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Abstract

With the rapid development of the Internet and big data, the intelli-
gence and informatization of the production process have become an
essential part of the process. In order to make the production process
more efficient and transparent, many industrialized industries have re-
sponded to the concept of ”Industry 4.0” by integrating people with
computers, production systems, and communication systems through
the concept of the Internet of Things to achieve safe, reliable, real-time,
coordinated sensing and control of production processes. So far, the
use of industrial data remains the most important aspect of industrial
informatization. If industrial data can be fully utilized for analysis and
scheduling, the production cost of the industry will be greatly reduced
in consumption and industrial efficiency will be increased accordingly.

Among the utilization of industrial data, the forecasting of industrial
time series has significant value. By accurately predicting the future
trend of time series, the resource allocation for industrial production
can be effectively deployed in advance to avoid losses. For manufac-
turers, accurate time series prediction can also help decision makers
to make important decisions supported by data due to the complexity
of the production environment. Therefore, time series forecasting is a
very interesting topic to explore.

In the real world, the model frameworks suitable for forecasting are
completely different because the samples for time series forecasting are
different and the targets for forecasting are different. Therefore, this
thesis investigates to solve several time series forecasting problems in
the real world. First, an electricity consumption time series forecasting
problem is investigated. This problem is a univariate time series prob-
lem and has the special objective that the forecasted value is larger
than the ground truth. So this study combines the latest deep learning
methods to foreacst the sequence using an attention-based mechanism
of the encoder-decoder model and proposes a customized loss function
suitable for forecasting values larger than the ground truth. The pro-
posed method has significant advantages over benchmark methods in
the same field.



This study then generalizes the type of subject studied from univariate
time series forecasting to multivariate time series forecasting, and the
data is shifted from power consumption forecasting to more common
sensor data prediction. The study has a targeted pre-processing of the
data due to the complexity of the data itself. In the study, noise was
removed by applying the wavelet transform, delay between sensors was
removed using correlation coefficients, and finally, appropriate sensor
data was selected using correlation coefficients to form our dataset.
Then, we propose a novel deep learning framework that can capture
different length of time dependencies well. The experimental results
show that our algorithm has better performance on the sensor dataset
compared to previous studies.

Finally, we continue to extend our experimental subjects from sen-
sor data to diverse time series forecasting. To capture the impact of
unknown factors on the target variable forecasting, we propose a new
deep learning framework to solve the MTS forecasting problem. In this
framework, we apply several dilation convolution filters to capture the
dependencies of all multivariate variables in parallel for different time
lengths. In summary, the mixed dependence of long- and short-term
factors in multivariate can be well captured by the proposed frame-
work, which can capture both the complex effects between multivariate
variables and to some extent the impact of additional factors on the
current forecast. The proposed framework’s effectiveness was evaluated
on several benchmarj dataset and yields competitive results compared
to those of several baselines methods.

Keywords: time series forecasting, deep learning, time depen-
dency, recurrent neural network
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Chapter 1

Introduction

1.1 Background and motivation

Since entering the 21st century reliance on the internet and industrialization is
forming new types of industrial competencies rapidly, the productive capacity of
industry was gradually raised to an unprecedented level. This is a new industrial
revolution, also known as ”Industry 4.0” by the German Academy of Technology
(CDTECH) and other institutions [1]. Industry 4.0 is a revolutionary change from
the previous three industrial revolutions and is centered on the deep integration
of information systems and production systems.

Industry 4.0 is a technological transformation of an industry and an indus-
trial change. The smart manufacturing proposed by Industry 4.0 is oriented to
each production cycle of products to achieve highly efficient information-based
manufacturing. Smart Industry is based on recent developments in sensing tech-
nology, high-speed network transmission and the Internet of Everything. As well
as booming of AI, based on perception, the need for human-machine interaction
has promoted information intelligence in the factory production process, and has
made information technology perfectly integrated and promoted the development
of manufacturing technology.

For traditional industries, industrial data is simply provided by machines, while
all decisions and planning need to be made by experienced workers on their own.
Since it takes time and effort to train an experienced worker, sometimes it is even
difficult to give the final result by workers. Compared with traditional industries,
smart factories emphasize more on automation and intelligence of industries. More
specifically, when workers need to arrange future planning or need to make deci-
sions about a process, machines operate automatically, or provide reliable data
reserves or even speculation and opinions intelligently, thus allowing workers to
have a more accurate understanding of industrial information and make better

1



Chapter 1 Introduction

planning and deployment.
With the popularity concepts of ”Industry 4.0” and ”Smart Industries”, a vari-

ety of industrialized production is facing a major need to transform to smart manu-
facturing. With the speedy growth of the Industrial Internet of Things (IoT), time
series data plays an important role in the IoT of smart factories. The time series
generated by industrial equipment is different from the time series in nature. Due
to the complex production process, the large number of sensors and fast sampling
frequency, It is easy to stack a large amount of data in a relatively short duration.
It mainly presents the characteristics of complex mechanism model, time series
arrangement, strong data dependency, high data dimension and a large amount
of unlabeled data, etc., which will often produce large economic losses if special
working conditions occur. Therefore, the timely and accurate forecasting of time
series in the production process will improve the efficiency along the whole pro-
duction procedure, which will have a greater application value. In the production
process, if the time series can be accurately forecasted, it can improve production
efficiency, enhance product quality, save cost, etc.

Through the research, the author summarized the research difficulties of indus-
trial time-series data quality management, as follows [2] [3] [4] [5]:

• In addition to the basic characteristics of industrial big data such as large
scale, fast speed, miscellaneous types and low quality, it also has new char-
acteristics such as strong correlation and high delay, i.e., multi-modal and
variable industrial data, whose data characteristics lead to the traditional
data forecasting model cannot be well applied to industrial time-series data.

• Industrial time series data is different from other time series data. For com-
plex industrial time series data, correlation among different variables should
be emphasized. At the same time, the noise of industrial data also leads
to an increased probability of failure of preparation. Therefore, the pre-
preparation work and post-evaluation validation work become more impor-
tant.

• Industrial time-series data has typical high dimensional characteristics. And
most of the current time series models focus on forecasting low-dimension,
periodic or simple pattern data, which is difficult to effectively forecast the
high-dimension time series data.

In traditional industries, machines can only present industrial time series data
to workers but do not contain predictions based on historical data. For workers,
they need to use this existing historical data to make reasonable and accurate
judgments or even predictions. These judgments and predictions require long hours

2



1.1 Background and motivation

of work and training in the factory for workers to learn, which means extremely
high time and labor costs.

In smart industries, the human-machine interaction is further increased and
machines are able to give detailed analyses and, to a certain extent, predictions
based on historical time series data. If prompt and accurate predictions can be
made, it will be easier for workers to access the information they need to make
future decisions based on the predictions and reduce labor costs. At the same time,
due to the speed and stability of the machine, it will give more accurate results in
less time and avoid unexpected losses.

In this dissertation, the industrial smartification using time series prediction is
discussed in three directions:

• The first is about electricity consumption forecasting. Currently, the elec-
tricity consumption in the next day is forecasted by a worker based on in-
formation like: the electricity time series data of the previous few days, past
long-term trends, and information that affects electricity demand such as
weather and events. However, the accumulation of past experiences is very
important to make such forecasts. If those experiences can be modeled to
automatically and accurately forecast power consumption in a short period
of time, then the worker only needs to make a final decision, and he/she can
focus on other more intelligent works.

• The second is about reducing the workload of plant operators in chemical
plants. In the past, operators had to monitor a great deal of sensor data in
order to keep the plant running properly. Such kind of process imposes a
heavy workload on the operator. Therefore, in steady-state plant monitoring,
many systems are used to notify the operator of a possible abnormal situation
by alarming with threshold settings for operator support. However, it is not
easy to set the threshold value because it needs to be changed according to
the plant conditions. In contrast, the system displays trend of the time series
prediction of the sensor data. If the trend shows an abnormal condition in
the future, the operator can easily detect it, and the monitoring work can
be significantly simplified.

• The third is to make such time series prediction available in other fields.
Humans would be able to focus on more human-like works and make even
better decisions.

In these ways, we believe that the time series forecasting models proposed in
this paper can realize smart industries as various applications, and human work
in traditional industries can be more intelligent.

3



Chapter 1 Introduction

1.2 Univariate and multivariate time series fore-

casting

Observing data at a series of points in time is a common place activity in
smart industries, and industrial production contains a large variety of time-series
data. Generally, time series forecasting refers to making forecasting about the
possible future values based on the historical data, along with other relevant series
that may have an impact on the outcome. There are many real-life time series
data forecasting problems, including power consumption forecasting, sensor signal
prediction, etc. Its essence is essentially to forecast the value of a time series at a
future point in time on the basis of previously observed data.

In terms of overall time series forecasting, we can divide all studies into two
categories: univariate time series forecasting and multivariate time series forecast-
ing:

• Univariate Time Series forecasting (UTS).

Univariate time series forecasting in the traditional sense is a forecasting
problem which considers only the effect of a single variable on itself and does
not consider the effect of other variables on that variable. However, with the
development of research, the concept of univariate time series forecasting
gradually leads to the study of forecasting the time series of one variable
using multiple variables of relevance [6] [7] [8] [9]. These studies focus more
on the effects of other relevant variables on the target variable and ignore the
dependence of the target variable on the relevant variable and the variables of
interest. The capture of the dependence of the target variable also becomes
more precise due to the reference to additional variables of interest, resulting
in accurate results.

• Multivariate Time Series forecasting (MTS).

Multivariate time series do not only depend on time itself. The forecasted val-
ues of multiple target variables not only depend on their own historical data,
but also receive effects as other variables change. The dimensions of multi-
dimensional time series are highly correlated, and data processing should con-
sider all dimensions together to avoid loss of valid information. In the actual
forecasting process, each time step is observed not only for a single variable
Yt, but also for multiple variables (X1

t , X
2
t , · · · , Xr

t ) at the same time, which
requires the analysis of multivariate time series Xt = (X1

t , X
2
t , · · · , Xr

t )T .
For example, in the analysis of weather preidction it is necessary to consider
simultaneously rainfall, temperature and barometric pressure data, not only
to study each of their components as a univariate process, but also to study
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the relationship and affects between the relevant components, so as to make
forecasting and control the time series.

With the advancement of industrialization and the improvement of product
quality, industrial production has put forward higher requirements on the
monitoring of key process variables. Most of the industrial processes have
complex multivariate characteristics, and the traditional monadic time se-
ries forecasting methods cannot be adapted to the actual environment and
application requirements. The multivariate time series forecasting considers
interrelationship of multiple varaibles and has good application prospects for
industrial process time series forecasting. In general, multivariate time series
forecasting is the most frequent and widely used problem in time series.

1.3 Scope of previous researches

Time series forecasting under smart industry is a relatively new topic. How-
ever, with the development of the smart industry and the rise of machine learning
research, this area has become rich in research.

For UTS forecasting, Newbold et al [10] first proposed this research. They
compare the forecasting performance of Box-Jenkins, Holt-Winters, and stepwise
autoregression in the area of economic time series. They also suggested the possi-
bility of combining special variable predictions when forecasting for a single sam-
ple. Then, Nogales et al.[11] apply time series to electricity price forecasting as a
way to maximize the benefits to electricity producers. They provide two accurate
and efficient price forecasting models: dynamic regression and transfer function
models, and explain and cross-check these techniques. Hyde et al. [12] propose
an automated load forecasting system and present a forecasting model with linear
regression of electrical consumption and climate data, and error statistics for the
forecasted load for the day ahead. The study can adapt to changing climate factors
and achieves forecasting accuracy and robustness. Pai and Hong [13] treated the
forecasting electric load as a nonlinear regression sequence problem and applied
support vector machine (SVM) to validate its viability of the algorithm for predict-
ing electricity. In addition, they use a heuristic algorithm simulated annealing (SA)
to choose the proper parameters for their model. The proposed approach is more
accurate compared to ARIMA and general regression neural network (GRNN)
models. This is also the first time machine learning has been applied to electric-
ity forecasting. Marino [14] present a deep neural network-based load forecasting
method. Their model is based on the architecture of LSTM and employs the first
sequence-to-sequence (S2S) architecture. Their results are a significant improve-
ment compared to previous studies. Chandramitasari et al. [6] propose a deep
learning framework that combines long short-term memory (LSTM) and feedfor-
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ward neural network (FFNN) for power forecasting. In their study, for the first
time, FFNNs are applied for processing extra information to improve the accuracy.
In this dissertation, the study in Chapter 3 is a further deep dive based on the
study of [6].

For MTS forecasting, Jenkins et al. [15] They proposed for the first time the
use of a multivariate stochastic model for forecasting, which encompasses a va-
riety of possible phase shifts. With the popularity of artificial neural networks
in the 1990s, Chakraborty et al. In [16], a neural network approach for multi-
variate time series analysis is presented for the first time. In their experiments,
feedforward neural networks were designed to simulate flour prices in three U.S.
cities over an eight-year period. Their model achieved significant success in price
prediction compared to previous studies. In recent years, with the advancement of
hardware technology and the rise of deep learning, deep learning-based forecasting
methods have gradually become mainstream. Among them, the most important
and seminal research is LSTNet [4]. In this research, they propose a new deep
learning framework that combines CNNs and RNNs to extract patterns of local
dependencies between variables. They also propose a jump connection to handle
long-term dependencies. Overall, their study is the first to treat different terms of
dependencies separately. In this dissertation, the studies in Chapters 4 and 5 are
further in-depth studies based on the study of LSTNet.

Specifically, there are many cases where ”prediction” or ”forecasting” is used.
It is important to note that usage of these 2 words can differ between areas of
application. In this dissertation, on the one hand, the ultimate goal of electricity
forecasting is to simulate the actual time series data. In the sense of forecasting
detailed time series data, the word ”forecasting” is used. While on the other
hand, prediction in chemical preocess is commonly used for abnormal detection.
Comparing with ”forecasting”, the term ”prediction” is used for more general
estimates such as whether there would be an error or not. Therefore, the word
”prediction” is used for time series forecasting of chemical processes.

In the following chapters, ”forecasting” is used in chapter 3, which indicates the
forecasting of electricity consumption. The word ”predicting” is used in chapter
4 to describe predictions for sensor data in chemical process. In chapter 5, since
there are several kinds of data, and the main target is to forecast the detailed future
value of these data. Hence, ”forecasting” is used to describe detailed forecasting
results. Specifically, in other conditions, in the process of forecasting, such as ”time
series forecasting”, ”forecasting result”, ”forecasting models”, etc., ”forecasting”
is used in the conditions which aims to generate detailed values only.
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Table 1.1: Research overview
Chapter 3 Chapter 4 Chapter 5

Forecasting data Electricity load
Data

Sensor and exchange
rate data

Various industrial
data

Forecasting type Univariate Multivariate Multivariate

Proposed approach Attention-based
Encoder-Decoder
model

A deep learning
framework with
Mixed Length Dila-
tion Blocks

A deep learning
framework by cap-
turing combination
patterns of long-
and short-term
dependencies

Publication - Journal (J2):
IEEJ Transactions
on Electronics,
Information and
Systems

- Proceedings (C1):
2017 IEEE Interna-
tional Conference on
Industrial Engineering
and Engineering Man-
agement (IEEM)

- Journal (J3):
Neurocomputing

- Proceedings (C2):
2021 IEEE Interna-
tional Conference on
Industrial Engineering
and Engineering Man-
agement (IEEM)
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1.4 Research proposal and contributions

This study aims to extend the time series research for the smart industry. A
comprehensive research proposal is presented in table 1.4. The proposal presents
several frameworks for forecasting time series with different dataset.

• UTS forecasting with attention-based Encoder-Decoder model,

• MTS forecasting with the proposed MLD framework,

• MTS forecasting with the proposed MDT framework.

Chapter3 investigates the deep learning-based power forecasting problem. The
problem comes from the study of Sari et al. [6] and is a unitary time series forecast-
ing problem. An attention mechanism-based approach is proposed that separates
variables internally and externally and addresses the problem of capturing long-
term dependencies. The method is compared with the standard ARIMA and the
study of Sari et al. Numerical experiments show that the usage of attentional
mechanisms was efficient in capturing long-term dependence. This study estab-
lished a special objective function based on the actual situation of PPS to achieve
the goal that the foreacasting value is greater than ground truth in general. The
results of this study were published in the [17] journal.

In Chapter 4, the results obtained from Chapter 3 are generalized to more
complex sensor datasets. Since the sensor data is more complex with huge amount
of delay and noise, in Chapter 4 we need to preprocess the dataset and select the
useful sensor data to compose the dataset. Firstly, wavelet transform is used to
denoise the sensor noise, and then the mutual relation number is used to remove the
delay between sensors, and finally, pearson and spearman correlation coefficients
are used to select the useful sensor data.

In Chapter 4, for the multivariate time series problem, a novel deep learning
framework is proposed. By customizing proposed Mixed Length Dilation Blocks,
the mixed length of dependencies among related sensor data is captured well.
Experiments show that the proposed framework yields opposing results on all
benchmark datasets compared to those of several baselines methods. The results
of this study were disseminated at a refered conference and published in the [18]
Proceedings.

In Chapter 5, we extend the sensor data prediction from Chapter 4 to the entire
industrial dataset and further enhance the model’s ability to capture the effects of
unknown factors. A new deep learning framework named Mixed Dependence Time
Series Network (MDTNet) is proposed for the MTS forecasting problem. First,
stacked dilation convolution component is first employed, which applies multiple
dilation convolution filters to capture all multivariate dependencies of different
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time lengths in parallel. Then the dependency combination component, which
uses vanilla convolutional filters to deconstruct complex combinations between
different dependencies. Finally, recursive component, which applies a recursive
layer to capture the variation of different combinations over all time steps. The
experimental results show that the proposed framework presents a significantly
higher accuracy for most of the data sets, and the future of the model has a
promising future. The results of this study were published in the [19] journal.

Here are the details of each point:

1. All models in this study use real data from real-world smart factories. The
first of these models corresponds to traditional power load forecasting, the
second corresponds to multivariate prediction of sensors in a factory, while
the third could be generally applied to data from various of smart factories.

2. In the second model, depending on the complexity of the plant sensors and
the actual computational power, workers can customize the number of blocks
to select a more appropriate model.

3. In the third model, without setting jump parameters in advance, the model
captures the extra-long dependencies, which is suitable for those data with
long term dependencies.

4. In terms of model complexity, the complexity of the three models increases
sequentially, and the accuracy and robustness of the data forecasting also
increases sequentially.

In summary, the main contributions of this dissertation are summarized below.

1. In power forecasting, the problem is the same as in the study of Sari et al.
[6] is the same. Based on their study, we overcome the capture problem of
long-term dependence and rationalize the influencing factors into internal
and external factors to achieve more accurate forecasting.

2. In sensor data prediction, we set out to predict multivariate time series using
deep learning methods. Based on previous studies [5] , we proposed a cus-
tomized block structure and a new framework for sensor data prediction that
can capture the mixed length of time dependencies. Extensive experiments
are conducted on several benchmarks for comparing our proposed framework
with other baselines, and the experimental results prove that our framework
performs competitively on all the datasets.

3. In the final intelligent industrial data forecasting, a new deep learning frame-
work called MDTNet is proposed. The mixture dependence of long-term
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and short-term factors among multivariate can be well captured by applying
stacked dilated convolution with vanilla convolution and recurrent networks.
This study builds on [4] to enhance the capturing of blends and to overcome
the need to preset the ”recurrent jump” length in advance. Experiments show
that our proposed framework produces competitive results on all benchmark
datasets compared to several benchmark methods.

1.5 Outline of this dissertation

The remaining parts of this deissetation is structured as follows.
Chapter 2 is dedicated to related works on different kinds of time series fore-

casting research methods. The history and current status of research on time series
forecasting is described from traditional methods, time series decomposition, fea-
ture engineering, and deep learning methods.

Chapter 3 proposes a deep learning model which applies attention mechanism
to forecast electricity consumption. The background of this study is similar to
LSTM-FFNN [6], but the model is further improved and a special objective func-
tion is built according to the actual demand. Experiments indicate that the pro-
posed model can fit the power consumption more thoroughly in several horizontal
comparisons.

Chapter 4 solves the multivariate forecasting problem at sensor values. Due
to the complex and noise-filled sensor data, we perform the necessary preprocess-
ing on the raw sensor data. Subsequently, a novel deep learning framework is
proposed. This framework can better capture the diverse time related dependen-
cies among sensors. Numerical experiments show that the proposed framework
achieves superior results on all three datasets compared to other popular methods.

Chapter 5 builds on Chapter 4 by extending the study to diverse industrial time
series. In that study, we not only try to catch the influence of relevant varaibles
on target series, but also try to analyze the influence of the unknown variables on
the target variables by analyzing the time-dependent mixture patterns of multiple
lengths. The evaluation results in the cross-sectional comparison experiments have
demonstrated the superior performance of our proposed framework in the large
horizon case, but there still remains room for improvement in proposed framework
for multivariate sequences of very high dimensionality.

Chapter 6 summarizes all the studies and discusses possible directions for future
research.
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Chapter 2

Related works

From a mathematical point of view, time series forecasting indicates to use the
characteristics of the time of information in the past period to predict how this
information will change in the future period. This is a more complex forecasting
problem than the regression analysis model. In the time series forecasting problem,
the sequence of historical events affects the trend of the time series and never brings
different effects on the possible future values.

The study of time series forecasting has a long history. In this chapter, each of
the following kinds of time series methods would be introduced separately in each
section.

2.1 Traditional time series modeling methods

Among all the methods, the traditional time series models like statistical
methods account for a considerable proportion[20][21][22]. One of the most com-
monly used models is called the autoregressive integrated moving average model
(ARIMA) [8], which subsumes autoregression, moving average, and autoregres-
sive moving average [23]. Specifically, the ARIMA model combines three basic
approaches[24]:

• Autoregressive (AR) models describe the relationship between the current
values and historical values. Forecasts are made using historical time data
of the variables as input.

• Moving average (MA) models describe the moving average nature of error
term delayed in time.

• Differencing (I-for Integrated) refers to the differencing of time series data.
By the differencing operation, the time series will be converted from a non-
stational state to a stational state.
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The detail of ARIMA is listed as follows:(
1−

p′∑
i=1

αiL
i

)
Xt =

(
1 +

q∑
i=1

βiL
i

)
γt (2.1)

where L indicates the lag operator, the αi denotes the autoregressive coefficient
and and βi denotes the moving average coefficient, respectively. γt denotes the
error terms.

The success of the ARIMA model is owing to its robustness against nonsta-
tionary data and interpretability of the statistical characteristics. By applying the
Box–Jenkins method [25], the best fit of the ARIMA model is calculated based on
the historical data. However, owing to its high computational cost and method-
ology, the ARIMA model is more conventionally used in univariate time series
forecasting.

On the other hand, to solve MTS forecasting problems, the VAR model,
an autoregression model that extends from a univariate to a vector scale, was
proposed[26]. It is extensively used in solving MTS problems owing to its ability
to capture the linear interdependencies among different variables. VAR models
are one of the easiest models to operate in dealing with the analysis and predic-
tion of multiple variables of interest are performed. And under certain conditions,
multivariate MA and ARMA can also be converted into VAR models, so VAR
models are recently favored by more and more researchers [27].Since it was pro-
posed, many VAR-based models, including VARMAX[28], elliptical VAR[21], and
structured VAR[20], have been constructed. However, in capturing long-term de-
pendencies in the time dimension, VAR-based models perform relatively poorly
when encountering high dimensional data. In case of a high dimensional simu-
lation over multivariables, VAR-based models can be easily overfitted. Thus, to
better fit such models, some studies applied regularization[22].

However, the research on VAR-based models has a bottleneck owing to the
linearity of their methodology. Both the dependencies in the time dimension and
the correlation among multivariates are nonlinear[29], which VAR-based models
may fail to capture.

2.2 Time series decomposition

Time series could be viewed as a mixture of several different series because
they are influenced by several factors. Therefore, when coping with a time series,
decompose the time series into multiple series is commonly applied so that the
effects from multiple sub-series can be handled separately.

From the perspective of time seires decomposition, a time series typically in-
cludes trends, seasonal variations, cyclical fluctuations, and erratic fluctuations.
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• Trends refer to a tendency, within a longer time period, for the sequence to
continue to move and change.

• Seasonal fluctuations are regular changes in the level of development of a
phenomenon due to changes in the seasons.

• Cyclic fluctuations are cyclic continuous changes that are not strictly regular
over a certain time period.

• Erratic fluctuations are the effects of numerous contingent influence along
time series

The decomposition model is divided into additive and multiplicative models.
Additive [30] refers to the fact that the components of the time series are indepen-
dent of each other and all four components have the same magnitude. Based on
the additive models, weighted additive models [31] which used weight sum of the
four components is proposed, and STL based models [32], which is insensitive to
outliers, also achieves good results.

More specifically,
Yt = Tt + ST + Ct + It (2.2)

where Y denotes the forecasting time series, T illustrates the trend sub series,
S illustrates seasonal sub series, C denotes the cyclic sub series and I denotes the
irregular fluctuations.

There are many time series forecasting approaches that based on additive mod-
els. Facebook prophet model [33] is also an additive model. It has many advan-
tages: flexibility: it can be easily adapted to seasonality with multiple periods
and allows analysts to make different assumptions about the trend. Missing treat-
ments: Unlike the ARIMA model, the measurements do not need regular intervals
and we do not need to insert missing values Fast: The fit is very fast and allows an-
alysts to explore many of the model’s properties interactively. More interpretable:
the predictive model has parameters that are easy to interpret.

The multiplicative model output component has the same magnitude as the
trend term, the seasonal and cyclic terms are scaled numbers, and the irregular
variation term is a sequence of independent random variables, which obeys normal
distribution. Similar with the additive model,

Yt = Tt × ST × Ct × It (2.3)

Due to the lack of fitting ability of simple additive and multiplicative models,
some more hybrid models have emerged. However, these models have difficulty in
achieving good prediction results due to the difficulty in separating the trend and
cyclic terms.
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2.3 Feature engineering and machine learning

methods

This class of methods usually changes the organization of the data through
time sliding windows and uses machine learning methods such as xgboost, svr,
etc. for learning. This type of method is often used in the financial field in
the past years, but recently it has become particularly popular in the Kaggle
competition. [34] proposed a two-stage neural network structure which constructed
with SVM and self-organized features prediction in financial field. [9] proposed
an approach which transforms time-related data into an infrastructure that can
be handled by several machine learning algorithms. Different types of feature
selection methods are then applied to the regression task. Subsequently, several
machine-learning-based approaches, such as support vector regression (SVR)[35]
and neural networks[36][37][16], have been proposed to capture nonlinearity. In
SVR[38], forecasting problems are treated as regression problems, and the kernel
method is applied to the models to increase their nonlinear processing capabilities.
In[36], neural networks were combined with classical ARIMA models to capture
nonlinearity.

The advantages and disadvantages of this feature engineering-based approach
are clear. In terms of advantages, since each feature is obtained by carefully ana-
lyzing the background of the forecasting target, the features are rigorously filtered
and the experimental results obtained are usually better. The disadvantage, on the
other hand, is that feature engineering cannot be performed when the background
of the time series itself is not well understood, or when the input dimension is too
large, it is difficult to analyze and filter each dimensional time series.

2.4 Deep learning based methods

The deep learning based approach is the most popular, accurate, universal and
robust approach, and is the one used in this research.

Recently, neural networks with deep architecture, also known as deep neural
networks (DNN) have become widely discussed in the research community owing
to their ability to capture time information and inner relation of data behaviour.
Dedinec et al. used the deep belief network (DBN) in electricity load forecasting,
which outperformed neural networks of shallow structures for the first time [39].
Qiu et al. proposed a deep learning approach for load demand forecasting [40].
A deep belief network including two restricted Boltzmann machines (RBMs) was
used in their model. Ryu et al. proposed a DNN-based load forecasting model,
and the obtained results outperformed the double seasonal Holt–Winters (DSHW)
model and ARIMA [41].
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Considering research works based on RNN, deep learning-based time series
forecasting is then divided into UTS forecasting and MTS forecasting.

For UTS forecasting, Kuan et al. proposed a multi-layered self-normalizing
gated recurrent unit (MS-GRU) model [42]. Liu et al. proposed a novel approach
of long short-term memory (LSTM) for short-term load forecasting [43]. In col-
laboration with Chai, they also proposed a combination of deep neural network
structures including LSTM and convolutional neural network (CNN) to forecast
the start time, end time, and average power of fluctuation of electricity consump-
tion [44]. Marino et al. investigated two variants of the LSTM approach: 1)
standard LSTM and 2) LSTM-based sequence-to-sequence (S2S) architecture to
map sequences of different lengths for load forecasting [14]. Sari et al. proposed an
LSTM model embedded in the feed forward neural network (FFNN) for electricity
consumption forecasting. This research implied using two distributed models and
training them separately for the purposes of electricity consumption forecasting
[6]. In these univariate time series studies, although there is bunch of methods,
none of the previous studies captured the long-term time series dependence, thus
losing the impact of information prior to multiple time steps.

For solving MTS forecasting problems, most deep-learning-based researches
can be classified into two types.

The first type of approaches mainly focus on capturing the time dependencies
in the entire time window. The most representative and innovative method is
LSTNet[4]. In their research, a novel deep learning model specifically for MTS
forecasting problems was proposed.

Figure 2.1: The main structure of LSTNet

Convolution neural networks (CNNs)[45] and RNNs[46] have been adopted to
capture the short-and long-term dependency patterns among multivariates, re-
spectively. An effective technology named as “recurrent skip” was also proposed
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to capture very long-term dependency patterns. Based on evaluation, this method
achieved significant performance improvement on four datasets compared to those
of several representative baselines. However, one of the major drawbacks of this
research is that the length of the “recurrent skip” should be previously defined
based on different datasets before training.

The other type of approaches emphasize on capturing the correlation among
multivariates at each time step. The most representative approach is the TPA-
LSTM[47]. In their research [47], a novel attention mechanism was applied to
calculate the attention value for the different variables at each time step. Re-
cently, due to the popularity of graph networks, a number of graph-based mul-
tivariate time series forecasting models have emerged. A novel deep learning
framework based on transfer entropy graph structure using causal associativity
is proposed by TEGNN[48]. Thus far, this approach has reached the state-of-the-
art (SOTA) performance comparable with several benchmark algorithms on the
same four datasets as used for LSTNet. Nonetheless, both of these researches have
a shortcoming compared with our proposed approach: the time-dependency pat-
terns among the multivariates can have different lengths. The time-dependency
patterns among the multivariates include both short- and long-term dependencies,
and different lengths of dependence often show quite different effects. However, in
both LSTNet and TPA-LSTM, only the same-length time dependency patterns of
different variables are captured.

2.5 Conclusion

In this chapter, several types of studies that are of high relevance to this disser-
tation are listed. It starts with traditional time series modeling methods. Then, the
time series decomposition methods including additive models and multiplicative
models are reviewed. Subsequently, the feature engineering and machine learning
methods are reviewed. Finally, this chapter discussed deep learning methods for
solving UTS and MTS forecasting, respectively.
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Chapter 3

Univariate time series forecasting
for electricity forecasting

3.1 Introduction

Electricity is one of the most basic sources of energy in our everyday life and in-
dustrial production. As the global economy grows rapidly, electricity consumption
around the world is increasing every year. It is most critical for power companies
to provide sufficient and stable electricity. For this reason, power companies need
to allocate electricity to different consumers according to their production volume.
After the liberalization of electricity in 2016, Japan [7], the entire electricity suppli-
ers can be broadly divided into two types: those provided directly by large power
companies, and those corresponding to smaller Power Producer and Supplier (also
known as PPS). Comparing to large power companies, PPSs provides electricity
at lower prices, which saves costs for manufacturers.

Although PPS has the ability to provide power to some manufacturing com-
panies, due to limitations in electrical energy production capacity, PPS can only
provide a portion of all energy needs. For the portion that cannot be provided,
PPS can only contract with a large electric utility to purchase the default power
to fill the portion that is under-provided by power prior to delivering power to
the manufacturing company (at least one day). Therefore, in order to provide
sufficient power, PPS needs to accurately forecast the manufacturing company’s
electricity usage in order to purchase power from the large power company and
deliver it to the manufacturing company.

In addition to the basic goal of accurate electricity forecasting, this research also
worked to solve other problems. On the one hand, when the forecasted electricity
consumption is lower than the actual demand of manufacturing companies, PPS
will have to buy from large power companies because of insufficient supply and
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will be penalized by paying large penalties. On the other hand, if the forecasted
electricity consumption is higher than the actual demand, PPS will waste the
excess output power. Since the penalties are much more costly than wasting
power, PPS prefers power forecasting more than actual demand in order to save
costs.

Figure 3.1: An example of the electricity consumption problem

Figure 3.1 shows some details of the difference between actual electricity con-
sumption and forecasting consumption in the study. In this figure, the horizontal
axis denotes the time axis in one day, which is separated into 48 halves of hours.
The vertical axis denotes the electricity consumption value. The blue line rep-
resents the actual electricity consumption of manufacturing companies and the
green line represents the basic electricity provided by the PPS. According to this
figure, the electricity provided by the PPS is not always sufficient, so additional
power needs to be purchased from the large power companies. The orange line
represents the forecasted consumption values. The black line is the additional
power purchased from the large power company based on the forecasted values.
The areas above the black line and below the blue line are underestimates that
result in penalties. Conversely, areas above the blue line and below the black line
are overestimates that result in wasted electricity. To conclude, this research has
mainly 3 targets:
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1. The closer the forecasted power consumption is to the actual usage, the
better.

2. Reduce underestimation and thus penalty costs.

3. Reduce overestimation and thus wasting electricity.

The three goals here are in decreasing order of importance. Here the subject of
this research was provided by a Japanese power company. The research objective
is to forecast the electricity consumption of a customer manufacturing factory
for one day ahead, with a time interval of half an hour. Since the length of the
forecasting is only one day, the study corresponds to a short-term time series
forecasting problem.

Since electricity consumption is affected by various internal and external fac-
tors, a novel time-series forecasting method that uses past observed electricity
consumption data and some possible influencing factors (weather, season, temper-
ature, etc.) to forecast the next day’s electricity consumption is proposed. The
proposed framework is applied for power forecasting in a real industrial scenario,
and the results of comparing the performance of the proposed method with sev-
eral previous methods show that the proposed method outperforms the previous
methods.

3.2 Previous related studies

One of the most related research is proposed by Sari, etc[6]. In this research,
they applied the previous days electricity consumption together with other related
information, including time, days and season. The model first applied LSTM to
pass the continuity along the time axis and used FFNN to capture the impact
from the related factors to the electricity consumption[6]. The method shows
competitve result comparing with previous traditonal forecasting methods.

However, in their research, there still remains several problems. First, the
input of the model concatenate all the electricity conmsumption data with related
factors, which denotes a very large models and difficult to trains. Second, the time
steps have been add up to 48 × k (Here k denotes the number of days), which
is a relatively long time length. Since it is difficult for Long short-term memory
(LSTM) to pass the information along such a long time length, it is better to
shorten the time steps.
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3.3 Long short-term memory and attention

mechanism

Long short-term memory (LSTM) is a powerful block structure which was very
commonly used in deep learning. It is first proposed by Hochreiter and Schmid-
huber which aims to address lost information at longer time lengths in RNN by
recursive backpropagation learning. [49]. LSTM is a structurally more complex
RNN. In vanilla RNN, the effective information of the time series is recorded within
the hidden layer and propagated sequentially through the time step. However, the
gradient inside the structure tends to become too small during the backpropaga-
tion of the training process, which can easily cause the loss of information before
multiple time steps, resulting in the loss of long-range dependence. To solve this
problem, LSTM proposes a ”gate” mechanism to decide whether the input is im-
portant enough to be remembered and whether it can be output, thus selectively
control the propagation of gradient information.

Figure 3.2: The structure of long and short term memory

Specifically according to the figure 3.2, each LSTM block is handled with 3
gates, which are: forget gate, input gate and output gate[49]. Through the forget
gate, the LSTM block can selectively forget the unimportant information, then
input it through the input gate and participate in the operation, and finally se-
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lectively output it to the next LSTM block through the forget gate. On the other
hand, when the size of the input series is relatively long, through the training pro-
cedure, gradient can easily cause training difficulties during the backpropagation
process. However, in the structure of LSTM, gradient can pass directly through
the top black line in the graph during the backpropagation process thus without
any loss. Therefore, this study uses LSTM blocks as RNN units, and the gradient
will pass through the whole backpropagation process smoothly with less loss when
information is stored by longer time steps and more memory.

The attention mechanism was first applied to the image field and proposed in
the 90’s in last century. The essence of the attention mechanism is inspired by
the mechanism of visual attention. When we perceive a thing visually, we usually
do not look at the same sight from start to end, but tend to observe and pay
attention to a specific part according to our needs. And when we find that a scene
often appears in a certain part of what we want to observe, we will learn to pay
attention to that part when a similar scene appears in the future.

In 2014, google mind team made the attention mechanism start to fire up,
and they applied the attention mechanism to an RNN based model for image
classification and then obtained very promising performances. Then [50] proposed
a new model which applied attention mechanism for simultaneous translation and
alignment on a machine translation task. And their research is considered as the
first to bring the attention mechanism to the area of NLP. More specifically,

St = f (St−1, yt−1, ct) (3.1)

Here St denotes the transfer state at time step t, yt−1 denotes the ground truth
at time step t− 1, f() denotes the RNN unit and ct is computed as:

ct =
T∑
j=1

atjhj (3.2)

where hj is the hidden state output at time step j. Here all hj from h1 to hT
has been pre-calculated based on the forward propagation of the encoder. Here
atj is a weight, which is computed as follows:

atj =
exp(etj)∑Tx
k=1 exp(etk)

(3.3)

where etj = g (St−1, hj) (3.4)

Here Tx is the sequence length of the input. atj is computed similarly to the
SoftMax function, which gives the conditional probability of etj. Here the function
g measures the degree of alignment of each state St−1 with the jth input. The
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function g used to compute etj can be a simple dot product or a small multilayer
perceptron. Using this function, one obtains ct as a weighted linear combination
of all input vectors for time step t.

Figure 3.3: The diagram of attentional mechanism

From the perspective of this paper, not every time point in the time series has
the same information weight. By applying the attention mechanism, the model can
generate the weights of each dimensional feature adaptively based on the implicit
state information of the current time step, and use the updated time series with
weights as the input to the new encoder. In addition, by using the attention
mechanism, the model has the capacity to capture the relationship between each
output at any length apart, thus allowing the ability to capture long-distance
dependencies to be improved.

3.4 Inside and outside information

The key idea proposed for this research can be summarized as Internal and
External Information. Most research works on time series forecasting (especially
for electricity consumption forecasting) consider the regularity and periodicity of
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the data itself in the time series and try to extract temporal information or factors
that tend to influence the forecasting results from the interior of the time series
[51]. But it is not only the information in the time series that influences the time
series itself, there are also many other factors that affect the time series. The
relationship between these factors is very complex and even interacts with each
other, which makes it difficult to use these factors to predict.

In this study, I have tried to summarize these studies by dividing them into
two types of information: Internal and External Information.

Internal Information Internal information can be artificially generated se-
quences of the same type as the target sequence (e.g., plant machine tem-
perature sequences, etc.), or it can be a subsequence of the time series we
want to forecast. There are a number of approaches to decompose a variable
of time series into multiple subseries. Decomposing into multiple subseries
allows us to better separate out the useful information hidden in the original
time series. In contrast to the external information, the internal information
can be influenced by the external information and even interact with other
internal information. In contrast, external information can hardly be influ-
enced by internal sequences because of their objective existence. Therefore,
separating internal and external information is possible to decrease the com-
putational complexity by eliminating the need to compute the influence of
internal information on external information that should not exist.

External Information The external information is usually some objectively ex-
isting natural series that may affect the internal information but are not
affected by them. In general, external information is generally unaffected
by other variables in the system, while can affect the target time series to
be predicted. For example, temperature, season, time of day, etc., can be
generalized to external information.

3.5 Proposed network structure

In this section, the overall structure of the framework is proposed. In the
first section, the general overview of the whole structure is presented. The second
section introduces the encoder based on the attention mechanism so as to select
the valid input information and avoid the loss of long dependencies. The third
section presents the nonlinear corrector by combining external information for
correction. Finally, a decoder is presented to fit the forecasting results. The
details are presented in the following sections.
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3.5.1 Main structure

In the proposed approach, several different types of neural network substruc-
tures are combined, which includes an encoder based on an attention mechanism, a
nonlinear corrector, and a decoder. An encoder-decoder based structure is applied
in this study, where the encoder extracts feature from previous power usage data
and the decoder is used to fit the output results. Since the goal is to use previous
data to forecast the next day’s electricity consumption, I take several days of elec-
tricity consumption as input. Each day’s data is divided into 48 time steps with a
half-hour interval between each two steps. These 48 time steps contain a complex
transfer of long-range dependencies. To obtain the input features by applying the
attention mechanism, an encoder is used to filter the useful input information, and
saving the long-range dependencies at different time steps.

Figure 3.4: The overall structure of the proposed network

In the model structure, the electricity consumption values for k consecutive
days prior to the forecast are stitched together in parallel to obtain a k×48 matrix
as an input. This input controls the length of the time steps and preserves the time
dependence well during the backpropagation. Using the attention mechanism, we
can jump around to calculate the importance of different inputs and calculate the
degree of alignment at different time steps. The whole structure of the framework
is shown in Figure 5. Its three parts are described next in turn in the following
sections.

3.5.2 Attention-based encoder

As shown in the figure 3.5, we used as input the electricity consumption data
for k days before the forecasting date. These inputs were combined in parallel into
a k × 48 matrix. At each time step, the degree of alignment between the current
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Figure 3.5: The structure of the attention-based encoder

input and the features of the previous hidden layer in the LSTM layer is calculated
by means of an attention mechanism. With the attention mechanism, we can then
assign different weights to the electricity consumption data for k days at different
time steps. The SoftMax function is then used to obtain an encoded vector of size
k × 1. This vector is the output of the attention encoder at time step t, which
will be transposed to a size of 1 × k as the input of the nonlinear corrector at time
step t. At last, we can get 48 matrices of shape 1×k as the input for the following
LSTM blocks.

There are several natural language processing researches [52] [53] which used
the attention mechanism in encoders. These research overcome the problems of
long time step cases and limited storage of state vectors of fixed size; therefore, we
apply attention mechanisms in our studies.

Specifically, the self-attention mechanism, which is commonly used in the field
of Natural Language Processing (NLP), is not applied here. In contrast to NLP,
the inputs of the proposed framework are not interconnected between different time
steps like words. From an NLP perspective, each word is inherently related to other
words in a sentence because of its inherent properties (e.g. Subject for Predicate,
Object). However, in this study, it is difficult to say that there is an inherent
connection between the predicted value at one moment in the same day and the
predicted value at another moment. On the contrary, since our goal is to compress
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the number of time steps, we are more interested in the connection between the
inputs on different days within the same time step. Due to the transferability
of time series, we believe that the self-attention mechanism based on position
encoding loses the continuity on the time axis, but if the hidden layer in LSTM is
used as Query in the attention mechanism, the continuity along time axis can be
well preserved.

To summarize the attention-based encoder, since the power consumption in
each half hour will have a significant impact on the next half hour, a two-layer
LSTM structure is applied to convey this impact. The output of this attention-
based encoder is a 48 × 1 vector, where one of the values is the output of the
encoder at each time step. Finally, after several experimental adjustments, we
finally set the value of k to 7. At this point, we can obtain the optimal experimental
results, which are also in line with the concept of the 7-day cycle of the human
week.

3.5.3 Nonlinear corrector

Figure 3.6: The structure of nonlinear corrector

For each output of the encoder in the figure, a nonlinear corrector is used to
handle the effect of external information on the input. The input of the corrector
at time step t corresponds to the output of the encoder at that point in time. In
our study, we argue that after the encoder understands the effect of the internal
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information (time series data) propagated through time, we can use the external
information to correct the data affected by time. How to deal with the influence of
external information on internal information is the key to build a good model. Tra-
ditional methods for electricity consumption forecasting, namely ARIMAX [54],
NARX-ARMA [55], SARIMAX [56], etc., have tried to use both internal and ex-
ternal information. However, their study only linearly stitched together internal
and external information as a larger input [39] [41] [57] or used the two types of
information separately in different algorithms and combined the results through
integrated learning [58] [59].

However, we believe that the effects of internal and external information on
the forecasting series should be predicted separately. First, the influence of ex-
ternal information on internal information is unidirectional; there is no internal
information that affects external information in reverse. Second, in some cases,
some extreme changes in the external information (e.g., worker holiday changes,
sudden temperature drops, etc.) can have a very large effect (sometimes the exact
opposite effect) on the internal information. If we treat both internal and external
information as being at the same level, we lose the ability of the model to capture
the impact between the interiors of these messages. Only when the separate in-
fluences of internal and external information are learned separately can the model
gain a stronger ability to extract information and thus forecast power consumption
more accurately. Therefore, we build such a model that treats the two types of
information separately in different layers.

More specifically, each corrector has two hidden layers, as shown in the figure.
The correctors are used to adjust the forecasted output of the encoder by the effect
of external factors. We added a dropout [60] to reduce the effect of overfitting.
We believe that external information can correct the input. Therefore, we combine
each data point (output obtained at each time step in the attention-based encoder)
with external information on four possible factors: daily information, time-scale
information, seasonal information, and holiday information. The output of each
nonlinear corrector is one corrected data node. The output of each nonlinear
corrector is one corrected data node.

3.5.4 Decoder

For the decoder, the 48 outputs of all correctors are used as inputs. Here,
the temporal information of the corrected data nodes may be lost through the
correctors, since each corrector corrects the data for each time step separately.
For the output of the nonlinear correctors at each time step, we need to repair
the time dependence of the previous time steps. Therefore, we add a two-layer
LSTM to the decoder to prevent this loss and capture the temporal dependencies
between each time step.
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Figure 3.7: The structure of decoder

3.6 Evaluation

3.6.1 Dataset

The experimental dataset was obtained from a small electric utility in Japan.
The dataset consists of historical electricity consumption data for one year and four
months (from August 2016 to November 2017) with a resolution of 30 minutes.
Each day represents 48 time steps of electricity consumption, and each value ranges
from 0 to 90. we first rescale the consumption data from [0,90] to [0, 1].

In the proposed approach, the three elements of the external information used
as input to the nonlinear corrector are the same as those considered in a previous
research work [6]. These three elements consist of discrete data whose values do
not have any numerical meaning. Therefore, we binarize the classification input
by using a one-hot encoding so that these data can be considered as a vector
in Euclidean space. These three elements are related to the following elements
provided by the power company:

1. Day information: This information represents what day it is for each time
step data in the dataset, ranging from Monday to Sunday.

2. Time-scale information: This information represents the time scale for each
time step data in the dataset, ranging from 00:00-23:30.

3. Season information: This information represents the different levels of de-
mand of manufacturing companies. We separate all the levels into three
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seasons: the low demand season (November and December), the middle de-
mand season (January – June, September, and October), and the high de-
mand season (July and August). This definition is based on the real situation
observed in the power company [6].

4. Holiday information: This information represents whether this day is a holi-
day or not. Since during holidays, the electricity consumption would decrease
to low level, we add this information to improve the forecast accuracy. The
detailed holiday information is open source data from the website [61].

3.6.2 Input and output of the model

The purpose of the proposed method is to accurately estimate the next day’s
electricity consumption. The main inputs are expressed as:

xi = xi1, x
i
2, . . . , x

i
48 (3.5)

Where xit is the actual electricity consumption of the tth half an hour of a day
i. The electricity consumption within 48 time steps to be forecasted is expressed
as below:

ŷ = ŷ1, ŷ2, . . . , ŷ48 (3.6)

where ŷt is the forecasted consumption for the time step t. The obtained real
consumption of the next day is expressed as follows:

y = y1, y2, . . . , y48 (3.7)

where yt is the ground-truth consumption value obtained on the time step t.
The four additional inputs to each data node inside the nonlinear corrector are
expressed as follows:

D1, D2, . . . , D7, T1, T2, . . . , T48, S1, S2, S3, H1, H2 (3.8)

where D1, D2, . . . , D7 denote the one-hot code for day information,
T1, T2, . . . , T48 denote the one-hot code for time-scale information, S1, S2, S3 de-
note the one-hot code for season information, and H1, H2 denote the one-hot code
for whether it is a holiday or not.

Here the effect of temperature on electricity forecasting is also considered.
However, according to the experimental results, the temperature had almost no
effect on the local power forecast (almost all noise). We believe that since the PPS
is located in Kitakyushu, industrial power accounts for a large proportion of it.
And since industrial electricity does not change dramatically with temperature as
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domestic electricity does, we removed the external variable of temperature from
the model.

By applying the idea of internal and external information, the parameters in
the proposed framework decreased from 3.1 × 105 to 7.4 × 104 comparing to the
previous research which concatenate all the related information together. Due
to the decrease in the number of parameters and the avoidance of considering the
effect of internal factors on external factors, the proposed model is able to converge
faster compared to the previous one.

To conduct the evaluation of the performance, we used 2 loss functions:

a. We used the root mean squared error (RMSE) as the first loss function. The
reason we did not use MAPE (mean absolute percentage error), which is
commonly used in load forecasting, is that a large number of low-value data
points close to zero were included in our dataset in our study. On the one
hand, for these low values, it makes no sense to use percentages to measure
these errors [62]. On the other hand, high values are more important due
to the high penalty they cost. Thus, we use RMSE instead of MAPE. The
RMSE score is defined as follows:

RMSE =

√√√√ 1

48

48∑
t=1

(ŷt − yt)2 (3.9)

With respect to the interpretation of the RMSE score, the lower value indi-
cates better performance.

b. We create our own loss function as the second loss function to make our
forecasting be more inclined to overestimate instead of underestimate. For
the Error part, we consider that: (1) Underestimate should be punished
more than overestimate, so we add coefficient m here. (2) Forecasting over
maximum PPS value should be punished much more if it is underestimated,
so we designed this Error function with these 3 conditions. Our own loss
function is defined as follows:

Error =


ŷt − yt, when ŷt ≥ yt

(ŷt − yt) ·m, when ŷt < β < yt

γ
ŷt−β
α−β · (ŷt − yt) ·m, when β < ŷt < yt

(3.10)

Regularization = (ŷt − yt)2 (3.11)

Loss = Error2 + r ·Regularization (3.12)
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Where ŷt and yt are forecasting consumption and real consumption at time
step t, respectively. α is the maximum value of PPS supplies. β is a threshold
to separat e high and low forecasting. If ŷt is less than β, we would give lower
error since higher value is more important in our task. γ is a predefined base
that is larger than 1. If ŷt is higher than α, which means the PPS does not

supply enough, γ
ŷt−β
α−β will become bigger, the error will increase even quicker

since we want to punish more for larger forecasting. For the regularization
part, we used L2 regularization which is also the MSE (Mean Square Error)
to insure the convergence. r here is a flexible coefficient for controlling the
importance of regularization. To make the scale to be the same, we square
the Error part and add it to Regularization term to be our customized loss
function. In our experiment, we set α at 0.25, β at 0.1, γ at 1.5 and m at 2.

3.6.3 Hyper-parameters

To train the whole model, we used mini-batch gradient descent [63] with the
momentum of 0.9 and batch size of 4. In this way, stability can be increased to a
certain extent; therefore, we can make the model learn faster. Moreover, we can
gain the ability to obtain the loss value irrespectively to a local optimum [64].

3.6.4 Experimental result

To evaluate the performance of the proposed method, we construct the training
and testing scenarios, which are outlined in Table 3.1, 3.2, 3.3 and 3.4. All the
3 testing scenarios used the same training set in Table 3.1. In the conducted
experiments, we calculated the average value of the RMSE score for all days. To
discover the different impact extent of all the outside information, we designed 4
kinds of combinations with different outside information as follows:

I. Day and Time-scale information

II. Day, Timescale and Season information

III. Day, Timescale and Holiday information

IV. Day, Timescale, Season and Holiday information

We compared our methods against the traditional LSTM and LSTM-FFNN
[6], as well as MA (Moving Average), ARIMA [54] and SARIMA models with the
moving step of 7 days; the load scale ranges from 0 to 90 in each scenarios.

For ARIMA and SARIMA, we used the trend order of (48, 1, 1). We set the
seasonal order of (1, 1, 1, 7) for SARIMA as we tried to find the regularity of
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Table 3.1: The Training Scenarios
Sample Training Data

Input Output
1 2016/8/1 ∼ 2016/8/7 2016/8/8
2 2016/8/2 ∼ 2016/8/8 2016/8/9
3 2016/8/3 ∼ 2016/8/9 2016/8/10
... ... ...

390 2017/8/25 ∼ 2017/8/31 2017/9/1

Table 3.2: The First Testing Scenario
Sample Testing Data

Input Output
1 2017/8/26 ∼ 2017/9/1 2017/9/2
2 2017/8/27 ∼ 2017/9/2 2017/9/3
3 2017/8/28 ∼ 2017/9/3 2017/9/4

. . . . . . . . .
30 2017/9/24 ∼ 2017/9/30 2017/10/1

weekly information. As shown in Table 3.6 and 3.7, the proposed method (I, II,
III and IV) demonstrated the best results in comparison to all others for each
scenario, respectively. Furthermore, holiday information has a stronger impact
compared with season information according to the experiment result. According
to our understanding, the previous days’ electricity consumption already contains
some season information and is input previously in the encoder part. Therefore,
the season information in the correctors would not have a very strong impact to
the result. In contrast, holiday information cannot be obtained from the previous
days’ electricity consumption (i.e. It is impossible to know whether the next day is
Japanese holiday according to the previous days’ electricity consumption) and the
outside information of holiday input in the correctors helps to correct the result.

As shown in the table 3.5, the training time (with the unit seconds) of both
previous methods and proposed method are listed. By applying the idea of internal
and external factors, the training time of the proposed framework was reduced by
an average of 51.7% compared to the previous method using SGD with momentum
as the optimizer.

As shown in the figure 3.8, our forecast is well fitted to the inflection point
of the consumption curve. However, at some parts of the forecast, the red points
(actual value) still value higher than blue points (forecasting value), which means
the forecasting is underestimated. Thus, in the next experiment, we used our own
loss function to prevent this. Since our customized loss function is a little difficult
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Table 3.3: The Second Testing Scenario
Sample Testing Data

Input Output
1 2017/9/25 ∼ 2017/10/1 2017/10/2
2 2017/9/26 ∼ 2017/10/2 2017/10/3
3 2017/9/27 ∼ 2017/10/3 2017/10/4

. . . . . . . . .
30 2017/10/24 ∼ 2017/10/30 2017/10/31

Table 3.4: The Third Testing Scenario
Sample Testing Data

Input Output
1 2017/10/25 ∼ 2017/10/31 2017/11/1
2 2017/10/26 ∼ 2017/11/1 2017/11/2
3 2017/10/27 ∼ 2017/11/2 2017/11/3

. . . . . . . . .
30 2017/11/23 ∼ 2017/11/29 2017/11/30

to converge, we used 2 training steps with different learning rates and different
flexible coefficients r.

For the first training step, we choose a high r value and learning rate to make
the model quickly converge and pay more attention to the MSE score, since we
need the loss function to converge towards the direction that getting close to the
shape of actual time series first. After the model is about to converge, we choose a
low r value and low learning rate to let the model carefully find its way to simulate
the harsher Error part. And finally, we get the following result.

As shown in Table 3.8 and 3.9, our proposed method demonstrated the best
results in comparison of Customized Loss values to all others. All the Customized
Loss calculated in experiments in Table 3.8 and 3.9 used the r at 0.5, α at 0.25, β
at 0.1, γ at 1.5 and m at 2.

In figure 3.8 we showed 2 days electricity consumption forecasting value which
forecasted by the model trained with RMSE as the loss function and showed Cus-
tomized Loss value to evaluate the result at the top of each graph. Relevantly,
in figure 3.9, we showed 2 days electricity consumption forecasting value which
forecasted by the model trained and evaluated with Customized Loss function.
Here, both of the 2 models used the same training and testing data. We chose
2 corresponding forecasting result of 2 models respectively and used Customized
Loss value to compare the result.

According to 3.8 and 3.9, the Customized Loss values in Figure 3.9, are smaller
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Table 3.5: The comparison of training time for previous and proposed methods
I II III IV

Previous 3764 3821 3809 4016
Proposed 1849 1861 1856 1882
Decreased 50.9% 51.3% 51.3% 53.1%

Table 3.6: The comparison of RMSE for other methods
LSTM MA ARIMA SARIMA LSTM-FFNN

Scenario 1 8.4729 13.415 9.035 8.361 5.365
Scenario 2 6.5476 9.044 7.044 6.258 4.1132
Scenario 3 7.0781 7.962 7.913 6.79 4.3206

than the ones in Figure 3.8 , which means our Customized Loss function helps the
model to give overestimation rather than underestimation. Sometimes the fore-
casted values trained with Customized Loss function are smaller than the fore-
casted values trained with RMSE.

These values are lower than β in the Customized Loss function (here β is a
threshold to separate high and low forecasting), which are not as important as
the high values in this research. In fact, the electricity lower than β are the basic
electricity supplied by PPS, which PPS do not need to buy from a large power
company. In our research, we pay more attention to the values higher than β.

Figure 3.8: Two examples of forecasting using proposed method with RMSE
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Table 3.7: The comparison of RMSE for the proposed method
I II III IV

Scenario 1 3.5817 1.7591 1.2104 1.0026
Scenario 2 2.7964 1.3784 1.0442 0.7881
Scenario 3 3.0211 1.4329 1.1164 0.787

Figure 3.9: Two examples of forecasting using proposed method with customized
loss function

3.7 Conclusion

The aim of this research was to forecast the electricity consumption of one day
based on the electricity consumption observed for the previous days. However,
electricity consumption is affected by several factors that are difficult to predict.
And this leads to the difficulty for the power company to keep the balance be-
tween keeping a balance between the power demand and supply for customers. To
solve this problem, the new method was proposed based on attention mechanism
encoder-decoder and several nonlinear correctors.

During this research, we first considered the idea of internal and external in-
formation to analyze the previous research works, and thereafter, we proposed a
method to combine the time series information with outside related causes. By
using the internal and external factors, the number of parameters is decreased and
the training time is decreased by an average of 51.7%. We also embedded the at-
tention mechanism jointly with the encoder-decoder structure inside the model to
solve the problem of long-distance dependence loss. A new structure of separating
the internal and external information in the encoder and nonlinear correctors to
prevent the loss of combining them together has been proposed. The proposed
method allows achieving better results than such alternative methods as LSTM,
LSTM-FFNN, and ARIMA. It also allows saving more paid penalties by providing
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Table 3.8: The comparison of Customized Loss for other methods
LSTM MA ARIMA SARIMA LSTM-FFNN

Scenario 1 20.5979 44.1742 25.3279 21.3076 14.7130
Scenario 2 12.5741 24.8174 17.6934 14.8633 7.5889
Scenario 3 9.4951 20.0711 19.8986 16.1268 5.8356

Table 3.9: The comparison of Customized Loss for proposed methods
I II III IV

Scenario 1 7.2992 3.6023 2.3765 1.9046
Scenario 2 5.7310 2.9376 2.4431 1.5898
Scenario 3 5.6187 2.7056 1.9647 1.2953

more accurate power consumption with overestimate by using the customized loss
function.

However, there still remains much room for improvement in this study. First,
for multidimensional time series inputs, it is sometimes difficult to distinguish
whether they are internal or external information. Second, for practical problems,
it is more common to go for forecasting the values of multiple time series instead
of one. Finally, the model’s capture of time dependence is completely limited
to a single point of transmission of the recurrent neural network and cannot dis-
tinguish between the different effects of short term dependencies and long term
dependencies of the time series.

Therefore, in the next chapter, a special model for time series of factories with
multiple sequence inputs and multiple sequence outputs will be presented. This
model does not need to distinguish the types of input sequences, obtains more
accurate multiple forecasted sequences with limited input sequences, and is able
to capture the time dependence of different distances to some extent.

The works in this chapter has been published in:

J2 Song W, Chandramitasari W, Weng W, et al. Short-Term Electricity Con-
sumption Forecasting Based on the Attentive Encoder-Decoder Model[J].
IEEJ Transactions on Electronics, Information and Systems, 2020, 140 (7):
846-855. https://doi.org/10.1541/ieejeiss.140.846
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Chapter 4

Multivariate time series
prediction for sensor data in the
process industry (MLDNet)

4.1 Introduction

With the development of Industry 4.0, data has become one of the very impor-
tant resources in the industry. With the advancement of data analysis technology,
factories can quickly extract complex and useful information from large amounts
of data, thus bringing value to the factory. And in process industries, sensors, as
common big data collection devices, measure information about processed prod-
ucts and transmit the measurement results through electrical signals. By accu-
rately predicting sensor data, we can anticipate changes in processed products
in advance which helps us detect, diagnose and even predict possible failures to
reduce unnecessary losses.

In our research, we aim to predict the values of multiple sensors simultaneously.
Since the sensor data are time series data, we could regard this target as a special
multivariate time series forecasting problem. In this field, researchers [65][5] are
often interested in predicting possible future changes and trends based on historical
time series data from sensors. However, the problem of sensor data prediction is
complex and has been studied for several years.

One of the main challenges in analyzing such serial data formed by multiple
time series is to determine the complex dependencies among multiple sensors in
the time dimension. More specifically,

1. The relationship between time series of sensor data is unknown.

2. The prediction of sensor data is influenced not only by its historical value
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but also by the correlated sensor data.

3. Different time lengths of perturbations in the sensor sequence may represent
completely different meanings and variations.

In this research, we aspire to predict the possible values from different sensors
in 3 main steps as follows.

1. prepocessing. For the values from the sensors, one of the drawbacks of the
current research is the noise and delay in data [2], which most of the sensors
are filled with, and may reduce the accuracy of the prediction. Therefore,
we consider that the value of the sensors should be preprocesed. However,
most of the research such as [66] [67] have the detailed information about the
data which can easily define the threshold and SNR (signal to noise ratio) of
the signal, and since the data from the process industries is not such kind of
common, we try to find a way to de-noise signal without this information. We
tried several signal de-noising methods such as SVD [68], FFT [3], Wavelet
Transform [69] [70], etc. And we finally chose wavelet transformation for
denoising since it reaches the best result and cross-correlation for removing
the delay among sensors.

2. Extracting correlations among sensors. In practice, big data applications
based on sensor data are popular. [71] proposed a contextual predicting
technique for streaming sensor networks, where they focus more on the re-
lationship between contexts in the behavior of individual sensors; [72] used
extracting the stability state of each sensor and try to detect the stability of
a sensor using a cluster approach. Since most of the current studies point out
that the correlation among different sensors may be very helpful. Therefore,
we should spend more effort on the correlations among sensors.

3. Modeling. From our perspective, this target is a kind of MTS forecasting
problem. Most of the effects on one sensor caused by other sensors can be
broadly classified into long-term and short-term effects, which are usually ex-
pressed as ”trends” and ”fluctuations”, respectively. The different lengths of
dependencies among sensors, i.e., their “perturbations,” represent completely
different meanings within a different length. As an example, in a chemical
processing plant, a 2-minute change in sensor values and a 5-minute change
in sensor values may still represent completely different chemical reactions,
even when the range of value changes is the same. Furthermore, if we can
capture the dependence of the sensor at different time lengths, we can dis-
tinguish whether this is a normal chemical reaction or a possible accident,
leading to accurate prediction.
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In this research, a new deep learning framework is proposed for the sensor
data prediction problem, named the Mixed Length of time Dependencies network
(MLDNet). It consists of two flows: the main flow and an AR highway. An AR
highway is commonly used in deep-learning-based models, such as [4] and [47], for
simulating the prediction scale. The main flow adopts the proposed structure called
Mixed Length Dilation Block for capturing the mixed length of time dependencies.
Finally, the output values of both the flows are added to generate the prediction
result. The major contributions of this research can be outlined as follows:

1. We proposed a customized block structure and a new framework for sensor
data prediction that can capture the mixed length of time dependencies.

2. We conducted spacious experiments on several datasets to compare our pro-
posed framework with other baselines, and the experimental results indicate
that our framework performs competitively on all the datasets.

The remainder of this reseach is organized as follows. In Section 2, we in-
troduce the preparation and pre-processing of datasets. Subsequently in Section
3, the problem formulation and detailed structure of our proposed framework is
described. Following this, the evaluation of the proposed structure is presented in
Section 4. Finally, the conclusions are discussed in Section 5.

4.2 Previous related studies

For the previous research, one of the most important related research is LST-
Net. In their proposed research, they first used a convolutional neural network to
capture the relationship between multiple time series over a short-term time span.
Secondly, they used recurrent neural networks to capture the connections between
multiple time series over longer time horizons. Since this model could not capture
ultra-long time dependencies, so they proposed ”recurrent skip” to jump between
RNNs to achieve better results within shorter time steps. They also proposed
the very important AR highway to fit the final prediction scale, which solved the
important problem of bias in deep learning on time series prediction.

However, their research still faces some problems in industrialized data. In-
dustrialized data are very complex in terms of dependency lengths, and different
lengths of time dependencies represent completely different meanings (e.g., a chem-
ical reaction of 6 seconds may be completely different from a chemical reaction of
3 seconds). LSTNet [4] confuses these different length dependencies and cannot
distinguish these different length dependencies well. Therefore, we need a model
that can capture mixed dependencies of different lengths.
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Figure 4.1: The structure of LSTNet

4.3 Preparation and pre-processing of sensor

data

4.3.1 Remove noise from sensor data

In the processing factory, the signals from sensors remain some noise. Since
all these signals are recorded from the machines and sensors, noise is filled with
the signals and could affect the procedure of data analysis. For abnormal value
detecting, the vibration amplitude could be completely different because of the
noise. Therefore, we need to find a way to remove the noise from the signal.

The data is extracted from different sensors in a chemical process factory, most
of the noise is white noise [73]. Moreover, we have no idea about the SNR (Signal
to noise ratio) [74], so we could only choose a robust but high accuracy method to
remove these incidental noises.

Since the time-frequency domain has a good localization characteristics,
wavelet analysis has been widely used in many fields. Therefore, the white noise
signal is suppressed by the characteristics of the wavelet decomposition coefficient,
in which the weak correlation signal contained in the sequence is also collated and
provided with more suitable processing data.

The following wavelet analysis method basically eliminates the potential white
noise in the sequence and extracts practical information in the plant signal con-
cisely and effectively.

Wavelet de-noising can be generalized mainly into three methods: (1) Mallat’s
[75] modulus maxima de-noising based on wavelet coefficients (2) Liu’s [76] Beam-
forming correlation wavelet de-noising (3) Donoho [77] and Johnstone proposed
the wavelet threshold de-noising method. Since the wavelet threshold method is
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the development of the other two methods which seem to be more effective in our
research, we finally chose soft-threshold wavelet de-noising method.

The basic idea of wavelet threshold de-noising proposed by Donoho is: After
processing the signal through the wavelet transform (using Mallat algorithm), the
signal generated by the wavelet coefficients contain important information on the
signal, which means the signal’s wavelet coefficient after wavelet decomposition is
large. On the other hand, the wavelet coefficient of noise is comprised smaller. And
the wavelet coefficient of the noise is smaller than the wavelet coefficients of the
signal. For selecting a suitable threshold, only coefficients which are larger than the
threshold are considered to be generated and should be preserved. The coefficients
which are smaller than threshold values are considered as noise generation and
would be set to zero to achieve the purpose of de-noising. The basic steps are
(1) Decomposition: select a signal with N layers of the wavelet decomposition to
decompose; (2) Threshold processing: After decomposing, the coefficients of each
layer are quantified by choosing a suitable threshold value. (3) Reconstruction:
Reconstruct the signal with the processed coefficients.

The basic problems of wavelet threshold de-noising include three aspects: the
selection of wavelet bases, the selection of thresholds and the choice of threshold
function. For the wavelet bases, we chose Daubechies wavelet [78] as db8 with
vanishing moments order of 4.

For the threshold, we simply apply soft thresholding using the universal thresh-
old [79]. The universal threshold is defined as

λ = σ
√

2ln(N) (4.1)

Where σ is a robust estimator of the standard deviation of the finest level
detail coefficients, and N is the length of one signal. Here, we use the standardized
median absolute deviation (MAD) [80] for this variable.

σ = MAD(βJ−1) (4.2)

For a univariate dataset (X1, X2, . . . , Xn) the MAD is defined as the median
of the absolute deviations from the data’s median:

MAD = median(|Xi −median(X)|) (4.3)

4.3.2 Recognize delay from signals

The signals of different sensors contain some delay. For different machines,
signals are transmitted through different media, which may take different time to
transfer. And for each pair of the signals, maybe a potential order exists between
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them, which means a delay may occur according to a different time of transmis-
sions. For this delay, it may occur different kinds of problems such as incorrect
predictions and overfitting, which may not be proper in the following steps.

Since we do not know the range of the delay time of each signal, we need a direct
way to calculate the delay and remove it. In this part, we used cross-correlation
function to remove the delay part.

In signal processing, the value of cross-correlation shows the how similar the
two signals are as the extent of relevance from the first signal relative to the other.
However, the cross-correlation is only used for related signals. Finally, we tried
to calculate the cross-correlation and then check whether it is related. If it is not
related, the cross-correlation would not be considered.

For the time delay between the two signals is showed by the argument of when
maximum (if the two signals are positively correlated, or minimum if the 2 signals
are negatively correlated) is obtained, or the arg-max (or arg-min) of the cross-
correlation, as in

∂delay = argmax((f ∗ g) (t)) (4.4)

Here f and g are the two signals and ∗ is the cross correlation operator.
However, the cross-correlation function is mainly used for 2 correlated function.

According to our data, most of the signals (which means different signals) don’t
have a strong relationship with others. So here, we first calculated the cross-
correlations of all the pairs, and then find the related ones to proceed the following
steps.

Figure 4.2: The structure of mixed length dilation block

Since the delay could be very large, so when we use the cross-correlation, some
value would not take part into the calculation (which usually occurs when the
signal has a wide fluctuation), and that will cause a deviation. Therefore, we
tried several ways to normalize the data and finally, we chose the value which is
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subtracted by the mean of the whole column (which is decided according to the
shape of most of the data). In this way, the deviation will decrease to the lowest
level.

Per this method, most of the delays among related sensors could be removed.
Only if the delay is longer than considered will be missed according to the method
(however the range of delay is artificially controlled and the case which delay is
larger than considered is almost impossible).

4.3.3 Choosing correlated sensors

In this research, correlation coefficient is applied to choose sensors with po-
tential linkage. Since we query both the linear and nonlinear correlation between
sensors, the Pearson product-moment correlation coefficient [81] and Spearman
rank correlation [82] is finally chosed as our correlation matrix

The Pearson correlation evaluates the linearity of the relationship between
two continuous variables. Two variables have a neutral linear correlation when a
variation in one variable is associated with a proportionate change in the other
variable. We can use the Pearson correlation to estimate whether an increase in
temperature in a plant facility is associated with a decrease in the thickness of the
chemical feedstock.

Suppose two random variables are X and Y , and the amount of their elements
is N . We assume that ith, i ∈ [1, N ] values taken by the two stochastic variables
are represented by Xi and Yi. The Pearson correlation coefficient is calculated
between the stochastic variables X and Y in the following way:

r =

∑n
i=1

(
Xi − X̄

) (
Yi − Ȳ

)√∑n
i=1

(
Xi − X̄

)2
√∑n

i=1

(
Yi − Ȳ

)2
(4.5)

Where X̄ and Ȳ are the average value of variable X and Y , respectively.
In statistics, the Spearman rank correlation coefficient (with the Greek letter

ρ) is used to evaluate the rank correlation i.e., the correlation of order, between
two variables X, Y . The Spearman correlation coefficient can be calculated if the
two random variables do not take exactly the same values. The ρ between two
variables can reach +1 or -1 when the two variables have the same tendency to
change.

Suppose two stochastic variables areX and Y , and the amount of their elements
is N . The ith, i ∈ [1, N ] values taken by the two stochastic variables are denoted
by Xi and Yi, respectively. By sorting X and Y (either in increasing or decreasing
order at the same time), we can obtain the ranking x and y of the elements of two
groups. The variables in x and y are subtracted one by one to obtain an equal rank
difference set S, where Si = xi − yi, i ∈ [1, N ]. The Spearman rank correlation
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coefficient of the stochastic variables X and Y is then generated by S, which is
shown below.

ρ = 1− 6
∑N

i=1 S
2
i

N(N2 − 1)
(4.6)

By calculating the Pearson and Spearman correlation coefficients between two
sensors, we can select the most relevant few sensor sequences for prediction from
all the sensor time series.

4.4 Proposed network structure

4.4.1 Problem formulation

In our research, the problem we address belongs to the field of MTS forecasting
in sensors. More specifically, given a certain number of time series of sensor data,
X = {XT−w, XT−w+1, XT−w+2, . . . , XT−1}, where Xi ∈ Rm and m is the number
of the sensors, we aim to forecast XT−1+∆, where ∆ indicates the required horizon
ahead of the current timestamp. Here, Xi denotes the observed sensor data at
time i, w is the time window, and T − 1 denotes the current timestamp. In this
task, only the time series from T −w to T − 1 is considered because all the values
before time stamp T −w are supposed to have no useful information for predicting
the sensors in the future. In addition, both w and ∆ are fixed values, which are
previously chosen and customized for different tasks. Here the problem formalation
is the same as the one in the previous chapter.

4.4.2 Whole structure

According to Figure 4.3, the first part of our proposed framework is constructed
with a pure convolutional layer without pooling. Owing to the power of convolu-
tions, we employed a CNN to capture the local dependencies among all the sensor
data. Specifically, the convolution layer consists of k filters C1, C2, . . . , Ck ∈ Rm∗h

where the width of the CNN kernel is the same as dimension m of input time
series. h denotes the height of CNN kernel. Particularly, when the width of the
kernel equals 1, the convolution captures the linear combination patterns among
the different sensors. In this layer, the ith convolution sweeps over the whole input
matrix, X, with a stride of 1 and generates,

Di = Activation (Ci ∗X + bi) (4.7)

where ∗ implys the operation of convolution, bi denotes the bias, and Di ∈
Rw−h+1 denotes the ith convolutional result. We used Leaky RELU [83] as our
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Figure 4.3: The whole structure of the proposed framework

activation function, and the output matrix of this layer is sized with (w − h+ 1)×
k.

With different convolution kernels, different patterns of time series combina-
tions are generated, and the useful ones are captured by training. For each pattern,
which is named as one observation, Di is the ith observation sequence and dlen is
the length of each observation sequence.

The second part of the framework is constructed with several layers, in which
each layer is combined with a mixed length dilation block. In this part, we aim to
capture the dependencies of sensors within different time lengths. More specifically,
we adopted different dilation degrees in different layers, which higher layer captures
a longer term of time dependency.

Through these mixed length dilation blocks, dependencies of different time
lengths are connected with a dense layer, which automatically learns the impor-
tance of different dependencies. More specifically,

HidOut = concat (hidden0, hidden1, . . . , hiddenL−1) (4.8)

DenOut = Wd ∗HidOut+ bd (4.9)

Where HidOut ∈ RL×hidr concatenates all the hidden outputs from the dilation
blocks, hidr is the number of features output from a dilation block, Wd is the weight
matrices of the dense layers, and bd is the biases. L is the number of mixed length
dilation blocks.

Finally, the output of the dense layer DenOut is added along with the output of
the Autoregressive highway, which is integrated as the final prediction of XT−1+∆

as follows:
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X̂T−1+∆ = DenOut+ ArOut (4.10)

where X̂T−1+∆ denotes the forecasting value of XT−1+∆. Here, detailed analysis
and explanation of mixed length dilation block and Autoregressive highway would
be introduced in the following section.

4.4.3 Mixed length convolutional filters

Figure 4.4: The structure of mixed length dilation block

In this section, we introduce a custom stackable block structure, which is also
the most central part of this study.

According to Figure 4.4, the mixed length dilation block has one input and
two outputs. The input is first connected with several 1-dimensional convolution
kernels in different scales, which aim to capture the dependencies within the dif-
ferent lengths. For each dilated convolution kernel, the receptive field is the entire
observation sequence (which is a one-dimensional (1-D) sequence).

Specifically,

Gl,i = Activation
(
dConvl,i ∗ Inputl + bl,i

)
(4.11)

Where l ∈ [0, L) denotes the lth dilation block at lth layer. dConvl,i and Gl,i

denotes the ith dilated convolution filter and convolution result at lth dilation block,
respectively. For each convolution filter at lth layer, we choose the dilation factor
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as the value of l. Particularly, when l equals 1, the dilated convolution becomes
the normal convolution. When l equals 0, the dilated convolution degenerates to
a direct connection.

Therefore, by each dilation block in our framework, the dilation factor becomes
larger than the ones in the previous blocks. In each block, we choose several
different sizes of convolutional filters and concatenate the result together, which
help to capture the dependencies in a variety of different time length.

Gl = concat
(
G2
l , G

3
l , G

5
l

)
(4.12)

Inputl+1 = Gl (4.13)

Where Gi
l denotes the dilation convolution result with the filter size of i at

lth layer. Here we choose the filter size at 2,3 and 5 since these filters are small
and can be stacked to capture a variety of length dependencies. With the help
of dilated convolutions, all the input sequences are convoluted layer-wise, and a
higher layer captures a longer term of time dependency.

After this step, gl would be pop out as the input of the next mixed length
dilation block at the next layer. A Max-pooling layer is then connected after
the concatenate, which helps to filter and retain relatively important dependency
information at different time steps.

Rl = MaxPooling (Gl) (4.14)

Particularly, when l equals 0, the pooling layer would degenerate to a rear
sequence slice, which remains the tail of the whole sequence. Finally, we applied
Gated Recurrent Units (GRUs) [46] to capture the impact from the dependencies
at previous time steps to those at subsequent time steps and reserve the impact
from all previous time steps.

hiddenl = GRU(Rl) (4.15)

Where GRU() denotes Gated Recurrent Units and hiddenl denotes the output
of GRU at the final time step at lth layer. At the end of block l, hiddenl would be
output to the following dense layer.

4.4.4 Autoregressive highway

Since previous research points out that recurrent-based models are insensitive
to the non-periodical changes of data scales. In our research, we also used an AR
highway, which has a similar structure to the ones in previous research. More
precisely,
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ArOuti =
T−1∑

t′=T−window

W i
t′X

i
t′ + bi (4.16)

where i ∈ [1,m], X i
t′ ∈ R indicates the ith data of input at time step t′, W i

t′ ∈ R
denotes the weight matrix for the corresponding time series at time step t′, window
presents the AR time window (which is also called as the order in autoregressive
models), and bi is the bias. Here, ArOuti ∈ R denotes the expected scale of the
ith value of XT−1+∆. All the expected scales are concatenated as follows:

ArOut = concat
(
ArOut1, ArOut2, . . . , ArOutm

)
(4.17)

where ArOut ∈ R1×m denotes the expected scale of the final prediction.

4.4.5 Objective function

For the objective function in the framework, we used the Absolute error (also
called L1 loss) for different datasets, which is defined as:

Loss = min
∑

t ∈ train

m∑
i=1

∣∣∣X i
t−1+∆ − X̂ i

t−1+∆

∣∣∣ (4.18)

In our research, we compared the convergence of the framework based on both
the square error (also called L2 loss) and the absolute error. We found that the
absolute error performs more smoothly and more robustly than the square error
on the experimental data owing to some drastic fluctuation in the time series.
Therefore, we use the absolute error for our datasets.

4.5 Evaluation

4.5.1 Related comparison methods

The following methods are used for comparative evaluation:

• AR[84] denotes the autoregression model, which is the simplest and most tra-
ditional time series forecasting algorithm that can be used to predict multiple
time series linearly.

• LSVR[85] denotes a VAR model in which an SVR is used as the objective
function.

• VAR-MLP[36] denotes a model that combines a VAR model with multilayer
perception (MLP).
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• GRU denotes a fully connected RNN model using a GRU as its recurrent
cell.

• LSTNet[4] is a well-known CNN and RNN-based deep neural network, which
uses a recurrent skip to capture long-term dependencies.

4.5.2 Calculation matrices

We used the conventional calculation metrics in the sensor data prediction
problems: root relative squared error (RSE)

RSE =

√
1
m

∑
t

∑m
i=1

(
Yit − Ŷit

)2

√
1
m

∑
t

∑m
i=1

(
Yit −mean

(
Ŷi

))2
(4.19)

Here, Y, Ŷ ∈ Rm×T denote the ground truth and predicting value of sensor
data, respectively. We used RSE as our calculation metrics because it evaluates
the predicted value regardless of the scale of the data. Here smaller RSE implies
better prediction.

4.5.3 Data description

To evaluate our proposed framework, the following 3 benchmark datasets are
used:

• Exchange Rate: The data are provided by the author of LSTNet. They
describe the daily exchange rates from 8 foreign countries started from 1990
to 2016.

• Sensor20 [18]: The data is recorded from 373 sensors through one year in a
Japanese chemical process factory named “PLANET MEISTER”. We chose
20 correlated sensors among all the sensors. The whole dataset was splited
with 60% for trainning, 20% for both validation and testing.

• Sensor50: Same data source as the one in Sensor20, but with 50 correlated
sensors.

The details of these datasets are outlined in the table 4.1:
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Table 4.1: The structure of the dataset
Dataset Length Dimension Time Interval

Exchange Rate 7588 8 1 day
Sensor20 20000 20 1 minute
Sensor50 20000 50 1 minute

4.5.4 Experimental details

To evaluate the performance of our proposed framework, a grid search on all
the tunable hyperparameters of each method is conducted in all the datasets.
More specifically, on all the datasets, the input window size, w, is chosen from
{24, 36, 48}. For AR and LSVR, we chose the regularization coefficient λ from
{2−8, 2−6, · · · , 1, 22} [4]. For VAR-MLP, the hidden size of the MLP is chosen from
{20, 30, ..., 100}. For the GRU, LSTNet, and our proposed framework, the hidden
size of the recurrent layer is chosen from {20, 30, 50}.For both the LSTNet and
our proposed framework, the filter number of the convolutions is chosen from {50,
100, 200, 300}. For the LSTNet, the recurrent skip length is chosen from {3, 6,
9, 12, 24}. For our proposed MLDNet, the number of blocks is chosen from {1, 2,
..., 6}.

During the training procedure, we choose the batch size as 128. We used
2× 10−3 learning rate for all the dataset.

4.5.5 Experimental results

To evaluate the performance of our proposed framework, we conduct a grid
search on all the tunable hyperparameters of each method in all the datasets.
Particularly, we chose L = 3 in the exchange rate dataset and L = 4 in both
sensor20 and sensor50. The evaluation results for all the methods are summarized
in Tables 4.2, 4.3, 4.4.

Table 4.2: The RSE result of the Exchange Rate Dataset

Methods
Horizon

3 6 9 12
AR 0.0228 0.0279 0.0353 0.0445

LSVR 0.0189 0.0284 0.0425 0.0662
VAMLP 0.0265 0.0394 0.0407 0.0578

GRU 0.0192 0.0264 0.0408 0.0626
LSTNet 0.0226 0.0280 0.0356 0.0449
MLDNet 0.0197 0.0261 0.0332 0.0425
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Table 4.3: The RSE result of the SENSOR20 Dataset

Methods
Horizon

3 5 10 15
AR 0.0737 0.0701 0.0815 0.0914

LSVR 0.0658 0.0694 0.0832 0.0993
VAMLP 0.0671 0.0807 0.0841 0.0948

GRU 0.0626 0.0630 0.0678 0.0961
LSTNet 0.0395 0.0449 0.0483 0.0772
MLDNet 0.0216 0.0232 0.0251 0.0428

Table 4.4: The RSE result of the SENSOR50 Dataset

Methods
Horizon

3 5 10 15
AR 0.0536 0.0814 0.1252 0.1829

LSVR 0.0442 0.0657 0.1054 0.1592
VAMLP 0.0437 0.0615 0.0930 0.1484

GRU 0.0425 0.0578 0.0914 0.1096
LSTNet 0.0414 0.0568 0.0722 0.1018
MLDNet 0.0399 0.0532 0.0703 0.0978

The evaluation results cover all the three metrics on all four datasets. Here, the
horizon size represents the different predicting lengths ahead of the current time
point. In these tasks, a larger horizon is associated with a more difficult task. On
each dataset for each calculation metric, the best result is highlighted in bold in
each column in the tables. From the tables above, the evaluation results provide
strong evidence of the success of our proposed framework in both short and long
horizons and we can conclude that our proposed MLDNet outperforms the other
related baseline methods on all the 3 datasets.

4.6 Conclusion

This research aims to predict multiple sensor data in smart industry. However,
sensor data is susceptible to variation from other sensors. In addition, sensor data
are noisy and there are signal delays between sensors, which can seriously affect
the prediction results.

During this research, we found a generally suitable denoising method for in-
dustrial sensors by applying wavelet transform to remove the noise and removing
the delay between sensors using the correlation coefficients, and finally using the
correlation coefficients to select the appropriate sensor data to form our dataset.
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In this research, a new deep learning framework (MLDNet) is proposed to solve
the sensor data prediction problem. In this framework, by applying the proposed
Mixed Length Dilation Blocks, the mixed length of dependencies among related
sensor data is captured well. Experiments show that the proposed framework
yields ambitious results through all the benchmark datasets compared to those of
several baselines methods.

However, there still remains much room for improvement in this research. First,
in the Mixed Length Dilation Blocks, currently, 3 kinds of convolution filters are
used to capture the combination dependency patterns. However, the capability
of this component is significantly restricted by the number of convolutional sizes.
Thus, whether there is a better structure that can be applied instead needs to
be explored. Second, for this proposed network, we can only capture the effect
between the sensor time series in the same block. We know that changes in certain
factors (like temperature, etc.) can have a dramatic impact on sensor data, but
this model only captures the interactions between sensors within the similar time
dependency length and does not capture the impact of mixture of length. Finally,
for predicting multivariate time series, it would be more practical if we could
extend our model from ordinary sensor time series prediction to various time series
in industry.

Therefore, in the next chapter, a special framework for various of multivari-
ate time series forecasting will be presented. This model can predict various of
multivariate time series without the need to set the size of the convolution kernel
in advance, and can capture the combination pattern of time dependency on the
input series, thus predicting multivariate time series more accurately.

The paper in this chapter has been published in:

C1 Song W, Weng W, Fujimura S. Abnormal data analysis in process indus-
tries using deep-learning method[C]//2017 IEEE International Conference on
Industrial Engineering and Engineering Management (IEEM). IEEE, 2017:
2356-2360. https://doi.org/10.1109/IEEM.2017.8290313

C2 Song W, Fujimura S. Sensor Data Prediction in Process Industry by Cap-
turing Mixed Length of Time Dependencies[C]//2021 IEEE International
Conference on Industrial Engineering and Engineering Management (IEEM).
IEEE, 2021: To be published
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Chapter 5

Multivariate time series
forecasting in smart industry
(MDTNet)

5.1 Introduction

Multivariate time series (MTS) data can be found everywhere in our daily lives,
such as stock prices, car traffic data, and electricity consumption bills. In these
fields, researchers are typically interested in predicting the changes and the trends
that may occur in the future based on the historical time series data. Considering
electricity consumption as an example, a good electricity consumption forecast
can assist power plants in distributing power with increased efficiency and at a
decreased cost. However, the problem of MTS forecasting is complex and has
been already studied for several years.

In the studies analyzing such sequence data formed by multiple time series,
one of the major challenges [86] [87]is the method to determine the complex de-
pendencies among multiple variables in the time dimension. More specifically,

1. The prediction of a variable is not only affected by its historical value but
also by the correlated variables.

2. The prediction of one variable will vary with several other input variables,
and the dependence on these variables may be different.

3. The prediction of a variable can also vary with the influence of some addi-
tional factors that for some reason are not available as input variables.

Most of the effects on a variable caused by other variables can be broadly clas-
sified into long-term effects and short-term impacts, which are typically reflected
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as “trends” and “fluctuations,” respectively.

Thus far, many approaches have been proposed to capture the correlation
among variables and dependencies along the time dimension in an MTS forecasting
problem. In traditional statistical models, i.e. the vector auto-regressive (VAR)
model [8][84][88] and the Gaussian process model [89][90], linear correlations are
assumed among the variables. However, owing to the numerous variables, these
linear models are prone to overfitting problems. Recently, deep-learning-based
models have become well-known and efficient for solving forecasting problems,
such as the innovative method of LSTNet [4] and temporal pattern attention long
short-term memory model (TPA-LSTM) [47], which achieve STOA performance.
Although these models attempt to catch the dependencies between variables, they
separately capture the different time length of dependencies. Dependencies of
a particular length are captured and subsequently combined for generating the
forecasting result of different variables.

However, the long- and short-term dependencies among variables, i.e., their
“influence,” are not completely independent but mutually affect and restrict each
other. For example, the prices of foods, such as vegetables and pork, are simulta-
neously affected by many factors. They are not only impacted by the long-term
effects of supply, demand, and inflation and the cyclical effects of the production
season but also by some short-term abrupt effects, such as natural disasters (e.g.,
animal epidemics or hail). Different factors have different degrees of impact on
food prices, and simultaneously, one influencing factor has different effects on food
prices in different periods. These long- or short-term factors are strongly related.
They restrict and influence each other differently in the entire period. For example,
although vegetable prices are affected by the temperature variation (long-term) in
summer, they are more susceptible to the abrupt and drastic changes in temper-
ature (short-term) caused by hail. In this example, the dependency of vegetable
prices on temperature is the mixture of long- and short-term effects. Furthermore,
to forecast vegetable prices, we should definitely consider the effects of several pos-
sible factors [91], such as temperature, rainfall, and even prices of other agricultural
products. However, even when only the impact of temperature is examined, both
the long- and short-term influences should be considered. Therefore, it is very
important to capture the mixed dependencies of both the long- and short-term
effects of all correlated variables.

In this research, a new deep learning framework is proposed to solve the MTS
forecasting problem, named as the mixed dependence time-series network (MDT-
Net). It consists of two flows: a main flow and an AR highway. An AR highway is
commonly used in deep-learning-based models, such as LSTNet[4] and TPA-LSTM
[47], for simulating the forecasting scale. The main flow is used for capturing the
combination patterns of the long-and short-term dependencies; it has three key
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components:

• Stacked dilated convolution component, which applies several dilated convo-
lution filters to parallelly capture the dependencies of all the multivariates
in different time lengths.

• Dependencies combination component, which uses vanilla convolution filters
to deconstruct the complex combination among the different dependencies.

• Recurrent component, which applies a recursive layer to capture the changes
in the different combinations along all the time step.

Finally, the output values of both the flows are added to generate the forecast-
ing result.

From the point of view of application, the proposed framework is capable for
predicting the future values for time series with different scale and curvature.
First, in the stacked dilated convolution component, CNN is applied to capture
the dependencies within different length. From a signaling perspective, CNNs work
well as filters to extract useful data fluctuations and trends. These fluctuations
and trend changes can be linearly combined into different curvatures through the
training process, which also captures the dependencies between these otherwise
less correlated time series. Second, due to the existence of the AR highway, the
scale of vast majority of related variables are intercepted in the highway. Hence,
in the main flow, the model can more easily capture the volatility outside of the
scale, and thus can over-predict to some extent.

For the prepocessing of the input data, we believe the following 2 methods are
necessary:

1. Rank-based correlation matrices (Spearman) for choosing related time series
is first required. Since the rank-based matrices focus only on the order of
the magnitude of the values in the sequence, the scale of the sequence itself
will not affect the degree of correlation between the two sequences, which
also solves the problem of low correlation coefficients of originally correlated
sequences because of different scales.

2. In some special cases, logarithmic processing is an effective way to unify the
curvature of a sequence. In suitable cases, using log function of different
sequences with different bases can lead to more easily converged data, thus
accelerating the training and obtaining better results.

To conclude, the main contributions of this reseach are summarized below

1. We proposed a new framework for MTS forecasting which captures the com-
bination patterns of long- and short-term dependencies.
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2. Our proposed framework can capture a very long-term dependency and can
replace the “recurrent skip” in [4] without previously setting the length.

3. Our proposed framework can capture the impact of additional factors on the
current forecast to some extent.

4. We conducted several experiments on 4 benchmark datasets for comparing
the proposed framework with other baselines, and the experimental results
turn out that our framework performs competitively on all the datasets.

The rest of this chapter is organized as follows. In Section 2, the problem
formulation is established. Subsequently, in Section 3 we describe the detailed
structure of our proposed framework. Following this, the experimental results
and an ablation study are discussed in Section 4. Finally, the conclusions are
established in Section 5.

5.2 Previous related studies

For the previous research MLDNet, we have proposed a relative competive
framework for time series prediction for chemical sensor data. In this research,
a new deep learning framework (MLDNet) is proposed to solve the sensor data
prediction problem. In this framework, by applying the proposed Mixed Length
Dilation Blocks, the mixed length of dependencies among related sensor data is
captured well. Experiments show that the proposed framework yields ambitious
results through all the benchmark datasets compared to those of several baselines
methods.

However, there still remains much room for improvement in this research. First,
in the Mixed Length Dilation Blocks, currently, 3 kinds of convolution filters are
used to capture the combination dependency patterns. However, the capability
of this component is significantly restricted by the number of convolutional sizes.
Thus, whether there is a better structure that can be applied instead needs to
be explored. Second, for this proposed network, we can only capture the effect
between the sensor time series in the same block. We know that changes in certain
factors (like temperature, etc.) can have a dramatic impact on sensor data, but
this model only captures the interactions between sensors within the similar time
dependency length and does not capture the impact of mixture of length. Finally,
for predicting multivariate time series, it would be more practical if we could
extend our model from ordinary sensor time series prediction to various time series
in industry.
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5.3 Problem formulation

In our research, the problem we address belongs to the field of MTS
forecasting. More specifically, given a certain number of time series, X =
{XT−w, XT−w+1, XT−w+2, . . . , XT−1}, where Xi ∈ Rm and m is the dimension of
the multivariables, we aim to forecast XT−1+∆, where ∆ denotes the required hori-
zon ahead of the current time stamp. Here, Xi denotes the observed multivariables
at time i, w is the time window, and T − 1 denotes the current time stamp. In
this task, only the time series from T − w to T − 1 is considered because all the
values before time stamp T − w are supposed to have no useful information for
forecasting the multivariates in the future. This is a common assumption, which
was also applied in [4] and [47]. In addition, both w and ∆ are fixed values, which
are previously chosen and customized for different tasks. At time stamp T − 1, in-
put matrix X = {XT−w, XT−w+1, XT−w+2, . . . , XT−1} ∈ Rm∗w is given to forecast
Y = XT−1+∆ ∈ Rm.

5.4 Combination patterns of long- and short-

term dependencies

In this section, we give the detailed explanation about why the combination
pattern of long- and short-term dependencies is important and how it impacts the
forecasting time series. Take the vegetable price as an toy example. Assume we
want to use check the impact of temperature on vegetable prices, and here are 2
situations:

• In summer, the temperature reduced from 32 degrees centigrade to 28 degrees
centigrade in one month, the vegetable price goes down slowly because the
cost of preserving vegetables decreased.

• Still in summer, the temperature reduced from 32 degrees centigrade to 28
degrees centigrade in 6 hours, the vegetable prices are soaring. The reason
for this is because of the rainstorm that have occurred.

Comparing these 2 situations, the temperature both reduced 4 degrees, but
in a different time length, which could be regarded as long-term trend and short-
term fluctuation of temperature, respectively. As the result, the vegetable price
shows completely different changes in these 2 situations. In particular, even in the
same case of temperature drop, if the time length of the drop is different, it causes
completely different results. Indeed, the more direct factors that affect vegetable
prices are the cost of preserving and damage caused by rain, but these factors are

57



Chapter 5 Multivariate time series forecasting in smart industry (MDTNet)

beyond observations. Fortunately, the unobserved factors still affect the related
observed time series and reflect the time series in the time domain with different
lengths, which is exactly the different length of dependencies between different
time series. Therefore, to capture the impact from these unobserved factors, we
choose to capture different time lengths of dependencies from observed related time
series. Besides, since different unobserved factors may have different impact on the
forecasting time series in different time, it is important to capture the combination
pattern of these factors.

Specifically, according to the Figure 5.1, we applied Stacked dilated Conv com-
ponent to capture the dependencies with different time length. In Dependency
Combination component, we deconstruct the combination pattern of the mixed
dependencies due to the different impact from different unobserved factors. In
Recurrent component, we extract the different impact along different time steps
since combination patterns may have an impact to future patterns.

Figure 5.1: Abbreviated flow chart of the whole framework

5.5 Proposed network structure

5.5.1 Conv input/Direct input

The first component of our proposed framework is constructed with a pure
convolutional layer without pooling. Owing to the power of convolutions, we
employed a CNN to capture the linear combination patterns and local dependencies
among all the time series data. Specifically, the convolution layer consists of k
filters C1 , C2, . . . , Ck ∈ Rm∗h1 , where the width of the CNN kernel is same
as dimension m of the input time series and h1 is the height of the CNN kernel.
Particularly, when the width of the kernel equals 1, the convolution captures the
linear combination patterns among the different time series. In this layer, the ith

convolution sweeps over the whole input matrix, X, with a stride of 1 and generates

obsi = Activation (Ci ∗X + bi) , (5.1)
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Figure 5.2: the whole structure of the framework

where ∗ indicates the convolution operation, bi denotes the bias, and obsi ∈
Rw−h1+1 denotes the ith convolutional result. We used Leaky RELU[92] as our
activation function. Subsequently, the output matrix of this layer is sized with
(w − h1 + 1) × k. With different convolution kernels, different patterns of time
series combinations are generated, and the useful ones are captured by training.
For each pattern, which is named as one observation, obsi is the ith observation
sequence and obslen is the length of each observation sequence. This convolutional
layer achieve an outstanding performance when the dimension, m, of the input
matrix, X, is relatively small. However, when m becomes extremely large, the
input matrix becomes huge, and the number of convolutional filters significantly
restricts the capability of this layer. Therefore, we also attempted to directly
apply each time series of the input as obsi in this part, which is called as “direct
input.” We compare both the types of inputs and show the results in the evaluation
discussion.
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5.5.2 Stacked dilated conv component

The second component of our proposed framework is constructed with several
dilated convolutions[93], aiming to capture all the time dependencies from short to
long ones. For sequential problems, a common approach to capture time dependen-
cies is to use RNNs [94]. However, RNNs cannot easily capture a very long-term
correlation [95]. Therefore, [4] proposed a novel recurrent-skip component that
skip-connects RNN cells to solve this problem. Because for different datasets, the
skip length should be pre-defined to capture different lengths of time dependencies,
a more appropriate method for solving this problem is to allow the framework to
automatically capture all the scales of the time dependencies. Because RNNs can-
not be parallelized trained, using several RNNs to capture different lengths of time
dependencies may require a high training cost. Thus, in our research, the solution
for capturing both short- and long-term dependencies is using stacked dilated con-
volutions. Each observation sequence is sequentially connected to several dilated
convolutional layers. More specifically, each observation sequence output from the
previous component is connected with p layers of the dilated convolutions. For
each dilated convolution kernel, the receptive field is the entire observation se-
quence (which is a one-dimensional (1-D) sequence), and the dilated convolution,
F, over an element of x ∈ Rn is established as:

F (s) = (x ∗ f) (s) =

fz−1∑
j=0

f (j) · xs−d·j, (5.2)

where d denotes the dilation factor, fz denotes the size of filter, xs−d·j illus-

trates the (s− d · j)th value of x, and f() is a filter satisfying {0, . . . , fz − 1} ∈ R.
Particularly, when d equals 1, the dilated convolution, F , degenerates to a nor-
mal convolution. When d increases, the receptive field of each stride enlarges and
captures long-term dependencies. For each dilated convolution layer,

obsl+1
i = Activation

(
F l ∗ obsli + bli

)
(5.3)

where obsli denotes the ith observation sequence at the lth layer and F l denotes
the dilated convolution at layer l. Specifically, at the first layer, we consider each
observation sequence as one channel, and sweep it with dilated convolutions to
obtain several convoluted sequences. For the following layers, these convoluted
sequences are treated as new observation sequences, and padding is used at the
head of these sequences to obtain same observation lengths as those in the previous
layer, which assists the following layers in parallel computing. By each dilated
convolutional layer in our framework, the dilation factor, d, becomes twice larger
than the ones in the previous layers. Because there are k1 dilated filters in each
layer, the shape of obsl ∈ Robslen×k1 , where obslen is the length of each observation
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sequence. After all the dilated convolution layers, the observation sequences are
concatenated as expressed below:

dep = concat
(
obs0, obs1, obs2, .., obsp

)
(5.4)

where obs0 in the first layer is grouped up with obsi output from the previous
component. Here obs0 ∈ Robslen×k, obs1..p ∈ Robslen×k1 , dep ∈ Robslen×(k+k1×p). In
this part of our proposed framework, all the observations are convoluted layer-wise,
and a higher layer captures a longer term of time dependency. The concept of using
a stack of dilated convolutions originated from [96]; however, in our framework,
different structures were used in each dilated convolutional layer. Considering
the weights of the time dependencies captured by each observation sequence, to
forecast different time series, these weights should be different and learned by
training. Thus, all the observation sequences are concatenated, and the method
to learn these weights of the time dependencies is explained in the next part.

5.5.3 Dependency combination component

The third component of our framework is constructed with another convo-
lutional layer, aiming to deconstruct the complex combination among different
dependencies.

For previous researches, one of the main difficulties is to capture the complex
combination patterns among different related time series. The impact from differ-
ent related time series to the forecasting time series are different, and would be
even more complicate along the time axis. In this component, we mainly have 2
targets: 1. We aim to capture the useful dependency patterns at each time steps
2. We aim to keep the useful patterns along the time steps, especially in a very
long-term domain, which can replace the “recurrent skip” in the LSTNet.

In this component, we use a large CNN kernel to sweep over all the observations
to capture the useful dependency patterns. At each stride of the CNN, the width
of the kernel equals the number of observations, and the height of the kernel covers
the entire time window by the longest term of the observations. Specifically, in
this layer, the ith convolutional filter, Di, sweeps through the whole input matrix,
dep, with a stride of 1 and generates

Ri = Activation (Di ∗ dep+ bi) (5.5)

where Di ∈ R(k+k1×p)×h2 ,Ri ∈ Robslen−h2+1. Here, k+k1×p is the width of the
CNN kernel and h2 is the height of the kernel. Here, h2 satisfies h1×fz×2p−1×h2 <
w, because we only focus on dependency lengths shorter than the window size. A
pooling layer is connected after the convolution, and all the Ri are concatenated
as follows:
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Ri
′ = MaxPooling (Ri) (5.6)

R′ = concat
(
R′1, R

′
2, R

′
3, . . . , R

′
q

)
(5.7)

where q denotes the number of convolutional filters, and MaxPooling is a 1-D
max pooling layer to compress the sequence for the following recurrent components
and help the framework to select extremely long patterns. The size of Ri′ ∈
Rb(obslen−h2+1)/stridec , where stride is the stride length of the pooling layer. Here,
R′ ∈ Rflen×q, and each row of R′ denotes the combination pattern captured by the
CNN from the entire time window. We assign flen = b(obslen− h2 + 1) /stridec.

In this component, the convolutional layer captures the mixture pattern of
short- and long-term dependencies and MaxPooling remains more influential de-
pendency patterns and decreases the dimension on time domain. After this pooling
layer, dependency patterns along the time axis are ”skip-concatenated” together,
which shortens the time length between each consecutively captured dependen-
cies and greatly reduces the whole distance of along the time axis. Therefore,
we believe that this pooling layer plays the same role as the “recurrent skip” in
the LSTNet, which allows capturing the extremely long-term dependencies among
multiple variables.

5.5.4 Recurrent component

The following part is a recurrent layer constructed with gated recurrent units
(GRUs)[46]. In this component, we aim to capture the impact from the combi-
nations at previous time steps to those at subsequent time steps and reserve the
impact of combination pattern from all previous time steps.

To explain more clearly about how previous dependency patterns would have
an impact on dependencies in future time steps, again we take the vegetable price
as the example. Assuming that vegetables have already experienced one devastat-
ing impact caused by a rainstorm which happens long time ago, then Vegetable
price would continue to increase slowly due to the cooling of the second rainstorm
(because the price has risen to a very high level), but will not slow down due to
the reduction in preservation costs (because vegetables will be in short supply for
a long time).

Therefore, we used a vanilla recurrent layer constructed by GRUs to learn the
“importance pattern” for different combinations along all the time steps. Specifi-
cally, the hidden state of the recurrent units at time step t′ is computed as follows:

rt = σ
(
WR′rR

′
t +Whiddenrhiddent−1 + br

)
(5.8)
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zt = σ
(
WR′zR

′
t +Whiddenzhiddent−1 + bz

)
(5.9)

nt = Relu
(
WR′nR

′
t + rt � (Whiddennhiddent−1) + bn

)
(5.10)

hiddent = (1− zt)� nt + zt � hiddent−1 (5.11)

where σ is a sigmoid function, � denotes the Hadamard product, and Relu
indicates the hidden update activation function. R′t indicates the tth row of R′

that outputs from the previous dependence combination component.
Here we choose RNN based structure (GRU) in this component because we

need to use a structure to keep the impact from the previous patterns to future
pattern, and it is natural to use a hidden state to reserve all these impacts, which
happens to be the basic structure of RNN. Comparing with CNN based structures,
RNN based structure as Hidden Markov Chain-like models, are more suitable
for capturing such features with temporal sequences. CNNs based structures, on
the other hand, lose this Markovian property. Because we care more about the
sequential order of the mixed patterns and the impact between before and after,
we prefer to use the RNN based structure in this component.

5.5.5 All-time dense output

For the last part in our framework, dense layers are used to merge all the hidden
outputs from the recurrent units. Based on our experiments, we observed that each
hidden output of the recurrent units at time step t denotes different time steps
of the dependencies. Moreover, the required horizon ahead of the last time step
(which is also the forecasting point) could be impacted by all the dependencies.
Thus, we concatenate all the hidden outputs from the recurrent units in all the
time steps and append two dense layers. More specifically,

HidOut = concat (hidden0, hidden1, . . . , hiddenobslen−h2) (5.12)

DenOut1 = Wd1 ∗HidOut+ bd1 (5.13)

DenOut = Wd2 ∗DenOut1 + bd2 (5.14)

where HidOut ∈ Rflen×hidr concatenates all the hidden outputs in this step,
hidr is the amount of features in the hidden state of a GRU,Wd1 and Wd2 are the
weight matrices of the dense layers, and bd1 and bd2 are the biases. DenOut1 ∈
Rflen×m aims to learn the mapping from all the hidden outputs to m sequences, and
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here, each sequence denotes one corresponding time series sigi ∈ Rflen×1, where
i = 1, 2, ..,m, which reserves all the time dependencies in different time steps.
This dense layer is designed to capture the different importance of several hidden
output values at each time step by training. DenOut ∈ R1×m aims to learn the
mapping from all the forecasting time series, sigi, to the corresponding forecasting
result. This dense layer is designed to catch different importance of the time series
values along all the time steps.

Our experimental result also showed that the dense layers after concatenation
of all the hidden GRU outputs perform better than those after the final output of
the GRU. The detailed comparison result will be showed in the evaluation part.

5.5.6 AR highway

Because previous research [4][47] point out that recurrent -based models are
insensitive to the nonperiodical changes of data scales, which is also one of the
major drawbacks of neural network-based models. In [4], the classical AR model
is the most commonly used linear time series forecasting method and was proved
to be effective to capture the local scale of the data with highway connections. In
our research, we also used an AR highway, which has a similar structure to the
ones in previous research. More precisely,

ArOuti =
T−1∑

t′=T−window

W i
t′X

i
t′ + bi (5.15)

where i ∈ [1,m], X i
t′ ∈ R indicates the ith input data at time step t′, W i

t′ ∈ R in-
dicates the weight matrix for the corresponding time series at time step t′, window
indicates the AR time window (which is also called as order in autoregressive mod-
els), and bi is the bias. Here, ArOuti ∈ R denotes the expected scale of the ith

value of XT−1+∆. All the expected scales are concatenated as follows:

ArOut = concat
(
ArOut1, ArOut2, . . . , ArOutm

)
(5.16)

where ArOut ∈ R1×m denotes the expected scale of the final forecasting. The
outputs of the 2 parts are integrated as the final forecasting of XT−1+∆ as follows:

X̂T−1+∆ = DenOut+ ArOut (5.17)

where X̂T−1+∆ is the forecasting value of XT−1+∆.

5.5.7 Objective function

For the objective function in the framework, we used two different objectives
for different datasets.
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1. Absolute error (also called L1 loss), which is defined as

Loss = min
∑

t ∈ train

m∑
i=1

∣∣∣X i
t−1+∆ − X̂ i

t−1+∆

∣∣∣ . (5.18)

In our research, we compared the convergence of the framework based on
both the square error (also called as L2 loss) and the absolute error. We found
that the absolute error performs more smoothly and more robustly than the
square error on the experimental data owing to some drastic fluctuation in
the time series. Therefore, we use the absolute error for most of the datasets.

2. Huber Loss[97], which is defined as

Loss = min
∑

t ∈ train

Zt, (5.19)

Zt =

 1
2

(
X i
t−1+∆ − X̂ i

t−1+∆

)2

/β if
∣∣∣X i

t−1+∆ − X̂ i
t−1+∆

∣∣∣ < β∣∣∣X i
t−1+∆ − X̂ i

t−1+∆

∣∣∣− β
2

otherwise
(5.20)

On some datasets, the loss of the absolute error is extremely large during the
training procedure, which leads to the gradient explosion problem. However,
the Huber loss is more robust to abnormal data points and uses β to decrease
the scale of the loss. Thus, we use the Huber loss on the distinct dataset.

5.6 Evaluation

5.6.1 Related comparison methods

The following methods are used for comparative evaluation:

• AR[84] denotes the autoregression model, which is the simplest and most tra-
ditional time series forecasting algorithm that can be used to predict multiple
time series linearly.

• LSVR[85] denotes a VAR model in which an SVR is used as the objective
function.

• VAR-MLP[36] denotes a model that combines a VAR model with multilayer
perception (MLP).

• GRU denotes a fully connected RNN model using a GRU as its recurrent
cell.
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• LSTNet-skip[4] is a well-known CNN and RNN-based deep neural network,
which uses a recurrent skip to capture long-term dependencies.

• LSTNet-attn[4] denotes an attention-based version of LSTNet.

• TPA-LSTM[47] denotes an attention-based RNN, which uses an attention
mechanism to select related time series.

• MLCNN[98] denotes a multi-task structure which applies the integration of
predictive information.

• TEGNN[48] denotes A novel deep learning framework based on transfer en-
tropy graph structure using causal associativity.

5.6.2 Calculation metrics

We used two conventional calculation metrics in the MTS problems: root rel-
ative squared error (RSE) and empirical correlation coefficient (CORR)[4], which
followed the same evaluation metrics in LSTNet and TPA-LSTM.

RSE =

√
1
m

∑
t

∑m
i=1

(
Yit − Ŷit

)2

√
1
m

∑
t

∑m
i=1

(
Yit −mean

(
Ŷi

))2
(5.21)

CORR =
1

m

m∑
i=1

∑
t (Yit −mean (Yi))

(
Ŷit −mean

(
Ŷi

))
√∑

t (Yit −mean (Yi))
2

√∑
t

(
Ŷit −mean

(
Ŷi

))2
(5.22)

Here, Y, Ŷ ∈ Rm×T indicate the ground truth and forecasting value of MTS,
respectively. We used RSE as one of our calculation metrics because it evaluates
the forecasting value regardless the scale of the data. Smaller RSE and higher
CORR values imply better forecasting.

5.6.3 Data description

To evaluate our proposed framework, the following four benchmark datasets
are used, which are the same datasets used in LSTNet and TPA-LSTM.

• Traffic[99]: The data are collected from the Caltrans Performance Measure-
ment System (PEMS). They were sampled every hour for 48 months by the
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California Department of Transportation. These data depict the road occu-
pancy (between 0 and 1) in the San Francisco Bay Area freeways as measured
by different sensors.

• Solar Energy[100]: The data are collected from 137 PV plants in Alabama
state. They contain the solar power production records of 2006. The time
interval between two data points is 10 min.

• Electricity[101]: The data are collected from a solar-electricity power supplier
company in Portugal. They present the electricity consumption of 321 clients
from 2012 to 2014. The time interval between two data points is 15 min,
and we convert the dataset into hourly data.

• Exchange Rate: The data are provided by the author of LSTNet. They
describe the daily exchange rates from 8 foreign countries started from 1990
to 2016.

All these datasets present a strong correlation among different time series. The
details of the above datasets are outlined in table 5.1:

Table 5.1: Dataset structures
Dataset Length Dimension Time Interval
Exchange Rate 7588 8 1 day
Electricity 26304 321 1 hour
Solar Energy 52560 137 10 minutes
Traffic 17544 862 1 hour

In Table 5.1, ”Length” denotes the total time length of each dataset, “Di-
mension” represents the number of variables in each dataset (which is also m in
Section 3.1), and “Time Interval” denotes the length of the period between two
data points.

To compare our results with those of previous research, all the datasets are
divided into training, validation, and test sets in the proportion of 3:1:1, which is
the same splitting scale as in the previous research. After training, the best per-
forming model in the validation set is used for testing. All the data are normalized
by vanilla Z-score normalization [102] for each sequence before training.

5.6.4 Experimental details

To evaluate the performance of our proposed framework, we conduct a grid
search on all the tunable hyperparameters of each method in all the datasets. More
specifically, on all the datasets, the input window size, w, is chosen from {24, 48,
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96, 120, 144, 168}. For AR and LSVR, twe chose the regularization coefficient
λ from {2−12, 2−10, · · · , 1, 22} [4]. For VAR-MLP, the hidden size of the MLP is
chosen from {20, 30, ..., 100}. For the GRU, LSTNet, and our proposed framework,
the hidden size of the recurrent layer is chosen from {20, 30, 50, 100}.For both
the LSTNet and our proposed framework, the filter number of the convolutions
is chosen from {50, 100, 200, 300}. For the LSTNet, the recurrent skip length
is chosen from {3, 6, 9, 12, 24, 36}. For the TPA-LSTM, the amount of hidden
units, m, is chosen from {25, 40, 55, 70}. For all neural network-based models,
the dropout is chosen from {0.1, 0.2, 0.25}, and Adam[103] is chosen to optimize
the parameters.

For our proposed MDTNet, because it is difficult to select the input style (Conv
input or Direct input) to be applied as the first component of our framework for the
different datasets, we simply use two frameworks: MDTNet-conv (the proposed
framework that uses conv input as the first component) and MDTNet-direct (the
proposed framework that uses direct input as the first component) to test all the
datasets.

During the training procedure, we choose the batch size as 128. We used a 10−3

learning rate for the electricity, solar energy, and traffic datasets and a 2 × 10−3

learning rate for the exchange-rate dataset. Finally, for the electricity dataset, the
Huber loss is chosen as the objective function. For the other datasets, L1 loss is
used as the objective function.

5.6.5 Experimental results

The evaluation results for all the methods are summarized in Tables
5.2,5.3,5.4,5.5. The evaluation results cover all the three metrics on all the four
datasets. Here, the horizon size is set as {3, 6, 12, 24}, respectively, represent-
ing the different forecasting lengths ahead of the current time point. In these
tasks, a larger horizon is associated with a more difficult task. On each dataset
for each calculation metric, the best result is highlighted in bold in each column
in the tables. From the tables above, the total number of results in bold is 7 for
MDTNet-conv (the proposed framework that uses conv input as the first compo-
nent), 11 for MDTNet-direct (the proposed framework that uses direct input as
the first component), and 15 for the remaining methods.

The evaluation results according to these tables illustrate the good performance
of our proposed framework, particularly in the cases with large horizons. Our
proposed frameworks, MDTNet-conv and MDTNet-direct, outperform the model,
TEGNN, on both the exchange-rate and solar energy datasets by 3.60% and 6.26%
in terms of the RSE metric, respectively. Also MDTNet-conv and MDTNet-direct,
outperform the current best model, TPA-LSTM, on both the exchange-rate and
electricity datasets by 1.17% and 2.01% in terms of the RSE metric, respectively.
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This shows the effectiveness and robustness of our proposed framework in capturing
long- and short-term mixed dependencies.

Between the two proposed frameworks, MDTNet-conv shows a better perfor-
mance on the exchange-rate dataset, which proves that the conv input part in our
proposed framework is highly effective for this dataset. However, the results show
that MDTNet-conv is slightly worse than MDTNet-direct on the traffic and elec-
tricity datasets. The probable reason is the amount of multivariables in the input
data. In our proposed MDTNet-conv, we use convolutions to capture the linear
correlation, which significantly restricts the capability of this part by the num-
ber of convolutional filters. Specifically, numerous variables in the dataset imply
poor effectiveness of this part. Therefore, MDTNet-direct performs better than
MDTNet-conv on both the traffic and electricity datasets, which have relatively

Table 5.2: Evaluation result of Exchange Rate

Matrix Methods
Horizon

3 6 12 24

RSE

AR 0.0228 0.0279 0.0353 0.0445
LSVR 0.0189 0.0284 0.0425 0.0662
VAR-MLP 0.0265 0.0394 0.0407 0.0578
GRU 0.0192 0.0264 0.0408 0.0626
LSTNet-skip 0.0226 0.028 0.0356 0.0449
LSTNet-attn 0.0276 0.0321 0.0448 0.0590
TPA-LSTM 0.0174 0.0243 0.0345 0.0444
MLCNN 0.0172 0.0249 0.0519 0.0438
TEGNN 0.0178 0.0245 0.0363 0.0449
MDTNet-conv 0.0176 0.0243 0.0338 0.0435
MDTNet-direct 0.0186 0.0251 0.035 0.0445

CORR

AR 0.9734 0.9656 0.9526 0.9357
LSVR 0.9782 0.9697 0.9546 0.9370
VAR-MLP 0.8609 0.8725 0.828 0.7675
GRU 0.9786 0.9712 0.9531 0.9223
LSTNet-skip 0.9735 0.9658 0.9511 0.9354
LSTNet-attn 0.9717 0.9656 0.9499 0.9339
TPA-LSTM 0.9790 0.9709 0.9564 0.9381
MLCNN 0.9780 0.9610 0.9550 0.9407
TEGNN 0.9815 0.9703 0.9566 0.9352
MDTNet-conv 0.9796 0.9710 0.9567 0.9383
MDTNet-direct 0.9785 0.9710 0.9563 0.9381
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Table 5.3: Evaluation result of Electricity

Matrix Methods
Horizon

3 6 12 24

RSE

AR 0.0995 0.1035 0.1050 0.1054
LSVR 0.1523 0.1372 0.1333 0.1180
VAR-MLP 0.1393 0.1620 0.1557 0.1274
GRU 0.1102 0.1144 0.1183 0.1295
LSTNet-skip 0.0864 0.0931 0.1007 0.1007
LSTNet-attn 0.0868 0.0953 0.0984 0.1059
TPA-LSTM 0.0823 0.0916 0.0964 0.1006
MLCNN 0.0851 0.0939 0.0992 0.1021
TEGNN 0.0822 0.0902 0.0945 0.0989
MDTNet-conv 0.0823 0.0906 0.0957 0.0990
MDTNet-direct 0.0821 0.0889 0.0945 0.0981

CORR

AR 0.8845 0.8632 0.8591 0.8595
LSVR 0.8890 0.8594 0.8003 0.8806
VAR-MLP 0.8708 0.8389 0.8192 0.8679
GRU 0.8597 0.8623 0.8472 0.8651
LSTNet-skip 0.9283 0.9135 0.9077 0.9119
LSTNet-attn 0.9243 0.9095 0.9030 0.9025
TPA-LSTM 0.9439 0.9337 0.9250 0.9133
MLCNN 0.9326 0.9011 0.9030 0.9125
TEGNN 0.9465 0.9330 0.9261 0.9136
MDTNet-conv 0.9383 0.9217 0.9185 0.9141
MDTNet-direct 0.9472 0.9331 0.9267 0.9140

more variables. Comparing the performance of the proposed framework with those
of the other methods, we find that the following:

1. For large horizons (horizons of 6, 12, and 24), our proposed framework out-
performs all the other methods on the electricity, solar energy, and exchange-
rate datasets, whereas it performs worse than TEGNN on the traffic dataset.
Based on our study of the data, we find that the traffic dataset has more
than 800 variables, and each variable represents the road occupancy rate,
which is significantly affected by the variable of the nearest road based on
its location. The dependencies between each road variable and the other
variables are extremely different. In our framework, we use a large convo-
lution layer to capture these combination dependencies and one recurrent
layer to sweep these combinations in different time steps. The size of the
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Table 5.4: Evaluation result of Solar Energy

Matrix Methods
Horizon

3 6 12 24

RSE

AR 0.2435 0.3790 0.5911 0.8699
LSVR 0.2021 0.2999 0.4846 0.7300
VAR-MLP 0.1922 0.2679 0.4244 0.6841
GRU 0.1932 0.2628 0.4163 0.4852
LSTNet-skip 0.1843 0.2559 0.3254 0.4643
LSTNet-attn 0.1816 0.2538 0.3466 0.4403
TPA-LSTM 0.1803 0.2347 0.3234 0.4389
MLCNN 0.1794 0.2983 0.3373 0.4491
TEGNN 0.1824 0.2612 0.3289 0.4733
MDTNet-conv 0.1824 0.2419 0.3226 0.4454
MDTNet-direct 0.1805 0.2336 0.3236 0.4357

CORR

AR 0.9710 0.9263 0.8107 0.5314
LSVR 0.9807 0.9562 0.8764 0.6789
VAR-MLP 0.9829 0.9655 0.9058 0.7149
GRU 0.9823 0.9675 0.9150 0.8823
LSTNet-skip 0.9843 0.9690 0.9467 0.8870
LSTNet-attn 0.9848 0.9696 0.9397 0.8995
TPA-LSTM 0.9850 0.9742 0.9487 0.9081
MLCNN 0.9814 0.9692 0.9410 0.8913
TEGNN 0.9847 0.9676 0.9379 0.8933
MDTNet-conv 0.9847 0.9699 0.9493 0.8991
MDTNet-direct 0.9841 0.9725 0.9467 0.9097

convolutional filter highly restricts the capability of capturing the dependen-
cies among variables. In fact, it is better to apply one recurrent sequence for
each variable and use an attention map to capture the dependencies at each
time step; however, this will lead to an extremely high computational cost.
Therefore, our proposed framework shows a slight disadvantage on this type
of extremely big datasets.

2. For a small horizon (horizon of 3), our proposed framework outperforms
the other baselines; however, it sometimes slightly underperforms than other
baselines. The main reason is probably that a small horizon leads to few
combinations of the dependencies among the variables but a high correlation
among the variable in the time steps. To validate whether capturing com-
binations of the dependencies hinders the performance of the framework in
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Table 5.5: Evaluation result of Traffic

Matrix Methods
Horizon

3 6 12 24

RSE

AR 0.5991 0.6218 0.6252 0.6293
LSVR 0.5740 0.6580 0.7714 0.5909
VAR-MLP 0.5582 0.6579 0.6023 0.6146
GRU 0.5358 0.5522 0.5562 0.5633
LSTNet-skip 0.4777 0.4893 0.4950 0.4973
LSTNet-attn 0.4897 0.4973 0.5173 0.5300
TPA-LSTM 0.4487 0.4658 0.4641 0.4765
MLCNN 0.4492 0.4792 0.4913 0.5353
TEGNN 0.4421 0.4433 0.4508 0.4692
MDTNet-conv 0.4799 0.4931 0.4782 0.5033
MDTNet-direct 0.4513 0.4754 0.4710 0.4851

CORR

AR 0.7752 0.7568 0.7544 0.7519
LSVR 0.7993 0.7267 0.6711 0.7850
VAR-MLP 0.8245 0.7695 0.7929 0.7891
GRU 0.8511 0.8405 0.8345 0.8300
LSTNet-skip 0.8721 0.869 0.8614 0.8588
LSTNet-attn 0.8704 0.8669 0.854 0.8429
TPA-LSTM 0.8812 0.8717 0.8717 0.8629
MLCNN 0.8629 0.8416 0.8320 0.8255
TEGNN 0.8853 0.8820 0.8743 0.8617
MDTNet-conv 0.8765 0.8646 0.8642 0.8560
MDTNet-direct 0.8809 0.8698 0.8774 0.8631

small horizons, we designed an ablation test for the dependency combination
component.

The evaluation results provide strong evidence of the success of our proposed
framework on relatively small datasets. However, our proposed framework per-
forms comparably with other representative baselines on big datasets.

5.6.6 Ablation study

In this section, the ablation study conducted to validate the effectiveness of the
key components and completeness of the whole framework structure is discussed.
More specifically, we removed the key components and constructed our proposed
MDTNet with other possible components, and compared all the methods on a
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dataset. Because we believe that exchange rates include the most complex combi-
nation patterns of long- and short-term dependencies, the exchange-rate dataset
was chosen for the ablation study. The detailed experimental frameworks with
other components are named as follows:

• MDT wo DC:
MDTNet without the dependency combination component.

• MDT wo RC:
MDTNet without the recurrent component.

• MDT wo Pooling:
MDTNet without the pooling layer in the dependency combination compo-
nent.

• MDT wi LO:
MDTNet with a dense connection only to the output of the GRU at last time
step instead of at all the time steps in the all-time dense output component.

• MDT wi Skip:
MDTNet with the recurrent skip in the recurrent component, without a
pooling layer in the dependency combination component, and with a dense
connection only to the output of the GRU at last time step.

Table 5.6: RSE matrix of ablation test on Exchange Rate
RSE 3 6 12 24
MDTNet-conv 0.0176 0.0243 0.0338 0.0435
MDT wo DC 0.0227 0.0282 0.0356 0.0451
MDT wo RC 0.0185 0.0259 0.0355 0.0458
MDT wo Pooling 0.0176 0.0244 0.0341 0.0440
MDT wi LO 0.0178 0.0246 0.0340 0.0439
MDT wi Skip 0.0177 0.0244 0.0338 0.0437

We fine tune all the baseline methods, and the test results measured using the
calculation metrics are tabulated in Tables 5.6 and 5.7. The results show that

1. The original MDTNet shows the best performance among all the methods.

2. After removing the dependency combination component (in MDT wo DC),
the performance drops significantly, which proves the importance of captur-
ing the combination patterns of both long- and short-term dependencies for
all the correlated variables.
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Table 5.7: CORR matrix of ablation test on Exchange Rate
CORR 3 6 12 24
MDTNet-conv 0.9796 0.9710 0.9567 0.9383
MDT wo DC 0.9734 0.9655 0.9517 0.9362
MDT wo RC 0.9753 0.9701 0.9446 0.9359
MDT wo Pooling 0.9788 0.9704 0.9553 0.9364
MDT wi LO 0.9777 0.9689 0.9541 0.9355
MDT wi Skip 0.9792 0.9711 0.9564 0.9381

3. After removing the recurrent component (inMDT wo RC), the performance
is slightly degraded, which demonstrates the importance of capturing the
impact from the previous combination patterns to the futures ones along the
timeline.

4. Removing the pooling layer or applying the dense connection only to
the output of the GRU at the last time step (in MDT wo Pooling and
MDT wi LO) cause the performance to drop to a certain extent. This
proves the contributions of both the pooling layer and the full connection of
the GRU output.

5. As shown in MDT wi Skip, when we use the “recurrent skip” instead of
the pooling and the dense connection at all the time steps, the performance
slightly drops. This proves that our proposed framework achieves the per-
formance of replacing the “recurrent skip” without setting the length.

To conclude, the ablation study shows that our proposed MDTNet has the most
robust architecture, particularly with large horizons.

5.7 Conclusion

In this research, a new deep learning framework (MDTNet) is proposed to solve
the MTS forecasting problem. In this framework, by applying stacked dilated con-
volutions with vanilla convolutional and recurrent networks, the mixed dependen-
cies of both long- and short-term factors among multivariates are captured well.
Experiments expose that our proposed framework yields competitive results on
all the benchmark datasets compared to those of several baselines methods. A
comprehensive analysis and an ablation study prove that our proposed MDTNet
has a robust architecture and excellent capability to yield accurate forecasts.

For further research, we have several directions for expansion. First, in the de-
pendency combination component, currently a convolution layer is used to capture
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the combination dependency patterns. However, the capability of this component
is significantly restricted by the number of convolutional filters. Thus, whether
there is a better structure that can be applies instead needs to be explored. Sec-
ond, we used a GRU in the recurrent component. For large-scale inputs, the
training will require substantial time because GRUs cannot be trained parallelized
on GPUs. Because of the current prominent of attention mechanisms, finding a
method to integrate them into MDTNet is another problem worth exploring. Fi-
nally, although this study is based on multiple time series forecasting, time series
in smart industries are different from general time series. The industrial series are
full of noise, and how to select the appropriate time series and how to denoise
them are still important issues that need to be carefully studied.

The paper in this chapter will be published in:

J3 Song W, Fujimura S. Capturing combination patterns of long-and short-
term dependencies in multivariate time series forecasting[J]. Neurocomput-
ing, 2021. https://doi.org/10.1016/j.neucom.2021.08.100
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Chapter 6

Conclusions and prospect

This dissertation mainly discuss about solving time series forecasting problems
in smart industries using deep learning methods. In this dissertation, the re-
searches are conducted in both univariate time series forecasting and multivariate
time series forecasting. Deep learning methods are commonly used in our research
due to their efficiency and accuracy, which leads to better results. In summary,
this book encompassed three researches. For each research, a novel framework was
proposed and evaluated.

6.1 Summary of research

The purpose of the first study was to forecast the power consumption of a day
based on the observed power consumption of the previous days. In this study, we
first introduce the concept of internal and external information, proposing an idea
to consider time-series information separately. Then, the original encoder-decoder
structure based on the attention mechanism is proposed and embedded into the
model to solve the dependency loss problem at long distances. A new structure
for separating internal and external information is proposed in the encoder and
nonlinear corrector to prevent losses that combine them. Due to the specificity of
the research purpose, a custom loss function is proposed. This function can save
more paid penalties by higher valuations. The experimental results show that the
proposed method can achieve better results compared with benchmark methods
such as LSTM, LSTM-FFNN and ARIMA.

In the second study, we generalize the type of subject under study from uni-
variate time series forecasting to multivariate time series forecasting, and the data
shift from electricity consumption forecasting to more common sensor data pre-
diction. Due to the complexity of the sensor data itself, pre-processing of the data
is required. A denoising method generally applicable to industrial sensors is pro-
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posed to remove the noise by applying wavelet transform and remove the delay
between sensors using correlation coefficients, and finally the appropriate sensor
data is selected using correlation coefficients to form our dataset.

In this study, a new suitable deep learning framework (MLDNet) is proposed
in this subsection to specifically address the sensor data prediction problem due
to the specificity of sensor data in terms of time dependence. In this framework,
the mixed length dependencies between the relevant sensor data are well captured
by applying the proposed mixed length dilation blocks. Experiments show that
the proposed framework yields great results on all benchmark datasets compared
to several benchmark methods.

In the third study, we continue to extend the experimental subjects from sensor
data to diverse time series forecasting. In order to capture the impact of unknown
factors on the target variable forecasting, a new deep learning framework (MDT-
Net) is proposed to solve the MTS forecasting problem. In this framework, we
applied stacked dilated convolution component, which applies several dilated con-
volution filters to parallelly capture the dependencies of all the multivariates in
different time lengths. Dependencies combination component is also applied to
deconstruct the complex combination among the different dependencies. Recur-
rent component is then applied to capture the changes in the different combina-
tions along all the time step. After all, the mixed dependence of long-term and
short-term factors in multivariate can be well captured by applying the proposed
framework, which can capture both the complex effects between multiple variables
and the impact of additional factors on the current forecast to some extent.

In this study, our proposed framework can capture a very long-term depen-
dency and can replace the “recurrent skip” in previous research without previously
setting the length. We conducted several experiments on 4 benchmark datasets
for comparing the proposed framework with other baselines, and the experimental
results turn out that our framework performs competitively and robustly on all
the datasets. Comprehensive analysis and ablation studies demonstrate the ro-
bust structure and superior ability of our proposed MDTNet to produce accurate
forecasting.

In summary, we have studied a variety of time series forecasting under the smart
industry. Deep learning methods show better performance in both univariate time
series and multivariate time series forecasting. In addition, we propose not only
targeted deep learning frameworks for different datasets, but also frameworks for
various dataset with generalizability. In the experiments, the proposed frameworks
all show considerable competitiveness.
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6.2 Applicability of research

With the development of intelligent industry and the demand of productiv-
ity, time series has become one of the more and more important production
tools. Through time series forecasting, industrial production will be scheduled
and planned more properly, and the productivity of intelligent industrialization
can be effectively improved.

To achieve industrial intelligence, manufacturers need an accurate forecasting
system to implement data monitoring and resource scheduling for application sce-
narios ranging from simple power forecasting of consumption, to data prediction
from sensors, to energy, transportation, and so on. The multiple frameworks pro-
posed in this study can be applied to such situations. Depending on the prediction
goals of the dataset and the characteristics of the data, manufacturers are free to
choose different frameworks. In particular, for high dimensionality and highly
volatile data, the number of MLD blocks can be customized from the MLDNet in
the second study. And for data that are heavily influenced by unknown factors or
are highly dependent, MDTNet in the third study can be chosen for forecasting.

6.3 Future research direction

For further research, we have several extension directions.

First, in for the capture of dependencies, various convolutional layers are cur-
rently used to capture the combined dependency patterns. However, the capability
of this component is greatly limited by the number of convolutional filters. If a
more suitable component for capturing dependency properties in time series could
be created, there would be no need to apply convolution to capture Therefore,
whether there is a better structure that can be applied instead needs to be ex-
plored.

Second, we use a GRU in the recursive component. for large-scale inputs,
training will take a significant amount of time because the GRU cannot be trained
in parallel on the GPU. Due to the current popularity of attention mechanisms,
various frameworks based on Transfomer have shown powerful capture capabilities
in various domains. However, it is difficult to be directly applied in time series
forecasting because the Transformer inputs are not sequential. Even with the
addition of Position Embedding, the encoding process of Transfomer still loses
the natural, time-series-compliant Markovian nature of RNNs. Therefore, how to
perform massively parallel training needs to be investigated in depth.

Finally, although this study is based on the forecasting of multiple time se-
ries, the forecasting process is still a ”offline forecasting” based on the existing
real values. Since the time series of intelligent industries have the need for long-
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term or even ultra-long-term forecasting, it is more appropriate to build on the
forecasting values of the framework to make ”online forecasting”. Therefore, it is
worth exploring if the current framework structure can be improved to suit ”offline
forecasting”.
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