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Chapter 1

Introduction

1.1 Background

Traditionally, economists study how to allocate resources, continuous
or discrete, by the price system. However, in many cases, the usage of
price system faces legal and ethical objections. Consider the following
situation, for example, the allocation of public school seats to children,
the allocation and exchange of human organs among patients, or the
allocation of university seats to high school graduates based on their
performances in examinations. Moreover, in many markets, resources are
discrete and heterogeneous, simultaneously. The afore-mentioned features
of such markets entail matching theory.

Generally, matching can be divided into two-sided and one-sided match-
ing. In two-sided matching markets, two sets of agents, such as firms and
workers, men and women, students and colleges, or hospitals and doctors,
need to be matched with each other. In one-sided matching markets, a set
of indivisible resources needs to be allocated to or exchanged among a set
of agents.

The foundations for the framework of two-sided matching theory are
laid by David Gale and Lloyd Shapley in 1962 when they published a
paper discussing college admission and stability of marriage.! Gale and
Shapley (1962) discover a deferred acceptance algorithm which is easy
to understand and always leads to a stable matching between men and
women. The Gale-Shapley deferred acceptance algorithm has had a funda-
mental influence on matching theory and market design. The theoretical
framework of one-sided matching theory is initiated by Shapley and Scarf
(1974), and Hylland and Zeckhauser (1979).

Balinski and Sonmez (1999) and Abdulkadiroglu and Sonmez (2003a)
lay the theoretical framework of school choice. School choice is the practice

1. See Gale and Shapley (1962) for detail.
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where a set of public school seats needs to be allocated to a set of students.
Students or their parents first report their preferences over schools, and
schools have priorities, usually determined by law, over students. The
school choice problem is different from the two-sided matching models
initiated by Gale and Shapley (1962). In two-sided matching markets,
agents on both sides of the markets are strategic identities. To be specific,
in marriage problems, both men and women have strategic behavior, and
in college admission problems, both students and colleges are strategic
identities in the market. In the theoretical models of school choice problems,
school seats are only considered pure public goods to be allocated among
students, and schools are not strategic identities. That is, only students
have strategic behavior and welfare considerations, and school seats are
considered to be pure public objects to be allocated which have exogenously
determined priority rankings for students.

Although the school choice model is different from two-sided matching
model, inspirations from two-sided matching problems are still enlighten-
ing. In school choice problems, it is still possible to define stability, and
apply the deferred acceptance algorithm. The important difference is that
in school choice problems only the welfare of students is considered, and
hence axioms are defined correspondingly only from the point of view of
students. For instance, when defining stability for school choice problems,
we use non-wastefulness and elimination of justified envy among students
without taking account of schools. The same rule applies to definitions of
Pareto efficiency, strategy-proofness, etc.

The practice of school choice influences a large population of students
each year, which manifests its importance. The 2012 Nobel Prize in Eco-
nomic Sciences went to Alvin Roth and Lloyd Shapley for their work on
stable allocations and the practice of market design, which contains school
choice as an important branch. Being rewarded the Nobel Prize also reflects
the importance of school choice.

Prior to the seminal work of Abdulkadiroglu and Sonmez (2003a),
the Boston school choice mechanism bas already been used in the US.
The Boston procedure is not fair and easy to manipulate. Abdulkadiroglu
and Sonmez (2003a) then propose another two mechanisms: the student-
optimal stable mechanism determined by the student-proposing deferred
acceptance algorithm, and top trading cycles mechanism determined by the
top trading cycles algorithm. By referring to literature on two-sided college
problems, they propose three important dimensions to measure school
choice mechanisms: stability, strategy-proofness, and Pareto efficiency. The
three mechanisms and three axioms proposed by Abdulkadiro glu and
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Sonmez (2003a) deeply influenced both the theory and practice of school
choice.

The three well-known school choice mechanisms proposed by Abdulka-
diroglu and Sonmez (2003a) have been investigated by economists theoret-
ically, empirically, in lab experiments, etc. However, we find the axiomatic
analysis of school choice mechanisms insufficient in the literature. Hence,
this thesis provides more axiomatic analysis of school choice mechanisms.

1.2 Methodology

In this section, we will take a look at the methodology on which this
thesis is based. The axiomatic method has been an important method of
research in game theory and other branches of economics.? For a given
domain of problems, if several solutions exist, and that some means should
be found to distinguish between them, axiomatic approach will be helpful.
Sometimes, we observe that there appears to be only one solution for the
domain, and sometimes we observe that no proper solution is known. For
example, in school choice problems, one famous axiomatization result
is that the student-optimal stable mechanism is the unique mechanism
satisfying stability and strategy-proofness.>

According to Thomson (2001), an axiomatic study takes the following
steps. First, we specify the domain of the problems, and formulate a list
of desirable properties of solutions for the domain, such as stability and
Pareto efficiency for school choice mechanisms on all strict preference and
priority domains. Second, we describe the families of solutions (possibly
empty) satisfying various combinations of properties. For instance, in school
choice problems, there exists no mechanism satisfying stability and Pareto
efficiency at the same time*. Third, an analysis of logical relations between
properties should be provided, which is an important way to assess the
relative power of properties. In this thesis, we always prove independence
of axioms after addressing an axiomatization result.

This thesis studies the school choice problem in terms of the axiomatic
method. In general, we characterize school choice mechanisms on strict
preference and priority domains, or constrained strict preference and
priority domains. Chapters 3-4 characterize the student-optimal stable
mechanism. Chapters 5-6 characterize the Boston mechanism. Chapter 7

2. See Thomson (2001) for a survey.
3. See Alcade and Barbera (1994).
4. See lemma 3 in Balinski and Sénmez (1999).
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characterizes the probabilistic rank-consumption random assignment rule
(PRC rule).

1.3 Outline of the Thesis

We first introduce papers, published or unpublished, on which this thesis
is based.

Chapter 2: Yajing Chen, A new Pareto efficient school choice mecha-
nism, Economics Bulletin, Volume 33, No. 1, pp. 271-277, 2013

Chapter 3: Yajing Chen, Axioms for school choice, mimeo, 2013

Chapter 4: Yajing Chen, Deferred acceptance and serial dictatorship,
The Waseda Journal of Political Science and Economics, No. 358, pp.
50-55, 2013

Chapter 5: Yajing Chen, Characterizing the Boston mechanism, G-
COE GLOPE II Working Paper Series No. 52, 2011

Chapter 6: Yajing Chen, When is the Boston mechanism strategy-
proof?, Mathematical Social Sciences, Conditionally Accepted, 2013

Chapter 7: Yajing Chen, A new random assignment rule: axiomatiza-
tion and equilibrium analysis, mimeo, 2013

School choice studies how to allocate public school seats to students
based on schools’ priority over students, with each student being assigned
to one seat and each school is allocated to the number of students no
more than its capacity. F , a school choice problem consists of five
components: a set of students, a set of school types, a capacity vector of
schools, a preference profile of students over schools, and a priority profile
of schools over students. A school choice mechanism is a systematic way of
finding a matching from schools to students for each problem.

The theoretical framework of school choice is established by Balinski
and Sonmez (1999) and Abdulkadiroglu and Sonmez (2003a). The latter
authors discuss three well-known school choice mechanisms: the student-
optimal stable mechanism (SOSM) determined by the student-proposing
deferred acceptance algorithm, the top trading cycles mechanism (TTCM)
determined by the top trading cycles algorithm, and the Boston mechanism
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(BOSM) determined by the immediate acceptance algorithm. Abdulka-
diroglu and S6nmez (2003a) point out that the widely used BOSM has
serious shortcomings, like being not stable and strategy-proof. They thus
suggest to substitute this mechanism with the SOSM or TTCM, which do
not suffer from incentive problems. The afore-mentioned three mechanisms
are hotly debated by economists these years and will be the main research
topic of this thesis.

Chapter 2 of this thesis introduces the basic model of school choice
problem, basic axioms for school choice mechanisms, and definitions of
main school choice mechanisms. Besides the three mechanisms mentioned
in Abdulkadiroglu and Sénmez (2003a), we introduce three more mecha-
nisms: the school-optimal stable mechanism (SSOM) determined by the
school-proposing deferred acceptance algorithm, the simple serial dicta-
torship (SSD) determined by the algorithm of serial dictatorship, and the
recursive Boston mechanism (RBM) determined by the recursive immedi-
ate acceptance algorithm. Information about six school choice mechanisms
to be discussed in this thesis is summarized in the following table 1.1 and
1.2.

Mechanism | Notation Algorithm
SOSM ©° Student-proposing Deferred Acceptance
TTCM T Top Trading Cycles
BOSM o” Immediate Acceptance
SSOM 9 School-proposing Deferred Acceptance
SSD of Serial Dictatorship
RBM % Recursive Immediate Acceptance

Table 1.1: School Choice Mechanisms

There is a well-known trade-off among fairness, Pareto efficiency, and
strategy-proofness when choosing school choice mechanisms. It is known
to all that the SOSM satisfies stability and strategy-proofness but violates
Pareto efficiency, TTCM satisfies Pareto efficiency and strategy-proofness
but violates stability, and BOSM satisfies only Pareto efficiency and violates
strategy-proofness and fairness.
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Mechanism | Stability | Strategy- Pareto
proofness | Efficiency
SOSM v V X
TTCM % v v
BOSM X X v
SOOM v X X
SSD X Vv Vv
RBM X X Vv

Table 1.2: School Choice Mechanisms and Three Properties

Table 1.1 and 1.2 show a new mechanism called the recursive Boston
mechanism (RBM). Similar to the BOSM, the RBM violates stability and
strategy-proofness, but satisfies Pareto efficiency. Moreover, Nash equilib-
rium outcomes of the preference revelation game induced by the RBM are
all stable matchings. The RBM is first introduced and analyzed by Chen
(2013c¢).

Chapter 3 of this thesis contributes to school choice literature along two
lines. First, we propose several new axioms for school choice mechanisms
related to stability, consistency, and monotonicity. These axioms are easy
to be implemented in problems other than school choice. Five of them are
crucial to our analysis. A mechanism satisfies mutual best if a student is
always assigned his non-null favorite school if he has the highest priority for
it. A mechanism satisfies strong top best if a student ¢ is always assigned his
non-null favorite school a if he has the ¢, highest priority for it among all
students who find this school acceptable, where ¢, stands for the maximal
number of students that can be admitted to school a. A mechanism satisfies
strong group rationality if the mechanism never assigns a student i to a
school worse than the non-null school a whenever i has the ¢, highest
priority for a among all students who find this school acceptable.

A mechanism satisfies weak consistency if whenever we remove a sub-
set of students with their assignments and apply the mechanism to the
smaller reduced problem, no remaining student is worse off. We say that a
preference profile P’ is a rank monotonic transformation of a preference
profile P at a matching . if for all students, any school that is preferred to s
under P’ with the preference ranking k is also placed in the k" preference
ranking of P. A mechanism ¢ satisfies rank monotonicity if every student
weakly prefers the matching ¢(P’) to the matching ¢(P), whenever P’ is a
rank monotonic transformation of P at ¢(P).
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SOSM | TTCM | BOSM | SSOM | SSD | RBM
Mutual Best vV v/ vV vV X vV
Strong Top Best vV X vV vV X vV
Strong Group Rationality V X X vV X X
Weak Consistency vV X X X vV X
Rank Monotonicity Vv Vv N X vV vV

Table 1.3: School Choice Mechanisms and New Axioms

Second, chapter 3 provides new characterizations of the SOSM which is
becoming the central mechanism. The following table 1.4 shows the main
characterization results of chapter 3.

| A school choice mechanism ¢ is equivalent to the SOSM. |

I

| © is Pareto efficient subject to stability. (Gale and Shapley, 1962) |
T

| p is stable and strategy-proof. (Alcade and Barbera, 1994) |

I

| © is stable and respects improvements. (Balinski and S6nmez, 1999) |

I

| p is stable and weakly Maskin monotonic. (Kojima and Manea, 2010a) |

i)

| ¢ is non-wasteful, strongly top best, and IR monotonic. (Morrill, 2013) |

U

| ¢ is stable and rank monotonic. |

I

| o is non-wasteful, strongly top best, and weakly Maskin monotonic. |

i)

|  is non-wasteful, strongly group rational, and rank monotonic. |

i)

| © is non-wasteful, mutually best, weakly consistent, and strategy-proof. |

I

| © is non-wasteful, mutually best, weakly consistent, and rank monotonic. |

i)

| ¢ is non-wasteful, mutually best, weakly consistent, and respects improvements. |

Table 1.4: Axiomatic Analysis of SOSM
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Chapter 4 of this thesis characterizes the SOSM on constrained priority
domains.® This chapter provides answers to the following question: when is
the SOSM equivalent to SSD? To answer the question, we first define quota-
acyclic priority structure. Quota-acyclic priority structure requires that
according to the quota information of a problem, no disorder of students
exists below a certain critical point of priority ranks. The critical point is the
minimal quota of schools. The main result of this chapter is summarized in
the following table 1.5.

| The SOSM is equivalent to a special class of SSD. |

0

| The special class of SSD is fair with respect to the priority structure. |

0

| The priority structure is quota-acyclic. |

Table 1.5: Constrained Axiomatic Analysis of SOSM

Chapter 5 of this thesis characterizes the BOSM determined by the
student-proposing immediate acceptance algorithm. Four axioms are cru-
cial to our analysis: respect of preference rankings, weak fairness, rank
rationality, and rank monotonicity. A mechanism respects preference rank-
ings if it is non-wasteful and rank-fair. Non-wastefulness requires that if a
student prefers another school to his current assignment, then the quota
of the preferred school has been fully occupied by other students. Rank-
fairness means that if a student prefers the assignment of another student,
then the later student should put the preferred school in a preference
ranking not lower than the initial student. A matching is weakly fair if
one student prefers the assignment of another student, and both of them
put the preferred school in the same preference ranking, then the later
student should have higher priority for the school than the initial student.
A mechanism satisfies rank rationality if it never assigns a student i to a
school worse than a whenever the following two conditions are satisfied:
(1) The number of students, who put school « in a preference rankings
higher than 7 does and find school a acceptable, is smaller than the capacity
of this school; (2) Student 7 has the highest priority among all students,
who put school a in preference rankings not lower than i does and find

5. Characterizing school choice mechanisms on constrained domains has attracted much
attention since Ergin (2002). See Kesten (2006), Ehlers and Erdil (2010), and Kojima
and Manea (2010a) for more results.



1.3 Outline of the Thesis

school a acceptable. The main result of this chapter is summarized in the
following table 1.6.

| A school choice mechanism ¢ is equivalent to the BOSM. |

i

|  respects preference rankings and is weakly fair. |

i

| respects preference rankings, is rank rational and rank monotonic. |

Table 1.6: Axiomatic Analysis of BOSM

Chapter 6 of this thesis studies the necessary and sufficient condition
under which BOSM recovers desirable properties. This chapter shows that
the BOSM is strategy-proof, if and only if it is fair, if and only if it is
equivalent to SOSM, if and only if SOSM respects preference rankings, and
if and only if the number of total seats at any two schools exceeds the
number of students. Unlike the other school choice mechanisms, relative
priority rankings do not matter in recovering desirable properties for the
BOSM. Thus, the only way to recover strategy-proofness and fairness is
increasing the number of seats in each school, which manifests the difficulty
of having strategy-proof and fair Boston mechanism. The main result of
this chapter is summarized in the following table 1.7.

| The BOSM is strategy-proof. |

3
| The BOSM is fair. |

i

| The BOSM is equivalent to SOSM. |

i

| The SOSM respects preference rankings. |

0

| Number of total seats at any two schools exceeds number of students. |

Table 1.7: Constrained Axiomatic Analysis of BOSM

Chapters 2-6 study school choice problem with strict priorities. How-
ever, in real-life problems, schools sometimes have coarse priorities over
students.
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Chapter 7 of this thesis studies the problem of assigning n indivisible
goods to n agents based on ordinal preferences of agents, known as the
random assignment problem. Random assignment problem can be consid-
ered as a special case of school choice problem when schools are indifferent
among all students. In real-life problems, the deterministic method such
as the serial dictatorship, although being appealing for its simplicity, suf-
fers from asymmetry. That is, deterministic methods usually treat agents
unfairly. To restore fairness, randomization is commonplace in real-life
problems. This chapter first proposes two new axioms for random assign-
ment rules: sd-rank-fairness, and equal-rank envy-freeness. Second, this
chapter proposes a new random assignment rule: the probabilistic rank-
consumption rule (PRC rule). Third, this chapter characterizes the PRC rule
by sd-rank-fairness, and equal-rank envy-freeness. Sd-rank-fairness is a re-
finement of ordinal efficiency, and equal-rank envy-freeness is a refinement
of equal treatment of equals. Finally, this chapter shows that although the
PRC rule is neither weakly strategy-proof nor weakly sd-envy-free, ordinal
Nash equilibrium outcomes of the preference revelation game induced by
the PRC rule are all weakly sd-envy-free. The characterization result of this
chapter is summarized in the following table 1.8.

| A random assignment rule ¢ is equivalent to the PRC rule. |

0

| ¢ satisfies sd-rank-fairness and equal-rank envy-freeness. |

Table 1.8: Axiomatic Analysis of the PRC Rule

Chapter 8 concludes the thesis by summarizing the contribution and
addressing possible directions for future extension.

1.4 Explanation of Abbreviation

Throughout the thesis, we will use abbreviations to represent the corre-
sponding mechanisms. To emphasize here again, in chapters 2-6, SOSM
represents the student-optimal stable mechanism, TTCM represents the top
trading cycles mechanism, BOSM represents the the Boston mechanism,
SSOM represents the school-optimal stable mechanism, SSD represents
the simple serial dictatorship, and RBM represents the recursive Boston
mechanism. Moreover, we denote SOSM, TTCM, BOSM, SSOM, SSD, and
RBM by o, o7, o8B, ©°, ©f and ©F, respectively.

10



1.4 Explanation of Abbreviation

In chapter 7, UA rule represents the uniform assignment rule, RSD
represents random serial dictatorship, PR rule represents the probabilistic
serial rule, and PRC rule represents the probabilistic rank-consumption
rule. Moreover, we denote UA rule, RSD, PS rule, and PRC rule by "¢, "¢,

©Ps, and ¢P"¢, respectively.

11
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1.5 Explanation of Axioms

Numbering | ©° | o7 | o | 0O | of | ©F

Non-wastefulness Def. 2.1 VIiVIVIVIVIY
Fairness Def. 2.2 Vx| x| V| x| X
Stability Def. 2.3 Vx| x| Vx| x

Pareto Efficiency Def. 2.4 X |V IV x| V]V
Strategy-proofness Def. 2.5 VIV x| x| V] x
Group Strategy-proofness Def. 2.6 X |/ | x| x| V] X
Non-bossiness Def. 2.7 X |V | x| x| V] X
Robust Stability Def. 2.8 x | x| x | x| x| X
Respect of Improvements Def. 2.9 VIiVIVIX|IVIV
Mutual Best Def. 3.1 VIiVIVIV] XV
Strong Mutual Best Def. 3.2 VIix | VIV x|V
Top Best Def.33 | V|V IV IV I|*X]|V

Strong Top Best Def.34 | V| x| V|V I|X]|V

Top Rationality Def. 3.5 VIV x| V| x| X
Strong Top Rationality Def. 3.6 Vx| x|V x| X
Group Rationality Def.3.7 | V|V | x | V| x| x
Strong Group Rationality Def.3.8 | /| X | x | v/ | x| X
Consistency Def. 3.9 X | x| x| x || X

Weak Consistency Def.3.10 | / | x | X | X | /| X
Maskin Monotonicity Def.3.11 | x | /| X | x | /| X
Weak Maskin Monotonicity Def.3.12 | / | V| X | X | v/ | X
Population Monotonicity Def.313 | vV | X |V |V |V |V
IR Monotonicity Def.3.14 | / | x | x | x | /| X
Rank Monotonicity Def.315 | vV |V | V | X |V | V
Strong Rank Monotonicity Def.316 | x | v/ | vV | X |V | V
IR Rank Monotonicity Def.3.17 | v/ | X | vV | X |V | V
Rank-fairness Def. 5.1 x | x| /| x| x| X
Respect of Preference Rankings | Def. 5.2 X | x| V| x| x| X
Weak Fairness Def. 53 | V| X | V| V| x| X
Rank Rationality Def. 54 | /| x| vV | V| x| X

Table 1.9: School Choice Mechanisms and Axioms

12




Chapter 2

Preliminaries

2.1 Model

A school choice problem has five components: a set of students, a set
of schools, a quota vector of schools, a preference profile of students over
schools, and a priority structure of schools over students. Formally, a school
choice problem consists of

1. a finite set of students /;

2. a finite set of school types O;

3. a quota vector ¢ = (q,).co Where g, is the quota of school a;
4

. a preference profile of students P = (P,);c; where P; denote the strict
preference order of student ¢ over schools and remaining unmatched;

5. a priority profile of schools >= (>~,).co Where >, is a strict priority
of school a over the set of students.

We next explain the components of a school choice problem in detail.
Let I and O denote finite sets of students and school types, respectively.
A generic student is denoted 4, j, k, I, or m, and a generic school type
is denoted a,b or c. There is a null school type @. Let O = O U {&}.
Each school a € O has a positive capacity or quota ¢, and g, = |I|. Let
q = (qa)aco be the capacity vector of all school types O. The set of school
types O and the capacity vector ¢ uniquely determine the set of school
copies C. For each D C C, let C'(D) be the set of school types which have at
least one copy in D and ¢(DD) be the corresponding capacity vector induced
by D.

A matching is a function ;i : I — O where (1) for each i € I, u(i) € O;
and (2) foreach a € O, |~ !(a)| < q,. To simplify the notation, let p; = p(7)

13
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and p, = p'(a). For each J C I, let u; be the set of school copies
assigned to J under p. For each J C I, let iv_; be the reduced matching
by removing J and x;, and assignments of the other students remain the
same.

Each student i € I has a strict preference order P, over O. Denote by P
the set of all such orders. Let R; denote the weak part of P, that is, aR;b if
and only if aP;b or a = b. For each P, € P and a € O, let U,(i) be the set
of schools strictly better than «a for student i. Let P = (P;);c; denote the
preference profile of all students. Let P,(a) be the preference ranking of
school a at P, i.e., if school a is the ﬁh choice of student ¢ under P;, then
P,(a) = . Therefore, for any a,b € O, P;(a) < P;(b) if and only if aPb. A
school «a is acceptable to a student i if P;(a) < P,(@). For any problem
P and a € O, let I} be the set of students that find school a acceptable,
i.e., I} = {ilaP,@}. Let P; = (P,);c; denote the preferences of any subset
J C I.For each D C C, let P|¢m) be the projection of P on C(D) U {@},
i.e., forany a,b € C(D) U {@} and i € I, aPb if and only if aP;|cm)b. We
write 4 Ry if and only i, R;j; for each i € I. For each i € I and P, € P, let
U,(P;) be the set of schools strictly preferred to a by student 1.

Each school a € O has a strict priority order >, over I, whereas i >, j
means that student i has higher priority than student j at school a. Let
== (>q)aco denote the priority profile of all schools.® For each D C C,
let >~ (p) be the priority profile of schools C(ID). For each J C I, let - |, be
the projection of - over J, i.e., forany a € O and i,j € J, i =, j if and
only i >, |;j. Let >, (i) be the priority ranking of student : at school a.
Similarly, >, | (i) represents the priority ranking of student i at >, | ;. For
eachk € {1,2,...,|I|} and a € O, let >, (k) be the student who is ranked
in the k" place by school a at >,. For each a € O and -, let U;(>,) be the
set of students who have higher priority than student i.

To sum up, a school choice problem is a five-tuple (7,0, q, P, >). To
simplify the notation, we denote a problem by the preference profile P
most of the time. For any J C I and a matching y, let P"; be the reduced
problem by removing .J and ;. That is, P*; denotes the following reduced
problem (I\J, C(C\ps), ¢(C\pey), Pryslo(@yus): =c@uy) Ina)-

Let P/l be the set of preference profiles and M be the set of matchings.
A school choice mechanism ¢ : PYl — M maps the set of preference
profiles to matchings. A P, student i is assigned to ;(P), and school a is

6. In this thesis, we assume the priority of schools to be acceptant, i.e., a school will
never reject a student as long as it still has vacant capacity. For more discussion of
school choice mechanisms on full general priority domains, see Kojima and Unver
(2013) and Afacan (2013).
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assigned to the set of students ¢,(P). For any J C I, let p;(P) be the set
of school copies assigned to J.

The school choice model is closely related to, but different from, the
college admissions model of Gale and Shapley (1962). In the US, all college
admission procedures are usually decentralized, and both students and col-
leges are strategic components. However, in some countries, such as China,
Turkey, and Greece, the procedure of college admission is centralized. In
such countries, colleges are not strategic, while only students are poten-
tially strategic. School seats are considered pure objects to be allocated
and consumed. The schools do not have their own preferences over stu-
dents, but have priority orderings over students based on their examination
scores, or other exogenously determined criteria. Correspondingly, axioms
for school choice mechanisms to be addressed in the following section are
different from axioms for two-sided matching mechanisms, though not
totally independent with each other. To be specific, axioms for two-sided
matching mechanisms are defined on both sides of the market, such as
students and colleges, men and women, or companies and workers, while
axioms for school choice mechanisms or priority-based allocation rules in
general are defined only on students or agents, who constitute the strategic
side of a market.

2.2 Basic Axioms

In this section, we will define properties of school choice mechanisms.
We call these properties axioms.

Definition 2.1. A mechanism ¢ is non-wasteful if for each P € Pl i € I
and a € O,

abipi(P) = [@a(P)] = ga-

A mechanism ¢ satisfies non-wastefulness if whenever a student i prefers
a school « to his own, then there is no empty seats left at school a under

@(P).7

7. Note that Balinski and Sénmez (1999) have defined stability of school choice mech-
anisms in a different way. They say that a mechanism is stable if and only if it is
individually rational, non-wasteful, and fair. A mechanism ¢ is individually rational
if for each P € P/l and i € I, ;(P)R;@. However, non-wastefulness implies indi-
vidual rationality in our setting because the null school is not scarce and the priority
structure is acceptant.
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Definition 2.2. A mechanism o is fair if for each P € PVl, i € I and a € O,
CLPLQOZ(P) :>j ~a Z,V] € (PG(P)

A mechanism is fair 8 whenever a student i prefers another student j's
school to his own, then student j has higher priority for his school then
student . Fairness is an important and natural axiom for school choice
which requires that no pair of students have the incentive to deviate from
the final outcome. However, this property is also rather strong since no
mechanism satisfies fairness and efficiency, which is also an important
criterion in school choice problems, simultaneously.

Definition 2.3. A mechanism o is stable if it is non-wasteful and fair.

When designing mechanisms in matching markets, stability plays a
central role in the theory. A mechanism is stable if no student and no pair
of students have the incentive to deviate from the outcome produced by the
mechanism. Note that stability in school choice problems are different from
that in two-sided college admission problems. In school choice problems,
schools are considered to be pure public goods to be allocated and have no
say in the matching process. Therefore, stability concept only calculates
the welfare of students.

Definition 2.4. A mechanism ¢ is Pareto efficient if for each P € PV, there
exists no other matching i such that yi; R;p;(P) for each i € I, and j1; P;p;(P)
for some i € I.

A mechanism satisfies Pareto efficiency if for each problem and the
matching determined by this mechanism and problem, no other matching
can make all students weakly better off, while some students strictly better
off. Also note here that Pareto efficiency is different from the efficiency
concept in two-sided college admission problems. In two-sided college ad-
mission problems, stability is stronger than Pareto efficiency, and matchings
in the core of two-sided matching markets by Gale and Shapley (1962) all
satisfy Pareto efficiency®. But in school choice setting, Pareto efficiency is
independent with stability and furthermore incompatible with stability.

Definition 2.5. A mechanism ¢ is strategy-proof if for each P € P\l i € I
and P, € P, ¢;(P)Ripi(F;, Priy)-

8. Also known as elimination of justified envy.
9. Sasaki and Toda (1992) characterize the core of two-sided matching markets by Pareto
optimality, consistency, converse consistency, and anonymity.
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A mechanism satisfies strategy-proofness if no student has the incentive
to tell a lie, i.e., reporting the true preferences is the dominant strategy for
each student. Dubins and Freedman (1981) and Roth (1982) show that
the SOSM is strategy-proof.

Definition 2.6. A mechanism ¢ is group strategy-proof if for each P € PV,
there exists no J C I and P; € P! such that y;( P}, P_;)R;pi(P) for each
i € J, and p;(P}, P_;)Pipi(P) for some i € J.

A mechanism satisfies group strategy-proofness if no subset of students
would gain by jointly misrepresenting their preferences. Takamiya (2001)
shows that in school choice setting, group strategy-proofness is equivalent
to the combination of strategy-proofness and non-bossiness'°. Below is the
formal definition of non-bossiness.

Definition 2.7. A mechanism ¢ is non-bossy if for each P € P!, i € I, and
P, € (P),
@i(F;, P-i) = 0i(P) = (P, P-;) = ¢(P).

A mechanism satisfies non-bossiness if no student can change the match-
ing of the other students without changing his own by misreporting his
preferences. Stability and non-bossiness are both important properties a
mechanism designer cares. However, Kojima (2010) shows that stability
and non-bossiness are incompatible in two-sided matching markets, and
hence in school choice problems.!?

Definition 2.8. A mechanism ¢ is robustly stable if the following conditions
are satisfied:

(1) ¢ is stable;

(2) ¢ is strategy-proof;

(3) There existsno i € I, a € O, P € PV, and P, € P such that (i
aPyp;(P); and (ii) =, (i) <>, (j) forsome j € p,(P;, P_;) or |p. (P, P_;)| <
q{l'

10. The concept of nonbossiness is first introduced by Satterthwaite and Sonnenschein
(1981) .

11. Matsubae (2010) proposes a weaker version of non-bossiness: non-damaging non-
bossiness. A mechanism is non-damaging bossy if a student does not make the allo-
cation of other students worse off without changing his own allocation. Formally, a
mechanism ¢ is non-damaging bossy if for each i € I, P, and P,, ;(P,, P_;) = ¢i(P)
implies (P, , P_;)R;(P). Matsubae (2010) shows that no mechanism exists satisfy-
ing stability and non-damaging non-bossiness simultaneously in two-sided matching
markets. In school choice problems, we can see that a mechanism does exist satisfy-
ing stability and non-damaging non-bossiness simultaneously, and the SOSM is one
example. Non-bossy clearly implies non-damaging bossiness.
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Kojima (2011) first introduces robust stability. A mechanism is robustly
stable if it is stable, strategy-proof, and immune to a combined manipula-
tion, where a student first misrepresents his preferences and then blocks
the matching that is determined by the given mechanism. He proves that
there is no robustly stable mechanism and SOSM satisfies robust stability if
and only if the priority structure is Ergin-acyclic.

We say that a priority profile = is an improvement for student i over a
given profile > if = satisfies the following three conditions:

(i) =

(13) i =q j = i =, j, Ya € O,Vj € I\{i};

(131) j =a l & j =, I, Ya € O,V4,1 € I\{i}.

Definition 2.9. A mechanism ¢ respects improvements if for each problem
(P,>)andi € I,

> is an improvement of student i over == ;(P, > )Rip;(P,>).

A mechanism respects improvements if whenever a student’s standing
in priorities improves, his assignment is expected not to be worse off.
~' is an improvement for student i if the priority ranking of student i
do not decrease for all schools and increase for some schools, while the
relative priority ranking of other students remain the same. Respect of
improvements is a natural requirement. It can be interpreted as follows:
if a student gets a higher score in the examination, then he is not going
to be assigned a school worse than his previous assignment. In other
words, a mechanism respecting improvements does not punish a student
for performing better in priorities.

2.3 Mechanisms

2.3.1 Student-optimal Stable Mechanism

Denote the student-optimal stable mechanism (SOSM) by °. For each
P ¢ P!, ©% is defined by setting ¢°(P) equal to the matching obtained by
the following Gale-Shapley student-proposing deferred acceptance algo-
rithm:

Step 1: Each student applies for his favorite school. If a student applies
for the null school, he is tentatively assigned to the null school. For each

18
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school a € O, up to ¢, applicants who have the highest priority for a are
tentatively assigned to a. The remaining applicants are rejected.

Step k: Each student that is rejected in step & — 1 applies for his next
favorite school. If a student applies for the null school, he is tentatively
assigned to the null school. For each school a € O, up to ¢, students who
have the highest priority for « among the new applicants, and those tenta-
tively assigned to it from an earlier step, are tentatively assigned to a. The
remaining applicants are rejected.

The algorithm terminates when each student is tentatively assigned
to a school. Each student is assigned to his final tentative school.

2.3.2 Top Trading Cycles Mechanism

Denote the top trading cycles mechanism (TTCM) by ¢’. For each
P e P T is defined by setting " (P) equal to the matching obtained by
the following student-proposing top trading cycles algorithm:

Step 1: Assign a counter to each school type. Its initial value is the capacity
of that school. Each student points to his favorite school and each school
points to the student who has the highest priority for it. If the null school
is the favorite school of a student, then he forms a self-cycle. There is at
least one cycle. Each student in a cycle is assigned the school he points to
and is removed. The counter of each school in a cycle is reduced by one
and if it becomes zero, the school type is also removed. The counters of all
other schools remain the same.

Step k, k > 2: Each remaining student points to his favorite school among
the remaining schools and each remaining school points to the student
who has the highest priority for it among the remaining students. If the
null school is the favorite choice of a student, then he forms a self-cycle.
There is at least one cycle. Each student in a cycle is assigned the school he
points to and is removed. The counter of each school in a cycle is reduced
by one and if it becomes zero, the school is also removed. The counters of
all other schools remain the same.

The algorithm stops when all students have been removed. Each student

who is temporarily not in a self-cycle but forms a cycle with a school is
assigned that school.
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2.3.3 The Boston Mechanism

Denote the Boston mechanism (BOSM) by . For each P € PIl, xF is
defined by setting ¢ (P) equal to the matching obtained by the following
student-proposing immediate acceptance algorithm!2. For each a € O, let
q" be the reduced capacity of a in step k.

Step 1: Consider only the first choice of students. F acO,
up to g, tudents whose first choice is ¢ with the highest priority for it (all
students if fewer than ¢,) are assigned to school a permanently. If a student
puts the null school in the first preference ranking, then he is assigned the
null school. Remove the set of students who are assigned a school in this
step and their corresponding assignments.

Step k: Consider the k' choice of the remaining students. For each school
a € O with ¢" copies available, up to ¢* students whose k" favorite school
is a with the highest priority for it (all students if fewer than ¢*) are as-
signed to school a permanently. If a student puts the null school in the k"
preference ranking, the he is assigned the null school. Remove the set of
students who are assigned a school in this step and their corresponding
matchings.

The algorithm terminates when all students have been removed.

2.3.4 School-optimal Stable Mechanism

Denote the school-optimal stable mechanism (SSOM) by . For each
P ¢ Pl ©9 is defined by setting ¢ (P) equal to the matching obtained
by the following school-proposing deferred acceptance algorithm:

Step 0: Assign the null school to each student temporarily.

Step 1: Each school a applies for the students who have the highest ¢,
priority for it. Each student i € [ temporarily chooses one school which
is most preferred by him among the applicants and the null school. The
others are rejected.

Step k: For each school a € O, if it is temporarily accepted by the number
of students less than ¢,, say ¢*, in the previous steps, then it applies for

12. The author thanks William Thomson for providing the term: immediate acceptance.

20
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the next set of students who have the highest ¢, — ¢* priority for it. Each
student temporarily chooses one school which is most preferred by him
among the new applicants and the school tentatively assigned to him from
an earlier step. The others are rejected.

The algorithm terminates when each non-null school seat is either
temporarily assigned to some student or rejected by all the students. Each
student is assigned to the school temporarily assigned to him in the final
step.

2.3.5 Simple Serial Dictatorship

Let .#7 denote the set of all bijections from {1,2,...,|I|} to I. We refer
to each of these bijections as an order of students. That is, for any f € .%,
student f(1) is first and agent f(2) is second, and so on. For each f € .7
and k € {1,2,...,|I|}, f(k) stands for the student who is ranked k™ in f.
Given a subset of school copies D C C, the choice B;(D) of student i is
the best school for him among D. Given an order of students f € .# and
P ¢ Pl denote ¢f(P) the matching of simple serial dictatorship (SSD)
induced by f. ¢/ (P) is determined by the following algorithm.

Qo}c(l)(P) = C);

¢§(2)(P) = (C\{Spfa) )

@ = B (VU P0),
: 1]-1

CramP) = Bran (C\ U {@ )}>

That is, the student who is ordered first gets his top possible choice, the
student who is ordered second gets his top possible choice among what
remains, and so on. Note that ¢/ (P) totally ignores the priority of schools
in each problem, and hence has no flavor of fairness at all.
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2.3.6 Recursive Boston Mechanism

For each a € O, let q" be the reduced capacity of a in step k. Denote
the recursive Boston mechanism (RBM) '® by ¢ For each P € P!l, o is
defined by setting ¢(P) equal to the matching obtained by the following
recursive immediate acceptance algorithm:

Step 1: Consider only the first choice of students. For each school a € O,
up to ¢, students whose first choice is a with the highest priority for it (all
students if fewer than ¢,) are assigned to school a permanently. If a student
puts the null school in the first preference ranking, then he is assigned the
null school. Remove the set of students who are assigned a school in this
step and their corresponding assignments.

Step k: Consider the subproblem!* induced by the removal of students
who get a seat in the previous steps and their assignments. For each school
a € O with ¢* copies available, up to ¢* students whose favorite school
is a under the subproblem with the highest priority for it (all students if
fewer than ¢*) are assigned to school a permanently. If a student puts the
null school in the first preference ranking under the subproblem, the he is
assigned the null school. Remove the set of students who are assigned a
school in this step and their corresponding assignments.

The algorithm terminates when all students have been removed. The
following example shows that the BOSM and RBM are different.

13. This mechanism is first introduced by Chen (2013c). The RBM is similar to the well-
known BOSM. While the BOSM considers the reduced problem of the original problem
after removing students and their assignments in the previous step, RBM considers
the subproblem. We show that RBM does not satisfy strategy-proofness and stability,
but satisfies Pareto efficiency. Moreover, the set of Nash equilibrium outcomes of the
preference revelation game induced by RBM is equivalent to the set of stable matchings
with respect to the true preferences of students.

14. Given a problem, a matching, and a subset of students, a reduced problem is defined
by removing the subset of students and their corresponding assignments under the
given matching, while the preference profile remains the same. A subproblem with
respect to the given matching and subset of students is defined by removing the subset
of students and their corresponding assignments under the given matching, while the
preference profile of the subproblem are defined over the set of schools with strictly
positive capacity left. That is, the schools’ capacities are reduced and the students’
preferences are defined over the set of schools with strictly positive capacity left. While
BM considers the reduced problem of the original problem after removing students
and their assignments in the previous step, RBM considers the subproblem.
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EXAMPLE 2.1 The problem P is defined as follows. Let I = {i, j, [, m},
O = {a, b, c}, and the capacity of each school is one. The preferences of
students and the priority orders of schools are listed below:

—a —cC
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g m|m]| I
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%]

R[] =0

It is easy to calculate that ¢®(P) results in the above matching marked
with boxes, and ¢ (P) results in the above underlined matching.

Note that BOSM and RBM both assign a to ¢ and ¢ to m in the first
step. The difference occurs in step 2. In step 2, BOSM considers the second
choices of j and [, and assigns b to [ because j puts b in a lower preference
ranking than [ does. On the contrary, RBM considers the subproblem by
removing a, ¢, i and m. In the updated preference profile, j and / both list b
as their first choice. Because j has higher priority than [ for b, b is assigned
to j under RBM.

Finally, we summarize the information given in this chapter in the
following table.

0
S
sy
Q
=y

A
AS)
AS)
AS)
A

Non-wastefulness
Fairness
Stability

Pareto Efficiency

Strategy-proofness

Non-bossiness
Group Strategy-proofness
Respect of Improvements

Robust Stability
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x < << x | x <o
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Table 2.1: School Choice Mechanisms and Basic Axioms
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Chapter 3

Axioms for Deferred Acceptance

3.1 Introduction

School choice studies how to allocate public school seats to students
based on schools’ priority over students, with each student being assigned
to one seat and each school is allocated to the number of students no
more than its capacity. Formally, a school choice problem consists of a
set of students, a set of school types, a capacity vector of schools, a pref-
erence profile of students over schools, and a priority profile of schools
over students. A school choice mechanism is a systematic way of find-
ing a matching from schools to students for each problem. The seminal
work of Abdulkadiroglu and Sénmez (2003a) discuss three well-known
school choice mechanisms: the student-optimal stable mechanism (SOSM)
determined by the Gale-Shapley student-proposing deferred acceptance
algorithm, the student-optimal top trading cycles mechanism (TTCM) de-
termined by the student-proposing top trading cycles algorithm, and the
student-optimal Boston mechanism (BOSM) determined by the student-
proposing immediate acceptance algorithm. The previous authors point
out that the BOSM lacks strategy-proofness and fairness and suggest to
substitute it with the other two mechanisms. In reality, the BOSM was
replaced by SOSM in the Boston Public School System in 2005, and New
Orleans Recovery School District became the first school district to adopt
TTCM in 2012. Each year, a large population of students are influenced
by which mechanisms their school districts choose, which manifests the
significance of school choice problems.

This chapter studies the school choice problem in an axiomatic way by
proposing new axioms for school choice mechanisms related to monotonic-
ity, fairness, and consistency, and providing new characterizations of the
SOSM. First, we define eight axioms weaker than stability. Three of them
are crucial to our analysis. A mechanism satisfies mutual best if a student
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i is always assigned his non-null favorite school « if he has the highest
priority for it. A mechanism satisfies strong top best if a student i is always
assigned his non-null favorite school « if he has the ¢, highest priority for it
among all students who find this school acceptable. A mechanism satisfies
strong group rationality if the mechanism never assigns a student i to a
school worse than the non-null school a whenever i has the ¢, highest
priority for a among all students who find this school acceptable. Clearly,
stability implies strong group rationality, strong group rationality implies
strong top best, and strong top best implies mutual best.

Next, we define weak consistency. Informally, a mechanism satisfies
weak consistency if whenever we remove a subset of students with their
assignments and apply the mechanism to the smaller reduced problem,
no remaining student is worse off. In other words, all remaining students
weakly prefer the new matching determined by the reduced problem to the
original matching. The SOSM obviously satisfies weak consistency, while
the TTCM and BOSM violate it. Consistency is a classical and important
axiom in matching theory.!®> However, in one-sided school choice problems,
it is difficult to figure out nice mechanisms satisfying consistency for all
problems other than SSD.'® Hence, consistency is too demanding for school
choice. We thus propose weak consistency, which coincidentally is satisfied
by SOSM. The interpretation of weak consistency shows although it is not
as powerful as consistency, it is not a “negative” axiom.

We then define rank monotonicity. Like Maskin monotonicity and weak
Maskin monotonicity, rank monotonicity restricts how a mechanism reacts
to changes in the preferences of students. We say that a preference profile
P’ is a rank monotonic transformation of a preference profile P at a
matching s if for all students, any school that is preferred to p under P’ with
the preference ranking  is also placed in the k" preference ranking of P. A
mechanism ¢ satisfies rank monotonicity if every student weakly prefers the
matching ¢(P') to the matching ((P), whenever P’ is a rank monotonic
transformation of P at p(P). If P’ is a rank monotonic transformation of
P at ¢(P), then the interpretation of the change in reported preferences
from P to P is that some students increase the preference ranking of their
assignment ;(P), and keep relative preference rankings of the schools

15. See Thomson (2011) for an introduction.

16. Although the SOSM and TTCM are not consistent, they are consistent under some
conditions. Ergin (2002) shows that the SOSM recovers consistency if and only if
the priority structure is Ergin-acyclic. Kesten (2006) shows that the TTCM recovers
consistency if and only if the priority structure satisfies another stronger acyclicity
condition.
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above their assignment under the new preference to be the same. Maskin
monotonicity due to Maskin (1999) and weak Maskin monotonicity due
to Kojima and Manea (2010a) both imply rank monotonicity. The SOSM,
TTCM and BOSM all satisfy rank monotonicity.

Finally and importantly, this chapter provides new characterizations
of the SOSM. Prior to our research, the SOSM has been characterized
by constrained efficiency subject to stability in Gale and Shapley (1962),
stability and strategy-proofness in Alcade and Barbera (1994), stability
and respect of improvements in Balinski and Sénmez (1999), stability
and weak Maskin monotonicity in Kojima and Manea (2010a), and non-
wastefulness, strong top best (mutual best), and IR (individually rational)
monotonicity for all substitutable priorities in Morrill (2013). Ehlers and
Klaus (2012) characterize the SOSM for all responsive priorities. However,
we find the previous studies insufficient in the following aspects. First, most
of the results characterize by means of stability. Second, even if some of
the results do not refer to stability, the authors characterize on restricted
priority domains. Therefore, we seek to characterize the SOSM without
stability for all priority structures.

Based on the new axioms we propose and the previous research, we
prove that a school choice mechanism is equivalent to the SOSM if and
only if it satisfies whichever of the following groups of axioms: stabil-
ity, rank monotonicity; non-wastefulness, strong top best, weak Maskin
monotonicity; non-wastefulness, strong group rationality, rank monotonic-
ity; non-wastefulness, mutual best, weak consistency, strategy-proofness;
non-wastefulness, mutual best, weak consistency, rank monotonicity; non-
wastefulness, mutual best, weak consistency, respect of improvements.
Our new characterizations identify the tradeoff between SOSM and TTCM,
BOSM, SSD, and SSOM, which will provide references for the social planner
to compare alternative mechanisms.

The characterizations of other school choice mechanisms are listed be-
low. Abdulkadiroglu and Che (2010) characterize the TTCM for the first
time, by strategy-proofness, efficiency, and recursive respect of top priori-
ties. Morrill (2011) characterizes the TTCM by strategy-proofness or weak
Maskin monotonicity, together with efficiency, mutual best, and indepen-
dence of irrelevant rankings. Abdulkadiroglu and Che (2010) and Morrill
(2011) both get their results when each school has only one seat avail-
able. Recently, Dur (2012) characterizes the TTCM by strategy-proofness,
efficiency, and other three weak auxiliary axioms, when a school capacity
greater than one is permitted. The BOSM is characterized by Kojima and
Unver (2013), Afacan (2013), and Chen (2011), respectively.
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3.2 Axioms Related to Stability

In this section, we introduce eight axioms weaker than stability.

Definition 3.1. A mechanism ¢ satisfies mutual best if for each P € P,
i€ landa € O,

P(a) =1& »q (i) =1 = ¢,(P) = a.

A mechanism satisfies mutual best if a student is always assigned his
non-null favorite school whenever he has the highest priority for it. Toda
(2006) is the first to introduce mutual best. He considers mutual best in
two-sided matching markets. In his work, mutually best requires a pair
of mutually best agents (man and woman, or student and college) to be
matched at every solution outcome.'”

For any problem P and a € O, let I be the set of students that find
school a acceptable, i.e.,

ID = {ilaP,@}.

Definition 3.2. A mechanism ¢ satisfies strong mutual best if for each
PePll jecTanda € O,

Pa)=1& >,

(1) = 1= ¢(P) = a.

A mechanism satisfies strong mutual best if a student is always assigned
his non-null favorite school whenever he has the highest priority for it
among the set of students who find this school acceptable. It is obvious that
strong mutual best implies mutual best, but the converse does not hold.
©° and f satisfy both mutual best and strong mutual best. 7 satisfies
mutual best and violates strong mutual best. Also note that strong mutual
best is independent with fairness, although it is implied by stability.

EXAMPLE 3.1: 7 violates strong mutual best. Let I = {i, j,1}, O =
{a,b}, and ¢, = g, = 1. The preference profile P and priority profile - are
specified as follows:

Pj Pl =a | 7b
]| a || 5| i
1] b ) )
i | J
17. Note that Morrill (2013) also defines a version of mutual best. However, his definition

is different from our definition. His definition of mutual best corresponds to strong
top best (definition 3.4) in our research.

Q[=]| v
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3.2 Axioms Related to Stability

o1 (P) is the above matching marked with boxes. It is easy to observe
that P(a) = 1, =, |1:() = 1, but ¢ (P) = & # a. This shows that ¢
violates strong mutual best.

Definition 3.3. A mechanism ¢ satisfies top best if for each P € PVl i € I
and a € O,
P(a)=1& =, (i) < q. = ¢i(P) = a.

A mechanism satisfies top best if a student is always assigned his non-
null favorite school « whenever he has the ¢, highest priority for it.

Definition 3.4. A mechanism ¢ satisfies strong top best if for each P € PV,
1€ landa € O,

PL‘(CL> = 1 & >‘a

1:(1) < ¢u = @i(P) = a.

A mechanism satisfies strong top best if a student is always assigned
his non-null favorite school a whenever he has the ¢, highest priority for it
among the set of students who find this school acceptable.!8

Definition 3.5. A mechanism ¢ satisfies top rationality if for each P € PV,
1€landa € O,

4 (1) = 1 = ¢;(P)R;a.

A mechanism satisfies top rationality if the mechanism will never assign
student 7 to a non-null school worse than « for him whenever he has the
highest priority for it.!° Top rationality is a weaker version of fairness.
However the Boston mechanism ¢? violates this axiom, as shown in the
example below.

EXAMPLE 3.2: ©” violates top rationality. Let [ = {7, j,l}, O = {a, b},
and g, = ¢, = 1. The preference profile and priority profile are specified as
follows:

AR
@@ail
gl | b || L | 1

(]| j | J

18. Morrill (2013) is the first to define strong top best and he calls this property mutual
best. He claims that the TTCM satisfies strong top best. However, as shown in example
3.1, TTCM violates this axiom.

19. Top rationality is first introduced by Abdulkadiroglu and Che (2010). In their paper,
they call this axiom individual rationality for top students.
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Chapter 3 Axioms for Deferred Acceptance

©B(P) is the above matching marked with boxes. It is easy to observe
that =, (I) = 1, but bPpP(P) = @. This shows that ©” violates top
rationality.

Definition 3.6. A mechanism  satisfies strong top rationality if for each
PePll jeTanda € O,

~a

A mechanism satisfies strong top rationality if the mechanism will never
assign student 7 to a non-null school worse than « for him whenever he has
the highest priority for « among the set of students who find this school
acceptable.

Definition 3.7. A mechanism  satisfies group rationality if for each P €
P i e Tand a € O,

~a (1) < qa = vi(P)Rsa.

A mechanism satisfies group rationality if the mechanism will never
assign student i to a school worse than a for him whenever he has the ¢,
highest priority for a.2°

Definition 3.8. A mechanism ¢ satisfies strong group rationality if for
each Pe Pl jeTanda € O,

~a

A mechanism satisfies strong group rationality if the mechanism will
never assign student 7 to a school worse than a for him whenever he has
the ¢, highest priority for « among the set of students who find this school
acceptable.

20. Top rationality is first introduced by Dur (2012).
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3.3 Weak Consistency
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Table 3.1: School Choice Mechanisms and Stability-related Axioms

3.3 Weak Consistency

Recall that for each J C I, P € P/l and ;. with respect to the problem P,
P" is the reduced problem by removing students J and their assignments
.y from the original problem. That is,

P, = (INJ,C(C\py), q(C\ry), Prsle@)s =c@\uy) 110J)-

Definition 3.9. A mechanism ¢ satisfies consistency if for each P € P!
and J C I,
0 (PP = pu(P), Vi € T\J.

A mechanism ¢ satisfies consistency if for each problem P and the
matching ¢(P), and then for each reduced problem by imagining the
departure of a subset of students with their assignments under (P), the
mechanism, when applied to the reduced problem, will choose the same
assignment with the assignment under the original matching ¢(P) for each
remaining student. In words, consistency requires that the removal of a
subset of students with their assignments does not change the assignment
of any remaining student. Consistency and its converse has played an
important role in resource allocation problems. 2! As we all know, the three
well-known mechanisms proposed by Abdulkadiroglu and Sénmez (2003a)
all violate consistency. Moreover, the only existing mechanism satisfying
consistency is the simple serial dictatorship, which is in some sense trivial
for school choice problems because it totally ignores schools’ priorities.

21. See Thomson (2011) for a survey.
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Chapter 3 Axioms for Deferred Acceptance

Moreover, authors like Ergin (2002), Kesten (2006) and Chen (2013e)
have figured out the conditions on priority structures under which the three
main mechanisms: SOSM, TTCM, and BOSM recover consistency. However,
those conditions are rather stringent, which are difficult to be satisfied.
This further proves that consistency is a too demanding property for school
choice mechanisms. We therefore weaken consistency and propose weak
consistency.

Definition 3.10. A mechanism ¢ satisfies weak consistency if for each
PePlland JC I,

0i(PP)Rips(P), Vi € I\J.

A mechanism ¢ satisfies weak consistency if for each problem P and
the matching ¢(P), and then for each reduced problem by imagining
the departure of a subset of students with their assignments under ¢(P),
the mechanism, when applied to the reduced problem, will choose an
assignment not worse than the assignment under the original matching
©(P) for each remaining student. In words, weak consistency requires that
the removal of a subset of students with their assignments does not make
any remaining student worse off. Obviously, weak consistency is implied
by consistency. ¢° satisfies weak consistency, while ©” and ” violate it.

Proposition 3.1. ¢° satisfies weak consistency.

Proof. We proceed by contradiction. Suppose that ° is not weakly consis-
tent. Thus, we can find a problem P and a subset J C [ such that there
exist at least one student i € 7\ J with

S
w2 (P) P (P71,

It is obvious that the reduced matching ¢° ;(P) is a stable matching un-

der the reduced problem Pfj(P). Because ¢° (Pfj(P)) is the student-optimal
stable matching which Pareto dominates any other stable matchings under

Pfj(P), we have
S(p¥>(P) S
o; (P2, ) Ry (P),

which contradicts the previous conclusion that ¢ (P) P} (P“_"j(P)). O

EXAMPLE 3.3: T and ? violate weak consistency. Let I = {4, 5,1},
O = {a,b,c}, and q, = ¢, = ¢. = 1. The preferences of students P =
(P, P;, P) and the priority orders of schools »>= (>,, >, ~.) are listed
below:
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3.3 Weak Consistency

PinPl>'a b | e
@[ c || 7] 7|
blal|bl| 1|1
c@a i L |

©T(P) is the above underlined matching, and ”(P) is the above match-
ing marked with boxes.

Consider ¢! (P). If we remove student : together with his assignment
©I'(P) = a from the problem, we get the reduced problem Pf{Ti(}P). Let
P = Pf;gp). Note that I' = {j,1}, D' = {b,c}. The reduced preference
profile and priority profile are as follows:

T T T T

PP =, |-
c | ¢ ] l
b bl ]

©"(P") is the above underlined matching. We conclude that ¢ violates
weak consistency because student j becomes worse off when student 1
leaves in advance.

Consider ©P(P). If we remove student [ together with his assignment

¢ from the problem, we get the following reduced problem PfZ%P). Let

P’ = szgp). Note that [ = {i,j}, D" = {a,b}. The reduced preference
profile and priority profile are as follows:

77 77 77

PP || = | 7y
a |la]|l J i
Bl b il

©B(P") is the above matching marked with boxes. We conclude that
P violates weak consistency because student i becomes worse off when
student [ leaves in advance.

EXAMPLE 3.4: ©© violates weak consistency. Let [ = {i,j,l}, O =
{a,b,c}, and g, = ¢, = ¢. = 1. The preferences of students P = (P,, P;, )
and the priority orders of schools ~= (-, =, >.) are listed below:

Pi P] B >~a b | ~ec

[a] a
b a IEI
c b c

o~ . h.
~ . .
~ . =
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Chapter 3 Axioms for Deferred Acceptance

©9(P) is the above matching marked with boxes. If we remove student
[ together with his assignment b from the problem, we get the following
reduced problem Pf{olip). Let P’ = Pfflgp). Note that I' = {i,j}, D' = {a, c}.
The reduced preference profile and priority profile are as follows:

7 7 7 7

N AR
a | c | 7|1
]| fa]| @ | J

©©(P'") is the above matching marked with boxes. We conclude that ¢©
violates weak consistency because student ; and j both become worse off
when student [ leaves in advance.

o |l | P | ¢°

gof
Consistency X | x| x| x|V %
Weak Consistency | +/ | X | X | X | 4/

Table 3.2: School Choice Mechanisms and Consistency-related Axioms

3.4 Axioms Related to Monotonicity

To introduce Maskin monotonicity, we first introduce monotonic trans-
formation. We say that P, is a monotonic transformation of P, at a € O (P,
m.t. P, at a) if any school that is ranked above a under Pi' is ranked above

a under P, that is, N
bP,a = bPa, ¥ b e O.

P’ is a monotonic transformation of P at a matching ; (P' m.t. P at 1)
if P, m.t. P, at ; for all i.

Definition 3.11. A mechanism ¢ satisfies Maskin monotonicity if for each
PePH,
P 'm.t. Pat p(P) = ¢o(P") = o(P).

Definition 3.12. A mechanism ¢ satisfies weak Maskin monotonicity if
for each P € P!,

P 'm.t. Pat p(P) = o(P )R ¢(P).
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3.4 Axioms Related to Monotonicity

A mechanism ¢ satisfies weak Maskin monotonicity if every student
weakly prefers the matching (P’) to the matching o (P), whenever P’ is a
monotonic transformation of P at ¢(P). A mechanism ¢ satisfies Maskin
monotonicity if the matching ¢(P") remains the same with the matching
©(P), whenever P’ is a monotonic transformation of P at ¢(P). Maskin
monotonicity obviously implies weak Maskin monotonicity.

For each J C I, let P7 be the preference profile which ranks & as the
favorite school for each student in J.

Definition 3.13. A mechanism ¢ satisfies population monotonicity if for
each P € P!l and J C I,

%(PLPIQ\J)Ri%(P), Vi € J.

Population monotonicity is an important solidarity property, which is
one of the standard axioms in the study of variable population models. %2
When applied to school choice problems, it says that if the number of
students decreases but schools remain fixed, then all remaining students
should weakly gain together.

To introduce individually rational monotonicity, we first introduce indi-
vidually rational monotonic transformation. We say that P, is an individ-
ually rational monotonic transformation of P, at a € 9] (P, rm.t. P, at a)
if any school that is ranked above both a and @ under P, is also ranked

above a under P, that is

bPa & bP, @ = bPa, Vb€ O.

P' is an individually rational (IR) monotonic transformation of P at a
matching x (P’ irrm.t. P at y) if P i.rrm.t. P, at y; for all 4.

Definition 3.14. A mechanism  satisfies IR monotonicity if for each P €
pHI
Plirm.t. P at o(P) = o(P )R o(P).

IR monotonicity resembles Maskin monotonicity, but the two axioms
are independent. A mechanism ¢ satisfies IR monotonicity if every student
weakly prefers the matching ¢(P’) to the matching ¢(P) with respect to
P', whenever P’ is a rank monotonic transformation of P at ¢(P). Note
that if P’ is an IR monotonic transformation of P at p(P), then P’ is also
a monotonic transformation of P at ¢(P). Therefore, IR monotonicity

22. See Thomson (1983a) and Thomson (1983b).
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Chapter 3 Axioms for Deferred Acceptance

implies weak Maskin monotonicity. Moreover, IR monotonicity also implies
population monotonicity.

To introduce the new monotonicity axioms, we first introduce new
forms of monotonic transformation. We say that P, is a rank monotonic
transformation of P, at a € O (P, tm.t. P, at a) if any school that is ranked
above a under P, is ranked in the same preference ranking under P, that
is, N

bP,a = P;(b) = P, (b), Vb € O.

P’ is a rank monotonic transformation of P at a matching ; (P’ r.m.t.
P at p) if P, rm.t. P, at y; for all 4. Intuitively, if P’ rm.t. P at u, then
some students “truncate” their preferences by moving their assignment
under ;. upwards. It is easy to see that rank monotonic transformation
has implication for a smaller set of preference profile pair (P, P’) than
monotonic transformation.

Definition 3.15. A mechanism ¢ satisfies rank monotonicity if for each
P ePH,

/

P rm.t. P at p(P) = o(P )R ¢(P).
Definition 3.16. A mechanism ¢ satisfies strong rank monotonicity if for
each P € PV,

P rm.t. P at p(P) = ¢(P") = ¢(P).

Like weak Maskin monotonicity and Maskin monotonicity, rank mono-
tonicity and strong rank monotonicity restrict how a mechanism reacts
to changes in the preferences of students. A mechanism ¢ satisfies rank
monotonicity if every student weakly prefers the matching (P') to the
matching ¢(P), whenever P’ is a rank monotonic transformation of P at
©(P). A mechanism ¢ satisfies strong rank monotonicity if the matching
¢(P") remains the same with the matching ¢(P), whenever P’ is a rank
monotonic transformation of P at ¢(P). Note that if P’ is a rank monotonic
transformation of P at ¢(P), then P’ is also a monotonic transformation
of P at ¢(P). Therefore, rank monotonicity is weaker than weak Maskin
monotonicity and strong rank monotonicity is weaker than Maskin mono-
tonicity. The SOSM, TTCM, and BOSM all satisfy rank monotonicity, and
only SOSM among them violates strong rank monotonicity.

To introduce the next axiom, we say that P, is an individually rational
(IR) rank monotonic transformation of P, at a € O (P, tm.t. P, at a) if any
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3.5 Characterizations of the Student-optimal Stable Mechanism

school that is ranked above both a and @ under P, is ranked in the same
preference ranking under P;, that is,

bPa & bP. & = P,(b) = P,(b), Vb € O.

P’ is an IR rank monotonic transformation of P at a matching p (P’
irrm.t. P at u) if P, rm.t. P, at 1, for all i.

Definition 3.17. A mechanism o satisfies IR rank monotonicity if for each
P e PH,
Pirrm.t. Pat o(P) = o(P)R ¢(P).

A mechanism ¢ satisfies IR rank monotonicity if every student weakly
prefers the matching ¢(P’) to the matching ¢(P) under P' whenever P’
is an IR rank monotonic transformation of P at p(P). Note that if P’ is
an IR rank monotonic transformation of P at p(P), then P’ is also an IR
monotonic transformation of P at ¢(P). Therefore, IR rank monotonicity
is weaker than IR monotonicity. Among the three mechanisms proposed
by Abdulkadiroglu and S6nmez (2003a), only the TTCM violates IR rank
monotonicity. It is also obvious that IR rank monotonicity implies both rank
monotonicity and population monotonicity.

IR rank monotonicity resembles strong rank monotonicity, but the two
axioms are independent.

p” |t |7 17 [ ol | o"

Maskin Monotonicity X |V | x| x| V] X
Weak Maskin Monotonicity | / | v/ | X | X | / | X
IR Monotonicity VoI x| x| x| V] X

IR Rank Monotonicity ViIix Vx| VIV
Strong Rank Monotonicity | x | v/ | v/ | X |V | V
Rank Monotonicity VIiVIVI x| VIV
Population Monotonicity | v/ | x | vV | vV | V | V

Table 3.3: School Choice Mechanisms and Monotonicity-related Axioms

3.5 Characterizations of the Student-optimal Sta-
ble Mechanism

Proposition 3.2. (Alcalde & Barbera, 1994) A mechanism y satisfies stability
and strategy-proofness if and only if v = ©°.
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Proposition 3.3. (Balinski & Sonmez, 1999) A mechanism y satisfies stabil-
ity and respect of improvements if and only if p = ©°.

Proposition 3.4. (Kojima & Manea, 2010a) A mechanism  satisfies stability
and weak Maskin monotonicity if and only if p = .

Proposition 3.5. (Morrill, 2013) A mechanism ¢ satisfies non-wastefulness,
strong top best 23 and IR monotonicity ?# for all substitutable priorities if and

only if p = ©°.

It is clear that the existing characterizations are not satisfactory due
to the following reasons. First, proposition 2, 3, and 4 all characterize by
stability. In other words, the authors identify stability as the unique feature
of SOSM. Second, proposition 5 characterizes for the restricted priority
domain. Third, except for stability, the previous authors do not figure out
the main difference between SOSM and the other mechanisms like BOSM,
TTCM, SSOM, SSD, and so on. Next, we provide six new characterizations
of SOSM. All of our results are derived on full acceptant priority domain.
Moreover, we weaken stability in most of the results. Third, except for
stability, our characterizations reveal the unique feature of SOSM over the
other mechanisms.

Theorem 3.1. A mechanism ¢ satisfies stability and rank monotonicity if
and only if ¢ = ¢°.

Proof. It is obvious that (° satisfies both stability and rank monotonicity.
For the only if part, fix a mechanism ¢ satisfying stability and rank mono-
tonicity. To show that ¢ = %, we need to show that for each P € P!l
©(P) = ©°(P). For each preference profile P € P!, let P’ be the trunca-
tion of P at p°(P), i.e., P is a modified preference profile such that for
eachie Ianda € 5,

(i) aRip} (P) = P, (a) = P;(a); and

(i1) Pi(@) = Pi(}(P)) + 1, if o7 (P) # 2.

23. Note that in the original paper of Morrill (2013), the author uses mutual best instead
of strong top best.

24. As individually rational (IR) monotonicity implies population monotonicity and weak
Maskin monotonicity, it is easy to see that for all substitutable priorities, the SOSM
is the unique mechanism satisfying non-wastefulness, strong top best, population
monotonicity and weak Maskin monotonicity, which is exactly what theorem 1 of
Morrill (2013) tells us. However, population monotonicity here is redundant. That is,
there exists no mechanism which satisfies non-wastefulness, strong top best, and weak
Maskin monotonicity, but violates population monotonicity. For more information, see
theorem 3.6 in the current paper.
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3.5 Characterizations of the Student-optimal Stable Mechanism

Kojima and Manea (2010a) establish that ¢°(P) is the unique stable
allocation at P'. Because ¢ is a stable mechanism, we have ¢(P") = »%(P).
By the construction of P" and ¢(P') = »%(P), we have P rm.t. P’ at o(P").
As ¢ satisfies rank monotonicity, it follows that ¢(P)Rp(P'), and naturally

p(P)Ro%(P).

Since o(P) is a stable matching and °(P) is the student-optimal stable
matching which Pareto dominates any other stable matchings under P, we
have

¢°(P)Ry(P).

©(P)Ry®(P) and ©°(P)Rp(P) imply o(P) = ¢(P). O

Independence of axioms: ¢ satisfies stability but violates rank mono-
tonicity. ¢7, P and ¢/ all satisfy rank monotonicity but violate stability.

EXAMPLE 3.5: © violates rank monotonicity. Let [ = {i,j,l}, O =
{a,b, c}, and ¢, = ¢, = q. = 1. The preferences of students P = (P, P;, P))
and the priority orders of schools »= (>, >, >.) are listed below:

B | P | B P ~a|™b| ™
@ c | b c ' J [
a ([a]] a || a j i 7
c | @ b [ I |
%] %) %)

©9(P) is the above matching marked with boxes. Now we consider the
preference profile P' = (P, P;, P,). Note that P’ rm.t. P at ¢°(P). It is

VR

easy to calculate that ©°(P;, ij, P) is the following matching:

g1
alblec

which makes both student i and j worse off. This shows that ¢° violates
rank monotonicity.

Theorem 3.2. A mechanism ¢ satisfies non-wastefulness, strong top best,
and weak Maskin monotonicity if and only if ¢ = ¢°.

Proof. It is obvious that ° satisfies non-wastefulness, strong top best,
and weak Maskin monotonicity. We need only to show the only if part.
Fix a mechanism ¢ that satisfies non-wastefulness, strong top best, and
weak Maskin monotonicity. To show that ¢ = ¢°, by theorem 3.3, we
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Chapter 3 Axioms for Deferred Acceptance

need only to show that for each P, ¢(P) satisfies fairness. We proceed by
contradiction. Suppose ¢(P) is not fair, i.e., there exist i, 7 € [ and a € O
such that aPp;(P), i >, j, and j € ¢;(P).

For each J C I and [ € J, let P} be the preference profile which ranks
¢1(P) as the most preferred school and @ as the second preferred school if
o (P) # . Let P;’“Di(P) be the preferences for student ¢, which ranks a first
and ¢;(P) second. Consider the following preference profile

" papi(P) pe

Note that P’ m.t. P at p(P). ?° As ¢ satisfies weak Maskin monotonicity,
it follows that for arbitrary [ € I\{i}, o;(P")R,¢i1(P). As ¢;(P) is the favorite
school of student [ under P’, we have

(P = ¢ (P), VI e I\{i}.

under P', I} = p,(P)U{i}. Asi =, j and |I}| = |p.(P) U {i}| = qu + 1,
we have >, |1 (i) < g,. As ¢ satisfies strong top best, P**'"”)(a) = 1 and
>a |1 (i) < q, imply that

From the construction of P’ = (P "), Pf ), it is easy to see that

©i(P) = a.
Therefore, p,(P') = ¢.(P) U {i}. As aPyp;(P) and ¢ is non-wasteful, it
follows that |¢,(P)| = q, and ¢ ¢ ,(P). Hence,

l0a(P)| = |pa(P) U {i}] = g + 1.

This shows that (P') allocates school a to ¢, + 1 students, which is a
contradiction with the feasibility of (. O

Independence of axioms: ¢! satisfies non-wastefulness and weak
Maskin monotonicity but violates strong top best. (” satisfies non-wastefulness
and strong top best but violates weak Maskin monotonicity. The following
mechanism ¢? satisfies strong top best and weak Maskin monotonicity but
violates non-wastefulness.

25. Here P’ is a monotonic transformation but not a rank monotonic transformation of
P. Therefore, weak Maskin monotonicity can not be relaxed to rank monotonicity in
theorem 3.6.
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Definition 3.18. For each P € P/l and i € I, let

“ a, if P(@) =1, P(a) =2,>, (i) =1, and Pj(a) < P;(@) for each j € I\{i},
©; (P), otherwise.

Theorem 3.3. A mechanism y satisfies non-wastefulness, strong group ratio-
nality, and rank monotonicity if and only if p = ©°.

Proof. Tt is obvious that ° satisfies non-wastefulness, strong group ratio-
nality, and rank monotonicity. We need only to show the only if part. Fix a
mechanism ¢ that satisfies non-wastefulness, strong group rationality, and
rank monotonicity. To show that ¢ = ¢, by theorem 3.5, we need only to
show that for each P, ¢(P) satisfies fairness. We proceed by contradiction.
Suppose ¢(P) is not fair, i.e., there exist i, j € I, a € O such that aP,p;(P),
i >4 j,and j € ¢;(P).

For each J C I and | € J, recall that PY is the preference profile which
ranks ¢;(P) as the most preferred school and @ as the second preferred
school if p;(P) # @. Consider the following preference profile

P = (P, P ).

Note that P’ r.m.t. P at (P). As ¢ satisfies rank monotonicity, it follows
that for arbitrary | € I1\{i}, o;(P")R01(P). As o (P) is the favorite school
of student [ under P, we have

(P = @(P),Vl e I\{i}.

From the construction of P’ = (P, Pf ;y), it is easy to see that under
P, I¥ = ¢ (P)U{i}. Asi =, j and |I}| = | (P) U {i}| = q. + 1, we
have =, |1 (i) < ¢, under P'. Because ¢ satisfies strong group rationality,
it follows that ;(P")R;a. By non-wastefulness of ¢, for each b € U;(P,),
loo(P)| = |os(P)| = g Therefore, it is impossible to assign student i
to a school strictly better than a, i.e., v;(P') ¢ U;(P,). Hence, aR;p;(P).
¢i(P")R;a and aR;p;(P') imply

/

wi(P) = a.

Therefore, p,(P') = @.(P) U {i}. As aPp;(P) and ¢ is non-wasteful, it
follows that |¢,(P)| = ¢, and ¢ ¢ ¢,(P). Hence,

0a(P)] = |a(P) U {i}| = qu + 1.
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This shows that (P') allocates school a to ¢, + 1 students, which is a
contradiction with the feasibility of (. O

Independence of axioms: ¢° (definition 3.18) satisfies strong group
rationality and rank monotonicity but violates non-wastefulness. ¢’ and
P both satisfy non-wastefulness and rank monotonicity but violate strong
group rationality. ¢ satisfies non-wastefulness and strong group rationality
but violates rank monotonicity.

Theorem 3.4. A mechanism  satisfies non-wastefulness, mutual best, weak
consistency, and strategy-proofness if and only if p = ©°.

Proof. We have known that ¢° satisfies non-wastefulness, mutual best,
weak consistency, and strategy-proofness. We need only to show the only if
part. Fix a mechanism ¢ that satisfies non-wastefulness, mutual best, weak
consistency, and strategy-proofness. To show that ¢ = ¢°, by theorem 3.1,
we need only to show that ¢ satisfies fairness. To prove  satisfies fairness,
we use the following proposition.

Proposition 3.6. If a mechanism ¢ satisfies non-wastefulness, mutual best,
and weak consistency, then it satisfies fairness.

Proof. Arbitrarily choose a preference profile P, we then prove that ¢(P)
is fair. We proceed by contradiction. Suppose ¢(P) is not fair, i.e., there
exist i,j € I, a € O such that aP;p;(P), 1 >, j, and j € p.(P).

Consider the reduced problem Pf[(]]?{ i.;y) by removing I\ {¢, j} and ¢(p\ (;,53) ()
from the original problem. Thus, only student i and ;j remain. Let

" _ py(P)
P= PGy

It is easy to have that in the reduced problem, P, (a) = 1, P, (¢;(P)) = 2,
and ij(a) = 1. Since i >, j and i, j are the only remaining students in the
reduced problem, we have student ¢ has the highest priority for school a
under the reduced problem P’'. Moreover, a has only one capacity left. As
P/(a) = 1, i has the highest priority for a, and ¢ satisfies mutual best, we
have

pi(P) = a.
By weak consistency of ¢, ¢;(P')R;a. Since P;(a) = 1, it follows that

/

;i (P) = a.
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Hence, under P,
lea(P)| = i, j} =2
and school « has only one capacity left. This shows that ¢(P") allocates

school a to the number of students more than its capacity, which is a
contradiction with the feasibility of . O

O

Independence of axioms: ¢? (definition 3.18) satisfies mutual best,
weak consistency, and strategy-proofness but violates non-wastefulness.
¢/ satisfies non-wastefulness, weak consistency, and strategy-proofness
but violates mutual best. ¢! satisfies non-wastefulness, mutual best, and
strategy-proofness but violates weak consistency. The following mechanism
©" satisfies non-wastefulness, mutual best, and weak consistency but

violates strategy-proofness.

Definition 3.19. For each P € Pl and i € I, let

W(p) = 0P (P), if ¢ (P) is weakly consistent,
v | ¢¥(P), otherwise.

EXAMPLE 3.6: ©°(P) satisfies non-wastefulness, mutual best, and
weak consistency but © is not strategy-proof under P. Let I = {i, j,1},
O = {a,b,c}, and ¢, = ¢, = q. = 1. The preferences of students P =
(P, P;, P) and the priority orders of schools >= (>,, >, >.) are listed
below:

T

Po| P | B P| =al|™b| >
@ c | b c 7 l
a |[a]| a | @ | J 7 i
c | @ [ I | g
%) %]

The school-optimal stable matching ¢ (P) is the above matching marked
with boxes. It is easy to see that ¢ (P) satisfies non-wastefulness, mutual
best, and weak consistency. If student j reports P;, then ©°(P;, P}, P) =
©°(P;, P, P,) is the following matching
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which makes student j better off. This shows that ¢© is not strategy-proof,
even when it satisfies non-wastefulness, mutual best and weak consistency:.

Theorem 3.5. A mechanism ¢ satisfies non-wastefulness, mutual best, weak
consistency, and respect of improvements if and only if ¢ = ¢°.

Proof. Theorem 3.2 and proposition 3.2 complete the proof. O

Independence of axioms: ¢° (definition 3.18) satisfies mutual best,
weak consistency, and respect of improvements but violates non-wastefulness.
¢/ satisfies non-wastefulness, weak consistency, and respect of improve-
ments but violates mutual best. ¢? and ¢ both satisfy non-wastefulness,
mutual best, and respect of improvements but violate weak consistency.
©" (definition 3.19) satisfies non-wastefulness, mutual best, and weak
consistency but violates respect of improvements.

EXAMPLE 3.7: ¢ (P) satisfies non-wastefulness, mutual best, and
weak consistency but ¢© does not respect improvements under P. Let
I = {i,j}, O = {a,b}, and ¢, = ¢, = 1. The preferences of students
P = (P, P;) and the priority orders of schools = (>~,, ;) are listed
below:

P Pl =al| ™ || =
|l i [ i
blal Jj|J (
%] %]

9 (P, ) is the above matching marked with boxes. It is easy to see that
09 (P, ~) satisfies non-wastefulness, mutual best, and weak consistency.
Moreover, > = (=, >=,) is an improvement of student j over ~. However,
the matching ©° (P, -') is the above underlined matching, which punishes
student j when he has higher priority for school a. This shows that ©© does
not respect improvements, even when ¢ (P, =) satisfies non-wastefulness,
mutual best, and weak consistency.

Theorem 3.6. A mechanism ¢ satisfies non-wastefulness, mutual best, weak
consistency, and rank monotonicity if and only if ¢ = ©°.

Proof. Theorem 3.5 and proposition 3.2 complete the proof. O

Independence of axioms: ¢° (definition 3.18) satisfies mutual best,
weak consistency, and rank monotonicity but violates non-wastefulness. ¢/
satisfies non-wastefulness, weak consistency, and rank monotonicity but
violates mutual best. ! and ¢? both satisfy non-wastefulness, mutual best,
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and rank monotonicity but violate weak consistency. ©" (definition 3.19)
satisfies non-wastefulness, mutual best, and weak consistency but violates
rank monotonicity. 2°

3.6 Conclusion

In this chapter we first propose a group of new axioms for school choice
mechanisms related to stability, consistency, and monotonicity. Most of
them are new not only to school choice problems, but also to the other
resource allocation problems. An interesting direction for future research
is to apply these axioms to problems other than school choice.

This chapter also characterizes the celebrated SOSM, which is becoming
the central school choice mechanism.?” Some of our results tighten the ex-
isting characterizations, and the other results find new ways to understand
SOSM. Our characterizations show the tradeoff between SOSM and the
other school choice mechanisms, which will certainly help the social plan-
ner to choose alternative mechanisms. This chapter characterizes the SOSM
on full strict and acceptant priority and full strict preference domains. Fu-
ture work is needed to characterize SOSM on more general priority and
preference domains. Future work is also needed to characterize the other
school choice mechanisms based on the new axioms provided in this paper.

Prior to our research, Kojima and Manea (2010a) characterize the
SOSM for some acceptant substitutable priorities by two groups of ax-
ioms: non-wastefulness and IR monotonicity; non-wastefulness, population
monotonicity, and weak Maskin monotonicity. While their axioms are all
priority-free, their characterizations are not on full strict and acceptant
priority domain. We prove in this chapter that to characterize the SOSM
on full strict and acceptant priority domain, it is impossible not to use
priority-related axioms. The reason is obvious. As we can observe, the
simple serial dictatorship satisfies all priority-free axioms (section 3.3 and
3.4) satisfied by SOSM but violates all priority-related axioms (section 3.2).
Hence, to characterize school choice mechanisms, especially the SOSM, by
only priority-free axioms will eventually result in the SSD, which is a trivial
mechanism in some sense for school choice problems.

26. Example 3.5 shows that ¢ (P) satisfies non-wastefulness, mutual best, and weak
consistency but ¢© violates rank monotonicity under P.
27. See Roth (2008) for a survey on Gale-Shapley deferred acceptance algorithm.
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Chapter 4

Deferred Acceptance and Serial
Dictatorship

4.1 Introduction

Including school choice and student placement, the allocation of indi-
visible resources is a commonly observed real-life phenomenon. Typical
examples include the allocation of houses, working positions, offices or
tasks, and so on. To pursue consistency of this thesis, we use students to
represent agents, and schools to represent indivisible objects. In real-life
problems, the simple serial dictatorship (SSD) is widely used for its sim-
plicity, Pareto efficiency, and non-manipulability. However, when priorities
are taken in, respect of priorities becomes a very important dimension to
evaluate a mechanism. SSD becomes not so appealing because this mech-
anism totally ignores priorities of schools. Instead, as mentioned earlier,
the student-optimal stable mechanism (SOSM) based on the Gale-Shapley
student-proposing deferred acceptance algorithm, which always respects
priorities, is becoming the central mechanism in priority-based allocation or
school choice problems. Moreover, the SOSM matching Pareto dominates
any other stable matchings, and is strategy-proof for students.

While both the SOSM and SSD have been studied widely, less attention
has been devoted on studying relationship of these two mechanisms. In this
chapter, we address the following question: When is the SOSM equivalent
to the SSD? To answer the question, this chapter derives a condition on the
priority structure that guarantees equivalence of the SOSM and SSD. We are
not the first to discuss the relationship between SOSM and SSD in school
choice setting. Balinski and Sonmez (1999) show that if priority orders for
all schools are identical, then outcomes of the SOSM and SSD, for which
the order of students is determined by the priority order of all schools, are
equivalent. However, identical priority structure only serves as a sufficient
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condition for the equivalence of these two competing mechanisms. This
chapter generalizes the result of Balinski and Sonmez (1999) and identifies
necessary and sufficient conditions on priorities to guarantee equivalence
of the SOSM and SSD.

We define a new notion of quota-acyclic priority structure. Quota-acyclic
priority structure requires that according to the quota information of a prob-
lem, no disorder of students exists below a certain critical point of priority
ranks. The critical point is the minimal quota of schools. Intuitively, quota-
acyclicity brings no restrictions as to the relative positions in members who
are ranked in the first minimal quota place. However, it restricts ranks of a
student across any two priority orders to be the same under the minimal
quota place. Quota-acyclicity is stronger than both Kesten-acyclicity (hence
Ergin-acyclicity) and strong X-acyclicity (hence X-acyclicity).?® Another
interesting property of quota-cyclic priority structure is that if there exists
a school whose quota is exactly one, then quota-acyclic priority structure
deteriorates into the one where each school possesses the same priority
order.

Let SSD-P represent the special class of SSD where the order of students
is determined by the priority order of any school. Our first result shows that
matchings of the SOSM and SSD-P are equivalent, if and only if SSD-P is fair
with respect to the priority profile, and if and only if the priority structure
is quota-acyclic. Our result reveals that if the priority structure satisfies
quota-acyclicity, then it is not necessary to use the relatively complicated
procedure of deferred acceptance to calculate the outcome. Instead, to
use the SSD directly determined by any priority order of a single school is
enough to determine the final matching. In real-life problems, we expect
the result to help students understand the procedure of school admission
more easily, and save more computational work of the social planner.

The SOSM and SSD have been studied by many other economists prior
to our research. Ergin (2002) proves that the SOSM recovers efficiency,
consistency and group strategy-proofness if and only if the priority structure
is Ergin-acyclic. Ehlers and Klaus (2004) , on the basis of Ergin’s conclusion,
prove that the SOSM is equivalent to a mixed dictator-pairwise-exchange
mechanism (MDPEM) under Ergin-acyclic priority structure. Later, Kesten
(2006) finds that the SOSM and top trading cycles mechanism (TTCM)
due to Abdulkadiroglu and Sonmez (2003a) are equivalent if and only if
the priority structure is Kesten-acyclic. When students are only allowed to
submit a preference list containing a limited number of schools, the SOSM

28. See definition 4.2, 4.3, 4.4, and 4.5 for detail.
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is not strategy-proof any longer. Haeringer and Klijn (2009) study stability
and efficiency of Nash equilibrium outcomes for the preference revelation
games induced by the numerical constraint on students’ preferences when
the SOSM is used. Kojima and Manea (2010a), Morrill (2013) , Ehlers and
Klaus (2012) and Chen (2013a) characterize the SOSM, respectively. The
SSD is investigated for divisible goods by Satterthwaite and Sonnenschein
(1981) and for indivisible goods by Svensson (1999) .

The rest of this chapter is organized as follows. Section 2 studies the
equivalence of SOSM and SSD-P. Section 3 discusses relations between
acyclicity notions on priority structures. Section 4 concludes.

4.2 Deferred Acceptance and Serial Dictatorship

In school choice problems, schools generally have a single priority order
over students because the priorities are usually determined by examination
scores of students. When each school has the same priority across each
other, the analysis of school choice problem will be enormously simplified.
Balinski and Sonmez (1999) first discuss the equivalence of the SOSM
and SSD in student placement problem of Turkey and they show that when
schools share one uniform priority order, then the SSD determined by this
order is equivalent to the deferred acceptance matching determined by the
priority structure constructed from the given priority order.

Proposition 4.1. (Balinski & Sonmez, 1999) For each P and >, if f =>,=>
for any a,b € O, then p¥(P,>) = ¢/ (P).

Proposition 4.1 tells us that if all schools have identical priority order
over students, then the SOSM induced by the identical priority structure
is equivalent to the SSD induced by the priority order of any individual
school. However, identical priority structure only serves as a sufficient
condition to guarantee equivalence of the SOSM and SSD. The following
example 4.1 verifies this.

EXAMPLE 4.1 Let I = {i,j,l,m}, O = {a,b}, and ¢, = ¢ = 2. The
priority profile is specified as follows:
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It is easy to verify that for any possible preference profile of students,
matchings determined by the SOSM and SSD-P are equivalent. However,
>'a7é>-b.

Motivated by the previous example 4.1, we try to extend the result of
Balinski and Sonmez (1999) and identify necessary and sufficient condition
on priorities under which the SOSM and SSD are equivalent. We first
introduce a new notion of acyclicity for priority structures. Let M denote
the minimal quota of schools, i.e., M = min{q,}.co. Given a student i
and a school q, recall that U;(>,) = {j € I| >, (j) <>, (i)} is the set of
students who have higher priority than i for a.

Definition 4.1. Given a priority structure >, a quota-cycle is constituted
of distinct a,b € O and i,j € I such that the following two conditions are
satisfied:

Quota-cycle condition: >, (i) <>, (j) and > (j) <> (i) and

Quota-scarcity condition: there exists a set of students 1,  I\{i, j} such
that I, C U;(>,) and |I,| > M — 1.

The priority structure > is quota-acyclic if it has no quota-cycles.

Quota-acyclicity requires that according to the quota information of a
problem, no disorder of students exists below the rank M in . Next, we
provide a characterization of quota-acyclicity showing that students in any
position of the priority orders lower than the minimal quota should be the
same across every school.

Proposition 4.2. - is quota-acyclic if and only if for any a,b € O and
ke {M+1,M+2,.. ||}, =" (k) =-," (k).#

Proof. We proceed by contradiction. For the if part, suppose on the contrary
that for each a,b € O and k € {M + 1,M + 2,...,|I|}, we have >_!
(k) ==, (k), but there exists a quota-cycle in ». Then there exists a set of
students I, C I\{i, 7} such that I, C U;(>,) and |I,| > M — 1. Therefore,
> () > M and hence >, (j) => (j). Since >, (j) <>, (i), we also have
o (1) => (i), which implies >, (j) <>, (i), a contradiction.

For the only if part, suppose that for some a,b € O and k£ > M + 1,
j ==, (k) #=,' (k) = i. Let k be the maximum of such numbers. If
k =>, (j) <=4 (i) = k', then by the definition of k, i =~ (k') ==, (k'),
which contradicts i =>,"' (k). Therefore, >, (i) <>, (j). By the same
argument, we can show that >, (j) <>, (7). Because M + 1 < k <>, (j),
we can find I, C I\{4,j} such that I, C U,(y) and |I,| = M — 1. O

29. Note that for each k € {1,2,...,|I|} and a € O, > ;! (k) is the student who is ranked
in the k*" place at >,,.
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Given > and a € O, let L,(M) be the set of students who are ranked in
the last |I| — M positions of -,. We say that L,(M) belong to the lower
class and the remaining students 7\ L,(M ) belong to the upper class of >,.
Proposition 4.2 tells us that quota-acyclicity brings no restrictions as to the
relative positions in upper class members. However, it restricts ranks of a
lower class member across any two priority orders to be the same.

Another interesting property of quota-cyclic priority structure is that if
there exists a school whose quota is exactly one, then quota-acyclic priority
structure deteriorates into the one where each school possesses the same
priority order. But this does not mean that quota-acyclicity is trivial because
in real-life student placement problems, there is no university providing
only one seat.

We are now ready to present the first result of this chapter.

Theorem 4.1. For each P € Pl and a € O,
(i) ¢°(P, =) = ¢™(P);
(i1) ¢~ (P) is fair (stable) with respect to >;
(1i1) = is quota-acyclic;

Proof. (iii) = (i): If - is quota-acyclic, then for each P € P!|, all members
in I\ L,(M) are assigned to their favorite schools. Therefore, ©°(P, ) =
o/ (P) for each i € I\L,(M). By proposition 4.1, ©*(P,~) = ¢/ (P) for
each i € L,(M). Therefore, for each a € O, we have p¥(P, =) = p™«(P).

(4i1) = (ii): If (ii7) holds, then we have ¢°(P, =) = ¢~+(P). Because
©° (P, ) is fair with respect to =, ¢ (P) is also fair with respect to .

(1) = (iii): We proceed by contradiction. Suppose that ¢°(P,>) =
¢~ *(P) for each a € O, but > has a quota-cycle. Then, there exists a set of
students I, C I\{4,j} such that I, C U;(>,) and |I,|] > M — 1. Consider
the following preference profile P:

Prugigy s an, 9
Pothers %)

It is easy to verify that ¢ *(P) = @ and ¢, *(P) = ay. Therefore, ¢ *(P) #
©>"(P), a contradiction.

(17) = (1ii): We proceed by contradiction. Suppose that ¢« (P) is fair
with respect to >~ for each a € O, but » has a quota-cycle. Then, there
exists a set of students /, C I\{i, j} such that /, C U;(>,) and |I,| > M —1.
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Consider again the preference profile P:

Pr,ugigy can, 9
Pothers i8]

It is easy to verify that 7 *(P) = @ and ¢} *(P) = ay. Furthermore, there
exists [ € I, U {i} such that ¢ *(P) = ay; and ¢;*(P) = @. For ay, either
J >ay lorl =g, 5. If j >,,, [, then o™ (P) is not fair with respect to >. If
[ =, J,then ¢™¢(P) is not fair with respect to >.

O

4.3 Relationship between Acyclicity Conditions

In this section, we compare quota-acyclicity with the other acyclicity
notions.

Definition 4.2. Given a priority structure -, an Ergin-cycle is constituted
of distinct a,b € O and i, j,1 € I such that the following two conditions are
satisfied:
Ergin-cycle condition: >, (i) <>, (j) <>, (I) and > (I) <>, (i) and
Ergin-scarcity condition: there exist distinct sets of students I,,I, C
IN\{3,j,1} such that I, C U;(>4), I, C U;i(>), |Ia] = g — 1, and |I,| = ¢, — 1.
The priority structure > is Ergin-acyclic if it has no Ergin-cycles.

Note that acyclicity is a joint property of the priority structure and the
vector of quotas, although the latter will often be suppressed. Acyclicity
becomes more restrictive as resources become more scarce. Ergin-acyclicity
is first proposed by the seminal work of Ergin (2002) and has been inves-
tigated by many other authors. Kesten (2009) shows that a mechanism
satisfies efficiency, coalitional strategy-proofness, and resource monotonic-
ity if and only if it is the SOSM associated with an Ergin-acyclic priority
structure. Kojima (2011) shows that there is a robustly stable mechanism
in a market if and only if the priority structure of schools in that market
is Ergin-acyclic. Moreover, if there is a robustly stable mechanism, then it
coincides with the SOSM.

Definition 4.3. For a priority structure >, a Kesten-cycle is constituted of
distinct a,b € O and i, j,l € I such that the following two conditions are
satisfied:

Kesten-cycle condition: >, (i) <>, (j) <>, () and >, (I) <>y (), >
(j) and
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Kesten-scarcity condition: there exists a set of students I, C I\{i, 7,1}
such that I, C U;(>=,) U [U;(>)\Ui(>p)] and |1,| = q, — 1.
The priority structure > is Kesten-acyclic if it has no Kesten-cycles.

Kesten-acyclicity is first proposed by Kesten (2006). He shows that the
TTCM and SOSM are equivalent, or TTCM recovers population monotonic-
ity, resource monotonicity, or stability if and only of the priority structure
satisfies Kesten-acyclicity. Later, Chen (2013f) shows that the TTCM recov-
ers robust stability and IR monotonicity if and only if the priority structure
is Kesten-acyclic.

Definition 4.4. Given a priority structure >, an X-cycle is constituted of
distinct a,b € O and i,j € I such that the following two conditions are
satisfied:

X-cycle condition: >, (i) <>, (j) and > (j) <> (i) and

X-scarcity condition: there exist disjoint sets of students I,, I, C I\{i,j}
such that I, C U;(>,), Iy C U;j(>), |la| = ¢u — L and |I,| = g, — 1.

The priority structure >~ is X-acyclic if it has no X-cycles.

Definition 4.5. Given a priority structure -, a weak X-cycle is constituted
of distinct a,b € O and i,j € I such that the following two conditions are
satisfied:

Weak X-cycle condition: >, (i) <>, (j) and >, (j) <> (i) and

Weak X-scarcity condition: there exist disjoint sets of students I,, I, C
I\{3,j} such that I, C U;(,), Iy C U;(>), |1a| = qo — 1 and || = ¢, — 1.

The priority structure ~ is strongly X-acyclic if it has no weak X-cycles.

X-acyclicity and strong X-acyclicity are first introduced by Haeringer and
Klijn (2009). They are necessary and sufficient conditions on the priorities
to guarantee efficiency of either of Nash equilibrium outcomes under school
choice mechanisms, when students are only allowed to submit a preference
list containing a limited number of schools.

Proposition 4.3. If a priority structure » is quota-cyclic, then it is Kesten-
acyclic (hence Ergin-acyclic).

Proposition 4.4. If a priority structure > is quota-cyclic, then it is strongly
X-acyclic (hence X-acyclic).

We omit proofs of proposition 4.4 and 4.5 because the result is obvious.
The following Figure 4.1 shows the relationship between quota-acyclicity
and the other acyclicity notions. It is easy to verify that quota-acyclicity is
stronger than all the existing acyclicity conditions.
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4 Ergin-acyclic h
~
Kesten-|[/ Quota- \| Strongly
acyclic ||\ acyclic /| X-acyclic
/
L X-acyclic )

Figure 4.1: Relationship between Acyclicity Conditions

4.4 Conclusion

This chapter solves the following problem: when is the SOSM equivalent
to SSD? We study the equivalence relation of the SOSM, determined by
the Gale-Shapley student-proposing deferred acceptance algorithm, and
SSD for which the order of students may be determined by the priority
order of any school. Our conclusion shows that these two mechanisms are
equivalent to each other if and only if the priority structure is quota-acyclic,
which is a notion stronger than all the other existing priority structures.

Prior to our research, there existed several papers investigating condi-
tions under which the SOSM are equivalent to some other school choice
mechanisms. Kesten (2006) proves that the SOSM is equivalent to TTCM
under Kesten-acyclic priority structure. Ehlers and Klaus (2004), on the
basis of Ergin’s conclusion, prove that the SOSM is equivalent to a mixed
dictator-pairwise-exchange mechanism (MDPEM) under Ergin-acyclic pri-
ority structure. Denote the current chapter as Chen (2013DASD). Related
results are summarized in the following table 4.1. Future work is needed
to study the equivalence relation of SSD and other mechanisms such as the
TTCM and BOSM.
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Priority structure | SOSM="? Literature
Ergin-acyclic MDPEM | Ehlers and Klaus (2004)
Kesten-acyclic TTCM Kesten (2006)
Quota-acyclic SSD-P Chen(2013DASD)

Table 4.1: SOSM under Acyclic Priority Structures

Note that as long as there is one school with single supply of capacity,
quota-acyclicity deteriorates into the shape where each school has identical
priority order. But in real-life school choice problems, one school usually
has multiple supply, which manifests that our result is useful and will help
social planners in the process of assigning school seats to students.
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Chapter 5

Axioms for Immediate Acceptance

5.1 Introduction

The Boston mechanism (BOSM), determined by the immediate accep-
tance algorithm, is a popular school choice mechanism around the world.
Under this mechanism, students first report their preferences over schools
to the social planner. Given the reported preferences, the social planner
follows the immediate acceptance algorithm to assign students to schools.
The immediate acceptance algorithm first allocates school seats to students
who put that school in the first place of their preference list, then to those
who put it in the second place if there is any remaining seat, and so forth.

Abdulkadiroglu and Sénmez (2003a) find first that BOSM is not fair.
Second, this mechanism is not strategy-proof and, worse still, is easy for
students to manipulate. They thus suggest to substitute it with the other
two mechanism which do not suffer from serious incentive problems:
the student-optimal stable mechanism (SOSM) and top trading cycles
mechanism (TTCM). Later, Ergin and Sénmez (2006) find that the set of
Nash equilibrium outcomes of the preference revelation game induced by
the BOSM is equivalent to the set of all stable matchings. Chen and S6nmez
(2006) prove manipulable property of the BOSM in a lab experiment.
Pathak and Sénmez (2008) show that if some sincere students report their
true preferences over schools while the sophisticated others manipulate,
then sophisticated students can become better off under the BOSM than in
the SOSM by taking the advantage of their sincere companions.

Kojima and Unver (2013) characterize the BOSM for the first time. Based
on the results of Kojima and Unver (2013), the current chapter provides
two new characterizations of the BOSM in terms of two new axioms related
to stability: weak fairness and rank rationality. A mechanism satisfies weak
fairness if under the matching derived by this mechanism, a student prefers
the assignment of another student and both of them put the preferred
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school in the same preference ranking, then the later student has higher
priority than the former student for the preferred school. A mechanism
satisfies rank rationality if it never assigns a student i to a school worse
than a whenever the following two conditions are satisfied: (1) the number
of students, who put school « in a preference ranking higher than ¢ does
and find school a acceptable, is smaller than the capacity of this school;
(2) Student : has the highest group of priorities for « among all students,
who put school « in a preference ranking not lower than i does and find
school a acceptable. Weak fairness and rank rationality are both weaker
than stability, and thus satisfied by SOSM.

Our first characterization states that a mechanism is equivalent to the
BOSM for all acceptant priorities if and only if it satisfies respect of prefer-
ence rankings and weak fairness (theorem 5.1). Our second characteriza-
tion states that a mechanism is equivalent to the BOSM for all acceptant
priorities if and only if it satisfies respect of preference rankings, rank
rationality, and rank monotonicity (theorem 5.2). As the SOSM satisfies
weak fairness, rank rationality and rank monotonicity, our result reveals
that respect of preference rankings is the unique axiom which distinguishes
BOSM from SOSM.

Our results are different from those in Kojima and Unver (2013) for
the following reasons. First, we assume the priority structure to be part of
the primitive, while Kojima and Unver (2013) derive the priority structure
as part of characterizations of the BOSM. Second, we assume acceptant
priority structures, while Kojima and Unver (2013) impose no restriction
on priorities.

Afacan (2013) is another work characterizing the BOSM. He shows that
a mechanism is outcome equivalent to the BOSM at every priority if and
only if it respects both preference rankings and priorities®® and satisfies
individual rationality for schools®!. In environments where each student is
acceptable to every school, only one axiom, i.e., respecting both preference
rankings and priorities is enough to characterize the BOSM. Afacan (2013)
is different from our work in the following aspects. First, Afacan (2013)
characterizes the BOSM on full strict priority domains, with the help of a
new axiom: individual rationality for schools, while we only characterize
on full strict and acceptant priorities. Second, Afacan (2013)’s main axiom:
respect of both preference rankings and priorities, is equivalent to the

30. A mechanism respects both preference rankings and priorities if it satisfies non-
wastefulness, rank-fairness, and weak fairness.

31. A mechanism satisfies individual rationality for schools of no school seat is assigned to
students who are unacceptable to this school.
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combination of respect of preference rankings and weak fairness in our
work. Finally, proofs for these two works are different.

5.2 Related Axioms

Definition 5.1. A mechanism ¢ is rank-fair if for each P € PV, i € I and
a €0,
aPpi(P) = Pj(a) < Py(a),Vj € @u(P).

Definition 5.2. A mechanism ¢ respects preference rankings if it is non-
wasteful®? and rank-fair.

A mechanism respects preference rankings if it is non-wasteful and rank-
fair. Non-wastefulness requires that if a student prefers another school to
his current assignment, then the quota of the preferred school has been
fully occupied by other students. Rank-fairness requires that if a student
prefers the assignment of another student, then the later student puts the
preferred school in a preference ranking not lower than the former student.
Kojima and Unver (2013) prove that if a mechanism respects preference
rankings, then it is Pareto efficient.3

Definition 5.3. A mechanism ¢ satisfies weak fairness if for any i,j € I
and P € P,

@i (P)Pipi(P) & Pi(p;(P)) = Pi(p;(P)) = j =y, ) i.

Weak fairness requires that if a student prefers the assignment of another
student and both of them put the preferred school in the same preference
ranking, then the latter student should have higher priority for this school.
Obviously, weak fairness is implied by fairness.

Recall that for each problem P and a € O, I} represents the set of
students that find school a acceptable, i.e.,

I7 = {ilaP,0}.

32. See definition 2.1.

33. Note that Kojima and Unver (2013) conclude that if a mechanism respects preference
rankings, then it is constrained Pareto efficient. Constrained Pareto efficiency is the
correspondence of Pareto efficiency under general priorities. If we assume accep-
tant priorities, then constrained Pareto efficiency is equivalent to Pareto efficiency.
Therefore, in our setting, respect of preference rankings implies Pareto efficiency.
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For each student i, let I;; be the set of students that find school a
acceptable and put a in a preference ranking higher than student i does,
ie.,

I = {ilPj(a) < Pi(a) & aP;}.

Definition 5.4. A mechanism ¢ satisfies rank rationality if for each P €
Pl ieTanda € O,

Ga — |f§,¢| >0& >,

g 3 (0) < (g0 — ;) = @i(P)Ria.

We say that a mechanism satisfies rank rationality if it never assigns
a student 7 to a school worse than the non-null school a whenever the
following two conditions holds: (1) The number of students who find
school a acceptable and put school « in a higher preference ranking than
i does is smaller than the capacity of school a; and (2) Student 7 has the
highest group of priorities for a among the set of students who find school a
acceptable and put school a in a preference ranking not higher than i does.
The following proposition shows the relationship between stability-related
axioms.

Proposition 5.1. Stability (definition 2.3), strong top rationality (definition
3.6), and strong group rationality (definition 3.8) all imply rank rationality.

o [t |07 [ 9% [ of | oF

Respect of Preference Rankings | x | x | / | X | X | X
Rank-fairness X | x| V| x| x| x

Weak Fairness VIix | VIV x| X

Rank Rationality VIix | VIV x| X

Table 5.1: School Choice Mechanisms and Boston-related Axioms

5.3 Characterizations of the Boston Mechanism

Theorem 5.1. A mechanism ¢ respects preference rankings and satisfies weak
fairness if and only if p = ¢5.

Proof. We proceed by contradiction. Fix a mechanism ¢ which satisfies
respect of preference rankings and weak fairness. Suppose that ¢ # ”.
Given a problem P, denote the matching ¢?(P) as y, and the matching
©(P) as 7.
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Step 1: Suppose that for some student ¢ and school « such that y; = a
and P;(a) = 1, m; # a. By weak fairness of ., we have that for any student
j such that j ¢ p, and P;(a) = 1, i >, j. Because © respects preference
rankings, we have that under = school « is assigned to a student who also
puts it in the first preference ranking, i.e., a is assigned to a student j
where j ¢ p, and P;(a) = 1. By weak fairness of u, we have j >, i, a
contradiction.

Step k: Suppose that for some student i and school a such that x; = a
and P;(a) = k, m; # a. By weak fairness of ; and the previous k& — 1 steps,
we have that for any student j such that j ¢ 1, and Pj(a) = k, i >, j.
Because 7 respects preference rankings and by the previous k — 1 steps, we
have that under 7 school « is assigned to a student who also puts it in the
k" preference ranking, i.e., a is assigned to a student j where j ¢ u, and
P;(a) = k. By weak fairness of ;, we have j >, ¢, a contradiction. O

Independence of axioms: The null matching, where each student is as-
signed to the null school, trivially satisfies rank-fairness and weak fairness,
but violates non-wastefulness. The SOSM ¢ satisfies non-wastefulness and
weak fairness, but violates rank-fairness. The reversed Boston mechanism
©" defined below satisfies non-wastefulness and rank-fairness, but violates
weak fairness.

For any problem P € P, the reversed Boston mechanism, denoted
by ¢V, determines a matching " (P) through the following algorithm:

Step 1: Consider only the first choice of students. For each school a € O,
up to g, students whose first choice is a with the lowest priority for it (all
students if fewer than ¢,) are assigned to school a permanently. If a student
puts the null school in the first preference ranking, then he is assigned the
null school. Remove the set of students who are assigned a school in this
step and their corresponding assignments.

Step k: Consider the k' choice of the remaining students. For each school
a € O with ¢ copies available, up to ¢* students whose k" favorite school
is a with the lowest priority for it (all students if fewer than ¢*) are as-
signed to school a permanently. If a student puts the null school in the £k
preference ranking, the he is assigned the null school. Remove the set of
students who are assigned a school in this step and their corresponding
matchings.

The algorithm terminates when all students have been removed. "
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differs from ¢? in solving conflicts. If more students than the quota of a
school apply for this school, ©? solves conflicts fairly, i.e., according to the
priority order of this school. However, " does not solve conflicts fairly. The
following example might be helpful in demonstrating how ¢" and o work.

EXAMPIE 5.1 Let | = {i,j,l}, C = {a,b,c}, and ¢, = ¢, = ¢. = 1.
The preference profile and priority profile are listed below:

Pi P] Pl ~a b | e
a | al c l
b | c | b j
c| b i

~ o, ~.
~ . .

P results in the following matching:

i)
al|lblec

¢V results in the following matching:

il
a|c

Remark: Theorem 5.1 characterizes the BOSM by two intuitive axioms.
A mechanism outcome is weakly fair (for a given priority ordering profile)
under a certain preference profile if whenever one student envies the school
of another student and they have the same ranking for this envied school,
then the envied student has a higher priority at that school than the original
student. A mechanism outcome respects preference rankings if a student
would rather be matched with a school than his current assignment, then
this school has no empty seats and no student who is assigned to this school
have ranked it lower in his preferences than the original student. Respect
of preference rankings is a stronger version of Pareto efficiency, and weak
fairness is a weaker version of fairness. Proofs for this characterization
are also intuitive and simple. Many scholars criticize theorem 5.1 as the
two axioms we use are immediately an alternative definition of the BOSM.
Indeed, the characterization in theorem 5.1 is too similar to the definition
of the immediate acceptance algorithm, which undermines the theoretical
important of this result.

Nevertheless, theorem 5.1 is meaningful first in figuring out the main
difference between BOSM and SOSM. As we all know SOSM satisfies non-
wastefulness and weak fairness, but violates only rank-fairness. This tells
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us that it is rank-fairness that distinguishes BOSM from SOSM. Moreovet,
Kojima and Unver (2013) characterize BOSM for some priorities by respect
of preference rankings together with three other normative axioms. How-
ever, as we can see easily, the reversed Boston mechanism " satisfies all
axioms proposed by Kojima and Unver (2013). Therefore, to characterize
BOSM by only priority-free axioms will eventually result in the reversed
Boston mechanism ", which is undesirable at all.

As the afore-stated theorem 5.1 is disputable among researchers, we
seek to characterize BOSM: (1) without using weak fairness; (2) with
axioms not similar to the definition of BOSM; (3) for all possible prior-
ity structures instead of for some priorities. The following theorem 5.2
presents a second characterization of BOSM, by referring to respect of
preference rankings, together with two weak axioms related to stability
and monotonicity. This characterization is problem-free in being similar to
the definition of the immediate acceptance algorithm.

Theorem 5.2. A mechanism y satisfies rank rationality, rank monotonicity,
and respects preference rankings if and only if ¢ = ©P.

Proof. It is easy to see that (o satisfies rank rationality, rank monotonicity,
and respects preference rankings. We only need to show the only if part.
To prove ¢ = ©”, we use the following result.

Proposition 5.2. If ¢ satisfies rank rationality, rank monotonicity, and
respects preference rankings, then ¢ satisfies weak fairness.

Proof. Fix a mechanism ¢ that satisfies rank rationality, rank monotonicity,
and respects preference rankings. Suppose that ¢ violates weak fairness,
i.e., there exist P € PV, i, j € I, a € O such that aP,p;(P), Pi(a) = Pj(a),
i >4 7,and j € @, (P).

For each J C I and | € J, recall that PY is the preference profile which
ranks ¢;(P) as the most preferred school and @ as the second preferred
school if p;(P) # @. Consider the following preference profile

P = (P, Py, Py )

Note that P’ r.m.t. P at (P). As ¢ satisfies rank monotonicity, it follows

that

ei(P) g (P), VI € 1. G.1)
As o, (P) is the favorite school for each | € I\ {7, j} under P, we have

/

pi(P) = ¢u(P), VL€ I\{i, j}. (5.2)
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To calculate the assignment of i and j, we discuss about two cases.

Case 1: P,(a) = Pj(a) = 1. From the construction of P’, we have that
the set of students finding school a acceptable is I = ¢,(P) U {i}, and
|I¥| = qo + 1. Because i >, j and |I}| = q, + 1, it follows that -, |;: < g,.
As all students in I} put school « in the first preference ranking, we have
I;; = (). Therefore, ¢, — |1;;| = ¢, > 0 and >, |{I;\I::,z-}(i> = |1: (1) < ¢a-
Because ¢ satisfies rank rationality, we have p(P')R.a. As P, (a) = P;(a) =
1, it follows that

QOL(PI) = Q. (5-3)

Moreover, as P;(a) = Pj(a) =1 and Pj(a) = ij(a), by equation 5.1, it

follows that
0;(P) =a. (5.4)

Hence, by equations 5.2, 5.3, and 5.4, p,(P) = ¢.(P) U {i} and
l0a(P)| = g, + 1. This means that ¢ assigns school a to ¢, + 1 students,
which contradicts its feasibility.

Case 2: P;(a) = Pj(a) = k, k > 1. From the construction of P', we have
that the set of students finding school a acceptable is I} = ¢,(P)U{:}, and
I;| = qa + 1. Moreover, it is easy to verify that under P', I}, = . (P)\{j}.
Thus, I;\I;; = {i,j}. Asi >, j, we have ¢, — |I7;| = 1 and >, |(7;\1z 1 (i) =
1. By rank rationality of ¢, ;(P')R;a. As ¢ respects preference rankings,
it follows that o;(P') ¢ U,(P,). Thus, aR;p;(P"). vi(P)R;a and aR;p;(P")
imply that

@i(P') =a. (5.5)

As ¢ respects preference rankings, it follows that ¢;(P') ¢ U,(P;).
Hence, aR;¢;(P'). By equation 5.1, we have ¢;(P")R;a. aR;p;(P") and
¢;(P")R;ja imply that

©;(P) = a. (5.6)

Hence, by equations 5.2, 5.5, and 5.6, ¢,(P') = ¢.(P) U {i} and
loa(P)| = g, + 1. This means that ¢ assigns school a to ¢, + 1 students,
which contradicts its feasibility. O

Proposition 5.1 and theorem 5.1 then complete the proof. O

Independence of axioms: ¢° satisfies rank rationality and rank mono-
tonicity, but does not respect preference rankings. The reversed Boston
mechanism " satisfies rank monotonicity and respects preference rank-
ings, but violates rank rationality. The following example reveals a match-
ing which respects preference rankings and satisfies rank rationality, but
violates rank monotonicity.
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EXAMPLE 5.2  Let [ = {i,j,l,m}, C ={a,b,c},and ¢, = ¢, = ¢. = 1.
The preferences profile and priority profile are listed below:

Pz' P] Pl Pm a b | ~e
[a] a
b
Cc
%]

a 1
c | b c J
]| a| b | 1
o | @ m

Let ¢ be a mechanism which respects preference rankings and satisfies
rank rationality. Let ¢(P) be the above matching marked with boxes. It
is easy to verify that ¢(P) respects preference rankings and satisfies rank
rationality.

Next, we consider the following preference profile P' = { P/, P;, P, P,,}
as follows:

m | 1
J|J
1 [
[ | m

PP | P | Pyl »al|>b| =
a | a | c a 1 m | 1
gl c|D| c ] J ]
c | b | a b { 1 )
bl | b|a|m| !l |m

From the construction of P’, we know that P’ rm.t. P at ¢(P). Now,
under P, the unique matching which respects preference rankings and
satisfies rank rationality is the above underlined matching. Because ¢
respects preference rankings and satisfies rank rationality, we have that
¢(P") is the same underlined matching.

Note that P’ r.m.t. P at p(P), but ¢,;(P)P;p;(P"). This shows ¢ violates
rank monotonicity under P.

5.4 Conclusion

The axiomatization of school choice mechanism has attracted much
attention in the recent years. One of the pioneering work is Kojima and
Manea (2010a) characterizing the SOSM with the help of several mono-
tonicity axioms. Their work has intrigued a list of followers like Ehlers
and Klaus (2012), Morrill (2013), and Chen (2013a) to give more char-
acterizations of SOSM, Abdulkadiroglu and Che (2010), Morrill (2011),
and Dur (2012) to give more characterizations of TTCM, and Kojima and
Unver (2013) and Afacan (2013) to give more characterizations of BOSM.
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Almost all of these papers consider acceptant priority domain. So does our
research.

Our research contributes to the literature in two aspects. First, we
propose two new axiom weaker than the classical concept of stability. One
direction for future research is to extend these axioms to the fields other
than school choice. Second, we give new characterizations of the BOSM,
which is still a widely used mechanism so far. In chapter 3 of this thesis,
we propose new monotonicity axioms such as rank monotonicity, strong
rank monotonicity, and IR rank monotonicity, which are satisfied by the
BOSM. Future work is called for to give further characterizations of the
BOSM based on the afore-mentioned axioms. It is interesting to see that
the recursive Boston mechanism ¢ and reversed Boston mechanism ("
also satisfy those monotonicity axioms. Thus, in future, more attention
should be paid to figuring out the difference between ©?, o, and ¢" .

Although many researchers claim that respect of preference rankings
is too similar to the definition of immediate acceptance algorithm, our
analysis shows that to characterize BOSM, we also need other axioms:
weak fairness; or rank rationality and rank monotonicity. Moreover, both
of our theorems reveal that respect of preference rankings is the unique
feature of BOSM over SOSM. It is easy to see that SOSM satisfies also weak
fairness, rank rationality, and rank monotonicity. Another future direction
to extend our research is to characterize SOSM by these new axioms.
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Chapter 6

When is the Boston Mechanism
Strategy-proof?

6.1 Introduction

In chapter 5 of this thesis, we characterize the Boston mechanism
(BOSM) on full strict and acceptant priority domain by two groups of
axioms: respect of preference rankings and weak fairness; respect of pref-
erence rankings, rank rationality, and rank monotonicity. In this chapter,
we will study the necessary and sufficient condition under which the
BOSM recovers desirable properties. As pointed out by Abdulkadiro glu and
Sonmez (2003a), the main difficulty with the BOSM is that it is neither
strategy-proof nor fair.

Results of this chapter reveal that the BOSM recovers strategy-proofness
if and only if it recovers fairness, if and only if it is equivalent to the SOSM,
if and only if SOSM recovers respect of preference rankings, and if and
only if the number of total seats at any two schools exceeds the number
of students. If the number of total seats at any two schools exceeds the
number of students, then SOSM respects preference rankings. Unlike the
other school choice mechanisms, relative priority rankings do not matter
in recovering desirable properties for the BOSM. Thus, the only way to
recover strategy-proofness and fairness is increasing the number of seats
in each school, which manifests the difficulty of having strategy-proof and
fair BOSM.

Prior to the current research, the following papers have investigated
the necessary and sufficient conditions under which the SOSM and TTCM
satisfy more desirable properties. Ergin (2002) shows that the SOSM
recovers efficiency, group strategy-proofness, or consistency if and only if
the priority structure is Ergin-acyclic. Later, Kojima (2011) shows that the
SOSM satisfies robust stability if and only if the priority structure is Ergin-
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acyclic. Kesten (2006) shows that the TTCM is fair, resource monotonic, or
population monotonic if and only if the priority structure is Kesten-acyclic.
Chen (2013b) finds the necessary and sufficient condition under which the
SOSM is equivalent to SSOM and SSD.

Kumano (2013) has proceeded a similar work identifying necessary
and sufficient conditions under which the BOSM is strategy-proof or fair
(stable). He proves that the BOSM is strategy-proof if and only if it is stable
(fair), and if and only if the priority structure is strongly acyclic, assuming
that the total number of schools is no smaller than two and the total number
of students is no smaller than three. Results of the current chapter are
more general then Kumano (2013)’s because we do not necessarily assume
that the total number of students is no smaller than three. Moreover, under
Kumano (2013)’s assumption, we prove that a priority structure is strongly
acyclic if and only if the number of total seats at any two schools exceeds
the number of students.

6.2 Strategy-proof Boston Mechanism

Theorem 6.1. The following statements are equivalent:
(i) P is strategy-proof;

(i1) ©P is fair;

(i41) " = ©%;

(iv) ¢ respects preference rankings;

(v) forall a,b € Owitha # b, q, + q, > |1].

Proof. (i) = (v), (it) = (v), (#74) = (v) and (iv) = (v): Suppose that ¢ is
strategy-proof, or fair, or equivalent to SOSM, or SOSM respects preference
rankings, but (v) does not hold, i.e., there exist a,b € O with a # b,
¢o + q» < |I| — 1. Let ¢ be the student such that for each [ € I\{i}, [ -, i.
Because -, is a strict order over I, |U;(>,)| = |I| — 1.2* Naturally, there is
j € I such that |U;(>,)\{i}| = ¢ Let S, = U;(>~p)\{i}. It is easy to verify
that |S, U {j}| = @ + 1 and S, U {j} C U;(>.). Because ¢, + q, < |I| — 1,
|Ui(>-a)| = 1| = 1, |SyU{j}| = ¢+ 1, and S, U {j} C U;(>.), we conclude
that |Ui(-o)\[Se U{jHI = (11| = 1) = (@ +1) Z da+ @ — (@ + 1) = ¢ — L.

Since |U;(>4)\[S, U {j}]| > ¢, — 1, we can take S, C U;(>,)\[S, U {j}]
such that |S,| = g, — 1. Consider the following preference profile P:

34. Recall that for each i € I and a € O, U;(>,) represents the set of students who have
higher than student ¢ for school a, i.e., U;(>,) = {j|j =a i}

68



6.2 Strategy-proof Boston Mechanism

Ps,utiy | Prsautay
a b
b a

By the procedure of ©”, o7 (P) = a and aP;e}(P).* Then, aP;p?(P),
i € pB(P), and j =, i. This shows that ¢©? is not fair.

Moreover, if student j reports P; where P;(a) = 1 and P;(b) = 2, then
©P(P;,P_;) = a. Then, ©?(P;, P_;)Pjp?(P). This shows that ¢ is not
strategy-proof.

Furthermore, it is easy to calculate that ¢ (P) # a = @2 (P). This shows
that P # ¢°.

Finally, it is easy to calculate that ¢?(P) # a, which shows that ©°
violates respect of preference rankings.

(v) = (i): Suppose that for all a,b € O with a # b, g, + ¢, > |I|, but ©?
is not strategy-proof. Then, there exist P € PV, i € I and P, € P such that
©P(P), P_))PpP(P). Let P (P, P_;) and ©”(P) be a and ;: respectively.
We then prove that 1 < P;(a) < Pi(u;). Because aP,u;, it is natural that
P,(a) < Pi(1;). To prove P;(a) > 1, suppose on the contrary that P;(a) = 1.
By the procedure of ©”, we conclude that (1) |ua| = qq; (2) for each [ € p,,
[ >, i; and (3) for each [ € y,, B(a) = 1. Therefore, given P_;, there is
no way that p? (P, P_;) = a even if student i ranks school a as his first
choice. Thus, P;(a) = 1 does not hold. Hence, there is another school
b with b # a such that P;(b) = 1. Since P;(b) < Pi(a) < Pi(y;) and P
satisfies non-wastefulness, we have that |/i,| = qu, |i16] = Gb, pta N s = 0,
and i ¢ {p, U up}. Therefore, |p1, U pp U {i}| = qo + ¢ + 1 < |I|. Hence,
¢ + @ < |I| — 1, which shows that ¢, + ¢, # |1|.

(v) = (i1): Suppose that for all a,b € O with a # b, q, + ¢, > |I], but ©?
is not fair. Thus, there exits P € P/l and i, j € I such that ¢ (P)P,pP(P)
and i =on(p) J- Let ¢P(P) = p and ¢F(P) = a. By the procedure of ¢”,
we know that P;(a) > 1. To prove P;(a) > 1, suppose on the contrary
that P;(a) = 1. By the procedure of ©”, we conclude that (1) |;t,] = qu;
and (2) for each | € pu,, | >, i. Therefore, there exists no j € pu, such
that aP,u; and i >, j. This shows that P,(a) = 1 does not hold. Since
P;,(a) > 1, there is another school b with b # a such that P;(b) = 1.
Since P;(b) < Pi(a) < Pi(y;) and P satisfies non-wastefulness, we have
that |ua| = o> || = @ o Ny = 0, and @ ¢ {u, U pp}. Therefore,
lpta Uy U{i}| = qo + @ + 1 < |I]. Hence, ¢, + ¢, < |I| — 1, which shows

35. Note that ¢ (P) ¢ {a,b}.
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that g, + q» # |1|-

(v) = (idi): If (v) holds, i.e., for all a,b € O with a # b, q, + ¢ > |1],
then we have that for each problem P, the immediate acceptance algorithm
will end in two steps and under ¢?, all students are assigned either their
first or second choices, i.e., for each i € I, we have P;(¢?(P)) < 2. Let us
divide the set of students [ into two sets I = I; U I, where I; stands for
the set of students assigned to their favorite schools, and I, stands for the
set of students assigned to their second preferred schools. Moreover, it is
easy to imagine that students in [, are all rejected by one single school.
Without loss of generality, let us assume that they are all rejected by school
a. Let us further divide [/ into three sets [ = {I,\5.(P)} U B.(P) U L.

By the procedure of SOSM, it is easy to calculate that for each i €
I\@Z(P), we have pP(P) = 7 (P) because no other student is going
to compete with them. Furthermore, it is easy to calculate that for each
i € B.(P), we have p?(P) = 7(P) because students who are rejected
under the BOSM still have no chance of being assigned to «. Finally; it is
easy to calculate that for each i € I,, we have p?(P) = 7 (P) because
these students will also be rejected by school a under SOSM. Therefore,
we conclude that p? = .

(v) = (iv): If (v) holds, then we have p? = ¢°. Because ¢ respects
preference rankings, if follows that ¢° also respects preference rankings.

O

6.3 Discussions on Outside Options

The current thesis assumes the existence of the null school which is not
scarce and allows students to submit singleton preference lists. Kesten and
Kurino (2013) consider two departures from our setting to investigate the
strategic role of outside options. They first consider problems where stu-
dents cannot submit singleton preference lists and second the environment
where no outside options necessarily exist, i.e., the null school does not
exist and |I| < ° . ¢a- Are the conclusions of our research applicable in
the environments due to Kesten and Kurino (2013)? The answer is yes. It
is easy to verify that our main result (theorem 6.1) still holds even if no
singleton preference lists is allowed or no outside options necessarily exist
because singleton preference lists and the null school do not appear in the
proof of theorem 6.1. Future work is needed to further investigate the role
played by outside options for school choice problems.
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6.4 Conclusion

In this chapter, we identify the necessary and sufficient condition under
which the BOSM recovers strategy-proofness and fairness, and BOSM
is equivalent to SOSM. The main theorem reveals that to recover nice
properties of BOSM is very difficult, which reflects a further disadvantage
of this already disputable mechanism.

Many people might ask why BOSM is still widely used in practice if
it is so undesirable. Actually, BOSM has a very big advantage over the
SOSM and TTCM. That is, it is easy to understand and calculate. One can
easily understand that when the number of students and schools become
large, SOSM and TTCM become very complicated to calculate, while BOSM
does not suffer from this problem. In old days when computers were not
common, BOSM was the best choice for social planners mainly due to its
simplicity. In modern days, however, we strongly recommend to replace
BOSM with the other alternatives because calculation is not a binding
constraint now. The computers can process very large problems with ease.
Therefore, the alleged advantage of BOSM vanishes and it is not necessary
to use such a mechanism which leads to strategic behavior of students and
causes unfair matchings.

Indeed, SOSM and TTCM are not perfect compared with BOSM with the
former violating Pareto efficiency and the later violating stability. However,
this does not mean that BOSM should be given equal chance in practice.
Our conclusion (theorem 1) shows that to recover desirable properties,
BOSM needs more stringent conditions on priorities, which restricts its
further use in future.

71






Chapter 7

Axioms for Random Assignment

7.1 Introduction

Chapters 2-6 study school choice problem with strict priorities. However,
in real-life problems, schools sometimes have coarse priorities over students.
This chapter discusses school choice model when schools are indifferent to
all students. Because this corresponds to the model of random assignment,
we use different notations and terms in this chapter.

This chapter studies the problem of randomly assigning n heterogenous
indivisible objects to n agents without monetary transfers and priority
orders, when one agent can only receive one object. This problem, initiated
by Hylland and Zeckhauser (1979), has a number of applications, such as
dormitory allocation in universities, the assignment of tasks to workers,
course bidding, kidney exchange, and so on. Without monetary transfers
and priority orders, the deterministic approaches suffer from incompatibil-
ity between efficiency and fairness. To restore fairness, randomization is a
common method.

Two competing random assignment rules have attracted much atten-
tion recently: the random serial dictatorship (RSD, also known as random
priority) introduced by Abdulkadiroglu and S6nmez (1998), and the prob-
abilistic serial rule (PS rule) first introduced by Bogomolnaia and Moulin
(2001). The random serial dictatorship (RSD) and its variants are widely
used for assigning indivisible objects. The RSD first chooses the priority
over agents at randomly with uniform probability. For the chosen priority
order, the agent who is ordered first is assigned his top choice, the agent
who is ordered second is assigned his top choice among what remain, and
so on. The RSD is strategy-proof, ex post efficient, and easy to implement
to real-life problems, i.e., the lottery assignment that induces the random
assignment of the RSD is specified explicitly. Thus, it is very appealing.

However, as Bogomolnaia and Moulin (2001) pointed out, the RSD
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violates sd-efficiency (We use the prefix "sd" for stochastic dominance in
other expressions below. Sd-efficiency is also known as ordinal efficiency
due to Bogomolnaia and Moulin (2001)). We say that a random assignment
is sd-efficient if no other random assignment first-order stochastically
dominates it for all agents. An alternative rule which satisfies sd-efficiency
canonically, i.e., the probabilistic serial rule (PS rule), was proposed by
Bogomolnaia and Moulin (2001). The outcome of the PS rule is computed
via the following simultaneous eating algorithm (SEA). Between time O
and 1, each agent eats his favorite objects first, and eating speeds are
fixed in one across agents. Each agent switches to eat his most preferred
object among the available objects when the supply of the object that he is
currently eating is eaten away. The PS rule outperforms the RSD not only
in that it satisfies sd-efficiency, but also in that it satisfies sd-envy-freeness.
However, nice efficiency and fairness performance comes at a cost. The PS
rule is weakly strategy-proof, but not strategy-proof.

Interestingly, although RSD and PS rule perform differently in finite
assignment problems, when the market becomes infinitely large, Che and
Kojima (2010) prove that these two rules asymptotically converge to
each other. Therefore, RSD and PS rule can be considered as one rule
in large assignment problems. Until now, appealing rules that are asymp-
totically different from the RSD and PS in large assignment problems are
absent. The current paper proposes a new rule called the probabilistic rank-
consumption (PRC) rule. The PRC rule first lets agents eat their favorite
objects simultaneously and in a speed fixed in one until there is no quota
left or agents get one copy of their favorite objects, second lets agents eat
their second-choice objects simultaneously and in a speed fixed in one until
there is no quota left or agents get one copy of their favorite objects, and
SO on.

The PRC rule satisfies two new axioms: sd-rank-fairness and equal-rank
envy-freeness. Sd-rank-fairness means that whenever an agent gets a posi-
tive share of one object, all agents who put the object in higher preference
ranks are satiated with this object. Sd-rank-fairness is a refinement of
sd-efficiency. Equal-rank envy-freeness means that if two agents put an
object in the same preference rank, then changing the assignments of the
two agents for this object cannot increase the surplus at the same object for
any of them. Equal-rank envy-freeness is a refinement of equal treatment
of equals. Moreover, sd-rank-fairness and equal-rank envy-freeness are
enough to characterize the PRC rule. However, better efficiency perfor-
mance of the PRC rule comes at a cost, it is neither weakly strategy-proof
nor weakly sd-envy-free (hence not envy-free).

74



7.1 Introduction

Although showing no good incentive properties, ordinal Nash outcomes
of the preference revelation game induced by the PRC rule are all weakly
sd-envy-free, which stands in contrast with the PS rule3®.

7.1.1 Related Literature

The following papers study the RSD and the relationship between RSD
and the PS rule. Abdulkadiroglu and Sonmez (1998)showed that the RSD is
equivalent to the core from random endowment. Manea (2009) proved that
sd-inefficiency of the RSD does not disappear even in large markets. Che
and Kojima (2010) showed that the RSD and the PS rule are asymptotically
equivalent. In the scheduling problem with opting out, Cres and Moulin
(2001) showed that the PS rule is relatively better than RSD, but as the
market size becomes large, these two rules serve as proxy of each other.

The following papers studies the PS rule. Bogomolnaia and Moulin
(2001) first introduced the PS rule. Bogomolnaia and Moulin (2002) gave
two characterizations of the PS rule. Kojima and Manea (2010b) studied
incentives of the PS rule in large assignment problems. Katta and Sethura-
man (2006), Yilmaz (2009), and Kojima (2009) consider the PS rule when
weak preferences, and multi-unit demand are allowed, respectively. Kesten
(2009) introduced two mechanisms and showed that these mechanisms
are equivalent to the PS rule. Budish et al. (2013) generalized random
assignment theory to situations when multi-unit allocations and several
real-life constraints are allowed. Liu and Pycia (2012) showed that in
large markets without transfers all efficient, symmetric, and asymptotically
strategy-proof ordinal allocation mechanisms coincide asymptotically. Ekici
and Kesten (2012) studied properties of Nash equilibrium outcomes of the
PS rule.

The following papers studies sd-efficiency. Sd-efficiency was introduced
by Bogomolnaia and Moulin (2001), and analyzed among others by Ab-
dulkadiroglu and Sonmez (2003b), Mclennan (2002), and Manea (2008).
Featherstone (2011) studied an efficiency concept stronger than sd-efficiency:
rank efficiency, and proposed the rank-value rule to derive rank efficient
random assignments.

Our paper also contributes in characterizing the random assignment
rules. Axiomatizations of the PS rule has received much attention recently.
Hashimoto et al. (2013), Bogomolnaia and Heo (2012) characterized
the PS rule independently. Chambers (2004) characterized the uniform
assignment rule by probabilistic consistency and equal treatment of equals.

36. See Ekici and Kesten (2012) for more information
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7.2 The Model

A random assignment problem is a triple (I, O, ~) where [ is a finite
set of agents, O is a finite set of objects with |I| = |O| = n, and >= (>;
)ier € O™ is the ordinal preference profile of agents. Let -; be the weak
preference relation (i.e., o =; 0 means that o >; 0 or o = o) associated
with >;. Let >~; (o) be the rank of object o at >, i.e., if object o is the
["" choice of agent i under »~;, then ~; (0) = [. Symmetrically, let >; (1)
be the object that is the " choice of agent i under ;. For each i € I
and ~;€ ¢ and each o € O, denote by U(>~;,0) = {0 € O : 0 =; o} the
strict upper contour set of >; at o, and U (-, 0) = U(;,0) U {0} the weak
upper contour set of >; at o. Assume that ~; (o) = k, we also denote by
U(~i, k) = {0 € O:0 =; o} the strict upper contour set of >; at o, and

—~

U(>i, k) = U(>4, k)J >=; (k) the weak upper contour set of >; at o.

A deterministic assignment is a bijection p : I — O. It is represented
by a permutation matrix D = (D;,)ic10co (@an n x n matrix with entries
0 or 1 and exactly one nonzero entry per row and one per column). Let
2 denote the set of all deterministic assignments. A lottery assignment
L=3 oM\ with A, >0and A\, =1, is a probability distribution over
2, where ), is the probability weight of the deterministic assignment .

For each agent i € I, a random allocation R, = (R;,).co is a probabil-
ity distribution over O. A random allocation R; specifies for an agent the
probabilities of receiving various objects: object o is received with proba-
bility R; ,. Let % denote the set of possible random allocations. A random
assignment is represented by a bistochastic matrix R = (R;,) such that
Y ocoRio =1VYo € O,and ), ., R;, = 1Vi € I. A random assignment
specifies for all agents probabilities of receiving various objects: R, , is the
probability that agent i receives object o. We refer to the vector R; as agent
i's random allocation at R. By the well-known Birkhoff-von Neumann
theorem (See Birkhoff (1946), and von Neumann (1953). Also see Budish
et al. (2013) for generalizations of this theorem.), each bistochastic matrix
can be represented by a lottery assignment.

Throughout the paper, we fix I and O, and a problem is denoted by a
preference profile =& ¢&™ where ™ stands for the set of ordinal preference
profiles. Let #™ denote the set of all random assignments. A rule is a
mapping ¢ : 0" — Z".
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7.2.1 Axioms

A deterministic assighment D € Z is Pareto efficient if # D' € & such
that D, >=; D; Vi € I, and D, >; D, for some i € I.

For each agent i € I and R;, R, € %, we say that

(i) R; weakly stochastically dominates R;, written as R;sd(~;)R;, if

Z R, ;> Z R;,Ol, Vo € O;

o' €U (>4,0) o' €U (>4,0)

(i1) R; stochastically dominates R;, written as R;SD(>;) R, if

> Rgy> Y R, YocOandR; #R,
o' €U (>4,0) o' €U (>4,0)

Ex post efficiency: A rule ¢ is ex post efficient if for each »¢ 0",
() admits a lottery decomposition over Pareto efficient deterministic
assignments.

Sd-efficiency: A rule ¢ is sd-efficient if for each ~¢ 0™, R € %" such
that R;sd(>;)p;(>) Vi and R # ¢(>).

Equal treatment of equals: A rule ¢ satisfies equal treatment of equals
if for each >€ 0™ and i, j € I such that >,=>;, p;(>) = ¢,;(>).

Weak sd-envy-freeness: A rule ¢ is weakly sd-envy-free if for each
~c O™, Ji, j € I such that p;(=)SD(>=;)p;(~).

Sd-envy-freeness: A rule ¢ is sd-envy-free if for each »¢ 0", p;(>~
)sd(=)p,(-) Vi j € I.

Weak strategy-proofness: Let >; be the true preference of agent i. A
rule ¢ is weakly strategy-proof if for each ~_;c 6"~!, i =;€ € such that
@i(=i, = ) SD(=i)pi(=i, = 4)-

Strategy-proofness: A rule ¢ is strategy-proof if for each »;,€ 0, ;€
ﬁn—l, (pL(;Z, >-7L)Sd(;L)(,0L(>‘Z, >'7i)-

Ordinal Nash equilibrium: Under a rule ¢, > constitutes an ordinal
Nash equilibrium if Vi, =€ & such that ;(>;, = ;)SD(>=)0i(>=, = ).

Define the rank distribution of assignment R to be

NR(k) = Z Z (Ri,o,)
€l o elU(>i,k)

NT (k) is the expected number of agents who get their k' choice or
better under assignment R. Given >€ 0™, a random assignment R is rank-
dominated by another random assignment R’ at > if the rank distribution
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of R’ stochastically dominates that of R, that is, N¥ (k) > N(k) for all k
and N¥ £ N R

Rank efficiency: A rule ¢ is rank efficient if for each »=€ 0", ¢(>) is
not rank-dominated by any other assignments.

7.3 Three Existing Random Assighment Rules

7.3.1 Uniform Assignment Rule

The uniform assignment rule (UA rule) was introduced by Chambers
(2004). For a given problem, the uniform assignment is defined as the
random assignment which places equal probability on all deterministic
assignments. The uniform assignment rule recommends the uniform as-
signment for all problems. Denote the UA rule as ©““.

EXAMPLE 7.1 Let I = (1,2,3,4), O = (A, B,C, D). Preferences »>= (>
, 9, =3, >4) are as follows:

Agentl: A= B>, C > D; Agent2: A>,C >3 D =3 B

Agent3: A>3C >3 D >3 B; Agent4: B>, A>4C >4 D
The resulting UA assignment, ¢““(>) is given by:

A B C D
174 1/4 1/4 1/4
174 1/4 1/4 1/4
174 1/4 1/4 1/4
174 1/4 1/4 1/4

e (=) :

A wbNR

7.3.2 Random Serial Dictatorship

Let F denote the set of all bijections from {1,2,...,|/|} to I. We refer
to each of these bijections as an ordering of agents. That is, for any f €
F, agent f(1) is first and agent f(2) is second, and so on. Given any
ordering f € F, the deterministic assignment derived by simple serial
dictatorship, denoted ¢**(~), is defined as follows: agent f(1) receives
his most preferred object according to > (1), agent f(2) receives his most
preferred object among what remain according to > (), and so on. Define
the random serial dictatorship (RSD), denoted ©"*?, as
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1
rsd _ -, ssd
(=) = 32 9

fez

EXAMPLE 7.1 revisits. The resulting RSD assignment, "*(>) is given
by:

A B C D
1 1/3 1/4 1/6 1/4
2 1/3 0 3/8 7/24
3 173 0 3/8 7/24
4 0 3/4 1/12 1/6

() :

7.3.3 Probabilistic Serial Rule

The PS rule is one of the most well-known random assignment rule.
Given a preference profile >~& 0", the PS rule, denoted ¢"*, determines the
assignment ¢?*(>-) by using the following simultaneous eating algorithm
(SEA). Consider each unit of object as infinitely divisible. Suppose that
agents eat the objects during a unit interval of time at a unit speed. The
amount of object o that an agent eats represents the probability that she
obtains for object o. During the time interval, ¢ € [0, 1], the agents behave
as follows.

* Attime ¢t = 0, each agent starts eating his favorite object. Each agent
continues to eat the same object until either the time is up or the
object that he is currently eating is exhausted, i.e., the sum of the
amounts that each agent eats reaches 1.

* When object o is eaten away, each agent who has been eating o
changes his behavior. He continues to eat his next preferred object
which has a positive amount of quota left.

* At time ¢ = 1, the process ends. For each agent i and object o, ¢}, (>)
is set to the amount of object o that 7 has eaten.

EXAMPLE 7.1 revisits. The resulting PS assignment, ¢”*(>) is given by:

A B C D
1 1/73 1/3 1/12 1/4
2 1/73 0 5/12 1/4
3 1/3 0 5/12 1/4
4 0 2/3 1/12 1/4

P (=) :
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7.4 Two New Axioms

In this section, we first introduce a new axiom that is stronger than sd-
efficiency: sd-rank-fairness. Sd-rank-fairness requires that if the assignment
of an agent for an object is greater than zero, then all agents who put the
object in higher preference ranks get a surplus of one at this object, i.e.,
are satiated at this object. A rule satisfying sd-rank-fairness tries to assign
an object to agents who put it in a preference rank as high as possible, and
only when assigning the object to agents with higher preference rank for
this object is impossible, does it consider assigning it to agents who put the
object in lower preference ranks.

Definition 7.1. A rule ¢ satisfies sd-rank-fairness if for each -< 0", i € |
and o € O, p; ,(>) > 0 implies that Zo’eﬁ(>j,o) ¢, (=) = 1for each j such
that >; (0) <>; (o).

Bogomolnaia and Moulin (2001) showed that sd-efficiency is a refine-
ment of ex post efficiency. Featherstone (2011) proposed a new efficiency
notion: rank efficiency. Rank efficiency is a refinement of both sd-efficiency
and ex post efficiency. While sd-rank-fairness and rank efficiency are inde-
pendent concepts, it is also true that sd-rank-f

-efficiency and ex post efficiency.

Proposition 7.1. If a rule  satisfies sd-rank-fairness, then ¢ also satisfies
sd-efficiency; however, the converse need not hold.

Proof. The assignment derived by the PS rule in example 7.1 in section 7.3
shows that the converse need not hold. Now, we need to prove that sd-
rank-fairness implies sd-efficiency. Suppose that there exists an assignment
R that satisfies sd-rank-f -efficiency. By lemma 3 of
Bogomolnaia and Moulin (2001), there exist iy, i, ...,% and 01,00, . .., 0
such that 0, >;, 0; and R;, ,, > 0; 03 >4, 02 and Ry, ,, > 0; ...; 01 >, 0
and R;, ,, > 0. Let K = MaX;cq12,. 1} >, (0:). Without loss of generality,
suppose that >;, (0;) = K. Consider agent i, for whom o, >; o, and
R;, o, > 0. Because R;, ,, >0, Zoeﬁ(m o) Pio(=) <1,1e., agent iy is not
satiated at object o;. By the definition of K, >;, (01) <>, (o) <>, (01) =
K. Then, we have that >;, (0;) <>, (01) and agent i, is not satiated at
object o; but R;, ,, > 0, which contradicts sd-rank-fairness of R. O
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Efficiency Ex post efficiency = Sd-efficiency = Sd-rank-
concepts = <« fairness

Rules RSD PS rule PRC rule

Table 7.1: R

, sd-efficiency is equiv-
alent to ex post efficiency, while sd-rank-f
both. Formally;

Proposition 7.2. Let x be a deterministic assignment. Then,
(11) x is sd-rank-fair implies that it is sd-efficient; however, the converse
need not hold.

Proof. Part (i) comes directly from proposition 8 of Featherstone (2011).
We need only to prove part (ii), i.e., sd-rank-fairness implies sd-efficiency in
the deterministic environment. In the deterministic environment, sd-rank-
fairness deteriorates into the following shape: a deterministic assignment
satisfies sd-rank-fairness if /1, = o means that for any j such that >, (o) <>;
(0), 1 € U(>;, 0). Thus, for any j such that > (0) <>; (0), j does not envy
agent i. Thus, for any [ € I, p; >, y, implies that =; (u;) <>, (1;), where
1t is a deterministic assignment. The previous statement is equivalent to
respect of preference rankings due to Kojima and Unver (2013). Proposition
2 of Kojima and Unver (2013) tells us that respect of preference rankings
implies ex post efficiency. We thus complete the proof. O

Next, we define the second new axiom: equal-rank envy-freeness. An
assignment satisfies equal-rank envy-freeness, if two agents put an object
in the same preference rank, then changing the assignments of the two
agents for this object cannot increase the surplus at the same object for
any of them.

Definition 7.2. A rule ¢ satisfies equal-rank envy-freeness if for each ¢
0", 0€ O, and i, j € I such that >; (o) =>; (0),

min( Z G (&) +9j0(>),1) < Z Pio (=)

o' €U(>4,0) o' €lU(>4,0)
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Proposition 7.3. If a rule ¢ satisfies equal-rank envy-freeness, then ¢ also
satisfies equal treatment of equals.

We omit proof for proposition 7.3 because the result is obvious.

In this section, we introduce two new axioms for random assignment
rules: sd-rank-fairness and equal-rank envy-freeness. Unfortunately, sd-
rank-fairness is incompatible with strategy-proofness. Indeed, the cost
of strategy-proofness can be quite high, not only in random assignment
problems. However, this does not mean that sd-rank-fairness should be
dismissed. Sd-rank-fairness is a stronger efficiency axiom. Of course, now
it is customary in mechanism design theory to impose incentive constraint
first, and investigate other aspect of criteria later. However, if strategy-
proofness is not emphasized in some situation, then it is interesting to
investigate how a rule performs when other constraints are imposed first.
In this situation, sd-rank-fairness is an important axiom to measure a rule
because of its good efficiency implication.

7.5 The Probabilistic Rank-consumption Rule
(PRC Rule)

In this section, we describe a new rule called the probabilistic rank-
consumption rule, denoted by . For each & 0", the PRC assignment
©P"¢(>) is determined by the following probabilistic rank-consumption
algorithm.

* Step 1, only the first choices of the agents are considered. Each agent
starts consuming the object that he prefers most simultaneously at
a speed fixed in one across agents. An agent stops consuming his
favorite object until there is no quota left, or he gets one copy of this
object. Remove the agents who get one copy of their favorite objects.

* Step k, only the k' choices of the remaining agents are considered.
Each remaining agent starts consuming his k" preferred object si-
multaneously at a speed fixed in one across agents. An agent stops
consuming his £ preferred object until there is no quota left, or the
agent gets a total surplus of one at this object. Remove the agents
who get a surplus of one at their k' preferred object.

Given »€ 0" and i € I and o € O where >; (o) = k, let I(0,k) =
{7 >, (o) = k}, i.e., I(o, k) is the set of agents who put object o in the
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same preference rank k. Formally, the PRC algorithm is defined as follows.
Let ¢;(0) = 0 for each i € I.

ti(k) =Max{t € [0, ][t — t;(k — 1)+ > (=) <1}  (7.1)
Jel (0,k)\{i}]

©io(>) =ti(k) —ti(k = 1) (7.2)

min( Y o) Fee(-) )< D g (73)

o' eU(~4,0) o €U (=4,0)

EXAMPLE 7.1 revisits. Let [ = (1,2,3,4), O = (A, B,C, D). Preferences
== (1,2, =3, ~4) are as follows:

Agentl: A= B> C > D; Agent2: A>,C >3 D =3 B

Agent3: A=3C >3 D =3 B; Agent4: B >~, A>,C =4, D

The PRC rule finds the assignment through the following procedure. In
the first step, agent 1,2, 3 start consuming object A simultaneously in a
speed fixed in one across each other, and each of them get 1/3 of object
A, while agent 4 starts eating object B until he consumes B away. Agent 4
is then removed from the economy. In the second step, agent 1 does not
consume any object because the quota of object B is zero now, while agent
2 and 3 consume object C' at the same time and in the same speed until
there is no object C' left, and each of them get 1/2 C. In the third step,
agent 2, 3 start eating object D simultaneously and in a speed fixed in one.
Agent 2 and 3 stop when their total surplus at object D reaches one, and
each of them get 1/6 of object D, while agent 1 consumes nothing because
object C' has been consumed way in the previous step. In the fourth step,
agent 1 consumes object D until his surplus at object D reaches one and
there is no object D left. Agent 1 gets 2/3 object D. The resulting PRC
assignment, pP"“(>-), is given as follows:

A B C D
1 1/3 0 0 2/3

Y(=): 2 1/3 0 1/2 1/6
3 1/3 0 1/2 1/6
4 0 1 0 0
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It is obvious to see that the PRC rule satisfies both sd-rank-fairness
and equal-rank envy-freeness. However, the PRC rule are vulnerable to
preference manipulation of agents. In other words, agents have strong
incentives not to report their true ordinal preferences.

Proposition 7.4. ©P™¢ is not weakly strategy-proof (and hence not strategy-
proof).

Proof. EXAMPLE 7.1 revisits. If agent 1 reports different preference orders
=1 A=, C>, B>, D,or~]: A~ C>] D~ Binstead of -, then the
PRC assignment is given by:

A B C D
1 1/3 0 1/3 1/3
() = (=) 2 173 0 173 1/3
3 1/3 0 1/3 1/3
4 0 1 0 0
which is preferred by agent 1 to ¢?"(>-). O

Proposition 7.5. ¢¢ is not weakly sd-envy-free (and hence not sd-envy-

free).

Proof. It is easy to verify that the assignment corresponding to example
7.1

A B C D
1 1/3 0 0 2/3
Y(=): 2 1/3 0 1/2 1/6
3 1/3 0 1/2 1/6

4 0 1 O 0

is not weakly sd-envy-free because 5 “(>)SD(>1)¢] “(>) and ¢4 (>
)SD(=1)¢1 (). O

Proposition 7.6. ¢""° is not rank-efficient.

Proof. It is easy to verify that the following assignment

A B C D
1 1 0 O 0
R:2 0 0 1/2 1/2
3 0 0 1/2 1/2
4 01 O 0
rank dominates ¢ “(>-) at >. O
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7.6 Characterization of the PRC Rule

Next, we propose a characterization of the PRC rule. Bogomolnaia and
Moulin (2001) showed that no random assignment rule satisfies strategy-
proofness, sd-efficiency, and equal treatment of equals at the same time.
The following result tells us that if we strengthen sd-efficiency and equal
treatment of equals, and abandon strategy-proofness, we can achieve
another rule: the PRC rule.

Theorem 7.1. A rule o satisfies sd-rank-fairness and equal-rank envy-freeness
if and only if ¢ = P

Proof. Suppose that there exists another rule ¢ that satisfies sd-rank-
fairness and equal-rank envy-freeness, but is different from the PRC rule
©P". Given a problem >, denote the random assignment ¢*"(>-) and ¢(>)
as R and S, respectively. Suppose that R # S. We prove the theorem
through the following steps.

Step 1: Suppose that for some i,0 such that >; (o) = 1, R;, # Sio-
There are two subcases.

Step 1.1, S;, < R;,. Because R;, < 1, S;, < 1. By equal-rank envy-
freeness of S, S;, < R;, for each j € I(0,1) (Note that I(o, k) = {j :>;
(o) = k}.). Therefore, there exists agent [ € [ such that >, (o) > 1 and
Sio>0.>;(0) =1, 85,,<1,> (o) >1,and S}, > 0 contradict sd-rank-
fairness of S.

Step 1.2, S;, > R;,. The logic is similar with step 1.1 and we omit
detailed proof here.

Step k: Suppose that for some i, 0 such that >; (o) = k, R, # Sio-
There are two subcases.

Step k.1, S;, < R;,. Because Zo’eﬁ(>i,o) R,y <1, Zo’eﬁ(H,O) Sio < 1.
By equal-rank envy-freeness of S, S;, < R;, for any j € I(o, k). Therefore,
there exists agent [ € [ such that >, (o) > k and S, > 0. >; (0) = k,
> i cl(ms0) Vi < L =1 (0) >k, and S;, > 0 contradict sd-rank-fairness of

Step k.2, S;, > R;,. The logic is similar with step k.1 and we omit
detailed proof here. O

Independence of the axioms: The uniform assignment rule ¢"* due to
Chambers (2004) satisfies equal-rank envy-freeness, but violates sd-rank-
fairness. The rule which satisfies equations 7.1 and 7.2 but violates equation
7.3 satisfies sd-rank-fairness, but violates equal-rank envy-freeness.
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7.7 Equilibrium Analysis of the PRC Rule

Theorem 7.2. If > constitutes an ordinal Nash equilibrium of ¢?"¢, then
©P"(~) is weakly sd-envy-free with respect to .

Proof. Suppose that > constitutes an ordinal Nash equilibrium of ¢, but
P () is not weakly sd-envy-free with respect to . Let R = ¢*"(>). Then,
there exist 7, j € I such that R;SD(>;)R;. To be specific, there exists o, € O
such that R;,,. > Rio,., 2. R, <1,and ), R, <1

o' €U (>s,0m) 1Y,0 o' eli( (=j,0m) * 4,0
Let =, (0,,) = k and >, (0,,) = k'. We get the following results:

(1) k> 1;

(i1) k' > k.

(1ii) Riyo,, = 0;

(iv) Ri ) = 0;

We are now ready to show the shape of >~; and ;. If k =2, >, (1) =>;
(1) and R;y,1) = Rj»,0) > 0.1fk > 3, foralll € {1,...,k—1}, either >~;
(1) == (1) or = (1) #=, (1) and Ry = Rir = 0.

As to the ranks from k to k', we discuss about two cases.

Case 1, k' = k + 1. Let =, be the preference order where

() Vlel,... ,k — 1}, = () :>i (0);

(13) VI € {k, .. — 1}, = (1) == (1 +1).

By the deﬁnmon of the probab1115t1c rank-consumption algorithm, (>~

=_;)SD(>~;)R;. Therefore, > does not constitute an ordinal Nash equilib-
rium of ¢, which contradicts our assumption.

Case 2, k' = k + z,z > 2. We discuss about two subcases.

Case 2.1, 3t € {k+1,...,k — 1} such that R;, ;) > 0and R;, ;) =0
Vi € {k,...,t — 1}. Let =, be the preference order where

VI e{l,... . k—1}, =, () ==, (l);

(i) VI €{k,....,n —t+k}, = (1) =~; I+t k).

By the deﬁmtlon of the probabilistic rank -consumption algorithm, " (-

_;)SD(>;)R;. Therefore, > does not constitute an ordinal Nash equilib-
rium of ©P"e, which contradicts our assumption.

Case 2.2, R;., oy = 0for Vi € {k,...,k'},ie, Bt € {k+1,....k — 1}
such that R; . .;) > 0 and R; .,y = 0 for VI € {k,...,t — 1}. Let ~, be the
preference order where

(i) Vlel,... ,k — 1}, = (1) ==, (l);

(@) VI €{k,....,n — K +k}, = () ==; I+ Kk — k).

By the deﬁnmon of the probabilistic rank -consumption algorithm, 7" (~

=_;)SD(>;)R;. Therefore, > does not constitute an ordinal Nash equilib-
rium of P, which contradicts our assumption.
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Therefore, if - constitutes an ordinal Nash equilibrium of ©#"¢, ©P"(>-)
is weakly sd-envy-free with respect to . O

Theorem 7.3. Let > be the true preferences of agents. For each n < 3 and
= € 0", > constitutes an ordinal Nash equilibrium of ¢

Proof. It is enough to prove the case of n = 3. Consider the following
problem: / = {1,2,3}, O = {4, B,C}. Consider three types of preference
profiles P!, P% and P3:

PITPf [P | PP BI[PY| | PP Py P}
A[B|C|[A|B|[B|[A[A]A

If = = P!, then the PRC rule "™ will assign each agent to their
favorite object with certainty and naturally P! constitutes an ordinal Nash
equilibrium of P,

If = = P?, then in the first step of the PRC rule, agent 3 will be assigned
object B with probability one and removed from the problem, and agent
1 and 2 each get half A. Next, no matter what preferences agent 1 and
2 have, each of them will be assigned to object C' with half probability.
Therefore, P? constitutes an ordinal Nash equilibrium of ©?™.

If = = P3, then in the first step of PRC rule, each agent will be assigned
to their favorite object with equal probability 1/3. Moreover, each agent
will be assigned to their second choices with positive probability. Therefore,
if the other two agents do not change their preferences, no single agent can
be strictly better off for every cardinal utility consistent with their ordinal
preferences over the set of objects. Therefore, P3 constitutes an ordinal
Nash equilibrium of ¢*.

We thus complete the proof. O

7.8 Concluding Remarks

The following table compares the PRC rule with the other random
assignment rules. We can easily observe from the table that there is an
obvious tradeoff between fairness and efficiency between the UA rule and
the RSD. There is a tradeoff between incentive properties and fairness and
efficiency between the RSD and the PS rule. Finally, there is an obvious
tradeoff between incentive properties and efficiency between the PS rule
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and the PRC rule, while the tradeoff between incentive properties and
fairness is vague.

<
S
3
©®
=y
S
)

AS)
AS

prc

AS)
AS)

Weak Strategy-proofness
Strategy-proofness
Equal treatment of equals
Weak Sd-envy-freeness
Sd-envy-freeness
Equal-rank envy-freeness
Ex post efficiency
Sd-efficiency
Sd-rank-fairness
Rank efficiency

XXX XS S =
XX XL X XL <L

XSS XSS X

XL L YL YL X [ X[ X | X

Table 7.2: Random Assignment Rules and Axioms

This chapter contributes to the literature of random assignment prob-
lems mainly on three aspects. First, we propose a new random assignment
rule called the probabilistic rank-consumption rule (PRC rule). Recently,
there is growing body of literature that studies the PS rule, proposed by Bo-
gomolnaia and Moulin (2001). The PS rule outperforms the RSD because
it is sd-efficient, which is a refinement of ex post efficiency. However, better
efficiency performance comes at a cost: the PS is weakly strategy-proof,
but not strategy-proof. The PRC rule proposed in this chapter outperforms
both the PS rule and the RSD because it satisfies sd-rank-fairness, which is
a refinement of both sd-efficiency and ex post efficiency. However, we show
that better efficiency performance of the PRC rule also comes at a cost: the
PRC rule is not even weakly strategy-proof, let alone be strategy-proof. To
further understand the tradeoff between efficiency and strategy-proofness,
more theoretical and empirical works, such as experiments and simulations,
are needed. moreover, the current chapter only discusses the case where
the number of agents are equivalent to the number of objects and agents
have strict preferences. More works are need to extend the PRC rule to
more general environments. This chapter studies the PRC rule only in finite
random assignment problems, and does not discuss it in large assignment
problems. Recently, the research about large market properties of random
assignment rules are very popular. We leave these as open questions.

Second, the present chapter introduces a new efficiency concept: sd-
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rank-fairness. A random assignment satisfies sd-rank-fairness, if the proba-
bility of assigning an object to an agent being not zero means that all agents

who put the object in higher preference ranks are stochastically satiated

with respect to this object. The PRC rule satisfies sd-rank-fairness. Sd-rank-
fairness is a refinement of both ex post efficiency and sd-efficiency. Parallel
to our research, Featerstone (2011) proposed a family of rank-value rules,
which satisfies rank efficiency: also a refinement of both sd-efficiency and
ex post efficiency. However, the rank-value rules are interpreted as a linear
program that maximize a welfare sum of agents, given an assumption about
agents’s cardinal utilities (identical among each other), which is more diffi-
cult to understand and calculate than rank-consumption rules because to
get a rank efficient assignment with respect to a given ordinal preference
profile, different cardinal preferences consistent to the given ordinal one
may derive different rank efficient assignments. On the contrary, given an
ordinal preference profile, a random assignment satisfying sd-rank-fairness
with respect to the given preference is sd-rank-fair with respect to any
cardinal preferences consistent with the initial ordinal preference.

Furthermore, this chapter provides a characterization of the PRC rule.
We introduce another new axiom: equal-rank envy-freeness. A random
assignment satisfies equal-rank envy-freeness, if two agents put an object in
the same preference rank, then changing the assignments of the two agents
for this object cannot increase the surplus at the same object for any of them.
The PRC rule satisfies equal-rank envy-freeness. Equal-rank envy-freeness
is a refinement of equal treatment of equals. Our characterization result
shows that the a rule satisfies sd-rank-fairness and equal-rank envy-freeness
if and only if it is the PRC rule. Future work is needed to characterize
generalized version of the PRC rule.

Finally, we prove that all ordinal Nash equilibrium outcomes of the
preference revelation games induced by the PRC rule are weakly sd-envy-
free. Although the PRC rule commits strong strategic behavior of agents, it
turns out to have nice equilibrium properties.
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Chapter 8

Conclusion

The final chapter summarizes the contribution of this thesis and then
concludes by addressing possible further topics. This thesis studies the
school choice problem in an axiomatic way. Chapters 3 to 6 provide ax-
iomatizations of school choice mechanisms on full or restricted priority
domains. Chapter 7 provides axiomatizations of the probabilistic rank-
consumption random assignment rule, which is a generalization of the
Boston school choice mechanism to random environments.

As a foundation of this thesis, chapter 2 introduces basic model of school
choice problems, basic axioms for school choice mechanisms, and six basic
school choice mechanisms related to our discussion throughout the thesis.
The theoretical framework of school choice is established by Balinski and
Sonmez (1999) and Abdulkadiroglu and S6nmez (2003a), and has been
elaborated by many followers. Although seeming redundant, we still want
to recall the five components of a school choice problem: a set of students,
a set of school types to be allocated, a quota or capacity vector of schools,
a preference profile of students over school types, and a priority profile of
schools over students.

Among the six mechanisms introduced in this thesis, the first three,
i.e., the student-optimal stable mechanism (SOSM), the top trading cycles
mechanism (TTCM), and the Boston mechanism (BOSM) are initiated by
the seminal work of Abdulkadiroglu and S6nmez (2003a). The school-
optimal stable mechanism (SSOM) and simple serial dictatorship (SSD)
are introduced to prove independence of axioms in our axiomatic analysis.
Finally, the recursive Boston mechanism (RBM) is a new one in the litera-
ture. It is first mentioned by my own work. As an unexploited mechanism,
more future work is being expected.

Chapter 3 contributes to the literature along two lines. First, we propose
new axioms related to stability, consistency, and monotonicity for school
choice mechanisms. Most of these axioms are new in and outside this
field. They are expected to be generalized to other research problems. Take
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consistency and weak consistency as an example. In the literature of re-
source allocation problems, consistency is playing a central or an important
role. This property is appealing and wide-spread, but too demanding for
school choice. We then propose a weaker version: weak consistency, which
requires that no remaining student is going to be worse off if a subset
of their colleagues is removed with their assignments. Weak consistency
is novel not only for school choice problems, but also for other resource
allocation problems, which shows the potentiality of this axiom. We look
forward to seeing more work to further explore new axioms first defined
in this thesis.

Chapter 3 then provides new characterizations of the celebrated SOSM.
As the SOSM is becoming the central school choice mechanism, our anal-
ysis is of great theoretical and application importance. We prove that
a school choice mechanism is equivalent to the SOSM if and only if
it satisfies whichever of the following groups of axioms: stability, rank
monotonicity; non-wastefulness, strong top best, weak Maskin mono-
tonicity; non-wastefulness, strong group rationality, rank monotonicity;
non-wastefulness, mutual best, weak consistency, strategy-proofness; non-
wastefulness, mutual best, weak consistency, rank monotonicity; non-
wastefulness, mutual best, weak consistency, respect of improvements.
Our characterizations show the tradeoff between SOSM and the other
school choice mechanisms, which will certainly help the social planner to
choose alternative mechanisms. Moreover, we are the first to characterize
SOSM on full strict and acceptant priority domain, and thus provide the
strongest characterization result so far.

The SOSM is a central mechanism in practice, and stability is a natural
concept in the field. Traditionally, stability, Pareto efficiency, and strategy-
proofness are three basic criteria to judge a mechanism, and SOSM is
appealing because it satisfies stability and strategy-proofness. Chapter 3
proposes new criteria to judge a school choice mechanism, which provides
the social planner with more dimensions to compare mechanisms in prac-
tice. Moreover, although there is a growing body of literature that studies
the SOSM, nobody has characterized it on all priority domain. Prior to
our research, some other market designers have characterized the SOSM
for some priority structure. However, in real-life problems, we can not
exclude any priority structure. Therefore, the comparison between SOSM
and the other school choice mechanisms for full priority domain is vague.
Our result in Chapter 3 solves the puzzle and tells the social planner that
which axioms distinguish SOSM from the other mechanisms. Therefore,
if the social planner has a set of objectives to achieve, it becomes clearer
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about which mechanism to choose now.

Chapter 4 characterizes the SOSM on restricted priority domains. There
is a long list of previous literature on this topic. But nobody has studied
the equivalence of SOSM and simple serial dictatorship (SSD). Let SSD-P
represent the SSD where the order of students is determined by the priority
order of any school. In this chapter, I find that for any preference profile of
students, the SOSM is equivalent to SSD-P, if and only if SSD-P is fair, and
if and only if the priority structure satisfies quota-acyclicity. Quota-acyclic
priority structure requires that according to the quota information of a
problem, no disorder of students exists below a certain critical point of
priority ranks. The critical point is the minimal quota of schools. Quota-
acyclicity is a rather strong restriction of priorities.

In real-life school choice problems, one school usually has multiple sup-
ply, which manifests that our result is useful and will help social planners
in the process of assigning school seats to students. To be specific, if the
priority structure is quota-acyclic, then our result tells the social planner
that it is enough to use relatively simple serial dictatorship to find a stable
matching, instead of using the SOSM. This will save a lot of time and
energy to explain the procedure for social planners and understand the
procedure for students.

Chapter 5 gives axiomatizations of the BOSM. To do so, we first intro-
duce two new axioms related to stability: weak fairness and rank rationality.
Weak fairness and rank rationality are both weaker than stability, and thus
satisfied by SOSM. Our first characterization shows that the BOSM is the
unique mechanism satisfying respect of preference rankings and weak
fairness for all acceptant priorities. Our second characterization shows
that the BOSM is the unique mechanism satisfying respect of preference
rankings, rank rationality, and rank monotonicity. As the SOSM satisfies
both rank rationality and rank monotonicity, our result reveals that respect
of preference rankings is the unique axiom which distinguishes BOSM from
SOSM.

In Chapter 6, we study the BOSM in restricted priority domains. Our
main result shows that the BOSM is strategy-proof, if and only if it is
fair, if and only if it is equivalent to the SOSM, and if and only if the
number of total seats at any two schools exceeds the number of students.
As the condition we identify guaranteeing nice properties of BOSM is rather
stringent, we have that it is almost impossible to have BOSM with nice
properties, which further argues against the already disputing mechanism.
Moreover, we find that if the number of total seats at any two schools
exceeds the number of students, then SOSM respects preference rankings.

93



Chapter 8 Conclusion

Chapter 7 considers the problem of randomly assigning n indivisible
objects to n agents based on ordinal preferences of agents. For the afore-
mentioned random assignment problem, we proposes a new rule called
the probabilistic rank-consumption rule (PRC rule). We introduce two new
axioms: sd-rank-fairness, and equal-rank envy-freeness. Sd-rank-fairness is
a refinement of sd-efficiency. Equal-rank envy-freeness is a refinement of
equal treatment of equals. Sd-rank-fairness and equal-rank envy-freeness
are enough to characterize the PRC rule. Although the PRC rule is neither
weakly strateg-proof nor weakly sd-envy-free, ordinal Nash equilibrium
outcomes of the preference revelation game induced by the PRC rule are
all weakly sd-envy-free.

The PRC rule that we propose in Chapter 7 is a natural rule easy
to understand and implement in practice. Unfortunately, this rule is not
even weakly strategy-proof. This does not mean, however, that the market
designer should freely dismiss it. The PRC rule satisfies a natural axiom:
sd-rank-fairness, which is stronger then the well-known ordinal efficiency.
PRC rule and sd-rank-fairness are both simple and natural, and both can
serve as competitive alternatives to the rank-value mechanisms and rank
efficiency proposed by Featherstone (2011).

After the seminal paper of Abdulkadiroglu and S6nmez (2003a), school
choice has become a hotly debated topic in public policy and school choice
mechanism reform in the United States and around the world. In reality, the
SOSM is becoming the central mechanism. More and more school districts
in the US are adopting the SOSM, and 28 out of 31 provinces in China
use variations of the SOSM to assign high school graduates to universities.
The practice of school choice and student placement influence a large
population of elementary school and high school students. Our theoretical
research first provides the social planner with new criteria to evaluate a
mechanism. Traditionally, we compare school choice mechanisms mainly
by means of stability, Pareto efficiency, and strategy-proofness. This thesis
proposes several new axioms and thus more dimensions to evaluate mech-
anisms. Second, this thesis reveals the advantage of SOSM over the other
mechanisms. Therefore, we provide new theoretical foundations for the
wide adoption of SOSM. In 2012, New Orleans Recovery School District
became the first school district to adopt the TTCM. Theorem 3.2 tells the
social planner that the main difference between TTCM and SOSM is strong
top best, which is an axiom weaker than stability. Thus, if stability is not
stressed, then maybe TTCM is a nice choice, too.

The allocation of public school seats to children is a wide-spread practi-
cal problem around the world. Countries like Japan are paying more and
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more attention to figuring out better mechanisms to assign students to
school seats. Moreover, many countries in the world like China, Turkey and
Germany, use centralized student placement system to allocate students to
universities. Our result will certainly help social planners of these countries,
too.

Yet, a lot of open questions are to be solved in school choice problems.

First, one interesting direction to extend this thesis is to do empirical
studies. One of the pioneering work in this direction is Wu and Zhong
(2013). They compare the student placement system in China by empirical
test on data from a top-ranked Chinese college. They find that although stu-
dents admitted under the pre-exam Boston mechanism have lower college
entrance exam scores than students admitted through other mechanisms,
such as serial dictatorship, on average, they exhibit similar or even better
college academic performance. China’s college admission system is one
of the world’s largest matching systems. Around 10 million high school
graduates applied to 2,300 or so higher education institutions in 2009. 37
The practice of priority-based matching problem influences a large popu-
lation of students in the world, which reveals its theoretical and practical
importance. While theoretical boom of this field is intrigued these years,
empirical research is relatively insufficient. In 2012, the Nobel Prize on
Economics Science went to Alvin E. Roth and Lloyd S. Shapley. This will
certainly further stimulate the development of matching theory and hence
school choice problem. We expect more scholars to study school choice
problem from the empirical point of view.

Second, this thesis studies school choice mechanisms on strict prefer-
ence and priority domains. More work is expected to study the generalized
model, i.e., to allow indifference in preference and priorities. When pri-
orities are weak, Erdil and Ergin (2008) and Ehlers (2006) find that all
potential student-optimal stable matching results can be computed by using
a different tie-breaking method and then apply the student-optimal de-
ferred acceptance algorithm to the corresponding problem. Abdulkadiro glu
et al. (2009) show that the SOSM with arbitrary tie-breaking method is
Pareto efficient subject to strategy-proofness. Future work is called for
to do axiomatic analysis of school choice mechanisms under generalized
preference and priority domains.

Third, future work is called for to further investigate the recursive
Boston mechanism (RBM) and its random correspondence. RBM is a totally
new mechanism in both school choice and random assignment problems.

37. See Wu and Zhong (2013).
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This mechanism seems more natural then the classical BOSM.

Forth, future work is called for to characterize the top trading cycles
school choice mechanism (TTCM), which seems appealing and is also used
in real-life problems. There already exist several papers in this direction.
However, none of the results are intuitive and appealing enough. The study
of top trading cycles algorithm due to Shapley and Scarf (1974) has a long
tradition. Papai (2000) characterizes the hierarchical exchange rule, which
contains TTCM as a special case. Pycia and Unver (2011) introduce and
characterize another generalized version of TTCM. We are looking forward
to seeing more appealing result on characterizing the top trading cycles
school choice mechanism, which is becoming more and more popular
today.

Finally, in real-life school choice problems, one major concern is about
racial and ethnic segregation. It is interesting to integrate racial and ethnic
segregation into the theoretical framework of school choice. Other con-
cerns such as inequality and education, public education and government
spending are also interesting directions to extend the school choice model
discussed in this thesis. We look forward to seeing more future work in
these directions.
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