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The list of notations
N : a set of players

v: a characteristic function

(N, v): a cooperative game

G: the set of all the games

θ: a permutation onN or S ⊆ N .

ϕ: a generic symbol for a solution or a value of cooperative games

Sh: the Shapley value

C = {C1, . . . , Cm}: coalition structure

M : the set of indices in the coalition inC.

(N, v, C): a cooperative game with a coalition structure

GC: the set of all the games with coalition structures

(M, vC): the external game of(N, v, C)
ψ: a generic symbol for a solution of cooperative games with coalition structures

CV: the coalitional value

Shw: the weighted Shapley value

CVω: the weighed coalitional value

EV: the Egalitarian value

EVw: the weighted Egalitarian value

ψδ: the Shapley-Egalitarian solution

(N, vC): theC-communication restricted game of(N, v, C)
ψγ : the collective value

P : the Hart and Mas-Colell potential function

Pw: the Hart and Mas-Colell weighted potential function

X = {x, y, z, . . .}: the set of social alternatives

H = (H1, . . . , H`): a hierarchic structure

(N, v,H): a game with a hierarchic structure

HVw: the weighted value for a game with a hierarchic structure

M = (C1, C2, . . . , C`): a social structure
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(N, v,M): a game with a social structure

Υω: the weighted value for a game with a social structure

SBMω: the weighted social bidding mechanism

CBMδ: theδ-coalitional bidding mechanism

CBMγ : theγ-coalitional bidding mechanism
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Chapter 1

Introduction and overview

1.1 Introduction to this thesis

One of the fundamental problems of social economy is how members in a society distribute
surplus obtained by cooperation among themselves. For example, consider a firm as a central
agent of the economic activity. On the one hand, the profit sharing between employees and
employers in the firms are major concerns for both parties. On the other hand, when multiple
firms jointly invest to collaborative project, the agreement on how they divide benefit of the
project and share the cost of project is absolutely imperative to the achievement of the project.

In their seminal work, von Neumann and Morgenstern (1953) analyze this problem from
a strategic viewpoint according to which members in a society arrive at an agreement regard-
ing the distribution of their surplus by considering the possibilities available to submembers of
the society. Since von Neumann and Morgenstern, this topic has been studied by researchers
in cooperative game theory. In cooperative game theory, a member who has a concern in the
distribution of surplus is called a player, and a rule that prescribes how players distribute their
cooperative surplus is called a solution concept. In the last fifty years, several solution concepts,
such as the Shapley value, the nucleolus, the core, the (pre)kernel, the bargaining set, and so on,
have been proposed and investigated, and this field of research is still growing.

Besides their definitions, there are two major ways that support and justify solution concepts,
and these two are two dominant streams in a solution theory. One is the axiomatic characteriza-
tion of solutions. This approach has its origin in mathematics, which often uses it to characterize
mathematical objects or concepts by several properties and make known a relationship among
these concepts. In this approach, a list of appealing properties, called axioms, which a desirable
solution is expected to satisfy, is proposed. Then, it is shown that the solution that is currently be-
ing dealt with is a unique solution that satisfies these properties. For example, the Shapley value
is axiomatized by Shapley himself (Shapley 1953b) and several other authors; the nucleolus by
Sobolev (1975) (see also Peleg and Sudhölter 2003); the core by Peleg (1986) and Tadenuma
(1992); the prekernel by Peleg (1986); and so on.

The other approach is to explore non-cooperative foundations of solutions or implemen-
tations of solutions through a non-cooperative game. Specifically, this approach considers a
bargaining model that is described by a non-cooperative game, and rational players obtain the
payoff from this game which is the same as the one prescribed by the solution, i.e., in a subgame
perfect equilibrium (SPE) of this game, each player obtains the payoff prescribed by the solu-
tion. This approach was first conducted by Nash (1953), who adopted it in order to justify his
bargaining solution in a two-person bargaining problem, and now it is called (in a broad sense) a

9



10 CHAPTER 1. INTRODUCTION AND OVERVIEW

Nash program.

By a detailed classification, the research pursuing the second approach can be subdivided
into two categories. One is a body of research that considers natural or reasonable bargaining
processes, where rational players who follow these bargaining processes arrive at the payoff
distribution prescribed by solutions. Another is a body of research that considers decentralized
mechanisms that implement solutions for a social planner who would like to impose on players
the payoff distribution prescribed by solutions but does not have enough information to calcu-
late it. The former is seen as a non-cooperative foundation of solutions, or a Nash program in
a narrow sense, and Nash’s original work fits into this category. The latter is seen as an imple-
mentation of solutions. To objectify this classification, let us consider the works that study the
Shapley value from the second approach. Much of the research of the 90s such as Gul (1989),
Hart and Mas-Colell (1992, 1996), Winter (1994), Evans (1996) and Dasgupta and Chiu (1998)
belongs to the non-cooperative foundations of the Shapley value not the implementation of the
Shapley value. This is because these works consider natural and reasonable bargaining pro-
cesses that lead to the Shapley value. However, there is a reason that their bargaining models
cannot be seen as a mechanism that implements the Shapley value. Their models have a few
but critical insufficiencies in the mechanism that implements the Shapley value. First, there bar-
gaining models work only in very restricted domains. For example, the model of Gul (1989)
requires value-additivity of a characteristic function, and Winter (1994) requires that a charac-
teristic function is convex. Second, their models achieve the Shapley value only in some SPE,
not in all SPE of the games. Third, their models achieve the Shapley value only in an expected
value, not in the realized value. This implies that a social planner recognizes that before the
beginning of the bargaining, these bargaining models lead to the Shapley value payoff but after
the game is over the payoffs of the players are very different from the one that the social planner
would impose. Of course, the desired mechanism must overcome this critique. A seminal work
by Ṕerez-Castrillo and Wettstein (2001) introduces a mechanism that implements the Shapley
value. Their mechanism works in a large domain (any zero-monotonic environment), leads to
the Shapley value payoff in all SPE, and achieve the Shapley value as the realized value.

In this thesis, a general framework—a cooperative game with a cooperation structure—is
investigated. A cooperation structure may represent trade unions of countries, business combi-
nation of firms, parties in the political arena, or friendship of members, and is mathematically
represented by a partition of players. In this framework, the study on the solution provides us
information on how such structure affects on the payoff distribution of the players. Moreover,
the study on the solutions can establish the basis on the study of what structure of coalitions
can be realized after coalition formation process of players. In this thesis, the latter point is not
seriously analyzed, but I believe that my finding in the thesis will help to obtain some insight on
the cooperation structure resulting after endogenous coalition formation.

A cooperative game with a coalition structure introduced by Aumann and Dreze (1974) is
a major class of this framework. In a cooperative game with a coalition structure, a solution
concept is defined in the same manner as a cooperative game. Thus, solution concepts in a
cooperative game are extended to a cooperative game with a coalition structure. There are two
famous extensions of the Shapley value: the Aumann-Dreze value (Aumann and Dreze 1974)
and the Owen’s coalitional value (Owen 1977). Solution concepts in a cooperative game with a
coalition structure are also studied from two major approaches discussed before.

In this thesis, we provide several contributions to a solution theory in a cooperative game or
a cooperative game with a cooperation structure. These contributions are summarized as follows
and each contribution corresponds to one chapter of the thesis:
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• The Shapley value and other solutions in a cooperative game are axiomatized in a systematic
way (Chapter 2);

• New solution concepts in a cooperative game with a coalition structure are introduced and
characterized in several ways (Chapters 3 and 4);

• The mechanism considered by Pérez-Castrillo and Wettstein (2001) is applied to a collective
choice problem in a quasi-utility environment and its fundamental properties are analyzed
(Chapter 5);

• A cooperative game with a social structure is introduced. The mechanism considered by
Pérez-Castrillo and Wettstein (2001) is applied to this class of games (Chapter 6); and

• New solution concepts introduced in Chapter 3 and 4 are implemented (Chapter 7).

An overview of each section of the thesis is explained in the next sections.
Finally, we refer to the papers that constitute this thesis.

Chapter 2, “Axiomatization of the values using the balanced cycle contributions property,”
mimeo, (with Takumi Kongo), 2008.

Chapter 3, “A two step Shapley value of games with coalition structures,” to be appeared in
International Game Theory Review.

Chapter 4, “The collective value: new solution concept of games with coalition structure,”
mimeo, 2008.

Chapter 5, “Bidding for social alternatives: a simple one-shot mechanism and its extension,”
mimeo, (with Kohei Kamaga), 2007.

Chapter 6, “Implementation of weighed values in hierarchical and horizontal cooperation struc-
tures,” Mathematical Social Sciences, 56, 336-349, 2008.
“An implementation of the Owen’s coalitional value: Another approach,” Waseda Eco-
nomics Studies, 2007 (in Japanese).

Chapter 7, “Implementation of the Shapley value of games with coalition structures,” The
Waseda Journal of Political Science and Economics 363，105-125，2006.

1.2 Overview of Part I

Part I of this thesis is devoted to axiomatic characterizations of solution concepts in a cooperative
game theory. In Chapter 2, new axiomatization of solutions in a cooperative game are provided.
To obtain the axiomatization results, we use one key axiom on a fairness criterion in a centralized
society in order to characterize solutions. In Chapters 3 and 4, a cooperative game with a coali-
tion structure is investigated. Two new solution concepts in a cooperative game with a coalition
structure are introduced. These two solutions can be seen as extensions of the Shapley value to a
cooperative game with a coalition structure and are essentially different from the Aumann-Dreze
value and the Owen’s coalitional value.

In Chapter 2, we provide an axiomatization of the Shapley value that is different from several
other works on the axiomatization of the Shapley value (for example, Shapley 1953b, Myerson
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1980, Young 1985, Hart and Mas-Colell 1989). The key axiom is the balanced cycle contribu-
tions property (BCC), which is a weaker condition than the balanced contributions property (BC)
introduced by Myerson (1980). The BC requires that, for any pair of players, the claim from one
player against another is balanced with the counter claim of the second player against the first.
In contrast, the BCC requires not that claims between two players cannot be balanced, but that
claims among all players are balanced in a cyclical manner, i.e. for any order of players, the sum
of the claims from each player against his predecessor is balanced with the sum of the claims
from each player against his successor. We show that the BCC together with the efficiency and
axiom related to a null player axiomatize the Shapley value. One advantage of the BCC over the
BC is that several solutions other than the Shapley value such as the Egalitarian value, the CIS
value, the ENSC value, and their convex combination satisfies the BCC since the BCC is weaker
than the BC. So we show that the Egalitarian value and the CIS value are also axiomatized by
the BCC and the other axioms.

In Chapters 3 and 4, solutions in a cooperative game with a coalition structure are studied.
Two new solution concepts in cooperative games with coalition structures are introduced and
axiomatized. In Chapter 3, we first provide new axioms on a null player and symmetric players
in a cooperative game with a coalition structure. These two new axioms are introduced in the
spirit that, once a coalition is formed, this coalition has some property related to mutual aid
among the members in the coalition. A weaker version of the null player axiom requires that
even a null player can obtain some portion of a bargaining surplus if a coalition that he belongs
to generates it. The new axiom on symmetric players is related to anequitycriterion applied
to members in the coalitions. This requires that two distinct players should be treated equally,
i.e., receive the same amount, if these two are judged to be in an equal position in theirinternal
coalition. Neither of the two traditional solutions, the Aumann-Dreze value and the Owen’s
coalitional value, satisfy these two axioms. We show that these two axioms with the usual three
axioms (Efficiency, Additivity, and Coalitional Symmetry) lead to a unique solution concept
which is also considered to be an extension of the Shapley value in a cooperative game with a
coalition structure. This solution, named the Shapley-Egalitarian solution, is interpreted as an
allocation of the cooperative surplus by using the Shapley value in two-step bargaining process:
inter-coalition bargaining and intra-coalition bargaining. Moreover, the bargaining surplus of the
coalition is allocated among the intra-coalition members in an egalitarian way. In the first step,
each coalition obtains its Shapley value applied for a game among coalitions. The pure surplus
of a coalition in the first-step bargaining (its Shapley value obtained from the first step minus the
worth of the coalition) is divided equally among the players in the coalition. In the second step,
players in the coalition receive their Shapley value applied to their own internal game. Thus, the
Shapley-Egalitarian solution gives the sum of the payoffs in the first and the second steps to each
player.

In Chapter 4, a new solution that has a similar formula to the Shapley-Egalitarian solution is
considered. A critical difference is that in this solution, the asymmetric sizes of coalitions is seen
as a factor affecting the bargaining outcome. The definition of our new solution concept, named
thecollective value, is also established by relying on a two-step bargaining process among play-
ers. In the first step, each coalition obtains itsweightedShapley value applied for a game among
coalitions. The pure surplus of a coalition in the first-step bargaining (its weighted Shapley value
obtained from the first step minus the worth of the coalition) is divided equally among players in
the coalition. In the second step, players in the coalition receive their Shapley value applied for
their own internal game. Thus, the collective value gives the sum of the payoffs in the first and
the second steps to each player. On the surface, our solution concept appears to lie in a very dif-
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ferent line of research from existing studies. However, the collective value matches endogenous
and exogenous interpretations of coalition structures. Further, we explore a potential function
for a cooperative game with a coalition structure, which is quite different from the one of Winter
(1992). The collective value is expressed as the marginal contribution relative to this potential
function. The potential function behind the solution concept inspires one of its properties sim-
ilar to the balanced contributions of the Shapley value. We show that this property, called the
collective balanced contributions, with some moderate additional conditions characterizes our
solution. An axiomatization by theadditivityaxiom is also presented.

1.3 Overview of Part II

In Part II of this thesis, non-cooperative foundations or implementations of the solutions consid-
ered in Part I are explored. All the mechanism introduced in Part II are based on the bidding
mechanism of Ṕerez-Castrillo and Wettstein (2001) because it has useful property explained ear-
lier.

The bidding mechanism of Pérez-Castrillo and Wettstein (2001) (hereafter, we call it PW-
bidding mechanism) is a non-cooperative game that consists of finitely repetition of the following
three bargaining stages. In the first stage of the mechanism, all players participate in the bidding
game. Each player simultaneously reveals payable bids to each of the other players in exchange
for becoming a proposer in the subsequent stages 2 and 3. Then, the net bid (the sum of the
bids the player pays to the other individuals minus the sum of the bids paid to the individual) is
calculated for each player and a player with the highest net bid is the winner of the bidding game
and becomes the proposer in the next stages with actual payment of his bids to the other players.
In stage 2, the proposer makes an offerxj ∈ R to any otherj, and the responders sequentially
decide to accept or reject the offer. In the case of acceptance by all the responders, the proposer
actually pays her/his offer to the responders in return for obtaining the worth of total cooperation.
On the other hand, if anyj rejects the offer, the proposer leaves the bargaining with the worth
of her/his stand-alone coalition, and the other players continue the same bargaining process for
n− 1 players. In a setting where there exists only one player, he obtains the worth of his stand-
alone coalition. The PW-bidding mechanism is well-defined because the number of players is
finite.

In this thesis, a non-cooperative game that consists of several stages and in the first stage
of which players participate in the (weighted) bidding game is generically called a bidding
mechanism. In Chapter 5, we consider a bidding mechanism applied to the collective choice
problem and show that it has a useful property for selecting a socially efficient alternative. In
Chapter 6, a bidding mechanism is considered in a situation where players are subdivided hor-
izontally and vertically into coalitions. In Chapter 7, two bidding mechanism for a cooperative
game with a coalition structure are introduced, and it is shown that these two implement the
Shapley-Egalitarian solution and the collective value, respectively.

The purpose of Chapter 5 is to examine possible applications of the bidding mechanism in
the context of the collective choice problem of social alternatives. Examples include the loca-
tion of public facilities such as a public school, a disposal center, and nuclear-related equipment.
We consider a standard quasi-linear environment with finite social alternatives that affect all of
individuals in a society. We propose two different bidding mechanisms: a simple one-stage
mechanism and a modified multi-stage mechanism. In a simple one-stage mechanism, all the in-
dividuals in the society participate in the bidding game. After an appropriate transfer of the bids,
the winner of the bidding game chooses his most preferred social alternative. Our first result
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shows that this mechanism works only in limited situations where the individuals’ most favorite
alternatives generate the same sums of individuals’ utilities. Moreover, we show that, even in
cases where the mechanism can work successfully, it may fail to realize a socially efficient alter-
native as an equilibrium outcome. Next, we provide a modified three-stage mechanism. The first
stage of this modified mechanism is the same as the simple one-stage mechanism. In contrast to
the one-stage mechanism, after a proposer is determined, the modified mechanism leads to the
second stage where the proposer offers a social alternative that he wants to realize and monetary
transfers to the other individuals. Then, in the last stage, individuals other than the proposer
sequentially reply “to accept the offer” or “to reject it.” If the offer is unanimously accepted,
the monetary transfers are carried out and the proposed social alternative is realized. In the case
where the offer is rejected by at least one individual, the monetary transfers are not carried out
and the proposer’s most favorite alternative is realized as a social decision. We prove that this
multi-stage bidding mechanism can work in any situation and always realizes a socially efficient
alternative.

We obtain from the discussion in Chapter 5 the fundamental property of the bidding mecha-
nism. The necessary and sufficient condition for the existence of equilibrium in the bidding game
is that the sum of the payoffs of all the individuals obtained from the subgame after the bidding
game is irrelevant to who is the winner of the bidding game. This condition seems at first glance
to be hard to be satisfied but if we think back on the suggestion of the Coase Theorem, it is not
difficult for us to consider a situation that satisfies this condition, because we only consider any
type of bargaining after the determination of the winner of the bidding game. Moreover, we also
demonstrate that the final payoff of each player in the bidding mechanism is the same as his ex-
pected payoff in a non-cooperative game where only the bidding game in the bidding mechanism
is replaced by a stage in which one player is randomly selected as the winner and other stages are
unchanged. Moreover, if we consider the weighted bidding game, any expected payoff obtained
in any random selection of the winner is achieved as the actual value in the bidding game. This
result is significant in the following two ways. First, it suggests that any mechanism that has a
stage where one player is chosen by some random procedure can be replaced by a mechanism
where the random selection stage is now replaced by the corresponding weighted bidding game.
This bidding mechanism achieves the same SPE payoff as the former mechanism as a realized
value. Thus, if we find a non-cooperative game that achieves some desirable payoff or solution
at an expected value (and randomness is used to select one player from all the players), we can
construct the corresponding bidding mechanism that implements the desirable payoff at a real-
ized value. Second, assuming that the random selection of one player from all the players is
considered to be more natural and reasonable than the bidding game, any bidding mechanism
can be replaced by the non-cooperative game in which the (weighted) bidding game is replaced
by random selection of the winner. Thus, if we find the bidding mechanism that implements
some solution, we also find the non-cooperative foundation of the solution. Therefore, finding a
bidding mechanism that leads to the payoff prescribed by some desirable solution is enough for
both the implementation and the non-cooperative foundation of the solution.

In Chapter 6, a bidding mechanism is applied to a cooperative game with a social structure.
A cooperative game with a social structureis a unified model, in which there exist both the
hierarchical and horizontal coalition structures. We define a weighted value for these games and
this value is a generalization of the Shapley value to such a game, and thus it coincides with
the Shapley value, the weighted Shapley value with hierarchic structure, the coalitional value,
and the weighted coalitional value in some special cases. Then, in order to achieve this value
through the decentralized decision-making process, we consider a non-cooperative bargaining
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model. We propose a bargaining model called theweighted social bidding mechanism. In this
bargaining, only the players in the highest ranked coalitions participate in the bidding stage to
choose a proposer in the next stage. Then, the proposer determined in the previous stage offers
a payoff distribution among all the players, and the players other than the proposer sequentially
decide to either accept or reject the offer. In the case of acceptance by all players, the bargaining
is over and their payoff is distributed according to the proposal. On the other hand, when there
is a player who rejects the offer, the proposer leaves the bargaining and the remaining players
continue the same bargaining process with the proposing coalition, i.e., the coalition that the
proposer belongs to, retaining the right to choose a new proposer. We demonstrate that our
mechanism works in anyzero-monotonicenvironment. That is, if the underlying cooperative
game is zero-monotonic, in any SPE of the weighted social bidding mechanism, the equilibrium
payoff vector coincides with the value defined in this chapter. Our mechanism implements the
Shapley value, the weighted Shapley value of Kalai and Samet (1987), the coalitional value, and
the weighted coalitional value in some special cases in any zero monotonic environment.

In Chapter 7, two types of extension of the PW-bidding mechanism to a cooperative game
with a coalition structure are introduced. These two games are different in the fists stage of
the mechanism. In one mechanism (γ-coalitional bidding mechanism), each player’s bids are
treated equally but in another mechanism (δ-coalitional bidding mechanism), the player’s bids
are asymmetrically treated with respect to the size of the coalition that they belong to. In the first
stage of the mechanisms, all the players participate in the bidding game. In the next stage, the
proposer makes an offer to all the players, and the other players respond to the offer sequentially.
In the case of acceptance by all players, the proposer pays her/his offer to any player in return
for obtaining the value of their cooperation and the bargaining is over. On the other hand, when
some player rejects the offer, (i) players in the proposing coalition which is a coalition that
the proposer belongs to, participate in the bidding mechanism of PW-bidding mechanism for
themselves, and (ii) the remaining players except for the members in the proposing coalition
continue the same bargaining. So, in contrast with the social bidding mechanism in Chapter 6,
the proposing coalition does not retain the right to choose a new proposer. Rather, the proposing
coalition has risks being separated from players in other coalitions in exchange for a player in this
coalition being a proposer. We show that theδ-coalitional bidding mechanism implements the
Shapley-Egalitarian solution in any superadditive game and theγ-coalitional bidding mechanism
implements the collective value in any superadditive game

1.4 Preliminary

1.4.1 A cooperative game and the Shapley value

A cooperative gameor a simplygameis a pair(N, v) whereN is a finite set ofn players and
v : 2N → R is a characteristic function withv(∅) = 0. A subsetS of N is called acoalitionand
v(S) is theworth of coalitionS. The set of all the games is denoted byG. We use the short-cut
notations ofS − i andS ∪ i instead ofS \ {i} andS ∪ {i} respectively for convenience. Given
(N, v) ∈ G and a coalitionS, we denote the subgame of(N, v) to S by (S, v) if there is no risk
of confusion.

A game(N, v) is zero-monotonicif for any playeri and for any coalitionS ⊆ N − i,
v(S ∪ i) = v(S) + v({i}), and is strictly zero-monotonic if the inequality holds in a strict
manner. A game(N, v) is superadditiveif for any two coalitionsS andT with S ∩ T = ∅,
v(S ∪ T ) = v(S) + v(T ), and is strictly superadditive if the inequality holds in a strict manner.
A superadditive game is, of course, zero-monotonic, but the inverse is not true in general. A
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game(N, v) is convexif for any two coalitionsS andT , v(S ∪ T ) + v(S ∩ T ) = v(S) + v(T ),
and is strictly convex if the inequality holds in a strict manner. The sets of all the zero-monotonic
games, all the superadditive games, and all the convex games are denoted byGM , GS , andGC ,
respectively.

Playeri ∈ N is anull player if v(S ∪ i) = v(S) for anyS ⊆ N − i and adummy playerif
v(S∪i) = v(S)+v({i}) for anyS ⊆ N−i. Clearly a null player is also dummy but the converse
does not hold. It is said thati ∈ N andj ∈ N aresymmetricin (N, v) if v(S ∪ i) = v(S ∪ j) for
anyS ⊆ N \ {i, j} andi ∈ N andj ∈ are symmetric in(T, v), T ⊆ N , if v(S ∪ i) = v(S ∪ j)
for anyS ⊆ T \ {i, j}.

Assuming that the grand coalitionN will be formed, the question arises how to divide the
worth v(N) among the players. Thus, a solution of a game, which is also called a value of
a game, is a functionϕ which assigns to every game(N, v) ∈ G a payoff vectorϕ(N, v) =
(ϕi(N, v))i∈N ∈ RN that satisfies

∑
i∈N ϕi(N, v) ≤ v(N). If ϕ always distributes justv(N) to

the players, it is called an efficient solution.
A well-known solution was presented by Shapley (1953b). Letθ : N → N denote a permu-

tation onN andΘ(N) denote a set of all the permutations onN . A permutationθ is identified as
an order(i1, . . . , in) onN if θ(j) = k impliesik = j, andvice versa. A set of players preceding
to i at orderθ is Aθ

i = {j ∈ N : θ(j) < θ(i)}. A marginal contribution of playeri at orderθ in
(N, v) is defined bymθ

i (N, v) = v(Aθ
i ∪ i)− v(Aθ

i ). The Shapley valueSh of (N, v) is defined
as follows:

Shi(N, v) =
1

|Θ(N)|
∑

θ∈Θ(N)

mθ
i (N, v), for all i ∈ N,

where | · | represents the cardinality of the set. Thus, the Shapley value is an average of
marginal contribution vectors where each orderθ ∈ Θ(N) occurs in an equal probability, that is,
1/|Θ(N)|.

The Shapley value is characterized by the four properties: (i) efficiency, (ii) additivity, (iii)
symmetry and (iv) null player. Letϕ be a solution onG. The efficiency requires that the solution
distributes the worth of the grand coalition to the players. The additivity is that for any two games
(N, v) and(N, v′), ϕ(N, v + v′) = ϕ(N, v) + ϕ(N, v′) holds where the additive gamev + v′ is
defined by(v + v′)(S) = v(S) + v′(S) for anyS ⊆ N . The symmetry says that two symmetric
players in(N, v) receive the equal payoffs, thus,ϕi(N, v) = ϕj(N, v) holds wheneveri andj
are symmetric in(N, v). The null players axiom is that the null player always obtains nothing.

1.4.2 A cooperative game with a coalition structure and the coalitional value

In various applications of cooperative games, it seems to be natural that players partitions them-
selves into some ‘coalitions’ such as labor union, syndicate of firms, customs unions in inter-
national economics, and so on. Such coalitions form a coalition structureC = {C1, . . . , Cm},
which is partition ofN , i.e., it holds thatCk ∩ Ch = ∅ for any k and anyh with k 6= h and⋃m

k=1 Ck = N . Such a situation, called a cooperative game with a coalition structure, is first
systematically considered by Aumann and Dreze (1974) and developed by a number of authors.
A counterpart of the Shapley value for such games was defined by Owen (1977) and given the
axiomatic foundation from the viewpoint of coalition formation by Hart and Kurz (1983).

A game with a coalition structureis a triple (N, v, C) where(N, v) is a game andC =
{C1, . . . , Cm} is a coalition structure. We usually use notationM = {1, . . . ,m} to denote the
set of coalitional indices inC. The set of all the games with coalition structures is denoted by
GC. An orderθ ∈ Θ(N) is consistentwith C if for any i ∈ Ch ∈ C andj ∈ Ch ∈ C and
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k ∈ N , θ(i) < θ(k) < θ(j) implies that playerk also belongs to coalitionCh, that is,k ∈ Ch.
Thus, in the consistent order, players line up in a way that players in the same coalition are side-
by-side. A set of all the orders onN consistent withC is denoted byΘ(N, C). Then, Owen’s
(1977) coalitional valueCV is an average of player’s marginal contributions when all the orders
consistent withC occur with equal probability, being defined by,

CVi(N, v, C) =
1

|Θ(N, C)|
∑

θ∈Θ(N,C)
mθ

i (N, v), for eachi ∈ N.

Thus, according to the coalitional value, players inN appear in a way that the players in the same
coalition appear successively. In other words, first coalitions enter subsequently in a random
order and within each coalition the players enter subsequently in a random order.

An external gameor a game played by the (representatives of the) coalitions(M, vC) is
defined byM = {1, . . . , m} andvC(H) = v(

⋃
k∈H Ck) for eachH ⊆ M .1 For external game

(M, vC), the Owen’s coalitional value satisfies the following: for anyCk ∈ C,
∑

i∈Ck

CVi(N, v, C) = CVk(M, vC , {M}).

This property is called the intermediate game property. The coalitional value is characterized
by the efficiency, the additivity, the null player property, the intermediate game property and the
restricted equal treatment property which requires that if two players inCk ∈ C are symmetric in
(N, v), the two players should receive the equal payoff (see Owen 1977 and Peleg and Sudhölter
2003). Here, the first three axioms are the ones which are naturally extended to a game with a
coalition structure. However, the null player property in this case may be a bit strong requirement
because it implies that the null player gets nothing even though the coalition he belongs to is
in very strong position. Thus, the coalitional value does not reflect a function of the formed
coalition as system of mutual assistance. In Section 6, we provide a weaker version of the null
player property in a game with a coalition structure to characterize our new solution, which is
defined in the next section.

1.4.3 Non-symmetric generalization of the Shapley value and the coalitional value

Let w = (wi)i∈N be a positive weight vector forN . We associate with a weightw a probability
distributionp(.; w) overΘ(N) as follows: forθ = (i1, . . . , in),

p(θ; w) = Πn
j=1

wij∑j
h=1 wih

. (1.1)

This probability distribution can be constructed in such a way that one order is picked by choos-
ing players one by one and placing each of them in turn at thefront of the partially created line
where the probability of choosing the player is the ratio between her/his weight and the total
sum of the weights of the players who are not yet in the line. Thus, according top(.; w), somei
becomes the last of the order in probabilitywiP

j∈N wj
.

Thew-weighted Shapley valueShw for (N, v) ∈ G is

Shw
i (N, v) =

∑

θ∈Θ(N)

p(θ;w) mθ
i (N, v)

1This game is referred to as an intermediate game in Peleg and Sudhölter (2003) and as a quotient game in Owen
(1977).
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for anyi ∈ N .2

If wi = wj for any i ∈ N and for anyj ∈ N , the w-weighted Shapley value clearly
coincides with the Shapley value. Given coalitionT of N , let (N,uT ) denote aT -unanimity
game defined byuT (S) = 1 if S ⊇ T anduT (S) = 0 otherwise. It is easily checked that
Shw

i (N,uT ) = wiP
j∈T wj

if i ∈ T andShw
i (N, uT ) = 0 otherwise.

For θ ∈ Θ(N) andS ⊆ N , θS denotes an order ofS such that fori, j ∈ S, θS(i) < θS(j)
if and only if θ(i) < θ(j). Let Π = {S1, . . . , Sp} be a partition ofN , that is,∪p

k=1Sk = N and
Sk ∩ Sh = ∅ for all k 6= h. Given a permutationθ ∈ Θ(N) and a partitionΠ, θΠ is an order of
{1, . . . , p} such thatθΠ(k) < θΠ(h) if and only if there exists somei ∈ Sk such thatθ(i) < θ(j)
for all j ∈ Sh.3

A permutationθ ∈ Θ(N) is said to be consistent with coalition structureC if according to
the permutation, players in the same coalition inC appear successively, that is, for anyi ∈ Ck,
for any j ∈ Ck and for anyh ∈ N , θ(i) < θ(h) < θ(j) implies h ∈ Ck. A set of all the
permutations that are consistent withC is denoted byΘ(N, C).

For w = (wi)i∈N and for coalitionS, we often use notationsw(S) andwS to denote the
summation ofwi overi ∈ S and a restriction ofw to S, respectively.

For a game with a coalition structure, it is possible to relax the symmetry treatment in two
different directions: relaxing the intra-coalitional symmetry and relaxing the inter-coalitional
symmetry. Given(N, v, C), let w = (wi)i∈N andw∗ = (w∗k)k∈M be positive weight vectors of
the players inN and coalitions inC. Thus,w andw∗ represent the intra-coalitional asymmetry
and inter-coalitional asymmetry, respectively.ω = (w,w∗) is a weight structureof C. The
weighted value for a game with a coalition structureor theweighted coalitional value(Levy and
McLean 1989) is defined as follows:

CVω
i (N, v, C) =

∑

θ∈Θ(N,C)
p(θC ; w∗) (Πm

k=1p(θCk
; wCk

))mθ
i (N, v)

for eachi ∈ N , wherewCk
= (wi)i∈Ck

, andp(.; w∗) andp(.;wCk
) are probability distribu-

tions defined overΘ(M) andΘ(Ck) in a similar fashion to (1.1). Thus, the weighted coalitional
value can be seen as an expected value of marginal contributionmθ

i (N, v) where coalitions are
arranged according to the probability distribution that an orderθC ∈ Θ(M) occurs at probabil-
ity p(θC ; w∗), and within the coalition, players inCk are arranged according to the probability
distribution that an orderθCk

∈ Θ(Ck) occurs at probabilityp(θCk
;wCk

).
When eitherC = {N} andwi = wj for all i, j ∈ N or C = {{i} : i ∈ N} andw∗k = w∗k′

for all k, k′ ∈ M , CVω is equal to the Shapley value. Moreover, it coincides with the Owen’s
(1977) coalitional value in the case thatwi = wj for all i, j ∈ Ck ∈ C andw∗k = w∗k′ for all
k, k′ ∈ M .

2Kalai and Samet (1987) generalized positive weights to a weight system which is a pair of weights and an ordered
partition onN in order to allow a weight of zero for some of the players.

3If we redefineθΠ(k) < θΠ(h) by the condition that there exists somej ∈ Sh such thatθ(i) < θ(j) for all
i ∈ Sk, the discussion of this paper is unchanged. This is because we use this notation only for the orderconsistent
with the partition (see the definition below).
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Chapter 2

Axiomatization of values of cooperative
games by balanced cycle contributions
property

2.1 Introduction

An important criterion in allocation problems is fairness. In the cooperative game theory, the
widely used fairness criterion is the balanced contributions property introduced by Myerson
(1980). The property requires that, for any pairs of players, the claim from one player against
another is balanced with the counter claim from another against the player. Thus, if a solution
satisfies this property, the outcome supported by the solution is fair in the sense that no one
has a claim more against another. However, the property is rather strong since together with
efficiency, which is also an important criterion in allocation problems, the only solution satisfying
the property is the Shapley value.

In this chapter, we provide the fairness property, which is weaker than the balanced contribu-
tions property. In the weaker property, claims between two players cannot be balanced; however,
claims among all players are balanced in a cyclical manner, i.e. for any order of players, the sum
of the claims from each player against his predecessor is balanced with the sum of the claims
from each player against his successor. This weaker balanced contributions property is satisfied
by several solutions for cooperative games such as the Shapley value, the Egalitarian value, and
the CIS value. Together with other basic axioms, the above-mentioned values are axiomatized,
and these are our main results.

This chapter is organized as follows. In Section 2, the weaker fairness property is provided
in Section 3. Sections 4 and 5 present axiomatizations of the Shapley and Egalitarian values,
respectively. In Section 6, our results are generalized to the situations where players are asym-
metric. Section 7 concludes the chapter.

2.2 Balanced contributions property

Let ϕ be a solution onG. Thebalanced contributions property(Myerson 1980) is the following.
For any(N, v) ∈ G and for any{i, j} ⊆ N ,

ϕi(N, v)− ϕi(N \ j, v) = ϕj(N, v)− ϕj(N \ i, v),

where(N \ j, v) and(N \ i, v) are restrictions of(N, v) onN \ i andN \ j, respectively.
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An interpretation of the balanced contributions property is as follows. Assume that a value
ϕ is commonly accepted as a distribution rule in the society, and that the claim byi against
j is measured byi’s contribution toj, i.e. c(i, j) = ϕj(N, v) − ϕj(N \ i, v). The balanced
contributions property is interpreted as a condition that claims between any two players are
balanced with each other, i.e.c(i, j) = c(j, i).

Myerson (1980) showed that the Shapley value is a unique efficient solution onG, satisfying
the balanced contributions property.

2.3 Balanced cycle contributions property

Considering a weaker and minimal requirement of one described by the balanced contributions
property makes sense from the following two reasons. One is that the balanced contributions
property could be a too demanding property if we consider an application of the spirit of the
condition to the real society because the population of the modern society is so large and it
is hardly expected that the claims are balanced forall two individuals. The other is related
to a solution theory in cooperative game. Because there is no efficient solution satisfying the
balanced contributions property except for the Shapley value, exploring a weaker condition than
the balanced contributions property enriches the solution theory.

Let e(i, j) be the excess claim ofi to j which is defined bye(i, j) = c(i, j)− c(j, i). Then,
the balanced contributions property is interpreted as a condition that for any two individualsi
andj, the excess claim ofi to j is zero, i.e.,e(i, j) = 0. In this sense, the balanced contributions
property requires that the excess claim should be zero for all two individuals. On the other hand,
a weaker and minimal requirement is that the balancedness of the excess claims is attained as a
whole of the member in a society. One of the possible expressions is that the sum of the excess
claims among the society members is zero. Thus, given a coalitionS with |S| = s and an order
(i1, i2, . . . , is) onS, the following holds:

e(i1, i2) + e(i2, i3) + · · ·+ e(in−1, is) + e(is, i1) =
s∑

`=1

e(i`, i`+1) = 0, (2.1)

whereis+1 = i1. In fact, this is a weaker requirement than the balancedness of claims for each
pair of individuals since ife(i, j) = 0 holds for each{i, j} ⊆ N , the above condition obviously
holds. This can be seen as the condition that the sum of the excess claims of all the players is
zero or the average of the excess claims among all the players is zero, irrespective of the order
of players.

A similarity to the above condition is found in the general equilibrium theory of the stan-
dard micro economics. In this study, the excess demands of the individual economic agents are
aggregated through the market and the total excess demand which is the sum of the individual
demands of the economic agents becomes zero at the market equilibrium.

An order onS, (i1, i2, . . . , is), might be determined by some exogenous factor. Otherwise,
both the group and the order might be endogenously determined, for example, by the following
manner. A playerj1 will choose one of the excess claims, saye(j1, j2), according to some judg-
ment such as maximizing excess claims, and so on. Then, the second player,j2, also chooses the
one of his excess claims, saye(j2, j3), and this process is continued until some player chooses the
claim that come back to some earlier player. As a result, we obtain coalitionS = {i1, i2, . . . , is}
whose members can be indexed by the above procedure. The above conditions simply says that
after the determination of the coalition and the order, the sum of the excess claims among the
members of the coalition according to the order should be zero.
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Sincee(i`, i`+1) = c(i`, i`+1)− c(i`+1, i`), Eq (2.1) can be reduced to

s∑

`=1

c(i`, i`+1) =
s∑

`=1

c(i`+1, i`).

Thus, given an order(i1, i2, . . . , is), the sum of the claims from each player against his prede-
cessor is balanced with the sum of the claims by each player against his successor. The LHS of
the above equation is called the cycle contributions with respect to an order(i1, i2, . . . , is) and
the RHS is the cycle contributions with respect to the inverse order. Thus, Eq. (2.1) can be seen
as the balancedness of cycle contributions with respect to the order and its inverse order.

Together with the assumption that a claim byi againstj is measured byϕj(N, v)− ϕj(N \
i, v), we obtain the following axiom:

Group balanced cycle contributions property (GBCC): For any(N, v) ∈ G, any S with
s = |S| = 2, and any order(i1, i2, . . . , is) onS,

s∑

`=1

(ϕi`(N, v)− ϕi`(N \ i`−1, v)) =
s∑

`=1

(ϕi`(N, v)− ϕi`(N \ i`+1, v)) ,

wherei0 = is andis+1 = i1.

While GBCC requires the balancedness of cycle contributions for any group, the balanced-
ness of cycle contributions for only the grand coalitions will make sense. Thus, we have the
following:

Balanced cycle contributions property (BCC):For any(N, v) ∈ G and any order(i1, i2, . . . , in)
onN ,

n∑

`=1

(ϕi`(N, v)− ϕi`(N \ i`−1, v)) =
n∑

`=1

(ϕi`(N, v)− ϕi`(N \ i`+1, v)) ,

wherei0 = in andin+1 = i1.

Since the term
∑n

`=1 ϕi`(N, v) is common to both sides, the condition described in the axiom
is reduced to:

n∑

`=1

ϕi`(N \ i`−1, v) =
n∑

`=1

ϕi`(N \ i`+1, v),

wherei0 = in andin+1 = i1. This is more convenient representation of BCC.
Note that in a two person game({i, j}, v), the condition required by BCC is automatically

satisfied because both the left- and right-hand sides of the equations of the condition areϕi(i, v)+
ϕj(j, v).

It is obvius that BCC is weaker than GBCC. However, the following proposition shows the
equivalence of the two axioms:

Proposition 2.1. GBCC and BCC are equivalent.

Proof. Is is enough to show that BCC implies GBCC. Suppose thatψ satisfies BCC. We will
show thatψ satisfies the balancedness of the cycle contributions for any coalitionS of sizes.

Consider the cases = 3. Whenn = 3, it is obvious. Thus, we consider the case where
n = 4. For any(N, v) ∈ G with n ≥ 4, let {i, j, k} ⊆ N anda = (a1, a2, . . . , am) be an order
on the setN\{i, j, k}. Hence,(i, j, k, a) is an order onN .
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By BCC with respect to an order(i, j, k, a) onN ,

ϕi(N \ am, v) + ϕj(N \ i, v) + ϕk(N \ j, v) + ϕa1(N \ k, v) + · · ·+ ϕam(N \ am−1, v)
= ϕi(N \ j, v) + ϕj(N \ k, v) + ϕk(N \ a1, v) + ϕa1(N \ a2, v) + · · ·+ ϕam(N \ i, v).

(2.2)

By BCC with respect to an order(i, k, j, a),

ϕi(N \ am, v) + ϕk(N \ i, v) + ϕj(N \ k, v) + ϕa1(N \ j, v) + · · ·+ ϕam(N \ am−1, v)
= ϕi(N \ k, v) + ϕk(N \ j, v) + ϕj(N \ a1, v) + ϕa1(N \ a2, v) + · · ·+ ϕam(N \ i, v).

(2.3)

(1)− (2) equals

ϕi(N \ k, v) + ϕj(N \ i, v) + 2ϕk(N \ j, v) + ϕa1(N \ k, v)− ϕa1(N \ j, v)
= ϕi(N \ j, v) + 2ϕj(N \ k, v) + ϕk(N \ i, v) + ϕk(N \ a1, v)− ϕj(N \ a1, v). (2.4)

Similarly, by BCC with respect to two orders(j, k, i, a) and(j, i, k, a), we obtain

ϕj(N \ i, v) + ϕk(N \ j, v) + 2ϕi(N \ k, v) + ϕa1(N \ i, v)− ϕa1(N \ k, v)
= ϕj(N \ k, v) + 2ϕk(N \ i, v) + ϕi(N \ j, v) + ϕi(N \ a1, v)− ϕk(N \ a1, v), (2.5)

and by BCC with respect to two orders(k, i, j, a) and(k, j, i, a), we obtain

ϕk(N \ j, v) + ϕi(N \ k, v) + 2ϕj(N \ i, v) + ϕa1(N \ j, v)− ϕa1(N \ i, v)
= ϕk(N \ i, v) + 2ϕi(N \ j, v) + ϕj(N \ k, v) + ϕj(N \ a1, v)− ϕi(N \ a1, v). (2.6)

1
4((3) + (4) + (5)) equals

ϕj(N \ i, v) + ϕk(N \ j, v) + ϕi(N \ k, v) = ϕj(N \ k, v) + ϕk(N \ i, v) + ϕi(N \ j, v).

Thus, the balancedness of the cycle contributions holds for groupS with s = 3.
The other cases(s = 4, . . . , n− 1) can be proved by a similar manner. Thus we omit it.

It is obvious that any value onG satisfying the balanced contributions property also satisfies
BCC, thus satisfying GBCC.

It is clear that theEgalitarian valueEV, which is defined as, for any(N, v) ∈ G and any
i ∈ N ,

EVi(N, v) =
v(N)

n
,

also satisfies BCC because

n∑

`=1

EVi`(N \ i`−1, v) =
n∑

`=1

EVi`(N \ i`+1, v) =
∑

i∈N

v(N \ i)
n− 1

.

Since the Egalitarian value is efficient, BCC is weaker than the balanced contributions property.
In addition to the Shapley value and the Egalitarian value, there are several famous values

that satisfy BCC such as the CIS (center of gravity of the imputation set) value and the ENSC
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(egalitarian non-separable contribution) value (Driessen and Funaki 1991). Examples of solu-
tions that do not satisfy BCC are the the nucleolus (Schmeidler 1969) and theτ -value (Tijs
1987).

BCC requires that cycle contributions among all players should be balanced between any
order on the set of all players and its inverse order. Similarly, we can consider the property that
cycle contributions among all groups of three (or more) players should be balanced between any
order on the group and its inverse order as follows.

BCC for three players: For any(N, v) ∈ G and for any three player coalition{i, j, k} ⊆ N

ϕi(N \ k, v) + ϕj(N \ i, v) + ϕk(N \ j, v) = ϕi(N \ j, v) + ϕj(N \ k, v) + ϕk(N \ i, v).

It is straightforward that any value onG satisfying the balanced contributions property also
satisfies BCC for three players. Thus, BCC for three players is a weaker property than the
balanced contributions property as well as BCC is. The relationships between the BCC and the
BCC for three players is as follows.

Proposition 2.2. (i) If ϕ satisfies BCC, it also satisfies BCC for three players. (ii) Ifϕ satisfies
BCC for three players, it satisfies BCC.

Proof. Let a valueϕ satisfy BCC. Note that both conditions are trivially satisfied for any game
with two players or less. Moreover, for any three players game, BCC and BCC for three players
are equivalent. Thus, we consider the casen ≥ 4.

First, we show (i). This is proved by the same way of the proof of Proosition 2.1.
Next, we show (ii). Let a valueϕ satisfy BCC for three players. For any(N, v) ∈ G

with n ≥ 4, consider an order(i1, i2, . . . , in) on N . By BCC for three players with respect to
(i1, i2, i3),

ϕi1(N \ i3, v) + ϕi2(N \ i1, v) + ϕi3(N \ i2, v)
= ϕi1(N \ i2, v) + ϕi2(N \ i3, v) + ϕi3(N \ i1, v). (2.7)

By BCC for three players with respect to(i1, i3, i4),

ϕi1(N \ i4, v) + ϕi3(N \ i1, v) + ϕi4(N \ i3, v)
= ϕi1(N \ i3, v) + ϕi3(N \ i4, v) + ϕi4(N \ i1, v). (2.8)

(6) + (7) equals

ϕi1(N \ i4, v) + ϕi2(N \ i1, v) + ϕi3(N \ i2, v) + ϕi4(N \ i3, v)
= ϕi1(N \ i2, v) + ϕi2(N \ i3, v) + ϕi3(N \ i4, v) + ϕi4(N \ i1, v). (2.9)

Next, by BCC for three players with respect to(i1, i4, i5),

ϕi1(N \ i5, v) + ϕi4(N \ i1, v) + ϕi5(N \ i4, v)
= ϕi1(N \ i4, v) + ϕi4(N \ i5, v) + ϕi5(N \ i1, v). (2.10)

(8) + (9) equals

ϕi1(N \ i5, v) + ϕi2(N \ i1, v) + ϕi3(N \ i2, v) + ϕi4(N \ i3, v) + ϕi5(N \ i4, v)
= ϕi1(N \ i2, v) + ϕi2(N \ i3, v) + ϕi3(N \ i4, v) + ϕi4(N \ i5, v) + ϕi5(N \ i1, v).
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Repeating a similar argument with respect to(i1, i5, i6), . . . , (i1, in−1, in), we obtain

n∑

r=1

ϕir(N \ ir−1, v) =
n∑

r=1

ϕir(N \ ir+1, v).

Thus, this proposition implies the equivalence of BCC and BCC for three players.
In the above, we consider only groups of three players. In the following, we consider groups

of r players, wherer ≥ 4.

BCC for r players: For any (N, v) ∈ G, any S ⊆ N such that|S| = r and any order
(i1, i2, . . . , ir) onS,

r∑

`=1

(ϕi`(N, v)− ϕi`(N \ i`−1, v)) =
r∑

`=1

(ϕi`(N, v)− ϕi`(N \ i`+1, v)) ,

wherei0 = ir andir+1 = i1.

The following proposition indicates that BCC and BCC forr players, wherer ≥ 4, are
almost equivalent.

Proposition 2.3. Let r ≥ 4. (i) If ϕ satisfies BCC, it also satisfies BCC forr players. (ii) Ifϕ
satisfies BCC forr players, it satisfies BCC when there arer or more players.

Proof. First, we show (i). By (i) of Proposition 2.2, ifϕ satisfies BCC, it also satisfies BCC for
three players. By the proof of (ii) of Proposition 2.2, it is clear that “ifϕ satisfies BCC for three
players, it satisfies BCC forr players with respect tor ≥ 4 when there arer or more players.” If
there are less thanr players, it is trivial thatϕ satisfies BCC forr players. Hence, (i) is obtained.

Next, we show (ii). Letr ≥ 4. If ϕ satisfies BCC forr players, and there are more thanr
players in a game, leti, j, k ⊆ N anda = (a1, a2, . . . , ar−3) be an order onS ⊆ N\{i, j, k}
satisfying|S| = r− 3. Applying BCC forr players with respect to orders(i, j, k, a), (i, k, j, a),
(j, k, i, a), (j, i, k, a), (k, i, j, a), (k, j, i, a) on S ∪ {i, j, k}, we have thatϕ satisfies BCC for
three players,i, j andk, as shown in the proof of (i) of Propositio 2.2. Thus, by (ii) of Proposi-
tion 2.2, it satisfies BCC.

So, BCC forr players, wherer ≥ 4, is slightly weaker than BCC. The difference between
Propositions 2.2 and 2.3 comes from the fact that while BCC forr players, wherer ≥ 4 is silent
for a three person game (correctly speaking, a game with less than or equal tor − 1 players),
BCC requires a non-trivial restriction to a game with three players.

Figure 2.1 shows the relationship between BC, GBCC, BCC and BCC forr players.

2.4 Axiomatization of the Shapley value

Together with two other basic axioms, BCC characterizes the Shapley value. The first axiom is
a very fundamental one.

Efficiency: For any(N, v) ∈ G,
∑

i∈N

ϕi(N, v) = v(N).
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BC BCC

GBCC

BCC for
3 players

BCC for
r players

whenn = r

Figure 2.1: The relationship between BC, GBCC, BCC, BCC for 3 players, and BCC forr
players (r = 4)

The second property is related to null players, which was introduced by Derks and Haller
(1999). Anull playerin (N, v) is a playerk ∈ N , satisfyingv(S∪k) = v(S) for anyS ⊆ N \k.

Null player out (NPO): For any(N, v) ∈ G, if k ∈ N is a null player in(N, v) for anyi ∈ N\k,

ϕi(N, v) = ϕi(N \ k, v).

NPO requires that a deletion of null players does not affect payoffs of the other players. Note
that, in general, NPO has no relationship with the usualnull player property.1 However, together
with Efficiency, NPO implies the null player property, since ifk ∈ N is a null player in a game
(N, v),

ϕk(N, v) = v(N)−
∑

i∈N\k
ϕi(N, v)

= v(N)−
∑

i∈N\k
ϕi(N \ k, v) = v(N)− v(N \ k) = 0.

It is easily checked that the Shapley value satisfies NPO and Efficiency. Thus, the Shapley
value satisfies the above two properties and BCC. The next theorem states that the Shapley value
is a unique value satisfying these three.

Theorem 2.1. The Shapley value is the unique value onG that satisfies Efficiency, BCC, and
NPO.

Proof. We have already shown that the Shapley value satisfies Efficiency, BCC and NPO. Hence,
it is sufficient to show the uniqueness.

Let ϕ be a value onG satisfying the three properties. We show the uniqueness of the value
by the induction with respect to the number of players.

Whenn = 1, by Efficiency,ϕi(N, v) = v(i) for i ∈ N .
Assume that,ϕ is uniquely determined, for any game with less thann players. We show that

ϕ(N, v) is uniquely determined whenN = {1, 2, . . . , n}.
Take any integerk ∈ N \ N . Then, the null-extended game(N ′, w) of a game(N, v) with

respect tok is defined as follows:
N ′ = N ∪ k,

1Thenull player propertyrequires that null players obtain nothing.
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and for anyS ⊆ N ′,
w(S) = v(S \ k).

Clearly,k is a null player in(N ′, w) and(N ′\j, w) for anyj ∈ N . In addition,(N ′\k, w) =
(N, v) and(N ′ \ {j, k}, w) = (N \ j, v) for anyj ∈ N .

Consider an order(1, k, 2, . . . , n) onN ′. By BCC,

ϕ1(N ′ \ n,w) + ϕk(N ′ \ 1, w) + · · ·+ ϕn(N ′ \ (n− 1), w)
= ϕ1(N ′ \ k, w) + ϕk(N ′ \ 2, w) + · · ·+ ϕn(N ′ \ 1, w). (2.11)

By Efficiency and NPO,ϕk(N ′ \ 1, w) = ϕk(N ′ \ 2, w) = 0. By NPO,ϕi(N ′ \ j, w) =
ϕi(N \ j, v) for any{i, j} ⊆ N . Therefore, (10) is equal to the following:

ϕ1(N \ n, v) + ϕ2(N, v) + · · ·+ ϕn(N \ (n− 1), v)
= ϕ1(N, v) + ϕ2(N \ 3, v) + · · ·+ ϕn(N \ 1, v),

or,

ϕ1(N, v)− ϕ2(N, v) = −ϕ2(N \ 3, v)− · · · − ϕn(N \ 1, v)
+ ϕ1(N \ n, v) + ϕ3(N \ 2, v) + · · ·+ ϕn(N \ (n− 1), v).

Let b1 be the right-hand side of the above equation. By the induction hypothesis,b1 is uniquely
determined.

Applying the similar argument to the orders(1, 2, k, 3, . . . , , n), (1, 2, 3, k, 4, . . . , n), . . . ,
and(1, 2, . . . , n− 1, k, n), we obtain the following(n− 1) equations:

ϕ1(N, v)− ϕ2(N, v) = b1,

ϕ2(N, v)− ϕ3(N, v) = b2,

...

ϕn−1(N, v)− ϕn(N, v) = bn−1,

By Efficiency,
ϕ1(N, v) + ϕ2(N, v) + · · ·+ ϕn(N, v) = v(N).

Since thesen equations are linear independent,ϕ(N, v) is uniquely determined.

For the independence of Efficiency, BCC, and NPO, see Table 2.1.

Table 2.1: Independence of the axioms in Theorem 2.1

values / properties Efficiency BCC (forr) NPO
The Banzhaf value (Banzhaf III 1965) − + +

Theτ -value (Tijs 1987)2 + − +
The Egalitarian value + + −

+ : satisfy,− : not satisfy

2Note that theτ -value is defined on the class of the quasi-balanced games.
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Since BCC and BCC for three players are equivalent, we obtain the fact that the Shapley
value is a unique efficient value satisfying BCC for three players and NPO as a corollary of
Theorem 2.1. On the other hand, since BCC forr players wherer ≥ 4 is weaker than BCC, we
cannot obtain the axiomatization of the Shapley value through BCC forr players directly from
Theorem 2.1 and Proposition 2.3. However, the following theorem shows that the Shapley value
is axiomatized by Efficiency, BCC forr players and NPO.

Theorem 2.2. Let r ≥ 3. The Shapley value is the unique value onG that satisfies Efficiency,
BCC forr players, and NPO.

Proof. Let (N, v) ∈ G. Since we know that the Shapley value satisfies Efficiency, NPO and
BCC forr players, we show that the valueϕ satisfying the three axioms is uniquely determined.
In casen = 1, Efficiency impliesv(i) = EVi(i, v). Considern ≥ 2. In what follows, we show
that “if n ≥ 2 andϕ satisfies Efficiency, NPO and BCC forr players, then it must satisfy the
balanced contributions property introduced by Myerson (1980).”

Take any integerk1, k2, . . . , kr−2 ∈ N \ N , and letK = {k1, k2, . . . , kr−2}. Then, the
null-extended game(N ′, w) of a game(N, v) with respect toK is defined as follows:

N ′ = N ∪K,

and for anyS ⊆ N ′,
w(S) = v(S \K).

Clearly, |N ′| ≥ r and eachk ∈ K is a null player in(N ′, w) and its any restriction(N ′′, w)
whereN ′′ ⊆ N ′ such thatk ∈ N ′. In addition,(N ′ \K, w) = (N, v).

Take anyi, j ∈ N ⊆ N ′ and consider an order(i, j, k1, k2, . . . , kr−2). By BCC forr players,

ϕi(N ′ \ kr−2, w) + ϕj(N ′ \ i, w) + ϕk1(N
′ \ j, w) + · · ·+ ϕkr−2(N

′ \ kr−3, w)
= ϕi(N ′ \ j, w) + ϕj(N ′ \ k1, w) + ϕk1(N

′ \ k2, w) + · · ·+ ϕkr−2(N
′ \ i, w). (2.12)

By Efficiency ad NPO, (11) equals

ϕi(N, v) + ϕj(N \ i, v) = ϕi(N \ j, v) + ϕj(N, v)

⇐⇒ ϕi(N, v)− ϕi(N \ j, v) = ϕj(N, v)− ϕj(N \ i, v).

A remark on Theorems 2.1 and 2.2 is that it is easy to check that the proofs of Theorems 2.1
and 2.2 are applicable when we consider only restricted classes of games such as the zero-
monotonic games, superadditive games, or convex games. Thus, Theorems 2.1 and 2.2 also hold,
even though we replaceG in the statement of the theorems byGM , GS , or GC , respectively.

2.5 Axiomatization of the Egalitarian value

Replacing NPO with the other property, the Egalitarian value is characterized in a similar manner.
A proportional playerin (N, v) is a playerk ∈ N , satisfyingv(S∪k)−v(S) = 1

|S|v(S) for
all S ⊆ N \ k with S 6= ∅. Thus, a proportional player is a player whose marginal contributions
to any coalition (except the empty set) is directly proportional to the worth of the coalition, and it
is inversely proportional to the size of the coalition. Similar to NPO, the following is considered.
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Proportional player out (PPO): For any(N, v) ∈ G, if k ∈ N is a proportional player in
(N, v), then for anyi ∈ N \ k,

ϕi(N, v) = ϕi(N \ k, v).

Efficiency and PPO imply that any proportional player obtains an equal division of the worth
of the grand coalition, since ifk ∈ N is a proportional player in(N, v),

ϕk(N, v) = v(N)−
∑

i∈N\k
ϕi(N, v) = v(N)−

∑

i∈N\k
ϕi(N \ k, v)

= v(N)− v(N \ k) = v(N)− n− 1
n

v(N) =
v(N)

n
.

The Egalitarian valueEV satisfies PPO, since ifk ∈ N is a proportional player in(N, v),
then for anyi ∈ N \ k,

EVi(N \ k, v) =
v(N \ k)

n− 1
=

(n− 1)v(N)
n

· 1
n− 1

=
v(N)

n
.

Following are the parallel results with Theorems 2.1 and 2.2.

Theorem 2.3. The Egalitarian value is the unique value onG that satisfies Efficiency, BCC, and
PPO.

Proof. The proof is similar to that of Theorem 2.1. The difference between the two proofs is
that in the proof of Theorem 2.3, we consider the proportional-extended game(N ′, w) of a game
(N, v) with respect tok ∈ N \N defined as follows:

N ′ = N ∪ k,

and for anyS ⊆ N ′,

w(S) =

{
0 if S = {k}

|S|
|S|−|S∩k|v(S \ k) otherwise.

Clearly, k is a proportional player in(N ′, w) and (N ′ \ j, w) for any j ∈ N . In addition,
(N ′ \ k,w) = (N, v) and(N ′ \ {j, k}, w) = (N \ j, v) for anyj ∈ N .

Assume thatϕ is the Egalitarian value, if there are less than or equal ton − 1 players.
Consider an order(1, k, 2, . . . , n) on N ′. By BCC, Efficiency, PPO, the induction hypothesis
and the definition of the proportional-extended game, we have

ϕ1(N, v)− ϕ2(N, v) = 0.

Applying a similar argument to the orders(1, 2, k, 3, . . . , n), . . . , (1, 2, . . . , n−1, k, n), we have
ϕ1(N, v) = ϕ2(N, v) = · · · = ϕn(N, v). By Efficiency, we concludeϕi(N, v) = v(N)/n for
all i ∈ N .

For the independence of Efficiency, BCC, and PPO, see Table 2.2.

Theorem 2.4.Letr ≥ 3. The Egalitarian value is the unique value onG that satisfies Efficiency,
BCC forr players, and PPO.
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Table 2.2: Independence of the axioms in Theorem 2.2

values / properties Efficiency BCC (forr) PPO

ϕ =

{
EV
2 if n = 1 andv(N) > 0

EV otherwise
− + +

ϕi(N, v) =

{
v(N)− v(N \ i) if i ∈ P
(1−|P |)v(N)+

P
j∈P v(N\j)

|N\P | otherwise
+ − +

the Shapley value + + −
P : a set of all proportional players, + : satisfy,− : not satisfy

Proof. We show the uniqueness of the value by the induction with respect to the number of
players.

Whenn = 1, by Efficiency,ϕi(N, v) = v(i) for i ∈ N . Let (N, v) ∈ G, wheren = n.
Assume that, for any game with less thann players,ϕ is the Egalitarian value.

Take any integerk1, k2, . . . , kr−2 ∈ N \ N , and letK = {k1, k2, . . . , kr−2}. Then, the
proportional-extended game(N ′, w) of a game(N, v) with respect toK is defined as follows:

N ′ = N ∪K,

and for anyS ⊆ N ′,

w(S) =

{
0 if S ⊆ K,

|S|
|S|−|S∩K|v(S \K) otherwise.

Then, eachk ∈ K is a proportional player in(N ′, w) since for anyk ∈ K and anyS ⊆ N ′ \ k,
if S ⊆ K, thenw(S ∪ k) = w(S) = 0, and otherwise,

w(S ∪ k)− w(S) =
|S|+ 1

(|S|+ 1)− |(S ∪ k) ∩K|v((S ∪ k) \K)− |S|
|S| − |S ∩K|v(S \K)

=
1

|S| − |S ∩K|v(S \K) =
1
|S|w(S).

Similarly, eachk ∈ K is a proportional player in any restricted game(N ′′, w), whereN ′′ ⊆ N ′

andk ∈ N ′′. In addition,(N ′ \K, w) = (N, v).
Take anyi, j ∈ N ⊆ N ′, and consider an order(i, j, k1, k2, . . . , kr−2). By BCC for r

players,

ϕi(N ′ \ kr−2, w) + ϕj(N ′ \ i, w) + ϕk1(N
′ \ j, w) + · · ·+ ϕkr−2(N

′ \ kr−3, w)
= ϕi(N ′ \ j, w) + ϕj(N ′ \ k1, w) + ϕk1(N

′ \ k2, w) + · · ·+ ϕkr−2(N
′ \ i, w).

Repeatedly applying PPO,ϕi(N ′ \ kr−2, w) = ϕi(N, v), ϕj(N ′ \ k1, w) = ϕj(N, v), ϕi(N ′ \
j, w) = ϕi(N \j, v), andϕj(N ′\i, w) = ϕj(N \i, v). By Efficiency and PPO,ϕk1(N

′\j, w) =
1

|N ′|−2w(N ′ \ {j, k1}). Moreover, by repeatedly applying the definition of proportional players,
1

|N ′|−2w(N ′\{j, k1}) = v(N\j)
n−1 . Similarly,ϕkp(N

′\kp−1, w) = v(N)
n for eachp = 2, . . . , r−2,

andϕkp(N
′ \ kp+1, w) = v(N)

n for eachp = 1, . . . , r − 3.
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Thus, the above equation can be reduced to

ϕi(N, v) + ϕj(N \ i, v) +
v(N \ j)
n− 1

+ (r − 3)
v(N)

n

= ϕi(N \ j, v) + ϕj(N, v) +
v(N \ i)
n− 1

+ (r − 3)
v(N)

n

Moreover, by the induction hypothesis, the above equation is

ϕi(N, v) = ϕj(N, v).

Together with Efficiency, we have the desired result.

Unlike the case of the Shapley value, the proofs of Theorems 2.3 and 2.4 are not appli-
cable when we consider only restricted classes of games, such as the zero-monotonic games,
superadditive games, or convex games. These differences come from the differences between
the properties of null players and proportional players. Given a zero-monotonic, superadditive,
or convex game, when we add a player who is a null player in the null-extended game,3 the ex-
tended game is zero-monotonic, superadditive, or convex, respectively. However, when we add a
player who is a proportional player in the proportional-extended game,4 the extended game may
not be zero-monotonic, superadditive, or convex. These are crucial in our proofs.

2.6 Weighted balanced cycle contributions property

In this section, we consider a non-symmetric generalization of the analysis in the previous sec-
tions. Letwi(> 0) denote a positive weight for a playeri in the set of potential playerN. Let
w = (wi), which is fixed throughout this section.

A non-symmetric generalization of BCC is as follows.

Weighted balanced cycle contributions property (WBCC):For any(N, v) ∈ G and any order
(i1, i2, . . . , in) onN ,

n∑

`=1

wi`ϕi`(N \ i`−1, v) =
n∑

`=1

wi`ϕi`(N \ i`+1, v),

wherei0 = in andin+1 = i1.

The weight for each player can be interpreted as, for instance, the different importance, the
bargaining power, or the utility scale of players.

Since thew-weighted Shapley value satisfies the weighed balanced contributions property
that requires,wi(Shw

i (N, v)− Shw
i (N \ j, v)) = wj(Shw

j (N, v)− Shw
j (N \ i, v)), for each pair

of playersi, j ∈ N , it also satisfies WBCC.
As the following theorem shows, WBCC with Efficiency and NPO axiomatizes thew-

weighted Shapley value.

Theorem 2.5. Thew-weighted Shapley value is the unique value onG that satisfies Efficiency,
WBCC, and NPO.

3For the definition of the null-extended game, see the proof of Theorem 2.1.
4For the definition of the proportional-extended game, see the proof of Theorem 2.3.
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Proof. The proof of Theorem 2.5 are almost similar to the proof of Theorem 2.1.
Similar to Theorem 2.2, thew-weighted Shapley value is also a unique value onG, satisfy-

ing Efficiency, WBCC forr players, and NPO. Moreover, these results also hold for restricted
domains of games such asGM , GS andGC .

Thew-weighted Egalitarian valueEVw is defined by

EVw
i (N, v) =

wi∑
j∈N wj

v(N),

for eachi ∈ N . Whenwi = wj for all i, j ∈ N , thew-weighted Egalitarian value coincides
with the Egalitarian value.

A w-weighted proportional playerin (N, v) is a playerk ∈ N satisfyingv(S ∪ k)− v(S) =
wkP

j∈S wj
v(S) for all S ⊆ N \ k with S 6= ∅. The following is a weighted version of PPO.

Weighted proportional player out (WPPO): For any(N, v) ∈ G, if k ∈ N is aw-weighted
proportional player in(N, v), then for anyi ∈ N \ k,

ϕi(N, v) = ϕi(N \ k, v).

The following theorem holds.

Theorem 2.6. Thew-weighted Egalitarian value is the unique value onG that satisfies Effi-
ciency, WBCC, and WPPO.

Proof. The proof of Theorem 2.6 are almost similar to the proof of Theorem 2.3.

2.7 Concluding remarks

Except the Shapley and Egalitarian values, there are several famous values that satisfy BCC
such as the CIS (center of gravity of the imputation set) value and the ENSC (egalitarian non-
separable contribution) value (Driessen and Funaki 1991). The CIS value is characterized in a
similar manner as we did in the note, while the ENSC value is not. For the case of the CIS
value, we focus on the playerk ∈ N satisfyingv(S ∪ k) − v(S) = 1

|S|(v(S) − ∑
i∈S v(i))

for all S ⊆ N \ k with S 6= ∅. Efficiency, BCC (or BCC forr players) and the property that
the elimination of the above-mentioned player does not affect the value of the other players,
characterize the CIS value. Table 2.3 shows that what player is the one whose deletion does not
affect the payoffs of the other players. With BCC and Efficiency, the invariance of the payoff
from the deletion of such player characterizes the corresponding solutions. However, for the case
of the ENSC value, we can show that there exists no player whose elimination does not affect
the value of the other players.

Between Theorems 2.1 and 2.3, the player on which we pay attention is different. Hence,
we cannot generalize our results toα-Egalitarian Shapley values (Joosten 1996, Brink, Funaki,
and Ju 2007), which are convex combinations of the Egalitarian and Shapley values. If we pay
attention to only null players and focus on the effect of the elimination of a null player in each
value, all values we mention here (including the ENSC value) and all their convex combinations
are characterized. This result will be included in another paper. Through this way that focuses
on the deletion of null players, we may succeed in the class axiomatization of the solutions that
satisfy BCC and Efficiency. This is one of our further researches on BCC.
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Table 2.3: The players whose deletion does not affect the payoffs of other players

k’s marginal contribution forS
the Shapley value 0

the Egalitarian value v(S)
|S|

the CIS value 1
|S|(v(S)−∑

i∈S v(i))



Chapter 3

The Shapley-Egalitarian solution for
games with coalition structures

3.1 Introduction

The purpose of chapter is to revisit a distributive analysis of a cooperative surplus among players
when they already partition themselves into ‘coalitions’ before realizing cooperation. Two tra-
ditional works of Aumann and Dreze (1974) and Owen (1977) respectively propose distribution
rules, solution concepts in a framework of a cooperative game with a coalition structure, which
are different from each other but each of which is considered to be an extension of the Shap-
ley value to the case. Because both studies implicitly or explicitly assume that players forms
coalitions in order to affect their bargaining positions, they share a common presumption that
a participant in a coalition who does not make an effective contribution to his fellows receive
nothing. Thus, these studies lack a perspective that a (formed) coalition often has a tendency to
a generous reallocation of the surplus within the members of the coalition as if it is a system of
mutual assistance among the internal members, even though it is not established for such an end
in the beginning.1

To reflect such a point of view, we introduce two new axioms in solution theory of a coopera-
tive game with a coalition structure, both of which are slightly different from the ones considered
in existing studies. The first axiom represents something like mutual aid of the formed coalitions.
This is expressed by the statement on anull player: even a null player could obtain some por-
tion of a bargaining surplus if a coalition that he belongs to generates it. The other is related
to anequitycriterion applied to members in the coalitions. This requires that two distinct play-
ers should be treated equally,i.e., receive the same amount, if these two are judged to be in an
equal position in theirinternalcoalition. We show that these two axioms with the usual three ax-
ioms (Efficiency, Additivity and Coalitional Symmetry) lead to a unique solution concept which
is also considered to be an extension of the Shapley value in cooperative games with coalition
structures. This solution, named a Shapley-Egalitarian solution, is interpreted as an allocation of
the cooperative surplus by using the Shapley value in two-step bargaining process: a bargaining

1Such tendency of groups is examined and explained in various contexts. Kropotkin (1972) explains this from
a human evolution in the struggle for life. In a context of rent-seeking problem among two groups, Noh (1999)
demonstrates that the group members can agree with egalitarian-like sharing rule among them to resolve a free rider
problem in the group. Researchers in community psychology argue that the recent development of a number of mutual
assistance organizations is due to stressful situations around ourselves (Levine 1988). Further, in the study of labor-
management, reasons for and usefulness of profit sharing among employer and employees are examined (FitzRoy and
Kraft 1986, 1987; Drago and Turnbull 1988; Kandel and Lazear 1992).
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inter-coalitions and a bargaining intra-coalitions. Moreover, the bargaining surplus of the coali-
tion is allocated among the intra-coalition members in egalitarian way. Thus, in the first step,
each coalition obtains its Shapley value applied for a game among coalitions. The pure surplus
of a coalition in the first step bargaining (its Shapley value obtained from the first step minus
the worth of the coalition) is divided equally among players in the coalition. In the second step,
players in the coalition receive their Shapley value applied for their own internal game. Thus,
the Shapley-Egalitarian solution gives the sum of the payoffs in the first step and the second to
each player. In addition to this definition, we give two expressions of this solution concept. One
is an average of modified marginal contributions and the other is the weighted Shapley value of
games with restricted communication derived from a coalition structure.

This chapter is organized as follows. In the next section, the correct statement about our
new axioms is introduced and our main result on an axiomatic characterization of the solution
concept is presented. Section 3 gives some remarks on the new solution concept.

3.2 Results

First, we define new axioms about null players and symmetric players. Let(N, v, C) ∈ GC and
let ψ be a solution of cooperative games with coalition structures. Then,

Coalitional Null Player: If i ∈ Ck is a null player in(N, v) andk ∈ M is a dummy player in
(M, vC) (that is,Ck is a dummy coalition), thenψi(N, v, C) = 0.

Internal Equity: If i ∈ Ck ∈ C and j ∈ Ck are symmetric in subgame(Ck, v|Ck
), then

ψi(N, v, C) = ψj(N, v, C).
Thus, in the statement of Coalitional Null Player, the usual requirement on a null player (null

player axiom in existing studies) that a null player obtains nothing in any situation is weakened
so that he could obtain more than his own contributions because of the strong position of his
coalition or mutual assistance between the internal members in the coalition. Internal Equity
requires that two distinct players who are judged to be in an equal position in the internal situation
(i.e., subgame(Ck, v|Ck

)) should be equally treated and thus receive the same amount of the
surplus.

On the one hand, it is easily shown that the coalitional value satisfies Coalitional Null Player
since it always gives nothing to the null player. On the other hand, it does not satisfy Internal
Equity. In fact, consider a three-person game(N, v, C) whereN = {1, 2, 3}, C = {{1}, {2, 3}},
andv({1, 2}) = v({1, 2, 3}) = 1 andv(S) = 0 otherwise. Then the coalitional value gives
(1/2, 1/2, 0) for the players. However players2 and3 are symmetric in({2, 3}, v|{2,3}).

Next theorem shows that there exists a unique solution onGC different from the coalitional
value, satisfying these two axioms and usual three axioms (Efficiency, Additivity and Coalitional
Symmetry).

Theorem 3.1. There exists a unique solution of cooperative games with coalition structures on
GCsatisfying Coalitional Null Player, Internal Equity and the following three:
(i) Efficiency:

∑
i∈N ψi(N, v, C) = v(N).

(ii) Additivity: ψ(N, v, C) + ψ(N, v′, C) = ψ(N, v + v′, C), where(v + v′)(S) = v(S) + v′(S)
for anyS ⊆ N .
(iii) Coalitional Symmetry: Ifk ∈ M andh ∈ M are symmetric in(M, vC), then

∑
i∈Ck

ψi(N, v, C) =∑
i∈Ch

ψi(N, v, C).
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This solution is defined by the following formula:

ψδ
i (N, v, C) =

Shk(M, vC)− v(Ck)
|Ck| + Shi(Ck, v|Ck

), for i ∈ Ck ∈ C. (3.1)

Proof. First, we show thatψδ satisfies all the five axioms. Efficiency and Additivity are obvious
by the definition ofψδ since the Shapley value satisfies these two axioms. Next,ψδ satisfies
Coalitional Symmetry because the summation ofψδ

i (N, v, C) overCk ∈ C is playerk’s Shapley
value of a game among coalitions(M, vC) and the Shapley value gives the equal payoffs to the
symmetric players (symmetry axiom of the Shapley value, see Shapley 1953b). Since the first
term of the definition ofψδ is the same for all the players in coalitionCk ∈ C, the different
payoffs among the players inCk are caused by the subgame(Ck, v|Ck

). Thusψδ fulfills Internal
Equity because the Shapley value satisfies symmetry axiom. It also satisfies Coalitional Null
Player axiom because the Shapley value gives dummy playeri his stand-alone valuev({i}).

Next we will show the converse part. Letψ be a solution onGC satisfying the five axioms.
GivenT ⊆ N , let (N, uT ) be aT unanimity game whereuT (S) = 1 if S ⊇ T anduT (S) = 0
otherwise. Givenc ∈ R, let cuT be aT unanimity gameuT multiplied by a scalarc. Then,
by Additivity axiom, it is enough to show thatψ(N, cuT , C) is uniquely determined by the five
axioms.

For T ⊆ N , defineD ⊆ M by { k ∈ M : Ck ∈ C, Ck ∩ T 6= ∅}. Then(M, (cuT )C) is
a D-unanimity game multiplied by c,i.e., (M, cuD). Then Coalitional Symmetry together with
Coalitional Null Player axiom implies that fork ∈ M \ D and fori ∈ Ck, ψi(N, cuT , C) = 0
and fork ∈ D,

∑
i∈Ck

ψi(N, cuT , C) = c
|D| .

For an internal distribution of the members inCk, k ∈ D, we consider two cases.
Case (a):|D| = 2. Then, for anyk ∈ D, i ∈ Ck andj ∈ Ck are symmetric in(Ck, (cuT )|Ck

).
Thereforeψi(N, cuT , C) = c

|Ck|·|D| for anyi ∈ Ck, k ∈ D.
Case (b): |D| = 1. Then putC = {C1}. For i ∈ C1 \ T , ψi(N, cuT , C) = 0 by Coalitional

Null Player since player1 is dummy in(M, (cuT )C) and playeri is null in (N, v). Moreover any
i, j ∈ T are symmetric in(C1, (cuT )|C1). Therefore by Internal Equity,ψi(N, cuT , C) = c

|T | for
anyi ∈ T .

We can interpretψδ as atwo-stepShapley value in the following sense. In the first step,
each coalitionCk ∈ C acts like a single player and obtains playerk’s Shapley value of a game
among coalitions,(M, vC). Thus, an allotment of first step for coalitionCk is Shk(M, vC). In
the second step, all the players inCk agree with the following two things. First, they agree that
Shk(M,vC)− v(Ck) is a pure surplus (it is non-negative if the game is superadditive) of the first
step and therefore is split equally among the members inCk. Second, they agree that remaining
partv(Ck) is distributed by the rule of the Shapley value for their subgame(Ck, v|Ck

). Thus, the
pure bargaining surplus of the first stage is distributed within the members in the egalitarian way,
which seems to reflect a generous reallocation or an aspect of mutual aid among the members
embedded in our two axioms.

The solutionψδ is interpreted as the rights-egalitarian allocation rule for an allocation prob-
lem. An allocation problem, which is a triple(N, E, c), describes a situation that agents inN
each of who has his monetary entitlementci ∈ R, c = (ci)i∈N , discuss for the division of the
budgedE ∈ R. The rights-egalitarian allocation ruleFRE for (N, E, c) is defined by

FRE
i (N, E, c) = ci +

1
n

(
E −

∑

i∈N

ci

)
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for anyi ∈ N (Herrero, Maschler, and Villar 1999). To interpretψδ in the context of an allocation
problem, consider the following bargaining environment for the members inCk ∈ C. If they
realize the cooperation for themselves, the worthv(Ck) is distributed for them by the Shapley
value, and thus eachi ∈ Ck obtainsShi(Ck, v) in this case. On the other side, if they form a
coalition and bargain with the outside coalitionsCh, h = 1, . . . , k−1, k+1, . . . , m, the coalition
obtains its Shapley value for(M,vC). Then, this situation can be described as an allocation
problem(Ck, E, c) whereE = Shk(M,vC) andci = Shi(Ck, v) for all i ∈ Ck. It is easily
confirmed thatFRE

i (Ck, E, c) = ψδ(N, v, C). Thus,ψδ is an allocation rule such that monetary
entitlement of the players and the budget for the coalition is calculated by the Shapley value and
then the rights-egalitarian solution is applied for an allocation problem derived from(N, v, C)
by such the manner. We nameψδ the Shapley-Egalitarian solutionin a game with a coalition
structure after this fact.

Before checking the independence of each axiom from the others in the theorem, the next
remark is worth mentioning.

Remark 3.1. It is worth mentioning that we can omit Efficiency from Theorem 1. In fact, the
other axioms with non-emptiness of a solution which we implicitly assume, imply Efficiency. The
reason why we add Efficiency in Theorem 1 is to easily compare our result with Owen’s (1977)
one in the next section.

The main logic is similar to Theorem 8.1.3 of Peleg and Sudhölter (2003). Let(N, v0) be
zero-game such thatv0(S) = 0 for any S ⊆ N and C be a coalition structure onN . Then,
ψ(N, v0, C) must be0N = (0, . . . , 0) ∈ RN by Coalitional Null Player. Let(N, v, C) ∈
GC. By Additivity,ψ(N, v, C) + ψ(N,−v, C) = ψ(N, v − v, C) = ψ(N, v0, C) = 0N . So
ψ(N, v, C) = −ψ(N,−v, C) holds. By the definition of a solution,

∑
i∈N ψi(N, v, C) 5 v(N)

and
∑

i∈N ψi(N, v, C) = −∑
i∈N ψi(N,−v, C) = −(−v(N)). Thus,

∑
i∈N ψi(N, v, C) =

v(N) holds.

Example 3.1.We define the following solutions in order to check the independence of each axiom
from the others. Letθ be an order on the set of all the integersN{1, 2, 3, . . . }. For any setS ⊂ N,
let θ[S] denote an order onS induced fromθ such that for anyi, j ∈ S, θ[S](i) < θ[S](j) exactly
if θ(i) < θ(j).

1. For (N, v) ∈ Γ, letNu(N, v) denote the nucleolus of(N, v) proposed by Schmeidler (1969).2

For any(N, v, C) ∈ GC, we define a solutionψ(i) by ψ
(i)
i (N, v, C) = Nuk(M,vC)−v(Ck)

|Ck| +

Nui(Ck, v|Ck
) for any i ∈ Ck ∈ C. Then,ψ(i) satisfies Coalitional Symmetry, Internal

Equity and Coalitional Null Player but not Additivity.

2. For any i ∈ Ck ∈ C, defineψ
(ii)
i (N, v, C) = m

θ[M ]
k (M,vC)−v(Ck)

|Ck| + Shi(Ck, v|Ck
). Then,

ψ(ii) satisfies Additivity, Internal Equity and Coalitional Null Player but not Coalitional
Symmetry.

3. Then for anyi ∈ Ck ∈ C, defineψ
(iii)
i (N, v, C) = Shk(M,vC)−v(Ck)

|Ck| + m
θ[Ck]
i (Ck, v|Ck

).

Then,ψ(iii) satisfies Additivity, Coalitional Symmetry and Coalitional Null Player but not
Internal Equity.

2The nucleolus of(N, v) is defined as follows. Give a payoff vector ofN and coalitionS, lete(x, S) be the excess
function ofS at x defined bye(x, S) = v(S) −Pi∈S xi. Let e(x) = (ek(x)) be the2n − 1 dimensional vector
that is the decreasing order of(e(x, S))S⊆N,S 6=∅. For any two vectorx = (x1, . . . , xK) andy = (y1, . . . , yK), the
lexicographic order is defined by the following condition:x >L y if and only if there exist somek = 1, . . . , K such
thatxi = yi for all i < k andxk > yk, andx =L y if and only if x = y. Then the nucleolus is the payoff vector that
minimizese(x) with respect to the lexicographic order.
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4. For anyi ∈ Ck ∈ C, ψ(iv)
i (N, v, C) = ψe

i (N, v, C) = Shk(M,vC)
|Ck| . Then,ψe satisfies Additivity,

Coalitional Symmetry and Internal Equity but not Coalitional Null Player.

Among several solutions described in the above example, solutionψe, which uses the Shap-
ley value for inter-coalitions and the Egalitarian value for intra-coalitions, also prepares the sim-
ilar requirement of coalitions as generous reallocation system or mutual assistance considered in
this chapter, but slightly give much weight to an egalitarian aspect within the internal members.
In fact, this solution is axiomatized as follows.

Theorem 3.2. ψe is a unique solution of cooperative games with coalition structures onGC
satisfying Efficiency, Additivity, Coalitional Symmetry and the following two:

Null Coalition: If k ∈ M is a null player in(M, vC), then
∑

i∈Ck
ψi(N, v, C) = 0.

Internal Egalitarianism: For any i ∈ Ck ∈ C and for anyj ∈ Ck ∈ C, ψi(N, v, C) =
ψj(N, v, C).

We omit the proof of Theorem 3.2 because this is similarly constructed to the proof of The-
orem 3.1. For the independence of the axioms in the above theorem, consider solutions, for
i ∈ Ck ∈ C,

5. ψ
(v)
i (N, v, C) = Nuk(M,vC)

|Ck| ,

6. ψ
(vi)
i (N, v, C) = m

θ[M ]
k (M,vC)
|Ck| , and

7. ψ
(vii)
i (N, v, C) = v(N)

|N | .

Then,ψ(v), ψ(vi), ψδ, andψ(vii) respectively show the independence of Additivity, Coalitional
Symmetry, Internal Egalitarianism and Null Coalition from the other three.

3.3 Remarks

3.3.1 Comparison with the Owen’s coalitional value

The coalitional value is characterized by Efficiency, Additivity, Coalitional Symmetry and the
following two axioms. (See Owen 1977. However Peleg and Sudhölter 2003 show that by the
same reason of Remark 3.1, we can conduct the axiomatization of the coalitional value without
Efficiency.)

Null Player: If i ∈ N is a null player in(N, v), thenψi(N, v, C) = 0.

Restricted Equal Treatment: If i, j ∈ Ck ∈ C are symmetric in(N, v), thenψi(N, v, C) =
ψj(N, v, C).

It is clear that Restricted Equal Treatment is weaker than Internal Equity and Null Player
requires more than Coalitional Null Player. In fact, the coalitional value does not satisfy Internal
Equity and the Shapley-Egalitarian solution does not satisfy Null Player. Thus, the coalitional
value and the Shapley-Egalitarian solution are different in the judgment of application of the
equity criterion. The coalitional value requires that two players in coalitionCk should be equally
treated if these two are judged to be equal in the whole society. On the other hand, the Shapley-
Egalitarian solution requires that two players in coalitionCk should be equally treated if these
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two are judged to be equal in the internal society. Moreover, these two solutions are different in
the treatment of null players. While the coalitional value does not give any portion of surplus to a
null player even if his coalition obtains large benefit, the Shapley-Egalitarian solution gives some
portion of surplus to the null players if his coalition obtains the benefit. Thus, we understand
that the essential difference between the two solutions lies in the treatment of null players and
symmetric players.

3.3.2 Random arrival interpretation

It seems that the definition ofψδ is too much based on “two step bargaining process.” We are,
however, able to expressψδ as an average of themodifiedversion of the marginal contributions
as well asSh andCV. Let θ ∈ Θ(N, C). Let θM be an order onM derived fromθ such that for
k, h ∈ M , θM (k) < θM (h) if and only if θ(i) < θ(j) for all i ∈ Ck and for allj ∈ Ch. θM is
well-defined ifθ is consistent withC. Fori ∈ Ck ∈ C, we define modified marginal contribution
of playeri at orderθ, m̄θ

i by

m̄θ
i (N, v, C) =

{
m

θ[Ck]
i (Ck, v|Ck

) if i is not last at orderθ[Ck],
m

θ[Ck]
i (Ck, v|Ck

) + mθM
k (M,vC)− v(Ck) if i is last at orderθ[Ck].

The following theorem holds.

Theorem 3.3. ψδ is expressed as follows: fori ∈ N ,

ψδ
i (N, v, C) =

1
|Θ(N, C)|

∑

θ∈Θ(N,C)
m̄θ

i (N, v, C). (3.2)

Proof. It is easily verified from this formula by Eq.(3.1) and the definition of the modified
marginal contribution.

3.3.3 Restricted communication

Myerson (1977) considers a situation that a communication between players is restricted on
an undirected graph ofN (see also Myerson 1980). Along this line of research, Aumann and
Dreze’s (1974) value, which is defined byADi(N, v, C) = Shi(Ck, v) for all i ∈ Ck ∈ C, is
considered to represent a situation that a coalition structure describes a communication restric-
tion such that players in the same coalition communicate with each other, but each coalition is
physically separated. This situation is also described as the graph such that each maximal com-
ponent of the graph corresponds to a coalition inC and each subgraph on the component is a
complete graph. Thus, Aumann and Dreze’s value coincides with the Myerson value for such a
graph situation. However, this interpretation of coalition structure does not fit the view that play-
ers form coalitions for the division ofv(N) since Aumann and Dreze’s value does not satisfy
the efficiency but the relative efficiency (

∑
i∈N ψi(N, v, C) =

∑
Ck∈C v(Ck)). This motivates

another view of communication restriction by a coalition structure in the following sense:

(i) players in the same coalitionCk ∈ C can freely communicate with each other, and

(ii) players inCk can communicate with players in the other coalitions if there is a permission
of all the players inCk.



3.3. REMARKS 41

Condition (i) means that players in any sub coalitionS ⊆ Ck ∈ C can communicate with
each other and thus obtain their worth of coalition,v(S). In addition to (i), (ii) implies that there
is a possibility of cooperation among players in the different coalitions. This is possible only
if all the players in the relevant coalitions agree. Leti ∈ Ck andCh ∈ C, Ch 6= Ck. While
Ck andCh obtain their worthv(Ck ∪ Ch), Ck − i andCh obtain the sum ofv(Ck − i) and
v(Ch) because there is no permission by playeri or there is no permission of the party which the
coalition represents and which requires the unanimous agreement.3

Definition 3.1. Let (N, v, C) ∈ GC. C-communication restricted game(N, vC) is defined as
follows. For allS ⊆ N ,

vC(S) = v(
⋃

Ck∈C(S)

Ck) +
∑

T∈C0(S)

v(T )

whereC(S) = {Ck ∈ C : Ck ⊆ S} andC0(S) = {Ck ∩ S : Ck ∩ S 6= Ck, Ck ∈ C}.
For the case of the bargaining for the profit division among employees and employers,

(N, vC) can be seen as the situation where employees (employers) can negotiates with employers
(employers) only in the case of unanimous agreement of all the members, and any sub group of
employees (employers) can not contact with the employers (employers).

We obtain the following relationship betweenψδ and the weighted Shapley valueShw. The
following theorem holds.

Theorem 3.4. Let w = (wi)i∈N be a weight vector such thatwi = 1
|Ck| for all i ∈ Ck ∈ C.

Then,
ψδ(N, v, C) = Shw(N, vC). (3.3)

Proof. Eq.(3.3) is obtained from Eq.(3.2) and the following fact. Forθ ∈ Θ(N), we define
θ∗ ∈ Θ(M) by the condition thatθ∗(k) > θ∗(h) if and only if there existsi ∈ Ck such that
θ(i) > θ(j) for all j ∈ Ch. Then, the probability thatθ∗ coincides with some orderπ ∈ Θ(M)
when eachθ appears according to the probability distributionµw(.) is just 1

|M |! = 1
|Θ(M)| .

Thus, Eq.(3.3) shows thatψδ is a weighted Shapley value forC-communication restricted
game. However, using reciprocal of the cardinality of a coalition as the weight of the member of
the coalition does not seem to have much justification; rather usual non-weighted Shapley value
appears to be more acceptable. The collective valueψγ , introduced in the next chapter, is such
solution in a game with a coalition structure. Thus,

ψγ(N, v, C) = Sh(N, vC).

holds. The proof is provided in the next chapter.

3Carreras (1992) refers the similar restriction of coalition as “voting discipline” in the context of simple games.





Chapter 4

The collective value for games with
coalition structures

4.1 Introduction

This chapter also studies a distribution rule of a cooperative surplus among players when they
already partition themselves into ‘coalitions’ before realizing cooperation. A distribution rule,
a solution concept in a framework of a cooperative game with a coalition structure, considered
in this chapter departs from the existing solution concepts in two major directions. Similar to
the Shapley-Egalitarian solution, the first point is to take into account the mutual-aid tendency
of groups or generous allocation among members in the internal cooperation. The second is to
treat the asymmetric sizes of coalitions as a factor affecting the bargaining outcome, which is not
considered in Chapter 3. From the theoretical point of view, Kalai (1977) and Thomson (1986)
show that in the context of bargaining problems, purely replications of players generate the size-
dependent asymmetric weights of the Nash solution. On the other hand, from an empirical point
of view, Metcalf, Wadsworth, and Ingram (1993) reported that in the observations of British
manufacturing industry, strike incidence rose with the size of bargaining group, and it is known
that the strike activity affects the bargaining outcome between employers and employees.1

The Aumann-Dreze value and the Owen’s coalitional value, two traditional solution con-
cepts in cooperative games with coalition structures and each of which is an extension of the
Shapley value to a cooperative game with a coalition structure, do not satisfy both requirements
mentioned above. On the one hand, both solutions give nothing to a null player whatever co-
operation relationship he belongs to. Thus, according to these solution concepts, it does not
happen that such player receives some portion of the cooperation surplus from his coalition due
to its strong position, thus these solutions not having an essence of mutual assistance within the
internal members. On the other hand, these solutions treat two distinct coalitions equally even if
these are different in their sizes. As pointed out by Hart and Kurz (1983) and Winter (1992), a
solution concept of a cooperative game with a coalition structure assumes the two levels interac-
tion among players,i.e., interactions inter- and intra- coalitions. In fact, the Owen’s coalitional
value satisfies the condition that the sum of the coalitional values of the players in a coalition
coincides with the Shapley value of the coalition obtained from the game which is played by
inter-coalitions. Thus, the coalitional value well describes the two levels interaction but not re-
flects an asymmetry in the interaction among coalitions pointed out by Kalai and Samet (1987)

1One reason is that most union power is partly derived from the threat of the strike (Ashenfelter and Johnson
1969).
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and Levy and McLean (1989), caused by the different sizes of the coalitions.
The definition of our new solution concept, named thecollective value, is established relying

on a two-step bargaining process among players, a bargaining inter-coalitions in the first step
and a bargaining intra-coalition in the second, and generous distribution tendency among the
internal members. In the first step, each coalition obtains itsweightedShapley value applied for
a game among coalitions. The pure surplus of a coalition in the first step bargaining (its weighted
Shapley value obtained from the first step minus the worth of the coalition) is divided equally
among players in the coalition. In the second step, players in the coalition receive their Shapley
value applied for their own internal game. Thus, the collective value gives the sum of the payoffs
in the first step and the second to each player. This definition indicates that the collective value
is involved with the Egalitarian value as well as the Shapley value: the Egalitarian value is used
for the bargaining surplus of a coalition and the Shapley value for the worth of the coalition.
In fact, the collective value is interpreted as the rights-egalitarian solution, which is introduced
by Herrero, Maschler, and Villar (1999), for an allocation problem, and we use the (weighted)
Shapley value when we derive the allocation problem from the original game.

On the surface, our solution concept appears to lie in the very different line of research from
existing studies. However, the collective value matches endogenous and exogenous interpreta-
tions of coalition structures. Aumann and Dreze (1974) discuss that the existing coalition struc-
ture arises from theendogenousformation of coalitions, given the game itself. They consider
that lack of the superadditivity of the game leads to the formation of coalition structures. Here,
we provide a different condition, aquasi-partnership decomposition, which is also considered as
a reason of forming coalition structures, and show that the collective value is consistent with this
this condition. Furthermore, in the line of Myerson (1977, 1980), a coalition structure can be
considered asexogenouslygiven communication restriction among players. We introduce a new
interpretation of the coalition structure as restriction of communication among players, and show
that the collective value coincides with the Shapley value applied for the game appropriately de-
rived from the original game. Thus, the collective value is consistent with these interpretations
of coalition structures.

Further, with the aid of research by Calvo and Santos (1997) and Bilbao (1998) on potential
theory in cooperative games with communication restriction, we obtain a potential function for
games with coalition structures, which is quite different from the one of Winter (1992). The
collective value is expressed as the marginal contribution relative to this potential function. The
potential function behind the solution concept inspires one of its properties similar to the bal-
anced contributions of the Shapley value. We show that this property, called thecollective bal-
anced contributions, with some moderate additional conditions characterizes our solution. An
axiomatization by theadditivityaxiom is also presented.

The rest of this chapter is organized as follows. The exact definition of a new solution concept
is provided in Section 2. In Section 3, other expressions and interpretations of the solution are
explained. In Section 4, we show that the collective value admits a potential function. Axiomatic
characterizations of this solution are given in Section 5. Section 6 gives concluding remarks.

4.2 The collective value

As motivated by Hart and Kurz (1983) and Winter (1989), the coalition inC can be seen as a
pressure group for the division ofv(N). So, van den Brink and van der Laan stated (van den
Brink and van der Laan 2005, p195):

to divide the worth of the grand coalition over all players, first this worth is dis-
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tributed over the coalitions in the a priori given coalition structure, and then the
payoff assigned to a coalition is distributed over its players.

The Owen’s coalitional value describes the above two level interactions, which are an interaction
among coalitions and a one among players within a coalition, and has the consistent relation with
the Shapley value’s allocation. The coalitional value satisfies

∑

i∈Ck

CVi(N, v, C) = CVk(M, vC , {M}) = Shk(M, vC)

for anyCk ∈ C because the coalitional value satisfies the intermediate game property and the
coalitional value for a game with the grand coalition structure coincides with the Shapley value
for the game.

There is an asymmetry of players in external game(M, vC) since players in the game rep-
resent the coalitions which may be different in size. In such a situation, theweightedShapley
value (Shapley 1953a) can be appropriate to deal with such asymmetries. Kalai and Samet stated
in their paper (Kalai and Samet 1987, p221) as follows:

It is important for applications in which the players themselves are, or are represent-
ing, groups of individuals. Such is the case for example when the players are parties,
cities, or management boards. ... A natural candidate for a solution is the weighted
Shapley value where the players are weighted by the size of the constituencies they
stand for.

As the following definition will show, a new solution concept presented in this chapter is the very
solution that reflects such a viewpoint in addition to the two level interactions.

A solutionψγ in a game with a coalition structure is defined in the following.

Definition 4.1. For (N, v, C) ∈ GC, let wk denote the weight fork ∈ M such thatwk = |Ck|
andw = (wk)k∈M . Then, the collective valueψγ for (N, v, C) is defined by

ψγ
i (N, v, C) =

Shw
k (M,vC)− v(Ck)

|Ck| + Shi(Ck, v)

for anyi ∈ Ck ∈ C.

The definition of the collective value shows the close relation with the Shapley-Egalitarian
solution defined in Chapter 3 and Kamijo (2007b). Only the difference is that in the definition
of the collective value, the weighted Shapley value is applied to the external game. Moreover,
the collective value can be interpreted as a two step approach: the first step is a negotiation
among coalitions for the division ofv(N) and the second step is a negotiation among players
for the division of the assignment of the coalition from the first step. The bargaining surplus of
the coalition from the first step,Shw

k (M,vC) − v(Ck), is equally divided among its members.
Moreover they obtain the Shapley value for their own game in the second step,Sh(Ck, v). Thus,
this expression indicates thatψγ has a flavor of egalitarian rule in addition to the Shapley value:
the Egalitarian value for the bargaining surplus of his coalition and the Shapley value for the
worth of the coalition. As the result of this egalitarian part,ψγ does not satisfy the usual null
player axiom but a weaker version. This point is considered in Section 6 to characterize the
collective value by the additivity axiom.

The collective value is interpreted as the rights-egalitarian allocation rule for an allocation
problem. An allocation problem, which is a triple(N,E, c), describes a situation that agents
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in N , each of who has his monetary entitlementci ∈ R, c = (ci)i∈N , discuss for the division
of the budgedE ∈ R. To interpretψγ in the context of an allocation problem, consider the
following bargaining environment for the members inCk ∈ C. If they realize the cooperation for
themselves, the worthv(Ck) is distributed for them by the Shapley value, and thus eachi ∈ Ck

obtainsShi(Ck, v) in this case. On the other side, if they form a coalition and bargain with
the outside coalitionsCh, h = 1, . . . , k − 1, k + 1, . . . , m, the coalition obtains itsw-weighted
Shapley value for(M, vC) with coalition-size weights. Then, this situation can be described as
an allocation problem(Ck, E, c) whereE = Shw

k (M, vC) andci = Shi(Ck, v) for all i ∈ Ck. It
is easily confirmed thatFRE

i (Ck, E, c) = ψγ(N, v, C). Thus,ψγ is an allocation rule such that
monetary entitlement of the players and the budget for the coalition is calculated by the Shapley
value and the weighted Shapley value, and then the rights-egalitarian solution is applied for an
allocation problem derived from(N, v, C).

One difference between the collective value and the other values such as the coalitional
value and the Shapley-Egalitarian solution is that in the definition above, each coalition, say
Ck, receivesShw

k (M, vC), i.e. thew-weighted Shapley value of the external game, instead of the
usual Shapley value. Further, the weights are the sizes of each coalition,i.e., wk = |Ck| for each
Ck ∈ C. From the definition, it is easily confirmed thatψγ satisfies

∑

i∈Ck

ψγ
i (N, v, C) = Shw

k (M, vC),

reflecting the asymmetries in the sizes of coalitions.
One may think that the definition of the collective value is a bid strange because it applies

inconsistent treatment between a negotiation among coalitions and a negotiation within a coali-
tion. However, this is not true; rather the collective value treats the two types of bargaining in
consistent manner in terms of the players’ sizes because in the subgame(Ck, v), the players in
Ck are equal in their sizes, and the weighted Shapley value with equal weights among the players
coincides with the Shapley value, that is,Shw(Ck, v) = Sh(Ck, v), givenwi = 1 for all i ∈ Ck.

To obtain a better understanding on a two-step interpretation ofψγ , we introduce a “re-
distribution game” defined below. Letφ be a solution onG andCk ∈ C. Define a function
vr(.|φ) : 2Ck → R by, for all S ⊆ Ck,

vr(S|φ) =
{

φk(M, vC) if S = Ck,
v(S) otherwise.

A game(Ck, v
r(.|φ)) is called aredistribution gamefor Ck over the coalitional bargaining sur-

plus at distribution ruleφ. Let (N, v, C) ∈ GC, Ck ∈ C, andM = {k : Ck ∈ C}. Let
w = (wk)k∈M with wk = |Ck| for anyk ∈ M . The following theorem is easily derived from
the definition ofψγ .

Theorem 4.1. For Ck ∈ C and fori ∈ Ck,

ψγ
i (N, v, C) = Shi(Ck, v

r(.|Shw)).

Proof. Define(Ck, u) by u(S) = Shw
k (M,vC) − v(Ck) if S = Ck andu(S) = 0 otherwise.

Then,vr(.|Shw) = v + u. Since the Shapley value satisfies the additivity,

Shi(Ck, v
r(.|Shw)) = Shi(Ck, v) + Shi(Ck, u).

Furthermore, since the Shapley value satisfies the symmetry and the efficiency,Shi(Ck, u) =
Shw

k (M,vC)−v(Ck)
|Ck| .
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Remark 4.1. The Owen’s coalitional value is also described as the Shapley value for the other
type of redistribution game. ForCk ∈ C, (Ck, v

c(.|φ)) is defined byvc(S|φ) = φk(M, vS
C ) for

all S ⊆ Ck where(M,vS
C ) is a game played by coalitions withCk being replaced byS ⊆ Ck.

That is, vS
C (H) =

⋃
h∈H Ch if k /∈ H and vS

C (H) =
⋃

h∈H\{k}Ch ∪ S if k ∈ H. Then,
CVi(N, v, C) = Shi(Ck, v

c(.|Sh)) holds (see, Owen 1977 and Winter 1992).

Remark 4.2. The Shapley-Egalitarian solution defined in Chapter 3 satisfies the following:

ψδ
i (N, v, C) = Shi(Ck, v

r(.|Sh))

for anyCk ∈ C and for anyi ∈ Ck.

4.3 Interpretations of the value and coalition structures

In this section, we consider an endogenous interpretation and an exogenous interpretation of
coalition structures and show that the collective value fits these interpretations.

4.3.1 A value onC-communication restricted situation

An exogenous interpretation of coalition structures is that they represent the some kinds of con-
straint on communication among players (see Aumann and Dreze 1974). Myerson (1977) con-
siders a situation that a communication between players is restricted on an undirected graph ofN
(such game is called a graph-restricted game). Myerson (1980) considers more generalized situ-
ation that there is a sequence of conferences in which players communicate with each other and
this communication restriction is expressed as the hyper-graph onN . Since Myerson’s works,
there are various kinds of research on games with restriction or constraint on communication
among players (e.g., a permission structure by Gilles, Owen, and van den Brink 1992; restricted
coalitions by Derks and Peters 1993; a weighted hyper-graph by Amer and Carreras 1995, 1997;
a probabilistic graph by Calvo, Lasaga, and van den Nouweland 1999; a partition system by
Bilbao 1998).

Along this line of research, Aumann and Dreze’s (1974) value, which is defined byADi(N, v, C) =
Shi(Ck, v) for all i ∈ Ck ∈ C, assumes a situation that a coalition structure describes a com-
munication restriction such that players in the same coalition communicate with each other,
but each coalition is physically separated. This situation is also described as the graph such
that each maximal component of the graph corresponds to a coalition in the coalition struc-
ture and each subgraph on the component is a complete graph. Thus, Aumann and Dreze’s
value coincides with the Myerson value for such a graph situation. However, this interpreta-
tion of coalition structure does not fit the view that players form coalitions for the division of
v(N) since Aumann and Dreze’s value does not satisfy the efficiency but the relative efficiency
(
∑

i∈N ADi(N, v, C) =
∑

k∈M v(Ck)). This motivates another view of communication restric-
tion by a coalition structure. i.e., theC-communication restricted situation defined in Chapter
3.

Let (N, vC) be aC-communication restricted game of(N, v, C). Then,ψγ is interpreted as a
value on theC-communication restricted game.

Theorem 4.2. Let (N, v, C) ∈ GC. For i ∈ N ,

ψγ
i (N, v, C) = Shi(N, vC).
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Proof. Take any orderθ ∈ Θ(N). Let θ[Ck] denote an order onCk induced fromθ such that
for any i, j ∈ Ck, θ[Ck](i) < θ[Ck](j) if and only if θ(i) < θ(j), and letθM denote an order
on M induced fromθ such that for anyk, h ∈ M , θM (k) < θM (h) if and only if there is a
player i ∈ Ch such thatθ(j) < θ(i) for all j ∈ Ck. According to marginal contributions in
C-communication restricted gamevC at orderθ, i ∈ Ck obtains, wheni is not the last in the
orderθ[Ck],

v(Aθ[Ck]
i ∪ i)− v(Aθ[Ck]

i ),

and wheni is the last in the order, he obtains

[v




⋃

h∈A
θM
k

Ch ∪ Ck


− v




⋃

h∈A
θM
k

Ch


]− v(Ck) + [v(Ck)− v(Ck − i)]

= mθM
k (M, vC)− v(Ck) + [v(Ck)− v(Ck − i)].

Because in the situation that eachθ ∈ Θ(N) occurs in equal probability,θ[Ck] coincides with
one order onCk in probability1/|Θ(Ck)|, thus irrelevant to the selection of the order, and each
i ∈ Ck has a equal probability to be the last, we have

Shi(N, vC) =
1
|Ck|

1
|θ(N)|

∑

θ∈Θ(N)

mθM
k (M,vC)− v(Ck)

|Ck| + Shi(Ck, v).

Thus, it suffices to show that 1
|θ(N)|

∑
θ∈Θ(N) mθM

k (M, vC) = Shw
k (M, vC).

We denote by Prob(·) the probability that some phenomena happen in the situation that each
θ ∈ Θ(N) occurs in equal probability1/|Θ(N)|. We will show that for any given orderσ ∈
Θ(M), Prob(θM = σ) isµw(σ) wherewk = |Ck| for eachk ∈ M . For simplifying explanation,
let σ = (σ1, . . . , σm) be (1, . . . , m). First, we consider the probability thatθM (m) coincides
with σm = m, that is,Prob(θM (m) = m). Since this probability is equal to the probability that
some player inCm is the last position in orderθ, we obtain

Prob (θM (m) = m) =
|Cm|
|N | =

wm∑
h∈M wh

.

Further, assume thatProb (θM (h) = h, h = k + 1, . . . ,m) = Πm
h=k+1

whPh
h′=1 wh′

. Then, pro-

vided thatθM (h) = h, h = k + 1, . . . , m, the conditional probability thatθM (k) coincides with
k is

|Ck|∑k
h′=1 |Ch′ |

=
wk∑k

h′=1 wh′
,

because this probability is equal to the probability that somei ∈ Ck is the last player in the order
that players inCh, h = k + 1, . . . ,m are extracted from. Thus,

Prob (θM (h) = h, h = k, . . . ,m) = Prob (θM (h) = h, h = k + 1, . . . ,m)
× Prob (θM (k) = k | θM (h) = h, h = k + 1, . . . ,m)

= Πm
h=k

wh∑h
h′=1 wh′

.

Therefore, repeating this, we obtainProb(θM = σ) = Πm
h=1

whPh
h′=1 wh′

= µw(σ).
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Thus, we have

∑

θ∈Θ(N)

1
|Θ(N)|m

θM
k (M, vC) =

∑

σ∈Θ(M)

µw(σ)mσ
k(M, vC) = Shw

k (M,vC).

Remark 4.3. The Shapley Egalitarian solution,ψδ, satisfies the following: Given(N, v, C) ∈
GC, let w = (wi)i∈N be such thatwi = 1

|Ck| for i ∈ Ck ∈ C. Then,

ψδ(N, v, C) = Shw(N, vC).

4.3.2 An endogenous interpretation of a coalition structure

Aumann and Dreze (1974) consider that one of the transparent explanations for the formation
of coalition structures from games themselves is by the lack of the superadditivity (see the dis-
cussion of their paper). However, from the viewpoint that players form coalition structures for
the bargaining of division ofv(N), we have to introduce another endogenous argument for the
formation of coalition structures.

Let (N, v) ∈ G. A coalition S is called a partnership in(N, v) if for any T ( S and for
anyR ⊆ N \ S, v(T ∪ R) = v(R). Further,S is called a quasi-partnership in(N, v) if for any
T ( S and for anyR ⊆ N \ S, v(T ∪R) = v(T ) + v(R). Thus, players in a quasi-partnership
coalitionT seem to have some rationale to act together because otherwise, they can not generate
an additional surplus from cooperation with players outsideT .

Let (N, v) be a game andC be a coalition structure onN . Then, C is called aquasi-
partnership decompositionwith respect tov if every Ck ∈ C is a quasi-partnership in(N, v).
The next theorem indicates thatψγ is consistent with this endogenous view of the coalition
structure and the allocation of the Shapley value.

Theorem 4.3. Let (N, v, C) ∈ GC. If C is a quasi-partnership decomposition with respect tov,
then

Sh(N, v) = ψγ(N, v, C).

Proof. If (N, v) = (N, vC), Theorem 4.2 implies thatSh(N, v) = Sh(N, vC) = ψγ(N, v, C).
Thus, it suffices to show(N, v) = (N, vC). For anyS ⊆ N ,

vC(S) = v(
⋃

Ck∈C(S)

Ck) +
∑

T∈C0(S)

v(T )

= v(S)

where the first equality is by the definition ofvC and the second is by the quasi-partnership of
Ck ∈ C.

4.4 A potential function for games with coalition structures

Hart and Mas-Colell (1989) are the first to introduce a concept of a potential to cooperative
game theory and show that a potential for a game exists (with an additional condition of the
normalization, it is unique) and it derives the Shapley value. After Hart and Mas-Colell, the
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concept of potential was introduced to a non-cooperative game by Monderer and Shapley (1996)
and has been considered for a cooperative game with several frameworks such as a game with a
coalition structure by Winter (1992), a partition system by Bilbao (1998), a finite type continuum
by Calvo and Santos (1997). Calvo and Santos (1997) also characterized the family of solutions
which admitted a potential function.

Let P denote a real valued function onG which is normalized toP (∅, v) = 0. Given
(N, v) ∈ GC andi ∈ N , define a marginal contribution of playeri relative toP by

DiP (N, v) = P (N, v)− P (N − i, v).

Thus, this marginal contribution is the difference of two situations measured byP where player
i is there and he leaves. FunctionP is called apotentialfor games if it satisfies

v(N) =
∑

i∈N

DiP (N, v)

for any (N, v) ∈ GC. Thus, a potential function is such that the allocation of marginal contri-
butions (according to the potential function) always adds up exactly to the worth of the grand
coalition. Hart and Mas-Colell (1989) show (in theorem A, p591) that (i) potential functionP is
uniquely determined, and (ii) the marginal contribution vector relative to the potential coincides
with the Shapley value payoff vector,i.e., DiP (N, v) = Shi(N, v) for all i ∈ N .

They also consider a non-symmetric generalization of a potential approach. Letw = (wi)i be
a collection of the positive weights andPw denote a real-valued function onG with Pw(∅, v) =
0. FunctionPw is called thew-weighted potentialif it satisfies

v(N) =
∑

i∈N

wiDiP (N, v)

for any (N, v) ∈ G. They show (in theorem 5.2, p603) that (i)w-weighted potential function
Pw is uniquely determined, and (ii) the marginal contribution relative to the potential multiplied
by the corresponding weight coincides with thew-weighted Shapley value,i.e., wiDiP (N, v) =
Shw

i (N, v) for anyi ∈ N .
According to Calvo and Santos (1997) and Bilbao (1998), a potential function for a game

with a restricted communication is Hart and Mas-Colell’s potential function (hereafter, the HM
potential function. Similarly we use the term, the HMw-weighted potential function.) for the
corresponding game which is appropriately defined to reflect the restriction on communication.
Thus, the next theorem is an immediate consequence of Theorem 4.2.

Theorem 4.4. LetP : G→ R denote the HM potential function. Then, given any(N, v, C),
ψγ

i (N, v, C) = DiP (N, vC) = P (N, vC)− P (N − i, vC)

for anyi ∈ N .

Bilbao (1998) also shows (in theorem 2, p135) that given a partition system(N,F), for
S ⊆ N with S /∈ F ,

P (S, vF ) =
∑

T∈ΠS

P (T, vF ).

Hence, this result together with(N, vC) = (N, vFC) by Proposition 4.1 implies that fori ∈ Ck ∈
C,

DiP (N, vC) = P (N, vC)− P (N \ Ck, v
C)− P (Ck − i, vC). (4.1)
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The next proposition gives another formula ofP (N, vC) which seems to describe the restric-
tion of communication byC and which is specific expression of the potential for the particular
subclass of games with permission systems, which is different from the class Bilbao (1998)
mainly considers.

Proposition 4.1. Let (N, v, C) ∈ GCandM = {k : Ck ∈ C}. Define a game(M, u) by

u(L) = v(
⋃

k∈L

Ck)−
∑

k∈L

v(Ck) +
∑

k∈L

|Ck|P (Ck, v)

for eachL ⊆ M . Then,
P (N, vC) = Pw(M,u),

wherePw is the HMw-weighted potential function andw = (wk)k∈M is such thatwk = |Ck|
for anyk ∈ M .

Proof. Let (N, v, C) ∈ GC be given. PutM = {k : Ck ∈ C}. The proof proceeds by the way of
mathematical induction of the number of|M |. For anyCk ∈ C,

P (Ck, v
C) = P (Ck, v) =

1
|Ck|u({k}) = Pw({k}, u),

where the first equality is by(Ck, v
C) = (Ck, v), the second is by the definition ofu, and the last

is by the definition of the HMw-weighted potential function andwk = |Ck|.
Assume that for anyL ( M and N ′ =

⋃
k∈L Ck, P (N ′, vC) = Pw(L, u) holds. We

consider the case for(N, vC). By the definition of the potential function,

v(
⋃

k∈M

Ck) = v(N)

=
∑

i∈N

DiP (N, vC)

=
∑

k∈M

∑

i∈Ck

(
P (N, vC)− P (N \ Ck, v

C)− P (Ck − i, vC)
)

=
∑

k∈M

|Ck|
(
P (N, vC)− P (N \ Ck, v

C)
)

−
∑

k∈M

|Ck|P (Ck, v
C) +

∑

k∈M

∑

i∈Ck

(P (Ck, v
C)− P (Ck − i, vC))

=
∑

k∈M

|Ck|
(
P (N, vC)− P (N \ Ck, v

C)
)

−
∑

k∈M

|Ck|P (Ck, v
C) +

∑

k∈M

∑

i∈Ck

Shi(Ck, v
C)

=
∑

k∈M

|Ck|
(
P (N, vC)− P (N \ Ck, v

C)
)−

∑

k∈M

|Ck|P (Ck, v) +
∑

k∈M

v(Ck),

where the third equality is by Equation (4.1), the second last equality is by one of the properties
of the HM potential function, and the last is by the efficiency of the Shapley value and(Ck, v

C) =
(Ck, v). Hence we obtain

∑

k∈M

|Ck|
(
P (N, vC)− P (N \ Ck, v

C)
)

= v(
⋃

k∈M

Ck) +
∑

k∈M

|Ck|P (Ck, v)−
∑

k∈M

v(Ck),
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By the assumption of the induction and the definition ofu, this is equivalent to
∑

k∈M

wk

(
P (N, vC)− Pw(M \ {k}, u)

)
= u(M),

wherewk = |Ck| for anyk ∈ M . Therefore the uniqueness of the weighted potential implies
P (N, vC) must bePw(M, u).

Thus, the above proposition shows that the potential for(N, v, C) is expressed as thew-
HM potential function for a game(M,u) which is a linear transformation of the external game
(M, vC) on the utility space of the players. That is, for anyL ⊆ M , u(L) = αvC(L)+

∑
k∈L βk

whereα = 1 andβk = |Ck|P (Ck, v) − v(Ck) for eachk ∈ L. Because the HMw-weighted
potential function is independent of the linear transformation in the sense thatPw(N,αv +β) =
αPw(N, v) +

∑
i∈N (βi/wi),2 we therefore conclude

P (N, vC) = Pw(M,u) = Pw(M, vC) +
∑

k∈M

(
P (Ck, v)− v(Ck)

|Ck|
)

wherewk = |Ck| for anyk ∈ M .

4.5 Axiomatic characterizations

4.5.1 Collective balanced contributions

The balanced contributions property for the Shapley value was first considered by Myerson
(1980). It means that any two players’ marginal contributions to the other measured by the
Shapley value balance. Formally, the Shapley value satisfies, given two playersi ∈ N and
j ∈ N , Shi(N, v) − Shi(N − j, v) = Shj(N, v) − Shj(N − i, v). Myerson (1980) shows that
efficiency and this property characterize the Shapley value.

Extensions of the balanced contributions to a game with a coalition structure is considered by
Calvo, Lasaga, and Winter (1996). They introduce two counterparts of the balanced contributions
to that case and show that a unique efficient solution onGC satisfying these two properties is the
Owen’s coalitional value. These two are:

Individual Balanced Contributions: For i ∈ Ck andj ∈ Ck, Ck ∈ C,

ψi(N, v, C)− ψi(N − j, v, C − j) = ψj(N, v)− ψj(N − i, v, C − i)

where fori ∈ Ck ∈ C, C − i = C \ {Ck} ∪ {Ck − i}.
Coalitional Balanced Contributions: ForCk ∈ C and forCh ∈ C,
∑

i∈Ck

(ψi(N, v, C)− ψi(N \ Ch, v, C \ {Ch})) =
∑

i∈Ch

(ψi(N, v, C)− ψi(N \ Ck, v, C \ {Ck})) .

We introduce different extensions of the balanced contributions for games with coalition
structures. One is just the same requirement as the condition for the Shapley value, and the
other is interpreted as an intermediate between Individual Balanced Contributions and Coali-
tional Balanced Contributions in the sense that “balance” is judged in the individual level, and
contributions of a group instead of contributions of an individual are considered.

2Givenα ∈ R andβ ∈ RN , a game(N, αv +β) is defined by(αv +β)(S) = αv(S)+
P

i∈S βi for all S ⊆ N .
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Balanced Contributions: For i ∈ N andj ∈ N ,

ψi(N, v, {N})− ψi(N − j, v, {N − j}) = ψj(N, v, {N})− ψj(N − i, v, {N − i}).

Collective Balanced Contributions: For everyi ∈ Ck ∈ C and for everyj ∈ Ch ∈ C, Ck 6= Ch,

ψi(N, v, C)− ψi(N \ Ch, v, C \ {Ch}) = ψj(N, v, C)− ψj(N \ Ck, v, C \ {Ck}).

Since(N, v, {N}) is looked as the same situation as(N, v),3 Balanced Contributions is
the same requirement as the one which the Shapley value satisfies, and thus we use the same
name. Collective Balanced Contributions requires that ‘my group’s contribution for your payoff
measured by the solution balances with your group’s contribution for my payoff measured by the
solution.’

On the relationship between our axioms and ones of Calvo, Lasaga, and Winter (1996),
Individual Balanced Contributions implies Balanced Contributions. Collective Balanced Contri-
butions induces Coalitional Balanced Contributions only if|Ck| = |Ch|. However, in general,
there is no general relationship between Collective Balanced Contributions and Coalitional Bal-
anced Contributions. The next proposition shows thatψγ satisfies Balanced Contributions and
Collective Balanced Contributions instead of Individual Balanced Contributions and Coalitional
Balanced Contributions.

Proposition 4.2. ψγ satisfies Balanced Contributions and Collective Balanced Contributions.

Proof. First consider the case of|C| = 1. By definition ofψγ , ψγ(N, v, {N}) = Sh(N, v)
holds. We obtain the desired result because of the result of Myerson (1980).

Next we consider the case of|C| = 2. Note that by the definition ofC-communication
restricted game,(N \ Ck, v

C) which is a subgame of(N, vC) on N \ Ck, coincides with(N \
Ck, v

C\{Ck}) which isC\{Ck}-communication restricted game for game(N\{Ck}, v, C\{Ck}).
By Theorem 4.2, the property of the HM potential function and Equation (4.1), we have

ψγ
i (N, v, C)−ψγ

i (N \ Ch, v, C \ {Ch})
= Shi(N, vC)− Shi(N \ Ch, vC)

= P (N, vC)− P (N \ Ck, v
C)− P (Ck − i, vC)

− (
P (N \ Ch, vC)− P (N \ (Ck ∪ Ch), vC)− P (Ck − i, vC)

)

= P (N, vC)− P (N \ Ck, v
C)− (

P (N \ Ch, vC)− P (N \ (Ck ∪ Ch), vC)
)

= P (N, vC)− P (N \ Ch, vC)− (
P (N \ Ck, v

C)− P (N \ (Ck ∪ Ch), vC)
)

= P (N, vC)− P (N \ Ch, vC)− P (Ch − j, vC)

− (
P (N \ Ck, v

C)− P (N \ (Ck ∪ Ch), vC)− P (Ch − j, vC)
)

= Shj(N, vC)− Shj(N \ Ck, v
C)

= ψγ
j (N, v, C)− ψγ

j (N \ Ck, v, C \ {Ck}).

This proposition means that, by the definition ofψγ , for everyCk ∈ C and for everyCh ∈ C,

Shw
k (M,vC)− Shw

k (M \ {h}, vC)
|Ck| =

Shw
h (M,vC)− Shw

h (M \ {k}, vC)
|Ch| .

3In fact, all the values for games with coalition structures considered in this chapter,AD, CV, ψδ, andψγ , for
(N, v, {N}) coincide with the Shapley value for(N, v).
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This is the special case of the properties of thew-weighted Shapley value: For(N, v) ∈ G, its
weight(wi)i∈N , and for everyi, j ∈ N ,4

Shw
i (N, v)− Shw

i (N \ {j}, v)
wi

=
Shw

j (N, v)− Shw
j (N \ {i}, v)

wj
.

Next theorem shows that Balanced Contributions and Collective Balanced Contributions are
almost sufficient to characterizeψγ .

Theorem 4.5. ψγ is a unique efficient solution satisfying the following two properties:

(i) Balanced Contributions.
(ii) Collective Balanced Contributions.

Proof. We have known thatψγ satisfies efficiency, Balanced Contributions and Collective Bal-
anced Contributions. Hence we will show the converse.

Letψ be an efficient solution satisfying these two axioms. Fix(N, v, C) ∈ GC. We first show
thatψ coincides with the Shapley value when|C| = 1 or n. When|C| = n, Collective Balanced
Contributions coincides with balanced contributions. Because of the result of Myerson (1980),
ψ(N, v, [N ]) = Sh(N, v) where[N ] = {{i} : i ∈ N}. Moreover, by Balanced Contributions,
the same argument means thatψ(N, v, {N}) = ψ(N, v, [N ]) = Sh(N, v).

Next we show the following claims.

Claim 1: For allCk ∈ C,
∑

i∈Ck

ψi(N, v, C) = |Ck|DkP
w(M, vC) (4.2)

wherePw is the HMw-weighted potential function with weight vectorw = (wk)k∈M such that
wk = |Ck| for eachk ∈ M .

Let (Ck, v, {Ck}) be a subgame of(N, v, C) to coalitionCk. Then the left hand side of (4.2)
is ∑

i∈Ck

ψi(Ck, v, {Ck}) = v(Ck)

by the efficiency ofψ. The right hand side of (4.2) is

|Ck|DkP
w({k}, vC) = |Ck|v(Ck)

|Ck| = v(Ck).

Thus, condition (4.2) holds true for any subgame(Ck, v, {Ck}) of (N, v, C).
We assume that (4.2) is satisfied for any(N ′, v, C′) such thatL ( M , N ′ = ∪k∈LCk and

C′ = {Ck : k ∈ L}. We now show that it holds true for(N, v, C).
Condition (4.2) is equivalent to

∑

i∈Ck

ψi(N, v, C) = |Ck|(Pw(M, vC)− Pw(M \ {k}, vC)).

Equivalently,

Pw(M, vC) =

∑
i∈Ck

ψi(N, v, C)
|Ck| + Pw(M \ {k}, vC).

4This property is pointed out in Hart and Mas-Colell (1989) and Amer and Carreras (1997).
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We show that
P

i∈Ck
ψi(N,v,C)
|Ck| + Pw(M \ {k}, vC) does not depend onk ∈ M . Take any

Ck ∈ C andCh ∈ C, Ck 6= Ch. Then,
∑

i∈Ck
ψi(N, v, C)
|Ck| + Pw(M \ {k}, vC)−

(∑
j∈Ch

ψj(N, v, C)
|Ch| + Pw(M \ {h}, vC)

)

equal
∑

i∈Ck
ψi(N, v, C)
|Ck| −

∑
j∈Ch

ψj(N, v, C)
|Ch| +

(
Pw(M \ {k}, vC)− Pw(M \ {h}, vC)

)
. (4.3)

The bracketed terms in (4.3) equals

Pw(M \ {k}, vC)− Pw(M \ {k, h}, vC)−
(
Pw(M \ {h}, vC)− Pw(M \ {k, h}, vC)

)
.

By the definition of operatorD and the induction hypothesis,

=DhPw(M \ {k}, vC)−DkP
w(M \ {h}, vC)

=

∑
j∈Ch

ψj(N \ Ck, v, C \ {Ck})
|Ch| −

∑
i∈Ck

ψi(N \ {Ch}, v, C \ {Ch})
|Ck| .

Substitute the above for the bracketed terms in (4.3), and we obtain

∑
i∈Ck

ψi(N, v, C)
|Ck| −

∑
j∈Ch

ψj(N, v, C)
|Ch|

+

∑
j∈Ch

ψj(N \ Ck, v, C \ {Ck})
|Ch| −

∑
i∈Ck

ψi(N \ {Ch}, v, C \ {Ch})
|Ck| .

Note that by Collective Balanced Contributions,ψi(N, v, C) − ψi(N \ {Ch}, v, C \ {Ch}) =
ψj(N, v, C) − ψj(N \ {Ck}, v, C \ {Ck}) is constant for everyi ∈ Ck and for everyj ∈ Ch.
Hence the above expression is zero and thus, (4.3) equals zero.

Therefore for some real numberK which does not depend onk ∈ M ,
∑

i∈Ck
ψi(N, v, C)
|Ck| + Pw(M \ {k}, vC) = K

holds true for anyk ∈ M .
Then by efficiency ofψ, we obtain that

vC(M) = v(N) =
∑

k∈M

∑

i∈Ck

ψi(N, v, C) =
∑

k∈M

|Ck|(K − Pw(M \ {k}, vC))

ThereforeK is exactly the HMw-weighted potential functionPw(M, vC) because of its unique-
ness.

Next we show the following claim.

Claim 2: ψi(N, v, C) = C̄ + ψi(Ck, v, {Ck}) for all i ∈ Ck whereC̄ is a real number which
does not depend oni ∈ Ck.

We prove Claim 2 by the induction on the cardinality ofC. When|C| = 1, this is obvious
because we simply put̄C = 0.
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Assume that the claim holds true when the number of elements inC is less thanm (m = 2).
For (N, v, C) such that|C| = m, by Collective Balanced Contributions, givenCh ∈ C, we have

ψi(N, v, C)− ψi(N \ Ch, v, C \ {Ch}) = C̄1 for everyi ∈ Ck, Ck 6= Ch

By the assumption of the induction, the left hand side of the above equation is

ψi(N, v, C)− (C̄2 + ψi(Ck, v, {Ck})),

whereC̄2 is constant for alli ∈ Ck. Therefore we obtain

ψi(N, v, C) = C̄1 + C̄2 + ψi(Ck, v{Ck}) = C̄ + ψi(Ck, v, {Ck}).

This is the desired result.

By Claim 1, we know that the summation ofψi(N, v, C) overi ∈ Ck is exactly|Ck|DkP
w(M, vC) =

Shw
k (M, vC). Then we conclude that

C̄ =
Shw

k (M, vC)−
∑

i∈Ck
ψi(Ck, v, {Ck})

|Ck| =
Shw

k (M,vC)− v(Ck)
|Ck|

by efficiency ofψ. Therefore ifψi(Ck, v, {Ck}) is uniquely determined,ψ(N, v, C) is also
determined. However when|C| = 1, we have shown thatψ equals the Shapley valueSh. Hence
we obtain

ψi(N, v, C) =
Shw

k (M, vC)− v(Ck)
|Ck| + Shi(Ck, v).

As in the proof of Theorem 4.5, Balanced Contributions is necessary only to prove that if
C = {N}, the solution coincides with the Shapley value for(N, v). Thus the following theorems
also hold.

Theorem 4.6. ψγ is a unique efficient solution satisfying the following two properties:

(i) ψ(N, v, {N}) = Sh(N, v) for all (N, v) ∈ G.
(ii) Collective Balanced Contributions.

Theorem 4.7. ψγ is a unique efficient solution satisfying the following two properties:

(i) Coincidence between the Grand and the Singleton Coalition Structure: For all(N, v) ∈ G,
ψ(N, v, {N}) = ψ(N, v, [N ]),
(ii) Collective Balanced Contributions.

4.5.2 Additivity

In this subsection, we provide an axiomatization ofψγ through the additivity axiom. Letψ be a
solution onGC. Let (N, v, C), (N, v′, C) ∈ GC.

Theorem 4.8. ψγ is a unique efficient solution onGCsatisfying the following four axioms.

(i) Additivity: ψ(N, v, C) + ψ(N, v′, C) = ψ(N, v + v′, C), where(v + v′)(S) = v(S) + v′(S)
for all S ⊆ N .
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(ii) Equal Power of Partnership Members: IfT ⊆ N is a partnership in(N, v) andM ′ = {k ∈
M : Ck ∩ T 6= ∅} is also a partnership in(M, vC), thenψi(N, v, C) = ψj(N, v, C) for any
i, j ∈ T .

(iii) Internal Equity: If i ∈ Ck and j ∈ Ck are symmetric in(Ck, v), thenψi(N, v, C) =
ψj(N, v, C).
(iv) Coalitional Null Player: IfCk is a dummy coalition (i.e.,k is a dummy player in(M, vC))
andi ∈ Ck is a null player in(N, v), thenψi(N, v, C) = 0.

Equal Power of Partnership Members says that all the members of partnershipT obtain the
equal payoff if its projection onM is also a partnership in(M, vC). TheextendedShapley value
defined bySh(N, v, C) = Sh(N, v) satisfies Equal Power of Partnership Members because all
the players inT are symmetric in(N, v) and the Shapley value assigns equal payoff to symmetric
players.

Internal Equity and Coalitional Null Player are the axioms introduced in Chapter 3 which
togethering with efficiency and Additivity characterizeψδ. Internal Equity is stronger than the
restricted equal treatment property which both the extended Shapley value and the Owen’s coali-
tional value satisfy. Coalitional Null Player is weaker than the usual null player axiom. Further-
more the extended Shapley value satisfies the all the properties except for Internal Equity and
the Owen’s coalitional value does not satisfy Equal Power of Partnership Members nor Internal
Equity.

Compared with Theorem 3.1 that characterizes the Shapley-Egalitarian solution, the differ-
ences between the collective value and the Shapley-Egalitarian solution lies in the axioms of
Equal Power of Partnership Members and Coalitional Symmetry. More clearly, the collective
value does not treat symmetric coalitions equally. Instead, the collective value requires that even
the two players in the different coalitions should be treated equally if they are in the relation
described by the partnership.

The next lemma is from Kalai and Samet (1987).

Lemma 4.1. Let w ∈ RN
++ be a weight vector ofN . If T is a partnership in(N, v), then

Shw
i (N, v)/wi = Shw

j (N, v)/wj for all i, j ∈ T .

Proof. See the proof of Theorem 2 of Kalai and Samet (1987).

Lemma 4.2. Let φ be an efficient solution onG such that it satisfies the symmetry and the null
player axioms. Letψ be a two step solution onG defined by

ψi(N, v, C) =
Shw

k (M, vC)− v(Ck)
|Ck| + φi(Ck, v).

for all (N, v, C) ∈ G and for all i ∈ Ck ∈ C, wherew = (wk)k∈M is such thatwk = |Ck| for
all k ∈ M . Then,ψ satisfies Equal Power of Partnership Members.

Proof. Let T ⊆ N be a partnership in(N, v) andM ′ = {k ∈ M : Ck ∩ T 6= ∅} be also a
partnership in(M, vC). Let k ∈ M ′.

Suppose|M ′| = 2. SinceT is a partnership in(N, v), v(S ∪C) = v(S) for anyS ⊆ Ck \T
andC ⊆ T ∩Ck ( T . Thus, for anyS ⊆ Ck, v(S) = v(S ∩ (Ck \T )) and thus, anyi ∈ T ∩Ck

is a null player in subgame(Ck, v). Soφi(Ck, v) = 0 for anyi ∈ T ∩Ck sinceφ satisfies the null

player axiom. Becausewk = |Ck| for anyk ∈ M , Shw
k (M,vC)
|Ck| = Shw

h (M,vC)
|Ch| for anyk, h ∈ M ′
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by Lemma 4.1. By the partnership ofM ′ in (M, vC), vC({k}) = v(Ck) = 0 for eachk ∈ M ′.
Thusψi(N, v, C) = ψj(N, v, C) holds for anyi, j ∈ T .

Suppose|M ′| = 1. SinceT ⊆ Ck is a partnership in(N, v), all the players inT are
symmetric in(N, v) and, of course, they are symmetric in(Ck, v). Thusφi(Ck, v) is constant
overi ∈ T . Henceψ satisfies Equal Power of Partnership Members.

Proof of Theorem 4.8. From Lemma 4.2, we have shown thatψγ satisfies Equal Power of
Partnership Members since the Shapley value satisfies the symmetry and the null player axioms.
Furthermore, it is easy to check that it satisfies axioms (i), (iii) and (iv) by its definition.

Next we show the converse part. Letψ be an efficient solution onGC which satisfies ax-
ioms (i) to (iv). Let (N, v, C) ∈ GC. Sinceψ satisfies Additivity, it is sufficient to show that
ψ(N, cuT , C) is uniquely determined for anyT ⊆ N , wherec ∈ R andcuT is a scalar multiple
of uT by c. Let D = {k ∈ M : Ck ∩ T 6= ∅}. SinceCk ∈ C, k /∈ D, is a dummy coalition and
i ∈ Ck is a null player,ψi(N, cuT , C) = 0 by Coalitional Null Player. Furthermore, efficiency
means that

∑
k∈D

∑
i∈Ck

ψi(N, cuT , C) = c.
ClearlyT is a partnership in(N, cuT ) andD is also a partnership in(M, (cuT )C). Therefore

ψi(N, cuT , C) = ψj(N, cuT , C) for all i, j ∈ T by Equal Power of Partnership Members.
Case a:|D| = 1. Letk ∈ D. SinceCk is a dummy coalition andi ∈ Ck \T is a null player,

ψi(N, cuT , C) = 0 by Coalitional Null Player. Furthermore,ψi(N, cuT , C) = c
|T | for all i ∈ T .

Case b: |D| = 2. For eachCk ∈ C, k ∈ D, i ∈ Ck andj ∈ Ck are symmetric in(Ck, v).
Thereforeψi(N, cuT , C) = ψj(N, cuT , C) by Internal Equity. Moreoverψi(N, cuT , C) =
ψj(N, cuT , C) for i ∈ T ∩ Ck and for j ∈ T ∩ Ch. As a result, for anyi ∈ ∪k∈DCk,
ψi(N, cuT , C) = cP

h∈D |Ch| .

Remark 4.4. The efficiency of a solution is derived from the four axioms in Theorem 4.8. In fact,
consider a solutionψ satisfying these four. The main logic is similar to Theorem 8.1.3 of Peleg
and Sudḧolter (2003). Let(N, v0) be zero-game such thatv0(S) = 0 for anyS ⊆ N andC be a
coalition structure onN . Then,ψ(N, v0, C) must be0N ∈ RN by Coalitional Null Player. Let
(N, v, C) ∈ GC. By Additivity,ψ(N, v, C)+ψ(N,−v, C) = ψ(N, v−v, C) = ψ(N, v0, C) = 0N

and thus,ψ(N, v, C) = −ψ(N,−v, C) holds. Since the payoff proposed by a solution must
be feasible,

∑
i∈N ψi(N, v, C) 5 v(N) and

∑
i∈N ψi(N, v, C) = −∑

i∈N ψi(N,−v, C) =
−(−v(N)). Thus,

∑
i∈N ψi(N, v, C) = v(N) holds.

Example 4.1. The following solutions show the independence of each axiom from the others
(except the efficiency) in Theorem 4.8. Let(N, v, C) ∈ GC.

(i) Consider a solutionψn defined by

Shw
k (M, vC)− v(Ck)

|Ck| + Nui(Ck, v)

wherew ∈ RM
++ is such thatwk = |Ck| andNu is the nucleolus introduced by Schmeidler

(1969). SinceNu satisfies the symmetry and the null player axioms,ψn satisfies Equal
Power of Partnership Member by Lemma 4.2. Moreover,ψn satisfies Internal Equity and
Coalitional Null Player sinceNu satisfies the symmetry and the null player axioms, but it
does not satisfy the additivity becauseNu does not satisfy the additivity.

(ii) ψδ is characterized by Additivity, Internal Equity, Coalitional Null Player and Coalitional
Symmetry which is defined by, ifk ∈ M and h ∈ M are symmetric in(M,vC), then∑

i∈Ck
ψi(N, v, C) =

∑
i∈Ch

ψi(N, v, C). Sinceψδ and ψγ are the different solutions,
Equal Power of Partnership Members is independent of the other axioms.
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(iii) The extended Shapley value satisfies all the axioms except for Internal Equity.

(iv) The Egalitarian value defined byψe
i (N, v, C) = v(N)

|N | for all i ∈ N satisfies all the axioms
except for Coalitional Null Player.

4.6 Concluding remarks

Recently, Vidal-Puga (2005b) considered another value on games with coalition structures from
a viewpoint of non-cooperative bargaining among the players. This solution also satisfies the
condition that the sum of the payoffs of the players inCk coincides with the weighted Shapley
value of playerk for the external game with coalition-size weights. Vidal-Puga (2005b) states
that a generation of coalition size weights is due to “right to talk” of players. In contrast, in this
chapter, we show that the generation of coalition size weights is due to communication restriction
by coalitions.

Our solution can be extended to games with levels structures introduced by Winter (1989).
Levels structure onN is a finite sequence of coalition structures,C0, . . . , Cl with C0 = [N ] and
Cl = {N} such that ifk < h, Ck is a finer coalition structure thanCh. Consider the levels
structure for six person game described by Table 4.1. Then, the payoff for player1 is calculated
as the following way.

level coalition structure
3 C3 {{1, 2, 3, 4, 5, 6}}
2 C2 {{1, 2, 3}, {4, 5}, {6}}
1 C1 {{1, 2}, {3}, {4}, {5}, {6}}
0 C0 {{1}, {2}, {3}, {4}, {5}, {6}}

Table 4.1: Levels structure onN = {1, 2, 3, 4, 5, 6}

First, in level C2, coalitions{1, 2, 3}, {4, 5} and {6} bargain for the division ofv(N).
As a result, coalition{1, 2, 3} obtainsShw

1 (M2
1 , vC2) whereM2

1 = {1, 2, 3} and w1 = 3,
w2 = 2 andw3 = 1. Then, player1 receives his dividend for this bargaining surplus, that

is,
Shw

1 (M2
1 ,vC2 )−v({1,2,3})
|{1,2,3}| . Next, in levelC1, coalitions{1, 2} and{3} bargain for the division

of v({1, 2, 3}) and{1, 2} obtainsShw
1 (M1

1 , vC1) whereM1
1 = {1, 2} andw1 = 2 andw2 = 1.

Player1 receives
Shw

1 (M1
1 ,vC1)−v({1,2})
|{1,2}| . Finally, in levelC0, players1 and2 bargain for the divi-

sion ofv({1, 2}) and player1 obtainsSh1({1, 2}, v). Therefore, the payoff for player1 is

Shw
1 (M2

1 , vC2)− v({1, 2, 3})
|{1, 2, 3}| +

Shw
1 (M1

1 , vC1)− v({1, 2})
|{1, 2}| + Sh1({1, 2}, v).

Generally, let(N, v,L) be a game with levels structure where(N, v) ∈ G andL = {C0, . . . , Cl}
is a levels structure onN . For eachk = 0, . . . , l, let Ck = {Ck

1 , . . . , Ck
mk
} and Mk =

{1, . . . ,mk}. For giveni ∈ N , let i(k) denote a coalitional index of coalition of levelk which
player i belongs to,i.e., Ck

i(k) ∈ Ck and i ∈ Ck
i(k). Further, putMk

i = {h ∈ Mk : Ck
h ⊆

Ck+1
i(k+1)} andwk

h = |Ck
h | for all h ∈ Mk

i . Of course,i(k) ∈ Mk
i . Let (Mk

i , vCk) be a subgame

of (Mk, vCk) onMk
i .
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Definition 4.2. A valueψγ for (N, v,L) is defined by

ψγ
i (N, v,L) =

l−1∑

k=0

Shwk

i(k)(M
k
i , vCk)− v(Ck

i(k))

|Ck
i(k)|

+ v({i})

=
l−1∑

k=1

Shwk

i(k)(M
k
i , vCk)− v(Ck

i(k))

|Ck
i(k)|

+ Shi(C1
i(1), v)

for all i ∈ N .
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Chapter 5

Bidding for social alternatives

5.1 Introduction

In the recent literature on the implementation of a solution concept established in cooperative
game theory, the mechanisms based on individuals’ bids have been intensively explored. In the
pioneering work of Ṕerez-Castrillo and Wettstein (2001), they formulated the mechanism involv-
ing bidding stage where each individual is required to reveal payable bids to each of the other
individuals in exchange for becoming a proposer in the subsequent stages, and they showed that
in its subgame perfect equilibrium the Shapley value is realized as a final payoff to each individ-
ual. In another paper, Pérez-Castrillo and Wettstein (2005) also provided the mechanism which
generates efficient network formation and proved that the payoff to the individuals coincide with
the Shapley value in suitably defined cooperative game. Vidal-Puga and Bergantinos (2003) dis-
cussed the extension of this mechanism and succeeded in establishing the implementation of the
Owen value. In the context of a local public goods economy, Mutuswami, Pérez-Castrillo, and
Wettstein (2004) proposed the mechanism which ensures an efficient outcome and proved that
their mechanism realizes the Shapley value in an appropriately defined cooperative game. Fi-
nally, in the context network allocation problem, Slikker (2007) applied the bidding mechanism
to implement network allocation rules such as the Myerson value, the position value, and the
component-wise egalitarian solution.

The purpose of this chapter is to examine possible applications of the bidding mechanism
in the context of collective choice problem of social alternatives. Examples include a location
of public facility such as a public school, a disposal center, and a nuclear-related equipment.
We consider a standard quasi-linear environment with finite social alternatives that affects all
of individuals in a society. The two companion papers of Pérez-Castrillo and Wettstein (2000,
2002) are the first to discuss such a collective choice problem. In their papers, they analyzed
how to choose a single alternative among all the individuals’ most favorite ones and provided a
one-stage bidding mechanism that can always realize an efficient proposal. In the present paper,
we consider a slightly generalized group decision problem in the sense that feasible alternatives
are not restricted to individuals’ most favorite ones. In a quasi-linear environment, as considered
in the papers of Ṕerez-Castrillo and Wettstein, a concept of an efficiency is given as the maxi-
mization of sum of individuals’ utilities. Assuming that the individuals’ are self-regarding utility
maximizers, there is no guarantee that individuals’ proposals are socially efficient ones, and thus
the realized social alternative is socially efficient. To realize a socially efficient alternative, we
examine two alternative bidding mechanisms: one is a simple one-stage mechanism, and the
other is a multi-stage mechanism.
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In Section 2, we first examine the simple one-stage mechanism. In our one-stage mechanism,
each individual is asked to make her/his bids paid to each of the other individuals to determine a
proposer whose most favorite alternative will be realized as a social decision. For each individual,
the net bid is calculated as the sum of the bids the individual pays to the other individuals minus
the sum of the bids paid to the individual. Then, the individual with the highest net bid becomes
the proposer. Our first result shows that this mechanism does work only in limited situations
where the individuals’ most favorite alternatives generate the same sums of individuals’ utilities.
Moreover, we show that, even in the cases where the mechanism can successfully work, it may
fail to realize socially efficient alternative as an equilibrium outcome.

In Section 3, we examine an alternative bidding mechanism to realize socially efficient al-
ternative. We provide a modified three-stage mechanism. The first stage of this modified mech-
anism is the same as the simple one-stage mechanism. In contrast to the one-stage mechanism,
after a proposer is determined, the modified mechanism leads to the second stage where the pro-
poser offers a social alternative that s/he wants to realize and monetary transfers to the other
individuals. Then, in the last stage, the individuals other than the proposer sequentially replies
“to accept the offer” or “to reject it.” If the offer is unanimously accepted, the monetary trans-
fers are carried out and the proposed social alternative is realized. In the case where the offer is
rejected by at least one individual, the monetary transfers are not carried out and the proposer’s
most favorite alternative is realized as a social decision. We prove that this multi-stage bidding
mechanism can work in any situation and always realizes a socially efficient alternative.

In Section 4, extensions and applications of the results obtained in the previous sections
are considered. We show that if we replace the bidding game by the weighted bidding game,
the necessity and sufficient condition on the existence of equilibrium in the bidding game is
unchanged. Thus, the sum of the payoff of all the individuals obtained from subgame after the
bidding game is irrelevant to who is the winner of the bidding game. This condition seems
in a first look to be hard to be satisfied but if we think back on the suggestion of the Coase
Theorem, it is not difficult for us to consider a situation that satisfies this condition because we
only consider any type of bargaining after the determination of the winner of the bidding game.
The application of the bidding mechanism to implement several solutions in cooperative game
theory is considered.

5.2 Bidding mechanism

Let N = {1, . . . , n} be the set ofn individuals. X = {x, y, z, . . .} is the set of social alterna-
tives.1 We assume that each individual’s utility functionU i is linearly separable with respect to
money, i.e. there existsui : X → R such that, for all(x,m) ∈ X × R,

U i(x,m) = ui(x) + m. (5.1)

We consider the social decision problem where each individual has a proposal, perhaps con-
flicting with each other, about the socially best alternative ofX. For anyi ∈ N , xi denotes
the individuali’s proposal, i.e. the socially best alternative according to thei’s evaluation. We
assume that the socially best alternatives andi’s most preferred alternative are uniquely deter-
mined, respectively.

In order to reconcile individuals’ proposals and to determine the single socially best alterna-
tive, we consider the following one-stagebidding mechanism:

1We do not pose any assumption on the cardinality ofX. Thus,X can be a finite or infinite set.
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i). Each individuali makes a bidbi
j ∈ R for eachj 6= i, i.e. (bi

j)j 6=i ∈ Rn−1.

ii). For eachi, calculate a net bidBi :=
∑

j 6=i b
i
j −

∑
j 6=i b

j
i .

iii). An individual with the highest net bid becomes a proposer and her/his proposal
is realized in the society in return for the actual payment of her/his bids to other
individuals. If we have more than one individuals with the highest net bid then any
one of them is randomly chosen.

We denoteα the proposer, i.e.α ∈ arg maxi∈N{Bi}. Consequently, the bidding mechanism
defined above can be seen as a normal form game and we denote this normal form game by
B(N, X, (U i)i∈N ). We now examine a Nash equilibrium of this mechanism. Our first result
shows that in any Nash equilibrium every individual’s net bid is zero.

Lemma 5.1. For any equilibrium strategy profile(bi)i∈N , Bi = 0 for anyi ∈ N .

proof. DefineΩ = {i : Bi ≥ Bj ∀j ∈ N}. If Ω = N , the fact that
∑

i∈N Bi = 0 trivially
impliesBi = 0 for eachi ∈ N . We now show that, for any equilibrium strategy profile(bi)i∈N ,
Ω = N follows. We prove this by contradiction. Suppose thatΩ ⊆ N andΩ 6= N . Then, we
can find the two individualsi ∈ Ω andk ∈ N\Ω. Let δ > 0, and consider the following profile
(b̂i)∈N such that̂bj = bj ∀j 6= i, andb̂i

j = bi
j +δ/|Ω| if j ∈ Ω\{i} ; b̂i

j = bi
j−δ if j = k ; b̂i

j = bi
j

otherwise. The new net bids arêBi = Bi−δ/|Ω|; B̂k = Bk +δ; B̂j = Bj−δ/|Ω| ∀j ∈ Ω\{j};
B̂j = Bj ∀j ∈ N\(Ω ∪ {k}). SinceBj > Bl holds for anyj ∈ Ω and anyl ∈ N\Ω, we still

obtainB̂j > B̂l for sufficiently smallδ. Thus,Ω̂ := {i : i = B̂i ≥ B̂j ∀j ∈ N} completely
coincides withΩ. However, for the individuali, we have

∑
j 6=i b̂

i
j <

∑
j 6=i b

i
j , and thus, her/his

new strategŷbi increases her/his expected final payoff.
From Lemma 5.1, every individual could be a proposer with the same probability. The next

lemma tells that in any equilibrium each individual gain the same final payoff no matter who
becomes a proposer.

Lemma 5.2. For any equilibrium strategy profile(bi)i∈N , each player receives the same final
payoff regardless of who becomes a proposer.

proof. From Claim 1, the each player’s net bid coincides each other in equilibrium. Thus, every
player could become a proposer with the same probability. We prove the contrapositive of the
claim. Suppose that some playeri could get the highest payoff if s/he would become a proposer
than in the case where some other player is a proposer. Then, sufficiently small increases in
her/his bids to the other player improve her/his final payoff so that s/he will deviate from the
equilibrium strategy. Similarly, if the individuali could obtain the biggest payoff when some
other individualj is a proposer than in the other cases, s/he has an incentive to decrease her/his
bid to the individualj.

The two lemmas have an important and somewhat undesirable implication about the exis-
tence of an equilibrium of the mechanism. Let(bi)i∈N be any equilibrium strategy profile. We
now demonstrate that some severe restriction on the individuals’ proposals is required to assure
the profile(bi)i∈N be an equilibrium of the mechanism. From Claim 1,Bi must be zero, or
equivalently, we have ∑

j 6=i b
i
j =

∑
i6=j bj

i , (5.2)

and thus every player could become a proposer with a strictly positive probability. Moreover,
from Claim 2, each player receives the same payment regardless of who becomes a proposer.
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Therefore, for any two distinct individualsj, k ∈ N , the final payment of an individuali 6= j, k
must be the same:

ui(xk) + bk
i = ui(xj) + bj

i . (5.3)

And also, each playeri is indifferent between the two cases where, respectively,i her/himself
becomes a proposer, or some other playerk is a proposer. Letz (resp.x) be an alternative that is
realized wheni (resp.k) becomes a proposer. Thus, by (5.2) and (5.3), we have the following:

ui(xk) + bk
i = ui(xi)−∑

j 6=i b
i
j

= ui(xi)−∑
j 6=i b

j
i = ui(xi)−

(
bk
i +

∑
j 6=i,k(b

k
i + ui(xk)− ui(xj))

)

= ui(xi)− (n− 1)bk
i − (n− 2)ui(xk) +

∑
j 6=i,k ui(xj). (5.4)

Hence, we obtainnbk
i =

∑
j∈N ui(xj) − nui(xk) , and then the equilibrium bid has to be

uniquely determined as follows:

bk
i = 1

n

∑
j∈N ui(xj)− ui(xk). (5.5)

On the other hand, Lemma 5.1 shows that
∑

j 6=i b
i
j −

∑
j 6=i b

j
i = 0 ∀i ∈ N . Thus, the

following two must be the same value:

∑
j 6=i b

i
j =

∑
j 6=i

(
1
n

∑
k∈N uj(xk)− uj(xi)

)
; (5.6)

∑
j 6=i b

j
i =

∑
j 6=i

(
1
n

∑
k∈N ui(xk)− ui(xj)

)
. (5.7)

It is obvious that (5.6) and (5.7) are not always compatible with each other. Consequently, we
obtain the following proposition.

Proposition 5.1. If a bidding gameB(N, X, (U i)i∈N ) has a Nash equilibrium, then the follow-
ing condition must hold:

∑
k∈N uk(xi) =

∑
k∈N uk(xj) ∀i, j ∈ N .

Proof. From (5.6) and (5.7),

∑
j 6=i b

i
j =

∑
j 6=i

(
1
n

∑
k∈N uj(xk)− uj(xi)

)

= 1
n

∑
j∈N

∑
k∈N uj(xk)− 1

n

∑
k∈N ui(xk)−∑

j 6=i u
j(xi), (5.8)

and

∑
j 6=i b

j
i =

∑
j 6=i

(
1
n

∑
k∈N ui(xk)− ui(xj)

)
= n−1

n

∑
k∈N ui(xk)−∑

j 6=i u
i(xj). (5.9)

Substituting (5.8) and (5.9) into (5.2), we obtain the following:

∑
i6=j bi

j =
∑

j 6=i b
j
i ⇔ 1

n

∑
j∈N

∑
k∈N uj(xk) =

∑
k∈N ui(xk) +

∑
j 6=i u

j(xi)−∑
j 6=i u

i(xj)

⇔ 1
n

∑
j∈N

∑
k∈N uj(xk) =

∑
j∈N uj(xi) (5.10)

The LHS of the last equation is the constant determined independently of the individuali.
Thus, the proof is completed.
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Proposition 5.1 provides the necessary condition of the existence of an equilibrium of the
bidding mechanism. There could exist an equilibrium of the bidding mechanism only if each
individual’s best alternative gives rise to the same sum of the individuals’ utilities derived from
the alternative,

∑
i∈N ui(xj) =

∑
i∈N ui(xk) ∀j, k ∈ N . The next proposition shows that the

converse assertion is also true, i.e. if the bidding mechanism satisfies this condition then there
exists an equilibrium in the mechanism.

Proposition 5.2. For any bidding gameB(N,X, (U i)i∈N ) that satisfies the following condition:

∑
k∈N uk(xi) =

∑
k∈N uk(xj) ∀i, j ∈ N ,

there exists a Nash equilibrium. Moreover, under the above condition, the equilibrium bid is
determined by equation (5.5) and the equilibrium payoff ofi ∈ N is 1

n

∑
k∈N ui(xk).

Proof. Let (bi)i∈N be the profile of bids defined in (5.3), i.e.bk
i = 1

n

∑
j∈N ui(xj) − ui(xk)

∀i, k ∈ N . We will show that(bi)i∈N is a Nash equilibrium. It is easy to verify that
∑

j 6=i b
i
j =∑

j 6=i b
j
i follows for anyi, j ∈ N , i.e. the net bidBi is0 for eachi ∈ N , because

∑
k∈N uk(xi) =∑

k∈N uk(xj) holds for all∀i, j ∈ N now. Therefore, every individual could become a proposer
with the same probability. We now show that the final payoff of each individual is the same
regardless of who becomes a proposer. Fix an individuali arbitrarily. If some other individualj
becomes a proposer, the final payoff of the individuali is

uj
i + bj

i = ui(xj) + 1
n

∑
k∈N ui(xk)− ui(xj) = 1

n

∑
k∈N ui(xk). (5.11)

On the other hand, if the individuali her/himself becomes a proposer, s/he will gain

ui(xi)−∑
j 6=i b

i
j = ui(xi)−∑

j 6=i

(
1
n

∑
k∈N uj(xk)− uj(xi)

)

=
∑

j∈N uj(xi)− 1
n

∑
k∈N

(∑
j 6=i u

j(xk) + ui(xk)
)

+ 1
n

∑
k∈N ui(xk)

=
∑

j∈N uj(xi)− 1
n

(
n

∑
j∈N uj(xk)

)
+ 1

n

∑
k∈N ui(xk)

= 1
n

∑
k∈N ui(xk). (5.12)

By the same argument as in the proof of Lemma 5.2, every individual has no incentive to deviate
from the strategy profile(bi)i∈N .

From Propositions 5.1 and 5.2, we obtain the following characterization of the existence of
an equilibrium in the bidding mechanism.

Theorem 5.1. A bidding gameB(N, X, (U i)i∈N ) has a Nash equilibrium if and only if the
following condition holds:

∑
k∈N uk(xi) =

∑
k∈N uk(xj) ∀i, j ∈ N .

Under the assumption of quasi-linearity of individuals’ utility functions, a proposal of indi-
vidual i, xi ∈ X, can be said to beefficient among all proposalsif, for any j ∈ N ,

∑
k∈N uk(xi) ≥ ∑

k∈N uk(xj).

From Theorem 5.1, it trivially follows the following result.
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Corollary 5.1. In an equilibrium of the bidding game, the adopted proposal is efficient among
all proposals.

More generalized welfare property is also considered as follows. An alternativex ∈ X is
socially efficientif, for any y ∈ X,

∑
k∈N uk(x) ≥ ∑

k∈N uk(y).

Assuming that each individual is a self-regarding utility maximizer, the adopted proposal in an
equilibrium of the bidding game may fail to be socially efficient. To make sure of this point, we
give the following example. Suppose thatN = {1, 2}, X = {x, y, z}, and

u1(x) = 4, u1(y) = 1, u1(z) = 3,

u2(x) = 1, u2(y) = 4, u2(z) = 3.

In this case,x1 = x andx2 = y, and
∑

i∈N ui(x1) =
∑

i∈N ui(x2) holds. Thus, eitherx or y
is realized as an equilibrium outcome of the mechanism. However, neither of them are efficient
becausez gives rise to

∑
i∈N ui(z) = 6 > 5.

Hence, there are two problems concerning the simple one-stage bidding mechanism: one is
that an equilibrium may fail to be exist in general, and the other is that an equilibrium outcome
may not be socially efficient even when an equilibrium does exist. In the next section, we propose
a modified bidding mechanism which overcomes these problems, i.e. the mechanism which
always realizes an efficient social alternative as an equilibrium outcome.

5.3 Modified bidding mechanism

In the preceding section, we observed that our simple one-stage bidding mechanism can not al-
ways lead to an equilibrium. Moreover, the one-stage bidding mechanism may fail to realize
socially efficient alternative. In their paper, Pérez-Castrillo and Wettstein (2000) have success-
fully avoided the former problem, i.e. the non-existence of an equilibrium, by the use of an
extended strategy space2. However, since their one-stage mechanism is designed in the frame-
work aimed at choosing a proposal from all the individuals’ ones, not one social alternative from
all feasible alternatives, the direct application of their one-stage mechanism in our model still fail
to realize a socially efficient alternative in the case of the example we considered in the preceding
section. In order to resolve each of the problems of the simple one-stage bidding mechanism, we
now consider the multi-stagemodified bidding mechanism. Our modified bidding mechanism
proceeds in three stages:

Stage 1.The first stage is similar to the simple one-stage mechanism. Each individ-
ual i makes a bidbi

j ∈ R for eachj 6= i, i.e. (bi
j)j 6=i ∈ Rn−1. For eachi, calculate a

net bidBi :=
∑

j 6=i b
i
j−

∑
j 6=i b

j
i . A proposer is randomly chosen among those with

the highest net bid. The proposerα pays her/his bidsbα
j for each other individual.

Stage 2.The proposer makes an offer showing the social alternativex s/he wants to
realize and a paymenttj , i.e. (x, tj) ∈ X × R, to eachj 6= α. The paymentyj is

2In their one-stage bidding mechanism, each individual announces either of0 or 1, interpreted as “really want” or
“not,” as well as her/his bids to the other individuals. Consequently, the strategy space of each individual becomes
Rn−1 × {0, 1}. A proposer is randomly chosen among the individuals who have the highest net bid and announces
1. If the set of such individuals is empty, a proposer is randomly chosen among all the individuals.
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interpreted as a transfer (resp. claim) if it is positive (resp. negative) to an individual
j.

Stage 3. Every individual other thanα sequentially chooseto accept an offeror
to reject an offer. If we have a rejection by some individual, an offer is rejected.
Otherwise, an offer is accepted. In the case of acceptance (resp. rejection), the
alternativex is realized andtj is paid to eachj 6= α (resp.xα is realized).

Our modified bidding mechanism is a three-stage mechanism, but never be a complicated
one. After the first stage which is completely the same as in the simple one-stage bidding mech-
anism, our multi-stage mechanism asks a proposer to offer a monetary transfer for each of the
other individuals, and in the last stage the individuals received the offers sequentially reply “ac-
cept it” or “reject it.” In this mechanism, each individual receives the following final payment:

an offer is accepted ⇒
{

α : uα(x)−∑
j 6=α bα

j −
∑

j 6=α tj

j 6= α : uj(x) + bα
j + tj ,

(5.13)

an offer is rejected ⇒
{

α : uα(xα)−∑
j 6=α bα

j

j 6= α : uj(xα) + bα
j .

(5.14)

For the modified bidding mechanism, we obtain the following result.

Theorem 5.2. There exists a subgame perfect equilibrium in the modified bidding mechanism.
Moreover, in any subgame perfect equilibrium, socially efficient alternative is realized. More-
over, ifx∗ is a unique socially efficient alternative.

Proof. It is obvious that, in any subgame that starts att = 3, the following set of strategies is
a unique SPE: everyi 6= α accepts an offer(x, ti) if ui(x) + ti ≥ ui(xα), and rejects the offer
otherwise.

Next, we consider an optimal offer of a proposerα at t = 2 who anticipates the actions of
the other individuals which would follow att = 3. We distinguish two cases:xα is (i) socially
efficient, or (ii) not. In the case of (ii), an optimal offer(x∗, (t∗i )i 6=α) ∈ X × Rn−1 can be
obtained as a solution of following maximization problem:

max(x,(ti)i6=α) uα(x)−∑
i6=α ti s.t. ui(x) + ti ≥ ui(xα). (5.15)

If we have more than one solutions, any of them are optimal offer. By definition, such an offer
is accepted by every other individuali 6= α. It is easy to verify that this offer is optimal for
the proposerα. Since an optimal offer(x, (ti)i6=α) must satisfy the constraint with equality in
(5.15), the optimal offer can be obtained as follows:

t∗i = ui(xα)− ui(x∗), ∀i 6= α, (5.16)

x∗ ∈ arg maxx∈X
∑

i∈N ui(x)−∑
i6=α ui(xα). (5.17)

From (5.17),x∗ is a socially efficient alternative. Becausexα is socially inefficient, we have
∑

i∈N ui(x∗)−∑
i∈N ui(xα) > 0 ⇒ ∑

i∈N ui(x∗)−∑
i6=α ui(xα) > uα(xα). (5.18)

From (5.16), (5.18) can be rewritten as

ui(x∗)−∑
i6=α t∗i > uα(xα). (5.19)
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Therefore, from (5.19) and the fact that(x∗, (ti)i6=α) solves the problem (5.15), this offer is
optimal forα. In the case of (ii), any of the optimal offers defined in (5.16) and (5.17) is still
optimal for the proposer. Note that, in this case, the inequality in (5.18), thus also the one in
(5.19), is replaced with equality. Thus, the payoff received by the proposer in the subgame that
starts att = 2 is equal touα(xα). In addition to these offers, it is easily verified that it is also
optimal for the proposer to provide an offer that gives the payoff strictly less thanui(xα) to some
individual i. Such an offer and the rejection byi at t = 3 together constitute SPE in the subgame
that starts att = 2.

As seen in the above argument, in any SPE of the game that starts att = 2, a social alternative
realized as an outcome of the game is always a socially efficient alternative. Given any SPE in
the subgame that starts att = 2, it follows from Theorem 5.1 that there exists a Nash equilibrium
in the reduced game att = 1.

Our multi-stage mechanism can always realize a socially efficient alternative as an equilib-
rium. The keys are the monetary transfers offered and unanimously accepted, respectively, in the
second and third stages, which lead a proposer to propose a socially efficient alternative which
may not be the most favorable one for the proposer. As shown in the proof of Theorem 5.2, the
surplus by such a conciliatory proposal is gained by the proposer through the monetary transfers.

5.4 Applications and extensions

5.4.1 Weighted bidding game

LetN , |N | > 2, be a set of individuals. For eachi ∈ N , let∆i be an extensive form game related
to playeri. Let ∆ = (∆i)i∈N . A player set of∆i must includeN . Let wi > 0 be a positive
weight for playeri ∈ N andw = (wi)i∈N . We define an extensive form gameΓ(N,w, ∆) in
which first aweightedbidding game is conducted among players inN and then a game∆α for
the winnerα of the bidding game follows after the appropriate transfer of the bids in the first
bidding stage. Thus,Γ(N,w, ∆) is defined as follows:

i). Each individuali makes a bidbi
j ∈ R for eachj 6= i, i.e. (bi

j)j 6=i ∈ Rn−1.

ii). For eachi, calculate a weighted net bidBi(w) :=
∑

j 6=i wib
i
j −

∑
j 6=i wjb

j
i .

iii). An individual with the highest weighted net bid is a winner of the bidding stage
and only the winner actually pays her/his bids to other players.
iv). A game∆α for the winnerα is played.

The final payoff ofi in Γ(N,w, ∆) is the sum of her/his payoff received from the transfer of
the bids in the weighted bidding stage and the payoff obtained from the subsequent game∆α.
Let ui

j , i ∈ N , j ∈ N , denote the subgame perfect equilibrium payoff for playerj in ∆i, the
game related to playeri. Then, the very similar arguments in the previous sections lead us to the
following result.

Theorem 5.3.Suppose that the sum of the equilibrium payoffui
k overk in ∆i is irrelevant to the

identity ofi. That is, ∑

k∈N

ui
k =

∑

k∈N

uj
k

for anyi ∈ N and anyj ∈ N . Then, the weighted bidding stage has a unique equilibrium such
that eachi announces

bi
j =

∑

j∈N

wj∑
k∈N wk

uk
j − ui

j
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for eachj 6= i. Furthermore, the equilibrium payoff ofi in Γ(N,w, ∆) is

∑

j∈N

wj∑
k∈N wk

uj
i .

The above theorem assures that under the condition described in the theorem, any random
device which selects∆i proportional to their weightw can be replaced by the weighted bidding
game. Moreover, the equilibrium payoff is achieved as anrealizedvalue instead of theexpected
one. Thus, the weighted bidding approach has an advantage to the random device approach in
this meaning.

5.4.2 Applications to implementing cooperative solutions

A notable example of the application of our results is to implementing a solution established in
cooperative game theory. A question mainly considered in cooperative game is how to allocate a
certain amount of payoffsv(N) derived from their cooperation and thus the condition described
in Theorem 5.3 is likely satisfied (

∑
k∈N ui

k = v(N) for eachi ∈ N ). A cooperative game
is a pair(N, v) whereN is a set of individuals andv : 2N → R is a characteristic function
with an interpretation that for eachS ⊆ N , v(S) is considered as a worth ofS which members
in S obtain for themselves without any cooperation of outside members. We usually assume
v(∅) = 0.

A solution φ for cooperative games is a function which associate any game(N, v) with a
payoff vectorφ(N, v) = (φi(N, v))i∈N ∈ RN with

∑
i∈N φi(N, v) 5 v(N). If a solutionφ

always allocatev(N) to the players,φ is called an efficient solution.
The study on the implementation of solutions in cooperative games considers a bargaining

model or “mechanism” that is described by a non-cooperative game, and rational players obtain
the payoff from this game which is the same as the one prescribed by the solution, i.e., in a
subgame perfect equilibrium (SPE) of this game, each player obtain the payoff prescribed by the
solution. To be a good mechanism, the mechanism must work in a large domain, lead to the
Shapley value payoff in all SPE, and achieve the desired solution as the realized value.

In the following examples, we show that several kinds of solution in cooperative game theory
are implemented as an equilibrium payoff of the suitably defined non-cooperative games. The
proofs are obvious from our theorems and thus we omit them.

Example 5.1. Consider the following steps of bargaining among players inN . This is defined
by the recursive manner.

(i) When there is only one playeri, he obtains his value of stand-alone coalition,v({i}).
(ii) Next consider the case of|N | = 2. Suppose that the bargaining for the players with less

than|N | players are already defined. Then, the bargaining forN proceeds as follows:

Stage 1. The bidding game forN is played and the proposerα is determined after
the transfer of hi/her bids to the other players.
Stage 2. The proposerα makes an offerpj ∈ R to any otherj 6= α
Stage 3. Every individual other thanα sequentially choose to accept an offer or to
reject an offer.

If we have a rejection by some individual, an offer is rejected. Otherwise, an offer is accepted.
In the case of acceptance, the proposer pays offerpj to otherj 6= α in return for obtaining the



72 CHAPTER 5. BIDDING FOR SOCIAL ALTERNATIVES

value of their total cooperationv(N). If there is some player rejecting the offer, the proposer
leave the bargaining with obtainingv({α}) and the remaining players inN \ {α} continue the
bargaining forN \ {α}.

This is the very bargaining of Ṕerez-Castrillo and Wettstein (2001) which implements the
Shapley value when the underlying cooperative game is zero-monotonic.

The outline of the proof is as follows. This is conducted by the induction on the number of the
players in the bargaining. When there is only one playeri, by the definition of the bargaining,
he obtainsv({i}) = Shi(N, v). Suppose that in the bargaining for less than|N | players, any
subgame perfect equilibrium payoff coincides with their Shapley value. Consider the case with
|N | players. Letα be a proposer determined in step 1. Consider the responses of the other
players for the offers by the proposer in step 3. Then, if one of them rejects the offer, players
other than the proposer obtain the Shapley value for the game(N \ {α}, v) by the assumption
of the induction. Then, by the very similar arguments of the proof of Theorem 5.3 and the weak
condition on the characteristic functionv, the subgame which starts from stage 2 with a proposer
α generates a unique subgame perfect payoff such thati 6= α obtains

Shi(N \ {α}, v)

and the proposerα obtains

v(N)−
∑

i 6=α

Shi(N \ {α}, v) = v(N)− v(N \ {α}),

respectively. The zero-monotonicity of(N, v) ensures that the proposer has the incentive to make
such an offer. Therefore putui

j = Shi(N \ {i}, v) for j 6= i andui
i = v(N)− v(N \ {α}) and

apply Theorem 5.3, the equilibrium payoff of playeri of this bargaining is

v(N)− v(N \ {i})
n

+
1
n

∑

i 6=j

Shi(N \ {j}, v).

This is the recursive formula of the Shapley value introduced by Maschler and Owen (1989).

Example 5.2. If we replace the bidding stage in the bargaining of example 1 by the weighted
bidding stage, this weighted bargaining implements the weighted Shapley valueShw if (N, v) is
zero-monotonic.

Example 5.3. The weighted CIS (center of the imputation set) value is defined by

CISw
i (N, v) =

wi∑
k∈N wk


v(N)−

∑

j∈N

v({j})

 + v({i})

for eachi ∈ N .
This solution is implemented by the three-stage bargaining similar to the one described in

Example 1 when(N, v) is zero-monotonic. The differences are that (i) the weighted bidding
game is played instead of the bidding game in stage 1, and that (ii) in the case of rejection by
some responder, eachi ∈ N obtainsv({i}) and the bargaining is over.

By standard arguments for a proposal and sequential responses, under an appropriate condi-
tion, the subgame which starts from stage 2 with proposerα generates a unique subgame perfect
equilibrium payoff such thatα obtainsv(N) − ∑

j 6=α v({j}) and i 6= α obtainsv({i}). For
eachi ∈ N , put ui

i = v(N) − ∑
j 6=i v({j}) andui

j = v({j}) for eachj 6= i and apply The-
orem 5.3, we obtain the desired result. This bargaining works under the broad condition that
v(N) ≥ ∑

j v({j}) for eachi ∈ N .
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In the final of this subsection, let us consider the way to incorporate the bargaining and coop-
erative solutions in the above examples into the collective choice problem considered throughout
this chapter. Given a set of alternativesX, we define a characteristic functionvX associated with
X as follows:

vX(S) = maxx∈X

∑

i∈S

ui(x) (5.20)

for all S ⊆ N .
To implement cooperative solutions with respect to a cooperative game(N, vX) in the cir-

cumstance of the collective choice of social alternatives, all we have to do is to alter the bar-
gaining games described in Examples 1 and 2 in three points: (i) the individualα selected as a
proposer at the first stage proposes the social alternativex and a paymenttj to eachj 6= α, (ii) in
the case of acceptance of all individuals other thanα, the social alternativex is realized in return
for the paymenttj from α to any otherj 6= α, and (iii) in the case of rejection of some individual,
the proposerα is expelled from the society and s/he evaluates this situation as a negative infinity
because s/he cannot live outside the society. After the modifications, the bargaining models de-
scribed in Examples 1 and 2 implementSh(N, vX) andShw(N, vX) respectively. To implement
the weighed CIS value, in addition to the modifications (i) and (ii) mentioned above, we need the
slightly different change: (iii)’ in the case of rejection of individualj, the individuals other than
j are expelled from the society and individualj realizes his/her most favorite alternativexj .

5.5 Conclusion

We examined two alternative bidding mechanisms in the framework where social alternatives
are explicitly included in its description: one is the simple one-stage bidding mechanism, and
the other is the multi-stage bidding mechanism. There are two serious defects in the simple
one-stage mechanism. There does not always exist an equilibrium, and it may fail to generate
a socially efficient alternative even if an equilibrium does exist. Our multi-stage bidding mech-
anism overcomes these two problems and always realizes a socially efficient alternative as an
equilibrium.

Pérez-Castrillo and Wettstein (2000) showed that in an equilibrium of their one-stage bidding
mechanism, every individual receives the final payoff more than or equal to the average of the
payoffs, each obtained if each one proposal is realized. Thus, their bidding mechanism can be
seen as an equitable social decision mechanism in bothex anteandex postcriteria: an equal
probability to be a proposer, and the final payoffs more than or equal to their average payoffs,
respectively. The same conclusion directly follows for our multi-stage bidding mechanism.





Chapter 6

Implementation of values in games
with social structures

6.1 Introduction

This chapter studies the distribution of cooperative surplus among members of a society, who are
subdivided into groups or coalitions, and explores a non-cooperative mechanism implementing a
cooperative solution in such a situation. The cooperation relationship is expressed by the players’
partition. The relationship among such coalitions can be classified into two major categories.
One is the horizontal or equal–equal relationship between coalitions, where all of the coalitions
have the same qualifications in the social economy. The other is the vertical or superior–inferior
relationship between them, according to which some coalitions are judged, by some measure, to
be in a position superior to the others.

One main stream of research on cooperative relationships is the study of individual incentives
to the endogenous formation of cooperation structures (for the recent survey on various models
of network formations, see the introduction of Bloch and Dutta 2008 for example). Another is
to explore the solution concepts for a situation with exogenously given cooperation structure.
The latter approach is mainly developed in cooperative solution theory, and various solutions
for situations that admit some cooperation structure have been considered. Kalai and Samet
(1987) extend the Shapley value to the situation in which players are partitioned into ordered
coalitions, which can be seen as ahierarchic structurefor them. Their extension also includes
the non-symmetric generalization of the Shapley value in order to reflect the asymmetry among
players caused by, for instance, the different importance of the players or the bargaining powers
“determined by the strategic advantages conferred on players by the circumstances under which
they bargain” (Binmore 1998, p. 80). In contrast, Owen (1977) proposes a generalization of
the Shapley value, called the coalitional value, to a game with acoalition structurein which
the players form coalitions that are in horizontal relationship with each other. A non-symmetric
generalization of the coalitional value is studied by Levy and McLean (1989).

In this chapter, we first present a unified model, thegames with social structure, in which
there exist both the hierarchical and horizontal coalition structures, and define a weighted value
for these games. This value is a generalization of the Shapley value to such a game, and thus,
it coincides with the Shapley value, the weighted Shapley value with hierarchic structure, the
coalitional value, and the weighted coalitional value, in some special cases. Then, in order
to achieve this value through the decentralized decision-making process, we consider a non-
cooperative bargaining model. Thus, our research follows the Nash Program, which fills the gap

75
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between the cooperative and non-cooperative approaches (for the detailed survey on the Nash
Program, see Serrano 2005).

Our mechanism is established on the basis of the “one proposer and several responders”
model a la Rubinstein and thebidding gamefor choosing the proposer by the participants’ own
decisions, where “mechanism” is a non-cooperative game and we use the term to avoid ambigu-
ities with cooperative game. Pioneering work in this kind of bargaining has been undertaken by
Pérez-Castrillo and Wettstein (2001). They formulate the mechanism involving the bidding stage
in which each individual is required to reveal payable bids to each of the other individuals in ex-
change for becoming a proposer in the subsequent stage, and show that in its subgame perfect
equilibrium (SPE), the Shapley value is realized as a final payoff to each individual. They also
show that if the bidding stage is replaced by a weighted bidding stage, the weighted mechanism
implements the weighted Shapley value without hierarchic structure. Vidal-Puga and Berganti-
nos (2003) discuss the extension of this mechanism and succeed in establishing the implemen-
tation of the coalitional value. Further, this approach is widely applied to several contexts, for
instance, a local public goods economy (see Mutuswami, Pérez-Castrillo, and Wettstein 2004), a
network formation (see Ṕerez-Castrillo and Wettstein 2005), a network allocation problem (see
Slikker 2007), and the collective choice problem (see Pérez-Castrillo and Wettstein 2000, 2002
and Kamaga and Kamijo 2007).

We propose a bargaining model, called theweighted social bidding mechanism. In this
bargaining, only the players in the highest ranked coalitions participate in the bidding stage to
choose a proposer in the next stage. Then, the proposer determined in the previous stage offers
a payoff distribution among all the players, and the players other than the proposer sequentially
decide to either accept or reject the offer. In the case of acceptance by all players, the bargaining
is over and their payoff is distributed according to the proposal. On the other hand, when there
is a player who rejects the offer, the proposer leaves the bargaining and the remaining players
continue the same bargaining process with the proposing coalition, i.e., the coalition that the
proposer belongs to, retaining the right to choose a new proposer.

We demonstrate that our mechanism works in anyzero-monotonicenvironment. That is,
if the underlying cooperative game is zero-monotonic, in any SPE of the weighted social bid-
ding mechanism, the equilibrium payoff vector coincides with the value defined in this chapter.
This result has at least the following significance: (i) Our mechanism implements the Shapley
value, the weighted Shapley value of Kalai and Samet (1987), the coalitional value, and the
weighted coalitional value in some special cases. (ii) Since the weighted social bidding mecha-
nism coincides with the bidding mechanism and the weighted bidding mechanism proposed by
Pérez-Castrillo and Wettstein (2001) that implement the Shapley value and the weighted Shapley
value without hierarchic structure, respectively, our result includes some of the results of their
paper, and the weighted social bidding mechanism is an extension of these two mechanisms. (iii)
Our result extends the domain of implementing the coalitional value compared with Vidal-Puga
and Bergantinos (2003), who consider a two-step bidding mechanism to implement the coali-
tional value, because the mechanism proposed by Vidal-Puga and Bergantinos (2003) works in
the strictly superadditive domain.

The rest of the chapter is organized as follows. In the next section, we provide the basic
notations and definitions used in this chapter. In Section 3, we present a model of games with
social structure and give a basic analysis for this class of games. In Section 4, we explain the
bidding game and the relevant literature. In Section 5, we present the weighted social bidding
mechanism and show that it implements the weighted value for a game with a social structure in
any zero-monotonic environment. Section 6 is the conclusion.
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6.2 Preliminary

In several situations, players partition themselves into some coalitions, each of which is in fifty-
fifty relationship with the others. Such coalitions form acoalition structureC = {C1, . . . , Cm},
which is a partition ofN . Let C = {C1, . . . , Cm} be a coalition structure onN . Let M =
{1, . . . , m} denote the set of coalitional indices of the coalition structure. A triple(N, v, C)
is called agame with a coalition structure. A solution for games with coalition structure is
defined by the same manner as one for games without coalition structure. A well-known solution
for games with coalition structure is the coalitional value by Owen (1977). A non-symmetric
generalization of the coalitional value is provided by Levy and McLean (1989).

There also exist situations in which the players are organized into coalitions that are ranked
by some measure. LetH = (H1, . . . ,H`) be an ordered partition ofN and be called ahierarchic
structureof N . Let L = {1, . . . , `} denote a set of indices of the elements in the hierarchic
structure. A triple(N, v,H) is agame with a hierarchic structure.

A permutationθ ∈ Θ(N) is said to be consistent with hierarchic structureH if for any i ∈ Hk

and for anyj ∈ Hk′ , k < k′ impliesθ(i) < θ(j). Thus, according to the permutation consistent
with hierarchic structureH, players in the same coalition inH are successively ordered, and
coalitions are arranged in the hierarchic order described byH. A set of all the permutations that
are consistent withH is denoted byΘ(N,H).

Let w = (wi)i∈N be a positive weight vector of players inN . Theweighted value for a game
with a hierarchic structureor theweighted Shapley value(Kalai and Samet 1987) is defined as
follows:1

HVw
i (N, v,H) =

∑

θ∈Θ(N,H)

(
Π`

k=1p(θHk
;wHk

)
)

mθ
i (N, v)

for eachi ∈ N . Thus,HVw is a weighted average of marginal contribution vectors where each
orderθ ∈ Θ(N,H) has a weight proportional toΠ`

k=1p(θHk
; wHk

). In other words,HVw for a
player is an expected value of the marginal contributions in a situation in which players inHk

are arranged in orderθHk
with probabilityp(θHk

; wHk
), and then coalitions inH are arranged

in the hierarchic order. It is obvious that whenH = (N) andwi is constant overi ∈ N , HVw

coincides with the Shapley value, and whenH = (N), it coincides with the weighted Shapley
value originally considered by Shapley (1953a).

It is obvious from the definition ofHVw that deletion of players in higher ranked coalitions
does not influence the payoff of the players in the lower ranked coalitions. So, for anyi ∈
H1 ∪ · · · ∪Hk,

HVw
i (N, v,H) = HVw

i (N ′, v,H′),
whereN ′ = H1 ∪ · · · ∪Hk andH′ = (H1, . . . , Hk).

For any coalitionS, let (N,uS) be anS-unanimity gamedefined by

uS(T ) =

{
1 if S ⊆ T,

0 otherwise,

for anyT ⊆ N . It is well known that for any game(N, v), v is represented as a linear combina-

1In Kalai and Samet (1987), the pair of weight vectorw and hierarchic structureH is referred to as a general
weight system, and they treat the weighted Shapley value with a general weight system as a class of the solution for
a game(N, v). In this chapter, we consider a hierarchic structure as a component of the game(N, v,H) in order to
keep the treatment ofHVw parallel to the treatment ofCVω.
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tion of unanimity games, that is,

v =
∑

S⊆N ;S 6=∅
dv(S)uS ,

wheredv(S) =
∑

T⊆S(−1)|S|−|T |v(T ) is adividendof S.
For any coalitionS, let H(H, S) denote the maximal ranked elementHk in H that has a

non-empty intersection withS. For any coalitionS, let M(C, S) denote the set of indices of
coalitions that have non-empty intersections withS. The following propositions examineHVw

andCVω for unanimity game(N,uS).

Proposition 6.1(Kalai and Samet 1987). For S ⊆ N and fori ∈ Hk ∈ H,

HVw
i (N, uS ,H) =

{
wi

w(S∩Hk) if H(H, S) = Hk,

0 otherwise.

Proposition 6.2. For S ⊆ N and fori ∈ Ck ∈ C,

CVω
i (N, uS , C) =

{
w∗k

w∗(M(C,S))
wi

w(S∩Ck) if i ∈ S ∩ Ck,

0 otherwise.

Proof. If i ∈ N \S, playeri’s marginal contribution is0 at any orderθ ∈ Θ(N, C). This implies
thatCVω

i (N,uS , C) = 0 for suchi. Wheni ∈ S, by the fact that the weighted coalitional value
is an expected value of marginal contributions,CVω

i (N, uS , C) coincides with the probability
that playeri is in the last player ofS at orderθ ∈ Θ(N, C). Let i ∈ Ck ∈ C. Because we focus
only on the order consistent withC, this probability is expressed by the product of the probability
thatk is in the last ofM(C, S) at orderθC and the probability thati is the last ofCk ∩ S at order
θCk

. By the definition ofp(.; .), the former probability and the latter one arew∗k/w∗(M(C, S))
andwi/w(S ∩ Ck), respectively. Thus, we obtain the formula described in the proposition.

Since the marginal contribution satisfies the linearity, that is, forα, β ∈ R and for games
(N, v) and(N, z), mθ

i (N, αv + βz) = αmθ
i (N, v) + βmθ

i (N, z) holds, and in both formulas
of the weighted Shapley value and the weighted coalitional value, the weight of the marginal
contribution at any orderθ is irrelevant tov, the two values also fulfill the linearity. Because, as
mentioned above, any gamev can be represented as linear combination of the unanimity games,
Propositions 1 and 2 provide a useful method of calculatingHVw andCVω, respectively.

In the rest of this section, we explain the alternative representations ofHVw andCVω. These
recursive representations are similar to the one for the Shapley value indicated by Maschler and
Owen (1989) and Ṕerez-Castrillo and Wettstein (2001). WhenH = (N), Proposition 6.3 is
the same statement as Lemma 1 of Pérez-Castrillo and Wettstein (2001), and whenC = {N},
Proposition 6.4 is the same statement as the lemma.

Proposition 6.3. Let (N, v,H) be a game with a hierarchic structure. For anyi in the highest
ranked coalitionH` = H(H, N),

HVw
i (N, v,H) =

wi

w(H`)
(v(N)− v(N − i)) +

∑

j∈H`−i

wj

w(H`)
HVw

i (N − j, v,H− j),

whereH− j = (H1, . . . , H`−1,H
′
`) with H ′

` = H` − j.
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Proof. According to the probability distribution onΘ(N,H) behind the definition ofHVw, some
i ∈ H` becomes the last player in the order with probabilitywi/w(H`). This means thati ∈ H`

becomes the last and obtains her/his marginal contribution,v(N) − v(N − i), with probability
wi/w(H`). On the other side, with probabilitywj/w(H`), otherj ∈ H` − i become the last
player. Contingent on otherj becoming the last at the order, the expected value of marginal
contributions of playeri is exactlyHVw

i (N − j, v,H − j). Thus, we have the formula of the
proposition.

Proposition 6.4. Let (N, v, C) be a game with a coalition structure. Fori ∈ Ck ∈ C, put

w̄i = wi
w(Ck)

w∗k
w∗(M) . For anyi ∈ Ck ∈ C,

CVω
i (N, v, C) = w̄i (v(N)− v(N − i))

+
∑

j∈Ck−i

w̄iHVw
i (N − j, v,H′) +

∑

k′∈M−k

w∗k′
w∗(M)

CVω
i (N \ Ck′ , v, C − Ck′),

whereH′ = (N \ Ck, Ck − j) andC − Ck′ = C \ {Ck′}.
Proof. The proof of this proposition proceeds in similar way to the proof of Proposition 6.3. Note
that according to the probability distribution onΘ(N, C) behind the definition ofCVω, some
i ∈ Ck becomes the last player in the order with probabilityw∗k/w∗(M) × wi/w(Ck) = w̄i.
Thus, s/he obtainsv(N)− v(N − i) with probabilityw̄i. On the other hand, we have to separate
two cases when otherj 6= i becomes the last in the order. First, consider the case thatj ∈ Ck.
Because we only treat the order consistent withC, this implies thatCk is the last coalition in
the order. Thus, contingent on otherj ∈ Ck becoming the last player of the order, the expected
value ofi’s marginal contributions is

∑

θ∈Θ(Ck−j)

p(θ; wCk−j)
(
v((N \ Ck) ∪ P θ

i ∪ i)− v((N \ Ck) ∪ P θ
i )

)
= HVw

i (N − j, v,H′).

Thus, for eachj ∈ Ck, i obtainsHVw
i (N − j, v,H′) with probability w̄j . Second, consider

the case thatj ∈ Ck′ , Ck 6= Ck′ . This means that the position of coalitionCk′ is certainly
determined, that is, the last position of the order. Thus, contingent on otherj ∈ Ck′ becoming
the last at the order, the expected value ofi’s marginal contributions isCVω

i (N \ Ck′ , v, C −
Ck′), thus irrelevant to the identity ofj ∈ Ck′ . Because

∑
j∈Ck′

(w∗k′/w∗(M))(wj/w(Ck′)) =
w∗k′/(w∗(M)), we have the formula of the proposition.

6.3 Games with social structure

In this section, we present a unified model of two kinds of games with cooperation structure. We
consider a situation in which both horizontal and hierarchical structures exist simultaneously.
An example of such a situation is the organization of the employees in a firm, where there are
many employees in some levels and at the same time there also many employees in higher levels
to the former. Let(N, v) be a game andM = (C1, C2, . . . , C`) be asocial structurein which
for eachh = 1, . . . , `, Ch = {Ch

1 , Ch
2 , . . . , Ch

mh
} is a coalition structure of subsetNh of N , and

(N1, . . . , N `) is an ordered partition ofN . LetL = {1, . . . , `} andMh = {1, . . . ,mh} for each
h ∈ L. A triple (N, v,M) is agame with a social structure.

Next, we define a value for a game with a social structure in the way that it becomes a natural
extension of the weighted Shapley value and the weighted coalitional value. For each orderθ
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of N , θ is consistent with social structureM if (i) i ∈ Nh andj ∈ Nh′ with h < h′ imply
θ(i) < θ(j), and (ii) for anyi ∈ Ch

k , for anyi′ ∈ Ch
k and for anyj ∈ N , θ(i) < θ(j) < θ(i′)

impliesj ∈ Ch
k . The set of all the orders consistent withM is denoted byΘ(N,M).

Let w = (wi)i∈N be a positive weight vector of players inN . For eachh ∈ L, w∗h =
(w∗hk )k∈Mh is a weight vector of coalitions in coalition structureCh. ω = (w,w∗1, . . . , w∗`)
is a weight structure of social structureM. Then, the weighted value for a game with a social
structure is defined as

Υω
i (N, v,M) =

∑

θ∈Θ(N,M)

(
Π`

h=1

(
p(θC

h
; w∗h)Πmh

k=1p(θCh
k
; wCh

k

))
mθ

i (N, v)

for eachi ∈ N , whereθCh
is an order ofMh derived by the condition thatθCh

(k) < θCh
(k′) if

and only if for anyi ∈ Ch
k and for anyj ∈ Ch

k′ , θ(i) < θ(j).
More simply, the weighted value for a game with a social structure can be rewritten as fol-

lows: for i ∈ Nh,
Υω

i (N, v,M) = CVωh

i (Nh, vh, Ch) (6.1)

whereωh = (wNh , w∗h) andvh is defined byvh(S) = v(S ∪N1 ∪ · · · ∪Nh−1)− v(N1 ∪ · · · ∪
Nh−1) for eachS ⊆ Nh. From this formula, it is easy to check that

∑

i∈Nh

Υω
i (N, v,M) = v(N1 ∪ · · · ∪Nh−1 ∪Nh)− v(N1 ∪ · · · ∪Nh−1) (6.2)

for eachh ∈ L. This also implies thatΥω satisfies the efficiency (
∑

i∈N Υω
i (N, v,M) = v(N)).

For eachi ∈ C`
k ∈ C`, M−i = (C1, . . . , C`−1, C` \ {C`

k}, {C`
k − i}) is a social structure

derived fromM by deleting playeri such that in the new social structure, the coalition con-
taining the deleted player now becomes the highest ranked coalition, with the other structure
remaining unchanged. With understanding(C1, . . . , C`−1, C` \ {C`

k}, ∅) = (C1, . . . , C`−1, C` \
{C`

k}), (C1, . . . , C`−1, ∅, {C`
k − i}) = (C1, . . . , C`−1, {C`

k − i}) and (C1, . . . , C`−1, ∅, ∅) =
(C1, . . . , C`−1),M−i is well-defined.

The following propositions are parallel to Propositions 6.1 and 6.2 and Propositions 6.3 and
6.4.

Proposition 6.5. For S ⊆ N , let ĥ be the maximal integerh such thatS ∩Nh is not empty. Let
M(Cĥ, S) ⊆ M ĥ denote the set of indices of coalitions inCĥ that have non-empty intersections
with S. Then,

Υω
i (N, v,M) =





w∗ĥ
k

w∗ĥ(M(Cĥ,S))

wi

w(S∩Cĥ
k )

if i ∈ C ĥ
k ∩ S,

0 otherwise.

Proof. This is directly followed from Proposition 6.2 and Equation (6.1).

Proposition 6.6. Let (N, v,M) be a game with a social structure. Fori ∈ C`
k ∈ C`, put

w̄i = w∗`
k

w∗`(M`)
wi

w(C`
k)

(i) For anyi ∈ C`
k ∈ C`,

Υω
i (N, v,M) = w̄i (v(N)− v(N − i))

+
∑

j∈Ck−i

w̄jΥω
i (N − j, v,M−j) +

∑

k′∈M`−k

w∗`k′

w∗`(M `)
Υω

i (N \ C`
k′ , v,M− C`

k′),

whereM− C`
k′ = (C1, . . . , C`−1, C` \ {C`

k′}).
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(ii) For anyi ∈ N `,

Υω
i (N, v,M) = w̄i (v(N)− v(N − i)) +

∑

j∈N`−i

w̄jΥω
i (N − j, v,M−j).

Proof. First, (i) of this proposition follows from Proposition 6.4 and Equation (6.1). Then, (ii) is
obtained through the following:

∑

j∈N`−i

w̄jΥω
i (N − j, v,M−j) =

=
∑

j∈C`
k−i

w̄jΥω
i (N − j, v,M−j) +

∑

j∈N`\C`
k

w̄jΥω
i (N − j, v,M−j)

=
∑

j∈C`
k−i

w̄jΥω
i (N − j, v,M−j) +

∑

k′∈M`−k

∑

j∈C`
k′

w̄jΥω
i (N − j, v,M−j)

=
∑

j∈C`
k−i

w̄jΥω
i (N − j, v,M−j) +

∑

k′∈M`−k

∑

j∈C`
k′

w̄jΥω
i (N \ C`

k′ , v,M− C`
k′)

=
∑

j∈C`
k−i

w̄jΥω
i (N − j, v,M−j) +

∑

k′∈M`−k

w∗`k′

w∗`(M `)
Υω

i (N \ C`
k′ , v,M− C`

k′)

The third equality is by Equation (6.1).

6.4 Bidding game

In this section, we explain a bargaining model in the first stage of which each individual is re-
quired to reveal payable bids to each of the other individuals in exchange for acquiring an advan-
tageous position (or accepting an unfavorable position when bids are negative) in the subsequent
stages.

For eachi ∈ N , let ∆i be an extensive form game related to playeri. Let ∆ = (∆i)i∈N . A
player set of∆i must includeN . Let wi > 0 be a positive weight for playeri ∈ N andw =
(wi)i∈N . We define an extensive form gameΓ(N, w,∆) in which first aweighted bidding game
is conducted among players inN , and then, a game∆α for thewinner α of the bidding game
follows after the appropriate transfer of the bids in the first bidding stage. Thus,Γ(N,w, ∆) is
defined as follows:

i). Each playeri simultaneously makes a bidbi
j ∈ R for eachj 6= i, i.e., s/he

announcesbi = (bi
j)j∈N−i ∈ RN−i.

ii). For eachi, calculate a weighted net bid

Bi(w) :=
∑

j∈N−i

wib
i
j −

∑

j∈N−i

wjb
j
i . (6.3)

iii). A player with the highest weighted net bid is the winner of the bidding stage,
and only the winner actually pays her/his bids to the other players. If there are two
or more players with the highest net bid, then one of them is chosen randomly.
iv). A game∆α for the winnerα is played.
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The final payoff ofi in Γ(N, w,∆) is the sum of her/his payoff paid for, or received from, the
transfer of the bids in the weighted bidding stage and the payoff obtained from the subsequent
game∆α. Thus, given a payoffpj

i which i obtains in∆j , the final payoff for the winnerα is
−∑

j∈N−α bα
j + pα

α and the final payoff for playeri 6= α is bα
i + pα

i .

In the recent literature on the implementation of a solution concept established in cooper-
ative game theory, the mechanisms based on the (weighted) bidding game have been explored
intensively. A notable aspect of the mechanisms based on the bidding game is that they enable
us to achieve some desirable payoff allocation as arealizedvalue instead of anexpectedone,
which is the reason why we employ it as a basis of our bargaining model in the next section.
Pérez-Castrillo and Wettstein (2001) formulate the mechanism, called the bidding mechanism,
according to which, in the first stage, the proposer in the next stages is chosen through the bid-
ding game, and then the proposer makes an offerxj ∈ R to any otherj and the responders
sequentially decide to accept the offer or reject it. In the case of acceptance by all the respon-
ders, the proposer actually pays her/his offer to the responders in return for obtaining the worth
of total cooperation,v(N). On the other hand, if anyj rejects the offer, the proposer leaves
the bargaining with the worth of her/his stand-alone coalition, and the other players continue
the same bargaining process forn − 1 players. They show that in any SPE of this recursively
defined mechanism, the equilibrium payoff vector coincides with the Shapley value if the game
is zero-monotonic.

Vidal-Puga and Bergantinos (2003) discuss the extension of this mechanism to a game with
a coalition structure. They consider a two-step bidding mechanism: in the first step, the bidding
mechanism is played within each coalition and the winner of the bidding stage whose offer is
accepted by all the responders become a representative of her/his coalition by obtaining their
resourceof cooperation, instead of by obtaining their worth of coalition; in the second step, only
the representatives of the coalitions play the bidding mechanism of Pérez-Castrillo and Wettstein
(2001), taking into account their resources obtained from the first step. They demonstrate that
this two-step bidding mechanism implements the coalitional value in some SPE of superadditive
games, and to assure the uniqueness of this mechanism, the strict superadditivity of the games is
needed. Finally, in the context of network allocation problem, Slikker (2007) applies the bidding
mechanism to implement network allocation rules such as the Myerson value (Myerson 1977),
the position value (Borm, Owen, and Tijs 1992), and the component-wise egalitarian solution.

6.5 Social bidding mechanism

In this section, we consider an extension of the bidding mechanism of Pérez-Castrillo and
Wettstein (2001) to a game with a social structure. This is done by (i) restricting the partic-
ipants of the bidding stage of the mechanism to the players who belong to the higher ranked
coalitions and (ii) modifying a subsequent social structure after rejection of an offer made by a
proposer in such a way that the proposing coalition, i.e., the coalition that the proposer belongs
to, retains the right to choose a new proposer.

In the first stage of the mechanism, only the players in coalitions in the highest ranked coali-
tion structures,C` ∈ M, participate in the bidding game and thus, the proposer must be chosen
from the players inN `. In the next stage, proposerα ∈ C`

k makes an offer toall the players
in N − α, and the other players respond to the offer sequentially. Thus, while a proposer must
be chosen fromN `, her/his offers include the players in the lower ranked coalitions. In the case
of acceptance by all players, the proposer pays her/his offer to any playerj 6= α in return for
obtaining their value of cooperation,v(N), and the bargaining is over. On the other hand, when
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some player rejects the offer, the proposerα leaves the bargaining with her/his value of cooper-
ation,v({α}), and the other players continue the same rule of bargaining forn− 1 players with
new social structure beingM−α = (C1, . . . , C`−1, C` \{C`

k}, {C`
k−α}). Thus, after a rejection,

proposing coalitionC`
k−α is in the higher ranked position and a proposer in the next round must

be chosen from players in the coalition.
Let (N, v,M) be a game with a social structure andω be a weight structure of social structure

M. A bargaining model for a game with a social structure, referred to as theω-weighted social
bidding mechanismand denoted bySBMω(N, v,M), is recursively defined as follows:

When N = {i}, player i obtains her/his value of stand-alone coalition,v({i}), and the
bargaining is over.

Suppose thatSBMω(N, v,M) is already defined for less thann players. The bargaining for
the case withn players proceeds as follows:

Stage 1 WhenN ` = {i}, s/he is automatically selected as a proposer in the next stage. Oth-
erwise, the weighted bidding game is played only by the members in the highest ranked
coalition structure, i.e., members inN `. After the simultaneous choices of their bids,
the weighted net bidBi(w̄) is calculated by formula (6.3) for eachi ∈ N ` where the
weight is now measured by considering both intra- and inter-coalitional asymmetry. Thus,

w̄i = wi

w(C`
k)

w∗`
k

w∗`(M`)
for eachi ∈ C`

k ∈ C`. Therefore, in this weighted bidding game, each

player has a weight represented by her/his own weightwi/w(C`
k) multiplied by her/his

coalition’s weightw∗`k /w∗`(M `). A player with the highest weighted net bid becomes a
proposer in the next stage in return for the actual payment of her/his bids to other players
in N `. If we have two or more players with the highest net bid, then any one of them is
randomly chosen.

Stage 2 Let α be a proposer chosen at the first stage. The proposer makes an offerxj ∈ R to any
j ∈ N −α. In other words, proposerα choosesn−1 dimensional vectorx = (xj)j∈N−α.

Stage 3 Every player other thanα sequentially choosesto accept or reject the offer. If we have
a rejection by any responder, the offer is rejected; otherwise, the offer is accepted. In the
case of acceptance, the proposer actually pays the offerxj to anyj 6= α andα obtains the
worth of their total cooperation,v(N). After that, the bargaining is over. Thus, the final
payoff of proposerα is

v(N)−
∑

j∈N`−α

bα
j −

∑

j∈N−α

xj .

The final payoff of otheri ∈ N `, i 6= α, is bα
i + xi, and that ofi ∈ N \N ` is xi.

In the case of rejection, the proposer leaves the bargaining table withv({α}). The other
players continue the bargaining for the division ofv(N − α): they playSBMω(N −
α, v,M−α). Thus, the final payoff of proposerα is v({α}) − ∑

j∈N`−α bα
j , that of i,

i ∈ N − α, is the sum ofbα
i andi’s payoff obtained inSBMω(N − α, v,M−α), and that

of i, i ∈ N \N `, is i’s payoff obtained inSBMω(N − α, v,M−α).

Clearly, SBMω(N, v,M) is identified asΓ(N `, (w̄i)i∈N` , (∆i)i∈N`), where for eachi ∈
N `, ∆i is an extensive form game that starts from Stage 2 withi being chosen as the proposer.

WhenM = ({N}) andwi = wj for all i, j ∈ N , SBMω(N, v,M) coincides with the
bidding mechanism of Ṕerez-Castrillo and Wettstein (2001), and whenM = ({N}), it coincides
with the weighted bidding mechanism also introduced by them. Thus, the following theorem
includes theorems1 and2 of Pérez-Castrillo and Wettstein (2001) as special cases:
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Theorem 6.1. Let (N, v,M) be a game with a social structure. Suppose that(N, v) is zero-
monotonic. Then, in any SPE of theω-weighted social bidding mechanism for(N, v,M), the
equilibrium payoff vector coincides withΥω(N, v,M).

Proof. We prove this theorem by the induction on the number of the players. WhenN = {i},
according to the mechanism for one player case, playeri obtainsv({i}) = Υω

i (N, v,M).
Now assume that the statement of the theorem holds for less thann players. We will show

that the statement holds forn players. In the following, we use short-cut notationsΥω(M) and
Υω(M−i) instead ofΥω(N, v,M) andΥω(N − i, v,M−i) for convenience.

Consider the following strategies:

At Stage 1, each playeri, i ∈ N `, makes the bidbi
j = Υω

j (M)−Υω
j (M−i) to anyj ∈ N `−i.

At Stage 2, playerα ∈ N `, the proposer, offersxj = Υω
j (M−α) to eachj ∈ N − α.

At Stage 3, playeri ∈ N−α accepts any offer greater than or equal toΥω
i (M−α) and rejects

any offer strictly smaller thanΥω
i (M−α).

First we show that these strategies haveΥω(N, v,M) as the final payoff. It is clear that these
strategies yieldΥω

i (M) for any i ∈ N ` who is not the proposer, sincebα
i + xi = Υω

i (M), for
i 6= α. Additionally, anyi ∈ N \ N ` who is a member of lower ranked coalitions also obtains
Υω

i (M) becauseΥω
i (M−α) = Υω

i (M) by the formula (6.1). Moreover, given that following
the strategies the grand coalition is formed, the proposerα also obtainsΥω

i (M) becauseΥω

satisfies efficeincy.
Note that the payoff determination is independent of the identity of the proposerα. Furthre-

more we note that, following the above mentioned strategies, weighted net bidBi(w̄) is zero for
all i ∈ N ` because

Bi(w̄) =
∑

j∈N`−i

w̄ib
i
j −

∑

j∈N`−i

w̄jb
j
i

=
∑

j∈N`−i

w̄i

(
Υω

j (M)−Υω
j (M−i)

)−
∑

j∈N`−i

w̄j (Υω
i (M)−Υω

i (M−j))

= w̄i(v(N)− v(N \N `)−Υω
i (M))− w̄i(v(N − i)− v(N \N `))

−
∑

j∈N`−i

w̄jΥω
i (M) +

∑

j∈N`−i

w̄jΥω
i (M−j)

= w̄i(v(N)− v(N − i))−
∑

j∈N`

w̄jΥω
i (M) +

∑

j∈N`−i

w̄jΥω
i (M−j)

= w̄i(v(N)− v(N − i))−Υω
i (M) +

∑

j∈N`−i

w̄jΥω
i (M−j)

= 0,

where the third equations follows from

∑

j∈N`

Υω
j (M) = v(N)− v(N \N `)

and ∑

j∈N`−i

Υω
j (M−i) = v(N − i)− v(N \N `)
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by (6.2), the fifth equation is by
∑

j∈N` w̄j = 1, and the last equation follows from Proposi-
tion 6.6-(ii).

It remains to check the previous strategies constitute an SPE. Note first that the strategies at
State 3 are best responses because ifj 6= α rejects the offer, s/he plays theω-weighted social
bidding mechanism where the set of players isN − α and the social structure isM−α; by the
induction argument, the equilibrium payoff of this game isΥω(M−α). So, as long asv(N) −
v({α}) ≥ ∑

j∈N−α Υω
j (M−α) = v(N − α), the strategy at State 2 is also best response.

Consider now the strategies at Stage 1. Consider a deviation of playeri from above men-
tioned strategies at Stage 1. Let us denote any bid of playeri by

ci
j = bi

j + aj

for anyj ∈ N ` − i wherebi
j is the bid described in the above strategies. When playeri changes

her/his bid so that s/he should not become the proposer in any case, her/his payoff is not changed
through the deviation. If playeri deviates in a way that s/he becomes the winner of the bidding
stage, her/his new net bid must satisfy

B̂i(w̄) =
∑

j∈N`−i

w̄ib
i
j +

∑

j∈N`−i

w̄iaj −
∑

j∈N`−i

w̄jb
j
i =

∑

j∈N`−i

w̄iaj

= B̂k(w̄) =
∑

j∈N`−k

w̄kb
k
j −

∑

j∈N`−k

w̄jb
j
k − w̄iak = −w̄iak,

for all k ∈ N ` − i. So,
∑

j∈N`−i aj = −ak for all k ∈ N ` − i. If
∑

j∈N`−i aj < 0, the
condition is not satisfied for somek with ak < 0. So,

∑
j∈N`−i aj = 0. When

∑
j∈N`−i aj = 0,

ci = bi holds. On the other hand, if
∑

j∈N`−i aj > 0, her/his final payoff becomesΥω
i (M) −∑

j∈N`−i aj < Υω
i (M). Thus, s/he can not be better off by changing her/his bid from the above

mentioned strategies.
We now show that any SPE yieldsΥω(M). We proceeds by a series of claims:

Claim 1: In any SPE, at Stage 3, all players other than proposerα accept the offer ifxi >
Υω

i (M−α) for every playeri 6= α. Moreover, ifxi < Υω
i (M−α) for at least somei 6= α, then

the offer is rejected.

Claim 2: In any SPE, at Stage 2, proposerα obtainsv(N)− v(N − α) and everyi 6= α obtains
Υω

i (M−α), in addition to the transfer of the bids at Stage 1.

These two claims are almost equivalent to Claims (a) and (b) of Pérez-Castrillo and Wettstein
(2001) and so we omit the proof. The only difference is that now playeri 6= α obtainsΥω

i (M−α)
after a rejection by the induction hypothesis. A remark is that whenv(N)−v({α}) = v(N−α),
there are two types of SPEs: one is that the offer is accepted and the other is that the offer is
rejected. However, their final payoff is the same in both cases.

The following two claims are on the behavior in the bidding stage. Suppose|N `| ≥ 2.

Claim 3: In any SPE,Bi(w̄) = 0 for anyi ∈ N `.

DefineΩ = {i ∈ N ` : Bi(w̄) ≥ Bj(w̄) ∀j ∈ N `}. If Ω = N `, the fact that
∑

i∈N` Bi(w̄) =
0 trivially impliesBi(w̄) = 0 for eachi ∈ N `. We now show that, for any SPE,Ω = N ` follows.
We prove this by contradiction. Let(bi)i∈N` be SPE strategies at Stage 1. Suppose thatΩ 6= N `.
Then, we can find two playersi ∈ Ω andk ∈ N ` \ Ω. Let δ > 0, and consider playeri’s new
strategŷbi such that̂bi

j = bi
j+δ/|Ω| if j ∈ Ω−i; b̂i

j = bi
j−δ if j = k; b̂i

j = bi
j otherwise. The new
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net bids areB̂i(w̄) = Bi(w̄) − w̄iδ/|Ω|; B̂k(w̄) = Bk(w̄) + wiδ; B̂j(w̄) = Bj(w̄) − wiδ/|Ω|
for all j ∈ Ω − i; B̂j(w̄) = Bj(w̄) for all j ∈ N ` \ (Ω ∪ k). SinceBj(w̄) > Bl(w̄) holds

for any j ∈ Ω and anyl ∈ N ` \ Ω, we still obtainB̂j(w̄) > B̂l(w̄) for sufficiently smallδ.
Thus,Ω̂ := {i ∈ N ` : B̂i(w̄) ≥ B̂j(w̄) ∀j ∈ N `} completely coincides withΩ. However, for
playeri, we have

∑
j∈N`−i b̂

i
j <

∑
j∈N`−i b

i
j , and thus, her/his new strategyb̂i increases her/his

expected final payoff: a contradiction.

Claim 4: For any SPE, each player’s payoff is the same regardless of who is chosen as the
proposer.

From Claim 3, each player’s weighted net bid coincides each other in SPE. Thus, every player
could become a proposer with the same probability. We prove the contrapositive of the claim.
Suppose that some playeri could get the highest payoff if s/he would become a proposer than in
the case where some other player is a proposer. Then, sufficiently small increases in her/his bids
to the other player improve her/his final payoff so that s/he will deviate from the SPE strategy.
Similarly, if playeri could obtain the biggest payoff when some other playerj is a proposer than
in the other cases, s/he has an incentive to decrease her/his bid to playerj.

Claim 5: In any SPE, the final payment received by each of the players coincides withΥω
i (M).

For everyi ∈ N `, since by Claim 4 the payoff of playeri is the same in the case where other
j ∈ N ` − i is chosen as the proposer and the case where otherj′ ∈ N ` − i, j′ 6= j is chosen as
the proposer, we have

bj′
i + Υω

i (M−j′) = bj
i + Υω

i (M−j) ⇐⇒ bj′
i = bj

i + Υω
i (M−j)−Υω

i (M−j′).

Moreover, Claim 4 also implies the payoff ofi is the same in the case wherei is chosen as the
proposer and in the case that otherj is chosen. Thus,

bj
i + Υω

i (M−j) = v(N)−
∑

j′∈N−i

Υω
j′(M−i)−

∑

j′∈N`−i

bi
j′

= v(N)− v(N − i)−
∑

j′∈N`−i

(
w̄j′

w̄i
)bj′

i

= v(N)− v(N − i)−
∑

j′∈N`−i

(
w̄j′

w̄i
)
(
bj
i + Υω

i (M−j)−Υω
i (M−j′)

)

where the second equality is by the efficiency ofΥω and Claim 3. Since
∑

j′∈N` w̄j′ = 1, we
have

(
1
w̄i

)bj
i = v(N)− v(N − i) +

∑

j′∈N`−i

(
w̄j′

w̄i
)Υω

i (M−j′)−
∑

j′∈N`−i

(
w̄j′

w̄i
)Υω

i (M−j)−Υω
i (M−j)

= v(N)− v(N − i) +
∑

j′∈N`−i

(
w̄j′

w̄i
)Υω

i (M−j′)− (
1
w̄i

)Υω
i (M−j)

Thus, by Proposition 6.6-(ii), we have

bj
i = Υω

i (M)−Υω
i (M−j).

So, by the above result and Claim 2, fori ∈ N `, her/his final payoff isΥω
i (M) and for i ∈

N \ N `, i’s final payoff isΥω
i (M−α) = Υω

i (M) whereα is a player inN `. Moreover, when
|N `| = 1, i ∈ N ` obtainsv(N)− v(N − i) = Υω

i (M).
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With regard to theω-weighted social bidding mechanism and Theorem 6.1, first, while the
definition ofΥω is related to the order consistent with the social structure, the order of decision
of the responders does not change the result. All we need is the information that the responders
make their decision by turns and when one of them makes a decision, s/he knows not only the
offers made by the proposer to the other responders but also the responses of her/his preceding
responders.2 In addition, as pointed out by Pérez-Castrillo and Wettstein (2001), other type of
tie-breaking rule in the bidding stage is possible. For example, there is an order of priority of
the players, and the player with highest priority is chosen when there are players that have equal
highest weighted net bids. Further, the weighted bidding stage inSBMω can be replaced by
the random selection of playeri ∈ N ` in a way that first one coalitionC`

k in C` is randomly
chosen proportional to its normalized weightw∗`k /w∗`(M `) and inside the chosen coalition, one
playeri ∈ C`

k is selected proportional to her/his normalized weightwi/w(C`
k). However, this

randomized mechanism achievesΥω as an expected value.3

In addition to implementingΥω as a realized value for any zero-monotonic game, The-
orem 6.1 has the following significance related to the literature on implementing cooperative
solutions.

• In the case ofM = ({N}), the ω-weighted social bidding mechanism coincides with the
bidding mechanism and the weighted bidding mechanism of Pérez-Castrillo and Wettstein
(2001). Therefore, the implementation of the Shapley value and the weighted Shapley
value without hierarchic structure is obtained as the special cases of Theorem 6.1.

• If Ch = {Nh} for eachh ∈ L, theω-weighted social bidding mechanism implementsHVw

for any zero-monotonic game.

• If M = (C) andwi = wj for eachi, j ∈ Ck ∈ C andw∗k = w∗k′ for eachk, k′ ∈ M ,
theω-weighted social bidding mechanism implements the coalitional value for any zero-
monotonic game. It should be emphasized that in the literature on the implementation of
the coalitional value, Vidal-Puga and Bergantinos (2003) attain it for strictly superadditive
environment and Vidal-Puga (2005a) attains it for strictly zero-monotonic environment.4

Thus, our result widens the domain of the implementation of the coalitional value.

• If M = (C), the ω-weighted social bidding mechanism implements the family of all the
weighted coalitional values introduced by Levy and McLean (1989).

One remark on the implementation of the coalitional value is that we are able to implement
the coalitional value without the framework of a game with a social structure. To implement the
coalitional value, it is suffice to consider a bargaining process such that after a rejection of offer
by the first proposer, the proposing coalition retains the right to choose the second proposer and
the second proposer is selected from the coalition by the bidding game. Therefore, the priority
rights to select the proposer of the first proposing coalition is crucial to the implementation of
the coalitional value. In fact, without a game with a social structure, Kamijo (2007a) implements
the coalitional value by considering only the priority of choosing the proposer.

2As is pointed out by Ṕerez-Castrillo and Wettstein (2001), the sequential move of the responders is needed to
avoid bad equilibria such that two or more responders choose to reject the offer even though the proposer makes
offers that are beneficial for all of them.

3This point is similar to the relationship between the bidding mechanism of Pérez-Castrillo and Wettstein (2001)
and the bargaining model of Hart and Mas-Colell (1996).

4The bargaining model of Vidal-Puga (2005a) is based on the one introduced by Hart and Mas-Colell (1996) and
an extension of it to a (NTU) game with coalition structures. His model works in strictly zero-monotonic environment
and attains the coalitional value in expected terms.
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6.6 Concluding remarks

In this chapter, we propose games with social structure and a bargaining model for this class
of games. The bargaining model is established on the basis of the bidding game and is an
extension of the bidding mechanism of Pérez-Castrillo and Wettstein (2001). Similar to the result
of Pérez-Castrillo and Wettstein (2001), theω-weighted social bidding mechanism implements
the weighted value for a game with a social structure in any SPE if the game is zero-monotonic.
This result implies that we provide an implementation of the Shapley value, the weighted Shapley
value with hierarchic structure, the coalitional value and the weighted coalitional value. Because
the two-step bidding mechanism introduced by Vidal-Puga and Bergantinos (2003) works only
in the strictly superadditive domain, our result also has implication on extending the domain of
implementing the coalitional value.



Chapter 7

Implementation of two step values

7.1 Introduction

This chapter explores non-cooperative mechanisms that implement two solutions in game with
coalition structure. In Chapter 3 and 4 of this thesis, we introduce two new solution concepts
in game with coalition structures,ψδ andψγ , and provide several axiomatic or non-axiomatic
characterization of these solutions. To complete the analysis on the solutions, we provide two
mechanisms implementing these solutions in this chapter.

The two mechanism considered here are also based on bidding mechanism of Pérez-Castrillo
and Wettstein (2001). So, we refer the properties on the bidding game considered in Chapter 5
in order to prove the main results.

Both the two mechanisms proceed as follows. If the coalition structure is the grand coalition
structure, then, it is the bidding mechanism of Pérez-Castrillo and Wettstein (2001). When there
are more than one coalition in the coalition structure, the mechanism is as follows. In the first
stage of the mechanisms, all the players participate in the bidding game. In the next stage,
proposerα ∈ Ck makes an offer toall the players inN − α, and the other players respond to
the offer sequentially. In the case of acceptance by all players, the proposer pays her/his offer to
any playerj 6= α in return for obtaining their value of cooperation,v(N), and the bargaining is
over. On the other hand, when some player rejects the offer, (i) players in the proposing coalition
Ck participate in the bidding mechanism of Pérez-Castrillo and Wettstein (2001) for themselves,
and (ii) the remaining players inN \ Ck continue the same bargaining. So, in contrast with
the social bidding mechanism in Chapter 6, the proposing coalition does not retain the right to
choose a new proposer. Rather, in exchange for a player in this coalition becoming a proposer,
the proposing coalition has to take a risk to be separated from players in the other coalitions.

The difference between the two mechanism lies in the first stage. In one mechanism, the
weighted bidding game where the weight of a player is reciprocal number of the cardinality of his
coalition is played in the first stage. In another mechanism, the bidding game, i.e., the weighted
bidding game with the weight of a player being1, is played in the first stage. We show that
the former mechanism implement the Shapley-Egalitarian solution and the latter implements the
collective value for any superadditive game. Interestingly, while the definition of the collective
value is related to the size relevant weight, the mechanism implementing the collective value is
independent of such size relevant weight.

The rest of this chapter is as follows. In the next section, the mechanisms are explained and
main results. In Section 3, the proofs of main theorems are provided.
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7.2 Bargaining models for a game with a coalition structure

Let (N, v, C) be a game with a coalition structure. We now define two bargaining models for a
game with a coalition structure, denoted byCBMδ(N, v, C) andCBMγ(N, v, C), respectively,
in a recursive manner:

We first defineCBMδ(N, v, C). When,C = {N}, players inN play the bidding mechanism
of Pérez-Castrillo and Wettstein (2001) for(N, v).

Suppose thatCBMδ(N, v, C) is already defined for less thanm coalitions inC. The bargain-
ing for the case withm coalitions proceeds as follows:

Stage 1 The weighted bidding game is played only by all players inN . After the simultaneous
choices of their bids, the weighted net bidBi(w) is calculated by formula (6.3) for each
i ∈ N wherewi = 1/|Ck| for any i ∈ Ck ∈ C. A player with the highest weighted net
bid becomes a proposer in the next stage in return for the actual payment of her/his bids to
other players inN . If we have two or more players with the highest net bid, then any one
of them is randomly chosen.

Stage 2 Let α be a proposer chosen at the first stage. The proposer makes an offerxj ∈ R to any
j ∈ N −α. In other words, proposerα choosesn−1 dimensional vectorx = (xj)j∈N−α.

Stage 3 Every player other thanα sequentially choosesto accept or reject the offer. If we have
a rejection by any responder, the offer is rejected; otherwise, the offer is accepted. In the
case of acceptance, the proposer actually pays the offerxj to anyj 6= α andα obtains the
worth of their total cooperation,v(N). After that, the bargaining is over. Thus, the final
payoff of proposerα is

v(N)−
∑

j∈N−α

bα
j −

∑

j∈N−α

xj .

The final payoff of otheri ∈ N − α is bα
i + xi.

In the case of rejection, the bargaining proceeds as follows: LetCk ∈ C be a coalition such
thatα ∈ Ck. Players inCk discuss for the division ofv(Ck) and playCBMδ(Ck, v, {Ck}).
Players inN \ Ck play CBMδ(N − Ck, v, C \ {Ck}). Thus, the final payoff of proposer
α is the sum of−∑

j∈N−α bα
j andα’s payoff obtained inCBMδ(Ck, v, {Ck}), that ofi,

i ∈ Ck−α, is the sum ofbα
i andi’s payoff obtained inCBMδ(Ck, v, {Ck}), and that ofi,

i ∈ N \ Ck, is the sum ofbα
i andi’s payoff obtained inCBMδ(N − Ck, v, C \ {Ck}).

Next, we defineCBMγ(N, v, C). The only difference betweenCBMγ(N, v, C) andCBMδ(N, v, C)
is Stage 1. InCBMγ(N, v, C), Stage 1 is replaced by

Stage 1’ The weighted bidding game is played only by all players inN . Here, each player’s
weight is identical, irrespective of the coalition that he belongs to. Thus,wi = 1 for each
i ∈ N .

Clearly,CBMδ(N, v, C) andCBMγ(N, v, C) coincides with the bidding mechanism of Pérez-
Castrillo and Wettstein (2001) whenC = {N} or C = {{i}}i∈N . Moreover,CBMδ(N, v, C)
(resp. CBMδ(N, v, C))is identified asΓ(N, (wi)i∈N , (∆i)i∈N ), where for eachi ∈ N `, ∆i

is an extensive form game that starts from Stage 2 withi being chosen as the proposer and
wi = 1/|Ck| for eachi ∈ Ck ∈ C (resp,wi = 1 for eachi ∈ N ).

Theorem 7.1. Any subgame perfect equilibrium outcome ofCBMδ(N, v, C) gives the same
payoff asψδ(N, v, C) if (N, v) is superadditive.
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Theorem 7.2. Any subgame perfect equilibrium outcome ofCBMγ(N, v, C) gives the same
payoff asψγ(N, v, C) if (N, v) is superadditive.

The difference between the two mechanism and the social bidding mechanism considered
in the previous chapter is in the bargaining after the rejection of the first proposer. In the two
mechanism considered here, a proposing coalition is separated from the other coalitions. Thus,
the proposing coalition in the two mechanisms has a risk to be separated from players in other
coalitions exchange for a player in this coalition being a proposer. In contrast, in the the social
bidding mechanism, a proposing coalition can still bargaining with the other coalitions and this
coalition has the advantage in selecting the next proposer.

7.3 Proofs of the results

Proof of Theorem 7.1. We will prove this theorem by the induction on the number of elements
in C. If |C| = 1, then the theorem holds becauseCBMδ(N, v, C) is the bidding mechanism of
Pérez-Castrillo and Wettstein (2001) andψδ(N, v, C) is Sh(N, v).

We assume that the theorem holds when|C| < m. Then we will show that the theorem holds
for (N, v, C) with |C| = m. First, consider the behaviors of the players in Stages 2 and 3. Letα
be a proposer in Stage 2 andCk ∈ C be a coalition such thatα ∈ Ck. Letyi, i ∈ N0α be defined
by, for i ∈ Ch,

yi =
{

ψδ
i (N \ Ck, v, C \ {Ck}) if Ch 6= Ck,

Shj(Ck, v) if Ch = Ck.

We have the following claims.

Claim 1: In any SPE, at Stage 3, all players other than proposerα accept the offer ifxi > yi for
every playeri 6= α. Moreover, ifxi < yi for at least somei 6= α, then the offer is rejected.

Claim 2: In any SPE, at Stage 2, proposerα obtainsv(N)− v(Ck)− v(N \ Ck) + Shi(Ck, v)
and everyi 6= α obtainsyi, in addition to the transfer of the bids at Stage 1.

These two claims are almost equivalent to Claims (a) and (b) of Pérez-Castrillo and Wettstein
(2001) and so we omit the proof. The only difference is that now playeri 6= α obtainsyi after a
rejection by the induction hypothesis. Note that the incentive of the proposer holds because

v(N) −
∑

i∈N−α

yj = v(N) −

 ∑

i∈Ck\α
Shi(Ck, v) +

∑

i∈N\Ck

ψδ
i (N \ Ck, v, C \ {Ck})




= v(N)− v(Ck)− v(N \ Ck) + Shi(Ck, v) = Shi(Ck, v)

A remark is that whenv(N)− v(Ck)− v(N −Ck) = 0, there are two types of SPEs: one is that
the offer is accepted and the other is that the offer is rejected. However, their final payoff is the
same in both cases.

To consider the behavior in Stage 1, it should be emphasized thatCBMδ(N, v, C) can be
identified asΓ(N, (wi)i∈N , (∆i)i∈N ). For eachi ∈ Ck ∈ C andj ∈ Ch ∈ CS, let ui

j be the
payoff (without the transfer of the bids) of playerj wheni is a proposer. Thus,

ui
j =





v(N)− v(Ck)− v(N \ Ck) + Shi(Ck, v) if i = j,
Shj(Ck, v) if i 6= j, Ch = Ck,
ψδ

i (N \ Ck, v, C \ {Ck}) if i 6= j, Ch = Ck.
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Then, it is easily confirmed that
∑

j∈N ui
j = v(N) and it is irrelevant to the identity of proposer

i. Therefore, the necessity and sufficient condition for the existence of the bidding game holds
and there exists unique bidding behavior in Stage 1. Moreover, Theorem 5.3 means thatj’s
final payoff is the expected value ofui

j when eachi is selected proportional to his own weight
wi = 1/|Ck|. Since according to this probability distribution, somei is selected at probability

1
m|Ck| , wherei ∈ Ck, this expected value is

1
m|Ck| (v(N)− v(Ck)− v(N \ Ck) + Shi(Ck, v))

+
|Ck| − 1
m|Ck| Shi(Ck, v) +

1
m

∑

h∈M−k

ψδ
i (N \ Ch, v, C \ {Ch})

=
1

m|Ck| (v(N)− v(Ck)− v(N \ Ck)) +
1
m

Shi(Ck, v)

+
1
m

∑

h∈M−k

(
Shk(M − h, vC)− v(Ck)

|Ck| + Shi(Ck, v)
)

= − 1
m|Ck|v(Ck)− m− 1

m|Ck|v(Ck) +
1
m

Shi(Ck, v) +
m− 1

m
Shi(Ck, v)

+
1
|Ck|

(
1
m

(v(N)− v(N \ Ck)) +
1
m

∑

h∈M−k

Shk(M − h, vC)

)

= −v(Ck)
|Ck| + Shi(Ck, v) +

Shk(M,vC)
|Ck| .

We use Proposition 6.3 for the last equality.

Proof of Theorem 7.2. Almost proof of this theorem is very similar to the proof of Theorem 7.1.
One of the differences is that inCBMδ(N, v, C), for eachi ∈ Ck ∈ C andj ∈ Ch ∈ CS, the
payoff (without the transfer of the bids) of playerj wheni is a proposer,ui

j , is

ui
j =





v(N)− v(Ck)− v(N \ Ck) + Shi(Ck, v) if i = j,
Shj(Ck, v) if i 6= j, Ch = Ck,
ψγ

i (N \ Ck, v, C \ {Ck}) if i 6= j, Ch = Ck.

Since eachi’ weight iswi = 1, the final payoff ofi ∈ Ck is

1
n

(v(N)− v(Ck)− v(N \ Ck) + Shi(Ck, v))

+
|Ck| − 1

n
Shi(Ck, v) +

∑

h∈M−k

|Ch|
n

ψγ
i (N \ Ch, v, C \ {Ch})

=
1
n

(v(N)− v(Ck)− v(N \ Ck)) +
|Ck|
n

Shi(Ck, v)

+
∑

h∈M−k

|Ch|
n

(
Shω

k (M − h, vC)− v(Ck)
|Ck| + Shi(Ck, v)

)

= − 1
n

v(Ck)− n− |Ck|
n|Ck| v(Ck) +

|Ck|
n

Shi(Ck, v) +
n− |Ck|

n
Shi(Ck, v)
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+
1
|Ck|

(
|Ck|
n

(v(N)− v(N \ Ck)) +
∑

h∈M−k

|Ch|
n

Shω
k (M − h, vC)

)

= −v(Ck)
|Ck| + Shi(Ck, v) +

Shω
k (M, vC)
|Ck| ,

where we use notationω to describe a weight of the weighted Shapley valueShω and here
ωk = |Ck| for all k ∈ M . The last equality follows from Proposition 6.3.





Chapter 8

Conclusion and Further Topics

The final chapter summarizes the main contributions of this thesis from the literature on solution
theory in cooperative game and then concludes by explaining the further topics.

In the thesis, I constructed the analysis on several solutions from axiomatic and non-cooperative
approaches. Not only did I find new axiomatization results on solutions and new implementation
results separately but also the implications from both approaches.

First, I provided new axiomatic foundation of the Shapley value, the most famous solution
concept in cooperative game theory. I introduced a new axiom, called the balanced cycle contri-
butions property (BCC), and axiomatized the Shapley value by BCC, efficiency and the axiom
on the effect of the exclusion of a null player. One interesting point is that by using BCC, I also
axiomatized both the Egalitarian value and the CIS value, and found the differences between the
three solutions lies in what player’ deletion does not affect the payoff of the other players. The
result is summarized in Table 2.3 in Chapter 2.

Second, I introduced a new mechanism which implements the coalitional value of games with
coalition structures. In the literature, Vidal-Puga and Bergantinos (2003) and Vidal-Puga (2005a)
also presented mechanisms that implement the coalitional value. One merit of the mechanism
introduced in this thesis, the social bidding mechanism, is that it implements the coalitional
value in the larger domain than the one by the two mechanisms of Vidal-Puga and Bergantinos
(2003) and Vidal-Puga (2005a). The crucial feature of the social bidding mechanism is that in
the mechanism, a proposing coalition has the advantage in selecting the next proposer after the
rejection of the previous proposer.

Third, I provided a new class of games, the game with social structure. This is a unified
model of two kinds of games: a game with a horizontal structure and a game with a hierarchical
structure. An example of such a situation is the organizational structure of the employees in a
firm, where there are many employees in some level and at the same time there are also many
employees in higher and lower levels. The weighted value defined in this class of games is an
extension of the Shapley value to such a game, and thus, it coincides with the Shapley value,
the weighted Shapley value with hierarchic structure, the coalitional value, and the weighted
coalitional value, in some special cases.

Fourth, I provided two new solution concepts in games with coalition structures. These
solutions, the Shapley-Egalitarian solution and the collective value, are two-step Shapley values
in the following sense: an allocation of the cooperative surplus by using the Shapley value in
two-step bargaining process, a bargaining inter-coalitions and a bargaining intra-coalitions. The
bargaining surplus of the coalition is allocated among the intra-coalition members in egalitarian
way. Thus, in the first step, each coalition obtains its Shapley value applied for a game among
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coalitions in the definition of the Shapley-Egalitarian solution. On the other hand, each coalition
obtains its weighted Shapley value with size-relevant weight applied for a game among coalitions
in the definition of the the collective value. In both solutions, the pure surplus of a coalition in
the first step bargaining (its Shapley value obtained from the first step minus the worth of the
coalition) is divided equally among players in the coalition. In the second step, players in the
coalition receive their Shapley value applied for their own internal game.

Fifth, I gave axiomatic and non-cooperative foundations to the Shapley-Egalitarian solution
and the collective value, and demonstrate the differences between the two solutions and the coali-
tional value. The coalitional value and the two-step Shapley values are different in the judgment
of application of the equity criterion. The coalitional value requires that two players in coalition
Ck should be equally treated if these two are judged to be equal in the whole society. On the
other hand, the two-step Shapley values require that two players in coalitionCk should be equally
treated if these two are judged to be equal in the internal society. I also found that the coalitional
value and the two-step Shapley values are different in the treatment of null players. While the
coalitional value does not give any portion of surplus to a null player even if his coalition obtains
large benefits, the two-step Shapley values give some portion of the surplus to the null players if
his coalition obtains some benefits. Moreover, from the analysis of non-cooperative foundation,
I found that the difference between the two coalitional bidding mechanisms which implement
the Shapley-Egalitarian solution and the collective value, respectively, and the social bidding
mechanism which implements the coalitional value is in the bargaining after the rejection of the
first proposer. In the coalitional bidding mechanisms, a proposing coalition is separated from the
other coalitions. Thus, in exchange for a player in this coalition becoming a proposer, the propos-
ing coalition has to take a risk to be separated from players in the other coalitions. Whereas, in
the social bidding mechanism, a proposing coalition can still bargaining with the other coalitions
and this coalition has the advantage in selecting the next proposer.

Finally, I explain the further topics related to this thesis. First is related to the new axiom
BCC considered in Chapter 2. In Chapter 2, I provided axiomatization of the Shapley value and
the Egalitarian value by using BCC. As mentioned in Chapter 2, this approach can be generalized
when we pay attention to null players and focus on the effect of the exclusion of a null player
in each value. By doing so, all values we mention here (including the ENSC value) and all their
convex combinations are characterized. Through this way that focuses on the deletion of null
players, it may be possible to succeed in the class axiomatization of the solutions that satisfy
BCC and Efficiency.

Second is related to the extension of BCC to games with coalition structures. In this case,
two types of BCC can be considered. One is BCC intra coalition and the other is BCC inter
coalitions. One conjecture is that these two of BCC with efficiency and NPO axiomatize the
coalitional value.

Third is related to an extension of the two new solutions, the Shapley-Egalitarian solution
and the collective value, to NTU games. In the recent literature, the coalitional value is extended
to NTU games with coalition structures (Bergantinos and Vidal-Puga 2005). Thus, it may also
be possible to generalize our new solution concepts for game with coalition structure to an NTU
case.
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Peleg, B.,andP. Sudḧolter, 2003, Introduction to the theory of cooperative games. Kluwer Aca-
demic Publishers Boston Dordrecht London.
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