
February, 2022

Ryota ISHIKAWA

Hardware Optimization of Stochastic Computing

ストカスティックコンピューティングのハードウェア最適化

石川　遼太

Ryota ISHIKAWA
石川　遼太

February, 2022

Department of Computer Science and Communications Engineering,
Research on Information System Design

Waseda University Graduate School of Fundamental Science and
Engineering

Hardware Optimization of Stochastic Computing

ストカスティックコンピューティングのハードウェア最適化

Contents

1 Introduction 1
1.1 Backgrounds . 1
1.2 Dissertation Overview . 6

2 Stochastic Number Duplicators Based on Bit Re-arrangement Using Ran-
domized Bit Streams 9
2.1 Introduction . 9

2.1.1 Backgrounds . 9
2.1.2 Proposal . 10
2.1.3 Contributions . 10
2.1.4 Organization . 10

2.2 Background of SN and Its Duplicators 10
2.2.1 Stochastic Numbers (SNs) . 10
2.2.2 SN Duplicators . 13
2.2.3 Existing SN Duplicators [1, 2] 16

2.3 SN Duplicators Based on Bit Re-arrangement 17
2.3.1 Proposal . 17
2.3.2 FSR Duplicator . 17
2.3.3 RRR Duplicator . 19

2.4 Experimental Evaluations . 22
2.4.1 Accuracy Comparison . 22
2.4.2 Area and Delay Comparison of SN Duplicators 30
2.4.3 Total Latency of the Benchmark Circuits 31
2.4.4 Discussions . 32

2.5 Conclusions . 33

i

ii CONTENTS

3 Scalable Stochastic Number Duplicators for Accuracy-flexible Arithmetic
Circuit Design 34
3.1 Introduction . 34

3.1.1 Backgrounds . 34
3.1.2 Proposal . 34
3.1.3 Contributions . 35
3.1.4 Organization . 35

3.2 Background of SN Duplicators and Re-convergence Paths 35
3.2.1 Conditions Required for SN duplicators 35
3.2.2 Dependent and Independent Re-convergence Paths 36
3.2.3 The RRR Duplicator . 37

3.3 Improved SN Duplicator Based on Bit Re-arrangement 37
3.3.1 Proposal . 37
3.3.2 Characteristic . 38
3.3.3 Instances of the 2nRRR and Their Hardware Costs 40

3.4 Experimental Evaluations . 41
3.4.1 Setup . 41
3.4.2 Benchmark Circuits . 41
3.4.3 Performance Indicators . 43
3.4.4 Results . 44

3.5 Discussions . 44
3.5.1 Errors due to Initial Bits . 44
3.5.2 Errors due to Re-convergence Paths 46
3.5.3 Overall Errors . 51
3.5.4 Circuit Areas of Benchmark Circuits 51

3.6 Conclusions . 51

4 Hardware Implementation of Step Function in Stochastic Computing and
Its Applications 53
4.1 Introduction . 53

4.1.1 Backgrounds . 53
4.1.2 Proposal . 54
4.1.3 Contributions . 54
4.1.4 Organization . 54

4.2 Related Works . 55
4.2.1 Additional Arithmetic Operation Circuits Using SNs 55

CONTENTS iii

4.2.2 Conventional Implementation of Activation Functions 56
4.2.3 Conversion of SNs to Binary Numbers 56

4.3 Hardware Implementation of Step Function in SC 57
4.3.1 Proposal . 57
4.3.2 Hardware Costs . 61
4.3.3 Technical Merits . 61

4.4 Implementation of Absolute Function Using Step Function 62
4.4.1 Proposal . 62
4.4.2 Circuit Areas . 64

4.5 Implementation of Discontinuous Function Using Step Function 64
4.5.1 Proposal . 64
4.5.2 Prerequisite Circuits . 65
4.5.3 Example of Discontinuous Function 66
4.5.4 Circuit Areas . 67

4.6 Experimental Evaluations . 67
4.6.1 Setup . 67
4.6.2 Results . 68
4.6.3 Discussions . 69

4.7 Conclusions . 73

5 Conclusions 74

Acknowledgments 77

List of Publications 82

List of Figures

1.1 Components of SC. (a) Multiplication. (b) Scaled addition. (c) Inversion. 2
1.2 Necessity of SN generation. (An incorrect squarer) 3
1.3 Hardware costs of stochastic circuits with SN generators. 4

2.1 Example of SN multiplication using an AND gate. 11
2.2 Example of SN scaled addition using a MUX circuit. 12
2.3 Example of SN inversion using a NOT gate. 13
2.4 SN squarer using an AND gate. (a) Correct. (b) Incorrect. 14
2.5 SN duplicator using FF [1]. 14
2.6 Eighth power unit using SN duplicators. 15
2.7 SN Duplicator proposed in [2]. 16
2.8 FSR duplicator. 17
2.9 RRR duplicator. 20
2.10 Circuits of functions using SN duplicators. (a) sin′ x. (b) cos′ x. 23

3.1 Examples of re-convergence paths. (a) Independent. (b) Dependent. . . 36
3.2 2nRRR duplicator. (a) Overall model. (b) m-th register unit RUm.

(c) n-bit wide |In|-bit long random bit stream r. 38
3.3 Circuits of functions using SN duplicators. (a) tanh′ x (b) exp′(−x2) . . 43
3.4 Signal path p consisting of two SN duplicators us and ut 46
3.5 Example of all re-convergence paths in a circuit with two SN duplicators. 47

4.1 Example of SN addition using an OR gate. 55
4.2 Example of bi-polar SN multiplication using an XNOR gate. 56
4.3 Circuit converting SNs to binary numbers. 57
4.4 Hardware implementation of step function in SC. 58
4.5 Theoretical values of input/output SN of a step function circuit. 59
4.6 Hardware implementation of step function in SC with changed threshold. 62

iv

LIST OF FIGURES v

4.7 Theoretical values of input/output SN of a step function circuit with
changed threshold. 63

4.8 Hardware implementation of absolute function using bi-polar SN. . . . 63
4.9 Hardware implementation of discontinuous function in SC. 65
4.10 Hardware implementation of discontinuous function in SC (example). . 66
4.11 Actual values of input/output SNs of a step function circuit 69
4.12 Actual values of input/output SNs of a absolute function circuit 71
4.13 Actual values of input/output SNs of a discontinuous function circuit . . 73

List of Tables

2.1 Truth table of an AND gate. 11
2.2 Truth table of a MUX circuit. 12
2.3 Truth table of a NOT gate . 13
2.4 Examples of input/output SNs of an FSR duplicator. 19
2.5 Appearance rates of D1–D3 and its function. 20
2.6 Experimental evaluations in MSE values (bit length: 255 bits). 25
2.7 Experimental evaluations in MSE values (bit length: 4,095 bits). 27
2.8 Experimental evaluations in maximum errors (bit length: 255 bits). . . 28
2.9 Experimental evaluations in maximum errors (bit length: 4,095 bits). . 29
2.10 Area and delay comparison (bit length: 255 bits). 30
2.11 Area and delay comparison (bit length: 4,095 bits). 30
2.12 Delay and latency of the benchmark circuits. 32

3.1 Hardware costs of the 2nRRR duplicators. 40
3.2 Areas of SN generators and SN to binary converters. 41
3.3 Conditions of accuracy comparison. 41
3.4 Errors of circuits using SN duplicators. 45
3.5 Correspondence table of path p j and SN duplicator uk (m = 3). 48
3.6 Areas of circuits using SN duplicators. 52

4.1 The hardware cost of the step function circuit using SN. 61
4.2 The circuit of the absolute function circuit using SN. 64
4.3 The circuit of the discontinuous function circuit using SN. 67
4.4 MSE value of step function using SC. 70
4.5 MSE value of absolute function using SC. 72
4.6 MSE value of discontinuous function using SC. 72
4.7 Theoretical values of output SN y depending on Nwhen the values of

input SN x are 0.25 or 0.75 in Figure 4.7. 73

vi

Chapter 1

Introduction

1.1 Backgrounds

The number of hardware devices used in our everyday lives has been growing rapidly. For
example, most people in the whole world own smartphones, very large amount of money
are deposit in bank systems, and even crucial systems such as automobiles and planes
are controlled by computer systems. Not only the amount, developing hardware devices
on ones own also has been realistic. For example, Xilinx Inc.[3] has developed low-
cost and highly integrated System on Chips (SoC) products which integrates software
programmability of an ARM-based processor with hardware programmability of an
FPGA (Field-Programmable Gate Array) core1. Therefore, developing high-functioning
hardware devices became more easily than ever.

When implementing applications on hardware, not so much precision is required in
many areas. For example, in areas like image processing and machine learning, small
errors will cause insensible errors in images and no errors in its output in most cases,
respectively. Instead of high precision with larger circuit size, smaller circuits are desired
due to the increasing amount of data and more complex operations. For its small-sized
implementation, compared with conventional computation, approximate computing[5]
is attracting interest.

Stochastic computing (SC) [6] is one of the approximate computing methods, aiming
to miniaturize circuits by allowing errors in calculation results. SC repeats bit-level logi-
cal operations to achieve stochastic arithmetic operations using stochastic numbers (SNs).
SNs are bit streams whose values are defined by the appearance rates of 1’s in their bit

1The author and his colleagues have developed PYNQs and Raspberry Pi[4] based autonomous vehicle
for the “Design Competition” as in ⟨5⟩ and ZYNQ-based puzzle solver systems for the “Algorithm Design
Contest” as in ⟨4⟩, ⟨13⟩, ⟨18⟩, and ⟨22⟩, and won the prizes as in ⟨24⟩, ⟨26⟩, and ⟨27⟩.

1

2 CHAPTER 1. INTRODUCTION

(a)

(b) (c)

Figure 1.1: Components of SC. (a) Multiplication. (b) Scaled addition. (c) Inversion.

streams. In SC, SNs’ bit streams are input into simple logic circuits sequentially for
arithmetic calculations. For example, an AND gate, a MUX circuit, and a NOT gate
implement multiplication, weighted addition, and inversion, respectively, as in Figure 1.1
[6]. Hence, SC enables smaller-sized implementation compared with binary computing
and was applied to many hardware applications such as neural networks [7, 8, 9, 10, 11]
and image processing [12, 13, 14, 15, 16].

Other than its small-sized hardware implementation, SC has many characteristics.
For example, SC has noise resiliency. This is because all the bits of the bit streams of SNs
have the same weight. This means that when one bit of an SN is mistakenly flopped, the
value of an SN has small errors. On the other hand, when one bit of a binary number is
flopped, the value can have error of half the range in maximum. With this characteristic,
SNs have been applied to reliable systems [17, 18, 19, 20, 21, 22, 23, 24]2. SC also

2The author and his colleagues have developed error correction systems that can correct values in very
high error rates utilizing SNs as in ⟨6⟩, ⟨7⟩, ⟨11⟩, ⟨15⟩, and ⟨16⟩.

1.1. BACKGROUNDS 3

Figure 1.2: Necessity of SN generation. (An incorrect squarer)

has the flexibility over accuracy and SNs are recursive3, i.e., the SC-based circuits can
change their accuracies by only changing the length of the inputs, without changing their
circuits.

Even with these merits, SC is yet to be used in practical situations. One reason for
this is: SN-to-binary converter is required for calculation but its hardware cost is large.

Then, why is SN-to-binary conversion required? There are two main reasons:

1. To guarantee the independency of the bit streams of SNs.

2. To implement steep or discontinuous functions such as step function.

The root cause of reason 1 is the dependency of bit streams of SNs. To obtain the
correct calculation result, the bit streams of the input SNs must be independent. For
example, by using a multiplier as in Figure 1.1(a), a squarer should be expressed in
Figure 1.2 if the two input SNs are independent. However, in this example, this squarer
outputs the input SN as output SN, meaning that the correct square value cannot be
obtained. Thus independency of the bit streams of SNs are required, i.e., generating new
SNs are required. Reason 2 is especially required to implement activation functions, such
as the Rectified Linear Unit (ReLU) function, the step function, and their composite func-
tions. However, without re-generation of SNs, no steep or discontinuous functions were
proposed alone. For example, in [25], all functions, which is representable by Bernstein
polynomials[26] with coefficient in-between the range, are shown to be implemented in
SC.

The problem of SN-to-binary conversion is its large hardware cost. In terms of circuit
area, SN-to-binary conversion, when 255-bit SNs are generated, costs more than 50 times
larger compared with an SN multiplier. Not only the case of circuit area, SN-to-binary
conversion also requires large latency. If n SN-to-binary converters are used in series as
in Figure 1.3, 255 × n clock cycles are required after the first input bit to output the first
output bit. In addition, flexibility over accuracy is lost due to this conversion.

3The author and his colleagues have developed an image format apply SN’s recursivity to reduce circuit
area for resolution conversion as in ⟨3⟩ and ⟨14⟩.

4 CHAPTER 1. INTRODUCTION

Binary
Computing based

Circuit

Binary Number
to Stochastic

Number
Converter

Stochastic
Computing based

Circuit

Stochastic
Number to

Binary Number
Converter

Binary
Computing based

Circuit

‥
‥
‥

‥
‥
‥

Circuit Area

Large

Medium

Very Small

Medium

Large

Zero clock cycles

Zero clock cycles

Zero clock cycles

𝑛 clock cycles
(𝑛: length of SN)

Zero clock cycles

Latency

Figure 1.3: Hardware costs of stochastic circuits with SN generators.

1.1. BACKGROUNDS 5

There are researches trying to optimize the use of SN generators[27, 28, 29, 30, 31].
However, this dissertation these problems in a different way. This dissertation aims to
omit the use of SN generators as much as possible, proposing two types of circuits:
SN duplicators; and a step function circuit with its applications.

In SC, the bit streams of the input SNs must be independent to obtain the correct
calculation result. In many functions, two or more identical values are input. In these
cases, duplicating SNs, or re-generating SNs with the equivalent value and independent
bit stream, is required. In a conventional method, a flip-flop is used to delaying one
bit of the input SN, creating a different, 1-bit delayed bit stream[1]. Since the output
SN has the (nearly) same value and different bit stream compared withe the input SN,
this circuit can be said to have duplicated an SN. However, the output SN’s bit stream
is always the same if the same input SN is given. In [1], circuits using FFs as SN
duplicators have been proposed. However, these circuits had errors since FFs output
the same SN when the same SNs are given. As mentioned above, if bit streams of the
duplicated SNs are dependent on each other, their arithmetic operation results become
inaccurate. Here, we consider a randomized bit stream being introduced to re-arrange the
bits stored in flip-flops. This dissertation proposes FSR (Flip-flop Selecting circuit using
a Random bit stream) and RRR (Register based Re-arrangement circuit using a Random
bit stream) duplicators which have the equivalent values but have independent bit streams,
by effectively utilizing bit re-arrangement using randomized bit streams. Also, we extend
the proposed RRR duplicator, enabling to change the accuracy of the circuit itself. The
proposing 2nRRR duplicator outputs different SNs every time and are all independent
of each other. The 2nRRR duplicator can be theoretically proved to flexibly change
the accuracies of the arithmetic circuits. Also from the experimental evaluation results,
we clarify that the 2nRRR duplicator enables accuracy-flexible circuits. Experimental
evaluation results demonstrate that the proposed SN duplicator obtains more accurate
results compared with a conventional SN duplicator.

With the rise of neural network and image processing, implementation of activation
functions are becoming popular. However, steep functions and discontinuous functions
are examples of arithmetic functions that are difficult to implement in SC due to the nature
of SNs. Of the activation functions, the Rectified Linear Unit (ReLU) function, the step
function, and their composite functions appear as steep functions and discontinuous func-
tions. Implementation of steep functions and discontinuous functions is indispensable
for the practical application of SC. However, when implementing arithmetic operations
in SC, there is a constraint that the original function must be differentiable. There has
been some steep functions that has been proposed, but they can only be used in specific

6 CHAPTER 1. INTRODUCTION

situations, and cannot be used alone. To solve the problems of the conventional methods,
we firstly propose hardware implementation of step function using SNs. The proposing
circuit of utilizes flip-flops and an adder to perform as step function uniquely calculating
the stored bits in the flip-flops. The proposed step function circuit can be theoretically
proved to perform as a step function. We confirm that the proposing circuit behaves as a
step function through experimental evaluations. Also as an application, steep functions
or discontinuous functions can be realized by applying the discontinuity of the step func-
tion. As a steep function, this dissertation also proposes hardware implementation of
absolute function and discontinuous function, by synthesizing an arbitrary function as a
discontinuous function. As an example, a composite function of trigonometric function
of sin and cos function is implemented. Through experimental evaluations, we confirm
that the circuits of step function, absolute function, and discontinuous function perform
as target function.

1.2 Dissertation Overview

This dissertation proposes hardware optimization of SC, especially to omit use of SN
generators. This dissertation is organized as follows:

Chapter 2 [Stochastic Number Duplicators Based on Bit Re-arrangement Using
Randomized Bit Streams] proposes FSR and RRR duplicators, which generates and
outputs a new SN which has the equivalent value with the input SN but has an independent
bit stream. In SC, the bit streams of the input SNs must be independent to obtain the
correct calculation result. In many functions, two or more identical values are input.
In these cases, duplicating SNs, or re-generating SNs with the equivalent value and
independent bit stream, is required. In a conventional method, a flip-flop is used to
delaying one bit of the input SN, creating a different, 1-bit delayed bit stream. Since
the output SN has the (nearly) same value and different bit stream compared withe the
input SN, this circuit can be said to have duplicated an SN. However, the output SN’s bit
stream is always the same if the same input SN is given. In [1], circuits using FFs as
SN duplicators have been proposed. However, these circuits had errors since FFs output
the same SN when the same SNs are given. As mentioned above, if bit streams of the
duplicated SNs are dependent on each other, their arithmetic operation results become
inaccurate. In this chapter, a randomized bit stream is introduced to re-arrange the bits
stored in flip-flops. The SNs duplicated by the proposing FSR and RRR duplicators have
the equivalent values but have independent bit streams, by effectively utilizing bit re-
arrangement using randomized bit streams. Experimental evaluation results demonstrate

1.2. DISSERTATION OVERVIEW 7

that the RRR duplicator, in particular, obtains more accurate results, reducing the mean
square errors by 20%–89% compared with a conventional SN duplicator. Also, this
chapter discusses the behavior of the proposed SN duplicators when the bit length of the
input SN becomes longer.

Chapter 3 [Scalable Stochastic Number Duplicators for Accuracy-flexible Arith-
metic Circuit Design] proposes 2nRRR duplicator, which uniquely extends the RRR
duplicator and has a scalable structure by changing the numbers of flip-flops for bit
re-arrangement. As a nature of SC, changing the length of the input SNs will change the
whole circuit’s accuracy. However, in some implementations with re-convergence paths,
the circuit itself will cause errors due to the dependency of the SNs, i.e., the length of the
input SNs does not change that circuit’s accuracy. In this chapter, we extend the RRR
duplicator proposed in Chapter 2, enabling to change the accuracy of the circuit itself.
The proposing 2nRRR duplicator outputs different SNs every time and are all indepen-
dent of each other. The 2nRRR duplicator can be theoretically proved to flexibly change
the accuracies of the arithmetic circuits. Also from the experimental evaluation results,
this chapter clarifies that the 2nRRR duplicator enables accuracy-flexible circuits. In a
particular case, one instance of the proposed 2nRRR duplicator reduces the mean square
errors by more than 50% compared with the RRR duplicator proposed in Chapter 2.

Chapter 4 [Hardware Implementation of Step Function in Stochastic Computing
and Its Applications] proposes step function in SC and its applications. With the rise
of neural network and image processing, implementation of activation functions are
becoming popular. However, steep functions and discontinuous functions are examples
of arithmetic functions that are difficult to implement in SC due to the nature of SNs.
Of the activation functions, the Rectified Linear Unit (ReLU) function, the step function,
and their composite functions appear as steep functions and discontinuous functions.
Implementation of steep functions and discontinuous functions is indispensable for the
practical application of SC. However, when implementing arithmetic operations in SC,
there is a constraint that the original function must be differentiable. There has been some
steep functions that has been proposed, but they can only be used in specific situations,
and cannot be used alone. To solve the problems of the conventional methods, this chapter
firstly proposes hardware implementation of step function using SNs. The proposing
circuit of utilizes flip-flops and an adder to perform as step function uniquely calculating
the stored bits in the flip-flops. The proposed step function can be theoretically proved
to perform as a step function. This chapter confirms that the proposing circuit behaves
as a step function through experimental evaluations. Also as an application, steep
functions or discontinuous functions can be realized by applying the discontinuity of the

8 CHAPTER 1. INTRODUCTION

step function. As a steep function, this chapter also proposes hardware implementation
of absolute function and discontinuous function, by synthesizing an arbitrary function
as a discontinuous function. As an example, a composite function of trigonometric
function of sin and cos function is implemented in this chapter. Through experimental
evaluations, this chapter confirms that the circuits of step function, absolute function,
and discontinuous function actually perform as target function.

Chapter 5 [Conclusion] summarizes this dissertation and gives future directions on
hardware optimization of SC.

Chapter 2

Stochastic Number Duplicators Based
on Bit Re-arrangement Using
Randomized Bit Streams1

2.1 Introduction

2.1.1 Backgrounds

When constructing complex circuits based on SC, duplicating the SNs along the signal
paths is quite necessary, especially when the signal path in a circuit has multi-fanouts.
However, if bit streams of the duplicated SNs are somewhat related, or dependent on each
other, the arithmetic operation results using them become inaccurate (See Section 2.2.3
for detail).

Here, let us consider an SN generator that outputs an SN whose value is equivalent
as the input SN, and whose bit stream is different from the input SN. This SN generator
is called an SN duplicator. The simplest implementation of an SN duplicator can is
a 1-bit shift register using a single 1-bit flip-flop (FF) [1] (see also Figure 2.5). This
SN duplicator makes the output bit stream different from the input bit stream but the
appearance rate of 1’s be almost equivalent if the bit stream is long enough, i.e, the
input SN is duplicated using a different bit stream. Even with this SN duplicator, when
the duplicated bit streams are re-used multiple times in a re-convergence path in a logic
circuit, an inaccurate arithmetic result may still be generated since the bit streams are not
independent of each other.

1Technical contents in this chapter have been presented in the publications ⟨2⟩, ⟨9⟩, ⟨19⟩, ⟨20⟩, and
⟨21⟩.

9

10 CHAPTER 2. SN DUPLICATORS BASED ON BIT RE-ARRANGEMENT

2.1.2 Proposal

This chapter proposes two SN duplicators, FSR and RRR. By buffering the input bits
using randomized bit streams, the SNs duplicated by the FSR and RRR duplicators have
the equivalent values and independent bit streams. From experimental evaluations, the
RRR duplicator, in particular, obtains more accurate results, reducing the mean square
errors (MSE) by 20%–89% compared with a conventional 1-bit FF-based SN duplicator
even if a circuit has re-convergence paths.

2.1.3 Contributions

The contributions of this chapter are as follows:

1. This chapter proposes two efficient SN duplicators, FSR and RRR duplicators,
based on bit re-arrangement using randomized bit streams;

2. In particular, the RRR duplicator reduces the MSE by up to 89% compared
with a conventional 1-bit FF-based SN duplicator, even if a target circuit has
re-convergence paths.

2.1.4 Organization

The rest of this chapter is organized as follows: Section 2.2 introduces stochastic numbers
(SNs) and their duplication and discusses the necessity of their duplicators; Section 2.3.
proposes SN duplicators based on bit re-arrangement using a randomized bit stream;
Section 2.4 demonstrates the effectiveness of our proposed SN duplicators compared
with conventional ones through experimental evaluations and discusses the behavior
of the proposed SN duplicators when the bit length of the input SN becomes longer;
Section 2.5 gives several concluding remarks.

2.2 Background of SN and Its Duplicators

2.2.1 Stochastic Numbers (SNs)

Stochastic numbers (SNs) are arbitrary-lengthed bit streams of where of 0’s and 1’s. For
an given SN x, let |x | be the length of the bit stream of the SN x, xi be the i-th bit of the
SN x, Sx be the number of 1’s in the SN x, and Vx be x’s value. Vx is given by:

Vx = Px = Sx/|x |, (2.1)

2.2. BACKGROUND OF SN AND ITS DUPLICATORS 11

Table 2.1: Truth table of an AND gate.

ai bi ci Appearance rate
0 0 0 (1 − Pa) × (1 − Pb)
0 1 0 (1 − Pa) × Pb

1 0 0 Pa × (1 − Pb)
1 1 1 Pa × Pb

𝑎: 00001111 (𝑃!=0.5)

𝑏: 01010101 (𝑃"=0.5)
𝑐: 00000101 (𝑃#=0.25)

Figure 2.1: Example of SN multiplication using an AND gate.

where Px is the appearance rate of 1’s in the bit stream of x (0 ≤ Px ≤ 1). For example,
for an 8-bit SN x = 01100101, |x | = 8 and Vx = Px = 4/8 = 0.5 hold. Note that, several
types of SN expression other than the one above [6] exists, but this chapter focuses on
the SN expression above satisfying Vx = Px . This SN expression is called the uni-polar
expression.

In SC, SNs can be calculated by inputting the bit streams of them to a logic circuit
sequentially. In uni-polar expressed SC, multiplication, weighted addition, and inversion
are implemented by just using an AND gate, a MUX circuit and a NOT gate, respectively
[6].

(a) Multiplication: An AND (logical product) gate is used for multiplication. The truth
table of an AND gate with two input SNs a and b and an output SN c is shown in
Table 2.1. From Table 2.1, Vc is represented by:

Vc = Pc = Pa × Pb = Va × Vb. (2.2)

Equation (2.2) shows that multiplication is realized by an AND gate. For example,
in Figure 2.1, by multiplying a = 00001111 (Va = 0.5) and b = 01010101 (Vb =

0.5), c = 00000101 (Vc = 0.25) is obtained by performing AND operation between
them.

(b) Scaled addition: A MUX (multiplexer) circuit is used for scaled addition. The truth
table of a MUX circuit, with two input SNs a and b, a data selector SN s, and an

12 CHAPTER 2. SN DUPLICATORS BASED ON BIT RE-ARRANGEMENT

Table 2.2: Truth table of a MUX circuit.

ai bi si ci Appearance rate
0 0 0 0 (1 − Pa) × (1 − Pb) × (1 − Ps)
0 0 1 0 (1 − Pa) × (1 − Pb) × Ps

0 1 0 0 (1 − Pa) × Pb × (1 − Ps)
0 1 1 1 (1 − Pa) × Pb × Ps

1 0 0 1 Pa × (1 − Pb) × (1 − Ps)
1 0 1 0 Pa × (1 − Pb) × Ps

1 1 0 1 Pa × Pb × (1 − Ps)
1 1 1 1 Pa × Pb × Ps

𝑐: 10100110(𝑃!=0.5)

𝑏: 11100111 (𝑃"=0.75)

𝑠: 01010101 (𝑃#=0.5)

𝑎: 00100100 (𝑃$=0.25) 1

0

Figure 2.2: Example of SN scaled addition using a MUX circuit.

output SN c, is shown in Table 2.2. From Table 2.2, Vc is represented by:

Vc = Pc = (1 − Pa) × Pb × Ps

+Pa × (1 − Pb) × (1 − Ps)
+Pa × Pb × (1 − Ps)
+Pa × Pb × Ps

= Pa × (1 − Ps) + Pb × Ps

= Va × (1 − Vs) + Vb × Vs . (2.3)

By appropriately setting the data selector SN s, addition is realized by a MUX
circuit. For example, in Figure 2.2, a data selector s = 01010101 (Vs = 0.5) is
given. When SNs a = 00100100 (Va = 0.25) and b = 11100111 (Vb = 0.75) are
given, its output becomes c = 10100110 (Vc = 0.5) by performing MUX operation.

2.2. BACKGROUND OF SN AND ITS DUPLICATORS 13

Table 2.3: Truth table of a NOT gate

ai bi Appearance rate
0 1 1 − Pa

1 0 Pa

𝑎: 10101111 (𝑃!=0.75) 𝑏: 01010000 (𝑃"=0.25)

Figure 2.3: Example of SN inversion using a NOT gate.

(c) Inversion: A NOT (logical inverter) gate is used for inversion. The truth table of
a NOT gate with an input SN a and an output SN bis shown in Table 2.3. From
Table 2.3, Vb is represented by:

Vb = Pb = 1 − Pa = 1 − Va. (2.4)

As in Equation (2.4), the value of output SN b can be inverted value of the input
SN a. For example, in Figure 2.3, an input a = 10101111 (Va = 0.75) is given and
an output b = 01010000 (Vb = 0.25) is obtained by performing NOT operation.

2.2.2 SN Duplicators

Arithmetic circuits of SC can be implemented by logic circuits as shown in Section 2.2.1.
Here, let us consider a squarer based on an AND gate expressed by Vb = Va × Va. From
the discussion in Section 2.2.1, a squarer seems to be implementable using an AND gate
as in Figure 2.4(a). However, the squarer in Figure 2.4(a) outputs the same bit steam as
the input SN. A correct square value cannot be obtained by this circuit.

To obtain the correct square value, duplicating the input SN is necessary as in
Figure 2.4(b). In Figure 2.4(b), the SN duplicator DUP duplicates the input SN. In this
case, the input a is 01001110 (Va = 4/8 = 0.5) and output a′ is 10011100 (Va′ = 4/8 =
0.5). DUP generates an SN a′ with the equivalent value as a but with the different bit
stream. After that, by multiplying a and a′, output SN b = 00001100 (Vb = 2/8 = 0.25)
is obtained, with the correct square value.

14 CHAPTER 2. SN DUPLICATORS BASED ON BIT RE-ARRANGEMENT

𝑎: 01001110
(𝑃!=0.5) 𝑏: 01001110

(𝑃"=0.5)

𝑎: 01001110
(𝑃!=0.5)

𝑎’: 10011100
(𝑃!#=0.5)

𝑏: 00001100
(𝑃"=0.25)DUP

(a)

(b)

Figure 2.4: SN squarer using an AND gate. (a) Correct. (b) Incorrect.

 RU

 RU

 RU

FF

CMP

FF

FF
FF

(a) (b)

(c) (d)

𝐼𝑛: 10101110
(𝑃!"=5/8=0.625)

𝑂𝑢𝑡: 0101110X
(𝑃#$%=4/7=0.571)

Figure 2.5: SN duplicator using FF [1].

Here, we define SN duplication as follows: When an input SN In is given, generating
an SN Out which has a different bit stream from In but with the equivalent value, i.e.,
VOut = VIn. This chapter proposes effective SN duplicators which obtain accurate enough
output values, even if a circuit has re-convergence paths. To do so, the SN duplicators
must satisfy the following condition:

Condition 1. The values of input SN In and output SN Out must be equal (VIn = VOut)
and the bit streams of them differ (In , Out).2

An SN duplicator using a single 1-bit FF has been proposed in [1] as the simplest
way to satisfy Condition 1. As in Figure 2.5, a 1-bit delayed SN is obtained by using a
1-bit FF-based SN duplicator. Thus, the value of the output SN is nearly equal to the
value of the input SN, if the bit length of input SN is long enough. Note that, X in this
figure is the unknown, initial bit in the FF. However, if a target circuit has re-convergence
paths, a correct output cannot be obtained.

For example, consider a circuit that outputs the eighth power unit calculating the

2As discussed in Sections 2.3 and 2.5, the expected values of VOut in the proposed FSR and RRR
duplicators become equal to VIn, if the bit length of the input SN is long enough. Especially, in the RRR
duplicator, if the bit length of the input SN is longer, the duplication error always becomes smaller.

2.2. BACKGROUND OF SN AND ITS DUPLICATORS 15

DUP
DUP

DUP

𝑥

𝑦 = 𝑥!𝑥 𝑥′
𝑧′𝑧

𝑤′𝑤

1

2

3

Figure 2.6: Eighth power unit using SN duplicators.

following equation:

Vy = V8
x . (2.5)

In Figure 2.6, three squarers in Figure 2.4(b) are connected in series. DUP1, DUP2, and
DUP3 represent SN duplicators in this figure. The SN x is the input and the SN y is the
output of this whole circuit. x′ is the output of DUP1. z and z′ are the input and output
SNs of DUP2, respectively. w and w′ are the input and output SNs of DUP3, respectively.

Assuming the SN duplicator proposed in [1] is used as DUP1, DUP2, and DUP3, the
i-th bit of each SN in Figure 2.6 become:

zi = xi ∧ x′i = xi ∧ xi−1, (2.6)

wi = zi ∧ z′i = [xi ∧ xi−1] ∧ [xi−1 ∧ xi−2]
= xi ∧ xi−1 ∧ xi−2, (2.7)

yi = wi ∧ w′i
= [xi ∧ xi−1 ∧ xi−2] ∧ [xi−1 ∧ xi−2 ∧ xi−3]
= xi ∧ xi−1 ∧ xi−2 ∧ xi−3. (2.8)

Therefore, the value Vy of the output SN y becomes:

Vy = Py = Px
4 = Vx

4, (2.9)

meaning that this circuit cannot express eighth power as in Equation (2.5). Instead, it
expresses fourth power, regardless of the bit length of the input SN.

This is because of the following reason: When an SN In is input to the 1-bit FF-based
SN duplicator in [1], an output SN Out is obtained. If the same SN In is input, the bit
stream of its output SN Out is exactly the same every time. Therefore, the re-convergence
path in the target circuit leads to a correlated result. Thus, an accurate result cannot be
obtained if the target circuit has re-convergence paths.

Overall, in addition to Condition 1, Condition 2 below is also required for an ideal
SN duplicator:

16 CHAPTER 2. SN DUPLICATORS BASED ON BIT RE-ARRANGEMENT

𝐼𝑛 𝑂𝑢𝑡
log! 𝐼𝑛 bits

New SN
generator

Count
1’s

Figure 2.7: SN Duplicator proposed in [2].

Condition 2. When SN In is input to two SN duplicators with the same circuit, the bit
stream of the output SN Out of one SN duplicator differs from that of the output
SN Out′ of the other SN duplicator.

2.2.3 Existing SN Duplicators [1, 2]

Several SN duplicators has been proposed so far [1, 2]. In [1], a 1-bit FF-based SN
duplicator as in Figure 2.5 was proposed. However, as discussed above, this SN duplicator
satisfies only Condition 1 but does not satisfy Condition 2.

In [2], an SN duplicator which newly generates an SN is proposed (Figure 2.7). This
SN duplicator generates a completely new SN by the following steps:

1. Count up the number of 1’s in the input SN In

2. Calculates VIn

3. Newly re-generate an output SN Out using LFSR (Linear Feedback Shift Register)

(a) A random number r (0 ≤ r < 1) is generated

(b) If r > VIn, the current output bit is set to be one and otherwise zero

(c) Repeat step 3.(b) until enough bit length is obtained

By following these steps, a new SN Out with the equivalent value as In is generated.
This SN duplicator can be considered as an ideal SN duplicator, satisfying both

Condition 1 and Condition 2. However, this SN duplicator requires log2 |In| FFs to
count up 1’s in the input SN In, making the circuit area much larger. Also, since
counting all the 1’s in the input SN is necessary, this SN duplicator cannot output its
output SN until this counting is completely finished. The latency of this SN duplicator
becomes larger than or equal to the length of its input SN. Therefore, the SN duplicator
proposed in [2] is ideal but cannot be used in a practical situation. Note that, in [32],
improvement of LFSRs’ accuracy is discussed.

2.3. SN DUPLICATORS BASED ON BIT RE-ARRANGEMENT 17

FF

FF 𝑂𝑢𝑡: 010111𝑋!𝑋"
(𝑃#$%=4/6=0.667)

𝑟: 11100100
(𝑃&=4/8=0.5)

1

0

0

1

𝐼𝑛: 10101110
(𝑃'(=5/8=0.625) FF

FF

Figure 2.8: FSR duplicator.

From discussions above, the main issue here is designing an ideal SN duplicator that
satisfies both Condition 1 and Condition 2, but has low area overheads and low latency.

2.3 SN Duplicators Based on Bit Re-arrangement

2.3.1 Proposal

To satisfy Condition 2, this chapter proposes an SN duplicator introducing random bit
streams which is independent from the input SN, to re-arrange the input SN. The SN
duplicators itselves generate different output bit streams even if the same input SN is
given, i.e., these SN duplicators satisfy Condition 2. Further, by differentiating this
random bit stream in every SN duplicator, all the SN duplicators can output different
SNs.

Based on this idea, this chapter proposes two SN duplicators, FSR and RRR, utilizing
small amount of buffers and output the re-arranged inputs in a bit-by-bit manner. As
demonstrated in Section 2.4, the proposed SN duplicators reduces their errors compared
with the conventional 1-bit FF-based SN duplicator in a circuit with re-convergence
paths.

2.3.2 FSR Duplicator

Firstly, this chapter proposes the FSR (Flip-flop Selecting circuit using a Random bit
stream) duplicator shown in Figure 2.8.

This SN duplicator selects a 1-bit delayed or 2-bit delayed SN randomly by introduc-
ing a random bit stream to select each output bit. The two FFs, FF0 and FF1, generate 1-
or 2-bit delayed SN, respectively. The output of FF1 becomes the 1-bit delayed SN and
the output of FF0 becomes the 2-bit delayed SN. Then the MUX circuit and a random

18 CHAPTER 2. SN DUPLICATORS BASED ON BIT RE-ARRANGEMENT

bit stream select the bit to output. Since a 1-bit delayed SN and a 2-bit delayed SN is
selected randomly, Condition 2 will be satisfied. As in Figure 2.8, the output can be
obtained in a bit-by-bit manner, i.e., the latency of an FSR duplicator becomes zero clock
cycles, same as the SN duplicator in [1].

The i-th bit Outi of the output SN Out becomes:

Outi = Ini−1 × ri + Ini−2 × (1 − ri), (2.10)

where In is the input SN and r (ri = 0 or 1) is a random bit stream. If Vr = 1/2 and i is
sufficiently large, the expected value Ei of Outi becomes:

Ei =
1
2
(Ini−1 + Ini−2) ≈ PIn = VIn, (2.11)

meaning that the expected value of output VOut is the same as the input value VIn and
thus the FSR duplicator satisfies Condition 1. Note that, Section 2.5 discusses the errors
between VIn and VOut when the bit length of the input SN becomes longer.

As an example of implementation of an FSR duplicator, if In = 10101110 and
r = 11100100 are input, Out = 010111X1X0 is output, where X0 and X1 is the unknown,
initial bits of FF0 and FF1, respectively. In this case, the values of input and output SN
becomes VIn = 5/8 = 0.675 and VOut = 4/6 = 0.667, respectively.3

Table 2.4 shows examples of input/output SNs and their values of an FSR duplicator
where the initial values of FF0 and FF1 are set to 0 and 1, respectively. Here, the
duplication errors become smaller if SNs with longer bit lengths are input.

Let us apply this FSR duplicator to the eighth power unit as in Figure 2.6 when
Vr = 1/2. For simplicity, we also assume that |In| is sufficiently large and the delays
of each SN duplicator are fixed over time. Focusing on xi, the i-th bit of input SN x of
DUP1. If DUP1 is implemented by FSR, SN x′ is output with D1 clock cycle (D1 = 1
or D1 = 2) delays, i.e., x′i = xi−D1 . In the same way, DUP2 and DUP3 output D2 and
D3 clock cycle (D2 and D3 are 1 or 2, respectively) delayed input, respectively, i.e.,
z′i = zi−D2 and w′i = wi−D3 . Therefore, the i-th bit yi of the output SN y of the whole
eighth power unit becomes:

yi = xi ∧ xi−D1 ∧ xi−D2 ∧ xi−D3 ∧ xi−D1−D2

∧xi−D2−D3 ∧ xi−D3−D1 ∧ xi−D1−D2−D3 . (2.12)

In Equation (2.12), D1,D2, and D3 become 1 or 2 with the possibility of 50%. Table 2.5
shows all the patterns of the delays and their corresponding output yi. From Table 2.5,

3In the calculation example of VOut here, we exclude ‘X’s in Out for simplicity. Thus we have
VOut = 4/6 = 0.667.

2.3. SN DUPLICATORS BASED ON BIT RE-ARRANGEMENT 19

Table 2.4: Examples of input/output SNs of an FSR duplicator.

Bit length
Input SN In Random SN r Output SN Out

(VIn) (Vr) (VOut)

8 bits
10110110 00111010 11101000
(0.625) (0.5) (0.5)

16 bits
11011110 00001001 01111000
01011100 01111101 00111011
(0.625) (0.5) (0.5625)

24 bits

11110101 00110001 11100111
10011100 01001010 00111001
01110101 11011110 11001010
(0.625) (0.5) (0.5833· · ·)

32 bits

10101011 00011111 10110110
01001100 01001101 00111011
10110111 10010111 01001111
11101101 00110000 10010110
(0.625) (0.5) (0.59375)

the value of the output SN y becomes:

Vy = Py =
3
8

P6
x +

3
8

P5
x +

1
4

P4
x

=
3
8

V6
x +

3
8

V5
x +

1
4

V4
x . (2.13)

Still, Vy does not completely represent the eighth power of an input SN, but approaches
to the correct value compared with the SN duplicator proposed in [1].

2.3.3 RRR Duplicator

To re-arrange the bit stream of an input SN further, two more MUXs are added to
the FSR duplicator. Here, this chapter secondly proposes the RRR (Register based
Re-arrangement circuit using a Random bit stream) duplicator shown in Figure 2.9.

The RRR duplicator also utilizes a random bit stream r as well as the FSR duplicator.
If the i-th bit ri in r is zero, i.e., if ri = 0, SNs are duplicated in the following steps:

1. The bit stored in FF0 is output as its i-th bit Outi of output SN Out.

20 CHAPTER 2. SN DUPLICATORS BASED ON BIT RE-ARRANGEMENT

Table 2.5: Appearance rates of D1–D3 and its function.

D1 D2 D3 Appearance rate Output yi

1 1 1 1/8 xi ∧ xi−1 ∧ xi−2 ∧ xi−3

1 1 2 1/8 xi ∧ xi−1 ∧ xi−2 ∧ xi−3 ∧ xi−4

1 2 1 1/8 xi ∧ xi−1 ∧ xi−2 ∧ xi−3 ∧ xi−4

2 1 1 1/8 xi ∧ xi−1 ∧ xi−2 ∧ xi−3 ∧ xi−4

1 2 2 1/8 xi ∧ xi−1 ∧ xi−2 ∧ xi−3 ∧ xi−4 ∧ xi−5

2 1 2 1/8 xi ∧ xi−1 ∧ xi−2 ∧ xi−3 ∧ xi−4 ∧ xi−5

2 2 1 1/8 xi ∧ xi−1 ∧ xi−2 ∧ xi−3 ∧ xi−4 ∧ xi−5

2 2 2 1/8 xi ∧ xi−2 ∧ xi−4 ∧ xi−6

 RU

 RU

 RU

FF

CMP

FF

FF
FF

(a) (b)

(c) (d)

1

1

1

1

0
0

0

0

𝐼𝑛: 10101110
𝑃!"=5/8=0.625

𝑂𝑢𝑡: 010111𝑋#𝑋$
𝑃%&'=4/6=0.667

𝑟: 11100100
𝑃(=4/8=0.5

Figure 2.9: RRR duplicator.

2. The i-th bit Ini of input SN In is newly stored into FF0.

3. The bit stored in FF1 is not changed.

In the same way, if ri = 1, FF1 is used instead of FF0, and the bit stored in FF0 is not
changed. Note that, this SN duplicator outputs almost all the bits in the input SN and
thus no inaccuracy is expected in arithmetic operations, i.e., the RRR duplicator also
satisfies Condition 2. As in Figure 2.9, the output can be obtained in a bit-by-bit manner,
i.e., its latency becomes zero clock cycles as well as the SN duplicator in [1] and the FSR
duplicator.

Here, let F0
j,i (j < i) be a 0/1 variable, which is 1 if the j-th input bit In j is stored in

2.3. SN DUPLICATORS BASED ON BIT RE-ARRANGEMENT 21

FF0 when the current input bit is Ini and otherwise 0. F0
j,i can be calculated by:

F0
j,i = (1 − r j) ×

i−1∏
k= j+1

rk . (2.14)

In the same way, a 0/1 variable F1
j,i for FF1 becomes:

F1
j,i = r j ×

i−1∏
k= j+1

(1 − rk). (2.15)

Let X0 and X1 be the initial bits stored in FF0 and FF1, respectively. The i-th bit Outi of
the output SN Out becomes:

Outi = X0 × (1 − ri) ×
i−1∏
k=0

rk

+ X1 × ri ×
i−1∏
k=0

(1 − rk)

+ (1 − ri) ×
i−1∑
j=0

(In j × F0
j,i)

+ ri ×
i−1∑
j=0

(In j × F1
j,i). (2.16)

When Vr = 1/2 and i is sufficiently large, the expected value Ei of Outi becomes:

Ei =

i−1∑
j=0

In j

2i− j ≈ PIn = VIn, (2.17)

meaning that the expected value of output VOut is the same as the input value VIn and
thus the output of the RRR duplicator also satisfies Condition 1.

For example, if In = 10101110 (VIn = 5/8 = 0.675) and r = 11100100 are input,
Out = 01111X10X0 (VOut = 4/6 = 0.667) is output. Thus VOut is almost equal to VIn if
the input SN is long enough.

The RRR duplicator duplicates SNs whose bits streams are independent of each other.
In addition, since most input bits in the bit steam of the input SN are used as output,
inaccuracy in arithmetic operations can be ignored. Note that, Section 2.5 discusses the
transition of errors between VIn and VOut when the bit length of the input SN changes.

Let us apply this RRR duplicator to the eighth power unit as in Figure 2.6 when
Vr = 1/2. For simplicity, we also assume that |In| is sufficiently large and the delays

22 CHAPTER 2. SN DUPLICATORS BASED ON BIT RE-ARRANGEMENT

of each SN duplicator are fixed over time. Alike the eighth power unit using the FSR
duplicator, the i-th bit yi of output SN y of the eighth power unit using the RRR duplicator
is given by Equation (2.12). From Equation (2.17), the possibility of the RRR duplicator
outputting the n-bit delayed input becomes (1/2)n (n ≥ 1). Alike the FSR duplicator, by
considering all the patterns of D1, D2, and D3 in Equation (2.12), the value of the output
SN of the eighth power unit using the RRR duplicator becomes:

Vy =
16
105

V8
x +

2
15

V7
x +

13
35

V6
x +

1
5

V5
x +

1
7

V4
x . (2.18)

Equation (2.18) includes the term of V8
x and thus it approaches to the correct value

compared with the value of the output SN of the same circuit using SN duplicator
proposed in [1] or that using FSR duplicator proposed in the previous section.

2.4 Experimental Evaluations

2.4.1 Accuracy Comparison

Firstly, the calculation accuracy of the proposed SN duplicators, using several arithmetic
circuits including re-convergence paths, is evaluated.

Benchmark Circuits

As benchmark circuits, the following circuits are used:

1. The eighth power unit as in Figure 2.6;

2. The 7th order approximation sine function denoted by sin′ as in Figure 2.10(a);

3. The 8th order approximation cosine function denoted by cos′ as in Figure 2.10(b).

In general, stochastic circuits under the following conditions can be implemented by using
duplicators: the range and domain are between 0 and 1; the function is differentiable.
Note that, circuits 2 and 3 are based on the Horner’s method [1, 33]. Only functions
with coefficients, which are alternately positive and negative and their magnitudes are
monotonically decreasing, can be implemented by this method [1].

2.4. EXPERIMENTAL EVALUATIONS 23

(a)

(b)

DUP

D

D

DUP DUP

DUP

𝑥
sin′ 𝑥

1/42 1/61/20

𝑥 cos′ 𝑥

D D DDUP DUP DUP

DDUP

1/56 1/21/121/30

Figure 2.10: Circuits of functions using SN duplicators.
(a) sin′ x. (b) cos′ x.

The sin′ x function is expressed by:

sin x ≈ x − x3

3!
+

x5

5!
− x7

7!

= x
(
1 − x2

6

(
1 − x2

20
(1 − x2

42
)
))

= sin′ x. (2.19)

The circuit of sin′ x is shown in Figure 2.10(a). The DUPs in Figure 2.10(a) show SN
duplicators.

The cos′ x function is expressed by:

cos x ≈ 1 − x2

2!
+

x4

4!
− x6

6!
+

x8

8!

= 1 − x2

2

(
1 − x2

12

(
1 − x2

30
(1 − x2

56
)
))

= cos′ x. (2.20)

The circuit of cos′ x is shown in Figure 2.10(b). The DUPs in Figure 2.10(b) also show
SN duplicators.

24 CHAPTER 2. SN DUPLICATORS BASED ON BIT RE-ARRANGEMENT

Setup

The following four SN duplicators are compared: the 1-bit FF-based SN duplicator
proposed in [1], the ideal SN duplicator proposed in [2], our FSR duplicator, and our
RRR duplicator. In this experiment, mean square errors (MSE) and maximum errors are
used to evaluate the SN duplicators.

(a) MSE: MSE is a statistical value that measures how close the obtained values are to
the theoretical value, which is calculated by:

MSE(f , x,n) = 1
n

n∑
i=1

(ftheory(x) − factual(x, i))2, (2.21)

where ftheory(x) is the theoretical value when a real number x is input to Equa-
tion (2.5), Equation (2.19), or Equation (2.20), n is the number of trials, and
factual(x, i) is the obtained value of the output SN of each circuit through numeri-
cal simulation at the i-th trial when an SN with value x is input.

(b) Maximum error: Maximum error is calculated by:

E RRmax(f , x,n) = max
i∈{1,··· ,n}

| ftheory(x) − factual(x, i)|. (2.22)

Python 3.6.3[34] was used for this simulation. Each input SN x are input 1,000
times. For each SN duplicator in all trials, a random bit stream r was generated and
then the output SNs were evaluated by MSE values and maximum errors. The input x
ranges from 0.0 to 1.0. The two cases below were performed for both MSE values and
maximum errors:

Case 1: The bit length of every SN is set to 255 bits based on [12]. Here, an 8-bit LFSR
is used to generate a random bit stream r in our FSR and RRR duplicators. An
8-bit LFSR is also used in [2] when newly generating an SN.

Case 2: To evaluate the longer bit length of SNs, the bit length of every SN set to 4,095
bits. In this case, a 12-bit LFSR is used to generate a random bit stream r in
our FSR and RRR duplicators. A 12-bit LFSR is also used in [2] when newly
generating an SN.

Results

Table 2.6 summarizes the MSE values of Case 1. Each value in Table 2.6 shows the
MSE value (MSE(f , x,n) given by Equation (2.21)) of 1,000 trials (n = 1,000) for each

2.4. EXPERIMENTAL EVALUATIONS 25

Table 2.6: Experimental evaluations in MSE values (bit length: 255 bits).

Function x [1] [2] FSR (Proposed) RRR (Proposed)

x8

0.0 0 0 0 0
0.1 4.65 × 10−7 1.00 × 10−16 4.65 × 10−8 1.54 × 10−8

0.2 9.35 × 10−6 3.10 × 10−8 3.52 × 10−6 9.22 × 10−7

0.3 1.04 × 10−4 3.79 × 10−7 3.45 × 10−5 8.80 × 10−6

0.4 7.07 × 10−4 2.90 × 10−6 2.40 × 10−4 5.05 × 10−5

0.5 3.65 × 10−3 1.55 × 10−5 1.30 × 10−3 3.10 × 10−4

0.6 1.26 × 10−2 7.17 × 10−5 5.05 × 10−3 1.38 × 10−3

0.7 3.12 × 10−2 2.34 × 10−4 1.41 × 10−2 4.71 × 10−3

0.8 5.65 × 10−2 4.88 × 10−4 2.79 × 10−2 1.02 × 10−2

0.9 4.69 × 10−2 7.77 × 10−4 2.52 × 10−2 1.14 × 10−2

1.0 0 0 0 0
Average 1.38 × 10−2 1.46 × 10−4 6.73 × 10−3 2.56 × 10−3

(100%) (1%) (49%) (19%)

sin′ x

0.0 0 0 0 0
0.1 1.07 × 10−5 4.58 × 10−6 3.13 × 10−4 1.56 × 10−5

0.2 6.50 × 10−5 1.04 × 10−5 5.56 × 10−4 3.01 × 10−5

0.3 1.38 × 10−4 2.08 × 10−5 7.05 × 10−4 6.45 × 10−5

0.4 3.46 × 10−4 3.95 × 10−5 9.36 × 10−4 6.98 × 10−5

0.5 5.01 × 10−4 6.63 × 10−5 9.85 × 10−4 1.24 × 10−4

0.6 6.07 × 10−4 1.00 × 10−4 1.02 × 10−3 1.90 × 10−4

0.7 7.40 × 10−4 1.37 × 10−4 9.41 × 10−4 1.82 × 10−4

0.8 4.96 × 10−4 1.47 × 10−4 6.46 × 10−4 1.58 × 10−4

0.9 2.49 × 10−4 1.21 × 10−4 3.88 × 10−4 1.27 × 10−4

1.0 3.74 × 10−5 3.88 × 10−5 3.79 × 10−5 2.76 × 10−5

Average 2.90 × 10−4 6.25 × 10−5 5.95 × 10−4 9.01 × 10−5

(100%) (22%) (205%) (31%)

cos′ x

0.0 0 0 0 0
0.1 3.45 × 10−5 3.30 × 10−5 4.68 × 10−5 1.83 × 10−5

0.2 8.28 × 10−5 7.61 × 10−5 1.25 × 10−4 6.21 × 10−5

0.3 1.38 × 10−4 1.32 × 10−4 2.12 × 10−4 1.19 × 10−4

0.4 2.12 × 10−4 2.08 × 10−4 3.39 × 10−4 2.06 × 10−4

0.5 3.10 × 10−4 2.69 × 10−4 4.38 × 10−4 2.49 × 10−4

0.6 3.44 × 10−4 2.95 × 10−4 5.59 × 10−4 2.76 × 10−4

0.7 4.12 × 10−4 3.56 × 10−4 6.59 × 10−4 2.97 × 10−4

0.8 3.53 × 10−4 3.21 × 10−4 5.84 × 10−4 3.07 × 10−4

0.9 3.01 × 10−4 2.80 × 10−4 4.47 × 10−4 2.14 × 10−4

1.0 9.70 × 10−5 9.47 × 10−5 1.02 × 10−4 8.22 × 10−5

Average 2.08 × 10−4 1.89 × 10−4 3.20 × 10−4 1.67 × 10−4

(100%) (90%) (153%) (80%)

26 CHAPTER 2. SN DUPLICATORS BASED ON BIT RE-ARRANGEMENT

functions (x8, sin′ x, and cos′ x), input value x (x = 0.0,0.1,0.2, . . . ,1.0) and the SN
duplicators ([1], [2], FSR, and RRR). The row “Average” shows the overall average of the
MSE values of all x’s. The row under “Average” shows the ratio of each SN duplicator’s
“Average” to the “Average” of the SN duplicator in [1].

From this table, our FSR duplicator reduces MSE by 51% and our RRR duplicator
reduces MSE by 81% compared with the SN duplicator in [1] for the eighth power unit.
Note that, the SN duplicator in [2] reduces MSE to 1% compared with the SN duplicator
in [1], since the SN duplicator in [2] is an ideal SN duplicator and generates a completely
new SN. However, this SN duplicator requires large latency and large area compared with
the other three SN duplicators as discussed in the next subsection. Especially, its latency
becomes 255 clock cycles, meaning that the output cannot be obtained in a bit-by-bit
manner unlike the other three SN duplicators.

In the cases of the sin′ circuit and cos′ circuit, the RRR duplicator reduces MSE by
69% and 20% compared with the SN duplicator in [1], respectively. Especially, in the
case of the cos′ circuit, the RRR duplicator realizes the smallest MSE among the all four
SN duplicators.

Table 2.7 summarizes the MSE values of Case 2. When the bit length of SNs becomes
longer, the proposed RRR duplicator realizes the best MSE values, reducing up to 89%
in the case of the sin′ circuit.

Tables 2.8 and 2.9 summarize the maximum errors of Cases 1 and 2, respectively.
Each value in Tables 2.8 and 2.9 show the maximum error (ERRmax(f , x,n) given by
Equation (2.22)) of 1,000 trials (n = 1,000) for each functions (x8, sin′ x, and cos′ x),
input value x (x = 0.0,0.1,0.2, . . . ,1.0) and the SN duplicators ([1], [2], FSR, and RRR).
The row “Average” shows the overall average of the maximum errors of all x’s. The row
under “Average” shows the ratio of each SN duplicator’s “Average” to the “Average” of
[1].

From Tables 2.8 and 2.9, the RRR duplicator’s maximum error becomes the smallest
in most cases using SN duplicators. Especially when the bit length is long (4,095 bits),
the RRR duplicator’s maximum error becomes the smallest in all the cases using SN
duplicators. The FSR duplicator also reduces maximum error with longer bit length, but
sometimes is inferior to the SN duplicator in [1]. Thus, from the aspect of maximum
errors, the RRR duplicator is superior to the SN duplicator in [1] and the FSR duplicator.

2.4. EXPERIMENTAL EVALUATIONS 27

Table 2.7: Experimental evaluations in MSE values (bit length: 4,095 bits).

Function x [1] [2] FSR (Proposed) RRR (Proposed)

x8

0.0 0 0 0 0
0.1 3.82 × 10−8 6.25 × 10−11 1.19 × 10−8 2.12 × 10−9

0.2 3.14 × 10−6 7.41 × 10−10 6.41 × 10−7 8.54 × 10−8

0.3 6.65 × 10−5 1.88 × 10−8 1.50 × 10−5 1.96 × 10−6

0.4 6.33 × 10−3 1.77 × 10−7 1.72 × 10−3 2.91 × 10−5

0.5 3.45 × 10−3 1.06 × 10−6 1.15 × 10−3 2.44 × 10−3

0.6 1.27 × 10−2 5.02 × 10−6 4.94 × 10−3 1.27 × 10−3

0.7 3.35 × 10−2 1.58 × 10−5 1.49 × 10−2 4.55 × 10−3

0.8 5.85 × 10−2 4.74 × 10−5 2.94 × 10−2 1.01 × 10−2

0.9 5.09 × 10−2 1.27 × 10−4 2.82 × 10−2 1.09 × 10−2

1.0 0 0 0 0
Average 1.50 × 10−2 1.78 × 10−5 7.29 × 10−3 2.66 × 10−3

(100%) (0.1%) (48%) (17%)

sin′ x

0.0 0 0 0 0
0.1 7.36 × 10−6 1.37 × 10−5 2.56 × 10−5 5.17 × 10−6

0.2 3.30 × 10−5 1.51 × 10−5 4.74 × 10−5 7.42 × 10−6

0.3 1.10 × 10−4 1.56 × 10−5 8.21 × 10−5 1.52 × 10−5

0.4 2.53 × 10−4 1.48 × 10−5 1.37 × 10−4 2.88 × 10−5

0.5 4.09 × 10−4 1.74 × 10−5 1.93 × 10−4 4.21 × 10−5

0.6 5.33 × 10−4 1.71 × 10−5 2.32 × 10−4 5.37 × 10−5

0.7 5.39 × 10−4 1.79 × 10−5 2.39 × 10−4 5.82 × 10−5

0.8 4.07 × 10−4 2.09 × 10−5 1.66 × 10−4 4.43 × 10−5

0.9 1.66 × 10−4 1.79 × 10−5 7.90 × 10−5 2.52 × 10−5

1.0 6.31 × 10−6 6.07 × 10−6 6.12 × 10−6 6.24 × 10−6

Average 2.23 × 10−4 1.42 × 10−5 1.09 × 10−4 2.60 × 10−5

(100%) (6%) (48%) (11%)

cos′ x

0.0 0 0 0 0
0.1 1.04 × 10−6 2.78 × 10−6 1.88 × 10−6 1.19 × 10−6

0.2 4.33 × 10−6 7.46 × 10−6 7.16 × 10−6 4.41 × 10−6

0.3 8.74 × 10−6 1.16 × 10−5 1.49 × 10−5 8.68 × 10−6

0.4 1.51 × 10−5 1.68 × 10−5 2.40 × 10−5 1.25 × 10−5

0.5 2.24 × 10−5 2.09 × 10−5 3.64 × 10−5 1.67 × 10−5

0.6 3.02 × 10−5 2.20 × 10−5 4.36 × 10−5 1.88 × 10−5

0.7 3.96 × 10−5 2.48 × 10−5 5.19 × 10−5 2.27 × 10−5

0.8 3.72 × 10−5 2.24 × 10−5 4.38 × 10−5 2.17 × 10−5

0.9 2.89 × 10−5 2.29 × 10−5 3.15 × 10−5 1.86 × 10−5

1.0 9.92 × 10−6 9.54 × 10−6 9.83 × 10−6 9.96 × 10−6

Average 1.79 × 10−5 1.46 × 10−5 2.40 × 10−5 1.22 × 10−5

(100%) (81%) (134%) (68%)

28 CHAPTER 2. SN DUPLICATORS BASED ON BIT RE-ARRANGEMENT

Table 2.8: Experimental evaluations in maximum errors (bit length: 255 bits).

Function x [1] [2] FSR (Proposed) RRR (Proposed)

x8

0.0 0 0 0 0
0.1 3.92 × 10−3 1.00 × 10−8 3.92 × 10−3 3.92 × 10−3

0.2 1.96 × 10−2 3.92 × 10−3 1.18 × 10−2 7.84 × 10−3

0.3 3.52 × 10−2 3.86 × 10−3 3.52 × 10−2 1.17 × 10−2

0.4 8.56 × 10−2 1.50 × 10−2 6.21 × 10−2 3.86 × 10−2

0.5 1.33 × 10−1 2.35 × 10−2 9.41 × 10−2 5.49 × 10−2

0.6 1.99 × 10−1 3.03 × 10−2 1.48 × 10−1 1.01 × 10−1

0.7 2.64 × 10−1 5.22 × 10−2 2.36 × 10−1 1.54 × 10−1

0.8 3.19 × 10−1 7.37 × 10−2 2.79 × 10−1 2.36 × 10−1

0.9 2.75 × 10−1 7.93 × 10−2 2.60 × 10−1 2.01 × 10−1

1.0 8.88 × 10−16 8.88 × 10−16 8.88 × 10−16 8.88 × 10−16

Average 1.21 × 10−1 2.56 × 10−2 1.03 × 10−1 7.35 × 10−2

(100%) (21%) (85%) (61%)

sin′ x

0.0 0 0 0 0
0.1 1.36 × 10−2 5.72 × 10−3 5.31 × 10−2 1.75 × 10−2

0.2 2.61 × 10−2 1.04 × 10−2 7.58 × 10−2 1.83 × 10−2

0.3 3.67 × 10−2 1.71 × 10−2 9.55 × 10−2 2.49 × 10−2

0.4 5.22 × 10−2 2.08 × 10−2 9.53 × 10−2 3.65 × 10−2

0.5 5.20 × 10−2 2.84 × 10−2 1.11 × 10−1 4.02 × 10−2

0.6 5.88 × 10−2 3.52 × 10−2 1.06 × 10−1 5.09 × 10−2

0.7 7.17 × 10−2 4.03 × 10−2 8.74 × 10−2 4.81 × 10−2

0.8 5.46 × 10−2 3.95 × 10−2 9.38 × 10−2 5.46 × 10−2

0.9 4.21 × 10−2 3.43 × 10−2 5.78 × 10−2 3.82 × 10−2

1.0 2.52 × 10−2 1.74 × 10−2 2.13 × 10−2 2.13 × 10−2

Average 3.94 × 10−2 2.27 × 10−2 7.24 × 10−2 3.19 × 10−2

(100%) (58%) (184%) (81%)

cos′ x

0.0 0 0 0 0
0.1 1.85 × 10−2 1.85 × 10−2 3.42 × 10−2 1.46 × 10−2

0.2 2.71 × 10−2 2.71 × 10−2 3.50 × 10−2 2.71 × 10−2

0.3 2.98 × 10−2 4.16 × 10−2 5.34 × 10−2 3.77 × 10−2

0.4 4.76 × 10−2 5.05 × 10−2 5.15 × 10−2 5.83 × 10−2

0.5 5.01 × 10−2 4.62 × 10−2 6.97 × 10−2 5.01 × 10−2

0.6 5.31 × 10−2 5.70 × 10−2 6.88 × 10−2 5.31 × 10−2

0.7 5.87 × 10−2 6.26 × 10−2 7.44 × 10−2 7.05 × 10−2

0.8 5.62 × 10−2 4.96 × 10−2 7.19 × 10−2 6.80 × 10−2

0.9 6.47 × 10−2 4.91 × 10−2 6.07 × 10−2 5.69 × 10−2

1.0 3.05 × 10−2 2.83 × 10−2 2.83 × 10−2 3.22 × 10−2

Average 3.97 × 10−2 3.91 × 10−2 4.98 × 10−2 4.26 × 10−2

(100%) (98%) (125%) (107%)

2.4. EXPERIMENTAL EVALUATIONS 29

Table 2.9: Experimental evaluations in maximum errors (bit length: 4,095 bits).

Function x [1] [2] FSR (Proposed) RRR (Proposed)

x8

0.0 0 0 0 0
0.1 1.22 × 10−3 1.00 × 10−8 7.33 × 10−4 4.88 × 10−4

0.2 4.39 × 10−3 2.42 × 10−4 2.68 × 10−3 1.46 × 10−3

0.3 1.56 × 10−2 6.67 × 10−4 8.48 × 10−3 4.33 × 10−3

0.4 3.52 × 10−2 2.03 × 10−3 2.11 × 10−2 1.01 × 10−2

0.5 7.28 × 10−2 3.66 × 10−3 4.69 × 10−2 2.52 × 10−2

0.6 1.35 × 10−1 8.11 × 10−3 9.09 × 10−2 5.57 × 10−2

0.7 2.06 × 10−1 1.42 × 10−2 1.47 × 10−1 9.03 × 10−2

0.8 2.71 × 10−1 2.10 × 10−2 2.07 × 10−1 1.31 × 10−1

0.9 2.46 × 10−1 3.61 × 10−2 1.97 × 10−1 1.36 × 10−1

1.0 8.88 × 10−16 8.88 × 10−16 8.88 × 10−16 8.88 × 10−16

Average 8.97 × 10−2 7.82 × 10−3 6.57 × 10−2 4.13 × 10−2

(100%) (9%) (73%) (46%)

sin′ x

0.0 0 0 0 0
0.1 6.55 × 10−3 1.01 × 10−2 1.66 × 10−2 5.08 × 10−3

0.2 1.14 × 10−2 1.11 × 10−2 2.24 × 10−2 7.70 × 10−3

0.3 1.69 × 10−2 1.08 × 10−2 2.86 × 10−2 9.07 × 10−3

0.4 2.43 × 10−2 1.04 × 10−2 3.26 × 10−2 1.31 × 10−2

0.5 2.89 × 10−2 1.35 × 10−2 3.55 × 10−2 1.45 × 10−2

0.6 3.25 × 10−2 1.40 × 10−2 3.94 × 10−2 1.69 × 10−2

0.7 3.54 × 10−2 1.78 × 10−2 3.37 × 10−2 2.00 × 10−2

0.8 3.07 × 10−2 1.33 × 10−2 2.99 × 10−2 1.97 × 10−2

0.9 2.22 × 10−2 1.47 × 10−2 2.51 × 10−2 1.41 × 10−2

1.0 6.64 × 10−3 7.37 × 10−3 7.52 × 10−3 6.88 × 10−3

Average 1.96 × 10−2 1.12 × 10−2 2.47 × 10−2 1.15 × 10−2

(100%) (57%) (126%) (59%)

cos′ x

0.0 0 0 0 0
0.1 4.77 × 10−3 5.26 × 10−3 4.28 × 10−3 3.55 × 10−3

0.2 6.93 × 10−3 9.86 × 10−3 8.70 × 10−3 6.68 × 10−3

0.3 9.25 × 10−3 1.51 × 10−2 1.10 × 10−2 9.50 × 10−3

0.4 1.37 × 10−2 1.47 × 10−2 1.48 × 10−2 1.18 × 10−2

0.5 1.57 × 10−2 1.35 × 10−2 2.16 × 10−2 1.34 × 10−2

0.6 1.54 × 10−2 1.81 × 10−2 2.33 × 10−2 1.70 × 10−2

0.7 2.03 × 10−2 1.56 × 10−2 2.10 × 10−2 1.68 × 10−2

0.8 1.81 × 10−2 1.71 × 10−2 2.25 × 10−2 1.64 × 10−2

0.9 1.72 × 10−2 1.65 × 10−2 2.01 × 10−2 1.38 × 10−2

1.0 8.92 × 10−3 1.11 × 10−2 1.09 × 10−2 8.66 × 10−3

Average 1.18 × 10−2 1.24 × 10−2 1.44 × 10−2 1.07 × 10−2

(100%) (105%) (122%) (91%)

30 CHAPTER 2. SN DUPLICATORS BASED ON BIT RE-ARRANGEMENT

Table 2.10: Area and delay comparison (bit length: 255 bits).

SN Duplicator Gate count [gates] Delay [ns] Latency [cycles]

[1] 5.75 0.39 0
[2] 114.5 0.50 255

FSR (Proposed) 46.25 0.49 0
RRR (Proposed) 51.25 0.49 0

Table 2.11: Area and delay comparison (bit length: 4,095 bits).

SN Duplicator Gate count [gates] Delay [ns] Latency [cycles]

[1] 5.75 0.39 0
[2] 199.75 0.50 4,095

FSR (Proposed) 87.5 0.49 0
RRR (Proposed) 92.5 0.49 0

2.4.2 Area and Delay Comparison of SN Duplicators

Logic synthesis has been performed using Verilog[35] by Design Compiler version D-
2010.03-SP5[36] and STARC 90 nm library[37], and the areas and delays of the four SN
duplicators were evaluated: the 1-bit FF-based SN duplicator proposed in [1], the ideal
SN duplicator proposed in [2], our FSR duplicator, and our RRR duplicator.

Table 2.10 summarizes the results of Case 1. In this table, “Gate count” shows the
required number of equivalent 2-input NAND gates. “Delay” shows the critical path
delay in nanoseconds. “Latency” shows the required number of clock cycles to output
the first bit of the duplicated SN. From this table, our proposed FSR and RRR duplicators
require 9 times more area compared with the SN duplicator in [1] but reduce the area by
more than 50% compared with the SN duplicator in [2]. The critical path delays of all
the SN duplicators are almost the same. In this case, the SN duplicator in [1], FSR and
RRR duplicators generate an output SN in a bit-by-bit manner. Therefore, the latency of
these circuits become 0. On the other hand, the SN duplicator in [2] firstly counts the
1’s in the input SN taking 255 clock cycles and then start to generate a new SN. Thus the
SN duplicator in [2] requires 255 clock cycles to generate the first bit to output.

Table 2.11 summarizes the results of Case 2. From this table, our proposed FSR and
RRR duplicators require 16 times more area compared with the SN duplicator in [1] but
reduce the area by more than 50% compared with the SN duplicator in [2]. The critical
path delays of all the SN duplicators are almost the same. In this case, the SN duplicator
in [1], FSR and RRR duplicators can also generate an output SN in a bit-by-bit manner.

2.4. EXPERIMENTAL EVALUATIONS 31

Therefore, the latency of these circuits become 0. On the other hand, the SN duplicator
in [2] firstly counts the 1’s in the input SN taking 4,095 clock cycles and then start to
generate a new SN. Thus the SN duplicator in [2] requires 4,095 clock cycles to generate
the first bit to output.

Overall, our FSR and RRR duplicators just introduce around 50 gates or 90 gates
but realize more accurate arithmetic operations compared with a conventional approach,
without latency alike the SN duplicator in [2]. Note that, to implement our FSR duplicator
and RRR duplicator in an actual circuit, a “new” LFSR is not necessarily required to
generate a random bit stream if LFSRs already exist in the circuit. Instead, the one of
the LFSRs can be reused and consider them to generate a random bit stream [38]. In
[38], a single LFSR can generate multiple non-correlated bit streams by circular-shifting
its output bits. This shifting requires no additional gates other than the original LFSR,
only by changing wires. Assume that a circuit block includes LFSR L1 to generate a
random bit stream. If another circuit block in the same circuit needs another LFSR L2

to generate a random bit stream, LFSR L1 can be reused instead of LFSR L2, without
additional gates. Therefore, when multiple SN duplicators are required in a single circuit,
some of the LFSRs can be reduced. If the proposed FSR and RRR duplicators do not
require LFSRs by reusing an LFSR somewhere in the circuit, their circuit sizes are further
reduced to 13 gates and 18 gates, respectively, regardless of the bit length of the input SN,
which is comparable to [1]. In the same way, if the SN duplicator in [2] does not require
LFSRs, its circuit size is reduced to 81.25 gates and 125.25 gates when the bit length of
the input SN is 255 and 4,095, respectively. Still, the circuit sizes of the proposed FSR
and RRR duplicators are much smaller than that of the SN duplicator in [2].

2.4.3 Total Latency of the Benchmark Circuits

Table 2.12 summarizes the latencies of x8, sin′ x, and cos′ x circuits when 255-bit SN
and 4,095-bit SN is input. In column with 255-bit SN, the SN duplicator in [2], FSR,
and RRR include an 8-bit LFSR, and in column with 4,095-bit SN, the SN duplicator
in [2], FSR, and RRR include a 12-bit LFSR. “Function” shows the type of function
implemented by the benchmark circuit. “SN Duplicator” shows the SN duplicator which
is used. “Latency” shows the required number of clock cycles to output the first bit of
each function.

From this table, each function using the SN duplicator in [2] requires clock cycles in
response to the length of the input SN and the number of SN duplicators in series. On
the other hand, each function using the SN duplicator in [1], FSR, or RRR duplicators

32 CHAPTER 2. SN DUPLICATORS BASED ON BIT RE-ARRANGEMENT

Table 2.12: Delay and latency of the benchmark circuits.

Function SN Duplicator
Latency [cycles]

255-bit SN 4,095-bit SN

x8

[1] 0 0
[2] 255×3 4,095×3

FSR 0 0
RRR 0 0

sin′ x

[1] 0 0
[2] 255×3 4,095×3

FSR 0 0
RRR 0 0

cos′ x

[1] 0 0
[2] 255×4 4,095×4

FSR 0 0
RRR 0 0

outputs the first bit as soon as the first bit is input, though the initial value in FFs in the
SN duplicators are used for calculation of the first several bits.

2.4.4 Discussions

This section discusses the duplication error of the SN duplicators in [1] and [2], the
proposed FSR duplicator, and RRR duplicator when the bit lengths of input SNs become
longer. Here, we define the duplication error as the difference between the values of the
input and output SNs.

SN Duplicator in [1]: The input bits are stored sequentially into the FF as in Figure 2.5.
After a bit is stored in the FF, that bit is always output at the next clock cycle. As
a whole, the last bit of the input SN will remain in the FF, i.e., the last bit will not
be output. Instead of that bit, the bit stored in the FF initially is output at first.
Therefore, the erroneous bit at duplication using [1] is no more than one bit. Thus,
the maximum duplication error of the SN duplicator in [1] becomes 1/|In| which
is in inverse proportion to the bit length of the input SN.

SN Duplicator in [2]: Let us assume that the bit length of LFSR used in the SN dupli-

2.5. CONCLUSIONS 33

cator in [2] be l, and its cycle be 2l − 1. If the length of input SN In is 2l − 1, i.e.,
|In| = 2l − 1, there will be no erroneous bits, regardless of |In|. The reason for
this is: an LFSR is used as a pseudo random number generator generating integers
from 1 to |In|, which is compared with SIn, the number of 1’s in In. This makes
the SN duplicator in [2] generate an output SN Out satisfying |Out | = |In| and
SOut = SIn, i.e., VOut = VIn. Thus, the SN duplicator in [2] has no duplication
errors in this case.

FSR duplicator: From Table 2.4, the duplication error of the FSR duplicator becomes
smaller with longer bit length of input SN. The reason for this is: the first two bits
of output SN may be the initial bits stored in FF0 and FF1 and the last two bits of
the input may not be output. However, the effect of these bits becomes relatively
small compared with tho whole SN if the bit length of input SN is long enough.
However, depending on the random bit stream r , the duplication error may become
large since some bits from the input SN are not output.

RRR duplicator: Let Ini and ri be the i-th bit of the input SN In and the random bit
stream r , respectively. In an RRR duplicator, Ini is stored in FF0 if ri = 0, and
is output the next time the bit of r becomes 0. If ri = 1, FF1 is used instead of
FF0. Therefore, excluding the remaining bits in FF0 and FF1, all the bits that were
once stored in the FFs are output. Instead, the initial bits stored in the two FFs are
output at first. This means that: the erroneous bit at duplication using RRR is no
more than two bits. Thus, maximum duplication error of RRR is 2/|In| which is
in inverse proportion to the bit length of the input SN.

Overall, the duplication errors in the SN duplicators in [1], and the proposed RRR
duplicator become smaller if the bit length of the input SN becomes longer. The
duplication error of the SN duplicator in [2] is always zero.

2.5 Conclusions

This chapter proposed two new SN duplicators, FSR and RRR. The proposed SN dupli-
cators effectively reduce MSE values compared with a conventional 1-bit FF-based SN
duplicator. Thus realize a more accurate arithmetic operation.

Chapter 3

Scalable Stochastic Number
Duplicators for Accuracy-flexible
Arithmetic Circuit Design1

3.1 Introduction

3.1.1 Backgrounds

Implementation of arithmetic circuits with SN duplicators have been proposed in Chapter
2 or in [39]. These implementations do have smaller arithmetic errors compared with
the conventional method [1] but cannot reduce enough errors with long input SNs. This
is due to the re-convergence paths of the circuits causing arithmetic errors, regardless of
the length of SNs. Therefore, these circuits do not have flexible accuracy.

3.1.2 Proposal

This chapter aims to regain highly flexible accuracy, which is the nature of SN, in circuits
using SN duplicators. Focusing on changing the dependency of the output, this chapter
proposes a scalable SN duplicator, 2nRRR. The 2nRRR duplicator is a unique extension
of the RRR duplicator proposed in Chapter 2 or in [39]. By using multiple random
bit streams and more FFs (flip-flops), flexible bit re-arrangement becomes available,
making every output independent of each other. Through experimental evaluations and
discussions, this chapter clarifies that the proposed 2nRRR duplicator enables accuracy-
flexible circuits, confirming that the circuits implemented by the 2nRRR duplicator can

1Technical contents in this chapter have been presented in the publications ⟨1⟩, ⟨8⟩, and ⟨17⟩.

34

3.2. BACKGROUND OF SN DUPLICATORS AND RE-CONVERGENCE PATHS 35

change its accuracies depending on the value of n. From discussions, this chapter
theoretically proves that, if the length of the input SN is sufficiently large, increasing n
will improve the circuit’s accuracy. The only limitation of this proposal is that this SN
duplicator has larger circuit area than those of the conventional SN duplicators, still very
small compared with those of binary computing.

3.1.3 Contributions

The contributions of this chapter are as follows:

1. This chapter proposes a 2nRRR duplicator, which uniquely extends the RRR
duplicator proposed in Chapter 2 or in [39].

2. This chapter theoretically proves that the 2nRRR duplicator can flexibly change
the accuracies of the arithmetic circuits.

3. The circuits implemented with the 2nRRR duplicator have less errors compared
with those of the circuits implemented by other SN duplicators by selecting the
correct instance of 2nRRR duplicators.

3.1.4 Organization

The rest of this chapter is organized as follows: Section 3.2 introduces duplication of SN
and why the conventional SN duplicators fail to change the accuracy. Section 3.3 proposes
a 2nRRR duplicator and compares its hardware cost with that of the conventional SN
duplicators. Section 3.4 demonstrates the effectiveness of the 2nRRR duplicator through
experimental evaluations. Section 3.5 discusses the overall errors and areas of circuits
using 2nRRR duplicators and theoretically proves how the 2nRRR duplicator flexibly
changes the accuracy. Section 3.6 gives several concluding remarks.

3.2 Background of SN Duplicators and Re-convergence
Paths

3.2.1 Conditions Required for SN duplicators

From discussions in Chapter 2, Conditions 1 and 2 below are required for SN duplicators
to output accurate enough value when used in circuits:

36CHAPTER 3. SCALABLE SN DUPLICATORS FOR ACCURACY-FLEXIBLE DESIGN

(a)

(b)

DUP

DUP

𝑂𝑢𝑡

𝐼𝑛

DUP
DUP

𝐼𝑛

𝑂𝑢𝑡

𝑝𝑎𝑡ℎ!

𝑝𝑎𝑡ℎ!

𝑝𝑎𝑡ℎ"

𝑝𝑎𝑡ℎ"

𝑝𝑎𝑡ℎ#

Figure 3.1: Examples of re-convergence paths. (a) Independent. (b) Dependent.

Condition 1. The values of input SN In and output SN Out must be equal (VIn = VOut)
and the bit streams of them differ (In , Out).

Condition 2. When SN In is input to two SN duplicators with the same circuit, the bit
stream of the output SN Out of one SN duplicator differs from that of the output
SN Out′ of the other SN duplicator.

3.2.2 Dependent and Independent Re-convergence Paths

In this section, we define dependent and independent re-convergence paths, considering
arithmetic circuits by SC with re-convergence paths shown in Figure 3.1.

The circuit in Figure 3.1(a) has three signal paths path1, path2, and path3, from the
input In to the output Out. path1 includes no DUP’s. path2 includes one DUP. path3

includes two DUP’s. Since these three signal paths branch off from the same input and
join as the same output, they make a re-convergence path. However, the number of DUP’s
included in the three paths are different. Therefore, when FFs are used as SN duplicators,
the bits reffered by each path become different, i.e., the bit streams are independent. In
this case, we define this re-convergence path as independent re-convergence path.

The circuit in Figure 3.1(b) has several signal paths from the input In to the output

3.3. IMPROVED SN DUPLICATOR BASED ON BIT RE-ARRANGEMENT 37

Out, one of which includes one DUP (path1) and another one also includes one DUP
(path2). Since these three signal paths branch off from the same input and join as the
same output, they make a re-convergence path. Also, the number of DUP’s passed in
these two paths are the same. Therefore, when FFs are used as SN duplicators, the bits
reffered by each path become the same, i.e., the bit streams are dependent. In this case,
we define this re-convergence path as dependent re-convergence path.

Considering dependent re-convergence paths, Condition 2 is quite necessary for an
SN duplicator, since every bit in SNs in these paths are co-related. Thus, the target
function cannot be calculated.

3.2.3 The RRR Duplicator

As conventional SN duplicators, [1, 2] have been proposed. However, SN duplicator in
[1] does not satisfy Condition 2, and SN duplicator in [2] cannot be used in a practical
situation due to its large sized circuit and long latency. To satisfy Condition 2 with
a small sized circuit and low latency, we introduced a random bit stream into an SN
duplicator. Based on this idea, the RRR (Register based Re-arrangement circuit using a
Random bit stream) duplicator is proposed in Chapter 2 (Figure 2.5).

However, the RRR duplicator does not always satisfy Condition 2. This is because:
Assuming that the two DUP’s in Figure 3.1(b) are implemented by the RRR duplicator,
the bit delays of the two DUP’s are small and they can be the same with high possibility
since the RRR duplicator includes only two FFs. The two RRR duplicators output the
same bit with high possibility when the same input SN is given.

3.3 Improved SN Duplicator Based on Bit Re-arrangement

3.3.1 Proposal

This chapter proposes the 2nRRR duplicator, which is an extended version of the SN
duplicator in [1] and the RRR duplicator in Chapter 2 or in [39]. The SN duplicator in
[1] is composed of a single FF. Adding one more FF and re-arranging input bits makes
the RRR duplicator in Chapter 2 or in [39]. By extending this scheme, the 2n RRR
duplicator shown in Figure 3.2(a) is obtained as follows: While the RRR duplicator is
composed of one random bit stream and two FFs, the 2nRRR duplicator is composed
of n random bit streams and 2n FFs. By adding FFs, the 2nRRR duplicator can further
re-arrange the input SNs. The RUm’s in Figure 3.2(a) are the m-th (0 ≤ m ≤ 2n − 1)

38CHAPTER 3. SCALABLE SN DUPLICATORS FOR ACCURACY-FLEXIBLE DESIGN

 RU

 RU

 RU

FF

CMP

FF

FF
FF

(a) (b)

(c) (d)

2! − 1

2! − 1

1 1

0

0
…

…
𝐼𝑛 𝑂𝑢𝑡

𝒓 𝑛 bits

(a)

 RU

 RU

 RU

FF

CMP

FF

FF
FF

(a) (b)

(c) (d)

1

0

𝐼𝑛
𝑂𝑢𝑡′

𝒓

𝑚

𝑚

𝑛 bits

1 bit

(b)

=

1 0 ⋯ 1 ⋯ 0 0
0 1 ⋯ 1 ⋯ 1 1

⋮ ⋮ ⋱ ⋮ ⋱ ⋮ ⋮

1 1 ⋯ 0 ⋯ 1 0

|𝐼𝑛| bits

𝑛
bits𝒓

𝒓!

(c)

Figure 3.2: 2nRRR duplicator. (a) Overall model. (b) m-th register unit RUm.
(c) n-bit wide |In|-bit long random bit stream r.

register units (Figure 3.2(b)). Let r be the n-bit width |In|-bit long random bit stream
and let ri (0 ≤ ri ≤ 2n − 1) be an i-th n-bit width random bit stream as in Figure 3.2(c).
CMPm in Figure 3.2(b) is a comparator which outputs 1 when ri is equal to m.

3.3.2 Characteristic

Let Ini be the i-th bit of the input SN In. Let cm,i be the output of the comparator CMPm

of the m-th register unit RUm when Ini is input. When the i-th bit Outi of the output
SN Out is calculated, the 0/1 function Fm

j,i indicates whether In j is kept in FFm until Ini

comes or not. Fm
j,i becomes 1 if In j is actually stored in FFm and becomes 0 if another

3.3. IMPROVED SN DUPLICATOR BASED ON BIT RE-ARRANGEMENT 39

bit of In is stored in FFm. Fm
j,i becomes:

Fm
j,i = cm,j ×

i−1∏
k= j+1

(1 − cm,k). (3.1)

The output Outi of the 2nRRR duplicator becomes:

Outi =
2n−1∑
m=0

(cm,i × Rm

i−1∏
k=0

(1 − cm,k))

+

2n−1∑
m=0

(cm,i ×
i−1∑
j=1

(In j × Fm
j,i)). (3.2)

Here, R0, R1, . . . , R2n−1 are the initial bits of FF0, FF1, . . . , FF2n−1, respectively. If all
the bits composing the n-bit random bit stream ri become 0 and 1 in the same possibility
of 1/2, the expected value E(cm,i) of cm,i becomes:

E(cm,i) = 1/2n, (3.3)

regardless of m and i. Therefore, when i is large enough, the effect of initial bits can be
ignored and Equation (3.2) becomes:

Outi =
2n−1∑
m=0

(cm,i ×
i−1∑
j=1

(In j × Fm
j,i)). (3.4)

The expected value E(Outi) of the output Outi becomes:

E(Outi) = 1/2n
i−1∑
j=1

((1 − 1/2n) j−1E(Ini− j)) ≈ PIn = VIn. (3.5)

Here, E(Ini− j) is the expected value of Ini− j and i is sufficiently large. Thus, the 2nRRR
duplicator also satisfies Condition 1.

The m-th register unit RUm of the 2nRRR duplicator outputs the bit stored in FFm and
stores the input bit into FFm. Therefore, all the bits stored in the FFs except the ones still
remaining in the FFs are output. Hence, the maximum duplicating error becomes 2n/|In|,
meaning that the longer the input SN is, the smaller the duplicating error becomes.

The 2nRRR duplicator has a higher possibility satisfying Condition 2, compared with
the RRR duplicator. This is because: Assuming that the two DUP’s of Figure 3.1(b)
are implemented by the 2nRRR duplicator, the bit delays of the two DUP’s is evenly
distributed and the possibility of becoming the same is low since the 2nRRR duplicator
includes 2n FFs.

40CHAPTER 3. SCALABLE SN DUPLICATORS FOR ACCURACY-FLEXIBLE DESIGN

Table 3.1: Hardware costs of the 2nRRR duplicators.

SN Duplicator 1RRR 2RRR 4RRR 8RRR

Area [NANDs] 5.75 19 40.5 86.5
Delay [ns] 0.49 0.49 0.49 0.49

3.3.3 Instances of the 2nRRR and Their Hardware Costs

By setting n to be 0 or 1, the 1RRR and 2RRR duplicators are equivalent to the SN
duplicator in [1] and the RRR duplicator in Chapter 2 or in [39], respectively. This
chapter focuses on the 4RRR and 8RRR duplicators among with these conventional
ones.

Logic synthesis using Verilog[35] has been performed to evaluate the SN duplicators’
hardware costs in NAND gates. Table 3.1 summarizes the results, when Design Compiler
version D-2010.03-SP5[36] and STARC 90 nm library[37] are used. From these results
and the measurements of each element, the area becomes proportional to 2n and the
critical path delay becomes constant.

Note that, to implement 2nRRR duplicators, a new “LFSR” is not necessarily required
for generation of random bit streams. Instead, an LFSR can be reused and considered
to generate another random bit stream [38]. [38] shows that one SN generator can share
LFSR with other SN generators. In this case, each bit in an LFSR represent an SN with
value of 1/2. Based on this idea, an 8-bit LFSR can be shared 7 more times (after its
first SN generation) and a 12-bit LFSR can be shared 11 more times. (Here, we focus on
8 and 12-bit LFSR based on the conditions of the experimental evaluations in the next
section.) A new “LFSR” is only required when more than 7 (or 11) r’s are required in a
circuit.

For comparison, we performed logic synthesis of an SN generator and an SN to
binary converter. Both of them are essential for all SC-based circuits. An SN generator
is composed of an LFSR and a comparator, and an SN to binary converter is composed of
a counter. Table 3.2 shows the areas of the two essentials. “Total” shows the total area of
an SN generator (an LFSR and a comparator) with optimization. From these results, SN
duplicators have relatively small circuit areas compared with these two essentials. Note
that, a new “LFSR” is required for an SN duplicator when more than 7 (or 11) r’s are
required in a circuit, as described in the former paragraph. For further discussions, the
areas of the whole circuit of the benchmark circuits shown in Section 3.4.2 are evaluated
in Section 3.5.4.

3.4. EXPERIMENTAL EVALUATIONS 41

Table 3.2: Areas of SN generators and SN to binary converters.

Circuit
SN generator SN to binary converter

LFSR Comparator Total Counter

255 bit SN (8 bit LFSR) 133 166 175 258
4,095 bit SN (12 bit LFSR) 298 211 473 501
* The unit of this table is [NANDs].

Table 3.3: Conditions of accuracy comparison.

Language for simulation Python 3.6.3[34]
Lengths of input SNs |In| = 255, 4,095
Values of input SNs VIn = 0.0, 0.1, . . . , 1.0
SN Duplicators DUP = 1RRR [1], 2RRR, 4RRR, 8RRR
Functions f (x) = x2, x8, sin′ x, cos′ x, tanh′ x, exp′(−x2)
Number of trials 1,000
Performance indicators MAE, MSE and maximum error

3.4 Experimental Evaluations

3.4.1 Setup

In this section, the SN duplicators are implemented into arithmetic circuits and their out-
put SNs’ values are compared with theoretical values. The conditions for this experiment
are summarized in Table 3.3. All the SNs are 255 (4,095)-bit long and are generated
by an 8 (12)-bit LFSR. The functions with prime (′) are the approximated functions.
The simulation for each value and SN duplicator is done 1,000 times to calculate each
performance indicator.

3.4.2 Benchmark Circuits

As benchmark circuits, the following six circuits are used: (1) the squarer as shown in
Figure 2.4(b); (2) the eighth power unit; (3) the 7th order approximated sine function
denoted by sin′ x; (4) the 8th order approximated cosine function denoted by cos′ x; (5)
the 9th order approximated hyperbolic tangent function denoted by tanh′ x; and (6) the
10th order approximated exponential function denoted by exp′(−x2). The approximated

42CHAPTER 3. SCALABLE SN DUPLICATORS FOR ACCURACY-FLEXIBLE DESIGN

circuits are constructed based on the Horner’s method [33, 1]. Other than the squarer in
Figure 2.4, the arithmetic circuits (2)–(6) are constructed as follows:

(2) The x8 function is expressed by:

x8 = ((x2)2)2. (3.6)

Its circuit is shown in Figure 2.6 and includes dependent re-convergence paths.

(3) The sin′ x function is expressed by:

sin x ≈ x − x3

3!
+

x5

5!
− x7

7!

= x
(
1 − x2

6

(
1 − x2

20

(
1 − x2

42

)))
= sin′ x. (3.7)

Its circuit is shown in Figure 2.10(a) and includes dependent re-convergence paths.

(4) The cos′ x function is expressed by:

cos x ≈ 1 − x2

2!
+

x4

4!
− x6

6!
+

x8

8!

= 1 − x2

2

(
1 − x2

12

(
1 − x2

30

(
1 − x2

56

)))
= cos′ x. (3.8)

Its circuit is shown in Figure 2.10(b) and includes dependent re-convergence paths.

(5) The tanh′ x function is expressed by:

tanh x ≈ x − x3

3
+

2x5

15
− 17x7

315
+

62x9

2935

= x
(
1 − x2

3

(
1 − 2x2

5

(
1 − 17x2

42

(
1 − 62x2

153

))))
= tanh′ x. (3.9)

Its circuit is shown in Figure 3.3(a) and includes dependent re-convergence paths.

(6) The exp′(−x2) function is implemented by combining the squarer and the exp′(−x)
function expressed by:

exp(−x) ≈ 1 − x +
x2

2!
− x3

3!
+

x4

4!
− x5

5!
= 1 − x

(
1 − x

2

(
1 − x

3

(
1 − x

4

(
1 − x

5

))))
= exp′(−x). (3.10)

3.4. EXPERIMENTAL EVALUATIONS 43

(a)

(b)

DUP

D

D

DUP DUP

DUP

DUP

𝑥
tanh′ 𝑥

1/362/153 2/517/42

𝑥
𝑥! exp′(−𝑥!)

1/5 1/21/31/4

D D DDUP DUP DUP DUP

DDUP

Figure 3.3: Circuits of functions using SN duplicators.
(a) tanh′ x (b) exp′(−x2)

Its circuit is shown in Figure 3.3(b) and includes dependent re-convergence paths.

3.4.3 Performance Indicators

The mean absolute errors (MAE), the mean square errors (MSE) and the maximum
errors are used as performance indicators in this evaluation.

(a) MAE:
The MAE of function f is denoted by:

M AE(f , x) = 1
1,000

1,000∑
i=1

| ftheory(x) − factual(x, i)| (3.11)

Here, 1,000 is the number of trials, ftheory(x) is the theoretical value when the
input value is x, and factual(x, i) is the actual output value of the i-th trial when
each SN duplicator in Figures 2.5, 2.9, 3.2 is used.

(b) MSE:
The MSE of function f is denoted by:

MSE(f , x) = 1
1,000

1,000∑
i=1

(ftheory(x) − factual(x, i))2. (3.12)

44CHAPTER 3. SCALABLE SN DUPLICATORS FOR ACCURACY-FLEXIBLE DESIGN

(c) Maximum error:
The maximum error of function f is denoted by:

M AX(f , x) = max
i∈{1,...,1,000}

| ftheory(x) − factual(x, i)|. (3.13)

3.4.4 Results

The results of this experiment are summarized in Table 3.4. The upper value in each cell
of the table is the actual value of each performance indicator and the lower value is the
value compared to that of 1RRR’s. When the length of the input SN is 255, the 2RRR
has the smallest or the second smallest values in all the cases. When the length of the
input SN is 4,095, the 4RRR generally has smaller errors compared to the 2RRR, except
for the maximum errors. The 8RRR generally has larger errors compared with the 2RRR
or the 4RRR. The errors of these results are caused by the errors due to initial bits and
the errors due to re-convergence paths as described in the next section.

3.5 Discussions

3.5.1 Errors due to Initial Bits

Here, “initial bits” are defined as bits stored in 2n FFs in a 2nRRR duplicator before
duplication and a “duplication error” is defined as the absolute difference between the
value of input SN In and that of output SN Out of an SN duplicator, i.e., |VIn−VOut |. Note
that, erroneous bits, i.e., |VIn −VOut | × |In| is equal to the difference between the numbers
of 1’s (or 0’s) stored in FFs before and after duplication. The “maximum duplication
error,” which is the maximum error of all possible input SNs and random bit streams,
of a 2nRRR duplicator is 2n/|In|. Therefore, in a circuit with ND 2nRRR duplicators,
the duplication error of the whole circuit becomes up to 2n/|In| × ND. However, the
duplication error will be maximized only when the 2nRRR duplicator meets the following
two conditions:

1. All the initial bits stored in FFs before duplication are the same (0’s or 1’s).

2. The bits remaining in the FFs after duplication are all 1’s or 0’s (different from the
bits in (1)).

Further, since the maximum error is the inverse proportion to |In|, the error will converge
to zero when |In| is sufficiently large. The above discussions confirm that the proposed
2nRRR duplicators satisfy Condition 1 when |In| is sufficiently large compared with 2n.

3.5. DISCUSSIONS 45

Table 3.4: Errors of circuits using SN duplicators.

Length of input 255 bit 4095 bit
Duplicator 1RRR 2RRR 4RRR 8RRR 1RRR 2RRR 4RRR 8RRR

MAE

x2 7.61 × 10−3 7.69 × 10−3 9.97 × 10−3 1.39 × 10−2 2.20 × 10−3 2.20 × 10−3 2.61 × 10−3 3.25 × 10−3

(100%) (101%) (131%) (183%) (100%) (100%) (119%) (148%)

x8 8.23 × 10−2 3.13 × 10−2 4.03 × 10−2 8.89 × 10−2 7.70 × 10−2 1.62 × 10−2 1.23 × 10−2 1.46 × 10−2

(100%) (38%) (49%) (108%) (100%) (21%) (16%) (19%)

sin′ x
1.19 × 10−2 7.28 × 10−3 7.63 × 10−3 1.17 × 10−2 9.39 × 10−3 2.63 × 10−3 2.54 × 10−3 3.66 × 10−3

(100%) (61%) (64%) (98%) (100%) (28%) (27%) (39%)

cos′ x
1.01 × 10−2 9.29 × 10−3 1.09 × 10−2 1.39 × 10−2 2.66 × 10−3 2.16 × 10−3 2.74 × 10−3 3.01 × 10−3

(100%) (92%) (108%) (138%) (100%) (81%) (103%) (113%)

tanh′ x
1.06 × 10−2 8.30 × 10−3 7.80 × 10−3 8.59 × 10−3 8.51 × 10−3 5.81 × 10−3 2.33 × 10−3 5.02 × 10−3

(100%) (78%) (74%) (81%) (100%) (68%) (28%) (59%)

exp′(−x2)
1.75 × 10−2 8.59 × 10−3 6.67 × 10−3 1.74 × 10−2 1.31 × 10−2 3.01 × 10−3 2.48 × 10−3 6.28 × 10−3

(100%) (49%) (38%) (99%) (100%) (23%) (19%) (48%)

Average
2.33 × 10−2 1.21 × 10−2 1.39 × 10−2 2.57 × 10−2 1.88 × 10−2 5.33 × 10−3 4.17 × 10−3 5.98 × 10−3

(100%) (52%) (59%) (110%) (100%) (28%) (22%) (32%)

MSE

x2 1.18 × 10−4 1.22 × 10−4 2.19 × 10−4 3.41 × 10−4 1.22 × 10−5 1.20 × 10−5 1.50 × 10−5 2.01 × 10−5

(100%) (102%) (186%) (289%) (100%) (98%) (123%) (165%)

x8 1.50 × 10−2 2.66 × 10−3 6.62 × 10−3 1.57 × 10−2 1.38 × 10−2 2.56 × 10−3 1.80 × 10−3 2.40 × 10−3

(100%) (17%) (44%) (105%) (100%) (19%) (13%) (17%)

sin′ x
2.90 × 10−4 9.01 × 10−5 9.57 × 10−5 1.80 × 10−4 2.23 × 10−4 2.60 × 10−5 2.45 × 10−5 5.13 × 10−5

(100%) (31%) (33%) (62%) (100%) (11%) (11%) (23%)

cos′ x
2.08 × 10−4 1.67 × 10−4 2.35 × 10−4 3.37 × 10−4 1.79 × 10−5 1.22 × 10−5 1.75 × 10−5 2.33 × 10−5

(100%) (80%) (113%) (162%) (100%) (68%) (98%) (130%)

tanh′ x
2.29 × 10−4 1.41 × 10−4 1.41 × 10−4 2.11 × 10−4 1.83 × 10−4 9.99 × 10−5 4.23 × 10−5 1.13 × 10−4

(100%) (62%) (62%) (92%) (100%) (55%) (23%) (62%)

exp′(−x2)
6.27 × 10−4 2.29 × 10−4 1.94 × 10−4 3.32 × 10−4 4.32 × 10−4 2.69 × 10−5 1.30 × 10−5 6.48 × 10−5

(100%) (36%) (31%) (53%) (100%) (6%) (3%) (15%)

Average
2.55 × 10−3 5.52 × 10−4 1.25 × 10−3 2.86 × 10−3 2.64 × 10−3 4.73 × 10−4 3.19 × 10−4 4.45 × 10−4

(100%) (22%) (49%) (112%) (100%) (18%) (12%) (17%)

MAX

x2 1.03 × 10−3 1.38 × 10−3 2.19 × 10−3 3.66 × 10−3 7.30 × 10−5 7.95 × 10−5 1.04 × 10−4 1.25 × 10−4

(100%) (133%) (212%) (354%) (100%) (109%) (142%) (171%)

x8 1.21 × 10−1 7.35 × 10−2 1.10 × 10−1 1.59 × 10−1 8.97 × 10−2 4.13 × 10−2 5.29 × 10−2 8.88 × 10−2

(100%) (61%) (91%) (131%) (100%) (46%) (59%) (99%)

sin′ x
3.94 × 10−2 3.19 × 10−2 5.08 × 10−2 6.74 × 10−2 1.96 × 10−2 1.15 × 10−2 1.27 × 10−2 2.18 × 10−2

(100%) (81%) (129%) (171%) (100%) (59%) (65%) (111%)

cos′ x
3.97 × 10−2 4.26 × 10−2 6.27 × 10−2 7.98 × 10−2 1.18 × 10−2 1.07 × 10−2 1.51 × 10−2 1.79 × 10−2

(100%) (107%) (158%) (201%) (100%) (91%) (128%) (152%)

tanh′ x
3.61 × 10−2 3.60 × 10−2 3.75 × 10−2 5.52 × 10−2 2.89 × 10−2 2.52 × 10−2 1.13 × 10−2 2.63 × 10−2

(100%) (100%) (104%) (153%) (100%) (87%) (39%) (91%)

exp′(−x2)
9.88 × 10−2 5.73 × 10−2 5.93 × 10−2 9.09 × 10−2 6.82 × 10−2 2.52 × 10−2 2.66 × 10−2 5.53 × 10−2

(100%) (58%) (60%) (92%) (100%) (37%) (39%) (81%)

Average
5.60 × 10−2 4.05 × 10−2 5.38 × 10−2 7.59 × 10−2 3.64 × 10−2 1.90 × 10−2 1.98 × 10−2 3.50 × 10−2

(100%) (72%) (96%) (136%) (100%) (52%) (54%) (96%)
* Values in parenthesis show relative values compared with 1RRR duplicator.

46CHAPTER 3. SCALABLE SN DUPLICATORS FOR ACCURACY-FLEXIBLE DESIGN

DUP DUP𝐼𝑛 𝑂𝑢𝑡

𝑢! 𝑢!

𝐼𝑛(𝑢!) 𝑂𝑢𝑡(𝑢!)
𝐼𝑛(𝑢") 𝑂𝑢𝑡(𝑢")Logic

Gates
Logic
Gates

Logic
Gates

Figure 3.4: Signal path p consisting of two SN duplicators us and ut .

3.5.2 Errors due to Re-convergence Paths

This section discusses the errors due to re-convergence paths. Here, we assume that
long enough time has passed and none of the initial bits are used in calculation of the
output. Firstly, we define a path delay as follows: As in Figure 3.4, let p be a signal path
including several SN duplicators in it. For each path, circuits except the SN duplicators
are ignored. The overall input and output among the signal path p are denoted by In and
Out, respectively. Let U(p) be a set of SN duplicators in p. In the case of Figure 3.4,
U(p) = {us, ut}. The input and output of each SN duplicator u ∈ U(p) are denoted by
In(u) and Out(u), respectively.

Here, we consider that the i-th bit Outi is output from the path p. Let R be the set
of all r’s. Assume that the y(p,u, i,R)-th bit output Outy(p,u,i,R)(u) of an SN duplicator
u ∈ U(p), and the x(p,u, i,R)-th bit input Inx(p,u,i,R)(u) (x(p,u, i,R) < y(p,u, i,R)) are
used when calculating Outi. The value of (y(p,u, i,R) − x(p,u, i,R)) is called the delay
of the SN duplicator u and denoted by d(p,u, i,R) (> 0), where

Outy(p,u,i,R)(u) = Inx(p,u,i,R)(u) = Iny(p,u,i,R)−d(p,u,i,R)(u). (3.14)

Then the path delay delay(p, i,R) of the path p when the i-th bit Outi is output from p
is defined by:

delay(p, i,R) =
∑

u∈U(p)
d(p,u, i,R). (3.15)

If the target circuit C has several signal paths and their path delay is different from
each other at bit output timing i, every signal path is no longer co-related to any other
signal paths. Therefore, errors due to dependent and independent re-convergence paths
can be minimized. Note that, if an SN duplicator satisfies Condition 2, all the signal
paths in a target circuit are not co-related to any other signal paths. Here, this chapter
discusses on the delays of the signal paths.

The proposed 2nRRR duplicators satisfy the following powerful theorem:

Theorem 1. Let C be a single-input and single-output circuit with a 2nRRR duplicator
for each fan-out and m be the total number of 2nRRR duplicators in C. In this case, the

3.5. DISCUSSIONS 47

DUP
DUP

𝐼𝑛

𝑂𝑢𝑡

𝑝!𝑝"
𝑝#

𝑝$
𝑢! 𝑢"

Figure 3.5: Example of all re-convergence paths in a circuit with two SN duplicators.

probability that any two paths of the circuit C having the same path delays converges to
zero, if n is sufficiently large.

Proof. Assume that the circuit C has a 2nRRR duplicator for each fan-out and let m be
the total number of 2nRRR duplicators. The m 2nRRR duplicators are named u0, u1,
. . ., um−1, so that the indices are aligned in descending order in every path. Each path
can be said to include or exclude an SN duplicator u which can be any of the m 2nRRR
duplicators. Therefore, circuit C has a maximum of 2m signal paths, since each fan-outs
have an SN duplicator and no paths contain the exact same set of SN duplicators. The
2m paths are named p0, p1, . . ., p2m−1 so that all of them satisfy the following: For path
p j (0 ≤ j ≤ 2m − 1), if j is represented by binary digits and the k-th bit (counting from
least significant bit, 0 ≤ k ≤ m − 1) is 1, the path p j includes the SN duplicator uk . Let
U(p j) be the set of SN duplicators included in the path p j .

For example, Figure 3.5 shows a circuit of m = 2. In this case, there are four paths,
p0, p1, p2, p3. The path p0 includes no SN duplicators, while the paths p1 and p2

include the SN duplicators u0 and u1, respectively, and the path p3 includes both the
SN duplicators u0 and u1. Also as an example, Table 3.5 shows the case of m = 3. In
this case, the circuit C has a maximum of 23 = 8 signal paths. Here, U(p0) = ∅ and
U(p5) = {u2,u0}.

Let P be the set of all possible signal paths that a circuit with m 2nRRR duplicators
can have, i.e., P = {p0, p1, . . ., p2m−1}. Here, note that all circuits with m 2nRRR
duplicators do not necessarily have all the paths included in P. However, all the paths
in any circuit with m 2nRRR duplicators are included in P. For example, the circuit in
Figure 3.1(a) only has 3 paths, but based on the definition above, paths path1, path2

and path3 in Figure 3.1(a) are named p0, p2, p3 ∈ P, respectively. Therefore, if this
theorem can proved for all paths in P, same can be applied to all circuits with m 2nRRR
duplicators, meaning that Theorem 1 holds in general.

Now, when the i-th bit Outi is output from the paths, for any ps, pt ∈ P, we prove
that delay(ps, i,R) , delay(pt, i,R) holds asymptotically if ps , pt and n is sufficiently

48CHAPTER 3. SCALABLE SN DUPLICATORS FOR ACCURACY-FLEXIBLE DESIGN

Table 3.5: Correspondence table of path p j and SN duplicator uk (m = 3).

Signal SN Duplicators
paths u2 u1 u0

p0 – – –
p1 – – ✓

p2 – ✓ –
p3 – ✓ ✓

p4 ✓ – –
p5 ✓ – ✓

p6 ✓ ✓ –
p7 ✓ ✓ ✓

large, by mathematical induction.
Initial Step. When m = 1, P is {p0, p1}. Since delay(p0, i,R) = 0 and delay(p1, i,R) =

d(p1,u0, i,R) > 0, these two paths never have the same path delay. Therefore, when
m = 1, delay(p0, i,R) , delay(p1, i,R).

Inductive Step. The inductive assumption is: When m = k, delay(ps, i,R) ,
delay(pt, i,R) holds asymptotically if ps , pt (0 ≤ s, t < 2k) and n is sufficiently large.
In the inductive step, when m = k + 1, we prove that:

delay(ps, i,R) , delay(pt, i,R) (3.16)

holds asymptotically, if ps , pt (0 ≤ s, t < 2k+1) and n is sufficiently large.
For example, when k = 2, we assume that delay(p, i,R) differs asymptotically for

each p ∈ {p0, p1, p2, p3} when n is sufficiently large. In the case of Table 3.5, we
assume that the signal paths in its upper half have the different delays. Then we prove
that delay(p, i,R) differs asymptotically for each p ∈ {p0, . . ., p7} when n is sufficiently
large.
(a) When s < 2k and t < 2k :
From the inductive assumption, delay(ps, i,R) , delay(pt, i,R) holds asymptotically
when n is sufficiently large.
(b) When s ≥ 2k and t < 2k , or, s < 2k and t ≥ 2k :
Without loss of generality, we assume s ≥ 2k and t < 2k . From Equation (3.15), the
following equation holds when 2k ≤ j < 2k+1:

delay(p j, i,R) = delay(p j−2k , i,R) + d(p j,uk, i,R). (3.17)

3.5. DISCUSSIONS 49

For example, when k = 2, delay(p5, i,R) = delay(p1, i,R)+d(p5,u3, i,R). By substitut-
ing Equation (3.16) for Equation (3.17), we prove that the following holds asymptotically
when n is sufficiently large:

delay(pt, i,R) , delay(ps, i,R)
= delay(ps−2k , i,R) + d(ps,uk, i,R), (3.18)

which can be re-written by:

d(ps,uk, i,R) , delay(pt, i,R) − delay(ps−2k , i,R). (3.19)

Here, we prove that Equation (3.19) holds asymptotically when n is sufficiently large. As
similarly as calculating coefficients of Equation (3.5), the probability Pd of d(ps,uk, i,R)
being a particular value e (e ≥ 1) becomes:

Pd =
1
N

(
1 − 1

N

)e−1
, (3.20)

regardless of ps and uk , where N = 2n and the initial bits can be ignored.
If the right side of Equation (3.19) is zero or negative, Equation (3.19) holds since

d(ps,uk, i,R) > 0. If the right side of Equation (3.19) is positive, the possibility Pnb that
d(ps,uk, i,R) = delay(pt, i,R) − delay(ps−2k , i,R), i.e., Equation (3.19) does not hold,
becomes:

Pnb =
1
N

(
1 − 1

N

)delay(pt,i,R)−delay(p
s−2k ,i,R)−1

. (3.21)

When N = 2n is sufficiently large, Pnb approaches:

lim
N→∞

Pnb = lim
N→∞

1
N

(
1 − 1

N

)delay(pt,i,R)−delay(p
s−2k ,i,R)−1

= 0.

(3.22)

Based on the discussions above, Equation (3.19) holds asymptotically when n is suffi-
ciently large.
(c) When s ≥ 2k and t ≥ 2k :
By substituting Equation (3.16) for Equation (3.17), we prove that the following holds
asymptotically when n is sufficiently large:

delay(ps, i,R) , delay(pt, i,R)
delay(ps−2k , i,R) + d(ps,uk, i,R) , delay(pt−2k , i,R) + d(pt,uk, i,R),

(3.23)

50CHAPTER 3. SCALABLE SN DUPLICATORS FOR ACCURACY-FLEXIBLE DESIGN

which can be re-written by:

d(ps,uk, i,R) − d(pt,uk, i,R) , delay(pt−2k , i,R) − delay(ps−2k , i,R).
(3.24)

Here, we prove that Equation (3.24) holds asymptotically when n is sufficiently large.
Without loss of generality, we assume delay(pt−2k , i,R) − delay(ps−2k , i,R) = α > 0.
The possibility Pnc that Equation (3.24) does not hold can be calculated as follows: Let
delay be the value of d(pt,uk, i,R). Equation (3.24) will not hold when d(ps,uk, i,R) =
delay + α. The possibility Ps of d(ps,uk, i,R) being (delay + α) becomes:

Ps =
1
N

(
1 − 1

N

)delay+α−1
. (3.25)

The possibility Pt of d(pt,uk, i,R) being delay becomes:

Pt =
1
N

(
1 − 1

N

)delay−1
. (3.26)

Since delay can range from 1 to ∞, the possibility Pnc that Equation (3.24) does not
hold becomes:

Pnc =

∞∑
delay=1

(Ps × Pt)

=

∞∑
delay=1

(
1
N

(
1 − 1

N

)delay+α−1
× 1

N

(
1 − 1

N

)delay−1
)

=
1

2N − 1

(
1 − 1

N

)α
. (3.27)

When N = 2n is sufficiently large, Pnc approaches:

lim
N→∞

Pnc = lim
N→∞

1
2N − 1

(
1 − 1

N

)α
= 0. (3.28)

Based on the discussion above, Equation (3.24) holds asymptotically when n is suffi-
ciently large.
From (a)–(c), if n is sufficiently large, Equation (3.16) holds asymptotically, when
m = k + 1.

Conclusion. By the principle of mathematical induction, for any ps, pt ∈ P,
delay(ps, i,R) , delay(pt, i,R) holds asymptotically if ps , pt , when n is sufficiently
large, i.e., the paths of the circuit C asymptotically have the different path delays, if n is
sufficiently large. □

From Theorem 1, 2nRRR duplicators make all the signal paths in a target circuit
asymptotically have different delays when n is large enough. Hence, errors due to
re-convergence paths can be minimized.

3.6. CONCLUSIONS 51

3.5.3 Overall Errors

From Sections 3.5.1 and 3.5.2, errors in stochastic arithmetic circuits implemented by
SN duplicators can divided into errors due to initial bits and errors due to re-convergence
paths. When n of 2nRRR duplicators becomes larger, errors due to re-convergence paths
become smaller (see Section 3.5.2) while errors due to initial bits become larger (see
Section 3.5.1). Therefore, when the bit length of the input SNs become longer, errors
of the circuits using SN duplicators tends to become smaller by using larger 2nRRR
duplicators.

Since both errors cannot be evaluated quantitatively, it is impossible to decide which
2nRRR duplicator makes the whole circuit’s error smaller by calculation. However, from
the experimental evaluations in Table 3.4, the 2RRR duplicator tends to have the smallest
errors when the bit length is set to be 255 bits, and the 4RRR duplicator tends to have
the smallest errors when the bit length is set to be 4,095 bits. The 8RRR duplicator had
the smallest errors only for x8. If 2n is sufficiently large, only the errors due to initial
bits remains, i.e., the errors will be inverse proportional to the length of the input SN.
To estimate the errors of other functions and evaluate the best SN duplicator, experiment
for each circuit is required.

3.5.4 Circuit Areas of Benchmark Circuits

The circuit areas of benchmark circuits are shown in Table 3.6. The circuits implemented
by SN duplicators include an SN generator and an SN to binary converter. The circuits
implemented by binary computing are synthesised from the equations of benchmark
circuits as in Section 3.4.2, with the precision of 8 or 12 bit binaries (256 or 4096 steps).
The values in parenthesis shows the proportion of area of the SN duplicators (including
additional LFSRs if required) among the whole circuit size. The results show that if the
appropriate SN duplicator as in Section 3.5.3 (2RRR for 255 bit SNs and 4RRR for 4,095
bit SNs) is selected, the area overhead will become about one-third or less compared
with the whole circuit.

3.6 Conclusions

This chapter proposed an SN duplicator, 2nRRR. The proposed SN duplicator was proved
to flexibly reduce the errors depending on the required accuracy.

52CHAPTER 3. SCALABLE SN DUPLICATORS FOR ACCURACY-FLEXIBLE DESIGN

Ta
bl

e
3.

6:
A

re
as

of
ci

rc
ui

ts
us

in
g

SN
du

pl
ic

at
or

s.

Le
ng

th
of

in
pu

t
25

5
bi

t
4,

09
5

bi
t

SN
D

up
lic

at
or

1R
R

R
2R

R
R

4R
R

R
8R

R
R

B
in

ar
y

1R
R

R
2R

R
R

4R
R

R
8R

R
R

B
in

ar
y

x2
43

9.
75

45
3

47
4.

5
65

3.
5

22
39

98
0.

75
99

4
10

15
.5

10
61

.5
10

53
7

(1
.3

%
)

(4
.2

%
)

(8
.5

%
)

(3
4%

)
(–

)
(0

.5
9%

)
(1

.9
%

)
(4

.0
%

)
(8

.1
%

)
(–

)

x8
45

3.
25

49
3

69
0.

5
10

94
.5

67
17

99
4.

25
10

34
13

96
.5

18
32

.5
31

61
1

(3
.8

%
)

(1
2%

)
(3

7%
)

(6
0%

)
(–

)
(1

.7
%

)
(5

.5
%

)
(3

0%
)

(4
7%

)
(–

)

si
n′

x
46

1
64

7
86

6
13

16
16

28
5

10
02

10
55

14
39

19
21

74
68

9
(5

.0
%

)
(3

2%
)

(4
9%

)
(6

7%
)

(–
)

(2
.3

%
)

(7
.2

%
)

(3
2%

)
(4

9%
)

(–
)

co
s′

x
46

1
64

7
86

6
13

16
18

72
8

10
02

10
55

14
39

19
21

85
53

6
(5

.0
%

)
(3

2%
)

(4
9%

)
(6

7%
)

(–
)

(2
.3

%
)

(7
.2

%
)

(3
2%

)
(4

9%
)

(–
)

ta
nh

′ x
46

7.
75

66
7

90
7.

5
15

36
.5

20
96

7
10

08
.7

5
10

75
14

80
.5

23
06

.5
96

07
3

(6
.1

%
)

(3
4%

)
(5

2%
)

(7
1%

)
(–

)
(2

.9
%

)
(8

.8
%

)
(3

4%
)

(5
8%

)
(–

)

ex
p′
(−

x2)
46

7.
75

66
7

90
7.

5
15

36
.5

21
17

1
10

08
.7

5
10

75
14

80
.5

23
06

.5
96

38
3

(6
.1

%
)

(3
4%

)
(5

2%
)

(7
1%

)
(–

)
(2

.9
%

)
(8

.8
%

)
(3

4%
)

(5
8%

)
(–

)
*

Th
e

un
it

of
th

is
ta

bl
e

is
[N

A
N

D
s]

.V
al

ue
si

n
pa

re
nt

he
si

ss
ho

w
pr

op
or

tio
na

la
re

as
of

SN
du

pl
ic

at
or

s.

Chapter 4

Hardware Implementation of Step
Function in Stochastic Computing and
Its Applications1

4.1 Introduction

4.1.1 Backgrounds

With the rise of neural network and image processing, implementation of activation
functions are becoming popular. However, steep functions and discontinuous functions
are examples of arithmetic functions that are difficult to implement in SC due to the
nature of SNs. Of the activation functions, the Rectified Linear Unit (ReLU) function,
the step function, and their composite functions appear as steep functions and discon-
tinuous functions. Implementation of steep functions and discontinuous functions is
indispensable for the practical application of SC. To solve the problems of the conven-
tional methods, this chapter firstly proposes hardware implementation of step function
using SNs. The proposing circuit of utilizes flip-flops and an adder to perform as step
function uniquely calculating the stored bits in the flip-flops. This chapter confirms
that the proposed circuit behaves as a step function through experimental evaluations.
Also as an application, steep functions or discontinuous functions can be realized by
applying the discontinuity of the step function. As a steep function, this chapter also
proposes hardware implementation of absolute function and discontinuous function, by
synthesizing an arbitrary function as a discontinuous function.

1Technical contents in this chapter have been presented in the publications ⟨10⟩ and ⟨12⟩.

53

54 CHAPTER 4. STEP FUNCTION AND ITS APPLICATIONS

4.1.2 Proposal

To solve the problems of the conventional methods, this chapter firstly proposes hardware
implementation of step function using SNs. The proposing circuit of utilizes flip-flops
and an adder to perform as step function uniquely calculating the stored bits in the flip-
flops. This chapter confirms that the proposed circuit behaves as a step function through
experimental evaluations. Also as an application, steep functions or discontinuous
functions can be realized by applying the discontinuity of the step function. As a steep
function, this chapter also proposes hardware implementation of absolute function and
discontinuous function, by synthesizing an arbitrary function as a discontinuous function.
The calculation accuracy is evaluated for the composite function of the implemented
absolute value function and trigonometric function.

4.1.3 Contributions

The contributions of this chapter are as follows:

1. This chapter proposes hardware implementation of step function in SC.

2. This chapter theoretically proves that the above circuit converges to step function
by adding additional gates.

3. This chapter proposes hardware implementations of absolute function and discon-
tinuous function using the circuit of step function.

4. This chapter confirms that the circuits of step function, absolute function, and
discontinuous function actually perform as target function through experimental
evaluations.

4.1.4 Organization

The rest of this chapter is organized as follows: Section 4.2 introduces related works,
especially ones related to step function. Section 4.3 proposes a hardware implementation
of step function and discusses its characteristics. Section 4.4 proposes a hardware im-
plementation of absolute function and discusses its characteristics. Section 4.5 proposes
a hardware implementation of discontinuous function and discusses its characteristics.
Section 4.6 demonstrates the effectiveness of the three proposed circuits through exper-
imental evaluations. Section 4.7 gives several concluding remarks.

4.2. RELATED WORKS 55

𝑎: 00000011 (𝑃!=0.25)

𝑏: 01010000 (𝑃"=0.25)
𝑐: 01010011 (𝑃#=0.5)

Figure 4.1: Example of SN addition using an OR gate.

4.2 Related Works

4.2.1 Additional Arithmetic Operation Circuits Using SNs

As discussed in Chapter 2, in uni-polar expressed SC, multiplication, weighted addition,
and inversion are implemented by an AND gate, a MUX circuit and a NOT gate,
respectively. Here, addition in uni-polar expressed SC and multiplication in bi-polar SC
are introduced.

An OR (logical sum) gate is used for addition. Let a and b be the two input SNs and
c be the output SN of an OR gate. Vc is represented by:

Vc = Pc = Pa + Pb − Pa × Pb = Va + Vb − VaVb. (4.1)

In Figure 4.1, by adding a = 00000011 and b = 01010000 (Va = Vb = 0.25), c =
01010011 (Vc = 0.5) is obtained by performing OR operation between them. Note that,
an OR operation will correctly perform as an adder, only when Va × Vb is small enough.

On the other hand, in bi-polar expressed SC, multiplication, weighted addition, and
inversion are implemented by an XNOR gate, a MUX circuit and a NOT gate, respectively
[6]. In particular, an XNOR (exclusive non-disjunction) gate is used for addition. Let a
and b be the two input SNs and c be the output SN of an XNOR gate. Vc is represented
by:

Vc = 2 × Pc − 1

= 2 × {1 − (Pa × (1 − Pb)
+Pb × (1 − Pa))} − 1

= (2 × Pa − 1) × (2 × Pb − 1)
= Va × Vb. (4.2)

For example, in Figure 4.2, by multiplying a = 00111111 (Va = 0.5) and b =
01010101 (Vb = 0), c = 10010101 (Vc = 0) is obtained by performing XNOR oper-
ation between them.

56 CHAPTER 4. STEP FUNCTION AND ITS APPLICATIONS

𝑎: 00111111 (𝑃!=0.75)

𝑏: 01010101 (𝑃"=0.5)
𝑐: 10010101 (𝑃#=0.5)

Figure 4.2: Example of bi-polar SN multiplication using an XNOR gate.

4.2.2 Conventional Implementation of Activation Functions

As functions related to step function, this section introduces conventional implementation
of activation functions.

In [11], analog random noise is generated and used to express step function, Sigmoid
function, and ReLU function, etc. This method generates SNs from the value of the
weighted sums in neurons, but has a problem that SNs cannot be input. Further, additional
circuits such as a random noise generation circuit and a digital-to-analog conversion
circuit are required.

In [9], neurons that introduce SC-based tanh functions and ReLU functions are
designed and optimized. Similar to [11], this method also generates SN from the value
of the weighted sum in the neuron, and cannot take SNs as inputs. Step function is not
been discussed in this reference.

In [10], a Sigmoid function is implemented in a small circuit area in exchange for the
accuracy. Also, Chapter 3, the tanh function is implemented with high accuracy using
the SN duplicator. However, the problem with these methods is that only functions that
are differentiable can be implemented. Since the step function is discontinuous at x = 0,
that is, it cannot be differentiated, it cannot be implemented by these methods.

Thus, no SC circuit that expresses the step function alone has been proposed so far.

4.2.3 Conversion of SNs to Binary Numbers

To convert an SN x to a binary number, the number of 1’s Sx in x, in Equation (2.1), is
required. If x is generated by an m-bit LFSR, its bit length |x | becomes 2m−1. Figure 4.3
is the circuit counting the number of 1’s in x with bit length |x | = 2m − 1. In this circuit,
“m-bit counter” counts the number of 1’s Sx in x out of 2m − 1 bits. By using this Sx and
2m − 1, the value Vx of x can be obtained.

4.3. HARDWARE IMPLEMENTATION OF STEP FUNCTION IN SC 57

𝑚-bit counter
𝑚-bit

1 0 1 1 0 1

𝑚-bit

… 0

𝑆!

𝑥

(2! − 1)-
bit long

Figure 4.3: Circuit converting SNs to binary numbers.

4.3 Hardware Implementation of Step Function in SC

To solve the problem of hardware implementation of the conventional activation func-
tion shown in Section 4.2.2, this chapter proposes a step function circuit based on the
circuit that converts SN to binary number shown in Section 4.2.3. We also discuss the
input/output relationship, circuit hardware cost, and technical advantages.

4.3.1 Proposal

A step function outputs 0 or 1 depending on its input. Here, we consider implementing
a step function that uses SN as input and output. For example, when 1/2 is set as the
threshold value, the step function is f (x) becomes as follows:

f (x) =
{

1, (x ≥ 1/2)
0, (x < 1/2).

(4.3)

To obtain an accurate output, comparing the output with the threshold value after the
binary conversion introduced in Section 4.2.3 is required For example, if 1/2 is set as the
threshold value, the MSB (Most Significant Bit, colored in red) value of the counter in
the Figure 4.3 should be output |x | times after counting all the bits in SN x. However,
bit-by-bit operations, which is an advantage of SC becomes impossible with such an
implementation. Therefore, this section proposes a step function circuit using SN.

The proposing circuit of step function is shown in Figure 4.4. This circuit substituted
FFs for the counters in Figure 4.3. The circuit in Figure 4.4 keeps the last 2n − 1 from
the bit stream of the input SN x, counts the number of 1’s in them, and output the MSB
as output SN y.

58 CHAPTER 4. STEP FUNCTION AND ITS APPLICATIONS

𝑛-bit

1 0 1 1 0 1 … 0

𝑥

2! − 1 FFs

FF FF FF FF FF⋯

𝑦

＋

Figure 4.4: Hardware implementation of step function in SC.

Here, we assume that all the bits stored in FFs are the bits of the input SN x. A bit
of output SN y becomes 1 when the majority of the bits stored in N FFs is 1. Therefore,
assuming that the appearance rate of 1’s in the bit stream of input SN x is p, the expected
value E(Py) of appearance rate Py of 1’s in output SN y becomes:

E(Py,N, p) =
N∑

i= N+1
2

(NCi × pi(1 − p)N−i), (4.4)

where N = 2n − 1. In Figure 4.5, the appearance rate of 1’s p of the bit stream of input
SN x is on the horizontal axis, and the expected value E(Py) of the appearance rate
of 1’s in output SN y is on the vertical axis. In this graph, n = 1, 2, 3, . . . , 10, i.e.,
N = 1, 3, 7, 15, 31, 63, 127, 255, 511, 1023. From this graph, n or N become larger,
the output becomes the closer to the step function. The expected formula of the step
function is expressed as follows:

Py =


1, (1

2 < Px ≤ 1)
0, (0 ≤ Px <

1
2)

1
2, (Px =

1
2).

(4.5)

This equation can be proved as follows:

Theorem 2. The expected value of the output SN y of the step function circuit in Figure 4.4
converges to Equation (4.5), when N becomes large.

4.3. HARDWARE IMPLEMENTATION OF STEP FUNCTION IN SC 59

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
pp

ea
ra

nc
e

R
at

e
of

 1
’s

 in
 th

e
O

ut
pu

t S
N

Appearance Rate of 1’s in the Input SN

1 3 7 15 31 63 127 255 511 1023

Figure 4.5: Theoretical values of input/output SN of a step function circuit.

Proof. Here, we prove that:

lim
N→∞

E(Py,N, p) =


1, (1

2 < p ≤ 1)
0, (0 ≤ p < 1

2)
1
2, (p = 1

2),
(4.6)

where p is the appearance rate of 1’s in the input SN.
(a) When 1

2 < p ≤ 1:
From law of large numbers, the number of 1’s in the FFs in Figure 4.4 converges Np
when N → ∞. Since p is larger than 1

2 , Np > N
2 holds, and the MSB in Figure 4.4

converges to 1. Therefore,

lim
N→∞

E(Py,N, p) = 1. (4.7)

(b) When 0 ≤ p < 1
2 :

60 CHAPTER 4. STEP FUNCTION AND ITS APPLICATIONS

In the same way as (a), the following equation holds:

lim
N→∞

E(Py,N, p) = 0. (4.8)

(c) When p = 1
2 :

By substituting 1 − p for p in Equation (4.4),

E(Py,N,1 − p) =
N∑

i= N+1
2

(NCi × (1 − p)i pN−i)

=

N−1
2∑

i=0
(NCi × pi(1 − p)N−i)

=

N∑
i=0

(NCi × pi(1 − p)N−i) −
N∑

i= N+1
2

(NCi × pi(1 − p)N−i)

= 1 − E(Py,N, p) (4.9)

holds. Since Equation (4.4) is differentiable, it is point symmetry at p = 1
2 and its

expected value becomes E(Py,N, 12) =
1
2 .

From (a)–(c),

lim
N→∞

E(Py,N, p) =


1, (1

2 < p ≤ 1)
0, (0 ≤ p < 1

2)
1
2, (p = 1

2)
(4.10)

holds. □

The concept of this proposal is to output the first bit as soon as the first bit of SN is
input. Therefore, the initial bits stored in FF are also used to obtain the output of the
first N bits. Here, we consider minimizing the error due to the initial bits. 1’s and 0’s
are stored with a probability of 1/2 for each of the (N − 1) FFs shown in yellow in the
Figure 4.4. The output of the i-th (1 ≤ i < N) is calculated based on the first i bits of the
input SN and the (N − i) bits of the initial bits. Therefore, if the expected value of the
initial bits in FFs is 1/2, the majority bit of the first i bits of the input SN is output. Note
that, the FF shown in gray in Figure 4.4 is overwritten when the first bit of the input SN
is input.

4.3. HARDWARE IMPLEMENTATION OF STEP FUNCTION IN SC 61

Table 4.1: The hardware cost of the step function circuit using SN.

N [FFs] Delay [ns] Area [NANDs]

1 0.39 5.75
3 0.39 67
7 0.45 158
15 0.50 297

4.3.2 Hardware Costs

The hardware cost of the step function circuit using SN was obtained by logic synthesis,
and its results are shown in Table 4.1. Logic synthesis was performed using Verilog[35]
by Design Compiler version D-2010.03-SP5[36] and the STARC 90nm library[37].
Except for N = 1, which requires no adders, the circuit area became around 20N gates in
NAND gates conversion. The delay increased as N increased since the addition became
more complicated.

In this chapter, we have not evaluated the step function circuit in binary computing.
This is because comparisons between binary computing and SC is impossible under
the same conditions. In the implementation using binary numbers, the circuit of step
function is uniquely determined by the maximum bit length of the input binary number,
and the error always becomes 0. On the other hand, in the implementation using SN,
the circuit of step function is determined by the permissible error, regardless of the bit
length of the input SN.

4.3.3 Technical Merits

Implementation of step function using SN has the following technical merits:

1. By changing the circuit, step functions with arbitrary threshold can be imple-
mented.

2. New functions can be expressed by combining with other circuits.

For the first merit, threshold can be simply changed by modifying the output bit. For
example, by outputting XOR of the two MSB’s (see Figure 4.6), its output’s expected
value becomes:

Py =

{
1, (1

4 < Px <
3
4)

0, (0 ≤ Px <
1
4,

3
4 < Px ≤ 1),

(4.11)

62 CHAPTER 4. STEP FUNCTION AND ITS APPLICATIONS

𝑛-bit

1 0 1 1 0 1 … 0

𝑥

2! − 1 FFs

FF FF FF FF FF⋯

𝑦

＋

1

Figure 4.6: Hardware implementation of step function in SC with changed threshold.

as in Figure 4.7. In this graph, cases which are n = 2, 3, . . . , 10, i.e., N =

3, 7, 15, 31, 63, 127, 255, 511, 1023 are shown. The second merit is discussed in
the next two sections.

4.4 Implementation of Absolute Function Using Step
Function

4.4.1 Proposal

SN has a bi-polar expression defined by Vx = 2 × Px − 1 as shown in Section 4.2. In
bi-polar expression, arithmetic operations are performed by inputting the bit streams of
SNs sequentially to logic circuits, as well as uni-polar expression. This section proposes
a circuit calculating the absolute value using the SN expressed by bi-polar representation.

Absolute function using SNs can be implemented by combining the XNOR gate in
Figure 4.2 and the step function circuit in Figure 4.4. As in Figure 4.8, let a, c be the
input/output SN of the whole the circuit of the step function, respectively, and b be the
output SN of the step function circuit. a and b are input into the XNOR circuit and c is

4.4. IMPLEMENTATION OF ABSOLUTE FUNCTION USING STEP FUNCTION 63

A
p

p
ea

ra
n

ce
 R

at
e

o
f

1
’s

 i
n

 t
h

e
O

u
tp

u
t

S
N

Appearance Rate of 1’s in the Input SN

Figure 4.7: Theoretical values of input/output SN of a step function circuit with changed
threshold.

Step
Function

𝑎

𝑏

𝑐

Figure 4.8: Hardware implementation of absolute function using bi-polar SN.

obtained. Their expected values of Vb and Vc becomes:

E(Vb) = 2Pb − 1

=


2 × 1 − 1, (Pa >

1
2)

2 × 0 − 1, (Pa <
1
2)

2 × 1 − 1, (Pa =
1
2)

=


1, (Va > 0)
−1, (Va < 0)
0, (Va = 0),

(4.12)

64 CHAPTER 4. STEP FUNCTION AND ITS APPLICATIONS

Table 4.2: The circuit of the absolute function circuit using SN.

N [FFs] Area [NANDs]

1 13.75
3 75
7 166
15 305

E(Vc) = Va × Vb

=


Va × 1, (Va > 0)
Va × −1, (Va < 0)
Va × 0, (Va = 0)

=


Va, (Va > 0)
−Va, (Va < 0)
0, (Va = 0)

= |Va |. (4.13)

Therefore, by combining XNOR gate and step function, absolute value of SN in bi-polar
expression can be calculated.

4.4.2 Circuit Areas

The hardware cost of the step function circuit using SN, obtained by logic synthesis,
is shown in Table 4.2. Logic synthesis was performed using Verilog[35] by Design
Compiler version D-2010.03-SP5 and the STARC 90nm library. Except for N = 1,
which requires no adders, the circuit area became around 20N gates in NAND gates
conversion.

4.5 Implementation of Discontinuous Function Using Step
Function

4.5.1 Proposal

This section proposes a circuit calculating the discontinuous function of SNs. The circuit
is shown in Figure 4.9. Stochastic circuits A, B, and C are placed in the former stage

4.5. IMPLEMENTATION OF DISCONTINUOUS FUNCTION USING STEP FUNCTION65

𝑥 𝑦

A

B

C

Figure 4.9: Hardware implementation of discontinuous function in SC.

of the proposed circuit, and circuit equivalent to the multiplexer circuit is placed in the
latter stage. A and B are arbitrary stochastic circuits. C is a step function with arbitrary
threshold. The proposed circuit has input SN x and output SN y.

4.5.2 Prerequisite Circuits

As well as the step function in Figure 4.6, fictions using SN duplicators proposed in
Chapters 2 and 3, or in [39] and [40], are used.

The sin′ x function is expressed by Equation (4.14) and its circuit is shown in Fig-
ure 2.10(a). The DUPs in Figure 2.10(a) are the 2nRRR duplicators proposed in Chapter
3 or in [40].

sin x ≈ x − x3

3!
+

x5

5!
− x7

7!

= x(1 − x2

6
(1 − x2

20
(1 − x2

42
)))

= sin′ x. (4.14)

The cos′ x function is expressed by Equation (4.15) and its circuit is shown in
Figure 2.10(b). The DUPs in Figure 2.10(b) also show the 2nRRR duplicators proposed
in Chapter 3 or in [40].

cos x ≈ 1 − x2

2!
+

x4

4!
− x6

6!
+

x8

8!

= 1 − x2

2
(1 − x2

12
(1 − x2

30
(1 − x2

56
)))

= cos′ x. (4.15)

66 CHAPTER 4. STEP FUNCTION AND ITS APPLICATIONS

Figure 4.10: Hardware implementation of discontinuous function in SC (example).

4.5.3 Example of Discontinuous Function

Here, as an example, cos′ function are implemented as A, sin′ function as B, step function
with threshold of 1/4 and 3/4 as C, as in Figure 4.10. In particular, approximation function
of sin and cos, step function in Figure 4.6 are used.

A discontinuous function can be implemented by the circuit in the previous section.
Consider inputting SN x to the step function circuit as in Figure 4.10. Here, a– f is the
output SN of each circuit or gate. The expected value of these SNs is expressed by:

E(Va) = cos′(Vx), (4.16)

E(Vb) = sin′(Vx), (4.17)

E(Vc) =
{

1, (1
4 < Vx <

3
4)

0, (Vx <
1
4,

3
4 < Vx),

(4.18)

E(Vd) = Va × Vc

=

{
cos′(Vx), (1

4 < Vx <
3
4)

0, (Vx <
1
4,

3
4 < Vx),

(4.19)

E(Ve) = 1 − Vc

=

{
0, (1

4 < Vx <
3
4)

1, (Vx <
1
4,

3
4 < Vx),

(4.20)

E(Vf) = Vb × Ve

=

{
0, (1

4 < Vx <
3
4)

sin′(Vx), (Vx <
1
4,

3
4 < Vx),

(4.21)

4.6. EXPERIMENTAL EVALUATIONS 67

Table 4.3: The circuit of the discontinuous function circuit using SN.

N [FFs] 1RRR 2RRR 4RRR 8RRR

3 2082 2188 2956 3920
7 2173 2279 3047 4011
15 2312 2418 3186 4150

* The unit of this table is [NANDs].

E(Vy) = Vd + Vf − Vd × Vf

=

{
cos′(Vx) + 0 − cos′(Vx) × 0, (1

4 < Vx <
3
4)

0 + sin′(Vx) − 0 × sin′(Vx), (Vx <
1
4,

3
4 < Vx)

=

{
cos′(Vx), (1

4 < Vx <
3
4)

sin′(Vx), (Vx <
1
4,

3
4 < Vx).

(4.22)

As above, by combining step function circuit with conventional circuits, discontinuous
functions can be calculated.

4.5.4 Circuit Areas

The hardware cost of the discontinuous function circuit using SN, obtained by logic
synthesis, is shown in Table 4.3. Logic synthesis was performed using Design Compiler
version D-2010.03-SP5[36] and the STARC 90nm library[37]. The circuit area became
around 20N gates larger, in NAND gates conversion, per FFs in the step function. Also,
the circuit area increased significantly when a large sized SN duplicator was used.

4.6 Experimental Evaluations

4.6.1 Setup

In this section, circuits of absolute function and discontinuous function are simulated
and evaluated. The simulation is performed under the following conditions:for N =
1, 3, 7, 15, 31, 63, 127, 255, 511, 1023. (Due to its design, the step function in this
discontinuous function cannot have N = 1.)

• Language for simulation: Python 3.6.3[34]

• Functions: Step function, absolute function, discontinuous function

68 CHAPTER 4. STEP FUNCTION AND ITS APPLICATIONS

• Appearance rate Px of input SN x: 0, 0.01, 0.02, 0.03, . . ., 1

• Length of input SN x: 10,000 bits

• Initial bits stored in FFs: 1010. . . 01

• Performance indicator: MSE

MSE (Mean Square Error) is obtained by:

MSE =
1

101

100∑
i=0

(
ftheor(

i
100

) − factual(
i

100
)
)2
, (4.23)

where ftheor(i
100) and factual(i

100) are the theoretical value and the obtained value when
i/100 is input, respectively.

4.6.2 Results

Figure 4.11 shows the output when SN x with 101 kinds of Px is input to the circuit of
the step function of the Figure 4.4 for each ten N’s. From this figure, as N increases, the
output approaches the step function. In addition, the MSE of the step function is shown
in the Table 4.4. Also from this table, as N increases, the output approaches the step
function.

Figure 4.12 shows the output when SN x with 101 kinds of Px is input to the circuit
of the absolute function of the Figure 4.8 for each ten N’s. From this figure, as N
increases, the output approaches the absolute function. In addition, the MSE of the
absolute function is shown in the Table 4.5. Also from this table, as N increases, the
output approaches the absolute function.

Table 4.6 shows the MSE values when SN x with 101 kinds of Px is input to the
circuit of the discontinuous function of the Figure 4.10 for each nine N’s and four SN
duplicators. From this table, as N increases, the output approaches the discontinuous
function. Under the conditions of this experiment, the circuits implemented by 2RRR or
4RRR duplicator had the smallest errors. However, the error due to the SN duplicators
was smaller than that of FFs in step function. Figure 4.13 shows the output of the case
with the smallest MSE, where N = 1023 and 2RRR duplicator was used. The errors
became large around the inputs 0.25 and 0.75.

4.6. EXPERIMENTAL EVALUATIONS 69

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
pp

ea
ra

nc
e

R
at

e
of

 1
’s

 in
 th

e
O

ut
pu

t S
N

Appearance Rate of 1’s in the Input SN

1 3 7 15 31 63 127 255 511 1023

Figure 4.11: Actual values of input/output SNs of a step function circuit

4.6.3 Discussions

The errors became large around the inputs 0.25 and 0.75 since the step function used in
the experiment is not an ideal step function. The solid line in Figure 4.13 assumes an
ideal function (whose value clearly switches from 0 to 1 at the threshold). However, the
circuit of the step function used in the experiment takes subtle values near the threshold
as shown in Figure 4.7. Therefore, errors occur in the addition by the OR gate in Figure
4.1.

The output values of function described in Figure 4.7 when the input value is 0.25
or 0.75 cannot be proved to converge to certain values. From Figure 4.7, the theoretical
values of output SN y depending on Nwhen the values of input SN x are 0.25 or 0.75
are shown in Table 4.7, and seems to converge to 0.5 in this example. It is obvious that
the output value when input value is 0.25 or 0.75 takes a value between 0 and 1 for any

70 CHAPTER 4. STEP FUNCTION AND ITS APPLICATIONS

Table 4.4: MSE value of step function using SC.

N [FFs] MSE

1 8.00 × 10−2

3 5.59 × 10−2

7 3.87 × 10−2

15 2.66 × 10−2

31 1.81 × 10−2

63 1.21 × 10−2

127 7.90 × 10−3

255 4.97 × 10−3

511 2.93 × 10−3

1023 1.56 × 10−3

N , so let 0 < αN < 1 be that value. In this case, Equation 4.18–4.22 become:

E(Vc) =


1, (1

4 < Vx <
3
4)

αN, (Vx =
1
4,

3
4)

0, (Vx <
1
4,

3
4 < Vx),

(4.24)

E(Vd) = Va × Vc

=


cos′(Vx), (1

4 < Vx <
3
4)

αN cos′(Vx), (Vx =
1
4,

3
4)

0, (Vx <
1
4,

3
4 < Vx),

(4.25)

E(Ve) = 1 − Vc

=


0, (1

4 < Vx <
3
4)

1 − αN, (Vx =
1
4,

3
4)

1, (Vx <
1
4,

3
4 < Vx),

(4.26)

E(Vf) = Vb × Ve

=


0, (1

4 < Vx <
3
4)

(1 − αN) sin′(Vx), (Vx =
1
4,

3
4)

sin′(Vx), (Vx <
1
4,

3
4 < Vx),

(4.27)

4.6. EXPERIMENTAL EVALUATIONS 71

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

A
pp

ea
ra

nc
e

R
at

e
of

 1
’s

 in
 th

e
O

ut
pu

t S
N

Appearance Rate of 1’s in the Input SN

1 3 7 15 31 63 127 255 511 1023

Figure 4.12: Actual values of input/output SNs of a absolute function circuit

E(Vy) = Vd + Vf − Vd × Vf

=


cos′(Vx) + 0 − cos′(Vx) × 0, (1

4 < Vx <
3
4)

αN cos′(Vx) + (1 − αN) sin′(Vx)
−αN cos′(Vx) × (1 − αN) sin′(Vx), (Vx =

1
4,

3
4)

0 + sin′(Vx) − 0 × sin′(Vx), (Vx <
1
4,

3
4 < Vx)

=


cos′(Vx), (1

4 < Vx <
3
4)

αN cos′(Vx) + (1 − αN) sin′(Vx)
−αN (1 − αN) cos′(Vx) sin′(Vx), (Vx =

1
4,

3
4)

sin′(Vx), (Vx <
1
4,

3
4 < Vx).

(4.28)

Therefore, when Vx =
1
4,

3
4 ,

E(Vy) = αN cos′(Vx) + (1 − αN) sin′(Vx) − αN (1 − αN) cos′(Vx) sin′(Vx) (4.29)

holds. What we try to implement is E(Vy) = αN cos′(Vx) + (1 − αN) sin′(Vx), whose
difference is −αN (1 − αN) cos′(Vx) sin′(Vx). This value is a constant regardless of N

72 CHAPTER 4. STEP FUNCTION AND ITS APPLICATIONS

Table 4.5: MSE value of absolute function using SC.

N [FFs] MSE

1 3.30 × 10−2

3 1.34 × 10−2

7 5.05 × 10−3

15 1.85 × 10−3

31 6.64 × 10−4

63 2.37 × 10−4

127 8.41 × 10−5

255 2.98 × 10−5

511 1.05 × 10−5

1023 3.66 × 10−6

Table 4.6: MSE value of discontinuous function using SC.

N [FFs] 1RRR 2RRR 4RRR 8RRR

3 4.75 × 10−2 4.32 × 10−2 4.11 × 10−2 4.44 × 10−2

7 2.85 × 10−2 2.68 × 10−2 2.58 × 10−2 2.71 × 10−2

15 1.77 × 10−2 1.70 × 10−2 1.65 × 10−2 1.71 × 10−2

31 1.20 × 10−2 1.12 × 10−2 1.10 × 10−2 1.18 × 10−2

63 7.96 × 10−3 7.33 × 10−3 7.26 × 10−3 7.83 × 10−3

127 5.15 × 10−3 4.77 × 10−3 4.73 × 10−3 5.19 × 10−3

255 3.26 × 10−3 2.96 × 10−3 2.99 × 10−3 3.19 × 10−3

511 1.99 × 10−3 1.77 × 10−3 1.81 × 10−3 1.95 × 10−3

1023 1.09 × 10−3 9.90 × 10−4 1.02 × 10−3 1.11 × 10−3

(except for the slight difference of αN). Therefore, assuming αN = 1/2, the errors
when Vx =

1
4,

3
4 become 1/4 sin′(0.25) cos′(0.25) ≈ 0.0599, 1/4 sin′(0.25) cos′(0.25) ≈

0.1247, respectively. The maximum errors of sin′ cos′ depending on SN duplicators
become around 0.02 (see Table 3.4 for detail), and are relatively small compared to the
errors discussed in this section.

4.7. CONCLUSIONS 73

A
p

p
ea

ra
n

ce
 R

at
e

o
f

1
’s

 i
n

 t
h

e
O

u
tp

u
t

S
N

Appearance Rate of 1’s in the Input SN

Figure 4.13: Actual values of input/output SNs of a discontinuous function circuit

Table 4.7: Theoretical values of output SN y depending on Nwhen the values of input
SN x are 0.25 or 0.75 in Figure 4.7.

N 3 7 15 31 63 127 255 511 1023
Vy 0.563 0.554 0.539 0.527 0.519 0.514 0.510 0.507 0.505

4.7 Conclusions

In this chapter, we proposed and evaluated step function in SC and their related functions.

Chapter 5

Conclusions

This dissertation proposed hardware optimization of SC. The goal of this dissertation is to
omit the use of SN generator as much as possible which enables to reduce the hardware
cost of the circuits, especially the latency. Overall, this dissertation demonstrated that
the proposing circuits operate as expected in the experiments, without the new use of SN
generators. In this point, this dissertation has successfully achieved the goal.

Chapter 2 [Stochastic Number Duplicators Based on Bit Re-arrangement Using
Randomized Bit Streams] proposed FSR and RRR duplicators, which generates and
outputs a new SN which has the equivalent value with the input SN but has a independent
bit stream. In this chapter, a randomized bit stream was introduced to re-arrange the
bits stored in flip-flops. The SNs duplicated by the proposing FSR and RRR duplicators
had the equivalent values but have independent bit streams, by effectively utilizing bit
re-arrangement using randomized bit streams. Experimental evaluation results demon-
strated that the RRR duplicator, in particular, obtains more accurate results, reducing the
mean square errors by 20%–89% compared with a conventional SN duplicator, without
adding any SN generators. Also, this chapter discussed the behavior of the proposed SN
duplicators when the bit length of the input SN became longer.

Chapter 3 [Scalable Stochastic Number Duplicators for Accuracy-flexible Arith-
metic Circuit Design] proposed 2nRRR duplicator, which uniquely extends the RRR
duplicator and has a scalable structure by changing the numbers of flip-flops for bit
re-arrangement. In this chapter, we extended the RRR duplicator proposed in Chapter 2,
enabling to change the accuracy of the circuit itself. The proposed 2nRRR duplicator
output different SNs every time and are all independent of each other. The 2nRRR du-
plicator could be theoretically proved to flexibly change the accuracies of the arithmetic
circuits. Also from the experimental evaluation results, this chapter clarified that the
2nRRR duplicator enables accuracy-flexible circuits. In a particular case, one instance

74

75

of the proposed 2nRRR duplicator reduced the mean square errors by more than 50%
compared with the RRR duplicator proposed in Chapter 2. From proof and experimental
evaluations, more accurate calculations are enabled without the use of SN generators by
selecting the correct instance for each situation.

Chapter 4 [Hardware Implementation of Step Function in Stochastic Computing
and Its Applications] proposed step function in SC and its applications. The proposed
circuit of utilizes flip-flops and an adder to perform as step function uniquely calculating
the stored bits in the flip-flops. The proposed step function could be theoretically proved
to perform as a step function. This chapter confirmed that the proposed circuit behaved as
a step function through experimental evaluations. Also as an application, steep functions
or discontinuous functions could be realized by applying the discontinuity of the step
function. As a steep function, this chapter also proposed hardware implementation
of absolute function and discontinuous function, by synthesizing an arbitrary function
as a discontinuous function. As an example, a composite function of trigonometric
function of sin and cos function was implemented in this chapter. Through experimental
evaluations, this chapter confirmed that the circuits of step function, absolute function,
and discontinuous function perform as target function.

In conclusion, hardware optimization of SC has future prospect. However, there
remain several tasks to be done in the near future. Our future works are summarized as
follows:

• Optimize the proposed SN duplicators and utilize them so that they can generate
new SNs;

• Combine the proposed step function with a different function to implement another
unrealizable function;

• Apply the proposed circuits into practical applications such as machine learning
or image processing;

• Merge the above practical applications as a system.

First, we aim to optimize the proposed SN duplicators depending on the situation and
utilize them to generate new SNs, to reduce the circuit area of conventional LFSR-based
SN generators. Second, we search for other functions to combine with the proposed
step function and implement another function which used to be unrealizable. Third,
we will apply the proposed circuits into practical applications such as machine learning
or image processing, and validate them through experimental evaluations. Finally, we

76 CHAPTER 5. CONCLUSIONS

will combine the above practical applications as a system, comparing circuit area and
operation results with the equivalent system implemented with binary computing.

Acknowledgments

First and foremost, I would like to express my deepest thanks of gratitude to Prof. Nozomu
Togawa (戸川望教授) at the Department of Computer Science and Communications
Engineering of Waseda University for his continuous supports on my research work for
five and a half years.

Secondly, I appreciate the strong supports and valuable advices from Prof. Masao
Yanagisawa (柳澤政生教授) at the Department of Electronic and Physical Systems
of Waseda University, and Prof. Keiji Kimura (木村啓二教授) at the Department of
Computer Science and Communications Engineering of Waseda University.

I am deeply thankful of Dr. Masashi Tawada (多和田雅師氏) and Dr. Kazushi Kawa-
mura (川村一志氏) at the Department of Communications Engineering of Waseda Uni-
versity for their helpful technical advices.

I would like to offer my special thanks to Ms. Shuko Watanabe (渡部周子氏) for
supporting my research life. I had a meaningful and enjoyable time at Togawa Laboratory
with my colleagues Dr. Siya Bao (鮑思雅氏), Dr. Kento Hasegawa (長谷川健人氏), and
Dr. Daisuke Oku (於久太祐氏). I also thank all the students in the Togawa Laboratory
and the Information System Laboratory.

Outside the laboratory, my family and my friends always encouraged me. I take this
opportunity to thank everyone involved.

77

References

[1] K. Parhi and Y. Liu, “Computing arithmetic functions using stochastic logic by
series expansion,” IEEE Transactions on Emerging Topics in Computing, pp. 1–13,
2016.

[2] S. S. Tehrani, A. Naderi, G.-A. Kamendje, S. Hemati, S. Mannor, and W. J. Gross,
“Majority-based tracking forecast memories for stochastic LDPC decoding,” IEEE
Transactions on Signal Processing, vol. 58, pp. 4883–4896, 2010.

[3] “Xilinx.” https://www.xilinx.com/

[4] “Raspberry pi.” https://www.raspberrypi.org/

[5] J. Han and M. Orshansky, “Approximate computing: An emerging paradigm for
energy-efficient design,” in 2013 18th IEEE European Test Symposium (ETS), 2013,
pp. 1–6.

[6] B. R. Gaines, “Stochastic computing,” in Proc. Spring Joint Computer Conference,
1967, pp. 149–156.

[7] B. D. Brown and H. C. Card, “Stochastic neural computation I: Computational
elements,” IEEE Transactions on Computing, vol. 50, no. 9, pp. 891–905, 2001.

[8] V. Canals, A. Morro, A. Oliver, M. L. Alomar, and J. L. Rosselló, “A new stochastic
computing methodology for efficient neural network implementation,” IEEE Trans-
actions on Neural Networks and Learning Systems, vol. 27, no. 3, pp. 551–564,
2016.

[9] J. Li, Z. Yuan, Z. Li, C. Ding, A. Ren, Q. Qiu, J. Draper, and Y. Wang, “Hardware-
driven nonlinear activation for stochastic computing based deep convolutional neu-
ral networks,” in Proc. International Joint Conference on Neural Networks (IJCNN),
2017, pp. 1230–1236.

78

REFERENCES 79

[10] B. Li, Y. Qin, B. Yuan, and D. J. Lilja, “Neural network classifiers using stochastic
computing with a hardware-oriented approximate activation function,” in Proc.
International Conference on Computer Design (ICCD), 2017, pp. 97–104.

[11] I. Yeo, S. Gi, B. Lee, and M. Chu, “Stochastic implementation of the activation
function for artificial neural networks,” in Proc. Biomedical Circuits and Systems
Conference (BioCAS), 2016, pp. 440–443.

[12] P. Li and D. J. Lilja, “Using stochastic computing to implement digital image
processing algorithms,” in Proc. International Conference on Computer Design
(ICCD), 2011, pp. 154–161.

[13] A. Alaghi, C. Li, and J. P. Hayes, “Stochastic circuits for real-time image-processing
applications,” in Proc. Design Automation Conference (DAC), 2013, pp. 1–6.

[14] S. Aygun, M. Altun, and E. O. Gunes, “Sobel filter operation in image process-
ing via stochastic arithmetic-logic unit design,” in Proc. Signal Processing and
Communications Applications Conference (SIU), 2017, pp. 1–4.

[15] R. Seva, P. Metku, K. K. Kim, Y. Kim, and M. Choi, “Approximate stochastic
computing (ASC) for image processing applications,” in Proc. International SoC
Design Conference (ISOCC), 2016, pp. 31–32.

[16] M. H. Najafi and M. E. Salehi, “A fast fault-tolerant architecture for sauvola local
image thresholding algorithm using stochastic computing,” IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, vol. 24, no. 2, pp. 808–812, 2016.

[17] V. C. Gaudet and A. C. Rapley, “Iterative decoding using stochastic computation,”
Electronics Letters, vol. 39, no. 3, pp. 299–301, 2003.

[18] W. Qian, C. Wang, P. Li, and D. Lilja, “An architecture for fault-tolerant computation
with stochastic logic,” IEEE Transactions on Computers, vol. 60, no. 1, pp. 93–105,
2011.

[19] S. Iizuka, M. Mizuno, D. Kuroda, M. Hashimoto, and T. Onoye, “Stochastic error
rate estimation for adaptive speed control with field delay testing,” in Proc. Inter-
national Conference on Computer-Aided Design (ICCAD), 2013, pp. 107–114.

[20] P. Li, D. J. Lilja, W. Qian, M. D. Riedel, and K. Bazargan, “Logical computation
on stochastic bit streams with linear finite-state machines,” IEEE Transactions on
Computing, vol. 63, no. 6, pp. 1474–1486, 2014.

80 REFERENCES

[21] Z. Wang, N. Saraf, K. Bazargan, and A. Scheel, “Randomness meets feedback:
Stochastic implementation of logistic map dynamical system,” in Proc. Design
Automation Conference (DAC), 2015, pp. 1–7.

[22] Y. Liu and K. K. Parhi, “Computing hyperbolic tangent and sigmoid functions using
stochastic logic,” in Proc. Asilomar Conference on Signals, Systems and Computers
(ACSSC), 2016, pp. 1580–1585.

[23] P. S. Ting and J. P. Hayes, “Isolation-based decorrelation of stochastic circuits,” in
Proc. International Conference on Computer Design (ICCD), 2016, pp. 88–95.

[24] C. Ma, S. Zhong, and H. Dang, “High fault tolerant image processing system based
on stochastic computing,” in Proc. International Conference on Computer Science
and Service System (CSSS), 2012, pp. 1587–1590.

[25] W. Qian and M. D. Riedel, “The synthesis of robust polynomial arithmetic with
stochastic logic,” in 2008 45th ACM/IEEE Design Automation Conference, 2008,
pp. 648–653.

[26] G. G. Lorenz, Bernstein Polynomials. AMS Chelsea Publishing, 1986.

[27] Y. Sakamoto and S. Yamashita, “Efficient methods to generate constant sns with
considering trade-off between error and overhead and its evaluation,” IEICE Trans-
actions on Information and Systems, vol. E103.D, pp. 321–328, 02 2020.

[28] F. Neugebauer, I. Polian, and J. P. Hayes, “Building a better random number
generator for stochastic computing,” in Proc. Euromicro Conference on Digital
System Design (DSD), 2017, pp. 1–8.

[29] R. Muguruma and S. Yamashita, “Stochastic number generation with the minimum
inputs,” IEICE Transactions on Fundamentals of Electronics, Communications and
Computer Sciences, vol. E100.A, pp. 1661–1671, 08 2017.

[30] S. A. Salehi, “Low-correlation low-cost stochastic number generators for stochastic
computing,” in 2019 IEEE Global Conference on Signal and Information Process-
ing (GlobalSIP), 2019, pp. 1–5.

[31] D. H. K. Hoe and C. Pajardo, “Implementing stochastic bayesian inference : Design
of the stochastic number generators,” in 2019 IEEE 62nd International Midwest
Symposium on Circuits and Systems (MWSCAS), 2019, pp. 1105–1109.

REFERENCES 81

[32] J. H. Anderson, Y. Hara-Azumi, and S. Yamashita, “Effect of LFSR seeding,
scrambling and feedback polynomial on stochastic computing accuracy,” in Proc.
Design, Automation, and Test in Europe (DATE), 2016, pp. 1550–1555.

[33] W. G. Horner, “A new method of solving numerical equations of all orders, by
continuous approximation,” Philosophical Transactions of the Royal Society of
London, vol. 109, pp. 309–355, 1819.

[34] “Python.” https://www.python.org/

[35] “Ieee standard for systemverilog–unified hardware design, specification, and ver-
ification language,” IEEE Std 1800-2012 (Revision of IEEE Std 1800-2009), pp.
1–1315, 2013.

[36] “Design compiler graphical.” https://www.synopsys.com/implementation-and-si
gnoff/rtl-synthesis-test/design-compiler-graphical.html

[37] “Ieee standard vhdl language reference manual,” IEEE Std 1076-2008 (Revision of
IEEE Std 1076-2002), pp. 1–640, 2009.

[38] H. Ichihara, S. Ishii, D. Sunamori, T. Iwagaki, and T. Inoue, “Compact and accurate
stochastic circuits with shared random number sources,” in Proc. International
Conference on Computer Design (ICCD), 2014, pp. 361–366.

[39] R. Ishikawa, M. Tawada, M. Yanagisawa, and N. Togawa, “Stochastic number du-
plicators based on bit re-arrangement using randomized bit streams,” IEICE Trans-
actions on Fundamentals of Electronics, Communications and Computer Sciences,
vol. E101-A, no. 7, pp. 1002–1013, 2018.

[40] R. Ishikawa, M. Tawada, M. Yanagisawa, and N. Togawa, “Scalable stochastic num-
ber duplicators for accuracy-flexible arithmetic circuit design,” IPSJ Transactions
on System LSI Design Methodology (TSLDM), vol. 13, pp. 10–20, 2020.

List of Publications

Peer Review Journal Articles

⟨1⟩ ⃝ Ryota Ishikawa, Masashi Tawada, Masao Yanagisawa, Nozomu Togawa, “Scal-
able Stochastic Number Duplicators for Accuracy-flexible Arithmetic Circuit De-
sign,” IPSJ Transactions on System LSI Design Methodology (T-SLDM), vol. 13,
pp. 10–20, February 2020.

⟨2⟩ ⃝Ryota Ishikawa, Masashi Tawada, Masao Yanagisawa, Nozomu Togawa, “Stochas-
tic Number Duplicators Based on Bit Re-arrangement Using Randomized Bit
Streams,” IEICE Transactions on Fundamentals of Electronics, Communications
and Computer Sciences, vol. E101-A, no. 7, pp. 1002–1013, July 2018.

Peer Review Conference Papers

⟨3⟩ Ryota Ishikawa, Masashi Tawada, Masao Yanagisawa, Nozomu Togawa, “Multi-
Resolutional Image Format Using Stochastic Numbers and Its Hardware Imple-
mentation,” in Proc. 11th IEEE Latin American Symposium on Circuits and
Systems (LASCAS), pp. 1–4, February 2020.

⟨4⟩ Kento Hasegawa, Ryota Ishikawa, Makoto Nishizawa, Kazushi Kawamura, Masashi
Tawada, Nozomu Togawa, “FPGA-based Heterogeneous Solver for Three-Dimensional
Routing,” in Proc. 25th Asia and South Pacific Design Automation Conference
(ASP-DAC), pp. 11–12, January 2020.

⟨5⟩ Kento Hasegawa, Kazunari Takasaki, Makoto Nishizawa, Ryota Ishikawa, Kazushi
Kawamura, Nozomu Togawa, “Implementation of a ROS-Based Autonomous Ve-
hicle on an FPGA Board,” in Proc. International Conference on Field-Programmable
Technology (FPT), pp. 457–460, December 2019.

⟨6⟩ Ryota Ishikawa, Masashi Tawada, Masao Yanagisawa, Nozomu Togawa, “Error
Correction System Using Stochastic Numbers in Symmetric Channels and Z Chan-

82

83

nels,” in Proc. 26th IEEE International Conference on Electronics Circuits and
Systems (ICECS), pp. 578–581, November 2019.

⟨7⟩ Ryota Ishikawa, Masashi Tawada, Masao Yanagisawa, Nozomu Togawa, “Error
Correction Coding of Stochastic Numbers Using BER Measurement,” in Proc.
25th IEEE International Symposium on On-Line Testing and Robust System Design
(IOLTS), pp. 243–246, July 2019.

⟨8⟩ ⃝Ryota Ishikawa, Masashi Tawada, Masao Yanagisawa, Nozomu Togawa, “2nRRR:
Improved Stochastic Number Duplicator Based on Bit Re-arrangement,” in Proc.
New Generation of Circuits and Systems Conference (NGCAS), pp. 182–185,
November 2018.

⟨9⟩ ⃝ Ryota Ishikawa, Masashi Tawada, Masao Yanagisawa, Nozomu Togawa, “An
Effective Stochastic Number Duplicator and its Evaluations using Composite
Arithmetic Circuits,” in Proc. 24th IEEE International Symposium on On-Line
Testing and Robust System Design (IOLTS), pp. 53–56, July 2018.

Domestic Conference Papers

⟨10⟩ 石川遼太,多和田雅師,戸川望, “ストカスティック数を用いた絶対値関数及び
不連続関数の実装と評価 ,”情報処理学会DAシンポジウム論文集, pp. 65–70,
2021年 9月.

⟨11⟩ 石川遼太,多和田雅師,柳澤政生,戸川望, “ストカスティック数を用いた非対
称通信路の誤り訂正,”電子情報通信学会総合大会講演論文集, p. 26, 2020年 3
月.

⟨12⟩ 石川遼太,多和田雅師,柳澤政生,戸川望, “ストカステイック数を用いたス
テップ関数の実装と評価,”電子情報通信学会技術研究報告, vol. 119, no. 282,
pp. 69–74, 2019年 11月.

⟨13⟩ 西澤誠人,石川遼太,長谷川健人,川村一志,多和田雅師,戸川望, “配置配線
のためのアンサンブルソルバシステム,” DAシンポジウム 2019, 2019年 8月.

⟨14⟩ 石川遼太, 多和田 雅師, 柳澤 政生, 戸川 望, “ストカスティック数を用いた再
帰的分割による解像度解釈可変な画像形式,”電子情報通信学会技術研究報告,
vol. 119, no. 154, pp. 71–76, 2019年 7月.

84

⟨15⟩ 石川遼太,多和田雅師,柳澤政生,戸川望, “ストカスティック数を用いたZ通
信路の誤り訂正,”電子情報通信学会技術研究報告, vol. 119, no. 77, pp. 109–114,
2019年 6月.

⟨16⟩ 石川遼太,多和田雅師,柳澤政生,戸川望, “BER測定を用いたストカスティッ
ク数の誤り訂正,” 研究報告システムと LSIの設計技術 (SLDM), vol. 2019-
SLDM-187, no. 50, pp. 1–6, 2019年 3月.

⟨17⟩ 石川遼太,多和田雅師,柳澤政生,戸川望, “2nRRR:高度な並び替えにより誤
り耐性を強化したストカスティック数複製器,”電子情報通信学会技術研究報
告, vol. 335, no. 118, pp. 95–100, 2018年 12月.

⟨18⟩ 石川遼太,長谷川健人,西澤誠人,川村一志,多和田雅師,戸川望, “ナンバー
リンクソルバのためのFPGA協調システム,” DAシンポジウム 2018, 2018年 8
月.

⟨19⟩ 石川遼太,多和田雅師,柳澤政生,戸川望, “再収斂による計算誤りに耐性を
持つストカスティック数複製器を用いた活性化関数の実装と評価,”電子情報
通信学会技術研究報告, vol. 118, no. 83, pp. 167–172, 2018年 6月.

⟨20⟩ 石川遼太, 多和田 雅師, 柳澤 政生, 戸川 望, “効率的なストカスティック数
複製器と合成関数を用いたその評価,” 研究報告システムと LSIの設計技術
(SLDM), vol. 2018-SLDM-183, no. 36, pp. 1–6, 2018年 3月.

⟨21⟩ 石川遼太, 多和田 雅師, 柳澤 政生, 戸川 望, “乱数によるビット並び替えに
基づくストカスティック数複製器,” 情報処理学会 DAシンポジウム論文集,
pp. 169–174, 2017年 9月.

⟨22⟩ 長谷川健人,石川遼太,寺田晃太朗,川村一志,多和田雅師,戸川望, “組込み
デバイスと FPGAを用いたナンバーリンクソルバの設計と実装,” DAシンポ
ジウム 2017, 2017年 8月.

Awards

⟨23⟩ TSLDM Best Paper Award, IPSJ Transactions on System LSI Design Methodology,
Volume 13, September 2020. (Awarded for 1)

⟨24⟩ 情報処理学会DAシンポジウムアルゴリズムデザインコンテスト特別賞, DA
シンポジウム 2019, 2019年 8月. (業績 13に対し受賞)

85

⟨25⟩ 情報処理学会 SLDM研究会 デザインガイア 2018 優秀発表学生賞, DAシン
ポジウム 2019, 2019年 8月. (業績 17に対し受賞)

⟨26⟩ 情報処理学会DAシンポジウムアルゴリズムデザインコンテスト特別賞, DA
シンポジウム 2018, 2018年 8月. (業績 18に対し受賞)

⟨27⟩ 情報処理学会 DAシンポジウムアルゴリズムデザインコンテスト最優秀賞,
DAシンポジウム 2017, 2017年 8月. (業績 22に対し受賞)

