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Part 1

Second Order Parabolic Equations
with Nonlinear Boundary Conditions






Introduction

In this part, we consider the following initial boundary value problem for the nonlinear
heat equation with nonlinear boundary conditions:

O — Au = |ulP~2u, t>0, ze€Q,
(P) —oyu € B(u), t>0, ze€0,
u(0,x) = up(z), x € €.

Here Q C R¥ is a bounded domain with smooth boundary 9€; v = v(z) is the unit
outward normal vector at x € 9Q; p € (2,00) is a given number; u : Ry x @ — R is a
real-valued unknown function. As for the boundary condition, g is a maximal monotone
graph on R x R. More precisely, for some proper convex lower semicontinuous function
j: R — RU{+o0}, 5 is given by the subdifferential of j, that is, 5 = 9j. The typical
example of 3 is a singleton power type nonlinear term such as

By(r) = |r\q*2r, q € (1,400).

This problem (P) is a prototype of nonlinear heat equations with nonlinear boundary
conditions of radiation type.

When one tries to set up mathematical models for describing actual nonlinear phe-
nomena, it is crucial to determine right ruling nonlinear structures in domains where the
phenomena occur, but it is also very important to pay careful attention to the choice of
the boundary conditions. For instance, when we are concerned with the heat diffusion,
it should be noted that the standard boundary condition such as Dirichlet or Neumann
boundary condition can be realized only when some artificial control of the heat flux is
given on the boundary. For a large scale system, however, it is impossible to give such
a control on the boundary. If there is no control of heat flux on the boundary, there is
a prototype model in physics well known as Stefan-Boltzmann’s law, which says that the
heat energy radiation from the surface of the body is proportional to the fourth power of
the difference of temperatures between the inside and outside of the body in R3.

In this sense, from a physical point of view, it could be more natural to consider
nonlinear boundary conditions rather than the linear boundary conditions such as the
homogeneous Dirichlet or Neumann boundary condition.

In spite of its importance, however, there are few studies on parabolic equations with
nonlinear boundary conditions of radiation type. The first treatment for the dissipative
parabolic systems in this direction was given by H. Brézis in [10], where he dealt with the
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following parabolic equation:

ou — Au = f(t,x), t>0, z €,
(L.1) — dyu € B(u), t>0, x €09,
u(0,x) = ug(x), x €.

Here f € L%(0,T;L*(Q)) is a given forcing term, uy € L?(Q2), and the other settings
are the same as for (P). He proved the well-posedness of (I.1) by establishing a new
class of maximal monotone operators within Komura’s nonlinear semi-group theory, i.e.,
a class of subdifferential operators, which characterizes the parabolicity in the theory of
evolution equation. This result gave a breakthrough in the study of parabolic equations
with nonlinear boundary conditions. Nevertheless, the research in this framework is not
fully pursued for the non-dissipative system which may admit blow-up solutions such as
(P).

In Part I, we begin with the most fundamental problem in the study of partial dif-
ferential equations, the local well-posedness, and then consider the qualitative properties
of solutions of (P). The plan of Part I is as follows. In Chapter 1, we briefly summarize
some notations and fundamental mathematical tools to be used in the following chapters.

In Chapter 2, we consider (P) with g = , (denoted by (P),):

Opu — Au = |ulP~2u, t>0, x €€,
(P), — Oyu = |u|?"%u, t>0, z €0,
U(O,QZ‘) = UO(.%'), z €,

where g € (1,+00). We here show the existence and the uniqueness of local solutions
of (P),. For semilinear equations such as (P) with the homogeneous Dirichlet boundary
condition, the standard way to derive their local well-posedness is to rely on Duhamel’s
principle and apply the fixed point theorem to their transformed integral equations. Be-
cause of the presence of the nonlinear term on the boundary, however, it is not possible to
follow the same strategy for our problem (P),. To cope with this difficulty, we reduce (P),
to an abstract evolution equation in L?(Q) (see [9]) and apply the theory of non-monotone
perturbations for nonlinear parabolic equations associated with subdifferential operators
developed by Otani [45, 47]. Moreover, for ¢ < p, following the argument in [47], we show
the existence of global solutions to (P), for small initial data.

In Chapter 3, we are concerned with the asymptotic behavior of global solutions to (P),,
more precisely, the question whether any global solution of (P), is uniformly bounded in
time. There are large amounts of works concerning the asymptotic behavior of solutions of
the following nonlinear heat equation with the homogeneous Dirichlet boundary condition:

O — Au = |uP~%u t>0, zeQ,
(I.2) u=0 t>0, z €09,
u(0,z) = up(x) x € Q.

Uniform bounds of global solutions of (I1.2) was first studied by [46] in an abstract setting,
where it is shown that every global solution of (I.2) is uniformly bounded in H{ () with
respect to time for p € (2,pg). Here pg is the Sobolev critical exponent defined by
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ps = oo for N = 1,2 ; pg = 1\2[—]_\[2 for N > 3. Cazenave-Lions [13] showed that every
global solution (allowing sing-changing) is bounded in L*°(€2) uniformly in time provided
that p € (2,pcr), where pcr, = co when N =1 ; por, = 2 + 3]\1,—2_4 when N > 2. (Note
that por < pg for any N € N). Giga [23] removed this restriction on p for positive global
solutions. Namely the uniform boundedness of every positive global solution of (I.2) in
L*>°(Q) was shown for any p € (2,pg). Quittner [54] extended this result for sign-changing
solutions. The main tool in [23] is the rescaling argument and [54] relies on the bootstrap
argument based on the interpolation and the maximal regularity theory. However it seems
to be difficult to apply these devices for our problem (P), because of the presence of the
nonlinear boundary condition. The main purpose of this chapter is to derive the uniform
boundedness in H!(2) and L>(Q) for every global solution of (P), by following the same
strategy as that in [46]. However, we can not directly apply arguments in [46], since
the functional associated with the Laplacian with nonlinear boundary conditions is not
homogeneous, which is one of basic tools used in [46]. Nevertheless by introducing a new
substitutive argument to avoid the use of the homogeneity of functionals, we are able to
derive uniform bounds for global solutions in H'(£2). Moreover with the aid of Moser’s
iteration scheme, the uniform bound in L () is also obtained.

In Chapter 4, we set up a new type of comparison theorem which can cover both linear
and nonlinear boundary conditions for a system of equations which have more general
forms than that of (P).

Mathematical models for various types of phenomena arising from physics, chemistry,
biology and so on are often described as reaction diffusion equations which give typical
examples of second order nonlinear parabolic equations. It is widely known that compari-
son theorems yield very powerful tools for analyzing the second order parabolic equations,
e.g., for constructing super-solutions or sub-solutions; and for examining the asymptotic
behavior of solutions. However, most of the existing results on comparison theorems for
nonlinear diffusion equations are concerned with the standard linear boundary conditions
such as Dirichlet or Neumann boundary conditions (see [55]). Furthermore, these com-
parison theorems are only applicable to problems whose imposed boundary conditions are
of the same form. There is a result on comparison theorems covering nonlinear boundary
conditions by Bénilan and Diaz [8], which also compares two solutions satisfying nonlinear
boundary conditions of the same form. Our comparison theorem has an advantage that
it allows us to compare two solutions satisfying different types of nonlinear (including lin-
ear) boundary conditions. Moreover as applications of this comparison theorem, we can
show the existence of blow-up solutions satisfying nonlinear boundary conditions for some
parabolic equations in §4.2 and for some parabolic systems in §9.2.

In Chapter 5, we consider the existence and nonexistence of global solutions of (P).
Concerning the blow-up phenomena in the whole domain, it is well known that there
exists the critical Fujita exponent p. = 2 + 2/N which gives the threshold of p for the
existence of global solutions. Namely if p € (2,p.), then every positive solution blows
up in finite time and for p grater than p., there exists (small) global solutions. As for
the bounded domain, it is also well known that for the homogeneous Neumann boundary
condition, every positive solution blows up in finite time and for the homogeneous Dirichlet
boundary condition there exist (small) global solutions. As an analogy of the existence of
the Fujita exponent for (P) in R™ (with no boundary condition), we give a special family



(B%(-))a>0 of B(-) such that there exists a critical value o, > 0 which plays the same role
as the Fujita exponent. More precisely, (6%)a>0(:) connects the homogeneous Neumann
boundary condition (when a = oo) and the homogeneous Dirichlet boundary condition
(when a = 0) such that if « is grater than a., then every positive solution blows up in
finite time and if « is smaller than ., there exists (small) global solutions.

In the last chapter of Part I, we are concerned with the structural stability of solu-
tions to (P)4, that is, the continuous dependence of solutions of (P), with respect to the
nonlinearity parameter q. Here we treat not only the case g € (1,00) but also the limiting
cases where ¢ = 1 and ¢ = 400 given by

. =0 [0, 00) r=1,
”
’ 0 re(—1,1),
Bi(r) =< [-1,1] r=0, and Boo(r) 1=
-1 r<o0 (—O0,0] r=-1,
' 0 Ir| > 1,

respectively. To carry out this aim, we work in the abstract setting given in [9]. In this
setting, Attouch [4] studied the convergence of solutions of evolution equations governed
by subdifferential operators 0y, and showed that if convex functions ,, converges to ¢ as
n — oo in the sense of Mosco, then the solutions of equations governed by d¢,, converge
to the solution of the equation governed by J¢ in an appropriate sense. So we here extend
this result to the case where equations contain a Lipschitz perturbation term, and apply
this abstract result to (P), by showing the Mosco convergence of the associated convex
functions. (Since we are here concerned with solutions belonging to L*°(0,7"; L*°(€2)), the
perturbation term |u[P~2u can be regarded as a Lipschitz perturbation.)



Chapter 1

Preliminaries

Here we collect some basic facts of functional analysis to be used later on.

1.1 Function Spaces

In this section, we fix some notations and basic facts on function spaces where we work.
For the details of them, we refer the reader to [7, 12]. We first state some basic properties
of the Lebesgue space. Let N € N and let © be a open set of RV, For 1 < p < oo, we
define Lebesgue space LP(2) by

LP(Q) := {u: Q@ — R; mesurable, ||u||, < oo},

where

1/p
</ |u(w)|pd:c> , if 1<p< oo,
ull ey == 0

inf{C € R; |u(x)| < C, a.e. on 2}, if p=o0.

For simplicity, we may denote this LP norm | - ||»(q) as || - [|p or [| - [[p.0. We also denote
by LI .(Q) the set of all functions u : © — R which are measurable and belong LF(w) for
any compact set w C . It is well known that LP(2) is a Banach space and that LP() is
reflexive for 1 < p < oo and separable for 1 < p < co. We can easily see that L?(Q) is a

Hilbert space with the inner product

(u,v) := /Qu(a:)v(a:)dw Yu,v € L*(Q).

Lemma 1.1.1 (Young’s inequality). Let a, b > 0 and 1 < p < co. Then, the following
iequality holds:

1 1. .
abg—al’+—,bp,
p p

where p' satisfies p~t + (p') " = 1.
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Corollary 1.1.2 (Young’s inequality with €). Let a, b > 0 and 1 < p < oo. Then, for
any € > 0 there exists C. > 0 such that

ab < a? + C.b"'.

Lemma 1.1.3 (Hélder’s inequality). Let 1 < p < co. If f € LP(Q) and g € LP (Q), then
fg € LX) and the following inequality holds:

1fglle < 17 Nlpllglly-

Lemma 1.1.4 (Generalized Holder’s inequality). Let 1 <p; < o0,i=1,2,---,n (n € N)
and r~1 = Z;‘lei_l with r > 1. If f; € LP (), i =1,2,--- ,n, then II_, f; € L"() and
I1+

n
<TTillp:-
i=1 |y =1

Lemma 1.1.5. Let 1 <p<r <g<oo. If f € LP(Q) N LIQ), then f € L"(Q) with the
estimate

n

111 < AARNANE ™
for some 0 € [0,1] satisfying + = % + %.
Let § € (0,1]. We say that a function u :  — R is Holder continuous with exponent
0 if
u(z) = u(y)| < Cle —y[* Vz,y € Q,

for some C' > 0, which is called Holder constant. We define C%°(Q) as a set of all Holder
continuous functions on Q with exponent §. Tt is well known that C%(Q) is a Banach
space with the norm

u(z) = u(y)|

[ullgo.s @y = llulloo + sup
C0:9(Q) 0 vty ‘:L' _ y‘é

Next we briefly touch on the Sobolev spaces. For m € NU {0} and p € [1, 00|, we set
W™P(Q) = {u € LP(Q); D*u € LP(Q), Ya € (NU{O}HY, |a| <m},

and we also set

1/p
> (D ulfp if 1<p<oo,
[ullwma@) =9 \|aj<m
max ||D%u||oo if p=ooc.
| <m

It is well known that this is a norm on W™P(Q) and (W"™P(Q), || - [[yms(q)) is called the
Sobolev space. We can see that Sobolev space W™P(Q) is a Banach space and if p = 2
then W™2(Q) =: H™(Q) is a Hilbert space with the following scalar product

(u, v) () = Z /Do‘uDo‘vda: Yu,v € H™(Q).
Q

laj<m
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Moreover, we set
W) = (@) T ) = W),

where C2°(Q) is the space of C*° functions with compact support in €.
We also prepare the theory of the trace on 99 of a function u € WHP(Q). If Q is
a bounded domain in R with smooth boundary 99, then it is well known that every

u € C(Q) is well defined on 092. However, in general, a similar approach to the above
makes it difficult to give a direct meaning to the values on the boundary of u. Note that
since 0 has N-dimensional Lebesgue measure zero, u|sq is no longer well defined for
u € LP(2). To cope with this difficulty, we introduce the notion of a trace operator.

Lemma 1.1.6. Let Q be a domain with compact smooth boundary OS2, and let p € [1,0].
Then there exists a unique bounded linear operator v : WHP(Q) — LP(09Q) such that the
followings hold.

(1) vo(u) = ulyg  for all uwe WHP(Q) N C(Q).
(ii) There exists C' depending only on p and Q0 such that

I0(u)llra0) < Cllullwisgy — Yu e WHP(Q).

By using this notation, vp(u) is termed the trace of u on 0f.

Lemma 1.1.7. Let Q be a bounded domain of RY and 0Q be a class of C', and assume
that u € HY(QY). Then, the following two properties are equivalent:

(i) we Hy(Q);
(i) y0(u) = 0.
Let us recall the following results.

Lemma 1.1.8 (Poincaré inequality). Let Q C RY be a bounded domain. Then there exists
a constant C' = C(Q2) > 0 such that

[ull3 < ClIVull3 Vu € Hy(Q).
As a consequence, |[Vullz is a equivalent norm in H}(Q).

Next result is crucial for our study on parabolic and elliptic equations with Robin and
nonlinear boundary conditions.

Lemma 1.1.9 (Poincaré - Friedrichs inequality). Let Q C RY be a bounded domain. Then
there exists a constant C > 0 such that

Jul2 < C <||VuH§ +/ u2d0> Vu € HY(Q).
0N

As a consequence, (|[Vull3 + |lul|? 50)"/? is a equivalent norm in H'(Q).
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Lemma 1.1.10 ([56]). Let Q C RY be a bounded domain. For p € [1,00) there exists a
constant C = C(Q,p) > 0 such that

1
U— ——— udo
1092 Jaq

< CHVUHLp(Q) Yu € Wl’p(Q).
LP(Q)

We note that the embedding from X into Y is denoted by X — Y, that is, X — Y
means X C Y and the injection ¢ : X — Y is continuous. More precisely, if X < Y, then
there exists C' > 0 such that

ully < Cllullx Yu € X.

Moreover, if ¢ : X — Y is compact then we say the embedding X — Y is compact.

Lemma 1.1.11 (Sobolev’s embedding theorem). Assume that @ C RY is a bounded

domain with smooth boundary 0N, and let m € N and p € [1,00]. Then the followings
hold.

(i) If mp < N, then W™P(Q) — L) for all q € [1, Njfgw}.
(ii) If mp = N, then W™P(Q) — L4(QQ) for all g € [1,00).

(iii) If mp > N, then W™P(Q) «— C%(QY), where

:mf% if m—%<1,
04 €1[0,1) (arbitrary) if m—% =1,p>1,
=1 if m—2%>1,

Lemma 1.1.12 (Rellich - Kondrachov theorem). Assume that Q@ C RY is a bounded

domain with smooth boundary 0, and let m € N and p € [1,00]. Then the followings
hold.

(i) If mp < N, then W™P(Q) — L4(Q) is compact for all q € [1, N]jfnp).

(ii) If mp = N, then W™P(Q) — L9(Q2) is compact for all g € [1,00).

(iii) If mp > N, then W™P(Q) — C(Q) is compact.

Lemma 1.1.13 (Gagliardo - Nirenberg inequality). Assume 1 < p,q,r < 0o and let j,m
be two integers satisfying 0 < j < m. If

1 1 m 1
- _J _ - 1—a)
p N a<7“ N)“ a)q

for some a € [L£,1] (or a < 1 if r > 1 and m — j — ), then there exists C =

m’ r

C(m,j,p,q,7,N) > 0 such that

a
YDl < > IID%l | lulg™®  Vue DRY).

|al=j laf=m
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We often use the positive part u™ and the negative part v~ defined by

ul = max(u, 0), v~ = max(—u,0)

in this thesis, for example, to prove the nonnegativity of solutions and a comparison
principle. The next results are essential to deal with the positive and negative part.

Lemma 1.1.14. Let F : R — R be a Lipschitz continuous function such that F(0) = 0,
and let p € [1,00]. If u € WLP(Q), then F(u) € W'P(Q) and VF(u) = F'(u)Vu a.e. on
Q. Moreover, if p < oo, then the mapping u — F(u) is continuous from WYP(Q) into
itself.

Corollary 1.1.15. Let p € [1,00].
(i) Given u € WHP(Q), it follows that ut, u™, |u| = u™ + u~ are belong to WP(Q).

Moreover,
Vot — Vu z:fu>0, o, —Vu z:fu<0,
0 if u <0, 0 if u>0,
and
Vu if u>0,
VIu =<0 if u=0,
—Vu if u<0,
a.e. on Q. In particular, |V|u|| = |Vu| a.e. on Q. If p < oo, then the mappings

ursut, ue u and u > |u| are continuous from WLP(Q) into itself.
(ii) If u,v € WHP(Q), then max(u,v) € WHP(Q) and min(u,v) € WP(Q).
(iii) Assume M € W;-P(Q) such that VM € LP(Q). If M~ € LP(Q), then (u — M)t €

loc

WLP(Q) for every u € WiP(Q), and

Vu—-VM if u>M,
0 if u<M

a.e. on .

V(u—M)Jr:{

Moreover, if p < oo, then the mapping u — (u — M)F is continuous from W1LP(§2)
into itself. In particular, these results apply to the case where M is a monnegative
constant.

We now consider an open interval I C R (bounded or not) and state a few results
concerning functions on I with values in Sobolev sapces and its function spaces, which
play an important role of the theory of evolution equations. For the rest of this section,
let X be a Banach space with the norm || - ||.

Definition 1.1.16 (Measurable functions). A function f : I — X is measurable if there
exists a set E C I with |E| =0 and a sequence (f,)22, C Cc(I; X) such that

fu(t) = f(t) as n — oo,

forallte I\ E.
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Proposition 1.1.17 (Pettis’ theorem). Let f : I — X. Then f is measurable if and only
if the following two conditions are satisfied:

(i) for every x* € X*, the function I >t — (z*, f(t)) € R is measurable in the sense of
real-valued functions;

(i) there exists a set N C I with |[N| =0 such that f(I \ N) is separable.

Definition 1.1.18 (Integrable functions). A measurable function f: 1 — X is integrable
if there exists a sequence (fn)o2, C Ce(I; X) such that

/”fn(t)—f(t)ﬂdt%O as n — oo.
I

Proposition 1.1.19 (Bochner’s theorem). Let f : [ — X be a measurable function. Then
f is integrable if and only if ||f|| is integrable in the sense of R. Moreover, the following

holds:
Hﬂﬂwﬂézwwm.

Now, we define Bochner space LP(I; X). For 1 < p < oo, LP(I; X)) denotes the set of
equivalence class of measurable functions f : I — X such that I 5 ¢ — || f(¢)| € R belongs
to LP(I). For f € LP(I; X), we define its norm

1
p
t)||Pdt if 1 <p < oo,
oo = 1 (Js@ra) i< <o
esssupier | S0 itp=oo.

It is well known that (LP(I; X),|| - [|»(7;x)) becomes a Banach space, and if X is reflexive,
then LP(I; X) is also reflexive for 1 < p < oco. Moreover, for 1 < p < oo, if X is reflexive
or X* is separable, then (LP(I; X))* = L¥ (I; X*). We also define L (I; X) as the set of
measurable functions f : I — X such that for any compact interval J C I, f € LP(J; X).
It is obvious that if I is bounded, then LP(I; X) < LI(I[; X) for 1 < ¢ < p < c0.

We denote by W1P(I; X) the space of equivalence class of functions f € LP(I; X) such
that f' € LP(I; X), where the derivative is the sense of D'(I; X), for 1 < p < oco. For

f € WHP(I; X), we define
1 fllwrerxy = 1f ey + 1 e r,x)-
It is well known that (WLP(I;X), || - lwir(r,x)) is a Banaca space. We can define

WP (I; X) as well as L (I; X).

c loc

Lemma 1.1.20. Let p € [1,00] and assume that f € LP(I; X). Then the following five
properties are equivalent:

(i) feWhr(l; X);
(i) there exists g € LP(1; X) such that we have

F) =100+ [ glois

to

for almost every ty, t € I;
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(iii) there exists g € LP(I; X), zo € X and ty € I such that we have
t
£ =20+ [ gls)is
to
for almost all t € I;

(iv) f is absolutely continuous, differentiable almost everywhere, and ' € LP(I; X);

(v) f is weakly absolutely continuous, weakly differentiable almost everywhere and f' €
LP(I; X).

1.2 Some Fundamental Lemmas

In this section, we are going to summarize frequently used inequalities and fundamental
lemmas.

Lemma 1.2.1 (cf. Showalter [59], Lemma IV.4.1). Let a, b € L'(0,T) with b > 0, and
let y : [0,T] — R" be an absolutely continuous function satisfying

(1 —a)y'(t) < a(t)y(t) + b(t)y™(t) a.e. t€[0,T]

for some a € [0,1). Then the following inequality holds:

t
Y=o (1) < y(0)l—oefo a(e)ds 4 / elsamdTy(s\ds, ¢ [0,T].
0

The following two lemmas are necessary to apply L°°-energy method developed by
Otani in [45]. This is very useful method to show the local well-posedeness of nonlinear
parabolic problems (see the following chapters). It is well known that the choice of the
function spaces is crucial role to study of nonlinear partial differential equations and L?
space or LP space (1 < p < c0) is frequently used to analyze them. Since L space is not
reflexive and separable, L>° space is not often directly used and hence L*° bounds may be
derived from W"P-estimate via Sobolev’s imbedding theorem. Therefore a priori bounds
of the solutions in L* space are usually subject to the restriction of the space dimension.
We can deal with this difficulty by using L*°-energy method.

Lemma 1.2.2. ([45]) Let Q be any domain in RN and assume that exists a number ro > 1
and a constant C' independent of r € [ro,00) such that

||uHL7(Q) <cC Vr € [’r‘o, OO)7
then u belongs to L>°(Q) and the following property holds.
(12.1) Tim [l ey = lull (e,

Conwversely, assume that w € L™ () N L*(Q) for some 9 € [1,00), then u satisfies
(1.2.1).
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Lemma 1.2.3 ([45]). Let y(t) be a bounded measurable non-negative function on [0,T] and
suppose that there exists yo > 0 and a monotone non-decreasing function m(-) : [0, +00) —
[0,400) such that

t) <wyo+ /Otm(y(s))ds a.e. t € (0,T).

Then there exists a number Ty = To(yo, m(+)) € (0,T] such that
y(t) <yo+1 a.e. t € [0,Tp.
Lemma 1.2.4. Let p € (2,2%), then there exists a constant A = A\(N,p) € (0,2] such that

(1.2.2) lull5E=3) < CllulZatg, lullzrer Yu € H*(Q)
) @

for some C' > 0.

Proof. First of all, if N =1,2; 0or N >3 and p < 2(N_1) , then we can take A = 2 by

Sobolev’s embedding H(Q) ¢ L*?~1)(Q). For the case of N >3 andp > (N 1) , we note
that the following Gagliardo-Nirenberg inequality holds:

(1.23) lolhpn) < Cllolalel'sl Vo€ HA(Q),

where 0 € (0,1) satisfies

2(;;1—1) =0 (% N) +(1- 9)%

2(N

)<p< 1mphesO<9—W

=1 <land0<2(p—1)0 =

(N —2)p—2N +2 < 2. Since HI(Q) is continuously embedded in L%(Q), it follows
from (1.2.3) that (1.2.2) holds with A = 2N — (N —2)p € (0, 2). O

Then we see that

Lemma 1.2.5. Let (al)nen, -, (al)nen be a finite family of real-valued sequences for
some | > 2 satisfying

l
Y ah=0, VneN

k=1
Suppose that there exist a* € R (k=1,--- ,1) such that
akgliminfaﬁ, VkE=1,---1,
n—oo
l
Stz

k=1

Then
lim ak a”, Vk=1,--- L.

n—o0
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Proof. Since it follows from the assumption that

a}L:—ZafL, VneN,
k£1

we have

limsupa), = limsup [ — Z ak

= — liminf ak
n—o0 Z n
k1

— Z (lim inf aﬁ)
n—oo
kA1
< — Z af < al.

IN

k£l
Therefore, combining the above inequality and the assumption a' < liminf, ,o al, we
can deduce that
lim a, =a'.
Jg o5 = o
By the similar argument as above for a?, - -, a!, we conclude that
lim af = a*, Vk=1,---1l
n—ro0
O

1.3 Maximal Monotone Operators

In this section, we define the maximal monotone operators on H, and we also mention
some properties of them. In particular, the latter part of this section is devoted to the sub-
differential operators, which play an important role throughout this thesis. The definitions
and propositions for the maximal monotone operators and the subdifferential operators
given in this section are explained in detail in [9, 7].

1.3.1 Maximal Monotone Operators

First let us introduce the notion of (nonlinear) maximal monotone operators. Let H be
a real Hilbert space with inner product (-,-)y and norm | - |z, and let A : H — 29 be
a possibly multivalued operator with domain D(A) := {u € H; Au # (}}. In particular,
if an operator A is multivalued, we may identify it with its graph in H x H. For A,
B:H — 2" A C B means that D(A) C D(B) and Az = Bz for all 2 € D(A). Moreover
A= Bif and only if A C B and B C A.
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Definition 1.3.1. An operator A : H — 2 is monotone if the following holds:
(Y1 —yo, 21 —22)m >0 Vay,z9 € D(A), Vy1 € Axy, Vy2 € Axa.

In particular, a monotone operator A is maximal if there exists no monotone extension of
A, i.e., if B: H— 2" is monotone and satisfy A C B, then A= B.

The necessary and sufficient condition for the maximality of a monotone operator
is given by the following proposition. In fact, it is often more convenient to show the
maximality of a monotone operator by the following equivalent proposition instead of the
definition.

Proposition 1.3.2. Let A : H — 2% be a monotone operator. Then the followings are
equivalent.

(i) A is mazimal.
(ii) RU+A)=H.
(i) RU+NA)=H VA>0.

By virtue of this proposition, we know that to show the maximality of some monotone
operator, we only need to show the range condition (ii), and it is often equivalent to the
existence and the regularity of solutions of the associated nonlinear elliptic equations.

The following notion of closedness of an operator is important when we show the
existence of solution to nonlinear evolution equations.

Definition 1.3.3. An operator A : H — 2" is demiclosed if and only if the following
condition holds: if y, € Ax, satisfies x, — x strongly in H and y, — y weakly in H, than
x € D(A) and y € Ax.

Proposition 1.3.4. Let A : H — 27 be a mazimal monotone operator. Then A is
demiclosed.

Proposition 1.3.5. Let A : H — 27 be a mazimal monotone operator. Then a set Az is
closed and convex for every x € D(A).

By Proposition 1.3.5, we can see that for every € D(A), there exists a unique yp € Ax
such that |yo|y = inf{|y|g; y € Axr}. Thus we define a single-valued mapping A° : H — H
by

A = {yo; yo € Az, |yoly = yienjx Y|} z € D(AY) := D(A).

This operator A° is called the canonical restriction (or the minimal section) of A.

Let A : H — 27 be a maximal monotone operator. Then by Proposition 1.3.2 we
know R(I + MA) = H for all A > 0. We define Jy := (I + MA)™! : H — D(A) as the
resolvent of A for A > 0, which is a single-valued nonexpansive mapping on H. Now let
us introduce the Yosida approximation.

Definition 1.3.6. Let A : H — 2" be a mazimal monotone operator. Then the Yosida
approximation Ay : H — H of A is given by

1
(1.3.1) Az = X(x — \x).
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Proposition 1.3.7. Let A : H — 2 be a mazimal monotone operator. Then the following
properties hold.
(i) Axz € A(Jyz), VeeH, VA>0.
(i) Ay is maximal monotone and Lipschitz continuous on H with Lipschitz constant A1,
(iil) (Ax)p = Axgp VA p>0.
)

(iV |A)\$‘H < |AO$’H, YVA>0, Vze D(A),

lim Ayz = A%, V x € D(A).
A—0

1.3.2 Subdifferential Operators

Let ¢ : H — (—o0, +00] be a functional with the effective domain ¢ := {u € H; ¢(u) <
+oo}. Functional ¢ is said to be proper if its effective domain D(¢) is not empty, i.e.,
o(u) #Z +oo for u € H. Moreover ¢ is said to be convex if the following inequality holds:

d((1—0)u+60v) < (1—0)p(u) + 0¢(v), Yu,v € H, V0 € [0,1];

and ¢ is said to be lower semicontinuous if for (u,)neny C H and uw € H satisfying u, — u
strongly in H, the following inequality holds:

lim inf §(un) > 6(u).

From now on, ®(H) denotes the set of all proper convex lower semicontinuous functionals
¢ H — (—o0,+00].

Let us briefly touch on the notion of subdifferential operators. Let ¢ € ®(H). For
each u € D(¢), the subdifferential d¢(u) of ¢ at v (in H) is defined by

O¢(u) :={f € H; ¢(v) = d(u) = (fiv—u)m, Vv e D(¢)}.

Then 0¢ : H — 2 becomes a possibly multivalued maximal monotone operator with
domain D(9¢) := {u € D(¢); d¢(u) # (0}, which is called by subdifferential operator.

Proposition 1.3.8. Let ¢ € ®(H). Then the following statements hold.

(i) ¢ is mazimal monotone on H.

(ii) D(9¢) C D(¢) € D(¢) = D(09).
(i) If ¢ is Gateaur differentiable at u, then 0p(u) = Dgp(u).
For every A > 0, we define the functional ¢, by
1
or(w) = inf (51— ol + 600 )

where ¢ € ®(H). The functional ¢, is called the Moreau-Yosida regularization of ¢.
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Proposition 1.3.9. Let ¢ € ®(H). Then the infimum in the definition of ¢y is attained
at Jyx. More precisely, it follows that

ox(w) = 5l — uf}y + 0(yu) = S1(06)sul?y + ().
Furthermore, the following properties hold.
(1) ¢x is convex and Fréchet differentiable, in particular, (¢)) = 0Py = (Op)x.
(il) o(Jyu) < oda(u) < é(u), VYueH,VA>0.
(iii) /l\l_r% oA (u) = o(u), VueH.

The following two propositions are useful in showing that the sum of subdifferential
operators is again maximal.

Proposition 1.3.10. Let A be a mazimal monotone operator on H, and let ¢ € ®(H).
Assume that there exists C' > 0 such that

(1 +XA)"tu) < ¢(u) + CA Yu € H,V\ > 0.
Then A + 0¢ is mazximal monotone and the following inequality holds:

|A%| g < |(A+ 0¢)ulg +VC Vu € D(A) N D(9¢).

Moreover, D(A+ 0¢) = D(A) N D(0¢) = D(A) N D(0¢).

Proposition 1.3.11. Let A be a mazimal monotone operator on H, and let ¢ € ®(H)
satisfying
qb(Projmu) < ¢(u) Yu € H.

Then the followings are equivalent.
(1) o((1 +XA)~tu) < ¢(u) for allu € H and X\ > 0.
(i) (Axu,v)g >0 for all (u,v) € d¢ and X > 0.

Finally we recall the chain rule for ¢ € ®(H). The following result plays an important
role to derive a priori estimates of solutions to nonlinear evolution equations associated
with subdifferential operator in the next section and Chapter 6.

Proposition 1.3.12. Let ¢ € ®(H) and suppose thatw € WH2(0,T; H) with u(t) € D(0¢)
for a.e. t € (0,T). If there exists g € L*(0,T; H) with g(t) € d¢(u(t)) for a.e. t € (0,T),
then the function t — ¢(u(t)) is absolutely continuous on [0,T] and

%(b(u(t)) - (h(t), CZL(@)H ae. tel0,T]

for any h € 0¢(u) a.e. on [0,T].
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1.3.3 Formulation of (P) as Evolution Equation

Here we are going to formulate (P) as a nonlinear evolution equation associated with a
subdifferential operator in L?(£2). Recall our problem:

Opu — Au = |ulP~2u, t>0, x €,
(P) — Oyu € B(u), t>0, zeof,
u(0, ) = up(z), x € Q,

where € is bounded domain in RY with smooth boundary 9, p > 2 is a given constant,
v denotes the unit outward normal vector on 0f2. The multivalued map £ is a maximal
monotone operator on R. More precisely, 5 = 97, where j : R — (—00,+00] is some
proper convex lower semicontinuous function.

Let ¢ : L?(2) — (—00, +00] be the functional defined by

D(p) := {u € H'(Q); j(u) € L'(0Q)},

} u2 X (u)do U
(1.3.2) o(u) = Q/Q’V I*d +/BQJ( )do, € D(yp),
+ 00

u e L)\ D(yp).
In [10], Brézis showed the following result.

Proposition 1.3.13. Let ¢ : L?(Q2) — (—o00,+00] be as above. Then ¢ € ®(L*(2))
and its subdifferential coincides with the Laplacian under nonlinear boundary conditions,
namely,

D(0g) = {u e H*(Q); —duc B(u), a.e ondQ},
0p(u) = —Au, u € D(0p).

Furthermore the followings hold.

(i) D(9p) = L*(Q).
(ii) (Elliptic estimate) There exist c¢1, ca > 0 such that

(1.3.3) lull 2y < e1ll — Au+ull2 + co, u € D(9p).

Using the above notations, we can rewrite (P) into the following evolution equation in
L2(9):

A0 o)+ 0pu(0) + By(ul) =0, >0
u(0) = uo,

where B, : L?(Q) — L?(Q) is defined by B,(u) = —|u[P"?u. In Chapter 3, the local solv-
ability of (P) will be shown based on the abstract theory of evolution equations described
in the next section using this formulation (AC).
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Note that (AC) has another description. Indeed, we define a functional v, : L?(£2) —
(—OO, +OO] by

1 » o
(1.3.4) Pp(u) = p/Q|u| dz, u € D(yy) := LP(Q),
+ o0

ue L3(Q)\ LP(Q).

Since we can see that 1, € ®(L?*(Q)), we can define its subdifferential, which coincides
with the (single-valued) power type nonlinear operator, i.e.,

Op(w) = [uP 0, e D@iy) = fue LX(Q); [uPu € LX(Q)),

By using this notation, (AC) is also represented as

(AC)* %“(t) +0p(u(t)) — Ovy(u(t)) =0, t>0,
u(0) = uo,

The form of evolution equations with the difference term of two subdifferentials make
it easy to understand the energy structure. The asymptotic behavior of solutions to this
type equation have been studied by Otani [46, 48] and Ishii [29]. In Chapter 3, we are
going to clarify the large time behavior of global solutions to (P) via an analysis for (AC)*.

Finally, let (AC), or (AC); denote (AC) with 3 = 3, (i.e., j(r) = L17]9) for ¢ € (1, 4+00).

r

1.4 Evolution Equations

This section is devoted to summarizing the theory of abstract evolution equations, which
will be used to prove the existence of solution in the latter chapters.

We consider the following evolution equation governed by subdifferential operators in
a real Hilbert space H:

. W)+ dou(t) + Bu(t) 3 f(1), 1>,
u(0) = wo,

where ¢ € ®(H), f € L*(0,T; H) and ug € D(d¢). We first assume that B is a Lipschitz
continuous on H, that is, there exists L > 0 such that

(1.4.1) |B(u) — B(v)|g < Llu —v|g, u,v € H.

Proposition 1.4.1. Let ¢ € ®(H) and let B : H — H with (1.4.1). Then for every
f € L*(0,T; H) and uy € D(0¢), there exists a unique solution u € C([0,T]; H) of (E)
satisfying the following properties.

(1) u(t) € D(0¢9) for a.e. t € [0,T], and u satisfies (E) for a.e. on [0,T].

(ii) \/{5%, Vitg € L*(0,T; H), where g(t) € d¢(u(t)) for a.e. t € [0,T].
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(i) (u(t)) € L(0,T), to(u(t)) € L®(0,T).

d
In addition, if ug € D(¢), then d—Q:, g€ L*0,T;H).
Remark 1.4.2. Note that, in Proposition 1.4.1, the function t — ¢(u(t)) is absolutely
continuous on (0,T] (resp. [0,T]) forug € D(¢) (resp. ug € D(¢)) by virtue of Proposition
1.5.12.

This result is well known (e.g., see Proposition 3.12 in Brezis [9]), but we here give a
brief proof of the existence of solutions for later use. The argument of a priori estimates
in this proof will also be used in Chapter 6.

Proof. For the rest of this proof, let A = d¢. We first show the existence of solutions for
the case where ug € D(¢). To do this, we consider the following approximate equation of

(E):
du

(E)x — O+ Au(t) + Bu(®) > f(1), ¢ >0,
u(0) = uo.

Here A is the Yosida approximation of A, and note that Ay = (9¢)y = 0dy. It is
well known that the corresponding integral equation of (E), possesses a unique solution
uy € C([0,T]; H). We are going to derive a priori estimates of solution to (E).

For fixed v € D(A), we set

oa(u) == da(u) — PA(v) — (Axv,u — V).
Then we easily verify
(1.4.2) da(u) =0,  ue D(g),
(1.4.3) da(v) = 0.

Moreover put B(u) := B(u) — B(0). Then B is Lipschitz continuous on H which satisfy
B(0) = 0. By using ¢ and B, the equation (E), can be rewritten in the following equation.

0 1 90 (un(®) + Blua(t) 3 £(0) — Ao+ B(O) = F0).

We here note that the estimates of f is independent of A. Indeed, by using Proposition
1.3.7,

[FOlr < [fO]a + [A%] g + |BO)]u,
102 0uretry < 3 (1B 2(oiz.ary + TIA W + TIBO) )

Thus, without loss of generality, we can assume that (1.4.2), (1.4.3) and B(0) = 0 hold.
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Multiplying (E)y by uy — v, we have

1d

gﬁ\ux(t) —vlH + (Ayup, uy — v)g + (Buy,uy —v)g < | F(E)|m|ur(t) — vlu.

By the definition of subdifferential of ¢y, (1.4.2) and (1.4.3), we can see that
(Axux, ux —v)g = ¢a(ur) — da(v) > 0.

Therefore we get

1d
5 g7 () = vli < FOlulua®) = vl +|(Buy = Bv,ux = v)u| + |[(Bv,ux = v)|
< (1f@®)lm + [Bolm) lua(t) — vlm + Llua(t) — vl
Applying Lemma 1.2.1 with a = 1/2, y(t) = |ux(t) — v|%, a(t) = L and b(t) = | f(t)|z +
| Bv|gr, we obtain

T
lur () — vl < Juo — vle + eLT/ (F Ol + |Bolw)dt,  te0,T],
0
which implies

(L44)  sup [ur(Oln < [oln + €T (w0 =l +Sll30.m + TIBelr) =5 .
tel0, T

duy,
—=, we have
dt

i + (A U du}‘) + (B(u ) du)‘) (f(t) du}‘)
AUN, —— Ny = v |-
. dt ), it ), dt ),

Note that, by virtue of Proposition 1.3.9, since ¢, is Fréchet differentiable and (¢,)" = Aj,
we see that

Multiplying (E)y by

dux
dt

<A)\U)\, d;t)\>H = %qﬁ,\(u)\(t))

Hence, applying Schwarz inequality and Young inequality, we get

2

duy, d duy, duy
Y I 1) < | Bluy), &2 ), 4
dt H+dt¢/\(%\( )< ‘( (), dt >H‘+ (f( ) dt )H
1 | duy 2 1 |duy 2
< |Buyly + = |22 2 |
<| UA\H+4 o7 H+’f<t)‘H+4 a |,

By (1.4.1) and (1.4.4), we obtain

2 4

d
U\ + 2
o di

1| dux
dt

5 oa(ur(t)) < L*CE + | f(1)[F-
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Noting that ¢y (u) < ¢(u), we have

2

dt < ¢(ug) + TL*CF + || f1172(0.1.11) = Co-
H

du,\

T
(1.4.5) sup cf)A(UA(t))ﬂLl/O dt

t€[0,T] 2

Uy .
—=, we can also derive

Furthermore since Ayuy = f — Buy — o

(1.4.6) N (Hfuizmm +TI2C? + 202) — Oy,

We remark that C7, Cy and C5 are independent of .
Put wy ,(t) = ur(t) — uu(t). Then

d
(1.4.7) aw,\#(t) + Ayuy — Ayuy + Buy — Buy, = 0.

By using the monotonicity of A and Ayu € A(Jyu), we see that

(Ayuy — Apug, uy —up)g = (Axuy — Apuy, NMAyuy — pAyu,) i
+ (Axuy — Ay, Hhuy — Jyuu)m
> M Ayualfr + nlApulf — O+ p)(Axu, Ay n
> MAyualgr + plApulf — 0+ )| Avua i Ayl

v

A 7
- Z|Aﬂult‘%{ - Z\A/\UA\%

Multiplying (1.4.7) by w) , and using the above inequality, we have

1d

5@@@@)@1 = —(Axux — Apuy, wx,)g — (Buy — Bug, wy . )u

<

>

[ Aty (8)3 + 51 Axun(®)r + L, (0)[3.
By virtue of (1.4.6), integrating this inequality over [0, ¢], we obtain

A+
4

t
s (DI < %+LAth®@w-

By Gronwall’s inequality we can deduce that

A+
sup |y (1) < 703,
t€[0,T]

which implies that (uy, )nen is Cauchy sequence in C([0,T]; H), where (\,,) is a sequence
satisfying A, — 0 as n — +o00. Therefore there exists u € C([0,T]; H) such that

(1.4.8) uy, — U strongly in  C([0,T]; H).
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Moreover we can get
(1.4.9) Iy, uy, —u strongly in  L%(0,T; H).
Indeed, by (1.4.6),
[ Ixux — ullp20.smy < 1 aun — unllzzo01m) + lun — wllz20,7:m)

= A Axuall 20,1y + llux — ull 20,7 m)

<MC3+ VT sup |u(t) — ut)|y

te[0,T

—0 as A — 0.
d
On the other hand, since Ayu) and g U are bounded in L?(0,T; H) by (1.4.5) and (1.4.6),
there exists a subsequence of (n) denoted by (n) again such that

(1.4.10) Ay, un, = 9g weakly in  L*(0,T; H),

d

1.4.11 —
( ) o

Uy, — X weakly in  L*(0,T; H),
for some g and x € L?(0,T; H). Let A be a realization of A on L?(0,T; H), that is,
(Au)(t) := A(u(t)) a.e. t €1[0,7].

Since A is a maximal monotone operator, A is also maximal monotone. By (1.4.9), (1.4.10)
and the demiclosedness of A, we have

ue D(A), g€ Au,

which is equivalent to

u(t) € D(A), g¢g(t) € Au(t) = dp(u(t)), a.e. t € 10,7
Since % is a closed linear operator in L?(0,T; H), by (1.4.8) and (1.4.11), we get
_a
= at

Moreover since B is Lipschitz continuous, it is clear that
B(uy, ) — B(u) strongly in  C([0,T]; H).
Then we conclude that

%mw+¢w+3@@):ﬂw in H ae. te0,T],

where g(t) € 0¢(u(t)). Furthermore, by (1.4.8), we have u(+0) = ug.



1.4. EVOLUTION EQUATIONS 25

We next consider the case where ug € D(¢) = D(0¢). Let (uf) C D(¢) be a sequence
satisfying ug — ug strongly in H as n — oo, and let ©” be a solution to (E) with the
initial data ug for n € N. In the same way as the former part of the proof, we can deduce
that there exists Cy > 0 independent of n such that

(1.4.12) sup |u"(t)|g < Cu.
te[0,7)

n

Multiplying (E) by tddit’ we have

du |?

t
dt

Lt t%qﬁ(u”(t)) +t <B(u"), dg)}{ =t (f(t), dZL)H.

By integrating it over [0, ¢] and using Schwarz’s inequality and Young’s inequality, we get

1 t
1.4.1 =
(1.413) 5/

! n 2 ¢ 2 ! n
< /0 s|B(u (&<>’))|Hds—i—/0 s]f(s)\Hds—&—/O d(u"(s))ds.

2

ds +to(u™(t))
H

du™

ds

On the other hand, for ¢g"(¢t) € d¢(u™(t)), by the definition of the subdifferential operator,
we see that

- (-G — B =)
n 1d n 2 n 2 n
< |f@®)|ulu™(t) —vlu - §%|u (t) — vl + Llu"(t) — vl + |Bolgu"(t) — vlm,
whence follows
t
(1.4.14) o(u(s))ds < sup (1) — vl (| fllza oz + TIBol)
0 t€[0,T]

1
+ = |ull — |3 + LT sup |[u™(t) —v|%.
2 te[0,7]

Combining (1.4.12), (1.4.13), (1.4.14) and the fact uj — wuo strongly in H, we see that
there exists C5 > 0 independent of n such that
H

T
du™
1.4.15 t|—
(1.4.15) [ %
du™

Moreover since g" = f(t) — o B(u"), we also see that there exists Cs > 0 independent
of n such that

2
dt < Cs, top(u™(t)) <Cs  Vtel[0,T).

T
(1.4.16) / t1g"(t)|3dt < Cs.
0
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Put w™™(t) = u™(t) — u™(t). Then

0" (0 +00(u"(1) — 0o (u™ (1)) + B(u" (1)) — B(u™(t)) > 0.

By the monotonicity of d¢, it follows from Gronwall’s inequality
W™ (O < e fuf —ug' |-

Hence since (u™) is a Cauchy sequence in C([0,T]; H), there exists u € C([0,T]; H) such
that

(1.4.17) u" —u strongly in  C([0,T]; H).

As before, by (1.4.15) and (1.4.16), taking a subsequence of (n) (which is denoted by (n)
again), we conclude that

Vgt — Vtg weakly in  L*(0,T; H),
du' | d
dt dt

and u is a desired solution to (E). O

t weakly in  L%(0,T; H),

Remark 1.4.3. In proposition 1.4.1, the assertions (i) - (iii) are still valid with the
assumptions f € L*(0,T; H) and \/tf € L*(0,T; H) instead of f € L?(0,T; H) by consid-
ering slight modification in the above proof.

We next introduce the abstract theory for some nonlinear evolution equations (E)
associated with subdifferential operators with non-monotone perturbations B in a real
Hilbert space H, which is developed by Otani [47]. In order to formulate a solvability
result, we impose the following assumptions.

(A1) For any L > 0, the set {u € H ; ¢(u) + |ul? < L} is compact in H.

(A2) B: H — H satisfies the following ¢-demiclosedness condition:
If u, — u strongly in C([0,7T); H), 0é(u,) — 0é(u) weakly in L?(0,T; H) and
B(uy,) — b weakly in L?(0,T; H), then b = B(u) holds a.e. in t € [0,T].

(A3) There exist a monotone increasing function £(-) : [0, 00) — [0,00) and k € [0, 1) such
that
|B(w)[i < k[0d(u)|F; + £(o(u) + |ulz)  Vu € D(99).

The following result is a simplified version of the existence result which is founded
in Otani [47], and note that more general setting is investigated in [47], e.g., B is a
multivalued mapping and B, ¢ have a t-dependence.

Proposition 1.4.4. [}7] Let ¢ € ®(H) and the assumptions (A1) - (A3) be satisfied.
Then for any ug € D(¢) and f € L*(0,T;H), there exists a positive number Ty =
To(|uolm, ¢(uo)) € [0,T] such that the abstract Cauchy problem (E) in H possesses a
strong solution w € C([0,To]; H) such that

(1.4.18) %u, ¢ (u), B(u) € L*(0,To; H).
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1.5 Convergence of Functionals

In this section, we define Mosco convergence and mention some properties of it according
to Attouch [4, 5] as the preparation for Chapter 6.
Mosco convergence is defined as follows.

Definition 1.5.1. Let (¢™) C ®(H) and ¢ € ®(H). Then ¢" — ¢ in the sense of Mosco
on H as n — oo (denoted by ¢ M, @), if the following two conditions (i) and (ii) hold:

(i) For every u € D(¢), there exists a sequence (u,) C H such that u, — u strongly in
H and ¢"(up) — ¢(u).

(i) If up — u weakly in H, then ¢(u) < liminf,, o ¢™(uy).

Remark 1.5.2. In Definition 1.5.1, the condition ¢™(u,) — ¢(u) in the assumption (i)
can be replaced by ¢(u) > limsup,,_,., ¢"(uy).

We present some properties of Mosco convergence.

Proposition 1.5.3 (Theoreme 1.10 [4]). For (¢"™) C ®(H) and ¢ € ®(H), the following
statements are equivalent.

(i) " =5 o,
(i) (a) (1+X0¢™)tu — (1 +X0¢)"tu  for all A\ >0 and u € H,

(b) there ezists (u,v) € d¢ and (up,v,) € 09" such that u, — u, v, — v and
¢" (un) = d(u).

(iii) @%(u) = da(u)  for all X >0 and uw € H, where ¢% and ¢ are the Moerau-Yosida
reqularizations of ¢" and ¢ respectively.

Lemma 1.5.4 (Corollaire 1.17 [4]). Let (¢") C ®(H) and ¢ € ®(H) satisfying ¢" M, o
on H. Assume that H is separable. Then,

T T
/ o"dt — / odt in the sense of Mosco on L*(0,T; H).
0 0

For ¢ : H — (—o0,400] with D(¢) # (), we define the conjugate function (or the
Fenchel-Legendre transform) ¢* : H — (—o0, +00] to be

¢"(f) == sup{ (f , 2)u — ¢(x) }.

zeH

It is known that ¢* is convex and lower semicontinuous on H, and if ¢ € ®(H) then
¢* € ®(H). Moreover, for ¢ € ®(H), it holds that z* € 0¢(z) if and only if

(L5.1) o(z) + ¢"(a") = (", ¥

In particular, for Mosco convergence of conjugate functions, the following holds.
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Lemma 1.5.5 (Proposition 1.19 [4]). Let (¢") C ®(H) and ¢ € ®(H). Then ¢" -5 ¢ if
. M

and only if (¢™)* — o*.

Lemma 1.5.6. Let (¢")p>1 C ®(H) and ¢ € ®(H). Suppose that if for any subsequence

(@"F)k>1 of (@™ )n>1, there exists a subsequence (¢" )ir>1 of (¢™* )p>1 such that (¢ )pr>1

converges to ¢ in the sense of Mosco on H, then ¢™ M, ¢.

Proof. We are going to prove this lemma by contradiction. Let (¢") C ®(H) and ¢ €
®(H), and suppose that ¢™ does not converge to ¢ in the sense of Mosco on H. Then,
by Proposition 1.5.3, we see that there exist A\g > 0, ug € H and ¢y > 0 such that for all
N € N there exists n(IN) > N such that

‘bt\LéN) (u0) — @, (Uo)‘ > €.

Put ny :=n(1) > 1. Then

oa (o) — P, (Uo)’ > €.

Similarly, put ng :=n(n1 +1) > ny +1 > ny. Then

25 (u0) — dxo (Uo)‘ > €.

Define (ny,);>1 by inductive as above. By the definition of (ny), we see that (¢3* (uo))k>1 C
R is a subsequence of (¢} (uo))n>1 and any subsequence of (¢y*(ug))x>1 cannot converge
to ¢y, (uo) in R. By Proposition 1.5.3, this lead a contradiction. O



Chapter 2

Local Well-posdness

In this chapter, we are concerned with the local well-posedness of (P),. For the first
step, we are going to give a proof of the local well-posedness of (P), for the case where
the initial data belong to the domain of a functional associated with Laplacian under
nonlinear boundary conditions. Moreover we also discuss the case where the initial data
are bounded. Since it is difficult to use the Duhamel’s principle and to apply the fixed
point theorem for the integral equation, we mainly rely on the theory of nonlinear evolution
equations developed by [47, 45].

2.1 Local Well-posdness for D(y)-data

We first show the existence of time local solutions of (P), for the initial values which
belong to the effective domain D(y) of ¢ (note that D(¢) C H(2)). We here emphasize
that even though Op(u) = —Awu looks like a linear operator, this is not the case since
D(9¢p) does not have the linear structure. Therefore, as mentioned above, we can not rely
on the Duhamel principle (see also Introduction). Instead, we here rely on the abstract
theory of nonlinear evolution equations associated with subdifferential operators given in
Proposition 1.4.4. Our first main theorem can be stated as follows.

Theorem 2.1.1. Let p € (2,2%) and ug € D(p). Then there exists Ty = To(p(ug)) > 0
such that (P), possesses a unique solution u satisfying the following regularity

u € C([0, Tol; L*(R2)),
(2.1.1)

O, Au, |ulP~?u € L*(0,Ty; L*(Q)).
Proof. (Existence) Recall that (P), is reduced to (AC),. In order to show the existence
of a solution of (AC),, we are going to apply Proposition 1.4.4. To do this, we have only
to check three assumptions (A1), (A2) and (A3). It is clear that (Al) follows from the
boundedness of the domain 2 and the Rellich-Kondrachov compactness theorem. Since
—DBp(u) is maximal monotone and the maximal monotone operator satisfies the demi-
closedness property (in the standard sense), assumption (A2) is also satisfied. To verify
(A3), by Lemma 1.2.4, we note that there exists A = A(p, N) € (0, 2] such that

2(p—1 _ _
(2.1.2) lull3e=3) < Cllullfagg Ilulliar®  ¥u e HX(Q).

29
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Then by virtue of (2.1.2), the elliptic estimate (1.3.3) and Young’s inequality, we obtain

2(p—
Hmmﬁzmmp%
< CllulZatgy lull o

_ 2p—44X
aWmewz 1) Il

<C (- AulF + ™ + 1) e

2(2p—4+4X)
2ep_ttd) 2 4 A
<l = Aul}+ Clulngdy +C (Il +1) fullfrd™

which ensures (A3). Thus, Proposition 1.4.4 implies that (P), admits a local solution
u € C([0, Tp]; L3(Q)) satisfying (1.4.18).

(Uniqueness) Let v and v be two solutions of (P), on [0,Tp] with the initial data
ug € D(¢) and vy € D(¢) respectively. Setting w := u — v, we have

Ow — Aw = |uP~2u — |v|P?v, t>0, zeQ,
(Pyw) dyw + u|?%u — |v|7%v = 0, t>0, x €099,
w(0, z) = ug(x) — vo(z), x € Q.

Multiplying (P,,) by w and using integration by parts, we obtain
5 7 [w®I3 + Vw3 +/ (lul"%u — [0]*"%0) w do
= / (|u|p_2u - |v|p_21)) wdz.
Q
Since u +— |u|?"2u is monotone increasing, it is easy to see that

/ (Ju]??u — 0|9 *0) wdo > 0.
o0

Moreover we note

|22z — |yl ~2y| =

y

[ o= vls2as| < (o= 1) (P2 + by ) o~

xr

for all z, y € R'. Hence, from Holder’s inequality and the above inequality, it follows that

(2.1.3) /Q (JulP~?u — [P2v) wdz < (p—1) /Q (JulP=2 + |v[P~?) w?dz
< (=1 (lu@®lp~ + lo@52) lw®)ll-

We here recall the following Gagliardo-Nirenberg interpolation inequality on a bounded
domain (see [43])

lully < € (IVul3luly™ + full2) — vue H(Q),
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where n € (0, 1) is determined by ]% =7 (% W) (1- ) . Applying this inequality and
Young’s inequality to (2.1.3), we obtain

/ (|u]p_2u - |v|p_2v) wdx
Q

< (= 1) (lu® 52 + o) I52) ()2
< O (@2 + @l 2) (Ve @@ 130" + o )3)
< SITw 3 + O (@52 + a5 T )13

+C (Jlur ;72 + ua®572) w®)]13.

Since u and v satisfy the regularity (1.4.18) of Proposition 1.4.4, ¢(u) and ¢(v) are absolute
continuous on [0, Tp] (see [9]). Noting that p € (2,2*) implies |jull, < C(p(u) + |lul3)"/?,
we deduce that ||u||, and ||v||, are bounded above by some constant M > 0 uniformly on
[0, Tp]. Thus we get

A

1 oL _
w3 + 31 TwIE < € (M7= + 200772 Ju(r)

Then by Gronwall’s inequality (see Lemma 1.2.1 with o = 0), we derive

1
2(}((2M1’*2)ﬁ+2MP*2)t

lut) = v(®)lI3 < [luo — woll3 e vt € [0, To],

whence follows the uniqueness. O

2.2 Local Well-posdness for L>(2)-data

In this section, we are going to show the local well-posedness of (P), in L*°(£2) without
any restriction on the growth order p. Applying “L*°-energy method” developed in [45],
we can obtain the following result of the local well-posedness of (P), in L>(€2).

Theorem 2.2.1. Let ug € L™(R2), then there exists Ty = Tp(||uollsc) > 0 such that (P),
possesses a unique solution u satisfying the following reqularity

u € C([0, To); L*(2)) N L>(0, To; L2(R)),
VO, Vit Au, Vit|ulP~2u e L0, Tp; L3(2)).

Proof. (Uniqueness) Let u and v be two solutions of (P), with the same initial data
ug € L(Q) satisfying the regularity (2.2.1). Then w := u—wv satisfies (P,,) with w(0) = 0.
Multiplying (Py) by w, we now get

3@ [ (a2 wda
<(p- 1)/ (Ju[P=2 + [v|P~2) w?daz
Q

(2.2.1)

< 0= 1) (Il 20 7oy + 101520 7oy ) 01
< C ()3,
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whence it follows from Gronwall’s inequality
lw(®)[3 < [w(0)[3e*" = vt € (0,T).

Thus, for ug € L*(2), the solution to (P), satisfying (2.2.1) is unique.
(Existence) We here consider the following auxiliary problem:

Au — Au = |[u]p]P 2 u, t>0, xe€Q,
(2.2.2) Ayu + |u|T%u = 0, t>0, z €09,
u(0,x) = ug(x), x € (),

where M > 0 is a positive constant to be fixed later and [u]ps is a cut-off function of u
defined by

M u > M,
[ulsr = qu uf < M,
—M u< —M.
Set Byr(u) = —|[u]p|P~u, then the auxiliary problem (2.2.2) can be reduced to the
following evolution equation in L?(Q):
d
(223) Lou(t) + Op(u(t) + Bu(u(t) =0, u(0) = up.

Note that Bys : L?(2) — L?(Q) is Lipschitz continuous. Applying the abstract theory
developed by H. Brézis (see Proposition 1.4.1), we know that (2.2.3) has a unique global
solution u € C([0,T]; L?(2)) for up € L*(Q) satisfying the same regularity (except L>°-
estimate) of Proposition 2.2.1 with Ty replaced by T

Furthermore we can show that ug € L°(2) assures u(t) € L*(Q) for all ¢ > 0. To see
this, put v(t) := e M" *tu(t), then v(t) satisfies

(224) 6tv(t) — AU(t) - (’[U]M‘p72 - Mp72>1)(t), U(O) = Uo-

Multiplying (2.2.4) by [v(t) — M]* = max(v(t) — M, 0) and noting that |[u]/[P~2 — MP~2 <
0, we get

(2.2.5) QﬁH M3+ /N M da < 0.

Here we used the fact that

_[kmﬁhﬂwﬁ¢m:Aﬂv@—ﬂﬂ+HM—:éQ&ww—Aﬂﬂw

= / \V[v — M]T|?dz +/ lu|720[v — M| *do
Q o2

= / \V[v — M]T|?dz + / lu|72M[v — M]"do
Q o9

z/ V[0 — M]*2da.
Q
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Hence ||[v(t)—M]" ]2 < |[[up— M]T|2 = 0 for a.e. t € [0,00). Thus we see that v(t) < M,
ie., u(t) < MeM™*t

Multiply again (2.2.4) by [v(t) + M]~ = max (—v(t) — M,0). Then in parallel with
(2.2.5), we get

— 2
(2.2.6) thH )+ M]||2 + /yv )+ M]™[Pdx <0,

whence follows u(t) > —MeM" ™ Thus we get |u(t)|z~ < MeM" ™ which implies u(t) €
L™ for a.e. t € [0,00). Hence noticing that |u|"~2u € L*(Q) and ||[u]a[P72| < |[uP~2, we
multiply (2.2.2) by |u|"~2u to obtain

1d r r— r— — T
Sl + =) [ [FuPla 2o+ [l 2o = [l alrdo
Q o0 Q

< / ‘u|p+r72dx
Q
< fu(®) 15 lu(®)]7-
Since the second term and third term of left hand side are nonnegative,
r—1 d p—2 T
lu@1: = 2 @l < Jlu@) 15 lu@)]-

Divide both sides by [lu(t)||"~! and integrate with respect to t on [0,¢], then we get

)l < flwolls + / ()2 () e

Note that even though ||u(t)||"~! attains zero, we can justify this argument by Proposition
1 in [40]. Letting r tend to oo, we derive

t

[u(t)lloo < lluolleo +/0 [u(r) |5 dr.
Hence applying lemma 1.2.3, we see that there exists Ty such that
()] oo < |Juolloo + 1 a.e. t € [0,7).

Therefore choosing M > |lug|loc + 1, we can see that u gives a solution for (P), on [0, T]
by the definition of cut-off function [u]as. O

Remark 2.2.2. If yg > 0 in Lemma 1.2.3, then we can derive
y(t) < 2yo a.e. t € [0,Tp],

and choose Ty = min{%,T}. From this observation we can deduce that the mazimal

existence time is sufficiently large for sufficiently small ||ug|loo > 0.
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2.2.1 More Generalized Equations

At the end of this chapter, we also consider the local well-posedness of the initial-boundary
problem for the following parabolic equation, which is a more generalized version of (P)4:

Ou — Au — F(u) 30, t>0, x €,
(P)g — dyu € B(u), t>0, z €0,
u(0,x) = up(z), x € Q.

We impose the following assumptions on F and 3.

(F) F:R!— 2R is a (possibly multi-valued) operator satisfying the following (i) and

(ii).

(2.2.7)

(i) 0€ F(0), inf{z;ze€ F(u)}>|uf?u™ YueR' withp>2,
(2.2.8)

(ii) F(u) = Fy(u) + Ef(u) — F;(u) Yu€R! and

Fs(-) is singleton and locally Lipschitz continuous on R!,

FE():R' — 2%" are maximal monotone operators such that D(FE) =R

(B) B:R — 2R i a (possibly multi-valued) maximal monotone operator satisfying
0 € B(0).
B

Then, by using the L*°-energy method, we can obtain the local well-posedness of (P)
for ug € L*>(2). We apply here a different method from the previous proof, namely, we
use the subdifferential of the indicator function.

Theorem 2.2.3. Let ug € L(Q2), then there exists Ty = To(||uo||ree) > 0 such that (P)g
possesses a solution u satisfying the following regularity

(2.2.9)  w € C([0,To]; L*(Q)) N L=(0, To; L(Q)),  Vtdwu, VtAu € L*(0, Tp; L*(Q)).

Moreover let Ty, = T, (u) be the mazximal existence time of u, then the following alternative

holds:
o T, =400, or
o T, < 400, lim ||u(t)|pe = +o0.
t—Tm

Proof. Since (3 is assumed to be maximal monotone, there exists a lower semi-continuous
convex function j : R! — (—o0, +-00] such that j(r) > 0, and 9j(u) = B(u) ( see [9]).
For the rest of this proof, define the functional % on L?(Q) by

L vulde + 2 [1ul2de + [ iwdo. we D(G)—fu "
P(u) = 2/Q’V |°d +2/Q‘ °d —i—/mg( )Ydo, ue D(p):={ue H(Q);j(u) € L'(00)},

+o0, u e L2(Q)\ D(@).
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Then we can see that ¢ is a lower semi-continuous convex function on L?(f2) and the
subdifferential operator 0¢ associated with ¢ is given as follows (see [7, 9, 10]):

Op(u) = —Au -+,
D(0¢) = {u € H*(Q); — dyu(z) € B(u(x)) a.e. on IN}.

Furthermore the following elliptic estimate for 9 holds, i.e., there exist some constants
c1, cg > 0 such that

(2.2.10) lullgz < 1l — Au+ul|z2 + 2 Vu € D(9@).

Then by putting B(u) := —u — F(u), (P)zﬁ? can be reduced to the following abstract
evolution equation in H = L?((Q):

(CP) %“(t) +093(u(t)) + B(u(t)) 0, >0,

u(0) = up.

In order to show the existence of time local solutions of (P)[; belonging to L (2), we rely
on “L*°-Energy Method” developed in [45]. To this end, we introduce another maximal
monotone graph SBas(-) = O (-) on RY x R by

0, Ir| > M,

—00,0 r=—M, 0, r| < M,
Bur(r) = (70 ma(r) =

0, Irl < M, oo, || > M,

[07+OO)7 T:My

where M > 0 is a positive constant which is determined later. The realizations of 83; and
nar in H = L?(Q) are given by

0, lu(z)| > M,
(—o00,0], u(z) = —M,
0

Bu(u) = 0Ik,, (u) = ’ lu(z)] < M,

0, uwe€ Ky ={ueL?Q); |uz)| <M ae x€Q},
I, (u) == 9
+o0, ue L (Q)\ K.

Here we put
QOM(U) = @(u) + IKM (u)

Then we can get

(2.2.11) Oprr(u) = 0@(u) + Bur(u)  Yu € D(Opn) := D(OP) N K.
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In fact, since the Yosida approximation (Sas)x(+) of Bas(-) is given by

UOE u(w) < M,
(Bar)a(u) = <0, lu(z)| < M,
M%M, u(x) > M,

we easily see
(3¢W%0%HMUDB==x¥—AU+UXﬂMh@0d$
(2.2.12) >¢/uanWNVumn%m+1/ —0,u(x) (Bur)a(ulx)) do > 0.
Q 0!

Q

Here we used the fact that w - (Bar)a(u) > 0, (Bm)\(v) > 0, —0,u(z) € B(u(x)) and
0 € 8(0) implies that S(u) C (—o0,0] if w < 0 and B(u) C [0,400) if u > 0.

Consequently (2.2.12) together with Proposition 1.3.10 and Proposition 1.3.11 assures
that 0@ + 01y, becomes maximal monotone. Hence since 0p(u) + 0l (u) C Oppr(u) is
obvious, we can conclude that (2.2.11) holds true.

Now consider the following auxiliary equation:

d
—u(t) + 0 u(t)) + B(u(t)) 30, t>0,
cpy,, {0+ O ) + Blte)
u(0) = wo,
where we choose M > 0 such that

(2.2.13) M = |fug|| = + 2.

2
Then we easily see that ug € D(&pM)L = K.
Define a monotone increasing function #(+) : [0,00) — [0, 00) by

(2.2.14) Ur):=r+sup {|z|; z€ F(r), |7|<r}.

Here we note that £(-) takes a finite value for any finite r, which is assured by assumption
D(F) = D(F,}) = D(F,,) = R! and then we obtain

(2.2.15) sup { |2; = € Blu(x)) } < ((Ju(x)])-
Hence we get
(2.2.16) [B(w)|l|r2 :==sup {||z]|r2; 2 € B(u)}
<U(||ufp) (R < L(M)|QIY? Vu € D(dpumr),

since u € D(Opyr) implies |Ju|lr~ < M. Now we are going to check some assumptions
required in [47]. It is easy to see that (2.2.16) assures assumption (A5) of Theorem
IIT and (A6) of Theorem IV in [47] by taking H = L?(Q2). Furthermore the compactness
assumption (A1), the set {u; par(u) < L} is compact in H := L?(2), is obviously satisfied,
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since 2 is bounded; and the demiclosedness assumption (A2) is also assured, since the
maximal monotone parts Fi- are always demiclosed in L?(£2). Thus we can apply Theorem
IIT and Corollary IV of [47] to conclude that (P)’g admits a solution w on [0,7] for any
T > 0 satisfying (2.2.9) with Ty replaced by T

Now we are going to show that there exists 7y > 0 such that

(2.2.17) u(@)lpe <M +1 Ve 0,Ty),

whence follows Sas(u(t)) = 0 for all ¢t € [0, 7], which implies that u turns out to be the
desired solution of the original equation (P)g on [0, Tp].
To see this, multiplying (CP)ys by |u|""2u, we get by (2.2.15)

1d
— w2+ (r = 1)/|U|T2!VU(t)|2d$ +/ b(t,x) [ul""*u(t)do
rdt QO o0
< L(J[u() | o)l 1R
where b(t, z) € B(u(t,z)) and so b(t,z) [u|""?u(t,z) > 0. Hence
d T
gl < elu®)liz-) Q7.
Letting r — oo, we obtain (see [45])
t
(2.2.18) [u(®)llzee < [luollze +/0 ((l[u(s)l Lo )ds.

Then Lemma 1.2.3 assures that if we set
1
TO = 5
20([luo|| L + 1)

(2.2.19)

then (2.2.17) holds true.
In order to prove the alternative part, assume that 75, < oo and liminf; ,7, ||u(t)| e =:
My < 0o. Then there exists a sequence {t, },ecn such that

(2.2.20) tn = T asn—oo and |lu(t,)||pe < Mp+1 Vn € N.

Hence in view of (2.2.19), the definition of Ty, regarding u(t,) as an initial data, we find
that w can be continued up to ¢, + 500 which becomes strictly larger than T, for

1
Mo+2)

sufficiently large n such that T}, — t,, < m. This leads to a contradiction. Thus the
alternative assertion is verified. O

Remark 2.2.4. (1) One can prove that under the same assumptions in Theorem 2.2.3,

problem (P)IB; with the boundary condition replaced by the homogeneous Dirichlet (resp.

Neumann) boundary condition, dented by (P)2 ( resp. (P)¥), admits a time local solution
u satisfying (2.2.9), which is denoted by uR (resp. u®). To do this, it suffices to repeat the
same arguments as those in the proof of Theorem 2.2.3 with obvious modifications such as

J() =0,D(p) = Hy(Q) (resp. D(p) = H'(2)).

(2) If assumption (F) is satisfied with F,, =0, then the solution of (P)'?, (or (P)2, (P)X)
giwen in Theorem 2.2.3 is unique.






Chapter 3

Asymptotic Behavior of Solutions

In this chapter, we discuss a uniform bound for global solutions of (P),. In order to
investigate the uniform boundedness of global solutions of (P),, we make the most use of
the variational structure of our problem (AC)7 . Note that the theory of the asymptotic
behavior of global solutions to nonlinear evolution equations with the term of a difference of
subdifferentials was established by [46] and [29] provided that functionals are homogeneous.
However, in general, it is obvious that ¢ is not homogeneous in our setting.

3.1 Grow-up of Functionals

First of all, we recall the formulation of (P), as a evolution equation on L*(Q). Set

1
(311 ) = Sl
Then we see that (P), is equivalent to
d
(AC): 27 u(t) £ 0p(u(t)) — 0vp(u(?)) =0, t>0,
u(0) = uy,

Moreover we introduce the energy functional J and the Nehari functional j which are
defined by

(3.1.2) J(u) = p(u) = Pp(u),
(3.1.3) J(u) = =(0p(u) — 0Yp(u), u)2

= | Vul} - / jultdo + [[ul,
o0

respectively. Let u be a global solution of (AC); satisfying (2.1.1). Then multiplying (P),
by u and du(t)/dt, we get the following equality:

(3.1.4) LA =) vieo00)
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and

2

=0 for a.e. t € (0,00).
2

(3.1.5) %J(u(t)) 4 ‘

du

I ()

Hence, in particular, it follows from (3.1.5) that J is monotone non-increasing in (0, co)
and

(3.1.6) J(u(t)) < Jo := J(up) Vit > 0.
We now introduce some types of growing up (G.U.) of solutions to (AC)j .

Definition 3.1.1. For a global solution u of (AC); satisfying (2.1.1), we define the fol-
lowing notions:

(1) w is said to be p-G.U. if and only if litrg(i}olfgo(u(t)) = +o00.
(i) w is said to be ,-G.U. if and only if lig(i)glf Pp(u(t)) = +oo.
(iii) w is said to be J-G.U. if and only if litrgioglf J(u(t)) = —o0.
(iv) w is said to be j-G.U. if and only if ligioglfj(u(t)) = +o00.
(v) w is said to be H-G.U. if and only if litrgglf lu(t)|l2 = +oo.

From the definitions and simple properties of these functionals, we can see that each
glow-up dose not occur.

Proposition 3.1.2. Let u be a global solution to (AC); with ug € D(p) satisfying (2.1.1)
and assume that g € (1,p) and p € (2,2%). Then each glowing up (i) - (v) in Definition
3.1.1 cannot occur.

Proof. By the Holder inequality and the Poincaré-Friedrichs inequality (Lemma 1.1.9), we
can see that

lu(t)ll2 < C {wp(u®)}r < C {pu(t) + 133,
which implies that (v) = (ii) = (i). Moreover, (3.1.2) and (3.1.6) imply

p(u(t)) < Jo+ Pp(u(t)).

Hence (i) is equivalent to (ii). We can also verify that (iii) or (iv) implies (ii). Indeed, by
the definition of J and j, we can easily show

J(u(t)) = =p(u(t)), J(u(t)) < pp(u(t)),

respectively. These inequalities show (iii) = (ii) and (iv) = (ii).

On the other hand, if (ii) holds, then we can see that L? norm of u(¢) blows up in finite
time (see Lemma 3.2.3 in the next section). Therefore (ii) does not occur. Especially,
from the above observations, (i) - (v) cannot occur. O
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3.2 Uniform Bounds for Global Solutions

In this section, we give more precise results on bounds of global solutions. Our main
results can be stated as follows.

Theorem 3.2.1. Assume that ¢ € (1,p), p € (2,2%) and ug € D(p). Let u be a global
strong solution of (P)q satisfying (2.1.1). Then we have

Q"2 1/
(3.2.1) u(t)]|2 < W] : vt >0,
— {2
(3.2.2) sup ¢(u(t)) < oo,
>0

where g2 := max(2,q).

Theorem 3.2.2. Assume that ¢ € (1,p), p € (2,2*) and up € L>(2). Let u be a global
strong solution of (P)q satisfying (2.2.1). Then there exists Coo = Coo(p, q, |S?]) such that

(3.2.3) lu(®)|]2 < Cxo ||20]] oo vt > 0,

(3.2.4) sup ||u(t)| oo < o0.
£>0

In order to derive the estimate of ¢, we here mainly rely on the variational structure
of (AC); . We first show that negative energy causes a finite-time blowing up of solutions.
Moreover, for a global solution to (AC); , we also derive a uniform bound of L%-norm.

Lemma 3.2.3. Let q2 < p and let u be a global solution of (AC); satisfying (2.1.1). Then
we have

(3.2.5) 0 < J(u(t)) < Jo vt > 0,

g2p Jo |97 11/p

(3.2.6) lu®)l2 < Brz = [ b —

Furthermore there exists a constant Cy depending only on p,q, Jo and || such that

t+1
(3.2.7) sup /t (p(u(s))* + plu(s))?) ds < Co.

t>0
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Proof. From (3.1.4), (3.1.3) and (3.1.6), it follows that

Gl = -2 (IVa@E + | oo - o)

> -2 (RIvu0+ 2 [ juopas - 2lalg) + 222 o
328 =20 )+ D)
329 = -2a )+ 220 0
(32.10) > -2g2Jo+ 2(”;‘”) 191" |u(t) |13 vt € [0, 00).

Since J(u(t)) < Jy for all t > 0 holds, in order to show (3.2.5), it suffices to verify that
the energy functional cannot take any negative value for a global solution. Suppose that
J(u(t1)) < 0 for some t; € [0,00), then from (3.1.5) it follows that J(u(t)) < 0 for all
t € [t1,00), which together with (3.2.9) yields

d 2(p—q 2-p
a21) SRz 220 el e o)

Since p > g2 > 2 and J(u(t1)) < 0 implies ||u(t1)|l2 > 0, by (3.2.11) we can see that
||u(t)]|2 blows up in finite time, which leads to a contradiction. Thus (3.2.5) is derived.

Suppose now that ||u(t2)||2 > B2 for some to € [0, 00), then (3.2.10) implies %Hu(tg)H% >
0. Thus we see that ||u(t)||2 is monotone increasing in the neighborhood of ¢ = to. There-
fore, by (3.2.10), we can easily see that

d

2
Sl > 8 == ~2Jo +

— 2—p

which implies that ||u(t)||2 is strictly monotone increasing and tends to oo as t — oc.
Hence there exists t3 > to such that

d P—q 2-p
Sl 2 T g e o).

This leads to a contradiction as before. Thus (3.2.6) is verified.
Furthermore, since

du(t)

@B =2 (u0. %) <2juol |4

dt

2

holds, (3.1.5), (3.1.6) and (3.2.6) assure that there exists C' > 0 such that

/t+1
t

Hence, in view of (3.1.2) and (3.1.6), we can derive (3.2.7) from (3.2.8). O

df[u(s)|3

S

2
ds < C.
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As a consequence of Lemma 3.2.3 and monotonicity of J(u(t)), we can conclude that

(3.2.12) lim J(u(t)) =: Jx > 0.

t—o00

Remark 3.2.4. Estimate (3.2.6) implies that if Jy = 0, then there is no global solution
of (P)q except the trivial solution u(t) = 0.

Lemma 3.2.5. Let g2 < p and let u be a global solution of (P), satisfying (2.1.1). Then
we have

. pJo +1
2. < —.
(3.2.13) llgéglf@(u(t)) S
Proof. Suppose that
. pJo +1
htrgg)lfgp(u(t)) > P
Then we can see that there exists tg > 0 such that
Jo+1
(3.2.14) o(u(t)) > POt vt > to.
pP—q

From (3.1.4) and (3.2.14), it follows that

|| )3 = j(u(t))
:—ﬂvmw@—:éQW@N%a+HM0@
> ——||V )2 - %2 . u(t)|?do + [Ju(t)||?

= —qap(u(?)) + pp(u(t))
:—pJ (t))+(p q2)p(u(t))
1

2dt

(3.2.15) + (p — @2)p(u(t) > vt > to.
Hence we get
lu()lI3 > fJu(to)lI3 + 2(t — to) vt > 1o,
whence it follows that ||u(t)||2 — oo as t — oo, which contradicts (3.2.6). O

Lemma 3.2.6. Let p € (2,2%) and u be a global solution of (P),. Then there exists a
monotone decreasing function Ty(+) : [0,00) — (0,00) such that for every to > 0

p(u(t) < p(ulto)) + 1 vt € [to, to + To(p(u(to)))]-
Proof. By multiplying (P), by —Au = d¢(u(t)), it follows from (1.2.2) that

d _
(ﬁwomw>+nAuam%§u/|Auwwpldx
0
< Liau®z + Sumipe=n
=9 279 2(p—1)

1
< 1) + Cllu(t) 3, Iu() 5555
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Using (2.2.10) and Young’s inequality, we can see that, for any n > 0, there exists C), such
that

2(2p— 4+)\)
2p—4+)X
Tl Il 2255 < mllalgaqy + Collull g g

,4+ )

<nC ([Aul3 + [|ul3 +1) +C HUHH1
< Cl|Aull3 + My (p(w)),

where M, (-) is a monotone increasing function on R of the form

M,(s) = C(s+1) +nC(s+ 1),

and we used the fact that HuH?{I(Q) < C(¢(u) + 1), which is verified by the Poincaré-

Friedrichs inequality, that is, |[ull3 < C(|[Vull3 + [,q |u|?%do + 1) holds for any ¢ € (1, 00).
Thus, taking n > 0 sufficiently small, we obtain

d
27 P(ul)) < My(p(u(t)))-
Hence by applying Lemma 1.2.3, we can conclude the claim of this lemma (cf. [45]). O

Lemma 3.2.7. Let g2 < p and let u be a global solution of (P), satisfying (2.1.1). Then
we have

Jo+1
(3.2.16) lim sup @(u(t)) < plot 1 + 3.
t—o00 p—q
Proof. Suppose that

+ 3.

Jo+1
lim sup p(u(t)) > plot
t—o00 b—q2

Then, by (3.2.13) of Lemma 3.2.5, there exists a couple of sequences {t,}°; and {t;,
such that

2. t, <t, <t , th — o0 as n — oo,
3.2.17 bcts <t i

pJo+1 pJo+1
3.2.18 o(u(ti +1, p(u(t®)) = =21 4 3,
(3:2.13) (uftiy) = B (ults)) = B0

1

(3.2.19) o(u(t)) > Phtl 4 ye 8 t2].

P— Q2

Integrating (3.1.5) over [0, ¢], we obtain
blidu 2
— =Jo— J(u(t)) < Jy — Jo-
(10~ sy <
Therefore CC%‘ € L?(0,00; L?(£2)) holds and we get

— 0 as t — oo.

(3.2.20) - H ‘ L2(t,00;L2 ()
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In view of (3.2.14) and (3.2.19), by the same argument as for (3.2.15), we have

1d du ;
3.2.21 1< =2 u®)|? < |lut H—tH Vi e [t 15).
(3:2.21) < o)1 < e ]| 2 ) € [t 3]
Hence ||u(t)||3 is monotone increasing in ¢ € [t 3], so we get
(3.2.22) lu(®)lI3 < a3 < C (p(u(ty)) +1) vt € [t;,, th]-

Integrating (3.2.21) over [t} ¢5] and making use of (3.2.22), we get

n»'n

. th du
-t —_— d
i< [ e o] o
t;

scww@»+w/

th

du
)]0
&

scww@»+n(L jﬂﬂﬁmykémmf
< o5 F )i~ et

Therefore from (3.2.20), we can derive that t5 — ¢/, — 0 as n — oo, which contradicts
Lemma 3.2.6 and (3.2.18) with a sufficiently large n. O

Now we are ready to give a proof of Theorem 3.2.1.

Proof of Theorem 3.2.1. The assertion (3.2.1) is nothing but (3.2.6) given in Lemma 3.2.3.
By virtue of (3.2.16) in Lemma 3.2.7, there exists some 77 > 0 such that

Jo+1
sup @(u(t)) < POT2 44
t>T p—q2

Since (u(t)) is continuous on [0, c0), we have

sup  p(u(t)) < oco.
0<t<T}

Therefore (3.2.2) is verified. O

Remark 3.2.8. According to the proof of Proposition 3.1.2, under the same assumptions
i Theorem 3.2.1, we can see that

sup ¥ (u(t)) < +oo,  supj(u(t)) < +oo.
t>0 >0

In order to discuss a uniform bound of solutions in L*(£2), we prepare the following
device, which is a variant of results by Alikakos [1] and Nakao [41]. Its proof can be done
along essentially the same lines in the proof of Lemma 3.1 in [41]. To make this thesis
self-contained, we shall give its proof.
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Lemma 3.2.9. Let w € W2([0,00); L2(Q)) N L2 ([0,00); L°(2) N HY(S2)) and assume

loc
that w satisfies
d T —0o 2 01 r
(3.2.23) g IO+ cor™ P llw®)]2 [z (q) < cor™ lw@®lly— a-e. t € (0,00)

for all r € [2,00), where ¢y > 0 and ¢y, 0y, 01 > 0. Then there exist some positive
constants a, b, ¢ such that

sup [|w(t)||oo < 220100 +00bpp
t>0

where My = max (1, ¢[|w(0)lloo, sup;>q [lw(t)ll2)-
Proof. For each k € N, setting
re =21 = clrzl, v = corlzeo, v = w?"

by (3.2.23), we get the following inequality

d
(3.2.24) @Hv(t)H% < —vllo®) 3 o) + arllo @3-
We here note that the following Gagliardo-Nirenberg interpolation inequality

0 2(1-6
10113 < Cllvl| % o lol7 ™ < eillvll?n ) + Cellvll}

9

holds with 6 = N 13- Here set C¢, = C'1-0 Gek ~% and we take ¢ > 0 sufficiently small so
that epay + ek <y, and C¢, > 1. Then we obtam

d T
G | ulde < =1l + axCalo 1
< o3 + (ex + ) Coy o)

2
§—ek/ |w|"™ dx + (e, + ag) Ce, /|w|”€—1dx)
0

< —ek/ |w|" dx + (e, + o) Ce, sup/ |w|"+= 1dac ,
Q t>0
whence follows
(3.2.25) sup/ \w(t)\r’“dazgmax (5k sup/ |w(t)|"™*~ ldac /]w \rkdac
>0 Ja £>0
where 0 = % > 1. Indeed, it is not difficult to show that y/(¢) < —ey(t) + C
yields

supy() < wax{ < y(0)}
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Then the iterative use of (3.2.25) gives

/ wlde < 667y - 07 Mg,
(3.2.26) “
My :=max (1, ¢ ||w(0)| s, Sgg lw(t)]|2) with ¢=max (1,|Q]).
>
Set €, = n 2~ (%0+t00k and choose n > 0 sufficiently small so that ezay + ez < vy, and

Ce, > 1 are satisfied, then rewriting C¢, = C’e/,;7 with v = ﬁ > 0, we have

5k = W — C(Ek 4 ak)elz’y—l
k
<Cuype 2
< Ceg 2700kt =(1+2) 9 (G0 +01) (7+2)k
=C 279000 777('7+2) 9{01+(60+01)(v+1)}k

—qa 2{91—‘y—(@o—‘y—@l)b}k7

where we put a = C2-%¢yn~(1*2) and b = v+ 1. Then by virtue of (3.2.26) with inductive
reasoning, we easily obtain

(3.2.27) lw(t)|r, <aP*2% My,
where
B ok 1 B (2k+1 —k — 2){91 + (90 + 91)[)}
Pk = okl qk = ok +1 .
Since

1
kai’ qe TO1+ (0o +61)b as k7T oo,

from (3.2.27) we can derive (see [45])

w()]|oo < a22{0F @D N ge t e [0, 00).

Finally, we are going to give a proof for Theorem 3.2.2 by applying Lemma 3.2.9.

Proof of Theorem 3.2.2. If ||ug|loc = 0, then the unique solution of (P) is the trivial solu-
tion u(t) =0, so (3.2.4) is obvious. Let ||ug||sc > 0, then as is stated in Remark 2.2.2, we
have

1

(3.2.28) lu(®)lloo < 2ffuolle  ace. t€[0,To] with Ty = ——— .
2P[|uo |5

In order to apply results prepared for the proof of Theorem 3.2.1, we are going to derive
a priori bounds for ¢(u(t)). Multiplying (AC); by u, we get

5 2 [l +e(u®) < fu@®)|p < u@®]% 1,
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where we used the fact that ¢(0) = 0 and the definition of subdifferential yield ¢(u) <
(Op(u),u)r2. Integrating this over (0,7)) and using (3.2.28), we obtain

To 1 1 1
3229) [ pu()dr < 2 fuoll9 oy + Sl = (m n ) 2.
0 2l 2 2

We now multiply (AC); by tdZ—gf) to get

2 2

du d t _
2O+t o) < 3 lu() 553,

]
, Lt

By integrating this over (0,7p), we have

To 2
To o(u(Th)) < /0 o) dt+ 20 sup Ju(n)2V Q)

4 o<i<ty
Hence in view of (3.2.28) and (3.2.29), we can see that
D p—2 1 2 p—4 p
p(u(To)) < 2 [luolics™ | 1€ + 5 ) luollse + 277 [luoll5 [€2]
1
(3.2.30) < orfl <|Q + 2) | uol|Z .

Consequently, from (3.2.30) and (3.2.6) of Lemma 3.2.3, it follows that

gap Q)" 20+ (|9] + 5)]1/p

(3.2.31) sup [|u(t)[l2 < [ — s

To<t<oo

[0]|oo-

Hence since |u(t)||2 < [|u(t)]oo |22 < 2 |luol|oo |12 for all t € [0, Tp], (3.2.3) is derived.
In order to derive the uniform bound of solutions in L>°(2) on [Ty, o), we rely on Lemma
3.2.9.

To do this, we rewrite (P), in the following way:

(3.2.32) O — Au+u = |uPu + u.
Multiplying (3.2.32) by |u|"~?u (r > 2), we obtain
1d
G233 Gl [ P usade + (@l = [ a2+ o)l
rdt 0 Q
By transforming (3.2.33), we are going to derive an inequality of the form (3.2.23) in

Lemma 3.2.9. Note that the left-hand side of (3.2.33), denoted by (LHS), can be estimated
from below as follows:

1d r r— r— r
(LHS) = Ll + 0= 1) [ (FuPlul e [ Juft e 4 (o)l
Q o0N

2 12
da -+ | lut) 2

r2

2D gy 2

1d A(r—1) .
> - T
>~ u(t); + Ak

1d
> = lu(@)|”
>~ (el +

2
r HY(Q)
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On the other hand, in order to give an estimate for the right-hand side of (3.2.33), de-
noted by (RHS), we first consider the first term of (RHS). We apply generalized Holder’s
inequality (see Lemma 1.1.4) of the following form:

3.2.34 wlPt2de < |lul|7) lullP2 |ul|¥ with o =
( r P 5
Q p

This is valid for all @ € (0, 1), which holds if and only if p < s. So we take s = 2* for
N >3 and s = 2p for N = 2 to get

T2 T
3.2.35 ul|5 = |||u|2 aSC |2
2
S

2c
HY(®)

Then, recalling that ||u||, < C(¢(u)+1)'/2 which is uniformly bounded by (3.2.2), we
obtain by (3.2.34) and (3.2.35)

(RHS) < [u(@)ll;* = u(@) B2 lu() 18 + lu()l;

gmmwm“ﬂwggamwwﬁf3Hm@ﬁja+wwm

2(r — 1) o 12 2(r—1)\ Ta . .
<2 i, o + ¢ (2 Ju(®)l; + (o)
Thus since 2(;"7:) <r and 2(%1) > 1 for all » > 2, from (3.2.33) we deduce
3.2.36 D) oiElT <ol vee[n
L. —_ 2 —« .
(3.2.36) @+ @] < erms ol v e [Th,00)

Then (3.2.36) implies that u satisfies (3.2.23) with ¢ =1, ¢; = C, 6y = 0 and 0; = ﬁ
Thus the desired bound of uw in L% ([Tp,00); L>(2)) is derived from Lemma 3.2.9 and
(3.2.3). O

Remark 3.2.10. [t is possible to show that the global bounds of p(u(t)) and [|u(t)| s
depend only on initial data o(ug) and ||upllec (as well as on p,q,|Q|) respectively, if p

satisfies the following more restrictive condition: 2 < p < 24, where 2, = oo for N = 1

and 2, =2+ 3]\1,34 for N >2 (2, <2* for N > 2, see [13]).







Chapter 4

Comparison Theorem

This chapter is devoted to studying comparison theorem for an initial-boundary problem
for a system of nonlinear parabolic equations with nonlinear boundary conditions. The
advantage of our comparison theorem over the classical ones lies in the fact that it enables
us to compare two solutions satisfying different types of boundary conditions. We first
prove our main result on a general domain. In the latter half, we give an application of this
theorem to nonlinear heat equations with nonlinear boundary conditions. More precisely,
we consider the generalized version of nonlinear heat equations (P)’g (see Chapter 2).

4.1 Main Statement and Its Proof

The main purpose of this chapter is to give a comparison theorem for a rather wide class
of nonlinear systems of reaction diffusion equations with nonlinear boundary conditions,

i.e., the following system of equations for U = (u!,u?,--- ,u™) given by
T ) ok A
—_— — t t —F*t,2,U) >0 t €
2 ( () ) 0l - P U) 30, ()€ Qn,
(GP) uF
- Z 1/J e gr(t, z,u), (t,x) € I'r,
ox;
1,j=1
ub(0,z) = a®(x), x €,
where Q is a general domain in R with smooth boundary 99, Qr := (0,T) x Q, I'y :=
( T) x 0, v = v(x) = (11, ,vyN) is the unit outward vector at x € 9Q, u¥ : Qr —
R (k=1,2,---,m) are the unknown functions.
As for the coefﬁments a (k=1,2,--- ,m), we assume

(4.1.1) IN* >0 such that )\k\£|2 < Z afj(t,sn) 3 Ve e RY, ae. (t,z) € Qr,

ij=1
(4.1.2) af; € L®(Qr), af;|r, € L®(T7).
We also assume that F* : Qp x Rm — 2R (k=1,2,--- ,m) are (possibly multi-valued)
nonlinear mappings; v*(t,z,-) and g*(t,z,-) (k = 1,2,---,m) are maximal monotone

o1
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graphs on R! x R! for a.e. (¢, 7). More precisely, there exist lower semi-continuous convex
functions j*(t,z,r) : T x R — (—o0, +00] and n*(t,z,7) : Qr x R — (—o00,4+00] such
that 5% = 95% and v* = 9n®, respectively. Here 0j* and 9n* denote subdifferentials of j*
and n* with respect to r € R, respectively.

The problem with this type of boundary conditions appears in models describing diffu-
sion phenomena taking into consideration some nonlinear radiation law on the boundary
(see Brézis[10] and Barbu [7]) and the solvability for (GP) is examined in detail under
various settings (see [10, 7, 45]).

In what follows we work with solutions of (GP) in the following sense.

Definition 4.1.1. A function U = (u!,u?,--- ,u™) : Q7 — R™ is called a super-solution
(resp. sub-solution) of (GP) on [0,T] if and only if for all k € {1,2,--- ;m},
(4.1.3)

uf € C([0,TT; L2(Q)) N L2°([0, T]; L2(2)) N W2 (0, T); LA(R2)) N L, (0, T; H*(9)),

loc loc

and there exist sections f*, g € L2 ((0,T];L%(Q)) of F*(t,x,U(t,x)), v*(t,z,u"(t,x))

loc

and a section b¥ € L} ((0,T); L*(0R)) of B*(t,z,u*(t,x)) satisfying (GP), i.e.,
Ou* 0 k Ak k k
ot A= xy \ Y - > <
ot Z-]Z:l oz, <au(t,$) 8@) +¢"(t,z) — fF(t,x) >0 (resp. <0),

fHta,U) € FE(t2, Ut ), ¢ (t2) € 7" (ta,uf(t,2)), ae (t2) € Qr,

Y ou”
- Z afj(t,m) i om < bF(t,x) (resp. >),
i,j=1 v

vo(t, ) € BE(t, z, u(t,x)) a.e. (t,z) €',

\uk((),x) =d"(x), a.e xze

If U is a super- and sub-solution of (GP) on [0,T] with the same sections f*,b* g*, then
U is called a solution of (GP) on [0,T].

We also define the mazximal existence time Ty, = T,,(U) of a solution U by
Tn(U) :=sup{T > 0; U is extended to [0,T] as a solution of (GP) in the sense above.}

Remark 4.1.2. When the existence of solution is concerned, the assumption D(ﬁk) N
D(v*) # 0 is usually required for each k (see [10, 7]). However we do not apparently
need this assumption to derive our comparison theorem, since the existence of solutions
satisfying (4.1.3) is always assumed in our setting.

We now state our comparison theorem for (GP) and give a proof of it. The idea of proof
is standard and elementary, however, this type comparison theorem can cover various types
of nonlinear parabolic equations including those with classical linear boundary conditions.
The applicability of this comparison theorem will be exemplified in the next section.

Consider the following two systems of equations:
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(auk_ia ak(t x)a—Uk + k(txuk)—Fk(ta;U)aO (t,z) € Q
ot ij=1 Ox; \ "7 Ow; Tn e ’ 7 o
(GP)1 uk
—Z I/ja € B (t,z,u), (t,z) € I'r,
i,j=1
uF (0, ) = a¥(x), T € (),
and
(0uF L0 k du” k k k
W‘i - s (dhgy ) bt -Fee ) 0. (o) can
(GP)2
—Z a;( 1/]8 e Btz ub), (t,z) € I'r,
,j=1
uk(O,a:) = ag(x), xr €,

where for every k € {1,2,--- ,m}, BF, 4% and FF in (GP); satisfy the same conditions as
those for 5%, 4% and F* in (GP). Then our main theorem is stated as follows.

Theorem 4.1.3. Let Uy = (ui,u?, - ,ul) be a sub-solution of (GP); on [0,T] and Uy =
(ud, u2, - ,ul) be a super-solution of (GP)y on [0,T], and let the following assumptions
A1)-(A4) be satisﬁed.

(
(A1) a¥(x) <db(z) ae x2€Q forallke{l,2,---,m}.
(A2) For each k € {1,2,--- ,m}, one of the following (i)-(ii) holds true.
(i) 7t a,) =5t ) =+ t2,) ae (t2)€Qr.

(i) sup {gh; g5 €V5(t, 2, m2) } <inf {gf; gf € 7i(t2,m1)}

Vry € D(YF(t,z,-)), Vro € D(Y5(t,2,-))  withri > 71y ae. (t,2) € Q7.

(A3) For each k € {1,2,--- ,m}, one of the following (i)-(iii) holds true.

(1) BF(t,z,-) = BE(t,z,-) = BF(t,x,) ae. (t,x) €.

(i) sup {8k 0§ € Bh(t,w,r2) } < inf {8} s b € Bf(t,,m1) )
Vry € D(BE(t, x,-)), Vro € D(B5(t,x,-)) withry > 719 ae. (t,2) € 'p.

(iii) ¥ <ok wrb e D(BE(t,x,"), Vrk € D(BE(t,x,-) a.e. (t,x) €Tr.

(A4) For each k € {1,2,--- ,m}, the following (i) and (ii) hold true.

(i) —oco <sup {z;z € Ff(t,z,U)} <inf {z;2 € F¥(t,z,U) } < +oo a.e. (t,z,U) €
Or x R™.
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(i) Ff(t,z,-) or F¥(t,x,-) is single-valued and satisfies the following structure condi-

tion (SC) with F* replaced by FF or F§:
(SC) F*(t,z,U) is differentiable for almost all U € R™ and satisfies

(4.1.4) %Fk(t,x, U)>0 forallj#k forae. (t,2,U)€ Qr xR™
j

and for any M > 0 there exists Lyr > 0 such that
(4.1.5)

sup { [P0 s 125 Sm, (00.0) € Qr x (U [Ulan M} | < Lur
J

Then, we have

(4.1.6) uf(t,z) <ub(t,z)  Vke{l,2,---,m}, Vte[0,T], ae. z€Q.

Proof Let fF, bF, gF be the sections of FF(U;), B*(uF), 4*(uF) appearing in (GP);, and
let wk = u’f — u’§ Since Uy and Uj are a sub-solution of (GP); and a super-solution of
(GP); respectively, we can see that w* satisfies

N

0 ow”
0t = 5o ( ()5 ) +ot = g5 < JH(U) — fF(U2), (t@) €Qr,
ij=1 9% i
(4.1.7) Wk
= Z y] For 2 bk — bk, (t,z) € Qr,
1,j=1
wh(0,2) = af(z) — a5 (), T €.

Multiplying (4.1.7) by (w*)* := max (w*,0), we have
8
[ ot wyras— [ ”21 o (a5 )ty [ (ot - byt
< [ (h©) - FU) W) da.
Q

Here note that

1d
/ ok (W) tde = / Ok whdr = \wk 2dx = / |(w*) T2 da,
{wkzo} 2 dt {wkzo} 2 dt
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and it follows from (4.1.1) that

N

e ACE

/L’]_

aw(? k+
/Z@J o2, ax]d—/aQZwtﬂcujam( ) do

3,j=1

N k
Z/ Z afj(t,x awawd$+/ (bF — b5)(w*) T do
wk>0} 1 0x; a% o0

N
/Z ak(t,) 8%) 6<axj) dzx +/m(b’f—b’§)(w’“)+da

731

3,j=1

> A\

2
d:c+/ (bF — b5 (w*) *do.
o

1 8$j
Hence the following inequality holds:

2 k_k:wk+o. k_kwk+x
(4.1.8) thH( Ol +/em(b1 by)(w)"d +/Q(91 g2)(w")"d

Here we are going to show that

(4.1.9) T = / (B — b5 (wh) o = / (B — b5 (uk — ) do > 0.
N {ub>uk}

< [t - )W) da.
Q

95

In fact, if (i) of (A3) is satisfied, then (4.1.9) is derived from the monotonicity of ¥, and
it is obvious that Isq = 0 provided that (iii) of (A3), that is, (w ) |8Q = 0. As for the

case where (i) of (A3) is satisfied, u¥ > u} and bf € BF(ub), blC € B5(ub) imply that

(b1 = 05) (uf — u5) >0,

whence follows I > 0.

In the same way as above, it follows from (A2) that

(4.1.10) /Q(g]f —g5) (W) tdz > 0.

Here we consider the case where FF is singleton and satisfies (SC) with F* replaced
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by FF. Then by (i) of (A4) we obtain
(4.1.11) / (FE(O) — FE (V) () da = / (FE(UL) — f5(U)) (wh)* da
Q Q
- /Q (FH(UL) — FHU)) (wh)* da
+ / (FH(U) — f5(0)) () da
Q

< / (FE(UY) — FE(U)) (wh)* da
Q

Furthermore by virtue of (SC), there exists some 6 € (0, 1) such that

- /Q (FEUY) — FE(U)) (w*)* de

= /QZEQF{“(UQ +0(U1 — Uz)) w’ (w*)*da
j=1""
/Zau]Fl (U2 +0(U1 = Ua2))((w’) " = (w?) ") (w*) * da

/Z FH(Uy + 0(T; — U)) (w?)* (wh)

where we used the fact that w = w™ — w™, w™ := max (—w,0) > 0 and %Ff(UQ +
O(Uy — Us)) (w?) ™ (w*)* >0 for j # k and (w?)~ (wh)* =0 for j = k.
Hence since U; € L*°(0,T; L*>°(2)) implies that there exists M > 0 such that

max  sup [|Us(t)[lue < M,
=12 4e(0,7)

we obtain by (4.1.5)
(4.1.12) I < Loy || (w*) ¥ 2 Z 1(w?) ) 2

Thus in view of (4.1.8), (4.1.9), (4.1.10) and (4.1.12), we finally get

S W) @) < LM(ZH “Ollz)
k=1

N[ =

m

<Lymy [ @7 Ve (0,T).
k=1
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Then integrating this over (s,t) with 0 < s <t < T, we obtain by Gronwall’s inequality

> ll(w®) ||L2<Z” (5)]|2, e2mbnrt=9) 0 < s <t <T.

Since w* € C([0,T]; L?(2)), letting s — 0, we obtain by (A1)

m

> lw") ||L2<Z” [ —ag)"|fee?m T =0 vt € [0,T],

k=1

whence follows (4.1.6).
As for the case where F2k is singleton and satisfies (SC) with F* replaced by F2k, instead
of (4.1.11) we can get

/ (FE) - FEU)) (b da < / (FE(UL) — FE(U)) (b da
Q Q

Then we can repeat the same argument as above with Ff replaced by Fy. O

Remark 4.1.4. (1) If fF(Uy) < f5(Uy) is known a priori, we need not assume (A4) for
FF and F¥ in Theorem 4.1.3.

(2) If by (u¥) < b5(ub) is known a priori, we need not assume (A3) for B¥ and 5 in
Theorem 4.1.5.

(3) If m =1 in Theorem 4.1.3, then assumption (4.1.4) is not needed.

(4) When we discuss the existence of solutions for (GP); (i = 1,2), we need to assume
that ,Bf and ’yf are mazimal monotone graphs. In Theorem 4.1.3, however, we need only
the monotonicity of ﬁf and ’yf, since the existence of solutions is always assumed in our
setting.

(5) The following condition gives a sufficient condition for (ii) of (A3).

D(Bf(t,m, 1)) C D(Bg(t,:z:, ) ae. (t,z)elp, and
inf {0k ; b € BF(t,x,r)} >sup {b5; 05 € Bh(t,z,r)} Vr € D(BF(L, ")),

and the same assertion for (ii) of (A2) as above holds true.

4.2 Applications

In this section we give an example of the application of our comparison theorem to some
nonlinear problem. Especially, we give a simple proof of the existence of blowing-up
solutions for nonlinear diffusion equations with nonlinear boundary conditions. We here
consider the following initial-boundary problem:

Ou — Au — F(u) 30, t>0, ze€q,

(P)4. — dyu € B(u), t>0, € o,
u(0,2) = up(z) > 0, z € Q.
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We here assume that  is bounded in RY with smooth boundary 99 (Note that our
comparison theorem holds without the assumption on boundedness of 2). The existence
of local solutions to this problem has been already discussed in Chapter 2 under some
assumptions (F) and (3). Moreover, the condition which assures the uniqueness has been
mentioned in Remark 2.2.4. For readers, we state the assumptions for F' and (8 again.

(F) F:R!— 2R is a (possibly multi-valued) operator satisfying the following (i) and

(ii).
(1) 0€ F(0), inf{z;zeF(u)}>[uf?ut VYueR' withp>2,

(ii) F(u) = Fy(u) + Ef(u) — F;(u) Yu€R! and

m

F,(-) is singleton and locally Lipschitz continuous on R,

FE():R' - 2%" are maximal monotone operators such that D(FE) =R

(B) B:R — 2R is a (possibly multi-valued) maximal monotone operator satisfying
0 € 5(0).

In view of assumptions 0 € F'(0) and 0 € 5(0), we immediately see that (P)g possesses
the trivial solution v = 0 with sections 0 = f(v) € F(v), 0 = b(v) € S(v). Let u be any
solution of (P)'IB, with up(x) > 0 with sections f(u) € F(u), b(u) € B(u) satisfying the
regularity required in Definition 4.1.1, whose existence is assured in Theorem 2.2.3, then
applying Theorem 4.1.3 with m = 1; Fi = Fo = F; 71 =% =0; 51 = B2 = fF; a1 =
0, as = ug; w1 = v =0, us = u, we conclude that © > 0 as far as u exists. Here we use
the fact that 0 = f(u1) < min{z;2z € F(u)} < f(ug) is assured a priori by (2.2.7) (see
Remark 4.1.4).

Since we are here concerned only with non-negative solutions, the typical model of
F and B is given by F(u) = |u[P72u and S(u) = |u|?"2u. For this special case, when
q < p, i.e., the nonlinearity inside the region is stronger than that at the boundary, it
might be straightforward to prove that there exist solutions of (P)fp which blow up in
finite time by applying the same strategy as that in [51]. Even though, it is difficult to
apply such a method to (P)lﬁF for the case where ¢ > p, and to derive the existence of
blow-up solutions for this case by using the variational structure, one would need some
complicated classifications on parameters (p,q) with heavy calculations (cf. [56]). We
emphasize that our method for showing the existence of blow-up solutions relying on
Theorem 4.1.3 provides us a much simpler device with wider applicability.

Our result on the existence of solutions of (P)f; which blow up in finite time can be
formulated in terms of the following eigenvalue problem:

(4.2.1) {—Aqﬁ:%qﬁ, e,

¢ =0, x € 0f.

Let A\; > 0 be the first eigenvalue of (4.2.1) and ¢ be the associated positive eigenfunction
normalized by [¢, ¢1(z)dx = 1.
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We here consider the following fully studied problem:

Opu — Au = |ulP~2u, t>0, x €,
(P)) Qu=0, t>0, z€dQ,
u(0,2) = ug(z) > 0, xeQ,

It is well known that (P)E admits the unique time local solution uf for any ug € L>(Q)
and Tm(uzf)j ) < oo if ug satisfies

1
(4.2.2) ugp € L), 0<wup(x) ae xzeQ, and / up(z) ¢1(x) de > AP~2,
Q

which is proved by the so-called Kaplan’s method (see [55]).

By comparing the solution u of (P)I’BJ with uf,) , we obtain the following result.

Proposition 4.2.1. Assume that uy satisfies (4.2.2) and let uf, be any solution of (P)g,

then Tm(ulﬂ;) < Tm(uz?) < o0, ie., ug blows up in finite time.
Proof. We apply Theorem 4.1.3 with m =1, a;; = 0; j and 71 = 2 = 0, a1 = az = up.
Then (A1) and (A2) are automatically satisfied. As for (A4), we take Fy(t,z,u) = |u|P~2u

and Fy(t,x,u) = F(u), then (2.2.7) assures (i) of (A4), and it is clear that F| satisfies
(SC), since I is of C'-class with respect to u. As for the boundary conditions, we set

R! for r = 0,
(423)  Bur) = B2 — { !

0 for r #£ 0,

B(r) for r > 0,
(4.2.4) Ba(r) = Be(r) := < (—00,0] U B(0) for r =0,

0 for r < 0.

Then we can easily see that (2 is monotone, i.e., (21 — 22)(r1 — r2) > 0 for all
[r1, z1], [r2, 22] € B2. In fact, this is obvious when r; > 0 or r; = 0 (i = 1,2). Let
r1 > 0 and ry = 0, then 22 € $(0) or z3 € (—00,0]. If 29 € 3(0), the monotonicity of
[ assures the assertion; and if zo € (—o0,0], then since 0 € 5(0) implies z; > 0, we get
(21 — 2’2)(7’1 — 7’2) 2 zZ17T1 Z 0.

Since S(r) C Ba(r) for all r > 0 and u?;(t,x) >0 a.e. (t,x) € I'r, which is assured by
ug(t,a:) >0 a.e. (t,z) € Qr, u’%(t,x) satisfies —8,,uf;(t, x) € 52(1@(15,55)) a.e. (t,x) € I'p.

On the other hand, —d,ul(t,z) € pi(u)) implies ul(t,z) € D(B1) = {0} and
—8,,u1? (t,z) € RY e, ug (t,z) obeys the homogeneous Dirichlet boundary condition
(see ]9, 10, 7]).

Thus since D(f1) = {0} and D(B2) C [0, +00), (iii) of (A3) is satisfied. Consequently,
applying Theorem 4.1.3, we find that

(4.2.5) 0< ul?(t, z) < ug(t,x) vVt €[0,T) a.e. x €,
where T' = min (Tm(u’g), Tm(uz? )), whence follows

(4.2.6) laP O)llz < @)= vt € [0,T).
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Here suppose that Tm(uf) < Tm(ug), then it follows from (4.2.6) that

lim u (t o = 400,
im0

which contradicts the definition of 7}, (ug) Hence we conclude that 715, (uf,) <Tn (uf ) <

+o00. O
As the special case where F(u) = |u[P~2u, we get the following (see (2) of Remark
2.2.4).

Corollary 4.2.2. Assume that ug satisfies (4.2.2) and let ug be the unique solution of
(P)IB; with F(u) = |u|P~2u, denoted by (P)g, then Tm(ug) < T(ul)) < o0, ie., ug blows
up in finite time.

We next consider another typical classical boundary condition, namely, the following
problem with the homogeneous Neumann boundary condition:

Opu — Au = |ulP~2u, t>0, x e,
(P)) L du=0, t>0, z €09,
u(0,2)u = ug(x) >0, x €.

Then it is also well known that (P)év admits the unique positive local solution ufov for any
0 <wup e L*(2) and Tm(uév) < o0 if ugp is not identically zero in €.

Let u® be any solution of (P)¥ (see Remark 2.2.4), and we apply Theorem 4.1.3 with
m=1, a;j = 6;jand y1 = 12 =0, [ = B2 = BN =0, a; = as = ug. Then (A1),
(A2) and (A3) are automatically satisfied. As for (A4), we take Fy(t,z,u) = |u[P~2u and
Fy(t,z,u) = F(u), then (2.2.7) assures (i) of (A4), and it is clear that F satisfies (SC).
Then we get

4.27)  Jul @l < Jup (@)l V€ [0,T) with T = min (T (u)), T (up)),

whence follows
(4.2.8) T (up) < T (u))).

We now compare (P)év with (P)g, ie., (P)g with F(u) = |ulP~2u. Let ug be the unique
non-negative solution of (P)g ( cf. (2) of Remark 2.2.4 ). We apply Theorem 4.1.3 with
m=1, a;j =6 ;and y1 =2 =0, a1 = ag = ug, Fi(u) = Fa(u) = |u[P"2u. Then (A1),

(A2) and (A4) are satisfied. As for (A3), define 51(-) and B2(-) by

( B(r) for r > 0,
Bi(r) = Be(r) := { (—00,00UB(0)  for r =0,
W for r < 0,
0 for r > 0,
Ba(r) = BN (r) := { (=o00,0]  forr =0,
0 for r < 0.
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Then we can show that /31, f2 are monotone by the same reasoning as that for (4.2.4).
Moreover since 3(r) C B1(r) and 0= BV (r) C Ba(r) for r > 0, and uﬁ(t, x), uév(t, x) >
0 a.e. (t,z) € I'r are assured by ug(t,x), uN(t,r) > 0a.e. (t,z) € Qr, we get —&,ug(t,x) €
Bl(ug(t,x)) and —d,u) (t,x) € Ba(u) (t,x)) for a.e. (t,x) € I'r.
Furthermore for any r1 € D(f31), re € D(f2) with ro < r1, since D(f32) = [0, +00) and
ro < 11 implies 0 < r; and 0 € 5(0) is assumed, we have

sup {ba; by € Ba(ra) } <0 <inf {b1; b1 € B1(r1) }.

Hence (ii) of (A3) is satisfied. Consequently, applying Theorem 4.1.3, we find that
Ogug(t,:n)gu;v(t,:n) vt e [0,T) a.e.xz € Q,

where T' = min (Tm(ug ), Tm(u}],V )), whence follows

(4.2.9) T(u)) < Tn(ub)  and  ul) (8)| e < [Jup) (8)|lze VYt € [0, T (u)))).
Thus putting arguments above all together, we obtain the following observations.

Proposition 4.2.3. Let u}, be any solution of (P)} and let u;, be the unique solution of

(P), (x=D,,N). Then the following hold.
() Tn(uR) < Tn(ul), To(uf) < Ton(up), Ton(ull) < T (ud)
(i) Ton(ud) < Tonlup) < Tin(ud).

Remark 4.2.4. By virtue of (4.2.5), we can also derive some results on the strong maz-
imum principle (see [55]) for (P)’g






Chapter 5

Existence and Nonexistence of
Global Solutions

For nonlinear heat equations dyu — Au = |u[P~2u in the whole space RY, it is well known
that there exists the critical Fujita exponent p. = 2+ % which gives the threshold of p that
divides the existence and the non-existence of positive global solutions (see [22, 28, 55]).
As for the same equation in bounded domains, there is no such a critical exponent of
p. In this chapter, however, we show that the same threshold phenomenon can occur in
bounded domains, which is controlled according to boundary conditions but not to the
exponents p.

5.1 Main Result

We are concerned with the existence and the nonexistence of positive global solutions to

(P):

Oy — Au = |ulP~%u, t>0, zeQ,
(P) —oyu € B(u), t>0, z €0,
u(0,2) = ug(z), x € €.

As in the previous chapters, we assume that  is a bounded domain in RY with smooth
boundary 02 and /3 is a maximal monotone graph in R x R satisfying 5(0) > 0. Moreover
let 75, = Ty, (up) be the maximal existence time of the solution to (P). This type of
boundary conditions imposed on (P) can cover classical linear boundary conditions such
as the homogeneous Dirichlet or Neumann boundary condition. Indeed, set

B R r =0, _o0 v -
Bp(r) = 0 "0, or Bn(r) = r € R,

then the boundary condition of (P) with § = p or = Sn becomes the homogeneous
Dirichlet boundary condition or the homogeneous Neumann boundary condition respec-
tively [10, 7]. To simplify the descriptions, we denote (P) with § = fp and § = Sy by
(P)p and (P)y respectively.

63
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y BD(T) \ BN(T>

0 O

Figure 1: The homogeneous Dirichlet and Neumann boundary condition

In what follows, we always assume that the initial data belong to
LE(Q):={vel>Q);v>0,v#0}.

Then it is well known that all non-trivial nonnegative solutions of (P)y blow up in finite
time and to the contrary, (P)p admits always global solutions for small initial data.

With this fact in mind, we classify the nature of (P) into the following two categories
reflecting the natures of (P)y and (P)p mentioned above.

Definition 5.1.1. (i) (P) is N-type if and only if T,,(ug) < 0o for all ug € LT ().

(ii) (P) is D-type if and only (P) is not N-type, that is, there exists ug € L3°(S2) such
that T, (up) = oo.

Note that it is obvious (P)p is D-type and (P)y is N-type.
We here introduce the following subclass (8%(*))ae(0,00] Of (8) by

(_007 0]7 r= 07
0, € (0,
B’ =pp, B =py andforac (0,00) by B%(r) = re(0,q)
[0, +OO)7 r = OZ,
0, otherwise.
BH(r) 4
r
o) a

Figure 2: The graph of 3,

For the rest of this chapter, (P), denotes (P) with g = g% We know that for all uy €
L(€2), (P)q possesses a unique nonnegative time local solution u satisfying the regularity
in Theorem 2.2.3 (see Chapter 2).

Our main theorem can be stated as follows.
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Theorem 5.1.2. There exists a threshold value o, € (0,00) such that the followings hold:
(i) If a > a, then (P) is N-type.

(i) If o < a, then (P), is D-type.

5.2 Nonexistence of Global Solutions

We first define ag € [0, c0] by
ap :=inf{a > 0; (P), is N-type. },

where we put ag = 0o if A:={a >0; (P), is N-type. } is an empty set.

1

Lemma 5.2.1. Let A1 be the first eigenvalue of the Dirichlet Laplacian and let o > /\fﬁ,
then (P)o, is N-type. In particular we have oy < 0.

Proof. We prove the assertion by contradiction. Let
1

(5.2.1) a> A7

and suppose that there exists a solution u of (P), satisfying the regularity in Theorem
2.2.3 with the initial data ug € L3°(€) such that T, (ug) = co. Let u; be a solution to
the following heat equation:

Oyup — Auq = 0, t>0, x €,
(5.2.2) — Byun € 8% (), >0, z €0,
ul(ovx) = al(x>7 T e ﬁv

where a! € L(Q) N C(Q) satisfies
(5.2.3) a' <a onQ, a' <wup a.e on Q.

By the definition of 5 and (5.2.3), there exists 77 > 0 such that (5.2.2) is equivalent to
the following linear heat equation on [0, 7} ):

Oy — Auq = 0, te (O,Tl), r €,
(5.2.4) dyur =0, te (0,Ty), = € 09,
w(0,2) = @),  wed,

Hence by virtue of the classical maximum principle, we see that there exist § € (0, «) and
Ty € (0,T1) such that

(5.2.5) d <wui(t,x), Vt € [Ty, TY), Vo € Q.

On the other hand, applying Theorem 4.1.3 with m = 1, a; = a', az = ug, 71 = 72 = 0,
B1 = B2 = 3% F1 =0 and Fy(r) = |r|P~%r, we obtain

ui(t,z) < wu(t,z), Vt >0, ae. x €,
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whence follows from (5.2.5)
d < u(t,z) Vi > Ty, ae. x €,

We now introduce the other equation for ¢ > T5. Let ug be the solution to the following
equation:

Oyug — Aug = ‘u2’p72u2, t>Ty, x e,
(5.2.6) — dyug € B%(ug), t>Ty, o edf,
ug(Ty, x) =9, x €,

and let T3 > T5 denote the maximal existence time of us. In the same way as above,
applying Theorem 4.1.3 to (P), and (5.2.6) on [T5,73) with m = 1, a; = 9, a2 = u(T3),
=" =0, 81 = B2 =B and Fi(r) = Fx(r) = |r[P72r, we derive

(5.2.7) ug(t, ) < u(t, ), Vt € [Ty, T3), a.e. x €.

Note that since J is a constant satisfying § < «a, by the definition of 5% we can see that
there exists Ty € [T»,T3) such that uy is independent of space variables on [T%,Ty] and
satisfies

(5.2.8) ua(Ty, ) = «, Va € Q.

Therefore, from (5.2.7) and (5.2.8), it follows that u(t,z) = « for all ¢ > T4 on OS2, which
implies that (P), is equivalent to the following form:

O — Au = |ulP~2u, t>Ty, x €,
(5.2.9) u = q, t>Ty, xedf,
u(Ty,x) > a, x € €.

We finally consider the following nonlinear heat equation with the homogeneous Dirich-
let boundary condition for ¢t > T}, and let us be the solution to

Orug — Aug = ‘U3|p_2’LL3, t>1Ty, x €,
(5.2.10) usz = 0, t>1Ty, xe€ o,
us(Ty, z) = «, x €.

The maximal existence time of ug is denoted by T5(> T4). We apply Theorem 4.1.3 to two
solutions of (5.2.9) and (5.2.10) on [Ty, T3] in the similar manner again, so we conclude
that

us(t,z) < u(t,z), Vt € [Tu,Ts), ae. x €,

whence follows
(5.2.11) lus(t)lloo < u(t)loo, Yt € [Ty, T5).

Therefore we see that 75 = 400 due to of (5.2.11) and the assumption 75, (up) = +00.
On the other hand, for the eigenfunction ¢;(x) associated with the first eigenvalue \;
1

normalized by [¢1][1 =1, (5.2.1) implies that [, o1 (z) dz > AP72 whence it follows that
ug blows up in finite time (see (4.2.2) and Theorem 17.1 in [55]), i.e., T5 < +oo. This
leads to a contradiction. O
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Lemma 5.2.2. Let o > . Then (P), is N-type.

Proof. Let u be the solution to (P), , and suppose that T},,(ug) = 400 (recall that T, (up)
is the maximal existence time of u). By the definition of g, we see that there exists
a € (ap,a) such that (P), is N-type, i.e., for every ug € L(Q), all positive solutions of
the following equations blow up in finite time.

O — Au = |uP~%u t>0, ze€Q,
(5.2.12) — dyu € [%(u) t>0, €09,
u(0,x) = ug(x) x €,

Let uw and T, (up) < oo be a solution and the maximal existence time of (5.2.12) respec-
tively, and we apply Theorem 4.1.3 with m = 1, Fi(r) = Fa(r) = |[r[P"2r, a1 = as = uo,
p1 = p% and P = . Since D(5%) = [0,a] C [0,a] = D(Ba), it is clear that (ii) of (A3)
in Theorem 4.1.3 holds. As a consequence, applying Theorem 4.1.3, we derive

u(t,z) < u(t,z) vVt € [0,T,,(up)), a.e. €.
which implies
(5.2.13) [w(t)lloo < [Ju()]loo vt € [0, T, (uo))-
From the above inequality, it follows that
T (ug) < T, (up).

This is a contradiction by T, (ug) = +oo and T, (ug) < +o0. O

5.3 Existence of Global Solutions

Lemma 5.3.1. o > 0.

Proof. We only need to show the existence of global solutions to (P), for sufficiently small
a > 0 and small initial data. Let u be the solution to (P), with the initial data ug € L(€2)
satisfying ug < «, and let v be the solution to the following equation:

o — Av = |v|P~20, t>0, €,
(5.3.1) v = a, t>0, x €09,
v(0,2) = a, x € €.

The maximal existence time of v is denoted by 7%, € (0,4o00]. We here put

R, r=a,

B (r) = {97 o

Note that from u > 0 it follows that D(5%) = [0, a] and

r < a, Vr € D(BY).



68 CHAPTER 5. EXISTENCE AND NONEXISTENCE OF GLOBAL SOLUTIONS

Then by applying Theorem 4.1.3 with m = 1, a1 = ug, a2 = a, 71 = v = 0, 1 = %,
Be = B and Fi(r) = Fa(r) = |r[P~2r, it holds that

u(t,z) < wv(t,x), vVt €10,T"), a.e. x € 0,
where T* := min(7,,,T,). Hence we see that

[u®)lloo < [v()lloo,  VE€[0,T),

whence follows
Y <Tp.

In order to prove this lemma, we are going to show T = +o0o. We first consider the
case where N > 3. Let w := v—a. If v solves (5.3.1), then w solves the following equation:

dw — Aw = |w + aP 2 (w + a), t>0, xeQ,
(5.3.2) w =0, t>0, z €0,
w(0,z) =0, x € Q.
Put N
-2
ro := max {2, (Z)} .

Multiplying (5.3.2) by |w|" 2w for r > ro, we have
1d r 2, r—2 —1y,, -1
——Aw@I + (= 1) | V[Tl de < [ |w+afP™ |w|" dr.
rdt QO Q

Since |a 4+ b[P~1 < Cp(lafP~t + |b[P~1) for a, b € R with C, := 2P72 it holds that

/|w+a|p—1yw|f—1dx§cp/ |w|p+r—2dx+0p/ap_1/ w["dz
Q Q Q Q

-9 1 —
< Collw®lp "3 + Gl o w®) 77"

Moreover, note that

4(r—1)
r2
4(r —1)
)

4(r—1)
T

112
(r—l)/ Vw2 w|"~?dz = I
O 2

12
> Cyg w|2
2

r
Hﬂa
N—-2

where 2* = 2% and Cg is the best constant of Sobolev embedding H'(Q) — L* ().

Therefore we can deduce that

4(r —
2

l

1d ” ’ r— 1o r—
(5:3.3) 2wl +Cs lw® e < Collw(®) 5573 + Gl o (@)



5.3. EXISTENCE OF GLOBAL SOLUTIONS 69

Since r > 19 > w, Lemma 1.1.5 and Corollary 1.1.2 assure that for any € > 0 there
exists C. > 0 such that

(5.3.4) lwl P75 < ellw]|"n + Cellw[7F,
N—-2

where 0 = %. Hence by (5.3.3) and (5.3.4), we derive

1d ; A(r —1) .

s atos+ {os™ 5 - Gef ool

1 —
< CCellw@)|[;1+ + Gyl =P~ |w(#) 77"
Choosing € = 208157;;1), noting that % > r and using Holder’s inequality, we obtain
ld r ~ r r(149) 1 o p—1 r—1
(5.3.5) S @l + Clw@)l; < CpCellw(®)[:77 + CplQfr o uw (@)l
where 20 D
R AV ATo TR
Cpr? Rt
Divide both sides of (5.3.5) by [|w(#)]|"~!, then we get
d ~ , 1,
(5.3.6) g @l + Cllw@)ll: < CpCellw(®) 7! + Gyl P~
We put
- %5 N 1
C I8 *C p—1
(5.3.7) € = L =)
20Ce 4C, Q)7

We here claim that if o < a,, then

sup ()] < e..
t>0

Suppose that this claim dose not hold. Thus there exists some tg € (0, +00) such that
[w(to)llr > €.
Moreover, since w(0) = 0, there exists t; € (0,7)) such that
[w(®)llr < e, vt € (0,11),
(5.3.8)
[w(t)llr = €.
Hence we get

CoCellw(OI* = CoCellw (@)} lw(D)]|.

< 6150p0e||11)(75)||m vt € [0,t1],
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whence follows from (5.3.6) and (5.3.7)

d C 1
@y + 2wl < CplfraP~t, ¢ e [0,t].
dt 2

Therefore we see that
~ t N
lw(®)ll; < lw(0)llre™ 2t + / Gyl TPl 5 -)ds
0
9 3
= Gl0rar 2 (1- 75
C
1 -1 2
< CplQfral =, t €[0,t].
C
In particular, this inequality gives
€x
o = o)l < 5 <,

which is a contradiction. Thus we conclude that

sup [|w(t)||r < e, Vr € (rg, +00).
t>0

Consequently, letting r — +00, we have

sup [[w(t)[oo < €
>0

and TV, = 400 provided that a < a.
As for the case where N = 1,2, using Sobolev’s embedding theorem

HY(Q) — L¥(Q) Vs € [1,400), (N =2),
HY(Q) < L™(Q) (N =1),

we obtain (5.3.3) up to constants of the second term on the left hand side. Since the above
argument of this proof except the Sobolev’s embedding do not depend on the dimension
N, this lemma can be shown as in the case where N > 3. O

Lemma 5.3.2. Let o < ag. Then (P), is D-type.

Proof. By the similar argument as the proof of Lemma 5.2.2, for fixed o > 0, we see that
there exists @ € (a, o) such that (P)g is D-type. In other words, there exists g € L (£2)
such that the following equation (P)z possesses a global solution @ with the maximal
existence time T',,, = +00:

o — Au = |ulP~%u, t>0, zeQ,
(5.3.9) — dyu € B*(u), t>0, x €09,
u(0,x) = up(z), x € €.
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Let u be the solution to (P), with the initial data uy € L (Q) satisfying ug < %o and
T, be the maximal existence time of u. Since D(5%) = [0,a] C [0,a] = D(%), it is clear
that (ii) of (A3) in Theorem 4.1.3. Thus applying Theorem 4.1.3 with m = 1, a1 = uy,
as =y, 1 =72 =0, f1 = %, B2 = B% and Fy(r) = Fy(r) = |r|P~%r, we have

u(t, ) <u(t, ), vVt €[0,T), a.e. x€,
where T := min(7T},,Ty,) = Tp,. Hence it holds that
[u®)[oo < @)oo, VEE€[0,Tn),

whence follows
T < T

As a consequence, we obtain T}, = +oc. ]

Proof of Theorem 5.1.2. By lemma 5.2.1, 5.2.2, 5.3.1 and 5.3.2, we can deduce that theo-
rem 5.1.2 is true with a. = ag. O






Chapter 6

Structural Stability

In this chapter, we revisit (P), :

Opu — Au = |ulP~?u, t>0, e,
(P)q Oy + By(u) 0, t>0, x €09,
u(0,x) = ug(x), x € Q,

where Q C R is bounded domain with smooth boundary 99, p > 2 is a given number, v
denotes the unit outward normal vector on 02 and d,u = Vu - v.

We here consider not only the single valued cases (,4(r) = |r|97?r with ¢ € (1,00)
but also the multivalued cases f1 and P corresponding to the cases ¢ = 1 and ¢ = oo
respectively, given by:

[0, 00) r=1,
1 r >0, 0 (—1,1)
re(—L1),
Bi(r) =< [—1,1] r=0, Boo(T) i= B
(—00,0] r=—1,
-1 r <0,
0 Ir| > 1,

y Bu(r) p Boolr)

Figure 1: The graph of #; and S

As previously stated, to adopt the power type nonlinear boundary conditions (¢ € (1, +00))
is reasonable from a physical point of view (cf. Stefan-Boltzmann’s radiation law).

On the other hand, the multivalued nonlinear boundary condition S~ also appears in
the Signorini problem, which was first studied by Fichera [21]. This arises in the theory

73
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of elasticity in connection with the mathematical description of friction problems (see
also [19]). We already observed that the initial-boundary value problem (P), is locally
well-posed for ug € L*°(Q) (see Theorem 2.2.1 and Theorem 2.2.3).

The main purpose of this chapter is show the continuous dependence of solutions of
(P)q with respect to the parameter ¢ € [1, 0o]. Especially it will be shown that the solution
of (P), converges to the solution of (P) or (P); in a suitable sense as ¢ converges to oo
or 1.

To carry out this, we make the most use of the notion of Mosco convergence for convex
functionals associated with the —A with nonlinear boundary conditions.

L]

6.1 Mosco Convergence and Evolution Equations

First of all, we state our main result in this chapter.

Theorem 6.1.1. Let gy € [1,00] and (g,) be a sequence in (1,00) satisfying ¢, — qo as
n — 0o. Moreover let ay, a € L™(Q2) be the initial values for (P)g, and (P)q, satisfying

an — a strongly in L>(Q),

and denote by u, and u the solutions of (P),, and (P)g, on [0,Ty] given in Theorem 2.2.3
respectively. Then u, converge to u as n — oo in the following sense:

Up = U strongly in C([0, Ty; L*()),
Vtdpu, — V't strongly in L*(0, To; L*(Q)).

Remark 6.1.2. Since a,, converges to a strongly in L>°(Q2), we can take a common Ty > 0
for all n € N (see the proof of Theorem 2.2.5).

In order to prove Theorem 6.1.1, we rely on the abstract theory of Mosco convergence
of functionals and evolution equations governed by subdifferential operators in a real
Hilbert space H. We first investigate the asymptotic behavior of solutions to nonlinear
evolution equations associated with subdifferential operators whose functionals are Mosco
convergent.

Proposition 6.1.3. Let (¢") C ®(H), ¢ € ®(H), an, € D(¢") and a € D(¢), and let fp,
f € LY0,T; H) satisfying V't fn, Vtf € L?(0,T; H). Assume that B : H — H is Lipschitz
perturbation with Lipschitz constant L > 0. Let u,, and u be the strong solutions on [0,T]

of

(6.1.1) %un(t) 4+ 06" (un(t)) + Bun(t) 3 fult),  un(0) = an,
(6.1.2) %u(t) + 0(u(t) + Bult) 5 f(2), w(0) = a,

respectively. If a, — a in H, f, — f strongly in L*(0,T; H), \/tf, — Vtf strongly in
L?(0,T; H) and

(6.1.3) " — ¢  onH,
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then
Up —> U strongly in C([0,T]; H),

duy, d
\/i% — \/idi; strongly in L*(0,T; H).

Proof. Note that from Proposition 1.5.3 it follows that there exist (o, ) € 0¢ and
(an, Br) € 0¢™ such that oy, — «, 5, — 5 and ¢" (o) — ¢(@). In the same way as
in the proof of Proposition 1.4.1, we can assume that B(0) = 0 and

¢(a) = min{¢(u); u € D(9)} =0,
¢"(an) = min{gﬁn(u); = D(gf)n)} —0.

Step.1: u, — u strongly in C([0,T]; H).

For the rest of this step, let A™ and A denote 0¢™ and J¢ respectively for simplicity.
We first show this proposition for the case where f, = f = 0. For fixed A\ > 0, we
set y = (1 +VAA)"la € D(A) and y, = (1 +VAA")"la, € D(A™). Let v, vy, v,
vp ) € C([0,T]; H) be the solutions of the following Cauchy problems:

dv

(6.1.4) o + Av+ Bv 30, v(0) =y,
(6.1.5) %4—14,\1))\4—311,\ =0, ur(0) =y,
(6.1.6) ddL: + A", + Bv, 30, v (0) = yn,
(6.1.7) dq:;;’A + AXvp A + Bop\ =0, U A (0) = Yn,

where Ay and AY denote the Yosida approximation of A and A" respectively. In order to
prove this lemma, noting
(6.1.8)  Jun(t) —u(t)|g < |un(t) — vn(O)|m + |vn(t) = vn A (B)H + vna(t) — oA (t)|H
+ [oa(t) = v(@)|m + [v(t) — u(t)|a,
we are going to derive a priori estimates for all terms on the right hand side of (6.1.8).

We first consider u,, and v,. Let &, € A"u, and (, € A™v,, it follows from (6.1.1) and
(6.1.6)

d
%(un —vp) + &, — Cn + Bu,, — By, = 0.
Multiplying this equation by u, — v,, we have

1d

Qﬁlun(t) - vn(t)‘%{ + (gn - Cnyun - Un)H + (Bun — Buy, uy — Un)H =0.

Since A™ is monotone operator in H and B is Lipschitz continuous, it holds that

T
un(t) — on (D13 < lan — vl + / DL un(t) — vn (t) 3,
0
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which implies by Gronwall’s inequality
(6.1.9) un (1) — v ()| g < eXT |an — ynlh vt € [0,T].
Similarly, by (6.1.2) and (6.1.4), we can deduce that

(6.1.10) lu(t) —v(t)|g < ela—yly vt € [0, 7.
By (6.1.5) and (6.1.7), we have
d
%(U)\ — Uny)\) + Ayvy — AS\L’Un’,\ + Bvy — B’l}n’)\ =0.

Integrating this equation over [0, 7], we see that
T
[ox(t) = vna(B)la < |y — ynlE + / [Axua(t) — Axvn ()| dt
0
T
+ / |BU/\(7§) — BUnV)\(t”Hdt
0

T
<ly=val + [ 1Ar(®) — Agor(Olds
0
T T
+ / AT () — Ao ()| st + / Loa(t) — vm(8)| et
0 0
< |y = Ynla + 1Axox — AXvall L1 0,1 m0)

+ (i + L) /OT oA(t) = vn A (8)]mdt,

where we use the fact the Yosida approximation is Lipschitz continuous with Lipschitz
constant 1/A > 0 (see Proposition 1.3.7). By the definition of Yosida approximation and
Gronwall’s inequality, we get

(6.1.11)

1
[ox(t) = vpa ()| < (Jy =yl + 11 Axva — AXorllLro,m)) eGHO)T

1 _ o — 1
< (|y—ynrH+ LI+ A4) Moy — (14247 1m||L1(0,T;H)) e(FHT.

We next consider the part |vy —v|g. To do this, we first try to derive a priori estimates
of vy. By the similar argument of estimates (1.4.4) in the proof of Proposition 1.4.1, we
can get

(6.1.12) S[up} loax®)|u < lalg + e (lylu + |alu + T|Balg).
te[0,T

For h > 0, since A) is monotone, we have
d
£|’U,\(t + h) — v,\(t)‘%{ = -2 (A)\v)\(t + h)AAU,\(t), U)\(t + h) — ’U,\(t))H

—2(Bux(t + h) — Buy(t), vA(t + h) — vx(t)) 5
< 2L|vy(t+ h) — UA(t)ﬁq ,
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which implies
loA(t + h) — oa() | < T |oa(h) = vA(0)] 1

Dividing both sides by A and letting h — 0, we obtain

duy

dvy
—=(0 .
o)

dat |,

Since dstA = —Ajv) — Buy and A, C AJ,, it follows from (6.1.12) and Proposition 1.3.7
that

|Axoa(®)|g < Llva()|g + e (A% + Lly|m)
< L{lolg + e (|ylu + lolg + T|Balu)} + e (|A%] + Llyla) -

Note that since y = J 5a — a in H as A | 0, the estimate |y|g < |a[p + 1 holds for small
A > 0. Hence

(6.1.13) S[up} |Axux ()| < LAl + e (|lalg + 1+ |eli + T|Balw)}
tel0,T

+ e {|A%| + L(jalz + 1)} .
For 0 < < A, we can deduce that (see the proof of Proposition 1.4.1)

Ld
2dt

| >

I
[oa(t) = v < F1Awou@) 7 + L 1AXA®) [ + Llva®) = vu ()71,

where v, solves

d
% + Ay + Buy =0, (t>0), 0u(0) = y.

By (6.1.13), we see that

A+
[oa(t) = vu (B[ < T“T [LA{lalm + e (lalw + 1+ ||y + T|Baln) }
+e!T {|A%)| + L(jalg + 1)}]

t
421 [ foa(s) — o).
0
which implies

A+
foalt) = v () < T 2ET (L {Jal + € (ali + 1+ |aly +T|Balm)}

+e! T {|A%] + L|lalg +1)}],  Vte[0,T)
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Letting p | 0, we conclude that

AT
[oa(t) = v (@)l < ey - [L{laln + e (lalu + 1+ |aln + T|Balm)}

+e"T {|A%| + L(lalm +1)}]
LT AT LT
<e 5 [L{lelg +e"" (lalg + 1+ ||y + T|Ba|n)}
AT
+e" {L(lalp + 1)}] + 2T 7|A°y|H.
Note that Ay C AJ) and

A% = |A°(1 + VAA) alg < —= ‘ wal

Consequently, we obtain

AT
(6.1.14) loa(t) — o) g < eFTy ] = 5 [L{|alg + e (lalg + 1+ |a|g + T|Balg)}

T
+e"T {L(|alg + 1)}] + €274/ 5\(1 —ylu.

Similarly, we have

AT
(6.1.15) [03(5) = v"(O)lur < €7/ 5 [L{lanli + T (Janlir + 1+ anls + T|Ban|n)}

T
T {LJanlig + DY) + €7y lan =yl
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From (6.1.9), (6.1.10), (6.1.11), (6.1.14), (6.1.15) and (6.1.8), it follows that

sup_[u(t) — un(t)] < e (la = ylar + |an — ynln)

te[0,7
T
+ 2 (la =yl + lan = yalm)

/AT
+ ey S Llladm + lanln)

AT
+ 2T = {lalg + 1+ LT) |aly + 1}

AT
+ e S {lanlm + (14 LT) |on i + 13
AT
+ T[S L (al i +lanl i) + 2}
1
+ e(X—FL)T‘y - yn’H
1
=+ e(%"'L)TXH(l + )\A)_l’l})\ — (1 + /\An)_l’l))\HLl(O’T;H).
Note that by Proposition 1.5.3 we know
(6.1.16) 1+ MY — (1+ XA w,  YA>0, Yw e H,

and

ly =yl < |(1+VAA) La, — (1+VAA) taly
S 1@+ VA Ty = (1 VA Talg 4+ L+ VALY e = (14 VA4 aly
< ’an - a‘H +|(1+ \F/\An)fla —(1+ ﬁA)fla‘H

— 0.

Moreover, applying the Lebesgue’s dominant convergence theorem, we have

. T
lim sup [[u(t) — un(t)l| oo,y < 26" (1 + GLT\/ 2) la—ylu

n—oo

AT
+ 26T\ |2 (L Jal + lal) + 1}

[\T
+ 2¢*ET 5 {lalg+ 1+ LT)joln +1},  YA>0.

Therefore we finally conclude that

lim |un (t) = w(t)llcqo,r);m) = 0-

n—o0
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For the case where f,, # 0 and f # 0, we use the density argument in order to show
the desired result. Let g be a piece-wise constant function in L'(0,7; H) and i, and @ be
solutions to the following equations respectively:

du

% + A, + By, 5 g, U (0) = ay,
du -
E+Au+Buag, u(0) = a.

The previous result applied successively, that is, @, — @ in H uniformly on [0, 7], since
the translated operators A"u — g and Au — g satisfy (6.1.16) (see Remaque 3.12 in [9]).
Hence we only need to consider the following estimate:

un(t) = w(t)| i < |un(t) = @n ()] + [Gn(t) — @) g + |a(t) — u(t)|n.
By the monotonicity of A, we can derive

1d

3z = a(t)|h < Liu(t) — a(t)lz + (f — gu— ).

Integrating it over [0,7] and applying Lemma 1.2.1, we see that
u(t) — at)|u < "\ f = gllprormy, — VEE 0T,
Similarly we have
un(t) = @ ()n < e fo = gl VEE[0,T].
Therefore, from these inequalities, it follows that
|un — ulleqo,mm) < ()1 - gl ommy + 1o = glirormy) + i — ooy,

whence follows
lim sup [[un — ullcqorym < 2657 |f = gllo.1.m)s
n—oo

for any piece-wise constant function g. Since these functions are dense in L'(0,T; H), the
desired result holds.

d d
Step.2: \/E% — \/fd—? strongly in L?(0,T; H).

Multiplying (6.1.1) by tdgt", we have

2
du duy, du
% dt dt dt ) o

for g, € 9¢™(uy,). From Proposition 1.3.12, it follows that

(6.1.17) /Tt
0

du,

t
dt

2
duy,

T dt+T¢"(un(T))+/ (\fBun,\fd“">Hdt

0 dt

T T dun
:/O ) (un)dt+/0 <\/ifn,\/idt>Hdt.

H
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Since 9¢"(uy) 3 fo — %2 — Buy, it holds that
duy,
¢n(an) - ¢n(un) > (fn - L - Bunyan - un)
dt Y
1d ,
= §£|un - Oén|H - (Buman - Un)H + (fman - un)H

Hence since ¢" (o) = 0, we see that

1 T 1 T
Sl =l + [ 6"t < Slan— anlly = [ (B — )y
0 0

T
+/ (fnaan_un)Hdta
0

which implies

T 1
| 6wt < Glan — anffy
0 2
+ [lan — unllc o)1) (anHLl(o,T;H) + LTHUnHC([o,T];H)) .

By the above inequality and (6.1.17), we get
T 2 T

/ | dtg/ Vi Vi) g
o | dt 0 H

o /OT (ﬂBun,ﬂm>Hdt'

dt

H
+ llan = unlleo.ry,ery (N fnll Lo,y + LT unll oo, m))

+ 2
205n an | {7

1 (T
<5/
=2/

+ llan — unllcqo,m);m) (an”Ll(o,T;H) + LT”UnHC([o,T];H))

1 2
+ §|04n — anlg,

du,,

2 T T
dt+/ t]fn(t)]%dt—k/ t| Buy, |3 dt
dt |y 0 0

whence follows
1 (T
1 / .
2 Jo

By the assumptions and Step.1, we can deduce that

2 2 L2T2

du 1
= dt < H\/gfn + TH“n”zc([o,T];H) + §|Oln — anlF

dt

I L2(0,T;H)

+ llan — unllcqo,m);m) (an”Ll(o,T;H) + LT”UnHC([o,T];H)) .

2

dt < +00.
H

duy,

dt

T
(6.1.18) sup/ t
0

neN
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Taking a subsequence of (uy,) (denoted by (u,) again), we have

duy, duy, .
(6.1.19) VEEm i eakly in L2(0, T H).
dt dt
Hence, noting that w, — u strongly in C([0,T]; H) by Step.1, we obtain
T T
duy, d
(6.1.20) / VtBuy, \/ii dt — / VtBu, \/i—u dt,
0 dt ) 0 dt ) g
T T
duy, d
(6.1.21) / (\/Efn, \/%u> dt — / <\/Efu, \/£u> dt.
0 dt )y 0 dt ) 5
Moreover, the assumption ¢" M, ¢ on H implies
(6.1.22) To(u(T)) < liniinf To™ (un(T)).

We next prove

T T
(6.1.23) / O" (un(t))dt — / o(u(t))dt.
0 0
To do this, we attempt to transform (6.1.1) and (6.1.2) by using the following functionals:

P(2) == ¢" (2 + an) — 9" (an),
Y(2) == ¢(z + a) — ¢(a).

It is clear that ¥™(0) = ¢(0) = 0, moreover we can see that " M, v on H. Put
Wy, = Up — p and w := u — «. Then we get

dw,,
n n B n n ny t Y
6.11) 7 + 0" (wy) + B(wn + o) 3 f >0
wn(0) = ay, — ap, =: al,,
W op(w)+ Bw+a) > f >0
— w (e
(6.1.2) <« { dt ’ ’
w(0)=a—a=:d.
Since (6.1.23) is equivalent to
T T
(6.1.24) / " (wy(t))dt — / P(w(t))dt,
0 0
we only need to show (6.1.24). From (1.5.1), it follows that
P (wn) + @) (fo— —~ = Blup+an) | = | fn = —— — Blwn + an), wn
dt dt I
_ Ld 2
- (wna fn)H - §£|wn(t)|H

— (wn, B(wp, 4+ an))m-
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Integrating it over [0, 7], we derive

(6.1.25) 0= /OT W (wn)dt + /OT(W)* (fn - dd% ~ Bluwn + ozn)> dt — /OT(wn, ) gt

1 1 r
+ gD = Sl + [ (wa, Blon + an)udt.
0

In particular, since (¥™)* > 0 (note that ¥™(0) = 0), we see that (¢")*(f, — %= — B(w, +
an)) € LY(0,T). Moreover by using Lemma 1.5.4 we get

T T
(6.1.26) /O B(w(t))dt < lim inf /0 O (1) .

n—oo

We also know

1 1
(6.1.27) Slon(D = ST,
1 1
(6.1.28) §|a§1|§{ - §|@/|fq,
T T
(6.1.29) | it [, py,
0 0
T T
(6.1.30) / (wn,B(wn—i—an))Hdt—>/ (w, B(w + «)) gdt
0 0

For any § € (0,T), we obtain

T n\* dwn T n\* dwn
Ly (= 2= B+ o )z [y (- G2 - Bl o) d

and note that

dwy, d .
;l; —B(wn—l-an)éf——w—B(w—l—oz) weakly in L2(5,T; H).

fn_ dt

Using Lemma 1.5.4 and Lemma 1.5.5, we have (¢™)* M, * and féT(@ZJ")*dt M, féT Yrdt.
Therefore it holds that for all § € (0,7)

/T b (f W By a)> dt < nmmf/T(w)* (fn _ O B, + an)) dt

dt n—00

T
< liminf/o (P™)* (fn - d;‘;” — B(w, + an)) dt,

n—oo

whence follows
(6.1.31)

T
/ (0 (f—ChU—B(w+a)> dt < liminf
) dt

n—oo

T
0

) (£ = Bl ) ) .
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By the similar argument, we remark that w satisfies

(6.1.32) 0= /OTw(w)dt + /OT o <f - %"f ~ Blw+ a)> dt - /OT(w,f)Hdt

1 1 r
4@ = Slalh+ [ B+ )
0

By using Lemma 1.2.5 with (6.1.25), (6.1.32), (6.1.26), (6.1.27), (6.1.28), (6.1.29), (6.1.30)
and (6.1.31), we conclude that (6.1.24) holds, that is, (6.1.23) is true.
By (6.1.17), (6.1.20), (6.1.21), (6.1.22) and (6.1.23), since u satisfies

T 1 dul? T du
(6.1.33) / t|—| dt+To(u(T))+ / <\/£Bu, ﬁ) dt
o ldtly 0 dt )
T T du
:/ ¢(u)dt+/ (x/if, \/i> dt,
0 0 dt )
it follows that from Lemma 1.2.5
(6.1.34) / g i dt—>/ o st S
o | dt |y o |dt |y

Consequently, (6.1.19) and (6.1.34) imply

d d
\/i% - \/%d—qz strongly in L2(O,T; H).

6.2 Convergence of Functionals

By virtue of Proposition 6.1.3, to prove Theorem 6.1.1, it suffices to verify the Mosco
convergence of the functionals associated with Laplacian under nonlinear boundary con-
ditions. Recall that (P), is reduced to the following abstract evolution equation in L*(Q):

(AC) %“(t) + 0pq(u(t)) + Bp(u(t)) =0, t>0,
u(0) = uo,

where B,(r) = |r[P~2r and

D(p,) == {v e H'(Q); u e LYN)},

1 1
/ |Vu\2d:c+/ lulldo u € D(pq),
2 Jo q.Jao

+ 00 u € L*()\ D(g),

pq(u) = (g € [1,00))

D(pso) :={v € H'(Q); [u(z)] <1 a.e. z € N}

1
/ |Vu|2dx u € D(¢oo)s
12/

+ o0 u € L2(Q) \ D(goo).

Poo(u)
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We obtain the following statement on the Mosco convergence of ¢,.

Theorem 6.2.1. Let gy € [1,00] and (g,) be a sequence in (1,00) satisfying ¢, — qo as
n — oo. Then

M
Pgn —7 Pao-

Proof. Step 1: The case of ¢, T qo € (1, 0.
Let u € D(pq,) be fixed, and set a sequence u,, = u. Note that D(¢q,) C D(ypg,) for
all n € N. Using Hélder’s inequality and Young’s inequality, we have

1 1
funle) = pou() = 5 [ (Voo [ juprdo
q

/ \Vul?dx + — (/ ]u\q°d0> b

/|Vu2d:c+/ ldo + 2 pgy,

| /\

whence follows
lim sup @g,, (un) < g (w).

n—oo

Thus (i) of Definition 1.5.1 follows.
As for the condition (ii) of Definition 1.5.1, let (u,) C L*(2) and u € L?(f2) such that
u, — u weakly in L?(2). Without loss of generality, we can assume that

(6.2.1) lim inf ¢, (uy) < +o00,

n—oo

otherwise (ii) always holds. By (6.2.1), there exist a constant C' > 0 and a subsequence of
(n) (which is denoted by (n) again) such that

1 1
/ \Vun|2da?+/ |up | do < C, VneN,
2 Ja an Joo

which implies

1 ~
(622) ||Un||qn,8Q < (Qno) . — C
(6.2.3) Va2 < (20)2,
where X
& (qoC) o, qo € (1,+00),
1, qo = +00.

For any r € (1, ¢y,), it follows that from Hoélder’s inequality

1 1
() = (f ) omes
o) o0

< (gaC)in |09 i, VneN.
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Hence we see that ||uy||,aq is bounded for r € (1,qp). Taking a subsequence of (n) which
is denoted by (n) again, we can deduce that

Up — U weakly in L"(09Q) (1 <r < qp).

In particular, since (u,,) is bounded in L'(9Q), from (6.2.3) it follows that (u,) is bounded
in H'(Q). Therefore

(6.2.4) Up — U weakly in H'(Q).
Moreover

Up = U strongly in L?(€),

(6.2.5) Vu, = Vu weakly in L%(Q).

By the weak lower semicontinuity of norm, we can see that

1 1
</ \u|rda> ' < lim inf </ |un|rd0>
18] n—00 I[9)
a1
< liminf </ |un|q"da) " \aQ,"SJ

< (qoC) 7w |00 W0 .

Taking the limit of » — ¢g, we have
[ullgo.00 < C-

Hence, by this estimate and (6.2.4), we get u € D(¢py,) for all go € (1, +00]. Moreover, for
the case where qg € (1, +00), we also see that

/|u\rda§liminf/ |un|"do
o0 oo Joq

< lim inf (/ ]un]q"da) " \8{2\(12:
o0

n—oo

liminf{r/ |9 do + q"‘ﬂam},

whence follows
1 1  —
/ lu|"do < liminf/ lup |9 do + |9,
15)9) o0

r n—=00 ({p qnT

Passing to the limit » — ¢, we deduce that

1 1
— lu|®do < liminf/ |un | do.
4o Joq n=oo 4o Joan
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Therefore, by the above inequality and (6.2.5),

©go (u /!Vu\ dm—l—/ |u|®°do

< liminf — /|Vun| da:+11m1nf/ |t | do

n—oo — 00 q
< hmlnf < / |V, |2de + / [un, \q"d0>
= lim inf oy, ().

On the other hand, for gg = +00, it is clear that

Pgo (U /\Vu] dr < liminf > /\Vun\Qda:

1
< lim inf </ |Vun|2dx+/ un]q”da>
n—eo \ 2 Jg an Joo

= lim inf g, (un).

Consequently, (ii) of Definition 1.5.1 follows.

Step 2: The case of ¢, | qo € [1,00).

We first verify the condition (i) of Definition 1.5.1. For u € D(gq, ), we set ay, = ¢, —

and u, = xn(u), where x,, : R — R is defined by

T, Ir] < 1/ap,
Xn(r) =< 1/ap, r>1/ay,
—1/ap, r<—1/ay.
Noting that
up(x) = u(zx) a.e. x € (),

[un(@)[* < Ju(z)® € LY(9),

by the Lebesgue dominated convergence theorem, we see that

Up —> U strongly in L*(Q).
As a consequence by the above similar argument, we can deduce that
(6.2.6) Up — U strongly in L% (0€).

Since x/,(r) = 0 on |r| > 1/ay,, we have

/Vunde:/ |X'n(u)|2]Vu|2dw:/ Vu2dz,
0 2 (@<t /an)

87
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which implies

(6.2.7) / Vup2dz — / Vuldz.
Q Q

By the definition of x,, and ¢g < g,, we obtain

1 1
— |tup|Tdo = — [t |7 [y [T do <
an Joq an JoQ

1

Qp

an 1
/ |un|?do.
90 Joo

From (6.2.6), |1/ay|** — 1 and the above inequality, it follows

1 1
(6:23) timsup - [ funfrdo < - [ jundo
o0 40 Joq

n—oo Qn

On the other hand, Holder’s inequality and Young’s inequality imply

490
n an —4a
/69 |un|?do < (/69 |un|q"da> ’ |0~ an ’

<D ]un]q"da—i—iqn_qol(?@],

C Gn Joa In
that is,
1 1 1 1
L junodo - ( - ) 00| < / | o
qo Joq q0 dn an JoQ
Hence we get
1 o1
(6.2.9) — |u|?do < liminf — [up | do.
40 Joo N0 (n Joq

By (6.2.7), (6.2.8) and (6.2.9), we can see that

©g, (Un) = ©go (1),

which is the desired convergence.
We next check the condition (ii) of Definition 1.5.1. To do this, for (u,) C L*(Q) and
u € L%(Q) satisfying u,, — u weakly in L?(f2), it suffices to show

Pqo (u) < hgr_l)iogf Pan ().

Since if lim inf ¢, (u,,) = oo, then the above inequality holds, we can assume that liminf ¢, (uy)
is finite. Therefore, up to a subsequence (which is denoted by (n) again), we can derive

¢QTL (un) S C

for some positive constant C' independent of n. We get

1
(6.2.10) / |V, |*de < C, — |up|"do < C,
Q an JoQ
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which implies

1 1 1
(6.2.11) — |up|®do < — |up | do + ( - ) 0Q] < C+ — \89[
40 J o an JoQ qQ 4n q0

For ¢o € (1,00), by (6.2.10) and (6.2.11), taking a subsequence of (u,) denoted also by
(un), we obtain

Vu, = Vu weakly in L?(Q),
Up — U weakly in L% (052),

and we see that
1 ) 1
Vg () == | |Vul*de + — lu|*do
2 Jo 9 Joa

1 1
<timint 5 [ [V, o+ limin = | o
2 o0

1
< hrgmf < / |V, |?dz + / |un\q°da>
. ) 11
< liminf { = |Vun| dr + — up | do + | — — — ) |09
n—00 2 dn JoO q0 an

= liminf g, (un)

As for the case where gy = 1 (in fact the following argument works well for ¢g € [1,2]),
since ||Voll2 + [|v]|1,00 is a equivalent norm of the usual H!' norm, (6.2.10) and (6.2.11)
imply that (u,) is a bounded in H'(2). Hence, by the compactness, taking a subsequence
of (uy) denoted also by (u,), we obtain

Up — U weakly in H(Q),
Up — U strongly in L*(€),
Up — U strongly in L%(9Q).

Since in particular u, converges to u strongly in L!(92), we see that

1
v1(u) = /\Vu| dx—l—/ |u|do
<hm1nf /|Vun| dx + hm/ |un|do
= lim inf </ \Vun\Qda:—k/ ]un]da>
o 1 9 1 1
<liminf< = [ |Vu,|*dz + — |up|Tdo + (1 — — ) |09
n—oo | 2 Jq dn JoQ qn

= liminf g, (un).
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Step 3: The general case where g, — qo € (1, 00).

We can see that if ¢, — qo, then any subsequence (gy, )ken of (gn)nen has a subsequence
(qny Jwen of (qn, )rken such that g, , T qo or gn,, | qo. Therefore, the desired result follows
from Step.1, Step.2 and Lemma 1.5.6. OJ

We can prove Theorem 6.1.1 by the above lemmas.

Proof of Theorem 6.1.1. Set
M = max{”a”oo, ilelll\)l Han|oo} + 2.
For v, w € C([0,T]; L*(Q)) N L>(0,T; L), we see that
1Bp(v(t) = By(w(t))ll5 = /Q o) P~20(t) — lw@) P 2w(t)|* de
<(p- 1)/ (0P~ + [w(®)[~2)* [o(t) — w(t) da
Q
< (= 1) (lo@) 52 + llo@)[52) lo(t) = w(®)]3,

which implies

1By(0(t)) = Byw(®)lls < (0= 1) (0122 ey + 10122 ) 1008) = 2}

If v and w are solutions to (P)q or (P)g,, by the proof of Theorem 2.2.3, then (2.2.17)
holds with M replaced by M and we see that

1/ ~ p—2
IBy(0(8) = By(w(®)ll2 < 2(p = 1)} (8 +1)" " [Jo(t) = w(®)]l>

Hence applying Lemma 6.1.3 and Theorem 6.2.1, we conclude that Theorem 6.1.1 holds.
O
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Introduction

In this part, we mainly consider the following initial-boundary value problem for a non-
linear reaction diffusion system:

Oy — Aug = ujug — bug, t>0, re,

Oruo — Aug = auyq, t>0, x e
(NR) U2 2 1 )

Oyuy + auy = dyug + Blua|’ “ug = 0, t>0, e o,

Ul(ﬁU,O) = ulO(l‘) > 07 uz(:c,()) = UQO(SU) > 05 T € 97

where Q € RY is a bounded domain with smooth boundary 9, v denotes the unit
outward normal vector on 02 and 0, is the outward normal derivative, i.e., d,u; = Vu; v
(1 = 1,2). Moreover uj, uy are real-valued unknown functions, a and b are given positive
constants. As for the parameters appearing in the boundary condition, we assume a €
[0,00), 5 € (0,00) and v € [2,00). We note that the boundary condition for u; becomes
the homogeneous Neumann boundary condition when o = 0, and the boundary condition
for us gives the Robin boundary condition when v = 2. The initial data g, usg are here
assumed to be nonnegative and members of L(£2).

This system describes diffusion phenomena of neutrons and heat in nuclear reactors
by taking the heat conduction into consideration, introduced by Kastenberg and Chambré
[31]. In this model u; and wg represent the neutron density and the temperature in
nuclear reactors, respectively. There are many studies on this model under various linear
boundary conditions, for example, [14], [15], [25], [26], [30], [57] and [61]. Many of them are
concerned with the existence of positive steady-state solutions and the long-time behavior
of solutions.

Our problem originates in the following rather simplified model studied by [57] :

Oy — Aug = ujus — bug, t>0, re,

Oug = auy — cug, t>0, x e
(IL1) £ U2 1 2

up = 0, t>0, xedf,

u1(z,0) = uio(x) = 0, uz(x,0) = ug(zr) 20, =€

In (IL.1), the negative feedback —cug (with ¢ > 0) from the heat into itself is considered
instead of the diffusion term. In Rothe’s book [57], the boundedness and the convergence
of solutions to equilibria of (II.1) are examined in detail.

In [25], our system is studied for the case where o = 0 and v = 2, i.e., with the
homogeneous Neumann boundary condition on u; and the Robin boundary condition on
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u9:
O — Aug = uqgug — buq, t>0, re,
(11.2) Orus — Aug = auyq, t>0, r e,
' 6l/u]. = 6l/uQ + Bu2 = Oa t> 07 WS aQa

ui(z,0) = uip(x), ua(z,0) =wug(x), =€ .

They derived the existence and the ordered uniqueness of positive stationary solution for
N € {2,3,4,5} and showed that this stationary solution plays as a threshold of the initial
data to determine whether the corresponding solution can exist globally or not (blow-up
in finite time). This problem (II.2) with 5 = 0 is also studied in [61], where the stability
of stationary solution is discussed and some estimates of the existence time for blow-up
solutions are obtained.

Another variant system with the homogeneous Dirichlet boundary condition on both
u1 and ug given below is studied by [26] and [30].

8tu1—Au1:u1ug—bu1, t>0, r €,

Orus — Aug = auyq, t>0, z e,
(I1.3) U2 2 1

up = ug =0, t>0, x €0,

ui(x,0) = uip(z), ua(z,0) =ug(x), =€ .

In [26], the existence of positive stationary solution is shown for the case where p = 1
and N € {1,2} or N € {2,3,4,5} provided that € is a convex domain. Furthermore,
they obtained the threshold property of the stationary solution, the same as that in [25],
when Q is ball. In [30], the existence and the ordered uniqueness of positive stationary
solutions are considered for general p > 0 and some threshold result is obtained. Moreover
the blow-up rate estimate is given for positive blowing-up solutions when €2 is ball and
p =L

In Part II, we analyze how the nonlinear boundary condition imposed on us is reflected
in the nature of (NR). As already emphasized in the introduction of Part I, the importance
of the study of nonlinear boundary conditions from a physical point of view could be
supported by Stefan-Boltzmann’s law, which says that the heat energy radiation from the
surface of the body in RY is proportional to the (N + 1)-th power of temperature, which
can be covered by our power model B|ua|?™us.

The outline of the contents of Part II is as follows. In Chapter 8, we consider the
stationary problem associated with (NR) and show the existence of positive solutions.
In doing this, we first note that this stationary problem does not possess the variational
structure. Hence we can not rely on the standard tools in the variational calculus such as
the mountain pass lemma. Instead we here apply an abstract fixed point theorem based
on Krasnosel’skii [32]. To apply this fixed point theorem, we need a priori estimates of
solutions in L>°(€2). However, because of the presence of the nonlinear boundary condition,
we can not rely on the standard linear theory for this purpose. So we here introduce a new
approach which enables us to obtain strong summability of solutions on the boundary.

Next, we prove the ordered uniqueness for the positive stationary solutions of (NR).
We here make the most use of the property of the first eigenfunction of —A with the Robin
boundary condition.
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In Chapter 9, we study the nonstationary problem. In the first section, we show
the local ( in time ) well-posedness of (NR) in L*°(2) along the lines of the L*-energy
method [45]. In the second section, we show that every positive stationary solution acts
as a threshold of the initial data to separate the global existence and finite time blow-
up of corresponding solutions. More precisely, if the initial data is less than or equal to
positive stationary solutions, then the solution of (NR) exists globally and tends to zero as
t — oo, and if the initial data is strictly larger than positive stationary solutions, then the
solution of (NR) blows up in finite time. In the third section, we give another type of result
concerning the existence of blow-up solutions, i.e., a sufficient condition for the initial data
of Kaplan type, which is described in terms of the integral of the initial data multiplied
by the first eigenfunction of —A with the homogeneous Dirichlet boundary condition, so
that the corresponding solutions of (NR) with more general nonlinear boundary conditions
blow up in finite time. Here we apply Theorem 4.1.3 and the same strategy as that used
in §4.2.

In Chapter 10, we consider the asymptotic behavior of global solutions of (NR) with
v = 2, i.e., with the Robin boundary conditions on u; and ws:

Orup — Auq = uqug — buq, t>0, zeQ,
(11.4) Osus — Aug = auyq, t>0, zeQ,

Oyuy + auy = dyus + Pug = 0, t>0, z €0,

u1(0,2) = uip(z) > 0, u2(0,x) = uz(z) > 0, xz €.

More precisely, we here discuss about the uniform boundedness of global solutions of (I1.4).
The same problem is treated in Chapter 3 for the single equation (P),. In other words, we
look for the analogue of the result given in Chapter 3. However, we here restrict ourselves
to the case where v = 2, for a technical reason. Bounds for global solutions of this system
with the homogeneous Dirichlet boundary condition is already studied by Quittner [53]
for the case where N = 2. This strong restriction on N is due to the use of a Hardy type
inequality (see [11]). Since our boundary condition is different from that of [53], making
use of the good properties of the first eigenfunction of —A with Robin boundary condition,
we can treat the cases where N = 2, 3.

Our proof for the boundedness of global solutions of (P), deeply relies on the fact that
the energy functional J(u), defined by J(u) = 3 [, |[Vu[*dz + % Jaq [ul?do — %fg |ulPdx,
becomes a Lyapunov function, in other words, (P), possesses a good variational structure.

There are also other approaches to this problem, e.g., in [23] the rescaling argument is
introduced and in [54] the bootstrap argument based on the interpolation and the maximal
regularity is used.

Unfortunately these tools are not available to our system because of the presence of
the coupling terms. To cope with this difficulty, by making the most use of the special
form of our system, we first show the uniform bound of solutions in the L'-norm with the
positive weight 1, the first eigenfunction of —A with the Robin boundary condition. To
derive the uniform H'-bound, we rely on some energy method with the aid of a special
device (see Lemma 7.1.2). Furthermore by applying Moser’s iteration scheme such as in
Nakao [41], we derive the uniform L*-bound via H'-bound.






Chapter 7

Preliminaries

7.1 Some Results for the Following Chapters

We here state several lemmas to prove our results for (NR). The following abstract fixed
point theorem in positive cone is essential and crucial to show the existence of positive
(nontrivial) stationary solutions of (NR).

Lemma 7.1.1 (Krasnosel’skii-type fixed point theorem [32], [35]). Suppose that E is a
real Banach space with norm || - |, K C E is a positive cone, and ¢ : K — K is a compact
mapping satisfying ®(0) = 0. Assume that there exists two constants R > r > 0 and an
element ¢ € K \ {0}, such that

(i) u # AP(u), YA€ (0,1), if ue K and ||u| =r,
(ii)) u # P(u) + Ap, VA >0, if uwe€ K and ||ul]| = R.
Then the mapping ® possesses at least one fized point in K1 :={u € K; 0 <r < ||lu|]| < R}.

The next lemma is very simple but useful to obtain a priori estimates of the solutions
of partial differential equations with Robin boundary conditions.

Lemma 7.1.2 ([20]). Let A1 and @1 be the first eigenvalue and the corresponding eigen-
function for the problem:

— Ap =\, €Q,
() { p=p @

e +vp=0, €,

where ) is smooth bounded domain in RN and v > 0. Then A\; > 0 and there exists a
constant C, > 0 such that B
p1(x) > Cy x € Q.

Actually, it is easy to see that ¢ > 0 in by the strong maximum principle as
the same method for the eigenvalue problem with the Dirichlet Laplacian. Furthermore
suppose that there exists xg € 9§ such that p1(xg) = 0. Then the boundary condition
assures 0,¢1(z0) = —yp1(xo) = 0. On the other hand, we know 9,¢1(z9) < 0 by Hopf’s
strong maximum principle. This is contradiction, i.e., 1 (z) > 0 on Q.

In order to deal with the power type nonlinearities, the following inequality is funda-
mental.
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Lemma 7.1.3. ([18]) For any k € [2,00), there exists C\, > 0 such that
(@ —y) - (Jo[*2z — |y|*"*y) = Culz —y|*
for all z, y € RN,

Lemma 7.1.4 ([45]). Let y(t) be a bounded measurable positive function on [0,T] for
any T € (0,T,,) and let limy_,7,, y(t) = 4o00. Suppose that there exists a monotone
nondecreasing locally Lipschitz function g : [0, 4+00) — [0, +00) such that

+oo 1
/ ——d1 = 400,
0 g(7)

+oo 1
/ ——dT < +o0  Va > 0.
o 9(7)

Furthermore we assume that
y(s) < y(t) +/ g(y(r))dr  ae. t,s€[0,T,) with t <s.
t

Then the following estimate holds.

y(t) > G Nt —Ty)  ae te(0,Ty),
too

where G=1(+) is the inverse function of G(w) = —/ de.
w T

Now, if we set g(r) = A|r|972r with ¢ > 2 and A\ > 0, we can see that g satisfies the

1
assumption required in Lemma 7.1.4. Moreover we can obtain G=!(7) = (A (¢ —2) 7)a2
by an elementary calculation. So, Lemma 7.1.4 implies:

Corollary 7.1.5. Let y(t) be a bounded measurable positive function on [0,T] for any
T € (0,T,,) and let lim;_,7, y(t) = +o00. Suppose that y(-) satisfies

t
y(t) < y(s)+ )\/ Yy Nr)dr  a.e. s,t €[0,Tp) with s < t.

Then the following estimate holds:

—1 —1

y(t) > (N(qg—2))e2 (T, —t)a—2 a.e. t €[0,T,).



Chapter 8

Stationary Problem of (NR)

In this chapter, we are going to show the existence of the positive stationary solutions
for (NR) and prove the ordered uniqueness of them. The stationary problem for (NR) is
given by

— Auy = uyug — buq, T €,
(S-NR) — Aug = auy, x €,

Oyu1 + auy = Oy us + B|uQ\7_2u2 =0, x €.

8.1 Existence of Positive Solutions

It should be noticed that since (S-NR) has no variational structure, it is not possible
to apply the variational method to (S-NR). In order to show the existence of positive
stationary solutions to (NR), we rely on the abstract fixed point theorem developed by
Krasnosell’skii. The crucial step in proving the existence of positive stationary solutions
is how to obtain L*°-estimates of solutions.

Theorem 8.1.1. Let 1 < N <5 and suppose that either (A) or (B) is satisfied :

(A) =2, a<25
B) ~v>2.

Then (S-NR) has at least one positive solution.

We rely on Lemma 7.1.1 to prove this theorem. In order to apply Lemma 7.1.1, we
here fix our setting:

E=C(Q)xC(Q), u = (ui,us)t € F,
lull = llualle@ + lluzllowm), K ={u€ Eu1 > 0,uy > 0}.

Set ¢ = (¢1,0)T € K\ {0}, where \; and ¢; are the first eigenvalue and the corresponding
eigenfunction of the following eigenvalue problem:

{—A(p:)\cp, z €,

(8.1.1)
oo+ ap=0, xecdl.
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In chapter 8, we normalize o1 () such that |12 = 1. For given u = (u,u2)T € K, let
v = (v1,v2)" = ¥(u) be the unique nonnegative solution (see Brézis [10]) of

— Avy + bvy = uque, T € (,
(8.1.2) — Avy = auy, x €,
oyv1 + avy = 0,9 + B|v2|7_2v2 =0, zedN.

It is clear that ¥(0) = 0. Moreover ¥ : K — K is compact. In order to prove the
compactness of ¥, we use the next Lemma for the following problem:

(8.1.3) {_Au:f’ z el

dyu =g, x € 0N.

Lemma 8.1.2. ([44]) Let Q € RY be a bounded Lipschitz domain. Suppose that f € L2 (€2)
and g € LP~Y(02) with p > N > 2, then there exist § > 0 and a positive constant C such
that every weak solution u of (8.1.2) belongs to C%9(Q) and satisfies

lllgosy < © (Iullzziy + 171 5 ) + lgllzoscom)) -

Since €2 is bounded and (u1,uz) € C(Q2) x C(R), it follows from elliptic estimate that
v1 € W2P(Q) for any p. Since W2P(Q) is compactly embedded in C(Q) for p > &, the
mapping (u1, ug) +— v is compact. Next we assume that N > 2 and consider the following
equation:

— Avy =auy € L*(Q), z€Q,
0,9 + ﬂ|v2]772v2 =0, x € 0N.

|r—2

Multiplying the equation by |ve|"~“v9 and applying integration by parts, we get

(8.1.4) (r — 1)/ [va|" 2| Vg |?dx + ﬁ/ [ug|" 7 2do = a/ u|ve|" " vode.
Q [2/9] Q

Noting that (||Vv2\|%2(9) + [ v3do)/? is equivalent to the usual H'-norm by Poincaré-
Friedrichs type inequality, we obtain

(l.h.s.) = (r — 1)/Q
. 4(r_1)/§2‘V|v2|5

r2

>C, (/ ‘vyvz\%
Q

zcr/

Q

. 2
|vg] 22|V7}2|‘ d:r—i—ﬁ/ |vg|r+772d0
o0

2
do 3 [ faldo - glo0
o0

2 .
d:):—i—/ ””2‘5
[2)9]

2
dz — B|0Q] = Crl[va|[Lr ) — BIOY,

2
dO’) — 5109

v
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where C, = min{ w, B} > 0 and we used the estimate:
ﬁ/ lue|" 7 2do > 8 lug|" 7 2do > 8 |va|"do
o0 {lva2|>1} {lvz2|=1}
= ,8 |1)2‘rd0' — 5 ’U2|rd0
o0 {lo2|<1}

> ﬁ/ |vo|"do — B|09).
00

Hence Holder’s inequality, Young’s inequality and (8.1.4) yield

1
N\ oL\ . ’
o2l < {mam (%) +:(%) Hau1HLr(Q)} vr < oo.

Therefore by (8.1.4) we have

r—1

1 o\t o1/0\" :
r+y—2 r T r
/69 |’L)2| 240 < EHaulnLr(Q) {B|8Q| <2> + ; <2> ||au1||LT‘(Q)} Vr < oo.

Thus we see that vy € L"(9Q) for all large r < oo and we can apply Lemma 8.1.2 to
get vy € CY%(Q) for some § > 0. Note that C*%(Q) — C(Q) is compact. As for the
case where N = 1, (8.1.4) with r = 2 gives the a priori bound for |[ve|[f1(q). Since the
embedding H'(Q) < C(Q) is compact, the compactness of ¥ is easily derived. Thus we
see that ¥ : K — K is compact.

In order to show the existence of positive stationary solutions for (S-NR), it suffices to
prove that ¥ has a fixed point in K. Therefore, to prove Theorem 8.1.1 we are going to
verify conditions (i) and (ii) of Lemma 7.1.1.

We first check condition (i).

Lemma 8.1.3. Let r = %, then uw # AX¥(u) for any A € (0,1) and u € K satisfying

|lu|| = r. That is, condition (i) of Lemma 7.1.1 with ® = ¥ holds.

Proof. We prove the statement by contradiction. Suppose that there exist A € (0,1) and
u € K with ||ul]| =7 such that u = A¥(u), that is, u; and usy satisfy

— Auq + buy = Auqus, x €€,
(8.1.5) — Aug = Aaus, x €,

(%) v—2
&,ul—i-aul:&,uQ—l—B’T’ us =0, x € N
Multiplying the first equation of (8.1.5) by w; and using integration by parts, we obtain
HVulH%Q(Q) +a /aQ utdo + bHulH%Q(Q) = )\/ﬂu%qua:

luzl oo () llunll72 (0

IN

IN

b
§HU1”%2(Q),
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where we use the fact

b
Juzl (e < llull =7 = 5.
Then
b
IV 220 + a/ wdo + 2 Jur|agq) <0.
[2}9]
Hence we have u; = 0. By the second equation of (8.1.5), we see that uy satisfies

— Auy =0, x €,

—2
(9,/@4—5)%‘7 uy =0, x € IN.

Multiplying this equation by us and integration by parts, we obtain

B

||VU2||%2(Q) + W - lug|"do =0, ie., [[Vusl[r2@) =0, uz|gg=0.

By the use of Poincaré’s inequality, we also get us = 0. Thus u; = us = 0. This contradicts
the assumption [ju|| = 5 > 0. O

In order to verify condition (ii) of Lemma 7.1.1, we here claim the following lemma.

Lemma 8.1.4. Let 1 < N <5 and suppose that either (A) or (B) is satisfied :

(A) =2 a<2B,
(B) ~y>2.

Then there exists a constant R (> r = %) such that for any A > 0 and any solution u of
u=¥(u)+ \p, it holds that

lul] < R.
Proof. We rewrite u = ¥(u) + Ap in terms of each component:

— Auy + buy ZU1U2—|—)\(b—|—)\1)<,01, x €€,
(8.1.6) — Aus = auq, x €,
dyu1 + auy = Oyug + Blug|’ 2uy =0, x € IN.

In what follows, we denote by C' a general constant which differs from place to place. First,
we derive H'-estimate for us. Replacing u; in the first equation of (8.1.6) by —%Aug, we
get

8.17) {A2u2 — bAug = —ugAug + Aa(b+ A\1)p1, x€Q

dyus + B|u2|W_2u2 = 0,Aug + alAus =0, x € 0.
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Multiplying (8.1.7) by ¢1, using integration by parts and noting that the boundary con-
ditions 9,1 + w1 = dyus + Bluz|’"2uz = 0, we have

(l.h.s) = / A2u2g01daz—b/ Auspidx
Q Q
= —/ V(AUQ) . Vgpul:n—&—/ (aZ,AUQ)LpldO'
Q o0
+ b/ Vus - Virdr — b/ (Opuz)prdo
Q o0

:/AUQAgolda:— AUQ(&,cpl)da—i—/ (0, Aug)prdo
Q

o0 o0

— b/ us Aprdr + b/ u2(0yp1)do — b/ (Oyug)prdo
Q 15)9) [}9)
= —/\1/ Augcplda;—i—a/ Auggolda—a/ Augprdo
Q o0 o0
+b)\1/ u2g01d33—ozb/ u2<p1da—i—ﬁb/ uvflgolda
Q 0N 0N
= —)\1/ UQA(pldJ}—I—)\l/ UQ(ayng)dU— )\1/ (OUUQ)gOldO‘
Q o002 o0

+b)\1/ U2901d37—04b/ u2¢1d0+/3b/ uy Mprdo
Q o0 o0

= )\1(b+)\1)/

ugprdr 4 B(b+ Ap) /
Q

ugflgpldo —alb+\) / ugp1do,
o0

o0

and

(r.h.s) = — / usAugprdr + Aa(b + )\1)\\@1“%2(9)
Q
= / Vugy - V(ugpr)dr — / (Opug)ugpido + Aa(b+ A1)
Q o0
= / |VU2|2<,01dZE —|—/ usVuy - Vg&ld$ + 5/ UgcpldO' + )\(I(b + )\1)
Q Q o0
1
= / Vg |21da + / Vu3 - Vrdr + ﬁ/ ugprdo + Aa(b+ A1)
0 2 Ja o0
1 1
— /Q |VUQ|2901d:c — 2/9u§Agmdm + 3 /aQ u%(&,gpl)da + B/{m ugcplda + Xa(b+ A1)

A
:/ ]Vu2|2g01dx+l/ug<p1dx+ﬁ/ uggolda—a/ udordo 4+ da(b+ \p).
0 2 Ja 00 2 Joo
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Therefore the following equality holds.
(8.1.8)
A
)\1(b + )\1)/ ugprde = / ‘VUQ‘2¢1d$ + 21/ u%goldx + a(b + )\1)/\
Q Q Q

+ /m {Bu = B0+ )ul™ = Sud+a b+ M) uzf prdo.
Since (A) : v =2, a <25 or (B) : v > 2 holds, we get
uiQanO {ﬁug —B(b+ A1) ugfl — %u% +a(b+ M) u2} > —C > —o0.
Moreover, we see that due to the boundedness of ¢ (cf. Lemma 7.1.2)
A(b+ A1) /Q ugprde > /Q |Vus|?p1de + )\zl/gu%goldx +alb+ M)A —C.

By Schwarz’s inequality and Young’s inequality, it is easy to see that

A
/|VuQ|2901d:c+21/u§@1d$+a(b+)\1))\g)\l(b+)\1)/uchldx+0
Q Q Q

1
2 1
< AL(b+ ) (/ U§¢1d$> le1llZi(q) +C
Q

A
< 1/ u%gpldx +C.
4 Jo
Hence we obtain
(8.1.9) / \Vug|?prde < C, / udorde < C, A<,
Q Q

and

1 1
2 3
(8.1.10) / ugprda < (/ u%gpld:c> (/ golda:) < C.
Q Q Q

Furthermore it follows from Lemma 7.1.2 and (8.1.9)

o (/ |VuQ|2dx+/u%dx> g/ |Vuz|2g01dx+/u§g01da:§0,
Q Q Q Q

whence follows

By (8.1.10) and (8.1.8), we also have

(8.1.12) / {mg —Bb+ M) u) - %ug +a(b+ M) uQ} p1do < C.
o0
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Hence we can obtain

/anggoldJSC (v>2 or y=2, a<20),
(8.1.13)
/aQquoldagc (v=2, a=20).

Indeed, if v > 2, then by Hélder’s inequality and Young’s inequality, we get

B uggolda—koz(b—i-/\l)/ ugcpldaﬁC—FB(b—F)\l)/ ug_lgolda+a/ udpido
0 0 90 2 Jaoa

y—

<CH+BMb+ M) (/MZ?L;SOlClU)7 (/aﬂcplda>V

y—2

2 =2
+ @ </ ug%d()’) ! </ <,01d0> !
2 \Jon 00

L 1
< 4 80+ Al 0017 ( [ adindo )
o0

y—1

5

« =2 =2 2
+ 5ol zglonlS ([ udpdo
2 00

<(C+ g u;galdo,

[%9]
where we denote by |09 a volume of 9 and use the following property (see [27]):
le1llzoe@0) < lletllLee(@)-

On the other hand, if v = 2 and « < 2§, then it follows from Schwarz’s inequality and
Young’s inequality

(5 — a)/ u%gplda+a(b+ /\1)/ usprdo
27 Joa o0

< C’+5(b+)\1)/ ugprdo
09

covmon ([ o) ([ )

2
< O+ B(b+ )l e 09 ( / uéwlda)
o)

1
<C+ 2 (ﬁ— a)/ u3p1do.
2 27 Joo
For the case of v = 2 and a = 24, from (8.1.12) it is clear that

B | wusprdo < C.
00
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Thus we obtain (8.1.13).

Now, we derive H!-estimate for u;. Multiplying the first equation of (8.1.6) by ¢ and
using integration by parts, we get

(8.1.14) (A +0) / urprder = / urugprde + A(A +b)
Q Q
Similarly, multiplying the second equation of (8.1.6) by ¢1, we get
(8.1.15) )\1/ quoldx—l—ﬁ/ ug_lwlda—a/ uypldaza/ upprde.
Q o o0 Q
Then by (8.1.14), (8.1.15), (8.1.11) and (8.1.13), we obtain
(8.1.16) / uyprdr < C, / urugprde < C.
Q Q

Hence, by Lemma 7.1.2, we get a priori bounds for fQ urdxr and fQ uiusdr. Now we are
going to establish a priori bound of u; in H'(Q2) for the case of N € [3,5]. Multiplying
the first equation of (8.1.6) by u; and using integration by parts, we obtain

19220 +a/ wdds + bllur 22 :/u%ugda;+)\(b+)\1)/ulgold:v
9] Q Q

_ 1-6
§/(u1u2)9 <u11u2) dx +C
Q
0 - 1-0
(8.1.17) < </ ulugdx> (/ (e Gqu:U> +C,
Q Q

where we apply Holder’s inequality with exponent (é, 1%9) for the first term on the right

N
Sl

hand side. Here we take 6 = % € (0,1), then by applying Hélder’s inequality with

exponent (1\2,—{:[2, ]\2,71172),
2-6 1-6 N+2 2 42 N2
(/Q u~’ u2d~’6> = </Qu1 u2dx) < Hu1||L2* Q)HuQHLQ* @
where 2* = 1\2,—]_\[2 is the critical Sobolev exponent. Using Sobolev’s embedding H'(Q) <

L% () and (8.1.11), we obtain

N+2 N-2 N+42
||U1HL2* Hu2||L2*(Q) < CHul”H%(Q)

Since (HVulHLQ +a [youids + bHUIH%Q(Q))l/Z is equivalent to the usual H'-norm of u;
due to trace 1nequahty and Poincaré-Friedrichs type inequality, as a consequence we have

N2
a1y < Cllu gt +C-
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Since N € [3,5], we have & +2 < 2. Hence it follows from Young’s inequality

lui |y < CHulHHl +C <5 HmH?{lm) +C.
Thus we derive

Next, we derive L>-estimates for u; as for the case N € [3,5]. From Sobolev’s em-
bedding H'(Q) L%(Q), we can see that uj, up € L{s*O(Q) and ujug € Lg(Q) We
get uy € W2%(Q) by the elliptic estimate for the first equation of (8.1.6). Moreover,
u; € L?(Q) by Sobolev’s embedding W2§(Q) < L°(Q). Then by Hoélder’s inequality,

2.5 % 2.5 %
/ u1u2d:x < (/ Uy 2d:1;> </ Uy 3d1‘> ,
Q Q Q

we can see that ujus € Lz(Q). By the same reason as before, we know that u; €
W22(Q) — LY(Q). By Holder’s inequality, we have ujug € L%(Q) Hence applying
elliptic estimate and Sobolev’s embedding again, we get u; € Wzg(Q) — L1(Q) for any
q € [1,00). Therefore ujus € L%(Q) and uj € WQF)J%(Q) Choosing ¢ > 10, we have

w1l poe () < Ci,

where we use the Sobolev’s embedding W2 a0 (Q) = L*>(Q) for ¢ > 10.

Thus we obtain L*-estimate of u; for the case of N € [3,5]. About the regularity for
ug, it suffices to consider the following problem for given u; € L (2):

— Aug =auy € L*(Q), z€Q,
d,us + ,3|UQ’7_2UQ =0, xe€of

Therefore we can derive L°°-estimate for us, i.e.,
[uzll e (@) < C2

by the same arguments as for the compactness of ¥ applying Lemma 8.1.2. Choosing
R > C1 + C5, we can see that the conclusion of this lemma holds.

As for the case N = 1,2, it suffices to obtain L*-estimate for each component. First,
let N = 2. Choosing 6 =  in (8.1.17), we see that it follows from Sobolev’s embedding
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HY(Q) — LP(Q) (for all p € [1,00) )

HVU]_”%Q(Q)_’_O[/ u%ds—f—b”ulﬂig(m:/u%Ude—l—)\(b-i—)\l)/ulgpldx
o0 Q

Q
S/Q(mw); (ufus)

1 1
< (/ uwﬂx)z </ u:{’qu:U) +C
Q Q
1
2
<C (/ u?uzda:> +C
Q

3 1
< CHul”zﬁ(Q) ”u2Hz2(Q) +C

N |=

dr +C

N =

3
< Cllur |31 + C-

Here we note that we have already had H'-estimate for uy without restrictions on the
space dimension. Thus we also get H'-estimate for u;. In the similar way as for the
previous case N € [3,5], we can derive L>-estimates for u; and wus.

Let N =1 and Q = (ag, by) with ag < by. Since u; € C(), there exists zo € € such
that

u1(zo) = minuy ().
z€Q

Furthermore, since it holds that |[u1[|11(q) < C for any space dimension, we have

1
minug (x) < / wurde < C.
zeQ ‘Q’ Q

Here by the fundamental theorem of calculus,

T

wr(z) = us (o) + / l (€)de.

zo

Therefore we get the following inequality:

bo

(8.1.19) [urll Lo () < / |y (§)|d€ + |ui(zo)| < [Jui|lL1(e) + C.
ag

From (8.1.19), Schwarz’s inequality and Young’s inequality, we see that

ui]12 + oz/m uids + blluy |2, :/

udugdz + A(b+ \p) / urprde
Q

Q

< HulHLoo/UﬂLde-i-C
9)

<C (|l +C)+C

1
< Cllutllpe +C < Sl +C.
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Hence we obtain a priori bound for |ui|[f1(q). Since Sobolev’s embedding HY(Q) —
L>(Q) holds for N =1, we obtain the desired estimates. O

Proof of Theorem 8.1.1. By applying Lemma 8.1.3, Lemma 8.1.4 and Lemma 7.1.1, we
can verify that Theorem 8.1.1 holds. O

Remark 8.1.5. If a = 0, for v € (1,2) we can derive H'-estimate for us by taking H*
norm of uy as ||[Vul[2(q) + [[ul £1(a0) in the proof of Lemma 8.1.4. In fact, it is easy to
see that this norm is equivalent to the usual H'(£2) norm by Lemma 1.1.10. Therefore it
is easy to see that Theorem 8.1.1 holds in the case of « =0, 8 > 0 and v > 1.

8.2 Ordered Uniqueness

Next, we discuss the ordered uniqueness of the positive solutions for (S-NR). The
proof of the ordered uniqueness is based on the simplicity of the first eigenvalue and the
positivity of the corresponding eigenfunction.

Theorem 8.2.1. Let (uj,u2) and (vi,v2) be two positive solutions of (S-NR) satisfying
up <1 orug < vy. Then up = v1 and ug = vy.

Proof. Suppose that u; # vy or us # ve. Without loss of generality, we only have to
consider the case where us # vy and us < vo. In fact, if uy < vy, by the second equation
of (S-NR) we have

(8.2.1) —A(ug —v2) = a(u; —v1) <0.

Multiplying (8.2.1) by [uz — v2]™ := max{uy — ve,0} and using integration by parts, we
obtain

(82.2) IV [ug — va] " 1720y + 5/ [t — va] ™ (Jual" ?ug — Jva " ?v2) do < 0.
a0
Note that by Lemma 7.1.3

/ [ug — vo] T (|u2|7_2u2 - |v2|7_2v2) do = / (ug — v3) (\u2|7_2u2 - |v2|7_21)2) do
o

{uz>wv2}

> / C(up — v9)do
{ug>v2}

=, ([ug — v2] ™) do.
o2

By this inequality and (8.2.2), we get
IV [uz = o] |32 + Cs /a (w2 =) do <0

Therefore we have
Viug — vo]™ =0,
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[UQ - Ug]+‘89 =0.

Hence we deduce [us — vo]™ =0, i.e., us < vo.

Next we consider the following eigenvalue problems:

(52.3) — Aw+ (b—us(z))w = p'w inQ,
o O,w~+ aw =0 on 0f,

and

524 —Aw+ (b—va(x))w=n'w in Q,
o dyw +aw =0 on 0f).

If necessary, we take some nonnegative constant L > 0 and add both sides of equations
of (8.2.3) and (8.2.4) by L, and we can assume U(x) := b — ua(z) + L > 1 and V(z) :=
b—wy(x)+ L > 1. Thus we consider the following problems in stead of (8.2.3) and (8.2.4):

—Aw+U(z)w = pw in §,
(8.2.5) {0,,10 +aw =20 on 05,
and

—Aw+V(z)w=nw in Q,
(8.2.6) {Byw +aw =0 on 0f2.

By applying the compactness argument for the associate Rayleigh’s quotients of (8.2.5)
and (8.2.6) , we know that the smallest positive eigenvalues of (8.2.5) and (8.2.6) are
attained and we denote them by g and 19. Moreover, thanks to us #Z v9 and uy < vg,
we see that 79 < po. On the other hand, since (u1,us) and (v1,v2) are positive stationary
solutions for (S-NR), u; > 0 and v; > 0 satisfy

— Auy + (b —wug(x) + L)uy = Luy  in €,
Oyur +au; =0 on 0f2,

and
{ —Avy + (b—wvo(x) + L)vy = Lvy  in Q,

o,v1 +avy =0 on 0.

By the fact that the eigenvalue corresponding to the positive eigenfunction is the smallest
one, we deduce g = L = ng. This contradicts 1y < pg. Thus the proof is completed. [



Chapter 9

Nonstationary Problem of (NR)

In this chapter, we investigate the large time behavior of solutions to (NR) and prove that
the positive stationary solution plays a role of threshold to classify initial data into two
groups; namely corresponding solutions of (NR) blow up in finite time or exist globally.
Moreover we discuss the existence of blow-up solutions to (NR) with nonlinear boundary
conditions as an application of Theorem 4.1.3 in Part 1.

9.1 Local Well-posedness
First we state the local well-posedness of problem (NR).

Theorem 9.1.1. Assume (uig,u20) € L®(Q) x L>®(QQ). Then there exists T > 0 such
that (NR) possesses a unique solution (ui,us) € (L>(0,T;L>®(Q)) N C([0,T); L*(2)))?
satisfying

(9.1.1) Vtdpuy, Vtdug, VA, VtAus € L0, T; L*()).

Furthermore, if the initial data is nonnegative, then the local solution (uy,us) for (NR) is
nonnegative.

In order to prove this theorem, we rely on L*-energy method developed in [45] (see
Chapter 2). This theory is very useful to show the existence of strong solutions with
bounded initial data.

Proof of Theorem 9.1.1. (Existence and regularity) We consider the following approximate
problem:

Opuy — Aug = [uqg]ar[uz]ar — bug, t>0, z €,
Oyug — Aug = aunq, t>0, x €,
dyur + auy = Oyus + Blug|’ 2uy =0, t>0, z €09,
u1(z,0) = uip(z), uz(z,0) = ug(x), =€,

(9.1.2)

111
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where M > 0 is a given constant and the cut-off function [u]ss is defined by

M, u> M,
[wlpy = qu,  |ul <M,
-M, u<-M.

Since u + [u]ys is Lipschitz continuous from L?(Q) into itself, it is well known that (9.1.2)
has a unique global solution (u1,uz) satisfying (9.1.1) by applying the abstract theory on
maximal monotone operators developed by H. Brézis [10].

By multiplying the first equation of (9.1.2) by |u1|"~2u; and using integration by parts,

]. d — r ™ T
—— || ()| 7r + (r — 1)/ |Vu1\2u’£ 2dx + a/ lui|"do < / lur|" Jug|dx — b/ || da.
T dt Q a0 Q Q

Hence
;*Hul(t)HEr < Juz ()| zoe [Jur (D)7

Divide both sides by [lu1]/7-! and integrate with respect to ¢ on [0,#], then we get
t
lur ()l zr < [luaollzr +/0 [[ur (T) || e [z () || Lo -

Letting r tend to oo (Lemma 1.2.2), we derive

t
[ur (t)|[Loe < o]l oo +/0 [[ur (7)[| oo [[ua (7)[| oo d.

Similarly, we can get the following L™ estimate for usy ;

t
[ua(t)|[Loe < l[ugol| o~ +/ allur(7)|| Lo dr.
0

Therefore setting y(t) = [[u1(t)| o) + [[u2(t)||L= (), we get

y(t) < y(0) + /0 (12(7) + ay(r)) dr.

Thus applying Lemma 1.2.3, we find that there exists a number 7" > 0 depending only on
||U10HLOO(Q) and HUQ()”Loo(Q) such that

y(t) <y(0)+1 a.e. t € [0, 7).
In other words, we get
w1 ()] oo () + lua ()l oo () < Mol oo (o) + llugoll o) +1 a.e. t €[0,7T].

Hence choosing M > [|u1ol| o0 (o) + [[u20| Lo () +1, we can see that (u1,uz) gives a solution
for (NR) on [0,T] by the definition of the cut-off function [u]y;. Note that even though
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|1 (t) ||, " attains zero, we can justify this argument by Proposition 1 in [40]. To get the
regularity estimate of the solution for (NR) is standard, so we omit the details.

(Uniqueness) Let (uj,u2) and (v1,v2) be two solutions to (NR) with initial data
(u10,u20) and (v1g,v90) respectively. We set w; = u; — v; and wy = wug — ve. From
(NR), we have

(9.1.3) w1 — Awy = wiug + viwe — bwy,
(9.1.4) Oywe — Awg = awn,
Oywi + awy = Jywa + B (|u2|7_2u2 - |v2|7_202) =0, on 0f).

We multiply (9.1.3) and (9.1.4) by w; and wy respectively, integrate over 2 and use
integration by parts. Then we obtain

L w22 + IV 22y + o /m wido

/w%mdw—i—/vlwlwgdm
Q Q

< Muall o052 () /Q widz + o o 0.0, () /Q wiwsdz

IN

A

< € (o1 O ey + IOy

and

Ld
2dt

< a/ wiwadx
Q

a
< 5 (o @12 + @) 2y ) -

w2 (1) 172y + [ Vewall72(0) + 5/39 (lua|""2ug — fva""?v2) (ug — v2) do

Noting that
/ (|UQ‘772U,2 — ’U2|7721)2) (UQ — 1)2) do > / Cﬂwgpda >0
oN o0

by Lemma 7.1.3, we can get the following differential inequality:

d
= (1132 + N2 @l220)) < € (Jun (@320 + lwa®)E))

whence, from Gronwall’s inequality,

(lor(®)132(@) + lwa @2 ) < (o = viol3ag) + luzo — w2020y ) € € [0,7).

This yields the uniqueness of the solution for (NR).
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(Nonnegativity) Multiplying the first equation of (NR) by u; := max{—u,0}, we get

/atululdx/Aululde / u1]2|u2|dzb/u1u1dx.
Q Q Q Q

Here, we can see that

_ 1d 1d 2
O u dx:/ Orur(—u dx:—/ —u de:—/ uy )" dx,
/ﬂ e fw<oy ) 2dt {ulgo}( ) 2dt ﬂ( )

and

—/Aulul_dx:/Vul-Vul_dx—i-a/ uiu; do
Q Q [}9)

= —/ \Vuﬂzd:c—a/ uldo = —/ \Vuﬂzd:c—a/ (ul_)2da.
Q {u1 <0} Q o0

Therefore we have

=Sl ()220 + VU712 —l—a/ uy 2da:/ uy |2|us|dz — bljuy (£)])2

5 g1 D229y + 1Vur 72 89( 1) L 1 (OlI720)
< ||U2HL°°(O,T;L°°(Q))Hul_(t)H%Q(Q)‘

Applying Gronwall’s inequality, we obtain

||Uf(t)||%2(g) < HUI(O)||%2(Q)62||u2||L00(0,T;L00(Q))t te [O,T),

where 7' is maximal existence time for (NR). Since uig > 0, i.e., [luj (0)[[z2() = 0, it
holds that

u; (()=0 ae. inQ Vtel0,T).
Hence u; > 0. Similarly, multiplying the second equation of (NR) by —u; , we get

1d, _ _ L B
SNy 720 + 1Vug 17200y + 8 | fua"?|ug [Pdo = —a | wiug da <0.
5 dt (@) @

o0 Q

Therefore HuQ_(t)H%Q(Q) < HuQ_(O)H%Q(Q) =0, i.e., ug > 0. O

9.2 Threshold Property

Finally, we study the threshold property and prove that every positive stationary
solution for (NR) gives a threshold for the blow up of solutions in the following sense.

Theorem 9.2.1. Let (u1,u2) be a positive stationary solution of (NR), then the followings
hold.

(1) Let 0 < wujp(z) < wi(z), 0 < wgo(x) < ua(x), then the solution (ui,u2) of (NR)



9.2. THRESHOLD PROPERTY 115

exists globally. In addition, if 0 < wuig(z) < Lhui(z), 0 < wuge(x) < laug(x) for some
0<li <y <1, then
lim (ui(t,x),us2(t,x)) = (0,0) pointwise on Q.

t——+o0

(2) Assume further v =2, a < 2/ and let uip(z) > L (x), uz(x) > lats(z) for some
l1 > Iy > 1, then the solution (uj,uz) of (NR) blows up in finite time.

Remark 9.2.2. The second assertion of Theorem 9.2.1 is also announced in [25] for the
case where o = 0 and v = 2. However it seems that their proof contains some serious
gaps.

We first prepare the following comparison theorem.

Lemma 9.2.3 (Comparison theorem). If (ujq, u20), (vi0, v20) are two initial data for (NR)
satisfying

0<wup<wvio, 0<wug <wyp onQ,
then the corresponding solutions (u1,us2), (v1,v2) remain in the initial data order in time
interval where the solutions ezist, i.e., ui(t,z) < vi(t,x) and uz(t,x) < vo(t,z) a.e. x €
as long as (u1,u2) and (v1,ve) exist.

Proof. Let wy = u; — vy, wa = ug — va. By (NR) we have

Oywi — Awy = wiug + viws — bwy, t e (0,Ty,), €,
Oywo — Awo = awy, te (0, T), z€Q,

(9:2.1) w1 + awy = O,ws + B (\uQW*ng — |v2\7’2v2) =0, te€(0,T,), xR,
wy(z,0) <0, we(x,0) <0, x €

where T, > 0 is the maximum existence time for (uj,ug) and (v, v2). We set
wr=wVv0, w = (-w)Vo0,
where a V b = max{a, b}. It is easy to see that w', w™ > 0 and
+

w=w"—w", |w=w"+w".

Multiplying the first equation of (9.2.1) by w", we get

/atwlwfdm—/Awlwfdfn:/wlqufda}+/Ulwgwfdx—b/wlwfdx.
Q Q Q Q Q

Here, we see that

1d 1d 2
Opwiwy dx :/ orwiwide = —— wide = = — w)” dx.
/Q e {w1>0} e 2dt J{w, >0 ' 2dt Q( 1)

Similarly,

—/ Awlwfd;v:/le-wadmjLa/ wlwfda
Q Q o0

:/ ]Vw12dx+04/ w%daz/ \wa|2dx+a/ (wf)gda.
{w12>0} {w1>0} Q N
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Hence noting that v; > 0, we obtain for any 7" € (0, 75,)

1d
o (wf)zdx—i—/\VwﬂQdaH—a/ (i)’ do
Q Q o0

= /wlugwfdij/ UﬂUQlUIFdl‘—b/ wlwfdaz
Q Q Q
= / (wi — wy) ugwy dz + / vr (wg —wy ) wy dr — b/ (wf)QdJ:
Q Q Q
2
< |’U2||L°°(0,T;Loo(fz))/g(wf) dr + HU1HL°<>(0,T;LOO(Q))/warw;dx
< C (llwf Oz + 1w (DlZ2y) -
< 1 WIlz2q) 2 Wl L2(q)

Hence we get

(9.2.2) St 20 < C (Iwf O3y + Il O3 ) -

Next we do the same calculation for the second equation of (9.2.1) and get

1d 2 a
53 o i) ot [ [Vuf s - /8 (@wayuifdo < & (I Ol + 0f ().
and

—/ (Oywo)wy do = B/ (|uQ|7_2u2 - \v2|7_202) wy do

o0 o2
=p . (|U2P/72U2 — ‘1)2’7721)2) (UQ — 7)2) do > 0.
U2 Zv2
Therefore
Ld, e a + (42 + ()12

(9.2.3) 5@”“’2 (t)HL2(Q) < 9 (le (t)HL2(Q) + w3 (t)HLQ(Q)) :

Thus by (9.2.2), (9.2.3) and Gronwall’s inequality, we get

i 220 + w3 ()220 < (lod Oy + 05 )32y eVt € [0,T).

Since wi (0) = wy (0) = 0, the above inequality means w;” = wj = 0. Hence, we have the
desired result. O

Proof of Theorem 9.2.1. (1) If 0 < ujg < up and 0 < ugy < Uy, then since (uy,u2) is a
global solution for (NR), 0 < w;i(t,2) < wi(x) and 0 < ug(t,z) < ua(z) follow directly
from Lemma 9.2.3. That is, we have

sup [[ui(t, )|l pe@) < [Uille@)  (i=1,2).
tel0,T)
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Hence the solution (u1,us) exists globally.

In addition, let uig(z) < liuy(z), ugo(x) < laTz(x) for some 0 < Iy < Iy < 1. Since the
comparison theorem holds, without loss of generality, we can assume that uio(z) = l1u; (),
ugo(z) = laug(z) and I3 < ls < 1. We here note that du; := wui(t + h) — uy(t) and
dug == ug(t + h) — ua(t) for h > 0 satisfy the following equations:

(9.2.4)
615 (5U1) (5U1) (5U1) () (t + h) + Ul( ) (5UQ) —-b (5’&1) s
8t (5UQ) (5UQ) = (5U1)
) )=

Oy (Sur) + a (dur) = 9y (Juz) + B (lua(t + h) |7 2ua(t + h) — [ua(t)|" 2us(t)) = 0,
5U1(0) = ul(O + h) — U1(O), (511,2(0) = UQ(O + h) — UQ(O)

Multiplying the first and second equation of (9.2.4) by [du;]" and [dug]™ respectively and
using integration by parts and repeating the same argument as for (9.2.2), we obtain the
following inequality:

8] ey + 62l Wy < (M6us (O] I3y + I8u2(O)]* 22y €7 ¥t € [0,00).

We divide both sides of this inequality by h:

2
5U1 * (S’UJQ + 5U1(0) +
h h h
Since we know that up, ug is differentiable on a.e. ¢ by the regularity results of Theorem

9.1.1, by letting h \, 0, we obtain

0] 172 + 10eua] 172 < (I[Beua Q)] F 17 + | [Oruz(0)]FI[72) € ae. t € [0, 00).

2 2

GCt .

[m;(())]* ’

L2(Q)

L2(Q) L2(Q) ‘ L2(Q)

We here note that since (171, lou2) is strict upper solution for (S-NR), it holds that
Oru1(0) = Augg + uigugo — buig
= 1 ATy + Loy — bliuy
<l (AT +wug — buy) =0,
Oyua(0) = Augg + auqg
= b AUy + aliuy
<l (Auy + auy) =0,

which imply that [Opu1(0)]" = [Gu2(0)]t = 0. Hence we find that dyu; < 0 and dyus < 0,
i.e., up(t,x) and uy(t, x) are monotone decreasing in ¢ for a.e. = € Q. Thus

lm (uq(t, x), us(t, x)) =: (u1(x), uz(x))

t—o00

exists and satisfies (0,0) < (a1, u2) < (l1uy,lots) < (u1,u2). Now we prove that (@, a9)
is a nonnegative stationary solution of (NR). First we note that

(9.2.5)  w(t) —a; strongly in LP(Q) as k—oo Vpe (1,00) (i=1,2).
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In fact, since |u;(z,t) — @;i(z)P — 0 ae. z € Q as t — oo and |u;(z,t) — w;(z)P <
2P|u(z) P < 2pHU¢||Z£oo(Q) a.e. x € Q, Lebesgue’s dominant convergence theorem assures
(9.2.5). Next multiplying the first and the second equations of (NR) by dyu; and Oyus
respectively, we get

d (1 @ b
|11 (8)]1 722y + T {2HVU1(75)”%2(Q) + 5\\101(75)”%2(89) + 2\|U1(t)H%2(Q)}

:/ uiusurdr < 0,
Q

d (1 3
||3tu2(t)||%2(9) T {2||VU2(15)||%2(Q) + ,Y||U2(t)’|zw(m)} = a/Qulatuzdl‘ <0.

Then integration of these over (0,7") for any 7' > 0 gives

(926) | 1o @it + [ 1oruae) e < o

(9.27) sup { lur ()70 + lu2(®)l1() } < Co.
t>0

where Cp is a positive constant depending on |luiol|g1(q), [[u20llm1 (@) and [[ugoll 2+ a0)-
Hence since u; € L*°(0,00; L>(Q2)) (i = 1,2), from equation (NR), we derive

n+1
(9.2.8) / {Hatul(t)”%/Q(Q) + ”atug(t)H%z(Q)} dt — 0 as  n — 0o,

n+1
(9.2.9) Slrllp/ {||Au1(f)||2L2(Q) + Hﬁuz(t)ﬂizm)} dt < Co.
Furthermore, since |luz(t)||re(a0) < |luz(t)||L=() (see [27]), we obtain
(9.2.10) sup [[uz(t) || o a0) < W2l L~ (@)

t>0

Here we put
(9.211)  ul(2,t) = wi(x,n +1t) € A = L*(0,1; L*(Q)) t < (0,1) (i =1,2).
Then u'(t) satisfy

O (t) — A () = u (1)) — bu (1), te(0,1), ze0,
(9.2.12) Oy (t) — Auy (t) = aut(t), te(0,1), z€Q,
Dl (t) 4+ auft (t) = dyul(t) + Blul ()| 2ub(t) =0, te(0,1), z € IQ.
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Then, by virtue of (9.2.5), (9.2.7), (9.2.8), (9.2.9) and (9.2.10), there exists a subsequence
of {ul(t)} denoted again by {u]'(t)} such that

(9.2.13)  OQwul(t) =0 strongly in € as n — oo,

(9.2.14)  wi(t) — wi(t) = u, strongly in J€ as n — oo,

(9.2.15)  uf(t)uy(t) = w1 (t)ue(t) = wyue  strongly in & as n — oo,

(9.2.16)  Auj(t) — Au,(t) = Ay weakly in J€ as n — oo,

(9.2.17)  wl(t) — ui(t) = u, strongly in L*(0,1; L*(0Q)) as n — oo,
(9.2.18)  |ub ()7 2ub (t) — |ta|" 1o weakly in L*(0,1; L*(0R)) as n — oo,
(9.2.19)  Oyui(t) — dvuy weakly in L*(0,1; L*(9)) as n — oco.

Thus @1 and us satisfy
— Aﬂl = Uil — bﬂl, T € Q,
— Aty = atiq, x €,
o, 1 + oty = 0,0 + ﬁ|a2|7_2ﬂ2 =0, ze€of.
(2) Let v = 2 and o < 2/3. By the comparison theorem, we can assume without loss

of generality that uio(z) = l1u1(x), ug(x) = louz(x) for some I3 > Iy > 1. Suppose that
the solution (uj,us) of (NR) exists globally, i.e.,

(9.2.20) sup [ui(t,-)l|pe@) <00, (i=1,2) VT >0.
te[0,7

Now we are going to construct a subsolution. For this purpose, we first note that there
exists a sufficiently small number ¢ > 0 such that

a(ly — 1))y + eloia <0 on Q,
(9.2.21) {(2 1T + elyly

E+(1—lg)ﬂ2<0 on Q.

Here we used the fact that w;(x) > 0, Ua(x) > 0 on €2, which is assured by Hopf’s type
maximum principle. Let u}(¢t,z) = lLeuy(x) and ub(t,z) = lpeuy(x). Then using
(9.2.21), we get

Ot — Aut — utul + but = elietuy — 11T ATy — L ety loe s + bl ety

1 1 142 1
_ et— et (= =— — l et— l et— bl et—
=celie*uy + lye (U1UQ — bul) — (1€ ulee” " u2 + bl1e”"uy
< e’;‘llestﬂl + llestﬂlﬂg — lllgegtﬂlﬂg

_ t—
= {6 -+ (1 — lg) UQ} lhe®u < 0,
Oyl — Aub — auf = elpe Ty — loe® Aty — alye'uy

_ et— et _— et—
= eloe™ Uy + lseau; — al1e*" uq

= {6[2@2 +a (lg — ll)ﬂl} et < 0,
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where we used the fact that (u;,ug) satisfies

— Aty = urug — buy,
— Ay = auy.

Moreover 0, u;+au; = 0, dyus+pus = 0 on 9Q and ui(0,z) = L1y (x), u3(0,x) = laua(x).
Hence by the comparison principle, we have

(9.2.22) Lhefu(z) = ui(t,z) Sui(t, o), lee T (x) = uh(t, z) < ua(t,z).

Multiplication of equations of (NR) by ¢1 and integration by parts yield

(/ ulcpldx> +(b+)\1)/u14p1dm:/uluggolda;,

Q Q Q

</ u2¢1d$> +)\1/U2901d$+(5—0£)/ U2<P1d0'=a/ urprde,
Q Q a0 Q

where A1 and ; are the first eigenvalue and the corresponding eigenfunction for (8.1.1).
We here normalize 1 so that [[¢1]|z1(q) = 1. Substituting (9.2.24) and uy = L (Opuo— Auy)
in (9.2.23) and using integration by parts, we get

d (d
(9.2.25) 7 {dt </ u2<p1dx> + /\1/ ugprdr + (6 — a)/ uzgolda}
Q Q o0

d
+ (b—l— )\1) { (/ UQ(,Dldl') + )\1/ ugprdx + (5 - Oé)/ UngldO'}
dt \Ja Q 89
— i [dendet [ FuaPouds 5 [ dedar (5-5) [ o

where we used the fact that

(9.2.23)

a
dt
d
9.2.24 =
( ) o

—/(Auz)u2gpldaz:/VUQ-V(Ugcpl)d:c—/ (Oyu)ugprdo
Q Q 0N
:/ |Vu2|2<p1dx+/uQVuQ-ledx—l—ﬂ/ udpido
Q Q [2)9]

1
_/ |VU2|2(p1dSC+2/VU%'chld(L'-i-ﬁ/ u%golda
Q Q [oJ9)

1 o
:/ |VuQ|2<p1dx—2/ u%Amd:c—Q/ U%SOldU-Fﬁ/ usprdo
Q Q 99 o0

A o
:/ |VUQ|2cpldx+21/u%g01da:+ <5—2>/ usprdo.
Q Q i9)
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We here assume § — a > 0. From (9.2.22), it follows that

A

A u2<p1dx(b+)\1))\1/u2cp1d:p
2 Jo Q

AL

1
= u2<p1dx + M\ / {uz —(b+ )\1)} usprdx
1

A
> — ! u2<p1dx + A1 / {u§ —(b+ )\1)} ugp1dx
4 Jo 0

1
> Al/u%gplda@—}—)\l/ {meEt—(b+)\1)}u2g01dx,
4 ) o4

W

where m := min__q loUz(z) > 0. Hence there exists t; > 0 such that

A
(9.2.26) 1/ u%g@ldm —(b+ )\1))\1/ ugprdr > 1/ u%aplda: YVt >t.
2 Jo Q 4 Jo

Similarly, since

<B - %) /89 udprdo — (b4 M) (B — @) /89 usprdo
:% (5 — %) /(‘mu%@ldg-i- /m {; (5 - %) uz — (b+ A1) (B — Oé)} ugp1do
=5 (5-5) ftoe s [, {36 5) - 04005} uan

there exists to > 0 such that

(5 — %) /{m u%gplda —(b+M)(B—a) /89 uspdo

1 o 9
2. > — - — > 19.
(9.2.27) > 2(5 2)/{3ﬂu2g01d0 V>t

Therefore by (9.2.26), (9.2.27) and (9.2.25), we have

(o) (o) 5 [ o)

(9.2.28)

1d AL
() 4 [ 10D fotee e

where t3 := t; V t2. Now we integrate (9.2.28) with respect to ¢ over [t3,] to get

d
{/ ugp1dx —|— -« / / UQcpldUdT}
dt tg JOQ

1 1
2/u2<p1d:c— b+2)\1)/uQcp1d$—2/U%(t3)901d$
Q
+1
2

Q
(9.2.29) ﬁ — = / / U2<,01d0d7'—|—/ OtuQ t3 (pldl‘
ts J OO

121
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where we neglected positive terms. Moreover we can see that there exists ¢4 > ¢3 such
that

1
/u%gpldx—(b—}—Q)\l)/uQcpldm
2 Ja Q

1 1
(9.2.30) —/u%(tg)@ldl'—l-/atUQ<t3)g01d.iL'Z /u%gpldx
2 Jo Q 4 Jo

for t > t4 by the same argument as before. Therefore from (9.2.29) and (9.2.30), we have

d
{/ ugp1dx —|— -« / / UQ(pldUdT}
dt ts Joo

1 t
(9.2.31) > /u2g01dx—|— (6—)/ / udpidodr.
4 Jo 27 Jey Joo

Since ||¢1][z1(q) = 1, by Schwarz’s inequality, we get

L[, 1 2
4/52U2<P1d$24 /Quwldw ;
1(6 a)/t/ 20, dod

1 o 1 1 t 2
> 75_7 {/ / UQtpldO'dT}
2( 2)||¢1\|Loo(9)|39|75—753 ts Jog

- {o-a [ b
—Q U dodr > .
1] e () |02 (B —a>2t—t3 v Joo

By the above inequalities and (9.2.31), for ¢ > t5 :=t4 V (t3 + 1), we finally get

d t
— {/ ugprdr + (6 — Oé)/ / UngldO'dT}
dt (Ja ts Joo

and

DO | =

1 5 1 ay [* 5

>z de +- (8- = dod

_4/QU2801 1’4‘2(5 2)/t3/(997~‘280107

> usprdr | + = B —a) uo1dodT
4< o 2 @1 1o (0 |02 (B —Oé)Zt—t:a v Jon !

ZCt—ltg {(/Qu2901d$>2 + <(5—04) /t: /asz “2‘P1d0d7> }
th— 3{/ ugprdr + (5 — « // u2901d0d7'} )
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where C' denotes some general positive constant independent of ¢. Set y(t) := [, usp1dz+
(B —a) fti Joq u2¢rdodr, then the above inequality yields the following:

e
a\ =

y(t5) > 0.

YA (t) t>ts,

We can see that there exists T* > t5 such that

(9.2.32) lim y(t) = 4o0.
t—=T*

In order to show the existence of T™ satisfying (9.2.32), it suffices to consider the following
ordinary differential equation:

d c

—y(t) = ——y°(t) t>t
G0 = =70 =t

g(tg,) > 0.

Since 4(t) > 0 for all t > t5 and §(t5) > 0, it is clear that §i(t) > 0 for all ¢ > ¢5. Divide
both sides by §%(¢) and integrate with respect to ¢ on [t5,t], then we have

1 i~(t) _C
2O a’ T ey
7(t) t
/ sdy =C'1 & ,
g(ts) Y —t
1 1 t—1t3
i e =Clo
u(t) (t5) & t5 —t3
Therefore we have
(1) = !
1 =
9(ts) Clog t5—1533

Hence there exists T > t5 satisfying

1 T—t
— C'log 3

— =0
y(ts) ts —t3

such that

lim g(t) = 4o0.
t—T

Thus (9.2.32) holds by comparison theorem for ordinary differential equations. This con-
tradicts the assumption that (ug,us) exists globally.
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For the case of § < 8 < a, we can prove the same result with a slight modification.
Actually, we get from (9.2.25)

d (d
— = /quldac —l—/\l/ugcplda:—i—(ﬂ—a)/ usprdo
d
+ b+ A\) {d </ u2g01d9:) + )\1/ u2§01dx}
t \Jo Q

A1
> Sq Qu§¢1dw+2/ﬂug<p1dx.

Using (9.2.26) and integrating above inequality with respect to ¢ over [ti,t], we have

% (/Q u2901d:n> — /Qatuz(tﬂ(mdac + (8 —a) /89 usprdo — (B — «) /E)Q us(ty)prdo

1 1
Z/u%goldx—/u%(tg)npldx—(b—i-Z)\l)/uggolda;+(b+2)\1)/uQ(tl)golda;.
2 Jo 2 Jo Q Q

Repeating the same arguments as for (9.2.26), we see that there exists tg > ¢; such that

1 1
/u%gpld:):—/u%(tg)cpldx—(b—i—%\l)/uggold:v
2 Ja 2 Ja )

-l—/ﬂc‘)tuQ(tl)golda:—i—(/B—a)/ ua(ty)prdo

o0
1
> /ugwﬂ
4 Jo

for all t > tg. From these inequalities and Schwarz’s inequality, it holds that

d 1 2
— d > — d t > ta.
dt(/§2u2@1$>_4</gu2¢1$> Vit>ts

Therefore we can get the following differential inequality:

a
dat”?
y(tﬁ) > 07

(t) = 2(t) >t

where y(t) = fQ ugprdzx. It is easy to see that there exists T** > tg such that

li t) = .
g, y(t) = oo

This leads to a contradiction. O

Remark 9.2.4. Since the blow-up result is proved by contradiction, there is no knowing
if ||ui(t)||p~ and [Jua(t)||ze= blow up simultaneously. However we can show by another
argument that L°°-norms of u; and uy blow up at the same time, i.e., there exists 7" > 0
such that

Jim flus (#)l| oo () = 00 and  lin [Juz(t)][ Lo (@) = oo
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In fact, multiplying the first equation of (NR) by |u1|"~2u; and using integration by parts

and similar calculation in the proof of Theorem 9.1.1, we obtain

d
(9.2.33) D@l < @@l Ol ¥ € 0.7)
From the second equation of (NR), we also have
t
(9.2.34) luz ()] Loo () < lluzoll Lo () +a/0 w1 (7) || oo (ydT vt € [0,T).
Suppose that
lim Hul(t)HLoo(Q) =00 and My := sup HUQ(t)HLoo(Q) < 00,
t>T 0<t<T
then it follows from (9.2.33)
d
@l < Maflur ()l @) vt € [0, 7).

By Gronwall’s inequality, we get

Jur ()| () < llutollrye™ < [lutoll pr)e™™" vt €[0,7).
Letting r tend to oo, we obtain
[y (8)]| oo ) < Ilwaoll ooy e™?” vt €[0,T),

which contradicts the fact limg 7 [|u1(t)| (o) = oo. Next, suppose that

My = sup |[Jur(t)| pe(o) < o0 and lim {lug(2)|| Lo () = 00,
0<i<T t—T

then by (9.2.34) we see that
||UQ(t)||Loo(Q) < HUQ[)HLoo(Q) +aM;T YVt € [O,T).

Letting ¢ tend to T, we get contradiction. Thus we see that u; and us blow up at the
same time.

9.3 Blowing-up Solutions of (NR)

In this section, we exemplify the applicability of Theorem 4.1.3 in Part I for systems of
parabolic equations. We consider the following reaction diffusion system, which consists
of two equations possessing a nonlinear coupling term between two real-valued unknown
functions, which is a generalized system of (NR).

Orup — Auqp = uqug — buq, t>0, x €,
(NR)* Oyug — Aug = aunq, t>0, x €,
O,uy + al\ull"’l”ul = Oyus + a2|u2\72*2u2 =0, t>0, x €09,

u1(0,2) = uip(z) > 0, u2(0,2) = ug(z) >0, x € Q.
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Here Q € RY is a bounded domain with smooth boundary 0. v denotes the unit outward
normal vector on 92 and 0, is outward normal derivative, i.e., d,u; = Vu,; -v (i = 1,2).
Moreover u1, us are real-valued unknown functions, a and b are given positive constants.
As for the parameters appearing in the boundary condition, we assume «; € [0,00), ; €
(1,00) (i = 1,2). We note that the boundary condition for u; becomes the homogeneous
Neumann boundary condition when a; = 0, and the Robin boundary condition when
a; > 0 and v; = 2. We further assume that the given initial data w19, usg are nonnegative
and belong to L>(€2). In the former section, we dealt with the case where oy = a € [0, 00),

=p€(0,00), 11 =2and y2 = € [2,00). As for the case where ~; # 2, note that it is
not clear whether there are solutions which blow up in finite time.

Nevertheless it is possible to show that (NR)* with v; # 2 admits blow-up solutions
by applying the same strategy as that in Chapter 4. Along the same lines as before, we
first consider the following Dirichlet problem for (NR).

Orug — Auq = uqug — buq, t>0, veQ,
(NR)P Orug — Aug = auq, t>0, z e,

up = ug =0, t>0, zeodf,

u1(0,2) = uip(z) > 0, u2(0,x) = ug(z) > 0, x €.

We first note that for every Uy := (u10,u20) € LE(Q) := { (w1, u2);u; > 0,u; € L>(Q) (i =
1,2) }, (NR) or (NR)” possess a unique solution U(t) := (u1(t), u2(t)) € LT () satisfying
the blow-up alternative with respect to L°°-norm such as in Proposition 9.1.1. We are
going to show this result for a more general equation:

o1l — Aup = ujug — buq, t>0, xe Q,
(NR)B Oyug — Aug = auq, t>0, x €,

dyur + P1(ur) = dyug + Pa(uz) =0, t>0, v o,

u1(0, ) = uio(x) > 0, u2(0,z) = ugo(x) > 0, r €€,

where 3; : Rl — 2R' are maximal monotone operators (i = 1,2). To do this, we can repeat
much the same arguments as those in the proof of Proposition 2.2.3.

Let H := L?(Q) x L*(Q) with inner product (U,V)g = (u1,v1)2 + (u2,ve)2 for
U = (u1,uz), V = (v1,v2), and put |VU|* = |[Vu|? + |[Vuz|?. Let j; : Rt — (—o0, +09]
be lower semi-continuous convex functions such that dj; = §; (i = 1,2). For the Dirichlet
(resp. Neumann) boundary condition, we put j;(0) = 0 and j;(r) = 400 for r # 0 ( resp.
§i(r) =0, Vr e R1).

Then we define

) 5 | (VU@ + UG d:v+2/ ji(wi@)do U € D(y),

+o00 U e H\D(yp),

where D(p) := {U;u; € HY(Q) ji(u;) € LY(Q) (i = 1,2)}. For the homogeneous Dirichlet
(resp. Neumann) boundary condition case, we take D(p) = H}() x H}() (resp.
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HY(Q) x HY(Q)). Then we have
3(,0(U) = (—Aul + w1, —Aug + UQ),
D(0p) = {U = (u1,ug); u; € H2(Q), —8,ui(x) € Bi(ui(z)) (i=1,2) a.e. on ON}.

Furthermore the elliptic estimate (2.2.10) with u replaced by w; (i = 1,2) holds true for
all U € D(0y).

Then by putting B(U) := (—uj ug + (b — 1) w1, —uz — awuy), (NR)” can be reduced to
the following abstract evolution equation in H.

(CP)? %U(t) +p(Ut) +BU®) 20, t>0,

U(0) = Uy = (u10, u20).-

In order to apply “L°-Energy Method”, we again introduce the following cut-off functions
IKz‘,M(') (Z = 172):

0, UeKin:={U=(ui,u2) € H; |uj(z)] <M ae xzeQ},
IKi,M(U) =
+00, UeH \ Ki,M)
and put
em(U) == (U) + IKI,]\/I(U) + IK2,M(U)-
Then we get
8(,0([]) = 8(,0(U) + 8[17M(U) + 8]27M(U) YU € D(ago) N KI,M N KQVM.
Consider the following auxiliary equation:
d
—U(t)+ 0 U(t))+B(U((t) >0, t>0,
- SU() + 0o (U (1) + BU()

U(0) = Uy,
where we choose M > 0 such that
M = [|Up||Lee + 2 := [[uro|| Lo + [Juzol[e + 2.

Then as in the proof of Proposition 2.2.3, we can easily show that (CP)},, which is
equivalent to the following (NR)},, admits a unique global solution U (t) = (u1(t), us(t)).

Opur — Auy + Bar(ur) = uiug — buy, t>0, x e,
(NR)?M Orug — Aug + Bar(ug) = auy, t>0, e,

Opuy + B1(u1) = dyus + Po(uz) =0, t>0, z € o,

u1(0,2) = ugp(x) >0, u2(0,x) = uge(z) > 0, x €.

Then in parallel with (2.2.18), multiplying the first and second equations of (NR)XJ by
lu1|"~2uy and |uz|"~2us, we can obtain

t
”U(t)HLoo S HU()HLoo +/ £(|’U(8)HLoo)dS with 6(7‘) = CLT+T2,
0



128 CHAPTER 9. NONSTATIONARY PROBLEM OF (NR)

where ||U||p~ = |[(u1,u2)||r>~ = ||ui||re + [Juz||r. Then we can repeat the same argu-
ments as those in the proof of Proposition 2.2.3. Furthermore multiplying the first and
second equations of (NR)? by uj := max(—u1,0) and u; := max(—uz,0), we can easily
deduce

1d, _ _ _ _ _
5 77 (I D72 + lluy (O72) < lluzllzee luy Bl + allur (@)]z2]lug @)l

< (luzllze + @) (lup (N2 + llug (O]Z2)-

Then by Gronwall’s inequality, we get u; (t) = uy (t) = 0 for all ¢, i.e., (u1,u2) is a non-
negative solution (see [33]). (The non-negativity of solutions can be also derived from
application of Theorem 4.1.3 for (NR)ﬁ with the coupling term wu; uo replaced by uf ug.)

Here we prepare the following lemma concerning the existence of blow-up solutions of

(NR)P.

Proposition 9.3.1. Assume that (w10, u20) belongs to L3°(Q2) and satisfies

(9.3.1) /Q(a uio(x) + buge(x) — %ugo(az)) ¢1(x) dx > 0, /Q’LLQ()(IL’) o1(x)dz > 2(b+ Ap).

Then the solution U(t) = (u1(t),uz(t)) of (NR)P blows up in finite time. Here A1 and ¢y
are the first eigenvalue and its associate normalized positive eigenfunction of (4.2.1).

Proof. Suppose that U(t) is a global solution. Then multiplying the first and second
equations of (NR)? by ¢;, we obtain

(9.3.2) % (/Q u1g01d$> +(b+A\) (/Q u1¢1d$> = /Qu1u2¢1d:c,

(9.3.3) % </Q uz<b1dx> + )\1/9U2¢1d$ = a/Qul(bldx.

Following [53], we set

1) = [ waonde. =)= /(0 + b+ Myt = 5 | (O

Q
Then by (9.3.3) and (9.3.2), we get

/(0= My () +a [ h(nds
Q
(9.3.4) = —Aly’(t)—(b+/\1)/ aU1¢1d:U+/aU1U2¢1dx-
Q Q

We substitute au; = dyug — Aug in (9.3.4), then by integration by parts we have

1d A
Y ()4 (b+2X1)y (£) + A b+ )y(t) = oY) (/ U%%dx) +/ ’VU2’2¢1d9€+21/ us¢rdz,
Q Q Q

whence follows
2'(t) > = Az(t).
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Therefore we get z(t) > z(s)e =% for 0 < s < t. Here (9.3.3) and (9.3.1) yield

/Qu Yp1dx

=/Q<au1< $) + bus(s) — ~ud(s)) grde

2(s) =y'(s) + (0+ M)y

l\')\r—t

\)

1
—ud) rdr >0 as s — 0,

— /(aulo + bugg —
Q 2

since u (t), u2(t) € C([0,1]; L%(Q2)) N L>=(0,1; L>°(£2)). Hence we see that z(¢) > 0 for all
t > 0, i.e., we have

V(O > =0+ M0+ [ o

~(b+ M) )+~ )

>
- 2
1
(9.3.5) 2 5 y(O)y(t) =200+ A1)).
Then (9.3.5) assures that y(¢) blows up in finite time if y(0) > 2(b + A1). O

In order to make it clear that solutions of parabolic systems differ according to their
boundary conditions imposed, we here denote the unique solutions of (NR)? and (NR)” by
UB(t) = (W) (t),uy () and UP(t) = (uP(t),ud (t)) with the same initial data Uy € L2(Q),
respectively.

We are going to compare UP(t) with UP(t) by applying Theorem 4.1.3. for U; =
UP, Uy =UP. Let

o 1 2 e 11 _ 2_ 2 1122 Q.
m=2; ai,j—ai,j—5i,j7 a; = a3 =ujp, a] =a; =u; Y=Y =7 =7 =0;

FLU) = F3(U) = FYU) := ujuy — buy, Fy(U) = F2(U) = F*(U) := auy;

a [r[i 2y for r > 0,
Bi(r) = Bi(r) = BP(r), Pa(r) =] (—o0,0] forr=0,  (i=12),
U] for r <0,

where v is the maximal monotone graph defined by (4.2.3). Then (A1), (A2) and (i)
of (A4) are obviously satisfied. Moreover as in the proof of Proposition 4.2.1, we can see
that u? and uf obey the homogeneous Dirichlet boundary condition, and that —3,,uf €
Ba (uf ) and —8yu§ € p2 (ug ) hold, since uf and ug are non-negative solutions. Therefore
D(B1) = D(82) = D(87) = {0} and D(BY) = D(53) = [0, 50) assure (iii) of (A3).

Hence to apply Theorem 4.1.3, it suffices to check (ii) of (A4), i.e., FY(U) = ujus —
buy, F%(U) = auy satisfies (SC). Since F!, F? € C1(R?), (2.2.8) is obvious. As for (2.2.7),
we get,

0 2 0 1
—_— > .
u1F (U) a >0, o F(U) u; >0
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Consequently, applying Theorem 4.1.3, we conclude

T (UP) < T, (UP)  and

0 <uP(t,x) < u?(t,m), 0 <ul(t,z) < ug(t,x) Vt € [0, T (UP)  a.e. z €.
Thus by virtue of Proposition 9.3.1, we have the following corollary.

Corollary 9.3.2. Assume that (uig,u20) belongs to L°(2) and satisfies (9.3.1). Then
the unique solution U(t) = (u1(t),u2(t)) of (NR)* blows up in finite time.

Remark 9.3.3. The existence of (uig,uz20) satisfying (9.3.1) is assured when a > 0. For
instance, if uyg > iugo and ugg 1s sufficiently large, then (9.3.1) is satisfied.

For the case where a = 0, however, there is no initial data (u19,u20) satisfying (9.3.1).
In fact, a = 0 implies that sup;s ||ua(t)||pe < |lugol|zee, then ui(t) satisfies Opuy —
Auy(t) < Jlugol|zeous (t), whence follows ||ui(t)]|ze < |luiol|ze ezt Consequently
every local solution can be continued globally.

Remark 9.3.4. The assertion of Corollary 9.3.2 holds true for more general equation
(NR)?, provided that 0 € 3;(0) (i = 1,2) is satisfied.



Chapter 10

Bounds for Global Solutions of
(NR)

We are concerned with a bound of global solutions to (NR) with Robin boundary con-
ditions. In the previous chapter, we showed the global existence of solutions to (NR)
for small data. More precisely, if the initial data is smaller than or equal to a positive
stationary solution, then the corresponding solution exists globally and converges to the
trivial solution. In this chapter, we are going to show every global solution of (NR) with
Robin boundary conditions (y=2) is bounded uniformly in time.

10.1 Existence of Local Solutions

Throughout this chapter, || - | denotes the norm in H'(2). We also simply write u(t)
instead of wu(t,-). In this section, we mention the local well-posedness. The local well-
posedness of (NR) in L*°(2) is proved in Chapter 9 as Theorem 9.1.1. In order to treat
the case where the data belong to H'(f), we need to fix some abstract setting. Let
H = L*(Q) x L*(Q) and for u = (u1,us) € H we put

D(¢) :={u € H;up,ups € H(Q), ug € L7(09) },

5 (0@ P+ blur (@) P+ (Vo) P)da
! g
u) = Dy (@) + Dug(@)) ) do i u
o(w) [ (Gl + L) do it ue Do)
+00 if u g D(¢).

Then ¢ is a lower semi-continuous convex function from H into [0,00) and its subdiffer-
ential d¢ is given by

0p(u) ={w e H; w=(—Auj +buy,—Aug) } Yu e D(0¢),

D(0¢) = {u = (u1,u2); ui,us € H2(Q), Oyut + auy = dyus + 3 \uQ\'y_zug =0}.

Then we have

131
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Theorem 10.1.1. Let N <5 and (u19,u2) € D(¢), then there exists T' = T (¢(ug)) > 0
such that (NR) possesses a unique solution (ui,us) € (C([0,T); L?(2)))? satisfying

(10.1.1) Opuy, Oyua, Auy, Aug € L*(0,T; L*(Q)).

Furthermore, if the initial data is nonnegative, then the local solution (uq,us) for (NR) is
nonnegative.

Proof.  Put u(t) = (u1(t),ua(t)) and
B(u) :={be H; b= (—ujug, —auy) },

then (NR) can be reduced to the following abstract evolution equation in H:
d

(10.1.2) @u(t) + 0¢(u(t)) + B(u(t)) =0, u(0) = (u10,u20)-
We are going to apply Proposition 1.4.4. To do this, we have to check three assumptions.
The compactness assumption (A1) requires that the set {u € H; ¢(u) + |u|?; < L} is
compact in H for all L > 0, which is assured by the Rellich-Kondrachov theorem. The
demiclosedness assumption (A2) on B(u) is assured by the continuity of the mapping
(u1,uz) — (—uyug, —aui) in R2.

The last assumption to check is the boundedness assumption (A3):

(10.1.3) |B(w) |3 < k|0¢(u)|F + £(d(u) + [ulg) Vu € D(¢),

where k € [0,1) and ¢(-) : [0,00) — [0,00) is a monotone increasing function. We note
that
(10.1.4)

1Bl < llurllFluzll + a®[lusl3, 3C > 0 such that C(Jlur]|* + [[uz|®) < ¢(u) + 1.

Hence for N < 4, (10.1.3) holds true with k = 0 and £(r) = Cr2.
As for the case where N = 5, Gagliardo-Nirenberg interpolation inequality gives

1 3
[vlla < Cllvll gallv]l2.

Then by Young’s inequality, (10.1.3) is satisfied with £(r) = Cr3. Thus the local existence
part is verified.

To prove the uniqueness part, let u! = (ul,ud), u? = (u2,u3) be solutions of (NR)

and put du; = u} —u? (i = 1,2). Then Su; satisfy
(10.1.5) Ordur — Aduy + boug = 5u1u% + 5u2u%,
(10.1.6) Opdus — Adus = aduq,
(10.1.7) D, 6u1 + aduy = 0,0ug + B(|us|"?ul — [ud]""*u3) = 0.
Multiplying (10.1.5) by du; and (10.1.6) by dug, we have by (10.1.7)
(10.1.8)

5 310001 + 198018 + ol + ol < [ (5un ] + 1o S ) o
(10.1.9)

1

d
5 15021+ [V8ua 3+ 5 [ (ubl=2ub — (3" 08) Susdo < a [ (5w S
o0 Q
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Let N <5, then since H(Q2) and H?(Q) are embedded in L% (2) and L'°(Q) respectively,
by Young’s inequality we find that for any € > 0 there exists C. > 0 such that

/Q (6] 5] || dae < C [|5wil 1505 2 1] 20
< e (IV6will3 + 6uil13) + Celldus [3lellz -

Hence, by adding (10.1.8) and (10.1.9), we obtain

d
(5w @3 + dua()112) < Cllluallra o) + i) + 1) (16w (B)]Iz + [l6uz(8)|2),

Thus since ud,u? € L?(0,T; H*(Q)), the uniqueness follows from Gronwall’s inequality.
The nonnegativity of solutions can be proved by exactly the same argument as in the
proof of Theorem 9.1.1 in Chapter 9. O

10.2 Main Result and Proof

In what follows we always consider the case where v = 2 and we are concerned with
global solutions of (I1.4). We put H! = {(wy,ws) € H*(Q) x HY(Q); w1, wy > 0,wy,wy #
0} and V = {(wi,wz) € L>®() x L™(Q) ; wi,ws > 0,wy,wy # 0}. Our main theorem
can be stated as follows.

Theorem 10.2.1. Let N = 2,3 and o < 23. Assume that (uip,u20) € H' and (u1,us) is
the corresponding global solution of (11.4) satisfying the same regularity given in Theorem
10.1.1. Then there exist constants M; = M;(||uiol], ||ugol]) > 0 (i = 1,2) such that

(10.2.1) sup |lur(t)|| < My,  sup |lua(t)] < Ma.
>0 >0

Moreover if (uio,u20) € V and (u1,u2) is the corresponding global solution of (11.4)
satisfying the same regularity given in Theorem ??. Then there ewist constants M'; =
M ;(|[u10lloo, |ugolleo) > 0 (i = 1,2) such that

(10.2.2) sup ||ur () |loo < M1, sup |Jua(t)]|co < M's.
>0 >0

We divide the proof into several steps. We first derive the L!'-estimate of the solutions.
In this step, we rely on the properties of the first eigenvalue and the corresponding eigen-
function of —A with the Robin boundary conditions (Lemma 7.1.2). The second step is to
derive uniform L?-estimates and third one is to derive uniform H'-estimates. In the last
step, we get uniform L bounds for global solutions of (I1.4) applying Moser’s iteration
scheme (see [1] and [41]).

(1) Uniform estimates in L

Let A\; and ¢; be the first eigenvalue and the corresponding eigenfunction of (7.1.1)
respectively. We here normalize ¢ so that ||¢1]1 = 1. Multiplying ;1 by the first and
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second equations of (I1.4), we get

(10.2.3) (/Qumdx)t+(b+A1)/Qulso1dx+(a—'Y)/

7]

(10.2.4) ( u2901da:) + A1 [ uwgprdx + (B —7) usprdo = a | uiprde.
Q t Q o0 Q

Multiplying (10.2.3) by a and substituting (10.2.4) and equation (I1.4) to the second term
of the left-hand side and the right-hand side respectively, we have

u1¢1d0—/ulu2901d3?7
0 Q

(10.2.5)

a(/Q uupldx)t + b+ )\1)(</Q u2901d:v)t + )\1/QUQg01d.1‘ +(B—7) /BQ uzgolda>

+a(a — 7)/ uyprdo = / (Opug — Aug) ugprde.
o0 Q

Then differentiating (10.2.4) with respect to ¢ once and substituting (10.2.5) to the right-
hand side, we obtain

(/ UQg()leC) + (b—l— 2/\1)(/ UQ(p1d1'> + )\1(b+ )\1)/ uQcpldac
Q 23 Q t

Q

raa=) [ wpdo+ (3= ( [ wprda) + 3=+ N) [ wpdo

= /(atU2AU2)U2901d$
Q
(10.2.6)
_ 1 2 2 At 2 0 / 2
= 2</ngap1dx>t+/QVuzl prdr + 5 /gzuzwldx—i-(B 2) 8Qu2g01da.

Finally choosing v = a-526 > 0, we deduce

(10.2.7)
(/ u2g01da?> + (b+ 2>\1)(/ quoldx) + M (b+ )\1)/ usprdx
9) it Q t Q

! ! 1 9 A1 9
- — - — > — — .
5 (/asz uzgolda)t 2)\1 /89 ugpi1do > 5 (/Q u2g01d:n)t + 2 /ngwldx

We now set

() = w/(6) + (b A wt) — 5

Q

u% V1 diU—(;/BQUQ prdo,  w(t):= /QUQ o1 dx.

Since dyus € L2(0,T; L*(Q)) implies that there exists so € (0,1) such that |y(so)| < oo.
Then (10.2.7) yields

y'(t) > —My(t), hence y(t) > y(so)e M%) > _|y(sp)| =: —~Cy Vt > so.
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Hence by virtue of Schwarz’s inequality and Young’s inequality, we get

1 o
—Co < y(t) =w'(t) + (b+ M) w(t) — 2/QU3801 dx — 5 /aQUstl do

<! (1) 4+ (b+ M) w(t) — Lu()

<w'(t) — iwz(t) +(b+ )%Vt > s,

ie.,

(10.2.8) w'(t) > %w2(t) —Cy, C1:=Co+ b+ )*>0 Vt> s,
whence follows

(10.2.9) w(t) < 201% =:Cy Vit > so,

Indeed, if there exists t; > sg such that

(10.2.10) %wQ(tl) —C1 >0,

then from (10.2.8), (10.2.10) we can deduce that there exists to > ¢; such that

lim w(t) = +o0,

t—to

which contradicts the assumption that w(t) exists globally. Thus (10.2.9) holds and the
following global bound for w(t) is established.

(10.2.11) sup/ ug o1 dr < Cy 1= max(Cg, max w(s)).
Q

t>0 0<s<sg

Next we derive a uniform estimate for fQ uiprdx. Using the facts that u; = %(atug -
Aug) and (u1,ug) are nonnegative in (10.2.3), we can get

d
_ > _
o (/Qulcpldx) > (b—l—)\l)/ﬂuupldaz

1
= —(b + )\1)* / (6tu2 — Al@)(pl dx
aJjq

b+ A b+ M)A b+ A
= DMy - OFMAL gy B e 1)0‘/ usiprdo
0

a a 2a
bt A b+ A
Ay - O
a a

For n € (0,1), integrating this inequality over (¢,¢+ 7) and using (10.2.11), we obtain

[ wirae] + > 2N ) e - EE2 [ ar

_b—|—)\1— (b—{—)\l))\l—

a a

>
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where C3 > 0 is independent of ¢ and 7. This implies that

(10.2.12) / ur(t)prde < Cs +/ uy(t +n)er da.
Q Q

Integrating (10.2.12) over n € (0,1) and using integration by parts, we get

1
/ul(t)goldm§03+/ /ul(t—I—n)gmdxdn
Q 0o Ja

t+1
= Cg—l—/ /ul(T)gol dx dt
t Q

1 t+1
=C3+ / /(8{(@ — AUQ)QOl dx dr
a Jg Q

1 )\1 t+1 a t+1
=Cs+ — (w(t+1) —w(t)) —|—/ w(r)dr — — / ugepr do dr
a a Jy 2a Jy  Joq

1+ XM —

S 03 + CQ = C47

which concludes that

(10.2.13) sup/ urprdr < Cy.
t>0 JQ

Thus, from (10.2.11), (10.2.13) and Lemma 7.1.2, we can derive the following estimates:

(10.2.14) sup |lur(t)][1 < C5,  sup |luz(t)]1 < Cé.
>0 >0

(2) Uniform estimates in L?

We here try to get L? uniform bounds of solutions of (I1.4). Since (10.2.3) gives

d
/ uusprde < (/ U1 dx) + (b+ )\1)/ U1 d,
Q dt \ Jq Q

it follows from (10.2.13) that
t+1
(10.2.15) Sup/ / urus dx dr < Cs.
t>0 Jt Q

Multiplying the second equation of (I1.4) by us and using integration by parts, we get
5 = w3 + [Vua ()13 + Blluz(t)l13 o0 = a/Qum dz,

where [[v]]3 5 = [5o v?do. Hence by virtue of Poincaré - Friedrichs’ inequality Cr||v||3 <
(19013 + Bllv]3 pq). we have

1d

(10.2.16) L IR+ Crllus ()2 < a/ it d,
S di ;
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Applying Gronwall’s inequality to (10.2.16), we get

t
(10.2.17) [ us(t)]|3 §e2CFt||u20||%+/ 2(1(/ ulqux)e*QCF“*T) dr.
0 Q

In order to obtain uniform bounds of L?-norm for uy with respect to t, we need to confirm
that the second term of right hand side of (10.2.17) is bounded. For any ¢ > 0, we can
express t = n + ¢ with some n € NU {0} and € € [0,1). Then, by virtue of (10.2.15), it
follows that

t
/ (/ ulquaz>e*20F(t*T) dr
0 Q
t t—1
:/ (/ ULUL d:r:)e_wF(t_T) dT+/ (/ U UL dm)e_2CF(t_T) dr
t—1°JQ t—2 Q
t—(n—1) t—n
+ - +/ (/ ULUY da:) e~ 2CF(t=7) gr +/ (/ ULUY dx) e 2CF(t=7) gr
t Q 0 Q

—-n

<e /tt1 (/Q ULUL dx)dT +e720F /tt; (/Q ULUL d:v)dT
4o e 210 /t_(n_l) (/Q ULU2 d:v) dr + e 2"CF /Ut—” (/Q UL U2 dw) dr

t—n
< C7<1 1 e 2CF 4 ,~4CF +.__+672nop>

1— e—2(n+1)CF Cy

p— < .
Cr 1—e20r = 1 —¢2CF

Therefore we obtain from (10.2.17)

2aC
20 7
lus ()13 < €727 |luzo13 + 1o, =0
This implies that there exists C's > 0 such that
(10.2.18) sup [lua(t)]|2 < Cs.
>0

Note that the above argument can be done without any restriction on dimension N.
We next derive a uniform L?-estimate of u; for N < 3. Multiplying the first equation
of (I.4) by u; and using integrating by parts, we have

1d

2dt||ﬂ1(t)\|§+IIVU1(75)H§+04HU1(t)!§,aQ+bHU1(t)II§Z/Qﬁwd%

We here adopt (||Vvl||3 + b |[v]|3)'/? as the H' norm for u;. By using Holder’s inequality,
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the interpolation inequality and the embedding theorem (||v|l¢ < Cyl|v]|), it holds that

1d
L )13+l )]? < /Q Wy di

< lur @[3 [[u2(®)]l2

—~

1 9
< ur (N7 lur ()6 luz(®) ]2

1 9
< C3C5C§ [w @) < 5l @) + Cao,

N | =

Whl.C]l .l“lp ieS

Hence we obtain
ur ()3 < e Hluollz +2C10 (1 —€7Y),

ie.,

(10.2.19) Sup”ul(t)”z S 011.
t>0

(3) Uniform estimates in H'

Now we are in the position to derive a uniform H' bounds of solutions of (IL.4).
Multiplying the second equation of (I1.4) by —Aug, we obtain

1d

5 g IVu2®)[3 + Bllua(t)

200) + | Aua(t)]3
2

1 a
——a [ wBuzdo < 31 Au(0)] + 5 ()]
Q

Here we define the H'-norm of uy by

lual|* := [[Vuz(t)[13 + Blluz ()13 00

Then it holds that Crg||uz||? < ||Augl|3, since

(Cr) % |Jusl2 |Jusl| < [[Vusl3 + Bllua(t)[13,00 = (—Auz, uz) 2 < [|Augl|2|luzll2-
Hence we obtain p
£IIU2(75)||2 +Crllu2(t)[” < ® O,
whence follows

(10.2.20) sup ||ua(t)]| < Cha.
t>0

In order to derive the uniform H'-estimate for u;, we prepare the following functional
¢1(u1): X
P1(u1) := §(HVU1||§ +tafulzoq+blluilz)  w e H(Q).
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Then it is easy to see

(10.2.21)

e |13,

N o

1
¢1(u1) > §||u1||2 >

| = Auy +burll2flurlle = [(=Aur + but, ur) 2] = 2¢1(u1) = 2 \/¢1(U1)\/§HU1H2»
whence follows
(10.2.22) 20 ¢ (u1) < || — Aug + bug|3.
Multiplication of the first equation of (I1.4) by —Awu; + bu; and integration over 2 yield

(10.2.23)  (Dpur,—Auy+bug) e + || —Au+ buy |3 =

—

U1UQ,—AU1+ bul)Lz

< —(uruell3 + [|— Aur+ buq)3).

| =

Here we note

d
(8tu1, —Auy + bul)Lz = £¢1(u1(t))

Hence, in view of (10.2.23) and (10.2.22), we obtain

d
S61(ur(6) + bn (s (1)) < 3 Jurualld

Here by Holder’s inequality, (10.2.18), (10.2.19), (10.2.20),(10.2.21) and Young’s inequality,

we get
wugld = [ Wiudide = [ u
| 12 1U2
Q Q

S(/Qulugdx>§(/gu:{’ugdaz)%

11 3 3
< CHGE [ (B)]lg luz(®)llg

< boi(ui(t)) + Cis.

u2u?u dr

Ll ST

1 3
2,2
271

N olw

Hence it follows that

S0 (0) + 3010 () <

Therefore, applying Gronwall’s inequality, we deduce

which implies that

(10.2.24) 31>1p |lui (t)]| < Cha.
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(4) Uniform estimates in L™

Since Theorem 10.1.1 assures that there exists s; € (0, 1) such that u(s;) € H*(Q) and
|u(t)]|oo is bounded on [0, s1], we can assume without loss of generality that (u19,ug) €
H'NV. To derive L*™ bounds via H' bounds, we rely on the Alikakos - Moser’s iteration
scheme (Lemma 3.2.9), which plays an essential role in our argument.

In order to apply Lemma 3.2.9, we deform (IL.4) in the following way:

(10.2.25) Oy — Auq + up = ugug — buq + uq,

(10.2.26) Opun — Aug + us = aug + us.

Hereafter we employ the usual H' norm (||Vvl||3 + ||v]|3)%/? for u; and uy. Multiplying
(10.2.25) by |u1|"~2uy (r > 2) and using integration by parts, we obtain

1d _
Ll @I+ =D [ FuPlal e [l o+ o))
Q o0
~ /Q Witz dz — b lfus (O], + [fus ()11

Hence we have

1d _

)l + (1) / Vet [2ua "2 de 4 e (8] < / fua |z 4 s (D).

r 9] 9]
Moreover we note

4(r — 1 r
(r — 1)/ |Vur|?[ur|" "2 da + |Jus (2)||7 = Ar—1) 5 ) /|V\u]2
Q r Q

4(r —
2

2 r
dz + || [ur (t)]2]13

A TATHE

v

where we used the fact that » > 2 implies % € (0,1] to the last inequality. Hence we

obtain

1 d r 4(7" — 1) T r r
(10.2.27) Sl @l + =5 lur ()2 < / ua|"ug| dz + [lur (2)]]7-
T T 0

By using Hoélder’s inequality, interpolation inequality, Sobolev’s embedding theorem and
Young’s inequality, we can get

/ Jur["uz| dz < {lus ()13, lu2(®)]ls
Q

< e (02 llua (815, w2 ()]s
< Jua(®)lls e (17 11 Ter (D12 [

< O [Jur (8)]I7 1] lua ()2

2 .2
Cisr

2(r—1)
= 8(r—1)

< S a2 + [ (8)]17-
;
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Since r > 2, it is easy to see that % < r. Then, from these observations, (10.2.27)
leads to

1d 2(r —1 r , ,
——Jlua @)I7 + ( 3 )H lur (|71 < CFs 7 [fua (W)][7 + [Jur (D)7,
rdt r
that is,
d - r r
(10.2.28) Sl (O + T @I < Caor? (1) +1).
2(r—1)

Here we used the fact that 1 < ==—= provided that r > 2. Then u(t) satisfies (3.2.23)
with ¢; = 1, ¢a = Cig, 61 = 0 and 6 = 2. Thus applying Lemma 3.2.9 to (10.2.28), we
see that there exists C17 > 0 such that

(10.2.29) sup [|u1 ()]l oo < C17.
t>0

Finally, applying the same argument as above for ug(t), we have

4(r—1)
2

].d r r r— T
(10230 Sl + a1 < @ [ wnis™da+ o)

Since =1 <1 and % < 1, due to (10.2.29) we can deduce

a/ ulugfl dr < aChy ||u2(t)||§:j
Q

r—1

s 1
Sacn{ |’U2(t)||r+;\9|}
< aCrr (a7 + 1)

which implies

- s < r
~ @7 + = a3 |2 < Cas (lua @7 + 1),
for some Cig > 0. Since 2 < @, we conclude that

d r 112 r
(10.2.31) @17 + 2 uz 132 < Casr (luz (@)l +1).

Then we can apply Lemma 3.2.9 to (10.2.31) with ¢; = 2, ¢ = Cjg, 1 = 0 and 6y = 1.
Thus there exists Cg > 0 such that

(10.2.32) sup [[uz(t)[|co < Cho.
>0

These a priori bounds (10.2.29) and (10.2.32) complete the proof.
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