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Abstract

Classification is one fundamental research topic in machine learning, which aims to

recognize objects and separate them into classes. A classification model formulates

the separation boundary between different classes, and generally, a nonlinear separation

boundary is needed. Learning of a nonlinear classification model equals modeling a

nonlinear separation boundary. Traditionally, classification model learning has been

studied in the supervised scheme where all the training data instances have accurate

labels. However, labeled data is expensive in contrast to unlabeled data. Therefore,

semi-supervised classification (SSC) has gained prominence, which leverages a large

amount of unlabeled data in addition to a small amount of labeled data for training.

Usually, intrinsic SSC methods are extensions of existing supervised methods to include

unlabeled data in the objective function.

Laplacian kernel machines, namely, Laplacian Support Vector Machine (LapSVM) and

Laplacian Regularized Least Square (LapRLS), are among the most result-promising

semi-supervised classification methods. They are extensions of supervised kernel ma-

chines, Support Vector Machine (SVM), and Regularized Least Square (RLS) by adding

a graph regularization in the objective function of model parameter optimization. Ker-

nel defines a linearly separable high-dimensional feature space, and a linear model in

the feature space corresponds to a nonlinear model in the input space. The use of graph

leverages unlabeled data by approximating data manifold, where data instance as nodes

are sparsely connected by edges. The kernel is used again as edge weighting. Note that

the kernel is used twice in Laplacian kernel machines, and its quality directly influences

the performance of the classification model. General nonlinear kernels, such as radial

basis function (RBF) kernels, implicitly define a general feature space. It is a black-box

model from a modeling perspective, and prior knowledge cannot be used even if given.

In this dissertation, we are motivated to apply a two-step modeling method to model

the nonlinear separation boundary using a set of linear models. The model parame-

ters are estimated in two steps. In the first step, the nonlinear parameters connecting

or combining the linear models are estimated. Then the classification model is formu-

lated as a regression form with a known regression vector and a parameter vector. The

parameter vector contains all the linear parameters to be estimated in the second step.

In the second step, the linear parameters of all the linear models are estimated globally.

The classification model can be further recast to a kernel form as an intermediate model.
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The kernel is defined as the inner product of the know regression vectors, namely, quasi-

linear kernel. As a result, the quasi-linear kernel is composed in an interpretable way,

and it contains prior knowledge.

Although the quasi-linear kernel has been studied in many tasks, exploiting it by lever-

aging a small amount of labeled data and a large amount of unlabeled data remains

challenging. Therefore, we focus on its study in this dissertation to achieve accurate

performance. We propose a series of semi-supervised classification algorithms based

on Laplacian kernel machines through the construction of an intermediate model named

quasi-linear kernel.

The dissertation contains the following five chapters as follows:

Chapter 1 first introduces the concepts mentioned above, such as nonlinear classifica-

tion, semi-supervised classification, and Laplacian kernel machines. Then, we discuss

the insufficiency of general kernels from the modeling perspective and introduce the

two-step modeling method and the quasi-linear kernel. At last, we list challenges un-

der the semi-supervised context, on which we will give corresponding solutions in the

following chapters.

Chapter 2 proposes a Laplacian SVM based semi-supervised classifier using multi-

local linear model. The semi-supervised classifier is constructed in two steps. In the

first step, by applying a pseudo-labeling approach, the input space is divided into multi-

ple local linearly separable partitions along the potential separation boundary. A multi-

local linear model is then built by interpolating multiple local linear models assigned

to the partitions. In the second step, the multi-local linear model is formulated as a

linear regression form with a new regression vector containing the information of po-

tential separation boundary. Then all the linear parameters are optimized globally by

a LapSVM algorithm using a quasi-linear kernel function defined as the inner prod-

uct of the new regression vectors. Furthermore, the quasi-linear kernel function and

the pseudo labels are used to construct a label-guided graph. As a result, the potential

separation boundary is detected, and its information is incorporated into a LapSVM in

kernel and graph levels. Numerical experiments exhibit the effectiveness of the pro-

posed method by showing better performance against general kernel LapSVM with a

“win/tie/lose=7/1/0” on 8 real-world datasets under 10% labeled data.

Chapter 3 proposes a semi-supervised classifier based on piecewise linear model us-

ing gated linear network. The semi-supervised classifier is constructed in two steps.

In the first step, we design a label-guided autoencoder-based semi-supervised gating
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mechanism to generate binary sequences. By using a gated linear network, the binary

sequences realize partitioning of a piecewise linear model indirectly. In the second step,

the piecewise linear model is formulated as a linear regression form, and the linear pa-

rameters are then optimized globally by a LapRLS algorithm using a quasi-linear kernel

function comprising the binary sequences. Moreover, the quasi-linear kernel function

is used as a better similarity function for the graph construction. As a result, we es-

timate data manifold from both labeled and unlabeled data, and the data manifold is

incorporated into both the kernel and the graph in LapRLS. The experimental results

validate the effectiveness of the proposed method by showing a “win/tie/lose = 7/0/0”

on 7 University of Cambridge Irvine (UCI) data sets compared to other SSC methods

when 10% data is labeled.

Chapter 4 applies the proposed semi-supervised classifier based on piecewise linear

model to parasite images, including a semi-supervised feature extractor based on deep

CNN using contrastive learning. First, for the deep CNN feature extractor, we introduce

real-world images with similar and clear semantic information to enhance the structure

at the representation level. In addition, we introduce variant appearance transformations

to eliminate the texture at the representation level. Second, a gated linear network is

adopted as the classifier to realize a piecewise linear separation boundary. The linear

parameters are optimized globally by a LapSVM algorithm using a quasi-linear kernel

function composed of the representations and the binary sequences generated from the

learned feature extractor. In summary, the proposed semi-supervised method tackles

the structure and texture challenges and achieves accurate parasite classification. The

proposed method shows better performance than state-of-the-art SSC methods when

only 1% of microscopic images are labeled. It reaches an accuracy of 95.10% in a

generalized testing set.

Chapter 5 concludes the dissertation and provides future works. To conclude, this dis-

sertation proposes a series of semi-supervised classification algorithms based on Lapla-

cian kernel machines (Laplacian SVM, Laplacian RLS) through the construction of an

intermediate model named quasi-linear kernel. In this way, we effectively leverage a

small amount of labeled and a large amount of unlabeled data for training to achieve

accurate performance on the testing set. Numerical simulation results on a wide range

of benchmarks and real-world data sets demonstrate the effectiveness of the proposed

semi-supervised classification algorithms.





Preface

The general theme of this dissertation is to develop a set of semi-supervised classi-

fication algorithms based on Laplacian kernel machines using quasi-linear kernel to

achieve accurate classification performance. This dissertation is organized in five chap-

ters. Most of the materials have been published in following listed journal papers and

conference papers.

The materials in Chapter 2 are related to a journal paper

• [J3] Y. Ren, H. Zhu, Y. Tian and J. Hu, “A Laplacian SVM based Semi-Supervised

Classification Using Multi-Local Linear Model”, IEEJ Transactions on Electrical

and Electronic Engineering, Vol.16, No.3, pp.455-463, March, 2021.

which formulates the major content of this chapter.

The material in Chapter 3 are related to

• [P3] Y. Ren, W. Li and J. Hu, “A Semi-Supervised Classification Using Gated

Linear Model”, in Proceedings of 2019 IEEE International Joint Conference on

Neural Networks (IJCNN’2019) (Budapest), July, 2019. (7 pages)

which has been extended into a journal paper and formulated the major content of this

chapter

• [J5] Y. Ren, W. Li and J. Hu, “A Semi-Supervised Classifier Based on Piecewise

Linear Regression Model Using Gated Linear Network”, IEEJ Transactions on

Electrical and Electronic Engineering, Vol.15, No.7, pp.1048-1056, July, 2020.

The materials in Chapter 4 are related to

• [P1] Y. Ren, H. Deng, H. Jiang, H. Zhu and J. Hu, “A Semi-Supervised Clas-

sification Method of Apicomplexan Parasites and Host Cell Using Contrastive

Learning Strategy”, in Proceedings of 2021 IEEE International Conference on

Systems, Man, and Cybernetics (SMC’2021) (online), October, 2021. (6 pages)
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Chapter 1

Introduction

1.1 Classification

In the field of machine learning, for every task, the learning subject is a model [1].

Given an input x, a model provides an output y; the input and output vary from different

tasks. And a model f : X→ Y contains model structure and model parameters.

There are two examples, first for the simplest binary classification task in 2-dimensional

space. The input x is a point on a plane, and the output y = sign[ f (x)] is to which class

the point belongs. The model structure is a linear separation boundary f (x;Θ,b) =

ΘT x + b in a linearly separable case, and the model parameters are linear parameters

Θ,b. Second, for complex tasks, a deep neural network (DNN) can be used. The input

could be anything, such as an image, a recording, or a video. The output could be what

is it in the given image, the emotion in the given recording, and any abnormality in the

given video. The model structure could be very complex, and there are a vast number

of model parameters.

Learning for a specific task, we design specific model structure and optimize model

parameters by specific strategies. We train a model by using a set of data instances

called as training set. The training goal is to find an f that maximum or minimum the

predefined objective function on the training set. To evaluate the performance of the

1
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trained (learned) model, we test it on testing set, which is never used in the training

phase.

There is an important rule, the more model parameters in a model, the more training

data is needed to optimize these model parameters.

A classification model f predicts the input x to which class it belongs, and the output y

is limited in the given classes.

y = sign[ f (x)] (1.1)

A classification model formulates the separation boundary to separate data instances

from different classes. Learning of classification model equals modeling the separation

boundary.

1.1.1 Linear classification

The linear model takes the form of

f (x;Θ,b) = ΘT x + b (1.2)

once the parameters Θ,b have been learned. In the case of binary classification, if

f (x) > 0, the data instance x can be labeled to positive class. If f (x) ≤ 0, the data

instance x can be labeled to negative class.

1.1.2 Nonlinear classification

Generally, a linear model cannot separate most data sets, and a nonlinear model is

needed. From the modeling perspective, learning of a nonlinear classification model

equals modeling a nonlinear separation boundary.

There are two typical nonlinear models with different model structures [2].

• Kernel Machines
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FIGURE 1.1: A linear model in the feature space corresponds to a nonlinear separation
boundary in the input space.

As illustrated in Fig.1.1, suppose the data instances are mapped from the input

space to a high-dimensional linearly separable feature space. We can realize the

nonlinear classification in the input space by a linear model in the feature space.

A kernel function k(·) is the similarity of two data instances in the feature space.

f (x;α,b) = αT k(x) + b (1.3)

• Neural Networks

FIGURE 1.2: A neural network with a nonlinear hidden layer.

As illustrated in Fig.1.2, we double the linear transformation with a nonlinear

activation function a(·) in the middle step so that we end up with a nonlinear
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model

f (x;Θ1,Θ2,b1,b2) = ΘT
2 [a(ΘT

1 x + b1)] + b2 (1.4)

1.2 Semi-Supervised Classification

Traditionally, the learning of classification model has been studied in supervised schemes

where all the data instances in the training set have accurate labels. Labeled data, how-

ever, is often difficult or time-consuming to collect.

The lack of the labeled data motivates the study of methods trained with limited su-

pervision, such as semi-supervised classification [3], weakly supervised learning [4, 5],

unsupervised domain adaptation [6, 7] and transfer learning [8, 9].

My work focuses on semi-supervised classification (SSC) involving unlabeled data in

the training phase. SSC is typically with a small amount of labeled data and a large

amount of unlabeled data in the training set since unlabeled data is much easier to

collect. Fig.1.3 is a toy example to illustrate the difference between supervised learning

and semi-supervised classification. The separation boundary has changed significantly

after introducing the unlabeled data.

FIGURE 1.3: Binary classification in 2-dimensional space. Blue and orange points
stand for labeled data of two classes, respectively, and gray points stand for unlabeled

data.
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FIGURE 1.4: Semi-supervised classification taxonomy.

1.2.1 Prerequisite

In the case of a semi-supervised classification problem, labeled data (x, y) is sampled

from joint distribution PXY while unlabeled data x ∈ X is sampled from marginal distri-

bution PX. The training set XN = XL∪XU contains N data instances, where L labeled

data XL = {(xl, yl)}Ll=1 and U unlabeled data XU = {xu}
N
u=L+1, and XN = XL∪XU .

There is a very important prerequisite, the distribution of labeled data PXY and unla-

beled data PX has to be the same.

1.2.2 Semi-supervised classification methods

The taxonomy of semi-supervised classification is visualized in Fig.1.4. The first dis-

tinction lies between inductive and transductive methods. The former yields a classifi-

cation model which can predict the label of previously unseen testing data. The latter

does not yield such a model but instead only provides predictions of unlabeled training

data [10–17].



Chapter 1. Introduction 6

The simplest inductive approach is to first train a classification model on labeled data,

and use the predictions of unlabeled data as additional labeled data. Then re-train on

both the additional labeled data and the existing labeled data. Such methods are known

as wrapper methods [18–26]. Secondly, unsupervised preprocessing methods, which

extract useful features in an unsupervised manner [27–35]. And then can be used with

any supervised classification model.

Definitely, intrinsic SSC should be the focus, which directly incorporates unlabeled

data into the objective function or optimization procedure of the learning, and does

not rely on any supervised base learners or unsupervised intermediate steps. Usually,

the intrinsic SSC methods are extensions of existing supervised methods to include

unlabeled data in objective function.

Intrinsic SSC can be roughly divided into different categories based on different as-

sumptions; low-density assumption [36–42], smoothness assumption, manifold assump-

tion, and cluster assumption [43–49] is a generalization of the above three. In the recent

decade, most state-of-the-art methods are based on smoothness assumption and mani-

fold assumption. So is my doctoral work.

• Smoothness Assumption

Smoothness assumption is the very basic assumption that assumes if two data

instances that are close by in the input space, their labels should be the same.

• Manifold Assumption

Manifold assumption assumes

1. high-dimensional data instances lie (roughly) on low-dimensional manifolds;

2. the data instances lying on the same manifold have the same label.

Usually, smoothness assumption and manifold assumption are not used independently.

I use shallow and deep structures to categorize.
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FIGURE 1.5: There are two manifolds in the toy example.

• Shallow Structured Models

Shallow structured models take features as inputs. Usually, add a manifold regu-

larization to the objective function of a kernel machine or others. The manifold is

approximated by a graph, so it can be called graph regularization.

Belkin et al. [50] formulated a general framework for regularizing inductive learn-

ers based on manifolds. This general framework leads to semi-supervised exten-

sions of kernel machines, such as Laplacian Regularized Least Squares (LapRLS)

and Laplacian support vector machines (LapSVM) [51]. Zhu et al. [52] proposed

to incorporate a manifold regularization term in a generative model. Sindhwani et

al. [53] extend manifold regularization to the co-regularization framework. Qi et

al. [54] suggested to extend twin SVMs, which optimize two SVM-like objective

functions to yield two non-parallel decision boundaries (one for each class), to

include the LapSVM regularization term.

• Deep Structured Models

Deep structured models target structured data like images and contain both fea-

ture extraction and downstream classification. Usually, add an unsupervised loss

term to the training of a DNN. The manifold is estimated by the DNN.

Weston et al. [55] incorporated a manifold regularization term into deep neu-

ral networks. Bachman et al. [56] proposed a general framework for perturbing

the neural network model itself. Rasmus et al. [57] proposed ladder network to
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explicitly perturb the input data. Miyato et al. [58] proposed a regularization

procedure that takes the perturbation direction into account.

Deep structured models focus on feature extraction, while shallow structured models fo-

cusing on classification when given features. Both feature extraction and classification

are essential for a task. My doctoral research mainly revolves around classification.

1.3 Related Works

1.3.1 Laplacian kernel machines

Proposed by Belkin et al. [50, 51, 59], Laplacian kernel machines are among the most

result promising semi-supervised classification algorithms, which belongs to an intrin-

sic SSC method using smoothness and manifold assumptions in an inductive manner.

Laplacian kernel machines, namely, Laplacian Support Vector Machine (LapSVM) and

Laplacian Regularized Least Square (LapRLS), are the extensions of supervised kernel

machines, Support Vector Machine (SVM) and Regularized Least Square (RLS), by

solely adding a manifold regularization which is estimated by a graph Laplacian associ-

ated with all the training data. Laplacian kernel machines realize nonlinear classification

by leveraging unlabeled data in addition to labeled data.

Kernel composition and graph construction are the model structure design in Laplacian

kernel machines.

• Kernel realizes nonlinear classification by defining a feature space.

According to Mercer’s theorem, any continuous symmetric positive semi-definite

function can be used as a kernel function in Eq.(1.3) since such a function cor-

responds to an implicit mapping function. General nonlinear kernels such radial
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base function (RBF) kernel and polynomial kernel

kRBF(xi, x j) = exp(−γ||xi− x j||
2
2)

kpoly(xi, x j) = (xT
i x j + c)d

(1.5)

implicitly map data from the input space to the general feature space. Note that

the kernel stands for similarity of data instances in the feature space, and larger

value stands for higher similarity.

• Graph leverages unlabeled data by approximating data manifold.

FIGURE 1.6: Graph to approximate the data manifold.

The graph matrix W can be decomposed to a graph topology E and an edge

weighting K.

W = E ∗K (1.6)

Taking each data instance in the training set as a node, as illustrated in Fig1.6, the

nodes are sparsely connected by edge based on some similarity measure. E is the

graph topology matrix, if there is an edge between the nodes xi and x j , Ei j = 1;

otherwise, Ei j = 0, and there are no self-loops, Eii = 0∀i = 1, · · · ,N. The edge

weighting K evaluates the weight of each edge, a kernel is used.

Note that the kernel is used again in the graph as edge weighting.
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1.3.2 LapSVM and LapRLS

Given the model structure, LapSVM and LapRLS are good choices to optimize the

model parameters α and b in Eq.(1.3).

LapSVM and LapRLS extend SVM and RLS respectively by adding a graph regulariza-

tion. Their objective functions vary in the supervised loss term, and they have different

optimization procedures. A large number of experimental results show a slight differ-

ence between them with the same kernel and the same graph. It is difficult to distinguish

their pros and cons from an algorithm perspective.

• SVM and RLS

The objective functions of supervised kernel machines take the same form:

` = supervised loss + kernel regularizer.

Supervised loss for labeled data, the distances between the prediction and the true

label. Kernel regularization, the complexity of the classification model. The only

difference lies in the supervised loss.

SVM

min
f∈Hk

L∑
i=1

max(1−yi f (xi),0) +γA|| f ||2A (1.7)

RLS

min
f∈Hk

L∑
i=1

(yi− f (xi))2 +γA|| f ||2A (1.8)

where γA controls the complexity of the function f in the ambient space.

• Graph Regularization
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The manifold/graph regularization penalizes differences in the behavior of a clas-

sifier under slight changes along the manifold.

1
2
|| f ||2I

=
1
2

N∑
i=1

N∑
j=1

wi j[ f (xi)− f (x j)]2

=FT LF

(1.9)

where L = D−W, and D is the degree matrix formulated as di =
∑N

j=1wi j, D =

diag(d1, · · · ,di, · · · ,dN). L is called graph Laplacian.

LapSVM and LapRLS are the extensions of SVM and RLS respectively. There is an ad-

ditional manifold regularization which is estimated by graph Laplacian as unsupervised

loss.

` = supervised loss + kernel regularizer + unsupervised loss (graph regularizer)

For notation simplicity, we ignore every normalization coefficient of each term here,

γA controls the complexity of the function f in the ambient space and γI controls the

complexity of the function f in the intrinsic geometry of PX.

• LapSVM taking classification model as f (x) = αT k(x) + b.

min
f∈Hk

L∑
i=1

max(1−yi f (xi),0) +γA|| f ||2A +
γI

2
|| f ||2I

= min
f∈Hk

L∑
i=1

max(1−yi(αT k(xi) + b),0) +γAα
T Kα+γI(αT K + 1T b)L(Kα+ 1b)

(1.10)

• LapRLS taking classification model as f (x) = αT k(x).

min
f∈Hk

L∑
i=1

(yi− f (xi))2 +γA|| f ||2A +
γI

2
|| f ||2I

= min
f∈Hk

L∑
i=1

(yi−α
T k(xi))2 +γAα

T Kα+γIα
T KLKα

(1.11)
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1.3.3 Two-step modeling

The kernel is used twice in the Laplacian kernel machines, both for nonlinear classifica-

tion and manifold approximation. Its quality has a direct influence on the performance

of the classification model.

A nonlinear separation boundary in the input space is realized by a linear separation

boundary in the feature space to realize. So the quality of the feature space is critical to

the final performance of the classification model.

General nonlinear kernels such as RBF kernel and polynomial kernel in Eq.(1.5) im-

plicitly map the data from the input space to the general feature space. Taking the RBF

kernel as an example, the corresponding feature space as

φ(x) = e−γx2
· [1, x

√
2γ
1!
,

√
(2γ)2

2!
x2,

√
(2γ)3

3!
x3, · · · ]T (1.12)

where the data x is mapped to an infinite dimensional space.

The general kernels are simple to apply and effective sometimes. However, we do

not know if a general feature space is suitable for a specific task. In other words, data

distribution, including labeled and unlabeled data in the semi-supervised context, cannot

be used to design the feature space. From a modeling perspective, general kernels are

black-box models with less interpretability, and prior knowledge cannot be used even if

given.

Therefore, in this dissertation, we are motivated to model the separation boundary in an

interpretable way by using a set of linear models to approximate the nonlinear separation

boundary.

The formulation of the classification model is

f (x) =

M∑
j=1

(ΩT
j x + b j) ·g j(x) + b (1.13)



Chapter 1. Introduction 13

where ΩT
j x + b j j = 1, · · · ,M are a set of linear models, g j(x) j = 1, · · · ,M are non-

linear functions that connect or combine these linear models. All the model parameters

are estimated in two steps.

In the first step, nonlinear parameters g j(x) j = 1, · · · ,M are estimated.

By introducing a regression vector φ(x) and a parameter vector Θ

φ(x) = [gT (x)⊗ [1, xT ]]T

Θ = [b1,Ω
T
1 , · · · ,bM,Ω

T
M]T

(1.14)

where the symbol ⊗ denotes Kronecker product and g(x) = [g1(x), · · · ,gM(x)]T . The

classification model Eq.(1.13) is formulated into a linear regression form

f (x) = ΘTφ(x) + b (1.15)

where φ(x) is a known regression vector and Θ is a parameter vector containing all the

linear parameters to estimate in the second step.

In the second step, all the linear parameters Ω j,b j,b j = 1, · · · ,M are estimated

globally.

1.3.4 Quasi-linear kernel

Since φ(·) defined in Eq.(1.14) is equivalent to a mapping function that maps the input

to a finite high dimensional spanned feature space. Eq.(1.15) can be further recast as a

kernel form

f (x) = αT k(x) + b (1.16)

where k(x) = [k(x, x1), · · · ,k(x, xL),k(x, xL+1), · · · ,k(x, xN)]T , and α is an N dimensional

coefficient. The kernel is defined by inner product of the regression vectors as similarity
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between instances in the spanned feature space

k(xi, x j) = φT (xi)φ(x j)

= (1 + xT
i x j)gT (xi)g(x j)

(1.17)

which is called quasi-linear kernel.

As a result, different from general kernels, the quasi-linear kernel as Eq.(1.17) is com-

posed in an interpretable way, and it contains the prior knowledge g. From the modeling

perspective, the quasi-linear kernel model as Eq.(1.16) is the intermediate model of the

two-step modeling method.

There are a series of researches about the two-step modeling method and the quasi-

linear kernel. It was firstly used by Zhou et al. [60]. Li et al. proposed a supervised

algorithm [61] and an unsupervised algorithm [62] to compose the quasi-linear kernel.

Liang et al. used the two-step modeling method to tackle an imbalanced problem [63].

Zhu et al. used the two-step modeling method for a task with missing data [64]. As

a task closer to ours, Zhou et al. proposed to train with labeled and unlabeled data

using the two-step modeling method in a transductive manner, where the low-density

and manifold assumptions were used [65].

In this dissertation, our task is to classify in a semi-supervised context, in which a small

amount of labeled data and a large amount of unlabeled data are used for training.

From the aspect of two-step modeling method, we use both labeled data and unlabeled

data to estimate nonlinear parameters in the first step and linear parameters in the second

step. And evaluate the performance of the learned classification model on the testing

set, which is never used in the training phase.

From the aspect of quasi-linear kernel, we compose the quasi-linear kernel in a semi-

supervised manner. And with the quasi-linear kernel, we optimize the model parameters

in a semi-supervised manner by using Laplacian kernel machines.
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1.4 Goals of the Dissertation

This dissertation considers that human annotations are expensive and lack of label is a

common and fatal problem in real-world classification tasks. We aim to design several

semi-supervised classification algorithms to leverage unlabeled data, which is much

easier to collect, in addition to labeled data for training.

The kernel is used twice in Laplacian kernel machines, both for the feature mapping

and the data manifold approximation in the graph. The quality of the kernel has a direct

influence on the performance of the classification model. General nonlinear kernels are

black-box models with less interpretability, and prior information cannot be used even

if given.

In this dissertation, we are motivated to apply a two-step modeling method to model the

nonlinear separation boundary with a set of linear models, where a quasi-linear kernel

model is formulated as an intermediate model. As a result, the quasi-linear kernel is

composed in an interpretable way, and it contains prior knowledge.

Therefore, this dissertation proposes a series of Laplacian kernel machine based algo-

rithms that support semi-supervised classification through the construction of an inter-

mediate model called quasi-linear kernel.

1.4.1 Multi-local linear model

The whole training data can be divided into multiple local partitions, where each parti-

tion is almost linearly separable. The center and radius of partitions are information of

potential separation boundary. A multi-local linear model interpolating the linear mod-

els in each partition can be formulated to take advantage of the information of potential

separation boundary.

We aim to build a multi-local linear model in a semi-supervised context to approximate

the nonlinear separation boundary, and we propose a LapSVM based semi-supervised

classifier that uses the quasi-linear kernel as intermediate model (Chapter 2).
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1.4.2 Piecewise linear model

Learning data manifold is one way to leverage unlabeled data to help classification.

Laplacian kernel machines approximate the data manifold by a graph. And the data

manifold can also be estimated by neural networks. In order to combine these two

methods to learn and utilize the data manifold effectively to help classification, we

introduce a gated linear network to realize a piecewise linear model.

We aim to build a piecewise linear model in a semi-supervised context to approximate

the nonlinear separation boundary, and we propose a LapRLS based semi-supervised

classifier that uses the quasi-linear kernel as intermediate model (Chapter 3).

1.4.3 Parasite image classification

For a classification task of multiple parasites in the microscopic image, previous work

assumed all the data is labeled [66]. However, the lack of labels is a common and fatal

challenge in practical clinical scenarios. We aim to classify the parasites with a small

amount of labeled data and a large amount of unlabeled data.

We aim to apply the proposed semi-supervised classifier based on piecewise linear

model to parasite images. We propose a semi-supervised classification algorithm con-

taining a high-performance LapSVM classifier and a DNN feature extractor using con-

trastive learning (Chapter 4).

1.5 Challenges

In this dissertation, we propose a series of semi-supervised classification algorithms

based on Laplacian kernel machines, which apply the two-step modeling method and

construct an intermediate model named quasi-linear kernel.

The foremost challenge is the usage of labeled and unlabeled data. How to leverage the

unlabeled data to make a positive influence on the learning process? And how to fully
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exploit the limited valuable labeled data? From a modeling perspective, challenges lie

in both steps. How to connect or combine the linear models to approximate a nonlinear

separation boundary? And how to optimize the linear models? From the aspect of

Laplacian kernel machines, how to leverage prior knowledge and label information to

build the kernel and the graph?

1.5.1 Usage of unlabeled & labeled data

For the multi-local linear model, detecting the potential separation boundary relied on

labeled data [61]. However, in a semi-supervised context, only a small amount of la-

beled data is available, and we have a large amount of unlabeled data. It is challenging

to leverage unlabeled data for detection.

For the piecewise linear model, an auto-encoder can be trained to realize partitioning

indirectly for a piecewise linear model, in which the data manifold is estimated in an

unsupervised manner [62]. However, in a semi-supervised context, we also have some

valuable labeled data except for unlabeled data. How to take advantage of valuable

labeled data to guide the manifold estimation is challenging.

1.5.2 Challenges of parasite images

For the parasite image classification, considering human annotations are very expensive

in medical imaging, we assume only 1% parasite images are labeled. It is challenging

to classify the parasite images with only 1% labeled data.

Furthermore, there are two challenges in microscopic parasite image classification. On

the one hand, the semantic objects, namely salient structures, are fuzzier and more

complex than real-world images, leading to microscopic images are not as distinguish-

able as macroscopic images. On the other hand, the insignificant textures, like image

background staining, lightness, or contrast level, vary much in samples from different

clinical scenarios. At the same time, the available training data is of a similar pattern in

each category, which may lead to poor generalization in real-world applications.
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1.6 Dissertation Outlines and Main Contributions

Chapter 1:
Introduction

Chapter 2: LapSVM using
Multi-Local Linear Model

(J3)

Chapter 3: LapRLS based
on Piecewise Linear Model

(J5, P3)

Chapter 4: Semi-Supervised
Classification of Parasite Images

(J1, P1)

Chapter 5:
Conclusion & Future Work

FIGURE 1.7: Outline of this dissertation.

This dissertation shows the cumulative works over my doctoral period through five

chapters.

Chapter 1 lays the fundamental background that connects the whole dissertation and

shows an outline. In Chapter 2, we propose a Laplacian SVM based semi-supervised

classifier using multi-local linear model. Chapter 3 proposes a semi-supervised classi-

fier based on piecewise linear model using gated linear network. Chapter 4 proposes a

semi-supervised classification algorithm of parasites, which contains a semi-supervised

feature extractor trained by contrastive learning and a semi-supervised classifier opti-

mized by LapSVM. Finally, in Chapter 5 we summarize our findings and applications

and discuss the future study. The outline of this dissertation is depicted in Fig.1.7, in

which the indexes represent the published paper in Publication List.

Chapter 2 proposes a Laplacian SVM based semi-supervised classifier using multi-

local linear model. The semi-supervised classifier is constructed in two steps. In the

first step, by applying a pseudo-labeling approach, the input space is divided into multi-

ple local linearly separable partitions along the potential separation boundary. A multi-

local linear model is then built by interpolating multiple local linear models assigned

to the partitions. In the second step, the multi-local linear model is formulated as a

linear regression form with a new regression vector containing the information of po-

tential separation boundary. Then all the linear parameters are optimized globally by
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a LapSVM algorithm using a quasi-linear kernel function defined as the inner product

of the new regression vectors. Furthermore, the quasi-linear kernel function and the

pseudo labels are used to construct a label-guided graph.

The main contributions related to this chapter are shown as follows:

• This dissertation builds a multi-local linear model under a semi-supervised con-

text.

• A pseudo-labeling approach is applied to leverage unlabeled data to detect the

potential separation boundary;

• The linear parameters in each local partition are optimized globally by labeled

and unlabeled data using LapSVM;

• The information of potential separation boundary is incorporated into the kernel

function of LapSVM using an interpretable model, leading to higher theoretical

interpretability and data adaptability.

• For the graph of LapSVM, the limited labels are fully used simply and effectively

to fit the classification task better.

Chapter 3 proposes a semi-supervised classifier based on piecewise linear model us-

ing gated linear network. The semi-supervised classifier is constructed in two steps.

In the first step, we design a label-guided autoencoder-based semi-supervised gating

mechanism to generate binary sequences. By using a gated linear network, the binary

sequences realize partitioning of a piecewise linear model indirectly. In the second step,

the piecewise linear model is formulated as a linear regression form, and the linear pa-

rameters are then optimized globally by a LapRLS algorithm using a quasi-linear kernel

function comprising the binary sequences. Moreover, the quasi-linear kernel function

is used as a better similarity function for the graph construction.

The main contributions related to this chapter are shown as follows:

• This dissertation realizes a piecewise linear model to approximate the nonlinear

separation boundary using the gated linear network in a semi-supervised context.
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• A label-guided autoencoder is designed to leverage labeled data to guide the data

manifold estimation.

• The estimated data manifold is incorporated into both the kernel and the graph in

LapRLS;

• Data manifold approximation by graph and data manifold estimation by neural

network are realized both;

Chapter 4 proposes a semi-supervised classification algorithm of microscopic parasite

images, which contains a semi-supervised feature extractor trained by contrastive learn-

ing and a semi-supervised classifier optimized by LapSVM. First, for the deep CNN

feature extractor, we introduce real-world images with similar and clear semantic infor-

mation to enhance the structure at the representation level. In addition, we introduce

variant appearance transformations to eliminate the texture at the representation level.

Second, a gated linear network is adopted as the classifier to realize a piecewise linear

separation boundary. The linear parameters are optimized globally by a LapSVM al-

gorithm using a qausi-linear kernel function composed of the representations and the

binary sequences generated from the learned feature extractor.

The main contributions related to this chapter are shown as follows:

• The proposed method shows excellent performance when only 1% data is labeled.

Affordable and accurate parasite classification is achieved;

• Contrastive learning is applied on labeled data by connecting two domains to

enhance the structure at the representation level;

• Contrastive learning is applied on unlabeled data by encouraging consistency of

the same input under different appearance transformations to eliminate the texture

at the representation level;

• A new dataset of the real-world images is built by photoing, which best matches

the microscopic parasite images of interest.
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Chapter 5 summarizes and concludes the dissertation and provides several sugges-

tions for future researches. In conclusion, this dissertation proposes a series of semi-

supervised classification algorithms based on Laplacian kernel machines through the

construction of an intermediate model named quasi-linear kernel. Compared to Lapla-

cian kernel machines with general nonlinear kernel, this dissertation detects prior knowl-

edge from labeled and unlabeled data and incorporates the prior into the kernel and

graph. Compared to previous studies about quasi-linear kernel in a supervised or un-

supervised manner, this dissertation considers learning under limited supervision and

models the nonlinear separation boundary by leveraging a small amount of labeled data

and a large amount of unlabeled data. As a result, accurate performance is achieved

under a semi-supervised context.





Chapter 2

LapSVM Using Multi-Local Linear

Model

2.1 Background

1Traditionally, classifier learning has been studied in the supervised schemes where all

the data points are labeled. Labeled data however is often difficult or time consuming to

prepare in contrast to unlabeled data. Therefore, semi-supervised classification (SSC)

has gained prominence, which aims to understand how introducing unlabeled data in the

process may change the learning behavior, and design algorithms that take advantage

of such an introduction. SSC is typically with a small amount of labeled data and

a great deal of unlabeled data, so it is of immense practical interest in a wide range

of applications, such as biology, image processing, natural language processing where

labeled data is expensive while abundant unlabeled data is available [10, 67, 68].

An important prerequisite of SSC is that the underlying marginal distribution over the

input space contains information about the posterior distribution. Different ways of

1This chapter is mainly extended from the Journal paper: Y. Ren, H. Zhu, Y. Tian and J. Hu, “A Lapla-
cian SVM based Semi-Supervised Classification using Multi-Local Linear Model”, IEEJ Transactions on
Electrical and Electronic Engineering, Vol.16, No.3, pp.455-463, March, 2021.

23
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interaction of marginal distribution and posterior distribution lead to different assump-

tions, such as smoothness assumption, low-density assumption and manifold assump-

tion [3].

The manifold assumption states that the high-dimensional data points lie (roughly) on

low-dimensional manifolds, and the data points lying on the same low-dimensional

manifold have the same label. Neighborhood graph is one way to model the manifold

smoothness. In the graph based SSC, each node of the graph corresponds to a labeled or

unlabeled data point, and the edge weights encode the similarity between each pair of

data points. Smoothness on manifold is encouraged by data points connected by large

weights are given similar labels.

Graph based SSC algorithms, such as the graph mincuts [69], the Gaussian fields and

harmonic functions [70] and the local and global consistency [71], are transductive in

nature, Laplacian support vector machine (LapSVM) algorithm [51, 59] has been pro-

posed as a typical inductive algorithm. It extends the support vector machine, a super-

vised kernel machine with marginal maximum, by incorporating a manifold regularizer

which is estimated using the graph Laplacian associated to all the training data.

From the aspect of kernel machine, a kernel function implicitly maps the input to a

feature space. However, most commonly used nonlinear kernels, like RBF (radial basis

function) kernel, are black-box models with less interpretability. The choice of kernel

is quite data dependent, RBF kernel may fail in some specific cases since it does not

use any information from the data. From the aspect of graph based SSC algorithm, the

graph construction is the key. The commonly used graph construction methods, like

kNN graph, are unsupervised in nature, the labels available at our disposal are ignored.

In this chapter, following the manifold assumption, we assume that the data is dis-

tributed on low-dimensional manifolds, and the separation boundary is roughly along

the data manifolds. For the nonlinear separable binary classification, the whole training

data can be divided into multiple local partitions, where each partition is almost linear

separable. Under this premise, the centers and the widths of the partitions can be seen

as the information of potential separation boundary. A multi-local linear model inter-

polating the linear models in each partition is formulated to approximate the nonlinear
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separation boundary, where the interpolation function is determined by the centers and

the widths (Section 2.2). After the centers and the widths being estimated by a pseudo-

labeling method (Section 2.3), the multi-local linear model is formulated into a linear

regression form, where the new input vector in the spanned space contains the centers

and the widths, while the linear parameters in all the partitions are gathered in the linear

vector. Then the linear parameters can be estimated globally by leveraging a power-

ful tool LapSVM, whose kernel is defined as the inner product of input in the spanned

space, namely, a quasi-linear kernel. Furthermore, both the quasi-linear kernel and the

pseudo labels are used to construct a label guided graph (Section 2.4). In this way, the

detected information of potential separation boundary is ingeniously incorporated into

LapSVM in both kernel level and graph level.

The contribution of this chapter has two folds:

• For the kernel, the information of potential separation boundary is detected, and

then incorporated into the kernel function by using an interpretable model, which

leads to higher theoretical interpretability and data adaptability.

• For the graph, the limited labels are fully used in a simple and effective way to

better fit the classification task.

The rest of this chapter is organized as follows. Section 2.2 formulates a unified frame-

work for the multi-local linear model which interpolates multiple local linear models

in the linear separable partitions, the parameters are going to be estimated in two steps.

In Section 2.3, the nonlinear parameters, the centers and the widths of linear separable

partitions, are estimated as the first step. Section 2.4 shows the estimation of linear pa-

rameters using LapSVM as the second step. Section 2.5 presents the simulation results

of a series of experiments to validate the effectiveness of our proposed method. Finally,

the conclusions are drawn in Section 2.6.
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FIGURE 2.1: Framework of the proposed method.

2.2 Multi-Local Linear Model

In the case of a semi-supervised binary classification problem, there is a probability

distribution P on X ×Rd and a prediction function f (x) is learned from data sampled

according to P, labeled data (x, y) is sampled from the joint distribution PXY while

unlabeled data x ∈ X is sampled from the marginal distribution PX. The training set

S =L∪U contains N data points, where L labeled dataL = {(xl, yl)}Ll=1 with yl ∈ {1,−1}

and U unlabeled dataU = {xu}
N
u=L+1, and XN = XL∪XU .

A multi-local linear model [60] consisting of multiple local linear models with interpo-

lations is considered to approximate the nonlinear separation boundary:

f (x) =

M∑
j=1

(ΩT
j x + b j) ·g j(x) + b (2.1)

where ΩT
j x + b j( j = 1, · · · ,M) is a set of local linear models, b is a bias parameter and

g j(x)( j = 1, · · · ,M) are the interpolation functions, described by

g j(x) =
g̃ j(x)∑M
j=1 g̃ j(x)

, g̃ j(x) = e
−

(x−µ j)
2

λσ2
j (2.2)

where µ j and σ j are the centers and the widths of the partitions, and each partition is

assumed to be linearly separable, and λ is a scale parameter. The nonlinear classifier is

given by

yp = sign( f (x)) (2.3)
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The key problem is how to estimate the parameter set [Ω j,b j,b,µ j,σ j j = 1, · · · ,M]

using both labeled and unlabeled data.

We develop a two-step algorithm. In the first step, the nonlinear parameters, the cen-

ters and the widths µ j,σ j j = 1, · · · ,M, are estimated by pseudo-labeling, partitioning

and overlap removing. In the second step, the known variables and unknown linear

parameters can be safely separated by introducing φ(x) and Θ:

φ(x) = [g1(x), xTg1(x), · · · ,gM(x), xTgM(x)]T

= [gT (x)⊗ [1, xT ]]T
(2.4)

Θ = [b1,Ω
T
1 , · · · ,bM,Ω

T
M]T (2.5)

where the symbol ⊗ denotes Kronecker product and g(x) = [g1(x), · · · ,gM(x)]T contains

the information of potential separation boundary. Eq.(2.1) is expressed as a linear re-

gression form

f (x) = φT (x)Θ+ b (2.6)

It is equivalent to the fact that φ(x) defined as Eq.(2.4) maps the input to a finite high

dimensional spanned feature space. Then Eq.(2.6) is recasted as a kernel machine

f (x) = kT (x)α+ b (2.7)

where k(x) is the similarity vector of N training data and x in the spanned space, k(x) =

ΦNφ(x) = [k(x, x1), · · · ,k(x, xN)]T , k(xi, x j) = φT (xi)φ(x j), ΦN = [φ(x1), · · · ,φ(xL), · · · ,φ(xN)]T ,

and α is an N dimensional coefficient, Θ = ΦT
Nα. The linear parameters Ω j,b j of each

partition and the bias b are estimated implicitly by applying LapSVM. A visual repre-

sentation of the proposed method is provided in Fig.2.1.
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2.3 Estimation of Nonlinear Parameter

2.3.1 Pseudo-labeling

Considering the cases where there are overlaps between clusters and the data is not

easily separated, we use a seeded and constrained clustering method based on k-mean

method [72] to assign pseudo labels to the unlabeled data.

The labeled data is clustered firstly for seeding if there are a large number of labeled

data points. In this chapter, we focus on the scenario that there are a small number of

labeled data points as a typical SSC problem. When with less labeled data, each labeled

data point is as a seed, and the labeled data points are as the initial centers {c1, · · · ,cL}

of the clusters {C1, · · · ,CL}.

The object is to minimize J:

J =

L∑
i=1

∑
x∈Ci

||x− ci||
2 (2.8)

When doing cluster assignment, the labeled data points as seeds always remain un-

changed in the clusters, for each unlabeled data point xu j j = 1, · · · ,U, it is assigned

to the cluster Ci by argmin
i
||xu j − ci||

2. Then update the centers ci = 1
|Ci|

∑
x∈Ci x. The

process of assigning all the unlabeled data to L clusters is repeated until the centers

converge.

Following the cluster assumption, it is a pseudo-labeling step, every unlabeled data

point ends up with a pseudo label as illustrated in Fig.2.1(a). The cluster with positive

labeled data is as positive cluster X+ while the cluster with negative labeled data is as

negative cluster X−. In the context of binary classification with balanced labels, we end

up with L clusters, where one half are positive clusters and the other half are negative

clusters.
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2.3.2 Partitioning

Given the pseudo labels which roughly detect the potential separation boundary, the par-

titioning can be performed along the potential separation boundary, and each partition

is almost linearly separable.

FIGURE 2.2: Pair and the shortest distance.

Step 1: pairing

For each cluster, its nearest cluster with opposite label is chosen to form a pair. We end

up with M0 different pairs, where dL
2 e ≤ M0 < L, and each pair consists of a positive

cluster and a negative cluster. Fig.2.2(a) shows an example of a pair P = {X+,X−}, each

cluster is represented by a convex hull. Defined as [73] ,the convex hull of a finite point

set is the set of all convex combinations of its points.

Step 2: merging

• Suppose Pt = {X+
t ,X

−
t } and Pk = {X+

k ,X
−
k } are merged, P = Pt∪Pk

CH(X+) =CH(X+
t ∪X+

k )

CH(X−) =CH(X−t ∪X−k )
(2.9)

• As illustrated in Fig.2.2(b), by solving

min ||x+− x−||

s.t. x+ ∈CH(X+), x− ∈CH(X−)
(2.10)
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SK algorithm [74] always converges to a nearest point pair (x+∗, x−∗) between

CH(X+) and CH(X−). Given a linear model

wT x + b

w = x+∗− x−∗, b =
||x−∗||2− ||x+∗||2

2

(2.11)

D is defined as the shortest distance between CH(X+) and CH(X−). If ∃x+ ∈

X+ wx+ + b ≤ 0 or ∃x− ∈ X− wx−+ b ≥ 0, P is not linearly separable and D =

−1. Otherwise, P is linearly separable and D = ||x+∗− x−∗||.

• If P is not linearly separable, it is as one local linear partition P. When P is

linearly separable, if it merges with its 3 nearest pairs PNN respectively and all

the merged ones are not linearly separable, P is also as one local linear partition

P.

Randomly choose a pair Pt and estimate whether it is a local linear partition. If it is a

local linear partition, randomly choose another pair to do the estimation. Otherwise, do

the merge process, choose Pk from the 3 nearest pairs of Pt by argmax
k

(D(Pt∪Pk)), Pt =

Pt ∪Pk. Then do the estimation of Pt again. The algorithm ends when all the M0 pairs

have been estimated or merged. Finally, we end up with M local linear partitions, where

M ≤ M0. Note that the number of partitions M in the proposed method is determined

automatically, instead of setting a fixed value in advance.

2.3.3 Estimating the centers and the widths

The data near the potential separation boundary can be seen as overlapping. We remove

the overlapping to get centers and widths with higher confidence.

The data near the potential boundary is deleted to make sure D ≥ ε for all the partitions.

ε is empirically set to be Dmax which is the maximum D among all the partitions in our

simulation.
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For each partition, if Pi is not linearly separable (Di < 0), delete the data point x by

argmin
~u

proj~v(~u) iteratively until Di > 0, where proj~v(~u) = | ~u·~v
||~v||2

~v|, ~u = x− 1
2 (x̄+ + x̄−) and

~v = x̄+− x̄−, x̄+ and x̄− are the mean value of the data in the cluster X+ and X−. When Pi

is linearly separable (Di > 0), delete the data point x by argmin
~u

proj~v(~u) iteratively until

Di ≥ ε, where ~u = x− 1
2 (x+∗+ x−∗) and ~v = x+∗− x−∗.

Finally, the center of Pi is given by

µi =
1
2

(x+∗+ x−∗) i = 1, · · · ,M (2.12)

as illustrated in Fig.2.1(b), and the width σi is the radius defined as the largest distance

between the center µi and the data in the local partition.

2.4 Estimation of Linear Parameter by LapSVM

2.4.1 Kernel trick

Given the centers and the widths, by introducing φ(x) and Θ as Eq.(2.4)Eq.(2.5), the

multi-local linear model is expressed as a linear regression form as Eq.(2.6), then it

is recasted as a kernel machine as Eq.(2.7). k(xi, x j) is a data-dependent kernel called

quasi-linear kernel [60]

k(xi, x j) = φT (xi)φ(x j)

= (1 + xT
i x j)gT (xi)g(x j)

(2.13)

The estimation of Θ is converted to the estimation of α to take advantage of the kernel

trick, in this way, there is no need to explicitly calculate the input in the spanned feature

space φ(x), instead, the kernel is given by input x and interpolation function g(x). As a

result, the information of separation boundary is incorporated into the kernel.
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2.4.2 Objective function

In the context of SSC, Laplacian support vector machine (LapSVM) formulated by

min
f∈Hk

L∑
i=1

max(1−yi f (xi),0) +
γA

2
|| f ||2A +

γI

2
|| f ||2I (2.14)

is considered to be a good choice to solve Eq.(2.7). γA controls the complexity of

the function in the ambient space and γI controls the complexity of the function in

the intrinsic geometry of PX. By using the graph Laplacian regularizer FT LF, where

F = Kα+ 1b, we have

min
α,b

1
2

L∑
i=1

max(1−yi(kT (xi)α+ b),0)2

+
γA

2
αT Kα+

γI

2
(αT K + 1T b)L(Kα+ 1b)

(2.15)

where K = ΦNΦT
N = [k(x1), · · · ,k(xN)]T , L is the graph Laplacian built from XN , and 1

is the vector whose all entries equal to 1.

2.4.3 Training in the primal

The LapSVM described by Eq.(2.15) can be trained both in the primal and in the dual.

For small scale datasets, it can be trained in the dual, referred to Ref. [65] for the detail

algorithm, while for large scale or high dimensional datasets, it can be trained in primal

with lower computational complexity and shorter training time. We briefly describe the

algorithm of training in the primal.

The problem of Eq.(2.15) is piecewise quadratic, and gradient descent is a natural choice

for an efficient minimization, indicating the vector z =

 b

α

:
zt = zt−1− s∇ (2.16)
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The gradient ∇ and the Hessian H of Eq.(2.15) with respect to z can be calculated as:

∇ =

 ∇b

∇α


=

 1T IE(Kα+ 1b)−1T IEy+γI1T L(Kα+ 1b)

KIE(Kα+ 1b)−KIEy+γAKα+γIKL(Kα+ 1b)


(2.17)

H =

 ∇2
b ∇α(∇b)

∇b(∇α) ∇2
α


=

 1T IE1 +γI1T L1 1T IEK +γI1T LK

KIE1 +γIKL1 KIEK +γAK +γIKLK


(2.18)

where the error vector E is the subset of labeled data with the points that generate a

hinge loss value greater than zero, the matrix IE ∈ RN,N is a diagonal matrix where

the only entries different from 0 (equal to 1) along the main diagonal are in positions

corresponding to points that belong to E, y ∈RN is an augmented version of label vector

where yi for labeled data while 0 for unlabeled data.

Combining Eq.(2.17) and Eq.(2.18) one can write ∇ = Hz−c, and the vector z for which

∇ = 0 can be computed by solving the system Hz = c

 1T IE1 +γI1T L1 1T IEK +γI1T LK

KIE1 +γIKL1 KIEK +γAK +γIKLK

z =

 1T IEy

KIEy


(2.19)

Preconditioned Conjugate Gradient (PCG) is used for efficient optimization by avoiding

matrix inversions. Given a preconditioner P, the algorithm indirectly solves the system

Hz = c by solving Ĥz = ĉ, where Ĥ = P−1H and ĉ = P−1c. In particular, we can factorize
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Eq.(2.19) as

 1 0T

0 K


 1T IE1 +γI1T L1 1T IEK +γI1T LK

IE1 +γIL1 IEK +γAI +γILK

z =

 1 0T

0 K


 1T IEy

IEy


(2.20)

and select a preconditioner P =

 1 0T

0 K

.
In this way:

∇̂ = Ĥz− ĉ

=

 1T IE1 +γI1T L1 1T IEK +γI1T LK

IE1 +γIL1 IEK +γAI +γILK

z
−

 1T IEy

IEy


(2.21)

∇ = Hz− c = PĤz−Pĉ = P∇̂ (2.22)

More details refer to Ref. [59].

2.4.4 Graph construction

FIGURE 2.3: Graph topology of different methods.
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Graph Laplacian is a matrix representation of a graph. Given an undirected graph with

N nodes, its graph Laplacian is defined as:

L = D−W (2.23)

where D is the degree matrix formulated as di =
∑N

j=1wi j, D = diag(d1, · · · ,di, · · · ,dN),

and the adjacency matrix W can be decomposed into graph topology E and edge weight-

ing k

W(xi, x j) = Ei jk(xi, x j) (2.24)

If there is an edge between the nodes xi and x j, Ei j = 1, else, Ei j = 0, and there are no

self-loops, Eii = 0,∀i = 1, · · · ,N.

1) A label-guided graph

Most of the commonly used graph construction methods like kNN graph and ε graph are

unsupervised in nature, a certain number of labels available at our disposal are ignored.

In contrast with the unsupervised methods, there are several schemes using the available

labels to optimize the graph structure to better fit the classification task.

To name a few, IDML [75] applies Mahalanobis based distance learning in the Gaussian

edge weighting. The metric learning and label estimation with Gaussian Random Fields

(RGF) objective are performed alternatively, until the method converges. A currently

unlabeled instance is considered a new labeled training instance for next round of metric

learning if its label distribution has low entropy. Under the using of a densely sampled

manifold, a larger neighborhood (say k’NN) [76] in the ambient space can be searched

to find the optimal k neighborhood on the manifold. Therefore, all the subgraphs of

k’NN graph are as the hypothesis space.An algorithm to optimize the smoothness func-

tional with respect to the neighborhood graph in the proposed hypothesis space is pro-

vided. GBILI [77] employs information conveyed by mutual k nearest neighbors and

labeled data, and all data seek to connect to the closest label data. SSLRR [78] inte-

grate the given label information into the state-of-the-art self-representation methods,
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such as the LRR graph, by restricting the representation coefficients between labeled

points from different classes to be zero. Intuitively, this information helps us prevent

the structure sparsity of the coefficients from being destroyed in challenging real world

scenarios, i.e., small signal-to-noise ratio, dependent subspaces and/or nonlinear mani-

folds.

Instead of building a new model, we propose a simple method by making full use of

the detected information of potential separation boundary to build a label guided graph.

The circles data is used to illustrate the effectiveness of the proposed method intuitively

in Fig.2.3.

Ahead of all, the graph construction is benefit from the unlabeled overlapping remove-

ment in the first step of the proposed method, as illustrated in Fig.2.3(b). Since some

points connecting different data classes, which can be called bridge points, are deleted.

• edge weighting k:

The quasi-linear kernel is used as edge weighting, since the information of poten-

tial separation boundary has been ingeniously incorporated into the quasi-linear

kernel.

The quasi-linear kernel leads to the fact that distance calculation is insensitive

in the direction which is perpendicular to the local linear separation boundary.

Therefore, the use of quasi-linear kernel as similarity measurement is a special

case of data adaptive feature selection.

• graph topology E:

We firstly build a kNN graph topology by using the quasi-linear kernel as similar-

ity measurement. In addition, the edge between two data points is cut off if they

have different pseudo labels.

In this way, the graph topology is built by fusing the information from both the

original space and spanned feature space in a label guided way. The intuitive

effectiveness of proposed graph construction method is illustrated in Fig.2.3(c).
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2) In formulation

Define a set Λ = supph{ki} containing elements with maximum h values in ki = [ki1, · · · ,ki j, · · · ,kiN]T ,

where KNN = [k1, · · · ,ki, · · · ,kN]T :

Ei j
1≤i, j≤N

=

 1, i , j and j ∈ Λ = supph{ki} and Ci = C j

0, otherwise
(2.25)

where Ci is the pseudo label of xi. If there is disconnected data after cutting off, we

build an edge between it and its nearest neighbor with the same pseudo label.

Final E is symmetric since the graph is assumed to be undirected:

Ei j
1≤i, j≤N

=

 1, Ei j + E ji > 0

0, otherwise
(2.26)

So the adjacency matrix W is given by:

W(xi, x j) = Ei jk(xi, x j)

= Ei j[(1 + xT
i x j)gT (xi)g(x j)]

(2.27)

Moreover, a normalized Laplacian [79] L̃ = D−
1
2 LD−

1
2 is used.

2.5 Numerical Experiments

2.5.1 Experiment setting

In this section, the proposed method is evaluated on a range of small and medium scale

data sets including four semi-supervised benchmark data sets [67] and four UCI data

sets [80], with vary size and dimensionality.
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Data sets

Table.2.1 briefly summarizes the characteristics of the data sets. The split of data sets

TABLE 2.1: Data sets

dataset dim totoal positive negative
g241c 241 1500 750 750
digit1 241 1500 766 734
usps 241 1500 1200 300
text 11960 1500 750 750

ionosphere 34 351 225 126
hill valley noise 100 1212 614 598

splice 240 3190 1535 1655
madelon 500 2600 1300 1300

for training and testing is retained if they have a predefined split; otherwise, the data

is randomly divide into a 80% training set and a 20% testing set. For each data set,

some instances are randomly selected to be served as labeled data, and the remaining

instances are served as the unlabeled data. Both the dividing and the selecting use

stratified sampling to guarantee a similar input and label distribution.

TABLE 2.2: parameter settings

parameter description value
λ scale parameter of proposed model { 0.01, 0.1, 1, 10, 100 }
γ width of RBF (Gaussian) kernel { 0.01, 0.1, 1, 10, 100 }
γA complexity of the function in ambient space {0.01, 0.1, 1, 10, 100}
γI complexity of the intrinsic geometry of PX {0.01, 0.1, 1, 10, 100}
M number of mixture components in HM {50, 100, 150, 200, 250}

Evaluation metrics

As for the evaluation metrics, we use Accuracy and F-score, defined by

F-score =
2×Precision×Recall

Precision + Recall

Accuracy =
T P + T N

T P + FP + T N + FN

(2.28)
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where Precision = T P
T P+FP , Recall = T P

T P+FN , and T P, FP, T N, FN are true positive,

fault positive, true negative, and fault negative, respectively. For balanced data, F-score

and Accuracy are combined for comparison while for imbalanced data like usps and

ionosphere, we only focus on the overall metric F-score.

Baselines

RLS and SVM sever as supervised baselines, with both linear or RBF kernel. LapRLS

and LapSVM sever as semi-supervised baselines, with both linear or RBF kernel. Fol-

lowing a clear and future-proof framework [3] of semi-supervised classification algo-

rithms, the proposed method is a manifold regularization algorithm with a shallow struc-

ture [55], so the harmonic mixtures (HM) model [52] is as the counterpart, as it com-

bines mixture model and graph which also realizes data manifold approximation in an

inductive way.

The parameters listed in Table 2.2 are chosen by a 3-fold cross validation. The number

of nearest neighbors in the graph construction is fixed to 5.

2.5.2 Comparison results

Comparison results among all the algorithms are listed in Table 2.3 with labeled data

proportion fixed at 10% for space limitation.

As can be seen from Table 2.3 that the proposed method works quite well. Specifically,

in terms of wins, the proposed method performs the best in comparison with the other

three semi-supervised algorithms.

When comparing with two supervised baselines, LapRLS and LapSVM show perfor-

mance reductions in one or two cases, while HM having even worse performance. In

contrast, the proposed method is never inferior to these two supervised baselines.
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HM has no advantage among the semi-supervised algorithms neither. LapRLS and

LapSVM have similar performance, and the proposed method outperform these two in

most cases.

2.5.3 Influence of the number of labeled data

We also evaluate the proposed method with various proportions of labeled data, the re-

sults are listed in Table 2.4 with supervised baseline SVM and semi-supervised baseline

LapSVM due to space limitation.

When we have little labeled data, in the cases of 2%, 5%, in contrast to LapSVM that

reduces performance on some cases, the proposed method never shows decreased per-

formance. The advantage of the proposed method over SVM and LapSVM reaches the

highest when the label data proportion is 10%. Moreover, we can see the performance

of LapSVM and the proposed method are quite similar in the case of 20% and 30%

cases, and both of they are found to be highly competitive to SVM.

2.5.4 Influence of imbalance

Although the balance data classes is often a mild assumption, it might still be violated

in some cases, and usps and ionosphere are two imbalance data sets.

Table 2.4 shows that in the balanced data sets, the proposed method has better advantage

over SVM, while LapSVM having more tie and even loss against SVM.

The proposed method only lost to LapSVM in these two imbalance data sets. Therefore,

the proposed method can not have stable advantage over LapSVM in imbalanced cases,

since the imbalance has not been considered in the partitioning, which is the direction

of future work.
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FIGURE 2.4: Parameter influence with 10% labeled data.

2.5.5 Influence of parameters

Figure.2.4 studies the influence of λ, γA and γI on 6 representative data sets (the results

on other data sets are similar) with 10% labeled data by fixing other parameters as

default values. It can be seen that, though the number of labeled instances is small,

the performance of the proposed method is insensitive to the setting of the parameters.

One possible reason is that, rather than interpolating multiple data points, the proposed

methods interpolating multiple local linear models. This property makes the proposed

method more attractive, especially when the number of labeled instances is too small to

afford a reliable model selection.

2.5.6 Influence of kernel and graph

We further study the influence of the kernel and the graph respectively.

The left part of Table 2.5 lists the performance of LapSVM with three different kernels

on 6 balanced data sets. Linear and RBF kernel are the most commonly used linear and

non-linear kernel respectively. As we can see, RBF kernel fails dramatically in text,

so the choice of kernel is very data-dependent. In the contrast, the quasi-linear kernel
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TABLE 2.5: Influence of kernel and graph with 10% labeled data.

Kernel Graph
Linear RBF Quasi Un GCLI Ours

g241c 79.57 79.61 80.11 g241c 80.11 80.66 80.63
digit1 93.50 93.67 93.67 digit1 93.67 93.07 93.67
text 68.94 0.00 70.44 text 70.44 70.44 70.48

hill valley noise 89.67 89.55 90.88 hill valley noise 90.88 91.11 91.42
splice 91.22 91.34 91.44 splice 91.44 91.47 91.56

madelon 53.20 53.42 53.63 madelon 53.63 53.63 53.77
w/t/l aginst linear kernel 4/0/2 6/0/0 w/t/l aginst un 3/2/1 5/1/0

w/t/l aginst rbf kernel 5/1/0 w/t/l aginst GCLI 5/0/1

never show such a significant reduction. The quasi-linear kernel is defined as the inner

product of the input in a finite dimensional spanned feature space which is learned from

the data set itself, and the flexibility is automatically adopt to data set.

The right part of Table 2.5 shows the performance of LapSVM with quasi-linear kernel,

and three different graph construction methods. The baseline is the unsupervised graph

construction method. The proposed method first build a kNN graph with quasi-linear

kernel as similarity measurement and edge weighting, then cut off the edges between

two data if they have different pseudo label, so it is a label guided graph construction

method. Most of the label guided graph construction methods build a new complex

model, we choose a relatively simple one GCLI [77] to do the comparison. We can

see the proposed method perform stably, unlike GCLI, the proposed method never fails

against the unsupervised graph construction method.

2.6 Summary

The proposed method firstly detect the information of potential separation boundary,

then ingeniously incorporated it into LapSVM both in the kernel level and graph level.

From the aspect of kernel machine, the incorporation of detected information of poten-

tial separation boundary makes a kernel function have higher theoretical interpretability

and data adaptability. From the aspect of graph construction, the limited labels are fully
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used in an explicit and simple way. The simulation results shows the effectiveness of

the proposed method.





Chapter 3

LapRLS Based on Piecewise Linear

Model

3.1 Background

1The semi-supervised classification (SSC) is of immense practical interest in a wide

range of applications, such as biology, image processing, natural language processing

where the labeled data is expensive while abundant unlabeled data is available. Further-

more, much of human learning involves a small amount of direct instruction combined

with large amounts of observations. Hence, the semi-supervised classification is a plau-

sible model for human learning [10, 67, 68].

The SSC considers a classification problem of learning from both labeled and unlabeled

data, typically with a small amount of labeled data and a great deal of unlabeled data,

under the prerequisite that the distribution of labeled data and unlabeled data has to

be the same. Thus, certain assumptions have to hold, such as smoothness assumption,

cluster assumption and manifold assumption. The approaches such as change of repre-

sentation [81], generative models [82] and low-density separation [83], and graph-based

methods [70] roughly correspond to these underlying assumptions respectively.

1This chapter is mainly extended from the Journal paper: Y. Ren, W. Li and J. Hu, “A Semi-Supervised
Classifier Based on Piecewise Linear Regression Model Using Gated Linear Network”, IEEJ Transac-
tions on Electrical and Electronic Engineering, Vol.15, No.7, pp.1048-1056, July, 2020.

47
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A Laplacian regularized least squares (LapRLS) algorithm [51, 59], which assumes

that if two instances are close in the intrinsic geometry of margin distribution then the

conditional distributions are similar, has been proposed as a typical graph-based method

based on the manifold assumption which assumes that the (high-dimensional) data lie

(roughly) on a low dimensional manifold. A LapRLS extends the ridge regression,

a standard supervised regularization algorithm, by incorporating additional information

about the geometric structure of the margin distribution of data which is estimated using

the graph Laplacian associated to all the training instances.

Another algorithmic way to extend a supervised learning method to an SSC method is

solely adding a consistency regularization to the training of a neural network while leav-

ing the training and model unchanged from what would be used in the fully-supervised

setting [84]. A consistency regularization, which assumes realistic perturbations of in-

stances should not significantly change the outputs, can be seen as a way of leveraging

the unlabeled data to find a smooth data manifold, and it has produced some currently

state-of-art SSC methods. Temporal Ensembling (TE) [85] uses an exponentially ac-

cumulated average of outputs as consistency target where the output is itself stochastic

due to common regularization technique such as dropout and adding noise. Instead of

relying on the built-in stochasticity of output, Virtual Adversarial Training (VAT) [58]

directly approximates a tiny perturbation to add to input which would most significantly

affect the output of prediction function.

In order to effectively utilize data manifold learned from both training instances and

limited labels we have, in this chapter we propose a semi-supervised classifier based on

a piecewise linear regression model. The idea is to introduce a gated linear network to

realize the piecewise linear model approximating the nonlinear separation boundary, in

which a semi-supervised gating mechanism is designed for realizing the partitioning.

Fig.3.1 shows an overview of the proposed method, which consists of two steps. In the

first step, a gating mechanism is pre-trained to generate a set of binary gating sequences

to control the base linear models in the gated linear network. Each binary gating se-

quence corresponds to one partition. Instead of using an unsupervised manner [62],

the gating mechanism is trained as a semi-supervised neural network which can capture
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FIGURE 3.1: The overview of the proposed method.

the data manifold from both labeled and unlabeled data, by using a k-sparse aggres-

sive sparsity strategy. In the second step, the gated linear network is first transformed

into a linear regression form and the linear parameters are then optimized globally by

a Laplacian regularized least squares (LapRLS) algorithm using a kernel function com-

posed with the gating sequences obtained in the first step [86]. Moreover, we use the

kernel function as a similarity measurement to construct the graph in LapRLS. In this

way, we capture data manifold from both the instances and the labels we have, and the

captured data manifold is ingeniously incorporated both into the kernel and the graph

Laplacian in the LapRLS. Numerical experiments on various real-world datasets exhibit

the effectiveness of the proposed method.

The rest of this chapter is organized as follows. Section 3.2 formulates a unified frame-

work for a gated linear network based piecewise linear regression model. In Section

3.3, we design a semi-supervised gating mechanism. Section 3.4 shows the optimiza-

tion process using LapRLS. Section 3.5 presents the simulation results of a series of

experiments to validate the effectiveness of our proposed method. Finally, the conclu-

sions are drawn in Section 3.6.
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3.2 Piecewise Linear Model

In the case of a semi-supervised binary classification problem, there is a probability dis-

tribution P on X×Rn and a prediction function is learned from data sampled according

to P, labeled pairs (x, y) are sampled from the joint distribution PXY of P while unla-

beled instances x ∈ X are sampled from the marginal distribution PX of P. Suppose

we have a training set containing L labeled pairs {(xl, yl)}Ll=1 with yl ∈ {1,−1} and N − L

unlabeled instances {xu}
N
u=L+1. XN represents all of labeled and unlabeled instances in

the training dataset.

Consider the case where applying a multilayer perceptron (MLP) with rectified lin-

ear unit (ReLU) to approximate the nonlinear separation boundary. Since ReLU(z) =

max{0,z} is a compound activation function of linear unit weighted by a step function

ReLU(z) = z · S (z), the rectified MLP can be separated into a gated linear network and

a gating mechanism. When considering only simple cases where the rectified neural

network is a two-layer MLP, the gated linear network can be expressed by

f (x) =

M∑
j=1

(ΩT
j x + b j) ·g j(x) + b (3.1)

where g j(x) ( j = 1, ...,M) is a step function of gate control signals generated by a pre-

trained MLP, and the linear parameters Ω j,b j,b may be further optimized using LapRLS

algorithm, which may be considered as a fine-tuning of the pre-trained MLP.

By given the gating sequence g(x) = [g1(x), · · · ,gM(x)]T and introducing two vectors

φ(x) and Θ, defined by

φ(x) = [1,g1(x), xTg1(x), · · · ,gM(x), xTgM(x)]T

= [1,gT (x)⊗ [1, xT ]]T
(3.2)

Θ = [b,b1,Ω
T
1 , · · · ,bM,Ω

T
M]T (3.3)
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FIGURE 3.2: The architecture of gated linear network realizing piecewise linear re-
gression model.

where the symbol ⊗ denotes Kronecker product, the gated linear network described by

Eq.(3.1) can then be further expressed by a linear regression form as

f (x) = φT (x)Θ. (3.4)

where φ(x) is the known regression vector while Θ is the linear parameters to be further

optimized.

On the other hand, we can see from Fig.3.2 that the gated linear network realizes a

piecewise linear model, where ΩT
j x + b j( j = 1, · · · ,M) are a set of linear base models, b

is the bias parameter, and g j(x) is the gate control signal determining whether the j-th

linear base model plays a role; g j(x) = 1 indicates that the j-th linear base model does

play a role while g j(x) = 0 meaning it does not. Different gating sequences, which mean

different combinations of linear base models, correspond to different linear submodels,

thus different partitions. In this way, we are able to pre-train a neural network to re-

alize a sophisticated partitioning and build a set of linear submodels for the piecewise

linear model by generating a set of binary gating sequences using the pre-trained neural

network.

It is well known that a neural network can be trained to capture data manifold [87],

and the captured data manifold can guide the generation of gate control signals in our

piecewise linear regression model [62][86]. In Section 3.3, we design a semi-supervised
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FIGURE 3.3: A labeled autoencoder as the gating mechanism, consisting of a classifier,
an encoder and a decoder.

gating mechanism based on the neural network, which can capture data manifold from

both labeled and unlabeled data, to generate gate control signals. Then in Section 3.4,

we optimize the linear parameters Θ by applying a LapRLS algorithm.

3.3 Semi-Supervised Gating Mechanism

By using a gated linear network, as shown in Fig.3.2, the estimation of break-points in

the piecewise linear regression model is replaced by generating binary gating sequences

to control the linear base models. We will design a semi-supervised gating mechanism

based on a label guided k-sparse autoencoder [88] in order to leverage the label infor-

mation.

3.3.1 Structure of the gating mechanism

Fig.3.3 shows a gating mechanism based on a labeled autoencoder, consisting of a clas-

sifier, an encoder and a decoder. Inspired by Ref. [49], we design the semi-supervised

gating mechanism by adding a classifier and introducing label guidance into an autoen-

coder. The classifier is described by

ŷ = πφ(x) (3.5)
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where πφ(·) is represented as a feedforward neural network and ŷ is a probability vector

after a softmax activation function, and the encoder by

z = a(wT (x, y) + θ), (3.6)

while the decoder by

x̂ = w′T (z, y) + θ′. (3.7)

Since the encoder after training will generate the gate control signals [62], following

the idea of k-sparse strategy, by defining a set Γ = suppk{wT (x, y) + θ} containing hid-

den units with top-k% activation values, the activation function a(·) can be seen as a

compound activation function of linear unit weighted by a step function:

a(wT
j x + θ j) = (wT

j x + θ j) ·S (wT
j x + θ j)

S (wT
j x + θ j) =

 1, j ∈ Γ = suppk{wT x + θ}

0, j < Γ = suppk{wT x + θ}

(3.8)

where there are M neurons in the hidden representation z and the sparsity level k is

the only hyper-parameter to tune, and the data manifold is captured by this k-sparse

strategy.

After training, the generation of gate signals is guided by the captured data manifold:

g j(x) =

 1, j ∈ Γ = suppk{ŵT (x, ŷ) + θ̂}

0, j < Γ = suppk{ŵT (x, ŷ) + θ̂}
(3.9)

where ŵ and θ̂ are the estimates of w and θ.

3.3.2 Training of the gating mechanism

In the training process, firstly we will get probability vectors ŷl, ŷu for labeled and

unlabeled instances respectively through the classifier. For labeled instances xl, the true

labels yl are concatenated with the instances as the input of encoder, which are also



Chapter 3. LapRLS Based on Piecewise Linear Model 54

concatenated with the representation as the input of decoder. For unlabeled instances

xu, we concatenate all the possible labels with the instance as the input of encoder, and

also concatenate the same labels with the representation as the input of decoder to get

all possible loss to form a loss vector Lu by calculating the mean square error between

the input and the reconstruction ||x̂u− xu||
2
2. In the context of binary classification, here

are two possible labels so that we can get two loss values in the loss vector Lu.

The final loss function consists of the losses of both labeled instances L(xl, yl) and

unlabeled instancesU(xu)

Loss =L(xl, yl) +β ·U(xu) (3.10)

where β is a coefficient, and

L(xl, yl) = αH(yl, ŷl) + ||x̂l− xl||
2
2 (3.11)

where α is a coefficient, and H(yl, ŷl) = −
∑
yl log ŷl is the cross entropy between yl and

ŷl, and

U(xu) = H(ŷu) + ŷu ·Lu (3.12)

where H(ŷu) = −
∑
ŷu log ŷu is the information entropy of ŷu, and ŷu · Lu stands for

weighted loss. In our simulation, the coefficients α and β are set to α = 0.1N and β = 1,

where N is the number of training samples.

3.3.3 Gate control signals

The gate control signals are generated as Eq.(3.9), and note that the data manifold,

which guides the generation of gate control signals, is learned from both training in-

stances and limited labels. Different gating sequences g(x) stand for different com-

binations of p = bM ∗ k%c linear base models, thus different linear submodels which

correspond to different partitions. The number of linear submodels in the piecewise

linear regression model may be up to Cp
M, and it is easy to use Pascal’s Triangle to show

that Cp
M achieves its largest value when k = 50.
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3.4 Laplacian Regularized Least Squares

3.4.1 Ridge regression with manifold regularization

Given the regression vector φ(x), we optimize Θ in Eq.(3.4) by applying a ridge regres-

sion with manifold regularization (LapRLS)[89]. As a result, we have an optimization

problem described by

min
Θ
` =min

Θ

1
2

N∑
k=1

[yk −φ
T (xk)Θ]2

+
γA

2
ΘT Θ+

γI

2
FT LF

(3.13)

where F = ΦNΘ and

ΦN = [φ(x1), · · · ,φ(xL),φ(xL+1), · · · ,φ(xN)]T .

So we have

min
Θ
` =min

Θ

1
2
||(Ŷ − JΦNΘ)||2

+
γA

2
ΘT Θ+

γI

2
ΘT ΦT

NLΦNΘ

(3.14)

where J is an N ×N diagonal matrix given by J = diag(1, · · · ,1,0, · · · ,0) with the first

l diagonal entries as 1 and the rest 0, and Ŷ = [y1, · · · , yL,0, · · · ,0]T is an augmented

version of Y where yi for labeled instances while 0 for unlabeled instances. For notation

simplicity, we ignore every normalization coefficient of each term here, γA controls the

complexity of the function in the ambient space and γI controls the complexity of the

function in the intrinsic geometry of PX, L is the graph Laplacian built from XN . The

derivative of the objective function vanishes at the minimizer:

∂`

∂Θ
= 0

(Ŷ − JΦNΘ)T (−JΦN) +γAΘT +γIΘ
T ΦT

NLΦN = 0
(3.15)
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If ΦN has more rows than columns and is of full column rank, we can have following

closed form solution for the over-determined problem:

Θ∗ = (ΦT
N JΦN +γAI +γIΦ

T
NLΦN)−1ΦT

N Ŷ (3.16)

while if ΦN having more columns than rows and is also of full row rank, we can have

following closed form solution for the under-determined problem:

Θ∗ = ΦT
N(JΦNΦT

N +γAI +γILΦNΦT
N)−1Ŷ (3.17)

3.4.2 A kernel formulation

Eq.(3.16) and Eq.(3.17) can naturally be related to a kernel formulation since both of

them contain inner product of regression vectors ΦN . By combining Eq.(3.17) with the

original model in Eq.(3.4) as an example:

f (x) = φT (x)Θ∗

= φT (x)ΦT
N(JΦNΦT

N +γAI +γILΦNΦT
N)−1Ŷ

(3.18)

Under the circumstance of our piecewise linear regression model, the kernel is defined

as the inner product of regression vectors according to Eq.(3.2)

k(xi, x j) = φT (xi)φ(x j)

= 1 + (1 + xT
i x j)gT (xi)g(x j)

(3.19)

which is called a quasi-linear kernel[62, 90]. So KNN = ΦNΦT
N = [KN(x1), · · · ,KN(xN)]T

where KN(x) = ΦNφ(x) = [k(x, x1), · · · ,k(x, xN)]T and we have

f (x) = KT
N(x)(JKNN +γAI +γILKNN)−1Ŷ (3.20)

Eq.(3.19) shows that by using the gating mechanism we can get a mapping function

φ(x) defined by Eq.(3.2), which maps an input to a finite dimensional spanned feature
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space. Then in the feature space, we can discuss the optimization of a linear regression

model.

Therefore, it is natural to have a direct comparison among a linear LapRLS, a RBF

LapRLS, and our piecewise linear regression model at a kernel level. As a reminder,

here are the linear kernel in Eq.(3.21) and the RBF kernel in Eq.(3.22).

k(xi, x j) = xT
i x j (3.21)

k(xi, x j) = exp(−γ||xT
i − x j||

2
2) (3.22)

3.4.3 Graph construction

Furthermore, the quasi-linear kernel is applied to graph construction in the LapRLS.

Graph Laplacian is a matrix representation of a graph. Given an undirected graph with

N nodes, its graph Laplacian is defined as:

L = D−W (3.23)

where W is adjacency matrix defined by

W(xi, x j) = Bi jk(xi, x j) (3.24)

and D is degree matrix formulated as

di =

N∑
j=1

wi j

D = diag(d1, · · · ,di, · · · ,dN)

(3.25)

Graph construction can be decomposed into graph sparsification and edge weighting.

B is the edge sparsification matrix, if there is an edge between the nodes xi and x j,

Bi j = 1, else, Bi j = 0, and there are no self-loops, Bii = 0,∀i = 1, · · · ,N. In a traditional

method, we construct B using a standard neighbor algorithm like k-nearest neighbor (k-

NN) where undirected weights between a node and its k-nearest neighbors are greedily
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added, and a Gaussian kernel is often used to evaluate the weight of each edge. So both

B and k are based on an Euclidian distance in the input space.

However, the distance between instances under an Euclidean distance becomes am-

biguous in higher input dimension [91]. On one hand, the quasi-linear kernel is an inner

product of the input in the spanned space. On the other hand, the data manifold has

been ingeniously incorporated into the quasi-linear kernel. So we proposed a method to

construct the graph using the quasi-linear kernel KNN as a similarity measurement.

We first find the closest h instances to each instance based on the values in the quasi-

linear kernel matrix, the greater the value, the closer the two instances. Define a set

Λ = supph{ki} containing elements with maximum h values in ki = [ki1, · · · ,ki j, · · · ,kiN]T ,

where KNN = [k1, · · · ,ki, · · · ,kN]T :

Bi j
1≤i, j≤N

=

 1, j , i and j ∈ Λ = supph{ki}

0, otherwise
(3.26)

Then we need to make B symmetric since the graph is assumed to be undirected:

Bi j
1≤i, j≤N

=

 1, Bi j + B ji > 0

0, Bi j + B ji ≤ 0
(3.27)

So the adjacency matrix WNN is given by:

WNN(xi, x j) = Bi jk(xi, x j)

= Bi j[1 + (1 + xT
i x j)gT (xi)g(x j)]

(3.28)

where Bi j is constructed as Eq.(3.26), Eq.(3.27) and k(xi, x j) is the quasi-linear kernel.

Moreover, a normalized Laplacian

L̃ = D−
1
2 LD−

1
2 (3.29)

can be used interchangeably also. Using L̃ instead of L provides certain theoretical

guarantees[79] and seems to perform as well or better in practical tasks.
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Naturally we get a normalized graph Laplacian L̃NN based on the quasi-linear kernel

KNN according to Eq.(3.28), Eq.(3.25) Eq.(3.23) and Eq.(3.29).

At last, the piecewise linear regression classifier takes the form of

y = sign[ f (x)] (3.30)

where

f (x) = KT
N(x)(JKNN +γAI +γIL̃NNKNN)−1Ŷ (3.31)

according to Eq.(3.18).

To summarize, we incorporate the data manifold captured in the semi-supervised gating

mechanism into both kernel and graph Laplacian in the LapRLS. On one hand, we

avoid calculating the Euclidean distance in the input space. Instead, we measure the

similarity between instances in the spanned space via the inner product, see Eq.(3.2).

On the other hand, we construct the graph in a semi-supervised way, and it is expected

to work better than the traditional k-NN algorithm which is unsupervised. As a result,

the semi-supervised nature of the entire model is preserved both at a kernel level and a

graph level.

3.5 Numerical Experiments

In this section, a set of real-world datasets from UCI machine learning repository are

used to show the effectiveness of our proposed method. Table 3.1 briefly describes the

datasets, referred to Ref. [80] for more details.

3.5.1 Evaluation metrics

As for the evaluation metrics, we use Accuracy and the overall metric F-score, defined

as (2.28).
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TABLE 3.1: Dataset description.

datasets features positive negative train test
Splice 60 1535 1655 2233 957
Digit1 241 766 734 1200 300
g241c 241 750 750 1200 300
g241n 241 748 752 1200 300

Madelon 500 1300 1300 2000 600
Gisette 5000 3500 3500 6000 1000

text 11960 750 750 1200 300
ES R1−5 178 2300 2300 3220 1380

3.5.2 Experimental settings

We keep the split of datasets for training and testing if they have a predefined split,

otherwise, we integrate all the data we have and randomly divide it into a 70% training

set and a 30% testing set using stratified sampling to guarantee a similar input and label

distribution. All the features of continuous data are standardized into a zero mean and

unit variance while they are further normalized into a vector with a unit l2-norm if fed

into a kernel calculation. We manually remove some labels in the training set to make

it a semi-supervised classification dataset.

TE, VAT and labeled autoencoder (lae) are all based on neural networks which have

many hyper-parameters to be determined in advance. To have a fair comparison, TE,

VAT and the classifier of lae share all the hyper-parameters like network structure, learn-

ing rate and training epoch in our experiments as showed in Tabel 3.2. When training

TE and VAT on MNIST, SVHN and CIFAR-10, a “WRN-28-2”, i.e. ResNet with depth

28 and width 2 [92], is used. All the neural networks are implemented based on Py-

Torch [93]. All the hyper-parameters of LapRLS are listed in Table 3.3, where the

nearest neighbors in the graph construction is fixed to be 10 for all the methods.

When compared with different semi-supervised (SS) classifiers as discussed in Subsec-

tion 3.5.3, the hyper-parameters k, γA and γI in our proposed method are chosen by a

3-fold cross validation. The training of all the SS classifiers are repeated for 10 rounds

due to the random initialization of networks weights. When evaluating our proposed
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algorithm from the aspects of kernel machine and graph construction as discussed in

Subsections 3.5.4 and 3.5.5, we obtain a fixed gate mechanism, which generates the gate

control signals to compose the quasi-linear kernel, by using cross validation method.

TABLE 3.2: Parameter setting of TE, VAT and lae.

data
NN structure

(TE,VAT, classifier of lae)
dim(z) in lae learning rate epoch

Splice

dim(input)×50×2

1000

2e-4
100

Digita1
g241c

500g241n
Madelon
Gisette dim(input)×500×50×2

1000 150
text dim(input)×1000×100×2

3e-4
ESR dim(input)×50×2 50 100

TABLE 3.3: Parameter setting of LapRLS.

parameter description value
k the sparsity level of gating mechanism {5, 10, 30}
γ width of RBF (Gaussian) kernel { 0.01, 0.1, 1, 10, 100 }
γA complexity of the function in ambient space {0.01, 0.1, 1, 10, 100}
γI complexity of the intrinsic geometry of PX {0.01, 0.1, 1, 10, 100}

3.5.3 Compared with different classifiers

Table 3.4 lists the performance of five models under the datasets with 5%, 10%, 15%,

20% and 25% labeled data.

We use the ridge regression (RLS) as a supervised baseline, and the LapRLS as a semi-

supervised baseline. Obviously, the labeled autoencoder (lae) is very unqualified as a

semi-supervised classifier, since it is not even as good as the supervised baseline in many

cases. We can observe that our proposed method outperform other methods on most of

the datasets, even though the labeled autoencoder, as the first step of our method, plays

a poor role at classification. As a gating mechanism it is only used to extract rough

nonlinear information, and the linear parameters of piecewise linear regression model

are optimized in the second step via LapRLS. This two-step strategy in our proposed

model makes sure the stability of the entire model even when the gating mechanism
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TABLE 3.5: Performance on large-sized datasets (test errors (%) ).

MNIST SVHN CIFAR-10
N=100 N=1000 N=1000 N=4000

TE 4.33±0.13 4.12±0.16 8.23±0.33 17.64±0.50
VAT 2.12±0.11 2.03±0.19 6.91±0.37 15.72±0.34

proposed 2.06±0.03 2.00±0.07 6.67±0.11 15.47±0.12

fluctuates greatly. Therefore, we believe the proposed model is a competitive model for

a semi-supervised binary classification, and it compensates the shortcomings of the neu-

ral network to some extent by eliminating the parameter tuning and improving stability,

especially for small and medium-sized datasets.

We should note a special case that LapRLS works worse than RLS in gisette, and the

proposed method doesn’t have advantage in gisette, maybe the graph Laplacian approx-

imation is not adoptive to gissete.

The competitors, TE and VAT, are the deep learning methods. As reference, Table

3.5 shows the performance of the proposed algorithm, the TE and VAT algorithms on

MNIST, SVHN and CIFAR-10 datasets. In the context of deep learning, the proposed

algorithm uses the deep neural network pre-trained by the TE or VAT algorithm as

gating mechanism to generate gate control signals and compose a deep quasi-linear

kernel [90]. The proposed algorithm can be seen as a fine-tuning of the deep neural

network models trained by the TE or VAT algorithms. From Table 3.5, we can see that

the performance has been improved by the proposed algorithm on all datasets. The

better performance on the pre-training step, the smaller improvement is obtained by the

proposed algorithm.

However, it should be noted that the proposed method is time consuming in this case, it

is recommendable to use TE or VAT for large scale datasets.
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3.5.4 Compared with different kernels

All these four kernel machines in Table 3.6 are different from each other in the kernel

level while sharing the graph Laplacian which is constructed using k-NN matching and

Gaussian weights. Linear and RBF are commonly used kernels, autoencoder (ae-based)

stands for an unsupervised gating mechanism to compose the kernel while labeled au-

toencoder (lae-based) standing for a semi-supervised one to compose the kernel as de-

scribe in Section 3.3.

FIGURE 3.4: Analysis the effect of γA on splice 25% while other hyper-parameters are
fixed, linear, RBF and ae are used as references.

Firstly, it is obvious that our proposed method achieves better performance among ker-

nel machines in all situations. For datasets with low dimensional features, our kernel

works better with a tiny number of labels, and as the number of labels increases, our ad-

vantage decreases while for high dimensional datasets, our kernel outperforms steadily.

Secondly, we can observe that the label guidance introduced in the gating mechanism

actually improves the performance almost in all the situation under all datasets. It ver-

ifies that the data manifold captured from both labeled and unlabeled data in a semi-

supervised way is better than the one captured from only unlabeled data in an unsu-

pervised manner. When the label guidance leads to an overfitting problem like splice
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25%, we notice the γA = 0.01 reaches the minimum of the search range. We tend to

assume it is a low noise dataset and if the complexity of Θ can be improved in the sec-

ond step of our method, the performance would be better. So we fixed all the other

hyper-parameters just analysis the effect of γA. The results showed in Fig.3.4 verify

our assumption, if we can extend the search range of γA, the overfitting problem can be

solved in the second step in our method.

FIGURE 3.5: F-score of different graph constructions in LapRLS on ESR dataset
(Class 1 vs 2 as an example)

3.5.5 Compared with different graphs

The ESR dataset has five classes, each of which contains 2300 instances, and only

instances in Class 1 have epileptic seizure while others not, we focus on Class 1 vs

other classes. We found that the proposed method is particularly prominent on the

ESR dataset as shown in Table.3.7, so we further explore the effectiveness of the graph

construction in our proposed method on ESR as an example.

We use binary weight, Gaussian weight and locally linear reconstruction (LLR) [94] as

comparative methods in edge weighting where the k-NN is used for graph sparsification.

On the other hand, in our proposed method both of the graph sparsification and edge

weighting are based on the quasi-linear kernel as described in Subsection 4.3.
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Fig.3.5 shows the effect of different methods of graph construction in LapRLS on the

classification performance under the same quasi-linear kernel. We found that the perfor-

mance of binary and Gaussian almost overlap, and both LLR and our method perform

better. LLR performs better because of its local manifold approximation, and it’s rea-

sonable to believe the success of our method is due to the data manifold captured in

the gating mechanism. Although the two can have a similar effect, LLR is more time-

consuming.

3.6 Summary

In this chapter, we have proposed a semi-supervised classifier based on a piecewise

linear regression model which aims to fully utilize the data manifold learned from both

training instances and limited labels. We introduce a gated linear network to realize

the piecewise linear model which has two step. In the first step, we pre-train a semi-

supervised gating mechanism to transform the break-point estimation of a piecewise

linear model into the generation of gate control signals, which is guided by the data

manifold learned from both labeled and unlabeled data, so as to partition. In the second

step, the piecewise linear model is transformed into a linear regression form where

the known regression vector is composed with the gate control signals. We optimize

the linear parameters globally by a LapRLS algorithm where the kernel is defined as

inner product of the regression vectors. Moreover, we use the kernel function as a

similarity measurement to construct the graph in LapRLS. In this way, the data manifold

is ingeniously incorporated both into the kernel and the graph Laplacian in the LapRLS.



Chapter 4

Semi-Supervised Classification of

Parasite Images

4.1 Background

1According to the World Health Organization report, infectious and parasitic diseases

are the second leading cause of death worldwide [95]. Plasmodium, Babesia, and Toxo-

plasma are amongst the most prevalent and morbidity-causing parasites in humans and

animals worldwide [96]. Plasmodium is the causative agent of malaria, which impacts

over 200 million individuals and kills over 300,000 children annually [97]. Babesio-

sis caused by Babesia is a disease with many clinical features that are similar to those

of malaria [98]. Toxoplasma is estimated to infect one-third of the world’s popula-

tion, life-threatening in the pregnancy and the immunocompromised [99]. Measuring

parasite infection by direct microscopy observation remains relatively widespread as a

point-of-care diagnostic in clinical and epidemiological settings [100]. Affordable and

accurate diagnostic testing on microscopic images could reduce the risk of illness and

death significantly.

1This chapter is mainly extended from the Journal paper:Y. Ren, H. Jiang, H. Zhu, Y. Tian and J.
Hu, “A Semi-Supervised Classification Method of Parasites using Contrastive Learning”, IEEJ Trans. on
Electrical and Electronic Engineering, Vol.17, No.3, March, 2022. (9 pages)

69
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Recently, deep learning techniques have become a popular choice in both computer

vision and the medical imaging community [101]. For the recognition of the para-

sites and the Erythrocyte, which is often overlapped with the parasites, deep learning

has obtained impressive results. A deep learning model using hand-craft features in

morphology to classify healthy and abnormal Erythrocytes [102]. Well-known Convo-

lutional Neural Networks (CNNs), including Inception v3 [103], LeNet, AlexNet, and

GoogLeNet [104], are used to identify Plasmodium parasites. A solution for multiple

parasites and Erythrocytes is given based on Toxoplasma, Babesia, Plasmodium, and

Erythrocytes are variant in morphology under microscopy [66].

However, the outlined methods have been designed in a prerequisite that all the train-

ing data is labeled. In practical clinical scenarios, human annotations are expensive

and time-consuming to obtain due to the shortage of specialists in diagnostic imag-

ing despite the increasing spread of imaging equipment [105]. The lack of the labeled

data motivates the study of methods trained with limited supervision, such as semi-

supervised classification [3], weakly supervised learning [4], and unsupervised domain

adaptation [6]. This chapter focus on semi-supervised classification (SSC), which for-

mulates the separation boundary by leveraging a large amount of unlabeled data in

addition to a small amount of labeled data. Furthermore, there are two challenges in mi-

croscopic parasite image classification. On the one hand, the semantic objects, namely

salient structures, are fuzzier and more complex than real-world images, leading to mi-

croscopic images are not as distinguishable as macroscopic images. On the other hand,

the insignificant textures, like image background staining, lightness, or contrast level,

vary much in samples from different clinical scenarios. At the same time, the avail-

able training data [106] is of a similar pattern in each category, which may lead to poor

generalization in real-world applications.

In this chapter, we propose a semi-supervised classification method for three para-

sites and Erythrocytes microscopic images. It contains a feature extractor trained by

contrastive learning and a classifier optimized by Laplacian Support Vector Machine
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(LapSVM). Contrastive learning aims to map similar data close together and map dis-

similar data further away in the embedding space. By defining the similarity and dis-

similarity distribution, the desired invariant/covariant properties of the learned represen-

tation are specified [107]. LapSVM extends the support vector machine, a supervised

kernel machine with marginal maximum, by incorporating a manifold regularizer esti-

mated using the graph Laplacian associated with all the training data [51].

For the feature extractor, we aim to learn structure-enhanced and texture-invariant rep-

resentations using contrastive learning [108]. It is difficult to classify the microscopic

images directly due to the fuzzy structure, especially when the labeled data is minimal.

Therefore, we introduce the macroscopic images with similar and clear semantic in-

formation, which are much easier to classify, and we connect microscopic images and

macroscopic images by similarity to enhance the structure at the representation level.

In addition, we introduce variant appearance transformations to eliminate the insignifi-

cant texture at the representation level. For the classifier, we realize a piecewise linear

model approximating the nonlinear separation boundary using the gated linear network,

in which the gate control signals are for partitioning [109]. Given the representations

and the gate control signals generated from the learned feature extractor, the gated linear

network is recast into a linear regression form. The linear parameters are optimized by

LapSVM using a kernel function composed of the representations and the gate control

signals. In summary, the proposed semi-supervised method tackles the structure and

texture challenges and achieves affordable and accurate parasite classification.

This chapter is organized as follows. Section 4.2 states the data and gives an overview

of the proposed method. Section 4.3 describes the data pre-processing and the feature

extractor trained using contrastive learning. Section 4.4 shows the classifier optimized

using LapSVM. Section 4.5 presents the simulation results of a series of experiments to

validate the effectiveness of our proposed method. Finally, the conclusions are drawn

in Section 4.6.
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4.2 Methodology

4.2.1 Materials

Microscopic images including 5758 Plasmodium, 5741 Toxoplasma, 5878 Babesia, and

6981 Erythrocytes are used as Micro data [106]. Following the knowledge from par-

asitologists that Plasmodium is ring-shaped, Toxoplasma is banana-shaped, Babesia is

double-pears-shaped, and Erythrocyte is apple-shaped [66]. We photo 500 macroscopic

images each of ring, banana, double-pears, and apple as Macro data [110], which best

match the Micro objects of interest. Macro data shares the same label with its corre-

sponding Micro data.

The split of Micro data for the training and testing sets is retained, so the testing set

contains 1000 Micro data for each category. To evaluate the generalization ability, we

transform the testing set to a random color distortion version (randomly changes the

hue, lightness, and saturation of each test image).

We suppose that only 50 Micro data in each category are labeled, about 1% of the whole

data set, in a practical clinical scenario. The training set contains 2000 Macro data

XS = {(xs, ys)}Ss=1 which is fully labeled with ys ∈ {0,1,2,3} as source data, 200 labeled

Micro data XT = {(xt, yt)}Tt=1 with yt ∈ {0,1,2,3} as target data, and 20158 unlabeled

Micro data XU = {xu}
U
u=1. Samples from the training set are illustrated in Fig.4.1.

4.2.2 Framework

As illustrated in Fig. 4.2(1)(2), for the feature extractor, firstly, Macro data is trans-

formed to its adaptive version with the style of corresponding Micro data, as the data

pre-processing. Then a deep CNN G is trained as the feature extractor, with a com-

bination of supervised loss only for the labeled data and unsupervised loss for both

the labeled and the unlabeled data. In addition to representation z, the trained G can

generate binary gate control signals g j(z) [90].
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FIGURE 4.1: Samples from the training set.

As illustrated in Fig. 4.2(3), given the representations z and gate control signals g j(z),

a gated linear network is adopt as the classifier to realize a piecewise linear separation

boundary [109]

f (z) =

M∑
j=1

(ΩT
j z + b j) ·g j(z) + b (4.1)

where ΩT
j z + b j( j = 1, · · · ,M) are a set of linear base models. Gate control signal g j(z)

determines whether the j-th linear base model plays a role; g j(z) = 1 indicates that the

j-th linear base model does play a role while g j(z) = 0 meaning it does not. Different

gating sequences g(z) = [g1(z), · · · ,gM(z)], which mean different combinations of linear

base models, correspond to different linear submodels, thus different partitions. The

linear parameters Ω j,b j of linear base models and the bias b are estimated implicitly by

applying LapSVM.

4.3 Deep CNN Feature Extractor

4.3.1 Data pre-processing

Directly using fully labeled Macro data and weakly labeled Micro data together in

the training phase may lead to bad performance due to the different data distributions,
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FIGURE 4.2: Framework of proposed method.

known as “domain shift” [111]. In this subsection, we adapt Macro data to appear as if

drawn from the Micro domain to realize the visual alignment, as shown in Fig. 4.2(1).

We take rendering the ring image with Plasmodium style as an example. Style features

of overall labeled Plasmodium data should be separated as Plasmodium style. Con-

tent features of the object in the ring image should be extracted and recombined with

Plasmodium style to produce an adaptive ring image.

Firstly a pre-trained deep CNN with fixed parameters is used to extract and store fea-

tures. For every ring image (xs,0), the content features are from itself, and the style

features are from all the labeled Plasmodium images Xt = {(xt,0)}pt=1. The content fea-

tures on CNN layer l could be stored in a matrix Fl ∈RNl×Hl×Wl , where Nl is the number

of distinct filters, Hl and Wl denotes the height and width of the feature map respectively.

The style features on CNN layer l could be represented by Gram matrix Gl ∈ RNl×Nl ,

where Gl,i j = Fl,i�Fl, j is the inner product between the vectorized feature maps i and j

in layer l [112].

Secondly, the overall loss function

`pre = Jcontent(xa, xs) +λs · Jstyle(xa,Xt) (4.2)

is minimized to update the image xa iteratively until it simultaneously matches the con-

tent features of xs and the style features of Xt, where xa can be initiated as a white noise
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FIGURE 4.3: Rendering the Macro image with Micro style using a pre-trained deep
CNN.

image andÂ λs is a coefficient.

Based on the fact that deeper convolutional layers respond to higher semantics [113],

Jcontent and Jstyle are defined as

Jcontent(xa, xs) =
1
2

∑
l∈Lh

wl · (Fl
a−Fl

s)
2

Jstyle(xa,Xt) =
1
2

∑
l∈Lo

wl · (Gl
a− Ḡl

t)
2

(4.3)

where Lh are the higher CNN layers which capture the high-level content in terms of

objects, Lo are the lower CNN layers, wl is the weight of layer l. Specifically, we use

Ḡl
t =
∑

t Gl
t

p as the average style features in the Micro domain instead of using the style of

a single Micro data.
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With labeled Micro data, all the Macro data XS = {(xs, ys)S
s=1} is transferred to its adap-

tive version XA = {(xa, ys)S
s=1} with the corresponding Micro style.

4.3.2 Trained by contrastive learning

FIGURE 4.4: Train the feature extractor G using contrastive learning.

As illustrated in Fig. 4.2(2), the feature extractor denoted as G(x;Θg) can be conceptu-

ally decomposed to a CNN encoder e(x;θe) :X→Z and a multilayer perceptron (MLP)

signal generator h(z;θh) :Z→V, where z is the representation of the input x, and g j(z)

are the gate control signals. The losses are calculated using the metric embeddings V.

All the labeled data is denoted asXL =XT ∪XA, and all the data except labels is denoted

as X = XT ∪XA∪XU .

Fig.4.4 illustrates how to train the feature extractor. The update of Θg is by back-

propagation on a combination of supervised loss JS associated with XL and unsuper-

vised loss JU associated with X

`e = JS +λ · JU (4.4)
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In addition to the online network G, a offline momentum network Gm(x;Θm) is used as

a memory trick [114]. Θm is an exponential moving average (EMA) of Θg

Θm← α ·Θm + (1−α) ·Θg (4.5)

In particular, to add a manual control on the flexibility of the piecewise linear model[62],

following the idea of k-sparse strategy [88], we define the activation function of the

hidden layer in the signal generator as

a(wT
j z) =

 w
T
j z, j ∈ Γ = suppk{WT z}

0, j < Γ = suppk{WT z}
(4.6)

where the set Γ = suppk{WT z} contains hidden units with top-k% activation values.

After training, the generation of gate control signals is guided by the captured data

manifold

g j(z) =

 1, j ∈ Γ = suppk{ŴT z}

0, j < Γ = suppk{ŴT z}
(4.7)

InfoNCE [115] is adopted as the form of contrastive loss function due to its efficiency

and simplicity, with a well-grounded motivation from information theory. Considering

similarity matching as a form of dictionary look-up, given query v, the InfoNCE is the

negative log-likelihood

− log pv (4.8)

where the likelihood is

pv =
exp(v · v+/σ)

exp(v · v+/σ) +
∑

i exp(v · v−i /σ)
(4.9)

and σ is a temperature parameter that controls the concentration level of the distri-

bution [116]. The positive keys v+ are sampled from similarity distribution, and the

negative keys v−i are sampled from dissimilarity distribution.

Structure-enhanced and texture-invariant representations are learned for the downstream

classification task by defining the positive and negative keys for all the training data as
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follows.

Structure enhancement in JS

We introduce the Macro data and emphasize the connections between the labeled Micro

data and its corresponding Macro data by contrasting.

Every query embedding vt from Micro data, its positive keys are sampled from its cor-

responding adaptive Macro set. Its negative keys are the embeddings of all the other

unrelated adaptive Macro data. And it is the same way for adaptive Macro data.

The supervised loss for XL is

JS = −
∑
t∈ΩT

log pt −
∑

a∈ΩA

log pa (4.10)

where

pt =
∑

k+∈Ωa

exp(vt · vk+/σ)
exp(vt · vk+/σ) +

∑
k−∈CΩa

ΩA

exp(vt · vk−/σ)

pa =
∑

k+∈Ωt

exp(va · vk+/σ)
exp(va · vk+/σ) +

∑
k−∈CΩt

ΩT

exp(va · vk−/σ)

(4.11)

t is the index of Micro data, and Ωa are all the indexes of its corresponding adaptive

Macro data. a is the index of adaptive Macro data, and Ωt are all the indexes of its

corresponding Micro data. ΩT are all the indexes of Micro data, and ΩA are all the

indexes of adaptive Macro data.

Texture elimination in JU

We encourage a consistent representation of the same input under different appearance

transformations.
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Two kinds of appearance transformations are introduced to simulate variant textures,

color distortion (which randomly changes the hue, lightness, and saturation of an im-

age) and flittering (Sobel, Scharr, Laplacian). Â For every xu in X, it is randomly

transformed to two different views xq, xm, and we define the positive pair p+(vq, vm).

Naturally, all the others are the negative keys.

Since InfoNCE benefits from more negative keys, we apply an offline momentum net-

work Gm(x;Θm) and maintain a dynamic dictionary Q on metric embeddings vm as a

queue [114]. Introducing Q decouples the dictionary size from the mini-batch size,

which can be much larger than the mini-batch size. Θm is the EMA copy of Θ, which

smooths the learning dynamics.

The unsupervised loss for X is

JU = −
∑

u
log pu (4.12)

where

pu =
exp(vq · vm/σ)

exp(vq · vm/σ) +
∑

i exp(vq ·Qi/σ)
(4.13)

vq = G(xq;Θg), vm = Gm(xm;Θm), and i is the index of the metric embeddings in the

maintained queue under the current state.

4.4 LapSVM Classifier

As illustrated in Fig. 4.2(3), given the representations z and gate control signals g j(z),

the known variables and unknown linear parameters of the gated linear network can be

safely separated by introducing φ(z) and Θ:

φ(z) = [gT (z)⊗ [1,zT ]]T (4.14)

Θ = [b1,Ω
T
1 , · · · ,bM,Ω

T
M]T (4.15)
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where the symbol ⊗ denotes Kronecker product. Eq.(4.1) is recast into a linear regres-

sion form

f (z) = φT (z)Θ+ b (4.16)

It is equivalent to the fact that φ(z) defined as Eq.(4.14) maps the input to a finite high

dimensional spanned feature space. Then Eq.(4.16) is expressed as a kernel machine

f (z) = kT (z)α+ b (4.17)

where k(z) is the similarity vector of all the training data and z in the spanned space,

k(z) = ΦNφ(z) = [k(z,z1), · · · ,k(z,zN)]T , k(zi,z j) = φT (zi)φ(z j), ΦN = [φ(z1), · · · ,φ(zN)]T ,

and α is an N dimensional coefficient. k(zi,z j) is called quasi-linear kernel[60]

k(zi,z j) = φT (zi)φ(z j)

= (1 + zT
i z j)gT (zi)g(z j)

(4.18)

Estimation of Θ is converted to estimation of α to take advantage of the kernel trick.

In this way, there is no need to explicitly calculate the representation in the spanned

feature space φ(z). Instead, the kernel is composed of the representation and gate control

signals.

In the context of SSC, LapSVM formulated by

min
f∈Hk

L∑
i=1

max(1−yi f (zi),0) +
γA

2
|| f ||2A +

γI

2
|| f ||2I (4.19)

is considered to be a good choice to solve Eq.(4.17). γA controls the complexity of

the function in the ambient space and γI controls the complexity of the function in

the intrinsic geometry of PX. By using the graph Laplacian regularizer FT LF, where

F = Kα+ 1b, we have

min
α,b

1
2

L∑
i=1

max(1−yi(kT (zi)α+ b),0)2

+
γA

2
αT Kα+

γI

2
(αT K + 1T b)L(Kα+ 1b)

(4.20)
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where K = ΦNΦT
N = [k(z1), · · · ,k(zN)]T , L is the graph Laplacian built from K [109],

and 1 is the vector whose all entries equal to 1.

We train it in primal for lower computational complexity and shorter training time [117].

Multiple binary one-vs-others classifiers are trained

y = max[ f (z)]

f (z) = [ f1(z), · · · , fC(z)]T

fi(z) = kT (z)αi + bi

(4.21)

and the final result is the maximum among all the classifiers’ result.

4.5 Numerical Experiments

4.5.1 Evaluation metrics

We use Accuracy (AC), F-score (F1), and Jaccard index (JA) to evaluate the perfor-

mance. Accuracy (AC) and F-score (F1) are defined as (2.28), Jaccard index (JA) is

defined as

JA =
T P

T P + FP + FN
(4.22)

where T P, FP, T N, FN are true positive, false positive, true negative, and false nega-

tive, respectively.

4.5.2 Technical details

For the data pre-processing, we adopt pre-trained DenseNet-121[118] as the CNN back-

bone. In particular, we only include the five convolutional layers in the set, i.e., L =

{conv1,dense1c,dense2d,dense3 f ,dense4c} to extract and store features, as the fea-

tures of these layers generally have the highest capability in each scale, where Lh =

{dense3 f ,dense4c} and Lo = {conv1,dense1c,dense2d}. The weights wl of layers are
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generally determined on the visual appearance of adaptive Macro data. When optimiz-

ing Eq.(4.2), we empirically set a small weight of λs = 10−3, since our ultimate goal is

to semantically classify the parasites, which requires preserving the semantic content

precisely.

For our deep CNN feature extractor and other deep CNN methods, DenseNet-121 ar-

chitecture is employed as the CNN backbone for a fair comparison. Its last layer (after

global average pooling) has a fixed-dimensional output (1024-D). The following MLP

leads to a 256-D hidden layer, then to a 128-D v in our feature extractor and a 4-D

softmax layer in other classification methods. The sparsity of the activation function

of the hidden layer is set k = 20. For the likelihood calculation, we set temperature

σ = 0.08. When calculate the EMA in Eq.(4.5), we follow the empirical experience

and set α = 0.999. The batch size is 256, and the queue size is 4096. The network

was trained by the stochastic gradient descent (SGD) algorithm with a learning rate of

0.0001 and a momentum of 0.9. All the experiments are trained for 500 iterations, and

three repeat training are performed.

For the LapSVM classifier, all the parameters are chosen from {0.01,0.1,1,10,100} by

a three-fold cross validation.

4.5.3 Effetiveness of the proposed method

With 200 Macro data, 200 labeled Micro data, and 20158 unlabeled Micro data for the

training phase, the proposed method achieves an accuracy of 95.10%. It is comparable

to the reported accuracy of 95.70% [66] in a full supervised scenario, where there are

2118 Macro data, and all the Micro data are labeled.

A receiver operating characteristic (ROC) curve is created to visualize the classification

performance of our proposed method for all four classes, and an overall area under the

curve (AUC) value is computed to summarize the diagnostic performance. As illustrated

in Fig.4.5, the overall ROC curve of the proposed method achieves an AUC of 0.95.
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The confusion matrix is depicted in Fig.4.6. We can see that the proposed method

gains impressive performance among parasites. Most confusions in Erythrocyte are

false positive of the parasites, which is acceptable.

FIGURE 4.5: Overall receiver operating characteristic (ROC) curve.

4.5.4 Comparison among kernels

TABLE 4.1: Ablation of kernels in LapSVM.

Kernel of LapSVM
Evaluation

AC F1 JA
linear 93.93 95.81 88.55
RBF 94.45 96.17 89.47

quasi-linear 95.10 96.63 90.65

From the aspect of LapSVM, the proposed method uses a quasi-linear kernel which is

composed of the representation z and gate control signals g j(z) as Eq.(4.18). Linear ker-

nel k(zi,z j) = zT
i z j and radial basis function(RBF) kernel k(zi,z j) = exp(−γ||zi− z j||

2
2) are

the most commonly used linear and non-linear kernel respectively. The performance of
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FIGURE 4.6: Confusion matrix of the proposed method.

LapSVM with three different kernels are listed in Table.4.1. Non-linear kernels have an

advantage against the linear kernel, and the proposed method achieves the best perfor-

mance.

We are sure the representations tend to be non-linear separable. And the advantage of

the proposed method is due to the captured data manifold incorporated into the quasi-

linear kernel.

4.5.5 Comparison between classifiers

TABLE 4.2: Ablation of classifiers.

Classifier
Evaluation

AC F1 JA
MLP 94.90 96.48 90.28
ours 95.10 96.63 90.65
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From the aspect of classifier optimization, given the representation z, the simplest way

is using the labeled data to train an MLP as the classifier [108]. We replace the metric

embedding V in the signal generator with a softmax layer with four units as the MLP

to make a comparison. As illustrated in Table.4.2, the proposed method achieves better

results.

So it does help to use the unlabeled data in the optimization of the classifier.

4.5.6 Comparison with state-of-the-art semi-supervised methods

It is much easier to collect real-world images naturally labeled than annotated micro-

scopic parasite images. We compare the proposed method with two state-of-the-art SSC

methods under different numbers of Macro data. Mean Teacher (MT) [85] and Vir-

tual Adversarial Training (VAT) [58] belong to consistency regularization stragety [84],

which enforces that realistic perturbations of input should not significantly change the

output. MT used the same EMA strategy as our proposed method from a student net-

work to a teacher network with noise applying within their computation. VAT directly

approximated a tiny perturbation to add to input which would most significantly affect

the output of the prediction function, instead of relying on the built-in stochasticity.

Quantitative results are in Table.4.3, and we draw the AC score in Fig.4.7.

As listed in Table.4.3, compared with other SSC methods, the proposed method achieves

the most remarkable improvement over the supervised baseline, especially when there

are only 200 labeled Macro data (+8.02/87.08). And the proposed method achieves the

best performance under all the training sets.

Contrastive learning can be seen as an extension of consistency regularization, which

considers the comparison between different inputs and encourages consistency of the

same input. The results verify the effectiveness of contrastive learning as the extension

of consistency regularization.

As shown in Fig.4.7, all these three semi-supervised methods perform better than the

supervised baseline consistently, demonstrating that all the SSC methods effectively
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FIGURE 4.7: Accuracy with different number of Macro data.

utilize the unlabeled data and bring performance gains. As expected, the performances

of all the methods increase when more labeled training data are available, and the gap

between supervised baseline and semi-supervised methods narrows as more labeled

training data is available.

Furthermore, it is worth noting that the proposed method has the lowest variance even

with the least labeled data. The proposed method only uses deep CNN to extract repre-

sentations, generate gate control signals, and then optimize the classifier by LapSVM.

It compensates for the shortcomings of the end-to-end classification to some extent by

improving stability.

4.5.7 Effectiveness of introducing Macro data

When analyzing how introducing Macro data help the final performance, both the su-

pervised baseline and the proposed method use an MLP classifier for a fair comparison.

As listed in Table.4.4, the first three rows are the results of the supervised baseline, and
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TABLE 4.4: Ablation of Macro data introducing.

Training Data
Method

Evaluation (%)
Marco Micro

AC F1 JA
l l/u
0 50*4/0

super
84.80 89.05 73.86

50*4 (o) 50*4/0 86.88 90.59 77.10
50*4 (a) 50*4/0 87.08 90.74 77.40

0 50*4/20158
ours

91.98 94.43 85.36
50*4 (o) 50*4/20158 92.75 95.00 86.65
50*4 (a) 50*4/20158 94.90 96.48 90.28

it helps a lot when introducing Macro data even in its original version (+2.08/84.80).

However, the results of the semi-supervision scenario in the last three rows tell a differ-

ent story. There is a tiny improvement when introducing original Marco data (+0.77/91.98),

while a significant improvement when the Macro data is transformed to its adaptive ver-

sion (+2.15/92.75).

These results conform to our assumption that ‘domain shift’ is remarkable in a semi-

supervision scenario since there are a large amount of unlabeled data being trained

together with the labeled data.

4.5.8 Effectiveness of contrastive loss

TABLE 4.5: Ablation of losses.

Training Data
Loss Setting

Evaluation
Marco Micro

AC F1 JA
l l/u

50*4 (a)
50*4/0

CE JS 87.08 90.74 77.40
CON JS 87.42 91.01 77.96

50*4/20158
CE JS + CON JU 94.40 96.17 89.57

ours 94.90 96.48 90.28

We further analyze the effectiveness of contrastive loss against the most commonly used

cross-entropy loss. To have a fair comparison, the loss function is the only variable for
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the training data, and the results are listed in Table.4.5. The contrastive loss benefits

both the supervised and semi-supervised methods.

We believe the contrastive loss connected the adaptive Macro data and the labeled Micro

data by a direct comparison instead of simply using shared labels.

4.6 Summary

This chapter presents a novel and effective semi-supervised classification method for

three parasites and Erythrocytes. We introduce real-world images and different appear-

ance transformations to train the feature extractor using contrastive learning and opti-

mize the gated linear network using LapSVM to realize a piecewise linear separation

boundary. In this way, a large amount of unlabeled data and the limited labeled data

are leveraged to tackle the structure and texture challenges. As a result, affordable and

accurate diagnostic testing on microscopic parasite images is achieved.





Chapter 5

Conclusions

5.1 Conclusion

In this dissertation, we design three semi-supervised learning algorithms based on Lapla-

cian kernel machines using the two-step modeling method: : 1) a Laplacian SVM based

semi-supervised classifier using multi-local linear model; 2) a semi-supervised classi-

fier based on piecewise linear model using gated linear network; 3) a semi-supervised

classification method of parasites, which contains a semi-supervised feature extractor

trained by contrastive learning and a semi-supervised classifier optimized by LapSVM.

All of them fully leverage labeled and unlabeled data to achieve accurate classification

performance on testing set.

Chapter 2 proposes a Laplacian SVM based semi-supervised classifier using multi-

local linear model. The semi-supervised classifier is constructed in two steps. In the

first step, by applying a pseudo-labeling approach, the input space is divided into multi-

ple local linearly separable partitions along the potential separation boundary. A multi-

local linear model is then built by interpolating multiple local linear models assigned

to the partitions. In the second step, the multi-local linear model is formulated as a

linear regression form with a new regression vector containing the information of po-

tential separation boundary. Then all the linear parameters are optimized globally by a

LapSVM algorithm using a quasi-linear kernel which is defined as the inner product of

91
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the new regression vectors. Furthermore, the quasi-linear kernel and the pseudo labels

are used to construct a label-guided graph.

Chapter 3 proposes a semi-supervised classifier based on piecewise linear model using

gated linear network. The semi-supervised classifier is constructed in two steps. In the

first step, we design a label-guided autoencoder-based semi-supervised gating mecha-

nism to generate binary gate sequences. By using a gated linear network, the binary

sequences realize partitioning of a piecewise linear model indirectly. In the second step,

the piecewise linear model is formulated as a linear regression form, and the linear pa-

rameters are then optimized globally by a LapRLS algorithm with a quasi-linear kernel

comprising the binary sequences. Moreover, the quasi-linear kernel is used as a better

similarity function for the graph construction.

Chapter 4 proposes a semi-supervised classification method of microscopic parasite

images, which contains a semi-supervised feature extractor trained by contrastive learn-

ing and a semi-supervised classifier optimized by LapSVM. First, for the deep CNN

feature extractor, we introduce real-world images with similar and clear semantic infor-

mation to enhance the structure at the representation level. In addition, we introduce

variant appearance transformations to eliminate the texture at the representation level.

Second, a gated linear network is adopted as the classifier to realize a piecewise lin-

ear separation boundary. The linear parameters are optimized globally by a LapSVM

algorithm using a quasi-linear kernel composed of the representations and the binary

sequences generated from the learned feature extractor.

Compared to Laplacian kernel machines with the general nonlinear kernel, general ker-

nels are black-box models with a fixed form. This dissertation models the nonlinear

separation boundary in an interpretable way and detects prior knowledge from labeled

and unlabeled data, and composes a data-dependent kernel using the prior, namely, the

quasi-linear kernel. And we further use the quasi-linear kernel to build the graph. As

a result, the prior is ingeniously incorporated into the kernel and graph of Laplacian

kernel machines.

Previous studies on the two-step modeling method compose the quasi-linear kernel in a

supervised or unsupervised manner. This dissertation considers learning under limited
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supervision and models the nonlinear separation boundary by leveraging a small amount

of labeled data and a large amount of unlabeled data. As a result, the quasi-linear kernel

is composed in a semi-supervised manner.

5.2 Topics for future research

We propose three two-step semi-supervised classification methods based on Laplacian

Kernel machines in this dissertation. It still has many works to continue from very

different perspectives. We name a few possible extensions here.

• Generally, structured data needs massive data to train a DNN as a feature ex-

tractor, especially when lacking labels. It is worth improving the efficiency of

structured data use and further balancing the performance and data requirements.

• Medical imaging faces the biggest problem of lacking data. Annotations are lack

due to the shortage of specialists, and unlabeled data is lack due to the privacy

limitation. One possible way is to gather all the limited data from all the sources.

In this situation, the challenge of domain shift is unavoidable. The domain adap-

tation in Chapter 4 happens to be between the medical domain and real-world

domain. It is worth exploiting more possibilities of domain adaptation.

• This dissertation discusses objective-level classification in a semi-supervised con-

text. Segmentation in a semi-supervised context, which is pixel-level classifica-

tion, is a direction of future work.

• We exploit the two-step modeling method in a semi-supervised context in this

dissertation. Researches of the two-step modeling can be extended to other prob-

lems, such as missing data.
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