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Part I

Second Order Parabolic Equations
with Nonlinear Boundary Conditions
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Introduction

In this part, we consider the following initial boundary value problem for the nonlinear
heat equation with nonlinear boundary conditions:

(P)

⎧⎪⎨
⎪⎩
∂tu−Δu = |u|p−2u, t > 0, x ∈ Ω,

− ∂νu ∈ β(u), t > 0, x ∈ ∂Ω,

u(0, x) = u0(x), x ∈ Ω.

Here Ω ⊂ R
N is a bounded domain with smooth boundary ∂Ω; ν = ν(x) is the unit

outward normal vector at x ∈ ∂Ω; p ∈ (2,∞) is a given number; u : R+ × Ω → R is a
real-valued unknown function. As for the boundary condition, β is a maximal monotone
graph on R × R. More precisely, for some proper convex lower semicontinuous function
j : R → R ∪ {+∞}, β is given by the subdifferential of j, that is, β = ∂j. The typical
example of β is a singleton power type nonlinear term such as

βq(r) = |r|q−2r, q ∈ (1,+∞).

This problem (P) is a prototype of nonlinear heat equations with nonlinear boundary
conditions of radiation type.

When one tries to set up mathematical models for describing actual nonlinear phe-
nomena, it is crucial to determine right ruling nonlinear structures in domains where the
phenomena occur, but it is also very important to pay careful attention to the choice of
the boundary conditions. For instance, when we are concerned with the heat diffusion,
it should be noted that the standard boundary condition such as Dirichlet or Neumann
boundary condition can be realized only when some artificial control of the heat flux is
given on the boundary. For a large scale system, however, it is impossible to give such
a control on the boundary. If there is no control of heat flux on the boundary, there is
a prototype model in physics well known as Stefan-Boltzmann’s law, which says that the
heat energy radiation from the surface of the body is proportional to the fourth power of
the difference of temperatures between the inside and outside of the body in R

3.

In this sense, from a physical point of view, it could be more natural to consider
nonlinear boundary conditions rather than the linear boundary conditions such as the
homogeneous Dirichlet or Neumann boundary condition.

In spite of its importance, however, there are few studies on parabolic equations with
nonlinear boundary conditions of radiation type. The first treatment for the dissipative
parabolic systems in this direction was given by H. Brézis in [10], where he dealt with the
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following parabolic equation:

(I.1)

⎧⎪⎨
⎪⎩
∂tu−Δu = f(t, x), t > 0, x ∈ Ω,

− ∂νu ∈ β(u), t > 0, x ∈ ∂Ω,

u(0, x) = u0(x), x ∈ Ω.

Here f ∈ L2(0, T ;L2(Ω)) is a given forcing term, u0 ∈ L2(Ω), and the other settings
are the same as for (P). He proved the well-posedness of (I.1) by establishing a new
class of maximal monotone operators within Kōmura’s nonlinear semi-group theory, i.e.,
a class of subdifferential operators, which characterizes the parabolicity in the theory of
evolution equation. This result gave a breakthrough in the study of parabolic equations
with nonlinear boundary conditions. Nevertheless, the research in this framework is not
fully pursued for the non-dissipative system which may admit blow-up solutions such as
(P).

In Part I, we begin with the most fundamental problem in the study of partial dif-
ferential equations, the local well-posedness, and then consider the qualitative properties
of solutions of (P). The plan of Part I is as follows. In Chapter 1, we briefly summarize
some notations and fundamental mathematical tools to be used in the following chapters.

In Chapter 2, we consider (P) with β = βq (denoted by (P)q):

(P)q

⎧⎪⎨
⎪⎩
∂tu−Δu = |u|p−2u, t > 0, x ∈ Ω,

− ∂νu = |u|q−2u, t > 0, x ∈ ∂Ω,

u(0, x) = u0(x), x ∈ Ω,

where q ∈ (1,+∞). We here show the existence and the uniqueness of local solutions
of (P)q. For semilinear equations such as (P) with the homogeneous Dirichlet boundary
condition, the standard way to derive their local well-posedness is to rely on Duhamel’s
principle and apply the fixed point theorem to their transformed integral equations. Be-
cause of the presence of the nonlinear term on the boundary, however, it is not possible to
follow the same strategy for our problem (P)q. To cope with this difficulty, we reduce (P)q
to an abstract evolution equation in L2(Ω) (see [9]) and apply the theory of non-monotone
perturbations for nonlinear parabolic equations associated with subdifferential operators
developed by Ôtani [45, 47]. Moreover, for q < p, following the argument in [47], we show
the existence of global solutions to (P)q for small initial data.

In Chapter 3, we are concerned with the asymptotic behavior of global solutions to (P)q,
more precisely, the question whether any global solution of (P)q is uniformly bounded in
time. There are large amounts of works concerning the asymptotic behavior of solutions of
the following nonlinear heat equation with the homogeneous Dirichlet boundary condition:

(I.2)

⎧⎪⎨
⎪⎩
∂tu−Δu = |u|p−2u t > 0, x ∈ Ω,

u = 0 t > 0, x ∈ ∂Ω,

u(0, x) = u0(x) x ∈ Ω.

Uniform bounds of global solutions of (I.2) was first studied by [46] in an abstract setting,
where it is shown that every global solution of (I.2) is uniformly bounded in H1

0 (Ω) with
respect to time for p ∈ (2, pS). Here pS is the Sobolev critical exponent defined by



Introduction 5

pS = ∞ for N = 1, 2 ; pS = 2N
N−2 for N ≥ 3. Cazenave-Lions [13] showed that every

global solution (allowing sing-changing) is bounded in L∞(Ω) uniformly in time provided
that p ∈ (2, pCL), where pCL = ∞ when N = 1 ; pCL = 2 + 12

3N−4 when N ≥ 2. (Note
that pCL ≤ pS for any N ∈ N). Giga [23] removed this restriction on p for positive global
solutions. Namely the uniform boundedness of every positive global solution of (I.2) in
L∞(Ω) was shown for any p ∈ (2, pS). Quittner [54] extended this result for sign-changing
solutions. The main tool in [23] is the rescaling argument and [54] relies on the bootstrap
argument based on the interpolation and the maximal regularity theory. However it seems
to be difficult to apply these devices for our problem (P)q because of the presence of the
nonlinear boundary condition. The main purpose of this chapter is to derive the uniform
boundedness in H1(Ω) and L∞(Ω) for every global solution of (P)q by following the same
strategy as that in [46]. However, we can not directly apply arguments in [46], since
the functional associated with the Laplacian with nonlinear boundary conditions is not
homogeneous, which is one of basic tools used in [46]. Nevertheless by introducing a new
substitutive argument to avoid the use of the homogeneity of functionals, we are able to
derive uniform bounds for global solutions in H1(Ω). Moreover with the aid of Moser’s
iteration scheme, the uniform bound in L∞(Ω) is also obtained.

In Chapter 4, we set up a new type of comparison theorem which can cover both linear
and nonlinear boundary conditions for a system of equations which have more general
forms than that of (P).

Mathematical models for various types of phenomena arising from physics, chemistry,
biology and so on are often described as reaction diffusion equations which give typical
examples of second order nonlinear parabolic equations. It is widely known that compari-
son theorems yield very powerful tools for analyzing the second order parabolic equations,
e.g., for constructing super-solutions or sub-solutions; and for examining the asymptotic
behavior of solutions. However, most of the existing results on comparison theorems for
nonlinear diffusion equations are concerned with the standard linear boundary conditions
such as Dirichlet or Neumann boundary conditions (see [55]). Furthermore, these com-
parison theorems are only applicable to problems whose imposed boundary conditions are
of the same form. There is a result on comparison theorems covering nonlinear boundary
conditions by Bénilan and Dı́az [8], which also compares two solutions satisfying nonlinear
boundary conditions of the same form. Our comparison theorem has an advantage that
it allows us to compare two solutions satisfying different types of nonlinear (including lin-
ear) boundary conditions. Moreover as applications of this comparison theorem, we can
show the existence of blow-up solutions satisfying nonlinear boundary conditions for some
parabolic equations in §4.2 and for some parabolic systems in §9.2.

In Chapter 5, we consider the existence and nonexistence of global solutions of (P).
Concerning the blow-up phenomena in the whole domain, it is well known that there
exists the critical Fujita exponent pc = 2 + 2/N which gives the threshold of p for the
existence of global solutions. Namely if p ∈ (2, pc), then every positive solution blows
up in finite time and for p grater than pc, there exists (small) global solutions. As for
the bounded domain, it is also well known that for the homogeneous Neumann boundary
condition, every positive solution blows up in finite time and for the homogeneous Dirichlet
boundary condition there exist (small) global solutions. As an analogy of the existence of
the Fujita exponent for (P) in R

n (with no boundary condition), we give a special family
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(βα(·))α>0 of β(·) such that there exists a critical value αc > 0 which plays the same role
as the Fujita exponent. More precisely, (βα)α>0(·) connects the homogeneous Neumann
boundary condition (when α = ∞) and the homogeneous Dirichlet boundary condition
(when α = 0) such that if α is grater than αc, then every positive solution blows up in
finite time and if α is smaller than αc, there exists (small) global solutions.

In the last chapter of Part I, we are concerned with the structural stability of solu-
tions to (P)q, that is, the continuous dependence of solutions of (P)q with respect to the
nonlinearity parameter q. Here we treat not only the case q ∈ (1,∞) but also the limiting
cases where q = 1 and q = +∞ given by

β1(r) :=

⎧⎪⎨
⎪⎩
1 r > 0,

[−1, 1] r = 0,

− 1 r < 0,

and β∞(r) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[0,∞) r = 1,

0 r ∈ (−1, 1),

(−∞, 0] r = −1,

∅ |r| > 1,

respectively. To carry out this aim, we work in the abstract setting given in [9]. In this
setting, Attouch [4] studied the convergence of solutions of evolution equations governed
by subdifferential operators ∂ϕn and showed that if convex functions ϕn converges to ϕ as
n → ∞ in the sense of Mosco, then the solutions of equations governed by ∂ϕn converge
to the solution of the equation governed by ∂ϕ in an appropriate sense. So we here extend
this result to the case where equations contain a Lipschitz perturbation term, and apply
this abstract result to (P)q by showing the Mosco convergence of the associated convex
functions. (Since we are here concerned with solutions belonging to L∞(0, T ;L∞(Ω)), the
perturbation term |u|p−2u can be regarded as a Lipschitz perturbation.)



Chapter 1

Preliminaries

Here we collect some basic facts of functional analysis to be used later on.

1.1 Function Spaces

In this section, we fix some notations and basic facts on function spaces where we work.
For the details of them, we refer the reader to [7, 12]. We first state some basic properties
of the Lebesgue space. Let N ∈ N and let Ω be a open set of RN . For 1 ≤ p ≤ ∞, we
define Lebesgue space Lp(Ω) by

Lp(Ω) := {u : Ω → R ; mesurable, ‖u‖p < ∞} ,

where

‖u‖Lp(Ω) :=

⎧⎪⎨
⎪⎩
(∫

Ω
|u(x)|pdx

)1/p

, if 1 ≤ p < ∞,

inf{C ∈ R ; |u(x)| ≤ C, a.e. on Ω}, if p = ∞.

For simplicity, we may denote this Lp norm ‖ · ‖Lp(Ω) as ‖ · ‖p or ‖ · ‖p,Ω. We also denote
by Lp

loc(Ω) the set of all functions u : Ω → R which are measurable and belong Lp(ω) for
any compact set ω ⊂ Ω. It is well known that Lp(Ω) is a Banach space and that Lp(Ω) is
reflexive for 1 < p < ∞ and separable for 1 ≤ p < ∞. We can easily see that L2(Ω) is a
Hilbert space with the inner product

(u, v) :=

∫
Ω
u(x)v(x)dx ∀u, v ∈ L2(Ω).

Lemma 1.1.1 (Young’s inequality). Let a, b ≥ 0 and 1 < p < ∞. Then, the following
inequality holds:

ab ≤ 1

p
ap +

1

p′
bp

′
,

where p′ satisfies p−1 + (p′)−1 = 1.

7
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Corollary 1.1.2 (Young’s inequality with ε). Let a, b ≥ 0 and 1 < p < ∞. Then, for
any ε > 0 there exists Cε > 0 such that

ab ≤ εap + Cεb
p′ .

Lemma 1.1.3 (Hölder’s inequality). Let 1 ≤ p ≤ ∞. If f ∈ Lp(Ω) and g ∈ Lp′(Ω), then
fg ∈ L1(Ω) and the following inequality holds:

‖fg‖1 ≤ ‖f‖p‖g‖p′ .
Lemma 1.1.4 (Generalized Hölder’s inequality). Let 1 ≤ pi ≤ ∞, i = 1, 2, · · · , n (n ∈ N)
and r−1 = Σn

i=1p
−1
i with r ≥ 1. If fi ∈ Lpi(Ω), i = 1, 2, · · · , n, then Πn

i=1fi ∈ Lr(Ω) and∥∥∥∥∥
n∏

i=1

fi

∥∥∥∥∥
r

≤
n∏

i=1

‖fi‖pi .

Lemma 1.1.5. Let 1 ≤ p ≤ r ≤ q ≤ ∞. If f ∈ Lp(Ω) ∩ Lq(Ω), then f ∈ Lr(Ω) with the
estimate

‖f‖r ≤ ‖f‖θp‖f‖1−θ
q ,

for some θ ∈ [0, 1] satisfying 1
r = θ

p + 1−θ
q .

Let δ ∈ (0, 1]. We say that a function u : Ω → R is Hölder continuous with exponent
δ if

|u(x)− u(y)| ≤ C|x− y|α ∀x, y ∈ Ω,

for some C ≥ 0, which is called Hölder constant. We define C0,δ(Ω) as a set of all Hölder
continuous functions on Ω with exponent δ. It is well known that C0,δ(Ω) is a Banach
space with the norm

‖u‖C0,δ(Ω) := ‖u‖∞ + sup
x�=y

|u(x)− u(y)|
|x− y|δ .

Next we briefly touch on the Sobolev spaces. For m ∈ N ∪ {0} and p ∈ [1,∞], we set

Wm,p(Ω) :=
{
u ∈ Lp(Ω) ; Dαu ∈ Lp(Ω), ∀α ∈ (N ∪ {0})N , |α| ≤ m

}
,

and we also set

‖u‖Wm,p(Ω) :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

⎛
⎝ ∑

|α|≤m

‖Dαu‖pp

⎞
⎠

1/p

if 1 ≤ p < ∞,

max
|α|≤m

‖Dαu‖∞ if p = ∞.

It is well known that this is a norm on Wm,p(Ω) and (Wm,p(Ω), ‖ · ‖Wm,p(Ω)) is called the
Sobolev space. We can see that Sobolev space Wm,p(Ω) is a Banach space and if p = 2
then Wm,2(Ω) =: Hm(Ω) is a Hilbert space with the following scalar product

(u, v)Hm(Ω) :=
∑

|α|≤m

∫
Ω
DαuDαvdx ∀u, v ∈ Hm(Ω).
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Moreover, we set

Wm,p
0 (Ω) := C∞

c (Ω)
‖·‖Wm,p(Ω)

, Hm
0 (Ω) := Wm,2

0 (Ω),

where C∞
c (Ω) is the space of C∞ functions with compact support in Ω.

We also prepare the theory of the trace on ∂Ω of a function u ∈ W 1,p(Ω). If Ω is
a bounded domain in R

N with smooth boundary ∂Ω, then it is well known that every
u ∈ C(Ω) is well defined on ∂Ω. However, in general, a similar approach to the above
makes it difficult to give a direct meaning to the values on the boundary of u. Note that
since ∂Ω has N -dimensional Lebesgue measure zero, u|∂Ω is no longer well defined for
u ∈ Lp(Ω). To cope with this difficulty, we introduce the notion of a trace operator.

Lemma 1.1.6. Let Ω be a domain with compact smooth boundary ∂Ω, and let p ∈ [1,∞].
Then there exists a unique bounded linear operator γ0 : W 1,p(Ω) → Lp(∂Ω) such that the
followings hold.

(i) γ0(u) = u|∂Ω for all u ∈ W 1,p(Ω) ∩ C(Ω).

(ii) There exists C depending only on p and Ω such that

‖γ0(u)‖Lp(∂Ω) ≤ C‖u‖W 1,p(Ω) ∀u ∈ W 1,p(Ω).

By using this notation, γ0(u) is termed the trace of u on ∂Ω.

Lemma 1.1.7. Let Ω be a bounded domain of RN and ∂Ω be a class of C1, and assume
that u ∈ H1(Ω). Then, the following two properties are equivalent:

(i) u ∈ H1
0 (Ω);

(ii) γ0(u) = 0.

Let us recall the following results.

Lemma 1.1.8 (Poincaré inequality). Let Ω ⊂ R
N be a bounded domain. Then there exists

a constant C = C(Ω) > 0 such that

‖u‖22 ≤ C‖∇u‖22 ∀u ∈ H1
0 (Ω).

As a consequence, ‖∇u‖2 is a equivalent norm in H1
0 (Ω).

Next result is crucial for our study on parabolic and elliptic equations with Robin and
nonlinear boundary conditions.

Lemma 1.1.9 (Poincaré - Friedrichs inequality). Let Ω ⊂ R
N be a bounded domain. Then

there exists a constant C > 0 such that

‖u‖22 ≤ C

(
‖∇u‖22 +

∫
∂Ω

u2dσ

)
∀u ∈ H1(Ω).

As a consequence, (‖∇u‖22 + ‖u‖22,∂Ω)1/2 is a equivalent norm in H1(Ω).
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Lemma 1.1.10 ([56]). Let Ω ⊂ R
N be a bounded domain. For p ∈ [1,∞) there exists a

constant C = C(Ω, p) > 0 such that∥∥∥∥u− 1

|∂Ω|
∫
∂Ω

udσ

∥∥∥∥
Lp(Ω)

≤ C‖∇u‖Lp(Ω) ∀u ∈ W 1,p(Ω).

We note that the embedding from X into Y is denoted by X ↪→ Y , that is, X ↪→ Y
means X ⊂ Y and the injection ι : X → Y is continuous. More precisely, if X ↪→ Y , then
there exists C > 0 such that

‖u‖Y ≤ C‖u‖X ∀u ∈ X.

Moreover, if ι : X → Y is compact then we say the embedding X ↪→ Y is compact.

Lemma 1.1.11 (Sobolev’s embedding theorem). Assume that Ω ⊂ R
N is a bounded

domain with smooth boundary ∂Ω, and let m ∈ N and p ∈ [1,∞]. Then the followings
hold.

(i) If mp < N , then Wm,p(Ω) ↪→ Lq(Ω) for all q ∈ [1, Np
N−mp ].

(ii) If mp = N , then Wm,p(Ω) ↪→ Lq(Ω) for all q ∈ [1,∞).

(iii) If mp > N , then Wm,p(Ω) ↪→ C0,δ(Ω), where

δ

⎧⎪⎨
⎪⎩
= m− N

p if m− N
p < 1,

∈ [0, 1) (arbitrary ) if m− N
p = 1, p > 1,

= 1 if m− N
p > 1.

Lemma 1.1.12 (Rellich - Kondrachov theorem). Assume that Ω ⊂ R
N is a bounded

domain with smooth boundary ∂Ω, and let m ∈ N and p ∈ [1,∞]. Then the followings
hold.

(i) If mp < N , then Wm,p(Ω) ↪→ Lq(Ω) is compact for all q ∈ [1, Np
N−mp).

(ii) If mp = N , then Wm,p(Ω) ↪→ Lq(Ω) is compact for all q ∈ [1,∞).

(iii) If mp > N , then Wm,p(Ω) ↪→ C(Ω) is compact.

Lemma 1.1.13 (Gagliardo - Nirenberg inequality). Assume 1 ≤ p, q, r ≤ ∞ and let j,m
be two integers satisfying 0 ≤ j < m. If

1

p
− j

N
= a

(
1

r
− m

N

)
+ (1− a)

1

q

for some a ∈ [ jm , 1] (or a < 1 if r > 1 and m − j − N
r ), then there exists C =

C(m, j, p, q, r,N) > 0 such that

∑
|α|=j

‖Dαu‖p ≤ C

⎛
⎝ ∑

|α|=m

‖Dαu‖r
⎞
⎠

a

‖u‖1−a
q ∀u ∈ D(RN ).
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We often use the positive part u+ and the negative part u− defined by

u+ := max(u, 0), u− := max(−u, 0)

in this thesis, for example, to prove the nonnegativity of solutions and a comparison
principle. The next results are essential to deal with the positive and negative part.

Lemma 1.1.14. Let F : R → R be a Lipschitz continuous function such that F (0) = 0,
and let p ∈ [1,∞]. If u ∈ W 1,p(Ω), then F (u) ∈ W 1,p(Ω) and ∇F (u) = F ′(u)∇u a.e. on
Ω. Moreover, if p < ∞, then the mapping u �→ F (u) is continuous from W 1,p(Ω) into
itself.

Corollary 1.1.15. Let p ∈ [1,∞].

(i) Given u ∈ W 1,p(Ω), it follows that u+, u−, |u| = u+ + u− are belong to W 1,p(Ω).
Moreover,

∇u+ =

{
∇u if u > 0,

0 if u ≤ 0,
∇u− =

{
−∇u if u < 0,

0 if u ≥ 0,

and

∇|u| =

⎧⎪⎨
⎪⎩
∇u if u > 0,

0 if u = 0,

−∇u if u < 0,

a.e. on Ω. In particular, |∇|u|| = |∇u| a.e. on Ω. If p < ∞, then the mappings
u �→ u+, u �→ u− and u �→ |u| are continuous from W 1,p(Ω) into itself.

(ii) If u, v ∈ W 1,p(Ω), then max(u, v) ∈ W 1,p(Ω) and min(u, v) ∈ W 1,p(Ω).

(iii) Assume M ∈ W 1,p
loc (Ω) such that ∇M ∈ Lp(Ω). If M− ∈ Lp(Ω), then (u −M)+ ∈

W 1,p(Ω) for every u ∈ W 1,p(Ω), and

∇(u−M)+ =

{
∇u−∇M if u > M,

0 if u ≤ M
a.e. on Ω.

Moreover, if p < ∞, then the mapping u �→ (u −M)+ is continuous from W 1,p(Ω)
into itself. In particular, these results apply to the case where M is a nonnegative
constant.

We now consider an open interval I ⊂ R (bounded or not) and state a few results
concerning functions on I with values in Sobolev sapces and its function spaces, which
play an important role of the theory of evolution equations. For the rest of this section,
let X be a Banach space with the norm ‖ · ‖.
Definition 1.1.16 (Measurable functions). A function f : I → X is measurable if there
exists a set E ⊂ I with |E| = 0 and a sequence (fn)

∞
n=1 ⊂ Cc(I;X) such that

fn(t) → f(t) as n → ∞,

for all t ∈ I \ E.
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Proposition 1.1.17 (Pettis’ theorem). Let f : I → X. Then f is measurable if and only
if the following two conditions are satisfied:

(i) for every x∗ ∈ X∗, the function I � t �→ 〈x∗, f(t)〉 ∈ R is measurable in the sense of
real-valued functions;

(ii) there exists a set N ⊂ I with |N | = 0 such that f(I \N) is separable.

Definition 1.1.18 (Integrable functions). A measurable function f : I → X is integrable
if there exists a sequence (fn)

∞
n=1 ⊂ Cc(I;X) such that∫

I
‖fn(t)− f(t)‖dt → 0 as n → ∞.

Proposition 1.1.19 (Bochner’s theorem). Let f : I → X be a measurable function. Then
f is integrable if and only if ‖f‖ is integrable in the sense of R. Moreover, the following
holds: ∥∥∥∥

∫
I
f(t)dt

∥∥∥∥ ≤
∫
I
‖f(t)‖dt.

Now, we define Bochner space Lp(I;X). For 1 ≤ p ≤ ∞, Lp(I;X) denotes the set of
equivalence class of measurable functions f : I → X such that I � t → ‖f(t)‖ ∈ R belongs
to Lp(I). For f ∈ Lp(I;X), we define its norm

‖f‖Lp(I;X) =

⎧⎪⎨
⎪⎩
(∫

I
‖f(t)‖pdt

) 1
p

if 1 ≤ p < ∞,

ess supt∈I‖f(t)‖ if p = ∞.

It is well known that (Lp(I;X), ‖ · ‖Lp(I;X)) becomes a Banach space, and if X is reflexive,
then Lp(I;X) is also reflexive for 1 < p < ∞. Moreover, for 1 ≤ p < ∞, if X is reflexive
or X∗ is separable, then (Lp(I;X))∗ ∼= Lp′(I;X∗). We also define Lp

loc(I;X) as the set of
measurable functions f : I → X such that for any compact interval J ⊂ I, f ∈ Lp(J ;X).
It is obvious that if I is bounded, then Lp(I;X) ↪→ Lq(I;X) for 1 ≤ q ≤ p ≤ ∞.

We denote by W 1,p(I;X) the space of equivalence class of functions f ∈ Lp(I;X) such
that f ′ ∈ Lp(I;X), where the derivative is the sense of D′(I;X), for 1 ≤ p ≤ ∞. For
f ∈ W 1,p(I;X), we define

‖f‖W 1,p(I;X) = ‖f‖Lp(I;X) + ‖f ′‖Lp(I;X).

It is well known that (W 1,p(I;X), ‖ · ‖W 1,p(I;X)) is a Banaca space. We can define

W 1,p
loc (I;X) as well as Lp

loc(I;X).

Lemma 1.1.20. Let p ∈ [1,∞] and assume that f ∈ Lp(I;X). Then the following five
properties are equivalent:

(i) f ∈ W 1,p(I;X);

(ii) there exists g ∈ Lp(I;X) such that we have

f(t) = f(t0) +

∫ t

t0

g(s)ds

for almost every t0, t ∈ I;
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(iii) there exists g ∈ Lp(I;X), x0 ∈ X and t0 ∈ I such that we have

f(t) = x0 +

∫ t

t0

g(s)ds

for almost all t ∈ I;

(iv) f is absolutely continuous, differentiable almost everywhere, and f ′ ∈ Lp(I;X);

(v) f is weakly absolutely continuous, weakly differentiable almost everywhere and f ′ ∈
Lp(I;X).

1.2 Some Fundamental Lemmas

In this section, we are going to summarize frequently used inequalities and fundamental
lemmas.

Lemma 1.2.1 (cf. Showalter [59], Lemma IV.4.1). Let a, b ∈ L1(0, T ) with b ≥ 0, and
let y : [0, T ] → R

+ be an absolutely continuous function satisfying

(1− α)y′(t) ≤ a(t)y(t) + b(t)yα(t) a.e. t ∈ [0, T ]

for some α ∈ [0, 1). Then the following inequality holds:

y1−α(t) ≤ y(0)1−αe
∫ t
0 a(s)ds +

∫ t

0
e
∫ t
s a(τ)dτ b(s)ds, t ∈ [0, T ].

The following two lemmas are necessary to apply L∞-energy method developed by
Ôtani in [45]. This is very useful method to show the local well-posedeness of nonlinear
parabolic problems (see the following chapters). It is well known that the choice of the
function spaces is crucial role to study of nonlinear partial differential equations and L2

space or Lp space (1 ≤ p < ∞) is frequently used to analyze them. Since L∞ space is not
reflexive and separable, L∞ space is not often directly used and hence L∞ bounds may be
derived from Wm,p-estimate via Sobolev’s imbedding theorem. Therefore a priori bounds
of the solutions in L∞ space are usually subject to the restriction of the space dimension.
We can deal with this difficulty by using L∞-energy method.

Lemma 1.2.2. ([45]) Let Ω be any domain in R
N and assume that exists a number r0 ≥ 1

and a constant C independent of r ∈ [r0,∞) such that

‖u‖Lr(Ω) ≤ C ∀r ∈ [r0,∞),

then u belongs to L∞(Ω) and the following property holds.

(1.2.1) lim
r→∞ ‖u‖Lr(Ω) = ‖u‖L∞(Ω).

Conversely, assume that u ∈ Lr0(Ω) ∩ L∞(Ω) for some r0 ∈ [1,∞), then u satisfies
(1.2.1).
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Lemma 1.2.3 ([45]). Let y(t) be a bounded measurable non-negative function on [0, T ] and
suppose that there exists y0 ≥ 0 and a monotone non-decreasing function m(·) : [0,+∞) →
[0,+∞) such that

y(t) ≤ y0 +

∫ t

0
m(y(s))ds a.e. t ∈ (0, T ).

Then there exists a number T0 = T0(y0,m(·)) ∈ (0, T ] such that

y(t) ≤ y0 + 1 a.e. t ∈ [0, T0].

Lemma 1.2.4. Let p ∈ (2, 2∗), then there exists a constant λ = λ(N, p) ∈ (0, 2] such that

(1.2.2) ‖u‖2(p−1)
2(p−1) ≤ C‖u‖2−λ

H2(Ω)
‖u‖2p−4+λ

H1(Ω)
∀u ∈ H2(Ω)

for some C > 0.

Proof. First of all, if N = 1, 2 ; or N ≥ 3 and p ≤ 2(N−1)
N−2 , then we can take λ = 2 by

Sobolev’s embedding H1(Ω) ⊂ L2(p−1)(Ω). For the case of N ≥ 3 and p > 2(N−1)
N−2 , we note

that the following Gagliardo-Nirenberg inequality holds:

(1.2.3) ‖v‖2(p−1) ≤ C‖v‖θH2(Ω)‖v‖1−θ
2N
N−2

∀v ∈ H2(Ω),

where θ ∈ (0, 1) satisfies

1
2(p−1) = θ

(
1
2 − 2

N

)
+ (1− θ)N−2

2N .

Then we see that 2(N−1)
N−2 < p < 2N

N−2 implies 0 < θ = (N−2)p−2N+2
2(p−1) < 1 and 0 < 2(p−1)θ =

(N − 2)p − 2N + 2 < 2. Since H1(Ω) is continuously embedded in L
2N
N−2 (Ω), it follows

from (1.2.3) that (1.2.2) holds with λ = 2N − (N − 2)p ∈ (0, 2).

Lemma 1.2.5. Let (a1n)n∈N, · · · , (aln)n∈N be a finite family of real-valued sequences for
some l ≥ 2 satisfying

l∑
k=1

akn = 0, ∀ n ∈ N.

Suppose that there exist ak ∈ R (k = 1, · · · , l) such that

ak ≤ lim inf
n→∞ akn, ∀ k = 1, · · · , l,

l∑
k=1

ak ≥ 0.

Then

lim
n→∞ akn = ak, ∀ k = 1, · · · , l.
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Proof. Since it follows from the assumption that

a1n = −
∑
k �=1

akn, ∀ n ∈ N,

we have

lim sup
n→∞

a1n = lim sup
n→∞

⎛
⎝−

∑
k �=1

akn

⎞
⎠

= − lim inf
n→∞

⎛
⎝∑

k �=1

akn

⎞
⎠

≤ −
∑
k �=1

(
lim inf
n→∞ akn

)

≤ −
∑
k �=1

ak ≤ a1.

Therefore, combining the above inequality and the assumption a1 ≤ lim infn→∞ a1n, we
can deduce that

lim
n→∞ a1n = a1.

By the similar argument as above for a2, · · · , al, we conclude that

lim
n→∞ akn = ak, ∀ k = 1, · · · , l.

1.3 Maximal Monotone Operators

In this section, we define the maximal monotone operators on H, and we also mention
some properties of them. In particular, the latter part of this section is devoted to the sub-
differential operators, which play an important role throughout this thesis. The definitions
and propositions for the maximal monotone operators and the subdifferential operators
given in this section are explained in detail in [9, 7].

1.3.1 Maximal Monotone Operators

First let us introduce the notion of (nonlinear) maximal monotone operators. Let H be
a real Hilbert space with inner product (·, ·)H and norm | · |H , and let A : H → 2H be
a possibly multivalued operator with domain D(A) := {u ∈ H ; Au �= ∅}. In particular,
if an operator A is multivalued, we may identify it with its graph in H × H. For A,
B : H → 2H , A ⊂ B means that D(A) ⊂ D(B) and Ax = Bx for all x ∈ D(A). Moreover
A = B if and only if A ⊂ B and B ⊂ A.
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Definition 1.3.1. An operator A : H → 2H is monotone if the following holds:

(y1 − y2, x1 − x2)H ≥ 0 ∀x1, x2 ∈ D(A), ∀y1 ∈ Ax1, ∀y2 ∈ Ax2.

In particular, a monotone operator A is maximal if there exists no monotone extension of
A, i.e., if B : H → 2H is monotone and satisfy A ⊂ B, then A = B.

The necessary and sufficient condition for the maximality of a monotone operator
is given by the following proposition. In fact, it is often more convenient to show the
maximality of a monotone operator by the following equivalent proposition instead of the
definition.

Proposition 1.3.2. Let A : H → 2H be a monotone operator. Then the followings are
equivalent.

(i) A is maximal.

(ii) R(I +A) = H.

(iii) R(I + λA) = H ∀ λ > 0.

By virtue of this proposition, we know that to show the maximality of some monotone
operator, we only need to show the range condition (ii), and it is often equivalent to the
existence and the regularity of solutions of the associated nonlinear elliptic equations.

The following notion of closedness of an operator is important when we show the
existence of solution to nonlinear evolution equations.

Definition 1.3.3. An operator A : H → 2H is demiclosed if and only if the following
condition holds: if yn ∈ Axn satisfies xn → x strongly in H and yn ⇀ y weakly in H, than
x ∈ D(A) and y ∈ Ax.

Proposition 1.3.4. Let A : H → 2H be a maximal monotone operator. Then A is
demiclosed.

Proposition 1.3.5. Let A : H → 2H be a maximal monotone operator. Then a set Ax is
closed and convex for every x ∈ D(A).

By Proposition 1.3.5, we can see that for every x ∈ D(A), there exists a unique y0 ∈ Ax
such that |y0|H = inf{|y|H ; y ∈ Ax}. Thus we define a single-valued mapping A0 : H → H
by

A0x := {y0 ; y0 ∈ Ax, |y0|H = inf
y∈Ax

|y|H}, x ∈ D(A0) := D(A).

This operator A0 is called the canonical restriction (or the minimal section) of A.
Let A : H → 2H be a maximal monotone operator. Then by Proposition 1.3.2 we

know R(I + λA) = H for all λ > 0. We define Jλ := (I + λA)−1 : H → D(A) as the
resolvent of A for λ > 0, which is a single-valued nonexpansive mapping on H. Now let
us introduce the Yosida approximation.

Definition 1.3.6. Let A : H → 2H be a maximal monotone operator. Then the Yosida
approximation Aλ : H → H of A is given by

(1.3.1) Aλx :=
1

λ
(x− Jλx).
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Proposition 1.3.7. Let A : H → 2H be a maximal monotone operator. Then the following
properties hold.

(i) Aλx ∈ A(Jλx), ∀ x ∈ H, ∀ λ > 0.

(ii) Aλ is maximal monotone and Lipschitz continuous on H with Lipschitz constant λ−1.

(iii) (Aλ)μ = Aλ+μ, ∀ λ, μ > 0.

(iv) |Aλx|H ≤ |A0x|H , ∀ λ > 0, ∀ x ∈ D(A),

lim
λ→0

Aλx = A0x, ∀ x ∈ D(A).

1.3.2 Subdifferential Operators

Let φ : H → (−∞,+∞] be a functional with the effective domain φ := {u ∈ H ; φ(u) <
+∞}. Functional φ is said to be proper if its effective domain D(φ) is not empty, i.e.,
φ(u) �≡ +∞ for u ∈ H. Moreover φ is said to be convex if the following inequality holds:

φ((1− θ)u+ θv) ≤ (1− θ)φ(u) + θφ(v), ∀u, v ∈ H, ∀θ ∈ [0, 1];

and φ is said to be lower semicontinuous if for (un)n∈N ⊂ H and u ∈ H satisfying un → u
strongly in H, the following inequality holds:

lim inf
n→∞ φ(un) ≥ φ(u).

From now on, Φ(H) denotes the set of all proper convex lower semicontinuous functionals
φ : H → (−∞,+∞].

Let us briefly touch on the notion of subdifferential operators. Let φ ∈ Φ(H). For
each u ∈ D(φ), the subdifferential ∂φ(u) of φ at u (in H) is defined by

∂φ(u) := {f ∈ H ; φ(v)− φ(u) ≥ (f, v − u)H , ∀v ∈ D(φ)}.

Then ∂φ : H → 2H becomes a possibly multivalued maximal monotone operator with
domain D(∂φ) := {u ∈ D(φ) ; ∂φ(u) �= ∅}, which is called by subdifferential operator.

Proposition 1.3.8. Let φ ∈ Φ(H). Then the following statements hold.

(i) ∂φ is maximal monotone on H.

(ii) D(∂φ) ⊂ D(φ) ⊂ D(φ) = D(∂φ).

(iii) If φ is Gâteaux differentiable at u, then ∂φ(u) = DGφ(u).

For every λ > 0, we define the functional φλ by

φλ(u) := inf
v∈H

(
1

2λ
|u− v|2H + φ(v)

)
,

where φ ∈ Φ(H). The functional φλ is called the Moreau-Yosida regularization of φ.
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Proposition 1.3.9. Let φ ∈ Φ(H). Then the infimum in the definition of φλ is attained
at Jλx. More precisely, it follows that

φλ(u) =
1

2λ
|Jλu− u|2H + φ(Jλu) =

λ

2
|(∂φ)λu|2H + φ(Jλu).

Furthermore, the following properties hold.

(i) φλ is convex and Fréchet differentiable, in particular, (φλ)
′ = ∂φλ = (∂φ)λ.

(ii) φ(Jλu) ≤ φλ(u) ≤ φ(u), ∀ u ∈ H, ∀ λ > 0.

(iii) lim
λ→0

φλ(u) = φ(u), ∀ u ∈ H.

The following two propositions are useful in showing that the sum of subdifferential
operators is again maximal.

Proposition 1.3.10. Let A be a maximal monotone operator on H, and let φ ∈ Φ(H).
Assume that there exists C > 0 such that

φ((1 + λA)−1u) ≤ φ(u) + Cλ ∀u ∈ H, ∀λ > 0.

Then A+ ∂φ is maximal monotone and the following inequality holds:

|A0u|H ≤ |(A+ ∂φ)0u|H +
√
C ∀u ∈ D(A) ∩D(∂φ).

Moreover, D(A+ ∂φ) = D(A) ∩D(∂φ) = D(A) ∩D(∂φ).

Proposition 1.3.11. Let A be a maximal monotone operator on H, and let φ ∈ Φ(H)
satisfying

φ(Proj
D(A)

u) ≤ φ(u) ∀u ∈ H.

Then the followings are equivalent.

(i) φ((1 + λA)−1u) ≤ φ(u) for all u ∈ H and λ > 0.

(ii) (Aλu, v)H ≥ 0 for all (u, v) ∈ ∂φ and λ > 0.

Finally we recall the chain rule for φ ∈ Φ(H). The following result plays an important
role to derive a priori estimates of solutions to nonlinear evolution equations associated
with subdifferential operator in the next section and Chapter 6.

Proposition 1.3.12. Let φ ∈ Φ(H) and suppose that u ∈ W 1,2(0, T ;H) with u(t) ∈ D(∂φ)
for a.e. t ∈ (0, T ). If there exists g ∈ L2(0, T ;H) with g(t) ∈ ∂φ(u(t)) for a.e. t ∈ (0, T ),
then the function t �→ φ(u(t)) is absolutely continuous on [0, T ] and

d

dt
φ(u(t)) =

(
h(t),

du

dt
(t)

)
H

a.e. t ∈ [0, T ]

for any h ∈ ∂φ(u) a.e. on [0, T ].
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1.3.3 Formulation of (P) as Evolution Equation

Here we are going to formulate (P) as a nonlinear evolution equation associated with a
subdifferential operator in L2(Ω). Recall our problem:

(P)

⎧⎪⎨
⎪⎩
∂tu−Δu = |u|p−2u, t > 0, x ∈ Ω,

− ∂νu ∈ β(u), t > 0, x ∈ ∂Ω,

u(0, x) = u0(x), x ∈ Ω,

where Ω is bounded domain in R
N with smooth boundary ∂Ω, p > 2 is a given constant,

ν denotes the unit outward normal vector on ∂Ω. The multivalued map β is a maximal
monotone operator on R. More precisely, β = ∂j, where j : R → (−∞,+∞] is some
proper convex lower semicontinuous function.

Let ϕ : L2(Ω) → (−∞,+∞] be the functional defined by

D(ϕ) := {u ∈ H1(Ω) ; j(u) ∈ L1(∂Ω)},

ϕ(u) :=

⎧⎪⎨
⎪⎩
1

2

∫
Ω
|∇u|2dx+

∫
∂Ω

j(u)dσ, u ∈ D(ϕ),

+∞, u ∈ L2(Ω) \D(ϕ).

(1.3.2)

In [10], Brézis showed the following result.

Proposition 1.3.13. Let ϕ : L2(Ω) → (−∞,+∞] be as above. Then ϕ ∈ Φ(L2(Ω))
and its subdifferential coincides with the Laplacian under nonlinear boundary conditions,
namely,

D(∂ϕ) = {u ∈ H2(Ω) ; − ∂νu ∈ β(u), a.e. on ∂Ω},
∂ϕ(u) = −Δu, u ∈ D(∂ϕ).

Furthermore the followings hold.

(i) D(∂ϕ) = L2(Ω).

(ii) (Elliptic estimate) There exist c1, c2 > 0 such that

(1.3.3) ‖u‖H2(Ω) ≤ c1‖ −Δu+ u‖2 + c2, u ∈ D(∂ϕ).

Using the above notations, we can rewrite (P) into the following evolution equation in
L2(Ω):

(AC)

⎧⎨
⎩

d

dt
u(t) + ∂ϕ(u(t)) +Bp(u(t)) = 0, t > 0,

u(0) = u0,

where Bp : L2(Ω) → L2(Ω) is defined by Bp(u) = −|u|p−2u. In Chapter 3, the local solv-
ability of (P) will be shown based on the abstract theory of evolution equations described
in the next section using this formulation (AC).



20 CHAPTER 1. PRELIMINARIES

Note that (AC) has another description. Indeed, we define a functional ψp : L2(Ω) →
(−∞,+∞] by

ψp(u) :=

⎧⎪⎨
⎪⎩

1

p

∫
Ω
|u|pdx, u ∈ D(ψp) := Lp(Ω),

+∞, u ∈ L2(Ω) \ Lp(Ω).

(1.3.4)

Since we can see that ψp ∈ Φ(L2(Ω)), we can define its subdifferential, which coincides
with the (single-valued) power type nonlinear operator, i.e.,

∂ψp(u) = |u|p−2u, u ∈ D(∂ψp) = {u ∈ L2(Ω) ; |u|p−2u ∈ L2(Ω)}.

By using this notation, (AC) is also represented as

(AC)∗

⎧⎨
⎩

d

dt
u(t) + ∂ϕ(u(t))− ∂ψp(u(t)) = 0, t > 0,

u(0) = u0,

The form of evolution equations with the difference term of two subdifferentials make
it easy to understand the energy structure. The asymptotic behavior of solutions to this
type equation have been studied by Ôtani [46, 48] and Ishii [29]. In Chapter 3, we are
going to clarify the large time behavior of global solutions to (P) via an analysis for (AC)∗.

Finally, let (AC)q or (AC)
∗
q denote (AC) with β = βq (i.e., j(r) =

1
r |r|q) for q ∈ (1,+∞).

1.4 Evolution Equations

This section is devoted to summarizing the theory of abstract evolution equations, which
will be used to prove the existence of solution in the latter chapters.

We consider the following evolution equation governed by subdifferential operators in
a real Hilbert space H:

(E)

⎧⎪⎨
⎪⎩
du

dt
(t) + ∂φ(u(t)) +B(u(t)) � f(t), t > 0,

u(0) = u0,

where φ ∈ Φ(H), f ∈ L2(0, T ;H) and u0 ∈ D(∂φ). We first assume that B is a Lipschitz
continuous on H, that is, there exists L > 0 such that

(1.4.1) |B(u)−B(v)|H ≤ L|u− v|H , u, v ∈ H.

Proposition 1.4.1. Let φ ∈ Φ(H) and let B : H → H with (1.4.1). Then for every
f ∈ L2(0, T ;H) and u0 ∈ D(∂φ), there exists a unique solution u ∈ C([0, T ];H) of (E)
satisfying the following properties.

(i) u(t) ∈ D(∂φ) for a.e. t ∈ [0, T ], and u satisfies (E) for a.e. on [0, T ].

(ii)
√
t
du

dt
,
√
tg ∈ L2(0, T ;H), where g(t) ∈ ∂φ(u(t)) for a.e. t ∈ [0, T ].
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(iii) φ(u(t)) ∈ L1(0, T ), tφ(u(t)) ∈ L∞(0, T ).

In addition, if u0 ∈ D(φ), then
du

dt
, g ∈ L2(0, T ;H).

Remark 1.4.2. Note that, in Proposition 1.4.1, the function t �→ φ(u(t)) is absolutely
continuous on (0, T ] (resp. [0, T ]) for u0 ∈ D(φ) (resp. u0 ∈ D(φ)) by virtue of Proposition
1.3.12.

This result is well known (e.g., see Proposition 3.12 in Brezis [9]), but we here give a
brief proof of the existence of solutions for later use. The argument of a priori estimates
in this proof will also be used in Chapter 6.

Proof. For the rest of this proof, let A = ∂φ. We first show the existence of solutions for
the case where u0 ∈ D(φ). To do this, we consider the following approximate equation of
(E):

(E)λ

⎧⎪⎨
⎪⎩
du

dt
(t) +Aλu(t) +B(u(t)) � f(t), t > 0,

u(0) = u0.

Here Aλ is the Yosida approximation of A, and note that Aλ = (∂φ)λ = ∂φλ. It is
well known that the corresponding integral equation of (E)λ possesses a unique solution
uλ ∈ C([0, T ];H). We are going to derive a priori estimates of solution to (E)λ.

For fixed v ∈ D(A), we set

φ̃λ(u) := φλ(u)− φλ(v)− (Aλv, u− v)H .

Then we easily verify

φ̃λ(u) ≥ 0, u ∈ D(φ),(1.4.2)

φ̃λ(v) = 0.(1.4.3)

Moreover put B̃(u) := B(u) − B(0). Then B̃ is Lipschitz continuous on H which satisfy
B̃(0) = 0. By using φ̃ and B̃, the equation (E)λ can be rewritten in the following equation.

duλ
dt

+ ∂φ̃λ(uλ(t)) + B̃(uλ(t)) � f(t)−Aλv +B(0) =: f̃(t).

We here note that the estimates of f̃ is independent of λ. Indeed, by using Proposition
1.3.7,

|f̃(t)|H ≤ |f(t)|H + |A0v|H + |B(0)|H ,

‖f̃‖2L2(0,T ;H) ≤ 3
(
‖f‖2L2(0,T ;H) + T |A0v|2H + T |B(0)|2H

)
.

Thus, without loss of generality, we can assume that (1.4.2), (1.4.3) and B(0) = 0 hold.
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Multiplying (E)λ by uλ − v, we have

1

2

d

dt
|uλ(t)− v|2H + (Aλuλ, uλ − v)H + (Buλ, uλ − v)H ≤ |f(t)|H |uλ(t)− v|H .

By the definition of subdifferential of φλ, (1.4.2) and (1.4.3), we can see that

(Aλuλ, uλ − v)H ≥ φλ(uλ)− φλ(v) ≥ 0.

Therefore we get

1

2

d

dt
|uλ(t)− v|2H ≤ |f(t)|H |uλ(t)− v|H + |(Buλ −Bv, uλ − v)H |+ |(Bv, uλ − v)H |

≤ (|f(t)|H + |Bv|H) |uλ(t)− v|H + L|uλ(t)− v|2H
Applying Lemma 1.2.1 with α = 1/2, y(t) = |uλ(t) − v|2H , a(t) = L and b(t) = |f(t)|H +
|Bv|H , we obtain

|uλ(t)− v|H ≤ |u0 − v|HeLT + eLT
∫ T

0
(|f(t)|H + |Bv|H) dt, t ∈ [0, T ],

which implies

(1.4.4) sup
t∈[0,T ]

|uλ(t)|H ≤ |v|H + eLT
(|u0 − v|H + ‖f‖L1(0,T ;H) + T |Bv|H

)
=: C1.

Multiplying (E)λ by
duλ
dt

, we have

∣∣∣∣duλdt

∣∣∣∣
2

H

+

(
Aλuλ,

duλ
dt

)
H

+

(
B(uλ),

duλ
dt

)
H

=

(
f(t),

duλ
dt

)
H

.

Note that, by virtue of Proposition 1.3.9, since φλ is Fréchet differentiable and (φλ)
′ = Aλ,

we see that (
Aλuλ,

duλ
dt

)
H

=
d

dt
φλ(uλ(t)).

Hence, applying Schwarz inequality and Young inequality, we get

∣∣∣∣duλdt

∣∣∣∣
2

H

+
d

dt
φλ(uλ(t)) ≤

∣∣∣∣
(
B(uλ),

duλ
dt

)
H

∣∣∣∣+
(
f(t),

duλ
dt

)
H

≤ |Buλ|2H +
1

4

∣∣∣∣duλdt

∣∣∣∣
2

H

+ |f(t)|2H +
1

4

∣∣∣∣duλdt

∣∣∣∣
2

H

.

By (1.4.1) and (1.4.4), we obtain

1

2

∣∣∣∣duλdt

∣∣∣∣
2

H

+
d

dt
φλ(uλ(t)) ≤ L2C2

1 + |f(t)|2H .
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Noting that φλ(u) ≤ φ(u), we have

(1.4.5) sup
t∈[0,T ]

φλ(uλ(t)) +
1

2

∫ T

0

∣∣∣∣duλdt

∣∣∣∣
2

H

dt ≤ φ(u0) + TL2C2
1 + ‖f‖2L2(0,T ;H) =: C2.

Furthermore since Aλuλ = f −Buλ − duλ
dt

, we can also derive

(1.4.6) ‖Aλuλ‖2L2(0,T ;H) ≤ 3
(
‖f‖2L2(0,T ;H) + TL2C2

1 + 2C2

)
=: C3.

We remark that C1, C2 and C3 are independent of λ.

Put wλ,μ(t) = uλ(t)− uμ(t). Then

(1.4.7)
d

dt
wλ,μ(t) +Aλuλ −Aμuμ +Buλ −Buμ = 0.

By using the monotonicity of A and Aλu ∈ A(Jλu), we see that

(Aλuλ −Aμuμ, uλ − uμ)H = (Aλuλ −Aμuμ, λAλuλ − μAμuμ)H

+ (Aλuλ −Aμuμ, Jλuλ − Jμuμ)H

≥ λ|Aλuλ|2H + μ|Aμuμ|2H − (λ+ μ)(Aλuλ, Aμuμ)H

≥ λ|Aλuλ|2H + μ|Aμuμ|2H − (λ+ μ)|Aλuλ|H |Aμuμ|H

≥ − λ

4
|Aμuμ|2H − μ

4
|Aλuλ|2H .

Multiplying (1.4.7) by wλ,μ and using the above inequality, we have

1

2

d

dt
|wλ,μ(t)|2H = −(Aλuλ −Aμuμ, wλ,μ)H − (Buλ −Buμ, wλ,μ)H

≤ λ

4
|Aμuμ(t)|2H +

μ

4
|Aλuλ(t)|2H + L|wλ,μ(t)|2H .

By virtue of (1.4.6), integrating this inequality over [0, t], we obtain

|wλ,μ(t)|2H ≤ λ+ μ

4
C3 + L

∫ t

0
|wλ,μ(s)|2Hds.

By Gronwall’s inequality we can deduce that

sup
t∈[0,T ]

|wλ,μ(t)|2H ≤ eLTC3
λ+ μ

4
,

which implies that (uλn)n∈N is Cauchy sequence in C([0, T ];H), where (λn) is a sequence
satisfying λn → 0 as n → +∞. Therefore there exists u ∈ C([0, T ];H) such that

(1.4.8) uλn → u strongly in C([0, T ];H).
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Moreover we can get

Jλnuλn → u strongly in L2(0, T ;H).(1.4.9)

Indeed, by (1.4.6),

‖Jλuλ − u‖L2(0,T ;H) ≤ ‖Jλuλ − uλ‖L2(0,T ;H) + ‖uλ − u‖L2(0,T ;H)

= λ‖Aλuλ‖L2(0,T ;H) + ‖uλ − u‖L2(0,T ;H)

≤ λ
√

C3 +
√
T sup

t∈[0,T ]
|uλ(t)− u(t)|H

→ 0 as λ → 0.

On the other hand, since Aλuλ and
d

dt
uλ are bounded in L2(0, T ;H) by (1.4.5) and (1.4.6),

there exists a subsequence of (n) denoted by (n) again such that

Aλnuλn ⇀ g weakly in L2(0, T ;H),(1.4.10)

d

dt
uλn ⇀ χ weakly in L2(0, T ;H),(1.4.11)

for some g and χ ∈ L2(0, T ;H). Let A be a realization of A on L2(0, T ;H), that is,

(Au)(t) := A(u(t)) a.e. t ∈ [0, T ].

Since A is a maximal monotone operator, A is also maximal monotone. By (1.4.9), (1.4.10)
and the demiclosedness of A, we have

u ∈ D(A), g ∈ Au,

which is equivalent to

u(t) ∈ D(A), g(t) ∈ Au(t) = ∂φ(u(t)), a.e. t ∈ [0, T ].

Since
d

dt
is a closed linear operator in L2(0, T ;H), by (1.4.8) and (1.4.11), we get

χ =
d

dt
u.

Moreover since B is Lipschitz continuous, it is clear that

B(uλn) → B(u) strongly in C([0, T ];H).

Then we conclude that

d

dt
u(t) + g(t) +B(u(t)) = f(t) in H a.e. t ∈ [0, T ],

where g(t) ∈ ∂φ(u(t)). Furthermore, by (1.4.8), we have u(+0) = u0.
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We next consider the case where u0 ∈ D(φ) = D(∂φ). Let (un0 ) ⊂ D(φ) be a sequence
satisfying un0 → u0 strongly in H as n → ∞, and let un be a solution to (E) with the
initial data un0 for n ∈ N. In the same way as the former part of the proof, we can deduce
that there exists C4 > 0 independent of n such that

(1.4.12) sup
t∈[0,T ]

|un(t)|H ≤ C4.

Multiplying (E) by t
dun

dt
, we have

t

∣∣∣∣dundt

∣∣∣∣
2

H

+ t
d

dt
φ(un(t)) + t

(
B(un),

dun

dt

)
H

= t

(
f(t),

dun

dt

)
H

.

By integrating it over [0, t] and using Schwarz’s inequality and Young’s inequality, we get

1

2

∫ t

0
s

∣∣∣∣dunds

∣∣∣∣
2

H

ds+ tφ(un(t))(1.4.13)

≤
∫ t

0
s |B(un(s))|2H ds+

∫ t

0
s |f(s)|2H ds+

∫ t

0
φ(un(s))ds.

On the other hand, for gn(t) ∈ ∂φ(un(t)), by the definition of the subdifferential operator,
we see that

φ(un(t)) ≤ (gn, un − v)H

=

(
f(t)− dun

dt
−B(un), un − v

)
H

≤ |f(t)|H |un(t)− v|H − 1

2

d

dt
|un(t)− v|2H + L|un(t)− v|2H + |Bv|H |un(t)− v|H ,

whence follows ∫ t

0
φ(un(s))ds ≤ sup

t∈[0,T ]
|un(t)− v|H

(‖f‖L1(0,T ;H) + T |Bv|H
)

(1.4.14)

+
1

2
|un0 − v|2H + LT sup

t∈[0,T ]
|un(t)− v|2H .

Combining (1.4.12), (1.4.13), (1.4.14) and the fact un0 → u0 strongly in H, we see that
there exists C5 > 0 independent of n such that

(1.4.15)

∫ T

0
t

∣∣∣∣dundt

∣∣∣∣
2

H

dt ≤ C5, tφ(un(t)) ≤ C5 ∀ t ∈ [0, T ].

Moreover since gn = f(t)− dun

dt
−B(un), we also see that there exists C6 > 0 independent

of n such that

(1.4.16)

∫ T

0
t |gn(t)|2Hdt ≤ C6.
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Put wn,m(t) = un(t)− um(t). Then

d

dt
wn,m(t) + ∂φ(un(t))− ∂φ(um(t)) +B(un(t))−B(um(t)) � 0.

By the monotonicity of ∂φ, it follows from Gronwall’s inequality

|wn,m(t)|2H ≤ e2LT |un0 − um0 |2H .

Hence since (un) is a Cauchy sequence in C([0, T ];H), there exists u ∈ C([0, T ];H) such
that

(1.4.17) un → u strongly in C([0, T ];H).

As before, by (1.4.15) and (1.4.16), taking a subsequence of (n) (which is denoted by (n)
again), we conclude that

√
tgn ⇀

√
tg weakly in L2(0, T ;H),

√
t
dun

dt
⇀

√
t
du

dt
weakly in L2(0, T ;H),

and u is a desired solution to (E).

Remark 1.4.3. In proposition 1.4.1, the assertions (i) - (iii) are still valid with the
assumptions f ∈ L1(0, T ;H) and

√
tf ∈ L2(0, T ;H) instead of f ∈ L2(0, T ;H) by consid-

ering slight modification in the above proof.

We next introduce the abstract theory for some nonlinear evolution equations (E)
associated with subdifferential operators with non-monotone perturbations B in a real
Hilbert space H, which is developed by Ôtani [47]. In order to formulate a solvability
result, we impose the following assumptions.

(A1) For any L > 0, the set {u ∈ H ; φ(u) + |u|2H ≤ L} is compact in H.

(A2) B : H → H satisfies the following φ-demiclosedness condition:

If un → u strongly in C([0, T ];H), ∂φ(un) ⇀ ∂φ(u) weakly in L2(0, T ;H) and
B(un) ⇀ b weakly in L2(0, T ;H), then b = B(u) holds a.e. in t ∈ [0, T ].

(A3) There exist a monotone increasing function �(·) : [0,∞) → [0,∞) and k ∈ [0, 1) such
that

|B(u)|2H ≤ k|∂φ(u)|2H + �(φ(u) + |u|H) ∀u ∈ D(∂φ).

The following result is a simplified version of the existence result which is founded
in Ôtani [47], and note that more general setting is investigated in [47], e.g., B is a
multivalued mapping and B, φ have a t-dependence.

Proposition 1.4.4. [47] Let φ ∈ Φ(H) and the assumptions (A1) - (A3) be satisfied.
Then for any u0 ∈ D(φ) and f ∈ L2(0, T ;H), there exists a positive number T0 =
T0(|u0|H , φ(u0)) ∈ [0, T ] such that the abstract Cauchy problem (E) in H possesses a
strong solution u ∈ C([0, T0];H) such that

(1.4.18)
d

dt
u, ∂φ(u), B(u) ∈ L2(0, T0;H).
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1.5 Convergence of Functionals

In this section, we define Mosco convergence and mention some properties of it according
to Attouch [4, 5] as the preparation for Chapter 6.

Mosco convergence is defined as follows.

Definition 1.5.1. Let (φn) ⊂ Φ(H) and φ ∈ Φ(H). Then φn → φ in the sense of Mosco

on H as n → ∞ (denoted by φn M−→ φ), if the following two conditions (i) and (ii) hold:

(i) For every u ∈ D(φ), there exists a sequence (un) ⊂ H such that un → u strongly in
H and φn(un) → φ(u).

(ii) If un ⇀ u weakly in H, then φ(u) ≤ lim infn→∞ φn(un).

Remark 1.5.2. In Definition 1.5.1, the condition φn(un) → φ(u) in the assumption (i)
can be replaced by φ(u) ≥ lim supn→∞ φn(un).

We present some properties of Mosco convergence.

Proposition 1.5.3 (Theoreme 1.10 [4]). For (φn) ⊂ Φ(H) and φ ∈ Φ(H), the following
statements are equivalent.

(i) φn M−→ φ,

(ii) (a) (1 + λ∂φn)−1u → (1 + λ∂φ)−1u for all λ > 0 and u ∈ H,

(b) there exists (u, v) ∈ ∂φ and (un, vn) ∈ ∂φn such that un → u, vn → v and
φn(un) → φ(u).

(iii) φn
λ(u) → φλ(u) for all λ > 0 and u ∈ H, where φn

λ and φλ are the Moerau-Yosida
regularizations of φn and φ respectively.

Lemma 1.5.4 (Corollaire 1.17 [4]). Let (φn) ⊂ Φ(H) and φ ∈ Φ(H) satisfying φn M−→ φ
on H. Assume that H is separable. Then,

∫ T

0
φndt →

∫ T

0
φdt in the sense of Mosco on L2(0, T ;H).

For φ : H → (−∞,+∞] with D(φ) �= ∅, we define the conjugate function (or the
Fenchel-Legendre transform) φ∗ : H → (−∞,+∞] to be

φ∗(f) := sup
x∈H

{ (f , x)H − φ(x) }.

It is known that φ∗ is convex and lower semicontinuous on H, and if φ ∈ Φ(H) then
φ∗ ∈ Φ(H). Moreover, for φ ∈ Φ(H), it holds that x∗ ∈ ∂φ(x) if and only if

(1.5.1) φ(x) + φ∗(x∗) = (x∗ , x)H .

In particular, for Mosco convergence of conjugate functions, the following holds.
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Lemma 1.5.5 (Proposition 1.19 [4]). Let (φn) ⊂ Φ(H) and φ ∈ Φ(H). Then φn M−→ φ if

and only if (φn)∗ M−→ φ∗.

Lemma 1.5.6. Let (φn)n≥1 ⊂ Φ(H) and φ ∈ Φ(H). Suppose that if for any subsequence
(φnk)k≥1 of (φn)n≥1, there exists a subsequence (φnk′ )k′≥1 of (φnk)k≥1 such that (φnk′ )k′≥1

converges to φ in the sense of Mosco on H, then φn M−→ φ.

Proof. We are going to prove this lemma by contradiction. Let (φn) ⊂ Φ(H) and φ ∈
Φ(H), and suppose that φn does not converge to φ in the sense of Mosco on H. Then,
by Proposition 1.5.3, we see that there exist λ0 > 0, u0 ∈ H and ε0 > 0 such that for all
N ∈ N there exists n(N) ≥ N such that∣∣∣φn(N)

λ0
(u0)− φλ0(u0)

∣∣∣ ≥ ε0.

Put n1 := n(1) ≥ 1. Then ∣∣∣φn1
λ0
(u0)− φλ0(u0)

∣∣∣ ≥ ε0.

Similarly, put n2 := n(n1 + 1) ≥ n1 + 1 > n1. Then∣∣∣φn2
λ0
(u0)− φλ0(u0)

∣∣∣ ≥ ε0.

Define (nk)k≥1 by inductive as above. By the definition of (nk), we see that (φ
nk
λ0
(u0))k≥1 ⊂

R is a subsequence of (φn
λ0
(u0))n≥1 and any subsequence of (φnk

λ0
(u0))k≥1 cannot converge

to φλ0(u0) in R. By Proposition 1.5.3, this lead a contradiction.



Chapter 2

Local Well-posdness

In this chapter, we are concerned with the local well-posedness of (P)q. For the first
step, we are going to give a proof of the local well-posedness of (P)q for the case where
the initial data belong to the domain of a functional associated with Laplacian under
nonlinear boundary conditions. Moreover we also discuss the case where the initial data
are bounded. Since it is difficult to use the Duhamel’s principle and to apply the fixed
point theorem for the integral equation, we mainly rely on the theory of nonlinear evolution
equations developed by [47, 45].

2.1 Local Well-posdness for D(ϕ)-data

We first show the existence of time local solutions of (P)q for the initial values which
belong to the effective domain D(ϕ) of ϕ (note that D(ϕ) ⊂ H1(Ω)). We here emphasize
that even though ∂ϕ(u) = −Δu looks like a linear operator, this is not the case since
D(∂ϕ) does not have the linear structure. Therefore, as mentioned above, we can not rely
on the Duhamel principle (see also Introduction). Instead, we here rely on the abstract
theory of nonlinear evolution equations associated with subdifferential operators given in
Proposition 1.4.4. Our first main theorem can be stated as follows.

Theorem 2.1.1. Let p ∈ (2, 2∗) and u0 ∈ D(ϕ). Then there exists T0 = T0(ϕ(u0)) > 0
such that (P)q possesses a unique solution u satisfying the following regularity

(2.1.1)
u ∈ C([0, T0];L

2(Ω)),

∂tu, Δu, |u|p−2u ∈ L2(0, T0;L
2(Ω)).

Proof. (Existence) Recall that (P)q is reduced to (AC)q. In order to show the existence
of a solution of (AC)q, we are going to apply Proposition 1.4.4. To do this, we have only
to check three assumptions (A1), (A2) and (A3). It is clear that (A1) follows from the
boundedness of the domain Ω and the Rellich-Kondrachov compactness theorem. Since
−Bp(u) is maximal monotone and the maximal monotone operator satisfies the demi-
closedness property (in the standard sense), assumption (A2) is also satisfied. To verify
(A3), by Lemma 1.2.4, we note that there exists λ = λ(p,N) ∈ (0, 2] such that

(2.1.2) ‖u‖2(p−1)
2(p−1) ≤ C‖u‖2−λ

H2(Ω)
‖u‖2p−4+λ

H1(Ω)
∀u ∈ H2(Ω).

29
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Then by virtue of (2.1.2), the elliptic estimate (1.3.3) and Young’s inequality, we obtain

‖B(u)‖22 = ‖u‖2(p−1)
2(p−1)

≤ C‖u‖2−λ
H2(Ω)

‖u‖2p−4+λ
H1(Ω)

≤ C
(
‖ −Δu+ u‖2−λ

2 + 1
)
‖u‖2p−4+λ

H1(Ω)

≤ C
(
‖ −Δu‖2−λ

2 + ‖u‖2−λ
2 + 1

)
‖u‖2p−4+λ

H1(Ω)

≤ k‖ −Δu‖22 + C‖u‖
2(2p−4+λ)

λ

H1(Ω)
+ C

(
‖u‖2−λ

2 + 1
)
‖u‖2p−4+λ

H1(Ω)
,

which ensures (A3). Thus, Proposition 1.4.4 implies that (P)q admits a local solution
u ∈ C([0, T0];L

2(Ω)) satisfying (1.4.18).
(Uniqueness) Let u and v be two solutions of (P)q on [0, T0] with the initial data

u0 ∈ D(ϕ) and v0 ∈ D(ϕ) respectively. Setting w := u− v, we have

(Pw)

⎧⎪⎨
⎪⎩
∂tw −Δw = |u|p−2u− |v|p−2v, t > 0, x ∈ Ω,

∂νw + |u|q−2u− |v|q−2v = 0, t > 0, x ∈ ∂Ω,

w(0, x) = u0(x)− v0(x), x ∈ Ω.

Multiplying (Pw) by w and using integration by parts, we obtain

1

2

d

dt
‖w(t)‖22 + ‖∇w(t)‖22 +

∫
∂Ω

(|u|q−2u− |v|q−2v
)
w dσ

=

∫
Ω

(|u|p−2u− |v|p−2v
)
w dx.

Since u �→ |u|q−2u is monotone increasing, it is easy to see that∫
∂Ω

(|u|q−2u− |v|q−2v
)
w dσ ≥ 0.

Moreover we note

∣∣|x|p−2x− |y|p−2y
∣∣ = ∣∣∣∫ y

x
(p− 1)|s|p−2ds

∣∣∣ ≤ (p− 1)
(|x|p−2 + |y|p−2

) |x− y|

for all x, y ∈ R
1. Hence, from Hölder’s inequality and the above inequality, it follows that∫
Ω

(|u|p−2u− |v|p−2v
)
w dx ≤ (p− 1)

∫
Ω

(|u|p−2 + |v|p−2
)
w2dx(2.1.3)

≤ (p− 1)
(‖u(t)‖p−2

p + ‖v(t)‖p−2
p

) ‖w(t)‖2p.
We here recall the following Gagliardo-Nirenberg interpolation inequality on a bounded
domain (see [43])

‖u‖p ≤ C
(
‖∇u‖η2‖u‖1−η

2 + ‖u‖2
)

∀u ∈ H1(Ω),
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where η ∈ (0, 1) is determined by 1
p = η

(
1
2 − 1

N

)
+ (1− η)12 . Applying this inequality and

Young’s inequality to (2.1.3), we obtain∫
Ω

(|u|p−2u− |v|p−2v
)
w dx

≤ (p− 1)
(‖u(t)‖p−2

p + ‖v(t)‖p−2
p

) ‖w(t)‖2p
≤ C

(‖u(t)‖p−2
p + ‖v(t)‖p−2

p

) (‖∇w(t)‖2η2 ‖w(t)‖2(1−η)
2 + ‖w(t)‖22

)
≤ 1

2
‖∇w(t)‖22 + C

(‖u1(t)‖p−2
p + ‖u2(t)‖p−2

p

) 1
1−η ‖w(t)‖22

+ C
(‖u1(t)‖p−2

p + ‖u2(t)‖p−2
p

) ‖w(t)‖22.
Since u and v satisfy the regularity (1.4.18) of Proposition 1.4.4, ϕ(u) and ϕ(v) are absolute
continuous on [0, T0] (see [9]). Noting that p ∈ (2, 2∗) implies ‖u‖p ≤ C(ϕ(u) + ‖u‖22)1/2,
we deduce that ‖u‖p and ‖v‖p are bounded above by some constant M > 0 uniformly on
[0, T0]. Thus we get

1

2

d

dt
‖w(t)‖22 +

1

2
‖∇w(t)‖22 ≤ C

(
(2Mp−2)

1
1−η + 2Mp−2

)
‖w(t)‖22.

Then by Gronwall’s inequality (see Lemma 1.2.1 with α = 0), we derive

‖u(t)− v(t)‖22 ≤ ‖u0 − v0‖22 e
2C

(
(2Mp−2)

1
1−η +2Mp−2

)
t ∀t ∈ [0, T0],

whence follows the uniqueness.

2.2 Local Well-posdness for L∞(Ω)-data

In this section, we are going to show the local well-posedness of (P)q in L∞(Ω) without
any restriction on the growth order p. Applying “L∞-energy method” developed in [45],
we can obtain the following result of the local well-posedness of (P)q in L∞(Ω).

Theorem 2.2.1. Let u0 ∈ L∞(Ω), then there exists T0 = T0(‖u0‖∞) > 0 such that (P)q
possesses a unique solution u satisfying the following regularity

u ∈ C([0, T0];L
2(Ω)) ∩ L∞(0, T0;L

∞(Ω)),√
t ∂tu,

√
tΔu,

√
t |u|p−2u ∈ L2(0, T0;L

2(Ω)).
(2.2.1)

Proof. (Uniqueness) Let u and v be two solutions of (P)q with the same initial data
u0 ∈ L∞(Ω) satisfying the regularity (2.2.1). Then w := u−v satisfies (Pw) with w(0) = 0.
Multiplying (Pw) by w, we now get

1

2

d

dt
‖w(t)‖22 ≤

∫
Ω

(|u|p−2u− |v|p−2v
)
w dx

≤ (p− 1)

∫
Ω

(|u|p−2 + |v|p−2
)
w2dx

≤ (p− 1)
(
‖u‖p−2

L∞(0,T ;L∞(Ω)) + ‖v‖p−2
L∞(0,T ;L∞(Ω))

)
‖w(t)‖22

≤ C ‖w(t)‖22,
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whence it follows from Gronwall’s inequality

‖w(t)‖22 ≤ ‖w(0)‖22e2CT = 0 ∀t ∈ (0, T ).

Thus, for u0 ∈ L∞(Ω), the solution to (P)q satisfying (2.2.1) is unique.
(Existence) We here consider the following auxiliary problem:

(2.2.2)

⎧⎪⎨
⎪⎩
∂tu−Δu = |[u]M |p−2 u, t > 0, x ∈ Ω,

∂νu+ |u|q−2u = 0, t > 0, x ∈ ∂Ω,

u(0, x) = u0(x), x ∈ Ω,

where M > 0 is a positive constant to be fixed later and [u]M is a cut-off function of u
defined by

[u]M =

⎧⎪⎨
⎪⎩
M u ≥ M,

u |u| ≤ M,

−M u ≤ −M.

Set BM (u) = −|[u]M |p−2u, then the auxiliary problem (2.2.2) can be reduced to the
following evolution equation in L2(Ω):

(2.2.3)
d

dt
u(t) + ∂ϕ(u(t)) +BM (u(t)) = 0, u(0) = u0.

Note that BM : L2(Ω) → L2(Ω) is Lipschitz continuous. Applying the abstract theory
developed by H. Brézis (see Proposition 1.4.1), we know that (2.2.3) has a unique global
solution u ∈ C([0, T ];L2(Ω)) for u0 ∈ L2(Ω) satisfying the same regularity (except L∞-
estimate) of Proposition 2.2.1 with T0 replaced by T .

Furthermore we can show that u0 ∈ L∞(Ω) assures u(t) ∈ L∞(Ω) for all t ≥ 0. To see
this, put v(t) := e−Mp−2tu(t), then v(t) satisfies

(2.2.4) ∂tv(t)−Δv(t) =
(
|[u]M |p−2 −Mp−2

)
v(t), v(0) = u0.

Multiplying (2.2.4) by [v(t)−M ]+ = max(v(t)−M, 0) and noting that |[u]M |p−2−Mp−2 ≤
0, we get

(2.2.5)
1

2

d

dt

∥∥[v(t)−M ]+
∥∥2
2
+

∫
Ω
|∇[v(t)−M ]+|2 dx ≤ 0.

Here we used the fact that

−
∫
Ω
Δv[v −M ]+dx =

∫
Ω
|∇[v −M ]+|2dx−

∫
∂Ω

∂νv[v −M ]+dσ

=

∫
Ω
|∇[v −M ]+|2dx+

∫
∂Ω

|u|q−2v[v −M ]+dσ

=

∫
Ω
|∇[v −M ]+|2dx+

∫
∂Ω

|u|q−2M [v −M ]+dσ

≥
∫
Ω
|∇[v −M ]+|2dx.
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Hence ‖[v(t)−M ]+‖2 ≤ ‖[u0−M ]+‖2 = 0 for a.e. t ∈ [0,∞). Thus we see that v(t) ≤ M ,
i.e., u(t) ≤ MeM

p−2t.
Multiply again (2.2.4) by [v(t) +M ]− = max (−v(t) −M, 0). Then in parallel with

(2.2.5), we get

(2.2.6)
1

2

d

dt

∥∥[v(t) +M ]−
∥∥2
2
+

∫
Ω
|∇[v(t) +M ]−|2 dx ≤ 0,

whence follows u(t) ≥ −MeM
p−2t. Thus we get |u(t)|L∞ ≤ MeM

p−2t, which implies u(t) ∈
L∞ for a.e. t ∈ [0,∞). Hence noticing that |u|r−2u ∈ L2(Ω) and ||[u]M |p−2| ≤ |u|p−2, we
multiply (2.2.2) by |u|r−2u to obtain

1

r

d

dt
‖u(t)‖rr + (r − 1)

∫
Ω
|∇u|2|u|r−2dx+

∫
∂Ω

|u|q+r−2dσ =

∫
Ω
|[u]M |p−2|u|rdx

≤
∫
Ω
|u|p+r−2dx

≤ ‖u(t)‖p−2
∞ ‖u(t)‖rr.

Since the second term and third term of left hand side are nonnegative,

‖u(t)‖r−1
r

d

dt
‖u(t)‖r ≤ ‖u(t)‖p−2

∞ ‖u(t)‖rr.

Divide both sides by ‖u(t)‖r−1
r and integrate with respect to t on [0, t], then we get

‖u(t)‖r ≤ ‖u0‖r +
∫ t

0
‖u(τ)‖p−2

∞ ‖u(τ)‖rdτ.

Note that even though ‖u(t)‖r−1
r attains zero, we can justify this argument by Proposition

1 in [40]. Letting r tend to ∞, we derive

‖u(t)‖∞ ≤ ‖u0‖∞ +

∫ t

0
‖u(τ)‖p−1

∞ dτ.

Hence applying lemma 1.2.3, we see that there exists T0 such that

‖u(t)‖∞ ≤ ‖u0‖∞ + 1 a.e. t ∈ [0, T ].

Therefore choosing M > ‖u0‖∞ + 1, we can see that u gives a solution for (P)q on [0, T ]
by the definition of cut-off function [u]M .

Remark 2.2.2. If y0 > 0 in Lemma 1.2.3, then we can derive

y(t) ≤ 2y0 a.e. t ∈ [0, T0],

and choose T0 = min{ y0
2m(y0)

, T}. From this observation we can deduce that the maximal

existence time is sufficiently large for sufficiently small ‖u0‖∞ > 0.
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2.2.1 More Generalized Equations

At the end of this chapter, we also consider the local well-posedness of the initial-boundary
problem for the following parabolic equation, which is a more generalized version of (P)q:

(P)βF

⎧⎪⎨
⎪⎩

∂tu−Δu− F (u) � 0, t > 0, x ∈ Ω,

− ∂νu ∈ β(u), t > 0, x ∈ ∂Ω,

u(0, x) = u0(x), x ∈ Ω.

We impose the following assumptions on F and β.

(F) F : R1 → 2R
1
is a (possibly multi-valued) operator satisfying the following (i) and

(ii).

(i) 0 ∈ F (0), inf { z ; z ∈ F (u) } ≥ |u|p−2u+ ∀u ∈ R
1 with p > 2,

(2.2.7)

(ii) F (u) = Fs(u) + F+
m(u)− F−

m(u) ∀u ∈ R
1 and

(2.2.8)

Fs(·) is singleton and locally Lipschitz continuous on R
1,

F±
m(·) : R1 → 2R

1
are maximal monotone operators such that D(F±

m) = R
1.

(β) β : R1 → 2R
1
is a (possibly multi-valued) maximal monotone operator satisfying

0 ∈ β(0).

Then, by using the L∞-energy method, we can obtain the local well-posedness of (P)βF
for u0 ∈ L∞(Ω). We apply here a different method from the previous proof, namely, we
use the subdifferential of the indicator function.

Theorem 2.2.3. Let u0 ∈ L∞(Ω), then there exists T0 = T0(‖u0‖L∞) > 0 such that (P)βF
possesses a solution u satisfying the following regularity

(2.2.9) u ∈ C([0, T0];L
2(Ω)) ∩ L∞(0, T0;L

∞(Ω)),
√
t∂tu,

√
tΔu ∈ L2(0, T0;L

2(Ω)).

Moreover let Tm = Tm(u) be the maximal existence time of u, then the following alternative
holds:

• Tm = +∞, or

• Tm < +∞, lim
t→Tm

‖u(t)‖L∞ = +∞.

Proof. Since β is assumed to be maximal monotone, there exists a lower semi-continuous
convex function j : R1 → (−∞,+∞] such that j(r) ≥ 0, and ∂j(u) = β(u) ( see [9]).

For the rest of this proof, define the functional ϕ̃ on L2(Ω) by

ϕ̃(u) =

⎧⎪⎨
⎪⎩
1

2

∫
Ω
|∇u|2dx+

1

2

∫
Ω
|u|2dx+

∫
∂Ω
j(u)dσ, u ∈ D(ϕ̃) :={u ∈ H1(Ω); j(u) ∈ L1(∂Ω)},

+∞, u ∈ L2(Ω) \D(ϕ̃).
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Then we can see that ϕ̃ is a lower semi-continuous convex function on L2(Ω) and the
subdifferential operator ∂ϕ̃ associated with ϕ̃ is given as follows (see [7, 9, 10]):⎧⎨

⎩
∂ϕ̃(u) = −Δu+ u,

D(∂ϕ̃) = {u ∈ H2(Ω) ; − ∂νu(x) ∈ β(u(x)) a.e. on ∂Ω}.

Furthermore the following elliptic estimate for ∂ϕ̃ holds, i.e., there exist some constants
c1, c2 > 0 such that

(2.2.10) ‖u‖H2 ≤ c1‖ −Δu+ u‖L2 + c2 ∀u ∈ D(∂ϕ̃).

Then by putting B(u) := −u − F (u), (P)βF can be reduced to the following abstract
evolution equation in H = L2(Ω):

(CP)

⎧⎨
⎩

d

dt
u(t) + ∂ϕ̃(u(t)) +B(u(t)) � 0, t > 0,

u(0) = u0.

In order to show the existence of time local solutions of (P)βF belonging to L∞(Ω), we rely
on “L∞-Energy Method” developed in [45]. To this end, we introduce another maximal
monotone graph βM (·) = ∂ηM (·) on R

1 × R
1 by

βM (r) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∅, |r| > M,

(−∞, 0], r = −M,

0, |r| < M,

[0,+∞), r = M,

ηM (r) =

⎧⎨
⎩

0, |r| ≤ M,

+∞, |r| > M,

where M > 0 is a positive constant which is determined later. The realizations of βM and
ηM in H = L2(Ω) are given by

βM (u) = ∂IKM
(u) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∅, |u(x)| > M,

(−∞, 0], u(x) = −M,

0, |u(x)| < M,

[0,+∞), u(x) = M,

IKM
(u) :=

⎧⎨
⎩

0, u ∈ KM := {u ∈ L2(Ω) ; |u(x)| ≤ M a.e. x ∈ Ω },
+∞, u ∈ L2(Ω) \KM .

Here we put

ϕM (u) := ϕ̃(u) + IKM
(u).

Then we can get

(2.2.11) ∂ϕM (u) = ∂ϕ̃(u) + βM (u) ∀u ∈ D(∂ϕM ) := D(∂ϕ̃) ∩KM .
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In fact, since the Yosida approximation (βM )λ(·) of βM (·) is given by

(βM )λ(u) =

⎧⎪⎪⎨
⎪⎪⎩

u(x)+M
λ , u(x) ≤ −M,

0, |u(x)| < M,

u(x)−M
λ , u(x) ≥ M,

we easily see

(∂ϕ̃(u), (βM )λ(u))L2 =

∫
Ω
(−Δu+ u)(βM )λ(u) dx

≥
∫
Ω
(βM )′λ(u)|∇u(x)|2dx+

∫
∂Ω

−∂νu(x) (βM )λ(u(x)) dσ ≥ 0.(2.2.12)

Here we used the fact that u · (βM )λ(u) ≥ 0, (βM )′λ(u) ≥ 0, −∂νu(x) ∈ β(u(x)) and
0 ∈ β(0) implies that β(u) ⊂ (−∞, 0] if u ≤ 0 and β(u) ⊂ [0,+∞) if u ≥ 0.

Consequently (2.2.12) together with Proposition 1.3.10 and Proposition 1.3.11 assures
that ∂ϕ̃ + ∂IM becomes maximal monotone. Hence since ∂ϕ̃(u) + ∂IM (u) ⊂ ∂ϕM (u) is
obvious, we can conclude that (2.2.11) holds true.

Now consider the following auxiliary equation:

(CP)M

⎧⎨
⎩

d

dt
u(t) + ∂ϕM (u(t)) +B(u(t)) � 0, t > 0,

u(0) = u0,

where we choose M > 0 such that

(2.2.13) M := ‖u0‖L∞ + 2.

Then we easily see that u0 ∈ D(∂ϕM )
L2

= KM .
Define a monotone increasing function �(·) : [0,∞) → [0,∞) by

(2.2.14) �(r) := r + sup { |z| ; z ∈ F (τ), |τ | ≤ r }.

Here we note that �(·) takes a finite value for any finite r, which is assured by assumption
D(F ) = D(F+

m) = D(F−
m) = R

1 and then we obtain

(2.2.15) sup { |z| ; z ∈ B(u(x)) } ≤ �(|u(x)|).

Hence we get

|||B(u)|||L2 := sup {‖z‖L2 ; z ∈ B(u)}(2.2.16)

≤�(‖u‖L∞) |Ω|1/2 ≤ �(M) |Ω|1/2 ∀u ∈ D(∂ϕM ),

since u ∈ D(∂ϕM ) implies ‖u‖L∞ ≤ M . Now we are going to check some assumptions
required in [47]. It is easy to see that (2.2.16) assures assumption (A5) of Theorem
III and (A6) of Theorem IV in [47] by taking H = L2(Ω). Furthermore the compactness
assumption (A1), the set {u;ϕM (u) ≤ L} is compact in H := L2(Ω), is obviously satisfied,
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since Ω is bounded; and the demiclosedness assumption (A2) is also assured, since the
maximal monotone parts F±

m are always demiclosed in L2(Ω). Thus we can apply Theorem

III and Corollary IV of [47] to conclude that (P)βF admits a solution u on [0, T ] for any
T > 0 satisfying (2.2.9) with T0 replaced by T .

Now we are going to show that there exists T0 > 0 such that

(2.2.17) ‖u(t)‖L∞ ≤ M + 1 ∀t ∈ [0, T0],

whence follows βM (u(t)) = 0 for all t ∈ [0, T0], which implies that u turns out to be the

desired solution of the original equation (P)βF on [0, T0].
To see this, multiplying (CP)M by |u|r−2u, we get by (2.2.15)

1

r

d

dt
‖u(t)‖rLr+ (r − 1)

∫
Ω
|u|r−2|∇u(t)|2dx+

∫
∂Ω

b(t, x) |u|r−2u(t)dσ

≤ �(‖u(t)‖L∞)‖u(t)‖r−1
Lr |Ω|1/r,

where b(t, x) ∈ β(u(t, x)) and so b(t, x) |u|r−2u(t, x) ≥ 0. Hence

d

dt
‖u(t)‖Lr ≤ �(‖u(t)‖L∞) |Ω|1/r.

Letting r → ∞, we obtain (see [45])

(2.2.18) ‖u(t)‖L∞ ≤ ‖u0‖L∞ +

∫ t

0
�(‖u(s)‖L∞)ds.

Then Lemma 1.2.3 assures that if we set

(2.2.19) T0 :=
1

2�(‖u0‖L∞ + 1)
,

then (2.2.17) holds true.
In order to prove the alternative part, assume that Tm < ∞ and lim inft→Tm ‖u(t)‖L∞ =:

M0 < ∞. Then there exists a sequence {tn}n∈N such that

(2.2.20) tn → Tm as n → ∞ and ‖u(tn)‖L∞ ≤ M0 + 1 ∀n ∈ N.

Hence in view of (2.2.19), the definition of T0, regarding u(tn) as an initial data, we find
that u can be continued up to tn + 1

2�(M0+2) which becomes strictly larger than Tm for

sufficiently large n such that Tm − tn < 1
4�(M0+2) . This leads to a contradiction. Thus the

alternative assertion is verified.

Remark 2.2.4. (1) One can prove that under the same assumptions in Theorem 2.2.3,

problem (P)βF with the boundary condition replaced by the homogeneous Dirichlet (resp.
Neumann) boundary condition, dented by (P)DF ( resp. (P)NF ), admits a time local solution
u satisfying (2.2.9), which is denoted by uDF (resp. uNF ). To do this, it suffices to repeat the
same arguments as those in the proof of Theorem 2.2.3 with obvious modifications such as
j(·) ≡ 0, D(ϕ) = H1

0 (Ω) (resp. D(ϕ) = H1(Ω)).

(2) If assumption (F) is satisfied with F−
m ≡ 0, then the solution of (P)βF (or (P)DF , (P)

N
F )

given in Theorem 2.2.3 is unique.





Chapter 3

Asymptotic Behavior of Solutions

In this chapter, we discuss a uniform bound for global solutions of (P)q. In order to
investigate the uniform boundedness of global solutions of (P)q, we make the most use of
the variational structure of our problem (AC)∗q . Note that the theory of the asymptotic
behavior of global solutions to nonlinear evolution equations with the term of a difference of
subdifferentials was established by [46] and [29] provided that functionals are homogeneous.
However, in general, it is obvious that ϕ is not homogeneous in our setting.

3.1 Grow-up of Functionals

First of all, we recall the formulation of (P)q as a evolution equation on L2(Ω). Set

(3.1.1) ψp(u) =
1

p
‖u‖pp.

Then we see that (P)q is equivalent to

(AC)∗q

⎧⎨
⎩

d

dt
u(t) + ∂ϕ(u(t))− ∂ψp(u(t)) = 0, t > 0,

u(0) = u0,

Moreover we introduce the energy functional J and the Nehari functional j which are
defined by

J(u) = ϕ(u)− ψp(u),(3.1.2)

j(u) = −(∂ϕ(u)− ∂ψp(u), u)2(3.1.3)

= −‖∇u‖22 −
∫
∂Ω

|u|qdσ + ‖u‖pp,

respectively. Let u be a global solution of (AC)∗q satisfying (2.1.1). Then multiplying (P)q
by u and du(t)/dt, we get the following equality:

(3.1.4)
1

2

d

dt
‖u(t)‖22 = j(u(t)) ∀ t ∈ [0,∞)

39
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and

(3.1.5)
d

dt
J(u(t)) +

∥∥∥∥dudt (t)
∥∥∥∥
2

2

= 0 for a.e. t ∈ (0,∞).

Hence, in particular, it follows from (3.1.5) that J is monotone non-increasing in (0,∞)
and

(3.1.6) J(u(t)) ≤ J0 := J(u0) ∀ t ≥ 0.

We now introduce some types of growing up (G.U.) of solutions to (AC)∗q .

Definition 3.1.1. For a global solution u of (AC)∗q satisfying (2.1.1), we define the fol-
lowing notions:

(i) u is said to be ϕ-G.U. if and only if lim inf
t→∞ ϕ(u(t)) = +∞.

(ii) u is said to be ψp-G.U. if and only if lim inf
t→∞ ψp(u(t)) = +∞.

(iii) u is said to be J-G.U. if and only if lim inf
t→∞ J(u(t)) = −∞.

(iv) u is said to be j-G.U. if and only if lim inf
t→∞ j(u(t)) = +∞.

(v) u is said to be H-G.U. if and only if lim inf
t→∞ ‖u(t)‖2 = +∞.

From the definitions and simple properties of these functionals, we can see that each
glow-up dose not occur.

Proposition 3.1.2. Let u be a global solution to (AC)∗q with u0 ∈ D(ϕ) satisfying (2.1.1)
and assume that q ∈ (1, p) and p ∈ (2, 2∗). Then each glowing up (i) - (v) in Definition
3.1.1 cannot occur.

Proof. By the Hölder inequality and the Poincaré-Friedrichs inequality (Lemma 1.1.9), we
can see that

‖u(t)‖2 ≤ C {ψp(u(t))}
1
p ≤ C {ϕ(u(t)) + 1} 1

2 ,

which implies that (v) ⇒ (ii) ⇒ (i). Moreover, (3.1.2) and (3.1.6) imply

ϕ(u(t)) ≤ J0 + ψp(u(t)).

Hence (i) is equivalent to (ii). We can also verify that (iii) or (iv) implies (ii). Indeed, by
the definition of J and j, we can easily show

J(u(t)) ≥ −ψp(u(t)), j(u(t)) ≤ pψp(u(t)),

respectively. These inequalities show (iii) ⇒ (ii) and (iv) ⇒ (ii).

On the other hand, if (ii) holds, then we can see that L2 norm of u(t) blows up in finite
time (see Lemma 3.2.3 in the next section). Therefore (ii) does not occur. Especially,
from the above observations, (i) - (v) cannot occur.
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3.2 Uniform Bounds for Global Solutions

In this section, we give more precise results on bounds of global solutions. Our main
results can be stated as follows.

Theorem 3.2.1. Assume that q ∈ (1, p), p ∈ (2, 2∗) and u0 ∈ D(ϕ). Let u be a global
strong solution of (P)q satisfying (2.1.1). Then we have

‖u(t)‖2 ≤
[q2 p J0 |Ω| p−2

2

p− q2

]1/p ∀t ≥ 0,(3.2.1)

sup
t≥0

ϕ(u(t)) < ∞,(3.2.2)

where q2 := max(2, q).

Theorem 3.2.2. Assume that q ∈ (1, p), p ∈ (2, 2∗) and u0 ∈ L∞(Ω). Let u be a global
strong solution of (P)q satisfying (2.2.1). Then there exists C∞ = C∞(p, q, |Ω|) such that

‖u(t)‖2 ≤ C∞ ‖u0‖∞ ∀t ≥ 0,(3.2.3)

sup
t≥0

‖u(t)‖∞ < ∞.(3.2.4)

In order to derive the estimate of ϕ, we here mainly rely on the variational structure
of (AC)∗q . We first show that negative energy causes a finite-time blowing up of solutions.
Moreover, for a global solution to (AC)∗q , we also derive a uniform bound of L2-norm.

Lemma 3.2.3. Let q2 < p and let u be a global solution of (AC)∗q satisfying (2.1.1). Then
we have

0 ≤ J(u(t)) ≤ J0 ∀t ≥ 0,(3.2.5)

‖u(t)‖2 ≤ BL2 :=
[q2 p J0 |Ω| p−2

2

p− q2

]1/p ∀t ≥ 0.(3.2.6)

Furthermore there exists a constant C0 depending only on p, q, J0 and |Ω| such that

(3.2.7) sup
t≥0

∫ t+1

t

(
ψp(u(s))

2 + ϕ(u(s))2
)
ds ≤ C0.
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Proof. From (3.1.4), (3.1.3) and (3.1.6), it follows that

d

dt
‖u(t)‖22 = −2

(
‖∇u(t)‖22 +

∫
∂Ω

|u(t)|qdσ − ‖u(t)‖pp
)

≥ −2

(
q2
2
‖∇u(t)‖22 +

q2
q

∫
∂Ω

|u(t)|qdσ − q2
p
‖u(t)‖pp

)
+

2(p− q2)

p
‖u(t)‖pp

≥ −2 q2 J(u(t)) +
2(p− q2)

p
‖u(t)‖pp(3.2.8)

≥ −2 q2 J(u(t)) +
2(p− q2)

p
|Ω| 2−p

2 ‖u(t)‖p2(3.2.9)

≥ −2 q2 J0 +
2(p− q2)

p
|Ω| 2−p

2 ‖u(t)‖p2 ∀t ∈ [0,∞).(3.2.10)

Since J(u(t)) ≤ J0 for all t ≥ 0 holds, in order to show (3.2.5), it suffices to verify that
the energy functional cannot take any negative value for a global solution. Suppose that
J(u(t1)) < 0 for some t1 ∈ [0,∞), then from (3.1.5) it follows that J(u(t)) < 0 for all
t ∈ [t1,∞), which together with (3.2.9) yields

(3.2.11)
d

dt
‖u(t)‖22 ≥

2(p− q2)

p
|Ω| 2−p

2 ‖u(t)‖p2 ∀t ∈ [t1,∞).

Since p > q2 ≥ 2 and J(u(t1)) < 0 implies ‖u(t1)‖2 > 0, by (3.2.11) we can see that
‖u(t)‖2 blows up in finite time, which leads to a contradiction. Thus (3.2.5) is derived.

Suppose now that ‖u(t2)‖2 > BL2 for some t2 ∈ [0,∞), then (3.2.10) implies d
dt‖u(t2)‖22 >

0. Thus we see that ‖u(t)‖2 is monotone increasing in the neighborhood of t = t2. There-
fore, by (3.2.10), we can easily see that

d

dt
‖u(t)‖22 ≥ δ := −2J0 +

2(p− q2)

p
|Ω| 2−p

2 ‖u(t2)‖p2 > 0 ∀t ∈ [t2,∞),

which implies that ‖u(t)‖2 is strictly monotone increasing and tends to ∞ as t → ∞.
Hence there exists t3 > t2 such that

d

dt
‖u(t)‖22 ≥

(p− q2)

p
|Ω| 2−p

2 ‖u(t)‖p2 ∀t ∈ [t3,∞).

This leads to a contradiction as before. Thus (3.2.6) is verified.
Furthermore, since

d

dt
‖u(t)‖22 = 2

(
u(t),

du(t)

dt

)
L2

≤ 2 ‖u(t)‖2
∥∥∥∥du(t)dt

∥∥∥∥
2

holds, (3.1.5), (3.1.6) and (3.2.6) assure that there exists C > 0 such that

∫ t+1

t

∣∣∣∣d‖u(s)‖22ds

∣∣∣∣
2

ds ≤ C.

Hence, in view of (3.1.2) and (3.1.6), we can derive (3.2.7) from (3.2.8).



3.2. UNIFORM BOUNDS FOR GLOBAL SOLUTIONS 43

As a consequence of Lemma 3.2.3 and monotonicity of J(u(t)), we can conclude that

(3.2.12) lim
t→∞ J(u(t)) =: J∞ ≥ 0.

Remark 3.2.4. Estimate (3.2.6) implies that if J0 = 0, then there is no global solution
of (P)q except the trivial solution u(t) ≡ 0.

Lemma 3.2.5. Let q2 < p and let u be a global solution of (P)q satisfying (2.1.1). Then
we have

(3.2.13) lim inf
t→∞ ϕ(u(t)) ≤ pJ0 + 1

p− q2
.

Proof. Suppose that

lim inf
t→∞ ϕ(u(t)) >

pJ0 + 1

p− q2
.

Then we can see that there exists t0 > 0 such that

(3.2.14) ϕ(u(t)) ≥ pJ0 + 1

p− q2
∀t ≥ t0.

From (3.1.4) and (3.2.14), it follows that

1

2

d

dt
‖u(t)‖22 = j(u(t))

= −‖∇u(t)‖22 −
∫
∂Ω

|u(t)|qdσ + ‖u(t)‖pp

≥ −q2
2
‖∇u(t)‖22 −

q2
q

∫
∂Ω

|u(t)|qdσ + ‖u(t)‖pp
= −q2ϕ(u(t)) + pψp(u(t))

= −pJ(u(t)) + (p− q2)ϕ(u(t))

≥ −pJ0 + (p− q2)ϕ(u(t)) ≥ 1 ∀t ≥ t0.(3.2.15)

Hence we get
‖u(t)‖22 ≥ ‖u(t0)‖22 + 2(t− t0) ∀t ≥ t0,

whence it follows that ‖u(t)‖2 → ∞ as t → ∞, which contradicts (3.2.6).

Lemma 3.2.6. Let p ∈ (2, 2∗) and u be a global solution of (P)q. Then there exists a
monotone decreasing function T0(·) : [0,∞) → (0,∞) such that for every t0 > 0

ϕ(u(t)) ≤ ϕ(u(t0)) + 1 ∀t ∈ [t0, t0 + T0(ϕ(u(t0)))].

Proof. By multiplying (P)q by −Δu = ∂ϕ(u(t)), it follows from (1.2.2) that

d

dt
ϕ(u(t)) + ‖Δu(t)‖22 ≤

∫
Ω
|Δu||u|p−1dx

≤ 1

2
‖Δu(t)‖22 +

1

2
‖u(t)‖2(p−1)

2(p−1)

≤ 1

2
‖Δu(t)‖22 + C‖u(t)‖2−λ

H2(Ω)
‖u(t)‖2p−4+λ

H1(Ω)
.
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Using (2.2.10) and Young’s inequality, we can see that, for any η > 0, there exists Cη such
that

‖u‖2−λ
H2(Ω)

‖u‖2p−4+λ
H1(Ω)

≤ η ‖u‖2H2(Ω) + Cη‖u‖
2(2p−4+λ)

λ

H1(Ω)

≤ η C
(‖Δu‖22 + ‖u‖22 + 1

)
+ Cη‖u‖

2(2p−4+λ)
λ

H1(Ω)

≤ η C‖Δu‖22 +Mη(ϕ(u)),

where Mη(·) is a monotone increasing function on R
+ of the form

Mη(s) = Cη(s+ 1)
2p−4+λ

λ + η C(s+ 1),

and we used the fact that ‖u‖2H1(Ω) ≤ C(ϕ(u) + 1), which is verified by the Poincaré-

Friedrichs inequality, that is, ‖u‖22 ≤ C(‖∇u‖22 +
∫
∂Ω |u|qdσ + 1) holds for any q ∈ (1,∞).

Thus, taking η > 0 sufficiently small, we obtain

d

dt
ϕ(u(t)) ≤ Mη(ϕ(u(t))).

Hence by applying Lemma 1.2.3, we can conclude the claim of this lemma (cf. [45]).

Lemma 3.2.7. Let q2 < p and let u be a global solution of (P)q satisfying (2.1.1). Then
we have

(3.2.16) lim sup
t→∞

ϕ(u(t)) ≤ pJ0 + 1

p− q2
+ 3.

Proof. Suppose that

lim sup
t→∞

ϕ(u(t)) >
pJ0 + 1

p− q2
+ 3.

Then, by (3.2.13) of Lemma 3.2.5, there exists a couple of sequences {tin}∞n=1 and {tsn}∞n=1

such that

tin < tsn < tin+1, tin → ∞ as n → ∞,(3.2.17)

ϕ(u(tin)) =
pJ0 + 1

p− q2
+ 1, ϕ(u(tsn)) =

pJ0 + 1

p− q2
+ 3,(3.2.18)

ϕ(u(t)) ≥ pJ0 + 1

p− q2
+ 1 ∀t ∈ [tin, t

s
n].(3.2.19)

Integrating (3.1.5) over [0, t], we obtain

∫ t

0

∥∥∥du
dτ

(τ)
∥∥∥2
2
= J0 − J(u(t)) ≤ J0 − J∞.

Therefore du
dt ∈ L2(0,∞;L2(Ω)) holds and we get

(3.2.20) ε(t) :=
∥∥∥du
dτ

∥∥∥
L2(t,∞;L2(Ω))

→ 0 as t → ∞.
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In view of (3.2.14) and (3.2.19), by the same argument as for (3.2.15), we have

(3.2.21) 1 <
1

2

d

dt
‖u(t)‖22 ≤ ‖u(t)‖2

∥∥∥du
dt

(t)
∥∥∥
2

∀t ∈ [tin, t
s
n].

Hence ‖u(t)‖22 is monotone increasing in t ∈ [tin, t
s
n], so we get

(3.2.22) ‖u(t)‖22 ≤ ‖u(tsn)‖22 ≤ C (ϕ(u(tsn)) + 1) ∀t ∈ [tin, t
s
n].

Integrating (3.2.21) over [tin, t
s
n] and making use of (3.2.22), we get

tsn − tin <

∫ tsn

tin

‖u(τ)‖2
∥∥∥du
dτ

(τ)
∥∥∥
2
dτ

≤ C (ϕ(u(tsn)) + 1)

∫ tsn

tin

∥∥∥du
dτ

(τ)
∥∥∥
2
dτ

≤ C (ϕ(u(tsn)) + 1)

(∫ tsn

tin

∥∥∥du
dτ

(τ)
∥∥∥2
2
dτ

) 1
2 (∫ tsn

tin

dτ
) 1

2

≤ C
(pJ0 + 1

p− q2
+ 4

)√
tsn − tin ε(tin).

Therefore from (3.2.20), we can derive that tsn − tin → 0 as n → ∞, which contradicts
Lemma 3.2.6 and (3.2.18) with a sufficiently large n.

Now we are ready to give a proof of Theorem 3.2.1.

Proof of Theorem 3.2.1. The assertion (3.2.1) is nothing but (3.2.6) given in Lemma 3.2.3.
By virtue of (3.2.16) in Lemma 3.2.7, there exists some T1 > 0 such that

sup
t≥T1

ϕ(u(t)) ≤ p J0 + 1

p− q2
+ 4.

Since ϕ(u(t)) is continuous on [0,∞), we have

sup
0≤t≤T1

ϕ(u(t)) < ∞.

Therefore (3.2.2) is verified.

Remark 3.2.8. According to the proof of Proposition 3.1.2, under the same assumptions
in Theorem 3.2.1, we can see that

sup
t≥0

ψp(u(t)) < +∞, sup
t≥0

j(u(t)) < +∞.

In order to discuss a uniform bound of solutions in L∞(Ω), we prepare the following
device, which is a variant of results by Alikakos [1] and Nakao [41]. Its proof can be done
along essentially the same lines in the proof of Lemma 3.1 in [41]. To make this thesis
self-contained, we shall give its proof.
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Lemma 3.2.9. Let w ∈ W 1,2
loc ([0,∞);L2(Ω)) ∩ L∞

loc([0,∞);L∞(Ω) ∩ H1(Ω)) and assume
that w satisfies

(3.2.23)
d

dt
‖w(t)‖rr + c0r

−θ0‖|w(t)| r2 ‖2H1(Ω) ≤ c1r
θ1‖w(t)‖rr a.e. t ∈ (0,∞)

for all r ∈ [2,∞), where c0 > 0 and c1, θ0, θ1 ≥ 0. Then there exist some positive
constants a, b, c such that

sup
t≥0

‖w(t)‖∞ ≤ a
1
2 2θ1+(θ0+θ1)bM0,

where M0 = max (1, c ‖w(0)‖∞, supt≥0 ‖w(t)‖2).

Proof. For each k ∈ N, setting

rk = 2k+1, αk = c1r
θ1
k , νk = c0r

−θ0
k , v = w2k

by (3.2.23), we get the following inequality

(3.2.24)
d

dt
‖v(t)‖22 ≤ −νk‖v(t)‖2H1(Ω) + αk‖v(t)‖22.

We here note that the following Gagliardo-Nirenberg interpolation inequality

‖v‖22 ≤ C‖v‖2θH1(Ω)‖v‖2(1−θ)
1 ≤ εk‖v‖2H1(Ω) + Cεk‖v‖21

holds with θ = N
N+2 . Here set Cεk = C

1
1−θ ε

− θ
1−θ

k , and we take εk > 0 sufficiently small so

that εkαk + ε2k ≤ νk and Cεk ≥ 1. Then we obtain

d

dt

∫
Ω
|w|rkdx ≤ −ε2k‖v(t)‖2H1(Ω) + αkCεk‖v(t)‖21

≤ −εk‖v(t)‖22 + (εk + αk)Cεk‖v(t)‖21
≤ −εk

∫
Ω
|w|rkdx+ (εk + αk)Cεk

(∫
Ω
|w|rk−1dx

)2
≤ −εk

∫
Ω
|w|rkdx+ (εk + αk)Cεk

(
sup
t≥0

∫
Ω
|w|rk−1dx

)2
,

whence follows

(3.2.25) sup
t≥0

∫
Ω
|w(t)|rkdx ≤ max

{
δk

(
sup
t≥0

∫
Ω
|w(t)|rk−1dx

)2
,

∫
Ω
|w(0)|rkdx

}
,

where δk =
(εk+αk)Cεk

εk
≥ 1. Indeed, it is not difficult to show that y′(t) ≤ −εy(t) + C

yields

sup
t≥0

y(t) ≤ max{C
ε
, y(0)}.
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Then the iterative use of (3.2.25) gives∫
Ω
|w|rkdx ≤ δk δ

2
k−1 · · · δ2

(k−1)

1 M rk
0 ,

M0 := max (1, c ‖w(0)‖∞, sup
t≥0

‖w(t)‖2) with c = max (1, |Ω|).
(3.2.26)

Set εk = η 2−(θ0+θ1)k and choose η > 0 sufficiently small so that εkαk + ε2k ≤ νk and
Cεk ≥ 1 are satisfied, then rewriting Cεk = Cε−γ

k with γ = θ
1−θ > 0, we have

δk =
(εk + αk)Cεk

εk
= C(εk + αk)ε

−γ−1
k

≤ C νk ε
−γ−2
k

≤ Cc0 2
−θ0(k+1)η−(γ+2) 2(θ0+θ1)(γ+2)k

= C 2−θ0c0 η
−(γ+2) 2{θ1+(θ0+θ1)(γ+1)}k

=: a 2{θ1+(θ0+θ1)b}k,

where we put a = C 2−θ0c0η
−(γ+2) and b = γ+1. Then by virtue of (3.2.26) with inductive

reasoning, we easily obtain

(3.2.27) ‖w(t)‖rk ≤ apk2qkM0,

where

pk =
2k − 1

2k+1
, qk =

(2k+1 − k − 2){θ1 + (θ0 + θ1)b}
2k+1

.

Since

pk ↑ 1

2
, qk ↑ θ1 + (θ0 + θ1)b as k ↑ ∞,

from (3.2.27) we can derive (see [45])

‖w(t)‖∞ ≤ a
1
2 2{θ1+(θ0+θ1)b}M0 a.e. t ∈ [0,∞).

Finally, we are going to give a proof for Theorem 3.2.2 by applying Lemma 3.2.9.

Proof of Theorem 3.2.2. If ‖u0‖∞ = 0, then the unique solution of (P) is the trivial solu-
tion u(t) ≡ 0, so (3.2.4) is obvious. Let ‖u0‖∞ > 0, then as is stated in Remark 2.2.2, we
have

(3.2.28) ‖u(t)‖∞ ≤ 2 ‖u0‖∞ a.e. t ∈ [0, T0] with T0 =
1

2p‖u0‖p−2∞
.

In order to apply results prepared for the proof of Theorem 3.2.1, we are going to derive
a priori bounds for ϕ(u(t)). Multiplying (AC)∗q by u, we get

1

2

d

dt
‖u(t)‖22 + ϕ(u(t)) ≤ ‖u(t)‖pp ≤ ‖u(t)‖p∞ |Ω|,
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where we used the fact that ϕ(0) = 0 and the definition of subdifferential yield ϕ(u) ≤
(∂ϕ(u), u)L2 . Integrating this over (0, T0) and using (3.2.28), we obtain

(3.2.29)

∫ T0

0
ϕ(u(t)) dt ≤ 2p ‖u0‖p∞|Ω| 1

2p‖u0‖p−2∞
+

1

2
‖u0‖2∞ =

(
|Ω|+ 1

2

)
‖u0‖2∞.

We now multiply (AC)∗q by tdu(t)dt to get

t

∥∥∥∥dudt (t)
∥∥∥∥
2

2

+ t
d

dt
ϕ(u(t)) ≤ t

2

∥∥∥∥dudt (t)
∥∥∥∥
2

2

+
t

2
‖u(t)‖2(p−1)

2(p−1).

By integrating this over (0, T0), we have

T0 ϕ(u(T0)) ≤
∫ T0

0
ϕ(u(t)) dt+

T 2
0

4
sup

0≤t≤T0

‖u(t)‖2(p−1)
∞ |Ω|.

Hence in view of (3.2.28) and (3.2.29), we can see that

ϕ(u(T0)) ≤ 2p ‖u0‖p−2
∞

(
|Ω|+ 1

2

)
‖u0‖2∞ + 2p−4 ‖u0‖p∞ |Ω|

≤ 2p+1

(
|Ω|+ 1

2

)
‖u0‖p∞.(3.2.30)

Consequently, from (3.2.30) and (3.2.6) of Lemma 3.2.3, it follows that

(3.2.31) sup
T0≤t<∞

‖u(t)‖2 ≤
[q2 p |Ω| p−2

2 2p+1
(|Ω|+ 1

2

)
p− q2

]1/p ‖u0‖∞.

Hence since ‖u(t)‖2 ≤ ‖u(t)‖∞ |Ω|1/2 ≤ 2 ‖u0‖∞ |Ω|1/2 for all t ∈ [0, T0], (3.2.3) is derived.
In order to derive the uniform bound of solutions in L∞(Ω) on [T0,∞), we rely on Lemma
3.2.9.

To do this, we rewrite (P)q in the following way:

(3.2.32) ∂tu−Δu+ u = |u|p−2u+ u.

Multiplying (3.2.32) by |u|r−2u (r ≥ 2), we obtain

(3.2.33)
1

r

d

dt
‖u(t)‖rr −

∫
Ω
|u|r−2uΔudx+ ‖u(t)‖rr =

∫
Ω
|u|p+r−2dx+ ‖u(t)‖rr.

By transforming (3.2.33), we are going to derive an inequality of the form (3.2.23) in
Lemma 3.2.9. Note that the left-hand side of (3.2.33), denoted by (LHS), can be estimated
from below as follows:

(LHS) =
1

r

d

dt
‖u(t)‖rr + (r − 1)

∫
Ω
|∇u|2|u|r−2dx+

∫
∂Ω

|u|q+r−2dσ + ‖u(t)‖rr

≥ 1

r

d

dt
‖u(t)‖rr +

4(r − 1)

r2

∫
Ω

∣∣∣∇|u| r2
∣∣∣2 dx+

∥∥∥|u(t)| r2∥∥∥2
2

≥ 1

r

d

dt
‖u(t)‖rr +

4(r − 1)

r2

∥∥∥|u(t)| r2∥∥∥2
H1(Ω)

.
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On the other hand, in order to give an estimate for the right-hand side of (3.2.33), de-
noted by (RHS), we first consider the first term of (RHS). We apply generalized Hölder’s
inequality (see Lemma 1.1.4) of the following form:

(3.2.34)

∫
Ω
|u|p+r−2dx ≤ ‖u‖r(1−α)

r ‖u‖p−2
p ‖u‖αrsr

2
with α =

(p− 2)s

p(s− 2)
.

This is valid for all α ∈ (0, 1), which holds if and only if p < s. So we take s = 2∗ for
N ≥ 3 and s = 2p for N = 2 to get

(3.2.35) ‖u‖αrsr
2
=
∥∥∥|u| r2∥∥∥2α

s
≤ C

∥∥∥|u| r2∥∥∥2α
H1(Ω)

.

Then, recalling that ‖u‖p ≤ C(ϕ(u) + 1)1/2 which is uniformly bounded by (3.2.2), we
obtain by (3.2.34) and (3.2.35)

(RHS) ≤ ‖u(t)‖r(1−α)
r ‖u(t)‖p−2

p ‖u(t)‖αrsr
2
+ ‖u(t)‖rr

≤ C‖u(t)‖r(1−α)
r

(
sup
t≥T0

ϕ(u(t)) + 1
) p−2

2
∥∥∥|u(t)| r2∥∥∥2α

s
+ ‖u(t)‖rr

≤ 2(r − 1)

r2

∥∥∥|u(t)| r2∥∥∥2
H1(Ω)

+ C

(
2(r − 1)

r2

)− α
1−α

‖u(t)‖rr + ‖u(t)‖rr,

Thus since r2

2(r−1) ≤ r and 2(r−1)
r ≥ 1 for all r ≥ 2, from (3.2.33) we deduce

(3.2.36)
d

dt
‖u(t)‖rr +

∥∥∥ |u(t)| r2∥∥∥2
H1(Ω)

≤ Cr
1

1−α ‖u(t)‖rr ∀t ∈ [T0,∞).

Then (3.2.36) implies that u satisfies (3.2.23) with c0 = 1, c1 = C, θ0 = 0 and θ1 = 1
1−α .

Thus the desired bound of u in L∞([T0,∞);L∞(Ω)) is derived from Lemma 3.2.9 and
(3.2.3).

Remark 3.2.10. It is possible to show that the global bounds of ϕ(u(t)) and ‖u(t)‖∞
depend only on initial data ϕ(u0) and ‖u0‖∞ (as well as on p, q, |Ω|) respectively, if p
satisfies the following more restrictive condition: 2 < p < 2∗, where 2∗ = ∞ for N = 1
and 2∗ = 2 + 12

3N−4 for N ≥ 2 (2∗ < 2∗ for N ≥ 2, see [13]).





Chapter 4

Comparison Theorem

This chapter is devoted to studying comparison theorem for an initial-boundary problem
for a system of nonlinear parabolic equations with nonlinear boundary conditions. The
advantage of our comparison theorem over the classical ones lies in the fact that it enables
us to compare two solutions satisfying different types of boundary conditions. We first
prove our main result on a general domain. In the latter half, we give an application of this
theorem to nonlinear heat equations with nonlinear boundary conditions. More precisely,
we consider the generalized version of nonlinear heat equations (P)βF (see Chapter 2).

4.1 Main Statement and Its Proof

The main purpose of this chapter is to give a comparison theorem for a rather wide class
of nonlinear systems of reaction diffusion equations with nonlinear boundary conditions,
i.e., the following system of equations for U = (u1, u2, · · · , um) given by

(GP)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂uk

∂t
−

N∑
i,j=1

∂

∂xj

(
akij(t, x)

∂uk

∂xi

)
+ γk(t, x, uk)− F k(t, x, U) � 0, (t, x) ∈ QT ,

−
N∑

i,j=1

akij(t, x) νj
∂uk

∂xi
∈ βk(t, x, uk), (t, x) ∈ ΓT ,

uk(0, x) = ak(x), x ∈ Ω,

where Ω is a general domain in R
N with smooth boundary ∂Ω, QT := (0, T ) × Ω, ΓT :=

(0, T ) × ∂Ω, ν = ν(x) = (ν1, · · · , νN ) is the unit outward vector at x ∈ ∂Ω, uk : QT →
R (k = 1, 2, · · · ,m) are the unknown functions.

As for the coefficients akij (k = 1, 2, · · · ,m), we assume

∃λk ≥ 0 such that λk|ξ|2 ≤
N∑

i,j=1

akij(t, x) ξiξj ∀ξ ∈ R
N , a.e. (t, x) ∈ QT ,(4.1.1)

aki,j ∈ L∞(QT ), aki,j |ΓT
∈ L∞(ΓT ).(4.1.2)

We also assume that F k : QT × R
m → 2R

1
(k = 1, 2, · · · ,m) are (possibly multi-valued)

nonlinear mappings; γk(t, x, ·) and βk(t, x, ·) (k = 1, 2, · · · ,m) are maximal monotone
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graphs on R
1×R

1 for a.e. (t, x). More precisely, there exist lower semi-continuous convex
functions jk(t, x, r) : ΓT × R → (−∞,+∞] and ηk(t, x, r) : QT × R → (−∞,+∞] such
that βk = ∂jk and γk = ∂ηk, respectively. Here ∂jk and ∂ηk denote subdifferentials of jk

and ηk with respect to r ∈ R, respectively.

The problem with this type of boundary conditions appears in models describing diffu-
sion phenomena taking into consideration some nonlinear radiation law on the boundary
(see Brézis[10] and Barbu [7]) and the solvability for (GP) is examined in detail under
various settings (see [10, 7, 45]).

In what follows we work with solutions of (GP) in the following sense.

Definition 4.1.1. A function U = (u1, u2, · · · , um) : QT → R
m is called a super-solution

(resp. sub-solution) of (GP) on [0, T ] if and only if for all k ∈ {1, 2, · · · ,m},
(4.1.3)
uk ∈ C([0, T ];L2(Ω)) ∩ L∞([0, T ];L∞(Ω)) ∩W 1,2

loc ((0, T ];L
2(Ω)) ∩ L2

loc((0, T ];H
2(Ω)),

and there exist sections fk, gk ∈ L2
loc((0, T ];L

2(Ω)) of F k(t, x, U(t, x)), γk(t, x, uk(t, x))
and a section bk ∈ L2

loc((0, T ];L
2(∂Ω)) of βk(t, x, uk(t, x)) satisfying (GP), i.e.,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂uk

∂t
−

N∑
i,j=1

∂

∂xj

(
akij(t, x)

∂uk

∂xi

)
+ gk(t, x)− fk(t, x) ≥ 0 (resp. ≤ 0),

fk(t, x, U) ∈ F k(t, x, U(t, x)), gk(t, x) ∈ γk(t, x, uk(t, x)), a.e. (t, x) ∈ QT ,

−
N∑

i,j=1

akij(t, x) νj
∂uk

∂xi
≤ bk(t, x) (resp. ≥),

bk(t, x) ∈ βk(t, x, uk(t, x)) a.e. (t, x) ∈ ΓT ,

uk(0, x) = ak(x), a.e. x ∈ Ω.

If U is a super- and sub-solution of (GP) on [0, T ] with the same sections fk, bk, gk, then
U is called a solution of (GP) on [0, T ].

We also define the maximal existence time Tm = Tm(U) of a solution U by

Tm(U) := sup{ T > 0 ; U is extended to [0, T ] as a solution of (GP) in the sense above.}

Remark 4.1.2. When the existence of solution is concerned, the assumption D(βk) ∩
D(γk) �= ∅ is usually required for each k (see [10, 7]). However we do not apparently
need this assumption to derive our comparison theorem, since the existence of solutions
satisfying (4.1.3) is always assumed in our setting.

We now state our comparison theorem for (GP) and give a proof of it. The idea of proof
is standard and elementary, however, this type comparison theorem can cover various types
of nonlinear parabolic equations including those with classical linear boundary conditions.
The applicability of this comparison theorem will be exemplified in the next section.

Consider the following two systems of equations:
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(GP)1

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂uk

∂t
−

N∑
i,j=1

∂

∂xj

(
akij(t, x)

∂uk

∂xi

)
+γk1 (t, x, u

k)−F k
1 (t, x, U) � 0, (t, x) ∈ QT ,

−
N∑

i,j=1

akij(t, x)νj
∂uk

∂xi
∈ βk

1 (t, x, u
k), (t, x) ∈ ΓT ,

uk(0, x) = ak1(x), x ∈ Ω,

and

(GP)2

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂uk

∂t
−

N∑
i,j=1

∂

∂xj

(
akij(t, x)

∂uk

∂xi

)
+γk2 (t, x, u

k)−F k
2 (t, x, U) � 0, (t, x) ∈ QT ,

−
N∑

i,j=1

akij(x)νj
∂uk
∂xi

∈ βk
2 (t, x, u

k), (t, x) ∈ ΓT ,

uk(0, x) = ak2(x), x ∈ Ω,

where for every k ∈ {1, 2, · · · ,m}, βk
i , γ

k
i and F k

i in (GP)i satisfy the same conditions as
those for βk, γk and F k in (GP). Then our main theorem is stated as follows.

Theorem 4.1.3. Let U1 = (u11, u
2
1, · · · , um1 ) be a sub-solution of (GP)1 on [0, T ] and U2 =

(u12, u
2
2, · · · , um2 ) be a super-solution of (GP)2 on [0, T ], and let the following assumptions

(A1)-(A4) be satisfied.

(A1) ak1(x) ≤ ak2(x) a.e. x ∈ Ω for all k ∈ {1, 2, · · · ,m}.
(A2) For each k ∈ {1, 2, · · · ,m}, one of the following (i)-(ii) holds true.

(i) γk1 (t, x, ·) = γk2 (t, x, ·) = γk(t, x, ·) a.e. (t, x) ∈ QT .

(ii) sup { gk2 ; gk2 ∈ γk2 (t, x, r2) } ≤ inf { gk1 ; gk1 ∈ γk1 (t, x, r1) }
∀r1 ∈ D(γk1 (t, x, ·)), ∀r2 ∈ D(γk2 (t, x, ·)) with r1 > r2 a.e. (t, x) ∈ QT .

(A3) For each k ∈ {1, 2, · · · ,m}, one of the following (i)-(iii) holds true.

(i) βk
1 (t, x, ·) = βk

2 (t, x, ·) = βk(t, x, ·) a.e. (t, x) ∈ ΓT .

(ii) sup { bk2 ; bk2 ∈ βk
2 (t, x, r2) } ≤ inf { bk1 ; bk1 ∈ βk

1 (t, x, r1) }
∀r1 ∈ D(βk

1 (t, x, ·)), ∀r2 ∈ D(βk
2 (t, x, ·)) with r1 > r2 a.e. (t, x) ∈ ΓT .

(iii) rk1 ≤ rk2 ∀rk1 ∈ D(βk
1 (t, x, ·)), ∀rk2 ∈ D(βk

2 (t, x, ·)) a.e. (t, x) ∈ ΓT .

(A4) For each k ∈ {1, 2, · · · ,m}, the following (i) and (ii) hold true.

(i) −∞ < sup { z; z ∈ F k
1 (t, x, U) } ≤ inf { z; z ∈ F k

2 (t, x, U) } < +∞ a.e. (t, x, U) ∈
QT × R

m.
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(ii) F k
1 (t, x, ·) or F k

2 (t, x, ·) is single-valued and satisfies the following structure condi-
tion (SC) with F k replaced by F k

1 or F k
2 :

(SC) F k(t, x, U) is differentiable for almost all U ∈ R
m and satisfies

(4.1.4)
∂

∂uj
F k(t, x, U) ≥ 0 for all j �= k for a.e. (t, x, U) ∈ QT × R

m

and for any M > 0 there exists LM > 0 such that
(4.1.5)

sup

{ ∣∣∣ ∂

∂uj
F k(t, x, U)

∣∣∣ ; 1 ≤ j ≤ m, (t, x, U) ∈ QT × {U ; |U |Rm ≤ M }
}

≤ LM .

Then, we have

(4.1.6) uk1(t, x) ≤ uk2(t, x) ∀k ∈ {1, 2, · · · ,m}, ∀t ∈ [0, T ], a.e. x ∈ Ω.

Proof. Let fk
i , bki , gki be the sections of F k

i (Ui), βk(uki ), γk(uki ) appearing in (GP)i, and
let wk := uk1 − uk2. Since U1 and U2 are a sub-solution of (GP)1 and a super-solution of
(GP)2 respectively, we can see that wk satisfies

(4.1.7)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tw
k−

N∑
i,j=1

∂

∂xj

(
akij(t, x)

∂wk

∂xi

)
+ gk1 − gk2 ≤ fk

1 (U1)− fk
2 (U2), (t, x) ∈ QT ,

−
N∑

i,j=1

akij(t, x)νj
∂wk

∂xi
≥ bk1 − bk2, (t, x) ∈ QT ,

wk(0, x) = ak1(x)− ak2(x), x ∈ Ω.

Multiplying (4.1.7) by (wk)+ := max (wk, 0), we have

∫
Ω
∂tw

k (wk)+dx−
∫
Ω

N∑
i,j=1

∂

∂xj

(
akij(t, x)

∂wk

∂xi

)
(wk)+dx+

∫
Ω
(gk1 − gk2 )(w

k)+dx

≤
∫
Ω
(fk

1 (U1)− fk
2 (U2))(w

k)+dx.

Here note that

∫
Ω
∂tw

k (wk)+dx =

∫
{wk≥0}

∂tw
k wkdx =

1

2

d

dt

∫
{wk≥0}

|wk|2dx =
1

2

d

dt

∫
Ω
|(wk)+|2dx,
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and it follows from (4.1.1) that

−
∫
Ω

N∑
i,j=1

∂

∂xj

(
akij(t, x)

∂wk

∂xi

)
(wk)+dx

=

∫
Ω

N∑
i,j=1

akij(t, x)
∂wk

∂xi

∂(wk)+

∂xj
dx−

∫
∂Ω

N∑
i,j=1

akij(t, x)νj
∂wk

∂xi
(wk)+dσ

≥
∫
{wk≥0}

N∑
i,j=1

akij(t, x)
∂wk

∂xi

∂wk

∂xj
dx+

∫
∂Ω

(bk1 − bk2)(w
k)+dσ

=

∫
Ω

N∑
i,j=1

akij(t, x)
∂(wk)+

∂xi

∂(wk)+

∂xj
dx+

∫
∂Ω

(bk1 − bk2)(w
k)+dσ

≥ λk

∫
Ω

N∑
j=1

∣∣∣∣∂(wk)+

∂xj

∣∣∣∣
2

dx+

∫
∂Ω

(bk1 − bk2)(w
k)+dσ.

Hence the following inequality holds:

1

2

d

dt
‖(wk)+(t)‖2L2 +

∫
∂Ω
(bk1 − bk2)(w

k)+dσ +

∫
Ω
(gk1 − gk2 )(w

k)+dx

≤
∫
Ω
(fk

1 (U1)− fk
2 (U2))(w

k)+dx.

(4.1.8)

Here we are going to show that

(4.1.9) I∂Ω :=

∫
∂Ω

(bk1 − bk2) (w
k)+dσ =

∫
{uk

1>uk
2}
(bk1 − bk2) (u

k
1 − uk2)dσ ≥ 0.

In fact, if (i) of (A3) is satisfied, then (4.1.9) is derived from the monotonicity of βk, and
it is obvious that I∂Ω = 0 provided that (iii) of (A3), that is, (wk)+|∂Ω = 0. As for the
case where (ii) of (A3) is satisfied, uk1 > uk2 and bk1 ∈ βk

1 (u
k
1), bk2 ∈ βk

2 (u
k
2) imply that

(bk1 − bk2) (u
k
1 − uk2) ≥ 0,

whence follows I∂Ω ≥ 0.

In the same way as above, it follows from (A2) that

(4.1.10)

∫
Ω
(gk1 − gk2 ) (w

k)+dx ≥ 0.

Here we consider the case where F k
1 is singleton and satisfies (SC) with F k replaced
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by F k
1 . Then by (i) of (A4) we obtain∫

Ω
(fk

1 (U1)− fk
2 (U2))(w

k)+dx =

∫
Ω
(F k

1 (U1)− fk
2 (U2))(w

k)+dx(4.1.11)

=

∫
Ω
(F k

1 (U1)− F k
1 (U2))(w

k)+dx

+

∫
Ω
(F k

1 (U2)− fk
2 (U2))(w

k)+dx

≤
∫
Ω
(F k

1 (U1)− F k
1 (U2))(w

k)+dx.

Furthermore by virtue of (SC), there exists some θ ∈ (0, 1) such that

IkF :=

∫
Ω
(F k

1 (U1)− F k
1 (U2))(w

k)+dx

=

∫
Ω

m∑
j=1

∂

∂uj
F k
1 (U2 + θ(U1 − U2))w

j (wk)+dx

=

∫
Ω

m∑
j=1

∂

∂uj
F k
1 (U2 + θ(U1 − U2))((w

j)+− (wj)−)(wk)+dx

≤
∫
Ω

m∑
j=1

∂

∂uj
F k
1 (U2 + θ(U1 − U2)) (w

j)+ (wk)+dx,

where we used the fact that w = w+ − w−, w− := max (−w, 0) ≥ 0 and ∂
∂uj

F k
1 (U2 +

θ(U1 − U2)) (w
j)−(wk)+ ≥ 0 for j �= k and (wj)−(wk)+ = 0 for j = k.

Hence since Ui ∈ L∞(0, T ;L∞(Ω)) implies that there exists M > 0 such that

max
i=1,2

sup
t∈(0,T )

‖Ui(t)‖L∞ ≤ M,

we obtain by (4.1.5)

(4.1.12) IkF ≤ LM ‖(wk)+‖L2

m∑
j=1

‖(wj)+‖L2 .

Thus in view of (4.1.8), (4.1.9), (4.1.10) and (4.1.12), we finally get

1

2

d

dt

m∑
k=1

‖(wk)+(t)‖2L2 ≤ LM

( m∑
k=1

‖(wk)+(t)‖L2

)2

≤ LM m

m∑
k=1

‖(wk)+(t)‖2L2 ∀t ∈ (0, T ).
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Then integrating this over (s, t) with 0 < s < t ≤ T , we obtain by Gronwall’s inequality

m∑
k=1

‖(wk)+(t)‖2L2 ≤
m∑
k=1

‖(wk)+(s)‖2L2 e
2mLM (t−s) 0 < s ≤ t ≤ T.

Since wk ∈ C([0, T ];L2(Ω)), letting s → 0, we obtain by (A1)

m∑
k=1

‖(wk)+(t)‖2L2 ≤
m∑
k=1

‖(ak1 − ak2)
+‖2L2 e

2mLMT = 0 ∀t ∈ [0, T ],

whence follows (4.1.6).
As for the case where F k

2 is singleton and satisfies (SC) with F k replaced by F k
2 , instead

of (4.1.11) we can get∫
Ω
(fk

1 (U1)− fk
2 (U2))(w

k)+dx ≤
∫
Ω
(F k

2 (U1)− F k
2 (U2))(w

k)+dx.

Then we can repeat the same argument as above with F k
1 replaced by F k

2 .

Remark 4.1.4. (1) If fk
1 (U1) ≤ fk

2 (U2) is known a priori, we need not assume (A4) for
F k
1 and F k

2 in Theorem 4.1.3.

(2) If bk1(u
k
1) ≤ bk2(u

k
2) is known a priori, we need not assume (A3) for βk

1 and βk
2 in

Theorem 4.1.3.

(3) If m = 1 in Theorem 4.1.3, then assumption (4.1.4) is not needed.

(4) When we discuss the existence of solutions for (GP)i (i = 1, 2), we need to assume
that βk

i and γki are maximal monotone graphs. In Theorem 4.1.3, however, we need only
the monotonicity of βk

i and γki , since the existence of solutions is always assumed in our
setting.

(5) The following condition gives a sufficient condition for (ii) of (A3).

(ii)′

⎧⎨
⎩

D(βk
1 (t, x, ·)) ⊂ D(βk

2 (t, x, ·)) a.e. (t, x) ∈ ΓT , and

inf { bk1 ; bk1 ∈ βk
1 (t, x, r) } ≥ sup { bk2 ; bk2 ∈ βk

2 (t, x, r) } ∀r ∈ D(βk
1 (t, x, ·)),

and the same assertion for (ii) of (A2) as above holds true.

4.2 Applications

In this section we give an example of the application of our comparison theorem to some
nonlinear problem. Especially, we give a simple proof of the existence of blowing-up
solutions for nonlinear diffusion equations with nonlinear boundary conditions. We here
consider the following initial-boundary problem:

(P)βF

⎧⎪⎨
⎪⎩

∂tu−Δu− F (u) � 0, t > 0, x ∈ Ω,

− ∂νu ∈ β(u), t > 0, x ∈ ∂Ω,

u(0, x) = u0(x) ≥ 0, x ∈ Ω.
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We here assume that Ω is bounded in R
N with smooth boundary ∂Ω (Note that our

comparison theorem holds without the assumption on boundedness of Ω). The existence
of local solutions to this problem has been already discussed in Chapter 2 under some
assumptions (F) and (β). Moreover, the condition which assures the uniqueness has been
mentioned in Remark 2.2.4. For readers, we state the assumptions for F and β again.

(F) F : R1 → 2R
1
is a (possibly multi-valued) operator satisfying the following (i) and

(ii).

(i) 0 ∈ F (0), inf { z ; z ∈ F (u) } ≥ |u|p−2u+ ∀u ∈ R
1 with p > 2,

(ii) F (u) = Fs(u) + F+
m(u)− F−

m(u) ∀u ∈ R
1 and

Fs(·) is singleton and locally Lipschitz continuous on R
1,

F±
m(·) : R1 → 2R

1
are maximal monotone operators such that D(F±

m) = R
1.

(β) β : R1 → 2R
1
is a (possibly multi-valued) maximal monotone operator satisfying

0 ∈ β(0).

In view of assumptions 0 ∈ F (0) and 0 ∈ β(0), we immediately see that (P)βF possesses
the trivial solution v ≡ 0 with sections 0 = f(v) ∈ F (v), 0 = b(v) ∈ β(v). Let u be any

solution of (P)βF with u0(x) ≥ 0 with sections f(u) ∈ F (u), b(u) ∈ β(u) satisfying the
regularity required in Definition 4.1.1, whose existence is assured in Theorem 2.2.3, then
applying Theorem 4.1.3 with m = 1; F1 = F2 = F ; γ1 = γ2 = 0; β1 = β2 = β; a1 =
0, a2 = u0; u1 = v = 0, u2 = u, we conclude that u ≥ 0 as far as u exists. Here we use
the fact that 0 = f(u1) ≤ min{z; z ∈ F (u)} ≤ f(u2) is assured a priori by (2.2.7) (see
Remark 4.1.4).

Since we are here concerned only with non-negative solutions, the typical model of
F and β is given by F (u) = |u|p−2u and β(u) = |u|q−2u. For this special case, when
q < p, i.e., the nonlinearity inside the region is stronger than that at the boundary, it
might be straightforward to prove that there exist solutions of (P)βF which blow up in
finite time by applying the same strategy as that in [51]. Even though, it is difficult to

apply such a method to (P)βF for the case where q ≥ p, and to derive the existence of
blow-up solutions for this case by using the variational structure, one would need some
complicated classifications on parameters (p, q) with heavy calculations (cf. [56]). We
emphasize that our method for showing the existence of blow-up solutions relying on
Theorem 4.1.3 provides us a much simpler device with wider applicability.

Our result on the existence of solutions of (P)βF which blow up in finite time can be
formulated in terms of the following eigenvalue problem:

(4.2.1)

{
−Δφ = λφ, x ∈ Ω,

φ = 0, x ∈ ∂Ω.

Let λ1 > 0 be the first eigenvalue of (4.2.1) and φ1 be the associated positive eigenfunction
normalized by

∫
Ω φ1(x)dx = 1.
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We here consider the following fully studied problem:

(P)Dp

⎧⎪⎨
⎪⎩
∂tu−Δu = |u|p−2u, t > 0, x ∈ Ω,

u = 0, t > 0, x ∈ ∂Ω,

u(0, x) = u0(x) ≥ 0, x ∈ Ω,

It is well known that (P)Dp admits the unique time local solution uDp for any u0 ∈ L∞(Ω)

and Tm(uDp ) < ∞ if u0 satisfies

(4.2.2) u0 ∈ L∞(Ω), 0 ≤ u0(x) a.e. x ∈ Ω, and

∫
Ω
u0(x)φ1(x) dx > λ

1
p−2

1 ,

which is proved by the so-called Kaplan’s method (see [55]).

By comparing the solution u of (P)βF with uDp , we obtain the following result.

Proposition 4.2.1. Assume that u0 satisfies (4.2.2) and let uβF be any solution of (P)βF ,

then Tm(uβF ) ≤ Tm(uDp ) < ∞, i.e., uβF blows up in finite time.

Proof. We apply Theorem 4.1.3 with m = 1, ai,j = δi,j and γ1 = γ2 = 0, a1 = a2 = u0.
Then (A1) and (A2) are automatically satisfied. As for (A4), we take F1(t, x, u) = |u|p−2u
and F2(t, x, u) = F (u), then (2.2.7) assures (i) of (A4), and it is clear that F1 satisfies
(SC), since F1 is of C1-class with respect to u. As for the boundary conditions, we set

β1(r) = βD(r) :=

{
R
1 for r = 0,

∅ for r �= 0,
(4.2.3)

β2(r) = βe(r) :=

⎧⎪⎪⎨
⎪⎪⎩

β(r) for r > 0,

(−∞, 0] ∪ β(0) for r = 0,

∅ for r < 0.

(4.2.4)

Then we can easily see that β2 is monotone, i.e., (z1 − z2)(r1 − r2) ≥ 0 for all
[r1, z1], [r2, z2] ∈ β2. In fact, this is obvious when ri > 0 or ri = 0 (i = 1, 2). Let
r1 > 0 and r2 = 0, then z2 ∈ β(0) or z2 ∈ (−∞, 0]. If z2 ∈ β(0), the monotonicity of
β assures the assertion; and if z2 ∈ (−∞, 0], then since 0 ∈ β(0) implies z1 ≥ 0, we get
(z1 − z2)(r1 − r2) ≥ z1 r1 ≥ 0.

Since β(r) ⊂ β2(r) for all r ≥ 0 and uβF (t, x) ≥ 0 a.e. (t, x) ∈ ΓT , which is assured by

uβF (t, x) ≥ 0 a.e. (t, x) ∈ QT , u
β
F (t, x) satisfies −∂νu

β
F (t, x) ∈ β2(u

β
F (t, x)) a.e. (t, x) ∈ ΓT .

On the other hand, −∂νu
D
p (t, x) ∈ β1(u

D
p ) implies uDp (t, x) ∈ D(β1) = {0} and

−∂νu
D
p (t, x) ∈ R

1, i.e., uDp (t, x) obeys the homogeneous Dirichlet boundary condition
(see [9, 10, 7]).

Thus since D(β1) = {0} and D(β2) ⊂ [0,+∞), (iii) of (A3) is satisfied. Consequently,
applying Theorem 4.1.3, we find that

(4.2.5) 0 ≤ uDp (t, x) ≤ uβF (t, x) ∀t ∈ [0, T ) a.e. x ∈ Ω,

where T = min (Tm(uβF ), Tm(uDp )), whence follows

(4.2.6) ‖uDp (t)‖L∞ ≤ ‖uβF (t)‖L∞ ∀t ∈ [0, T ).



60 CHAPTER 4. COMPARISON THEOREM

Here suppose that Tm(uDp ) < Tm(uβF ), then it follows from (4.2.6) that

lim
t→Tm(uD

p )
‖uβF (t)‖L∞ = +∞,

which contradicts the definition of Tm(uβF ). Hence we conclude that Tm(uβF ) ≤ Tm(uDp ) <
+∞.

As the special case where F (u) = |u|p−2u, we get the following (see (2) of Remark
2.2.4).

Corollary 4.2.2. Assume that u0 satisfies (4.2.2) and let uβp be the unique solution of

(P)βF with F (u) = |u|p−2u, denoted by (P)βp , then Tm(uβp ) ≤ Tm(uDp ) < ∞, i.e., uβp blows
up in finite time.

We next consider another typical classical boundary condition, namely, the following
problem with the homogeneous Neumann boundary condition:

(P)Np

⎧⎪⎨
⎪⎩
∂tu−Δu = |u|p−2u, t > 0, x ∈ Ω,

∂νu = 0, t > 0, x ∈ ∂Ω,

u(0, x)u = u0(x) ≥ 0, x ∈ Ω.

Then it is also well known that (P)Np admits the unique positive local solution uNp for any

0 ≤ u0 ∈ L∞(Ω) and Tm(uNp ) < ∞ if u0 is not identically zero in Ω.

Let uNF be any solution of (P)NF (see Remark 2.2.4), and we apply Theorem 4.1.3 with
m = 1, ai,j = δi,j and γ1 = γ2 = 0, β1 = β2 = βN :≡ 0, a1 = a2 = u0. Then (A1),
(A2) and (A3) are automatically satisfied. As for (A4), we take F1(t, x, u) = |u|p−2u and
F2(t, x, u) = F (u), then (2.2.7) assures (i) of (A4), and it is clear that F1 satisfies (SC).
Then we get

(4.2.7) ‖uNp (t)‖L∞ ≤ ‖uNF (t)‖L∞ ∀t ∈ [0, T ) with T = min (Tm(uNp ), Tm(uNF )),

whence follows

(4.2.8) Tm(uNF ) ≤ Tm(uNp ).

We now compare (P)Np with (P)βp , i.e., (P)
β
F with F (u) = |u|p−2u. Let uβp be the unique

non-negative solution of (P)βp ( cf. (2) of Remark 2.2.4 ). We apply Theorem 4.1.3 with
m = 1, ai,j = δi,j and γ1 = γ2 = 0, a1 = a2 = u0, F1(u) = F2(u) = |u|p−2u. Then (A1),
(A2) and (A4) are satisfied. As for (A3), define β1(·) and β2(·) by

β1(r) = βe(r) :=

⎧⎪⎪⎨
⎪⎪⎩

β(r) for r > 0,

(−∞, 0] ∪ β(0) for r = 0,

∅ for r < 0,

β2(r) = βN
e (r) :=

⎧⎪⎪⎨
⎪⎪⎩

0 for r > 0,

(−∞, 0] for r = 0,

∅ for r < 0.
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Then we can show that β1, β2 are monotone by the same reasoning as that for (4.2.4).

Moreover since β(r) ⊂ β1(r) and 0 ≡ βN (r) ⊂ β2(r) for r ≥ 0, and uβp (t, x), uNp (t, x) ≥
0 a.e. (t, x) ∈ ΓT are assured by uβp (t, x), uN (t, x) ≥ 0 a.e. (t, x) ∈ QT , we get −∂νu

β
p (t, x) ∈

β1(u
β
p (t, x)) and −∂νu

N
p (t, x) ∈ β2(u

N
p (t, x)) for a.e. (t, x) ∈ ΓT .

Furthermore for any r1 ∈ D(β1), r2 ∈ D(β2) with r2 < r1, since D(β2) = [0,+∞) and
r2 < r1 implies 0 < r1 and 0 ∈ β(0) is assumed, we have

sup { b2 ; b2 ∈ β2(r2) } ≤ 0 ≤ inf { b1 ; b1 ∈ β1(r1) }.

Hence (ii) of (A3) is satisfied. Consequently, applying Theorem 4.1.3, we find that

0 ≤ uβp (t, x) ≤ uNp (t, x) ∀t ∈ [0, T ) a.e. x ∈ Ω,

where T = min (Tm(uβp ), Tm(uNp )), whence follows

(4.2.9) Tm(uNp ) ≤ Tm(uβp ) and ‖uβp (t)‖L∞ ≤ ‖uNp (t)‖L∞ ∀t ∈ [0, Tm(uNp )).

Thus putting arguments above all together, we obtain the following observations.

Proposition 4.2.3. Let u∗F be any solution of (P)∗F and let u∗p be the unique solution of
(P)∗p (∗ = D, β,N). Then the following hold.

(i) Tm(uDF ) ≤ Tm(uDp ), Tm(uβF ) ≤ Tm(uβp ), Tm(uNF ) ≤ Tm(uNp ) .

(ii) Tm(uNp ) ≤ Tm(uβp ) ≤ Tm(uDp ).

Remark 4.2.4. By virtue of (4.2.5), we can also derive some results on the strong max-

imum principle (see [55]) for (P)βF .





Chapter 5

Existence and Nonexistence of
Global Solutions

For nonlinear heat equations ∂tu−Δu = |u|p−2u in the whole space R
N , it is well known

that there exists the critical Fujita exponent pc = 2+ 2
N which gives the threshold of p that

divides the existence and the non-existence of positive global solutions (see [22, 28, 55]).
As for the same equation in bounded domains, there is no such a critical exponent of
p. In this chapter, however, we show that the same threshold phenomenon can occur in
bounded domains, which is controlled according to boundary conditions but not to the
exponents p.

5.1 Main Result

We are concerned with the existence and the nonexistence of positive global solutions to
(P):

(P)

⎧⎪⎨
⎪⎩
∂tu−Δu = |u|p−2u, t > 0, x ∈ Ω,

− ∂νu ∈ β(u), t > 0, x ∈ ∂Ω,

u(0, x) = u0(x), x ∈ Ω.

As in the previous chapters, we assume that Ω is a bounded domain in R
N with smooth

boundary ∂Ω and β is a maximal monotone graph in R×R satisfying β(0) � 0. Moreover
let Tm = Tm(u0) be the maximal existence time of the solution to (P). This type of
boundary conditions imposed on (P) can cover classical linear boundary conditions such
as the homogeneous Dirichlet or Neumann boundary condition. Indeed, set

βD(r) =

{
R r = 0,

∅ r �= 0,
or βN (r) = 0 ∀r ∈ R,

then the boundary condition of (P) with β = βD or β = βN becomes the homogeneous
Dirichlet boundary condition or the homogeneous Neumann boundary condition respec-
tively [10, 7]. To simplify the descriptions, we denote (P) with β = βD and β = βN by
(P)D and (P)N respectively.

63
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r

βD(r)

O

r

βN(r)

O

Figure 1: The homogeneous Dirichlet and Neumann boundary condition

In what follows, we always assume that the initial data belong to

L∞
+ (Ω) := { v ∈ L∞(Ω) ; v ≥ 0, v �≡ 0 }.

Then it is well known that all non-trivial nonnegative solutions of (P)N blow up in finite
time and to the contrary, (P)D admits always global solutions for small initial data.

With this fact in mind, we classify the nature of (P) into the following two categories
reflecting the natures of (P)N and (P)D mentioned above.

Definition 5.1.1. (i) (P) is N-type if and only if Tm(u0) < ∞ for all u0 ∈ L∞
+ (Ω).

(ii) (P) is D-type if and only (P) is not N-type, that is, there exists u0 ∈ L∞
+ (Ω) such

that Tm(u0) = ∞.

Note that it is obvious (P)D is D-type and (P)N is N-type.
We here introduce the following subclass (βα(·))α∈[0,∞] of (β) by

β0 = βD, β∞ = βN and for α ∈ (0,∞) by βα(r) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(−∞, 0], r = 0,

0, r ∈ (0, α)

[0,+∞), r = α,

∅, otherwise.

r

βα(r)

O α

Figure 2: The graph of βα

For the rest of this chapter, (P)α denotes (P) with β = βα. We know that for all u0 ∈
L∞
+ (Ω), (P)α possesses a unique nonnegative time local solution u satisfying the regularity

in Theorem 2.2.3 (see Chapter 2).
Our main theorem can be stated as follows.
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Theorem 5.1.2. There exists a threshold value αc ∈ (0,∞) such that the followings hold:

(i) If α > αc, then (P)α is N-type.

(ii) If α < αc, then (P)α is D-type.

5.2 Nonexistence of Global Solutions

We first define α0 ∈ [0,∞] by

α0 := inf {α > 0 ; (P)α is N-type. } ,
where we put α0 = ∞ if A := {α > 0 ; (P)α is N-type. } is an empty set.

Lemma 5.2.1. Let λ1 be the first eigenvalue of the Dirichlet Laplacian and let α > λ
1

p−2

1 ,
then (P)α is N-type. In particular we have α0 < ∞.

Proof. We prove the assertion by contradiction. Let

(5.2.1) α > λ
1

p−2

1 ,

and suppose that there exists a solution u of (P)α satisfying the regularity in Theorem
2.2.3 with the initial data u0 ∈ L∞

+ (Ω) such that Tm(u0) = ∞. Let u1 be a solution to
the following heat equation:

(5.2.2)

⎧⎪⎨
⎪⎩
∂tu1 −Δu1 = 0, t > 0, x ∈ Ω,

− ∂νu1 ∈ βα(u1), t > 0, x ∈ ∂Ω,

u1(0, x) = a1(x), x ∈ Ω,

where a1 ∈ L∞
+ (Ω) ∩ C(Ω) satisfies

(5.2.3) a1 < α on Ω, a1 ≤ u0 a.e. on Ω.

By the definition of βα and (5.2.3), there exists T1 > 0 such that (5.2.2) is equivalent to
the following linear heat equation on [0, T1):

(5.2.4)

⎧⎪⎨
⎪⎩
∂tu1 −Δu1 = 0, t ∈ (0, T1), x ∈ Ω,

∂νu1 = 0, t ∈ (0, T1), x ∈ ∂Ω,

u1(0, x) = a1(x), x ∈ Ω,

Hence by virtue of the classical maximum principle, we see that there exist δ ∈ (0, α) and
T2 ∈ (0, T1) such that

(5.2.5) δ < u1(t, x), ∀t ∈ [T2, T1), ∀x ∈ Ω.

On the other hand, applying Theorem 4.1.3 with m = 1, a1 = a1, a2 = u0, γ1 = γ2 = 0,
β1 = β2 = βα, F1 = 0 and F2(r) = |r|p−2r, we obtain

u1(t, x) ≤ u(t, x), ∀t ≥ 0, a.e. x ∈ Ω,
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whence follows from (5.2.5)

δ < u(t, x) ∀t ≥ T2, a.e. x ∈ Ω,

We now introduce the other equation for t ≥ T2. Let u2 be the solution to the following
equation:

(5.2.6)

⎧⎪⎨
⎪⎩
∂tu2 −Δu2 = |u2|p−2u2, t > T2, x ∈ Ω,

− ∂νu2 ∈ βα(u2), t > T2, x ∈ ∂Ω,

u2(T2, x) ≡ δ, x ∈ Ω,

and let T3 > T2 denote the maximal existence time of u2. In the same way as above,
applying Theorem 4.1.3 to (P)α and (5.2.6) on [T2, T3) with m = 1, a1 = δ, a2 = u(T2),
γ1 = γ2 = 0, β1 = β2 = βα and F1(r) = F2(r) = |r|p−2r, we derive

(5.2.7) u2(t, x) ≤ u(t, x), ∀t ∈ [T2, T3), a.e. x ∈ Ω.

Note that since δ is a constant satisfying δ < α, by the definition of βα we can see that
there exists T4 ∈ [T2, T3) such that u2 is independent of space variables on [T2, T4] and
satisfies

(5.2.8) u2(T4, x) = α, ∀x ∈ Ω.

Therefore, from (5.2.7) and (5.2.8), it follows that u(t, x) = α for all t ≥ T4 on ∂Ω, which
implies that (P)α is equivalent to the following form:

(5.2.9)

⎧⎪⎨
⎪⎩
∂tu−Δu = |u|p−2u, t > T4, x ∈ Ω,

u = α, t > T4, x ∈ ∂Ω,

u(T4, x) ≥ α, x ∈ Ω.

We finally consider the following nonlinear heat equation with the homogeneous Dirich-
let boundary condition for t ≥ T4, and let u3 be the solution to

(5.2.10)

⎧⎪⎨
⎪⎩
∂tu3 −Δu3 = |u3|p−2u3, t > T4, x ∈ Ω,

u3 = 0, t > T4, x ∈ ∂Ω,

u3(T4, x) ≡ α, x ∈ Ω.

The maximal existence time of u3 is denoted by T5(> T4). We apply Theorem 4.1.3 to two
solutions of (5.2.9) and (5.2.10) on [T4, T5] in the similar manner again, so we conclude
that

u3(t, x) ≤ u(t, x), ∀t ∈ [T4, T5), a.e. x ∈ Ω,

whence follows

(5.2.11) ‖u3(t)‖∞ ≤ ‖u(t)‖∞, ∀t ∈ [T4, T5).

Therefore we see that T5 = +∞ due to of (5.2.11) and the assumption Tm(u0) = +∞.
On the other hand, for the eigenfunction φ1(x) associated with the first eigenvalue λ1

normalized by ‖φ1‖1 = 1, (5.2.1) implies that
∫
Ω αφ1(x)dx > λ

1
p−2

1 , whence it follows that
u3 blows up in finite time (see (4.2.2) and Theorem 17.1 in [55]), i.e., T5 < +∞. This
leads to a contradiction.
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Lemma 5.2.2. Let α > α0. Then (P)α is N-type.

Proof. Let u be the solution to (P)α , and suppose that Tm(u0) = +∞ (recall that Tm(u0)
is the maximal existence time of u). By the definition of α0, we see that there exists
α ∈ (α0, α) such that (P)α is N-type, i.e., for every u0 ∈ L∞

+ (Ω), all positive solutions of
the following equations blow up in finite time.

(5.2.12)

⎧⎪⎨
⎪⎩
∂tu−Δu = |u|p−2u t > 0, x ∈ Ω,

− ∂νu ∈ βα(u) t > 0, x ∈ ∂Ω,

u(0, x) = u0(x) x ∈ Ω,

Let u and Tm(u0) < ∞ be a solution and the maximal existence time of (5.2.12) respec-
tively, and we apply Theorem 4.1.3 with m = 1, F1(r) = F2(r) = |r|p−2r, a1 = a2 = u0,
β1 = βα and β2 = βα. Since D(βα) = [0, α] ⊂ [0, α] = D(βα), it is clear that (ii) of (A3)
in Theorem 4.1.3 holds. As a consequence, applying Theorem 4.1.3, we derive

u(t, x) ≤ u(t, x) ∀t ∈ [0, Tm(u0)), a.e. x ∈ Ω.

which implies

(5.2.13) ‖u(t)‖∞ ≤ ‖u(t)‖∞ ∀t ∈ [0, Tm(u0)).

From the above inequality, it follows that

Tm(u0) ≤ Tm(u0).

This is a contradiction by Tm(u0) = +∞ and Tm(u0) < +∞.

5.3 Existence of Global Solutions

Lemma 5.3.1. α0 > 0.

Proof. We only need to show the existence of global solutions to (P)α for sufficiently small
α > 0 and small initial data. Let u be the solution to (P)α with the initial data u0 ∈ L∞

+ (Ω)
satisfying u0 ≤ α, and let v be the solution to the following equation:

(5.3.1)

⎧⎪⎨
⎪⎩
∂tv −Δv = |v|p−2v, t > 0, x ∈ Ω,

v = α, t > 0, x ∈ ∂Ω,

v(0, x) ≡ α, x ∈ Ω.

The maximal existence time of v is denoted by T v
m ∈ (0,+∞]. We here put

βα
D(r) :=

{
R, r = α,

∅, r �= α.

Note that from u ≥ 0 it follows that D(βα) = [0, α] and

r ≤ α, ∀r ∈ D(βα).
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Then by applying Theorem 4.1.3 with m = 1, a1 = u0, a2 = α, γ1 = γ2 = 0, β1 = βα,
β2 = βα

D and F1(r) = F2(r) = |r|p−2r, it holds that

u(t, x) ≤ v(t, x), ∀t ∈ [0, T ∗), a.e. x ∈ Ω,

where T ∗ := min(Tm, T v
m). Hence we see that

‖u(t)‖∞ ≤ ‖v(t)‖∞, ∀t ∈ [0, T ),

whence follows

T v
m ≤ Tm.

In order to prove this lemma, we are going to show T v
m = +∞. We first consider the

case where N ≥ 3. Let w := v−α. If v solves (5.3.1), then w solves the following equation:

(5.3.2)

⎧⎪⎨
⎪⎩
∂tw −Δw = |w + α|p−2(w + α), t > 0, x ∈ Ω,

w = 0, t > 0, x ∈ ∂Ω,

w(0, x) = 0, x ∈ Ω.

Put

r0 := max

{
2,

N(p− 2)

2

}
.

Multiplying (5.3.2) by |w|r−2w for r > r0, we have

1

r

d

dt
‖w(t)‖rr + (r − 1)

∫
Ω
|∇w|2|w|r−2dx ≤

∫
Ω
|w + α|p−1|w|r−1dx.

Since |a+ b|p−1 ≤ Cp(|a|p−1 + |b|p−1) for a, b ∈ R with Cp := 2p−2, it holds that∫
Ω
|w + α|p−1|w|r−1dx ≤ Cp

∫
Ω
|w|p+r−2dx+ Cp

∫
Ω
αp−1

∫
Ω
|w|r−1dx

≤ Cp‖w(t)‖p+r−2
p+r−2 + Cp|Ω| 1rαp−1‖w(t)‖r−1

r .

Moreover, note that

(r − 1)

∫
Ω
|∇w|2|w|r−2dx =

4(r − 1)

r2

∥∥∥∇|w| r2
∥∥∥2
2

≥ CS
4(r − 1)

r2

∥∥∥|w| r2∥∥∥2
2∗

= CS
4(r − 1)

r2
‖w‖rrN

N−2
,

where 2∗ = 2N
N−2 and CS is the best constant of Sobolev embedding H1(Ω) ↪→ L2∗(Ω).

Therefore we can deduce that

(5.3.3)
1

r

d

dt
‖w(t)‖rr + CS

4(r − 1)

r2
‖w(t)‖rrN

N−2

≤ Cp‖w(t)‖p+r−2
p+r−2 + Cp|Ω| 1rαp−1‖w(t)‖r−1

r .
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Since r > r0 ≥ N(p−2)
2 , Lemma 1.1.5 and Corollary 1.1.2 assure that for any ε > 0 there

exists Cε > 0 such that

(5.3.4) ‖w‖p+r−2
p+r−2 ≤ ε‖w‖rrN

N−2

+ Cε‖w‖r(1+δ)
r ,

where δ = 2(p−2)
2r−N(p−2) . Hence by (5.3.3) and (5.3.4), we derive

1

r

d

dt
‖w(t)‖rr +

{
CS

4(r − 1)

r2
− Cpε

}
‖w(t)‖rrN

N−2

≤ CpCε‖w(t)‖r(1+δ)
r + Cp|Ω| 1rαp−1‖w(t)‖r−1

r .

Choosing ε = 2CS(r−1)
Cpr2

, noting that rN
N−2 > r and using Hölder’s inequality, we obtain

(5.3.5)
1

r

d

dt
‖w(t)‖rr + C̃‖w(t)‖rr ≤ CpCε‖w(t)‖r(1+δ)

r + Cp|Ω| 1rαp−1‖w(t)‖r−1
r ,

where

C̃ :=
2CS(r − 1)

Cpr2
|Ω|− 2

N .

Divide both sides of (5.3.5) by ‖w(t)‖r−1
r , then we get

(5.3.6)
d

dt
‖w(t)‖r + C̃‖w(t)‖r ≤ CpCε‖w(t)‖rδ+1

r + Cp|Ω| 1rαp−1.

We put

(5.3.7) ε∗ =

(
C̃

2CpCε

) 1
rδ

, α∗ =

(
ε∗C̃

4Cp|Ω| 1r

) 1
p−1

.

We here claim that if α ≤ α∗ then

sup
t≥0

‖w(t)‖r ≤ ε∗.

Suppose that this claim dose not hold. Thus there exists some t0 ∈ (0,+∞) such that

‖w(t0)‖r > ε∗.

Moreover, since w(0) = 0, there exists t1 ∈ (0, T0) such that

(5.3.8)
‖w(t)‖r < ε∗, ∀t ∈ (0, T1),

‖w(t1)‖r = ε∗.

Hence we get

CpCε‖w(t)‖rδ+1
r = CpCε‖w(t)‖rδr ‖w(t)‖r

≤ εrδ∗ CpCε‖w(t)‖r, ∀t ∈ [0, t1],
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whence follows from (5.3.6) and (5.3.7)

d

dt
‖w(t)‖r + C̃

2
‖w(t)‖r ≤ Cp|Ω| 1rαp−1, t ∈ [0, t1].

Therefore we see that

‖w(t)‖r ≤ ‖w(0)‖re− C̃
2
t +

∫ t

0
Cp|Ω| 1rαp−1e−

C̃
2
(t−s)ds

= Cp|Ω| 1rαp−1 2

C̃

(
1− e−

C̃
2
t
)

≤ Cp|Ω| 1rαp−1 2

C̃
, t ∈ [0, t1].

In particular, this inequality gives

ε∗ = ‖w(t1)‖r ≤ ε∗
2

< ε∗,

which is a contradiction. Thus we conclude that

sup
t≥0

‖w(t)‖r ≤ ε∗, ∀r ∈ (r0,+∞).

Consequently, letting r → +∞, we have

sup
t≥0

‖w(t)‖∞ ≤ ε∗

and T v
m = +∞ provided that α ≤ α∗.

As for the case where N = 1, 2, using Sobolev’s embedding theorem

H1(Ω) ↪→ Ls(Ω) ∀s ∈ [1,+∞), (N = 2),

H1(Ω) ↪→ L∞(Ω) (N = 1),

we obtain (5.3.3) up to constants of the second term on the left hand side. Since the above
argument of this proof except the Sobolev’s embedding do not depend on the dimension
N , this lemma can be shown as in the case where N ≥ 3.

Lemma 5.3.2. Let α < α0. Then (P)α is D-type.

Proof. By the similar argument as the proof of Lemma 5.2.2, for fixed α > 0, we see that
there exists α ∈ (α, α0) such that (P)α is D-type. In other words, there exists u0 ∈ L∞

+ (Ω)
such that the following equation (P)α possesses a global solution u with the maximal
existence time Tm = +∞:

(5.3.9)

⎧⎪⎨
⎪⎩
∂tu−Δu = |u|p−2u, t > 0, x ∈ Ω,

− ∂νu ∈ βα(u), t > 0, x ∈ ∂Ω,

u(0, x) = u0(x), x ∈ Ω.
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Let u be the solution to (P)α with the initial data u0 ∈ L∞
+ (Ω) satisfying u0 ≤ u0 and

Tm be the maximal existence time of u. Since D(βα) = [0, α] ⊂ [0, α] = D(βα), it is clear
that (ii) of (A3) in Theorem 4.1.3. Thus applying Theorem 4.1.3 with m = 1, a1 = u0,
a2 = u0, γ1 = γ2 = 0, β1 = βα, β2 = βα and F1(r) = F2(r) = |r|p−2r, we have

u(t, x) ≤ u(t, x), ∀t ∈ [0, T ), a.e. x ∈ Ω,

where T := min(Tm, Tm) = Tm. Hence it holds that

‖u(t)‖∞ ≤ ‖u(t)‖∞, ∀t ∈ [0, Tm),

whence follows
Tm ≤ Tm.

As a consequence, we obtain Tm = +∞.

Proof of Theorem 5.1.2. By lemma 5.2.1, 5.2.2, 5.3.1 and 5.3.2, we can deduce that theo-
rem 5.1.2 is true with αc = α0.





Chapter 6

Structural Stability

In this chapter, we revisit (P)q :

(P)q

⎧⎪⎨
⎪⎩
∂tu−Δu = |u|p−2u, t > 0, x ∈ Ω,

∂νu+ βq(u) � 0, t > 0, x ∈ ∂Ω,

u(0, x) = u0(x), x ∈ Ω,

where Ω ⊂ R
N is bounded domain with smooth boundary ∂Ω, p > 2 is a given number, ν

denotes the unit outward normal vector on ∂Ω and ∂νu = ∇u · ν.
We here consider not only the single valued cases βq(r) = |r|q−2r with q ∈ (1,∞)

but also the multivalued cases β1 and β∞ corresponding to the cases q = 1 and q = ∞
respectively, given by:

β1(r) :=

⎧⎪⎨
⎪⎩
1 r > 0,

[−1, 1] r = 0,

− 1 r < 0,

β∞(r) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[0,∞) r = 1,

0 r ∈ (−1, 1),

(−∞, 0] r = −1,

∅ |r| > 1,

r

β1(r)

O

1

-1

r

β∞(r)

O 1

-1

Figure 1: The graph of β1 and β∞

As previously stated, to adopt the power type nonlinear boundary conditions (q ∈ (1,+∞))
is reasonable from a physical point of view (cf. Stefan-Boltzmann’s radiation law).

On the other hand, the multivalued nonlinear boundary condition β∞ also appears in
the Signorini problem, which was first studied by Fichera [21]. This arises in the theory

73
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of elasticity in connection with the mathematical description of friction problems (see
also [19]). We already observed that the initial-boundary value problem (P)q is locally
well-posed for u0 ∈ L∞(Ω) (see Theorem 2.2.1 and Theorem 2.2.3).

The main purpose of this chapter is show the continuous dependence of solutions of
(P)q with respect to the parameter q ∈ [1,∞]. Especially it will be shown that the solution
of (P)q converges to the solution of (P)∞ or (P)1 in a suitable sense as q converges to ∞
or 1.

To carry out this, we make the most use of the notion of Mosco convergence for convex
functionals associated with the −Δ with nonlinear boundary conditions.

6.1 Mosco Convergence and Evolution Equations

First of all, we state our main result in this chapter.

Theorem 6.1.1. Let q0 ∈ [1,∞] and (qn) be a sequence in (1,∞) satisfying qn → q0 as
n → ∞. Moreover let an, a ∈ L∞(Ω) be the initial values for (P )qn and (P )q0 satisfying

an → a strongly in L∞(Ω),

and denote by un and u the solutions of (P )qn and (P )q0 on [0, T0] given in Theorem 2.2.3
respectively. Then un converge to u as n → ∞ in the following sense:

un → u strongly in C([0, T0];L
2(Ω)),√

t∂tun → √
t∂tu strongly in L2(0, T0;L

2(Ω)).

Remark 6.1.2. Since an converges to a strongly in L∞(Ω), we can take a common T0 > 0
for all n ∈ N (see the proof of Theorem 2.2.3).

In order to prove Theorem 6.1.1, we rely on the abstract theory of Mosco convergence
of functionals and evolution equations governed by subdifferential operators in a real
Hilbert space H. We first investigate the asymptotic behavior of solutions to nonlinear
evolution equations associated with subdifferential operators whose functionals are Mosco
convergent.

Proposition 6.1.3. Let (φn) ⊂ Φ(H), φ ∈ Φ(H), an ∈ D(φn) and a ∈ D(φ), and let fn,
f ∈ L1(0, T ;H) satisfying

√
tfn,

√
tf ∈ L2(0, T ;H). Assume that B : H → H is Lipschitz

perturbation with Lipschitz constant L > 0. Let un and u be the strong solutions on [0, T ]
of

d

dt
un(t) + ∂φn(un(t)) +Bun(t) � fn(t), un(0) = an,(6.1.1)

d

dt
u(t) + ∂φ(u(t)) +Bu(t) � f(t), u(0) = a,(6.1.2)

respectively. If an → a in H, fn → f strongly in L1(0, T ;H),
√
tfn → √

tf strongly in
L2(0, T ;H) and

(6.1.3) φn M−→ φ on H,
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then

un → u strongly in C([0, T ];H),
√
t
dun
dt

→ √
t
du

dt
strongly in L2(0, T ;H).

Proof. Note that from Proposition 1.5.3 it follows that there exist (α, β) ∈ ∂φ and
(αn, βn) ∈ ∂φn such that αn → α, βn → β and φn(αn) → φ(α). In the same way as
in the proof of Proposition 1.4.1, we can assume that B(0) = 0 and

φ(α) = min{φ(u) ; u ∈ D(φ)} = 0,

φn(αn) = min{φn(u) ; u ∈ D(φn)} = 0.

Step.1: un → u strongly in C([0, T ];H).
For the rest of this step, let An and A denote ∂φn and ∂φ respectively for simplicity.

We first show this proposition for the case where fn = f = 0. For fixed λ > 0, we
set y = (1 +

√
λA)−1a ∈ D(A) and yn = (1 +

√
λAn)−1an ∈ D(An). Let v, vλ, vn,

vn,λ ∈ C([0, T ];H) be the solutions of the following Cauchy problems:

dv

dt
+Av +Bv � 0, v(0) = y,(6.1.4)

dvλ
dt

+Aλvλ +Bvλ = 0, vλ(0) = y,(6.1.5)

dvn
dt

+Anvn +Bvn � 0, vn(0) = yn,(6.1.6)

dvn,λ
dt

+An
λvn,λ +Bvn,λ = 0, vn,λ(0) = yn,(6.1.7)

where Aλ and An
λ denote the Yosida approximation of A and An respectively. In order to

prove this lemma, noting

|un(t)− u(t)|H ≤ |un(t)− vn(t)|H + |vn(t)− vn,λ(t)|H + |vn,λ(t)− vλ(t)|H(6.1.8)

+ |vλ(t)− v(t)|H + |v(t)− u(t)|H ,

we are going to derive a priori estimates for all terms on the right hand side of (6.1.8).
We first consider un and vn. Let ξn ∈ Anun and ζn ∈ Anvn, it follows from (6.1.1) and

(6.1.6)
d

dt
(un − vn) + ξn − ζn +Bun −Bvn = 0.

Multiplying this equation by un − vn, we have

1

2

d

dt
|un(t)− vn(t)|2H + (ξn − ζn, un − vn)H + (Bun −Bvn, un − vn)H = 0.

Since An is monotone operator in H and B is Lipschitz continuous, it holds that

|un(t)− vn(t)|2H ≤ |an − yn|2H +

∫ T

0
2L|un(t)− vn(t)|2Hdt,
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which implies by Gronwall’s inequality

(6.1.9) |un(t)− vn(t)|H ≤ eLT |an − yn|H ∀t ∈ [0, T ].

Similarly, by (6.1.2) and (6.1.4), we can deduce that

(6.1.10) |u(t)− v(t)|H ≤ eLT |a− y|H ∀t ∈ [0, T ].

By (6.1.5) and (6.1.7), we have

d

dt
(vλ − vn,λ) +Aλvλ −An

λvn,λ +Bvλ −Bvn,λ = 0.

Integrating this equation over [0, T ], we see that

|vλ(t)− vn,λ(t)|H ≤ |y − yn|H +

∫ T

0
|Aλvλ(t)−An

λvn,λ(t)|Hdt

+

∫ T

0
|Bvλ(t)−Bvn,λ(t)|Hdt

≤ |y − yn|H +

∫ T

0
|Aλvλ(t)−An

λvλ(t)|Hdt

+

∫ T

0
|An

λvλ(t)−An
λvλ(t)|Hdt+

∫ T

0
L|vλ(t)− vn,λ(t)|Hdt

≤ |y − yn|H + ‖Aλvλ −An
λvλ‖L1(0,T ;H)

+

(
1

λ
+ L

)∫ T

0
|vλ(t)− vn,λ(t)|Hdt,

where we use the fact the Yosida approximation is Lipschitz continuous with Lipschitz
constant 1/λ > 0 (see Proposition 1.3.7). By the definition of Yosida approximation and
Gronwall’s inequality, we get

|vλ(t)− vn,λ(t)|H ≤ (|y − yn|H + ‖Aλvλ −An
λvλ‖L1(0,T ;H)

)
e(

1
λ
+L)T

(6.1.11)

≤
(
|y − yn|H +

1

λ
‖(1 + λA)−1vλ − (1 + λAn)−1vλ‖L1(0,T ;H)

)
e(

1
λ
+L)T .

We next consider the part |vλ−v|H . To do this, we first try to derive a priori estimates
of vλ. By the similar argument of estimates (1.4.4) in the proof of Proposition 1.4.1, we
can get

sup
t∈[0,T ]

|vλ(t)|H ≤ |α|H + eLT (|y|H + |α|H + T |Bα|H) .(6.1.12)

For h > 0, since Aλ is monotone, we have

d

dt
|vλ(t+ h)− vλ(t)|2H = −2 (Aλvλ(t+ h)Aλvλ(t), vλ(t+ h)− vλ(t))H

− 2 (Bvλ(t+ h)−Bvλ(t), vλ(t+ h)− vλ(t))H

≤ 2L |vλ(t+ h)− vλ(t)|2H ,
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which implies

|vλ(t+ h)− vλ(t)|H ≤ eLT |vλ(h)− vλ(0)|H .

Dividing both sides by h and letting h → 0, we obtain

∣∣∣∣dvλdt (t)

∣∣∣∣
H

≤ eLT
∣∣∣∣dvλdt (0)

∣∣∣∣
H

.

Since dvλ
dt = −Aλvλ − Bvλ and Aλ ⊂ AJλ, it follows from (6.1.12) and Proposition 1.3.7

that

|Aλvλ(t)|H ≤ L|vλ(t)|H + eLT
(|A0y|+ L|y|H

)
≤ L

{|α|H + eLT (|y|H + |α|H + T |Bα|H)
}
+ eLT

(|A0y|+ L|y|H
)
.

Note that since y = J√λa → a in H as λ ↓ 0, the estimate |y|H ≤ |a|H + 1 holds for small
λ > 0. Hence

sup
t∈[0,T ]

|Aλvλ(t)|H ≤ L
{|α|H + eLT (|a|H + 1 + |α|H + T |Bα|H)

}
(6.1.13)

+ eLT
{|A0y|+ L(|a|H + 1)

}
.

For 0 < μ < λ, we can deduce that (see the proof of Proposition 1.4.1)

1

2

d

dt
|vλ(t)− vμ(t)|2H ≤ λ

4
|Aμvμ(t)|2H +

μ

4
|Aλvλ(t)|2H + L|vλ(t)− vμ(t)|2H ,

where vμ solves

dvμ
dt

+Aμvμ +Bvμ = 0, (t > 0), vμ(0) = y.

By (6.1.13), we see that

|vλ(t)− vμ(t)|2H ≤ λ+ μ

2
T
[
L
{|α|H + eLT (|a|H + 1 + |α|H + T |Bα|H)

}
+eLT

{|A0y|+ L(|a|H + 1)
}]2

+ 2L

∫ t

0
|vλ(s)− vμ(s)|2Hds,

which implies

|vλ(t)− vμ(t)|2H ≤ e2LT
λ+ μ

2
T
[
L
{|α|H + eLT (|a|H + 1 + |α|H + T |Bα|H)

}
+eLT

{|A0y|+ L(|a|H + 1)
}]

, ∀t ∈ [0, T ].
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Letting μ ↓ 0, we conclude that

|vλ(t)− v(t)|H ≤ eLT
√

λT

2

[
L
{|α|H + eLT (|a|H + 1 + |α|H + T |Bα|H)

}
+eLT

{|A0y|+ L(|a|H + 1)
}]

≤ eLT
√

λT

2

[
L
{|α|H + eLT (|a|H + 1 + |α|H + T |Bα|H)

}

+eLT {L(|a|H + 1)}]+ e2LT
√

λT

2
|A0y|H .

Note that Aλ ⊂ AJλ and

|A0y|H = |A0(1 +
√
λA)−1a|H ≤ 1√

λ

∣∣∣(1− J√λ)a
∣∣∣
H

Consequently, we obtain

|vλ(t)− v(t)|H ≤ eLT
√

λT

2

[
L
{|α|H + eLT (|a|H + 1 + |α|H + T |Bα|H)

}
(6.1.14)

+eLT {L(|a|H + 1)}]+ e2LT
√

T

2
|a− y|H .

Similarly, we have

|vnλ(t)− vn(t)|H ≤ eLT
√

λT

2

[
L
{|αn|H + eLT (|an|H + 1 + |αn|H + T |Bαn|H)

}
(6.1.15)

+eLT {L(|an|H + 1)}]+ e2LT
√

T

2
|an − yn|H .
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From (6.1.9), (6.1.10), (6.1.11), (6.1.14), (6.1.15) and (6.1.8), it follows that

sup
t∈[0,T ]

|u(t)− un(t)| ≤ eLT (|a− y|H + |an − yn|H)

+ e2LT
√

T

2
(|a− y|H + |an − yn|H)

+ eLT
√

λT

2
L(|α|H + |αn|H)

+ e2LT
√

λT

2
{|a|H + (1 + LT ) |α|H + 1}

+ e2LT
√

λT

2
{|an|H + (1 + LT ) |αn|H + 1}

+ e2LT
√

λT

2
{L (|a|H + |an|H) + 2}

+ e(
1
λ
+L)T |y − yn|H

+ e(
1
λ
+L)T 1

λ
‖(1 + λA)−1vλ − (1 + λAn)−1vλ‖L1(0,T ;H).

Note that by Proposition 1.5.3 we know

(6.1.16) (1 + λAn)−1w → (1 + λA)−1w, ∀λ > 0, ∀w ∈ H,

and

|y − yn|H ≤ |(1 +
√
λAn)−1an − (1 +

√
λA)−1a|H

≤ |(1 +
√
λAn)−1an − (1 +

√
λAn)−1a|H + |(1 +

√
λAn)−1a− (1 +

√
λA)−1a|H

≤ |an − a|H + |(1 +
√
λAn)−1a− (1 +

√
λA)−1a|H

→ 0.

Moreover, applying the Lebesgue’s dominant convergence theorem, we have

lim sup
n→∞

‖u(t)− un(t)‖C([0,T ];H) ≤ 2eLT

(
1 + eLT

√
T

2

)
|a− y|H

+ 2e2LT
√

λT

2
{L(|a|H + |α|H) + 1}

+ 2e2LT
√

λT

2
{|a|H + (1 + LT ) |α|H + 1} , ∀λ > 0.

Therefore we finally conclude that

lim
n→∞ ‖un(t)− u(t)‖C([0,T ];H) = 0.
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For the case where fn �= 0 and f �= 0, we use the density argument in order to show
the desired result. Let g be a piece-wise constant function in L1(0, T ;H) and ũn and ũ be
solutions to the following equations respectively:

dũn
dt

+Anũn +Bũn � g, ũn(0) = an,

dũ

dt
+Aũ+Bũ � g, ũ(0) = a.

The previous result applied successively, that is, ũn → ũ in H uniformly on [0, T ], since
the translated operators Anu − g and Au − g satisfy (6.1.16) (see Remaque 3.12 in [9]).
Hence we only need to consider the following estimate:

|un(t)− u(t)|H ≤ |un(t)− ũn(t)|H + |ũn(t)− ũ(t)|H + |ũ(t)− u(t)|H .

By the monotonicity of A, we can derive

1

2

d

dt
|u(t)− ũ(t)|2H ≤ L|u(t)− ũ(t)|2H + (f − g, u− ũ)H .

Integrating it over [0, T ] and applying Lemma 1.2.1, we see that

|u(t)− ũ(t)|H ≤ eLT ‖f − g‖L1(0,T ;H), ∀t ∈ [0, T ].

Similarly we have

|un(t)− ũn(t)|H ≤ eLT ‖fn − g‖L1(0,T ;H), ∀t ∈ [0, T ].

Therefore, from these inequalities, it follows that

‖un − u‖C([0,T ];H) ≤ eLT
(‖f − g‖L1(0,T ;H) + ‖fn − g‖L1(0,T ;H)

)
+ ‖ũn − ũ‖C([0,T ];H),

whence follows
lim sup
n→∞

‖un − u‖C([0,T ];H) ≤ 2eLT ‖f − g‖L1(0,T ;H),

for any piece-wise constant function g. Since these functions are dense in L1(0, T ;H), the
desired result holds.

Step.2:
√
t
dun
dt

→ √
t
du

dt
strongly in L2(0, T ;H).

Multiplying (6.1.1) by tdun
dt , we have

t

∣∣∣∣dundt

∣∣∣∣
2

H

+ t

(
gn,

dun
dt

)
H

+ t

(
Bun,

dun
dt

)
H

= t

(
fn,

dun
dt

)
H

,

for gn ∈ ∂φn(un). From Proposition 1.3.12, it follows that∫ T

0
t

∣∣∣∣dundt

∣∣∣∣
2

H

dt+ Tφn(un(T )) +

∫ T

0

(√
tBun,

√
t
dun
dt

)
H

dt(6.1.17)

=

∫ T

0
φn(un)dt+

∫ T

0

(√
tfn,

√
t
dun
dt

)
H

dt.
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Since ∂φn(un) � fn − dun
dt −Bun, it holds that

φn(αn)− φn(un) ≥
(
fn − dun

dt
−Bun, αn − un

)
H

=
1

2

d

dt
|un − αn|2H − (Bun, αn − un)H + (fn, αn − un)H

Hence since φn(αn) = 0, we see that

1

2
|un(T )− αn|2H +

∫ T

0
φn(un)dt ≤ 1

2
|αn − an|2H −

∫ T

0
(Bun, αn − un)H dt

+

∫ T

0
(fn, αn − un)H dt,

which implies

∫ T

0
φn(un)dt ≤ 1

2
|αn − an|2H
+ ‖αn − un‖C([0,T ];H)

(‖fn‖L1(0,T ;H) + LT‖un‖C([0,T ];H)

)
.

By the above inequality and (6.1.17), we get

∫ T

0
t

∣∣∣∣dundt

∣∣∣∣
2

H

dt ≤
∫ T

0

(√
tfn,

√
t
dun
dt

)
H

dt+

∣∣∣∣
∫ T

0

(√
tBun,

√
t
dun
dt

)
H

dt

∣∣∣∣
+ ‖αn − un‖C([0,T ];H)

(‖fn‖L1(0,T ;H) + LT‖un‖C([0,T ];H)

)
+

1

2
|αn − an|2H

≤ 1

2

∫ T

0
t

∣∣∣∣dundt

∣∣∣∣
2

H

dt+

∫ T

0
t|fn(t)|2Hdt+

∫ T

0
t|Bun|2Hdt

+ ‖αn − un‖C([0,T ];H)

(‖fn‖L1(0,T ;H) + LT‖un‖C([0,T ];H)

)
+

1

2
|αn − an|2H ,

whence follows

1

2

∫ T

0
t

∣∣∣∣dundt

∣∣∣∣
2

H

dt ≤
∥∥∥√tfn

∥∥∥2
L2(0,T ;H)

+
L2T 2

2
‖un‖2C([0,T ];H) +

1

2
|αn − an|2H

+ ‖αn − un‖C([0,T ];H)

(‖fn‖L1(0,T ;H) + LT‖un‖C([0,T ];H)

)
.

By the assumptions and Step.1, we can deduce that

(6.1.18) sup
n∈N

∫ T

0
t

∣∣∣∣dundt

∣∣∣∣
2

H

dt < +∞.
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Taking a subsequence of (un) (denoted by (un) again), we have

√
t
dun
dt

⇀
√
t
dun
dt

weakly in L2(0, T ;H).(6.1.19)

Hence, noting that un → u strongly in C([0, T ];H) by Step.1, we obtain∫ T

0

(√
tBun,

√
t
dun
dt

)
H

dt →
∫ T

0

(√
tBu,

√
t
du

dt

)
H

dt,(6.1.20)

∫ T

0

(√
tfn,

√
t
dun
dt

)
H

dt →
∫ T

0

(√
tfu,

√
t
du

dt

)
H

dt.(6.1.21)

Moreover, the assumption φn M−→ φ on H implies

(6.1.22) Tφ(u(T )) ≤ lim inf
n→∞ Tφn(un(T )).

We next prove

(6.1.23)

∫ T

0
φn(un(t))dt →

∫ T

0
φ(u(t))dt.

To do this, we attempt to transform (6.1.1) and (6.1.2) by using the following functionals:

ψn(z) := φn(z + αn)− φn(αn),

ψ(z) := φ(z + α)− φ(α).

It is clear that ψn(0) = ψ(0) = 0, moreover we can see that ψn M−→ ψ on H. Put
wn := un − αn and w := u− α. Then we get

(6.1.1) ⇔
⎧⎨
⎩
dwn

dt
+ ∂ψn(wn) +B(wn + αn) � fn, t > 0,

wn(0) = an − αn =: a′n,

(6.1.2) ⇔
⎧⎨
⎩
dw

dt
+ ∂ψ(w) +B(w + α) � f, t > 0,

w(0) = a− α =: a′.

Since (6.1.23) is equivalent to

(6.1.24)

∫ T

0
ψn(wn(t))dt →

∫ T

0
ψ(w(t))dt,

we only need to show (6.1.24). From (1.5.1), it follows that

ψn(wn) + (ψn)∗
(
fn − dwn

dt
−B(wn + αn)

)
=

(
fn − dwn

dt
−B(wn + αn), wn

)
H

= (wn, fn)H − 1

2

d

dt
|wn(t)|2H

− (wn, B(wn + αn))H .
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Integrating it over [0, T ], we derive

0 =

∫ T

0
ψn(wn)dt+

∫ T

0
(ψn)∗

(
fn − dwn

dt
−B(wn + αn)

)
dt−

∫ T

0
(wn, fn)Hdt(6.1.25)

+
1

2
|wn(T )|2H − 1

2
|a′n|2H +

∫ T

0
(wn, B(wn + αn))Hdt.

In particular, since (ψn)∗ ≥ 0 (note that ψn(0) = 0), we see that (ψn)∗(fn− dwn
dt −B(wn+

αn)) ∈ L1(0, T ). Moreover by using Lemma 1.5.4 we get

(6.1.26)

∫ T

0
ψ(w(t))dt ≤ lim inf

n→∞

∫ T

0
ψn(wn(t))dt.

We also know

1

2
|wn(T )|2H → 1

2
|w(T )|2H ,(6.1.27)

1

2
|a′n|2H → 1

2
|a′|2H ,(6.1.28)

∫ T

0
(wn, fn)Hdt →

∫ T

0
(w, f)Hdt,(6.1.29) ∫ T

0
(wn, B(wn + αn))Hdt →

∫ T

0
(w,B(w + α))Hdt(6.1.30)

For any δ ∈ (0, T ), we obtain

∫ T

0
(ψn)∗

(
fn − dwn

dt
−B(wn + αn)

)
dt ≥

∫ T

δ
(ψn)∗

(
fn − dwn

dt
−B(wn + αn)

)
dt,

and note that

fn − dwn

dt
−B(wn + αn) ⇀ f − dw

dt
−B(w + α) weakly in L2(δ, T ;H).

Using Lemma 1.5.4 and Lemma 1.5.5, we have (ψn)∗ M−→ ψ∗ and
∫ T
δ (ψn)∗dt M−→ ∫ T

δ ψ∗dt.
Therefore it holds that for all δ ∈ (0, T )

∫ T

δ
ψ∗
(
f − dw

dt
−B(w + α)

)
dt ≤ lim inf

n→∞

∫ T

δ
(ψn)∗

(
fn − dwn

dt
−B(wn + αn)

)
dt

≤ lim inf
n→∞

∫ T

0
(ψn)∗

(
fn − dwn

dt
−B(wn + αn)

)
dt,

whence follows
(6.1.31)∫ T

0
ψ∗
(
f − dw

dt
−B(w + α)

)
dt ≤ lim inf

n→∞

∫ T

0
(ψn)∗

(
fn − dwn

dt
−B(wn + αn)

)
dt.
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By the similar argument, we remark that w satisfies

0 =

∫ T

0
ψ(w)dt+

∫ T

0
ψ∗
(
f − dw

dt
−B(w + α)

)
dt−

∫ T

0
(w, f)Hdt(6.1.32)

+
1

2
|w(T )|2H − 1

2
|a′|2H +

∫ T

0
(w,B(w + α))Hdt.

By using Lemma 1.2.5 with (6.1.25), (6.1.32), (6.1.26), (6.1.27), (6.1.28), (6.1.29), (6.1.30)
and (6.1.31), we conclude that (6.1.24) holds, that is, (6.1.23) is true.

By (6.1.17), (6.1.20), (6.1.21), (6.1.22) and (6.1.23), since u satisfies∫ T

0
t

∣∣∣∣dudt
∣∣∣∣
2

H

dt+ Tφ(u(T )) +

∫ T

0

(√
tBu,

√
t
du

dt

)
H

dt(6.1.33)

=

∫ T

0
φ(u)dt+

∫ T

0

(√
tf,

√
t
du

dt

)
H

dt,

it follows that from Lemma 1.2.5

(6.1.34)

∫ T

0
t

∣∣∣∣dundt

∣∣∣∣
2

H

dt →
∫ T

0
t

∣∣∣∣dudt
∣∣∣∣
2

H

dt.

Consequently, (6.1.19) and (6.1.34) imply

√
t
dun
dt

→ √
t
du

dt
strongly in L2(0, T ;H).

6.2 Convergence of Functionals

By virtue of Proposition 6.1.3, to prove Theorem 6.1.1, it suffices to verify the Mosco
convergence of the functionals associated with Laplacian under nonlinear boundary con-
ditions. Recall that (P)q is reduced to the following abstract evolution equation in L2(Ω):

(AC)q

⎧⎨
⎩

d

dt
u(t) + ∂ϕq(u(t)) +Bp(u(t)) = 0, t > 0,

u(0) = u0,

where Bp(r) = |r|p−2r and

D(ϕq) := {v ∈ H1(Ω) ; u ∈ Lq(∂Ω)},

ϕq(u) =

⎧⎨
⎩
1

2

∫
Ω
|∇u|2dx+

1

q

∫
∂Ω

|u|qdσ u ∈ D(ϕq),

+∞ u ∈ L2(Ω) \D(ϕq),

(q ∈ [1,∞))

D(ϕ∞) := {v ∈ H1(Ω) ; |u(x)| ≤ 1 a.e. x ∈ ∂Ω}

ϕ∞(u) =

⎧⎨
⎩
1

2

∫
Ω
|∇u|2dx u ∈ D(ϕ∞),

+∞ u ∈ L2(Ω) \D(ϕ∞).
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We obtain the following statement on the Mosco convergence of ϕq.

Theorem 6.2.1. Let q0 ∈ [1,∞] and (qn) be a sequence in (1,∞) satisfying qn → q0 as
n → ∞. Then

ϕqn
M−→ ϕq0 .

Proof. Step 1: The case of qn ↑ q0 ∈ (1,∞].
Let u ∈ D(ϕq0) be fixed, and set a sequence un ≡ u. Note that D(ϕq0) ⊂ D(ϕqn) for

all n ∈ N. Using Hölder’s inequality and Young’s inequality, we have

ϕqn(un) = ϕqn(u) =
1

2

∫
Ω
|∇u|2dx+

1

qn

∫
∂Ω

|u|qndσ

≤ 1

2

∫
Ω
|∇u|2dx+

1

qn

(∫
∂Ω

|u|q0dσ
) qn

q0 |∂Ω|
q0−qn

q0

≤ 1

2

∫
Ω
|∇u|2dx+

1

q0

∫
∂Ω

|u|q0dσ +
q0 − qn

q0
|∂Ω|,

whence follows
lim sup
n→∞

ϕqn(un) ≤ ϕq0(u).

Thus (i) of Definition 1.5.1 follows.
As for the condition (ii) of Definition 1.5.1, let (un) ⊂ L2(Ω) and u ∈ L2(Ω) such that

un ⇀ u weakly in L2(Ω). Without loss of generality, we can assume that

(6.2.1) lim inf
n→∞ ϕqn(un) < +∞,

otherwise (ii) always holds. By (6.2.1), there exist a constant C > 0 and a subsequence of
(n) (which is denoted by (n) again) such that

1

2

∫
Ω
|∇un|2dx+

1

qn

∫
∂Ω

|un|qndσ ≤ C, ∀ n ∈ N,

which implies

‖un‖qn,∂Ω ≤ (qnC)
1
qn → C̃(6.2.2)

‖∇un‖2 ≤ (2C)
1
2 ,(6.2.3)

where

C̃ :=

⎧⎨
⎩(q0C)

1
q0 , q0 ∈ (1,+∞),

1, q0 = +∞.

For any r ∈ (1, qn), it follows that from Hölder’s inequality

(∫
∂Ω

|un|rdσ
) 1

r

≤
(∫

∂Ω
|un|qn

) 1
qn |∂Ω| qn−r

qnr

≤ (qnC)
1
qn |∂Ω| qn−r

qnr , ∀ n ∈ N.
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Hence we see that ‖un‖r,∂Ω is bounded for r ∈ (1, q0). Taking a subsequence of (n) which
is denoted by (n) again, we can deduce that

un ⇀ u weakly in Lr(∂Ω) (1 < r < q0).

In particular, since (un) is bounded in L1(∂Ω), from (6.2.3) it follows that (un) is bounded
in H1(Ω). Therefore

un ⇀ u weakly in H1(Ω).(6.2.4)

Moreover

un → u strongly in L2(Ω),

∇un ⇀ ∇u weakly in L2(Ω).(6.2.5)

By the weak lower semicontinuity of norm, we can see that

(∫
∂Ω

|u|rdσ
) 1

r

≤ lim inf
n→∞

(∫
∂Ω

|un|rdσ
) 1

r

≤ lim inf
n→∞

(∫
∂Ω

|un|qndσ
) 1

qn |∂Ω| qn−r
qnr

≤ (q0C)
1
q0 |∂Ω|

q0−r
q0r .

Taking the limit of r → q0, we have

‖u‖q0,∂Ω ≤ C̃.

Hence, by this estimate and (6.2.4), we get u ∈ D(ϕq0) for all q0 ∈ (1,+∞]. Moreover, for
the case where q0 ∈ (1,+∞), we also see that∫

∂Ω
|u|rdσ ≤ lim inf

n→∞

∫
∂Ω

|un|rdσ

≤ lim inf
n→∞

(∫
∂Ω

|un|qndσ
) r

qn |∂Ω| qn−r
qn

lim inf
n→∞

{
r

qn

∫
∂Ω

|un|qndσ +
qn − r

qn
|∂Ω|

}
,

whence follows

1

r

∫
∂Ω

|u|rdσ ≤ lim inf
n→∞

1

qn

∫
∂Ω

|un|qndσ +
qn − r

qnr
|∂Ω|.

Passing to the limit r → q0, we deduce that

1

q0

∫
∂Ω

|u|q0dσ ≤ lim inf
n→∞

1

q0

∫
∂Ω

|un|qndσ.
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Therefore, by the above inequality and (6.2.5),

ϕq0(u) =
1

2

∫
Ω
|∇u|2dx+

1

q0

∫
∂Ω

|u|q0dσ

≤ lim inf
n→∞

1

2

∫
Ω
|∇un|2dx+ lim inf

n→∞
1

qn

∫
∂Ω

|un|qndσ

≤ lim inf
n→∞

(
1

2

∫
Ω
|∇un|2dx+

1

qn

∫
∂Ω

|un|qndσ
)

= lim inf
n→∞ ϕqn(un).

On the other hand, for q0 = +∞, it is clear that

ϕq0(u) =
1

2

∫
Ω
|∇u|2dx ≤ lim inf

n→∞
1

2

∫
Ω
|∇un|2dx

≤ lim inf
n→∞

(
1

2

∫
Ω
|∇un|2dx+

1

qn

∫
∂Ω

|un|qndσ
)

= lim inf
n→∞ ϕqn(un).

Consequently, (ii) of Definition 1.5.1 follows.

Step 2: The case of qn ↓ q0 ∈ [1,∞).

We first verify the condition (i) of Definition 1.5.1. For u ∈ D(ϕq0), we set αn = qn−q0
and un = χn(u), where χn : R → R is defined by

χn(r) =

⎧⎪⎨
⎪⎩
r, |r| ≤ 1/αn,

1/αn, r > 1/αn,

− 1/αn, r < −1/αn.

Noting that

un(x) → u(x) a.e. x ∈ Ω,

|un(x)|2 ≤ |u(x)|2 ∈ L1(Ω),

by the Lebesgue dominated convergence theorem, we see that

un → u strongly in L2(Ω).

As a consequence by the above similar argument, we can deduce that

(6.2.6) un → u strongly in Lq0(∂Ω).

Since χ′
n(r) = 0 on |r| > 1/αn, we have∫

Ω
|∇un|2dx =

∫
Ω
|χ′

n(u)|2|∇u|2dx =

∫
{|u(x)|≤1/αn}

|∇u|2dx,
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which implies

(6.2.7)

∫
Ω
|∇un|2dx →

∫
Ω
|∇u|2dx.

By the definition of χn and q0 < qn, we obtain

1

qn

∫
∂Ω

|un|qndσ =
1

qn

∫
∂Ω

|un|αn |un|q0dσ ≤
∣∣∣∣ 1αn

∣∣∣∣
αn 1

q0

∫
∂Ω

|un|q0dσ.

From (6.2.6), |1/αn|αn → 1 and the above inequality, it follows

(6.2.8) lim sup
n→∞

1

qn

∫
∂Ω

|un|qndσ ≤ 1

q0

∫
∂Ω

|u|q0dσ.

On the other hand, Hölder’s inequality and Young’s inequality imply

∫
∂Ω

|un|q0dσ ≤
(∫

∂Ω
|un|qndσ

) q0
qn |∂Ω|

qn−q0
qn

≤ q0
qn

∫
∂Ω

|un|qndσ +
qn − q0

qn
|∂Ω|,

that is,
1

q0

∫
∂Ω

|un|q0dσ −
(

1

q0
− 1

qn

)
|∂Ω| ≤ 1

qn

∫
∂Ω

|un|qndσ.

Hence we get

(6.2.9)
1

q0

∫
∂Ω

|u|q0dσ ≤ lim inf
n→∞

1

qn

∫
∂Ω

|un|qndσ.

By (6.2.7), (6.2.8) and (6.2.9), we can see that

ϕqn(un) → ϕq0(u),

which is the desired convergence.
We next check the condition (ii) of Definition 1.5.1. To do this, for (un) ⊂ L2(Ω) and

u ∈ L2(Ω) satisfying un ⇀ u weakly in L2(Ω), it suffices to show

ϕq0(u) ≤ lim inf
n→∞ ϕqn(un).

Since if lim inf ϕqn(un) = ∞, then the above inequality holds, we can assume that lim inf ϕqn(un)
is finite. Therefore, up to a subsequence (which is denoted by (n) again), we can derive

ϕqn(un) ≤ C

for some positive constant C independent of n. We get

(6.2.10)

∫
Ω
|∇un|2dx ≤ C,

1

qn

∫
∂Ω

|un|qndσ ≤ C,
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which implies

1

q0

∫
∂Ω

|un|q0dσ ≤ 1

qn

∫
∂Ω

|un|qndσ +

(
1

q0
− 1

qn

)
|∂Ω| ≤ C +

1

q0
|∂Ω|.(6.2.11)

For q0 ∈ (1,∞), by (6.2.10) and (6.2.11), taking a subsequence of (un) denoted also by
(un), we obtain

∇un ⇀ ∇u weakly in L2(Ω),

un ⇀ u weakly in Lq0(∂Ω),

and we see that

ϕq0(u) =
1

2

∫
Ω
|∇u|2dx+

1

q0

∫
∂Ω

|u|q0dσ

≤ lim inf
n→∞

1

2

∫
Ω
|∇un|2dx+ lim inf

n→∞
1

q0

∫
∂Ω

|un|q0dσ

≤ lim inf
n→∞

(
1

2

∫
Ω
|∇un|2dx+

1

q0

∫
∂Ω

|un|q0dσ
)

≤ lim inf
n→∞

{
1

2

∫
Ω
|∇un|2dx+

1

qn

∫
∂Ω

|un|qndσ +

(
1

q0
− 1

qn

)
|∂Ω|

}

= lim inf
n→∞ ϕqn(un).

As for the case where q0 = 1 (in fact the following argument works well for q0 ∈ [1, 2]),
since ‖∇v‖2 + ‖v‖1,∂Ω is a equivalent norm of the usual H1 norm, (6.2.10) and (6.2.11)
imply that (un) is a bounded in H1(Ω). Hence, by the compactness, taking a subsequence
of (un) denoted also by (un), we obtain

un ⇀ u weakly in H1(Ω),

un → u strongly in L2(Ω),

un → u strongly in L2(∂Ω).

Since in particular un converges to u strongly in L1(∂Ω), we see that

ϕ1(u) =
1

2

∫
Ω
|∇u|2dx+

∫
∂Ω

|u|dσ

≤ lim inf
n→∞

1

2

∫
Ω
|∇un|2dx+ lim

n→∞

∫
∂Ω

|un|dσ

= lim inf
n→∞

(
1

2

∫
Ω
|∇un|2dx+

∫
∂Ω

|un|dσ
)

≤ lim inf
n→∞

{
1

2

∫
Ω
|∇un|2dx+

1

qn

∫
∂Ω

|un|qndσ +

(
1− 1

qn

)
|∂Ω|

}

= lim inf
n→∞ ϕqn(un).
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Step 3: The general case where qn → q0 ∈ (1,∞).
We can see that if qn → q0, then any subsequence (qnk

)k∈N of (qn)n∈N has a subsequence
(qnk′ )k′∈N of (qnk

)k∈N such that qnk′ ↑ q0 or qnk′ ↓ q0. Therefore, the desired result follows
from Step.1, Step.2 and Lemma 1.5.6.

We can prove Theorem 6.1.1 by the above lemmas.

Proof of Theorem 6.1.1. Set

M̃ := max

{
‖a‖∞, sup

n∈N
‖an‖∞

}
+ 2.

For v, w ∈ C([0, T ];L2(Ω)) ∩ L∞(0, T ;L∞), we see that

‖Bp(v(t))−Bp(w(t))‖22 =
∫
Ω

∣∣|v(t)|p−2v(t)− |w(t)|p−2w(t)
∣∣2 dx

≤ (p− 1)

∫
Ω

(|v(t)|p−2 + |w(t)|p−2
)2 |v(t)− w(t)|2dx

≤ (p− 1)
(‖v(t)‖p−2

∞ + ‖w(t)‖p−2
∞

)2 ‖v(t)− w(t)‖22,

which implies

‖Bp(v(t))−Bp(w(t))‖2 ≤ (p− 1)
1
2

(
‖v‖p−2

L∞(0,T ;L∞) + ‖w‖p−2
L∞(0,T ;L∞)

)
‖v(t)− w(t)‖2.

If v and w are solutions to (P)q or (P)qn , by the proof of Theorem 2.2.3, then (2.2.17)
holds with M̃ replaced by M and we see that

‖Bp(v(t))−Bp(w(t))‖2 ≤ 2(p− 1)
1
2

(
M̃ + 1

)p−2 ‖v(t)− w(t)‖2.

Hence applying Lemma 6.1.3 and Theorem 6.2.1, we conclude that Theorem 6.1.1 holds.



Part II

On Some Reaction Diffusion Systems
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In this part, we mainly consider the following initial-boundary value problem for a non-
linear reaction diffusion system:

(NR)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂tu1 −Δu1 = u1u2 − bu1, t > 0, x ∈ Ω,

∂tu2 −Δu2 = au1, t > 0, x ∈ Ω,

∂νu1 + αu1 = ∂νu2 + β|u2|γ−2u2 = 0, t > 0, x ∈ ∂Ω,

u1(x, 0) = u10(x) ≥ 0, u2(x, 0) = u20(x) ≥ 0, x ∈ Ω,

where Ω ⊂ R
N is a bounded domain with smooth boundary ∂Ω, ν denotes the unit

outward normal vector on ∂Ω and ∂ν is the outward normal derivative, i.e., ∂νui = ∇ui ·ν
(i = 1, 2). Moreover u1, u2 are real-valued unknown functions, a and b are given positive
constants. As for the parameters appearing in the boundary condition, we assume α ∈
[0,∞), β ∈ (0,∞) and γ ∈ [2,∞). We note that the boundary condition for u1 becomes
the homogeneous Neumann boundary condition when α = 0, and the boundary condition
for u2 gives the Robin boundary condition when γ = 2. The initial data u10, u20 are here
assumed to be nonnegative and members of L∞(Ω).

This system describes diffusion phenomena of neutrons and heat in nuclear reactors
by taking the heat conduction into consideration, introduced by Kastenberg and Chambré
[31]. In this model u1 and u2 represent the neutron density and the temperature in
nuclear reactors, respectively. There are many studies on this model under various linear
boundary conditions, for example, [14], [15], [25], [26], [30], [57] and [61]. Many of them are
concerned with the existence of positive steady-state solutions and the long-time behavior
of solutions.

Our problem originates in the following rather simplified model studied by [57] :

(II.1)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂tu1 −Δu1 = u1u2 − bu1, t > 0, x ∈ Ω,

∂tu2 = au1 − cu2, t > 0, x ∈ Ω,

u1 = 0, t > 0, x ∈ ∂Ω,

u1(x, 0) = u10(x) ≥ 0, u2(x, 0) = u20(x) ≥ 0, x ∈ Ω.

In (II.1), the negative feedback −c u2 (with c > 0) from the heat into itself is considered
instead of the diffusion term. In Rothe’s book [57], the boundedness and the convergence
of solutions to equilibria of (II.1) are examined in detail.

In [25], our system is studied for the case where α = 0 and γ = 2, i.e., with the
homogeneous Neumann boundary condition on u1 and the Robin boundary condition on
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u2:

(II.2)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂tu1 −Δu1 = u1u2 − bu1, t > 0, x ∈ Ω,

∂tu2 −Δu2 = au1, t > 0, x ∈ Ω,

∂νu1 = ∂νu2 + βu2 = 0, t > 0, x ∈ ∂Ω,

u1(x, 0) = u10(x), u2(x, 0) = u20(x), x ∈ Ω.

They derived the existence and the ordered uniqueness of positive stationary solution for
N ∈ {2, 3, 4, 5} and showed that this stationary solution plays as a threshold of the initial
data to determine whether the corresponding solution can exist globally or not (blow-up
in finite time). This problem (II.2) with β = 0 is also studied in [61], where the stability
of stationary solution is discussed and some estimates of the existence time for blow-up
solutions are obtained.

Another variant system with the homogeneous Dirichlet boundary condition on both
u1 and u2 given below is studied by [26] and [30].

(II.3)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂tu1 −Δu1 = u1u
p
2 − bu1, t > 0, x ∈ Ω,

∂tu2 −Δu2 = au1, t > 0, x ∈ Ω,

u1 = u2 = 0, t > 0, x ∈ ∂Ω,

u1(x, 0) = u10(x), u2(x, 0) = u20(x), x ∈ Ω.

In [26], the existence of positive stationary solution is shown for the case where p = 1
and N ∈ {1, 2} or N ∈ {2, 3, 4, 5} provided that Ω is a convex domain. Furthermore,
they obtained the threshold property of the stationary solution, the same as that in [25],
when Ω is ball. In [30], the existence and the ordered uniqueness of positive stationary
solutions are considered for general p > 0 and some threshold result is obtained. Moreover
the blow-up rate estimate is given for positive blowing-up solutions when Ω is ball and
p ≥ 1.

In Part II, we analyze how the nonlinear boundary condition imposed on u2 is reflected
in the nature of (NR). As already emphasized in the introduction of Part I, the importance
of the study of nonlinear boundary conditions from a physical point of view could be
supported by Stefan-Boltzmann’s law, which says that the heat energy radiation from the
surface of the body in R

N is proportional to the (N + 1)-th power of temperature, which
can be covered by our power model β|u2|γ−2u2.

The outline of the contents of Part II is as follows. In Chapter 8, we consider the
stationary problem associated with (NR) and show the existence of positive solutions.
In doing this, we first note that this stationary problem does not possess the variational
structure. Hence we can not rely on the standard tools in the variational calculus such as
the mountain pass lemma. Instead we here apply an abstract fixed point theorem based
on Krasnosel’skii [32]. To apply this fixed point theorem, we need a priori estimates of
solutions in L∞(Ω). However, because of the presence of the nonlinear boundary condition,
we can not rely on the standard linear theory for this purpose. So we here introduce a new
approach which enables us to obtain strong summability of solutions on the boundary.

Next, we prove the ordered uniqueness for the positive stationary solutions of (NR).
We here make the most use of the property of the first eigenfunction of −Δ with the Robin
boundary condition.
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In Chapter 9, we study the nonstationary problem. In the first section, we show
the local ( in time ) well-posedness of (NR) in L∞(Ω) along the lines of the L∞-energy
method [45]. In the second section, we show that every positive stationary solution acts
as a threshold of the initial data to separate the global existence and finite time blow-
up of corresponding solutions. More precisely, if the initial data is less than or equal to
positive stationary solutions, then the solution of (NR) exists globally and tends to zero as
t → ∞, and if the initial data is strictly larger than positive stationary solutions, then the
solution of (NR) blows up in finite time. In the third section, we give another type of result
concerning the existence of blow-up solutions, i.e., a sufficient condition for the initial data
of Kaplan type, which is described in terms of the integral of the initial data multiplied
by the first eigenfunction of −Δ with the homogeneous Dirichlet boundary condition, so
that the corresponding solutions of (NR) with more general nonlinear boundary conditions
blow up in finite time. Here we apply Theorem 4.1.3 and the same strategy as that used
in §4.2.

In Chapter 10, we consider the asymptotic behavior of global solutions of (NR) with
γ = 2, i.e., with the Robin boundary conditions on u1 and u2:

(II.4)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂tu1 −Δu1 = u1u2 − bu1, t > 0, x ∈ Ω,

∂tu2 −Δu2 = au1, t > 0, x ∈ Ω,

∂νu1 + αu1 = ∂νu2 + βu2 = 0, t > 0, x ∈ ∂Ω,

u1(0, x) = u10(x) ≥ 0, u2(0, x) = u20(x) ≥ 0, x ∈ Ω.

More precisely, we here discuss about the uniform boundedness of global solutions of (II.4).
The same problem is treated in Chapter 3 for the single equation (P)q. In other words, we
look for the analogue of the result given in Chapter 3. However, we here restrict ourselves
to the case where γ = 2, for a technical reason. Bounds for global solutions of this system
with the homogeneous Dirichlet boundary condition is already studied by Quittner [53]
for the case where N = 2. This strong restriction on N is due to the use of a Hardy type
inequality (see [11]). Since our boundary condition is different from that of [53], making
use of the good properties of the first eigenfunction of −Δ with Robin boundary condition,
we can treat the cases where N = 2, 3.

Our proof for the boundedness of global solutions of (P)q deeply relies on the fact that
the energy functional J(u), defined by J(u) = 1

2

∫
Ω |∇u|2dx + 1

q

∫
∂Ω |u|qdσ − 1

p

∫
Ω |u|pdx,

becomes a Lyapunov function, in other words, (P)q possesses a good variational structure.
There are also other approaches to this problem, e.g., in [23] the rescaling argument is

introduced and in [54] the bootstrap argument based on the interpolation and the maximal
regularity is used.

Unfortunately these tools are not available to our system because of the presence of
the coupling terms. To cope with this difficulty, by making the most use of the special
form of our system, we first show the uniform bound of solutions in the L1-norm with the
positive weight ϕ1, the first eigenfunction of −Δ with the Robin boundary condition. To
derive the uniform H1-bound, we rely on some energy method with the aid of a special
device (see Lemma 7.1.2). Furthermore by applying Moser’s iteration scheme such as in
Nakao [41], we derive the uniform L∞-bound via H1-bound.





Chapter 7

Preliminaries

7.1 Some Results for the Following Chapters

We here state several lemmas to prove our results for (NR). The following abstract fixed
point theorem in positive cone is essential and crucial to show the existence of positive
(nontrivial) stationary solutions of (NR).

Lemma 7.1.1 (Krasnosel’skii-type fixed point theorem [32], [35]). Suppose that E is a
real Banach space with norm ‖ · ‖, K ⊂ E is a positive cone, and Φ : K → K is a compact
mapping satisfying Φ(0) = 0. Assume that there exists two constants R > r > 0 and an
element ϕ ∈ K \ {0}, such that

(i) u �= λΦ(u), ∀λ ∈ (0, 1), if u ∈ K and ‖u‖ = r,

(ii) u �= Φ(u) + λϕ, ∀λ ≥ 0, if u ∈ K and ‖u‖ = R.

Then the mapping Φ possesses at least one fixed point in K1 := {u ∈ K; 0 < r < ‖u‖ < R}.
The next lemma is very simple but useful to obtain a priori estimates of the solutions

of partial differential equations with Robin boundary conditions.

Lemma 7.1.2 ([20]). Let λ1 and ϕ1 be the first eigenvalue and the corresponding eigen-
function for the problem:

(7.1.1)

{
−Δϕ = λϕ, x ∈ Ω,

∂νϕ+ γϕ = 0, x ∈ ∂Ω,

where Ω is smooth bounded domain in R
N and γ > 0. Then λ1 > 0 and there exists a

constant Cγ > 0 such that
ϕ1(x) ≥ Cγ x ∈ Ω.

Actually, it is easy to see that ϕ1 > 0 in Ω by the strong maximum principle as
the same method for the eigenvalue problem with the Dirichlet Laplacian. Furthermore
suppose that there exists x0 ∈ ∂Ω such that ϕ1(x0) = 0. Then the boundary condition
assures ∂νϕ1(x0) = −γϕ1(x0) = 0. On the other hand, we know ∂νϕ1(x0) < 0 by Hopf’s
strong maximum principle. This is contradiction, i.e., ϕ1(x) > 0 on Ω.

In order to deal with the power type nonlinearities, the following inequality is funda-
mental.
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Lemma 7.1.3. ([18]) For any κ ∈ [2,∞), there exists Cκ > 0 such that

(x− y) · (|x|κ−2x− |y|κ−2y
) ≥ Cκ|x− y|κ

for all x, y ∈ R
N .

Lemma 7.1.4 ([45]). Let y(t) be a bounded measurable positive function on [0, T ] for
any T ∈ (0, Tm) and let limt→Tm y(t) = +∞. Suppose that there exists a monotone
nondecreasing locally Lipschitz function g : [0,+∞) → [0,+∞) such that∫ +∞

0

1

g(τ)
dτ = +∞,

∫ +∞

a

1

g(τ)
dτ < +∞ ∀a > 0.

Furthermore we assume that

y(s) ≤ y(t) +

∫ s

t
g(y(τ))dτ a.e. t, s ∈ [0, Tm) with t < s.

Then the following estimate holds.

y(t) ≥ G−1(t− Tm) a.e. t ∈ [0, Tm),

where G−1(·) is the inverse function of G(w) = −
∫ +∞

w

1

g(τ)
dτ .

Now, if we set g(r) = λ|r|q−2r with q ≥ 2 and λ > 0, we can see that g satisfies the

assumption required in Lemma 7.1.4. Moreover we can obtain G−1(τ) = (λ (q − 2) τ)
−1
q−2

by an elementary calculation. So, Lemma 7.1.4 implies:

Corollary 7.1.5. Let y(t) be a bounded measurable positive function on [0, T ] for any
T ∈ (0, Tm) and let limt→Tm y(t) = +∞. Suppose that y(·) satisfies

y(t) ≤ y(s) + λ

∫ t

s
yq−1(τ)dτ a.e. s, t ∈ [0, Tm) with s < t.

Then the following estimate holds:

y(t) ≥ (λ (q − 2))
−1
q−2 (Tm − t)

−1
q−2 a.e. t ∈ [0, Tm).



Chapter 8

Stationary Problem of (NR)

In this chapter, we are going to show the existence of the positive stationary solutions
for (NR) and prove the ordered uniqueness of them. The stationary problem for (NR) is
given by

(S-NR)

⎧⎪⎨
⎪⎩

−Δu1 = u1u2 − bu1, x ∈ Ω,

−Δu2 = au1, x ∈ Ω,

∂νu1 + αu1 = ∂νu2 + β|u2|γ−2u2 = 0, x ∈ ∂Ω.

8.1 Existence of Positive Solutions

It should be noticed that since (S-NR) has no variational structure, it is not possible
to apply the variational method to (S-NR). In order to show the existence of positive
stationary solutions to (NR), we rely on the abstract fixed point theorem developed by
Krasnosell’skii. The crucial step in proving the existence of positive stationary solutions
is how to obtain L∞-estimates of solutions.

Theorem 8.1.1. Let 1 ≤ N ≤ 5 and suppose that either (A) or (B) is satisfied :{
(A) γ = 2, α ≤ 2β,

(B) γ > 2.

Then (S-NR) has at least one positive solution.

We rely on Lemma 7.1.1 to prove this theorem. In order to apply Lemma 7.1.1, we
here fix our setting:

E = C(Ω)× C(Ω), u = (u1, u2)
T ∈ E,

‖u‖ = ‖u1‖C(Ω) + ‖u2‖C(Ω), K = {u ∈ E;u1 ≥ 0, u2 ≥ 0}.

Set ϕ = (ϕ1, 0)
T ∈ K \{0}, where λ1 and ϕ1 are the first eigenvalue and the corresponding

eigenfunction of the following eigenvalue problem:

(8.1.1)

{
−Δϕ = λϕ, x ∈ Ω,

∂νϕ+ αϕ = 0, x ∈ ∂Ω.
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In chapter 8, we normalize ϕ1(x) such that ‖ϕ1‖L2 = 1. For given u = (u1, u2)
T ∈ K, let

v = (v1, v2)
T = Ψ(u) be the unique nonnegative solution (see Brézis [10]) of

(8.1.2)

⎧⎪⎨
⎪⎩

−Δv1 + bv1 = u1u2, x ∈ Ω,

−Δv2 = au1, x ∈ Ω,

∂νv1 + αv1 = ∂νv2 + β|v2|γ−2v2 = 0, x ∈ ∂Ω.

It is clear that Ψ(0) = 0. Moreover Ψ : K → K is compact. In order to prove the
compactness of Ψ , we use the next Lemma for the following problem:

(8.1.3)

{
−Δu = f, x ∈ Ω,

∂νu = g, x ∈ ∂Ω.

Lemma 8.1.2. ([44]) Let Ω ⊂ R
N be a bounded Lipschitz domain. Suppose that f ∈ L

p
2 (Ω)

and g ∈ Lp−1(∂Ω) with p > N ≥ 2, then there exist δ > 0 and a positive constant C such
that every weak solution u of (8.1.2) belongs to C0,δ(Ω) and satisfies

‖u‖C0,δ(Ω) ≤ C
(
‖u‖L2(Ω) + ‖f‖

L
p
2 (Ω)

+ ‖g‖Lp−1(∂Ω)

)
.

Since Ω is bounded and (u1, u2) ∈ C(Ω)× C(Ω), it follows from elliptic estimate that
v1 ∈ W 2,p(Ω) for any p. Since W 2,p(Ω) is compactly embedded in C(Ω) for p > N

2 , the
mapping (u1, u2) �→ v1 is compact. Next we assume that N ≥ 2 and consider the following
equation: {

−Δv2 = au1 ∈ L∞(Ω), x ∈ Ω,

∂νv2 + β|v2|γ−2v2 = 0, x ∈ ∂Ω.

Multiplying the equation by |v2|r−2v2 and applying integration by parts, we get

(r − 1)

∫
Ω
|v2|r−2|∇v2|2dx+ β

∫
∂Ω

|v2|r+γ−2dσ = a

∫
Ω
u1|v2|r−2v2dx.(8.1.4)

Noting that (‖∇v2‖2L2(Ω) +
∫
∂Ω v22dσ)

1/2 is equivalent to the usual H1-norm by Poincaré-
Friedrichs type inequality, we obtain

(l.h.s.) = (r − 1)

∫
Ω

∣∣∣|v2| r−2
2 |∇v2|

∣∣∣2 dx+ β

∫
∂Ω

|v2|r+γ−2dσ

≥ 4(r − 1)

r2

∫
Ω

∣∣∣∇|v2| r2
∣∣∣2 dx+ β

∫
∂Ω

|v2|rdσ − β|∂Ω|

≥ Cr

(∫
Ω

∣∣∣∇|v2| r2
∣∣∣2 dx+

∫
∂Ω

∣∣∣|v2| r2 ∣∣∣2 dσ
)
− β|∂Ω|

≥ Cr

∫
Ω

∣∣∣|v2| r2 ∣∣∣2 dx− β|∂Ω| = Cr‖v2‖rLr(Ω) − β|∂Ω|,
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where Cr = min{4(r−1)
r2

, β} > 0 and we used the estimate:

β

∫
∂Ω

|v2|r+γ−2dσ ≥ β

∫
{|v2|≥1}

|v2|r+γ−2dσ ≥ β

∫
{|v2|≥1}

|v2|rdσ

= β

∫
∂Ω

|v2|rdσ − β

∫
{|v2|≤1}

|v2|rdσ

≥ β

∫
∂Ω

|v2|rdσ − β|∂Ω|.

Hence Hölder’s inequality, Young’s inequality and (8.1.4) yield

‖v2‖Lr(Ω) ≤
{
β|∂Ω|

(
Cr

2

)−1

+
1

r

(
Cr

2

)−r

‖au1‖rLr(Ω)

} 1
r

∀r < ∞.

Therefore by (8.1.4) we have

∫
∂Ω

|v2|r+γ−2dσ ≤ 1

β
‖au1‖Lr(Ω)

{
β|∂Ω|

(
Cr

2

)−1

+
1

r

(
Cr

2

)−r

‖au1‖rLr(Ω)

} r−1
r

∀r < ∞.

Thus we see that v2 ∈ Lr(∂Ω) for all large r < ∞ and we can apply Lemma 8.1.2 to
get v2 ∈ C0,δ(Ω) for some δ > 0. Note that C0,δ(Ω) ↪→ C(Ω) is compact. As for the
case where N = 1, (8.1.4) with r = 2 gives the a priori bound for ‖v2‖H1(Ω). Since the

embedding H1(Ω) ↪→ C(Ω) is compact, the compactness of Ψ is easily derived. Thus we
see that Ψ : K → K is compact.

In order to show the existence of positive stationary solutions for (S-NR), it suffices to
prove that Ψ has a fixed point in K. Therefore, to prove Theorem 8.1.1 we are going to
verify conditions (i) and (ii) of Lemma 7.1.1.

We first check condition (i).

Lemma 8.1.3. Let r = b
2 , then u �= λΨ(u) for any λ ∈ (0, 1) and u ∈ K satisfying

‖u‖ = r. That is, condition (i) of Lemma 7.1.1 with Φ = Ψ holds.

Proof. We prove the statement by contradiction. Suppose that there exist λ ∈ (0, 1) and
u ∈ K with ‖u‖ = r such that u = λΨ(u), that is, u1 and u2 satisfy

(8.1.5)

⎧⎪⎪⎨
⎪⎪⎩

−Δu1 + bu1 = λu1u2, x ∈ Ω,

−Δu2 = λau1, x ∈ Ω,

∂νu1 + αu1 = ∂νu2 + β
∣∣∣u2
λ

∣∣∣γ−2
u2 = 0, x ∈ ∂Ω.

Multiplying the first equation of (8.1.5) by u1 and using integration by parts, we obtain

‖∇u1‖2L2(Ω) + α

∫
∂Ω

u21dσ + b‖u1‖2L2(Ω) = λ

∫
Ω
u21u2dx

≤ ‖u2‖L∞(Ω)‖u1‖2L2(Ω)

≤ b

2
‖u1‖2L2(Ω),
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where we use the fact

‖u2‖L∞(Ω) ≤ ‖u‖ = r =
b

2
.

Then

‖∇u1‖2L2(Ω) + α

∫
∂Ω

u21dσ +
b

2
‖u1‖2L2(Ω) ≤ 0.

Hence we have u1 = 0. By the second equation of (8.1.5), we see that u2 satisfies

⎧⎨
⎩

−Δu2 = 0, x ∈ Ω,

∂νu2 + β
∣∣∣u2
λ

∣∣∣γ−2
u2 = 0, x ∈ ∂Ω.

Multiplying this equation by u2 and integration by parts, we obtain

‖∇u2‖2L2(Ω) +
β

|λ|γ−2

∫
∂Ω

|u2|γdσ = 0, i.e., ‖∇u2‖L2(Ω) = 0, u2 |∂Ω = 0.

By the use of Poincaré’s inequality, we also get u2 = 0. Thus u1 = u2 = 0. This contradicts
the assumption ‖u‖ = b

2 > 0.

In order to verify condition (ii) of Lemma 7.1.1, we here claim the following lemma.

Lemma 8.1.4. Let 1 ≤ N ≤ 5 and suppose that either (A) or (B) is satisfied :

{
(A) γ = 2, α ≤ 2β,

(B) γ > 2.

Then there exists a constant R (> r = b
2) such that for any λ > 0 and any solution u of

u = Ψ(u) + λϕ, it holds that

‖u‖ < R.

Proof. We rewrite u = Ψ(u) + λϕ in terms of each component:

(8.1.6)

⎧⎪⎨
⎪⎩

−Δu1 + bu1 = u1u2 + λ(b+ λ1)ϕ1, x ∈ Ω,

−Δu2 = au1, x ∈ Ω,

∂νu1 + αu1 = ∂νu2 + β|u2|γ−2u2 = 0, x ∈ ∂Ω.

In what follows, we denote by C a general constant which differs from place to place. First,
we derive H1-estimate for u2. Replacing u1 in the first equation of (8.1.6) by − 1

aΔu2, we
get

(8.1.7)

{
Δ2u2 − bΔu2 = −u2Δu2 + λa(b+ λ1)ϕ1, x ∈ Ω

∂νu2 + β|u2|γ−2u2 = ∂νΔu2 + αΔu2 = 0, x ∈ ∂Ω.
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Multiplying (8.1.7) by ϕ1, using integration by parts and noting that the boundary con-
ditions ∂νϕ1 + αϕ1 = ∂νu2 + β|u2|γ−2u2 = 0, we have

(l.h.s) =

∫
Ω
Δ2u2ϕ1dx− b

∫
Ω
Δu2ϕ1dx

= −
∫
Ω
∇(Δu2) · ∇ϕ1dx+

∫
∂Ω

(∂νΔu2)ϕ1dσ

+ b

∫
Ω
∇u2 · ∇ϕ1dx− b

∫
∂Ω

(∂νu2)ϕ1dσ

=

∫
Ω
Δu2Δϕ1dx−

∫
∂Ω

Δu2(∂νϕ1)dσ +

∫
∂Ω

(∂νΔu2)ϕ1dσ

− b

∫
Ω
u2Δϕ1dx+ b

∫
∂Ω

u2(∂νϕ1)dσ − b

∫
∂Ω

(∂νu2)ϕ1dσ

= −λ1

∫
Ω
Δu2ϕ1dx+ α

∫
∂Ω

Δu2ϕ1dσ − α

∫
∂Ω

Δu2ϕ1dσ

+ bλ1

∫
Ω
u2ϕ1dx− αb

∫
∂Ω

u2ϕ1dσ + βb

∫
∂Ω

uγ−1
2 ϕ1dσ

= −λ1

∫
Ω
u2Δϕ1dx+ λ1

∫
∂Ω

u2(∂νϕ1)dσ − λ1

∫
∂Ω

(∂νu2)ϕ1dσ

+ bλ1

∫
Ω
u2ϕ1dx− αb

∫
∂Ω

u2ϕ1dσ + βb

∫
∂Ω

uγ−1
2 ϕ1dσ

= λ1(b+ λ1)

∫
Ω
u2ϕ1dx+ β(b+ λ1)

∫
∂Ω

uγ−1
2 ϕ1dσ − α(b+ λ1)

∫
∂Ω

u2ϕ1dσ,

and

(r.h.s) = −
∫
Ω
u2Δu2ϕ1dx+ λa(b+ λ1)‖ϕ1‖2L2(Ω)

=

∫
Ω
∇u2 · ∇(u2ϕ1)dx−

∫
∂Ω

(∂νu2)u2ϕ1dσ + λa(b+ λ1)

=

∫
Ω
|∇u2|2ϕ1dx+

∫
Ω
u2∇u2 · ∇ϕ1dx+ β

∫
∂Ω

uγ2ϕ1dσ + λa(b+ λ1)

=

∫
Ω
|∇u2|2ϕ1dx+

1

2

∫
Ω
∇u22 · ∇ϕ1dx+ β

∫
∂Ω

uγ2ϕ1dσ + λa(b+ λ1)

=

∫
Ω
|∇u2|2ϕ1dx− 1

2

∫
Ω
u22Δϕ1dx+

1

2

∫
∂Ω

u22(∂νϕ1)dσ + β

∫
∂Ω

uγ2ϕ1dσ + λa(b+ λ1)

=

∫
Ω
|∇u2|2ϕ1dx+

λ1

2

∫
Ω
u22ϕ1dx+ β

∫
∂Ω

uγ2ϕ1dσ − α

2

∫
∂Ω

u22ϕ1dσ + λa(b+ λ1).
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Therefore the following equality holds.

λ1(b+ λ1)

∫
Ω
u2ϕ1dx =

∫
Ω
|∇u2|2ϕ1dx+

λ1

2

∫
Ω
u22ϕ1dx+ a(b+ λ1)λ

(8.1.8)

+

∫
∂Ω

{
βuγ2 − β (b+ λ1)u

γ−1
2 − α

2
u22 + α (b+ λ1)u2

}
ϕ1dσ.

Since (A) : γ = 2, α ≤ 2β or (B) : γ > 2 holds, we get

inf
u2≥0

{
βuγ2 − β (b+ λ1)u

γ−1
2 − α

2
u22 + α (b+ λ1)u2

}
≥ −C > −∞.

Moreover, we see that due to the boundedness of ϕ1 (cf. Lemma 7.1.2)

λ1(b+ λ1)

∫
Ω
u2ϕ1dx ≥

∫
Ω
|∇u2|2ϕ1dx+

λ1

2

∫
Ω
u22ϕ1dx+ a(b+ λ1)λ− C.

By Schwarz’s inequality and Young’s inequality, it is easy to see that∫
Ω
|∇u2|2ϕ1dx+

λ1

2

∫
Ω
u22ϕ1dx+ a(b+ λ1)λ ≤ λ1(b+ λ1)

∫
Ω
u2ϕ1dx+ C

≤ λ1(b+ λ1)

(∫
Ω
u22ϕ1dx

) 1
2

‖ϕ1‖
1
2

L1(Ω)
+ C

≤ λ1

4

∫
Ω
u22ϕ1dx+ C.

Hence we obtain ∫
Ω
|∇u2|2ϕ1dx ≤ C,

∫
Ω
u22ϕ1dx ≤ C, λ ≤ C,(8.1.9)

and

∫
Ω
u2ϕ1dx ≤

(∫
Ω
u22ϕ1dx

) 1
2
(∫

Ω
ϕ1dx

) 1
2

≤ C.(8.1.10)

Furthermore it follows from Lemma 7.1.2 and (8.1.9)

Cα

(∫
Ω
|∇u2|2dx+

∫
Ω
u22dx

)
≤
∫
Ω
|∇u2|2ϕ1dx+

∫
Ω
u22ϕ1dx ≤ C,

whence follows

(8.1.11) ‖u2‖H1(Ω) ≤ C.

By (8.1.10) and (8.1.8), we also have

(8.1.12)

∫
∂Ω

{
βuγ2 − β (b+ λ1)u

γ−1
2 − α

2
u22 + α (b+ λ1)u2

}
ϕ1dσ ≤ C.
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Hence we can obtain

(8.1.13)

⎧⎪⎪⎨
⎪⎪⎩

∫
∂Ω

uγ2ϕ1dσ ≤ C (γ > 2 or γ = 2, α < 2β),∫
∂Ω

u2ϕ1dσ ≤ C (γ = 2, α = 2β).

Indeed, if γ > 2, then by Hölder’s inequality and Young’s inequality, we get

β

∫
∂Ω

uγ2ϕ1dσ + α(b+ λ1)

∫
∂Ω

u2ϕ1dσ ≤ C + β(b+ λ1)

∫
∂Ω

uγ−1
2 ϕ1dσ +

α

2

∫
∂Ω

u22ϕ1dσ

≤ C + β(b+ λ1)

(∫
∂Ω

uγ2ϕ1dσ

) γ−1
γ
(∫

∂Ω
ϕ1dσ

) 1
γ

+
α

2

(∫
∂Ω

uγ2ϕ1dσ

) 2
γ
(∫

∂Ω
ϕ1dσ

) γ−2
γ

≤ C + β(b+ λ1)‖ϕ1‖
1
γ

L∞(Ω)|∂Ω|
1
γ

(∫
∂Ω

uγ2ϕ1dσ

) γ−1
γ

+
α

2
‖ϕ1‖

γ−2
γ

L∞(Ω)|∂Ω|
γ−2
γ

(∫
∂Ω

uγ2ϕ1dσ

) 2
γ

≤ C +
β

2

∫
∂Ω

uγ2ϕ1dσ,

where we denote by |∂Ω| a volume of ∂Ω and use the following property (see [27]):

‖ϕ1‖L∞(∂Ω) ≤ ‖ϕ1‖L∞(Ω).

On the other hand, if γ = 2 and α < 2β, then it follows from Schwarz’s inequality and
Young’s inequality (

β − α

2

)∫
∂Ω

u22ϕ1dσ + α(b+ λ1)

∫
∂Ω

u2ϕ1dσ

≤ C + β(b+ λ1)

∫
∂Ω

u2ϕ1dσ

≤ C + β(b+ λ1)

(∫
∂Ω

u22ϕ1dσ

) 1
2
(∫

∂Ω
ϕ1dσ

) 1
2

≤ C + β(b+ λ1)‖ϕ1‖L∞(Ω)|∂Ω|
1
2

(∫
∂Ω

u22ϕ1dσ

) 1
2

≤ C +
1

2

(
β − α

2

)∫
∂Ω

u22ϕ1dσ.

For the case of γ = 2 and α = 2β, from (8.1.12) it is clear that

β

∫
∂Ω

u2ϕ1dσ ≤ C.
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Thus we obtain (8.1.13).

Now, we derive H1-estimate for u1. Multiplying the first equation of (8.1.6) by ϕ1 and
using integration by parts, we get

(λ1 + b)

∫
Ω
u1ϕ1dx =

∫
Ω
u1u2ϕ1dx+ λ(λ1 + b)(8.1.14)

Similarly, multiplying the second equation of (8.1.6) by ϕ1, we get

(8.1.15) λ1

∫
Ω
u2ϕ1dx+ β

∫
∂Ω

uγ−1
2 ϕ1dσ − α

∫
∂Ω

u2ϕ1dσ = a

∫
Ω
u1ϕ1dx.

Then by (8.1.14), (8.1.15), (8.1.11) and (8.1.13), we obtain

(8.1.16)

∫
Ω
u1ϕ1dx ≤ C,

∫
Ω
u1u2ϕ1dx ≤ C.

Hence, by Lemma 7.1.2, we get a priori bounds for
∫
Ω u1dx and

∫
Ω u1u2dx. Now we are

going to establish a priori bound of u1 in H1(Ω) for the case of N ∈ [3, 5]. Multiplying
the first equation of (8.1.6) by u1 and using integration by parts, we obtain

‖∇u1‖2L2(Ω) + α

∫
∂Ω

u21ds+ b‖u1‖2L2(Ω) =

∫
Ω
u21u2dx+ λ(b+ λ1)

∫
Ω
u1ϕ1dx

≤
∫
Ω
(u1u2)

θ

(
u

2−θ
1−θ

1 u2

)1−θ

dx+ C

≤
(∫

Ω
u1u2dx

)θ (∫
Ω
u

2−θ
1−θ

1 u2dx

)1−θ

+ C,(8.1.17)

where we apply Hölder’s inequality with exponent (1θ ,
1

1−θ ) for the first term on the right

hand side. Here we take θ = 6−N
4 ∈ (0, 1), then by applying Hölder’s inequality with

exponent ( 2N
N+2 ,

2N
N−2),

(∫
Ω
u

2−θ
1−θ

1 u2dx

)1−θ

=

(∫
Ω
u

N+2
N−2

1 u2dx

)N−2
4

≤ ‖u1‖
N+2

4

L2∗ (Ω)
‖u2‖

N−2
4

L2∗ (Ω)
.

where 2∗ = 2N
N−2 is the critical Sobolev exponent. Using Sobolev’s embedding H1(Ω) ↪→

L2∗(Ω) and (8.1.11), we obtain

‖u1‖
N+2

4

L2∗ (Ω)
‖u2‖

N−2
4

L2∗ (Ω)
≤ C‖u1‖

N+2
4

H1(Ω)
.

Since (‖∇u1‖2L2(Ω) + α
∫
∂Ω u21ds+ b‖u1‖2L2(Ω))

1/2 is equivalent to the usual H1-norm of u1
due to trace inequality and Poincaré-Friedrichs type inequality, as a consequence we have

‖u1‖2H1(Ω) ≤ C‖u1‖
N+2

4

H1(Ω)
+ C.
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Since N ∈ [3, 5], we have N+2
4 < 2. Hence it follows from Young’s inequality

‖u1‖2H1(Ω) ≤ C‖u1‖
N+2

4

H1(Ω)
+ C ≤ 1

2
‖u1‖2H1(Ω) + C.

Thus we derive

(8.1.18) ‖u1‖H1(Ω) ≤ C.

Next, we derive L∞-estimates for u1 as for the case N ∈ [3, 5]. From Sobolev’s em-

bedding H1(Ω) ↪→ L
10
3 (Ω), we can see that u1, u2 ∈ L

10
3 (Ω) and u1u2 ∈ L

5
3 (Ω). We

get u1 ∈ W 2, 5
3 (Ω) by the elliptic estimate for the first equation of (8.1.6). Moreover,

u1 ∈ L5(Ω) by Sobolev’s embedding W 2, 5
3 (Ω) ↪→ L5(Ω). Then by Hölder’s inequality,

∫
Ω
u21u

2
2dx ≤

(∫
Ω
u
2· 5

2
1 dx

) 2
5
(∫

Ω
u
2· 5

3
2 dx

) 3
5

,

we can see that u1u2 ∈ L2(Ω). By the same reason as before, we know that u1 ∈
W 2,2(Ω) ↪→ L10(Ω). By Hölder’s inequality, we have u1u2 ∈ L

5
2 (Ω). Hence applying

elliptic estimate and Sobolev’s embedding again, we get u1 ∈ W 2, 5
2 (Ω) ↪→ Lq(Ω) for any

q ∈ [1,∞). Therefore u1u2 ∈ L
10q

3q+10 (Ω) and u1 ∈ W
2, 10q

3q+10 (Ω). Choosing q > 10, we have

‖u1‖L∞(Ω) ≤ C1,

where we use the Sobolev’s embedding W
2, 10q

3q+10 (Ω) ↪→ L∞(Ω) for q > 10.

Thus we obtain L∞-estimate of u1 for the case of N ∈ [3, 5]. About the regularity for
u2, it suffices to consider the following problem for given u1 ∈ L∞(Ω):

{
−Δu2 = au1 ∈ L∞(Ω), x ∈ Ω,

∂νu2 + β|u2|γ−2u2 = 0, x ∈ ∂Ω.

Therefore we can derive L∞-estimate for u2, i.e.,

‖u2‖L∞(Ω) ≤ C2

by the same arguments as for the compactness of Ψ applying Lemma 8.1.2. Choosing
R > C1 + C2, we can see that the conclusion of this lemma holds.

As for the case N = 1, 2, it suffices to obtain L∞-estimate for each component. First,
let N = 2. Choosing θ = 1

2 in (8.1.17), we see that it follows from Sobolev’s embedding
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H1(Ω) ↪→ Lp(Ω) ( for all p ∈ [1,∞) )

‖∇u1‖2L2(Ω) + α

∫
∂Ω

u21ds+ b‖u1‖2L2(Ω) =

∫
Ω
u21u2dx+ λ(b+ λ1)

∫
Ω
u1ϕ1dx

≤
∫
Ω
(u1u2)

1
2
(
u31u2

) 1
2 dx+ C

≤
(∫

Ω
u1u2dx

) 1
2
(∫

Ω
u31u2dx

) 1
2

+ C

≤ C

(∫
Ω
u31u2dx

) 1
2

+ C

≤ C‖u1‖
3
2

L6(Ω)
‖u2‖

1
2

L2(Ω)
+ C

≤ C‖u1‖
3
2

H1(Ω)
+ C.

Here we note that we have already had H1-estimate for u2 without restrictions on the
space dimension. Thus we also get H1-estimate for u1. In the similar way as for the
previous case N ∈ [3, 5], we can derive L∞-estimates for u1 and u2.

Let N = 1 and Ω = (a0, b0) with a0 < b0. Since u1 ∈ C(Ω), there exists x0 ∈ Ω such
that

u1(x0) = min
x∈Ω

u1(x).

Furthermore, since it holds that ‖u1‖L1(Ω) ≤ C for any space dimension, we have

min
x∈Ω

u1(x) ≤ 1

|Ω|
∫
Ω
u1dx ≤ C.

Here by the fundamental theorem of calculus,

u1(x) = u1(x0) +

∫ x

x0

u′1(ξ)dξ.

Therefore we get the following inequality:

(8.1.19) ‖u1‖L∞(Ω) ≤
∫ b0

a0

|u′1(ξ)|dξ + |u1(x0)| ≤ ‖u′1‖L1(Ω) + C.

From (8.1.19), Schwarz’s inequality and Young’s inequality, we see that

‖u′1‖2L2 + α

∫
∂Ω

u21ds+ b‖u1‖2L2 =

∫
Ω
u21u2dx+ λ(b+ λ1)

∫
Ω
u1ϕ1dx

≤ ‖u1‖L∞

∫
Ω
u1u2dx+ C

≤ C
(‖u′1‖L1 + C

)
+ C

≤ C‖u′1‖L2 + C ≤ 1

2
‖u′1‖2L2 + C.
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Hence we obtain a priori bound for ‖u1‖H1(Ω). Since Sobolev’s embedding H1(Ω) ↪→
L∞(Ω) holds for N = 1, we obtain the desired estimates.

Proof of Theorem 8.1.1. By applying Lemma 8.1.3, Lemma 8.1.4 and Lemma 7.1.1, we
can verify that Theorem 8.1.1 holds.

Remark 8.1.5. If α = 0, for γ ∈ (1, 2) we can derive H1-estimate for u2 by taking H1

norm of u2 as ‖∇u‖L2(Ω) + ‖u‖L1(∂Ω) in the proof of Lemma 8.1.4. In fact, it is easy to
see that this norm is equivalent to the usual H1(Ω) norm by Lemma 1.1.10. Therefore it
is easy to see that Theorem 8.1.1 holds in the case of α = 0, β > 0 and γ > 1.

8.2 Ordered Uniqueness

Next, we discuss the ordered uniqueness of the positive solutions for (S-NR). The
proof of the ordered uniqueness is based on the simplicity of the first eigenvalue and the
positivity of the corresponding eigenfunction.

Theorem 8.2.1. Let (u1, u2) and (v1, v2) be two positive solutions of (S-NR) satisfying
u1 ≤ v1 or u2 ≤ v2. Then u1 ≡ v1 and u2 ≡ v2.

Proof. Suppose that u1 �≡ v1 or u2 �≡ v2. Without loss of generality, we only have to
consider the case where u2 �≡ v2 and u2 ≤ v2. In fact, if u1 ≤ v1, by the second equation
of (S-NR) we have

(8.2.1) −Δ(u2 − v2) = a(u1 − v1) ≤ 0.

Multiplying (8.2.1) by [u2 − v2]
+ := max{u2 − v2, 0} and using integration by parts, we

obtain

(8.2.2) ‖∇[u2 − v2]
+‖2L2(Ω) + β

∫
∂Ω

[u2 − v2]
+
(|u2|γ−2u2 − |v2|γ−2v2

)
dσ ≤ 0.

Note that by Lemma 7.1.3∫
∂Ω

[u2 − v2]
+
(|u2|γ−2u2 − |v2|γ−2v2

)
dσ =

∫
{u2≥v2}

(u2 − v2)
(|u2|γ−2u2 − |v2|γ−2v2

)
dσ

≥
∫
{u2≥v2}

Cγ(u2 − v2)
γdσ

= Cγ

∫
∂Ω

(
[u2 − v2]

+
)γ

dσ.

By this inequality and (8.2.2), we get

‖∇[u2 − v2]
+‖2L2(Ω) + Cγ

∫
∂Ω

(
[u2 − v2]

+
)γ

dσ ≤ 0.

Therefore we have
∇[u2 − v2]

+ = 0,



110 CHAPTER 8. STATIONARY PROBLEM OF (NR)

[u2 − v2]
+
∣∣
∂Ω

= 0.

Hence we deduce [u2 − v2]
+ ≡ 0, i.e., u2 ≤ v2.

Next we consider the following eigenvalue problems:

(8.2.3)

{−Δw + (b− u2(x))w = μ′w in Ω,

∂νw + αw = 0 on ∂Ω,

and

(8.2.4)

{−Δw + (b− v2(x))w = η′w in Ω,

∂νw + αw = 0 on ∂Ω.

If necessary, we take some nonnegative constant L ≥ 0 and add both sides of equations
of (8.2.3) and (8.2.4) by L, and we can assume U(x) := b − u2(x) + L ≥ 1 and V (x) :=
b− v2(x)+L ≥ 1. Thus we consider the following problems in stead of (8.2.3) and (8.2.4):

(8.2.5)

{−Δw + U(x)w = μw in Ω,

∂νw + αw = 0 on ∂Ω,

and

(8.2.6)

{−Δw + V (x)w = ηw in Ω,

∂νw + αw = 0 on ∂Ω.

By applying the compactness argument for the associate Rayleigh’s quotients of (8.2.5)
and (8.2.6) , we know that the smallest positive eigenvalues of (8.2.5) and (8.2.6) are
attained and we denote them by μ0 and η0. Moreover, thanks to u2 �≡ v2 and u2 ≤ v2,
we see that η0 < μ0. On the other hand, since (u1, u2) and (v1, v2) are positive stationary
solutions for (S-NR), u1 > 0 and v1 > 0 satisfy{−Δu1 + (b− u2(x) + L)u1 = Lu1 in Ω,

∂νu1 + αu1 = 0 on ∂Ω,

and {−Δv1 + (b− v2(x) + L) v1 = Lv1 in Ω,

∂νv1 + αv1 = 0 on ∂Ω.

By the fact that the eigenvalue corresponding to the positive eigenfunction is the smallest
one, we deduce μ0 = L = η0. This contradicts η0 < μ0. Thus the proof is completed.



Chapter 9

Nonstationary Problem of (NR)

In this chapter, we investigate the large time behavior of solutions to (NR) and prove that
the positive stationary solution plays a role of threshold to classify initial data into two
groups; namely corresponding solutions of (NR) blow up in finite time or exist globally.
Moreover we discuss the existence of blow-up solutions to (NR) with nonlinear boundary
conditions as an application of Theorem 4.1.3 in Part I.

9.1 Local Well-posedness

First we state the local well-posedness of problem (NR).

Theorem 9.1.1. Assume (u10, u20) ∈ L∞(Ω) × L∞(Ω). Then there exists T > 0 such
that (NR) possesses a unique solution (u1, u2) ∈ (L∞(0, T ;L∞(Ω)) ∩ C([0, T );L2(Ω)))2

satisfying

(9.1.1)
√
t∂tu1,

√
t∂tu2,

√
tΔu1,

√
tΔu2 ∈ L2(0, T ;L2(Ω)).

Furthermore, if the initial data is nonnegative, then the local solution (u1, u2) for (NR) is
nonnegative.

In order to prove this theorem, we rely on L∞-energy method developed in [45] (see
Chapter 2). This theory is very useful to show the existence of strong solutions with
bounded initial data.

Proof of Theorem 9.1.1. (Existence and regularity) We consider the following approximate
problem:

(9.1.2)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂tu1 −Δu1 = [u1]M [u2]M − bu1, t > 0, x ∈ Ω,

∂tu2 −Δu2 = au1, t > 0, x ∈ Ω,

∂νu1 + αu1 = ∂νu2 + β|u2|γ−2u2 = 0, t > 0, x ∈ ∂Ω,

u1(x, 0) = u10(x), u2(x, 0) = u20(x), x ∈ Ω,

111
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where M > 0 is a given constant and the cut-off function [u]M is defined by

[u]M =

⎧⎪⎨
⎪⎩
M, u ≥ M,

u, |u| ≤ M,

−M, u ≤ −M.

Since u �→ [u]M is Lipschitz continuous from L2(Ω) into itself, it is well known that (9.1.2)
has a unique global solution (u1, u2) satisfying (9.1.1) by applying the abstract theory on
maximal monotone operators developed by H. Brézis [10].

By multiplying the first equation of (9.1.2) by |u1|r−2u1 and using integration by parts,

1

r

d

dt
‖u1(t)‖rLr + (r − 1)

∫
Ω
|∇u1|2ur−2

1 dx+ α

∫
∂Ω

|u1|rdσ ≤
∫
Ω
|u1|r|u2|dx− b

∫
Ω
|u1|rdx.

Hence
1

r

d

dt
‖u1(t)‖rLr ≤ ‖u2(t)‖L∞‖u1(t)‖rLr .

Divide both sides by ‖u1‖r−1
Lr and integrate with respect to t on [0, t], then we get

‖u1(t)‖Lr ≤ ‖u10‖Lr +

∫ t

0
‖u1(τ)‖Lr‖u2(τ)‖L∞dτ.

Letting r tend to ∞ (Lemma 1.2.2), we derive

‖u1(t)‖L∞ ≤ ‖u10‖L∞ +

∫ t

0
‖u1(τ)‖L∞‖u2(τ)‖L∞dτ.

Similarly, we can get the following L∞ estimate for u2 ;

‖u2(t)‖L∞ ≤ ‖u20‖L∞ +

∫ t

0
a‖u1(τ)‖L∞dτ.

Therefore setting y(t) = ‖u1(t)‖L∞(Ω) + ‖u2(t)‖L∞(Ω), we get

y(t) ≤ y(0) +

∫ t

0

(
y2(τ) + ay(τ)

)
dτ.

Thus applying Lemma 1.2.3, we find that there exists a number T > 0 depending only on
‖u10‖L∞(Ω) and ‖u20‖L∞(Ω) such that

y(t) ≤ y(0) + 1 a.e. t ∈ [0, T ].

In other words, we get

‖u1(t)‖L∞(Ω) + ‖u2(t)‖L∞(Ω) ≤ ‖u10‖L∞(Ω) + ‖u20‖L∞(Ω) + 1 a.e. t ∈ [0, T ].

Hence choosing M > ‖u10‖L∞(Ω)+‖u20‖L∞(Ω)+1, we can see that (u1, u2) gives a solution
for (NR) on [0, T ] by the definition of the cut-off function [u]M . Note that even though
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‖u1(t)‖r−1
Lr attains zero, we can justify this argument by Proposition 1 in [40]. To get the

regularity estimate of the solution for (NR) is standard, so we omit the details.
(Uniqueness) Let (u1, u2) and (v1, v2) be two solutions to (NR) with initial data

(u10, u20) and (v10, v20) respectively. We set w1 = u1 − v1 and w2 = u2 − v2. From
(NR), we have

(9.1.3) ∂tw1 −Δw1 = w1u2 + v1w2 − bw1,

(9.1.4) ∂tw2 −Δw2 = aw1,

∂νw1 + αw1 = ∂νw2 + β
(|u2|γ−2u2 − |v2|γ−2v2

)
= 0, on ∂Ω.

We multiply (9.1.3) and (9.1.4) by w1 and w2 respectively, integrate over Ω and use
integration by parts. Then we obtain

1

2

d

dt
‖w1(t)‖2L2(Ω) + ‖∇w1‖2L2(Ω) + α

∫
∂Ω

w2
1dσ

≤
∫
Ω
w2
1u2dx+

∫
Ω
v1w1w2dx

≤ ‖u2‖L∞(0,T ;L∞(Ω))

∫
Ω
w2
1dx+ ‖v1‖L∞(0,T ;L∞(Ω))

∫
Ω
w1w2dx

≤ C
(
‖w1(t)‖2L2(Ω) + ‖w2(t)‖2L2(Ω)

)
,

and

1

2

d

dt
‖w2(t)‖2L2(Ω) + ‖∇w2‖2L2(Ω) + β

∫
∂Ω

(|u2|γ−2u2 − |v2|γ−2v2
)
(u2 − v2) dσ

≤ a

∫
Ω
w1w2dx

≤ a

2

(
‖w1(t)‖2L2(Ω) + ‖w2(t)‖2L2(Ω)

)
.

Noting that ∫
∂Ω

(|u2|γ−2u2 − |v2|γ−2v2
)
(u2 − v2) dσ ≥

∫
∂Ω

Cγ |w2|γdσ ≥ 0

by Lemma 7.1.3, we can get the following differential inequality:

d

dt

(
‖w1(t)‖2L2(Ω) + ‖w2(t)‖2L2(Ω)

)
≤ C

(
‖w1(t)‖2L2(Ω) + ‖w2(t)‖2L2(Ω)

)
,

whence, from Gronwall’s inequality,(
‖w1(t)‖2L2(Ω) + ‖w2(t)‖2L2(Ω)

)
≤
(
‖u10 − v10‖2L2(Ω) + ‖u20 − v20‖2L2(Ω)

)
eCt t ∈ [0, T ).

This yields the uniqueness of the solution for (NR).
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(Nonnegativity) Multiplying the first equation of (NR) by u−1 := max{−u1, 0}, we get∫
Ω
∂tu1u

−
1 dx−

∫
Ω
Δu1u

−
1 dx ≥ −

∫
Ω
|u−1 |2|u2|dx− b

∫
Ω
u1u

−
1 dx.

Here, we can see that∫
Ω
∂tu1u

−
1 dx =

∫
{u1≤0}

∂tu1(−u1)dx = −1

2

d

dt

∫
{u1≤0}

(−u1)
2dx = −1

2

d

dt

∫
Ω

(
u−1
)2

dx,

and

−
∫
Ω
Δu1u

−
1 dx =

∫
Ω
∇u1 · ∇u−1 dx+ α

∫
∂Ω

u1u
−
1 dσ

= −
∫
Ω
|∇u−1 |2dx− α

∫
{u1≤0}

u21dσ = −
∫
Ω
|∇u−1 |2dx− α

∫
∂Ω

(
u−1
)2

dσ.

Therefore we have

1

2

d

dt
‖u−1 (t)‖2L2(Ω) + ‖∇u−1 ‖2L2(Ω) + α

∫
∂Ω

(
u−1
)2

dσ =

∫
Ω
|u−1 |2|u2|dx− b‖u−1 (t)‖2L2(Ω)

≤ ‖u2‖L∞(0,T ;L∞(Ω))‖u−1 (t)‖2L2(Ω).

Applying Gronwall’s inequality, we obtain

‖u−1 (t)‖2L2(Ω) ≤ ‖u−1 (0)‖2L2(Ω)e
2‖u2‖L∞(0,T ;L∞(Ω))t t ∈ [0, T ),

where T is maximal existence time for (NR). Since u10 ≥ 0, i.e., ‖u−1 (0)‖L2(Ω) = 0, it
holds that

u−1 (t) = 0 a.e. in Ω ∀t ∈ [0, T ).

Hence u1 ≥ 0. Similarly, multiplying the second equation of (NR) by −u−2 , we get

1

2

d

dt
‖u−2 (t)‖2L2(Ω) + ‖∇u−2 ‖2L2(Ω) + β

∫
∂Ω

|u2|γ−2|u−2 |2dσ = −a

∫
Ω
u1u

−
2 dx ≤ 0.

Therefore ‖u−2 (t)‖2L2(Ω) ≤ ‖u−2 (0)‖2L2(Ω) = 0, i.e., u2 ≥ 0.

9.2 Threshold Property

Finally, we study the threshold property and prove that every positive stationary
solution for (NR) gives a threshold for the blow up of solutions in the following sense.

Theorem 9.2.1. Let (u1, u2) be a positive stationary solution of (NR), then the followings
hold.

(1) Let 0 ≤ u10(x) ≤ u1(x), 0 ≤ u20(x) ≤ u2(x), then the solution (u1, u2) of (NR)
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exists globally. In addition, if 0 ≤ u10(x) ≤ l1u1(x), 0 ≤ u20(x) ≤ l2u2(x) for some
0 < l1 < l2 ≤ 1, then

lim
t→+∞(u1(t, x), u2(t, x)) = (0, 0) pointwise on Ω.

(2) Assume further γ = 2, α ≤ 2β and let u10(x) ≥ l1u1(x), u20(x) ≥ l2u2(x) for some
l1 > l2 > 1, then the solution (u1, u2) of (NR) blows up in finite time.

Remark 9.2.2. The second assertion of Theorem 9.2.1 is also announced in [25] for the
case where α = 0 and γ = 2. However it seems that their proof contains some serious
gaps.

We first prepare the following comparison theorem.

Lemma 9.2.3 (Comparison theorem). If (u10, u20), (v10, v20) are two initial data for (NR)
satisfying

0 ≤ u10 ≤ v10, 0 ≤ u20 ≤ v20 on Ω,

then the corresponding solutions (u1, u2), (v1, v2) remain in the initial data order in time
interval where the solutions exist, i.e., u1(t, x) ≤ v1(t, x) and u2(t, x) ≤ v2(t, x) a.e. x ∈ Ω
as long as (u1, u2) and (v1, v2) exist.

Proof. Let w1 = u1 − v1, w2 = u2 − v2. By (NR) we have

(9.2.1)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂tw1 −Δw1 = w1u2 + v1w2 − bw1, t ∈ (0, Tm), x ∈ Ω,

∂tw2 −Δw2 = aw1, t ∈ (0, Tm), x ∈ Ω,

∂νw1 + αw1 = ∂νw2 + β
(|u2|γ−2u2 − |v2|γ−2v2

)
= 0, t ∈ (0, Tm), x ∈ ∂Ω,

w1(x, 0) ≤ 0, w2(x, 0) ≤ 0, x ∈ Ω

where Tm > 0 is the maximum existence time for (u1, u2) and (v1, v2). We set

w+ = w ∨ 0, w− = (−w) ∨ 0,

where a ∨ b = max{a, b}. It is easy to see that w+, w− ≥ 0 and

w = w+ − w−, |w| = w+ + w−.

Multiplying the first equation of (9.2.1) by w+
1 , we get∫

Ω
∂tw1w

+
1 dx−

∫
Ω
Δw1w

+
1 dx =

∫
Ω
w1u2w

+
1 dx+

∫
Ω
v1w2w

+
1 dx− b

∫
Ω
w1w

+
1 dx.

Here, we see that∫
Ω
∂tw1w

+
1 dx =

∫
{w1≥0}

∂tw1w1dx =
1

2

d

dt

∫
{w1≥0}

w2
1dx =

1

2

d

dt

∫
Ω

(
w+
1

)2
dx.

Similarly,

−
∫
Ω
Δw1w

+
1 dx =

∫
Ω
∇w1 · ∇w+

1 dx+ α

∫
∂Ω

w1w
+
1 dσ

=

∫
{w1≥0}

|∇w1|2dx+ α

∫
{w1≥0}

w2
1dσ =

∫
Ω
|∇w+

1 |2dx+ α

∫
∂Ω

(
w+
1

)2
dσ.
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Hence noting that v1 ≥ 0, we obtain for any T ∈ (0, Tm)

1

2

d

dt

∫
Ω

(
w+
1

)2
dx+

∫
Ω
|∇w+

1 |2dx+ α

∫
∂Ω

(
w+
1

)2
dσ

=

∫
Ω
w1u2w

+
1 dx+

∫
Ω
v1w2w

+
1 dx− b

∫
Ω
w1w

+
1 dx

=

∫
Ω

(
w+
1 − w−

1

)
u2w

+
1 dx+

∫
Ω
v1
(
w+
2 − w−

2

)
w+
1 dx− b

∫
Ω

(
w+
1

)2
dx

≤ ‖u2‖L∞(0,T ;L∞(Ω))

∫
Ω

(
w+
1

)2
dx+ ‖v1‖L∞(0,T ;L∞(Ω))

∫
Ω
w+
1 w

+
2 dx

≤ C
(
‖w+

1 (t)‖2L2(Ω) + ‖w+
2 (t)‖2L2(Ω)

)
.

Hence we get

(9.2.2)
1

2

d

dt
‖w+

1 (t)‖2L2(Ω) ≤ C
(
‖w+

1 (t)‖2L2(Ω) + ‖w+
2 (t)‖2L2(Ω)

)
.

Next we do the same calculation for the second equation of (9.2.1) and get

1

2

d

dt

∫
Ω

(
w+
2

)2
dx+

∫
Ω
|∇w+

2 |2dx−
∫
∂Ω

(∂νw2)w
+
2 dσ ≤ a

2

(
‖w+

1 (t)‖2L2(Ω) + ‖w+
2 (t)‖2L2(Ω)

)
,

and

−
∫
∂Ω

(∂νw2)w
+
2 dσ = β

∫
∂Ω

(|u2|γ−2u2 − |v2|γ−2v2
)
w+
2 dσ

= β

∫
{u2≥v2}

(|u2|γ−2u2 − |v2|γ−2v2
)
(u2 − v2) dσ ≥ 0.

Therefore

(9.2.3)
1

2

d

dt
‖w+

2 (t)‖2L2(Ω) ≤
a

2

(
‖w+

1 (t)‖2L2(Ω) + ‖w+
2 (t)‖2L2(Ω)

)
.

Thus by (9.2.2), (9.2.3) and Gronwall’s inequality, we get

‖w+
1 (t)‖2L2(Ω) + ‖w+

2 (t)‖2L2(Ω) ≤
(
‖w+

1 (0)‖2L2(Ω) + ‖w+
2 (0)‖2L2(Ω)

)
eCt ∀t ∈ [0, Tm).

Since w+
1 (0) = w+

2 (0) = 0, the above inequality means w+
1 = w+

2 = 0. Hence, we have the
desired result.

Proof of Theorem 9.2.1. (1) If 0 ≤ u10 ≤ u1 and 0 ≤ u20 ≤ u2, then since (u1, u2) is a
global solution for (NR), 0 ≤ u1(t, x) ≤ u1(x) and 0 ≤ u2(t, x) ≤ u2(x) follow directly
from Lemma 9.2.3. That is, we have

sup
t∈[0,T )

‖ui(t, ·)‖L∞(Ω) ≤ ‖ui‖L∞(Ω) (i = 1, 2).
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Hence the solution (u1, u2) exists globally.
In addition, let u10(x) ≤ l1u1(x), u20(x) ≤ l2u2(x) for some 0 < l1 < l2 ≤ 1. Since the

comparison theorem holds, without loss of generality, we can assume that u10(x) = l1u1(x),
u20(x) = l2u2(x) and l1 < l2 ≤ 1. We here note that δu1 := u1(t + h) − u1(t) and
δu2 := u2(t+ h)− u2(t) for h > 0 satisfy the following equations:
(9.2.4)⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂t (δu1)−Δ(δu1) = (δu1)u2(t+ h) + u1(t) (δu2)− b (δu1) ,

∂t (δu2)−Δ(δu2) = a (δu1) ,

∂ν (δu1) + α (δu1) = ∂ν (δu2) + β
(|u2(t+ h)|γ−2u2(t+ h)− |u2(t)|γ−2u2(t)

)
= 0,

δu1(0) = u1(0 + h)− u1(0), δu2(0) = u2(0 + h)− u2(0).

Multiplying the first and second equation of (9.2.4) by [δu1]
+ and [δu2]

+ respectively and
using integration by parts and repeating the same argument as for (9.2.2), we obtain the
following inequality:

‖[δu1]+‖2L2(Ω)+‖[δu2]+‖2L2(Ω) ≤
(
‖[δu1(0)]+‖2L2(Ω) + ‖[δu2(0)]+‖2L2(Ω)

)
eCt ∀t ∈ [0,∞).

We divide both sides of this inequality by h2:∥∥∥∥∥
[
δu1
h

]+∥∥∥∥∥
2

L2(Ω)

+

∥∥∥∥∥
[
δu2
h

]+∥∥∥∥∥
2

L2(Ω)

≤
⎛
⎝
∥∥∥∥∥
[
δu1(0)

h

]+∥∥∥∥∥
2

L2(Ω)

+

∥∥∥∥∥
[
δu2(0)

h

]+∥∥∥∥∥
2

L2(Ω)

⎞
⎠ eCt.

Since we know that u1, u2 is differentiable on a.e. t by the regularity results of Theorem
9.1.1, by letting h ↘ 0, we obtain

‖[∂tu1]+‖2L2 + ‖[∂tu2]+‖2L2 ≤ (‖[∂tu1(0)]+‖2L2 + ‖[∂tu2(0)]+‖2L2

)
eCt a.e. t ∈ [0,∞).

We here note that since (l1u1, l2u2) is strict upper solution for (S-NR), it holds that

∂tu1(0) = Δu10 + u10u20 − bu10

= l1Δu1 + l1l2u1u2 − bl1u1

≤ l1 (Δu1 + u1u2 − bu1) = 0,

∂tu2(0) = Δu20 + au10

= l2Δu2 + al1u1

< l2 (Δu2 + au1) = 0,

which imply that [∂tu1(0)]
+ = [∂tu2(0)]

+ = 0. Hence we find that ∂tu1 ≤ 0 and ∂tu2 ≤ 0,
i.e., u1(t, x) and u2(t, x) are monotone decreasing in t for a.e. x ∈ Ω. Thus

lim
t→∞ (u1(t, x), u2(t, x)) =: (ũ1(x), ũ2(x))

exists and satisfies (0, 0) ≤ (ũ1, ũ2) ≤ (l1u1, l2u2) < (u1, u2). Now we prove that (ũ1, ũ2)
is a nonnegative stationary solution of (NR). First we note that

ui(t) → ũi strongly in Lp(Ω) as k → ∞ ∀p ∈ (1,∞) (i = 1, 2).(9.2.5)
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In fact, since |ui(x, t) − ũi(x)|p → 0 a.e. x ∈ Ω as t → ∞ and |ui(x, t) − ũi(x)|p ≤
2p|ui(x)|p ≤ 2p‖ui‖pL∞(Ω) a.e. x ∈ Ω, Lebesgue’s dominant convergence theorem assures

(9.2.5). Next multiplying the first and the second equations of (NR) by ∂tu1 and ∂tu2
respectively, we get

‖∂tu1(t)‖2L2(Ω) +
d

dt

{
1

2
‖∇u1(t)‖2L2(Ω) +

α

2
‖u1(t)‖2L2(∂Ω) +

b

2
‖u1(t)‖2L2(Ω)

}

=

∫
Ω
u1u2∂tu1dx ≤ 0,

‖∂tu2(t)‖2L2(Ω) +
d

dt

{
1

2
‖∇u2(t)‖2L2(Ω) +

β

γ
‖u2(t)‖γLγ(∂Ω)

}
= a

∫
Ω
u1∂tu2dx ≤ 0.

Then integration of these over (0, T ) for any T > 0 gives

(9.2.6)

∫ ∞

0
‖∂tu1(t)‖2L2(Ω)dt+

∫ ∞

0
‖∂tu2(t)‖2L2(Ω)dt ≤ C0,

(9.2.7) sup
t>0

{
‖u1(t)‖2H1(Ω) + ‖u2(t)‖2H1(Ω)

}
≤ C0,

where C0 is a positive constant depending on ‖u10‖H1(Ω), ‖u20‖H1(Ω) and ‖u20‖Lγ(∂Ω).
Hence since ui ∈ L∞(0,∞;L∞(Ω)) (i = 1, 2), from equation (NR), we derive

(9.2.8)

∫ n+1

n

{
‖∂tu1(t)‖2L2(Ω) + ‖∂tu2(t)‖2L2(Ω)

}
dt → 0 as n → ∞,

(9.2.9) sup
n

∫ n+1

n

{
‖Δu1(t)‖2L2(Ω) + ‖Δu2(t)‖2L2(Ω)

}
dt ≤ C0.

Furthermore, since ‖u2(t)‖L∞(∂Ω) ≤ ‖u2(t)‖L∞(Ω) (see [27]), we obtain

(9.2.10) sup
t>0

‖u2(t)‖L∞(∂Ω) ≤ ‖u2‖L∞(Ω).

Here we put

(9.2.11) uni (x, t) = ui(x, n+ t) ∈ H := L2(0, 1;L2(Ω)) t ∈ (0, 1) (i = 1, 2).

Then uni (t) satisfy

(9.2.12)

⎧⎪⎪⎨
⎪⎪⎩
∂tu

n
1 (t)−Δun1 (t) = un1 (t)u

n
2 (t)− bun1 (t), t ∈ (0, 1), x ∈ Ω,

∂tu
n
2 (t)−Δun2 (t) = aun1 (t), t ∈ (0, 1), x ∈ Ω,

∂νu
n
1 (t) + αun1 (t) = ∂νu

n
2 (t) + β|un2 (t)|γ−2un2 (t) = 0, t ∈ (0, 1), x ∈ ∂Ω.
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Then, by virtue of (9.2.5), (9.2.7), (9.2.8), (9.2.9) and (9.2.10), there exists a subsequence
of {uni (t)} denoted again by {uni (t)} such that

∂tu
n
i (t) → 0 strongly in H as n → ∞,(9.2.13)

uni (t) → ũi(t) ≡ ũi strongly in H as n → ∞,(9.2.14)

un1 (t)u
n
2 (t) → ũ1(t)ũ2(t) ≡ ũ1ũ2 strongly in H as n → ∞,(9.2.15)

Δuni (t) ⇀ Δũi(t) ≡ Δũi weakly in H as n → ∞,(9.2.16)

uni (t) → ũi(t) ≡ ũi strongly in L2(0, 1;L2(∂Ω)) as n → ∞,(9.2.17)

|un2 (t)|γ−2un2 (t) ⇀ |ũ2|γ−2ũ2 weakly in L2(0, 1;L2(∂Ω)) as n → ∞,(9.2.18)

∂νu
n
i (t) ⇀ ∂ν ũi weakly in L2(0, 1;L2(∂Ω)) as n → ∞.(9.2.19)

Thus ũ1 and ũ2 satisfy⎧⎪⎨
⎪⎩

−Δũ1 = ũ1ũ2 − bũ1, x ∈ Ω,

−Δũ2 = aũ1, x ∈ Ω,

∂ν ũ1 + αũ1 = ∂ν ũ2 + β|ũ2|γ−2ũ2 = 0, x ∈ ∂Ω.

(2) Let γ = 2 and α ≤ 2β. By the comparison theorem, we can assume without loss
of generality that u10(x) = l1u1(x), u20(x) = l2u2(x) for some l1 > l2 > 1. Suppose that
the solution (u1, u2) of (NR) exists globally, i.e.,

(9.2.20) sup
t∈[0,T ]

‖ui(t, ·)‖L∞(Ω) < ∞, (i = 1, 2) ∀ T > 0.

Now we are going to construct a subsolution. For this purpose, we first note that there
exists a sufficiently small number ε > 0 such that

(9.2.21)

{
a(l2 − l1)u1 + εl2u2 < 0 on Ω,

ε+ (1− l2)u2 < 0 on Ω.

Here we used the fact that u1(x) > 0, u2(x) > 0 on Ω, which is assured by Hopf’s type
maximum principle. Let u∗1(t, x) = l1e

εtu1(x) and u∗2(t, x) = l2e
εtu2(x). Then using

(9.2.21), we get

∂tu
∗
1 −Δu∗1 − u∗1u

∗
2 + bu∗1 = εl1e

εtu1 − l1e
εtΔu1 − l1e

εtu1l2e
εtu2 + bl1e

εtu1

= εl1e
εtu1 + l1e

εt (u1u2 − bu1)− l1e
εtu1l2e

εtu2 + bl1e
εtu1

≤ εl1e
εtu1 + l1e

εtu1u2 − l1l2e
εtu1u2

= {ε+ (1− l2)u2} l1eεtu1 < 0,

∂tu
∗
2 −Δu∗2 − au∗1 = εl2e

εtu2 − l2e
εtΔu2 − al1e

εtu1

= εl2e
εtu2 + l2e

εtau1 − al1e
εtu1

= {εl2u2 + a (l2 − l1)u1} eεt < 0,
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where we used the fact that (u1, u2) satisfies

{
−Δu1 = u1u2 − bu1,

−Δu2 = au1.

Moreover ∂νu
∗
1+αu∗1 = 0, ∂νu

∗
2+βu∗2 = 0 on ∂Ω and u∗1(0, x) = l1u1(x), u

∗
2(0, x) = l2u2(x).

Hence by the comparison principle, we have

(9.2.22) l1e
εtu1(x) = u∗1(t, x) ≤ u1(t, x), l2e

εtu2(x) = u∗2(t, x) ≤ u2(t, x).

Multiplication of equations of (NR) by ϕ1 and integration by parts yield

d

dt

(∫
Ω
u1ϕ1dx

)
+ (b+ λ1)

∫
Ω
u1ϕ1dx =

∫
Ω
u1u2ϕ1dx,(9.2.23)

d

dt

(∫
Ω
u2ϕ1dx

)
+ λ1

∫
Ω
u2ϕ1dx+ (β − α)

∫
∂Ω

u2ϕ1dσ = a

∫
Ω
u1ϕ1dx,(9.2.24)

where λ1 and ϕ1 are the first eigenvalue and the corresponding eigenfunction for (8.1.1).
We here normalize ϕ1 so that ‖ϕ1‖L1(Ω) = 1. Substituting (9.2.24) and u1 =

1
a(∂tu2−Δu2)

in (9.2.23) and using integration by parts, we get

d

dt

{
d

dt

(∫
Ω
u2ϕ1dx

)
+ λ1

∫
Ω
u2ϕ1dx+ (β − α)

∫
∂Ω

u2ϕ1dσ

}
(9.2.25)

+ (b+ λ1)

{
d

dt

(∫
Ω
u2ϕ1dx

)
+ λ1

∫
Ω
u2ϕ1dx+ (β − α)

∫
∂Ω

u2ϕ1dσ

}

=
1

2

d

dt

∫
Ω
u22ϕ1dx+

∫
Ω
|∇u2|2ϕ1dx+

λ1

2

∫
Ω
u22ϕ1dx+

(
β − α

2

)∫
∂Ω

u22ϕ1dσ,

where we used the fact that

−
∫
Ω
(Δu2)u2ϕ1dx =

∫
Ω
∇u2 · ∇(u2ϕ1)dx−

∫
∂Ω

(∂νu2)u2ϕ1dσ

=

∫
Ω
|∇u2|2ϕ1dx+

∫
Ω
u2∇u2 · ∇ϕ1dx+ β

∫
∂Ω

u22ϕ1dσ

=

∫
Ω
|∇u2|2ϕ1dx+

1

2

∫
Ω
∇u22 · ∇ϕ1dx+ β

∫
∂Ω

u22ϕ1dσ

=

∫
Ω
|∇u2|2ϕ1dx− 1

2

∫
Ω
u22Δϕ1dx− α

2

∫
∂Ω

u22ϕ1dσ + β

∫
∂Ω

u22ϕ1dσ

=

∫
Ω
|∇u2|2ϕ1dx+

λ1

2

∫
Ω
u22ϕ1dx+

(
β − α

2

)∫
∂Ω

u22ϕ1dσ.
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We here assume β − α > 0. From (9.2.22), it follows that

λ1

2

∫
Ω
u22ϕ1dx− (b+ λ1)λ1

∫
Ω
u2ϕ1dx

=
λ1

4

∫
Ω
u22ϕ1dx+ λ1

∫
Ω

{
1

4
u2 − (b+ λ1)

}
u2ϕ1dx

≥ λ1

4

∫
Ω
u22ϕ1dx+ λ1

∫
Ω

{
1

4
u∗2 − (b+ λ1)

}
u2ϕ1dx

≥ λ1

4

∫
Ω
u22ϕ1dx+ λ1

∫
Ω

{
1

4
meεt − (b+ λ1)

}
u2ϕ1dx,

where m := minx∈Ω l2u2(x) > 0. Hence there exists t1 > 0 such that

(9.2.26)
λ1

2

∫
Ω
u22ϕ1dx− (b+ λ1)λ1

∫
Ω
u2ϕ1dx ≥ λ1

4

∫
Ω
u22ϕ1dx ∀ t ≥ t1.

Similarly, since(
β − α

2

)∫
∂Ω

u22ϕ1dσ − (b+ λ1)(β − α)

∫
∂Ω

u2ϕ1dσ

=
1

2

(
β − α

2

)∫
∂Ω

u22ϕ1dσ +

∫
∂Ω

{
1

2

(
β − α

2

)
u2 − (b+ λ1)(β − α)

}
u2ϕ1dσ

≥1

2

(
β − α

2

)∫
∂Ω

u22ϕ1dσ +

∫
∂Ω

{
1

2

(
β − α

2

)
meεt − (b+ λ1)(β − α)

}
u2ϕ1dσ,

there exists t2 > 0 such that(
β − α

2

)∫
∂Ω

u22ϕ1dσ − (b+ λ1)(β − α)

∫
∂Ω

u2ϕ1dσ

≥ 1

2

(
β − α

2

)∫
∂Ω

u22ϕ1dσ ∀ t ≥ t2.(9.2.27)

Therefore by (9.2.26), (9.2.27) and (9.2.25), we have

d

dt

{
d

dt

(∫
Ω
u2ϕ1dx

)}
+ (b+ 2λ1)

d

dt

(∫
Ω
u2ϕ1dx

)
+ (β − α)

d

dt

(∫
∂Ω

u2ϕ1dσ

)

≥1

2

d

dt

(∫
Ω
u22ϕ1dx

)
+

λ1

4

∫
Ω
u22ϕ1dx+

1

2

(
β − α

2

)∫
∂Ω

u22ϕ1dσ ∀ t ≥ t3,

(9.2.28)

where t3 := t1 ∨ t2. Now we integrate (9.2.28) with respect to t over [t3, t] to get

d

dt

{∫
Ω
u2ϕ1dx+ (β − α)

∫ t

t3

∫
∂Ω

u2ϕ1dσdτ

}

≥ 1

2

∫
Ω
u22ϕ1dx− (b+ 2λ1)

∫
Ω
u2ϕ1dx− 1

2

∫
Ω
u22(t3)ϕ1dx

+
1

2

(
β − α

2

)∫ t

t3

∫
∂Ω

u22ϕ1dσdτ +

∫
Ω
∂tu2(t3)ϕ1dx,(9.2.29)
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where we neglected positive terms. Moreover we can see that there exists t4 > t3 such
that

1

2

∫
Ω
u22ϕ1dx−(b+ 2λ1)

∫
Ω
u2ϕ1dx

− 1

2

∫
Ω
u22(t3)ϕ1dx+

∫
Ω
∂tu2(t3)ϕ1dx ≥ 1

4

∫
Ω
u22ϕ1dx(9.2.30)

for t ≥ t4 by the same argument as before. Therefore from (9.2.29) and (9.2.30), we have

d

dt

{∫
Ω
u2ϕ1dx+ (β − α)

∫ t

t3

∫
∂Ω

u2ϕ1dσdτ

}

≥ 1

4

∫
Ω
u22ϕ1dx+

1

2

(
β − α

2

)∫ t

t3

∫
∂Ω

u22ϕ1dσdτ.(9.2.31)

Since ‖ϕ1‖L1(Ω) = 1, by Schwarz’s inequality, we get

1

4

∫
Ω
u22ϕ1dx ≥ 1

4

(∫
Ω
u2ϕ1dx

)2

,

and

1

2

(
β − α

2

)∫ t

t3

∫
∂Ω

u22ϕ1dσdτ

≥ 1

2
(β − α

2
)

1

‖ϕ1‖L∞(Ω)|∂Ω|
1

t− t3

{∫ t

t3

∫
∂Ω

u2ϕ1dσdτ

}2

=
1

2

β − α
2

‖ϕ1‖L∞(Ω)|∂Ω|(β − α)2
1

t− t3

{
(β − α)

∫ t

t3

∫
∂Ω

u2ϕ1dσdτ

}2

.

By the above inequalities and (9.2.31), for t ≥ t5 := t4 ∨ (t3 + 1), we finally get

d

dt

{∫
Ω
u2ϕ1dx+ (β − α)

∫ t

t3

∫
∂Ω

u2ϕ1dσdτ

}

≥1

4

∫
Ω
u22ϕ1dx+

1

2

(
β − α

2

)∫ t

t3

∫
∂Ω

u22ϕ1dσdτ

≥1

4

(∫
Ω
u2ϕ1dx

)2

+
1

2

β − α
2

‖ϕ1‖L∞(Ω)|∂Ω|(β − α)2
1

t− t3

{
(β − α)

∫ t

t3

∫
∂Ω

u2ϕ1dσdτ

}2

≥C
1

t− t3

{(∫
Ω
u2ϕ1dx

)2

+

(
(β − α)

∫ t

t3

∫
∂Ω

u2ϕ1dσdτ

)2
}

≥C
1

t− t3

{∫
Ω
u2ϕ1dx+ (β − α)

∫ t

t3

∫
∂Ω

u2ϕ1dσdτ

}2

,
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where C denotes some general positive constant independent of t. Set y(t) :=
∫
Ω u2ϕ1dx+

(β − α)
∫ t
t3

∫
∂Ω u2ϕ1dσdτ , then the above inequality yields the following:

⎧⎨
⎩

d

dt
y(t) ≥ C

t− t3
y2(t) t ≥ t5,

y(t5) > 0.

We can see that there exists T ∗ > t5 such that

(9.2.32) lim
t→T ∗ y(t) = +∞.

In order to show the existence of T ∗ satisfying (9.2.32), it suffices to consider the following
ordinary differential equation:

⎧⎨
⎩

d

dt
ỹ(t) =

C

t− t3
ỹ2(t) t ≥ t5,

ỹ(t5) > 0.

Since d
dt ỹ(t) > 0 for all t ≥ t5 and ỹ(t5) > 0, it is clear that ỹ(t) > 0 for all t ≥ t5. Divide

both sides by ỹ2(t) and integrate with respect to t on [t5, t], then we have

1

ỹ2(t)

d

dt
ỹ(t) =

C

t− t3
,

∫ ỹ(t)

ỹ(t5)

1

y2
dy = C log

t− t3
t5 − t3

,

− 1

ỹ(t)
+

1

ỹ(t5)
= C log

t− t3
t5 − t3

.

Therefore we have

ỹ(t) =
1

1
ỹ(t5)

− C log t−t3
t5−t3

.

Hence there exists T̃ > t5 satisfying

1

ỹ(t5)
− C log

T̃ − t3
t5 − t3

= 0

such that

lim
t→T̃

ỹ(t) = +∞.

Thus (9.2.32) holds by comparison theorem for ordinary differential equations. This con-
tradicts the assumption that (u1, u2) exists globally.
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For the case of α
2 ≤ β ≤ α, we can prove the same result with a slight modification.

Actually, we get from (9.2.25)

d

dt

{
d

dt

(∫
Ω
u2ϕ1dx

)
+ λ1

∫
Ω
u2ϕ1dx+ (β − α)

∫
∂Ω

u2ϕ1dσ

}

+ (b+ λ1)

{
d

dt

(∫
Ω
u2ϕ1dx

)
+ λ1

∫
Ω
u2ϕ1dx

}

≥ 1

2

d

dt

∫
Ω
u22ϕ1dx+

λ1

2

∫
Ω
u22ϕ1dx.

Using (9.2.26) and integrating above inequality with respect to t over [t1, t], we have

d

dt

(∫
Ω
u2ϕ1dx

)
−
∫
Ω
∂tu2(t1)ϕ1dx+ (β − α)

∫
∂Ω

u2ϕ1dσ − (β − α)

∫
∂Ω

u2(t1)ϕ1dσ

≥1

2

∫
Ω
u22ϕ1dx− 1

2

∫
Ω
u22(t3)ϕ1dx− (b+ 2λ1)

∫
Ω
u2ϕ1dx+ (b+ 2λ1)

∫
Ω
u2(t1)ϕ1dx.

Repeating the same arguments as for (9.2.26), we see that there exists t6 ≥ t1 such that

1

2

∫
Ω
u22ϕ1dx− 1

2

∫
Ω
u22(t3)ϕ1dx− (b+ 2λ1)

∫
Ω
u2ϕ1dx

+

∫
Ω
∂tu2(t1)ϕ1dx+ (β − α)

∫
∂Ω

u2(t1)ϕ1dσ

≥ 1

4

∫
Ω
u22ϕ1dx

for all t ≥ t6. From these inequalities and Schwarz’s inequality, it holds that

d

dt

(∫
Ω
u2ϕ1dx

)
≥ 1

4

(∫
Ω
u2ϕ1dx

)2

∀ t ≥ t6.

Therefore we can get the following differential inequality:⎧⎨
⎩

d

dt
y(t) ≥ y2(t) t ≥ t6,

y(t6) > 0,

where y(t) =
∫
Ω u2ϕ1dx. It is easy to see that there exists T ∗∗ > t6 such that

lim
t→T ∗∗ y(t) = +∞.

This leads to a contradiction.

Remark 9.2.4. Since the blow-up result is proved by contradiction, there is no knowing
if ‖u1(t)‖L∞ and ‖u2(t)‖L∞ blow up simultaneously. However we can show by another
argument that L∞-norms of u1 and u2 blow up at the same time, i.e., there exists T > 0
such that

lim
t→T

‖u1(t)‖L∞(Ω) = ∞ and lim
t→T

‖u2(t)‖L∞(Ω) = ∞.
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In fact, multiplying the first equation of (NR) by |u1|r−2u1 and using integration by parts
and similar calculation in the proof of Theorem 9.1.1, we obtain

(9.2.33)
d

dt
‖u1(t)‖Lr(Ω) ≤ ‖u2(t)‖L∞(Ω)‖u1(t)‖Lr(Ω) ∀t ∈ [0, T ).

From the second equation of (NR), we also have

(9.2.34) ‖u2(t)‖L∞(Ω) ≤ ‖u20‖L∞(Ω) + a

∫ t

0
‖u1(τ)‖L∞(Ω)dτ ∀t ∈ [0, T ).

Suppose that

lim
t→T

‖u1(t)‖L∞(Ω) = ∞ and M2 := sup
0≤t≤T

‖u2(t)‖L∞(Ω) < ∞,

then it follows from (9.2.33)

d

dt
‖u1(t)‖Lr ≤ M2‖u1(t)‖Lr(Ω) ∀t ∈ [0, T ).

By Gronwall’s inequality, we get

‖u1(t)‖Lr(Ω) ≤ ‖u10‖Lr(Ω)e
M2t ≤ ‖u10‖Lr(Ω)e

M2T ∀t ∈ [0, T ).

Letting r tend to ∞, we obtain

‖u1(t)‖L∞(Ω) ≤ ‖u10‖L∞(Ω)e
M2T ∀t ∈ [0, T ),

which contradicts the fact limt→T ‖u1(t)‖L∞(Ω) = ∞. Next, suppose that

M1 := sup
0≤t≤T

‖u1(t)‖L∞(Ω) < ∞ and lim
t→T

‖u2(t)‖L∞(Ω) = ∞,

then by (9.2.34) we see that

‖u2(t)‖L∞(Ω) ≤ ‖u20‖L∞(Ω) + aM1T ∀t ∈ [0, T ).

Letting t tend to T , we get contradiction. Thus we see that u1 and u2 blow up at the
same time.

9.3 Blowing-up Solutions of (NR)

In this section, we exemplify the applicability of Theorem 4.1.3 in Part I for systems of
parabolic equations. We consider the following reaction diffusion system, which consists
of two equations possessing a nonlinear coupling term between two real-valued unknown
functions, which is a generalized system of (NR).

(NR)∗

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂tu1 −Δu1 = u1u2 − bu1, t > 0, x ∈ Ω,

∂tu2 −Δu2 = au1, t > 0, x ∈ Ω,

∂νu1 + α1|u1|γ1−2u1 = ∂νu2 + α2|u2|γ2−2u2 = 0, t > 0, x ∈ ∂Ω,

u1(0, x) = u10(x) ≥ 0, u2(0, x) = u20(x) ≥ 0, x ∈ Ω.
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Here Ω ⊂ R
N is a bounded domain with smooth boundary ∂Ω. ν denotes the unit outward

normal vector on ∂Ω and ∂ν is outward normal derivative, i.e., ∂νui = ∇ui · ν (i = 1, 2).
Moreover u1, u2 are real-valued unknown functions, a and b are given positive constants.
As for the parameters appearing in the boundary condition, we assume αi ∈ [0,∞), γi ∈
(1,∞) (i = 1, 2). We note that the boundary condition for ui becomes the homogeneous
Neumann boundary condition when αi = 0, and the Robin boundary condition when
αi > 0 and γi = 2. We further assume that the given initial data u10, u20 are nonnegative
and belong to L∞(Ω). In the former section, we dealt with the case where α1 = α ∈ [0,∞),
α2 = β ∈ (0,∞), γ1 = 2 and γ2 = γ ∈ [2,∞). As for the case where γi �= 2, note that it is
not clear whether there are solutions which blow up in finite time.

Nevertheless it is possible to show that (NR)∗ with γi �= 2 admits blow-up solutions
by applying the same strategy as that in Chapter 4. Along the same lines as before, we
first consider the following Dirichlet problem for (NR).

(NR)D

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂tu1 −Δu1 = u1u2 − bu1, t > 0, x ∈ Ω,

∂tu2 −Δu2 = au1, t > 0, x ∈ Ω,

u1 = u2 = 0, t > 0, x ∈ ∂Ω,

u1(0, x) = u10(x) ≥ 0, u2(0, x) = u20(x) ≥ 0, x ∈ Ω.

We first note that for every U0 := (u10, u20) ∈ L
∞
+ (Ω) := {(u1, u2); ui ≥ 0, ui ∈ L∞(Ω) (i =

1, 2)}, (NR) or (NR)D possess a unique solution U(t) := (u1(t), u2(t)) ∈ L
∞
+ (Ω) satisfying

the blow-up alternative with respect to L∞-norm such as in Proposition 9.1.1. We are
going to show this result for a more general equation:

(NR)β

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂tu1 −Δu1 = u1u2 − bu1, t > 0, x ∈ Ω,

∂tu2 −Δu2 = au1, t > 0, x ∈ Ω,

∂νu1 + β1(u1) = ∂νu2 + β2(u2) = 0, t > 0, x ∈ ∂Ω,

u1(0, x) = u10(x) ≥ 0, u2(0, x) = u20(x) ≥ 0, x ∈ Ω,

where βi : R
1 → 2R

1
are maximal monotone operators (i = 1, 2). To do this, we can repeat

much the same arguments as those in the proof of Proposition 2.2.3.

Let H := L2(Ω) × L2(Ω) with inner product (U, V )H := (u1, v1)L2 + (u2, v2)L2 for
U = (u1, u2), V = (v1, v2), and put |∇U |2 = |∇u1|2 + |∇u2|2. Let ji : R

1 → (−∞,+∞]
be lower semi-continuous convex functions such that ∂ji = βi (i = 1, 2). For the Dirichlet
(resp. Neumann) boundary condition, we put ji(0) = 0 and ji(r) = +∞ for r �= 0 ( resp.
ji(r) = 0, ∀r ∈ R

1 ).

Then we define

ϕ(U) =

⎧⎪⎨
⎪⎩

1

2

∫
Ω
(|∇U(x)|2 + |U(x)|2)dx+

2∑
i=1

∫
∂Ω

ji(ui(x))dσ U ∈ D(ϕ),

+∞ U ∈ H\D(ϕ),

where D(ϕ) := {U ;ui ∈ H1(Ω) ji(ui) ∈ L1(Ω) (i = 1, 2)}. For the homogeneous Dirichlet
(resp. Neumann) boundary condition case, we take D(ϕ) = H1

0 (Ω) × H1
0 (Ω) (resp.
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H1(Ω)×H1(Ω)). Then we have⎧⎨
⎩

∂ϕ(U) = (−Δu1 + u1,−Δu2 + u2),

D(∂ϕ) = {U = (u1, u2) ; ui ∈ H2(Ω), −∂νui(x) ∈ βi(ui(x)) (i = 1, 2) a.e. on ∂Ω}.
Furthermore the elliptic estimate (2.2.10) with u replaced by ui (i = 1, 2) holds true for
all U ∈ D(∂ϕ).

Then by putting B(U) := (−u1 u2 + (b− 1) u1,−u2 − a u1), (NR)γ can be reduced to
the following abstract evolution equation in H.

(CP)β

⎧⎨
⎩

d

dt
U(t) + ∂ϕ(U(t)) +B(U(t)) � 0, t > 0,

U(0) = U0 = (u10, u20).

In order to apply “L∞-Energy Method”, we again introduce the following cut-off functions
IKi,M

(·) (i = 1, 2):

IKi,M
(U) :=

⎧⎨
⎩

0, U ∈ Ki,M := {U = (u1, u2) ∈ H ; |ui(x)| ≤ M a.e. x ∈ Ω },
+∞, U ∈ H \Ki,M ,

and put
ϕM (U) := ϕ(U) + IK1,M

(U) + IK2,M
(U).

Then we get

∂ϕ(U) = ∂ϕ(U) + ∂I1,M (U) + ∂I2,M (U) ∀U ∈ D(∂ϕ) ∩K1,M ∩K2,M .

Consider the following auxiliary equation:

(CP)βM

⎧⎨
⎩

d

dt
U(t) + ∂ϕM (U(t)) +B(U(t)) � 0, t > 0,

U(0) = U0,

where we choose M > 0 such that

M = ‖U0‖L∞ + 2 := ‖u10‖L∞ + ‖u20‖L∞ + 2.

Then as in the proof of Proposition 2.2.3, we can easily show that (CP)γM , which is
equivalent to the following (NR)γM , admits a unique global solution U(t) = (u1(t), u2(t)).

(NR)βM

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂tu1 −Δu1 + βM (u1) = u1u2 − bu1, t > 0, x ∈ Ω,

∂tu2 −Δu2 + βM (u2) = au1, t > 0, x ∈ Ω,

∂νu1 + β1(u1) = ∂νu2 + β2(u2) = 0, t > 0, x ∈ ∂Ω,

u1(0, x) = u10(x) ≥ 0, u2(0, x) = u20(x) ≥ 0, x ∈ Ω.

Then in parallel with (2.2.18), multiplying the first and second equations of (NR)γM by
|u1|r−2u1 and |u2|r−2u2, we can obtain

‖U(t)‖L∞ ≤ ‖U0‖L∞ +

∫ t

0
�(‖U(s)‖L∞)ds with �(r) = ar + r2,
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where ‖U‖L∞ = ‖(u1, u2)‖L∞ := ‖u1‖L∞ + ‖u2‖L∞ . Then we can repeat the same argu-
ments as those in the proof of Proposition 2.2.3. Furthermore multiplying the first and
second equations of (NR)D by u−1 := max(−u1, 0) and u−2 := max(−u2, 0), we can easily
deduce

1

2

d

dt
(‖u−1 (t)‖2L2 + ‖u−2 (t)‖2L2) ≤ ‖u2‖L∞‖u−1 (t)‖2L2 + a ‖u−1 (t)‖L2‖u−2 (t)‖L2

≤ (‖u2‖L∞ + a) (‖u−1 (t)‖2L2 + ‖u−2 (t)‖2L2).

Then by Gronwall’s inequality, we get u−1 (t) = u−2 (t) = 0 for all t, i.e., (u1, u2) is a non-
negative solution (see [33]). (The non-negativity of solutions can be also derived from
application of Theorem 4.1.3 for (NR)β with the coupling term u1 u2 replaced by u+1 u2.)

Here we prepare the following lemma concerning the existence of blow-up solutions of
(NR)D.

Proposition 9.3.1. Assume that (u10, u20) belongs to L
∞
+ (Ω) and satisfies

(9.3.1)

∫
Ω
(a u10(x) + b u20(x)− 1

2
u220(x)) φ1(x) dx ≥ 0,

∫
Ω
u20(x) φ1(x) dx > 2(b+ λ1).

Then the solution U(t) = (u1(t), u2(t)) of (NR)D blows up in finite time. Here λ1 and φ1

are the first eigenvalue and its associate normalized positive eigenfunction of (4.2.1).

Proof. Suppose that U(t) is a global solution. Then multiplying the first and second
equations of (NR)D by φ1, we obtain

d

dt

(∫
Ω
u1ϕ1dx

)
+ (b+ λ1)

(∫
Ω
u1φ1dx

)
=

∫
Ω
u1u2φ1dx,(9.3.2)

d

dt

(∫
Ω
u2φ1dx

)
+ λ1

∫
Ω
u2φ1dx = a

∫
Ω
u1φ1dx.(9.3.3)

Following [53], we set

y(t) :=

∫
Ω
u2(t)φ1dx, z(t) := y′(t) + (b+ λ1)y(t)− 1

2

∫
Ω
u22(t)φ1dx.

Then by (9.3.3) and (9.3.2), we get

y′′(t) = −λ1y
′(t) + a

∫
Ω
u′1(t)φ1dx

= −λ1y
′(t)− (b+ λ1)

∫
Ω
au1φ1dx+

∫
Ω
au1u2φ1dx.(9.3.4)

We substitute au1 = ∂tu2 −Δu2 in (9.3.4), then by integration by parts we have

y′′(t)+(b+2λ1)y
′(t)+λ1(b+λ1)y(t) =

1

2

d

dt

(∫
Ω
u22φ1dx

)
+

∫
Ω
|∇u2|2φ1dx+

λ1

2

∫
Ω
u22φ1dx,

whence follows
z′(t) ≥ −λ1z(t).
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Therefore we get z(t) ≥ z(s)e−λ1(t−s) for 0 < s < t. Here (9.3.3) and (9.3.1) yield

z(s) = y′(s) + (b+ λ1) y(s)− 1

2

∫
Ω
u22(s)φ1dx

=

∫
Ω
(a u1(s) + b u2(s)− 1

2
u22(s))φ1dx

→
∫
Ω
(a u10 + b u20 − 1

2
u220)φ1dx ≥ 0 as s → 0,

since u1(t), u2(t) ∈ C([0, 1];L2(Ω)) ∩ L∞(0, 1;L∞(Ω)). Hence we see that z(t) ≥ 0 for all
t > 0, i.e., we have

y′(t) ≥ −(b+ λ1) y(t) +
1

2

∫
Ω
u22(t)φ1dx

≥ −(b+ λ1) y(t) +
1

2
y2(t)

≥ 1

2
y(t)(y(t)− 2(b+ λ1)).(9.3.5)

Then (9.3.5) assures that y(t) blows up in finite time if y(0) > 2(b+ λ1).

In order to make it clear that solutions of parabolic systems differ according to their
boundary conditions imposed, we here denote the unique solutions of (NR)β and (NR)D by

Uβ(t) = (uβ1 (t), u
β
2 (t)) and UD(t) = (uD1 (t), u

D
2 (t)) with the same initial data U0 ∈ L

∞
+ (Ω),

respectively.

We are going to compare Uβ(t) with UD(t) by applying Theorem 4.1.3. for U1 =
UD, U2 = Uβ . Let

m = 2; a1i,j = a2i,j = δi,j ; a11 = a12 = u10, a21 = a22 = u20; γ11 = γ12 = γ21 = γ22 = 0;

F 1
1 (U) = F 1

2 (U) = F 1(U) := u1u2 − bu1, F 1
2 (U) = F 2

2 (U) = F 2(U) := au1;

β1
1(r) = β2

1(r) = βD(r), βi
2(r) =

⎧⎪⎪⎨
⎪⎪⎩

αi |r|γi−2r for r > 0,

(−∞, 0] for r = 0,

∅ for r < 0,

(i = 1, 2),

where γD is the maximal monotone graph defined by (4.2.3). Then (A1), (A2) and (i)
of (A4) are obviously satisfied. Moreover as in the proof of Proposition 4.2.1, we can see

that uD1 and uD2 obey the homogeneous Dirichlet boundary condition, and that −∂νu
β
1 ∈

β1
2(u

β
1 ) and −∂νu

β
2 ∈ β2

2(u
β
2 ) hold, since uβ1 and uβ2 are non-negative solutions. Therefore

D(β1
1) = D(β2

1) = D(βD) = {0} and D(β1
2) = D(β2

2) = [0,∞) assure (iii) of (A3).

Hence to apply Theorem 4.1.3, it suffices to check (ii) of (A4), i.e., F 1(U) = u1u2 −
bu1, F

2(U) = au1 satisfies (SC). Since F 1, F 2 ∈ C1(R2), (2.2.8) is obvious. As for (2.2.7),
we get

∂

∂u1
F 2(U) = a > 0,

∂

∂u2
F 1(U) = u1 ≥ 0.
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Consequently, applying Theorem 4.1.3, we conclude

Tm(Uβ) ≤ Tm(UD) and

0 ≤ uD1 (t, x) ≤ uβ1 (t, x), 0 ≤ uD2 (t, x) ≤ uβ2 (t, x) ∀t ∈ [0, Tm(Uβ)) a.e. x ∈ Ω.

Thus by virtue of Proposition 9.3.1, we have the following corollary.

Corollary 9.3.2. Assume that (u10, u20) belongs to L
∞
+ (Ω) and satisfies (9.3.1). Then

the unique solution U(t) = (u1(t), u2(t)) of (NR)∗ blows up in finite time.

Remark 9.3.3. The existence of (u10, u20) satisfying (9.3.1) is assured when a > 0. For
instance, if u10 ≥ 1

2au
2
20 and u20 is sufficiently large, then (9.3.1) is satisfied.

For the case where a = 0, however, there is no initial data (u10, u20) satisfying (9.3.1).
In fact, a = 0 implies that supt≥0 ‖u2(t)‖L∞ ≤ ‖u20‖L∞, then u1(t) satisfies ∂tu1 −
Δu1(t) ≤ ‖u20‖L∞u1(t), whence follows ‖u1(t)‖L∞ ≤ ‖u10‖L∞ e‖u20‖L∞ t. Consequently
every local solution can be continued globally.

Remark 9.3.4. The assertion of Corollary 9.3.2 holds true for more general equation
(NR)β, provided that 0 ∈ βi(0) (i = 1, 2) is satisfied.



Chapter 10

Bounds for Global Solutions of
(NR)

We are concerned with a bound of global solutions to (NR) with Robin boundary con-
ditions. In the previous chapter, we showed the global existence of solutions to (NR)
for small data. More precisely, if the initial data is smaller than or equal to a positive
stationary solution, then the corresponding solution exists globally and converges to the
trivial solution. In this chapter, we are going to show every global solution of (NR) with
Robin boundary conditions (γ=2) is bounded uniformly in time.

10.1 Existence of Local Solutions

Throughout this chapter, ‖ · ‖ denotes the norm in H1(Ω). We also simply write u(t)
instead of u(t, ·). In this section, we mention the local well-posedness. The local well-
posedness of (NR) in L∞(Ω) is proved in Chapter 9 as Theorem 9.1.1. In order to treat
the case where the data belong to H1(Ω), we need to fix some abstract setting. Let
H := L2(Ω)× L2(Ω) and for u = (u1, u2) ∈ H we put

D(φ) := {u ∈ H ; u1, u2 ∈ H1(Ω), u2 ∈ Lγ(∂Ω) },

φ(u) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1

2

∫
Ω
(|∇u1(x)|2+ b|u1(x)|2+ |∇u2(x)|2)dx

+

∫
∂Ω

(
α

2
|u1(x)|2 + β

γ
|u2(x)|γ

)
dσ if u ∈ D(φ),

+∞ if u �∈ D(φ).

Then φ is a lower semi-continuous convex function from H into [0,∞) and its subdiffer-
ential ∂φ is given by

∂φ(u) = {w ∈ H ; w = (−Δu1 + bu1,−Δu2) } ∀u ∈ D(∂φ),

D(∂φ) = {u = (u1, u2) ; u1, u2 ∈ H2(Ω), ∂νu1 + αu1 = ∂νu2 + β |u2|γ−2u2 = 0 }.
Then we have

131
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Theorem 10.1.1. Let N ≤ 5 and (u10, u20) ∈ D(φ), then there exists T = T (φ(u0)) > 0
such that (NR) possesses a unique solution (u1, u2) ∈ (C([0, T ];L2(Ω)))2 satisfying

(10.1.1) ∂tu1, ∂tu2,Δu1,Δu2 ∈ L2(0, T ;L2(Ω)).

Furthermore, if the initial data is nonnegative, then the local solution (u1, u2) for (NR) is
nonnegative.

Proof. Put u(t) = (u1(t), u2(t)) and

B(u) := { b ∈ H ; b = (−u1u2,−au1) },
then (NR) can be reduced to the following abstract evolution equation in H:

(10.1.2)
d

dt
u(t) + ∂φ(u(t)) +B(u(t)) = 0, u(0) = (u10, u20).

We are going to apply Proposition 1.4.4. To do this, we have to check three assumptions.
The compactness assumption (A1) requires that the set { u ∈ H ; φ(u) + |u|2H ≤ L } is
compact in H for all L > 0, which is assured by the Rellich-Kondrachov theorem. The
demiclosedness assumption (A2) on B(u) is assured by the continuity of the mapping
(u1, u2) �→ (−u1u2,−au1) in R

2.
The last assumption to check is the boundedness assumption (A3):

(10.1.3) |B(u)|2H ≤ k |∂φ(u)|2H + �(φ(u) + |u|H) ∀u ∈ D(∂φ),

where k ∈ [0, 1) and �(·) : [0,∞) → [0,∞) is a monotone increasing function. We note
that
(10.1.4)

|B(u)|2H ≤ ‖u1‖24‖u2‖24 + a2‖u1‖22, ∃C > 0 such that C(‖u1‖2 + ‖u2‖2) ≤ φ(u) + 1.

Hence for N ≤ 4, (10.1.3) holds true with k = 0 and �(r) = Cr2.
As for the case where N = 5, Gagliardo-Nirenberg interpolation inequality gives

‖v‖4 ≤ C‖v‖
1
4

H2‖v‖
3
4 .

Then by Young’s inequality, (10.1.3) is satisfied with �(r) = Cr3. Thus the local existence
part is verified.

To prove the uniqueness part, let u1 = (u11, u
1
2), u2 = (u21, u

2
2) be solutions of (NR)

and put δui = u1i − u2i (i = 1, 2). Then δui satisfy

∂tδu1 −Δδu1 + bδu1 = δu1u
1
2 + δu2u

2
1,(10.1.5)

∂tδu2 −Δδu2 = aδu1,(10.1.6)

∂νδu1 + αδu1 = ∂νδu2 + β(|u12|γ−2u12 − |u22|γ−2u22) = 0.(10.1.7)

Multiplying (10.1.5) by δu1 and (10.1.6) by δu2, we have by (10.1.7)

1

2

d

dt
‖δu1(t)‖22 + ‖∇δu1‖22 + α‖δu1‖22,∂Ω + b‖δu1‖22 ≤

∫
Ω
(|δu1|2 |u12|+ |δu1| |δu2| |u21|) dx,

(10.1.8)

1

2

d

dt
‖δu2(t)‖22 + ‖∇δu2‖22 + β

∫
∂Ω
(|u12|γ−2u12 − |u22|γ−2u22) δu2 dσ ≤ a

∫
Ω
|δu1| |δu2| dx.

(10.1.9)
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Let N ≤ 5, then since H1(Ω) and H2(Ω) are embedded in L
10
3 (Ω) and L10(Ω) respectively,

by Young’s inequality we find that for any ε > 0 there exists Cε > 0 such that∫
Ω
|δui| |δuj | |w| dx ≤ C ‖δui‖ ‖δuj‖2 ‖w‖H2(Ω)

≤ ε (‖∇δui‖22 + ‖δui‖22) + Cε‖δuj‖22‖w‖2H2(Ω).

Hence, by adding (10.1.8) and (10.1.9), we obtain

d

dt
(‖δu1(t)‖22 + ‖δu2(t)‖22) ≤ C(‖u12‖2H2(Ω) + ‖u21‖2H2(Ω) + 1) (‖δu1(t)‖22 + ‖δu2(t)‖22),

Thus since u12, u
2
1 ∈ L2(0, T ;H2(Ω)), the uniqueness follows from Gronwall’s inequality.

The nonnegativity of solutions can be proved by exactly the same argument as in the
proof of Theorem 9.1.1 in Chapter 9.

10.2 Main Result and Proof

In what follows we always consider the case where γ = 2 and we are concerned with
global solutions of (II.4). We put H1 = {(w1, w2) ∈ H1(Ω)×H1(Ω) ; w1, w2 ≥ 0, w1, w2 �≡
0} and V = {(w1, w2) ∈ L∞(Ω) × L∞(Ω) ; w1, w2 ≥ 0, w1, w2 �≡ 0}. Our main theorem
can be stated as follows.

Theorem 10.2.1. Let N = 2, 3 and α ≤ 2β. Assume that (u10, u20) ∈ H1 and (u1, u2) is
the corresponding global solution of (II.4) satisfying the same regularity given in Theorem
10.1.1. Then there exist constants Mi = Mi(‖u10‖, ‖u20‖) > 0 (i = 1, 2) such that

(10.2.1) sup
t≥0

‖u1(t)‖ ≤ M1, sup
t≥0

‖u2(t)‖ ≤ M2.

Moreover if (u10, u20) ∈ V and (u1, u2) is the corresponding global solution of (II.4)
satisfying the same regularity given in Theorem ??. Then there exist constants M ′

i =
M ′

i(‖u10‖∞, ‖u20‖∞) > 0 (i = 1, 2) such that

(10.2.2) sup
t≥0

‖u1(t)‖∞ ≤ M ′
1, sup

t≥0
‖u2(t)‖∞ ≤ M ′

2.

We divide the proof into several steps. We first derive the L1-estimate of the solutions.
In this step, we rely on the properties of the first eigenvalue and the corresponding eigen-
function of −Δ with the Robin boundary conditions (Lemma 7.1.2). The second step is to
derive uniform L2-estimates and third one is to derive uniform H1-estimates. In the last
step, we get uniform L∞ bounds for global solutions of (II.4) applying Moser’s iteration
scheme (see [1] and [41]).

(1) Uniform estimates in L1

Let λ1 and ϕ1 be the first eigenvalue and the corresponding eigenfunction of (7.1.1)
respectively. We here normalize ϕ1 so that ‖ϕ1‖1 = 1. Multiplying ϕ1 by the first and
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second equations of (II.4), we get

(∫
Ω
u1ϕ1dx

)
t
+ (b+ λ1)

∫
Ω
u1ϕ1dx+ (α− γ)

∫
∂Ω

u1ϕ1dσ =

∫
Ω
u1u2ϕ1dx,(10.2.3)

(∫
Ω
u2ϕ1dx

)
t
+ λ1

∫
Ω
u2ϕ1dx+ (β − γ)

∫
∂Ω

u2ϕ1dσ = a

∫
Ω
u1ϕ1dx.(10.2.4)

Multiplying (10.2.3) by a and substituting (10.2.4) and equation (II.4) to the second term
of the left-hand side and the right-hand side respectively, we have

a
(∫

Ω
u1ϕ1dx

)
t
+ (b+ λ1)

((∫
Ω
u2ϕ1dx

)
t
+ λ1

∫
Ω
u2ϕ1dx+ (β − γ)

∫
∂Ω

u2ϕ1dσ
)

+a(α− γ)

∫
∂Ω

u1ϕ1dσ =

∫
Ω
(∂tu2 −Δu2)u2ϕ1dx.

(10.2.5)

Then differentiating (10.2.4) with respect to t once and substituting (10.2.5) to the right-
hand side, we obtain

(∫
Ω
u2ϕ1dx

)
tt
+ (b+ 2λ1)

(∫
Ω
u2ϕ1dx

)
t
+ λ1(b+ λ1)

∫
Ω
u2ϕ1dx

+ a(α− γ)

∫
∂Ω

u1ϕ1dσ + (β − γ)
(∫

∂Ω
u2ϕ1dσ

)
t
+ (β − γ)(b+ λ1)

∫
∂Ω

u2ϕ1dσ

=

∫
Ω
(∂tu2 −Δu2)u2ϕ1dx

=
1

2

(∫
Ω
u22ϕ1dx

)
t
+

∫
Ω
|∇u2|2ϕ1dx+

λ1

2

∫
Ω
u22ϕ1dx+

(
β − γ

2

)∫
∂Ω

u22ϕ1dσ.

(10.2.6)

Finally choosing γ = α+2β
2 > 0, we deduce

(∫
Ω
u2ϕ1dx

)
tt
+ (b+ 2λ1)

(∫
Ω
u2ϕ1dx

)
t
+ λ1(b+ λ1)

∫
Ω
u2ϕ1dx

− α

2

(∫
∂Ω

u2ϕ1dσ
)
t
− α

2
λ1

∫
∂Ω

u2ϕ1dσ ≥ 1

2

(∫
Ω
u22ϕ1dx

)
t
+

λ1

2

∫
Ω
u22ϕ1dx.

(10.2.7)

We now set

y(t) := w′(t) + (b+ λ1)w(t)− 1

2

∫
Ω
u22 ϕ1 dx− α

2

∫
∂Ω
u2 ϕ1 dσ, w(t) :=

∫
Ω
u2 ϕ1 dx.

Since ∂tu2 ∈ L2(0, T ;L2(Ω)) implies that there exists s0 ∈ (0, 1) such that |y(s0)| < ∞.
Then (10.2.7) yields

y′(t) ≥ −λ1 y(t), hence y(t) ≥ y(s0) e
−λ1(t−s0) ≥ −|y(s0)| =: −C0 ∀t ≥ s0.
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Hence by virtue of Schwarz’s inequality and Young’s inequality, we get

−C0 ≤ y(t) = w′(t) + (b+ λ1)w(t)− 1

2

∫
Ω
u22ϕ1 dx− α

2

∫
∂Ω
u2ϕ1 dσ

≤ w′(t) + (b+ λ1)w(t)− 1

2
w2(t)

≤ w′(t)− 1

4
w2(t) + (b+ λ1)

2 ∀t ≥ s0,

i.e.,

(10.2.8) w′(t) ≥ 1

4
w2(t)− C1, C1 := C0 + (b+ λ1)

2 > 0 ∀t ≥ s0,

whence follows

(10.2.9) w(t) ≤ 2C
1
2
1 =: C2 ∀t ≥ s0,

Indeed, if there exists t1 ≥ s0 such that

(10.2.10)
1

4
w2(t1)− C1 > 0,

then from (10.2.8), (10.2.10) we can deduce that there exists t2 > t1 such that

lim
t→t2

w(t) = +∞,

which contradicts the assumption that w(t) exists globally. Thus (10.2.9) holds and the
following global bound for w(t) is established.

(10.2.11) sup
t≥0

∫
Ω
u2 ϕ1 dx ≤ C2 := max

(
C2, max

0≤s≤s0
w(s)

)
.

Next we derive a uniform estimate for
∫
Ω u1ϕ1dx. Using the facts that u1 =

1
a(∂tu2 −

Δu2) and (u1, u2) are nonnegative in (10.2.3), we can get

d

dt

(∫
Ω
u1ϕ1dx

)
≥ −(b+ λ1)

∫
Ω
u1ϕ1 dx

= −(b+ λ1)
1

a

∫
Ω
(∂tu2 −Δu2)ϕ1 dx

= −b+ λ1

a
w′(t)− (b+ λ1)λ1

a
w(t) +

(b+ λ1)α

2a

∫
∂Ω

u2ϕ1dσ

≥ −b+ λ1

a
w′(t)− (b+ λ1)λ1

a
w(t).

For η ∈ (0, 1), integrating this inequality over (t, t+ η) and using (10.2.11), we obtain[∫
Ω
u1ϕ1dx

]t+η

t

≥ −b+ λ1

a
(w(t+ η)− w(t))− (b+ λ1)λ1

a

∫ t+η

t
w(τ) dτ

≥ −b+ λ1

a
C2 − (b+ λ1)λ1

a
C2 =: −C3,
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where C3 > 0 is independent of t and η. This implies that

(10.2.12)

∫
Ω
u1(t)ϕ1 dx ≤ C3 +

∫
Ω
u1(t+ η)ϕ1 dx.

Integrating (10.2.12) over η ∈ (0, 1) and using integration by parts, we get∫
Ω
u1(t)ϕ1dx ≤ C3 +

∫ 1

0

∫
Ω
u1(t+ η)ϕ1 dx dη

= C3 +

∫ t+1

t

∫
Ω
u1(τ)ϕ1 dx dτ

= C3 +
1

a

∫ t+1

t

∫
Ω
(∂tu2 −Δu2)ϕ1 dx dτ

= C3 +
1

a
(w(t+ 1)− w(t)) +

λ1

a

∫ t+1

t
w(τ) dτ − α

2a

∫ t+1

t

∫
∂Ω

u2ϕ1 dσ dτ

≤ C3 +
1 + λ1

a
C2 =: C4,

which concludes that

(10.2.13) sup
t≥0

∫
Ω
u1ϕ1dx ≤ C4.

Thus, from (10.2.11), (10.2.13) and Lemma 7.1.2, we can derive the following estimates:

(10.2.14) sup
t≥0

‖u1(t)‖1 ≤ C5, sup
t≥0

‖u2(t)‖1 ≤ C6.

(2) Uniform estimates in L2

We here try to get L2 uniform bounds of solutions of (II.4). Since (10.2.3) gives∫
Ω
u1u2ϕ1dx ≤ d

dt

(∫
Ω
u1ϕ1 dx

)
+ (b+ λ1)

∫
Ω
u1ϕ1 dx,

it follows from (10.2.13) that

(10.2.15) sup
t≥0

∫ t+1

t

∫
Ω
u1u2 dx dτ ≤ C7.

Multiplying the second equation of (II.4) by u2 and using integration by parts, we get

1

2

d

dt
‖u2(t)‖22 + ‖∇u2(t)‖22 + β‖u2(t)‖22,∂Ω = a

∫
Ω
u1u2 dx,

where ‖v‖22,∂Ω =
∫
∂Ω v2dσ. Hence by virtue of Poincaré - Friedrichs’ inequality CF ‖v‖22 ≤

(‖∇v‖22 + β‖v‖22,∂Ω), we have

(10.2.16)
1

2

d

dt
‖u2(t)‖22 + CF ‖u2(t)‖22 ≤ a

∫
Ω
u1u2 dx.
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Applying Gronwall’s inequality to (10.2.16), we get

(10.2.17) ‖u2(t)‖22 ≤ e−2CF t‖u20‖22 +
∫ t

0
2a
(∫

Ω
u1u2 dx

)
e−2CF (t−τ) dτ.

In order to obtain uniform bounds of L2-norm for u2 with respect to t, we need to confirm
that the second term of right hand side of (10.2.17) is bounded. For any t ≥ 0, we can
express t = n + ε with some n ∈ N ∪ {0} and ε ∈ [0, 1). Then, by virtue of (10.2.15), it
follows that

∫ t

0

(∫
Ω
u1u2dx

)
e−2CF (t−τ) dτ

=

∫ t

t−1

(∫
Ω
u1u2 dx

)
e−2CF (t−τ) dτ +

∫ t−1

t−2

(∫
Ω
u1u2 dx

)
e−2CF (t−τ) dτ

+ · · ·+
∫ t−(n−1)

t−n

(∫
Ω
u1u2 dx

)
e−2CF (t−τ) dτ +

∫ t−n

0

(∫
Ω
u1u2 dx

)
e−2CF (t−τ) dτ

≤ e−0

∫ t

t−1

(∫
Ω
u1u2 dx

)
dτ + e−2CF

∫ t−1

t−2

(∫
Ω
u1u2 dx

)
dτ

+ · · ·+ e−2(n−1)CF

∫ t−(n−1)

t−n

(∫
Ω
u1u2 dx

)
dτ + e−2nCF

∫ t−n

0

(∫
Ω
u1u2 dx

)
dτ

≤ C7

(
1 + e−2CF + e−4CF + · · ·+ e−2nCF

)

= C7
1− e−2(n+1)CF

1− e−2CF
≤ C7

1− e−2CF
.

Therefore we obtain from (10.2.17)

‖u2(t)‖22 ≤ e−2CF t‖u20‖22 +
2aC7

1− e−2CF
∀t ≥ 0.

This implies that there exists C8 > 0 such that

(10.2.18) sup
t≥0

‖u2(t)‖2 ≤ C8.

Note that the above argument can be done without any restriction on dimension N .

We next derive a uniform L2-estimate of u1 for N ≤ 3. Multiplying the first equation
of (II.4) by u1 and using integrating by parts, we have

1

2

d

dt
‖u1(t)‖22 + ‖∇u1(t)‖22 + α‖u1(t)‖22,∂Ω + b‖u1(t)‖22 =

∫
Ω
u21u2 dx.

We here adopt (‖∇v‖22 + b ‖v‖22)1/2 as the H1 norm for u1. By using Hölder’s inequality,
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the interpolation inequality and the embedding theorem (‖v‖6 ≤ C9‖v‖), it holds that
1

2

d

dt
‖u1(t)‖22 + ‖u1(t)‖2 ≤

∫
Ω
u21u2 dx

≤ ‖u1(t)‖24‖u2(t)‖2

≤ ‖u1(t)‖
1
5
1 ‖u1(t)‖

9
5
6 ‖u2(t)‖2

≤ C
1
5
5 C8C

9
5
9 ‖u1(t)‖

9
5 ≤ 1

2
‖u1(t)‖2 + C10,

which implies
1

2

d

dt
‖u1(t)‖22 +

1

2
‖u1(t)‖2 ≤ C10.

Hence we obtain
‖u1(t)‖22 ≤ e−t‖u10‖22 + 2C10

(
1− e−t

)
,

i.e.,

(10.2.19) sup
t≥0

‖u1(t)‖2 ≤ C11.

(3) Uniform estimates in H1

Now we are in the position to derive a uniform H1 bounds of solutions of (II.4).
Multiplying the second equation of (II.4) by −Δu2, we obtain

1

2

d

dt
(‖∇u2(t)‖22 + β‖u2(t)‖22,∂Ω) + ‖Δu2(t)‖22

= −a

∫
Ω
u1Δu2 dx ≤ 1

2
‖Δu2(t)‖22 +

a2

2
‖u1(t)‖22.

Here we define the H1-norm of u2 by

‖u2‖2 := ‖∇u2(t)‖22 + β‖u2(t)‖22,∂Ω.
Then it holds that CF ‖u2‖2 ≤ ‖Δu2‖22, since

(CF )
1
2 ‖u2‖2 ‖u2‖ ≤ ‖∇u2‖22 + β‖u2(t)‖22,∂Ω = (−Δu2, u2)L2 ≤ ‖Δu2‖2‖u2‖2.

Hence we obtain
d

dt
‖u2(t)‖2 + CF ‖u2(t)‖2 ≤ a2C2

11,

whence follows

(10.2.20) sup
t≥0

‖u2(t)‖ ≤ C12.

In order to derive the uniform H1-estimate for u1, we prepare the following functional
φ1(u1):

φ1(u1) :=
1

2
(‖∇u1‖22 + α ‖u1‖22,∂Ω + b ‖u1‖22) u1 ∈ H1(Ω).
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Then it is easy to see

φ1(u1) ≥ 1

2
‖u1‖2 ≥ b

2
‖u1‖22,

(10.2.21)

‖ −Δu1 + b u1‖2‖u1‖2 ≥ |(−Δu1 + b u1, u1)L2 | = 2φ1(u1) ≥ 2
√

φ1(u1)

√
b

2
‖u1‖2,

whence follows

(10.2.22) 2b φ1(u1) ≤ ‖ −Δu1 + b u1‖22.
Multiplication of the first equation of (II.4) by −Δu1 + bu1 and integration over Ω yield

(∂tu1,−Δu1+ b u1)L2 + ‖−Δu1+ b u1‖22 = (u1u2,−Δu1+ b u1)L2(10.2.23)

≤ 1

2
(‖u1u2‖22 + ‖−Δu1+ b u1‖22).

Here we note

(∂tu1,−Δu1 + b u1)L2 =
d

dt
φ1(u1(t)).

Hence, in view of (10.2.23) and (10.2.22), we obtain

d

dt
φ1(u1(t)) + b φ1(u1(t)) ≤ 1

2
‖u1u2‖22.

Here by Hölder’s inequality, (10.2.18), (10.2.19), (10.2.20),(10.2.21) and Young’s inequality,
we get

‖u1u2‖22 =
∫
Ω
u21 u

2
2 dx =

∫
Ω
u

1
2
1 u

1
2
2 u

3
2
1 u

3
2
2 dx

≤
(∫

Ω
u1u2 dx

) 1
2
(∫

Ω
u31u

3
2 dx

) 1
2

≤ C
1
2
11C

1
2
8 ‖u1(t)‖

3
2
6 ‖u2(t)‖

3
2
6

≤ b φ1(u1(t)) + C13.

Hence it follows that

d

dt
φ1(u1(t)) +

b

2
φ1(u1(t)) ≤ C13

2
.

Therefore, applying Gronwall’s inequality, we deduce

φ1(u1(t)) ≤ φ1(u1(0)) e
− b

2
t +

C13

b
.

which implies that

(10.2.24) sup
t≥0

‖u1(t)‖ ≤ C14.
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(4) Uniform estimates in L∞

Since Theorem 10.1.1 assures that there exists s1 ∈ (0, 1) such that u(s1) ∈ H1(Ω) and
‖u(t)‖∞ is bounded on [0, s1], we can assume without loss of generality that (u10, u20) ∈
H1 ∩ V . To derive L∞ bounds via H1 bounds, we rely on the Alikakos - Moser’s iteration
scheme (Lemma 3.2.9), which plays an essential role in our argument.

In order to apply Lemma 3.2.9, we deform (II.4) in the following way:

(10.2.25) ∂tu1 −Δu1 + u1 = u1u2 − b u1 + u1,

(10.2.26) ∂tu2 −Δu2 + u2 = a u1 + u2.

Hereafter we employ the usual H1 norm (‖∇v‖22 + ‖v‖22)1/2 for u1 and u2. Multiplying
(10.2.25) by |u1|r−2u1 (r ≥ 2) and using integration by parts, we obtain

1

r

d

dt
‖u1(t)‖rr + (r − 1)

∫
Ω
|∇u1|2|u1|r−2 dx+

∫
∂Ω

|u1|r dσ + ‖u1(t)‖rr

=

∫
Ω
ur1u2 dx− b ‖u1(t)‖rr + ‖u1(t)‖rr.

Hence we have

1

r

d

dt
‖u1(t)‖rr + (r − 1)

∫
Ω
|∇u1|2|u1|r−2 dx+ ‖u1(t)‖rr ≤

∫
Ω
|u1|r|u2| dx+ ‖u1(t)‖rr.

Moreover we note

(r − 1)

∫
Ω
|∇u1|2|u1|r−2 dx+ ‖u1(t)‖rr =

4(r − 1)

r2

∫
Ω

∣∣∇|u| r2 ∣∣2 dx+ ‖ |u1(t)| r2 ‖22

≥ 4(r − 1)

r2
‖ |u1(t)| r2 ‖2,

where we used the fact that r ≥ 2 implies 4(r−1)
r2

∈ (0, 1] to the last inequality. Hence we
obtain

(10.2.27)
1

r

d

dt
‖u1(t)‖rr +

4(r − 1)

r2
‖|u1(t)| r2 ‖2 ≤

∫
Ω
|u1|r|u2| dx+ ‖u1(t)‖rr.

By using Hölder’s inequality, interpolation inequality, Sobolev’s embedding theorem and
Young’s inequality, we can get∫

Ω
|u1|r|u2| dx ≤ ‖u1(t)‖r3r

2

‖u2(t)‖3

≤ ‖u1(t)‖
r
2
r ‖u1(t)‖

r
2
3r ‖u2(t)‖3

≤ ‖u2(t)‖3 ‖u1(t)‖
r
2
r ‖ |u1(t)| r2 ‖6

≤ C15 ‖u1(t)‖
r
2
r ‖ |u1(t)| r2 ‖

≤ 2(r − 1)

r2
‖ |u1(t)| r2 ‖2 + C2

15 r
2

8(r − 1)
‖u1(t)‖rr.
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Since r ≥ 2, it is easy to see that r2

8(r−1) ≤ r. Then, from these observations, (10.2.27)
leads to

1

r

d

dt
‖u1(t)‖rr +

2(r − 1)

r2
‖ |u1(t)| r2 ‖2 ≤ C2

15 r ‖u1(t)‖rr + ‖u1(t)‖rr,
that is,

(10.2.28)
d

dt
‖u1(t)‖rr + ‖ |u1(t)| r2 ‖2 ≤ C16 r

2
(‖u1(t)‖rr + 1

)
.

Here we used the fact that 1 ≤ 2(r−1)
r provided that r ≥ 2. Then u1(t) satisfies (3.2.23)

with c1 = 1, c2 = C16, θ1 = 0 and θ2 = 2. Thus applying Lemma 3.2.9 to (10.2.28), we
see that there exists C17 > 0 such that

(10.2.29) sup
t≥0

‖u1(t)‖∞ ≤ C17.

Finally, applying the same argument as above for u2(t), we have

(10.2.30)
1

r

d

dt
‖u2(t)‖rr +

4(r − 1)

r2
‖ |u2(t)| r2 ‖2 ≤ a

∫
Ω
u1u

r−1
2 dx+ ‖u2(t)‖rr.

Since r−1
r ≤ 1 and 1

r ≤ 1, due to (10.2.29) we can deduce

a

∫
Ω
u1u

r−1
2 dx ≤ aC17 ‖u2(t)‖r−1

r−1

≤ aC17

{r − 1

r
‖u2(t)‖rr +

1

r
|Ω|
}

≤ aC17

(
‖u2(t)‖rr + |Ω|

)
,

which implies

1

r

d

dt
‖u2(t)‖rr +

4(r − 1)

r2
‖ |u2(t)| r2 ‖2 ≤ C18

(
‖u2(t)‖rr + 1

)
,

for some C18 > 0. Since 2 ≤ 4(r−1)
r , we conclude that

(10.2.31)
d

dt
‖u2(t)‖rr + 2 ‖ |u2(t)| r2 ‖2 ≤ C18 r

(
‖u2(t)‖rr + 1

)
.

Then we can apply Lemma 3.2.9 to (10.2.31) with c1 = 2, c2 = C18, θ1 = 0 and θ2 = 1.
Thus there exists C19 > 0 such that

(10.2.32) sup
t≥0

‖u2(t)‖∞ ≤ C19.

These a priori bounds (10.2.29) and (10.2.32) complete the proof.

�
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