, transonic, or supersonic, because the
characteristic wave speeds of the Euler equation are given by u £ ¢(p) , where
c(p) is so called the sound speed. Recently the impermeable wall problems are
investigated by Matsumura & Mei [8] and Matsumura & Nishihara {12], and it
turns out that the asymptotic value of p_ is uniquely determined by the given
far field data (p.., uy) so that no boundary layers appear and the solution even-
tually tends toward an outgoing rarefaction wave in the case u_ < uy ([12]),
and a properly shifted viscous shock wave in the case u_ > u., ([8]). This means
the asymptotic behaviors of solutions are basically classified only into two pat-
terns, making a remarkable contrast to the Cauchy problem. On the other hand,
the inflow and outflow problems are expected to be far more complicated, and
in fact, there have been few results on them. In this paper, we construct the
boundary layer by the stationary solution, and try to classify the all possible
large-time asymptotic behaviors of solutions of the inflow and outfow problems
through the criterion mentioned above. Moreover, we give a survey of our just
recent results on some typical cases, which justify our classification.

The paper is organized as follows. In the Section 2, we recall the Riemann
problem to the Euler equation and introduce some notations. We recall the
arguments on the Cauchy problem in the Section 3, and summarize the recent
results on the impermeable wall problem in the Section 4. We study the outflow
problem in the Section 5, and finally the inflow problem in the Section 6.

2 Riemann Problem

We recall the Riemann problem to the hyperbolic part of (1.1), that is, Eu-
ler equation. In what follows, we use the equivalent system to (1.1) which is
described in terms of the specific volume v (:= 1/p) and the velocity u:

(3)e + (%)= =0,
(2)s + (£ +p(v))s = ptge, >0, >0, (2.1)

p(v) =av™7,



Now we consider the Riemann problem on R. to the hyperbolic part of (2.1) for
given constant states (ve,us), ve > 0:

(3¢ +(¥)e =0,

%)

(B)e+ (X +p(): =0, z€R, t>0, (2.2)

(vmyu-) <0
(U+,U+) z>0.

(v,u)(0,2) = {

For smooth v and u, the system (2.2) is rewritten in the form

< y )t + A(v,u) ( ; )I =0, (2.3)

o= )

The eigenvalues {);}2_; of A(v,u) and corresponding right eigenvectors {r;}2_,
are given by

where

Ai(v,u) =u+ Al (v), ri(v) = ( _A:}(U) > (2.4)

where Af(v) = —[p/(v)|*/2, and A} (v) = |p'(v)|/2. We also define the sound
speed c(v) by
c(v) :=vlp (V)| = ey~ T

Here note that AL (v) are corresponding to the eigenvalues of the system in
Lagrange coordinates setting (cf. (6.6)). Thanks to the properties p'(v) < 0
and p”’(v) > 0, the system (2.2) is strictly hyperbolic and its both characteristic
fields are genuinely nonlinear for v > 0. Let Q = {(v,u) € R, x R} be the
phase space of (v,u). In what follows, let us abbreviate (v,u) to w, (v, us) to
w, and so on, for simplicity. Since the integral curves of the right eigenvectors
are described by the ordinary differential equations du/dv = —AF(v) in £, the
rarefaction curves Rj(w-) and Ro(w-) for any fixed left state w_ € Q are
defined by

v
Ri(w_)={w=(v,u) € Qu=1u_ —-/ )\f’(s)ds, v>u_} 1=1,2.

v
Similarly, for any fixed right state w, € Q, the rarefaction curves R; (w4) are
defined. When wy € Rij(w-)(i = 1,2), or equivalently w_ & f%i(w.;.), the
solution of the Riemann problem (2.2) consists of two constant states wx and
one centered rarefaction wave which continuously connects the left and right
states. We denote this solution by

WiR(x/t;w—’w-%-) = (ViR’UiR)(x/t;w—vwﬁ-)r 1=1,2,

and simply call it i—rarefaction wave. On the other hand, if wi and s € R
satisfy the Rankine-Hugoniot condition

—s(E - (- =0,

(2.5)

2

2
U_ u

=s(35 = 35) + (57 = 3= +p(v4) — p(v-)) = 0,



then it is known the Riemann problem has a shock wave solution with the shock
speed s. By elementary calculations to the R-H condition (2.5), the value Uyp
and the shock speed s should be given in terms of u_ and vy by

Ut =u_ — (vp —vo)sE (v, vy,
(2.6)
s = s;(w_,vy) = u_ +v_siL(v_,'u+), 1=1, 2,
where
1
plvs) —p(v-)|* .
st(vo,vp) = — T o cs5(voyvy) = —st (v, vy). (2.7)
Combining the above together with the entropy condition
/\-L(’UJ.‘.) <85 < /\i(w_), (28)

which is simply equivalent to u. < u_ in our cases, we can define the shock
curves S1(w-) and Sa(w-_) for any fixed left state w_ € Q by
L

Siw-)={w=(v,u) e Qu=u_ —(v— vo)si(v-,v), u<u_}.
Similarly, for any fixed right state wq € §, the shock curves S (ws) are defined.
When wy € Sj(w_) (i = 1,2), or equivalently w_ € S;(w.), the solution of
the Riemann problem (2.2) consists of two constant states w4 and one shock
discontinuity which connects the left and right states and propagates with the

shock speed s;. We denote this solution by
WiS(x - sitiwo,we) = (Vis, Uis)(z —sitiwo,wy), 1=1,2,

and simply call it i—shock wave. .

For any fixed right state w, € Q, the state space (! is divided into four
domains by the rarefaction curves {R;(w.) 2, and shock curves {S:i(wo)}2,,
that is, RR(w_) with the boundary R; (w-) and Ra(w-), RS(w_) with the
boundary R;(w_) and Sa(w-), SR(w_) with the boundary S;(w_) and R (w_),
and SS(w-) with the boundary S;(w_) and Sa(w-). When w, is located
in one of the above four domains, the Riemann problem’s solution is given
by the combination of the corresponding 1- and 2—waves. For example, if
w4+ € RS(w-), then there exists a unique intermediate state @ € Ri(w_-) sat-

isfying w. € S2(w), and the solution is exactly given by
W(z/tw_, @) + Wy (z - sot; 0, wy) — 0.

Thus, all patterns of the solution of the Riemann problem are classified into eight
cases depending on where wy is located, that is, {Ri(wo )}y, {Si(w-)}2,,
RR(w.), RS(w-), SR(w_), and SS(w..).

3 Viscous Shock Waves

We recall the viscous shock waves of (2.1) and the known results on the Cauchy
problem and also the impermeable wall problem. The viscous shock wave W



with the shock speed s € R is defined by special solution of (2.1) which has the
form

w(z,t) = (VU)(E), &=z-st, (3.1)

and smoothly connects the states w+ € Q so that W(£o0) = w.. Substituting
(3.1) to (2.1), we have the system of ordinary differential equations

o (3.2)
=s(§) + (5 +p(V)) =uU", E€R.

It is known that under the R-H condition (2.3) and the entropy condition (2.4),
which implies w4 € S;(w.) (i = Lor2), the equation is reduced to

U@€) = us — (V(§) —ve)sf(v-,v4), E=1-sit,
usiV'(€) = =p(V(€)) + pluz) = (V(§) —v)(s7)?, € €R, (3.3)
V{too) = vy,

where the shock speed s = s;(w_,vs) is given by u_ + v_s&(v_,vy). Due to

the convexity of p, it is easy to show the system (3.3) has a unique solution up
to shift. We denote this solution by

Wivs(:r - sit;w—?w"f’) = (%VS’ U_ivs)(‘r - sit; w—aw+)s 1= 15 2:

and simply call it i—viscous shock wave.
Now we recall the results on the asymptotic behaviors of sclutions of the
initial value problem to the system (2.1) with the initial and far fields conditions

(v,u)(0,2) = (vo,up)(z), T€R, (3.3)
Igriloo(v,u)(t,x) = (vt,us), t>0. (3.4)

As we mentioned in the Section 1, the asymptotic sates are basically same as
that of Riemann problem to the hyperbolic part, if only we replace the shock
waves by the corresponding smooth viscous shock waves. Therefore, for any
fixed w_ € €, depending on where w, is located, the solution is expected to
tend toward the following asymptotic states:

Wz /tw-,wy), forwy € Ri(w-),
WYS(z - sit + az;w-, wy), forwy € Si(w-),
WE(z/t;w-, ) + W(z/t; 0, wy) — 0, forws € RR(w-),

WYS(z — st + a1y w-, W)+
WYS(z — sat + a3 W, wa) — forwy, € SS(w-),

WY (z - sit + oq;w, @) + W (z/t; 0, wy) — @, forwy € SR(w_),

WE@/tiw_, @) + WY S(z — sot + ag;w,wy) — 0, forwy € RS(w_).



As for these asymptotic behaviors, there have been many works where all results
are stated for the equivalent problem to (1.1) described in the Lagrangian mass
coordinates, in which the system can be handled in easier way than that in the
Eulerian coordinates. Here let us make a survey in terms of the Lagrangian
coordinates. Matsumura & Nishihara [9] first treated the case wy € Si(w.)
and succeeded in showing that if (v — 1)jw, — w-| is suitably small, the vis-
cous shock wave W}¥'5(z — s;t; w_,wy) is asymptotically stable for small initial
perturbations with zero integrals, so that the phase shift & does not occur. For
the initial data with non-zero integrals, Liu (2][3] studied the criterion how to
determine the phase shift based on his deep insight, and Szepessy & Xin [14]
succeeded in showing, for the system with artificial viscosity terms which make
the system uniformly parabolic, that if |w, — w_| and the initial perturbations
are suitably small, then the solution tends toward the WY3(z—sit+a; we LWy )
where the phase shift « is uniquely determined by the Liu’s criterion. Although
the introduction in [14] reads the physical viscosity case can be similarly treated,
it seems not to be so trivial. The arguments by Szepessy [15] on the asymp-
totic stability of the viscous shock wave to the Broadwell model are believed
enough to compensate the gap. However the complete proof for our original
system is not available in any publications up to now. Therefore we really hope
to give a complete and simpler proof to our physical viscosity case, even if we
use a special feature of our system. In the case w. € SS (w-), combining the
arguments in [9] together with that in [2][3], we can show as a kind of exer-
cise that if jwy — w_| is suitably small and the initial data is suitably close to
WS (z;w_, %) + WS (z;0, w.) — @, then the solution tends toward

WIVS(:E - si1it+ o wo, W) + I/VZVS(I — Sot + o, W, wy ) — W

where the shifts oy and a» are uniquely determined by the initial data. In the
cases w4 € (R;URURR)(w- ), Matsumura and Nishihara [10][11][12] succeeded
in obtaining the complete results that the asymptotic state is given by the
corresponding either simple rarefaction wave or combination of two rarefaction
waves of the Euler equation without any smallness conditions on lwy —w_|, v,
and the initial data. Finally we should emphasize the cases wi € (SRURS)(w-)
are still entirely open. These cases would be very interesting and challenging,
because we could expect the interaction between the tails of the rarefaction and
viscous shock waves are persistent and subtle enough to make controlling the
phase shift of the viscous shock very entangled.

v Figure 3.1 “ Sa(wy) Figure 3.2

\ 3! (v~,0)
v

W4

3 (v_,0)

R?(w+)
Let us turn to the case of the impermeable wall problem (1.1) ~ (1.4);.
Following our criterion how to expect the asymptotic state as mentioned in the



introduction, let us consider the corresponding Riemann problem (2.2) where
the left state v_ is freely given, that is, all candidates of the left states w_ form
the v—axis in Q. When u. > 0, as the Figure 3.1 shows, we can see that the
Riemann solution includes an incoming wave which is not consistent with the
boundary condition (1.4); for all w_ on the v axis except the unique point such
that (v-,0) € Rg(w+), equivalently wy € Rp(v-,0). For this v_, the Riemann
solution consists of only an outgoing rarefaction wave W (z/t;w_,w,), and
we do expect it as the asymptotic state of the solution. In fact, this conjecture
was completely proved by Matsumura & Nishihara [12] without any smallness
conditions on |wy — w_|, 7, and the initial data. Similarly when uy <0, as
the Figure 3.2 shows, we can see that (v_,0) € Sy(wy) is the only the option
for which the Riemann solution is consistent with the boundary condition, and
thus we expect the asymptotic state to be the corresponding viscous shock wave
Wy (x — sot + a; w_, wy.) with a proper phase shift c. Here we should note the
shock speed s; is positive no matter how negatively large u4 is. (This fact is
showed as follows: For a shock wave with the zero shock speed s, the left state
w- turns out to be located on the straight line connecting the origin and the
right state w,., due to the first equation of the R-H condition (2.5). This implies
the shock wave has a positive shock speed s, if w. € Sy(w, ) is located above
the straight line, and has the negative speed s, if below the line (cf. Figure 3.2).)
Recently Matsumura & Mei [8] succeeded in obtaining a positive result on this
conjecture that if the viscous shock wave is suitably far away from the boundary
at the initial time and if the initial perturbations are small enough, then the
solution tends toward a properly shifted viscous shock wave whose phase shift
is uniquely and explicitly determined by the initial perturbations. Thus, the
asymptotic behaviors of the solutions for the impermeable wall problem can be
basically classified into only two cases, whether u4 Is positive or negative, in
contrast with the Cauchy problem, eight cases.

Finally in this section, we should make some remarks on the phase shift just
mentioned above to compare our case with that of the scalar viscous conservation
laws, whose IBVP with Dirichlet zero boundary condition were studied in Liu
& Yu [6], and Liu & Nishihara [5]. Even in these scalar cases, in order to locate
the phase shift, they needed the laborious analysis (pointwise estimates via
Green function in [6], technical weighted estimates in [5]), since the shift can’t
be determined explicitly because of the viscosity term. So we had thought our
system case is much more difficult in many aspects. However it turns out that
our system with physical viscosity on the half space has several better features
than those both for the scalar cases with boundary and also for the systems
without boundary. In particular, our system is not uniformly parabolic, i.e.,
there is no viscosity term for the density, and we can’t impose the boundary
value of the density, which usually gives various difficulties. This is really the
reason why we can specify the phase shift o of wy's (T — st + @) only by the
hyperbolic equation for the density, and we can expect that value of v(0,t) on
the boundary is automatically controlled to tend to the value v_ by the structure
of the system itself so that the whole solution w(z,t) tends to WY S(z—sot+a)
with the same o. Let us show how to specify the shift & more precisely. Let
denote Wy'S(z — sat + a;w_,wy) simply by W(z — st + o). Then, by the
equation of the conservation of density, we deduce

1 1 u U

(;— v)t'*(;—v)z:& (3:5)



Integrating (3.5) with respect to both z and t, we have

1 1, [® 1 1 _ [fU(=sT+a) )
/0 E_Vd”“/o vo(T) V(r-%—a)dz /OV(—ST+ f)d' (36)

If we assume that v — V tends to zero well enough, the right hand side of (3.6)
should satisfy

<1 1 CU(-st +a)
- dz — ————%dr = 0. 7
_/0 vo(z) V(r+a) ’ o V(-sT+a) ar =0 (37)
Set the left hand side of (3.7) by I(a) and differentiate it with respect to o as
dl(a) 1 1 U(a)
do ( V(a) Via ))' (3.8)

Since the first equation of (3.2) gives

-s%a)- + -g% = ~s%, aeRY, (3.9)

we deduce from (3.8) and (3.9) that

I(0) = ~(= - i)a-u( )

Thus it turns out that the phase shift a should be given by the formula

B 1 Sl | 1 _ [T U(=sT)
C“p+—p_{/o w@ V@ P )y v I

4 Boundary Layers

Now we are ready to start to consider the Inflow and Outfow Problems. As
mentioned in the introduction, the classification of the large time asymptotic
states are expected to depend crucially on whether the state either on the bound-
ary and at far field is subsonic, transonic, or supersonic. Hence we d1v1de the
domain Q into 5 regions (see Figure 4.1)

0
Vpper = (wEu>cl)), 0
v super

P:;'ans = {’LUEQ!‘U,=C(’U)}, Q b

+
Qsub = {’w € Q|jul < C(’U)}, Irans

v
Dirans = {weQlu=—c(v)}, | D
Qs_uper = {w €Q l u < —C(’U)}, Qs_uper

Figure 4.1 (y > 1)



where we should note that
w e QF, = 0<A(w) < Ag(w),

super
welf,,, — 0= A(w) < Az (w),
w E Qsup - /\1(w) <0< /\Q(w),

we Iy - A(w) < A(w) =0,

trans

w e N - A(w) < /\g(w) < Q.

super

Now let us pick up an example from the Outflow Problem(1.1) ~ (1.4)5 which
show that any corresponding Riemann solution is not consistent with the bound-
ary condition (1.4);. For fixed u— < 0,v4 > 0, and u4 > 0, consider the
Riemann problem with free v_ as in the previous sections.

bu
W+
v
b \\/,' F;‘ans
u .
* V4 N
- /Q:s—u er\ =
g Ra(wy)

Figure 4.2

As the Figure 4.2 shows, 2-rarefacton curve Ry(w.) intersects I trans @t & point
denoted by w, = (Ve, Us). Ifu. < u_ <0, as in the impermeable wall prob-
lem, there exist a unique v_ € ]:Zz(w+) so that we can expect the solution tend
toward W (z /t; w-,w4) and no boundary layer appear. However, if u_ < u,
then, even for the most plausible option v_ € Rg(w+), the Riemann solution
WH(z/t; w_,w,) includes a part Wf(z/t;w.,w,) which goes into the bound-
ary, so is not consistent with the boundary condition (1.4)2. In this situation, we
do expect the interaction between the incoming wave and the boundary condi- -
tion select a new v_ and form a boundary layer solution which connects w_ and
wy. In this paper, we refer to stationary solution W(z) of (1.1) with the con-
ditions W(0) = w_ and W(+o0) = w4 as boundary layer solution connecting
w- and wy, and denote it by

WL (iw_,wy) = (VB w_,w,), U'BL(z;w_,w+))‘

More precisely, the boundary layer W5Z (z;w_, w, ) is defined by the solution

of
By =o,

<%

(T +p(V)) =pU", z>0, (4.1)
W) =w_, W(+o00)=w,.

10



Let us investigate the existence of W (z) and its properties. We first consider the
case corresponding to the Outflow Problem, that is, u_ < 0 ( the following ar-
guments on stationary solution are basically due to Kawashima & N ishibata[1]).
The first equation of (4.1) immediately implies

Ulz) uy u. '

== —, > O7 42

Viz) vy w_ (42)
in particular, that for a fixed w., the boundary state w_ should be located on
the line BL(w,) which passes through the origin and w4,

BL(w:) = {w e Qlu= s, so = ——*}.

Integrating the second equation of (4.1) with the aid of (4.2), we have

souV' = =s§(V —v) +p(vy) = p(V), z >0,
(4.3)
V(0)=v_, V(400)=uv,.

Here note that sg = —us/vs > 0. We can check whether V"’ has right sign or
not on the interval between v_ and v, in (4.3) as follows (refer to Figure 4.3).
First fix wy, then draw the line u

BL(wy) which always intersects }
the transonic line Ty .., u/v = ' Sa(wy)
—|p’(v)[*/2. Denote the intersection
point by w. = (v.,u.). Consider , ‘
the graph of p(v) and draw the tan- ; f : I ans
gential line at (v.,p(v.)). It easily "l ‘ , '
turns out that the slope of the tan- |
gential line exactly equals to —s8.
Then draw the line with the same
slope —sZ which passes through the /
point (v, p(vy)), denote this line by : - BL(wy)
lws) = {(v,g())}. Note q(u) ex- '

actly equals to —s3 (v — vy) +p(vy). \
Thus for any w_ € BL(w,), we can
easily check the sign of V/ on the
interval between v_ and vy in (4.3)
by seeing how the two graphs of p(v)
and g(v) intersect. If w. ¢ Qupers
we can see that the 2—shock curve
Sy(wy) intersects the line BL(w.)
at not only w; but another point, be
denoted by W = (%, 4), correspond-
ingly the line {(w,) intersects the v Ux U+
graph of p(v) at not only v = v,
but v = 7. Then it easily turns out

v

Wy

w4

Figure 4.3

that V' has a right sign for u_ < @, that is, there exists the boundary layer so-
lution WBL(z;w_, w4 ), and have a wrong sign for 0 > u_ > 4. As for U = 4,
although the sign is right, there exists no boundary layer solution but the sta-
tionary viscous shock wave W (z + o; w_, w4). fw, €Ty, we can also see

11



that the 2—shock curve S;(w, ) tangentially intersects the line BL(wy) at wy
and has no other intersection points. Then V' has a right sign only for u_. < u,,
and the boundary layer solution tends toward w.. at the algeblaic rate O(1/x)
as T goes to +co, because the line [(w, ) coincides with the tangential line of
the graph of p(v) at v = v, = v, (then we say the boundary layer solution is
"degenerate”). Thus by these arguments above, we have the following

Proposition 4.1. Suppose uy. < 0 and w- € BL(w.).
) Ifwy €95, and 0 > u_ > 4, then there exists no boundary layer solution.
) Ifwy € Q5,00 and @ > u_ > uy, then there exists a unique boundary layer
solution of (4.1) and positive constants C and § such that

V'(z) >0, z>0,and [W(z)—-ws| < Cexp (=dz), T — +o0.

i) Ifwy € Qguper and uy > u_, then there erists a unique boundary layer
solution of (4.1) and positive constants C and § such that

Vi(2) <0, z>0,and |W(z)—ws| < Cexp(—6z), T — +oo.

w) If we € Thgns and 0 > u_ > uy, then there erists no boundary layer
solution.

v) Ifwy €Ty, and us > u_, then there erists a unique degenerate boundary
layer solution of (4.1) and a positive constants C such that

V() <0, z>0,and [W(z)-wy|<
v} If wy € Q. then there ezists no boundary layer solution.

Next we consider the boundary layer solution which satisfy (4.2)(4.3) cor-
responding to the Inflow Problem, that is, u— > 0. In this case, note sg =
—ux/vs <0, and fix w_(u_ > 0) at first for later arguments. As in the prvious
case, draw the line

BL(w_) = {w € Q]u = —sov, s = — =},

which always intersects the transonic line I'}, ., u/v = Ip'(v){*/2, denote the
intersection point by w. = (v, u.), and then check the sign of V"’ in (4.3) for any
wy € BL{w_). In particular, if we QY .., the 1—shock curve S)(w_) intersects
the line BL(w_) whose intersection point is denoted by w, and V' has a right
sign only for 0 < uy < 4.

Proposition 4.2 Suppose u_ >0 and wy € BL(w_).
1) Ifw- € Qeup UTH 4ns and 0 < uy < u_, then there exists a unique boundary
layer solution of (4.1) and positive constants C and § such that

Vi(z) <0, z>0,and |W(z)~ws| < Cexp(—6z), T — +oo.

i) If w_ € Qsyp and u_ < uy < u., then there erists a unique boundary layer
solution of (4.1) and positive constants C and & such that

Vi(z) >0, z>0,and |W(z) - wy| < Cexp(—dz), T — +0co.

12



i) If wo € Qgup and ug = u., then there exists o unique degenerate boundary
layer solution of (4.1) and positive constants C and § such that

Viz) >0, z>0,and |W(z)—-wy| <

w) Ifw. € Qup UTE . and u. < Ui, then there ezists no boundary layer
solution.

v) If wo € Qf, .. and 0 < us < 4, then there exists a unique boundary layer
solution of (4.1) and positive constants C and & such that

V'(z) <0, z>0,and [W(z)—w,| < Cexp (=éz), T — +o0.

vi) If we € Qf,... and @ < u,, then there erists no boundary layer solution.

5 Outflow Problem

In this section, using the arguments in the previous sections, we try to classify
all asymptotic behaviors of solutions of the Outflow Problem (1.1)~(1.4)5. We
primarily divide into three cases depending on where w4 is located.

*uy >0 (see Figure 5.1):

r-

trans

\\ BL(w,)
QS_’U. er iy
P Y Ra(wy)

Figure 5.1

(i) 0 > u_ > u, : There exists a unique v_ such that w_ Ro(w.) and the
asymptotic state is expected to be

VVZR(:r/t; wo, W ). (5.1)

(i) u. > u_ : There exists a unique v_ such that w_ ¢ BL2(w,) and the
asymptotic state is expected to be

WBL(z;w_,w*)-i-TlVr_,R(z/t;w*,w.,,) - W,. (5.2)

where note that the boundary layer solution W5 Lzyw_,w,) is degenerate.
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sus <0, we € Qoup UT, . (see Figure 5.2):

uj i\ Sa(wy)

/ I‘zt_'ra‘n.s

BL(w.)

Q

;uper RQ (w+ )
Figure 5.2

(1) 0> u_ > uy : There exists a unique v— such that w_ e So(wy) and the
asymptotic state is expected to be

‘VQVS(T _ SQt + ; UJ—, w+) fOI' some «. (53)

(i) uy > u_ > u, : There exists a unique v_ such that w_ € Ro(wy) and the
asymptotic state is expected to be

W(z/t;w_wy). (5.4)

(ili) u. > u- : There exists a unique v_ such that w_ € BLy(w.) and the
asymptotic state is expected to be ’

WO (2 w_ w,) + W (z/t; we, wy ) — wa. (5.5)

where note that the boundary layer solution WBL(z; w_,w.) is degenerate.

suy <0, wy € Q.. (see Figure 5.3):

1 \ 5’2(w+)

e
/ 0- BL(UJ+)

super

Figure 5.3

(i) 0 >u_ > 4 : There exists a unique v such that w_ € S>(wy) and the
asymptotic state is expected to be

WYS(z — sot + o w-,wy) for some a. (5.6)
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(i) u~ = @ : There exists a unique v_ such that w_ € Sa(wy) and the
asymptotic state is expected to be

Wy S(z + aft);w-,wy) for some a(t) / +o0. (5.7)

(iif) & > u_ > uy : There exists a unique v_ such that w_ € BLy(w,) and
the asymptotic state is expected to be

WEH(ziw_,wy)  with (VBLY <o, (5.8)

(iv) w4 > u_ : There exists a unique v_ such that w_ € BL(ws+) and the
asymptotic state is expected to be

Wz w_,wy)  with (VBLY > g (5.9)

Among above cases, let us make some comments on the behavior (5.7) which
is subtle and interesting. In this case, the corresponding viscous shock wave
WYS(z;w_, wy) is stationary, so there is always a gap between the value w_
and WYS(0+o; w_, w4 ) on the boundary for any constant shift o, which makes
us expect the shift o rather depend on ¢ and increase up to +00 as t — +oo in
order for the gap to decrease to zero. This case is Jjust corresponding to that for
the Burgers equation in Liu & Yu [6].

Only the results rigorously proved concerning above asymptotic behaviors
are given by Kawashima & Nishibata [1]. They proved that if wy € 5.,
w- € BL{w;), and |wy — w_] is suitably small, then the boundary layer so-
lution WEL (z;w_,wy) is asymptotically stable. It should be noted that they
employ a method where the monotonicity of the boundary layer solution is not
used, so they can treat the both cases w_ < wi and wy < w_ (see [1] for
details). All other cases are open problems! Finally in this section, we should
point out a difficulty the Outflow Problem faces. If we employ, so called, the
Lagrangian mass coordinates system, which usually makes the form of equa-
tions simpler and the treatment of the equations easier, the problem becomes
a free boundary value problem which makes the treatment of boundary more
difficult. On the other hand, as we will see in the next section, the Inflow
Problem become a corresponding IBVP with a prescribed moving boundary
(z = s0t,80 = —u_/v_) in the Lagrangian mass coordinates, since the both
values of velocity and density on the boundary are given.

6 Inflow Problem

In this section, we try to classify all asymptotic behaviors of solutions of the In-
flow Problem (1.1) ~(1.4)3, and show some cases are rigorously proved. Thanks
to all arguments in the Section 3 and 4, we primarily classify into two cases
in terms of the location of w_, that is, w_ € Q,,; U Tfans OT w_ € Qfupers
and then for each w_ classify into many sub-cases depending on where wy is
located. For w_ € Qg UTE . . we basically divide the phase space Q of wy
into 13 regions, and for w_ € QF, .., 14 regions.
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ow_ € Qup U (see Figure 6.1):

trans

Figure 6.1

(1) wy € BL(w-),0 < uy < u_: The asymptotic state is expected to be
WBL(g; w_,wy ).

(2) wy € Region(2): There exists a unique @ & BL(w-) (% < u_) such that
wy € Ry(w) and the asymptotic state is expected to be

Wh (2 w_, @) + Wz /t; @, w)) — o

(3) wt+ € Region(3): There exists a unique @ € BL{w.) (@ < u_) such that
wy € Sy(10) and the asymptotic state is expected to be

WL (z;w_,w) + WY 5(z — spt + a; @, wy) — .
(4) w4+ € Rp(w-): The asymptotic state is expected to be
WE(z/t;w_,wy).
(5) wy € Sa(w-): The asymptotic state is expected to be
WYS(x — sot + o Wo, Wy ).
(6) wy € BL(w-),u_ < uy < u,: The asymptotic state is expected to be
WBL(IL‘;w—,‘w+),
where note that if w, = w,, then the boundary layer W5L(z;w_ w,) is de-

generate.
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(7) wi € Region(7): There exists a unique @ € BL(w-) (% > u..) such that
w4 € Ry(wW) and the asymptotic state is expected to be

WBL(giw_, @) + T/V’QR(x/t;w,w+) — .

(8) w4 € Region(8): There exists a unique @ & BL(w_) (@ > u-) such that
w4 € S2(w) and the asymptotic state is expected to be

WL (2 w_ @) + WY S(z — st + o; W, wy ) — 1.
(9) w4 € Ro(w.): The asymptotic state is expected to be
WEL (rw_ w,) + Wi (z/t; W, Wy ) ~ W,
(10) wy € So(w.): The asymptotic state is expected to be
WEE (2 w_ w,) + W5 (z = sot + o Wy W) — Wi
(11) wy € Ri(w.): The asymptotic state is expected to be
WEL (2 w_ w,) + WE(z/t: We, Wy ) — W,

(12) w4 € Region(12),i.e., RR(w,): There exists a unique @ € R;(w.) such
that w, € R,(0) and the asymptotic state is expected to be

WBL (zw_, w.) + (W(z/t; w, ©) — w.) + (Wi (x/t; @, wy) ~ w).

(13) wy € Region(13),i.e., RS(w.): There exists a unique @ € R;(w.) such
that w; € S»2(w) and the asymptotic state is expected to be

WEHz w_ w.) + (W (2t w., ®) — w,) + (W5 (z ~ sot + o @, w0 ) — @),

Here note that in the cases (9) to (13), the boundary layer W Blziw_,w,) is
degenerate one. In Matsumura & Nishihara [13], we succeeded in giving rigorous
proofs for some cases. First in the case (5), since the V' has a right sign, we
can prove that the boundary layer solution WBL(z,w_, w4 ) is asymptotically
stable. Second in the cases (2)(7), combining the arguments in Kawashima &
Nishibata [1} with that in Liu, Matsumura & Nishihara [4], we can show that
if jwy — w_| is suitably small, the combination of two waves WL (z;w_, @) +
WH(z/t; %, wy) — @ is asymptotically stable. Finally in the case (12), we can
prove that if |w, — w,| is suitably small the combination of three waves is
asymptotically stable ( note |w- — w,] is not necessarily small). We shall state
this case more precisely in the last part of this section. All other cases are
basically open. Among them, in the cases (3)(8), we should note that the phase
shift o« in WBL (z;w_., @) +WYS(z—sot+a;w, w4 ) — is explicitly determined
by the initial perturbation by the entirely similar argument as that at the end
of the Section 3, however the whole proof is not completed yet.

ew_ €Nt

super (see Figure 6.2):
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/ Figure 6.2

(1) wy € BL(w-),0 < u; < @& The asymptotic state is expected to be
WEL (2w wy).

(2) wy € Region(2): There exists a unique @ € BL(w_) such that wy € Ro(w)
and the asymptotic state is expected to be

WL (z;w_, @) + Wi(z/t; @, wy) — .

(3) w4 € Region(3): There exists a unique @ € BL(w.) such that wy € So(w)
and the asymptotic state is expected to be

WEBL(z;w_,w) + WYS(z ~ sot + o W, W) — .
(4) wy =4 The asymptotic state is expected to be
WY S (z + a(t);w_,®) for some a(t) / +oo.
(5) wt € Rp(w): The asymptotic state is expected to be
WY (z + a(t); w-, @) + Wz /t; 0, w) — @

for some a(t) / +oo.
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(6) wy € So(w): The asymptotic state is expected to be
WSz +a(t);wo, @) + WYS(z = sat + o W, Wt ) — W
for some a(t) / +o0o and ay € R.

(7) wy € Si(w-): The asymptotic state is expected to be
les(x - st + o wo,wy).

(8) wi+ € Region(8): There exists a unique @ & St(w_) (% < % < u_) such
that w, € R2(w) and the asymptotic state is expected to be

les(z - sit+ o w_,0) + Wi(z/t; W, Ws) — 0.

(9) w+ € Region(9): There exists a unique @ & St(w-) (% < % < u_) such
that wy € S2(w) and the asymptotic state is expected to be

WYz = sit+agw_, D) + W5 (z — sot + ag; 10, wy) — 0.
(10) wy € Ra(w-): The asymptotic state is expected to be
P’Vf(x/t;w_,w.;_).
(11) w4 € S2(w-): The asymptotic state is expected to be
WY S(z — syt + W, Wy ).
(12) wy € Ry(w-): The asymptotic state is expected to be
WE(z/tw-, wy).

(13) w4 € Region(13),i.e., RR(w_): There exists a unique @ € Ry(w_) such
that wy € Ry () and the asymptotic state is expected to be

W (z/tw_, @) + Wiz /t 9, wy) - .

(14) wy € Region(14),i.e., RS(w_): There exists a unique w € R;(w-) such
that w; € S»(w) and the asymptotic state is expected to be

W (z/t;w_, D) + WYS(z — spt + 0y 0, w,) — .

Basically the above 14 cases are open. In the cases (7) to (14), we can easily
imagine the behaviors of solutions are similar to that for the Cauchy problem
since the situation is totally supersonic. However, because of presence of the
boundary, the mathematical proofs are not completed yet even in the cases
(10)(12)(13) which are completely solved for the Cauchy problem. The cases
(4)(5)(6) should be subtle and might be even more dificult than the case (5.7)
of the Outflow problem. In the cases (1)(2)(3), it is interesting to see that
although supersonic is the state around the boundary, the state at far field is
subsonic enough to create an incoming wave to the boundary which eventually
forms a boundary layer.

In the remaining part of this section, we state more precisely about the
sub-case (12) in the primary case w_ € Qg where the asymptotic behavior is
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expected to be a combination of a boundary layer solution and two rarefaction
waves. First let us see that by transformation from the Eulerian coordinates
(,t) to the Lagrangian mass coordinates (§,t), we can make the original prob-
lem easier to handle and become a corresponding IBVP with the moving bound-
ary (z = Sot, So = ~u~ /v < 0). In fact, if we keep in mind that the mass Aows
in through the boundary at a rate of p_u_, we may define the transformation
z=x(£,t) for £ >0 by

{ =R =t z(6.1), >0, €50, 61)
z(§,t) = zo(§),
where z4(€) is given by the relation
zu(§) ’
e= [ stw0ya, (62)
and for £ < 0 by
{ =R = u(t,a(61), ¢ > tole), £<0, (63)
z(§,0(€)) = 0,
where t(£) is given by the relation
tu(€)
€= /o (pu)(0, ) d7 = (p_u_) - to(€). (6.4)
By elementary calculations, we deduce from (6.1)~(6.4) that
z(&.t)
£=/ Py tydy, € 2 sot, (6.5)

which implies

Zel se), ZE o ieaen), e2ar 3)

Due to the relations (6.5), we can rewrite the original problem (1.1)~(1.4)3 in
the following form where we use again z instead of &

v — Uy =0,
U+ P(v)z = p(uz/v)z, T >sot, t>0, (6.6)
p(v) =av™7,
with the initial data
(v,u)(0,2) = (vo,uo)(z), z >0, ir)l%vo >0, (6.7)
the boundary condition at far field z = +oco

lim (v,u)(t,z) = (vy,uy), t>0, (6.8)
T—=0
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and also the condition on the moving boundary z = spt
(v,u)(t, sot) = (v-,u_), t>0. (6.9)

This time the hyperbolic part of (6.6) is written for smooth v and u in the form

( Z >t +AL(U)< Z )I =0, (6.10)

Al(v) = ( p,?v) ‘01 )

It is easy to see that the eigenvalues {AF(v)}2, of AL(v) and corresponding

right eigenvectors {r;}2_, are just the same as in (2.4),

“where

M = 0) ==, nw=( L), e

which implies the rarefaction curves Ri{w_)(or éi(w+)) are naturally the same
as that for the Eulerian case. As for the Rankine-Hugoniot condition, we have

=s(vp —v-) = (uy —u_) =0,
(6.12)
—s(uy —u-) + (p(vs) — p(v-)) = 0,

which implies that

Uy = u_ — (v4 = U—)SiL(v—-vUﬁ—)a
(6.13)
s=sk(v_,vy), i=1, 2,

where s¥(v_,v.) is as in (2.7). Thus the shock curves Si(w_)(or S;(wy)) and
the line BL(w_) are also naturally the same as in the Eulerian case, excepting
the shock speeds s;(w_,v,) are replaced by sF(v_,v:). Let us use the same
notations W, WS, WYS and WBL to represent rarefaction wave, shock wave,
viscous shock wave ,and boundary layer solution respectively. Among them, we
especially should note that boundary layer solution is no longer stationary, but
defined by a travelling wave solution with the same propagation speed (sp =
—u-/v.) as the moving boundary, that is, WBL (2 — spt;w_, w4.) is defined by
the solution W(¢) (¢ = z — sgt) of

—-SoV’ ~-U' = 0,
—soU’ + (p(V)) = w(U'/VY, &>0,

W) =w_, W(+oo)=wy,
which is equivalent to, for w,. € BL(w_),

U =s0V,
sopV'/V = =s3(V —vy) +p(v4) = p(V), £ >0, (6.15)

V() =v_, V(+o0)=u1,.
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Since the right hand side of the second equation of (6.15) is exactly the same as
that of (4.3), the Proposition 4.1 and 4.2 hold as they are also for (6.15).

Now we fix any w. on I}, ., and suppose w_ € BL(w.) (u- < u.) and
w4 € RR(w.). We also assume that the initial data in (6.7) satisfy

wo —wy € HY(R), (6.16)
and the compatibility condition
wo(0) = w_. ‘ (6.17)

Then, as stated above, the solution of the Inflow Problem (6.6) ~ (6.9) is ex-
pected to tend toward a combination of three elementary waves

WEVTE(t ) = WEE (2 — sot, w, wa) + Wz /t; wa, @) — wa+

+Wi(z/t; @, ws) — W,

Roughly speaking, since the asymptotic state Wesymp |aq a right sign (that
is, V"V = UgsVmP > () to adapt the L2 energy method, we can prove the
following theorem by combining the arguments in Matsumura & Nishihara [12],
how to handle the rarefaction waves for the viscous P-system, together with that
in Liu, Matsumura & Nishihara [4], how to dispose the interactions between
rarefaction waves and boundary layer solutions.

Theorem 6.1 (Matsumura & Nishihara, [13]) Suppose w. € Tf .., w_ €
BL(ws) (u~ < u.) and wy € RR(w,). Assume also (6.16) and (6.17). Then,
for any fired w. and w_, there exists a positive constant 8 such that if || wg —
(WEBL — ) —wy g + fwi — w.| < 8y, then the Inflow Problem (6.6) ~(6.9)
has a unique time global solution w satisfying w ~ wy € C([0,00); H) and the
asymptotic behavior

im sup |w(t,z) - WeV™P(t 2} = 0.
=00 2>t

Finally let us comment on some future’s problems. We first should extend
the above arguments to the full system including the conservation of energy.
We next should extend the arguments to cases, even a 2 X 2 viscous p-system
model, with a free boundary on which inflow or outfiow occurs as a result of
phase transitions, chemical reactions, etc. Eventually, we hope we could unify
the arguments of fluid dynamical aspects and that of Stephan type problems,
for example, hopefully could argue on the interactions of free boundary of phase
and fluid dynamical waves as shock waves, rarefaction waves and contact dis-
continuities.

Acknowledgement. The author wishes to thank Prof. S.-H. Yu for his helps to
make the Figures.
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Abstract

The ”inflow problem” for a one-dimensional compressible barotropic flow on the
half-line Ry = (0,400) is investigated. Not only classical waves but also the new
wave, which is called the "boundary layer solution”, arise. Large time behaviors of
the solutions to be expected have been classified in terms of the boundary values by
[A. Matsumura, Inflow and outflow problems in the half space for a one-dimensional
isentropic model system of compressible viscous gas, to appear in Proceedings of IMS
Conference on Differential Equations from Mechnics, Hong Kong, 1999]. In this paper
we give the rigorous proofs of the stability theorems on both the boundary layer
solution and a superposition of the boundary layer solution and the rarefaction wave.

1 Introduction

In this paper we consider the ”inflow problem” recently proposed by the first author [6]
for a one-dimensional compressible barotropic flow on the half-line R, = (0, c0), which is
an initial-boundary value problem in the Eulerian coordinate (Z,¢) :

pe+ (p)z = 0, (Z,t) e Ry xR,

(Pi) + (PU” + P)z = pizz

(B, i)lz=0 = (p—,u-) with u_>0

(P, W)le=0 = (o, U0)(Z) — (p4,us) as T — +o0.

(1.1)

Here, p(> 0) is the density, @ is the velocity, p = p(p) = p”(the adiabatic constant v > 1)
is the pressure, and p is the viscosity constant. The condition

po(Z) > 0, px>0 (1.2)

*This work was supported in part by Grant-in-Aid for Scientific Research c(2) 10640216 of the Ministry
of Education, Science, Sports and Culture.
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is assumed, and so the flow does not include the vacuum state at the initial time. The
compatibility condition is
(:507710)(0) = (P_,U_)- (13)

The assumption u_ > 0 implies that, through the boundary # = 0, the fluid with the
density p_ flows into the region under consideration with its speed u_ > 0, and hence
the problem is called the inflow problem. In the case of u_ < 0 the problem is called the
outflow problem.

When u_ = 0 and hence the condition j|z=¢ = p_ is removed, the problem becomes
an initial-boundary value problem with fixed boundary:

pr + (pi)z =0, (Z,t) e Ry x Ry
(PU)e + (PU? + P)z = pitzz
U|z=0 =0

(ﬁ,ﬁ)ltzo = (ﬁOaﬂO)(fi) - (p+7 ’U,+) as I — +00.
This is changed to the problem in the Lagrangian coordinate (z,t) :
n—uy, =0, (z,t)e Ry xRy
U
ut +p(v)z = ﬂ(f’)r

Ulp=g = 0(:= u_)
(v, u)lt=0 = (vo, u0)(®) = (v4,us) := (1/p4,uy) as T — +oo.

(1.4)

Here, v = 1/p, uvand p = p(v) = v™7(y > 1) are, respectively, the specific volume, velocity
and pressure denoted in the Lagrangian coordinate. Matsumura and Nishihara [11] and
Matsumura and Mei [7] have shown that the solution (v,u) to (1.4), roughly speaking,
tends to the rarefaction wave as ¢t tends to infinity when vy, > u_ = 0, and the viscous
shock wave when uy, < u_ = 0.

We now concentrate oun the case u_ > 0, the inflow problem (1.1). In the case u_ < 0,
see [6] and also [3]. In [6] (1.1) is treated, but we here transform (1.1) to the problem in
the Lagrangian coordinate:

v —Upy =0, z>s5_%, t>0
U
ut + p(v)z = u(f)z

(P)
(U,U)lm:s_t = (’U_,U._), V- = 1/p—1 u_>0
(’U,'U,)[t:() = (UO,U’O)(‘T) - (’U+,U+) - (1/p+’u+) as T — 00,
where u
o=t <0, (15)

See Figure 1.1.
The change (Z,t) — (,t) is given by
0Z(z,t)

ot

= 4(i(z,t),t) t>0, x>0

i(m: 0) = ff,'o(ﬂ?),
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with
Zo(z)
[ e 0y ==
0
where (Z,t) € £; = {(,t); T > Z(0,t)}, and by

0Z(z,t)
ot

= u(z(z,t),t), t>tp(z), <0

#(z, to(z)) = 0,
with ()
= /0 (5)(0,7)dr = (p_u_) - to(x),

where (Z,t) € X2 = {(&,1); 0 < & < Z(0,1)}. See Figure 1.2.
From the definition it follows that

U
> —put=——t=s_t1
v

and that o)
/ B, t)dy =z for (Z,t) € Tii = 1,2).
2(0,t)
Hence, for f(z,t) = f(Z(z,t),1)
9 8, 8.:_ . 8 9.
5@ 1) = (5 +ugz)[@ 0, 5o f@1) = vgz (@),

which yields (P) with (1.5).

x=st ¢ R0 %(0,8)  X(xt)

X = Xg + A\t X =Xg + Aot /ZQ /

7 to(x) v
N /
U -
0 z 0 % (x) T
Figure 1.1 Figure 1.2

We now consider the inflow problem (P) described in the Lagrangian coordinate.

The characteristic speeds of the corresponding hyperbolic system without viscosity are
Ai(v) = (=1)%/=p/(v) (i = 1,2). Compare them with the speed s_ = —2= of the moving
boundary. Since the sound speed ¢(v) is defined by

c(v) = vy/~p/(v) = v~ 0D (1.6)
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(note that vy/—p/(v) = /P/(p)), comparing |u| with c(v) instead of |ul/v with [X;(v)], we
devide the (v, u)-space into three resions:

Qap = {(v,u); |u] < e(v), v>0, u> 0}
Pirans = {(v.0); lu] = e(v), v>0, u> 0} (17)
Qsuper = {(v,u); Jul > c(v), v>0, u> 0}.

Call them the subsonic, transonic, and supersonic resions, respectively. See Figure 1.3.

clv
) ul )
qu er
P ( quper
1 Q rans av
t ) qub
qub Qtrans
v v
Figure 1.3(y = 1) Figure 1.3(v > 1)

When (v_,u_) € Qup, A1(v_) < s_(< 0), and hence the existence of a traveling wave
solution (V,U)(z — s_t) with (V,U)(0) = (v—,u-), (V,U)(+o0) = (v4,us+) is expected.
Substitute this into (P); 2 (this means the first and second equations in (P)) to have

—s V' -U =0, '=d/d¢, E=z—5_t>0
U/
—s U+ p(V) = ul(57) (1.8)
(V1 U)(O) = (’U—7u—)1 (V1 U)(+OO) = (’U+,U+).
We call the solution (V,U) the boundary layer solution, or BL-solution simply. Seek for

the condition for the existence of the BL-solution. When (V, U) exists, the integration of
(1.8) over (0,00) and (&, c0) yields

—s_(vy—v)=—(ug—u_)=0
{ mo-(us = )+ p(vy) - p(vo) = —p 20 (19)
and
=5 (V-v)=(U—-uy)=0 /
{ s (U = ) + p(V) — plvy) = p (110

From (1.9); and (1.10);

_ e we v (1.11)
V(é) V- U+
and hence we define B L-line through (v_,u_) € Qqu by
U U
BL(’U_,U,_) = {(Ua u) € Qsup U Ltrans; p = o = “3~}-
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Denote T'ypgns N BL(v-,u_) = {(v.,u.)}. By (1.10) we have the ordinary differential

slope

h(v) .
U U
Figure 1.4(vy < v_) Figure 1.4(vy > v-)
equation of V:
dv v

= LV —u) ~ (V) — plwn)} = —A(V)

i
& - (1.12)

V({0) =v_, V(4+o0)=14.

To the contrary, for (vy,u,) € BL(v_,u.) there exists a solution (V,U) to (1.12).
Because we find that A(vy) = 0, A(v) < 0 for v4 < v < v_ if v < v_ and h(v) > 0 for
vo < vy (L) if vo < vy. See Figure 1.4.

Noting that A/(v.) = 0 and A" (v,) # 0, we have the following lemma.

Lemma 1.1 (Boundary Layer Solution) Let (v_,u_) € Qg and (v, us) € BL(v_,u_).
Then, there erists a unique solution (V,U)(§) to (1.8), which satisfies

(V&) = v, U) —us)| < Cexp(—clé]) if vy <
(V&) —vs, U(E) —up) < ClglH if Vi =,

On the other hand, since 0 > Aj(v) > s_ in Qsyper, the 1-characteristic field is away
from the moving boundary. The 2-characteristic field is, of course, away from the bound-
ary. Hence, the behaviors of solutions are expected to be same as those for the Cauchy
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problem. By noting that ¢/(v,) > —Aa(v,) for 1 < v < 3, the large time behaviors to be
expected devide the (v, u)-space as the following figure, Figure 1.5.

Ra(v,, u,
Ro(v_,u-) - ) Ry(v., u.)

So(v_,u-)

Figure 1.5

Here,
BL,(v_,u.) ={(v,u) € BL{v_,u_);v_ <v <}
BL_(v_,u_) = {(v,u) € BL(v_,u_);0<v <v_}

Ri(ve,us) = {(v,u);u = u, —/ A(s)ds, v > v.}
Ro(v_,u_) ={(v,u)ju=u_ — /: Ao(s)ds, v < v}

Ro(ve,us) = {(v,u);u = uy — /v Ao(s)ds, v < v,}
So(v_,u_) ={(v,u);u =u_ — s;(v —v_), v>v_}

Sa(ve,ux) = {(v,u);u = uy — 8, (v =), v > v},

together with s, = 1/~ (p(v) = (v_))/(v = v_) and s, = y/=(p(v) = p(v.))/ (v = v.).
Our aim is to mV&stlgate the stability of the Bl-solution or a superposition of the
BL-solution and nonlinear waves. Our results are, roughly speaking, as follows.

(I) if (ve,us) € BLy(v_,u_), then the BL-solution is stable.

(II) If (vy,uy) € BL_(v_,u_) , then the BL-solution is stable provided that |(vy —
v_,uy — u_)| is small. That is, the BL-solution is necessary to be weak.

(I11) if (vy,uy) € BLyRo(v_,u_), then there exists (v,%) € BL,(v_,u_) such that
(v+ +) € Ry(7,u), and the superposition of the BL-solution connecting (v_,u_) with
(0,%) and the 2-rarefaction wave connecting (7,%) with (v,,u,) is stable provided that
[(v+ — U,u+ — )| is small, where

U U
BL Ro(v_,u_) = {(v,u); u>—s_v, u>u_— / Ao(s)ds, u < u, — / Ao(s)ds}.
v Ve

That is, the BL-solution is not necessarily weak and the rarefaction wave is weak.
(IvV) if (vy,uy) € BL_Rs(v_,u_), then the superposition of the BL-solution and the

29



2-rarefaction wave is stable provided that |(v; — v_,us — u_)| is small, where
BL_Ry(v_,u_) = {(v,u); u> —s_v, u<u_— / A2 (s)ds}.
v

In this case, both the BL-solution and the rarefaction wave are weak.

(V) if (vs,us) € BLy(v_,u_), (vy,uy) € RiRo(vs,u.) and |(vy — vy, uy — uy)| is small,
then the superposition of the BL-solution, 1-rarefaction wave and 2-rarefaction wave is
stable. Here,

v
Ry Ra(vs,us) = {(v,u); u> u, —/ Xi(s)ds, 1 =1,2}.

Similar to (I17), the BL-solution is not necessarily weak.
In later sections we will give the proofs of (I)-(V), with which it is interesting to
compare those of results [8,9,10] on the Cauchy problem for the viscous p-system:

vp—ur=0 (z,t)e RxRy

U

up + p(v)z = U(?)x (1.13)
(v,u)|t=0 = (vg,up)(®) — (vi,us) as x — Foo

(For more general systems see [1,4,12,13] etc. and references therein). In these papers
the signs of first order derivative of rarefaction waves and viscous shock waves are crucial.
The cases (I) and (I11) are, respectively, similar to the cases (vy,uy) € Ri(v_,u_) and
€ RiRy(v_,u_). Hence, global results on the present problem are expected, but we could
not control the values from the boundary for large data. In the case of (II) it seems to be
available to take the perturbation of integrated form (¢,vy)(z,t) = — fgo (v—V,u—-U)dy.
However, in general, [ (vo — V,up — U)(y)dy # (0,0). Even if we assume that [;*(vo —
V,ug— U)(y)dy = (0,0), we could not control the values from the boundary even for small
data. So, we put the perturbation (¢,9) = (v—V,u—U). This is no integrated form, and
the sign of (Vg, Ug) is not good. However, we can overcome this for the weak Bl-solution,
applying the discussion by Kawashima and Nikkuni [2].
Related to this case, when

(vi,ur) € BL_So(v_,u_) ={(v,u); u< —s_v, u<u_—s(v—uv_)},

the asmptotic state is conjectured to be (V,U)(z — s_t) + (V5" ,Us ) (z — sat + a) — (0, 4)
together with a suitable shift v, where (0,4) € BL_(v_,u_) such that (vy,u,) € S2(7,a),
and (V,U) is the BL-solution connecting (v_,u_) with (7,%) and (V5°,Us) is 2-viscous
shock wave connecting (¥, %) with (v, ,u;). In the final section how to determine the shift
« will be discussed.

Our plan of this paper is as follows. After stating the notations, in Section .2 we show
the cases (I),(II). In Section 3 the cases (I1I)-(V') will be treated. In the final section
we will present the concluding remarks.

Notations. Throughout this paper several positive generic constants are denoted
by ci(a,b,---), Ci(a,b,---)( = 0,1,2,---) depending on a,b,---, or simply by ¢;,Ci,¢,C
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without confusions. Denote f(z) ~ g(z) asz — a when C~!g < f < Cgin aneighborhood
of a. For function spaces, LP(Q?), 1 < p < oo be an usual Lebesgue space on 2 C R =
(—00,00) with its norm

£l = ([ 1F@Pd)7, 1< p < 00, Ifllieiey = suplf (@)

HY(Q) denotes the I-th order Sobolev space with its norm
l .
171 = G 10371%)Y2, where || -[| == || - l2(e)-
3=0

H{(Q) is a closure of C§°(2) with respect to H'-norm, so that f ¢ HZ(Q) satisfies f(9Q) =
0. The domain 2 will be often abbrieviated without confusions.

2 Stability of the boundary layer solution

2.1 The case (v,,u;) € BL,(v_,u_)

Assume that
(v_,u_) € Qsup and (vi,uy) € BLo(v_,u_), (2.1)

then Lemma 1.1 gives a unique boundary layer solution (V,U)(¢), € =z —s_t >0, s_ =
—u_/v_ satisfying (1.8) or (1.12). Note that

1%
Ve = ﬁ;—h(V) >0, h(V)<0, A'(V)>0 for v_ <V <w,. (2.2)

We put the perturbation (¢, )(£,t) by

(v,u)(:z:,t) = (Va U)(é) + (¢,¢)(§,t), (23)

so that the reformulated problem is

Gt —S_pg—1pe=0, £>0, 1>0
hy — s_Ye + (p(V + ¢) — p(V))e = 1(

(#;%)]e=0 = (0,0)
(#,)|t=0 = (0, %0)(&) := (vo — V,ug — U)(¢),

Ufﬂ"l/@_%)
Vie V¢ (24)

from (P) and (1.8). The solution space is
Xm(0,T) = {(¢,9) € C((0,T); Hg) | ¢¢ € L*(0,T; L?), ¢ € L*(0,T; H)

with ;)u% (8, 9) ()] < M, R:g[{),T}(V + ¢)(¢,t) > m},

for positive constants m, M. '
To obtain the stability theorem, we combine the time-local existence of the solution
(¢,7) to (2.4) with the a priori estimates. Those are given as follows.
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Proposition 2.1 (Local existence) Let (¢g,10) be in HI(R;). If {l¢o, %ol < M,
and infR o, (V' + 8)(€,t) = m, then there exists to = to(m, M) > 0 such that (2.4) has
a unique solution (¢, y) € X%m,2M(O’ to).

Proposition 2.2 (A priori estimates) Let (¢,) be in X%m’E(O,T). Then, for a suit-
ably small € > Q, there exists a constant Cy > 0 such that

I, w)@IT + ](:(%(0,7)2 + 11/ VeI + g (P + [lee(IP)dr < Collo, bolli-

Remark 2.1 1If ¢ is suitably small, then infg o (V + ¢)(§,t) > m/2 is automatically
satisfies by the Sobolev inequality. Hence we denote X, .(0,T") simply by X.(0,7).

The following stability theorem is from these two Propositions, which is on the same
line as in [7-11].

Theorem 2.1 (Stability of BL-solution in case of (vi,uy) € BLy(v_,u-))

If {lvo — V,ug — Ul|; is suitably small together with the compatibility condition (vo—V, ug —
U)(0) = (0,0), then there exists a unique solution (v,u) to (P), which satisfy (v—V,u —
U) € C(|0,00); H}) and

Zggl(sbﬂﬁ)(é,t)lz sup |(v,u)(z,t) — (V,U)(z —s-t)[ =0 as ¢— oo

r>s_1

We first devote ourselves to the proof of Proposition 2.2, which will be done by a series
of Lemmas. At the end of this section we will mention the local existence theorem.

Multiply (2.4)1(first equation of (2.4)) and (2.4); by —(p(V + ¢) — p(V')) and 1, re-
spectively, and add these two equations to have a divergence form

{%1!12 + ®(v, V)

s, V) — S 4 () — p(V))p — (% — Ty (2.5)

P2 1%
+{u—vi — us_ij‘;bé - s Ve(p(V+¢)—p(V)— P(V)¢)} =0,

where

V+¢
B0, V) = p(V)¢ — /V p(n)dn. (2.6)

Here and after we will often use the notation (v,u) = (V + ¢, U + ¢), though the unknown
functions are ¢ and 1. Since p”(V) > 0, put

p(V +¢) = p(V) =P (V)¢ = f(v,V)$?, (2.7)

then f(v,V) > 0. Noting that —s_V; > 0, we regard the last three terms in (2.5) as the
quadratic equation:

2
Q=2 - s YV s, vy
_ e o V—us_Ve 2
= (VAP - sV S Ve 0.V ¢ (s Ve V)0
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The discriminant of @ is

—us_Ve —h(V)
=5 4= 7 Y4 2.
V2uf(v,V) Vuf(v,V) (28)
Since v > v_,
—h(V) = 2(V —vy) +p(V) = plog) < p(V) =V 7. (2.9)
Moreover, by putting X = V/v,

Vo™ =V + 4V v - V))

14 =

’Uf('l), V) ('U _ V)2

B (2.10)
_y X7 —(vy+ DX 4y _
:V'y' (X~1)2 Z'YV ’Y:
because X7t — (v + 1)X 4+ v > (X — 1)? for X > 0. By (2.8) - (2.10),
V=7 1
Sy ==l (2.11)

Thus, integrating (2.5) over (0,00) x (0,¢), we have the following basic lemma.

Lemma 2.1 (Basic estimate) For the solution (¢,v) € X2.(0,T), it holds that

S+ [~ o, v)(e, e

L1 [t R Ve ,
e /0/0 {5+ 1+ (V4 9) = p(V) = P/ (V)@) Vebdear
= %Woll2 + foo<1>(vo,V)(§)d£ < Cligo, oll*.
0

Remark 2.2 The method used here is similar to that in [11]. But, (2.11) is sharper than
the corresponding one in {11]. Note that the basic estimate is obtained without smallness
condition on the data.

Next, following [11], change ¢ to ¥ := v/V. Since

p(V+¢)—p(V)—p(V)p=V"(07" = 1+ (7 - 1))

and B
B(v,V) = VTB(),

where

&(0) = . (2.12)
v—1+ 1(17‘7“—1) (v > 1),

Lemma 2.1 is rewritten as follows.
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Lemma 2.2 It follows that

S+ [TV de )

L[t R Vede, Ve )
+C /0 /0 {74‘17}4-%(’0 7—1+’Y(U—1))}d§d7‘

< Cligo, woll”.
Eq. (2.4)7 is also written as

D V) YU YV,
(uf — 1)y — sA(u}f —)e + 3 :

Vygr+l  pyl

(T77 = 1) =0. (2.13)

Multiplying (2.13) by ¥¢/9, we have a divergence form

G RE )

2
v yhA(V) T -1 . US_ Do 7172
2 -
_ Vi Ve RI(VIVY — h vr-l 57 -1
_ Ve s-0udVe Ve (V) V) I I d).
v vV S_ b V2y v

By (2.2)
[the final term of (2.14)] < C"l//%(f)“’ —1+9(0-1)).

Hence, the right hand side of (2.14) is controllable by Lemma 2.2. Thus, integrating (2.14)
over (0,00) x (0,t) yields the following lemma.

Lemma 2.8 It holds that
- ~2
U£ 9 t/oo ,U{
(¢ S
121+ [ [ pdear

.
< (ool + ol + € [ (10, 7)dr.
o U

(2.15)

We have tried to control the final term of (2.15), Cfg(%)Z(O, 7)d7, without smallness
condition, in a similar fashion to [11]. But, we could not break through it. However, we
can control it provided that the initial data is small. Since

’|m1

)2(0’ T) =

€ R0,7) = 5930, (2.16)

<

(the validity of this equation will be stated later), it is necessary to estimate
fg ll4pee(7)||*d7, which is controllable for small the initial data.
We now assume that

N(T) = sup [(¢,¥)t)|1 <2< 1.
0<t<T
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Multiplying (2.4)2 by —1¢s, we have
1 s_ V2
&%»+eww+3w&+uf§

_ {—u‘”f‘(/vj;ff’ = 5= = BV + 6) = p(V))eh—vee)

and, after integrating the resultant equation over (0,c0) x (0,t),

+ u(

eI + [ 0,77 + g (DIP)ar

2 o (2.17)
< ClivolP+ ¢ [ (6% + Veo? + uddgar.
Here, we have estimated the amount (¢¢)¢)? as
1 o0 1
| [ weverazar < [ wellivecllivelar
t 1
<v [ lweelPar + NP [ loe(nlPar
for a small constant v > 0. By Lemma 2.1, (2.17) is reduced to
t
[e@IP + [ (e(0,7)? + libee(r) I )ar
(2.18)
t 2
C(llgoll® + lI¢o|I?)+C/O l|e(T)||dT.
For a small constant A > 0, (2.15) 4 (2.18) - A together with (2.16) yields
" t
IS5 + Muse@ P + [ (7)1 + Asel0, 72 + Alee() )
2 t Ug \2 2
< Clloobollf +C [ (F)(0,7) + Ale(r) |P)ar (2.19)

< Clldo, dollf + /Ot(VIlwgg(T)lF + Cyllpe() I + CAllge() | dr

Since
W = [ -
> [ ”(j% - U 46> aolloc )P - Clote)?
and

t i t roo
| el = e [ ocmlFar—c [ [ veoragar,
we fix A such that CA < ¢p/2 and v such that v < A/2. Then, the following lemma holds.
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Lemma 2. 4 If N(T') = supg;<7 (¢, ¥)()]l1 is suitably small, then

(e, %) B2 +/0 ($(0,7)% + [I(e, ee) (N)|*)dr < Clido, voll3-

Combining Lemmas 2.1-2.4 completes the proof of Proposition 2.2.

We now mention the unique existence of the local solution to (2.4), the proof of Propo-
sition 2.1, briefly. By (2.4)1, ¢ has the explicit form

/t el + 5 (t—7),7)dr, 0<E< st

t+
¢(€3t) = (2'20)¢0
t
do(&+s_t) + /0 he(€+s_(t—7),7)dT, £2>—5_1.

Eq.(2.4)2 is regarded as the initial-boundary value problem for the linear parabolic equa-
tioin of :

) =g = g(¢§:¢> ¢£)

(0 t) Y 0+ i (2.21)¢,
Y(€,0) = (),
where
9(Ye, @, 0¢) = s_he — (p(V + ¢) — P(V))§+H(V+¢ %)5- (2.22)

To use the iteration method, we approximate (¢o,%0) € Hg by (¢ox, ox) € H® N H}
such that

(Sok, Yox) — (do,10) strongly in H'

as k — co. We may assume

3 ) 2
6ok, Yok ll1 < 5 M, Inl(V + dox) > zm

for any k& > 1. We first define the sequence {(¢(™, (™)} := {((;52") ("))} for each k so
that

(69, )&, t) = (dok, Yor) (), (2.23)
and, for a given (¢~ D »p»=1)(& 1), ™ is a solution to

(n)
) ¥e (n-1) (n=1) (n=1) 4(n-D)
t (V+¢(n 1)) g (¢ 7¢ ¢ ) (2.21)/
$(™(0,t) = 0

P (€,0) = Yox(€),

and

/t ¢(n)(£+s_(t—r),7)d7, 0<€E< —s_t
™ (¢,t) = (2.20)'
dox (& + s-t) +/ 1/) §+ s_(t—71),7)dr, &> —s_t.
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From the linear theory, if g € C°([0,T]; H?), 1o € H3N H{, then there exists a unique
solution 1) to (2.21)4, satisfying

¥ € C([0,T); H* n Hy) N C'([0,T); H') N L2(0, T; HY).

Using this, if (¢(»~1) "-1) ¢ X%mﬂM, then we have

@™, %)) < ((gM)2 + C(m, M)tg) exp (C(m, M)to)

(2.24)
<(2M)? if 0<tg:=ty(m, M) <1
and also .
0
| 1w (ihar < Cm,pyar?.
Hence, direct estimates on (2.20) give
t
| [ 9+ s (=), < CVigM
and .
| [ 962+ s (t= ) m)drl < CvaRM.
Hence, for a suitable small ¢y we have
1
sup [l¢™(t)|ly < 2M  and inf (V+¢)(&t)>-m. (2.25)
0<t<tg R x[0,t0] 2

By (2.24) - (2.25), (¢™, %) € X1,00/(0,%0). Since [|oox, orlls < C, (6¢,4()
can be shown to be the Cauchy sequence in C([0,%]; H?), by a standard way. Thus we
have a solution (¢x,9r) € X%m,zM(O,to) N C(]0,to]; H?) to (2.20)4,, and (2.21)4,, by

limy, o0 (@™, ™) = ]jmn_m(gzﬁl(cn), ¢,(c"))‘ Here, we note that
¥ € CH((0,t0]; L) N L2(0, to; H®), (2.26)

since g((Yr)e, ok, (9x)e) € C(|0,t0]; H') and (dox, Yor) € H2 N H}. Again, showing that
(#%, ¥x) is a Cauchy sequence in C([0,tg]; H!) (taking ty smaller than the previous one if
necessary), we obtain the desired unique-local solution (¢,v) € X %m,zM(OvtO)' We omit
the details.

Here we state the validity of (2.16). As we see above, (¢g, %) — (¢,%) as k — oo,
and (¢x, k) is a solution to (2.4) with its initial data (¢ox, Yor). Hence, by (2.20)4,,

1
&) = [ Welet st =m))ir, 0<g <ot

Since

(O0H(E:1) = ()el6,t) ~ (0t + )45 [ Wheee+ 507, 1)

&
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(2.26) shows that (¢x):(&,t) — 0 as £ — 0. Hence, by (2.4)3
—5_(Pr)e(0,1) — (Yr)e(0,¢) = 0.
The solution 1 is in L2(0,tp; H?) and so 1¢(0,t) has a meaning for almost all ¢ > 0 and
$e(0,1) = lim (1)e(0,1).

Thus, there exists limy_,oo(@%)¢(0,t). Therefore, Lemma 2.3 is first obtained for (¢, v¥x)
or U = V + ¢k, and then for (¢,1) after letting k£ tend to infinity.

2.2 The case (v, ,u.) € BL (v_,u_)
In this section we assume that
(v_,u_) € Qeup and (vy,uy)€ BL (v_,u_), (2.27)

then Lemma 1.1 gives a unique BL-solution (V,U)(&) satisfying (1.8) or (1.12) together
with

Ve = ML_h(V) <0, A(V)>0, R'(V)>0 for v, <V <w_. (2.28)
We put the perturbation (¢, %)(&,t) by
(v, u)(z,t) = (V,U)(€) + (8, ¥)(§, 1), {=x—s_t, (2.29)
so that the reformulated problem is
Pr— 8 de—Pe=0, £€>0, t>0

Py — s_the + (p(V + ¢) — p(V))e = 1(

(¢5¢)|§=0 = (070)
(¢7¢)lt:0 - (¢09¢0)(£) = (UO - Viug - U)(£)7

Ug-l—’(,bg_

Ue
Vie V7°©

(2.30)

which is formally same as (2.4). However, the sign of V; is negative, and so Lemma 2.1
does not hold. Nevertheless, we seek for the solution (¢,1) to (2.30) in the same solution
space

X:(0,T) = {(¢,%) € C([0, T]; H") | ¢z € L*(0,T; L?), s € L*(0,T; H")
with  sup [|(¢,%)()]]1 < €},
(0,17

for a suitably small € > 0(Cf. Remark 2.1). Then, the a priori estimates are obtained as
follows.

Proposition 2.3 (A priori estimates) Let § := |vy — v_,uy — u_| be suitably small
and (¢,1) be a solution to (2.80) in X.(0,T) for a suitably small € > 0. Then, there erists
a constant Cq such that

(@, w)OIF + /Ot(wg(o, 7) + [|@e(MI? + llwe(7) I dr < Cillo, bolli-
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Combining the local existence theorem with Proposition 2.3 we have the stability
theorem.

Theorem 2.2 (Stability of BL-solution in case of (vy,u.) € BL_(v_,u_))

Iflvy —v_,uy —u_|+||lvo— V,ug — Ul1 is suitably small with the compatibility condition
(vo—V,up—U)(0) = (0,0), then there ezxists a unique solution (v,u) to (P), which satisfies
(v—V,u—U) € C([0,00); H}) and

sup |[(v,u)(z,t)— (V,U)z—s5_t)] >0 as t— co.

r>s_t

We only show the a priori estimates. Assume that

N(T) = (@, 9)t) | S e <e( 1),

sup ||
o<t<T

where £¢ is chosen as

sup £ ()| < CIAIMASl 2 < Coo < =

so that V 4+ ¢ > v, /2. Multiplying (2.30)2 by % and (2.30); by —(p(V + ¢) — p(V)) and
adding those equations, we have

d [*,1 , o 1hZ
- /0 (9% + B(v, V))de + /0 petag

<0 [T Weietas v [T ubae v 6, [ Vel ot

for a small constant v > 0, and hence

le(®IZ + @)1 + ﬂ llpe ()% dr

v (2.31)
< Cligo, ol + C /0 ]0 Velo (e, 7)2dedr.

Here, we estimate the last term using the idea by Kawashima and Nikkuni [2]. Since

'3
B(E,1) = 6(0, 1) + /0 pe(n, )dn < E2]|pe(1)]),

the last term of (2.31) is estimated as

1 o0 1
|the last term| < C /0 lpe ()12 /0 E(=Ve(6))dedr < Cs /0 lge()|[*dr.

Hence, (2.31) yields

6,90 + [ e Par < Ollgn,voll +5 [ loetnlPan). (22

Similar fashion to (2.14) yields
t 1 1 oC
e ()12 + /0 loe () 2dr < C(lldo, woll2 + /0 6¢(0, 1)2dr + /0 [) Ve(&) 2 dgdr).
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Noting that

i C 1 i t
¢ [oct0.rPar = [[we0,m? < v [ eelPar + Co [ Iwe(lPar
we have

eI + [ lioe(r)IPar

) (2.33)
< Cligo; poll + /O {Vllvee(M)IIP + C8lle (TP + Cullspe(T)|P}dr.
The same estimate as (2.17) gives
£)||2 t 0,7 24 )% dr
WeI® + [ 0,72 + Iwee(r)IP) 0

< Cllo, voll+ € [ eI + we(r) )

By (2.33) and (2.34) for a fixed number A > 0 such as 1 — CA > 1/2 and v = A/2,

(¢, ) )11 + /(:(%(0,7)2 +loe(M)IP + lee(DIP)dr

t (2.35)
< o, s} + [ Ie(r)lar).

Again, adding (2.35)-A(\ > 0) to (2.32), we have
||(<15,t1/f)(75)|l2 + A[(Be, e ) ()P
+ [ L= OV + Awe0, 72 + eI + sy

t
< Cllo, ol + C6 / lpe(r)|[2dr.
0

Taking A\ as 1 — CX > 1/2 and restrict § as A — C§ > A/2, then we obtain the desired a
priori estimate, which completes the proof of Proposition 2.3.

3 Superposition of BL-solution and rarefaction wave

In this section we investigate the case

(voyu_) € Qoupy (va,us) € BLy(v—;u—) N Dtrans

1
and (vy,uyt) € RiRa(ve,us). (3.1)

That is, we show (V) in Section 1. The cases (II1) and (IV) are similar to (V).

In the case of (3.1), there is (¥,u) € Ri(vs,u.) such that (vy,us) € Ra(7,u), and
there are the 1-rarefaction wave (v, uf)(z/t) connecting (v.,u,) with (7,u) and the 2-
rarefaction wave (vf%, uf?)(z/t) connecting (v, %) with (v;,uy), which are weak solutions
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to

v —ur =0, (z,t) € R x (0,00)
{ Ut +p('”)z =0 (3.2)
with the Riemann initial data
ViyUs) T <0
(0,00 = (e}, ufy () = { w22 (33):
and
_ (R . R ~ (v,w) <0
(v, u)|t=0 = (vpz, upa)(z) = { (0o us) z> 0. (3.3)2

To construct the smooth approximate rarefaction wave (V;, U;)(z,t), = € R, and its
restriction (Vj, U;)(€,t) := (V;, Us)(z,t)|z>s_t, we prepare the following lemma.

Lemma 3.1 ([9]) Let wy > w_ and w = w, — w_. Then the Cauchy problem

Wy +wo wy —w
2 2

(3.4)

— tanh x

wF+ww, =0, z€R, t>0
wlt=o = wo(z) =
has a unique, smooth and global solution w(z,t) = w(z,t;w_,w,), which satisfies the
followings:
(i) w_<w(z,t)<wy, wg>0

(1) Jwa(t)ll Loy < Cpmin (b, w1/Pt=171/7)
“wz‘z(t)”LP(R) < Cpmin (ﬁ}yt_l)

(#17) if 0 < w_(< wy), then, for any = <0,
jw(z, 1) —w_| < Dexp {-2(|z| + |w-[t)}
[wa (2, £)] < 2 exp {—2(|z| + |w_|t)}

(iv) if 0> wi(>w.), then, for any =z > 0,
lw(z,t) — wy| < Dexp {-2(|z| + |w.[t)}
lwe(z, t)|' < 20 exp {=2(|z| + [wi[t)}

(v)  Jim sup [w(z,t) - w(z /)] =0,
> R

where
w_ < w_t

wl(z/t) =< z/t w_t<z<wit
wy T2 wit.

Remark 3.1 1If

wyt+tw_o  wp-—w
2 2

wo(a) = =g [Py, [ ) Ty =1

T
0
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instead of (3.4)2, then

gzl _q_p=1
wae(t)l|Lr@) < Cpgv 27t =25,

(]10,11]). This was available for strong rarefaction wave. However, the result in this paper
is concerning the weak rarefaction wave, and (3.4); is chosen.

The characteristic speed A;i(v), i = 1,2 of the hyperbolic system (3.2) are A;(v) =
(=1){y/=p'(v), and hence the smooth approximations (Vi,U;)(z,t) to (vE,uff)(x/t) are
given by )

Vi(z,t) = A7 (w(z, £ 201 (ve) = M (9), M1(9)))
- Vi(azt) 3.9)i=
Ul(:c,t):u*—/ A(s)ds (3:5)i-1
and ~
Va(z,8) = A5 (w(@, ; A2(0), A2 (v4)))
) Va(zit) (3.5)i=2
Do) =a— [ dale)ds,

v

which satisfy, for i =1, 2

{Vit—Uiz:O, zeR, t>0 (3.6)

Ui + p(Vi)z = 0.
Then, define, for i =1, 2,
(Vi, U)(&,8) = (Va, U) (@, D)lzzs v, =2 — 8120, (3.7)
and the following lemma holds.
Lemma 3.2 Let 6 = |vy — vy, uy — us|. Then (V;,U;)(€,t) defined by (3.7) satisfy
(1) Ui >0, |Vie| £ CUe <C8

(@) N (Vie, Use) ®)lln o) < Cpby/P(1+ 1) 1412
”(széa Ui§§)(t)|'LI’(R+) < Cpmin (61,(1+ t)—l)

(@) (Vi — 0,01 — @) (& 1)+ [(Vie, Ure) (€, t)] < Chrexp{—c(| + s_t[ + 1)},
for £> —s_t
|(Vv2 — 7, U2 - ﬂ)(éyt)l + ‘(Véfa U2£)(5}t)l < 061 exp{—c(]f + S~t| + t)}:
for 0<¢E< —s_1

_t
(i) Jim sup |V, U)(E &) — WF w2 =0, i=1, 2
and also
mt_5~W§_Ui§:O7 ‘EER-H t>0 (38)
Ui — s Use +p(Vi)e =0 )
with
(Vvla Ul)(oyt) = (’U*?u*)7 (V17U1)(Ooat) - (17711) (39)
and
|(Va — ©,U2 — 6)(0,t)| < Céyexp(—ct), (Va,Uz)(00,t) = (vy, us). (3.10)
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All results except for (3.9) are direct consequence from (3.5)-(3.7) and Lemma 3.1. Eq.
(3.9) follows from the choice of w_ = 2A1(vi) — A\1(T) in (3.5)i=1. It is natural to take
w_ = A (v,). However, from our choice

we+w_ A (D) +2M1(v) — (D) <
2 2 -
(note that Aq1(v.) = s—). Hence, wo(0) = s_ in (3.4), which means w(z,t)|g=s_t = s—. By
the definition (3.5);=1, (Vi,01)(s—t,t) = (v, u,) and hence (3.9) holds.
On the other hand, the BL-solution (Vg,Up)(£) connecting (v_,u_) and (v, u.) is
given by Lemma 1.1:

—S_V(){ - Uog =0, £¢ R+
: U
—s_Upe +p(Vo)e = N(—O£)§ (3.11)

Vi
Vo, Uo)(0) = (v_yu_), |(Vo— ve, Up — w) (€)] < Cho(1 + €)1,

where 8o = [(vs — v_,us — u_)|.

Putting
14 | Vo&) + Va6 t) + Va6 t) — v — ©
( U ) &0 = ( Uo(€) + U1, 1) + Ua(&,1) — us — u ) ! (3.12)

we set the perturbation (¢, ) by (v,u)(z,t) = (V+¢,U +)(€,t). Then the reformulated
problem is, from (1.5), (3.8)-(3.12),

Pt—5_Pe— e =0, E€Ry, >0

e — s e+ (p(V + 6) — p(V))e = p(LeT e _ Ve

—)e+ Ge

Vie V (3.13)
(8,9)(0,t) = (0 — V2(0,t), @ — Ua(0,t)) =: (bv,by)(t)
(#,9)(&,0) = (vo(€) — V'(&,0),up(€) — U(¢,0)) =: (po, 1%0)(£),
where :
(b, by ) ()| < Céyexp (—ct), (3.14)
(¢0,%0)(0) = (by, by )(0) (3.15)
and
_ _ Ug Uy
G = —(p(V) = p(Vo) = p(1) = p(V2) + p(w) + p(0)) + (7 = ) (3.16)

=: —G1+ Ga.

The equation (3.13) is almost same as (2.4) together with Uz > O(note that Ug = —V¢/s_ >
0 in (2.4)) except for the term G¢. Therefore, for the solution (¢,1)(¢,1),
0<t<T,to (3.13) with

sup [[(¢,¥)()h S e<eo <1,
0<t<T

we have
||(¢,¢)(t)l|§+/ot(ll Ued(7)|I? + llbe()1I*)dr

t t oo (3.17)
< C(l160, ol + 61) + Céy /0 e(0,7)2dr + C /0 /0 Gepdedr.
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by a similar way to that in Subsection 2.1. The second to the last term comes from the
boundary value and is controlable by combining the estimates of higher order derivatives
provided &7 is small. We must control the last term in (3.17).

Since

Gie = P'(V)(Voe + Vg + Vag) — o' (Vo) Voe — P (V1) Vie — P/ (Va) Vae

= ('(V) = P’ (Vo))Voe + (7' (V) = ' (V))Vig + (0 (V) — p'(V2)) Ve,
by noting the signs of V3 — v, etc.,

|G1e| < C{(V1 — vi)Voe + (va — Vo) Vie}
+C{|Va — 0|(|Voe| + [Vagl) + [Vael (Vo — vil + V1 = 9)) } (3.18)
=: Gr1e + |Gizel-

The second term |G12§[ is easily controlled. Because the wave V, is away from the waves
Vo and V7. In fact,

Gacf = ([ [T Guee e

SO s (Vo +1Viels DPIVale,t) — ol) / V(s 8) = lds

e osup {(Vo-ultVi— o) |v2§5t} / Vae (&, 1) de
0<€<—st

+C e {|V2—U12(|V0§(€)|+|V1(€, )} (|VO§(§)|+|V1(§>t)|)df

+C S {(IVo = val? + Vi = 0*)[Vae (&, )1} . |V2§(§ t)|d¢

< C(él + 60)81(1 + t)3.

Here we have used Vpe = M%Q:h(Vo) ~ —u—‘s/f’_—(Vo — )% and [Vp(€) — vi| < Cplé|™! as
¢ — 0. Hence

b 12 | si2vg12 [F —3/2
CL [ [ Grewdear] < C(6V2+ 85 [[(14 1) (n)dr,

which is controllable by the Gronwall inequality. The term G'11¢ is rather difficult to be
treated, because the waves Vj and V7 are contact for all time with each other. See Figure
3.1. However, this situation is similar to that in [5, Section 4] and the method used there
is applicable to our case.
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Putting a := —s_ 4+ A1(?) > 0, we have

C| / / Grepdedr|
< C’/O sup|¢| /at+/ H(V1 = v)Voe + (ve — Vo) Vig}dédr

<cf 2 eV — ) Vo )t — 2 [“Vie(vo -~ v.)de
(v — Vo) (Vi — 0.)] g + 2 / Voe (Vi — v.)d€}dr

<C / 2245150+ )T [ a0 (14 7)

<v / [wePar +C, [ 858 g2 4 7)oz + 7)) e

<v [ wer)lPar + o5y sl
Here we have used, by Lemma 3.2 (iz),

Vel D)l < [Vae( OIIELT < 6431 4 1778,

Estimating C fg Jo° Gogypdédr by a similar way to the above, we have, for any fixed
60:

16, )+ [ U/Teo I + se(rIP)e
< Cloo, wolP +61/%) + €61 [ (0, %

The estimates of higher order derivatives are also obtained, though the calculations
are rather tedious. Thus, we have the following theorem.

Theorem 8.1 (the case of (vy,u.) € BLyRiRo(v_,u_)) Define (V,U)(&,t) by (5.12).
Then, if both ||¢g,10ll1 = [lvo — V(+,0),u0 — U(-,0)|l1 and 61 = |vs — ve, us — u.| are suit-
ably small, then there erists a unique solution (¢,v) € C(|0,00); H') to (3.13) and hence
a solution (v,u) to (P) which satisfies

sup [(6,9)(§, )] = sup |(v,u)(z,t) = (V,U)(z — s—t,t)| = 0 (t — o0).
€0 T>s_t
Remark 3.2 This result implies that the BL-solution is not necessary to be weak though

the rarefaction waves are necessarily weak. We do not know whether the weakness is
removed.

Remark 3.3 The case of (vy,uy) € BLyRy(v_,u_) is treated in a similar fashion
to the above case, and the assertion (II17) holds. However, in the case of (v ,u.) €
BL_Ry(v_,u_) the situation is similar to that in Subsection 2.2, and hence the BL-
solution is necessary to be weak, and (IV) holds.
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4 Concluding remarks

Except for the cases treated in Sections 2 and 3, all other cases are open. In this section
we discuss the cases concerning the viscous shock wave, which are not yet solved, either.
Compared to the case of the corresponding Cauchy problem, we consider the case

(vo,u_) € Qsup, (vy,uy) € BL_Sa(v_,u_), (4.1)

where a superposition of the BL-solution and the viscous shock wave is expected to be an
asymptoics of the solution to (P). In this case, there is (7,2) € BL_(v_,u_) such that
(vy,uy) € S2(v,u), and there are the BL-solution (Vg, Up)(&) satisfying

—S_Voﬁ - Uog =0, £eRy
- (Yoe
—s_Upe +p(Vo)e = ﬂ(“VF)é (4.2)
(V07 UU)(O) = (U—: u—): (VOa UO)(OO) = (ﬁaﬂ)
with s = —u_/v_ and the 2-viscous shock wave (}72 ,~I~/2)(:c—.92t+a) connecting (¥, u) with
(vi,uy), and its restriction (Vo,U2)(&, t; ) = (Va, Va)(z — sot + @)|z>s_t = (V2, Va)(€ —
(82 — s_)t + a)|e>0, Which satisfies
Vor —s_Vog —Uze =0, £€R4, £>0
U
Uat — s_Uz¢ + p(V2)e = N(V—f)g

(Va = 0,Uz — @)|e=0 =: (bv, —bu)(t), |(bv,—bu)(¥)| < Cé1exp (—ct)
(‘/2aU2)|§:oo = (U+au+)7

(4.3)

where « is a shift and s; = ,/—p(vvl%(ﬁ) > 0 with 6y = |vy — T,u, — @|. Hence the

solution (v, u) to (P) is expected to tend to
(V,U)& ta) = (Vo(§) + Va(&,ta) — 3, Uo(€) + U2(6, 4 @) — ). (4.4)
The key point is how to determine «, which are suggested by the method in [4]. The
perturbation (v — V,u — U) satisfies
( (v—V)i—s,(v—V)g— (U—U)§:0
(u— Ul = s_(u—U)e + (pv) — p(Vo) — p(V2) + p(0))¢

A (4.5)
(U —Viu- U)l{:() = (—bV7 bU)(t)
(v—V,u—U)l=o
= (vo — Vo — V(- 0; @) + T, ug — Up — Ua(+, 0; ) + @) (&)
Integrating (4.5); in £ over R, we have
& [T e= v s = s by - b, (4.6)

Expecting [;°(v — V')(£,t)d€|t—o = O yields
- [ 0l - Ve 0 = / " (s_by (t) - by (®))at
0 0
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= (sp—s) /000(1/2(a (52— s)t) — D)dt

and hence
1(@) = [ (w0(€) = Vo(®) — Va(e + ) + D)t
0 00 (4.7)
—(82 — s_)/ (Va(a — (s2 — s_)t) — w)dt = 0.
0
Since - -
I'(a) = /0 V3 (€ + a)dé — (s3 — s_)/0 Va (o — (82 — s_)t)dt
= —(vy — Va(a)) + 0 — Va(a) = 0 — vy,
the equality 0 = I(a) = I(0) + (¥ — vy )a determines a by
o= == { [ (0(©) - Ya(9) - Va(©) + )
v 0y, (4.8)

~(sp— s)/o (Va(—(s2 — 5_)t) — 5)dt}.

Again, integrating (4.6) over (0,¢), we have
/ T (6, 1) ~ V(€ ) de = / " (ol&) — V(€,0; )t + / (s by () — by (1))dr
4] 0 0

= (s2=5) [ (Vala = (s = 5)7) — 0)dr (= ~bu(®) (4.9)
— 0 exponentially as ¢ — co.

Thus, putting the perturbation in the integrated form by
(¢"¢)(€: t) = —L (U(Tl,t) - V(n’ (2 a)au(nf t) - U(ﬂ, L O‘))dnz

we reach the reformulated problem

( ¢t"5‘¢5_¢§:07 EeRy, t>0
Y — s_Pe + p(V + ¢¢) — p(Vo) — p(Va) + p(D)
_Uet e Uos Ui,
Vige Vo Vo (4.10)
Ple=o = by (t), Wele=o = —bu(t)

oo

(8, 9)|t=0 = (b0, v0)(€) := —/£ (vo — V(-,0;a),ug — U(-,0; @))(£)dé.

This setting seems to be reasonable. However, we could not prove the global existence
theorem on (4.10) even if both |vy —v_,u; —u_| and ||¢g, g||2 were small. The difficulty
was to control the value ¥(0,t) from the boundary.
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1.2 Stability of viscous shock wave

Boundary Effect on Stationary Viscous Shock Wave for Scalar

School of Political Science and Economics, Waseda University,
1-6-1 Nishiwaseda, Shinjuku, Tokyo 169-8050, Japan

Viscous Conservation Laws

KENJI NISHIHARA*

Abstract

The initial-boundary value problem on the negative half-line R_

is considered, subsequently to [T.-P. Liu and K. Nishihara, J. Differential Equations 133 (1997),
57 - 82]. Here, the flux f is a smooth function satisfying f(us) = 0 and the Oleinik shock
condition f{u) < 0 for uy <u < wu_ ifuy <u_ or flu) >0foru, >u>u_ fup <wu_.
In this situation the corresponding Cauchy problem on the whole line R = (—00, 00) to (x) has
a stationary viscous shock wave ¢(x + zp) for any fixed zg. Our aim in this paper is to show
that the solution u(z,t) to (x) behaves as ¢(z + d(t)) with d(t) = O(Int) as t — oo under the
suitable smallness conditions. When f = u?/2, the fact was shown by [T.-P. Liu and S.-H. Yu,
Arch. Hational Mech. Anal. 139 (1997), 57 - 82}, based on the Hopf-Cole transformation. Our

Ut + f(u)z = Ugg, (IL‘, t) €eR_x (OOO)
w(0,t) = uq,
- U_ r — —C0

u(z, 0) = up(x) = zu, z=0

proof is based on the weighted energy method.

1 Introduction

Consider the initial-boundary value problem to scalar viscous conservation laws on the negative
half-line R_ = (—00,0), subsequently to [3] :

f

\

ut + f(u)r = Uge, (z,t) € R_ x (0,00)
u(0,t) = uy, te (0,00)

— U_ T — —00
= U4 = 0.

u(z,0) = uo(x) = {

Here, the flux f is a smooth function of u satisfying

flul)=fuy) =0

(1.1)

(1.2)

*This work was supported in part by Grant-in-Aid for Scientific Research (C)(2) 10640216 of the Ministry of
Education, Science, Sports and Culture.

49



and the Oleinik shock condition

f(u){<0 up <u<u_ if ug<wu_ (1.3)

>0 upr>u>u. if ug>u_.

Our concern is the large-time behavior of the solution u to (1.1). Under the conditions (1.2)
and (1.3) there is a unique stationary viscous shock wave ¢(-) on R = (—00,00) up to a shift dg
defined by the solution of the ordinary differential equation

¢z = f(9), ¢(£o0) = uy. (1.4)

Moreover, ¢ satisfies as z — £oo for some positive constant ¢y

exp (—cxlef) if f(ut) #0
¢(z) = usi| ~ (1.5)
o~k |£(@) = fluz)l ~ | — w15 (k= > 0),

where g(x) ~ h(z) as £ — a means that g(z)/h(z) — const.(# 0) as ¢ — a. Refer to [1, 5].
In the initial-boundary value problem, for any constant shift dy, ¢(z + dy)|z<o has a "boundary
gap” ¢(dg) — us at z = 0. Hence, the solution u to (1.1) is expected to be pushed backward to
compensate the "boundary gap”, that is, to tend to ¢(z + d(t)) with d(t) — oo as ¢t — co. In fact,
when f = u2/2, Liu and Yu [4] have shown that

u(z,t) ~ oz + d(t)), d(t) ~logt as t— oo, (1.6)

by using the Hopf-Cole transformation. In the case f(u_) > f(uy) = 0 or s > 0, the viscous shock
wave ¢(x — st+ dy) goes away from the boundary. Hence the boundary gap automatically vanishes
as t tends to infinity, and the effect of boundary is rather small. In this sense the case s = 0 is more
interesting. On the other hand, when s > 0, that is, the wave goes into the boundary, there is a
unique stationary solution ¢(z) satisfying ¢(—oo) = u_,¢(0) = u_, which is shown to be stable.
See [3].

Our aim in this paper is that the large-time behavior (1.6) also holds for general flux function
[ satisfying (1.2) and (1.3) provided that the shock is non-degenerate, i.e.

flluy) <s < f'(u)

with s = 0. When f'(u;.) = s or f/(u_) = s, the shock is called to be degenerate. The degenrate
shock case is also important, but it is only conjectured that d(t) ~ /3 as t — oo.
We now restrict our case to

up <u_ and f(4) <0 for u, <o <u_. (1.7)
Let us put
¢=¢(&), {=z+d(t), z<0. (1.8)
Then ¢ satisfies
Or — dl(t)¢m + f(d))z = P, ¢|x:O = ¢(d(t))a (1'9)

and hence the perturbation u(z,t) — ¢(x + d(t)) does

(u= @)+ &bz + (F(1) — f(§))e = (U~ @)as
(1.10)
(u = @)|z=0 = uy — (d(2)).
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To determine the shift d(¢), integrate (1.10) over (—oo,0) to have

d 0
dat /_00(“ — d)dz + d'(t)(¢(d(t)) — u-) — f(4(d(t))) = (u — ¢)z|e=0- (1.11)

We define d(¢) by

d'(t)(¢(d(t)) — u-) = f(¢(d(t))) = (u — ¢)ala=0
(1.12)
d(0) =dp
with 0
/_oo(uo($) — 6(z + do))dz = 0, (1.13)
so that 0 _
/_ (u(z,t) — ¢p(z +d(t)))de =0 for any ¢>0.
Thus, setting the perturbation by
oet) = [ (uly,0) = oy +dle))dy, (1.14)

we obtain the reformulated problem as a system of (v, d) by integrating (1.10) over (—oo,z):

(v + d'()($(8) — u) + F(D(E) + va) — F(P(E)) = Vo, TER., ¢ >0

T

o = w0@) == [ (uo(y) = 9y + do))dy, =€ R (1.15)

— 00

L 'Ula::—oo = le:O =0, t>0,

and

{ d'(t)(¢(d(?)) — u-) = f(9(d(?))) = v22(0,1),
(1.16)

d(0) = do,
where € = z + d(¢).

In later sections we devote ourselves to investigate (1.15) and (1.16).

2 Preliminaries and Theorem

In our setting the behavior d(¢) defined by (1.16) is important. So, as an approximatioin of d(t),
define do(t) by the solution in the case of v5(0,¢) = 0 in (1.16):

do(t)(¢(do(t)) — u-) = f(¢(do(t))), do(0) = do. (2.1)
By (1.7), di(t) > 0 and do(t) > dy. Hence, ¢(do(t)) — u_ < —c < 0 and
0 < C7H(g(do(t)) — us) < do(t) < C(d(do(t)) — us). (2.2)
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Here and hereafter, denote several generic constants by ¢, C and ¢;, C;(i =1,2,---). By (1.5)

d
O exp (~edo(t)) < Solt) < O exp (~e.do(t) (2.3)
and
log (exp (cydg) + e, C71t) < crdy(t) < log (exp (cydg) + ¢4 Ct). (2.4)
Since log (exp (¢ dg) + c.C7t) > C; + log (exp (c1dg) + t) etc., we have the following lemma.
Lemma 2.1 Define Dy = exp(cidg). Then the solution do(t) to (2.1) satisfies
Ci1 +log (Do + ) < c4do(t) < Cy + log (Do + ¢), (25)
CY Do+ t) 1 < dj(t) < C(Dg + )~ 1. (2.6)
Therefore, if v;(0,t) is small and decays faster that ¢~!, then d(t) is expected to behave as
(2.5). Hence, for a given small constant § > 0, we a priori assume
(Do + t)1 vz (0,8)] <1, 0Kt T, (2.7)
and, in particular,
|1/:ra:(0;t)| < Dal—ﬁ — e—(1+5)c+d().

Then
—1(&(do)) = v22(0,1) 2 C|(do) ~ ws| — [va=(0, 1)
2.8)
> Cleeme+do _ g~ (1+8)esda - ) (

if dy is sufficiently large. Hence, we take dy > 1 such that (2.8) holds. From (1.16) and (2.8),
d'(0) > 0 and d(t) > dg for 0 < t < tg. If d(f) = dy for some time t < T, then d'(f) > 0 and
d(t) > dy for t <t <t 4 £g. Hence

d(t) > dy for 0<t<T, (2.9)
and
0<Cl<u_ —¢d®) <C. (2.10)
Thus the difference d(¢) — dy(t) satisfies

(d— do)'(t) = - @ED) | [(#(de(®)) Vez (0, )

@) u— e = e(d)
7 -1 Vz(0, 1)

Solving this ordinary differential inequality in a similar fashion to (2.2) - (2.4), we have

Lemma 2.2 For a given vy(0,t) satisfing (2.7) with dy satisfying (2.8), it holds that
(Do + £)7]d(t) — do(t)| < C, (2.11)

lepd(t)] < C+log(Dg + 1), (2.12)
|d'(t)] < C(Do + ).

o2



These estimates imply that we can obtain the desired solution (v,d) provided that the initial
shift dg is large and that the initial disturbance vg(z) is sufficiently small.

To state our theorem, introduce some notations. L? = L?(R_) is a usual Lebesgue space with
its norm || - ||. For the weight function W,(z) := e%-1#/, @ > 0, define the function space

=R ={ge 1% [ Wal@lge)fds < +oo).
When u € C([0,T}; L2), it holds that
e = ([ Wal@)lo(e, O da)' < +oo 1)

for each ¢ € [0, T], where

e%-lz+d®l 2 4 d(t) < 0

Wa(é) = (_¢2(-’I3 + d(t)))*a ~ { eac+|m+d(t)1 z -+ d(t) >0, (215)

Then the solution space of (v, d) is defined by
X(0,T) = {(v,d); v,vz € C([0,T}; L35), (vaw, Vaaz) € C([OaT]§L%+66): d—do € C([0,T])}.
When (v,d) € X(0,T), we use the notation

[v(t)]3:6 := (v, v2) (D35 + |(Vows Vo) (E) 1466 (2.16)

which is well-defined.
Thus, our theorem is stated as follows.

Theorem 1 Let§ > 0 be a small constant. Then, if Dg := e“+% is large, and both (vg, vgg) € L
and (Vozz, Vozzz) € LI g5 are sufficiently small, then there ezists a unique solution (v, d) € X (0, c0),
which satisfies

(Do + )= ()55 + (Do + £)*2 |ugs (0, £) 2
+f0t((Do + ) (1) 35 + la(1)Bis) + (Do + )22 uge(0,7) )dr (2.17)

_ _ -8
< C(D§™*|vol3s + 872Dy %)

Corollary 1 Under the same conditions as in Theorem 1, a unique solution u(z,t) = ¢(x +
d(t)) + ve(z,t) to (1.1) satisfies

sup [u(z, £) — ¢(z + d(t))| < C(Do +£)73+%,
R_
and

C1+1log(Dg + t) < e d(t) < Co + log (Dg + t).

The proof of Thorem 1 is done by the combination of the local existence and the a priori
estimates. Since ¢(¢) — u_ ~ e ¢-1¥l as z — —00, there exists a unique local solution (v,d) €
X(0,1t9) if |vols;s < C by a standard way. Hence, we devote ourselves to the a priori estimates in
the next section.
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3 A priori estimates

Let T be
T = sup{tp; (v,d)) € X(0,%) is a solution of (1.15), (1.16) with
N() <1 and (Do + ) ugz(0,8) <1, 0<t< i), (3.1)
where
N(t)? = sup {(Do+7)'"*Ju(7)|3;s + (Do +7)* > |uza(0, ) ?
o<t
,
+ [ (Do + (@) s + s + (Do + ) ¥ uma(0,5)B)ds . (32)

Then we show

Proposition 3.1 (A priori estimates) Let (v,d) € X(0,T) with dy satisfying (2.8). Then
(2.17) holds for 0 < t < T provided that Dcl,_45[1)0|§;5 + 6‘2D0*6/2 is sufficiently small.

Proposition 3.1 implies T' = co by combining the local existence theorem. To prove Proposition
3.1 we show
N(T) < C(D5*uoffs +672D5" + N(T)?, (33)

which is derived in the later subsections.

3.1 Basic estimate

Linearize (1.15) around ¢(¢) to have

L(v) := v+ f($(&))vy — Vgw = d'(t)(u_ — ¢(€)) + F, (3.4)
where
F = —(f(¢(&) +vz) = f(6(8)) ~ ['(6(&))va) = O(v7)- (35)
Since the flux function f is not necessarily convex nor concave, we introduce the weight function
{(¢ —uy)(u_ —¢)}' ¢
—f(9) ’

The weight function of this type was first introduced in [5]. Note that

wa((b(é)) =

0<a<l. _ (3.6)

wa($()) ~ (—42(8) ™" = Wa(9(8)) ~ e as 2 — —c0 (3.7)
and that, at z = 0,
wa(9(d(1))) ~ (= dx(d(t)) * ~ *+9 v (Do + 8)° (3.8)
as t — oo by Lemma 2.2. Moreover, putting

I
U= ———,
2
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we have

(waf)'(¢) = —2(1 = a){(¢ — us)(u— — #)} (2 - ¢)

L) A=a)(=9z(6)"*(>0) as £— —co
(1 - ) (= e(€)) %< 0) as £ — oo,

(waf)"(4)
=2(1~ a){(¢ — us)(u- — ¢)} 1727 - 6)* + (¢ — uy ) (u- — ¢)}

~a(l—a)(—9z(§)) 174> 0) as { — oo,

and

1—a)(@—9)
f(@)

< C(1— a)(=¢z(E) 1
Multiplying (3.4) by wss(¢(€))v, we have

(¢ _ u+)(u_ - ¢) l

()] = {6 — us)(u_ — 6} 2 o

+f(¢)

(Guss (@) + {5 (wss Y (O — wss(9)vvats

— S (s Y'(8) + wh($)d ()} 90 + s ()03

= d'(t)(u_ — ¢(€))wzs(p)v + was(¢)vF

(3.9)

(3.10)

(3.11)

(3.12)

The estimate of the second to last term is important in this basic estimates. By using v(0,t) = 0,

(3.4) - (3.11) and (2.13), integrating (3.12) over (—o0,0) yields

(% L 000 wss (P)vda) + [ OOO co(—=¢g)"2{(6 — CDy1)v? + v2}dz

< d'(t)/ ))wss( vdx+C/ was(@)|v|vide.

99
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The right-hand side of (3.13) is estimated as follows:

#0) [ (e plwsgvant =1 [+ [ 1@) |

</ O B 62) R 4 O (W (=) P — $() )

— 00

@ [ [ g - o€ wss(@)v)dyldz
~d(t) Jz Oz

0
< v§ / (= 62) 202 dz + Cp8~1d'(1)?

0

reld @) [ @7 [ oS [ oo+ s

0
<v / (—62)7%(60% + v3)dx + C5 1 d/ (2) Pd(t)* e+ 4D

for a small constant v > 0, and

2(1-49)

0 _ 0 )
C/— was(4)|v|vide < CD, N(t)/_ was(p)vide.

Hence, for a large Dy

1o 2 0 —36 2 2
5 | ws(@)vido)+co [ (=62)7%0(60? +o2)da .

< C6~1|dl(t)]2d(t)3e3éc+d(t).

Since .
cs ! / |d'(7)d(7)3e¥+ 4 (Dg + 1) 4 dr
0

t

< 06—1/ (Do + 7)72(C + log (Dg + 7))3(Dg 4 7)®T1-4 47
0

< 052Dy,

multiplying (3.14) by (Dg + t)1=% and integrating the resultant inequality over (0,t), we obtain
the following lemma.

Lemma 8.1 It holds that
t
(Do + 1) ™% lu(t)[3s + /0 (Do + 7)1 (6lv(7) 136 + lv2(7)[35)d7

< C(DY4gl3s + 672D % + CN(T)?).
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3.2 Estimate of higher order derivative (I)

Differentiate (3.4) in = to have

L(Um) = Uzt + f/(¢(£))vxx — Vzzx

(3.16)
= ["(¢(€))¢<(&)ve — d'(t)92(&) + Fr,
where
Fp = =(f(¢ +vz) = f(9) — f'(®)ve)bz — (f(¢ + va) — F(9))vas —
3.17
= O(|¢z|v3 + |vsvz])-
Multiplying (3.16) by wss(¢)vy we have

(g3t + {5 3 (@02 — w3s(8)vsvas)s

— 5 {3 £)(8) + whs D) (1615 + ()02, (318

< Clozlwss ()02 + Cld' t)|(=pz)* > |va| + | Fp - w3s(B)val,

which is similar to (3.12). The second to last term in (3.18) has not difficulty, different from (3.12).
Here we must evaluate the terms from the boundary, which are bounded by

C(—¢(d(t))) **{(=px(d(t)))® + (—92(d(t))) - C(Do + 1) 7178} < C(Dg + )2, (3.19)

because

va(0,8) = vy — $(d(t)) and |vz(0,8)] < C(Dy + 1)1,
Integrating (3.18) over (—oo, 0), we have

G [ wsonian + [ col-0ul©) (002 +12,)da

(3.20)
0
< CUDa+ 75 4 s + Do+ )2+ [ [Py was(6)valde)
Since \
c / (Do + )14 . (Dg + 7)~#%dr < C671Dy /2,
0
multiplying (3.20) by (Dg + ¢)!=* and using Lemma 3.1, we obtain
Lemma 3. 2 It holds that
t
(Do + )~ us(t) 135 + /0 (Do + 1)1 (8lve(7)|3s + lvza(T) 3s)dT

(3.21)

— _ —&
< C(DY*|vg, vosl3s + 672D5 % + N(T)?).



3.3 Estimate of higher order derivative (II)

Differentiate (3.16) in = to have

L(’Umx) = Vgzt + fl(¢(§))vxxz — VUzzzx
(3.22)

= O(|#2(O)|(lvz] + [vaz])) — d’(t)¢maz(5) + Fx,

where :
Frz = O(|¢m(§)|(vg + |VaVzz|) + |VaVzaz| + Uiz) (3.23)

First, we see the relation of boundary values. Since u = ¢(§) + v, satisfies uy + f(u)y — gy = 0,
the integration fgoo(ut + f(u)g — Ugz)zdz = 0 gives f'(uy)ug|z=0 = Uzz|r=0 and hence

Vezz(0,t) = f'(us )2 (0,) + f'(uy)dz(d(t)) — dua(d(t))
(3.24)

= f'(u+)vaa(0,1) + O(1) (=92 (d(1)))*.
Here, we adopt the additional weight function
295(¢) = e8] v (—95(€)™ s € — oo,

where ¢(£,) = @ and c4 is, respectively, chosen when & — & > 0 or < 0. Multiply (3.22) by
w1_25(0(€)) 205(€) Ve ~ (—P2(£)) "1 vzy as € — +o0, we have, with a = 1 — 36,

1

(3z0sta(@)iele + [206(E)(5 (0af ) (00 — a0 iraviene)a

~205(&)[A(=, t) + d'(t) B(x, t)]vzs + 205(6)Wa(9) Vs

< ras(6) - 955 Erota(9) st (3.25)
+C(—2) "% (V2 + v2) + Cld'()|(— ¢2) ™% |vas]
+C‘F$$I(_¢x)—1766‘vza:|;
where 1 e ¢
A(z,t) = 5(95% e (wa ) (9) + (waf)" ()02(£)) (3.26)
and (¢
B(a,t) = w,(6)02(6) + 9es o wal0). (3.27)

By (3.9) and the definition of &,

Az, ) > cob(—¢x(€))
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(cf. [1, 5]), and d’(t)B(z,t) is absorbed into A(z,t) if Dy > 1. Moreover,
0 1
| s {5 wal) (@0, — 0a(6)vaxtase}ad

—-65 1
2 2

(3.28)

> (~¢a(d(t) %™ P (u4))022(0, ) — C(=(d(1)))*~"

> co(Do 4 1) 1% 0,,(0, )% — C(Dg + t)3+68

for a small fixed § > 0 by f’(uy) < 0. Thus, multiplying (3.25) by (Do + t)1=%4 and using (3.26) -
(3.28) and Lemmas 3.1 - 3.2, we obtain the third lemma.

Lemma 3.8 It holds that

1
(Do + 840z (1) 65 + /0 (Do + 7)2+250,,(0, 7)%dr

Dy oy (529)
+ (D0 + ) Oluaa (7)1 5 + [t ) '

< C(DE* ([0, vosl2s + |vozaltses) + 672Dy % + N(T)?).

3.4 Estimate of higher order derivative (III)

Finally, differentiate (3.22) once more in x to have

L(Ua::mc) = Vggyt + f,(‘zb(f)))vmrx:c = VUzrxrzr
(3.30)

where
Frpe = 0(1)(|¢z‘|(vi + |Umvmzr! + Uim) + lvzxvmxxt + |Ux'Ua:a:xx| + "sz|3)- (331)

Integrating (ug + f/(u)u2 + f(4)use — Ugge)z OVer (—oo,0), we have the relation at z = 0 :

d
d—tvxm(o’ t) + f’(u+)vmm(0, t) = Vzoze(0, )

= 0(1)(vz2(0,8)? + |d'(t) |6 (d(t))] + |$=(d(t)?) == I'(2).

Similarly to the preceding subsection, multiply (3.30) by 2zgs(&)wg(¢)vgpyz, a = 1— 368, then we have

(3.32)

(5205(E) a8 )e + 265(€) 5 () (9) s — 0a(8)nsatasas
_295(6)[‘4(37’ t) + d,(t)B($, t)] + 295(£)wﬂ(¢)v32r:mmx
(3.33)
< 1295(5) - 9bcq <§ : §:> wa(¢)“mxﬂ:“mmxm[

+C(_¢m)~65(vg + Uim + va%:r:x) + ld/(t)l(“qbz)_ﬁélvmml + |Z96wa(¢)vmxszml~
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Here,
—2956Wq (Qb ) VezrVzrrx I =0

= —Zgg’wa;(d))lx:O . (f,(u+)vmfv(0’ t)

+0(1)(—2(d(2)))* (%m(o,t) + f'(us Jvaas (0, 8) = T(1)) (3.34)
= %[zgﬁwa(qb)lmzfl(jgii)vmm(o:t)2 - Uil‘-’L‘(Oa t) . O(l)(_¢$(d(t)))2)]

%Zggwa((ﬁ) |:L‘:O(_f/(u+)vz:rz'(0y t)2 + v:r::cz‘(oa t)F(t))

Noting that f/(uy) < 0, Vgzz(0,t) ~ — f/ (U )Vze and zgswe(d)|z=0 ~ (Do+1)176, and multiplyiing
(3.33) by (Dg +t)1=% we obtain the final lemma.

Lemma 8.4 [t holds that

(Do + t)1—46|vmm(t)|%+65 + (Do + ) 2 |uge (0, 2) 2

1
+ /O (Do + 1) g (0, 7) 2 + (Do -+ 7) "% (8|vaaw(T) 3 165 + [Vzzes(T)|T1gs)dT  (3.35)

< C(DF ™ lvglas + 62D + N(T)?).

Adding (3.15), (3.21), (3.29) and (3.35) we obtain (3.3), which proves Proposition 3.1.
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Convergence Rates to Viscous Shock Profile for
General Scalar Viscous Conservation Laws with Large
Initial Disturbance

By Kenji NISHIHARA and Huijiang ZHAO

Abstract

This paper is concerned with the convergence rates to viscous shock profile for general scalar viscous
conservation laws. Compared with former results in this direction, the main novelty in this paper
lies in the fact that the initial disturbance can be chosen arbitrarily large. This answers positively
an open problem proposed by A. Matsumura in [12] and K. Nishihara in [16]. Our analysis is based
on the L!—stability results obtained by H. Freistithler and D. Serre in [1].

1 Introduction and the statement of our main results

This paper is concerned with the convergence rates to viscous shock profile of solutions to the
Cauchy problem for general scalar viscous conservation laws

U+ f(U)y = Ugy, zER, >0 (1.1)
with initial data

u(t,z)lt=0 = uo(z), z € R, - (1.2)

where f(u) € C%(R) on the domain under our consideration and the initial data ug(z) is asymp-
totically constant as z — 4oco:

ug(x) — ug as = — Foo. (1.3)

The traveling wave u(z — st) = ¢(£) is called a viscous shock profile to (1.1) - (1.3) if it satisfies

—spe + f(P)e = deey,  #(€) muxr as £ — koo. (1.4)

Here the constants ui and s (shock speed) satisfy the Rankine-Hugoniot condition

—s(ur —u_) + fluy) = flus) = 0 (15)

and the generalized entropy condition

1991 Mathematics Subject Classification. Primary 35B40; Secondly 35L65
Key words and phrases. Viscous shock profile, Convergence rate, Large initial disturbance
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<0, if up<u<u_,

h(U)E—S(U—Ui)Jrf(U)—f(Ui){ (1.6)

>0, if u_<u<wuy.

That is, the viscous shock profile ¢ is a solution to

¢¢ = h(p), ¢(£00) = uy.

It is noted that the condition (1.6) implies

fllup) < s < filus) (L.7)

which includes the following cases: the nondegenerate shock condition

fllug) < s< filu) (1.8)

and the degenerate shock condition

flus) =s< filus), fllus) <s=F(u) or s=f(us) (1.8)2

We call the shock satisfying (1.8); Laz shock (regardless of viscous or inviscid case) while those
satisfying (1.8) are called marginal shock. In what follows, for the marginal shock, we only pay
our attention to the case f’(u;) = s < f/(u_) since the other cases can be treated similarly.

Stability results have a long history starting with the paper of A. M. II'in and O. A. Oleinik [4],
in which they proved that the viscous shock profile in the case of a convex flux function is indeed
stable. Since then, a lot of good results have been obtained by employing various methods (All
references [1-18] are on this line. Especially, see the survey paper [12]).

To go directly to the main point of this paper, we only review two results which are closely
related to ours. The most general result on the nonlinear stability of the viscous shock profile is
given by H. Freistithler and D. Serre in [1].

Theorem 1.1 (L'-stability) Let ¢(¢) : R — R be a bounded viscous shock profile of (1.1),
(1.2). Then for any ug(x) satisfying ug(x)— ¢(z) € L*(R), the Cauchy problem (1.1), (1.2) admits
a unique solution u(t,z) satisfying

Lim
t—+400

u(t,z) — ¢z — st +8)|| =0, (1.9)

Ll
where
. A(um) Rl

Uy — U

(1.10)

Although the results obtained in Theorem 1.1 are quite perfect, no decay rates have been
obtained. On the other hand, A. Matsumura and K. Nishihara [13], M. Nishikawa [17] have
obtained the following decay properies via the L?—energy method. Notations are given in Remark
1.1 below.

62



Theorem 1.2 (Decay rates) (I). When f'(us) < s < f'(u_), suppose that up(z) — ¢(z) is
integrable and that

Up(z) == /:)o {uo(z) — oz + 5)}dz € H2NIA(R).

Then there erists a sufficiently small positive constant €1 such that if |Up(z)||2 < &1, the Cauchy
problem (1.1), (1.2) has a unique global solution u(t,z) satisfying

sup
zcR

(II). When f'(u.) = s < f'(u_), suppose that f(u) € C*"**(R) such that

ult;2) = (o = st-+6)| < 01+ 0)# (Jhuo = ol -+ 1Vola ). (1.11)

fu)=-=f™wu)=0 and FOV(u )#0 for some n>1 (1.12)

and that uo(xz) — ¢(z) is integrable and Up(z) € H?N L27<£>+ (0 <a< %), then there exists a

sufficiently small positive constant 1 > 0 such that if ||Ugll2 + |Uslie), < €1, the Cauchy problem
(1.1), (1.2) has a unique global solution u(t,xz) satisfying

sup [u(ty2) = ¢z = st +)| £ OWA+0 % (Juo = 6l + Uolae, ) (1.13)
zcR
Here
VI+HEE, €20,
(€)4 = (1.14)
1, &< 0.

Remark 1.1 (Notations) Here in the above and in what follows, by C or O(1), we denote
several generic constants and for each 7 > 0, C(t — 1) (or Ci(t — 7) for some i € Z7) will be used
to denote some generic function which is continuous with respect to t on [1,00). For two functions
f(z) and g(z), f(z) ~ g(x) as x — a means

C7lf(z) < g(z) < Cf(z) (1.15)
in the neighborhood of a. H'(R)(l > 0) denotes the usual Sobolev space with norm || - |l; and
- llo =1 - || will denote the usual L2—norm. For the weighted function w(z) > 0, L2 (R) denotes

the space of measurable functions f(z) satisfying /w(z)f(z) € L2(R) with the norm

1

2
= ([ w@if@Pes) (1.16)
When C~! < w(z) < C, we note that L2 (R) = L*(R) with |- |y = || - ||. When w(z) ~ (z)* =
(1+ 2%)%, we write L2(R) = L2(R) and | - | = | - |o without confusion. Moreover, if w(zx) is

replaced by (x)*w(x), we denote the space by L2 ,,(R) with the norm

flow = ([ @ v@Ir@)Pde)". (1.17)
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From the above two results, it is easy to find that in Theorem 1.1, the initial disturbance can be
chosen arbitrarily large but no decay rates can be obtained. In Theorem 1.2, some decay rates have
been obtained but, due to the limitation of their arguments, its initial disturbance should be small
in certain Sobolev space. Thus it is of interest how to get the decay without smallness condition.
In fact, such a problem is one of the open problems proposed by A. Matsumura in [12] and K.
Nishihara in [16]. Our main purpose of this paper is to give a positive answer to this problem.

Theorem 1.3 (Main results) Let the initial date ug(z) — ¢(z) € L' N L2(R) and Up(€) €
L?(R), then the following attsertions hold.

(I). When f'(uy) < s < f'(u_), the estimates (1.11) holds provided Uy(¢) € LE(R);

(II). When f'(uy) = s < f'(u_), the estimate (1.13) holds provided that the assumption (1.12)
holds and Uo(€) € LZ oy, (R) with 0 < a < 2.

Remark 1.2 When f'(uy) < s = f'(u_) or s = f'(uy), then Li’<ﬁ>+(R) in (II) of Theorem 1.8

thl);zldee replaced by Li@_(R) or Li’@(R) = L2, (R) respectively while the same results also
old. Here

1, £>0.

Remark 1.3 Compared with the results obtained in [18, 17], the reqularity assumptions on the
initial data is also weaker than those in [13, 17].

© { VIFE, <0,

Remark 1.4 As pointed out by A. Matsumura and K. Nishihara in [13], for the Lax shock, the
decay rates obtained in Theorem 1.8 is expected to be optimal in the L?—setting. In fact, when
flu) = %uz, by exploiting an explicit formula, K. Nishihara showed in [15] that if

Uo(z)| < OM)|z|"2  as  |z| — +oo,
then

(]

sup |u(t,z) — ¢(z — st + )| < O(1)t~
rcR

which s an optimal decay rate in general.

Before concluding this section, we give main ideas in deducing our main result, Theorem 1.3.
Decay rates (1.11), (1.13) in Theorem 1.2 have been obtainde by the weighted energy method
developed by Kawashima, Matsumura and Nishihara etc. in [6,7,13]. In their method, to obtain
the a priori estimates is a key point under the a priori assumption

N(t):= sup |[U(s, )l2< ¢
0<s<t

for sufficiently small positive constant &, so that the initial disturbance Up(&) should be small
However, we found that the a priori estimates are available provided that ||U(¢,-)||r~ is small
The L'-—stability theorem, Theorem 1.1, by H. Freistiiler and D. Serre in [1] also shows that
lU(t, )|z — 0 as t — oo. Therefore we can apply the weighted energy method on [T7,00) x R
for some large T7.

Our plan is as follows. In Section 2, we give some preliminary results. The proof of our main
results will be given in Section 3.

64



2 Preliminary lemmas

In this section, we give some preliminary lemmas which will be used in proving our main results in
the next section.
First, the existence of viscous shock profiles ¢(¢) follows from Kawashima and Matsumura [5].

Lemma 2.1 (Existence of the viscous shock profile) ’

(i). If the Cauchy problem (1.1), (1.2) admits viscous shock profile ¢(x — st) connecting u_ and uy,
then u_,us and s must satisfy the Rankine-Hugoniot condition (1.5) and the generalized entropy
condition (1.6);

(ii). Conversely, suppose that (1.5) and (1.6) hold, then there exists a viscous shock profile ¢(x — st)
of (1.1), (1.2) which connects u_. and uy and is unique up to a shift in £ = x — st and is monotone
in €. Moreover, if

h(g) ~ |6 — ug] '+ (2.1)
as ¢ — us with ky. > 0, then it holds

|9(&) — us| ~exp(=CL|€]) as & — Foo if ki =0,

. (2.2)
16(6) —us| ~[§] = as {—too if ki #0,
for some positive constant Cy.
Note that ky = n in (2.1) if A'(us) = --- = h®™(uy) = 0 and A"V (uy) # 0 which are
corresponding to (1.12).
We now define the shift § of the viscous shock profile ¢(x — st) as
/R (u()(x) ~ gz + 5))@ —0 (2.3)
and set
Up(z) :== / (uo(z) — ¢z + 6)) dz. (2.4)

It is easy to see that § satisfies (1.10) and, without loss of generality, we may take § = 0.
Following A. Matsumura and K. Nishihara [13], we put the perturbation

u(t,z) = ¢(&) + Ue(t, §), &=z~ st, (2.5)
then the problem (1.1), (1.2) is reformulated to
Ut - U£§ + h,(¢)U§ - F(t,‘f)a (26)
'3
Ut €ho = Uo(6) = [ (uole) - o) ), (27)
where
F(t.6) = ~{ 0+ U0 - 5(0) - 1'(0)Te}. (2.8)
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Note that ¢(¢) € L*(R) and Upe(€) € L*°(R). From the well-known result on the global
solvability of the Cauchy problem to scalar parabolic equations [1|, we have that

Lemma 2.2 (Global existence to the Cauchy problem (2.6), (2.7)) Suppose that f(u) €
C (R), wp(z) — ¢(z) € L' N L®(R), then the Cauchy problem (2.6), (2.7) admits a unique global
smooth solution U(t,€) satisfying

[Ue(t,6)| < Cn, (2.9)

where

C1 = llug(z) = $(@)llze + [6(@) Iz (2.10)

From the Duhamel principle, the solution U(t,£) to the Cauchy problem (2.6), (2.7) has the
following integral representation

Ut €) = K(t, &) Up(€) + /OtK(t —5,€) % G(s, €)ds. (2.11)

Here x denotes the convolution in space and
2
K1) = o (<12,

G(t,€) = = (£(6(9) + Uelt, €)) = F(6(6) - U ).

Having obtained the above integral representation, we can deduce that

(2.12)

Lemma 2. 3 In addition to the assumptions stated in Lemma 2.2, we assume further that Uy(&) €
L2(R), f(u) € CY(R), then we have for each T > 0,T > 0 and i = 0,1 that

8Z,U(t,£) <Oyt 2, T<t<T. (2.13)
o0&t 2
Proof: Notice that
O i) = 2Kt )« Ul +/ O (= s,6)+G(s,)ds, i=0,1  (2.14)
851 861 0 8€z s S, 3 =Y, .
and

By Hausdorft-Young’s inequality and (2.9) we have that, for ¢ = 0, 1,

NUo(€

)| NG (s, €)ll2ds

2 (2.16)
< 0t~ |Uo(©)llz2 + OQ1) /O (t— 5)3 |Ue(s, )1l 2 s,

2U9)|,

6& ( ) 851

and hence
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1

>

=0

ai
¢t

U(t,§)

<0 (1+678) [0o@lzz +0) [ (14 = )74 Iels, Ol ds. (217

2

Thus the singular Gronwall inequality gives

which is the desired estimates (2.13). This completes the proof of Lemma 2.3.

Z060| < cOrHion@ s, 217)

12

Remark 2.1 Since the viscous shock profile ¢(&) satisfies

Pee = (f(9) — 50)e = 1 (9)9¢, (2.18)
we can deduce that, if f(u) € C*(R) for some positive integer k > 0, then
gk+1

Combining the above observation with the technique used in the proof of Lemma 2.3, we have
the following lemma.

Lemma 2.4 In addition to the assumptions listed in Lemma 2.8, we assume further that f(u) €
C*(R) for some positive integer k, then we have

“ O U6

&

< Cy (Z,t—f> 1Uo(€)ll2e, T<t<T, i=01,--- k. (2.20)
L 2" 7 g

Proof: We only treat the case k = 2. The case k¥ > 2 can be shown by employing the induction
method. In the case £ = 2, from Lemma 2.3, we only need to estimate |[Ugc(t,£)||, .. We first have
that for each 71 > 0

U9 = K(t =11, s U, &) + [ K(t— 5,6) « Olo, €)ds. (2.21)
and hence
Uge(t,€) = Kege(t — 11,€) » U(71,€) + /ﬂt Ke(t — 8,8) * Ge(s,€)ds. (2.22)
Since
Ge(t,€) = O() |9 |Ue(t, ) + O(1) |Uge (2, €| (2.23)

we have from (2.9), (2.19), Lemma 2.3 and Hausdorff Young’s inequality that for ¢t > 7
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[Veelt, Ol < O = ) U (1, )l
+0(1) [ (6= 94 (I0e, Ol + Vs )2 ds
< 0()(t =) 1y *Ca(m) (@) llz + O() [ Cas)(t— ) 2572 |Uo(€)llz2ds (904
+0(1) [ (¢ 57 |Uigls, )l 2 s

T1

t 1
< 0Q)(t— 1)~ C, ) |Uo(é) iz + 0(1)/ (t— )72 [|Uge(s, Ol 2 ds-
71
Thus the singular Gronwall’s inequality deduces

1Uee(t, )2 < (¢ = 11) ' CQ t =71, 1) Uo(€) 12 (2.25)

Here C(t,t — 71, 71) is a continuous, monotonically increasing function of ¢t and ¢ — 3.
By (2.25), if we take 73 = % for each given 7 > 0, then we have

T

-1 TT
Ut < (2= 5) € (8= 5:5) 1W0(©lea (2.26)
which shows (2.20) with £ = 2 and completes the proof of Lemma 2.4.

Our final result in this section is concerned with the weighted energy estimate on the solution
U(t, &) obtained in Lemma 2.2.

Lemma 2.5 In addition to the assumptions in Lemma 2.2, suppose further that Up(€) € L2(R),
then the solution U(t,£) obtained in Lemma 2.2 satisfies

lsteus| <o |ymeuo)| (2.27)

provided that the weighted function W(€) satisfies

7' (§) _
‘w(g) ) < O()w(). (2.28)

Multiplying (2.6) by w(£)U(t,£) and integrating the resultant equation with respect to ¢ and
¢ over [0,t] x R. If (2.28) holds, then we can employ the Gronwall inequality and obtain (2.27).
Since this is a standard way, we omit the details.

Remark 2.2 It is easy to check that all the weighted functions used in our subsequent analysis
satisfying (2.28).
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3 The proof of Theorem 1.3

In this section we devote ourselves to the proof of our main result, Theorem 1.3. The non-degenerate
shock case can be treated easier than the degenerate shock case. Hence we deal with the case
s= f'(uy) < f'(u). Without loss of generality, we assume v < u_ and h(¢) < 0 for ¢ € (uy,u_).
Consequently, there is a unique number & € R such that

¢(&) =T = # (3.1)
To overcome the nonconvexity of f(u), as in [13], the weight w(¢) is chosen as
_(@—ug)(p—u_)
w(¢) = ") . (3.2)
It is easy to find that
C, i fug) <s< fllu)
w(¢(£)) ~ , (3.3)
& if fl(ug)=s
as £ — oo and
d2
2 (her(@) =2. (3.4)

For the weight function w(£) chosen above, we have the following basic energy estimates.

Lemma 8.1 Let U(t, &) be the solution of the Cauchy problem (2.6), (2.7) obtained in Lemma
2.5, then it follows that

SIUOR ) + L H —¢£U<s>|\2ds+(1—05;:%1iv<t>||m) [ 0B s < cam). 69

Proof: Multiplying (2.6) by w(e(£))U(t, &), we have

(3@U®), + (3(h) ()U2(1) — w(@)UBVeD),
+w($)UZ() — Hwh)"(9)9eU (1) = w(@)U () F ().

>

Here we have used the fact that ¢¢(£) = h{¢(£)).

Noticing ¢¢(€) < 0 and F(t,£) = O(1) |Ug(t, £)|%, we can get (3.5) from (2.27) and (3.4) imme-
diately by integrating (3.6) with respect to ¢ and £ over [T1,t] x R. This completes the proof of
Lemma 3.1.

(3.6)

The next lemma is concerned with the improvement of the estimate (3.5)

Lemma 8.2 For 0< 3< a < 2(n > 1), we have that the solution U(t,£) of the Cauchy problem
(2.6), (2.7) satisfies
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[ w(o) P00y + /Tt ety v deas

+<1—c7 sup [|U(2) |Loo) / [, w (@ loclU?(s)dsas (3.7)

[Tl 1t]

: i
[ [ w(@) P02 (s)dgds < Co(Ti) + Co sup VD)l [ |Ue) s
1 /R [Tlat} I

Proof: The proof of Lemma 3.2 follows essentially the arguments developed by A. Matsumura
and K. Nishihara in [13]. Thus, we only give a sketch of the proof, and the difference between our
arguments and those in [13] will be emphasized.

Multiplying (2.6) by 2w(¢)tPU(t), we have similar to the proof of Lemma 6.1 in [13] that

(w(¢>1+ﬁU2<t>)t + (e + 201 — e)w (@) PUR()
+2{ = 20(6) ¢ + 6@ hle) (20 - 6) - 2LGHA) L2y (58)

< 20(¢) AU F (2.

Here ¢ € (0,1) is an arbitrarily chosen constant.
On the other hand, if § = ¢(£) —uy > 0 and & = u_ — uy > 0, then

1(€) 1= Buw(g(€)Pw!(6(€))h(9(6)) (2T — o(§)) — LLLLEEN )

(3.9)
= Bu(@(€))(an + 0(8)) (i (1- §2) + 0(9))

as £ — +o0.
Since § < a < %, we can always choose ¢ € (0,1) such that 1 — %—g > 0. Consequently, there
are positive constants C1g and R; such that

1(§) > Cyo for &= Ry (3.10)
Noticing also C™* < w(¢(€)) < C,C7! < w'(¢(€)) < C as £ — —co, we have from (3.5) that
2
[ |, 21OV, dgas < 01 ) [ loe(@lo?(s, s .
< C(T; 0] U(t, 00 Ue( d
<O+ (){s;;gn i [ 10e(6:€) s

and

t | A S S S oo t w 14872 s 8
[ (0@ s, (s, dzds < 000 sup (U1 e [ [ wlo(€)" 025, s

(3.12)
Integrating (3.8) with respect to ¢ and £ over [T1,t] X R, we can immediately get (3.7) from
(3.10)-(3.12). This completes the proof of Lemma 3.2.
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Lemma 3.3 For each given a > 0, the solution U(t, &) to the Cauchy problem (2.6), (2.7) satisfies
for B €[0,q]
2 t 2
A+ TR )+ (1 - O sup 06, ) [ (14 910600 e
1, 1
t
48 [ (U Gs) s
1
t
< Co@{1+7 [ @+ U B s
1

i
48 [ (a7 [ (6= €07 MoV s, ) Uels, )l dsils .

(3.13)y 5

Proof: Putting (¢—&.) := /1 + (£ — &)? and multiplying (2.6) by 2(1+t)7(6—&.)7w((€))U (¢, €),
we get

(@ + 2 = )Pw@)U2(®), + (20 + 07(E = E)TWTE) (w(@) + (wh) (9)),
+2(1+ 7 — EPw(@)UZ — 3(1+ 1771 = E)P(@)T?(1) + (1 +17(E — &) 45U (1)
F2B(1+1)7{E = &P 2(E - E)w(O)U(RT(t) = 2(1+ 7(E - &) w(UR)F ().

(3.14)
Here
Ap(&) = —{& = &)8e(&)(wh)" ($(€)) — AE=2 (wh)'(8(€)) 5.15)
15
= —2(¢ — &)¢(€) — 267=25(0(6) — ).
Due to (3.1), there exists a positive constant Cj independent of 3 such that
Ag(€) > Co for any £€R. (3.16)
Integrating (3.14) with respect to ¢ and & over [T1,t] X R, it is deduced by (3.16) that
g 2 t 2
L+ UG ) +2/T (1+s)7|U§(s)|ﬁ’w(¢)ds+Cgﬁﬁ (1+ 8)1|U(s)[2_ds
t
< U+ TV iy +7 [ (L4 97 UG s
I (3.17)

26 ﬁ J L@ 87— 67 @)U (9)Uels) dges
H/Tt A(l + 8)7(€ — £4)Pw(9)|U(s) F(s)|dEds.

Due to

J (e (€607 () (el < Cux sup 10,z [ (L4 I0e(6) s (315)
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we can get (3.13), 5 immediately by substituting (3.18) into (3.17), which completes the proof of
Lemma 3.3.

Now from the L!-stability result, Theorem 1.1, by H. Freistithler and D. Serre in [1], we
conclude that

Jim [U(€)l < Jim [ [u(t,z) - ¢(a - st)lde = 0. (3.19)
Thus if we choose T sufficiently large such that
1 11 1
U(t o < —ming —,—, — 3.20
s (09l < gmin{ (3.20)

then we have from (3.20) and Lemma 3.1-Lemma 3.3 that

Corollary 3.1 For Ty chosen as above and 0 < 3 < a < %(n > 1), the solution U(t, &) to the
Cauchy problem (2.6), (2.7) satisfies for t > Ty

U@ + [ o0 det [ 106 s < T (3.21)

Jw@revnder [ w@) 0w [ ] w@)ioduiacds

. N, _ (3.22)5
4 [ o) URededs < O(T)
and
t 9 1
A+ )NUD ey + fT (1+ 8)7|Ue(8)|5,(4)d8 + ﬁ/T (14 8)|U(s)|3_1ds
. t
< C12(T1){1 + W/E(l +8)7 U (9)[5 gy 48 (3.23), 5.

t
48 [ [ (=€) o) (s, OUe(s. € deds |
1
The proof of (II) of Theorem 1.3 follows from (3.21), (3.22)4 and (3.23), 3, in a similar fashion
to that in [13, 17]. For completeness, we give the outline.
First, letting v = 0 and 3 < « in (3.23), 5, we can estimate the corresponding last term as in
the following

t
last term in (3.23)g5| < g/f IU(s)|%_1ds
1

t (3.24)
+0(1) [ [ (6= &) (@O PUR (s deds = I+ T
Noticing
~ & as £ — +00, .
w(g(£)) (3.25)
~ Const. as & — —o0,
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we can find two positive constants Ry > 0 and R3 > 0 such that

t
B[ [ €& u@Uie)dsds
1 t
B+1772 2
+o(1) /T 1 /é o OV U () dgds + O(1) /T 1 /_ poceer, UEEds
1 t t
< %/_ |Ue(5) 2 ey ds + O 1)/ /Rw(gzs)HﬁUg(s)dgdH0(1)/71/RU§(s)dgds

<o)+ / |Ue(5)[2

(3.26)

Here we have used (3.21) and (3.22)4.
Substituting (3.26) and (3.24) into (3.23) 5 and letting 3 = c, we have for & < 2(n > 1) that

OB i+ [ (TR 1+ 1V ) ds < CralT) (3.27)

provided that ¢ > T.
Next, we consider (3.23), 5 with y =5 +cand F=0

(14 )5+ [U(t) (¢)+/ (1+ )3+ Ue(s) 25y ds

< C1o(Th) (1+/ (14 )2+ 1]U(s)|w(¢)ds)

Here € > 0 is chosen sufficiently small such that

(3.23) 3420

1

« Q 1
I — - < 1.
s<2/ 2+e<n_

Since

s 9t @i < [ st ([ [ Yene gasds

e ) 03t [ 02 egeas 329)
< o<1>/ﬂ<1+ ) /@0 w(@)U2(s)déds + O(1 )/Tl(u ) [ 0P (s)aed
= J1+ Ja,
we have from (3.25) and (3.22) that
Ji < 0(1)/T (14 )5+ </§>Ow(¢)1+aU2(s)d§>T <L>Ow(¢)““1U2(s)d§>i ds
<Oy [ a+aihe! </§>Ow(¢)a"1U2(s)d§>§ ds (5.29)

=) (/:Tfl(l * 5)_%2__5%5) N ( /;1 /5>0 w(¢)a_1U2(S)d€ds>%

< C(T1)(1+ )5
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As to Jo, if @ > 1 (consequently n = 1), we have from § +¢ < 1 that

< O1) /_,T | 7o 9cas < o) L 0B s < o). (3.30)

When n > 2 (consequently o < 1), we have from (3.25) and (3.27) that

t

now [ a+oFt( [ - £*>"U2(s,€)d€>1_a ( /5 - @>°‘102<s,£)dﬁ>a ds
<oQ) /q_f 14 5+l ( ]5 - £*>aw(¢)U2(s,€)d£>1_a ( [g (- £*>“*1U2(s,5)d5>0 s

t
<O [ (14 9F U ds
1

< O(Ty) (/;(Hs) =L asds> (/ ()2 1ds>a§C(T1)

since ¢ < §
Inserting (3.28)-(3.31) into (3.23)g 4.0 deduces

(3.31)

t —
(14 8)2 U5 + /T (14 )2 75 |Ue(s)]24yds < Cra(T1)(1+1)° (3.32)
1
provided that ¢t > T;. Thus we have the following lemma.

Lemma 3.4 Under the conditions (1I) in Theorem 1.3, the solution U(t,£) to the Cauchy problem
(2.6), (2.7) satisfies (8.32) for anyt > T1 and some sufficiently small € > 0.

Now we turn to get the decay rates for derivatives of U(¢,£). We first have
Lemma 3.5 In additional to the assumptions listed in Theorem 1.3, suppose that f(u) € C*(R)

for some k € Z7, then, for each fired T > 0, the solution U(t,£) to the Cauchy problem (2.6), (2.7)
satisfies

sup
[7,00)

2 )

8£J < CIS(T) < 00, .7: 17 o 'ak' (333)

LOO

Proof: We only prove (3.33) for the case k = 2 since the rest can be treated similarly. For each
0<n<m<7<t<T, we have

1
Ué(ta 5) - Kﬁ(t_ 71,6) * U(leé) + / Kﬁ(t_ 815) * G(Srg)ds

(3.34)
Ueelts ) = Keelt = 72,8 1 U &) + [ Kelt = ,6)  Gele, )
On the other hand, we have from the I!—stability result obtained in [1] that
U (. &)= < O(1). (3.35)
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Consequently from (2.9), (3.34) and (3.35), we have by the iteration arguments used in Lemma
2.4 that for r <t < T

o7 < Cw(t—1511,-,75-1), F=1,2. (3.36)

|__U(t 8

Having obtained (3.36), we now turn to prove (3.33).
First we notice that (3.36) holds for each given 71,72, 7. Hence, for each fixed 7 > 0, letting

To =271 = 5,T = 2t; (where t; > 7 is an arbitrarily given positive constant), we have from (3.36)

that

sup
[Ta2t1

853 U(t,§) < C1r(260 — T4 71, Tj-1), J=1,2. (3.37)

co

Now suppose that for some 1 < m € Z™

I
sup —U(t, &) < Cn(260 — 75710, Tj-1), J=1,2, (3.38)
fr,(m+1)ta] || 087 Loo
then it holds that
& _ _ .
sup —U(t,€) < Crr(2ty — T4 71,0+, Tj—1), Jj=1,2. (3.39)
mty 47, (m+2)ty) || 0€7 oo

In fact, letting 7', 71, 72 in (3.36) be equal to (m + 2)¢1, mit; + 71, mt; + T2 respectively, we can
get (3.39). By setting t; = 27 and Cy5(7) = Cy7r (47' — ;1 ST @), (3.33) follows easily. This
completes the proof of Lemma 3.5.

Since
[Ue(t, )1 = [u(t, &) — ¢(&)1* < [I(ult, &) — ()¢l llult, €) — ¢()][ 2
= Uee(t, Ol |UE, &) |,
we have from Lemma 3.5 and Theorem 1.1 that
Jim [[Ug(t, )l|ze- = 0. (3.40)
Furthermore, from Lemma 2.4, under the assumption that Up(¢) € L*(R), we have

1U(T1, )] g2 < Cis(Th) (3.41)
for each given 77 > 0. With (3.40) and (3.41), we also have the following lemma.

Lemma 3.6 Let!l = 1,2 and assume that the conditions listed in Lemma 3.4 are satisfied, then
it holds for any t > T and some sufficiently small € > 0 that

2 i .
+ /_ (1+s)27°

T

I

0
@U(t)

{ 2

(L+1)2+e Ue(s)|| ds < Cro(T1)(1 + 1)%. (3.42)
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Combining Lemma 3.4 with Lemma 3.6, we can deduce that

sup |u(t,z) — ¢(z — st)| = sup |Ug(t,£)|
zcR zcR

= 1 1 - —a
< CI)NUD2 U@z < C(T1A+ )77,
which proves (II) of Theorem 1.3.
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2. Compressible flow with frictional damping

Boundary Effect on Asymptotic Behavior of Solutions to the
p-System with Linear Damping

Kenji Nishihara*
School of Political Science and Economics,
Waseda University, Tokyo 169-50, Japan

Tong Yang'
Department of Mathematics
City University of Hong Kong, Hong Kong

Abstract

‘We consider the asymptotic behaviour of solutions to the p-system with linear damping on
the half-line R, = (0, c0)

Vp — Uy = O, Uy +p(v)$ = —Qu,

with the Dirichlet boundary condition u|,—¢ = 0 or the Neumann boundary condition ug|z—0 =
0. The initial date (vo, uo)(z) has the constant state (v, u,) at £ = co. [L. Hsiao and T.-P. Liu,
Commaun. Math. Phys. 143(1992), 599-605] have shown that the solution to the corresponding
Cauchy problem behaves like diffusion wave, and [K. Nishihara, J. Differential Equations 131,
171-188 and 137, 384-395] has proved its optimal convergence rate.

Qur main concern in this paper is the boundary effect. In the case of null-Dirichlet boundary
condition on u, the solution (v,u) is proved to tend to (vy,0) as ¢ tends to infinity. Its optimal
convergence rate is also obtained by using the Green function of the diffusion equation with
constant coefficients. In the case of null-Neumann boundary condition on u, v(0,t) is conserva-
tive and v(0,t) = vp(0) by virtue of the first equation, so that v(z,t) is expected to tend to the
diffusion wave ©(z, t) connecting vo(0) and v4. In fact the solution (v, u)(x, t) is proved to tend
to (o(z,t),0). In the special case vo(0) = v4, the optimal convergence rate is also obtained.
However, it is not known in the case of v5(0) # v4.

1 Introduction
In this paper we consider the initial-boundary value problem for the p-system with linear damping:
Vg —Ugpy = 0

(1.1)
u+p()y = —au, x€ R, =(0,00), >0,

*This work was supported in part by Waseda University Grant for Special Research Project 98 A-504 and Grant-
in-Aid for Scientific Research (C}(2) 10640216 of the Ministry of Education, Science, Sports and Culture.
TThis work was supported in part by the RGC Competitive Earmarked Research Grant # 9040190.

78



with the initial data
(’U,U)(iE, 0) = (’Uo,uO)(l‘) - (U+,U+), vy >0, as x — o0, (12)

and with the Dirichlet boundary or the Neumann boundary condition. Eq. (1.1) models a one-
dimensional compressible low through porous media. Here, v > 0 is the specific volume, v is the
velocity, the pressure p is a smooth function of v with p > 0, p’ < 0, and « is a positive constant.

For the Cauchy problem to (1.1), the solutions were shown time-asymptotically behave like
those of Darcy’s law

Up — iy, = 0
(1.3)
p(0)y = —ai,
or
Uy = —%p('l_)):m:
(1.3)
(V) = —ct

by Hsiao and Liu in [4, 5]. A better convergence rate and the optimal convergence rate when
v(00,0) = v(—00,0) were obtained by Nishihara in [14, 15] by the enegy method and the pointwise
estimate. For the related problem, see [3, 6] and references therein. See also the book [2] by Hsiao.
Though the initial-boundary value problems on R, to the equations of viscous conservation
laws have been recently investigated by several authors [7, 8, 9, 12, 13, 16], there are few works on
(1.1) as far as we know. Our results discussed below show that even for the case with boundary
condition, the Dirichlet or the Neumann boundary condition at z = 0, the solutions of (1.3) capture
the time-asymptotic behaviour of the solutions to (1.1). In the case of the Dirichlet boundary

condition
u(0,t) = 0, (1.4)

we show that the solution (v, u)(z,t) converges to (v1,0) as t — co. Futhermore, since the solution
converges to a constant state, the analysis of [14, 15| can be applied and the optimal convergence
rate are obtained. In the case of the Neumann boundary condition

uz(0,t) = 0, (1.5)

(1.1)1(the first equation of (1.1)) heuristically yields £v(0,¢) = 0 and v(0, t) = vo(0). Hence, when
1(0) # vy, the solution (v,u)(z,t) will be shown to converge to the profile (7, %) of (1.3) in the
form of v = (&), &€ = x/V/t + 1, with ¥(4+00) = v+ and ¥(0) = vp(0). Eventually, if vo(0) = v,
O(z,t) = vy, then the analysis in [14, 15] can also be applied and the optimal convergence rate is
obtained.

Both problems are reformulated to the perturbed problems from the diffusion wave (7, 4)(x,t)
and the auxiliary function (0, 4)(z,t), which are defined in a similar fashion to those in Hsiao and
Liu [4]. These will be stated in later sections, respectively.

Here, we shortly mention the condition (1.5), which corresponds to the Dirichlet condition
v(0,t) = v_(given constant) on v from the discussion above. Recently (1.1) with (1.2) and v(0,t) =
9(t), g(t) — vy has been considered by Marcati and Mei [10]. However, the case g(t) = v_(# vy)
or g(t) — v_(# v4+) is not treated there.

The content of our paper is as follows. After stating the notations, in Sec. 2 the problem with
the Dirichlet boundary condition is reformulated and the results will be stated. In Subsec. 2.2 the
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proof will be given, and many parts rely on the papers [14, 15]. In Sec. 3 the Neumann boundary
problem will be considered.

Notations. We denote several positive constants depending on a,b,--- by Cap,... or only by C -
without confusion. For function spaces, I = I’(R,) (1 < p < c0) is a usual Lebesgue space with
the norm

IlfIILPZ(A1 |f(z)Pdz)!/?, 1<p<oo and ||f||L°°:S]’;1{1P|f(x)I'
+ +

The L2-norm on R, is simply denoted by |- ||. H*(l > 0) denotes the usual I-th order Sobolev
space on R with its norm
l .
17l = Qo NLAPY2, -l =1l = 11 -1z
J=0

2 The Case of the Dirichlet Boundary Condition

2.1 Reformulation of the Problem and Theorems
We first reformulate the problem (1.1), (1.2) with the Dirichlet boundary condition (1.4). Expecting

(v, u)(2,t) = (v4,0), t— o0, (2.1)

we put u; = 0 to have (1.3) or (1.3)" with u(0,t) = v.(0,¢) = 0, wv(4o00,t) = v.. Approximating
this by the solution o(z,t) of

Ut — KUgy = 07 f}m(())t) = 0: 1_}(_‘”OO: t) = Uy, (22)
or explicitely
(1) = vy + et (=) (23)
vz, t) = v ————eXp (———), .
YT S R )

where k := —p/(vy)/a > 0 and &y is defined by

o =2( [ (oo(e) — vi)de = =), (2.4)

We set

a(z,t) = —pl(2+)®m(:c,t) = k(2 1)

so that 4|g—p = 0 because Uy|y~¢ = 0.
Thus, (7,1)(z,t), called the diffusion wave, satisfies

P'(vi)0e = —au (2.5)
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Next, expecting u(400,t) = ure™**, we define the auxiliary function (¢, 4)(z,t) by

(0,0)(z,0) = (20t [ oty - ), (2:6)

where my is a smooth function with compact support such that

/000 mo(y)dy = 1, suppmgy C R.. (2.7)
Therefore, (0,1)(z,t) satisfies

Uy — Uy =0

iy = —ai (2.8)

Ulz=0 =0, (,8)]s=c0 = (0,use™®).
Combining (1.1) with (2.5) and (2.8) we have
(W=p— 0} — (u—G— )y =0
(u— 17— @)+ (p(v) — p(9))z (2.9)
= —o(u— 12— 1)~ @+ (p'(vy) ~ p'(7))0,.
By virtue of (2.9); and (2.4)

]Ooo(u -0 —10)(y,t)dy = /OOO(UO(QU) — v)de - %9 - E&t =0

and hence we reach the setting of perturbation

V(e t) = —f(v — - 9)(y, t)dy

(2.10)
z(x,t) = u(z,t) — a(z,t) — 4(z,t)
and the reformulated problem, after the integration of (2.9); once over (z,c0),
( Vi—2z=0
ze + (p(Ve + 0+ ) = p(0))z + az = —i + (p'(v4.) — P'(0)) 02
(V, 2)lt=0 = (Vo, 20)() (RP)

= (= [ (ooly) = 96, 0) ~ (v, 0)dy, wo(e) - (2, 0) ~ d(a, 0)

. Zlm:O =0,
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or the linearized problem around o

Vi—z=0
2 + (pl(q_))vm)m +az=-F - (LP)

(Va z)lt:O - (VO) ZO)(:E): z|:r::0 =0,

where
PP ) p @)t (Ve 44 0) ~ p0) = P )Vada (21

Noting that, by (2.4),

o]

|60 < 2(flvo — vl + (2.12)

we obtain the following first theorem.

Theorem 2.1 (Dirichlet boundary) Suppose that vg — vy is in L', (Vo,20) € H® x H? and

that both |jvg — vy |lpr + [Vollz + llzoll2 end |us| are sufficiently small. Then there exists a unique
time-global solution (V,z)(x,t) of (RP), which satisfies

V e Ci([0,00); H3Y), i=0,1,2,3
z € CY[0,00); H?>™?), i=0,1,2

and moreover

3

2
ST+ OFOEV GNP+ Y (L + )R |052( )12+
k=0 k=0

+f t[gu oy P + go(l 4y e Dl Plds .
< CUYOIB + 203 + Iool);
" (4 40O+ (4 05 (a2 + 2, D)
+ [0+ 7 el 7)IP + 1+ Dt ) Pldr (2.14)

< C(IVoll3 + lloll3 + 160])-

The solution (V,z) obtained in Theorem 2.1 satisfies V|;—o = 0 by the first equation of (RP)
and the boundary condition z|z—g = 0, and hence (RP) or (LP) can be rewritten as the problem
to the second order wave equation of V with linear damping

Ve + (' (0)WVa)e + Vs = —F
(2.15)
(V,V)le=o = (Vo, 20)(x), Vle=0 = 0.
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Moreover, we rewrite (2.15)7 to the linearized parabolic problem around v,

1 . 1 (v
Vi Vam = =< (Vi F) 4 = (0l(00) — P @))3s, = -2, (210

to use the Green function of the parabolic equation with null-Dirichlet boundary

(=-v)% _ (=+y)?

E(z,ty) = THT —e TR, (2.17)

T
where ,
PP 4 (Ve +540)  p0) — D OVa)s — (o) P @)Ve)e (219

Hence we have the explicit formula of V:

V) = [ Bty = [ 7Bt - m) 0ot P, r)dvar

(2.19)
2 [ [T Bt = rin)((0.) - $@)oaly, iduar.
Define ¢(z,t) by
oz, 1) = / Bz, )(Vo(y) + —20())dy
t (2.20)
11 /0 /0 E(z,t~ 79) (¢ (v1) — 1/ (0))a(y, T)dydr
or the solution of
¢t - K’¢$$ - Blf(pl(vﬁ-) - pl(@))'l_)x7 (:B?t) € R+ X R+
(2.20)

¢($7 0) - VO(:E) + %Zo(ilf), ¢(07t) =0.
Then we have the asymptotic profile ¢ of V as t — oo in the sense of the following theorem.

Theorem 2.2 (Asymptotic Profile) Define ¢ by (2.20) or (2.20)° and suppose that
(Vo, 20) € L' x L. Then the solution (V,2) of (RP) obtained in Theorem 2.1 satisfies

IV =6, (V= @)z, (V=0))(, )l = O Int,t7%2Int, % Int) (2.21)
as t — 00.
Remark 2.1 Since ¢ satisfies
(@, b 00) (5 t)llLoo = O™ V2, 471,£73/3), (2-22)

¢ is generally an asymptotic profile of V' as ¢ — oo, which is on the same line of assertions in [15].
However, in the present case we have the slightly worse term — ((p/'(v.)—p'(7))V2) in F and hence
Int in (2.21) are added.

Remark 2.2 All results are obtained under the condition that any data are small. For large data the
singularity will generally develop after a finite time and the weak solution must be considered. In
such cases the asymptotic behavior of the solutions of (1.1) is unknown in general even for Cauchy
problem.
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2.2 Proofs of Theorems

First, applying the L2-energy method we prove Theorem 2.1, which is established by the combi-
nation of the local existence result with a priori estimates. For the local existence of the solution
(V, z) to (RP) see e.g. Matsumura [11] and references therein.

We now devote ourselves to the a priori estimates of the solution (V,z2)(z,t), 0 <t < T, to the
linearized equation (LP) under the a priori assumption

3 2
N(T):= sup {3 (L+ D8V + Y (14 ) 205(, 1)IP} < e. (2.23)
0<t<T j—y =0

Since it suffices to establish the estimates for sufficiently smooth solution, the equations in (RP)
and z|y—¢ = 0 gives the following boundary conditions for higher order derivatives:

V(0,t) = Vir(0,8) = V3(0,1) = Vize(0,2) = 0 etc.

Therefore, estimates obtained below are formally quite similar to those in Sec. 3 of {14]. The
difference between (LP) in [14] and (LP) in this paper is the second term of F:

B(z,t) = —(F (vs) — P(0))T0 (2.24)
Since h(z,t) = O(1)(T — v1 )7y, following decay properties hold:
/ Ih(z, 8)2dz < C84(1 + 1)~/
0
(2.25)
/ |ho(z, t)|2dz < CE3(1+1)77/2, etc,,
0

decay rates of which are the same as those in (LP) of [14]. Note that the first term decays faster
than those in (2.25). Hence, we briefly repeat the lemmas.
Multiplying (LP)2 by 2 + AV (0 < A <« 1) and using (LP);, we have the first lemma.

Lemma 2.1 If N(T) < ¢ and |&| are small, then
t
IVOIR + =) +/O (IVa (DI + l12(D)12)dr < CIVol + Ilzol[* + 1éol)-
Multiplying (LP)s by (1 + t)z and applying Lemma 2.1, we have the second lemma.
Lemma 2.2 [fe+|6| < 1, then
t
L+ 1)V + 120)1) +/0 (1 +7)ll=(lPdr < C(IVolIT + |20l > + [80l)-
Next, differentiate (LP)2 with respect to z to obtain
2ot + (0 (0)Va)oz + a2p = — F. (2.26)
Multiplying (2.26) by (1+ t)*(2z — A\Vie) (0 < A € 1), k= 0,1, we have

(14 ) (||Va (O + ||z=()]]2) + /Ot(l + 1) ([Vae (TP + llz2(7)|1?)d7 227

< C(IIVoll3 + [lzoll? + 180])-
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Again, multiplying (2.26) by (1 + t)?z, and applying (2.27), we have

1+ D2 (Vas (@)1 + [22(®)]1%) + Ai(l +7)lz(n)|Pdr < CIIVoll3 + llzollf + 10l),  (2:28)

which gives the third lemma together with (2.27).

Lemma 2.8 Ife+ |6 <€ 1, then
t
1+ 2 (WVaa()? + [z2(®)]?) + /0 (X + Ve ()P + (14 )2 ||za(7)|P]dr

< C(|IValls + llz0ll + 160l)-

Similar procedure applied to the equation obtained by defferentiating (2.26) with respect to z
once more yields

Lemma 2.4 Ife+ |6 < 1, then
1+ 2 (IVama (D1 + [|20(8)]]?) + /Ot[(l + 72| [Vaaz (T2 + (14 7)° |20 (7)][)dr

< C(I[Voll§ + llzol13 + 181o)-
Proceeding the same procedure as above to
2zt + (P (0)Va) ot + aze = — Fy, (2.29)
we have the following two lemmas.

Lemma 2.5 Ife+|6| < 1, then
A+ 2z + 1+ 13|l + 2012
+ 104 PP+ (@ 7Pl
0
< C(IVolf3 + llzol13 + 10])-
Lemma 2.6 Ifec+ |6 < 1, then
t
(L4 ) (Nzza (O + Iz (t)]?) +/0 [+ 72 ||z2a ()2 + (1 + 1)l 22 (1) 1P]dr

< C(IIVoll3 + llzoll5 + 160l).

The estimates obtained in the series of the above six lemmas show (2.13).
To obtain (2.14), we differentiate (2.29) with respect to ¢ once more:

20+ (P (0)Va) et + a2zt = —Fi
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or
21t + (p'(ﬁ)zxt)m + oz

= —Fy — (2p"(0)Teze + (9" (0)0n + p"(0)07) Ve )a (2.30)

= _F:ft - P_,L-

We proceed the same procedure as above to (2.30), that is, multiply (2.30) by (14+t)*(zu+Az) (0 <
A<1), k=0,1,---,4 and use Lemmas 2.1-2.6. Then we have

A+ (2O + lze@)?) + /Ot(l + 1) (lzat (NI + |22 (7)|P)d7 -

< C(IVoll3 + llzol + 160])-
Since [3(1+ 7)5 [° |Fy + Prl2dzdr < C(|Vol12 + |l20ll2 + |80|) is shown by (2.31) after tedious
calculations, multiplying of (2.30) by (1 + t)%2zy and using of (2.31) yield

(1 + L5z ®IP + |2a®I?) + /0 (14 7)o (r)|dr

< C(IVoll§ + llzoll3 + 180),

which shows (2.14) together with (2.31).

Thus we have completed the proof of Theorem 2.1.

We now turn to the L°>°-estimate assuming that (Vg, 2¢) € L! x L!. The proof is similar to that
in [15].

First we show (2.22). The first term of right-hand side in (2.20) clearly satisfies (2.22) since
(Vo,20) € L' x L. The last term is estimated by (2.3) as follows:

ithe last term in (2.21)]

t/2  poo g
S [ Bt @)= [ ey rdvar]

t o)
+C/ / E(z,t — 7;9)|0 — vi||Ug|dydT
t/2 Jo

/ 1
< C/t 2 IE(t = 7)||zoo || (T — vy )(7)]2dT + C/ IE( — 7)o Ozl [(B — v )(7) || L2dr
A t/2

1/2 t
<o(f (- 7)1+ 7)"Vdr + /m(t —7) 24 7)) < A+ 1) A

Derivatives of ¢ are also estimated similarly.
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Since

t/2 poo
—%/ / E(z,t - 7;9)Vae(y, 7)dydT
0 0
le o) 1 oo
= éfo E(z,t;y)20(y)dy — 5/0 E(x,t/2;y)2(y,t/2)dy (2.32)

t/2 poo
_é/ / Et(x, t— T y)z(yv T)dydTa
0 0

(2.19) and (2.20) with (2.32) give the expression

(V=) ) = = [ Ble,1/20)200,8/2)dy
t/2 poo
‘%L /0 Ey(z,t— 75y)2(y, T)dydr
—-= e r,t—TY)z T T 2.33
L B e (2.33)

t/2 1 oo -
~é(/ + / ) / Ez,t — 7;9)F(y, 7)dydr
0 172" Jo

=T 4+ IT + III + (IVy + I'V&).

Since the Green kernel E is given by (2.17), the following estimates hold:

Il < CIEW/2)=(t/2)]l < C(L+1)~57Y,
t/
< [ e Dl ldr
t/2 ) 5/4 -ldr -5/4
g/o (1+t—7) 541+ 1) dr < C(L+ )4 In (2 + 1) (2.5
1 <o 1Bl

1
<C| (A+t—7)"Y41+7)2r < CQ+ )21
t/2
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For IV and IV, we recall that F given by (2.18) has the form F = f,. Hence

t/2  poo
ml<e [ [CiB @ t-rwlif, nldyar
t/2

/ —1/( =~ ~ 2 A 2
¢ E=n) ey + o)l + V2l + o)l

(2.35)
Ve ()l L=l (v = v ) (Tl p2)dr
/2
< Ctl/o (A+7)1 4 =0T 4+ (14 7)"3)dr < C(1+ 1)~/
and .
2 < € [ ANE( = 7)o (o) + 15l + VeV + 982) ()1
HEy(t = DIV ()l (0 — vi) (1)l }dr
(2.36)

t
SCf =) VHA+T)TT 4 e ) (- )T 4 )T gy
t/2

< O(1+1)7%4,

Combining (2.33) with (2.34)-(2.36) shows that ||[(V — ¢)(t)|lze = O(t~3/%). Estimates of
IV = )e(®) ||z = O™3%) and ||(V — ¢)s(t)||zc = O(t~7/%) are obtained in a similar fashion to
the above. In particular, ||[(V — ¢)z(t)[lpe = O(t~5/4) and (2.22) show that ||V(t)|lp= = O(t™1).
Applying this to (2.35) and (2.36) again, we have

ITVil < C(4+1t) " In(2+1) (2.35)

and
IV < C(141)71, (2.36)

which gives the estimate |[(V — ¢)(t)||[r~ = O(t"'Int). Derivatives of V — ¢ are also obtained,
which yields the desired estimate (2.21).

3 The Case of the Neumann Boundary Condition
We now turn to the problem with the Neumann boundary condition (1.5)
v —uz=0, (z,t)e Ry xR,
up + p(v)y = —u (3.1)

(Ua“)|t=0 = (007u0)($)7 um'm:() =0.

Same as the preceding section we first reformulate (3.1). Heuristically, (3.1); yields ad{v(O,t) =
ux(0,t) = 0 and v(0,t) = vg(0) for any t > 0. Hence, we can expect that

(v’ u)(x’ t) - (,D) 0)($1 t) as t - 007 (32)
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where 7(x,t) is a diffusion wave connecting v(0) and v,..
In the case of vg(0) # vy, putting u; = 0 in (3.1)2 we have

1 1
u=——p(v)y and v+ —p(v);=0. (3.3)
a a

To construct the diffusion wave (7, @), it is known that for any constant v_ > 0 we have a self-similar

solution 7 = 9 (z/+/t 4 1) satifying

T+ %p(T)ggm =0, zeR=(-00,00),t>0
(3.4)
Tiz:ioo = V.

Therefore, for vg(0) > 0 between v_ and v, there exists a unique 7(z, t) in the form of ¥ (z /v + 1)|,0
satisfying
Uy + ép(f))xz =0, (z,t)€R; xRy

: (3.5)
Blz=0 = 10(0), V|z=co = V4.
For these results see [1]. Moreover, u is defined by
5(2,2) =~ ~p(0)
w(z,t) = —=
) ap V)
so that x
Up|z=0 = Ut|g=0 = ¥’ t4+ 1) (——————)lz=0 = 0. 3.6
Bl = Bkt = 9/ VI D= gl (5:5)
Thus we have had
Vg — Uy =0
p(0)z = ~at (3.7)

(67 ﬂ$)|92:0 = (IUO(O)a 0): ("77 ﬂ')|.’v:oo - (v+7 0)
Similar to that in the Dirichlet boundary problem, the auxiliary function (0,4)(z,t) is defined
by

(0,0)(2,0) = (UL (o [(w0(0) ~ ws) [ molw)ay + 0l (38)

where my is a smooth function satisfying (2.7). Hence (0, 1) satisfies

N N
’Ut—’ux:O

~

Ut = —al

(ﬂ',ﬂm)’a::o = (UO(O)e“O‘t, 0)7 ﬁleO =0

(/07 qQ)‘:vzoo = (Oa u+e—at).
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Combining (3.1) with (3.7) and (3.9) we have
(v=T—D)—(u—T—10)=0
(u—t—1) +(p(v) — p(0)e = —a(u— & — 1) — U

X (3.10)
(u —u— ﬁ)xlz:() =0

(| (V=7 —0,u— @~ 1)|t=0 = (vo,u0)(z) — (T + 0,2+ 1)(z,0)

Defining the perturbation by

Vie) == [ (0-o- )y O)dy

(3.11)
Z(I,t) = (’U, —u- ’ft)($, t):
we have the reformulated problem, after the integration of (3.10); once over (z, o),
(Vi—2z=0
2+ (p(Vo +0+0) = p(V))z = —az — i
zplz=0 =0 (or Vi|s=o) (NRP)
(V: Z)lt:O = (VOv ZO)(:B)
= (= [ o) = 500, 0) = 5(s,0)dy,uo(@) ~ @, 0) — 3(z,0)),
or the second order wave equation of V with damping
Vit + (p(Vo + 0+ 0) — p(0))s + aVs = —uy
(3.12)

Vilz=0 = 0, (V,Vi)li=0 = (Vb, 20)-

Note that, if (V, z) is sufficiently smooth in z, ¢, (3.10) or (3.12) yields the boundary conditions
atz=0

Ve =Vie =Vite = (Ve + 7+ 0) — p(0) = (p(Va + T+ 0) — p(0))zz = 0, etc.

Therefore, once we have the smooth solutions, we can treat them formally the same as those in
the Cauchy problem in [14]. The diffusion wave ¥ defined in (3.6) has the same behavior as the
self-similar solution 7 defined in (3.5). For the diffusion wave see [1] and [4, 14]. Hence, the same
L?-estimates for the local smooth solution (V, z) to (NRP) are obtained. Thus we have the following
theorem.

Theorem 3.1 (The case of v9(0) # vy) Suppose that vo — vy is in L*(Ry) and both ||Volla +
lz0ll2 and 61 := |(vo(0) — vy, uy —up(0))| are small. Then, there exists a unique time-global solution
(V,z)(x,t) of (NRP), which satisfies

V e CH([0,00); H¥Y), i=0,1,2,3
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z € C([0,00); H*™), i=10,1,2
and moreover

3 2
D AHOMBEV Ol + Y (1 + 6 2|a5(, )P+
k=0 k=0

t 3 . , 2 . : 3.13
+/0 D@+ MBIV P+ Y@+ 7)Y Y802, Tl Pldr (312
j=1 3=0
< C(IVoll§ + ll=0l13 + 61),
and
T+ )z 01 + A+ 8P (lzm (-5 )2 + llza (5 )+
L1+ P+ @) Pl (3.14)
0

< C(IIVoll5 + ll=oll3 + 61)-

The derivation of (3.14) is similar to that of (2.14) and so the proof of Theorem 3.1 is omitted.
Remark. The L'-property of vy — v, is a sufficient condition for the definition of Vo(z). The decay
rates in (3.13)-(3.14) will be optimal in L?-setting. In L!-setting the optimal decay rates are not

known, different from Theorem 2.2. However, when v5(0) = v, optimal decay rates are obtained
as shown below.

We now treat the case of v9(0) = vy. Taking
(’l_},ﬁ)(ib,t) = (U—HO) (315)
and 0 -
0.0, 8) = (UL ) (uo(0) — ) [ o)y +ufe ), (310

we have

(((V—vy — D) — (u—10)z =0

~

(u—2) + (p(v) — p(v4))e = —afu — 4)

(3.17)
(u = B)zle=0 =0 (or (v—v4 —D)|z—0=0)
(’U vy —Du— ﬁ’)|t:O = (UO - U+,U0)(£B) - (@7'&')(1"7 0)
The definition ~
Vi)t = (= [ =i - 0ty u(a,0) - (e, 1) (3.15)
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gives the reformulated problem

(Vi—2=0

2+ (p(Va+ vy + 0) — p(vy))e = az

3.19
Z:r|x:0 =0 (OI‘ Vxlm:() = 0) ( )
(V20 = (Vo 20)(@) 1= (= |~ (w0(y) = v+ ~ 0(3, 0))dy, uo(z) = 1(a,0)
x
or the linearized wave equation of V around v,
= = (p(Ve + 04 +9) = plvg) — p'(v4)Ve)e (3-20)

V:L’I:E:O - 07 (V, z)lt:O - (%7 20)(.’1,‘).

Therefore, if (Vp,20) € H® x H?, then we can obtain the following theorem on the same line as
Theorem 3.1.

Theorem 3.2 (The case of vg(0) = v, ) Suppose that vg — vy is in L} (R.) and both ||Vyls +
llzoll2 and &z = |us —up(0)| are small. Then, there exists a unique time-global solution (V,z)(z,t)
of (8.19), which satisfies '
Ve C([0,00); H*), i=0,1,2,3
z € CY([0,00); H>™Y), i=0,1,2

and moreover

3 2
S A+ OROEV DN + S+ 2ok 112+
k=0 k=0
t 3 i - L ) (3.21)
+/ D@+ oLV DIP+Y(+ 7)Y [0dz(, ) Pdr
0 =1 5=0
< C(IIVoll3 + llzoll3 + 62)-
and
(T + 1)z 012 + A+ 65 (lza (-, )2 + Nz, 1))+
+/t[(1 + 1) 2w (5 DIP + @+ 7)° |20, 7)P)dr (3.22)
0

< CUIVoll§ + llzoll3 + 62)-

Moreover, the same line to Theorem 2.2 can be applied. In the Dirichlet problem, since
L(p'(v) — p'(0))ve in (2.16) has not enough decay order, ¢ was defined by (2.20)" with a sourcing

o
term. However, in the present case, since T = v., we define an asymptotic profile ¢,(z,t) by

d1(2,8) = [ Brlestia)(Vov) + ao()dy (323)
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or the solution of the corresponding parabolic equation

$1t — KP1zz = 0, K= _i;j‘l'_)
(3.24)
Prele=0 =0, @1lt=0 = Vo(z) + L20(2),
where 1 ) )
(z+y) (z—vy)
Ei(z,ty) = e Taxt 4 e amt ). 3.25
Then we have the expression
(V=60 = =1 [ B t/20)2(,1/2)dy
t/2 poo
~1 [ [ et - riety, dyar
0 0
(3.26)

t s}
~-§-/ / Ey(z,t — 1;y)2(y, 7)dydr
t/2 Jo

t/2 t oo ~
—é(/ +/ )/ Er(z,t — 75 9) F1(y, 7)dydT.
0 t/2° Jo
We note that Fy in (3.26) does not include the bad term likely —((p/(vy) — p/(D))Va)e in (2.1R).
Thus, applying the decay properties obtained in Theorem 3.2 to (3.26), we reach the final Theorem.

Theorem 3.3 (Asymptotic Profile) Define ¢, by (3.23) or (8.24) and suppose that (Vy, z9) €
LY x L'. Then, the solution (V,z) of (8.19) obtained in Theorem 3.2 satisfies

IV ~61,(V = 61), (V = 1)) (-, )|z = O, ¢7%2,872).
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Abstract. In this paper, we study the p-system with frictional damping and show
that the solutions time-asympotically tend to the nonlinear diffusion waves governed by
the classical Darcy’s law. By introducing an approximate Green function, we obtain the
optimal Ly, 2 < p < +00, convergence rate of the weak solution, which is a perturbation
of the nonlinear diffusion wave, to the hyperbolic system.

Key words and phrases: p-system with damping, nonlinear diffusion wave, ap-
proximate Green function, L, estimate.
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1 Introduction

In this paper, we are interested in the time-asymptotic behavior of solutions to the
p-system with frictional damping

{ i) : (1.1)

ut +p(V)y = —au, a>0, p <0,

with the initial data
(Ua u)(x7 0) = ('UO(J:)a'u'O(m))'

Here v(z,t) > 0 and u(z,t) represent the specific volume and velocity respectively; the
pressure p(v) is assumed to be a smooth function of v with p(v) > 0,p'(v) < Cy < 0; and
a is a positive constant. The system can be viewed as the isentropic Euler equations in

*Supported in part by Waseda University Grant for Special Research Project 98 A-504 and Grant-in-
Aid for Scientific Research (C)(2) 10640216 of the Ministry of Education, Science, Sports and Culture.

fSupported in part by National Natural Science Foundation of China 19871065

*Supported in part by the stratigic grant of City University of Hong Kong # 7000729
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Lagrangian coordinates with frictional term —aw in the momentum equation. (1.1) can
be used to model the compressible fluid flow through a porous media. In [5], Hsiao and
Liu proved that the solutions to (1.1) time asymptotically behave like those governed
by the Darcy’s law in Ly and Lo, norms. That is, as ¢ tends to oo, the smooth
solution (v(z,t),u(x,t)) which is away from vacuum will approach to the solutions
(v(z,t), u(x,t)) governed by the following system with the same initial data:

Uy = _%p("_’)mma .
{ pt(ff)x = —au, (1-2)
or
Uy — Uy = 0, !
{ pt(@)x = —Qu. (1-2)

Recently in [13], Nishihara investigated the same problem and improved the conver-
gence rates in Ly and L., norms by using energy method. By combining the energy
method and the pointwise estimation, for the special case, i.e, vg(—00) = vg(00), Lo
convergence rates obtained in [13] is optimal. This case is easier because the Green
function is the heat kernal and the exact expression of the function V(z,t) can be
obtained. Here the function V(z,t) will be introduced in Section 2.

The main purpose of this paper is to obtain a sharper result on the convergence rate
in Lp,2 < p < co. These estimates are obtained by using the method introduced by
Liu as in [9] which depends on the careful study of some approximate Green function.
By introducing an appropriate approximate Green function for the reduced equation
and using some estimates obtained from energy estimation, we give the optimal Ly, 2 <
p < o0, convergence rates for the genaral cases.

For the system (1.1), the existence of BV solutions when the end states at z = +co
are the same was proved in [1]. And for the 3x 3 system, i.e. (1.1) with another equation
for conservation of energy, the similar problem was also studied, see [L.7] and reference
therein. For the case when vacuum appears, there is no general theory. However, Liu
in [8] gave a family of special solutions to (1.1) connecting to vaccum which tend to
the Barenblatt solutions time asymptotically. For other results related to the system
(1.1), please see [3,4,6,11,14,15] and reference therein.

The rest of the paper is arranged as follows: The main theorem is stated in Section
2; In Section 3, we restate some properties of the diffusion wave of (1.2) and some energy
estimates obtained in [13]; In Section 4, the approximate Green function is introduced.
The proof of the main theorem is given in the last section. '

Throughout this paper we denote the generic constants by ¢ or C. H™(R) denotes
the usual Sobolev space with its norm

1l = D NOz Al -1 =11 )
k=0

Moreover, the domain R will be abbreviated without any ambiguity.
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2 The Main Result

We are interested in the behavior of the solution of (1.1) with initial data satisfying
(U,U)(I‘,O) - (’U:i::u:t) as x — oo, (21)

with v, not necessarily equal to v_. Denote the self-similar solution, diffusion wave, of
(1.2) in the form of 50(7;'%) by ©(x,t) with the same end states as v(z,0):

(00, ) = v, (2.2)

and set 1
a(z,1) = — - p(0)a- (2.3)

Since the u component of the solution is expected to decay exponentially at z = foo.
As in [5], the following functions are needed to eliminate the u values at z = +co0. The
functions % and ¥ are the solution of

(s o

Uy = —au.

at

with %(z, 1) — e **u, as z — co. For definiteness, we choose them as those in [5]:

T

(e, ) = e (u-+ (us —us) [ mo(u)dy) (2.5)

and
’LL+ — U_

(x,t) = e “mg(z), (2.6)

where mg(x) is a smooth function with compact support satisfying

/_o:o mo(x)dz = 1.

Let the initial data vg(z) be a small perturbation of a diffusion wave, we are going to
study how the solution behaves as t tends to co. As shown in [5] and [13], there exists
a shift zy of ¥(z,t) such that at time zero,

/ (vo(y) — 8y + 20,0) — o(y, 0))dy = 0.
By using the first equation of (1.1), it is easy to show that the following function V(z,1),

VG, = [ (vlo,t) = oy +a0,6) — 5(5,0))dy 2.7)

—0o0
satisfies V(400,t) = 0. Here zg is a constant uniquely determined by
Uy — U

/°° (v, 0) ~ 0l + 20,0) )z =

oo —a
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For later use, we denote
Uz, t) = u(z,t) — a(z + zo, t) — tlz, t), (2.9)

and Vp(z) = V(z,0),Up(z) = U(z,0) = Vi(z,0). From (1.1), (1.2), (2.4), (2.7) and
(2.8), we can reformulate (1.1) as

Vi —U =0,
U + (p(Va + 0 + ) = p(0)); + aU = gp(0)an, (2.10)
(V, U)lt:() = (V(), Uo)(it) — 0 as = — Foo.

By linearizing the second equation of (2.10) about T, we have the following linearized
system
Vt U =0,
+ (P (0)Vz)y + U = Fy + F3, (2.11)
(V D=0 = Vo, Ug)(z) = 0 as z — Foo,

where Fj(z,t) = (Fj(z,t))z(j = 1,2), and
ijl(x)t) = %p(ﬁ)h
Fa(z,t) = —(p(Vo + 0+ 7) — p(v) — p'(0)Va).

(From now on, we will study the system (2.11). For the completeness of the paper and
the comparison of the convergence rates, we list the main theorems in [5] and [13] as
follows.

(2.12)

Theorem 2.1 . (Hsiao and Liu, [5])If Vo(z) = V (z,0) € H3(R), Vi(x,0) € H2(R),
and
[us —u_ |+ Jop — v |+ [Vollgs + V(- 0) |2 < €0

for some sufficiently small g9, then there exists a global in time solution V(z,t) €
H3, U(z,t) € H? of (2.10), which satisfies

1V, D) (@) 1 + 1V, UN O 2o, = O (1 4 1) 42, (2.13)

Theorem 2.2 . (Nishihara, [13])Under the conditions of Theorem 2.1, there exists a
global in time solution of (2.12) which satisfies ’

V(z,t) € Wh((0,00); H*F), Uz, t) € WH™(0,00); H7F)  (2.14)
fork=10,1,2,3k=0,1,2, and
185 Va(®)llz, = O(D)eo(1 + )~ * D2 185U (1)1, = O(1)eo(1 +¢)~*F2, (2.15)
Va(t)| Lo = O(Deo(1+ )34, |U(8) ]| Loy = O(D)eo(1 +1)75/%. (2.16)
Moreover, if v, =v_,uy =u_ =0 and Vy,Up € L1(R) with
| wola) —v-)da =0,
then

Va®)llzw = OMA+ )71 [UD)2o = O +1)72. (2.17)
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Our main result of this paper is the following. -

Theorem 2.3 . If Vo(z) € H3(R) NL1(R),Up(z) € H*(R) NL1(R), and

lus —u| +|op — v |+ [Vollgs + 0ol gz + Vollz, + 10ollz, < &0

for some sufficiently small g, then there exists a global in time solution V (z,t), U(z,t)
of (2.10), which satisfies (2.14) and

102 Va(t)llz, = O(L)eo(1 + t)~ (- /P/2-E+D2, (2.18)

165U () |z, = O(1)eo(1 + )~ (-/P)/2-k/2=1 (2.19)
for any k <2 and p € [2, +0c0).

99



3 Some Known Estimates

In this section we will restate some known properties of the nonlinear diffusion wave
v to (1.2) and (2.1) and the L, estimates of the derivatives of the function V(z,t) ( see
(2.7)). All these results were obtained in or follow from the papers [5] and [13], we list
them here for the convenience of the readers.
First, we list the propeties of ©(x,t) as follows: The function ¥(x,t) possesses the
form
o(x,t) = p(z/V1+1t) = 9(§), —o00 <& < 400,

(£00) = vy (8:1)

And the function ¢(&) satisfies
6 2
1O+ 19(€) = vileso + [9(€) — v-le<o < Clus —v_|e ¢, (3.2)
k=1

where ) (¢) denotes the derivative of ¢(£) with respect to € k times, and C is a
positive constant. According to the form of the function o(z,¢), we have

= 2 = &e'(€) A ) NS (I 53 )
vIL‘ - /t+17 'Ut - 2(t+1)) UI?.’L‘ t+1 Vrt = 2(t+1) /t+1 )

by — SEFEOIESO L O 5 80458 ()42 ()

U= T Ve T v Ut T T qai e (3.3)
Doy — _ 15¢7(£) 433807 () 412620/ (£) + €3¢ (€)

it 8(t+1)3v/I11

and
Joe(z, t)Pde = O()|vy — v (¢ + 1)71/2

JUot + [9a0l?)dz = O() vy — v P(¢ 4 1) %72,

f(l@xtIQ + |1_)mm'2)d$ = O(l)|vy — U—JQ(t + 1)‘5’/2: (3.4)

[ oulPdz = O(1)|vy —v-[P(¢ +1)77/2,
[ oz Pdz = O(V)vy, — v (¢ +1)79/2
J |ﬁ;,;ttt|2d$ =0(1)|vs — v_‘z(t + 1)_13/2.

Next we will give an Ly estimate on U which will be used later. Before doing this,
we restate the following lemma from [13].

Lemma 3.1 Suppose that both § := |vy — v_| + |us — u_| and ||Vplls + ||Uol|2 are
sufficiently small. Then, there exists a unique global in time solution (V,U)(x,t) of
(2.10), which satisfies

Ve Wh°([0,00); H¥%), i=10,1,2,3,
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and moreover

3 2
S AHDMIEVEDIP+ YA+ R EUC IR + L+ )3T 0l
k=0

k=0
t 3 . . 2 . .

+/ D @+ VP + >+ )83 (¢, 7| Pdr (3.5)
0 5 7=0

< C(IIVoll3 + 11Toll3 + 6).-

Similar to the proof of the above Lemma in [13], we have the following estimate
on Uy after tedious calculations. This estimate for the case when v_ = v, was also
obtained in [13].

Lemma 3.2 Under the hypothesis of Lemma 3.1, we have the following estimate for
the decay rate of ||Uyl|?.

1
(t+ 1)5(||UnH2+||UnHQ)+/O(T+1)5||Utt||2dT

C(IIVall3 + [1Uoll3 + 6)- (3.6)

Outline of the Proof. Differentiate the second equation of (2.11) with respect to t twice
and multiply it by Uy. By using the properties of the diffusion wave and Lemma 3.1 ,
after some calculation we have

&=

/Oo (U2 — p'(0)UZ)dz + a/oo UZdx
< Cel(t+1)" / U%dz + (t+ 1 / U2 dz + ( t+1)_3/oo [72dz]
+ Cslt+1)"* /_ V2dr+ (t+1)7° /_ V2dz + (t+ 1) 2).
Multiplying the above inequality by (¢ 4+ 1)> and integrate from 0 to ¢, and using the

Lemma 3.1 again yields the estimate (3.6).
QED.
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4 Green Function

We rewrite (2.11) as .
aVy =~ (a(z, t)Vy)y = F — Vi, (4.1)

where a(z,t) = —p/(0(z,t)) > 0, F = F; + F». Now we will construct an approximate
Green function G(z, t; y, s) for (4.1) which is continous and piecewise smooth. It satisfies
the basic requirement

G(z,t;y,t) = 6(y — x), (4.2)

where ¢ is the Dirac delta function. Multiplying (4.1) by G and integrating over the
region (y,s) € R x (0,t), (4.2) gives

Viz,t)= [, Gz, t;y,0)Vo(y)dy
+a= [5 [ Glx,t;y, 8)(F(y, 5) — Vas(y, 5))dyds (4.3)
+ 5 1% (Gsl@,ty,8) + a7 N(aly, $)Gy (=, 9, 9))y ) V (y, 5)dyds.

If a(y, s) is a constant and G is a Green function of (4.1), we know that the last integral
of (4.3) is equal to zero. But it is difficult to give an explicit expression of Green
function, such that the last integral of (4.3) is equal to zero. However, we only need
to minimize the expression aGs + (aGy)y. For this purpose, we choose the following
approximate Green function of (4.3):

a 1/2 —afz —y)?
Gl tiy, ) = (47ra(:c,t)(t - s)) xPp (4A(y, s,t)(f— s))’ (44)

where A(y,s,t) = —p'(¢(n)), ¢ is defined in (3.1), and

B y/VIi+s, s>t/2,
T VIR s<t/2
It is clear that the Green function in (4.4) satisfies the condition (4.2). Setting
2

Gp(y,s) = (47r(é’05)1/2 exp (_gz ), (4.5)

for any positive constant D > 4max A(y, s,t)+O(1)e. Denote 6(t, s) = 01(t, s)+02(%, 5)
with ' ;
-1/2
01(t, ) = { (1+s)7 12 s> t/2,

0, s < t/2,
_ 0, s> 1/2,
O (t, ) = { 1+1)"12, s<i/2 (4.6)

Using above notations, if [ < 1,h < 1, we have

|00k G (2, £y, 9)]
= O()(Cmysmam(t — 8)"m1=k)/2gm2). (4.7)
(034 (t—s) DO+ (t—s) )'Gplz -y, t — 5).
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For heat kernel Gp(z,t), we have

IGD (-, 8z, < C(1 + 172072, (4.8)

Since the function G(z,t;y, s) is not symmetric with respect to variables z and vy, t and
s, we need the following formulas:

—y)? .,  d(z,t
0:G = —8,G — G(%Aﬁ a((:c,t))),

and
alz — y)?

8tG = _85G - sz—(ﬁ

(A + AD).
It follows from (3.2) that
|4y | + la5| = O(1)eof, |AL] + |4} = O(1)e06?,

where A'y, A} and AL represent the derivative of A with respect to y,t, s respectively.
Given a function g(y, s) and two constants 0 < a < b < t, we have

S 8,G(z,t;y, 5)g(y, s)dyds
S22, Gla, tyy, 8)8,9(y, s)dyds (4.9)
+O(L)eo [P [, 6(t,8)Gp(z — y,t — 8)g(y, s)dyds,

and
P12, 8,G(z,t;y, 5)9(y, s)dyds
S22 Gz, t;y, 8)Bsg(y, s)dyds (4.10)
~ [%, Gz, t;y,9)9(y, s)dy|s=b '
+O()eg [ [ 6%(t,8)Gp(x — y,t — 8)g(y, s)dyds.

In general, for £ > 1, we have
f S O G(z, 1y, 5)g(y, s)dyds

f I MGz, t; y,s)ak (y, s)dyds (4.11)
+O(W)eo Cpap f2 [0t — ) 20%=0) (1, $)Gp ol g(y, s)dyds,
and
ffffc’ooatai”kG(x,t;y, )9(y, s)dyds
fa f—— 6hG(z7t)y: )asak:g(y, )dyds (412)

- %% 8h*"G(ﬂc,t,y, )90y, £)dyls=
+O(1)eo Cpap o [t~ 9) h/292+(k_ﬁ)(t7$)GD559(y>S)dyds-

Similarly, we have

ft),/2 00 83G :U’t:y: ) (y,s)dyds
= Je = % 05 G2, 8, 8)8y9(y, s)dyds (4.13)
+0<1)eozﬁ<1ft/2f ((t = 5)71 2+ 0)6C5)(t,5)G DD} g(y, 5)dyds.
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Denoting
RG = Gs(l‘, t; Y, S) + a_l(a(ya S)Gy(x: t; Y, 3))97
the first term of the right hand of (4.13) can be rewriten as

ff/g J22. 02G (2, by, 8)Byg(y, s)dyds
ﬁ./zf (aa (yys)(RG'_asG) 6ya(y, 8)0yG)0yg(y, s)dyds.

Using integration by part of variables y and s, we have

S S (y,S)8 Gz, t;y,$)0yg(y, s)dyds
ft/gf Y, 8)0yGOsg(y, s)dyds + [7 a™ (y, 8)GOyg(y, 8)dylS=;
Jr0(1 80 .[;/2 ffoooo GD(t — 5, — y)(928y9(y= ) + easg(y7 ))dyds

With these estimates, we can get from (4.13) that

S0 [%2, 3G (z, 1y, 8)g(y, s)dyds
= ftt/Q o (aa“l(y, s)Rg — gaLa(y, s)ayG)ayg(y,s)dyds
—efyp [ a7 (4, )9, GOsg v, o) dyds
—a [%o a7y, 8)GOyg(y, s)dyliZ
+O(1)co Eﬁ<1 L/Qf ((t—s)"Y2 4 0)0@0)(¢, s)Gpaﬁg(y s)dyds
+0(L)eg [/ [22, 6(t, )G pBsg(y, 5)dyds.

(4.14)

Similarly, we can conclude that

i I%5, 8:82G (2, 1y, 8)g(y, s)dyds
i J20 3G (@, 15y, 8)0sg(y, s)dyds — [ 02Gg(y, s)dyli)
+0(1)eg Zg<1 i[5 (8 = 5)7Y2 + 0)6©=O) (1, 5)G B g (y, 5)dyds.

Letting g(y,s) = 0yg(y, s) and using the same method, we have

ft*/2f°° 0,02G (z,1;y, 5) 8,5(y, )dyds
= ft/2f°° aa” (y, s)Rg — 22(y,5)0,G)050,3(y, s)dyds
aft/Qf a~ Yy, s)0,G025(y, s)dyds
— % 82G0y9 Y, 8) +aa”(y, 5)G0:0,3(y, ))dyls i
+0(1)eg Zﬁ<1 Joa J25.((t = 8)71 2 4 6)60C-P)(t,5)GpdE+1 §(y, s)dyds
+0(1)gg ft/zf (6(t, s)Gpd? + 62(t,s)GpOsdy)d(y, s)dyds.

(4.15)

We next estimate Rg = oG + (aGy)y. After some calculations, we have

Rg = O(1)eo®(t,8)E(y, t,s)Gp(x —y,t — s), (4.16)
where

_ (s T -8 P49 ), s> 12
olte) = { A+ 1)+ (t~ )21 +5)717), s<t/2,
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~ | E(y,s), s> /2,
E(y’t’s)‘{ B, <2

with E(y, 7) = exp (:f—f;rﬁ) If s < t/2, by direct calculation, we know

005 R (2,9, 8)] < Ceo(1 +8)"3(1 +8)" ) E(y, 0)Gp(a — y,t — s).
Notice that Rg(z,t;y, s) is discontinuous at s = t/2. When s = t/2, we have

lim 105Re(@,t:9,9)] < Cao(1+ ) O D, t/2Gn(a - v,1/2).

Moreover, for a given function g(y, s), we have

f{/g I3 B R (x, by, 5)g(y, s)dyds
= t/2 f—oooo Rc(m,t,y,s)(??]jg(y,s)dyds
+O(Weo Xgek firn [0, O0F P E(y, )Gp(z — y,t — )8 9(y, s)dyds,

and

f{p 22 8,65 Ri(z, t; y, 5)g(y, s)dyds
= ft/gofoi";och(:c, ty,5)0:089(y, s)dyds
+ f—oo 8:1:RG($7 t; Y, S)g(y7 S)dylz;fi/2

+0(Leo X fiy [22, 0T ED E(y, s)Gp(z — y,t — 5)8] 9(y, s)dyds.

5 The Proof of Main Theorem

(4.17)

(4.18)

(4.19)

(4.20)

In this section, we will give some estimates on 8/0XV (z,t), (I < 1,k+1 < 3) by

using the approximate Green function. Denoting

n* = [ 8l0EG(x, t;y,0)V (y,0)dy,

¥ = ol fl [ 85G(z,t;y,s)Fi(y, s)dyds,
L= 8Ll 0kG(z, by, s) Faly, s)dyds,
F = 8y [, 0kG(z, by, 8) (Ves(y, 8))dyds,
¥ = 8l fi [ 8 Rg(z, t;y,8)V (y, s)dyds,

from (4.3) we can write

I

afal;V(a:, t) = Ii’k + a_lIé’k + a‘llé’k - a_lli’k + Ié’k.

Set L .
BEF() = (144707903,

and

Lk I nk
M(t) = sup By (s)[10:05V (-, 8)||L,.-
p>2,0<s<t,I+k<3,I<1
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We are going to estimate IJI-’Ic as follows. Since ||Vollz, < Ceo, |Uollz, = Vs(+,0)llz, <
Ceo, (4.7), (4.8) and Hausdoff-Young inequality gives

11512, < Ceoll(1 482G ()|, < Ceo(1+8) 2095 (5.5
P P

For Ié’k, it is easy to see that from (3.1) and (3.2)

k
16}085 |1, < Ceo(1+1) 75735, (5.6)
provided that 1 < [+ & < 6. Thus for [ + k£ < 5, we have

16085 1, < Ceo(1 4+ 4 130D, (5.7)

By (4.11) and integration by part with respect to variable y, we have

1151z, < (ft/Q Shar l [Con(14 8)~FM2Gp( - y,t — )80 Fi(y, s)dyllz,ds
+ o 1123 405G iy, 9) Fi(y, s)dy |, ds ).

Thus, (4.7) and (5.7) give

mlw

_1n_1
119¥ I, < C Lt — 6)20 7 Peg(1+ )77 %) ds
1 1 k
AT S (1 )2 )ds
< Ceo(14 1) 20797,
If Il = 1, then (4.12) yields
175,
< (S Sharmer | [0 (1 + &) EM2=0-m G omal By (y, s)dy| 1, ds
+Js PSS 8:0y05G (- 1y, 8) Fi(y, 8)dyll 1, ds
+ [25, OEG(- ;y,t/2)F1(y,t/2)dyllL,,).

The estimation of the first and the second terms of the above equality is similar to
those of IQO’k. The last term can be estimated by using (4.7), and gives and (5.7)

* _k la-Ly k3
T 'Y, 1Y, YL, = CEp P .
|1/_006G t/2) Fi(y,t/2)dy|lz, < Ceo(1+ )72 :

Thus, we obtain
15|z, < Ceo(1+ )™ 21951, (5.8)

Next, we first consider I5’ . When [ = 0,k < 3, by (4.19) we have

1% =[5/ [, 05 Rg - Vdyds + [} [, R - 05V dyds
+0(1)eozﬁ<kft/2f (1+s)” (k- ff@E(y s)Gp - 9V dyds.
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Using (4.16), (4.17), Hausdoff-Young inequality and Hélder inequality, we have

125 1.
< Coo( 71+ 8) 201+ =6D2Go 1 1B 1)1, IV 1,5
+ [ OlGDILIEC, )| L, 108V |1, ds
+ Tpar [+ )& D20 Gp 1, | EC, )z, |05V ||z, ds)
< Ceof M2 4y 2(5 - )T R) (1 4 )11 4 6) 30D By
+ o L+ 8) 620t — 5) 30D (14 )41+ ) 72075 "2 ds).
Since

gk fin(L+ 8)~6=PR20 (1 — ) 30D (1 4 5)V/4(1+5) 2075345
<= O [+ ) 20THTE (o) i (14 )7t (- )7 V2(1 4 )" 12)ds

< C(1+t) 1051,

‘We have

II2F) < Ceg(1 4 1) 7073075,

If il =1,k < 2, we have

I = 6t((ftt/2 +fg/2>ffooo 6£Rg(x,t;y,s)V(y,s)dyds>
= [in [ (805 RG)V dyds + [3° [ (805 R)V dyds
+ [ (OFRe)V dy|s—y — limg 30, [ (0ERG)Vdy
tlim, o [, (05RG)V dy.

(4.20), (4.17) and (4.18) give

175z,

< Ceo( 371+ 8)7V2( + 1)~ C 2| Gp L, | EC, ) 1,11V ||, ds
+ Zﬁgk,agl ftt/ﬁ(l + 5)_(k_ﬁ)/2_(1~a)@||GD”Lp “E(a S)HLz ||8§85V||L2d5
+A+ 07 F21Gp (/2 | EC 2198V (4 8/2)1, )

By the similar method as the one for the case of [ = 0, we can get
113411z, < Ceo(1+1) 207207272,
Thus for [ + &£ < 3 and [ < 1, we have
L5 |Iz, < Ceo(1+¢) 207750,
We now turn to Ié’k. First we can write

Fy = —(p/(0)0 + p"(0 + u(Va + 0) (Ve + )°/2),
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with 0 < p < 1. Since mg(z) is a smooth function with compact support and
Iatla]ch](x, t)l < C|U+ - u—|e‘-at8£m0(x))

we have
101055 (x, )| < Cege™ e (5.10)

Using Holder inequality, (5.3) and (5.4), we have
PR (" (0 + u(@ + Vi)V, < CM2(E)(1 + ) 203~ (5.11)
t¥c T Y

Since we have estimates only on V (y, s) € W™ ([0, 00); H>~™) for m < 3, (5.11) holds
only when [+k < 2and ! < 1. When [+ k< 2and! <1, (5.6), (5.10) and (5.11) yield

1018 Fallr, < Cleo + M2(1))(1 + )" 2079175, (5.12)

—_ ?

When [ = 2,k =0, (5.4) and Lemma 3.2 give

N

1O2((p" (5 + 0(5 + Va))VD)iz, < Clea+ M2@)(1+1) 2097273, (5.13)

where ¢ is a constant satisfying %—}— 2= %4— 1. Thus, from (5.6), (5.10) and (5.13), we
have

102 Fa)l1, < Cleo + M2(1))(1 + ) 20-9)+33, (5.14)

We now consider Ié’k. When k£ < 2 and [ = 0, it follows from (4.11) that

189110, < C(Jin 1l 172 0aG, 5, )05~ Faly, )y, ds
b IR o BEG U b, ) Faly, )yl ds)

+Ce0 fi0 | /25, 0(t, )G Fa(y, )dyl ., ds,

by Hausdoff-Young inequality, (4.7) and (5.12), we have

1 1 k
15* 1z, < Cleo+ MP@)(f2(1 46720572 (14 5)72ds
1 E—2

Ll = 973 4+ (L4 5)7H)(1 4 5) 207D T )
< Cleo + M2(1))(1+ ) 2-3)—2

When &£ < 1 and [ = 1, it follows from (4.12) that

1550, < O I3 05G (. 1y, 8)0s Faly, s)dy |, ds

PN S5, 008G (-, 1, 8) Faly, )y |, ds

+0(L)eo fig [2, 6%(t, 8)Gp Fa(y, s)dyds
| [25, OEG (- 1y, t/2) Fa(y, t/2)dyl -

(4.7) and (5.12) give
1 1 k
||I§’k||Lp < Cleg+ M2(t))(1 + t)—i(l—;)—l—-z-.
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For | + k = 3, since (¢t — s) " is non-integrable in {t,t/2] if A > 1 and V(y,s) €
W™ ([0, 00); H>™) for m < 3, we must replace 92G(x,t;v,s) by Rg(z,t;y,s) and
0sG(z,t;y,s) by using (4.14) and (4.15). In fact, it follows from (4.14) that

1157 L,
o llf B3G(-, t;y, 5)Fa(y, s)dyl|r,,ds
+Cft/2 Ilf RGOy Fa(y, 8)dyliL, + || /=5 0yGOs Fa(y, s)dyllL,
+1I [, (1 + 8)~V28,G8, Fy(y, s)dyllL,)ds
+C ffo Go Fz(y, )dy|s:t/2“Lp
+Ce0 > 5<1 ff/z | S22, ((t — 8)~Y2 + 0)0@=F)(t, 5)Gpdl Fa(y, s)dyl|L, ds
+Ceo [ 1[5, 6(¢, 8)Gp0s Fa(y, s)dy| 1, ds.

IN

Then, (4.7), (5.9) and (5.12) yield get

3

1890z, < Cleo+ MP@)(+1)307P7E,

We now estimate I§’2 by using (4.15)

137z,
o Ilf 002G (-, t; y, 5) Fa(y, $)dy| |, ds )
+Cft/2(|1 %, RgO:0yFa(y, s)dyllL, + || 25, 0yGOZFa(y, s)dy| L,
I [, (1 + 8)7V20,G0.0, Fa(y, s)dy||1, ) ds
+C“f_oo (GO0, + BE:GE) VFo(y, 8)dyls—t/2llL,
+Cll [%5, GO 8yF2(y 8)ayls=t|L,
+Ce0 Tpcy Foa 12 ((t— )~ 12 4 )p®-9)(z, 8)Gpdi 1 Fy(y, s)dy| L, ds
+Cegq ft/2 ||f_OO BQGD838y+ 6GD8§)F2(y,s)dy][Lpds.

IA

The proof is very similar to the proof of Ig’s, by noticing that we can use (5.14) not
(5.12) for 02F5(y, s). It follows that

1 1
||I§’2“Lp < C(EQ + Mz(t))<1+ t)_i(l_E)*Q'

In summary, for [ + k£ < 3 and [ < 1, we have
1Mz, < Cleo + ME@)(L+ 820785 (5-15)

Finally, we consider Lll’k. When [ = 0,k < 2, by (4.11) and intergration by part to
variable s, we have

1725l < C(ftt/z /250 0572 G(-, 1,9, )8y B2V (y, 8)dyllz,, ds
+ [ 1201+ ) 1/2GD('—y,t~S)afV(y,S)dylleds
+ o N 25, 050G (-, 1y, )05V (y, s )dyands
H f2 EG (L s )a V(y, 8)dy=d |z,
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Let g be a constant satlsfymg +2=1 5+ 1. By (4.7), Lemmas 3.1 and 3.2, we have

185 0r < Ceo( finle=9) 30075 (1 40)7 4 (14 ) 2)ds
+ 52— ) 2D TET (1 ) ~1ds
(14 1)30- "“"1) FliUollzy (1 + 1) 30757
< Cep(1+1)20-5)-5,

If I =1,k <1, by (4.12) and intergration by part to variable s, we have

113* )z, < C(f:/z 12, BEG(-, t;y, )03V (y, s)dyl|, ds
+ [ 1 %51+ 8) 7 Gp (- — y, t — 8)02V (y, s)dy||r, ds
+ Jo 2 1 [, Bk O2G (-, 15y, £)86V (y, 8)dyl|L, ds
% 0,8 G, 5y, ).V (3, )yl vz
1 22 BEG(, 9, )02V (y, ) dylscs ol ).

Similarly, we have

”Ii’k“LP S C&:O(j;t/z(t_ S)_%(l_%)—%(l + 5)_5/2d$
+ o2t~ )22 (14 ) s

1 1 k 3 1 1 k
L4 )TFOTD TSR 0|, (14 ) F AR
~La-1y-£_
< Cep(l4t) 20727270,
For 12’3, we also need to replace 02G(x,t;v,s) by Rg(z,t;y.s) and 9,G(z, Ly, s) . It
follows from (4.14) that

172°lz,,

i | /5 B3G (9, )Vis (9, 9)dy |, ds

+C [ ||f Ra0yVes(y, s)dyl|r, + || [0, 0yGOsVss(y, 8)dyl L,

HI 2, (1+ 8)V28,Gy Ves(y, 5)dy|1,) ds

+C“f GOy Vss(y, )dyls~t/2||Lp

+Ce Zﬂ<1 ft/z ” JS((t = 8) 72+ 0)0C=P)(t, 5)GpdbVes(y, 5)dyl|, ds
+Ceo ft/2 | J 25 0(¢ S)GDasVSS(?Ja s)dyllz,ds.

IN

Using Hausdoff- Young inequality, (4.7), (4.16), Lemmas 3.1 and 3.2, we have
190z, < Col1+) 207973,
For Il =1,k = 2, we denote Ii’Q = Ii}’% + Ii,’22a where
Iy = Jo " 25 002G (@, ,) (Ves (9, 8))dyds + [ 03G (2, 6, ) Voo, ) dyls=t 1,

12,2 = ft f 8t82G($, t; Y, S) (‘/;S(y: S))dyds - fjooo 82.(;(11, t; Y, S)V'ss(y: S)dy|s:t71
VOV (2,1,
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We first consider 7 i”f. Using (4.12) and integrating by part of the variable s,

153 0er < C(J5% 11 /%2 B20:0:G (-, 5y, $)0sV (y, 5)dy |1 ds
+|lf O20:G(-,t; y, )05V (y, 8)dy[sZ¢ 1,
e, T %2, 823G (-, 6y, )83V (y, )y, d
+ i 1[5+ 8)~1(t — 8)71Gp (- — y, t — 8)82V (y, 8)dy| L, ds
H 250 02G (-t y,2/2)82V (y, £/2)dy 1, ).

Using Hausdoff-Young inequality, (4.7), Lemmas 3.1 and 3.2 again, we obtain

112230, < Ceo(1 4 ¢)"2073)72,

Notice that we can replace 02G(z, t;y,s) by Rg(z,t;y,s) and 8:G(x,t;y,s) . Similar
r

to the proof of (4.15), we have

12235 lz,

C fia(l J22 RaBsVas(y, 8)dyll,, + || [2, GO Vis(y, 8)dy L,

+|| [o, A+ s)_1/28 GOsVes(y, 8)dyllL, )ds

+C|| [22,(GOsViss(y, ))dyls_t 1z, + Cll 2o, (05G — 8)Vas(y, 8)|s=t—1]lL,
+Ceq Zﬁ<1ft L= 8) M2 4 9)6B- ﬁ)(t s)GDa'BVss(ya s)dyl|r,ds
+Ceo i1 11 [72, 012, S)GDBSVss(y, s)dy||z,ds.

IN

As for (4.11), we have

22 92G(z, tyy, s)g(y, s)dy
= [ 32G($,t;y,5)g(y,$)dy
+O(1)e0 Cpea [0 0P (t,5)Gp0E gy, )dy.

Thus by Lemmas 3.1 and 3.2, we have

”f (azG 82)I/ss(y, )[s:tﬁluLP
< C&‘o(“ ffo 0(t, 8)G DOy Vss(y, s)dyls=t1llL, + || 75 02(t, )G D Vas (v, 8)dyls=1-1l L,
< Cso(1+t)*5/2.

Since
Vss(y, S) - F(y7 S) - aVs(ya S) -+ ay(?]; S)Vy(f% 5) + a(y> S)Vyy(% S)a

The second term in the above inequality can be estimated by using the estimates for
F(y,s). Thus, we only need to consider the following three terms.

j;;l ffooo G(.’L‘, t; Y, S)Vsss (y, S)dde,
ﬁt—l f—oooo G($7 t, Y, S)VnyS(y> S)dde,
Rs= [ 1[% Gz, t;y,s)0%(ay(y, s)Vy(y, s))dyds,

It follows from (4.11) that

IRz, < C oyl /25 Go(t = 8, — ) Vess(y, 8)dy| 1, ds
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By Hausdoff-Young inequality, (4.8), Lemma 3.2, we have

IRillz, < Ceo( fiy((t— )24 (1 + 5)~Bas)
< Ceo(141)7 207972,
Similarly, we can prove that
IRillL, < Ceo(1+ ) 207972
for j = 2, 3. Therefore, (4.7), (5.9), Lemmas 3.1 and 3.2 imply that |

1 1
Ilfi,’SIIL,, < Ceo(1+ t)—i(l—;)—2_

Thus we have o
1I5¥ )L, < Ceo(1 + )20 )72, (5.16)

Combining (5.1), (5.5), (5.8), (5.9), (5.15) and (5.16), we have the estimate

1 1 k
10{05V (-, D), < Cleo + ME(@))(1+1)7 207227 (5.17)
Thus for [ + £ < 3 and [ < 1 we have
M(t) < Cleg + M*(1)).
Taking ¢ small enough and using continuity of M (¢) and induction, we conclude that
M(t) < Ceyg, ie.
1ok ~3(1-3)-5-1
100V (-, DL, < Ceo(1+1t)" 20 2727, (5.18)

Since U(x, t) = Vi(z,t) we have proved Theorem 2.3 from (5.18).
Q.E.D.
According to the above discussion, it is easy to see that we can get the optimal
estimates for higher derivatives of the solution if we know that higher derivative of
initial data are small enough. In fact, we have the following theorem.

Theorem 5.1 If Vy(z) € H™Y(R) NL1(R), Up(z) € H™(R) NL1(R), and
lug —u_|+ vy = v_| + [Vollgmsr + [|Uollgm= + VoL, + |UsllLy < <0

for some sufficiently small &g, then there erists a global in time solution V (z,t), U(z,t)
of (2.10). Moreover, if we have the following estimate

m m
S F 2oL 22V (IR, + S+ oL 2RV (D3, < Cep,  (5.19)
[=2 =3
forl < m, then
105V ()], = O(1)eo(1 + 1)~ G- 1/P/2=(kFD/2 (5.20)
102U (8|, = O(1)eo(1 + t)~ - 1/p)/2=k/2-1 (5.21)

for any k < m and p € [2,+00).
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ASYMPTOTIC BEHAVIOR OF SOLUTIONS TO THE SYSTEM OF
COMPRESSIBLE ADIABATIC FLOW THROUGH POROUS MEDIA

KENJI NISHIHARA! AND MASATAKA NISHIKAWA 2

Abstract In Hsiao and Serre (Chin. Ann. Math. Ser.B (1995), pp. 1-14), they showed the
solution to the following system

vt — ug = 0, (t,z) € R4 X R,
ut + p(v, 8)x = —au, a >0,
St — 0,
with initial data
(v, u, 8)(0,z) = (vo,u0, 50)(x) — (v, ux, §), as z — +too

tend to the following nonlinear parabolic equation time-asymptotically:

{ 'bt p— “‘%p('{), So)mm, (t, (E) [S R+ X R,

u= —"i"p(57 50)1'5
In this papar we got its convergence rate, which will be optimal.

Keywords. asymptotic behavior, the systern of compressible adiabatic flow, convergence
rate

AMS Subject Classification. Primary 35L65, 35L67, T6L05

1. Introduction. We consider the Cauchy problem for the equation of the form

v — Uy = 0, (t,z) € Ry X R,
us + p(v, 8)z = —au, a >0, (1.1)
st =0,

which can be used to model the adiabatic gas flow through porous media. Here v is the
specific volume; u denotes the velocity; s stands for the entropy; p denotes the pressure
with p > 0, p, < 0 for v > 0. Typical example of p is p(v,s) = (y — v 7e® (y > 1).
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2Department of Mathematics, School of Science and Engineering, Waseda University, 3-4-1 Okubo, Shin-
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In Hsiao and Serre [2, 3], it has been proved that the solution of the Cauchy problem
(1.1) with

(U,’LL, 5)(071:) = (’UQ,Uo,So)(.’E) - (Uﬂ:auiasi)7 UV =V, 84 = S— as x — Foo
(1.2)
can be described time-asymptotically by the solution of the following equations
by = —2p(9, 50) gz, t,z) € Ry X R,
{ ~t 1ap(~ 0) (t,z) + (1.3)
U = _ap(vv SO).’E7
o Ut — U 0 t R R
UV —Ug = 0, ,T) € X I,
{ 5 ] (t,z) € Ry (1.3
p(0,80)r = —0il.

The system (1.3) is obtained from (1.1) by approximating the momentum equation (1.1)y
(the second equation of (1.1)) with Darcy’s law.

In the case of isentropic flow, namely, s(t,z) = constant, Hsiao and Liu [4] has proved
that the solution to the Cauchy problem (1.1) converges to that to (1.3) with arate t™% in
the sense of L? M L*®-norm. More precisely, for any smooth function mg(z) with compact
support satisfying

/ mg(z)dz = 1, (1.4)
R
we put
{ o= R mola)e ™ (1.5)
4 =e |:’LL_ —+ (’LL+ — U—) ffoo mO(y)dy] s .

and uniquely determine (0, %)(t,z) by

U_

/{vo(m) —0(0,z)}dz = M—;;-—. (1.6)
R
Then it holds that

(v = —6,u— @ —@)(t, )| g2z~ = OF 7). (1.7)

Moreover, the first author [9] has obtained sharper rates than that. Precisely, if we put
(v—v—0,u—1a—1)=(V,,z) due to (1.6), it holds that

(Ve 2)(t, Ml p2ery = Ot 5,171 (1.8)

and

(Ve 2)(t, ooy = Ot %,17%), (1.9)

which are based on the L?-energy estimates for the reformulated problem

{ Vtt -+ {pv (6)‘/:2}33 + a‘/t = ép(ﬁ)zt - {p(Vz + v+ i}) - p(’f)) — Do (@)Vz}w

= L . (1.10)
V(0,z) = f_oo('u — 7 —9)(0,9)dy, V;(0,z) = (u —a —0)(0, ).

115



Moreover, the fact that V4, decays fast suggests that V has parabolic structure as ¢t — co.
In fact, it is also shown that, if vy =v_ and (V,2)(0,z) € L*(R) x L(R), then

1(Va, 2)(E, Moo (my = O™, 17%). (1.11)

In the nonisentropic case, the asymptotic stability in the case of v, = v_ and sy = s_
has been obtained in [2, 3]. Our purpose in this paper is to obtain its convergence rate,
especially its second order term of asymptotic, which is on the same line as in [9-11]. See
also Gallay and Raugel [1]. ‘

In the case of v4 # v_ and sy = s_, Hsiao and Luo [5] has obtained the stability
theorem. Furthermore in Marcati and Pan [8], the stability results with convergence
rates have been obtained in the following cases: 1. vy =v_ and sy =s_ 2. p(v_,s_) =
p(v4,54). Hence the case s; # s_ has been partly solved. We note that in these papers
all data are so small that the solutions are smooth. Since large data generally yields the
singularity after a finite time, we need to consider the weak solution to treat large data.
See also Hsiao and Luo [6] and the reference therein.

Throughout this paper we denote several generic constants by ¢ or C. By H™(R)
denote the usual Sobolev space with its norm

1l =D UG -1 =11 llo =l - leemy-
k=0

2. Preliminaries and Theorems. For simplicity, we restrict our case to v, = v_ =
v, uy =u_ =0, s; =s_ =g, so that (0,4)(t,z) = (0,0). The constant « is normalized
to 1 without loss of generality.

First, let us consider the problem (1.3) in order to reformulate our problem (1.1), (1.2).
Since % is defined by (1.3)3, we investigate the Cauchy problem of © to the parabolic
equation:

ﬁt +p(,57 SO)E:L‘ - 07 (t7$) € R+ X R7 (2 1)
(0, z) = vg(z) — v (x — F00). '
Eq.(2.1); has a stationary solution o(z) defined by
p(0(x), so(z)) = p(v, 5). (2.2)
For a typical form of p(v, s) in gas dynamics, ¥ is given by
5(z) = ev(s0(@)=2)y, (2.3)

Our first Proposition is on the property of ¢, which is necessary to investigate the
behavior of solutions to (1.1),(1.2).
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Proposition 1 (Asymptotic property of 7).

Suppose that p(v,s) is a smooth function with p > 0,p, < 0 for v> 0. If (Y9 — 7,80 —
s) € H%(R) x H%(R) is sufficiently small, then there erists a unique global solution o(t,z)
to (2.1), which satisfies that

8} (v — v) € C([0,00); H*"*(R)), 8! g € C([0, c0); H* ¥ (R))
Gertz € L?(0,00; L*(R)),
where ¢ = p(v,s) — p(,s) andi =0,1,2,3, 7=0,1,2, and that

3 2
Y @+tPoF (@ —o)I° + D1 + )% |0f e (1))
k=0

t 3 = 3
+ / (Z(l + ok — ) ()2 + S+ r>2’“||afqz<r)n?> dr
0 k=1 k=0
< Cl(Bo() = (), s0(-) — $)lI3- (2.4)

Moreover, if (0o — ¥,80 — s) € L}(R) x L*(R) is assumed, then ¥ satisfies
[ N19(t) = @) + 8ot Nlze <CA+)7,

1B = 00)e(t, )z < C(1+1)72
1B = 8o)ae (¢, Mz < C(L+1)72,

[SI[C NS

< . _ 5 P (2.5)
[9(t,-) = (B(:) + 6o(t, ) < C(L+1)74,
1(® = B0)e(, Iz < C(L+1)77,
L 1@ = Oo)us(t, 2 < C(A+1)7E,
where 0y is given by the explicit formula
bott, ) = 228 [ G — ) oly) - 2(0)bay 2.6
—pu(0,8) Jr

by using the Green function of vi + p, (v, 8)vze = 0.

Remark 1. In Proposition 1, we assume that the initial disturbance is in H%(R) in order to
obtain the decay estimates for U444, Gitse ete., which will be used in the proof of Theorems
1 and 2 below. The function 6y(t, z) satisfies

(Bo): = fa(a(x)@m, (2.7)

there a(z) = —p,(0(z), so(z)) and a = —p, (v, s). Since |[(a(-)bo, a(-)00t) ()| Lo = ot~ 2,
17 2) ete., we can say from (2.5) that (x)+6y(¢, z) is an asymptotic profile of ¥ as t — co.
It seems to be curious, because 0 satisfies (2.6’) instead of (6y); = (a(z)B0) 2, linearized
equation of (2.1) around ©. However, we have adopted 0, in (2.6) which has an explicit

formula.

We also obtain the asymptotic property of .
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Proposition 2.
The function @ defined by (1.8°); for © obtained in Proposition 1 satisfies

{ 1~ Goe) &l < C(1+1)"3log(2 +1), 28)
(@ — Goz) (¢, L2 < C(L+1)74,
where Go is given by
B(t2) = ~po(w:8) [ Gt~ ){fly) — 5w)}dy. (2.9)
R

The proofs of Proposition 1 and 2 will be given in Section 3.

We now turn to the original problem (1.1),(1.2) with v4 = v and uy = 0. If 9p(x) =

v+ \Z"; exp(—(z 40) ), 6o = fR(vo(y) — v)dy, then fR(’UO — 9g)(z)dr = 0. Hence fR(U _
)(t, z)dz = 0 follows from (1.1); and (1.3°);. Thus, putting

V20 = ([ =D -2, 9), (2.10)
we have the reformulated problem
( ‘/t —z= 05
z: + {p(‘/a: + ,57 S) - p(’f)’ s)}m +z= p(’i}’ S)H:t?
{ (V,2)(0,z) = (Vo, z0)(x) (RP)
= (7 d00w) = 50,9}y, uo(a) — 4(0, 2)
L — 0 as r — F00

where s(t,z) = so(z) =: s(x).

Hsiao and Serre [2, 3] have shown that (0,4)(t,z) — (9(x),0) as ¢ — oo, and that
(Ve,2) = (v—10,u—1u)(t,z) — 0 as t — oo under suitably smallness conditions. Namely,
the solution (v,u) to (1.1),(1.2) tends to (¥(x),0) as t tends to infinity. In this paper,
we obtain those convergence rates by applying not only L?-energy method but also the
Green function of parabolic equation.

Using the property of ¥ in Proposition 1, we obtain the following first main theorem
based on the L-energy method.
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Theorem 1.

In addition to the assumptions in Proposition 1, suppose that vg — v € LY(R). If
(Vo, z0) € H3(R) x H%(R) is sufficiently small, then there ezists a unique global solution
(V,2)(t,z) to (RP), which satisfies

1 3 1
D AHOFIBEV@IP + Y (L + )P0 PO + D (1 + )R 85=(0))?
k=0 k=2 k=0

+ (L4 3 zea O + L+ 1) Pee @) + Y (1 + 82052 ()1 + (1 + )%z (0]
k=0

12
+/O {IVa@I + @+ )PP + 1+ 7)) Pao (DI + (1 4+ 1) Poe (7)1} dr

t ( 2 1
+/ { (L+n)* G2 + DA+ ) 3 0F 2 (n)II* + (1 + T)5||Ztt(7)1|2} dr
0 k=0 k=0
< C (IVoll3 + llzoll3 + 11(@o(-) = 3(-), s0() — 8)II3) - (2.11)
Here P = P(V;) = P(Vy;0,8)(t,z) := p(Vz(t, z) + 9(t, z), s(z)) — p(o(t, ), s(x)).

Proof. The proof is given by the same method as in [9)].

Remark 2. The decay estimate of (V,z) same as (1.9) is derived as follows. By the
Sobolev inequality and C~ 1|V, | < |P(V,)| < C|V4l,
Va (L, )l|Lee < C||P(t; Ve, , 8)|]
< C|\P(t: Ve, 5, 9)|IF [P (8 Ve, B, )
< CVa@IF P Ve, 0, 5)al|?
<SCA+8) 11+t "t =Cc1+1)75,

and
I2(t, YL < Cllz(@))| 7]z ()]

<CA+1)3A+)"F =CA+1t) 4.

Next, we obtain the optimal convergence rate, same as (1.11), assuming (Vp, z9) €
L'(R) x L'(R). Linearized problem of (RP) is

{ Vit +{pv(0,8)Va}e + Vi = p(0, 8)ot — [ (2.12)

V(0,z2) = Vo (z), Vi(0,z) = 2zp(x),
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where ' = p(V, + 7, s) — p(0,8) — py(?, 8)V;. Regarding (2.12) as the parabolic equation
of V with "forcing terms”, we have the expression

1
Vit,z) = /R G(t,z - y)Voly)dy — /0 /R Gt — 7,2 — y)(Vie + Fo)dydr
+/O /I;G(t — 1,2 —Y)p(D, 8)zedydT
- /O /R G(t — 7,2 — P {(po(®, 5) — po (v, 5))Vaadydr, (2.13)

which are estimated by using the result in Theorem 1. Thus we have the following
theorem.

Theorem 2.
In addition to the assumptions in Theorem 1, suppose that (Vo, z0) € L*(R) x L*(R).
Then the global solution (V,z) to (RP) satisfies

{ 1(Ve: 2Ol = OG~,875) 2.14)
1(Va, )@)llz2 = O3, 473).

Combining Propositions 1-2 and Theorem 2, we have the last theorem.

Theorem 3.
Suppose the same assumptions as those in Theorem 2. Then the global solution to

(1.1),(1.2) satisfies
[o(t,-) — (@() + o(t, DL < C(L+1)7,
[ u(t,-) = Goz (£, )| Lo < C(141)"2 log(2 + 1),
lo(t, ) — (B(-) + bo(t, )L < c +1)71,
[ult,-) = Gox(t, )Lz < C(1+1)775.

(2.15)

Remark 2. If, eventually, [, (vo—0)(z)dz = 0, then we can put (V. 2)(¢,z) = <ffoo (w(t,y)
—0(y))dy, (u — @)(t, x)), which yields simpler problem

{ V;S_Z:O,
Zt+{p(V:l: +'D7S) _p(’(—)as)}z + 2z =0.

In the result, we have [|v(t,-) — 7(-)||pee = O(t~!) instead of (2.15). Hence, the estimate
(2.15) almost implies that the diffusion wave 6(t,z) carries on the amount [, (vo(z) —
o(z))dz. In (2.15), we could not remove log(2 + ).

The proofs of Theorems 1-3 will be done in Sections 4-5.
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3. Asymptotic behavior of the parabolic equation. In this section, we prove
Propositions 1 and 2. By setting 6 as

6:=v—7, (3.1)
the Cauchy problem (2.1) is rewritten as
0y = Q(ea ‘r):cx
U oty = ey o0 (32)
where
q(0,z) = p(v(z), s(z)) — p(0 + 9(z), s(z)). (3.3)

Applying the L?-energy method, we first prove the following proposition.

Proposition 3.1. Suppose that p(v,s) is smooth function with p > 0,p, < 0 for v > 0.
If (8,50 — s) € H®(R) x H(R) is sufficiently small, then there exists a unique global
solution 6(t,z) to (3.2), which satisfies that

856 € C([0,00); H5*(R)), 8] ¢» € C([0,0); H* % (R))
Qtttx = L2 (07 Qo5 LQ(R))’

wheret =0,1,2,3 and j =0,1,2, and that

3 2
ST+ D* O + 3 (1 + )2 ok g, (1))
k=0 k=0

t 3 3
+ / (Za + ) akem) P + 3 +T>2’“Hafqm(r)n?> dr
0 \k=1 k=0
< Cl(8o(-), s0(-) — £)ll3- (3.4)

Next, using the Green function, we obtain an asymptotic profile under the assumption
of 8y € L1(R), which gives the optimal decay rates of 6.

Proposition 3.2.

In addition to the assumptions in Proposition 3.1, suppose that (0o, 80 — s) € L*(R) x
L*(R). Then the global solution §(t,x) to (3.2) satisfies

(10— 80)(t, Mz <CL+1)7T,

16 — Bo)+(t, )L < C(1+418)72,
160 = Bo)ex(t, Yo < CA+1)" 7,
16 — 8o) (¢, )llze < C(1+1)~F
16— Go)e(t, Iz < CA+1)"7,
L 10— Bo)ee(t, e < CA+1)7E.

(3.5)

Lo I
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Since

o= —p(6 + 7, 50)s = —{p(0 + U, 50) — p(v, 8)}4
= —{p(0 + 9, s0) — p(v,50) }2 = ¢z,

we also estimate 4 by using the Green function. Differentiating ¢ in ¢, we obtain ¢; =
—py (8 + 7, 50)0;. Substituting this into (3.2), we have

Gt = —pv(e + v, SO)Q:M:- (3-6)

Then it hold that
Proposition 3.3.

Suppose the same assumptions as those in Proposition 2. Then the global solution
q(t,x) of (8.6) with u = q, satisfies
(g — G0) (&, )l < CAH+1)7,
1(g = Go)e (¢, )lLeo < C(1+1)72 log(2 + 1),
I(g— @), )l < CA+1)73,
(g = do)z (t, )2 < C(1+1)74%.

(3.7)

The assertions of Proposition 1 follow from Proposition 3.1 and 3.2, and those of
Proposition 2 follow from Proposition 3.3. The proofs of Propositions 3.1 and 3.2 will be
devided into several steps. Proposition 3.3 will be proved in the end of this section.

Proof of Proposition 3.1.

The proof is given by the combination of the local existence with a priori estimates.
Since the local existence theorem is obtained in a standard way [11], we devote ourselves
to the estimates under the a priori assumption

3 2
Ny(T) = sup {Z<1+t>’“uafe<t>n+2(1 +t>k+%nafqz<t>n}s€. (3.8)

0<t<T | 1o k=0

Estimate 1. Multiplying (3.2); by ¢(6, z) and integrating it over [0,¢] x R, we get

t
2
/RQ(H,Q:)da:-{-/O /R{q(ﬁ,:v)z} dzdr
- /R Q0. z)dz| < Cl|(0o,50 — 9)II2, (3.9)

t=0

where Q(0,z) = f(f q(n, )dn, which is equivalent to 6.
Estimate 2. Define V = ¢(6,z),. Then

‘_/t = Q- (310)
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Mutiplying (3.10) by (1 +¢)V and integrating it over R, we have

%%{(1+t)/Rq§dx}+(1 +t)/R(—pv)9?d:r=

Integrating (3.11) and applying (3.9), we get

[N

2dz t T —Pu t2 zrar
(1+t)Lqmd+A(1+)A(p)9dd
< Cll(fo, 50 — 8)II3-

Estimate 8. Differentiate (3.2); in t:

(et)t = {Q(gwr)t}zz

Multiplying (3.13) by (1 +t)2q; and integrating it over R, we have

%% {(1 +t)2/R(—pv)9t2d$} +(1 +t)2/th2zd~"3

= (+0) [ (pide = @+t [ (pubids
R R
<(1+1) / (=po)02dz + C(1 + 1) sup |6y / 62dz
R R
and hence, by (3.12) and N(T) < ¢,
t
(1+41)2 / (—py)0?dz +/ (1 +7‘)2/ q2 dxdr
R 0 R
< Cll(Bo, 50 — )I3-

FEstimate 4. Mutiply (3.13) by —p, (6 + v, s) to obtain

gt = (—Pv)Gtee + (—Po)ibs-
Multiplying (3.16) by (1 +t)3(—gszz) yields

{(1 sop [ qud:c} + a0 [ (ol
R R

(1+41)? / . dz + (1 + 1) / Gt (o) ebsl
R R

and

t
(1+t)3/ qtzmd:c-l—/ (1+T)3/(—pv)qud3:dr
R 0 R

< C|(80, 50 — 8)|3,
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in a similar fashion to Estimate 3.

Estimate 5. Similar methods to Estimate 3 and 4 give the estimates:

(1+1)* /R(-—p,l,)ﬁtztd:c—F/O (1+7’)4/th2tmdmd7
< Cll(6o, 50 — )%,

t
uﬂf/@mw/u+&/e%mmww
R 0 R
< C1(6o, 50 — 9112,
and

t
(1+t)6/(—pv)9t2ttd$+/ (1+T)6/ thttzdde
R 0 R

< C||(Bo, 50 — 8) |3

Combining Estimates 1-5 completes the proof of Proposition 3.1. [J

(3.19)

(3.20)

(3.21)

Remark 8. Since q(0,2) = p(v,s) — p(0 + v,s) = —py(+, $)8, the Sobolev inequality and

(3.4) yield
sup || < Csup |q]
R R

< Cllg@®)| 2 llgz (t)]|2
<ClO@|2llg-(OF < C(1+1)75.

Due to ¢; = —p, (0 + v, $)0;, we have
sup |6| < C'sup |g;|
R R

< Ollge () #llgsa (0)]12
< Cll0:@®)]1F g ()| < CL+1)75.

Since gy = —pmﬁf — Dy,
1 1
SIEP gee] < Cllaee ()12 11 gee (2)]] 2

< C (12O + 10u®1)? gz ()]
< C(10u0)ll o= 18D + 162 I
<C(L+1)77,

1
2

B=

1geee (2)]|2
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and

sup [fy] < C (sup g + sup wt(tn?) | (3.25)
R R R

Therefore,
sup |6 (t)] < C(1 +1)7%. (3.26)
R

Proof of Proposition 3.2.
First step.

We first investigate the Cauchy problem for the homogeneous linearlized equation to

(3.2)1: _ 5
0y = Tz
{ Ut (a(z)0) (3.27)
Oli=0 = Oo(z),
where a(z) = —p, (9(z), s(z)) —» —py(v,8) = a as £ — +oo. To obtain the precise decay

estimates of 6, we here again combine the L?-energy method with the explicit formula
using the Green function. First, multiplying (3.27); by a(z)f and integrating it over
[0,%] x R, we have

. /R a(e)Fdz + /0 t /R {(@()8), Y dwdr = /R o(z)0y’dz. (3.28)

Next, multiplying (3.27); by a(z) and differentiating it in x, we obtain
(a(2)0)zt = {a(z)(a(2)0)sz }o- (3.29)
Multiplying (3.29) by (1 +t)(a(z)8), and integrating it over [0,t] x R, we have
E a(z)0), }2dz t ) | a(z){(a(z)d)zs }2dzdr
;040 [ @@y + [ (147) [ a@N(ae))en) i
_1 a(r)8o), Y dz t a(z)0), }2dzdr
= 5 [ (@@ yde+ [ [ (@@ pazar (3.30)

By virtue of (3.28) and (a(x)f).z = #;, we obtain

a(z)0); Yodz t T a(z a(2)0) zx }2 _f T
<1+t>/R{<<)9)}d +/0<1+ >/R (2) [{(a(2))az)? + 67] dzd
< Cll(6o, 50— 9)]I2. (3.31)

Since (0f); = (a(z)0F0) 4z, k = 1,2,3, same estimates as above give the following.
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Lemma 8.1. If (8g,s — s) € H%(R) x H®(R), then it holds that

3

Z{(uﬁ?k / a(c)(8F8)*dz + (1 + )%+ / {(a(2)070). }de}
R

k=0

2 t
7_2k a\xr k‘—mz.’lﬁ’r
+,§/c)(1+) /R{(xata)}dd

2 ¢ ) k
7_2+1 alx alr k—zzz t_2 cdr
3 [0 [ @0 Dnn) + 0F e

< C|l(Bo, 50 — 9)I5- (3.32)

Remark 4. By Sobolev inequality and (3.32), we obtain
sup 0] = sup |a(z) | sup a(x)d)|
R R R

< CVa(@)8(0)]||(a(2)8)s ()]
<C+H74, (3.33)

sup [0y] < Cllva(@)8: ()] 2 |(a(z)8:)z (8)] 2
<C(1+1)73, (3.34)
and

supIGtt|<CH\/ )00 (D112 | (@(z)814) (1)1 2

<C(1+1)74. (3.35)

Second step.

Assuming that §y € L'(R), we now obtain an asymptotic profile fy of § defined in
(2.6). Rewrite (3.27); as

ét = Qézz:m + {((L(.’B) - Q)é}xma

to have the expression

6(t,z) = /R G(t,z — y)fo(y)dy + /O /R Gt — ¢ — y){(aly) — )07, 1)} yydydr, (3.36)

where

G(t,z) =

]
[e)
4
el

/?

el

5%

N—



Integration by parts yields

/; /R G - {(aly) — a)0(7,y) }yydydr

_ ! / t / G, - (a(y) — a)B(r, y)dydr

__1 [ / c. a(,y)_a)efy)dy} / / G - (a(y) — 0 (r,y)dydr

2

- L - 060+ [ @ (gx ~1) (als) ~ )y

N é /; /RG - (a(y) — @) (7, y)dydr.

Hence, by (3.36)

(0 —o)(t,2) = %/ G <%x — y> (a(y) — @) (é_y> dy
a(a:) / / Gyy(t — 7.2 — y)(aly) — @)0(7, y)dydr
a(x) / / G(t — 7,z — y)(aly) — a)0-(7,y)dydr
=L+ L+ 1s

Here we have used f, = o) Jr G - 6o(y)dy.
By 6y € L}(R), it is easy to see

100(t, z)| < Ct2.

Since s — s € L1(R), a(y) — a € L*(R). Hence

t [t
[I1] < Csup G<-2-,$—y) sup 9(§,y> la(-) — a1
R R
<Ct 1,

LI <C [ sup[Gyy 10 [0, )lla() — al 1

<C/ (t—71) %1-{—7 4dT,

<ot i,
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and

t
Ll<C / sup |G| sup 6, (, )| lla(-) — alrdr
% R R

< C/Q(t—T)_%(l +7)dr
0

<Cti.
Here we have used (3.33) and (3.34). Combinig (3.37)-(3.41), we gives
sup (4 — Bo)(t,2)| < O,
R

Next, we estimate supy, |(# — 0g)s(t, )|. Differentiate (3.37) in t to have
- - 1 2 =~ (1

(0 —60):(t,z) = a@ /RGt (5733 —y) (a(y) — )0 <§ay> dy
1 t =~ /1

— —,T— —a)f, | =,y |d

+ax)/RG(2,:r y) (a(y) — a) (2 y) Y

L2 /0 ’ | Gy (oly) ~ )0l )dyer

o

t
+;(—1;> / /R G - (aly) — a)frr (v, y)dydr.

In a similar fashion to the previous estimates, we have
sup |(6 — Bp)u(t, )| < Ct™ 3% .
R
Differentiating (3.43) in ¢, we also obtain

S‘;{P l(é - éO)tt(trl')} < Ct %,

Here, we go back to (3.37). By virtue of (3.42) and (3.44),
supg |0(t,z)| < supg |0o(t,z)| + Ct~% < Ct 3,
supg, |G;(t,z)| < supg |(Oo)e(t, z)] + Ct=% < Ct~3.

Therefore, applying (3.46), instead of (3.33) and (3.34), to (3.37), we obtain

sup |0(t,z) — Oy(t,z)| < Ct™1.
R

Similary, we have o
sup |(8 — 0o):(t, )| < Ct™2.
R

(3.41)

(3.42)

(3.43)

(3.44)

(3.45)

(3.46)

(3.47)

(3.48)

However, this method is not applicable to (#—6g)s;, because we have f,;; in the expression

of (8 — o).

The L?-estimates to § — 60 are also obtained by applying the Hausdorff-Young inequal-

ity. Thus we have the following lemma.
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Lemma 3.2. In addition to the assumption in Lemma 8.1, if (89,5 —s) € L*(R) x L*(R),
then it holds that ast — oo,

(3.49)

{ 1((8 = o), (6 — fo)e, (0 — Bo)ue)(t, Lo = O™, 172,77
1(B = Bo), @ = Bo)y, (0 — Oo)ee)(t, )| ze = O3, 7% 1),

Third step.
We now turn to (3.2). The perturbation © := § — 0 satisfies

{ O = (a(m)e)mz +@(0, %) e
Olt=0 =0,

where
&0, z) =—{p(@ +79,s) — p(v,s) — p, (D, 5)0}. (3.51)

As same as (3.37), we have the expression

ot.2) = 5 [ 6(5.2-v) (e - 20 (5.v) dy

1 3
e /O /R G: - (aly) — 0)O(r, y)dydr

1 t
+ o / /R G - (aly) — @)O (v, )dydr

a 3 1 t
+—_—/ /G ~<I>ddT+—//G-<I>7-, dydr
a@) Jo Ja Yy Y a(z) n - ®(7,y)dy

t
2

=1L+ 11+ 113+ 114+ 115. (3.52)
We estimate each term in (3.52). By virtue of (3.22),(3.23) and (3.46),

10l < N0()ILoo + 10()]| Lo
< C(1+1)74, (3.53)

and

1©:(t)l| Lo < 110:(E)| oo + 10:(t)]] Los
< C(1+1)71%. (3.54)

Hence, [1;-115 are easily estimated as

\[Iy,11,1I5] < Ct™ 3. (3.55)
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Estimates of I14 and II5 are as follows:

%
Ll <c / sup |Gy (¢ = 7 r
0

3
< C/ sup |02(t — 7) " tdr
0 R

<Ct s, (3.56)
and
t
|[II5| < C|— [/ Go(r, y)dy} / / G (1,y)dydr
t
<c{peol+|[ 6(5e-v) 2
+ / st;{pl@(r,y)mc:(t—r)||L1dr}
t
<C {sup 0] +/ sup |6| sup |0t|d7}
R t R R
<Ct 3. (3.57)
Therefore, we obtain
lO@le < C+1)73, (3:58)
and hence ~ )
10Oz <O Le + [0 L < C(1+1)7 2. (3.59)

Applying (3.54) and (3.58), instead of (3.53), to (3.52) again, we have

10(t)|| L < C(1+1)%. (3.60)

If we obtain faster decay of ||©;(t)||p~ than (3.54), then ||©(t)| L~ will decay faster than
(3.60). Hence we next estimate ||©4(t)|| L~ using explicit formula. Since ©; satisfies

{ (et)t = (Q@t)mz + {(a(x) - Q)@t}mz + (®(97$)t)z:z: (3.61)
E')t‘t:O - (I)(907 x)a:za
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we also have the expression similar to (3.52)

0ut0) = 255 [ (5o —v) (at) - 000 (5.0) o

1 [z L
+ ?x)‘ /0 /RGt . (a(y) - g:)@t(T)dydT + WIE)- é /RG . ((l(y) . Q)@tt('f)dyd’r

it (oo G [ o)
+%€C) {/:/RG-@tt(T,y)dydT*l—/RG(%,Ir_y) ®tdy_®t(97$)}-

=1L+ 111+ 1113+ 1114+ 1115, (362)

Applying (3.54) and (3.59), we obtain

“(3)

< Ct7i, (3.63)

|[I1I| < Csup
R

sup [O|[la(-) — al| s
R

Do

[1T,] < Clla() — a1 / sup [G(t = )] up [€4(r, )l
0

< C/Z(t—r)_%(l +T)_§_d7'
0

< Ct71, (3.64)

Ge(5)|=e e (50| + [ " [Gute = s up 9 y>|dr}

<c {(1 +1)~it 4 / - +T)-1dT}
0

<C(+t)"%log(2+1). (3.65)

and

sup
R

|14 <C {sup
R

Since

L=}

1©a()|| Loe < [102(t)l| oo + 102 ()]l e < C(1+1)~
by (3.26), (3.49) and ||(f0)# ()| < C(1+1t)" %, we have

14

|IUS|SC|IG(-)—QHL1/ S%PIG(t"T)|51};P|®tt(7'ay)|d7'

z
2

t
gc/ (t—7)"2(1+7)"4dr <Ct7 3, (3.66)
%

131



and

sup
Lt R

t t
rnkm;c{[lwa—rmusgwmAﬂkh+HG(§)

+gy%mw@
sc{/kwm@vW+mmvawm&mme
-;— R R R

0 (%) b, (g) 1 +sup 6(t)| sup l9t(t)|}

gc{[t(l +r)—%dr+(1+t)—%} < Ct3. (3.67)

2

+sup sup
R R

Here we have used |8;®(6,z)| < C|0]|6;],10:®(0,z)| < C(|04] + |0]|04]). Combining
(3.62)-(3.67) we have
19:(t)||Lo < Ct72 (3.68)

and hence

16:(B)l| e < Ol + [B(t)l|roe < C75. (3.69)

Applying (3.68), instead of (3.54), and (3.69) to (3.62) again, we have
18e@llz= < C(1+1)75. (3.70)

We now go back to the estimate of ||©(t)||L~. Applying (3.60) and (3.70) to (3.52), we
obtain the sharper estimate

10|l L= < C(1+ 1) log(2 + ). (3.71)

By differentiating (3.61); with respect to ¢, we have the explicit formula of ©y, similar
to (3.62). Estimating all terms, we obtain

1€ ()L < C(1+1)"
the details of which are omitted. If we apply (3.72) to (3.62), then we get
18]l < C(1+8)2log(2 + 1) (3.73)
The L>-estimates of © are also obtained by the Hausdorff-Young inequality.
[O@)r2 < CA+1)7%,
I9u®lze < C(L+1)7%, (3.74)
1©4(t)llr2 < C(L+1)7%.
Once more again, applying (3.74) to (3.52) and (3.62), we obtain
[O®)|L= < CA+1)7,
{ 1©:(®)llLe < C(L+1)72

Thus we obtain the following lemma.

N

(3.72)

(3.75)
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Lemma 3.3. In addition to the assumptions in Lemma 3.1, if (6y, s—s) € L} (R)x L}(R),
then it holds that ast — oo,

H(@,@t,ett)(ﬁ,')HLw :O(t—lat_Qat_%)v (3 76)
10,04, ©)(t, )z = O(™%,177,175). '
Combining Lemmas 3.2 and 3.3, we conclude the Proposition 3.2. [
Proof of Proposition 3.3.
Rewrite (3.6) as
Gt — 04z = —{Po(0 + 7, 50) +a}Gzs, (3.77)

to have the expression

o(t, z) = /R G(t, — 1)q0(y)dy - /0 /R Gt =7, — y)}{po(0+ 7, 50) + abayydydr. (3.78)

Here we put ¢(0,z) = ¢o(z) and a¢ = —p, (v, s). Integration by parts yields
%
— / / Gt — 1,2 — y){pu(0 + v, 50) + a}qyydydr
o JR
= /2 / Gt — 71,z —y)(gr — ab-)dydr
0 R

_ {[/RG(t_ﬂx_y)(q—QG)dy]j —/O%/RGT(t—r,:c—y)(q"QQ)dydT}(-Sjg)

Thus we obtain

G-@)to)= [ G-(g—ad)dy — [ [ Got—rz—1)(q—ad)dydr
R 0 R

r=1
t

— / / Gt —T1,2 —y){p,(0 +7,s0) + a}gyydydr (3.80)
i JR

and

(¢ —qo)=(t,x) = /R Ge - (¢ —af)dy - /O5 /RGm(t — 71,z —y)(q — ab)dydr

—
T=3

t
— / / Gt — 7,2 — y{{pu (8 + T, 80) + a}qy,dydr. (3.81)
+ Jr

Here we have used §o(t,z) = a [, G(t,z — y)bo(y)dy. Dividing the final term of (3.81) as
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we seek the L®-estimate of (¢) and (¢2). Noting that
g —af = —{p(6 +7,s0) — (¥, 50) — Pu(¥, 50)0 + (p» (7, 50) — P (2, 5))0},
= O(|0]* + |a(z) — al|B]),
Pv(9 +0, 50) +a= pv(g + v, 50) - pv("—)a 30) +pv('l_}a 30) - pv(Qyﬁ)a
= 0(|0| + |a(z) — al),

we obtain

i=c [ [ 161001+ la() - abio- dyr
t—1
< CL NGt = T zee (1O 22165 (D22 + lay) — al| 12116 (7)]| L) dr

t—1
< C/ t—7)"1 +7')_ng §Ct—%log(2+t),

and
t

@) <C - 1G(& = )l £2110- (D)l Lo (16Tl L2 + lla(y) — allL2) d7

<C [ (t-7)"iQ4+7)"Fdr <Ct73,
t—1

The other terms are estimated in a similar fashion to Proposition 3.2. The details are
omitted. [J]

4. Pointwise estimate by approximate Green function. In this final section, we
devote ourselves to the proof of Theorem 2. In an expression obtained by differentiating
V of (2.13) in z, ff Jr Gz - {(ps (0, s) + @)V, },dydr is rewritten as follows:

2

—/;/RGI.{(pv(ﬁ,s)+g)%}ydydT'
o /: /Rny - (Po(9,8) + @) Vydydr

1 t
_1 / / G - (po(, 5) + @)V, dydr
al: Jr

1 _ t t ) .
:;{IZ/RG(pv(’U,S)“}‘Q)VtydyjI%—/%‘ /RG'{(pv(U75)+Q)V£/}TdydT}
(

- Mvz(t,x) — % /RG- (P (9, 8) + @)V, dy

—1
=3

- é/;/RG'{(pv(ﬁ’S) + @)V, }-dydr,
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where G is defined in (2.6) and a = —p, (v, s). Hence,

Valtom) = —s [ Galtio Vo)
B _—p;% </+/t> / Go{Fy + V. }dydr
] < / / ) | Gebl@,9)ydar
- =g Lo+ (5) v (5) @
[ ) 0 Gt
- ) (G ) ), G

= J1 4+ (Jo1 + J22) + (J31 + J32) + 4 + J5 + Js. (4.1)
By Vo € L'(R), it is easy to see
<o (42)

To estimate all other terms, we use (2.5) in Proposition 1 and (2.11) in Theorem 1.
Integration by parts in z yields

/2 (/ nyFd.’E —|—/ Gerdy> dT
0 R R
[ % 3 3
<C / / |Gyy || F|dydT + [/ Gyzdy} —/ /Gy,-zdydr
' 0 kR R 0 0 R

=(3)]

+sup |Gy (1)[[|2(0) ] +/§ 1G=(2 —T)IIHZy(T)HdT}

|J21] < C

|

<c| [ oupliGti- T>|||v<r)||2dr+HG()
0 R

<C

t—i/ IV (r)||Pdr +¢737% 447! +t‘3/2(1+r)‘%d7}
0

<Cctt, (4.3)

t t
|Jao| < C / /nyFdach—i—/ /sz.rdxdT
3 3 /R
1 t
<C|- /GFda: —/ /GF dzdr / /G,,ZTd:z:dT
a t JR
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@l

t *lo t — T ZA\T T
+/% /R(lVyi |Ut|+l%|lzy|)lG|dl'dT—{—é G4 (t NIERGIIE: }

<C {sup |F(t)| 4+ sup
R R

t
< {s%p VP + [ sup % Poup Gt

2

+ / sup [V} llz, (MGt = )lldr + / ||Gz<t—r>||nzf<r>ndv}

2

<C{t‘§ T B AR Sl A% SRS AN }<Ct" (4.4)

/2/G’yyp(6,s),.dyd7'
o JR

<c /O Gyt = )22 sup i () dr

For J3, we have

|J31| < C

gc/z(t—r)—1(1+7)—%drgCt“l, (4.5)
0

and

t
| < C / /R Gyyp(5, 8)-dydr
3

<cC /:/RGTp(ﬁ,s)TdydT
—C [/Gpv s)Tdy] —/ /Gpvs,,.dydT
o (e ()],

<c {sup 5, (£)] + sup
R
t
+ / (sup |6T|2 + sup [13.,7|> |Gt — 1)l dr}
t \R R

2

<C (t‘% +t‘i"+1) <ct i (4.6)

|J41<c(sup\v<t>mv<t 50)l H ( )H“‘S()‘S““ F G@

< C( pETETE T 3) < Ct i, (4.7)

For last three terms, we have

sup wm)
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|Js| <C (/0§ sup V(Mo -) = oGy = 7)lldr
+lIs() = sll s /5 sup |Gy (¢ —T)Isupry(T)IdT)
0 R R

<c </05(1 ot te-tars [foonta +T)_%dT>

<C {t—% log(2 + t) +t—%+%} < Ct~%log(2 +1), (4.8)

and

[Js| < C (/_ sup |2 (MIIGE = 7lll#(E, ) = 9()lldr

2

+1ls() = sl 12 /

t
sup |zy(7)| sup |G(t — 7)|dT
R R

™

+C/ SupIﬁt(T)lsup%(T)lllG(t—T)IlleT)
{ R R

<C (t“%—%+§ +t ity +t—%—§+1> <cr . (4.9)
Combining (4.2)-(4.9) we have the desired rate
sup |V (t,z)| < Ct™ L. (4.10)
R

Next, we estimate sup, |z, (¢, )| in a similar way to above. Differentiating (2.13) in ¢,
we have

Z(t,$)=LGt(t,w-y)%(y)dy+ /RG-p(@s)yrdy

—
T=3

% t
- {/ / GT -p('ﬁ’ S)deydT - / / G- p('a?s)yrrdyd'r}
. o /R : Jr

- [ G- 4By + VirYay
R

— 1
T=3

i t
+ {/ / G{Fy + Vrr }dydr +/ / G- {Fy+ VTTT}dydT}
0 JR t JR

- [{n6.9)+ )6}, vy

(VIR

T=

_/05/R{(pv(ﬁ,s)-f—g))Gy}ytdedr
- / /R (0o (5,5) + @) Vi), Gydydr. (4.11)
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Here we have used the integration by parts to gather the derivatives of GG in the part on
the domain [O, %}, while, to gather those in the other part on the domain [%, t}. By the
almost same calculations as the estimate of supg |V (¢, z)|, we have the desired rate

sup |2(t, z)| < Ct™3. (4.12)
R

Applying the Hausdorff-Young inequality, we also have L% estimate:
3 .5
”(V:L" Z)(ta ')”L2 = O(t 1,1 4)7
which completes the proof of Theorem 2. [

Remark 5. We can also get

IV (t, Moo < CE2, V()| < CL71.
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Large Time Behavior of Solutions to the Cauchy Problem for
one-dimensional thermoelastic system with dissipation

KENJI NISHIHARA*
School of Political Science and Economics,
Waseda University, Tokyo 169-8050, Japan
SHINYA NISHIBATA

Department of Mathematics,
Fukuoka Institute of Technology, Fukuoka 811-0295, Japan

Abstract

In this paper we investigate the large time behavior of solutions to the Cauchy problem on R
for a one-dimensional thermoelastic system with dissipation. When the initial data is suitably
small, [S. Zheng, Chin. Ann. Math. 8B(1987), 142-155] established the global existence and the
decay properties of the solution. Our aim is to improve the results and to obtain the sharper
decay properties, which seems to be optimal. The proof is given by the energy method and the
Green function method.

Key words and phrases: Thermoelastic system, dissipation, decay rate, Green function.
AMS subject classifications: 35B40, 351.60, 351,70, 76R50

1 Introduction

In this paper we investigate the large time behavior of solutions to the Cauchy problem for a
one-dimensional thermoelastic system with dissipation on R x (0,00):

Wit — a(We, 0)Wee + b(wy, )05 + awy = 0
c(wy, 0)0; + b(w?, Nwyr — d(6,0,)02: =0 (1.1)
w(z,0) = wo(z), wi(z,0) =wi(z), 6(z,0) = bp(z),
where « is a positive constant, and smooth functions @, b, c and d satisfy
b# 0, and a,c,d> 8§ >0 under considerations. (1.2)

For the derivation of this system refer to [9], [1]. In [9] Slemrod also showed the global existence
theorem for the system (1.1) with & = 0 on the interval [0, 1]. Damping mechanism was discussed

*This work was supported in part by Grant-in-Aid for Scientific Research ¢(2) 10640216 of the Ministry of Edu-
cation, Science, Sports and Culture.
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in [1]. Nevertheless, for lack of the Poincaré type inequality our problem (1.1) is not necessarily
clear. Instead of this system, by introducing new unknown functions

Wy =v, wp=v, 60=280, : (1.3)
Zheng [10] considered the corresponding system

UVt — Uy =0
ug — a(v, O)vgy + b(v,0)0; + au =0 (1.4)

c(v,0)0; + b(v, O)uy — d(8,04)0z; = 0

with
(v, u, 0)|t=0 = (vo, g, 0o)(x). (1.5)

In [10] he established the global existence of the solution of (1.4), (1.5) together with its decay
order, when the initial data (vg, ug,8p) in H3(R) are suitably small.

Our main purpose is to observe the large time behavior of the solution of (1.1). However,
instead of treating (1.1) directly, we first comsider (1.4), (1.5) using L?-energy method, which
improves the result in [10]. Faster decay estimates of 8_,’;’tut obtained here play an important
role in the next process. That is, regarding u; in (1.4) as an inhomogeneous term, we have a
parabolic system of (v,8) and hence the ”explicit” formula of (v,8) using the Green functions
Gi(z,t), Go(z, t), which will give sharper estimates of (v, u, 0) if (vg,ug, f0) € L*(R). This method
has been developed by the second author [5,6]. See also [7]. Finally, define a solution (w, 8){(z,t)
of (1.1) by w(z,t) = [ v(y,t)dy, where (v, u,0) is a solution of (1.4) with its initial data

Vo = Wogps Ug — W1, 90 = 90. (1.6)

Thus we obtain a solution to the original Cauchy problem (1.1). Below, we sketch this procedure
and state theorems.
First, linearize (1.2) around (v,u,8) = (0,0,0):

Ut — Vg + bplz +u = go (1.7)
0 + bO“x — Opy = g3,
where we have normalized as
a =1, a(0,0) = d(0,0) =1, b(0,0) = by (1.8)
and set

g2 = (a(v,0) — L)vy — (b(v,8) — bg)b,
(1.9)

g3 = 6(1},9) ((bo — b(v, 0))uz + (d(8, 0z) — 1)0zz)-

By denoting the Lebesgue space(resp. the Sobolev space) by LP = LP(R) with its norm || -
||L»(resp. H™ = H™(R) with its norm || - ||m ), especially || - |lz2 = || - llo := || - ||, our first theorem
based on the L?-energy method is the following.
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Theorem 1 Suppose that (vg, ug, 8y) € HA(R) is suitably small. Then, the Cauchy problem (1.4),
(1.5) has a unique global solution (v,u,8) € C([0,00|; H*(R)), which satisfies

t
E(t;v,u, 0) := E1(t;v,u,0) + / Ex(1;v,u,0)dr
0

= |(v, YD) + (1 + &) || (v, w, 62) (D) ]|? + (1 4 £)? 10z (vay u, 0:), B (v, 0) ()|
+(1 + t)s ”612:(1)1‘1 U, 91‘): a‘l(vm’ ’U,, 91‘)(t) ”2
(14 )4||03(vg, 1, 02), B2, 005 (Vs U, Og), Ostige, OF (v, u, 0)(2)]|?

+/Ot{|l(vm, w, 02)(T) | + (1 + 7))10z(ve, u, 0z), s (v, 8)(7)]? (1.10)

+(1 + 72|02z, u, 0z), O (vz, u, 02) (7)1
+(1+ 7)3)|83(ve, u, 05), 0u0s (v, u, 62), 07 (v, 0)(7)]|
+(1 4 7)4|8%u, 02 (v, u, Bz), 002 (v, u, 0), 0,03 (v, 8), 036(T)||* }dr
< Cllwo, uo, foll3-
In the next step we first obtain "explicit” formula of (v, ). From the decay orders obtained in
Theorem 1, the term u; in the left-hand side of (1.7)(the second equation of (1.7)) decays faster

than the other terms. Hence, differentiating (1.7)2 once in z and using (1.7)1, we regard (1.7) as a
parabolic system of (v, u):

Ut — Ugr + bo0zz = —Uzt + gox
(1.11)
bovt + 0 — Ozz = g3,
or
A(Z)—B(Z) :(l““J“ng):AF, (1.12)
t rr 93
where
({10 [ 1 —=bg
i (20) me () w
Setting
v |4
<0)_P<®> (1.14)
for a regular constant matrix P, we have
14 “14-1 4 ~14-1
— — . 1.15
<®>tPABP<@>m P ATF (1.15)
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1 —b
. -1 0
[he eigenvalues ki,ke of A™'B ( ~by B 4+1 ) are

b4+ 2— /(b3 +2)2—4 bE+2+ /(034224
0< ky= — (20 ) <y = 2 20 , (1.16)

and corresponding unit vectors are

1 Ibg [ 1 Ibg [ P2 117
-1 )7 ! k1) - (D)
Rt (ki—1)2 \ M P21 B2t (ko — 12 \ F2 P22

Hence, a matrix P := < Pu P2 > gives the diagonalized system

P21 P22

Vv ki1 O V 14—
() (5 2)(5) - o

and hence the ”explicit” formula is

TN
<
N~——
®
I
TN
S
Do
N——
=
*
TN
o5
N——
+
\ﬁ
TN
o
R=

, ) (,t—7) % PTYAF(,, 7)dr (1.19)

Gi(x,t) =

1
- i =1,2 1.20
s P ) T (1.20)

and * means the convolution in z. Note that, since A~!B is a real symmetric matrix, P and 'P
are orthogonal matrices and

?:1 pzzj = 212:1 p?z = 15 .7 = 172 (121)
> 1 PiDik = Y1 Pjibki =0, j#k.
By (1.19), ( g ) = p~1 < Z ) gives
v B Gi O _1 Vo
(1.22)
£
+/ pl G O \pa, g1 lmtom ),
0 0 G2 g3
From (1.17) and (1.21)
p Gi1 0 p-1_ P2 G1 + P3G P11p21G1 + p12p22Go
0 G P11P21G1 + p12p22Ga P%G1 + p3.Ge
(1.23)

_ [ I=a)G1+ aGs ¥(G1 — Ga)
o 7(G1 — G2) BG1+ (1= B)Ga

143



with 0 < a, 3, |7| < 1. Thus, we have a "explicit” formula of (v, §):
v _ [ A= a)G1+ aG2 Y(G1— G2) _ Vo
< ’ ><x’t)“ ( WGi-G) e+ (-pG )P e

(11— a)Gi+aGe ¥(G1— Ga) Mgy + gor
+ t—T)* -, T)dr, (1.24
I ( Wer—Go)  BGr+ (=BG )T T bg(ugt — gog) + g5 ) T (12U
which is ”explicit” in the sense that several kinds of information about wuz, go, g3 are already
known. From (1.7)2, u has the form

u(z,t) = vy — boby — us + go- (1.25)

From (1.24) and (1.25), (vg, u, 0;) instead of (v, us, 8z) have same decay order if u; and g2
decay faster. From this point of view the decay orders obtained in Theorem 1 seem to be reasonable.
Compare this to the result of Zheng [10]. See also [2, 4].

Further, if the initial data (vg, ) is in L'(R), then these decay orders are improved. In fact,
we have the following second main theorem.

Theorem 2 In addition to the assumptions in Theorem 1, suppose that (vg,0p) is in L'(R).
Then, the solution (v,u,8) of (1.4), (1.5) satisfies the decay estimates

L+ Y4, )@ + (1 + 1) (v, ) (1) |

+(1+ )34 (vey u, 02) (D) + (1 + )| (ve, u, 02) (2) | oo
(1.26)
+(1+ t)5/4||(”m= U, Oz ) (8) || + (1 + t)3/2”(vzx’ Uy, O) () | o0

< C([lvo, uo, Golla + llvo. Goll L)
Remark. 1 In this stage the assumption ug € L' is not necessary.

Finally, consider the Cauchy problem to the original system (1.1). Taking (1.3) and the first
component of (1.24)(denote by (1.24)1) into consideration, we assume wy, = vg with wy € H>(R)N
L(R), and set

w(z, t) = /;v(y,t)dy. (1.27)

By (1.7)1, wy(z,t) = [T w(y, t)dy = [T us(y,t)dy = u(z,t). Hence, (w,6) satisfies (1.1). Esti-
mating (1.24)2 and (1.27) with (1.24);, we have the following theorem.

Theorem 3 Suppose that (wy, w1, 80) € H3(R)x HA(R)x H*(R) is suitably small and wy, woz, w1, 0o
are in L}(R), and that (v,u,8) is a solution of (1.4) with (v,u,0)|t=0 = (woz, w1, 60) obtained in
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Theorem 2. Then, (w,8) defined by (1.27) and (1.24)s is a solution of (1.1), which satisfies
1+ @] + ()|
+H(1 A+ )Y (wg, ) + (1 + 1) 2]|(ws, 0)(E) | Lo
+(1 4+ )34 (wam, we, 62) ()| + (1 + )| Wz, wt, 02) | o0 (1.28)
H(1 4+ 134 (Waw, Wiz, b, O20) )] + (1 + %2 (Wass, Wia, O20) (B) ||z

< C(|lwolls + [lwa, bolls + |wo, woz, w1, Ooll1)-

2 L?-Energy Estimates

In this section we prove Theorem 1 employing the L?-energy method. Our present concern is the
the Cauchy problem to the system of equations (1.4) with the initial data (1.5).

The global existence of the solution is given by the combination of the local existence ( Propo-
sition 2.1) and the a priori estimates (Proposition 2.2). This observation immediately gives the
proof of Theorem 1.

By multiplying (1.4); by a(v,8), the resultant system becomes the symmetric hyperbolic-
parabolic system. Thus, the local existence theorem below immediately follows from the general
theory constructed in Kawashima [3]. The readers are referred to {8], too.

Proposition 2.1 (Local Existence) Let s > 3 be an integer. Suppose that (vg,ug, bp) € H*(R).
Then, there ezists a positive constant Ty, depending only on ||(vo, uo, 6o)l|s, such that the initial value
problem (1.4) and (1.5) has a unique solution (v,u,0) satisfying that
(U': 'U) € CO([Oa TO]; HS(R)) N Cl([oa TO}; Hs_l(R))a
0 € C°0,To}; H*(R)) N CM([0, Tol; H* 2(R)) N L2([0, To); H*'(R)).
Our theory concerning the asymptotic states requires the solutions (v, u, ) to be in the space
H*(R) in the spatial variable z. Thus, we fix s = 4 hereafter. Then, we introduce the solution

space
X(0,T) := {(v,u,0) | E(t;v,u,0) < co}

t
Also, we use the supremum of E(t;v,u,8) = E1(t;v,u,0) + / Ex(7;v,u, 0)dr:
0

N(T)? := N(T;v,u,0)® = sup E(t;v,u,0).
0<t<T

Apparently, it holds that
(v, w, 0)()lla < E(t;v,u,0).

Thus, we can combine the following a priori estimates with the local existence theorem.
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Proposition 2.2 (A Priori Estimates) Let (v,u,0) € X(0,T) be a solution of (1.7), (1.5)
satisfying N(T) < 1. Then, there ezists a positive constant 2 such that if ||vo, ug, 6olla < €2, then
(v,u,0) satisfies (1.10) for 0 <t < T.

We now devote ourselves to the proof of Proposition 2.2, which will be done in several steps.

Step. 1 We first multiply (1.7)1, (1.7)2, (1.7)3 by v, u, 8, respectively, to have

(%/v2d:c)t + /uvmd:c =0

(%/uzdm)t + /(—uvm + bouby + u*)dz = /92 -udz

(%/szx)t + /(—bou(% +6%)de = /93 . bda.

Here and hereafter, the integrand R is often abbreviated. Adding three equations, we have

31O + 16O = [(g2-u+ 93+ 0)do == FO(tig). (21)0

Integrating (2.1)q over [0,t],¢t < T, we have first lemma.

Lemma 2.1 For some constant C independent of t it holds that
0,5, O + [ w62 DIPdr < Cllww,uo,bol + [ FOsgdan.  (22)

Step. 2 Multiplying (1.7)1, (1.7)2, (1.7)3 by —02%v, —02u, —020, respectively, we have

1d

5 10y 0, 6) O + |z ) ()]

(2.1
= [(0an - Oru+ 09y - 0,0)dz = F(19)

We also multiply (1.7)2, (1.7)3 by wt, 04, respectively, and add the resultant equations to have

d. 1
5[5l 0 D + /(b(,eac — vg)udz] + /(uf + 07 — ul + 2bgbyug)da
(2.3)
= /(92 “ug + g3 - by)dz.
Calculating (2.1); + (2.3)x\ for a small positive constant A, we have
d 1 1+ A
Bl ua) (I + 221001 + S+ [A(bob = vo)udz
H(1 = M fuz @I + MiCuz, 8) )17 + 11822(2)]* + /2>\boum < Oydz (2.4)

= /(8:092 - Ozu + /\6:1:.92 U + 0293 - 020 + Aga - at)d‘r F(l)( )
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and hence \
vy 1, 2, 62) (D)2 + /0 iy s, 61, Ba) (1) |2

(2.5)
t
< C(llvo,uo,Golft + [ F"(rig)an)
Moreover, differentiating (1.7)2 with respect to x and using (1.7);, we have
Ut — Ugg + Utz + boOzz = 922,
and, by multiplying this by v,
1d
5 55 P12+ s = [ (us + bob)vada
(2.6)1
- _ ) M.
= 92 - vzdzx := Fy ' (1; 9).
By (2.2), (2.5) and the Schwarz inequality
2 ¢ 2
[v@®IF + [ Toa(mlPar
(2.7)

i
< C(Jlvo, uo, Bo]? + /O (FO + F + F")(r; g)dr).

We now have had the integrability of ||u;(7)||? on [0,¢]. Hence we turn back to (2.4); and multiply
(2.4)1 by (1 +¢) to obtain

(1 + £)[| (v, 2, s, ) (B) |2 + /0 (14 7) (v e B, B) (1) [P
< C(|[vo, uo, B2 + /0 (FO g + (14 NED (r9) + FO(r0))dr) (2.8)

t
= C(llvo, uo, 602 + /0 Hi(r; g)dr).

Combining (2.8) and (2.7) we have the second lemma.

Lemma 2.2 It holds that

(1-Ft)H(vx;u,uz,Om)(t)”Z4“Jét(va(T)H2F(l%7ﬂH(ux,1u,Gt,ﬂxm)(T)Hz)dT
(2.9)

1
< C(|lvo, uo, B2 + ]0 Hy(r: g)dr).

Step. 8 Estimates of higher order derivatives corresponding to (2.1)1, (2.4)1, (2.6)1, respectively,

become
1d

10w, 0, 0) 1) + 195 (o, 02) (1)

(2.1)
- /(&i‘gz - OFu 4+ gy - 0%0)dz = F{P(t; g),
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1+A
t-2 2

05w, WO + S5 Iok0)I? + S 1k (o)l

Q.

+ / A(bodk0 — 850)8E udar + (1 — A)[|0Fu(®) P
N0 0 DI + 1056012 + [ 27000 - 05 (240
= /(3592 - Oku + NOk gy - BTy, 4 OFgs - BF0)

+)\8£*1g3 . aﬁ_lﬁtdx = Fz(k) (t; 9),
and
1d

3 105701 + 0500 = [ (05 s + bodh0) v

(2.6)k
= —/8;“_192 O Fék)(t;g)
for £ = 2,3,4. Same method as that of obtaining Lemmas 2.1-2.2 yields the third lemma.
Lemma 2.3 It holds that
(1 + )21z (vz, u, ug, ) (2)|?

+ /0 (L7020 (DI + (1 + 7|8 ut, 82, Oxz)(7) 1] dT (2.10)

1
< C(Jlvo, w0, ol3 + /O Ha(r: g)dr),
(14 830102 (v, 1, g 6) (1)

+ [ 10+ DRI + (14 7202z, . 61, 00) ()Pl (2.11)

1
< C(llvo, o, Bol12 + /0 Hy(r; g)dr),
and

(1+ 8)*103 vz, u, Uz, 0) (F)]|2

L1004 PRI + (14 710 ey ) ()P (2.12)

1
< C({[vo, uo, boll3 + /0 Ha(r; g)dr),

where

m

Hun(739) = SAQ+ 7 V() + 0+ F P () + 0+ ) RV (g} (213)
k=1
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Step. 4  We next estimate the derivatives of (v, u,6) with respect to t. Differentiate (1.7) in ¢

once to have
(vi)t — (ut)z =0

(ui)t — (vt)z + bo(0t)z + ut = gor

(6t)¢ + bo(ut)z — (6t)zz = gst-

(2.14)

Since ||(vg, ug, 01)]t=0l] < C(||vo, uoll1 + ||6ol2) and that (1 + 7)||(ve = ug,us, 6:)(7)]|? is integrable

on [0,t] by Lemma 2.2, same way as in Lemma 2.3 yields the following lemma..

Lemma 2.4 It holds that
(1+ 628 (v, u, 0) ()% + /0 (1 P20, 00) (7P
< C(Jlvo, uol3 + [160ll3 + /0 [Hi(ri0) + (1+ 12O (s go)ldr,
(1 + 1318y (v, ., 1, 6)(2) 12 + /0 (4 7P o))
(14 7)*)10s(uz, ut, 0, 025) (7)||2d7

< C(llvo, uoll3 + [160l13 + /Ot[Hl(T;g) + (14 7)2Hy(7; 90))dr

and
(14 )*10204 (v, u, ug, 02) (D) + /0 {1+ 7)° ||Vt ()P

+(1+ 7)4|020% (1, 1z, 65, O20(7)||2)dr

t
< C(Jlvo, uoll3 + [160l% + /0 {(Hy(r;9) + (1 + 7)2 Ha(r; go)}dr.

Step. 5 Differentiating (2.14) in ¢ once more, we have

Lemma 2.5 It holds that

(1+ 04108 (o, @I + [ (0108 s, 0a) ) P

t
< C(|lvo, wo, bol% + /0 [HA(7; 9) + (14 7)2Hi (7 08) + (1 + ) FO (75 g12) dr.

Step. 6 Adding all inequalities obtained in Lemmas 2.1-2.5, we have

t
El(t;v,u,6)+/ Es(7;v,u,0)dr
0

1
< C(|lvo, uo, ol + /0 [Hy(739) + (1+ 7)2Ha(r; 1) + (1 + 7)1 FO (7; gu)dr.
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Here we have used Fl(o)(t;g) < Hi(t;g) < Ha(t;9) < Hs(t;g) < Hy(t; g), where F' <« H means
that all terms of F are included in H.
The last term of (2.19) has higher orders of (v,u,8) and estimated as follows.

Lemma 2. 6 For small positive constant v it holds that

t
C /0 [Ha(7:9) + (1 4+ 7)2Hy(7; 9) + 1+ )4 FO (7 gy )dr

t
< Clvo,uo, ol + v [ Ba(riv,u,0)dr + CN (D)2,
(4]

The proof of lemma 2.6 is not difficult, but many and tedious calculations are necessary. So,
we only show a few terms. For example, fg Hy(7; g)dr includes

t 1
J1 ':./0 /m(bo — b(v, 0))uy - 0dzdr,

t
J2 e / (]_ -+ 7‘)4 /(G(U, 0) — 1)Umxmmuzx:ctd1:d7',
0

the latter of which is in fé (1+7)* 839 - B3usdzdr. Jy is estimated as follows:

t o g
/0 / gy (b0 — b0, )+ egsb(v, O)seldedy

i
< CN(T)/? / / (V2 + u? + 02)dzdr < CN(T)*/2.
0

Since vy = Uy,
t d
Jo = / 1+ 7)4[— /(a(v,@) — ) Upprplizrrdz]
0 dr
-—/(a(v, 9)Tvxm:z:ru:rrm: - (a(v, 9) - 1)vtzm:r:rummm)d$d7'
B t
=(1+ 7)4/((1(1), 0) — 1)vmmumxdm|7;6 — 4/0 1+ 7)3 /(a(v, 0) — V) UgpgrpUgzzdxdr
t
—/0 1+ 7)4 /(a(v, 0)rVrzzrtzrr + a(V, 0)zUrrrrUzes + (a(v,0) — l)uimm)d:ch
t
< C’N(T):"/2 + Cl|vo, 1o, fol + 1// 1+ T)4|[umm(7)|l2d7
0
t
+CN(T)1/2/O (1 + 7)* || (Vazwms Uzee)(DIF + (1 + 7)*[uawes (7) P ]d7
t
< Cllvo, uo, b0l + v / (1 + 7)Ytz (7)|Pdr + CN(T)*2,
0

150



The other terms are omitted. We now have reached to the inequality
N(T) < C(llvo, uo, boll + N(T)*?),

and hence
N(T) < Cllvg, ug, b3

provided that ||vg, ug, 6p]|4 is suitably small. Thus, we have completed the proof of Proposition 2.2.

3 Estimates in L!-Framework

In this section we prove Theorem 2. Assuming (vg,f) € L! in addition to the assumptions in
Theorem 1, we remind the "explicit” formula (1.24) of (v,8). In order to obtain the estimates of
(v, 8), it is enough to estimate I1 := G * vy, Is := G * by, I := fo G*ug, I1] = fo G * gopdT and
1V = fO G *g3dt, where G = G or Go, and go, g3, G1, G2 are, respectively, given by (1.9), (1.20).
First, we seek for the L>®-norm of v, 0. Since ||G(t)||p=~ < O(t~1/2), it is easily seen that

I + || < Ct71/2 (3.1)
(From now on we denote a constant depending on ||vg, ug, 8ol|4 + ||vo, 6ollz2 simply by C). Dividing

the integrand (0, t) into (0,¢/2) U (¢/2,t) and using the Hausdorff-Young inequality, we have

t/2 t
unsA|mm—ﬂwmmmwléwu—mwmmwf

< c/t/2 14 7)Y+ C [ (1) VAL 1) dr (8:2)
/2
< Ct=3/4,
: t/2
111 = [ 16ute = lamloaliadr + || 166 - 1)l lonolds
<0 [ a2 0 021 e
t (3.3)
4O [ (t= )7V (0, 0 + 10, )Tz, O () ) |
/2
< Ct32 /t/2 1-(1+ ) Ydr e+t /t (t—7)"Y2dr < Ct71/2
0 /2
and .
V1< [ 16 = llllga() Izadr
<€ [ (6= D 720,0)0) s 07 (34)

t/2
/ / 2.0 4+7)V2dr <Ot ' (24 1),
t/2
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Hence, together with ||(v,8)(¢)||ze < C, (3.2) - (3.4) and (1.24) give
(v, 8) ()= < C(L+1)" V2 In (24 1),

which will be improved soon after getting the estimates of ||(v,8)(t)|.
Next, we seek for ||(v, 8)(¢)|| in a similar fashion to the above:

1731l + 2]l < IG @) (lvollzs + ll6oll 1) < =44,

t/2
W2l + (1111 < /O (IGllpalluell + [|Gallllgallpr)dr

t .
+ [ Gl + G lgzal )i < O

and .
v < /O 1G llgsll 2
/2 t Ua
s+ [ =DV 00 I s ) (7l
0 /2
< Ct~Y4m (2 4+ t).
Hence

I, @I < CA+1)"4In 2+ 0).
Applying (3.9), just obtained, to (3.4) and (3.7) we have

IViiz= < CQ+1)712, |1V < et
from which we obtain the desired estimate
L+ )20, 0)(B)llz + (1+1)[|(v,6)(D)]| < C.
By (1.24) the estimates of I1,,---,IVy yield
(14 0)]|(va, 02) (D)l oo + (1 + 0¥ (v, 62) )] < C.
From (1.25), (3.11) and the Sobolev inequality

lu@)lie= < C(l|(ve, 02)(2)]| Lo

Hiue@®llze + 1w, ) ()L l(va, 02) (D) ||z < C(A+ )1

and

lu@l < Cl(ve, 0=) O + lur)]| + (v, 0) )l z=[l(va, 02) (D))

< C(+1t) ¥4

Similarly, we have
(Ve Ozzs uz) ()|l < C(1 + t)_3/2
||(U$1‘) O, U:L‘)(t)” <CQ+ t)_5/4'

152

(3.5)

(3.9)
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(3.14)



By (1.7); and (1.7)3 v; and 6; have same decay orders as (3.14). Egs. (3.10) - (3.14) yield the
desired estimate (1.26). Here, we note that the assumption ug € L' is not necessary till now.

4 Thermoelastic System of Second Order

In the final section we consider the original second order thermoelastic system (1.1) with dissipation,
and prove Theorem 3.

For the solution (v,u,6) of (1.4) with the initial data (vg,uq,6p) = (wog, w1,0y) obtained in
Theorems 1 - 2, the equations (1.24), (1.27) give the solution (w, @) of (1.1) by

T

w(z,t) = (G % wo) (2, 1) + / (Gz % B0) (€, £)dé

—00

+/t[(G11 +b0G12)(, t — 7) * (—ug + g2) (-, 7)) (x)dT
0

(4.1)
[ [1Guti- e ot i@dra
=)+ (2)+3)+4)
and
0(x,t) = (G2 * wor)(x, t) + (Gag * 6p)(z, 1)
t (4.2)
/0 [Gi2(-yt = 7) % (—ugt + 922) (-, T) + Gz (-t — 7) * (bo(—ugt + g22) + g3) (-, 7)]dT,
where
Gi11 = aGq + (1 — Q)GQ, Gia = ’Y(Gl — Gz)
(4.3)

Gaz = 8G1+ (1 — B)Ga.
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First, note that, for any f € L' N L2,

[ Gusn©d= [ 16162+ rle)de

:/:o[/jo \/4;7 B )y /OO e SHE f(y)dylde

-] e T (f(e+ vEm) — &+ vEam))an

= [ [ e VR R R

= VE-vR) [ ek W [ s R MR — Vi)

= =B [0 Golnt) [ 5o+ (Vs AW - VEDm)dAdn

Hence,

| [ ;[(Gl — Ga) x f1(§)dg] < Csupln - Go(m, )] - 7]l < Cllflls (4.4)

and
[ f ;KGl — Go) * fI(&)del < Clin- Go(m, DI FI| < CE/4FI- (4.5)

Using (4.4), (4.5) we estimate each term of (4.1). First two terms are easily estimated as

(W <ca+72, (< ca+e4 (4.6)

and
2<c, @I <o+ (4.7)

if 8o € L'. In this section, only by C denote a constant depending on [Jwgls + ||w1.60lls +
|lwo, woz, w1, Op||p1. For (3) it is enough to estimate (3)1 ::ng * u;dT and (3)g = ng % godT,
where G = (G1 or (G». By the integration by parts in T,

(3)1 =[Gt~ 1) *u(n)|lr =g =t/2 | / Gt(t—T)*u(TdT+/ G(t— 7) * ug(7)dT

and hence, from Theorems 1-2,

G < IGE/ 2w/ + 1GE) | zoollwr ]l

t/2 i
[ NG = llldr + [ 166 =Dl a7
(4.8)
<C@ 4y /t/Q(t - 7')75/4(1 + T)_3/4d7' + /;(t — 7')_1/4(1 + T)‘S/QdT)
0 t

< Ct—1/2
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and
Il < NG/ 2) e llu/2)]] + 1G@Elwill

+Awwag_TMuWﬁmwﬂMrgggma_ﬂhmmumM

/2 i
SO/ +/ (t= 7)1+ 1) ar +/ L (147)7%dr)
0 /2

< Ct V4,

Since
lg2()liz1 < Cll(w,0)(®) | (vz, b2) ()] < CA+1)7T,
it holds that

Gl < [ 166 - )=l lzrdr

< c:(/t/2 +/t VWt —7)"Y2(1 4+ 1) ldr < C(1+ £ V21n (2 4+ 1),
0 t/2

and that .
120 < [ 160 = 7)lloa(r)lpdr < A+ 97 I 24 1),

Estimates of the final term (4) are as follows:

t
@1 = C [ lgalaar
< 0 [ U M) + 10, 62) Bl
0]

< C/Ot(l by UA-5/4g < o
and .
1)1 = € [ (¢= " 4lga(r) ar
< C/Ot(t — 7)Y 4 )TV g < o4,
Combining (4.6)-(4.14) we obtain
1+ 8) 4 lw(@)|| + llw(®) |z~ < C.

The other terms w, — v,w; — u, 6 etc. are same as the orders in Theorem 2.
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