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Chapter 1

Introduction

1.1 Purpose

This paper provides theoretical analyses of economic growth and business
cycles by using the framework of the R&D-based growth model. The two
phenomena, economic growth and business cycles, are examined separately
in macroeconomic theoretical literature. Typical examples include the real
business cycle (RBC) theory and the endogenous growth theory. The RBC
theory focuses on the deviation from the trend caused by exogenous shocks
to examine short-run business cycles, whereas the endogenous growth theory
focuses on the property of steady-state growth to examine long-run economic
growth.

Contrary to these theories, this study integrates the analyses of both
short-run fluctuations and long-run sustained growth in a unified setup. It is
not possible to investigate the interaction between growth and cycles as long
as they are analyzed separately. Economic stabilization policies may inhibit
long-run growth, and growth promotion policies may cause a cyclical econ-
omy. In addition, modifying the model to obtain valid long-run growth may
affect the frequency and behavior of business cycles. Analyzing these phe-
nomena is not feasible using the separated approach; however, it is possible
using the integrated approach.

In addition, this study explains not only long-run growth but also eco-
nomic fluctuations caused by endogenous factors. While business cycle mod-
els that rely on exogenous productivity shocks are useful to analyze the be-
havior of cycles, they cannot analyze their sources and conditions that arise
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in business cycles. This study is beneficial in this respect.

1.2 R&D-based endogenous growth theory

The endogenous growth theory was initially conceived and extended by Romer
(1986, 1990), Lucas (1988), Barro (1990), Grossman and Helpman (1991b),
and Aghion and Howitt (1992). The theory has been actively studied by
macroeconomists over the past two decades; even now, it has impacts on
many other areas of macroeconomics. Various models have been presented
in the literature on endogenous growth theory to provide the appropriate
microfoundation to avoide diminishing returns of capital or accumulative
resources. This study applies the theoretical model that is known as the
R&D-hased growth model, which determines R&D and innovation as the main
engine of long-run growth, as its name suggests. Moreover, we use the variety
expanding model framework, which is one of the methods used to develop a
model for explaining R&D driven technological progress.*

In the literature on growth theory, innovation is distinguished between
process and product innovation. Product innovation can be further divided
into horizontal and vertical innovation. While, the quality-ladder model de-
termines that technology is improved through the quality of products using
vertical innovation,? the variety expanding model shows that technological
progress is improved through the expansion of the variety of goods using hor-
izontal innovation. The monopolistic-competition model specified by Dixit
and Stiglitz (1977) and Ethier (1982) is generally used to explain how such
technological progress is driven by the private sector in tractable models.
Judd (1985) constructed the first dynamic model in which the variety of
goods was endogenously expanding, under the assumption of the monopolis-
tic competition. It was then used to explain endogenous sustained growth
by Romer (1987, 1990).

Two models of product innovation should be viewed as complements
rather than as substitutes, as mentioned in Grossman and Helpman (1991a,
chap. 4), Barro and Sala-i Martin (2004, chap. 7), and Gancia and Zilibotti
(2005). One of the advantages of variety expanding models is their analytical

IThe variety expanding model is also referred to as the \variety expansion model" or
\product variety model."

2The most frequently referenced studies are Grossman and Helpman (1991b) and
Aghion and Howitt (1992).
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CHAPTER 1. INTRODUCTION

tractability. In fact, it helps to investigate complex theoretical issues in the
growth cycle models and the monetary endogenous growth models. That's
why we adopt variety expanding models throughout this thesis.

1.3 Deterministic cycles

This study applies two approaches to the R&D-based endogenous growth
model in order to analyze cyclical growth. The first approach explains eco-
nomic fluctuation using a deterministic periodic solution,® while the second
explains economic volatility using indeterminate equilibria and sunspot.
Studies of the interaction between R&D and deterministic fluctuations
were pioneered by Judd (1985) and Deneckere and Judd (1992). By applying
the flip bifurcation theorem to the variety expanding model without capital
accumulation, they found periodic or chaotic fluctuations between periods of
nnovation and periods of no innovation. However, in the above mentioned
models, a sustained R&D effort did not contribute to long-run growth because
it was canceled out by the obsolescence and dilution of knowledge.
Matsuyama (1999, 2001) modified the model in Deneckere and Judd
(1992) by introducing capital accumulation and Romer's (1990) idea of en-
dogenous growth, and investigated endogenous fluctuations with sustained
long-run growth. Specifically, capital accumulation was derived from in-
tertemporal optimization of the infinitely lived agents in Matsuyama (2001).
Matsuyama (1999) did not present intertemporal optimization explicitly.* ?

3The possibility of periodic cycles and chaos in the discrete-time optimal growth model
were shown in Benhabib and Nishimura (1985) and Deneckere and Pelikan (1986). In a
continuous-time optimal growth model with multisectors, Benhabib and Nishimura (1979)
proved the existence of periodic equilibrium trajectories by applying the Hopf bifurcation
theorem.

4As for the endogenous fluctuations model using the quality-ladder framework, Aghion
and Howitt (1992) highlighted the possibility of endogenous cycles in their famous growth
model. Francois and Lloyd-Ellis (2003, 2008, 2009) studied the multisectors' quality-ladder
model with endogenous fluctuations on the basis of the theory of the implementation
cycles of Shleifer (1986). Walde (2005) also investigated sustained growth cycles in the
one-sector quality-ladder model. However, it is noteworthy that cyclical behavior observed
in his model depends on discontinuous jumps based on the uncertainty of R&D success.

®Helpman and Trajtenberg (1998) and Petsas (2003) illustrated long-run fluctuations
based on the exogenous arrival of general purpose technologies (GPT). Comin and Gertler
(2006) and Barlevy (2007) investigated the fluctuating R&D caused by exogenous produc-
tivity shocks.
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More precise studies of the dynamics of Matsuyama's (1999) model were
presented by Mitra (2001), Mukherji (2005), Gardini, Sushko, and Naimzada
(2008), and Yano, Sato, and Furukawa (2011). Mitra (2001) analytically
proved that Matsuyama's dynamics has a period-6 cycle and exhibites topo-
logical chaos under specific parameters. Mukherji (2005) showed the suf-
ficient condition for stable period-2 cycles and examples of parameters for
topological chaos that are more plausible than those explored by Mitra. Gar-
dini, Sushko, and Naimzada (2008) showed that no stable cycle can exist
except for period-2 cycles. Yano, Sato, and Furukawa (2011) demonstrated
that Matsuyama's dynamics can exhibit ergodic chaos.

These models analyzed in Deneckere and Judd (1992) and Matsuyama
(1999, 2001) assumed that inventors enjoy monopoly for only one period.
Therefore, potential inventors engage in R&D activities only in the event of
large productive resources relative to a technological level, because the exis-
tence of large productive resources guarantees the inventors' large monopoly
profit and low cost of R&D. However, when the rate of technological improve-
ment exceeds that of resource accumulation, resources become insufficient
and eventually R&D will cease to continue. The ceasing of R&D will result
in the economy concentrating on manufacturing and resource accumulation,
which in turn will again result in sufficient resource accumulation, thereby
restarting the R&D process. On the basis of this logic, the economy oscillates
between two situations.®

The early chapters in this paper focus on periodic cycles due to the flip bi-
furcation, highlighted in Deneckere and Judd (1992) and Matsuyama's (1999,
2001) approach, and investigate the following issues: how R&D activities be-
have over business cycles and whether policies promoting long-run growth
conflict or coincide with economic stabilization policies.

1.4 Indeterminacy in monetary endogenous
growth models

When the equilibrium path cannot be uniquely determined, even if the initial
condition of the predetermined variables is given, extrinsic uncertainty or

6Bental and Peled (1996) also provided the R&D-based growth model with finite-lived
patent and showed that the economy continues to fluctuate between the search and no-
search phases. Note that they considered process innovation and characterized R&D as
taking random draws from a pool of technologies.
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CHAPTER 1. INTRODUCTION

sunspots can lead to equilibrium cycles.”

Several studies, such as Benhabib, Perli, and Xie (1994), Evans, Honkapo-
hja, and Romer (1998), Haruyama and Itaya (2006), Furukawa (2007a,b),
Arnold and Kornprobst (2008), and Haruyama (2009), investigated economic
volatility on the basis of this indeterminacy in R&D-based growth models.
Benhabib, Perli, and Xie’s (1994) most popular example modified the variety
expanding model based on Romer (1990) by introducing the complementarity
between intermediate inputs and endogenous accumulation of human capital;
they showed that the balanced growth path might be locally indeterminate
for large values of an elasticity of intertemporal substitution.

Evans, Honkapohja, and Romer (1998) also analyzed Romer's model with
complementarity between intermediate inputs. They showed that the mul-
tiple balanced growth equilibria exist and global indeterminacy arises un-
der convex adjustment costs to capital.® Furukawa (20072) and Haruyama
(2009) showed that local indeterminacy occurs easily in the discrete-time ver-
sion of the variety expanding model without capital accumulation. Arnold
and Kornprobst (2008) examined the occurrence of indeterminacy using the
quality-ladder model.”

Chapters 5 and 6 investigate the issue of indeterminate equilibria in a
monetary endogenous growth model. We propose a new long-run model by
introducing exogenous money growth and nominal wage stickiness into R&D-
based growth models. By analyzing the balanced growth path in these mod-
els, we examine how money growth influences economic growth and volatility.
In addition, the consistency between policies to promote long-run growth and
economic stability is examined in terms of monetary policy.

These studies follow the monetary growth theory first pioneered by Tobin
(1965) and Sidrauski (1967).° It is known that indeterminate equilibria

"For details, see Azariadis (1981) and Benhabib and Farmer (1999). Benhabib and
Farmer (1994) and Boldrin and Rustichini (1994) provided the first theoretical study on
optimal growth model involving indeterminacy.

8Romer's original model has a unique balanced growth path with saddle-path stabil-
ity, as shown in Arnold (2000a,b) and Garcia-Castrillo and Sanso (2002); therefore, no
indeterminacy arises.

9As for other types of endogenous growth models, Palivos, Yip, and Zhang (2003)
extended the one-sector endogenous growth model on the basis of Barro (1990) by in-
troducing endogenous labor supply, and showed that dual balanced growth paths and
indeterminacy arise. Benhabib and Perli (1994) and Xie (1994) examined determinacy
property in the two-sector growth model based on Lucas (1988) (see also Mattana, 2004).

0For details on the monetary growth theory, see Zhang (2010).
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are likely to arise in a dynamic model including money growth.!’ Many
studies analyzed indeterminate equilibria in the context of the monetary
endogenous growth theory, such as Itaya and Mino (2007, 2003), Mino and
Itaya (2004), and Suen and Yip (2005); however, sustained long-run growth in
these studies does not stem from R&D and does not include any rigidity. This
study proposes a new channel attributed to nominal rigidities and endogenous
R&D through which money growth influences the determinacy property of
equilibria.

1.5 Structure

This thesis consists of five main chapters from Chapter 2 through Chapter
6. Chapters 2 through 4 are based on the endogenous growth model of
Matsuyama (1999). On the other hand, Chapters 5 and 6 are based on
the new Keynesian Dynamic General Equilibrium (DGE) model of Inoue
and Tsuzuki (2011). These two types of models are included in this study;
however both have the common structure as the R&D-based growth model.

The models used in this study can be divided in terms of the specifica-
tion of R&D, too. One of the typical specifications of R&D is lab equipment
specification, which assumes that R&D activity requires capital as inputs.
Another specification is referred to as knowledge-driven specification, which
assumes that labor and existing knowledge are invested into R&D. Chapters
2, 4, and 6 apply lab equipment specification, whereas Chapter 5 applies
knowledge-driven specification. The model in chapter 3 has both specifica-
tions of R&D.

Further details of each chapter are as follows.

Chapter 2 is based on Shinagawa's (2007) study. This chapter considers
an endogenous growth cycle model based on Matsuyama (1999), and ex-
amines the issue of an optimal patent policy using the concept of \patent
breadth.” Changes in patent breadth affect the economy through monopoly
prices and patentees’ market share. We find that while a broader patent
leads to faster growth, it may make the balanced growth path unstable.
Therefore, in terms of growth rates, economic stabilization policies are not
desirable under certain conditions.

Chapter 3 is based on Shinagawa's (2009) study. It constructs an R&D-
based growth model that has two specifications for R&D technology, lab

N For example, see Matsuyama (1990).
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CHAPTER 1. INTRODUCTION

equipment and knowledge-driven specifications as stated above. There are
three phases in this model, each distinguished by the resource allocation for
R&D; the economy grows endogenously with fluctuations between more than
one phase. We conclude that the fluctuating equilibrium path is possible with
both technologies. When focusing on the period-2 cycles, two technologies
are used alternately.

Chapter 4 is based on Shinagawa's (2013) studies.!? This chapter inves-
tigates the endogenous fluctuations in a non-scale growth model. The lit-
erature on endogenous growth cycles predicts the countercyclical allocation
of resources to R&D. However, this prediction is not supported by empirical
studies. This chapter considers the R&D-based growth model with endoge-
nous fluctuations introducing population growth and a negative externality
that affects the productivity of R&D. We show that our simple modifica-
tion makes R&D investment procyclical along sustained business cycles us-
ing both an overlapping generation framework and an infinitely-lived agent
framework.

Chapter 5 is based on Shinagawa and Inoue's (2011) study.'® This chapter
extends the R&D-based growth model by introducing nominal wage stick-
iness and exogenous money growth, and examines how money growth af-
fects long-run economic growth. We find that there exists a unique bal-
anced growth path for sufficiently high rates of money growth, and that the
economy exhibits sustained growth based on sustained R&D. Faster money
growth results in greater employment and faster economic growth along such
a balanced growth path. Furthermore, under some parameter restrictions,
no balanced growth path exists for low rates of money growth; the economy
1s trapped in a steady state without long-run growth. These results sug-
gest that money growth may be an important factor for long-run economic
growth.

Chapter 6 is based on Shinagawa and Inoue's (2013) study. This chapter
studies the R&D-based growth model with nominal wage stickiness, and
examines how money growth affects not only long-run economic growth but
also the determinacy property of the steady state. The model is extended
by introducing capital accumulation and finite-lived patent. We find that

12Ghinagawa (2013) reported at the 2010 Autumn Meeting of Japan Economic Associ-
ation in Kwansei Gakuin University.
13Shinagawa and Inoue (2011) reported at the Glope II International Conference 2012

in Waseda University and the 2012 Spring Meeting of Japan Economic Association in
Hokkaido University.
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faster money growth results in faster balanced growth; however, this makes
the balanced growth path more likely to be indeterminate. As a result,
we establish that a policy trade-off exists between growth promotion and
economic stabilization.
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Chapter 2

Patent Policy and Endogenous
Fluctuations

2.1 Introduction

This chapter examines the effect of a patent policy on economic growth and
business cycles. Much of the literature on economic growth argued that
R&D activities by private firms are important engines for economic growth.
Private firms engage in R&D activities in search of monopoly profits, main
source of which is the patent. Thus, patents play a central role in this line
of studies.!

This chapter considers an endogenous growth cycle model based on Mat-
suyama (1999), and examines the issue of an optimal patent policy using
the concept of \patent breadth." Patent breadth is an important factor that
characterizes a patent, along with \patent length." Patent breadth generally
means the scope of protection offered by a patent over its lifetime.?2 This
study adopts the specification of patent breadth used in Klemperer (1990),
who measured patent breadth by the distance in the space of certain char-
acteristics between the patented product and the products that other firms
can sell. Moreover, we assume that the transportation of patented goods
requires resources, and the cost per kilometer increases as transportation

IWilde (2005) and Boldrin and Levine (2002) proposed R&D-based endogenous growth
models that have private R&D firms that do not require monopoly or a patent.

2For example, Gilbert and Shapiro (1990) explained patent breadth as “the flow rate
of profit available to the patentee while the patent is in force.”
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distance increases.

Under an extremely narrow patent, inventors cannot obtain sufficient
profit, and thus R&D never occurs. The government is required to maintain
a certain level of broadness of a patent to achieve sustained economic growth
based on R&D. This study investigates the issue of desired broadness of a
patent from two standpoints, growth enhancement and economic stabiliza-
tion. That 1s, we assume that the government aims to stabilize the economy
and promote economic growth.

The main results are summarized as follows. A broader patent induces
firms to conduct higher levels of R&D activity through higher monopoly
prices and higher market share of patentees. Therefore, a broader patent
promotes economic growth, regardless of whether the equilibrium path is
fluctuating. With respect to economic stabilization, when patent breadth
1s adjusted into the appropriate interval, the stable balanced growth path
1s allowed to exist. However, when the market share of patentees is at a
maximum, a broader patent increases the volatility of the economy. As a
result, with respect to growth rate, economic stabilization policies may not
be desirable. That is, a trade-off exists between growth-enhancing policy and
economic stabilization policy. Matsuyama (1999) did not present any policy
implications, and thus these results are original ones obtained by this study.

Studies on economic stabilization using the variety expanding framework
include Deneckere and Judd (1992), Aloi and Lasselle (2007), and Haruyama
(2009). Aloi and Lasselle (2007) considered the endogenous growth cycle
model based on Matsuyama (1999) and examined economic stabilization poli-
cies by subsidizing R&D. They concluded that economic stabilization policies
promote long-run growth and increase welfare. In contrast, Deneckere and
Judd (1992) investigated economic stabilization policies through lump-sum
taxation on households. They argued that economic stabilization decreases
welfare when the discount factor is sufficiently large. In more recent work,
Haruyama (2009) examined R&D subsidies using a model that has the pos-
sibility of revealing indeterminacy and found a trade-off between economic
stabilization and growth enhancements or welfare improvements. Our result
is similar to Deneckere and Judd (1992) and Haruyama (2009) with respect
to the undesirability of economic stabilization.

The rest of this chapter is organized as follows. The next section provides
the details of the assumption of patent breadth used in our model. Section 2.3
sets up the model used in our theoretical investigation. Section 2.4 examines
the dynamic properties of the model and illustrates that the equilibrium path

18



CHAPTER 2. PATENT POLICY AND ENDOGENOUS FLUCTUATIONS

fluctuates endogenously. Section 2.5 examines the effects of patent policies
on economic growth and business cycles. Section 2.6 concludes the chapter.

2.2 Patent breadth

2.2.1 The economic implications of patent breadth

Nordhaus (1969, 1972) and Scherer (1972) pioneered theoretical studies on
optimal patent design. From their studies to the present, this line of research
focused on analyses on patent length. However, patents are characterized not
only by patent length but also by patent breadth. In many cases, patent
breadth captures the profit that the patentees earn per unit time.? It is
determined by the strength of protection and the width of the coverage of an
individual patent. The patent with the stronger protection can seek larger
amounts of damage claims when it is infringed. The patent that has the
wider coverage can exclude the products with the lower degree of similarity
in addition to the highly similar products.* Both patents can earn larger
profits per unit time.?

For example, Tandon (1982) considered that all patented goods are sub-
ject to compulsory licensing and patentees receive a royalty fee that is paid
by firms producing the patented goods over the lifetime of the patents. Un-
der such a patent system, Tandon interpreted that increasing the royalty fee
is equivalent to increasing patent breadth. However, the specifications of
patent breadth differ in each model.®

O'Donoghue, Scotchmer, and Thisse (1998) and O'Donoghue and Zweimuller
(2004) distinguished between leading breadth and lagging breadth. Lagging

breadth of patents is identified as the scope of restrictions on the imitation

3Patent breadth assumed in Gallini (1992) cannot be captured by this way.

4Scotchmer (2004) explained the width of the coverage of a patent from legal perspective
by the \claims" in the patent document and the \doctrine of equivalents."

5In addition, Motohashi (2003) provided the extension of protection to new spheres as
another example of broadening patent protection.

6Nordhaus (1972) considered that patent breadth measures the degree of leakage of
an invented new technology in the context of a process innovation. The narrower patent
means that the followers can produce goods by the nearer level of the technology with
the inventor. Gallini (1992) considered that patent breadth corresponds to the entry cost
to produce imitations. For other literature, useful survey has been presented by Denicolo
(1996, Sec. 2).
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of patented goods. In contrast, leading breadth of patents is identified as the
scope of restrictions on future inventions that is similar to patented technol-
ogy. This chapter focuses on lagging breadth.”

2.2.2 Patent breadth in Klemperer

This study applies the specification of patent breadth used in Klemperer
(1990),% who considered patent breadth as the distance from the patentee
within which imitations are prohibited. That is, patent breadth w allows
competing firms with a distance w from the patentee to produce the patented
product. We refer to the boundary that demarcates the farthest limit of a
patent's protection as the patent boundary.

We assume that the monopoly price of originals produced by the patentee
18 p,,, and the price of imitations is p;. No difference exists in the quality of
originals and imitations. Consumers of the patented products are required to
pay transport cost 7' > 0 per umt distance per unit purchase of imitations.
Then, consumers prefer to purchase the originals at price p,, rather than
purchase imitations from their imitators on the patent boundary at price p;
if and only if Tw + p; > p,,.2 That is, the limit price at which the patentee
can rule out other competing firms from the market is equal to Tw+ p;. The
broader patent (the larger value of w) makes it possible for the patentees to
set the higher monopoly prices and earn larger monopoly profits.

This study assumes that transport cost positively depends on the number
of consumers that transport goods.’® This assumption allows an equilibrium
in which the patentee and imitators coexist in the same market. Patent
breadth affects the economy through the markup of the monopoly price and
the market share of patentees.'!

“Li (2001) presented a specification in which no distinction between them is required.

8Klemperer (1990) used the term \patent width" instead of \patent breadth."

9 All imitations are supplied by the firm just on the patent boundary. The consumers do
not demand the products by the firms located farther from the patent boundary, because
of the excessive transport cost.

10Klemperer (1990) assumed that the transport costs are distributed with a certain
density function, and differ among consumers.

HFutagami and Iwaisako (2003, 2007) and Kwan and Lai (2003) also examined the issue
of an optimal patent policy using the variety expanding framework and the lab equipment
specification. However, in their models, the coexistence of the patentee and the imitators
cannot occur, or the market share of the patentees has no influence on the economy. The
studies on patent breadth using dynamic general equilibrium model include Li (2001),
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2.3 Model

We consider the dynamic general equilibrium model based on Matsuyama
(1999). Time is discrete and indexed by t = 0,1,2,.... We assume two-
period-lived overlapping generation (OLG) households, that inelastically sup-
ply labor when young. A single final good represents a numeraire produced
using intermediate goods and labor inputs, which can be consumed or in-
vested. A new variety of intermediate goods is invented by allocating capital
for R&D activities. Inventors enjoy a one-period monopoly through patent
protection. The available intermediate goods are produced by multiple in-
termediate firms using capital.

As previously mentioned, our specification of patent breadth draws from
Klemperer (1990) and is denoted by w. A patent is an exclusive right granted
to inventors of new intermediate goods. In this model, a patent guarantees
that patentee is a unique producer of each patented good within the patent
boundary for one period.

We assume that transportation requires 7' units of capital per unit dis-
tance per unit purchase of imitations. Then, the umt transport cost i1s 17'r;,
where r; denotes the price of capital. No difference exists in the quality of
originals and imitations. Furthermore, imitation is costless. We rule out the
distance among consumers, final goods firms, and intermediate goods firms
within the patent boundary. Firms within the patent boundary implemented
all R&D activities, and diffusion of new varieties from outside the boundary
never occurs. The time lag in the diffusion of invention is also ruled out.

2.3.1 Final goods

We assume that perfect competition prevails in the final goods market. Final
goods firms are continuously distributed, and their total number is normal-
ized at unity. All final goods firms have identical production technology and
produce identical goods. The production function of final goods firm indexed
by o 2 [0, 1] is

Ny
(o) = AL / bGo)Fds, O<a<1 A>0 (21
0

Goh and Olivier (2002), Futagami and Iwaisako (2003), and O'Donoghue and Zweimuller
(2004).
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where y,(0) represents the final output, L(c) represents labor input, 2,(z, o)
represents the amount of the intermediate goods indexed by z, and 1/(1— )
denotes the elasticity of substitution between all pairs of intermediate goods.
It also follows that (1 — ) represents the labor share of the economy and
N; represents the number of available intermediate goods in period ¢ which
represents the technology level of the economy. We assume that labor is
equally divided among firms; that is, L(¢s) = L, 8¢ 2 [0, 1]. Because w; =
(1 — @)y(0)/L(0) holds, this assumption means y,(0) = Y, = fol y(o)do,
8s 2 [0, 1l.

Given limited patent protection, only the \new" intermediate goods,
(N;_1, N;], are patented. We assume that final goods firm o 2 [0, S;] pur-
chases all patented products from their patentees at a price p,,;, whereas firm
o 2 (S,, 1] purchases from imitators at a price p;;.*> S; 2 [0, 1] represents the
market share of patentees.!® Under these assumptions, profit maximization
of firm o 2 [0, S,] yields the demand for each patented intermediate good
z 2 (Nt—la Nt] as

1
2,(z,0) = xpy = Aﬁchﬁpm:;‘”7 for z 2 (N,_1, N;JJ and o 2 [0, S,].
(2.2)

The aggregate demand function of the products of the patentee is given by
Sy
X (2) = / vz, 0)do = Sizpy, for z 2 (N,_1, NI
0

Similarly, profit maximization of firm o 2 (S, 1] yields

tz,0) = 1y = ATE Lava [pi + WT(St)Tt]_ﬁv

(2.3)
fOI‘ z 2 (Nt—l) Nt] arld g 2 (Sta 1]7

where T(S,) > 01is the unit transport cost which depends on S,. We assume
that 7°(-) is a C2 function and 7YS,) < 0. That is, the unit transport cost
is increasing in the number of final goods firms that transport imitations,
which 1s denoted by 1 — S;. This assumption captures the congestion effect
for the transportation of imitations.

12All intermediate goods are produced by the same technology; therefore, the prices of
the intermediate goods need not be distinguished by z in equilibrium.

13T simplify the explanation, we exclude the circumstance that one firm simultaneously
purchases from both the patentees and the imitators.
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Finally, non-patented intermediate goods z 2 [0, N,_;] are supplied by
intermediate firms within the patent boundary at a competitive price pg.
Therefore, all final goods firms have an identical demand function for each
intermediate good z 2 [0, N, 4].

2,(2,0) = 24 = AﬁLaﬁp;m, for 2 [0, N,_1] and ¢ 2 [0, 1]. (2.4)

2.3.2 Intermediate goods

Each of the intermediate goods is produced using one unit of capital. Regard-
less of whether patented or non-patented and whether imitations or originals,
all intermediate goods are produced using identical technology. The “old"
intermediate goods, [0, V,_1], are competitively supplied. Hence, their price
equals marginal cost, p.; = r;, for 2 [0, N;_1]. The same equation holds for
the price of the imitations, p;(2) = r;, for 2 2 (NV,_1, N,.

2.3.2.1 Market share of patentees

If transport costs are sufficiently high and [wT'(Sy) + 1lr, is larger than p,,;,
the purchase of imitations is more costly than the purchase of originals;
thus, S, is increasing. In contrast, if [w7'(S,) + 1lr, is smaller than p,.;, S,
1s decreasing. According to the previously described adjustment process, S;
converges to the value that satisfies the following equation:*

w1 (S) + 1lr, = ps. (2.5

However, when [w7(1) + 1lr, > p,,, holds, the corner solution, S, = 1, is
realized and (2.5) does not hold.’ Similarly, when [w7(0) + 1lr;, < p,,; holds,
, = 0 1s realized.
Summarizing the above, the patentees' market share, S;, is given by the
function of yi; and w as follows:

1, if p1p < wT(),
Sy = SGu,w) = T (uyJw), if jir 2 (WT(D), wT(0)), (2.6)
0, if > OJT(O),

14This result depends on the assumption, TAS;) < 0. If TYS,) is positive, S; will
converge to either S; = O or S; = 1.

15Tn this case, because p,,; is extremely small, even if the transport cost is minimum,
purchasing imitations is more costly. Therefore, there does not exist a final goods firm
that deals with imitators.
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where j1; = (p /1) — 1 denotes the markup (the rate of profit) of the paten-
tees. Because 7'(-) is monotonically decreasing, the inverse function of 7°(-)
denoted by 7~1(-) is well defined. Note that 7! is a decreasing function.
2.3.2.2 Optimization of patentees

The monopoly profit of the patentees is given by
I, = Xoupre = §(ﬂt7W)$mt#tTt- (2.7)

Maximization of the monopoly profit (2.7) subject to the demand function
(2.2) and the patentees' market share (2.6) yields'®

= ) = w), if pw) > wT(1), (2.9
M E i = min {2 - 10T}, iAW <wT(D.
w) is defined as the root of the following implicit function:
_ 1 a By _
Flu) = 1-a)Q+p l—a_€<;) =0 (29

w) is smaller than w7'(0) for any positive values of w; therefore, S, =
T (s /w) > 0 holds. e(u/w) denotes the absolute value of the elasticity of
T (uu/w) with respect to p1/w as follows:

py (@ H/w) - (ufw)
c (;) - T p/w) >0

which is equal to the inverse of the absolute value of the elasticity of 7(S) with
respect to S. We will investigate the model under the following assumption.'”

Assumption 2.1

50<ﬁ) >0, forall >0 and =0 <1
w w

16 Appendix 2.A provides detailed derivations.
"When (T 1) ™11 /w) < —% (T—1)Np/w) is satisfied, Assumption 2.1 holds. The

right-hand side of the above equation is positive since (T~1)%u/w) < 0. Therefore, if
(TN /w) < 0or TAS) <0, e¥ju/w) is positive and Assumption 2.1 holds.
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When =%;i/w) > 0, F() is decreasing in p. Thus, the root of the implicit
function, F(11) = 0, is unique, if it exists.

Substituting (2.8) into (2.6) gives S; = S(w) = $(u(w),w). The maxi-
mized monopoly profit is

I (w, r) = w(w)Sw)z .
The transport cost is given by
swT(S)r, = plwr,, if Sw) < 1. (2.10)

When S(w) = 1, the transport cost need not be considered. Finally, by using
(2.2), (2.3, (2.4), and (2.5), we obtain

[]_+ H(W)]_ﬁl'ct = Tmt — Tjt- (21]_)

2.3.3 R&D

The number of intermediate goods expands according to the following equa-
tion:

Nt - Ntfl = an n > 07

where R; represents the amount of capital allocated to R&D and 7 is the
parameter that reflects the productivity of R&D.

Each inventor enjoys one-period monopoly and earns profit II,(w,r,).
Therefore, in equilibrium, the following free-entry condition must be sat-
isfied:

I, (w,r) <n 'r, with an equality whenever N, > N, ;.

Because S(w) 6 0, this inequality is written as

Tt < Tt = with an equality whenever N, > N, ;, (2.12)

1
nuw) S(w)’

where Z,,; is the breakeven point of ,,;. Z,,; becomes larger for a small value
of S(w) because the inventors need to earn sufficient profits from fewer final
goods firms.
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Finally, clearing the capital market requires

thl = Ntflxct + (Nt - Ntfl)S(W).rmt + Rt

b (V- N Dl = Sl + o). P
where K;_; represents the amount of capital accumulated in period ¢ — 1 and
available in period t. Available capital is utilized by (1) producing compet-
itive intermediate goods, (2) patentees that produce the new intermediate
goods, (3) R&D, (4) imitators that produce the new intermediate goods,
and (5) transportation of imitation goods, as shown on the right-hand side
of (2.13). In the case of S(w) = 1, the terms of (4) and (5) are equal to zero.
In the period during which no R&D occurs, only the term of (1) is positive.

2.3.4 Consumers

Each consumer lives for two periods. When young, he/ she supplies one unit
of labor and earns wage w;, which is divided into savings and consumption.
When old, he/ she only consumes using his/ her savings. Let ¢;; and coi4 1
denote the consumption in periods ¢ and ¢ + 1, respectively, of consumers
born in period ¢. Each consumer chooses c¢i; and ¢y 1 that maximize his/ her
utility, U, = (1 — s)logcy, + slogegs 1, subject to the budget constraint
Cot+1 = (wt - Clt)TH 1-

The solution to this simple maximization problem is characterized by the
following linear saving function:

K, = sw,L = s(1— )Y, (2.19)

where L represents the number of consumers born in each period.

2.3.5 Equilibrium
Substituting (2.10), (2.11), and (2.12) into (2.13) yields

NN——N = maxf0, [1+ ()] (k_y — Dg. (2.15)
t—1
_ K, 1
T = max{ N, ) 00 } , (2.16)

26



CHAPTER 2. PATENT POLICY AND ENDOGENOUS FLUCTUATIONS

where we define k,_; = Q(w)(K;_1/N,_1), and

1 S uw)

1 - — > 0.
1+ p)==z,, [+ pw)l==

Qw)

If k;,_1 > 1 holds, i.e., the economy has a sufficient stock of capital relative
to its technological level, a positive amount of capital is allocated for R&D
and N, > N, ; holds. In contrast, if £, ; < 1, neither R&D occurs nor
technological progress arises.

Patent breadth w influences the occurrence of R&D through the markup
w1 and the patentees' market share S. The larger values of ;1 and S increase
inventors’ monopoly profits, and make R&D easier to occur for a given N;
and Kt—l-

Substituting (2.11), (2.15), and (2.16) into (2.1) illustrates that the total
output 1s given by

y, = / W(Qddg = ALY *Q(w) Ny 10b(ky 1), (2,17
0

where

k& if k<1,
(ko) = 00 "=
Wik ki1, ifky > 1

Summarizing (2.15), (2.17), and (2.14) yields the following one-dimensional
dynamical system:

Gk, if oy < 1,
k= ¢u(ki_y) = O(kyq,w) = Gk 1 .
if kg > 1,
L+ [1+O0lk,_; -1’ 1
(2.19

where we define G(w) = s(1— ) AL *Q(w)'~* and O(w) = [1+ p(w)]T== — 1.
¢ (k;—1) is a unimodal form with a kink at k,_; = 1 on the (k;,_1, k;) plane.
If the initial values of k are given, the law of motion (2.18) characterizes the
equilibrium path f'k,g} , whose properties depend on patent breadth, w.
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2.4 Dynamics

When G(w) < 1, ¢,(1) < 1 holds and the fixed point of the law of motion
(2.18) belongs to (0, 1] as shown in Figure 2.1(a). We obtain this fixed point
as k*(w) = G(w) =, which is always stable. We refer to this steady state as
the no-growth steady state. In this case, no R&D occurs except for the initial
period, and the economy cannot sustain growth; that is, g7 = ¢}, = gy =
g* = 0, where g% denotes the growth rate of a variable X at the fixed point
k*.

If G(w) > 1, the law of motion (2.18) has a unique fixed point that is

larger than 1, as shown in Figure 2.1(b). This fixed point is derived as

. _ Gw) —1
k(w=1+QE¢E>L

At this fixed point, K, Y, and N continue to grow at constant rates, i.e.,
the economy achieves balanced growth. We define this steady state as the
balanced growth path (BGP). The balanced growth rates of K, Y, and N are
derived as g3 = g¥* = g = ¢ (w) = G(w) — 1, where g is defined as the
growth rate of a variable X at the fixed point k**.

Some algebra shows that the slope of the map, ¢, at the fixed point k**

18
0w 4 e CI™)
Mw) = ﬁk‘H(k (w)) = o)
When G(w) > O(w), jAw)j is smaller than 1, and the fixed point &** is
globally stable. Because ) is negative, the equilibrium path exhibits damped
oscillations and eventually converges to k**.

In contrast, when 1 < G(w) < O(w), jAMw)] exceeds 1 and the fixed
point k** is locally unstable. In this case, we prove the existence of period-2
cycles,'® and the trajectory continues to fluctuate in the trapping region,
(02 (D), ¢, (D] Note that ¢,(D) = G(w) > 1 and ¢2(1) = ¢,(Gw) < 1
always hold as long as O(w) > G(w) > 1.

The average growth rate of K, Y, and N over period-2 cycles are derived
as g% = g% = g% = ¢°(w) = G(W) (kX (w)) 2% — 1, where k is one of the
fixed points of period-2 that is smaller than 1. We can easily show that
(W) > g™ (w).

18By slightly changing a parameter that has an influence on G(w) or ©(w), the fixed
point loses it stability, and the flip bifurcation (period-doubling bifurcation) occurs.

YWe define ¢2 (k) = ¢, (¢, (K)), and ¢7(k) = ¢ (o7~ (k)), forn = £3 4,...g.
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ky
¢w(kt—1)
45° L
O k* 1 ki_q
() Glw) < 1.
ky
¢w(kt—l)
45° b
@ LE™ Ky
(b) G(w) > 1.

Figure 2.1: Two types of fixed points.

29



Summarizing, we obtain a result that is very similar to Matsuyama (1999),
as follows.?°

Proposition 2.1

(2) When G(w) < 1, the law of motion (2.18) has a unique fixed point
k* < 1, which is globally stable, and & monotonically converges to k£**
for any initial condition k.

(b) When G(w) 2 (1,0(w)), the law of motion (2.18) has a unique fixed
point £** > 1, which is locally unstable and & continues to fluctuate in
(2 (1), ¢, (D] for almost all initial conditions.?*

(¢) When G(w) > ©(w), the law of motion (2.18) has a unique fixed point
k** > 1, which is globally stable and % oscillatory converges to k** for
any 1nitial condition k.

If Gw) = O(w) and Aw) are just equal to —1, ¢2(k) = k holds for
any k 2 [1,¢,(1)]. That is, fixed points of period-2 continuously exist in
[1, ¢,(1)]. The average growth rate over these period-2 cycles is equal to g**.
In this case, the equilibrium path converges to either these cycles or the fixed
point £**.

2.5 Patent policy

This section investigates the effects of patent policies. First, we provide the
following lemmas.

Lemma 2.1 Under Assumption 2.1, both 2(w) and j; (w) are non-decreasing
functions of w. A(w) does not depend on w if and only if £Xu/w) = 0.

proof. From (2.8), u;(w) is clearly a non-decreasing function. As for A(w),
applying an implicit function theorem to (2.9) yields

OF /0w _ eXp/w) (p/w)
_ = 0. 2.19
OF/Op iz * XA/w) = (219

Furthermore, if €X/w) is equal to 0, A¥w) = 0 holds. O

20We can provide a more formal proof of proposition in a similar way as Matsuyama
(1999).
21The initial condition, kg, that satisfics qﬁzo(k‘o) = k** for a finite n°is excluded.

Mw) =
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When £X4/w) = 0 and, thus, ¢ is constant, the root of (2.9) can be
derived the closed-form = —+—-— 1.

Lemma 2.2 Under Assumption 2.1, 7~ }(2(w) /w) is increasing in w.

proof. From (2.19), if cAp/w) > 0, fAw) < Mw)/w holds. Therefore, we
obtain

OT H(pw)/w) _ 1 {ﬂ()(w) - M} (Tl)O(M) >0, (220
Ow w w w

O

When S, = T~ ((w)/w) < 1, a rise in patent breadth, w, has three
effects that affect the patentees’ market share, S;, as follows. The first and
second effects raise S; through an increase in the distance to transport and
an increase in unit transport cost. The third effect reduces S; through an
increase in the monopoly price of the originals supplied by the patentees.
However, the first and second effects always dominate the third one.

Lemma 2.3 Let Assumption 2.1 hold. S(w) < 1 is satisfied for sufficiently
small w if and only if £(7°(1)) < 1 holds.??

proof. A necessary and sufficient condition for S(w) < 11is plw) > wT'(1).
Under Assumption 2.1, (1) is decreasing in y and lim,,y ; F(u) < 0. There-
fore, if F(wT(1)) > 0 is satisfied, a unique root of the implicit function,
F(p) = 0, exists such that ¢ > w7(1).

When £(T(D) < 1holds, lim,; ¢ F(wT(D) = 1—=(7(1) > 0; thus, there
exists (w) such that p(w) > wT'(1) for sufficiently small values of w. In
contrast, if =(7°(1)) > 1 holds, lim,, ¢ F(wT(1)) < 0. Because F(wT(1)) is
decreasing in w, there does not exist f(w) that satisfies i(w) > wT(1) for
any w > 0. O

If «(7(1)) < 1 holds, there exists positive threshold values of w, @, and
@, as follows:

(11— )1 —=(7())]
oo + (1 — a)e(T(D)]T(1)°

w

o=0-a)/laT(D]

22The condition, e(7(1)) < 1, can be rewritten as 7(1) < jTX1)j.
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Note that @ < @ holds. When w is smaller than @, we have ;, = 2(w) and
S(w) = T7H(w) /w) < 1; that is, final goods firms that deal with imitators
exist. In this situation, an increase in patent breadth, w, increases patentees'
market share, S;, and the markup of the patented intermediate goods, /i,
except for the case of ¥y /w) = 0.

When w 2 [©,&), no imitation occurs; therefore, the patentees occupy
all demand for the intermediate goods by limit pricing. That is, S(w) = 1.
The markup is i, = wT(1), which increases with increasing patent breadth.
When w > @, u; = lea holds and a change in w has no influence on the
economy.

Summarizing the above, we obtain following equations:

Mw), ifw2 (0w)),
ww) = {wr(D), ifw?2 [@,),

lea, if w> @,
S(0) = {T‘l(ﬂ((.u)/u))7 ?fw 2 (_0, @),
, ifw > .

2.5.1 Economic stabilization

We investigate how a patent policy can achieve long-term stable and balanced
growth. As shown in Proposition 2.1, the economy has a stable BGP by
adjusting patent breadth, w, to satisfy 1 < G(w) < O(w). To examine
the effect of patent breadth on the equilibrium path, we show the following
lemmas.

Lemma 2.4 Under Assumption 2.1, G(w) is increasing in w for w 2 (0, ).

proof. To prove the lemma, we just have to show that Q(w) is an increasing
function. The derivative of (w), which is well-defined for w 2 (0,&) nfag,
is derived as follows:

npw) . nll—a — au(w)]
1+ ,u(w)]ﬁ S (1-— )1+ ==

B SYw) pXw) e!
= Q) { S(w) " pl) 1+ pw)] (1 11— a’u) } '
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From Lemmas 2.1 and 2.2, which are valid under Assumption 2.1, we show
that Q%w) is positive for w 2 (0,@). As for w 2 (©,0), SAw) = 0 and
pXw) = T(1) > 0 holds; therefore, QAw) is positive. O

Lemma 2.5 Under Assumption 2.1, j)j is increasing in w for w 2 (0, ). If
£(u/w) is constant, j)j is decreasing in w for w 2 (0, ©).

proof. The derivative of jA\) with respect to w, which is well-defined for
w 2 (0,0) nfog, is derived as follows:

N pw) { a [1-a— aulw)]

1+ ,u(w)]ﬁf1

@(w)}

w G |1-a 1+ pw)]p(w)
—-(1- )M&
E®NI®E

pAw) = T(1) > 0 and SAw) = 0 hold for w 2 (©,@), therefore Ij)\j/Ow is
positive.

When w < @, S(w) = T (u/w) and SAw) = 9T~!/dw hold and substi-
tuting (2.20) into the previous equation yields®

O(w)e

AN _ o 29w)
Glww’

o - T Gl L AWIT -

which is negative for the sufficiently small value of i%w).?* When e(u/w) is
constant, 2%w) = 0 holds as shown in Lemma 2.1, and 9j)\j/0w is negative.
Ol

Summarizing these lemmas, we obtain the following proposition.

Proposition 2.2 Let Assumption 2.1 and G(&) > 1 hold.

(2) There exists a unique positive threshold value of w, wy, such that the
economy exhibits sustained growth for w > wy.

(b) Let G(@ > O(@) and G(@) < O(&) hold. There exists a unique
threshold value of w, wy 2 (©,®), such that the BGP is stable for
w 2 (@,wsy), whereas the BGP is unstable for w > ws.

23Using (2.9), we get — 1_1‘_’[!1“‘1 =-—L+a=0-ae

Z4For w 2 (0,@), w affects jAj through p(w) and S(w). These effects work are opposite
in nature, and thus the sign of jAXw)j is not generally specified.
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Figure 2.2: Stability of the balanced growth path.

(0 Let G(@) > O(©@ > 1 and eAu/w) = 0 hold. There exists a unique
threshold value of w, w; 2 (wo, @), such that the BGP is unstable for
w 2 (wp, w1), whereas the BGP is stable for w 2 (wq,@).

Let G(&) > 1 hold. Then, from Lemma 2.4, there exists a unique thresh-
old value of w, wo, such that G(wy) = 1. In this case, the economy is trapped
in a long-term, no-growth steady state for w < w,. However, the steady state
of the economy may change to the BGP, and long-run growth occurs through
a policy of extending patent breadth up to w > wy.

Let G(@) > O(©) > 1hold. In such a case, Lemma 2.5 implies that if the
BGP is unstable for w > @, stabilizing it by narrowing patent breadth up to
close enough to @ is possible. If the BGP is unstable for w < @, extending
patent breadth makes it stable when (y/w) is constant.

An examples of the graphs of G(w) and ©(w) appears in Figure 2.2, which
assumes that £(y/w) is constant and, thus, ©(w) is drawn as a horizontal
line for w < @. As is shown, G(&) > 1 holds and wy exists. Therefore,
the economy can get out of the no-growth steady state by extending patent
breadth. However, in this figure, G(&) < ©(®) holds and, thus, the BGP
is unstable for sufficiently large values of patent breadth. If the policy of
extending patent breadth is excessive, the economy becomes volatile.
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2.5.2 Growth enhancement and economic stabilization

This section investigates the consistency between growth-enhancing policies
and economic stabilization policies. Let ©(&) < G(w) hold; that is, the BGP
is stable for w close enough to @, and economic stabilization policies are
effective.

2.5.2.1 The case of (&) < G(&)

From Lemma 2.5, when ©(&) < G(@) is satisfied, the BGP is stable for all
w > @. The balanced growth rate, ¢** = G(w) — 1, is maximized for w > &,
as shown in Lemma 2.4. Therefore, if no w < @ exists such that the BGP
1s unstable, the long-run growth rate is maximized at w > &. In contrast, if
there exists w < @ such that the BGP is unstable, additional discussion is
needed to compare the growth rates between the BGP and cycles.

Lemma 2.6 Let Assumption 2.1 hold and w®and w® exist such that w° < w®
and the BGP is stable for w®and unstable for w’. When ¢2(1D > ¢_¢ (k**(w9)
is satisfied, the average growth rate along any equilibrium path fluctuates in
the trapping region, [¢Z:(1), ¢,0(1)], for wis lower than the balanced growth
rate for w®.

proof. The trapping region for w = w®except for the fixed point &*(w9 is
divided three intervals as follows:

Py= [¢2(D, 1], Po= (LE*WY), Ps= kWY, (D]

When ¢2(1) > ¢_¢(k**(w9), the orbit cannot stay in P, for two periods in
a row once trapped by the trapping region.

If k, belongs to P; in period ¢, k,_; belongsto P,[ P,. Whenk,_; 2 P, the
average growth rate over two periods, ¢ — 1 and ¢, is given by (Y,41/Y, 1)2 —
1= G(w) — 1. In contrast, when k,_; 2 P;, we obtain (Y, 1/th1)% - 1=
G(w)(kt,l)’kT& — 1. Let us define ((k_) = G(w)(kt,l)’l_Ta — 1, which is a
decreasing function of k; ;. The minimum value of k; ; is $2,(1); therefore,
the following inequality holds for arbitrary ¢:

Y, \? 9 B G(W9? T
(yH) S0 = 6D e olewe — 1)

35



From the assumption, there exists @ 2 [WW® such that G(w) = O(5)
holds. Note that ¢2(1) is equal to 1. ((¢2(1)) is increasing in w under
Assumption 2.1; therefore, we obtain ((¢2(1)) < ((¢2(D) = G(=) < G(WY.
O

Let the condition of Lemma 2.6 be satisfied for all w < @ such that the
BGP is unstable or neutrally stable.?

Assumption 2.2 ¢2(1) > ¢ (k**(w)) holds for any w that satisfies w < @
and 1 < G(w) < O(w).

Lemma 2.6 implies that even if there exists w < @ that makes the BGP un-
stable, the long-run growth rate is maximized by applying the patent policy
such that w > &. Because the BGP 1is stable for such w, growth-maximizing
policies are consistent with economic stabilization policies.

2.5.2.2 The case of (@) > G(&)

In contrast, for O(&) > G(&), the BGP is unstable for w > &. Therefore, the
economy becomes volatile by excessively extending patent breadth, as shown
in Figure 2.2.

In this case, there exists & > @ such that O(&) > G(&) is satisfied and a
period-2 cycle is stable. To achieve balanced growth in the long-run, patent
breadth must be at least lower than such &. The growth rates along the BGP
and the period-2 cycles are given by ¢**(w) and ¢°(w), respectively, and the
inequalities g**(w) < ¢**(®) < ¢g°(&) hold for any w that satisfies O(w) <
G(w). The economy experiences the faster long-run growth in exchange for
accepting the fluctuating equilibrium path. Therefore, growth-maximizing
policies are inconsistent with economic stabilization policies.

The case of ©(&) = G(&) can be applied to a similar analysis. In this
case, the long-run growth rate is maximized by patent policies with w > &.
However, under such policies, the BGP is neutrally stable and the economy
converges to period-2 cycles that exist continuously for almost all initial
conditions.

Summarizing the above yields the following proposition:

25Let (11 /w) be constant. If e > 7 = [(3+ P B) /2" — 12 holds, ¢2(1) > ¢, (k**(w))
is satisfied for w > @. When a < &' 0.9267, ¢ is negative, and thus ¢ > Z is satisfied for
all e > 0.
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Proposition 2.3 Let Assumptions 2.1 and 2.2 and ©(@) < G(@) hold.

(2) When O(@) < G(&) holds, the patent policies with w > & make the
BGP stable and maximize the long-run growth rate.

(b) When ©(&) > G(&) holds, the patent policies for which the BGP is
stable cannot maximize the long-run growth rate.

2.6 Conclusions

This study examined the issue of an optimal patent policy using an endoge-
nous fluctuation model based on Matsuyama (1999). We focused on patent
breadth, an important factor that characterizes patents. Changes in patent
breadth influence the economy through monopoly prices of originals and
patentees’ market share.

When patentees' market share equals to 1, extending patent breadth has
an effect only on the monopoly price. In this situation, the broader patent
may trigger the instability of the BGP and create volatility in the economy.
In contrast, a broader patent induces private firms to conduct higher lev-
els of R&D activity through higher monopoly prices of originals and higher
patentees’ market share. Therefore, extending patent breadth always has a
positive effect on economic growth. As a result, the possibility exists that
economic stabilization policies might be undesirable with respect to growth
rate.

Appendix
2.A Derivation of Equation (2.9

When S = T~ (1, /w), the monopoly profit (2.7) is written as

K

M1, = T} (
w

>AﬁLaﬁ[ﬁ(1+ #t)]_ﬁﬂtrt-

The first-order condition of maximization 11,1, is given by

(T‘l)o(%) + 71 (%) 1+1Mt (i - lf‘a) = 0. (2.21)
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Because (7" 1)Y1/w) is negative, if T~ '(11/w) < 0, the previous equation has
no root, thus ruling out the case of T-1(2/w) < 0 and satisfying # < wT(0).
Dividing both sides of (2.21) by 7~!(x,/w) yields the implicit function (2.9)
and we derive 2(w). The second-order condition is written as — w -1 <
0, which is satisfied under Assumption 2.1.

When S = 1, the monopoly profit (2.7) is

Iy = AﬁLaﬁ[ﬁ(1+ [Lt)]_ﬁ,utrtv

which is maximized at y; = (1—a) /. Aslong ase(u/w) > 0, Aw) is always
smaller than (1 — ) /a.

The realized monopoly profit is II; = minfIl;-1,, I1;;g. If and only if
Mw) > wT(1), S =Ty /w) < 1 holds and II, is maximized at p, = Mw),
as shown in Figure 2.3(2). In contrast, when A(w) < wT(1), S equals 1.
If pw) < wT' (D < (1 - a)/a, 11, is maximized at i, = w1'(1), whereas if
(1— a)/a < wT(1), 11, is maximized at j; = (1 — o) /a [see Figures 2.3(b)
and 2.3(c)]. To summarize, we obtain the markup of patentees as (2.8).
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Ht‘ Ht \

0O Al—_a wT'(0) i 0]
(L{ a

,[L:l a wT(0) Ht
wT wT(1 )
(@) p= pw). (b) p= wT(D).
11

© p=~0-0a)/a.

Figure 2.3: Maximization of monopoly profit.
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Chapter 3

Factor-Intensive R&D and
Endogenous Fluctuations

3.1 Introduction

Rivera-Batiz and Romer (1991) proposed two types of specification for R&D
technology, which are heavily used in endogenous growth studies on the ba-
sis of a variety-expanding framework. The first specification assumes that
labor and existing knowledge are invested as inputs into R&D activity, as
assumed in Romer (1990) and Grossman and Helpman (1991a, Chap. 3).
They referred to this type of specification as knowledge-driven specification
of R&D. Another specification is referred to as lab equipment specification
of R&D,which assumes that R&D activity requires capital or output, as as-
sumed in Romer (1987)."

This chapter considers an endogenous fluctuation model based on Mat-
suyama (1999), and introduces two specifications for R&D technology. As one
of the results, we obtain three types of balanced growth paths distinguished
by the allocation of resources for R&D. Furthermore, we obtain the fluctuat-
ing equilibrium path along which both R&D technologies are used alternately
or periodically. The fluctuating equilibrium paths that are analyzed in Mat-
suyama (1999) have periods in which no R&D occurs. In contrast, along our
fluctuating equilibrium paths, R&D occurs every period.

The structure of the chapter is as follows. The next section sets up the

Matsuyama (1995) and Gancia and Zilibotti (2005) have provided comparative anal-
ysis between both specifications.

41



model. Section 3.3 shows the resource allocation in equilibrium and describes
the law of motion. Section 3.4 provides steady states and examines their
stabilities. Section 3.5 focuses on the endogenous fluctuating equilibrium
path. Section 3.6 concludes.

3.2 Model

We consider the dynamic model based on Matsuyama (1999). Time is dis-
crete and indexed by t = 0, 1,2, . ... We assume two-period-lived overlapping
generation (OLG) households. The young work and receive an income; when
older, individuals consume all of their savings. A single final good is taken
as a numeraire that is produced using intermediate goods and labor inputs,
and it can be consumed or invested. The two types of R&D are based on
the knowledge-driven and the lab equipment specification. We refer to the
types of R&D as knowledge-driven R&D and lab equipment R&D, respec-
tively. Inventors enjoy a one-period monopoly because of patent protection.
The available intermediate goods are produced using capital by intermediate
firms.

3.2.1 Final goods
Production technology for the final goods is given by

Ny
Y, = AL;;Q/ 2,(2)%z, O0<a<1l A>0, (3.1
0

where Y; denotes the output level of the final goods, Ly; represents the
amount of labor employed for the production of the final goods, z:(2) repre-
sents the amount of intermediate goods indexed by z, and 1/(1— o) denotes
the elasticity of substitution between all pairs of intermediate goods. N
represents the number of available intermediate goods in period ¢ for the
technology level of the economy.

Profit maximization yields

RO
Ly’
p(2) = QALY 2(2) 09 for 2 2 [0, N}], (3.2)

where w; represents the real wage rate and p;(2) represents the price of
intermediate goods z.

Ny
w= (1— )AL / w(°dz = (1—a
0
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3.2.2 Intermediate goods

Each intermediate good is produced using one unit of capital. Because of lim-
ited patent protection, the Nold" intermediate goods, [0, N,_1], are competi-
tively supplied. Hence, the price is equal to the marginal cost, p,(z) = r, for
2 2 [0, N;_1], where r; is the rental price of capital. However, the \new" inter-
mediate goods invented during period t — 1, (N,_;, N,], are monopolistically
supplied and sold at the monopoly price, p,(2) = r,/a, for z 2 (N,_1, N,.
All intermediate goods symmetrically enter into the production of the final
goods, ie., 7,(2) = z, for z 2 [0, N,_1] and z,(2) = z,,, for = 2 (N,_1, N,].
From (3.2), we can easily illustrate that z,,, = aTa 2+ holds and the maxi-
mized monopoly profits are denoted by the following;:

1«

Ht(Z) = Ht = TmtTt, fOI‘ z 2 (]\/Yt_]_7 Nt]

Considering these results for the profit maximization of intermediate
goods firms, we rewrite the production function (3.1) as follows:

Ny

t—1

—14+a Tal. (3.9

Y, = ALL*(a™52) "Ny

3.2.3 R&D

The number of intermediate goods, N, expands according to the following
equation:
Ny — N1 = neeKye + ngpNe-1Lng,  No > 0. (3.9

The first term on the right-hand side represents new intermediate goods
Inventions using lab equipment R&D. Ky, is the amount of capital allocated
to R&D. The second term on the right-hand side represents knowledge-driven
R&D, and L y; represents the amount of labor employed for R&D. Following
the formalism adopted in much of the literature, we assume that the stock of
existing knowledge has a positive effect on the productivity of present R&D.2
nre > 0and ngp > 0 are parameters.

2Here, we retain the linear relationship between increase in knowledge and stock of
knowledge on the basis of the first generation R&D-based endogenous growth model
(Romer, 1990). However, Jones (1995a,b) argued that assuming this linearity is prob-
lematic. Surveys of this issue are presented by Jones (2005, 1999) and Li (2002, 2000).
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Finally, clearing the capital market and the labor market requires the
following:

L= Ly,+ Lyn;, L>0, (3.5
Ki 1= Kni+ (N, = Ny D + Ny 124, (3.6)

where L represents the total amount of labor (a constant) and K, ; represents

the amount of capital accumulated in period ¢ — 1 and available in period ¢.
. . 1 . . .

Substituting z,,; = aT-= z, into (3.6), we obtain the following:

CV_ﬁ(Kt—l - KNt)

1

K __1
Mcp L+ 5 4 0P| N,

(3.7

Tet =

3.2.4 Consumers

Each consumer lives for two periods. When young, he/ she supplies one unit
of labor and earns wage w;, which is divided into savings and consumption.
When old, he/ she only consumes hi¢/ her savings. Let c¢;; and cg+1 denote
the consumption in periods ¢ and ¢ + 1, respectively, for consumers born
in period t. Each consumer chooses ¢1; and cos+ 1 to maximize their utility,
U = (1— s)logey, + slogeyrq1, where s 2 (0, 1], subject to the budget
constraint Cot+1 — (wt — Clt)rt+ 1.

The solution to this simple maximization problem is characterized by the
following linear saving function:

K, = sw,L=s(1—a)Y,= s(Y, —r K, 1), (3.9
Substituting (3.3) into (3.8) yields

NK,
K=s|1- @ il Y, (3.9

N, JRp e
[le —1+a 1‘”‘] Tt NV 1

3.3 Equilibrium

This section derives the allocation of resources in equilibrium. In this model,
each productive factor may be, respectively allocated to two sectors. Labor
is needed for R&D and the production of final goods. Capital is needed for
R&D and the production of intermediate goods.
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In equilibrium, the following free-entry conditions must be satisfied:
r . .
—Y >1I,, with an equality whenever K y; > 0,

w7t7LE (3.10)
———— >1I;, with an equality whenever Ly, > O.
NxpNi-1

By using (3.10), (3.5), and (3.6), we obtain the following results:

e If k > 1 holds,

LNt > O, KNt = O, for kt—l 2 [O, /ii],
Lyt >0,Kn; >0, fork, 2 (", k),
LNt = O, KNt > 07 fOI‘ kt—l 2 [/€+, 1 )

o If x* < 1 holds,

Lyi= Kn; =0, fork,;210,1]
LNt: OaKNt > O, fOI' k:t_]_Z (1,1 ),

where

Kt—l + 1 ]_+ CY/€+
Ny’ -

/{Zt,l = Oéﬁ(l — Oé)?]LE

x~ depends positively on ", and has a value between 1 and x*. Note that
knowledge-driven R&D never occurs when x* < 1 holds. In this case, this
model behaves identically to the model from Matsuyama (1999).

3.3.1 No-R&D regime

When maxfx*, k;_1} < 1holds, no resource is allocated to R&D and N, /N;_;—
1= 0. In this case, the economy is in the no-R&D regime. The total output
and savings in this regime are given by the following equations:

ALY N, 4
[am5 (1 — )npele
K, = s(1— )Y,

—_— (0%
t = kt—l?

(3.11)

45



3.3.2 Lab equipment R&D regime

When %;_; > maxf1, x*g holds, positive capital, Ky, = 'r/;éa_ﬁ(kt_l —
1D N,_;, is allocated to R&D, and the new intermediate goods are invented
by lab equipment R&D. In this case, the economy is in the lab equipment
R&D regime. The growth rate of NV is given by the following equations:

Ny

N l=a Ta(k_—1. (3.12)

Substituting (3.12) and (3.7) into (3.3) and (3.9) yields

ALY"®N,_
V= —— kg,
[T (1 — )nppl (3.19
K, = s(1—- )Y,

3.3.3 Knowledge-driven R&D regime

When x* > 1 and k;,_; < x~ hold, the new intermediate goods are invented

by knowledge-driven R&D. In this case, the economy is in the knowledge-

driven R&D regime. The amount of labor employed for R&D is given by

kY — K™
K:+

LNt = al

= neha e [ak™+ (1—a)k™ —1].

The growth rate of N is given by

N
Ni-1

—1=a 1= o™+ (1— k" — 1], (3.14)

which does not depend on N, ; and K;_;. The total output and saving in
this regime are given by

ok + (1— )t P
[aTa(1— Oz)nLE](*(/ﬁsJ“)l*‘”(/ﬁ*)"
aK”
ak~—+ (1— o)kt Y.

}/;5 = ALl_a k?_th—lv

(3.1

Kt:S 1-—
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3.3.4 Mixed R&D regime

When «* > 1 and k1 2 (x,x%) hold, both lab equipment R&D and
knowledge-driven R&D are carried out. In this case, the economy is in the
mixed R&D regime. The resources are allocated such that the unit costs of
both R&D types are equivalent.

KNt = nZéaiﬁ [(1+ O[)kt,1 — O[/€+ - 1] Ntfl’

Lyt = npbo =a (k7 — ky_y).

Substituting these equations into (3.4), we obtain the growth rate of N as

follows:
Ny

Nia
R&D is promoted by the larger value of k;, ;. The total output and capital
accumulation are

—1=a = [ak‘t_l + (1-a)s™ — 1] ) (3.16)

ok, 1+ (1 — )T 2@
[a™=a (1 — @)npple(st) -
Oél{ft_l
B ak_ 1+ (1—a)k*

th — ALlfa

t—1,

(3.17

Kt:S 1

Y;.

3.3.5 Law of motion

Using (3.11) through (3.17) shows that the dynamics of the market equilib-
rium can be summarized by the first-order difference equation, k = ¢(k,_1),
o<y ! <4. We must consider the following two cases that are distin-
guished by the value of x*.

e When " > 1 holds,

ky = ¢(kt—1)
( Gt /7)o + (1 — )™ k2
J (k—)E o til) if ko 2[07 7]7
PKD—1 (1+)a[1a[om(+ (1—)04)]/15“ — 1] o "
G(T)olak, 1+ (1 — )™ ]1@
= ki) = e : if k1 2 (7, &%),
PR =T o Zlak + (- a)st 1] o
v (e 1) = il , if ke 1 2 [k%,1).
\QDLE t—1 1+ Oz_m(kt,l— D t—1 K

(3.18
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e When ™ < 1 holds,
k= d(k_q) = onki) =GRy, if ki 2110,1) (3.19
t R PR () if k42 (1,1), '

where G = [a75 (1 — &)y pls(1 — a) ALY,
(8.189) and (3.19) can be summarized as

¢(kt—1) = F(k:t—l; maXfla K_a kt—lgv maXflv /{'+ ; kt—lg)’

. GX~ 7% _ l—ak,a
where F(k, 3 X, 7) = X2 oXr Qo) 2177k,
+a T-alaX+(1-a)z-1]

(3.18 and (3.19) appear in Figure 3.1(a) and Figure 3.1(b) with k,_; on
the horizontal axis and %; on the vertical axis. In the case of k™ > 1, the
graph of ¢(k, 1) is a unimodal form with two kinks. Note that ¢% (k) > 0,
6@ (k) < 0, ¢0,(k) < 0, 62 > 0, 62,(k) < 0, and 6P, (k) > 0 hold. In
contrast, when ~* < 1 holds, the graph of ¢(k;, ;) takes a unimodal form
that has a unique kink, and this case is identical to the model analyzed in
Matsuyama (1999).

3.4 Steady state

#(k) has a unique fixed-point except for the origin. This section shows the
regime in which fixed point of ¢(k) belongs. When «* is larger than 1, the
following relationship holds:

GRG , o¢k)Rk,

(3.20)
GRG" , o) RE,

where

1+a Talak + (1— )™ — 1]
(kt)elak— + (1 — )]t
G =G (k") =1+ a =[x —1].

G =G (") =

K,

G~ (k%) and G* (k") are increasing in x*, and G* (x*) > G~ (k") > 1 holds
as long as k™ > 1.
The argument in (3.20) can be rewritten in the following way.
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Ky kD /PN

@) I€+ k1 kt—;

(a) Case of k¥ < 1.

Ky dN
®KD

PLE

dMm

o 1 k= kT ki1

(b) Caseof k™ > 1.

Figure 3.1: Law of motion.
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Figure 3.2: Regime in which the fixed point of ¢ is located.

Proposition 3.1 Let x* > 1 hold, then:

e The fixed point of ¢(k) belongs to the knowledge-driven R&D regime
for G 2 (0,G-(x™)].

e The fixed point of ¢(k) belongs to the mixed R&D regime for G 2
(G=(x%),G"(k%)).

e The fixed point of ¢(k) belongs to the lab equipment R&D regime for
G2I[GT(k"),1).

In contrast, when x* < 1, the fixed point belongs to the no-R&D regime
for the parameters that satisfy G < 1, and in the lab equipment R&D regime
for G > 1, as shown in Matsuyama (1999).

Figure 3.2 summarizes these results. The region that corresponds to
k* > 11is separated into three regions using the graphs of G* and G, which
have upward slopes. When «* > 1 holds, the economy achieves balanced
growth based on sustained R&D regardless of the regime that involves the
fixed point. That is, our model has three types of the balanced growth paths
(BGPs). Along each BGP, Y, K, and N continue to grow at the same rate.

In contrast, the region that corresponds to x* < 1 is separated into two
regions using the horizontal line for G = 1.
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3.4.1 Steady state in the knowledge-driven R&D regime

The fixed point that belongs to the knowledge-driven R&D regime is given
by

G(k* /k7)? =3

Eeo=lak + (1= a)k*] a
KD 1+ a Talak—+ (1— )kt — 1

In thissteady state, Y, K, and N grow at the constant rate g}, , = o e [ak+
(1 — a)x* — 1]. This balanced growth rate is increasing in ~*; however, it
does not depend on the value of G and £, ,.

For the stability of the steady state, the following proposition is easy to

verify.

Proposition 3.2 The fixed point kj., is globally stable, and £ monotoni-
cally converges to k.

3.4.2 Steady state in the lab equipment R&D regime

The fixed point located in the lab equipment R&D regime is given by £}, =
1+ a5 (G—1). The balanced growth rate in this steady stateis g} , = G—1,
which is independent of .

By using ¢) (ki) = —(a" ™= — 1)/G, the stability of the steady state,
k3 1, is summarized as follows:

Proposition 3.3 (a) When G > maxf1, G*(x*), (o 7= — Dg, the fixed
point, k; ., is stable and % oscillatory converges to k; ,, for any initial
condition k.

(b) When maxf1,G*(k*)g < G < a 7« — 1, ki, is unstable, and k
continues to fluctuate for almost all initial conditions.?

As shown in Proposition 3.3, when maxf1,G* (x*)g < G < o T — 1
holds, jo! (k% .)j exceeds 1 and the steady state is locally unstable. In this
case, the fluctuating equilibrium paths exist, and the trajectory continues to
fluctuate in the trapping region, [¢*(maxf1,x~ g, p(maxf 1, x~g)].

307 T-a — 1 is larger than 1 when o > 1/2 holds, and it is larger than G* (x*) when
Kkt > 2" 7%  1)/a~T-= holds. Note that « R 1/2, 2(a~7+ 1)/a~ ™= R 1 holds.
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3.4.3 Steady state in the mixed R&D regime

We obtain the fixed point in the mixed-R&D regime, £},, as the root of the
implicit function, k3, — ¢, (k%,) = 0. The growth rate of this steady state is
given by g%, = o Talak?, + (1 — a)x* — 1], which is increasing in both G
and k.

The stability of this fixed point can be shown in the following way.

Proposition 3.4 Let x* > 1and G 2 (G~ (x*),G* (k%)) hold.
(a) If k™ < &y holds, the fixed point, k%,, is unstable for any G 2

(G~ (%), G* (7).

(b) If k¥ > kg holds, the fixed point, k%, is stable for any G 2
(G~ (%), G (k%)).

(¢) If k™ 2 (k1, ko) holds, there exists the threshold value of G, G.(xk*) 2
(G~ (k%),G* (%)), such that k%, is stable for G < G.(x*) and is un-
stable for G > G.(x*).

where?
o a(a_ﬁ -1
=1l+qgTa |[———— = 1
K1 (@) [ 1 — a2 ] s
1+ a9 —4ave—n 1
R9 = - —,
« 274 o
and

YW=1-a%>0 p=a-—2+ 0+ OzZ—a?’)aﬁ > 0,
Ye=1-a)(1—aTs) >0,
G (k") is defined for k¥ 2 (ky, kg) as follows:
1+ a TaloX*(x") + (11— )kt — 1]
(k*)ofaX (k) + (1 — a)x* ]

. V9e(E4)2 — dygy i (67) — 7.(k7)
B 274

X*(s"),

G.(k") =

(3.2

I

X*(k

4The necessary and sufficient condition for kg > 1 > 1is givenby o > &' 0.5841.
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=2 (1-a) >0, k") =0@Car—adD1- )kt +ama —1]> 0,
(5 = Q- )k [ - )kt + ate —1]> 0.

proof. See Appendix 3.A. O

3.4.4 Steady state in the no-R&D regime

When «* < 1 and k,_; < 1 hold, the fixed point is located in the no-R&D
regime. The fixed point is given by kY, = G 7, and is globally stable. In this
case, no R&D occurs except for during the initial period, and the economy
cannot sustainably grow.

Figure 3.3 summarizes the results of this section.® The dotted region
corresponds to the parameters for which the steady state is unstable. The
parameter set that has the steady state in the lab equipment R&D regime is
separated into two regions by the horizontal line G = o~ ™= — 1, as shown
in Proposition 3.3. Similarly, the parameter set with the steady state in
the mixed R&D regime is separated by the graph of G.(x*), as shown in
Proposition 3.4.

Figure 3.4 rewrites Figure 3.3 in the (nxp, 1. ) plane. When knowledge-
driven R&D has a sufficiently high productivity relative to lab equipment
R&D, technological progress done by knowledge-driven R&D in the steady
state. In contrast, lab equipment R&D has a high productivity relative to
knowledge-driven R&D, resources are allocated only to lab equipment R&D
in the steady state. Moreover, if both 1 p and 7 are sufficiently large in
a balance, both R&D continue to be carried out in the steady state. If 7 p
and 7, are not extensive, steady state become unstable and equilibrium
path may continue to fluctuate.

3.5 Fluctuating equilibrium path
When the steady state belonging to the lab equipment R&D regime or the

mixed-R&D regime loses its stability, the endogenous fluctuations arise. The
fluctuating equilibrium paths that are analyzed in Matsuyama (1999, 2001)

5ffa > ( 5 /2" 0618 G* (k") = ala” T+ — 1) /(1—a?) islarger than o™ T-= — 1,
as shown in Figure 3.3.
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and Deneckere and Judd (1992) have periods in which no R&D occurs. Con-
versely, along our fluctuating equilibrium path, R&D occurs in every period
without stopping. This section analyzes the growth rate of such a fluctuating
equilibrium path. In particular, we consider the case in which the unstable
steady state is included in the lab equipment R&D regime.

For the fluctuation equilibrium path, we can verify the following propo-
sition.

Proposition 3.5 Let k* > 1and G 2 (G*(k*),a 7= — 1) hold.

(2) There exists a finite integer s such that ¢*(k,_1) < k¥ is satisfied for
any k; 1 2 [x7,1 ) nk},.

(b) When ¢,(k) > ¢(k) is satisfied for k 2 (x7, k), there exists a finite
integer s such that ¢*(k, ;) < x~ holds forany k, 1 2 (x=,1 ) nk} .

proof. See Appendix 3.B. O

Proposition 3.5(a) establishes that the economy cannot continue to stay
only in the lab equipment R&D regime except for when in the steady state.
Furthermore, it cannot continue to stay in the region that is lower than £ ..
Therefore, the fluctuating equilibrium path must go through more than one
regime including the lab equipment R&D regime.

Moreover, Proposition 3.5(b) establishes that if the graph of ¢,; is located
above the graph of ¢; 5 in the mixed-R&D regime, as shown in Figure 3.1(2),
the economy cannot continue to stay in the union of the lab equipment R&D
regime and the mixed R&D regime except in the steady state.® That is, the
fluctuating equilibrium path must go through the knowledge-driven R&D
regime. We can confirm that the trapping region, [¢?(x7), ¢(x7)], which
includes the knowledge-driven R&D regime if the condition of Proposition
3.5(b) is satisfied. In particular, over the period-2 cycles, the economy alter-
nately experiences the lab equipment R&D regime and the knowledge-driven
R&D regime.”

6When (1 — a)a2(a" ™ — 1) > 1, a>a; 0.6532holds, ¢r (k™) > ¢rp(s) is
satisfied for all k¥ > 1. Even if a < a holds, ¢u(k7) > ¢re(k™) holds for sufficiently
large values of k.

"In the case of kK < 1, Matsuyama (1999) has shown that the economy moves back
and forth between the no-R&D regime and the lab equipment R&D regime.
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When the steady state is unstable and the economy is trapped by a period-
n cycle, its average growth rate is derived as follows:

v

Yien ) " |
g, = (T) _1=a H U e p(ky) H k) | =1, (3.22

k20,51 ki2(k— k%)
i2ft,t+1,....t+ng

where Uy p and U, are defined as 8
+\ Q@ -+ (1— +71-«
U (k) = </{_> {om (k QK } |

ak+ (1— )kt ] 1ra
- )

K

0, (k) = (%)

These are decreasing functions of £ and satisfy the following relationship:

Urplk) > Uyke) > 1, 8k 2(0,57), k22 (67, K%). (3.29)

(3.22) implies that the average growth rate over the cycles depends on
the number of the fixed points of period n located in each regime. When the
economy 1s in the lab equipment R&D regime, the gross growth rate of K is
equal to G.° Similarly, when the economy is in the mixed R&D regime (the
knowledge-driven R&D regime), the gross growth rate of K is GU,,(k,_1)
(GUxp(k,_1). Because Y, N, and K grow at the same rate over the entire
cycle, the average gross growth rate is derived by raising their product to the
power of 1/n.

Recall that except for the case in which the system is conservative, the
fluctuating equilibrium path cannot continue to stay only in the lab equip-
ment R&D regime; therefore, the average gross growth rate over the cycle,
(3.22), is guaranteed to be larger that the gross growth rate of the BGP,
1+ gt , = G, from (3.23).

3.5.1 Period-2 cycles

We consider the period-2 cycles over which the economy moves back and
forth between the knowledge-driven R&D regime and the lab equipment R&D

8Note that Uxp(k) R ¥ (k) , kR s~ holds.
9The gross growth rate equals one plus the (net) growth rate.
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regime. In the case in which the BGP belongs to the lab equipment R&D
regime, this type of period-2 cycle may exist when the BGP loses its stability,
as shown in Proposition 3.5.

Let us assume that the fixed points of period-2, kr and kj, exist, and
ki_1 = kiro = kp, kt = kw1 = kg, and kp, < kg = QSKD(kL) hold. From
(3.22), the average growth rate over the cycle is G[Uxp(k)]z — 1 > g7 .
Furthermore, let ¢%* denote the growth rate of the variable X in the lab
equipment R&D regime. Similarly, g5 denotes the growth rate of X in the
knowledge-driven R&D regime. By using (3.12) through (3.15), we obtain
the growth rates of K, Y, and N in each period as follows:

giP = o malak + Q- )kt — U < ghf = aa(ky — D),
.qu = GUgpky) — 1> ,(]IL(E =G-1,
xp . K GUgp(kL) e los™+ (1—a)s™]G B

= —1>
Iy ak—+ (1— @)kt Iy KT

1

By using these equations, we argue the following results. First, the growth
rate of IV is negatively correlated with the growth rate of Y that is, the
productivity improvement is countercyclical. This countercyclical behavior of
N 1s inherited from Matsuyama's model. In this respect, Chapter 4 provides
a detailed analysis.

Second, the amplitude of the growth rate of Y is larger than the amplitude
of the growth rate of K. If the aggregate savings rate, K;/Y;, was constant
as in Chapter 2 and Matsuyama (1999), both amplitudes would be equal.
However, in our model, the aggregate savings rate is higher in the knowledge-
driven R&D regime than in the lab equipment R&D regime, which is caused
by the higher labor share in the knowledge-driven R&D regime.!°

Finally, we confirm that g2 > g% ,. > g£F holds; that is, growth in total
output is slower in the lab equipment R&D regime than in the steady state
despite the fact that faster average growth is achieved over the cycle.!! This
situation is also caused by the fluctuating behavior of the aggregate savings
rate. In Matsuyama's model, the cycles enhance the entire growth, with no
degradation in growth during each period. Conversely, in our model, faster
growth requires sacrifice from the specific generations.

YAslong as ¥ > 1, G~ (k%) > k* /lax™ + (1 —a)k* ] always holds. Because the cycles
require G > G~ (k") to exist; [ax™ + (1 — a)x"]IG/K" is larger than 1.

UTn other words, knowledge-driven R&D is carried out procyclically, whereas lab-
equipment R&D is carried out coutercyclically.
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3.6 Conclusions

This chapter constructed the R&D-based growth model and introduced two
specifications for R&D technology, that are heavily used in endogenous growth
studies on the basis of the variety-expanding framework. We examined en-
dogenous growth and endogenous fluctuations using such a dynamic model.

When knowledge-driven R&D has sufficiently high productivity, three
regimes are distinguished by the allocation of resources for R&D: (1) the
knowledge-driven R&D regime, (2) the lab equipment R&D regime, and (3)
the mixed R&D regime. The technology level and the amount of capital
stock determine the regime to which the economy belongs.

In the long run, when the steady state is located in the lab equipment
R&D regime or the mixed R&D regime, the possibility exists that the steady
state loses its stability and endogenous fluctuations arise. Along such a
fluctuating equilibrium path, both R&D technologies are alternately or pe-
riodically used.'?

Appendix
3.A Proof of Proposition 3.4

We define the following function:
Ak, 1%) = {[0%,(Djjk = (R,
where it is easy to show that

aklla s — D+ ay(k, k)]

Ak, k%) = ok + (1— st Ix(k, 5*)

and
YX,2) =1+ a 7=aX+(1-a)Z -1l

The stability of the fixed point depends on whether A(k},, k") exceeds 1.
Using the following relationship is useful:
MES,ETD)R1 o(ki,, ") QO,

2However, these results crucially depend on the linearity of the knowledge spillover in
the technologies of R&D. We will examine this issue in the following chapter.
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where

aX(a T —1)

(X, 2) = x(X,7) — Xt (-7 —a2x

Note that 90(X, x*)/0X > 0 holds for any X > 0.

When x* > (1 — a7a)/(1— @) holds, we have 6(0, x*) = x(0,x%) > 0;
therefore, (X, x*) = 0 has no positive root. In contrast, when x* < (1 —
a7a)/(1— a) holds, 6(X* x*) = 0 has a unique positive root, X*, which is
given by (3.21).

(a) We define x; as the positive value of x* such that X*(x*) = k. Be
cause (X, X) is increasing in X, and 6(0, 0) < 0 holds, x; uniquely exists.
If k¥ < kq holds, the following relationship is satisfied for any X 2
(=, k")t
0(X, k") < 0(k™, k") < 0(k1, k1) = 0.
Recall that k%, must belong to (x~, %), and 6(k%,, x*) < 0 holds; that is,
we have jo,(k3)j > 1 aslong as k¥ < k.

(b) We define ks as the positive value of x* such that X*(x*) = x~. Note
that = = x (k%) also depends on x*. Some algebra shows that

do(k~(X), X) o e N a(l1—od)(a s - 1)
dX T lta KO-+t ad-ak

0,

Because (x(0), 0) is negative, ko uniquely exists.
If k* > kg, the following relationship holds for X 2 (k= (k%) x*):

0(X, k") > 0(k ("), k") > 0 (k (K9), K2) = 0,

which implies that 0(k%,, %) > 0 and jpu (k%)j < 1

(c) Whenk* 2 (kq,k9), 0(x, k%) > 0and #(x~, k") < Ohold, and X*(x*)
belongs to (=, x*). If ki, < X*(x*) holds, then we obtain j¢,, (k%) > 1,
whereas if k%, > X*(x) holds, we obtain j¢,(k%,)j < 1. A oneto-one
correspondence exists between £}, and GG, and £}, is monotonically increasing
in G. Therefore, there uniquely exists the threshold value of G, G.(x*) 2
(G~ (k"),G* (%)), such that k%, = X*(x"). O
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3.B  Proof of Proposition 3.5

At first, we will prove Proposition 3.5(b). Let k* > 1and G > G* (x*) hold;
thus, the fixed point is k7, 2 (k*, 1 ). The following equation holds for any

k1t .
1 1 a T-a —1 1 1
_ - _ — . (3.249)
CbLE(kt—l) kZE G (kt—l kZE)
Therefore, for k; 1 2 [x*, k% )
1 1 o1\ /1 1
o l-a« —
_ - — > 0. (3.25)
o2 (k1) ki, ( G ) (kt—l ka)

That is, ¢2(k,_1) < k,_1 holds because G < o~ 7= — 1.
Asfork, 12 (k=, k%), using k%, < dar(ky 1) < ¢k, 1) and (3.24), we
obtain

11 __al‘z_1><< 1 1)
o2k 1) k%, G onhki 1) kg

. 2 (3.26)
S (a1 (L 1 ) -0
= G k1 kig '

Therefore, ¢?(k;_1) < k;_ holds. Using (3.25) and (3.26), ¢*(k,_1) < k;_1
holds for any k; ; 2 (k~,k},,). By iterating this process, we obtain a finite
integer n such that ¢?*(k, 1) < x~ holds. From (3.24), the equilibrium path
cannot continue to stay in (k% ;, 1 ); therefore, Proposition 3.5(b) is justified.
By using (3.25), Proposition 3.5(a) is justified. O




Chapter 4

Endogenous Fluctuations with
Procyclical R&D

4.1 Introduction

This chapter examines how R&D activity varies over the business cycle using
the framework of the R&D-based growth models. In business cycles, when
any economic quantity is positively correlated with the business condition of
the economy, it is said to be procyclical. Countercyclical is the opposite of
procyclical.! Most of the preceding literature on endogenous growth cycles
have predicted the countercyclical allocation of resources to R&D. See for
example Matsuyama (1999, 2001), Wailde (2002), Bental and Peled (1996),
and Francois and Lloyd-Ellis (2003, 2008).2

The prediction that R&D expenditures are countercyclical is difficult to
justify from empirical studies. Walde and Woitek (2004) have studied the
cyclical properties of R&D in G7 countries using annual data from 1973 to
2000. They found that aggregate R&D expenditures tended to be procyclical
and argued that the prediction of Matsuyama (1999, 2001) was counterfac-
tual. Fatds (2000) and Comin and Gertler (2006) also have found a highly
procyclical tendency of R&D expenditures using U.S. data. In particular,
Comin and Gertler (2006) focused on longer-term oscillations than conven-

Tn this chapter, the growth rate of real GDP is used as a procyclical economic indicator.

2Francois and Lloyd-Ellis (2008) did not interpret the activity that was a source of
productivity improvements as R&D, but as an \entrepreneurial search." However, its
process was formally identical to the R&D process in the earlier models of Grossman and
Helpman (1991b) and Francois and Lloyd-Ellis (2003).
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tional business cycles. They termed these oscillations the \medium-term
cycle" that includes frequencies between 6 months and 50 years. In this
respect, there is a close relationship between their empirical study and our
theoretical analysis. Geroski and Walters (1995) argued that their analysis
of the U.K. data revealed that productivity improvements were also procycli-
cal. Barlevy (2007), using data from both the National Science Foundation
(NSF) and Standard & Poor's Compustat database of publicly traded com-
panies, found a positive correlation between the growth rates of output and
R&D expenditures at the industry level as well as the aggregate level.

The main purpose of this chapter is to include the procyclical behav-
ior of R&D into the endogenous fluctuation model. We modify the variety-
expanding model in Matsuyama (1999, 2001), introducing population growth
and a negative externality that affects the productivity of R&D. We assume
that finding new knowledge becomes more difficult as economies become tech-
nologically more advanced, as in the semi-endogenous growth model in Jones
(19952) and Segerstrom (1998).% This assumption has been first proposed to
eliminate the scale effect, which is a serious counterfactual prediction in the
first-generation R&D-based endogenous growth models, such that an econ-
omy with a large population grows faster.*

Relevant related literature includes Wilde (2005), Francois and Iloyd-
Ellis (2009), Comin and Gertler (2006), and Barlevy (2007). Francois and
Lloyd-Ellis (2009) have studied the endogenous business cycle model based
on their previous work (Francois and Lloyd-Ellis, 2003). They decomposed
the innovation process into three distinct stages: R&D, commercialization,
and innovation. Their model illustrated the procyclical movement of R&D,
and they determined that the countercyclical movement of commercialization
played a central role in this new result. Furthermore, they showed that the to-
tal expenditure for innovation, defined as the sum of expenditures for R&D
and commercialization, moved procyclically. Walde (2005) also illustrated
procyclical R&D behavior by using a quality-ladder framework with capital
accumulation. The Francois and Lloyd-Ellis (2009) and Walde (2005) models
are similar to ours in that they assumed a negative externality of knowledge

3Jones (1995a) called such an externality the fishing-out effect.

4Jones (1995a) was also the study based on the variety-expanding model in Romer
(1990). However, its balanced growth path (BGP) has a saddle property and no endoge-
nous fluctuation occurs as proven by Arnold (2006). Note that in order to examine the
dynamics analytically, Arnold (2006) assumed non-diminishing returns to labor in R&D,
which was not assumed in Jones' original model.
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accumulation and derive non-scale growth with endogenous fluctuations. On
the other hand, Comin and Gertler (2006) and Barlevy (2007) have discussed
the cyclicality of R&D over the business cycles that were caused by exogenous
shocks. The former was based on a variety-expanding framework and used
similar approach to Francois and Lloyd-Ellis (2009), i.e., decomposing the
innovation process.> The latter, using a quality-ladder framework, showed
that the equilibrium R&D was procyclical in a decentralized market. How-
ever, optimal R&D was found to be countercyclical by a central planner's
problem.®

As the aforementioned studies illustrate, the theoretical explanation of the
procyclicality of R&D is one of the most controversial topics in the studies of
R&D and business cycles. This study achieves the procyclical R&D behavior
under an assumption that is simpler than those of Francois and Lloyd-Ellis
(2009) and Walde (2005). In addition, it does not require exogenous shocks,
unlike the Comin and Gertler (2006) and Barlevy (2007) models.

The rest of this chapter is organized as follows. Section 4.2 sets up the
model used in our theoretical investigation and derives the law of motion
that characterizes the equilibrium path of the economy. Section 4.3 exam-
ines the dynamic properties of the model and illustrates that the equilibrium
path fluctuates endogenously. Section 4.4 focuses on period-2 cycles and
studies the cyclicality of R&D investment. Section 5 studies the model with
infinitely-lived agents to show the robustness of our results. Section 6 pro-
vides conclusions.

4.2 Model

Our model considers the dynamic model based on Matsuyama (1999). Time
is discrete and indexed by ¢t = 0,1, 2,. ... There is a single final good taken as
a numeraire that is produced using intermediate goods and labor. It can be
consumed or invested. A new variety of intermediate goods is invented by al-
locating capital for R&D activities. Inventors enjoy a one-period monopoly
by patent protection. The available intermediate goods are produced by
multiple intermediate firms using capital. Finally, we assume two-period-
lived overlapping generation (OLG) households, who inelastically supply la-
bor when young.

5They introduced the stage of \adoption" instead of commercialization.
6For other recent work on procyclicality of R&D, see Nuno (2011).
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4.2.1 Final goods

We assume that perfect competition prevails in the final goods market. The
production function is given by

Ny
Y, = ALtl‘a/ 2,(2)%z, O0<a<l1l A>0, (4.1
0

where Y, is the final output, L, is inelastically supplied labor, z;(2) is the
amount of the intermediate good indexed by z, and 1/(1 — ) denotes the
elasticity of substitution between all pairs of intermediate goods. N, is the
number of available intermediate goods in period ¢ that represents the tech-
nology level of the economy.

Profit maximization yields w, = (1 — @)Y;/L; and the inverse demand
function for each intermediate good 2 as

p(2) = ozALg_o‘a:t(z)_(l_a), for 2 2 [0, V], (4.2

where w, is the real wage rate and p;(2) is the price of the intermediate good
2.

4.2.2 Intermediate goods

Each intermediate good is produced by using one unit of capital. Because of
limited patent protection, the Nold" intermediate goods, [0, N, 1], are sup-
plied competitively. Hence, the price is equal to the marginal cost, p,(z) = r,,
for z 2 [0, N,_1], where r, is the rental price of capital. However, the \new"
intermediate goods invented in period ¢ — 1, (V,_;, N,], are supplied monopo-
listically and sold at the monopoly price, p,(z) = r,/a, for z 2 (N, 1, N,]. All
intermediate goods enter symmetrically into the production of the final good,
ie, z,(2) = x, for z 2 [0, N, 1] and z,(2) = z,,, for z 2 (V,_1, N,]. From
(4.2), we can easily illustrate that 7,,, = ai~ax., holds and the maximized
monopoly profits are

1—
Ht(Z) = Ht = o al’mﬂ’t, for z 2 (Ntfl, Nt] (43)

Considering these results of the profit maximization of the intermediate
goods firms, we can rewrite the production function (4.1) as
N,
Ny

Y, = AL (a5 2,)*N,_; —1+a Ta |, (4.4)
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4.2.3 R&D

The number of intermediate goods N expands according to the following
equation: ’

R
Ni=Nia=n——, No>0 ¢>0 7>0,
Ntfl

where R, is the amount of the capital allocated to R&D. Following the for-
mation adopted in Jones (1995a), we assume that the past discoveries make
inventing a new machine more difficult. This external effect is captured by
o.

Each inventor enjoys a one-period monopoly and earns profits II;. There-
fore, in equilibrium, the following free-entry condition must be satisfied:

II, < N r,, with an equality whenever N, > N,_;. (4.5)

The breakeven point of x,,; is given by T,,; = ﬁ"?_th(b—r It becomes larger
for a large value of ¢, since R&D becomes costlier for any given N;,_; and L,.

Finally, clearing the capital market requires
Kt = Rt + (Nt — Ntfl)l,mt + Nt,lxct, (46)

where K, i1s the amount of capital accumulated in period ¢ — 1 and available
in period ¢. The available capital is utilized by R&D, producing monopolistic
intermediate goods, and producing competitive intermediate goods, as shown
on the right-hand side of (4.6).

4.2.4 Consumers

Each consumer lives for two periods. When young, he/ she supplies one unit
of labor and earns wage w;, which is divided into savings and consumption.
When old, he/ she only consumes using his/ her savings. Let ci; and co 1
denote the consumption in periods ¢t and ¢+ 1, respectively, of the consumers
born in period ¢. Each consumer chooses c¢;; and cg4+ 1 that maximizes their
utility, U; = (1—s) logcy;+ slogcasr 1, where s 2 (0, 1], subject to the budget
constraint, Cot+1 = (wt — C]_t)rt+ 1.

"This specification is based on Rivera-Batiz and Romer’s (1991) “lab equipment
model."
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The solution to this simple maximization problem is characterized by the
following linear saving function:

Kt+1 = S'U}tLt = 3(1 - Oé)}/t, (47)

where L; represents the number of consumers born in period ¢, which in-
creases at the exogenous rate n, i.e., Ly = (1+ n)L,_;.

4.2.5 Equilibrium
Substituting (4.9), (4.5), and 2. /7 = o = into (4.6) yields:

Ny — Ny o
A St /-L(kt—l) = maxf() Oéim(kt—l - 1)g7 (48)

K 1
o = _— —a _m , 4:9
Tt max{Nt_1 o Tex t} (4.9

where we define k;_; = at-a(1 — a)7/Kt/Nt1:L1¢. If k,_; > 1 holds, 1.e., the
economy has a sufficient stock of capital relative to its technological level,
the positive amount of capital is allocated for R&D and N, > N,_; holds. In
contrast, if k;_; < 1, neither R&D occurs nor technological progress arises.
Substituting (4.8) and (4.9) into (4.4) illustrates that the total output is
equal to
¥, = AL} N

=T a)n]aw(kt,l), (4.10)

where

k if k<1

(k’ B ) = t—1» ' t = 5

w =1 kt—17 ]fk’t_l > 1
To describe the equilibrium path of this economy, we define the new

variable
Ly
Ny
Summarizing (4.7), (4.8), and (4.10) yields the following two-dimensional
dynamical system:

61 =[s(1— ) AlTsare (1 - )y
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(1+ n)gt—la if ke <1,
b= fe(kt—lagt—l) = (1Ln)€t—1 ik > 1
1+ o =a(k, , — D]
‘ (4.11)
Ul if kg <1,
ko= kv, 61) = Vi

- , if k> 1
0+ a ek, — Do o

If the initial values of k, and ¢, are given, the law of motion, (4.11), charac-
terizes the equilibrium path f &, £,g} , whose properties depend on parameter
values, «, n, and ¢.

4.3 Dynamics

The law of motion, (4.11), has a unique positive fixed point (k*, ¢*), where
=1+ amm 1+ ) — > 1, =1+ ), (4.12)

In the long run, £ < 1 is unsustainable by an exogenous population growth.
Therefore, (k*, £*) is a unique non-trivial fixed point of the dynamical system
(4.11).% At this fixed point, K, Y (or per capita output y = Y;/(L,_1 + L;)),
and N grow at constant rates. That is, the economy achieves balanced
growth. The balanced growth rate of per capita output is derived as g;; =

(1+n)s — 1, which is independent of population L.

4.3.1 Stability

The two-dimensional system, (4.11), has two predetermined variables, k£ and
£. If the fixed point is a sink, it is locally stable.

Proposition 4.1 There is a unique bifurcation point of ¢, ¢, that satisfies
B(¢y) — A(¢y) = 0. The fixed point (k*,£*) is a sink for ¢ < ¢, whereas it
is a saddle point for ¢ > ¢, where B(¢) and A(¢) are defined as follows:

2—¢(1+ ) _aTa-1

PO= s M= r

8Substituting ¢; = ¢,_1 > 0into ¢, = f*(k,_1.¢,_1), and solving for k;_,, we obtain k*
uniquely. ¢/* uniquely exists by corresponding with a unique k*.
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Furthermore, in the sufficiently small neighborhood of (k*, ¢*), the system
(4.11) has a periodic orbit of period-2 on one side of the bifurcation point ¢;.

proof. See Appendix 4.A. O

Proposition 4.1 argues that the unique fixed point loses its stability for
sufficiently large ¢. Moreover, the flip bifurcation (period-doubling bifurca-
tion) occurs by slightly changing a bifurcation parameter ¢. If this bifurcation
1s supercritical, there are stable period-2 cycles for ¢ > ¢, in the neighbor-
hood of ¢;,. Conversely, if the bifurcation is subcritical, period-2 cycles with
a saddle property exist for ¢ < ¢y.

4.4 Period-2 cycles

The existence of the period-2 cycles is verified by the following method.

Proposition 4.2 If and only if ¢ > ¢, the system, (4.11), has a pair of the
fixed points of period-2, (k" ") and (K", ¢F), such that k" < 1 < k¥, where
¢ is defined as follows:

- _ log(1+n)
' logy
where
(1+ n)"5* + \/(1+ ntra 4ot (1— aﬁ>
X = QCY& .
proof. See Appendix 4.B. O

When the parameters satisfy the conditions of Proposition 4.2, the sys-
tem, (4.11), has the period-2 cycles moving back and forth between the two
phases, as shown in Deneckere and Judd (1992) and Matsuyama (1999). In
one phase, capital is allocated to R&D and new intermediate goods are in-
vented. In the other phase, all capital is allocated to the intermediate goods
sector and no invention occurs. We shall refer to each phase as the R&D
phase and the no R&D phase, respectively. The average growth rates of per
capita output over the cycles are given by g<* = (1+ n)s — 1, which is
equal to the growth rate along its balanced growth path (BGP), ¢*.
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Our main purpose is to clarify whether R&D investment is procyclical or
countercyclical over business cycles. Let g denote the growth rate of the
variable X in the R&D phase. Similarly, ¢$ denotes the growth rate of X in
the no R&D phase.

Proposition 4.3 ga) Ifa > 1/2, a threshold 0o exists such that g; > g
holds for ¢ 2 [¢1, ¢2), while g} < g holds for ¢ > ¢, where

- log(1+ n) -
2 = g(L n = > ¢1-
log(1 — o) —logaT=
(b) If o < 1/2, g} > ¢9 holds for any ¢ > ¢,.
proof. See Appendix 4.C. O

gy > g, means that the R&D phase achieves faster growth than the
no R&D phase; that is, R&D investment is procyclical. In contrast, when
g9y < gy, R&D investment is high with low growth.

The results of Propositions 4.2 and 4.3 appear in Figure 4.1 with o on
the horizontal axis, ¢ on the vertical axis, and two downward curves. The
region above the graph of ¢; corresponds to the set of o and ¢ for which
period-2 cycle, described in Proposition 4.2, exist. Furthermore, that region
is separated into two regions by the graph of ¢5. The lower region corresponds
to the set of parameters associated with procyclical R&D investment, while
the upper region corresponds to the set of parameters with the countercyclical
R&D investment. We can see that when o < 1/2, in which case the elasticity
of substitution between each intermediate good is low or the markup of the
monopoly price is high, there does not exist a value of ¢ that causes the
countercyclical R&D investment. Whereas, when o > 1/2, the sign of the
inequality between g, and g) may change depending on the values of ¢.

4.4.1 Examples

We assume that the parameter values are o = £1/3,0.9g and n = (1.012)*° —
1' 0.1267. The rate of population growth chosen means a population growth
rate of 1.2%/year and patent length of 10 years.

Example 4.1 If o = 0.9, n = 0.1267, and ¢ = 0.27, the fixed point (k*,¢*)

is a saddle point, and the fixed points of period-2 exist. The growth rates
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Figure 4.1: The cyclicality of R&D.

of each phase are (g}, ¢9) = (0.5552, 0.5558). Therefore, R&D investment is
countercyclical.

Example 4.2 If o = 0.9, n = 0.1267, and ¢ = 0.25, the fixed point (k*, (*)
is a saddle point and the fixed points of period-2 exist. The growth rates
of each phase are (g, g9) = (0.6118,0.6111). Therefore, R&D investment is
procyclical.

The value of the parameter, o = 0.9, corresponds to the markup of the
monopoly price, 1/ov ' 1.1111. For example, Rotemberg and Woodford
(1995) estimated as 1.115. a = 0.9 is consistent with their estimation. The
threshold values of ¢ are ¢, = 0.1572, ¢; = 0.1007, and ¢ = 0.2604.

Example 4.3 If « = 1/3, n = 0.1267, and ¢ = 0.61, the fixed point (k*,¢*)
is a saddle point and the fixed points of period-2 exist. The growth rates
of each phase are (g;, 92) = (0.2458, 0.1869). Therefore, R&D investment is
procyclical.

In our model, o equals the share of capital, conventionally considered to

be around 1/3. For a = 1/3, ¢, = 0.4298 and ¢; = 0.4280, R&D moves
procyclically regardless of the value of ¢.
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4.5 Model with infinitely lived agents

In this section, we consider an infinitely-lived agent economy instead of an
OLG framework, and show the robustness of our results. Using an OLG
framework is unsuitable in the temporally patent model as in Matsuyama
(1999) or Aloi and Lasselle (2007), because the one period of the discrete
time has two distinct interpretations: patent length and half of a lifetime.?
There is no reason for these two interpretations to be identical.

4.5.1 Model

We assume the same structure as in Section 4.2, except for households.
Therefore, (4.1) through (4.6) and (4.8) through (4.10) hold, where L, is
the number of infinitely-lived households who each supply one unit of labor
inelastically and grow at n. The other parameters and variables are defined
n Section 4.2.

As for consumers or households, assuming infinitely-lived agents implies
that the optimal consumption path is characterized by an Euler equation,
instead of the savings function (4.7). Each household chooses a consumption
path that maximizes their discounted utility, Ztlzo Blogcy, subject to the
budget constraint, %1 = w; + 7k — & — nki+1, where 8 2 (0,1 is the
discount factor. c; = C;/L; and §; = K,/L, are per capita consumption and
stock of capital, respectively. The final goods market clears when

Y, = Kuq+ Cp. (4.13)

The solution to this simple maximization problem is characterized by an
Euler equation and a transversality condition as follows:

Gt 57}

T = 4.1
o1 1+n’ (414
. K

lim g7 =0, (4.15)
T 1 o

9Matsuyama (1999) did not present utility maximization explicitly; however, his savings
function can be derived from the conventional OLG assumptions. Matsuyama (2001)
studied an infinitely-lived agent economy.
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4.5.2 Equilibrium

We define the following new variables:

1 o L _a Ct—l
1=ATwamw (1—a)np——, ¢ 1=aTa(l—a)n——r.
t—1 nNil t—1 UN;:?

In equilibrium, Y; = r,K; + w,L; holds. Therefore the rate of return on
capital 1s
Y,
re = aft = all gk Dk} (4.16)
t

Summarizing (4.8), (4.10), (4.13), (4.14), and (4.16) provides the three-
dimensional dynamical system as follows:

foge [1 - aﬁct—l] . fork, . <1,

kt = fk(kt—la @—1, Ct—1) = é\}:la[ktfl—a,ﬁ’ct,l]ktil for ) .
4o Toa (k- D+6’ t—1 ;
b= 1 i), (4.17)
= f¢ 7 _ aﬁé}:?k:iia)czﬁﬂ, for k,_1 < 1,
W= Sl = oBl e for k> 1,

[1+a~ & (ki—1—DJi* o ’

where f(,-) was defined in (4.11). If the initial value of (ko, ) is given,
the equilibrium path £k, ;. ¢, g} is characterized by the law of motion (4.17)
and the transversality condition (4.15).

4.5.3 Dynamics

The law of motion (4.17) has a unique positive fixed point, (k*, 0. ), where

Cfasw ST 1-ag
=T e ()

At this fixed point, the economy achieves balanced growth. Moreover, since
E and « grow at the same rate along the BGP, the transversality condition
(4.15) is satisfied as long as < 1.

The three-dimensional system (4.17) has two predetermined variables, k
and £, and one non-predetermined variable, c. The local saddle path sta-
bility requires a two-dimensional locally stable manifold. We can verify the
following proposition through a local stability analysis.
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Proposition 4.4 Thereisa unique threshold of ¢, ¢, which satisfies B(¢)—
A(gp) = 0. If ¢ > ¢y, the fixed point (k*,@‘, ¢*) is locally unstable.

proof. See Appendix 4.D. O

According to the proposition, for a sufficiently large value of ¢, only the
one-dimensional locally stable manifold exists. Therefore, the economy that
begins close to the fixed point will move away from it. Since a trajectory
cannot approach the unique fixed point asymptotically, the equilibrium dy-
namics of the economy exhibit endogenous fluctuations for almost all initial
conditions.

4.5.4 Period-2 cycles

With respect to the existence of the period-2 cycles, we can show a similar
result with Proposition 4.2, i.e., the three-dimensional dynamical system
(4.17) has the period-2 cycles fluctuating between the R&D regime and the
no R&D regime; this exists for ¢ > ¢;. Such periodic orbits satisfy the
transversality condition. As for the cyclical properties of R&D, it is possible
to 1llustrate an identical result, as shown in Proposition 4.3 and Figure 4.1.
The discount factor 5 does not affect these results.

4.6 Conclusions

This chapter has examined the cyclicality of the R&D investment over the
business cycles by using the variety-expanding model with limited patent
protection. We have illustrated that the unique fixed point loses its stabil-
ity. In addition, period-2 cycles moving back and forth exist between the
R&D and the no R&D phases. Moreover, we examined the possibility and
conditions that R&D investment is procyclical over the period-2 cycles. The
preceding literature on endogenous growth cycles, such as Matsuyama (1999,
2001), predicted the countercyclical allocation of resources to R&D. However,
empirical evidence does not support these predictions. We have proven the
existence of the parameter set that achieves procyclical R&D, shown in many
empirical studies. In our model, countercyclical R&D requires a large capital
share and a sufficiently strong external effect. In other cases, R&D invest-
ment 1is procyclical.
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We assume exogenous population growth and the negative externality
of the stock of knowledge that works in R&D, following the formation of
the semi-endogenous growth model. ' In our model, the parameter of this
externality plays the central role in the decision of the cyclicality of R&D.

Appendix
4.A Proof of Proposition 4.1

In order to examine local stability, we linearize the system (4.11) around the
fixed point (k*, £*).

kt—k* _ ktfl_k* B {c* é{:*
{gt_é*]—J[&_l_é*}, where J:[f* o

A stability type of the fixed point depends on the trace (trJ) and the de-
terminant (detd ) of the Jacobian matrix. We define seven regions separated
by three lines, detdJ = trJ — 1, det = —trJ — 1, and detJ = 1, as shown in
Figure 4.2.11 We also know that if the Jacobian was somehow to move from
inside the triangle with sink stability to outside, a bifurcation would occur.

detdJ and trd are derived as

o7

detd = —a¢p — (1+ O@)Ozl—a)_ll,
L+ s ) (4.19)
trd = —¢+ 1— (1+ p) =
(1+n)e

It is clear that detdJ < 1 and detd > trd — 1, that is, the pair of detdJ and
trd does not belong to the shaded region in Figure 4.2.'2 In addition, from

0As a result, even if the economy grows along the fluctuating equilibrium path, the
long-run growth is not endogenous and requires positive population growth, as shown in
the literature using a similar assumption such as Jones (1995a) and Segerstrom (1998).
Young (1998), Peretto (1998), and Howitt (1999), indicated this problem and proposed
models that have non-scale endogenous growth. A survey of this issue is presented in Jones
(1999, 2005). Li (2000, 2002) argued that the predictions of these models depend on the
knife-edge assumption and that the semi-endogenous growth prediction is more general.

11Gee Azariadis (1993, Ch.6) for further details.

12Therefore, the possibilities of the saddle-node bifurcation and the Hopf bifurcation
can be ruled out.

4



CHAPTER 4. ENDOGENOUS FLUCTUATIONS WITH PROCYCLICAL R&D

det J

detJ=trJ-1 4+

. osource.

-2 =1 0 L 2 3
tr J

Figure 4.2: Local stability on the plane.

(4.18), we obtain the following relationship:

A QB , detdR-—trd — 1

4.B Proof of Proposition 4.2
Solving ¢ = fE(fR(KM, 01), fA(RH 0H)) for kT, we obtain
=1+ ama[(1+ n)% — 1> 1

Furthermore, k%, (X, and (" are
K= (14 n) 25 I

I+¢ 11—«

= (1 ) (5

)

(4.19

(4.20)

and ¢ = (1+ n)¢". Certain algebra shows that & < 1 is satisfied if and

only if (1+ n)i <yor¢> g1

13Since o= (1 — aT-a) < 0.25, y and ¢; are real numbers.

S
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4.C Proof of Proposition 4.3

The growth rate of per capita output is given by g,; = % -1

Using (4.19) and (4.20), we obtain g} = (k) a1+ n)™ws — 1 and gy =
(kM) e (14 p)Tas — 1. Tt is possible to show that g, > g) holds if and

only if (1+ n)% < a ™ — 1. Fora < 05, a &= — 1 < 1 holds(Case(b)).

Therefore, no positive pair of ¢ and n exists such that (1+ n)e <a a1
is satisfied. On the other hand, when o > 1/2, o T« — 1 is larger than

1 (Case(a)). In this case, (1+ n)# < a = — 1 holds for ¢ > ¢9. Since
X > a Ta —1, ¢y > ¢y holds. O

4.D Proof of Proposition 4.4

We linearize the system (4.17) around the fixed point (k*, /* ).

by — k* A fre ﬁc
[@é\*}=§[tlé\*}, where <T=[1* o }

*
Ct — C 1 2 3

It is easily shown that f&* = f§* = 1 and f;f* = —1. Therefore, the eigen-
values of the Jacobian matrix, J, denoted as ), are obtained by solving the
following characteristic equation:

PO = |8 —AIj= — A3+ (f +2))\2+( Fo flflr o ftr 7))
+ (ff = i fs+ £ = f’C)—o

Here, fY*, fi"f{*, f1" /37, and fi* f5" ave

(4.21)

L1
fir= o5~ A OA@+ D,

ckx — 1
1 = —(1+ Qﬁ) (@ — 1) (A(gb) + 1)7

7= o1 a)(A(9) + D,

= g(1- ) (—ﬁ - 1) A+ D.
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Figure 4.3: Characteristic equation for ¢ > ¢,.

From lim P(\) = —oco and P(1) = —f{*f5* > 0, there is at least one real
root that is larger than 1. On the other hand, P(—1) is given by

4op+1D  22aB+ D+ 028+ a1+ p) + 1o

P(-1 = e of (A(9) + 1),
then, P(—1) = 0 requires that the parameters satisfy
B(¢) — A(¢) = 0. (4.22)

P(—1) is monotonically decreasing in ¢, and limy o P(—1) = 2(1505) >0

and limyg ; P(—1) = —oo. Therefore, there exists a unique value of ¢, ¢y,
that satisfies (4.22). When ¢ > ¢, P(~1) < O and limy_,_., P(\) = 1 hold.
As such, (4.21) has at least one root that belongs to (—1, —c0), as shown in
Figure 4.3. Similarly, from P(1) > 1 and P(—~1) < 0, (4.21) has a root in
(1,-1.

Summarizing these results, we show that the Jacobian matrix, J, has the
three real eigenvalues, \o > 1, \; 2 (1, —1), and \s < —1 for ¢ > ¢;. There
is only one eigenvalue in a unit circle. Therefore, the fixed point (k*, > ,c*)

1s unstable.
O
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Chapter 5

R&D-based Growth Model
with Nominal Wage Stickiness

5.1 Introduction

Macroeconomists discuss the long-run and short-run theories separately. The
foundation of the former is the optimal growth theory' or the endogenous
growth theory, which analyzes the supply side of the economy. The central
underpinning of the latter is the new Keynesian theory, in which prices or
nominal wages are supposedly sticky and the price adjustment process is
analyzed.?

It is possible that such a divided framework is justified by the natural rate
hypothesis.® The conventional wisdom among macroeconomists is that the
natural rate hypothesis is valid. However, if price stickiness remains during
the steady state of the short-run model, money is not superneutral in the
long run and the natural rate hypothesis loses its validity.* In this situation,

1See Ramsey (1928), Cass (1965), and Koopmans (1965).

2For details on the new Keynesian theory, see Woodford (2003) and Gali (2008).

3For the natural rate hypothesis, see Friedman (1968) and Lucas (1972).

4 Akerlof, Dickens, and Perry (2000, 1996) and Inoue, Shinagawa, and Tsuzuki (2011)
proposed a long-run Phillips curve that is vertical for comparatively high inflation rates
and downward sloping for lesser inflation rates. That is, their long-run Phillips curve is
downward sloping in the low inflationary and deflationary economy as Japan in the 1990s-
2000s. This study focuses on such a situation. For other empirical evidence that justifies
the downward slope of the long-run Phillips curve, see Graham and Snower (2008, Sec.
1.
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price stickiness must be considered in the long-run model.

In view of the above, this chapter proposes a new long-run model involving
a price adjustment process by introducing nominal wage stickiness into an
R&D-based growth model. Note that we derive the new Keynesian Phillips
curve (NKPC), under which the natural rate hypothesis does not hold.?

Inoue and Tsuzuki (2011) and Tsuzuki and Inoue (2010) proposed the
Dynamic General Equilibrium (DGE) model with the NKPC and technolog-
ical change. In their model, the natural rate hypothesis did not hold, and
the long-run output gap existed when the money growth rate was lower than
that of technological change.® However, their analyses assumed exogenous
technological change, as did the Solow model.”

This study provides the new Keynesian DGE model on the basis of In-
oue and Tsuzuki (2011) with endogenous technological change, rather than
exogenous growth, by introducing explicit R&D activities.® That is, in this
study, the new Keynesian theory that represents the short-run theory is in-
tegrated with the endogenous growth theory that represents the long-run
theory. Using such a model, we examine how money growth affects long-run
output, employment, and economic growth along the balanced growth path.

We focus on the steady-state economic growth and employment. For suf-
ficiently high money growth rates, there is a unique balanced growth path,
and the economy exhibits sustained growth based on sustained R&D. Faster
money growth causes greater employment and faster economic growth along
the balanced growth path. Furthermore, under some parameter restrictions,
there is no balanced growth path for low money growth rates, and the econ-
omy 1is trapped in a steady state without long-run growth. These results

5That is, the long-run Phillips curve derived from our NKPC is downward sloping as
the traditional Keynesian's Phillips curve. On the contrary, the other type of NKPC,
which inherits the property of Friedman's expectations-augmented Phillips curve, is con-
ceivable. Under such a NKPC, the long-run Phillips curve is vertical at the natural rate
of unemployment, i.e., the natural rate hypothesis holds. Also see footnote 15.

6Some studies such as Christiano, Motto, and Rostagno (2003) also proposed new
Keynesian models that introduced an exogenous technological trend. However, they did
not analyze the long-run output gap.

"See Solow (1956).

8 Annicchiarico, Pelloni, and Rossi (2011), Kiihn (2010), Rannenberg (2009), and Vaona
(2012) have proposed a new Keynesian model in which sustained growth becomes endoge-
nous through learning-by-doing or simple externality. Tsuzuki and Inoue (2011) have also
proposed a new Keynesian endogenous growth model introducing human capital accumu-
lations, as in Lucas (1988).
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suggest that money growth may be an important factor for long-run eco-
nomic growth. That is, financial authorities are required to maintain high
money growth rates to achieve sustained and faster economic growth. In
Inoue and Tsuzuki's (2011) model, the long-run growth rate was determined
by the exogenous rate of technological change and was not affected by a
monetary policy. Therefore, these results with respect to long-run growth
are newly obtained from our study.

Most of the preceding theoretical studies on money and endogenous growth
have concluded that a higher money growth is associated with a lower rate
of long-run growth, which is contrary to the conclusion of this study. See
for example Marquis and Reffett (1995, 1991), Jones and Manuelli (1995),
Pecorino (1995), and Mino (1997).° Some authors argued that inflation has
a negative impact on economic growth (Fischer, 1993, Barro, 1995, 1996).
However, Levine and Zervos (1993) and Ericsson, Irons, and Tryon (2001)
pointed out that the negative correlation between inflation and growth is not
robust. Bruno and Easterly (1998) concluded that growth and inflation are
negatively related only in the extremely high inflationary economy.

A number of empirical studies showed positive relationships between
inflation (or money growth) and economic growth for advanced countries.
McCandless and Weber (1995) reported a positive correlation between real
growth and money growth (MO, M1, and M2) for a subsample of OECD coun-
tries using the data for the period 1960 { 1990. Aleskerov and Alper (2000)
showed a positive and statistically significant correlation between money (M1
and M2) and real GDP growth rates as well as between CPI and real GDP
growth rates for the OECD countries using the data for the more recent
period 1960-1996. They also found a positive and significant correlation be-
tween the growth rates of M1 and real GDP for countries with inflation rates
no greater than 15%.1°

Pollin and Zhu (2006) reported that the effects of inflation on economic
growth are positive and significant when the inflation rate is below its thresh-
old level of 15-18% using the panel data for 80 countries over the period
1961-2000. Kremer, Bick, and Nautz (2013) found that inflation is positively

9Mino and Shibata (2000, 1995) have demonstrated the positive relationship between a
monetary expansion and long-run growth using the infinitely lived overlapping-generation
models.

0Furthermore, applying cluster analysis, they found positive correlations of money
growth and inflation with growth rates of real GDP for some clusters including G7 coun-
tries (except for Italy).
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and significantly correlated with economic growth in industrial countries if
the inflation rate is less than 2.53%.'" Lee and Wong (2005) used a threshold
regression model to investigate a relationship between inflation and economic
growth for Japan using the data for the period 1970-2001. They showed that
inflation promotes economic growth as long as inflation rate falls within the
range between 2.52% and 9.66%. Our study provides a theoretical explana-
tion for these empirical results.

The remainder of this chapter is organized as follows. Section 2 sets up
the model used in our theoretical investigation. Section 5.3 derives the law
of motion and the steady state, which characterize the equilibrium path of
the economy. It also investigates the existence and the uniqueness of the
steady state. Section 5.4 examines the local determinacy of the steady state.
Section 5.5 concludes the chapter.

5.2 Model

We consider the continuous-time version of the dynamic model based on In-
oue and Tsuzuki (2011) and Grossman and Helpman (1991a, Chap. 3). Let
us assume an economy populated by many infinitely-lived households un-
der monopolistic competition in the labor market, and there are rigidities
of nominal wage. There is a single final good, which is produced using in-
termediate goods and supplied competitively. A new variety of intermediate
goods 1s invented by allocating labor for R&D activities, and inventors en-
joy infinitely-lived monopoly power. The available intermediate goods are
produced by multiple intermediate firms using labor. Finally, as a mone-
tary policy rule, we use the k-percent rule under which financial authorities
expand money supply at a constant rate.!?

5.2.1 Employment agency

The manufacturing and R&D sectors regard each household's labor as an
1mperfect substitute for any other household's labor. To simplify the analysis,

1A Similar result was shown by Hwang and Wu (2011) for the Chinese economy. Villav-
icencio and Mignon (2011) and Khan and Senhadji (2001) also found a positive growth
effect of moderate inflation for advanced countries.

12For the k-percent rule, see Friedman (1969). Fujisaki and Mino (2007) and Mino and
Itaya (2004) have discussed the monetary endogenous growth model with the Taylor rule.
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we assume that an employment agency combines differentiated labor forces
into a composite labor force according to the Dixit-Stiglitz function®®

1 1
(= [/O égdj]c, ¢2(0,D,

and supplies composite labor to the intermediate goods and the R&D sectors.
{; denotes differentiated labor supplied by household j 2 [0,1], and ¢ is
the composite labor force. The number of households is normalized to 1.
v = 1/(1 - Q> 1D is the elasticity of substitution between each pair of
differentiated labor inputs.

Cost minimization of the employment agency yields the following demand
functions for differentiated labor j:

A=
gj = (%) £7

where W; denotes the nominal wage rate of labor force j, and I/ denotes the
nominal wage rate of the composite labor force, which is given by

¢
‘Ir —_ '[17 1— .

5.2.2 Final goods sector

1-¢
3

We assume that perfect competition prevails in the final goods market. The
final goods firm produces the quantity y according to the Dixit-Stiglitz func-
tion as follows:

N B
Y= {/ :Ef‘dz'] , a2,
0

where z; is the quantity of intermediate goods indexed by i 2 [0, N], and
¢ = 1/(1—a) (> 1 represents the elasticity of substitution between every
pair of intermediate goods. N is the number of available intermediate goods
and represents the technology level of the economy. The final goods firm faces

13See Dixit and Stiglitz (1977) and Blanchard and Kiyotaki (1987).
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diminishing returns with each intermediate good; therefore, greater values of
N imply higher productivity.'*

Cost minimization by the final-goods producing firm yields the following
demand functions for intermediate goods i 2 [0, N]:

1

b= (&) Ty (5.1)
P

where p; is the price of intermediate goods 7, and p is the price of the final
good or the price level, which is given by

N _l-a
p= V p,-_“‘dZ] :
0

5.2.3 Intermediate goods sector

Each intermediate good is produced using one unit of composite labor; thus,
marginal cost is equal to the nominal wage level, /. Because patents have
an infinite life, all intermediate goods are supplied monopolistically. Maxi-
mization of the monopoly profit, II; = (p; — W)x;, subject to the demand
function (5.1) yields

1 l,
pi=p.=—W, m=2=—, 8 2I[0 Nl (5.2)
Q N
where /,, represents the amount of composite labor allocated to the produc-
tion of the intermediate goods. All intermediate goods enter symmetrically
into production of the final good. Moreover, the maximized monopoly profit
18
11—« l—a 1,

Wx; = W=, 8 2I0 NI (5.3
o o N

I, =1 =

From (5.2), the market equilibrium levels of output, y, and the price of
the final good, p, are obtained as

14BilBiie, Ghironi, and Melitz (2008) and Fujiwara (2007) have provided dynamic new
Keynesian models with product-variety framework and endogenous entry based on Melitz
(2003). However, no endogenous long-run growth occurs in their models.
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p=N Sp,= N =W (5.5)

We can rewrite (5.5) as

= aN7o. (5.6)

g
If

5.2.4 R&D sector

The number of intermediate goods, N, expands according to the following
equation:

= nl,, N(O) >0, (5.7

=le

where 7(> 0) is the parameter that reflects the productivity of R&D. £,
represents the amount of composite labor allocated to R&D, and clearing
the labor market requires ¢ = ¢, + £,,.

In equilibrium, the following free-entry condition must be satisfied:

V< KN’ with an equality whenever N > 0. (5.9
n

The right-hand side is the nominal unit cost of R&D. V' represents the value
of the patent, which is given by the discounted stream of the monopoly profit:

vo= [ (e T RO, (59

where R is the nominal interest rate. Differentiating (5.9) with respect to
time, ¢, yields the following no-arbitrage condition:

I+ V
= . 1
R % (5.10)
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5.2.5 Households

Household j possesses nominal money balances, //;, and share of the monopoly
firms, S;. The share S; yields returns at rate R. Thus, the budget constraint
of household j is given by

A—j:Mj+Sj:Wj£j+RSj—pCj+pT, 8]2[0,1],

where A; is the nominal assets of household j, /; is labor supplied elastically
by household j, and ¢; is consumption of household j. p7 is nominal transfer
income from the financial authorities in a lump-sum fashion. The final goods
market clears when y = ¢ = fol c;dj. We can rewrite the budget constraint
in real terms as

W;

%=?€j+raj—ij—cj+T,

where r = R — 7 is the real interest rate, 7 = p/p is the inflation rate,
m; = M;/p is real money balances, and a; = A;/p is the stock of assets in
real terms.

Household j obtains utility from consumption, ¢;, and real money bal-
ances, m;, and it encounters disutility from the labor supply, ¢;, and wage
negotiations. Thus, the instantaneous utility function of household ; is as
follows:

1+
J

1+ 27

u(cj,mj,éj,wj) = logc; + 0,, logm; — 4,

where /(> 0) is the elasticity of the marginal disutility of the labor supply.
(> 0) denotes the scale of the nominal wage adjustment cost from wage
negotiations and w; = W;/W;.'» If v = 0, the nominal wage is flexible;
however, if v > 0, the nominal wage is sticky. ¢,,(> 0) and 6,(> 0) denote
the utility weights on real money balances and labor supply, respectively.

15We specify the adjustment cost function as a quadratic expression following Rotemberg
2

L, *)2 ., h .
(1982). The adjustment cost can be defined as 'y(w R )" instead of v%:, where w* is the
steady-state value of w;. If we choose such an expression, wage stickiness will vanish in

the long run and the natural rate hypothesis will be valid.
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Summarizing the above, household j faces the following dynamical opti-
mization problem:

1
max llogcj + 9, logm; — o,

Cj,Mj,Wj 0

R
— swi| e P,

J
1+¢ 2

. W‘
subject to a; = ra; + ?ij —c¢j— Rm;+ 7, (5.11)

W = w;W;

N\ T
fj = (%) 67

where p(> 0) is the subjective discount rate. Since all households behave
symmetrically according to the same equations, W, = W, ¢; = ¢, w; = w,
¢; = ¢, and m; = m hold. When v > 0, the solution to the optimization
problem above is characterized by the Euler equation and the wage version
of the NKPC, as follows:'6

(5.12

C &
St pt 1= R= G,
C m

C @_ 5/{ £1+¢
1-Cey 1-C v~

where m = fol m;dj is real money balances for the entire economy. The
transversality condition for the households is given by

w=wp+ (5.13

. a(t) ot _
Jim e rt= (5.14)

On the other hand, when v = 0 the following equation holds instead of
the NKPC (5.13):

L= 500 (5.15)
C

5.2.6 Money growth

Financial authorities are assumed to change money supply, M, at a constant
rate 0. That is, the financial policy rule is given by M /M = 0. Therefore,

16 Appendix 5.A provides detailed derivations.
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the following equation holds:

=0—r.

SR

All seignorage is transfered to households; that is, pr = M.

5.3 Steady state

When the nominal wage is sticky (y > 0), and the positive composite labor
is allocated to R&D at any time (¢, > 0) the equilibrium path is charac-
terized by the transversality condition (5.14) and the following differential

equations:'’

R=R>—(0+ pR,

x= Ry —(p+wy,

W= pw-l— (é — 66614'77[)) 37
X Y

where x = (,/(a¢) and

€=€(R7x,w)= w- R

+ (x.

When R, x, and w are given, we obtain the /., /,,, and 7 as follows:

ly = adx,
f,= 2= g £x7
1 ¢
1
7=7(R, x,w) = w— —nl,.

ag

¢ and v were defined as ¢ = 1/(1— ) and v = 1/(1 — ().

(5.16)
(5.17)

(5.18

(5.19

(5.20)
(5.21)

(5.22)

ITFull derivations are given in Appendix 5.B. We can show that a similar differential
equations system is derived from the lab equipment model based on Rivera-Batiz and

Romer (1991).
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5.3.1 Balanced growth path

If the law of motion (5.16) through (5.18) has fixed points, they are derived
as follows:

R=0+p w=0, x=x), £>L=a0,
where y*(/*) is the increasing function of ¢* defined as

wa=§+%_ (5.29)

When ¢* is given, the steady-state value of y is derived according to (5.23).
¢* 1s determined by the following wage version of the long-run Phillips curve:

W =) = L s, - _C (5.24)
vp x (%)
The steady-state values of 7, and /,, are
F)=ar vl e =S 0L (5.25)
n ¢ n

However, to guarantee that ¢} is positive, ¢* must be greater than (.

If it is the case that ¢* > ¢, at this fixed point y and N grow at constant
rates. That is, the economy achieves balanced growth. We shall define this
steady state as the balanced growth path (BGP). From (5.4) and (5.7), the
balanced-growth rate of output is derived as

* * —_ 1 * *
g () = a_gbng"(g ).

From (5.22), the inflation rate along the BGP is given by the difference
between the money growth rate and the long-run growth rate, as shown by
Siegel (1983); that is,

T =6 — g: (). (5.26)

However, the long-run growth rate is exogenous and constant in Siegel (1983).'8

8Sjegel's equation includes the population growth rate, which is assumed to be zero in
our model.
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O

Figure 5.1: The long-run Phillips curve at the BGP (for 0 > 0).

5.3.2 Natural employment level

We refer to the output and employment level in the flexible-price economy
(i.e., when v = 0) as the natural output level and the natural employment
level. The employment gap is the difference between the actual and natural
employment levels. In the flexible-price economy, the employment level, ¢,
is characterized by (5.15) instead of NKPC (5.13). Then, substituting (5.4),
(5.6), (5.25), and y = ¢ into (5.15), we obtain the natural employment level
along the BGP, 7, as the root of the following implicit function:

Ty =
-0 5,(0) 0.

5.3.3 Existence and uniqueness of the balanced growth
path

5.3.3.1 Case of non-negative money growth

When 6 (= w*) belongs to [0, 1 ), the long-run Phillips curve (5.24) is upward
sloping on a (¢*, w*)-plane as shown in Figure 5.1. Note that the horizontal
axis measures the employment level instead of the unemployment rate or the
employment gap. Therefore, the usual Phillips curve is flipped backward in

Figure 5.1.
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When 6 > 0 1s given, the BGP level of employment, ¢*, is uniquely deter-
mined according to the long-run Phillips curve. However, for a small value
of 6, the root of the equation, § = Q(¢), is smaller than /; it is inappropriate
for the BGP value. This threshold is given by

y 1+
0= — [55 (a¢£) — a(] .
vp n

These results may be summarized as follows:

Proposition 5.1 Let § > 0. If and only if # > 6#;, a unique BGP,
(R*, x*(¢*),w*), exists. On the other hand, if # < 6;, there is no BGP.

When the R&D sector is sufficiently productive and the parameters satisfy

1
al\ ¢
n>no = agp (O_) )
¢

61 < 0 holds; thus, # > 0 > 6; always holds. In this case, when the finan-
cial authorities apply a monetary policy with # = 0, £* = 7"holds and the
employment gap caused by nominal wage stickiness is eliminated.

If n < 1o, the existence of the BGP requires that the money growth rate,
0, is sufficiently high. When 6 is small and the BGP does not exist, there is
only the no-growth steady state mentioned below.

5.3.3.2 Case allowing money contraction

Some algebra shows that Q(0) = 0, QX0) < 0 and Q%¢) > 0,8/ > 0.
Therefore, when we allow a negative value of #, (¢) is convex and a unimodal
form through the origin as shown in Figure 5.2. However, 6 is bounded by
—p to guarantee that the BGP value of the nominal interest rate, R* = 0+ p,
1S positive.

When the parameters satisfy
o

77<772504¢le
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() n < minfn;, nog. (b) n2 >n > n.

. Q(e*) o Q(e*)

0 7 7
S | A A
oy |-
{ 4
(© m >n>ns. (d) n > maxfn;.neg.

Figure 5.2: The long-run Phillips curve at the BGP (for § > —p).

QA0 > 0 [see Figures 5.2(a) and 5.2(b)]. In contrast, for n > 1y, Q) < 0
holds [see Figures 5.2(c) and 5.2(d)]. Moreover, if the parameters satisfy

__1
n<m= {a% [é (O‘C - %)} T ifage > %
1

otherwise,

0, is greater than —p [see Figures 5.2(a) and 5.2(c)]. Forn > n, 0; < p holds
[see Figures 5.2(b) and 5.2(d)].' To sum up these findings, we can see four

199, is smaller than both of 7; and ;.
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cases as shown in Figures 5.2(a) through 5.2(d).%

At first, in the cases of Figures 5.2(b) and 5.2(d), # = (/) has a unique
root such that ¢ = ¢* > ( for all § > —p. That is, a unique BGP exists for
all possible money growth rates.

In the case of Figure 5.2(a), # > 6, is again a necessary and sufficient
condition for the existence of a unique BGP. That is, sufficiently high rates
of money growth are required to achieve sustained economic growth.

The following proposition summarizes the above properties.

Proposition 5.2 (a) If the parameters satisfy n > 7;, a unique BGP,
(R*, x*(¢*),w*), exists for all § > —p.

(b) Let the parameters satisfy < minf, nog. If and only if § > 6,(> —p),
a unique BGP, (R*, y*(¢*), w*), exists. In contrast, if § 2 (—p, 6,1, there
1s no BGP.

On the other hand, in the case of Figure 5.2(c), it is possible that § = (/)
has dual roots, ¢ and 5, which belong to (¢, 1 ) under a contractionary mon-
etary policy.?! To put it more precisely, we can state the following proposi-
tion.

Proposition 5.3 Let 2 (15,71) hold. For § > #;, a unique BGP,
(R*, x*(¢*),w*), exists. For 6§ < 6, close enough to 6;, dual BGPs,
(R, x*(£%),w*) and (R*, x*(£3), w*), exist.

Letting (; < (3, we obtain g;(¢;) < g;(£3). Therefore, when the money
growth rate, 6, is smaller than 6;(< 0) and belongs to the neighborhood
of #;, BGPs with a high and low growth rate coexist. Our model has no
mechanism to choose between them. That is, global indeterminacy arises.??
The behavior of the economy is determined by agents' expectations. If the
minimum value of ()(¢) is greater than —p, by decreasing § toward —p, a
saddle-node bifurcation will occur and the BGPs will vanish.?3

The arguments of Propositions 5.1 through 5.3 are summarized in Table
5.1 for the case of e < m; < 1 .

200f ¢ > yp? holds, 71 = 1 and the cases of Figures 5.2(b) and 5.2(c) cannot arise.

21'When 7 is sufficiently large and the parameters satisfy v > aCv(y + ) /[(1+ 1) p?],
11 > 72 holds.

22Regarding local indeterminacy, Section 5.4 provides detailed analyses.

23For the saddle-node bifurcation of multi-dimensional systems, see Theorem 3.4.1 in
Guckenheimer and Holmes (1983).
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0 < b6 =0, 0 > 0,

n <y no BGP no BGP a unique BGP
n 2 (n9,1m1) dual BGPs or no BGP a unique BGP a unique BGP
n>m { { a unique BGP

Table 5.1: The existence and uniqueness of BGP (15 < 77 < 1 ).

\{" shows that no such combinations of parameters exist because #; < —p.

5.3.4 Money growth, inflation, and economic growth

Let a unique BGP exist. Then, we obtain the following proposition.

Proposition 5.4 Let # > max{—p, ;g hold and a unique BGP exists. In
response to a permanent increase in the money growth rate, ¢, the economy
experiences greater employment and faster economic growth along the unique
BGP.

This proposition can be proved as follows. As shown in Figures 5.1 and
5.2, when a unique BGP exists, ¢* lies on the upward-slope of the long-run
Phillips curve. Therefore, an increase in # raises the BGP level of employ-
ment, ¢*. Since (£2)4¢*) > 0 and (¢;)X¢*) > 0, an increase in ¢* raises labor
allocated to each sector.* As a result, since (¢?)X¢*) > 0, the greater value
of # raises g*. That is, economic growth accelerates with money growth.2?

Furthermore, consider the following two facts. First, the growth acceler-
ation effect of money growth is attributed purely to nominal wage stickiness.
A small value of v diminishes the impact of money growth on employment
and economic growth. In a flexible-price economy, a change in the money
growth rate has no effect on employment and economic growth. That is,
money is superneutral.

This result depends on the assumption of the money-in-utility-function. If
we adopt a cash-in-advance approach instead of the money-in-utility-function
approach, the superneutrality of money does not hold even in a flexible-price
economy. A rise in the rate of money growth has a growth deceleration effect
attributable to the cash-in-advance constraint. Therefore, in the sticky-price

24In addition, ¢, /{, increases.

25Tt is more realistic to assume the upper limit of labor supply, as in Inoue, Shinagawa,
and Tsuzuki (2011). This study focuses on the situation in which employment does not
reach the upper limit of labor supply.
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economy, the growth acceleration effect, which is argued in Proposition 5.4,
is weakened by the opposite effect.

Second, even if financial authorities add 1% to the money growth rate,
the rise in the long-run inflation rate is smaller than 1% because of the rise
in the longrun growth rate g; [See (5.26)]. That is, the impact of money
growth on the long-run inflation rate is weakened by endogenizing growth.
Moreover, for high productivity R&D, which is captured by large values of
7, the inflation rate might even decrease.

As for dual BGPs, we can prove the following proposition in a similar
way to that of Proposition 5.4.

Proposition 5.5 Let dual BGPs exist. At the BGP with lower employ-
ment level, an increase in the money growth rate raises employment and
the balanced-growth rate. Whereas, at the BGP with a higher employment
level, an increase in the money growth rate depresses employment and the
balanced-growth rate.

5.3.5 No-growth steady state

There exists a different steady state from the BGP at which no labor is
allocated to R&D and long-run growth never occurs. We refer to such a
steady state as the no-growth steady state. At the no-growth steady state,
since the free-entry condition (5.8) does not hold with an equality, (5.19),
(5.20), and (5.21) are not fulfilled, and ¢, = 0 and ¢ = ¢, hold instead of
them.

The value of each variable at this steady state is derived as follows: 26

0 e
R0:¢9+p7 77-0:&)0:67 XOZQv 60260: l ﬂ"‘&( 11&-
O‘C r 5g v

If and only if # < 61, the no-growth steady state, (R°, \°, w?), exists. 27
When 6 < 6; and there is no BGP, the no-growth steady state, (R, \°,w?),
1s a unique steady state of the economy. If two BGPs exist as shown in

26When 6 is negative, v must be sufficiently small and satisfy 7 < —a¢v/(6p) to obtain
the steady state with the positive labor supply.

2TFor 6 > 0y, (0 is greater than £, and the free-entry condition (5.8) is not fulfilled. From
(5.3) and (5.10), ¥/V = w® = ¢ and V = II/p hold at this steady state, and substituting
the latter equation into (5.8) yields /0 < /.
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Proposition 5.3, there are three steady states in all, and global indeterminacy
arises among them.

5.4 Local determinacy of balanced growth paths

To examine local stability, we linearize the system (5.16) through (5.18)
around the fixed point, (R*, x*,w").

R R— R* 0+ p 0 0

x| =dJd | x—x"|, where J= x* 0 —x* ,

w w— w* ~T(*) —CpQ%e*) p+T(6)
where

= i S P ;ﬁ
Q%0 o S(1+ )L OF QJ : (5.27)
and
o U 1 oo | vl* p .
re)y =2 {W 5+ ) ] e e )

One of three eigenvalues of the Jacobian matrix, J, is 0+ p > 0; the other
two eigenvalues are equal to the eigenvalues of the following sub matrix:

Ji=| 0 X
L {—gon(zz*) p+ r(z*)} '

Here, trd | = p +T'(¢*) and detdJ ; = —(px*QY¢*) hold.

5.4.1 The unique balanced growth path

First, we study the dynamic property of the unique BGP. Since QA¢*) > 0
holds, det J ; isnegative. Therefore, J ; has two real eigenvalues with opposite
signs. As a result, the Jacobian matrix, J, has one negative real root and
two positive real roots. Since R, y, and w are non-predetermined variables,
the fixed point is locally indeterminate.
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5.4.2 The dual balanced growth paths

Next, we analyze the case of the dual equilibria, which is argued in Propo-
sition 5.3. Let ¢; and ¢; denote the roots of § = Q(¢) and ¢} < (5. Then
QU¢) < 0 and Q%¢3) > 0 hold as shown in Figure 5.2(c). For /%, T'(¢3) >
—(p/n)QY¢%) > 0 holds. Therefore, trd ; > 0 and detd ; > 0 hold, so that
both roots of J; have positive real parts. Since all eigenvalues of J have
positive real parts, this fixed point is locally determinate.

On the other hand, regarding ¢;, since detJ; < O, J; or J has one
negative real root. Therefore, the fixed point is locally indeterminate.

To sum up, we have shown the following:

Proposition 5.6 (a) A unique BGP is locally indeterminate.

(b) Let dual BGPs exist. Then, the BGP with a lower employment level is
locally determinate, whereas the BGP with a higher employment level
1s locally indeterminate.

Even if the BGP is locally determinate, there are two BGPs and a no-
growth steady state. Therefore, global indeterminacy remains.

5.5 Conclusions

This chapter developed a R&D-based endogenous growth model by introduc-
ing money growth and a price adjustment process. This study assumed that
nominal wage is adjusted stickily because of adjustment cost and derived the
new Keynesian Phillips curve, under which money is not superneutral even
in the long-run.

When the money growth rate is sufficiently high, the economy has a
unique balanced growth path, and can sustain long-run positive growth based
on sustained R&D. Furthermore, faster money growth brings greater employ-
ment and faster economic growth along a unique balanced growth path. In
contrast, under some parameter restrictions, when the money growth rate is
sufficiently low, there is no balanced growth path, and the economy is trapped
in a no-growth steady state. These results suggest that money growth may
be an important factor for long-run economic growth. However, the unique
balanced growth path is always locally indeterminate without depending on
a monetary policy. The following chapter extends the monetary endogenous
growth model with nominal wage stickiness, and considers this issue.
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Appendix

5.A Dynamical optimization of households

Let us define the Hamiltonian function of the optimal problem (5.11) as
follows:

. 1ty
. ¢
H =logc; + 6, logm; — % [(%) g] _ X2

1+ 9 W 27
1
. S\ T 1-¢
+ /\1 [Taj + % (%) l— Cj — ij + )\QCAJJ'I/VJ'7
P

where \; and )\ are co-state variables of a; and W;. A set of necessary
conditions for optimality can be written as follows:

oH 1

e "o A\ =0, (5.28)
g—nljj = i—"; — MR =0, (5.29
2—i = —w; + AW, = 0, (5.30)
M= phr %H = (o=, (531
A = plo — @871‘-/1] = phg — (ff;;’;/j -3 E C)\l% + Aw;| . (5.32

Furthermore, the transversality condition is given by limy 1 A1(#)a;(t)e=*t =
0.

Derivation of (5.12) From (5.28) and (5.29), we get R = §,,¢;/m;. In
addition, from (5.28) and (5.31), we get —c;/c; = p — r. Substituting ¢ = ¢;,
m = m;, 8j, and r = R — 7 into these equations yields (5.12).

Derivation of (5.13) and (5.15) From (5.30), Ay = yw;/W; and Ay =
Yw;/W; — Aaw; hold. Substituting these equations and \; = 1/¢; into (5.32),
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we obtain

0l LWyt

1-¢ (Q=Qcp

When v > 0, we can divide both sides by +. Since W; = W, w; = w,
=1, c; = c, 8, (5.13) holds. On the other hand, when v = 0, we obtain
(WAl = 5,7, Therefore, (5.15) holds.

5.B Derivation of the law of motion

5.B.1 Derivation of (5.19) and (5.21)

From the free-entry condition (5.8), V/V = w — n¢,,. From (5.10), (5.3), and
(5.8, V/V =R - (II)V) = R — (1— a)a~',n. Eliminating /V from the
two equations above, we obtain

0 = w—R+ 1—a€m
n a
and substituting /, = a(y, we get (5.21). Moreover, substituting (5.21) and
(5.20) into the labor market clearing condition, ¢ = ¢, + ¢, yields (5.19).

5.B.2 Derivation of (5.16)

From (5.12),
R_¢ m_ .,
R m Toe?
5.B.3 Derivation of (5.17)
From (5.4),
Y a N

From the Euler equation (5.12) and the final goods market clearing condition,
y=c,

R—p—m=

11—« L,
L, + —.
]

x

Using (5.22) and y/x = L,/1,, we obtain (5.17).
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5.B.4 Derivation of (5.18)

From (5.4) and (5.6), (//c)w = (¢/y)w = al/l, holds, and substituting this
equation into (5.13) yields

L
w=wp+ {a(ﬁ— — (5261“#1 %

x

Using I, = aCy, we get (5.18).
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Chapter 6

Indeterminacy in an

R&D-based Endogenous
Growth Model with Nominal
Wage Stickiness

6.1 Introduction

In this chapter, we continue to study the new long-run dynamic model with
price stickiness and a price adjustment process. The previous chapter fo-
cused on how money growth affects steady-state growth. Expanding on this
topic, this chapter gives particular attention to how money growth affects
the determinacy property of the steady states and economic stabilization.

We will expand the model constructed in Chapter 5 as follows. First, we
introduce capital accumulation into the model (note that labor had been the
only production factor in our preceding model). In response to this addition,
the specification of R&D is changed from knowledge-driven specification to
lab equipment specification.! Second, we assume finite-lived patent instead
of infinitely-lived patent discussed in the previous chapter. Furthermore,
we adopt the discrete-time version of the dynamic model because it works
well with the assumption of temporary patent protection. These modified
assumptions more appropriately explain the actual economy.

With regard to steady-state growth, we obtain results similar to those in

1For details on the differences between these specifications, please refer to Chapter 3.
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the previous chapter; that is, we find a positive correlation between money
growth and long-run economic growth. Our new contribution is with respect
to the determinacy property of the steady state of the monetary endogenous
growth model. By investigating the local dynamics within the neighborhoods
of the steady states, we show that changes in money growth rates have an
influence on determinacy of the equilibrium path. Under the specific pa-
rameters, whether the balanced growth path is determinate or indeterminate
varies depending upon the money growth rate; therefore, policy makers can
eliminate volatility in the economy through their decisions. However, faster
money growth causes faster balanced growth, although the balanced growth
path is more likely to be indeterminate; that is, the policy trade-off may
exist between growth promotion and economic stabilization. In Inoue and
Tsuzuki’s (2011) model, a monetary policy had no influence on the deter-
minacy property of the steady state and the long-run growth rate. These
results are original ones derived from our study.

Many studies have analyzed the determinacy of equilibrium in the context
of the monetary endogenous growth theory, for example, Itaya and Mino
(2007, 2003), Mino and Itaya (2004), and Suen and Yip (2005). Our study
examines a new channel attributed to nominal rigidities, through which the
monetary policy influences economic growth and volatility.

The rest of this chapter is organized as follows. The next section presents
the model used in our theoretical investigation. Section 6.3 derives the law of
motion and the steady states, which characterize the equilibrium path of the
economy. Section 6.4 examines the local determinacy of the steady states.
Section 6.5 concludes the chapter.

6.2 Model

We consider a discrete-time dynamic model. Timeisindexedby¢ = 0,1,2, .. ..
The economy is inhabited by many infinitely-lived households under monop-
olistic competition in the labor market, and there are rgidities of nominal
wage. There is a single final good taken as a numeraire, which is produced
using intermediate goods and labor. It is supplied competitively and can be
consumed and invested. A new variety of intermediate goods is invented by
allocating capital for R&D activities. Inventors are able to enjoy a one-period
monopoly through temporary patent protection. The available intermediate
goods are produced by multiple intermediate firms using capital. As a mon-
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etary policy rule, we use the k-percent rule under which financial authorities
expand money supply at a constant rate.

6.2.1 Employment agency

The manufacturing sectors regard each household's labor as an imperfect
substitute for any other household's labor. To simplify the analysis, we
assume that an employment agency combines differentiated labor forces into
a composite labor force according to the Dixit-Stiglitz function:

1 <
L, = [/ thdj] . 20,
0

where L;, denotes differentiated labor supplied by household j 2 [0, 1], and
L; denotes the composite labor force. The number of households is normal-
ized to 1. 1/(1 — (> 1 is the elasticity of substitution between each pair
of differentiated labor inputs.

Cost minimization of the employment agency yields the following demand
functions for differentiated labor j:

1
Wi\ e
Lj,t = < I/I;f ) Lt’

where 1V, denotes the nominal wage rate of labor force j, and WW; denotes
the nominal wage rate of the composite labor force, which is given by

1 s
e [
0

6.2.2 Final goods producer

_1=<
<

The final goods firm produces the quantity ; according to the Dixit-Stiglitz
function as follows:

Ny
g = L1 / 2 di, a2 (0,1, (6.1
0

where L, is the amount of composite labor, z; , is the quantity of intermediate
goods indexed by i 2 [0, NV,], and 1/(1 — a) (> 1) represents the elasticity of
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substitution between every pair of intermediate goods. N, is the number of
available intermediate goods in period ¢ that represents the technology level
of the economy.

The nominal profit of the representative final goods firm is given by

Ny
Pryy — LWy — / PitTipdi,
0

where [, is the price of the final goods, and p; ; is the price of the mtermediate
goods 7.
Profit maximization yields the following equations:

W= P(1-a) . (6.2)
t
D= ar g (6.3)
t

(6.3) is the inverse demand function for each intermediate goods firm i.

6.2.3 Intermediate goods firms

Each intermediate good is produced using one unit of capital. The nominal
profit of the intermediate goods firm 4 is given by

Hi,t = (pi,t - Rt71)$t7

where R;_; 1s the nominal price of capital.

Because of the temporary patent protection, the Nold" intermediate goods,
[0, N, 1], are competitively supplied, whereas the \new" intermediate goods,
which are invented in period t, (N,_1, N;], are monopolistically supplied.
Therefore, the price of the intermediate goods ¢ is derived as

o Rt—la fOI'i 2 [O, Nt_]_],
Pit iRt_l, fori 2 (Nt—la Nt]-

The monopoly profit earned by the intermediate firm i 2 (IV,_1, N is 11, =
kTaRt_lxmt. All intermediate goods enter symmetrically into the production
of the final goods, i.e., z;; = x4 fori 2 [0, N, 1] and z;; = x,,, for i 2
(N, 1, N,]. By using (6.9), we can easily show 2, = o~ T=a,,.
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6.2.4 R&D

A new variety of intermediate goods is invented by allocating 1/7 units of
capital for R&D activities. Each inventor enjoys a one-period monopoly
and earns a profit of II;. Therefore, in equilibrium, the following free-entry
condition must be satisfied:

II; < R, 1/n, with an equality whenever N; > N, ;.
The breakeven point of z,,, is derived as

a

n . (6.4

ffmt =
11—«

Finally, the capital market clears when
ko1 = @+ DN, = Np2p) + 24 Npq, (6.5)

where k;_; denotes the amount of capital accumulated in period ¢ — 1 and
available in period ¢. All capital is depreciated in one period. The available
capital is utilized by R&D, producing monopolistic intermediate goods and
competitive intermediate goods, as shown on the right-hand side of (6.5).

6.2.5 Households

Household j possesses nominal money balances, M .+ 1, and the capital stock,
Pik;. The capital stock P,k;; yields returns at rate R,. Thus, the budget
constraint in nominal terms of household j is given by

Aje= Bikje+ M1 = M+ Ry Pk 1+ Wil — Pcji + Py,

where A;, represents the nominal assets to household j, L, represents la-
bor supplied elastically by household j, and c;; represents consumption of
household j. P;7; is nominal transfer income from the financial authorities
in a lump-sum fashion. Clearing the final goods market requires

1
yt = kt + Ct, Where Cy = / ijtdj. (66)
0

We can rewrite the budget constraint in real terms as
Wi

—Lj—cjit T,
t

jr = Ty-1G54-1 — (Ri_1 — ij,t +
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where 7, = (P,/P, 1) — 1 represents the inflation rate, r, ; = R, 1/(1+
7,;) represents the real interest rate, m;, = M;,/P, represents real money
balances, and a;, = A,/ P, represents the stock of assets in real terms.

Household j obtains utility from consumption, ¢;;, and real money bal-
ances M+ 1/P,, and it encounters disutility from the labor supply, L;,, and
wage negotiations.? Therefore, the instantaneous utility function of house-
hold j is given by

M, M. LitY
u (Cj,t: ]Tétﬂa Lj,tawj,t> = ]-Ogcji + 5m log ;,H—l - 5[/ 1 itw - ; gt
t t

where 1) > 0 is the elasticity of the marginal disutility of labor supply. v > 0
denotes the scale of the nominal wage adjustment cost from wage negotiations
andw,; = (Wj,t /W) —1. If v = 0, the nominal wage is flexible; however, if
v > 0, the nominal wage is sticky. §,,(> 0) and §,(> 0) are scale parameters.

Summarizing the above, household ; faces the following dynamical opti-
mization problem:

1+
Mj,t+1 _s Lj,t 7 o9

1
max 13 S 5
it M t ; /8 llog C]Jf 5m 10g Pt L 1+ 1/) 2w],t ;

SubJeCt to aj’t = T + Tt—laj,t—l - (Rt_]_ - ]-)m]f + _7Lj,t - Cj,ta (6 7)

Wi = (1+ Wj,t)VVj,t—h
1
Wi\ ¢

Lj,t = ( MZ ) Lt:

where 3 2 (0, 1) is the discount factor. Since all households behave symmet-
rically according to the same equations, W;, = W,, ¢;+ = ¢, L;j; = L;, and
mj,; = my; hold. When v > 0, the solution to the optimization problem above
is characterized by the Euler equations and the wage versions of the NKPC

2Tn this study, we assume the so-called cash-when-I'm-done (CWID) timing, which
supposes that the money balances held by a household at the end of period t (beginning
of period ¢ + 1) enter the utility function in period t.
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as follows:
1= By, (6.9
Ct
St = B(Ry 1 — D), (6.9
my
1 ¢ w 1
Oprq = EQt"‘ 1—<Ltc_: —5LL751+¢1TC, (610)

where m; = fol m;.dj 1s real money balances for the entire economy, and
O = Byw(1+ wy). The transversality condition for the households is given
by

i graret — o (6.11)

T CT

6.2.6 Money growth

We assume that financial authorities expand money supply M at a constant

rate of § > 0; that is, the monetary policy is given by (M+1/M,) — 1= 6.
Therefore, we obtain the following equation:
M+ _ 1 + 9

my 1+ mq .

(6.12

All seigniorage is transferred to households; that is, P,7; = M+ — M, holds.

6.2.7 Equilibrium
By using (6.5), we obtain the following equation:

Ny — Ny

= maxf0,a ™ (k. 1 — Dg, (6.13
Ni 1

where ;1 is defined as

o ki
ki1 = aT-a(1—a)n 1
t—1

N,
The positive amount of capital is allocated for R&D and technological progress

occurs if and only if x;_; > 1; that is, the economy has a sufficient stock of
capital relative to its technological level.
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By using (6.1), (6.4), (6.13), and v, = a Tax,,, we obtain the total
output as

I = plog(r,_) 09, (6.14)
ki1

where £(k) = minf1, kg and ¢, = a7 (1 — a)nL,.

6.3 Equilibrium paths

6.3.1 Law of motion

When the nominal wage is sticky (v > 0), the equilibrium path is character-
ized by the transversality condition (6.11) and the following equations:?

1+6

= 6.15,
B T (6.1
(1— afxi—1) "Lk, if ki1 <1,
Ky = l—afxi1  Tee1 . o (6.16)
{HQI%Z‘M;D k1, fr_1>1,
Xt = %, (6.17)
1 1-w) 1 1y
eer) = BQ(%) " (Cl C)Zﬁ Y1 Tor/ 1 &Gk D)™, (6.18
_ "
_ R, 1—aBxi—1 S(Kvt—l) e
Ty = 1+ Wit 1 o 5(/{1;) thl, (6-19)

where x; = ¢;/k;, Qwy) = Brw(1+ wy), and
= 1+a5£ > 0
(1-Ola=1 - a)yl+?

I

However, the non-predetermined variables, R and Yy, satisfy the following
equations for any t > 0: 4
1+46

Rt:R*ET7 Xt = X' =

3Full derivations are given in Appendix 6.A.
4See Appendix 6.A.1.
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Therefore, the law of motion, (6.15) through (6.19), can be simplified as
follows:

Kt = Fri-hit, if vy <1,
- {1+a—ﬁ%ratz;ll) ki1, ke q>1,
Q(wy+ D= %Q(wt) +1— F2T§£(Ht,1)“¢, (6.20)
Ty = 1+0 f(’ftl)} e Ti—1
1+ w1 &(ky ’
where
r ¢(1-a) o

LS00 =ap

6.3.2 Steady states
6.3.2.1 Balanced growth path

1y
When the parameters satisfy Q(6) > % [Fz (%) —a Fl} . the law of mo-

tion, (6.20), has the following fixed point:®

w =0, k'=1+ata(Br*—1), r*= (

At this fixed point, y, N, ¢, and k continue to grow at a constant rate,
g* = Br* — 1> 0. We shall define this steady state as the balanced growth
path (BGP).

The inflation rate along the BGP is given by

_ R _1+6_ 1+6

1+ 7" = )
,r.* ﬁr* 1 + g*

1
The amount of employment is L* = e
(1-a)naT-a

5This condition is equivalent to 3r* > 1.

109



6.3.2.2 No-growth steady state
1+ 4
In contrast, when Q(f) < £ [Fz (%) R Fll holds, the law of motion,

1-8
(6.20), has the following fixed point:®

1

(1—%)9(6)—F1+1“2<%> ] o=l

At this fixed point, R&D never occurs, and the economy does not grow. We
shall refer to the fixed point, (x°,7° wP), as the no-growth steady state. The
inflation rate at the no-growth steady state is given by 7 = 6, and the amount
of employment is given by L° = ki

w =0, Kk =

1 1+ « .
BT=aaT=a(1-a)n

Because we assume that the money growth rate, 6, is non-negative, Q(6) =
Br0(1+ ) > 0 and QUG) = 57(20+ 1 > 0 hold. Therefore, we can summa-
rize the above results in the following way:

Proposition 6.1 Let the rate of money growth, 6, be non-negative.

1+ 9

(a) WhenT =T (%) "= < T, holds, the BGP, (x*,w*, r*), uniquely exists
for any positive values of 6.

(b) Let T' > I'; hold. The BGP, (x*,w*,r*), uniquely exists for § > 6,
whereas for 6 < 0,, the BGP does not exist, and the no-growth steady
state, (k°,w? %), is a unique steady state. 6, is the positive root of
the following quadratic equation:

Q(6,) — £ (T-Ty) =0, (6.21)

1-p
which uniquely exists as long as T’ > I';.

Proposition 6.1 establishes that the economy has a BGP for sufficiently
high rates of money growth. Once the equilibrium path reaches the BGP,
the economy will be able to sustain long-run positive growth. In contrast,
when I' > I'; holds, for low rates of money growth, the BGP does not exist,

6This condition is derived from x° < 1.
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and the economy cannot sustain growth. In such case, it is trapped in a
no-growth steady state in the long run as shown in the next section.
When the BGP exists, the following proposition can be verified.

Proposition 6.2 Let § > maxfé;, Og hold; that is, a unique BGP exists. In
response to a permanent increase in the money growth rate, 6, the economy
experiences greater employment and faster economic growth along the BGP.

It is easy to prove this proposition by using 0L*/or* > 0, dg*/or* > 0
and 0r*/0f > 0. In this model, nominal wage stickiness remains at the
steady state, and money is not superneutral, even in the long run. Faster
money growth causes greater employment and faster economic growth along
the BGP.

6.4 Dynamics

6.4.1 Determinacy of no-growth steady states

With regard to local determinacy of the no-growth steady state, we can verify
the following proposition.

Proposition 6.3 The no-growth steady state is locally indeterminate if it
exists.

proof. See Appendix 6.B. O

The trajectories converge toward the no-growth steady state for the initial
conditions with ko that belong to the neighborhoods within the no-growth
steady state. However, the equilibrium paths which converge toward the
steady state exist continuously. Our model has no mechanism to choose
between them, and thus the equilibrium path is indeterminate.

6.4.2 Determinacy of balanced growth paths

Local determinacy property of the BGP is investigated in the following way.
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1+ ¢

Proposition 6.4 Let T = Ty (%) "% > maxfT, g hold.” For 4 2

(maxf0,6:g,6,), the BGP is locally determinate. In contrast, for 6 > 6,
the BGP is locally indeterminate.® 6, is a root of the following quadratic
equation:

Q(6y) — % (b-ri)=0

which uniquely exists and is larger than maxf 0, 6, g.

proof. See Appendix 6.C. O

Proposition 6.4 establishes that the money growth rate influences not
only economic growth but also the determinacy property of the BGP and
the volatility of the economy. If the condition of Proposition 6.4 is sat-
isfied, adjusting the money growth rate to the appropriate interval makes
the determinate BGP possible.? Recall from Chapter 5, the unique BGP
for positive rates of money growth is always indeterminate.'® On the other
hand, in this chapter's model, policy makers have a tool to eliminate eco-
nomic volatility. However, we should note that faster money growth brings a
higher balanced growth rate, whereas it makes the BGP indeterminate and
the economy volatile. In other words, policy makers may face a trade-off
between implementing growth enhancing policies and economic stabilization
policies.!'!

These effects on money growth are purely attributed to nominal wage
stickiness. A small value of v diminishes the impact of money growth on

_ "The conditions T' > T is necessary and sufficient to hold f2 > #;. The condition
[ > Ty is necessary and sufficient to hold 65 > 0. T' > T is satisfied if and only if o > 1/2,
which is an adequate value. T' > I'; is more likely to satisfy for smaller values of 7, 3,
and ¢, and larger values of §,. When I' > maxfT’,I';g does not hold, the BGP is locally
indeterminate if it exists.

8When 6 > s, r* > o~ == — 1 holds.

9Matsuyama (1990) have shown the opposite results; that is, indeterminacy is more
likely to arise for low rates of money growth.

10Even if the determinate BGP exists, it is accompanied by another indeterminate BGP,
and global indeterminacy arises.

"The efficient rate of money growth is defined as the money growth rate that maximizes
households' utility along the BGP. For the plausible range of parameter values, we can
numerically verify that both cases in which the BGP is determinate or indeterminate may
arise when the financial authorities apply the efficient rate of money growth.
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economic growth and determinacy property. In a flexible-price economy,
a change in the money growth rate has no effect on economic growth and
determinacy property.

6.5 Conclusions

This study has developed an R&D-based endogenous growth model by in-
troducing exogenous money growth and nominal wage stickiness and investi-
gated how money growth affects long-run economic growth and determinacy
property of the steady state. In our model, money is not superneutral in the
long run, and its growth has influences on both long-run growth rates and
determinacy of the steady states.

When the money growth rate is sufficiently high, a unique balanced
growth path exists, along which the economy can continue to grow in the
long run based on sustained R&D. Furthermore, faster money growth results
in faster balanced growth. In contrast, under some restricted parameters,
when the money growth rate is sufficiently low, balanced growth path does
not exist, and the economy is trapped in a no-growth steady state. We ana-
lyzed the local determinacy of each steady state. The no-growth steady state
18 locally indeterminate without depending on money growth rate as long as
it exists. On the other hand, the determinacy of the balanced growth path
depends on the money growth rate. For low rates of money growth, the bal-
anced growth path is locally determinate; however, for high rates of money
growth, it becomes locally indeterminate. Summarizing the above results,
we conclude that a policy trade-off may exist between growth promotion and
economic stabilization.

Appendix

6.A Derivation of the law of motion

Derivation of (6.15) Combining (6.8), (6.9), and (6.12) gives

L 7
R1—1 "1+¢

which is equivalent to (6.15).

113



Derivation of (6.16) In equilibrium, Py, = R, 1FP,_1k_1 + W,L, holds.
Combining with (6.2), we obtain
Yo _ Ry 1 — Tt
ki ol+m) o
Substituting (6.8) and (6.22) into the clearing condition of the final goods
market (6.6) yields

(6.22)

by = %(1 — aBxi k1. (6.23)

Multiplying both sides by o™= (1 — a)nN% and using (6.13) yield (6.16).

Derivation of (6.17) Dividing both sides of the Euler equation (6.8) by &,
yields

Ct—1 ki1

ﬁtlktlkt

Substituting (6.23) into the above equation, we obtain (6.17).

Derivation of (6.18) Substituting (6.2), (6.8), and (6.22) into NKPC
(6.10) yields

1 ¢ 1-a or, 1+
Q= =0, + - _ 0. (6.24)
I 1 -Cafyia - 0OlhT=(1— a)glte
From (6.14) and (6.22), we get

0, = (%) T (o). (6.25)
Substituting (6.25) into (6.24) gives (6.18).

Derivation of (6.19 From (6.2), (6.22), and (6.23),
Wt+ 1 Lt 1 — Oéﬁxt_]_
1+ = = R )
e W, Livq ! o

On the other hand, from (6.25),

Lt — gt — ( Tt ) ﬁ f(lﬁt)
L1 o Tt f(/'ft—l) .
Summarizing the above equations yields (6.19).

12Yt+1 — 7t kt — 1+ R kt

Yt re—1ke—1 I+ 7+ 1 Ry 1 ke 1°
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6.A.1 Simplification of the law of motion

Rewnriting (6.15) gives

Because R,_; is larger than 1, R diverges to infinity if R, € (1+ 6)/B.
Therefore, R, = R* = (1+ 6)/ must hold for any ¢ > 0.
Similarly, rewriting (6.17) yields

Lo (1 )

xt l—af af\xe1 1-ap)
Because 1/a is larger than 1, y diverges to infinity if x, 8 (1— af)/aB.
Therefore, y; = x* = (1 — af) /a8 must hold for any ¢ > 0.

6.B Proof of Proposition 6.3

To prove local indeterminacy, we linearize the system (6.20) around the fixed
point, (x°,w?,70):

Ry — K]O Ri—1 — K]O
Wt+1 — CL)O = 0 Wt — CUO
ry — 10 re g —1°

J % is the Jacobian matrix. Let us define the following implicit function:
1 2
f(wH 1, Wty Te—1, litfl) = Q(wt+ 1) — EQ(wt) — Pl + Fth_l f(/ﬁ}t71) .

Applying an implicit function theorem, we obtain

8wt+1 _ _& _ _FzTﬁf%/ﬁgl) 8wt+1 — fwt _ lQ%Wt)

OKi—1 fwt+ 1 Q((WH 1) 7 Ow, fwt+ 1 Q((WH 1) 7
‘ Ly g

0wt 1 _ _frt,l _ _%FZT;—_:?

or1 fwtﬂ quﬁ 1) '

(6.26)
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By combining (6.26) and ¢Xx°) = 1 for kK < 1, the Jacobian matrix is
derived as

1 0 BrKO
=% Ys s |
—XJ% —x/B 1—xjds
where
_l+y 1+ !
]'0 :_M<O jo :_1tu1—‘2/8 17a+ <O X:i>0
A7 py@A+20) 7 BT g1+ 20 T T QQ+ep " T

The eigenvalues of J °, denoted as \°, n = f1, 2, 3g, are obtained by solv-
ing the following characteristic equation:

PO =|J° — \°Tj

1
= -\9%+ <2 — X9+ B) (\9)2
-2 [ X+ 2 =0
B p

The three-dimensional system, (6.20), has one predetermined variable, , and
two non-predetermined variables, w and r. If both roots have a modulus of
less than 1, then the no-growth steady state is locally indeterminate. From
limy ; P°(\%) = —o00 and P(1/8) = —[(1 - B)/B%Ixj% — k%)% > 0, there
is at least one real root that is larger than 1/5. We define this real root as
AJ. As for the other two roots, we will consider the following two cases.

+

Case of complex roots If the characteristic equation, P°(\°) = 0, has
complex roots, A\ = a + bi and \) = a — bi, where a and b are non-negative
real numbers, they would satisfy the following equation:

3
[120 = @+ p)Ag =

n=1

1
5
Since \J is larger than 1/3, a®+ b* is smaller than 1. Therefore, the complex

roots have a modulus of less than one, and thus, the no-growth steady state
1s locally indeterminate.
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Case of real roots Some algebra shows that'?

(POY0) = 1 % xS — Br0j%) < 0,

(PXND = —xijgs — xBr%g > 0,
Jim (PN = —x < 0.
That is, the cubic function, P°(\°), has a local minimum point in (0, 1) and a
local maximum point in (1, 1 ). Taking into account P(1) = —y3x%j3 > 0,

we can verify that if the characteristic equation has three real roots, two of
these belong to (0, 1. O

6.C Proof of Proposition 6.4

Similar to the previous section, we linearize the system (6.20) around the
fixed point, (k*,w*, r*):

Kt — K* Ki_1 — K"
W1 —w | =% | w —w*
ry—r* Ti_1— 1"

Using (6.26) and ¢Xx*) = 0, we obtain the Jacobian matrix as follows:

(673

(a2 —D/(Br*) 0 K*[r*

J*= 0 1/5 Jog ,
0 —xr* 1—=x0r"js;
where
LU () Toe ]
Jaa = 12 < 0.
23 By(20+ 1)

One of the three eigenvalues of the Jacobian matrix, J *, is given by
Ny = —(a s -1 /(Br*); the other two eigenvalues are equal to those of the
following sub matrix:

j*z 1/5 ];3 . )
—xr* 11— xBr*js,

BSince k0 < 1, 595 — Br05% < 595 — B49) = Bi9 (3L — 1) < 0.
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trd” and detJ" are derived as

trd” = B+ 1— xBr'js, detd = R
Because j3, is negative, 1 < detd” < trd — 1= 1/8 — yfr*j3; holds.
Therefore, § has real eigenvalues A} 2 (0,1) and A} 2 (1,1 ).14

The three-dimensional system, (6.20), has one predetermine variable, x,
and two non-predetermined variables, w and r. Local determinacy of the
BGP, (k*,w*,r*), depends on the absolute value of \;. If o Ts —1> Br*
holds, A\; < —1 and the BGP is locally determinate. On the other hand, if
o Ta —1< fBr¥, A5 2 (—=1,0) and the BGP is locally indeterminate. O

14See Azariadis (1993, Chap. 6) for further details.
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Chapter 7

Conclusions

This study provided theoretical analyses of economic growth and business
cycles based on the framework of the R&D-based endogenous growth model.

Chapters 2, 3, and 4 extended the endogenous growth cycle model on the
basis of Deneckere and Judd (1992) and Matsuyama (1999, 2001). Chapter
2 analyzed the patent policy so as to promote long-run growth and stabilize
economic fluctuations. Chapter 3 examined the endogenous growth cycle
model, which had two specifications of R&D technology, heavily used in
endogenous growth studies on the basis of the variety-expanding framework.
Chapter 4 investigated the endogenous fluctuation in a non-scale growth
model. Its analysis focused on the issue of cyclicality of R&D investment.

Chapters 5 and 6 proposed a new long-run model of macroeconomics,
which involves endogenous sustained growth based on sustained R&D, ex-
ogenous money growth, and a price adjustment process. Chapter 5 analyzed
the simple monetary endogenous growth model without capital accumulation
and the limit of patent length. Chapter 6 extended the model by introducing
capital accumulation and the finite-lived patent. Using these models, we ex-
amined how money growth affects the steady-state growth and determinacy
property of the steady states.

This study concludes by focusing on the following two issues: (1) the be-
havior of R&D activities over business cycles and (2) the consistency between
policies to promote growth and stabilize the economy.
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Behavior of R&D activities over business cy-
cles

This study analyzed how R&D activities behave over business cycles by ex-
tending the R&D-based growth models into growth cycle models.

One of the results of our study is to clarify how each R&D is carried
out in a fluctuating economy which included both knowledge-driven and lab
equipment R&D. We proved that when productivities of both R&D specifica-
tions are not extensive, the balanced growth path becomes unstable and the
equilibrium path continues to fluctuate. Along this fluctuating equilibrium
path, R&D continues to occur without stopping and both R&D technolo-
gies are alternately or periodically used. Focusing on the period-2 cycles,
knowledge-driven R&D 1is carried out procyclically, whereas lab-equipment
R&D is carried out coutercyclically.

We investigated a non-scale growth model with endogenous fluctuations
and proved that a parameter set existes that establishes R&D investment as
being procyclical. Despite the findings of earlier theoretical studies, empirical
evidence does not support the prediction that R&D investment is counter-
cyclical. We considered an R&D-based growth model with endogenous fluc-
tuations, modifying the variety-expanding model of Matsuyama (1999, 2001)
to introduce population growth and a negative externality that affects pro-
ductivity of R&D. Using both the overlapping generations framework and
the infinitely-lived agent framework, this modification makes R&D invest-
ment procyclical throughout the sustained business cycles.

Consistency between policies to promote growth
and to stabilize the economy

This study analyzed two phenomena that were examined separately in macroe-
conomic literature, long-run growth and short-run cycles, in a unified setup.
We found that growth promotion policies conflict with economic stabiliza-
tion policies; that is, a policy trade-off exists in both real and monetary
endogenous growth models.

In the real endogenous growth model, we focused our attention on a
patent policy. Changes in patent breadth affect the economy through monopoly
prices and patentees’ market share. A broader patent stimulates firms to
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conduct higher levels of R&D activity through higher monopoly prices and
higher patentees' market share. Therefore, extending patent breadth pro-
motes technological progress and economic growth. On the other hand, for
sufficiently broad patents, patentees’ market share equals 1 and the extend-
ing patent may trigger instability of the balanced growth path. Therefore,
the long-run average growth promotion policies may conflict with economic
stabilization policies.

To analyze the monetary growth model that considers a price adjustment
process, we assumed that nominal wages are adjusted sluggishly because of
adjustment costs and derived a new Keynesian Phillips curve. First, we
showed that financial authorities are required to maintain a high rate of
money growth to achieve sustained and faster economic growth. However,
in the extended model that includes capital accumulation and finite-lived
patent, the determinacy property of the balanced growth path is dependent
on the rate of money growth. For high rates of money growth, the balanced
growth path is locally indeterminate; however, for low rates of money growth,
it becomes locally determinate. Therefore, financial authorities can bring
the determinate balanced growth path by keeping the money growth within
a moderate rate. However, these monetary policies do not maximize the
long-run growth rate. Again, a policy trade-off may exist between growth
promotion and economic stabilization.
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