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Preface

During the last couple of decades it has been widely recognized in the
literature of dynamic economics, at least from theoretical viewpoints, that
nonlinearity can play a crucial role in generating a large number of diverse
and complicated types of behavior even in a simple deterministic economic
system. One of the important notions representing this diversity and com-
plexity is chaos, although it is ambiguous in its definition. As it turns out,
in spite of a large variety of modelled economic situations, these economic
models have many features in the mechanisms of generating such compli-
cated dynamics in common. The thesis, consisting of five essays, is primarily
concerned with nonlinear dynamics in several economic situations, with a
special emphasis on the mechanisms of the occurrence of periodic and chaotic
behavior due to nonlinearities inherent in the economic systems.

The first essay ‘Chaotic Dynamics in o Two-dimensional Quverlapping
Generations Model” analyzes the global dynamics in a two-dimensionally ex-
tended OLG model. Using a perturbation argument, we derive a sufficient
condition under which the model exhibits a horseshoe (topological chaos)
due to a transverse homoclinic orbit associated with the steady state. In
a parametric example with a CES production function, we show that for

a large set of parameter values the economic system exhibits complex dy-



namics such as strange attractors and infinitely many co-existing periodic
attractors of arbitrarily large period.

In the second essay ‘Complex Dynamics in a Cobweb Model with Adaptive
Production Adjustment’, we consider a simple nonlinear cobweb model in
which cautious suppliers slowly adjust the production amount toward the
target level in each time period. We show that the model exhibits topological
chaos as well as observable chaos. Numerical simulations are carried out to
suggest that the faster the suppliers adjust the production amount and the
more inelastic the demand is, the more likely the market behaves chaotically.

By introducing a kind of behavioral heterogeneity into the model con-
sidered in the second essay, the third essay ‘Stability, Chaos and Multiple
Attractors: A Single Agent Makes a Difference’ examines whether even ar-
bitrarily slight heterogeneity can drastically affect the qualitative dynamic
property of the market. As for our model, the answer is affirmative. We
consider two types of producers, cautious adapters and naive optimizers,
which differ in the speed of production adjustment (or cautiousness). In a
market solely occupied by naive optimizers, a single cautious adapter sta-
bilizes the otherwise exploding market. On the other hand, in a market
of cautious adapters, a single naive optimizer may destabilize the market;
without him the market has at most one periodic attractor, but with him
there may appear infinitely many co-existing periodic attractors due to the
Newhouse phenomenon associated with homoclinic bifurcations.

The fourth essay ‘Threshold Nonlinearities and Asymmteric Endogenous
Business Cycles’ provides a model of endogenous business cyles in the pres-
ence of knowledge spillovers and a time-to-build restriction. There are two
key assumptions of the model: (i) the payoff to each firm depends on the ag-
gregate level of knowledge and (ii) innovation of a project is time-consuming,

that is, the firm that decides to innovate has to forgo the opportunity to



produce in that period. The resulting dynamic process is characterized by a
piecewise linear difference equation with a discontinuity at some threshold
level. We show that the model can exhibit asymmetric periodic cycles of
arbitrary period, which mimic asymmetric business cycles that appear to
keep switching between different regimes over time. The dynamic property
is also shown to be characterized by the expansion rate that gives the period
of a cycle and the probability of the economy being in the expansion phase
over the course of one cycle.

The last short essay ‘A Note on Heterogeneity-Induced Chaos’ examines
the effect of behavioral heterogeneity on the qualitative dynamic properties
of a business cycle model with knowledge spillovers and a time-to-build
restriction. We introduce behavioral heterogeneity into the model presented
in the previous chapter to show that even arbitrarily weak heterogeneity
in technologies of firms can cause chaotic dynamics for that model which
generates only regular motions in the absence of heterogeneity. We also give
a parametric example with uniformly distributed heterogeneity to show that
the model exhibits observable chaos for a large set of parameter values.

I would like to thank Tamotsu Onozaki, Gernot Sieg and Junichiro Ishida
for permission to include the results of their joint works with me in the thesis.
I am grateful to my supervisor, Professor Ryo Nagata, for his encourage-
ment during the past five years when I was a doctoral graduate student at
Waseda University. I am indebted to the committee members for the the-
sis, Professors Kazuyuki Sasakura, Yoriaki Fujimori and Takashi Oginuma,
for their many valuable comments. I also gratefully acknowledge Professor
(emeritus) Tatsuji Owase for his supervision during the past decade, even
after his retirement, and for leading me to this exciting research field of
nonlinear economic dynamics. Finally, I dedicate this thesis to my brother

Tsuyoshi and my parents, in gratitude for their long-time support.



Chapter 1

Chaotic Dynamics in a Two-Dimensional

Overlapping Generations Model

abstract

This paper! investigates the global dynamics of a two-dimensional Dia-
mond type overlapping generaions model extended to allow for government
intervention. Using a singular perturbation method, we identify conditions
under which transverse homoclinic points to the golden rule steady state
are generated. For a parametric example with a CES production function,
the occurrence of complicated dynamics (e.g. strange attractors) associated

with homoclinic bifurcations is demonstrated.

!This essay is based on the paper that appeared in the Journal of Economic Dynamics
and Control, 2000, with some minor modifications. I would like to thank Tatsuji Owase
and Akitaka Dohtani for helpful suggestions and comments to an earlier draft. I am also
indebted to two anonymous referees and one of the editors of the Journal of Economic
Dynamics and Control for several valuable suggestions.



1.1 Introduction

In the recent literature on economic dynamics it has been widely recognized
that a variety of fluctuating patterns in economic variables can emerge even
in deterministic systems. In particular, beginning in the 1980’s, many eco-
nomic models exhibiting periodic as well as more complicated motion such
as so-called chaos have been studied.? Overlapping generations (OLG) mod-
els have played an important role in the development of chaotic nonlinear
business cycle theory compatible with the competitive framework. See Ben-
habib and Day (1982) and Grandmont (1985) for one-dimensional (1-D)

OLG models, which are early examples of the use of chaos in economics.

In this paper we study the dynamics of a standard discrete-time two-
dimensional (2-D) OLG model with a Cobb-Douglas utility function, inelas-
tic labor supply, productive capital, and the government following a balanced
budget policy. Our model is based on that of Farmer (1986), which is, in
turn, a version of the seminal model of Diamond (1965) extended to two
dimensions. Farmer aimed to derive, using local bifurcation theory, a nec-
essary condition for his 2-D OLG model to generate persistent cycles on an
invariant closed curve around the golden rule steady state. He showed that
such cycles appear, in his setting, only if the net worth of the government
is positive at the golden rule steady state.®> Our main interest, however, is
in the global and complicated behavior of the model, rather than the local

and regular behavior.

Several numerical results suggesting the occurrence of chaos in 2-D OLG

models have appeared in the economic literature; Medio (1992), Bohm

*See e.g. Boldrin and Woodford (1990), Hommes (1991), Lorenz (1993) for general
surveys and examples of chaos in endogenous economic dynamics.

3For other related production 2-D OLG models exhibiting periodic or quasi-periodic
fluctuations, see e.g. Reichlin (1986) and also Jullien (1988).



(1993), and Medio and Negroni (1996) have provided interesting simulation
results for 2-D OLG models in various settings. Such numerical experiments
have given rise to the question whether these models displaying seemingly
complicated behavior would really be chaotic in a certain strict sense. While
dynamical systems theory explains that so-called homoclinic points, and in
particular their creation and destruction are responsible for chaotic dynam-
ics,* it is, in general, very hard to detect them in higher-dimensional concrete

systems.

De Vilder (1996; also 1995) has offered, however, a promising approach
for studying higher-dimensional nonlinear systems; he has presented a ‘com-
puter assisted proof’ that an explicit 2-D OLG model with elastic labor sup-
ply and Leontief technology, essentially based on that of Reichlin (1986), can
really exhibit complicated dynamics generated by homoclinic bifurcation® as-
sociated with the stable and unstable manifolds of the autarkic steady state.
Although his method is based on numerical computations, the proof itself

is rigorous because of his accurate estimation of computational errors.

As a complementary approach to that of de Vilder, we use a singular per-
turbation method suggested by Marotto (1979); see also van Strien (1981).
Without requiring a computer and numerical specification of parameter val-
ues, this approach allows us to rigorously establish the occurrence of horse-
shoes (topological chaos). These horseshoes are assured by the presence of
a transverse homoclinic point to the golden rule steady state for our 2-D

model with a small constant rate of savings. This is done by finding a trans-

“See e.g. Palis and Takens (1993) for recent dynamical systems theory with an emphasis
on homoclinic bifurcations.

®For an excellent analysis concerning homoclinic and heteroclinic bifurcations in a 2-D
cobweb model with heterogeneous beliefs, see Brock and Hommes (1997), who proved,
using a geometric configuration of the stable and unstable manifolds in a ‘limiting case’
where all agents choose the optimal predictor, that their model undergoes homoclinic
bifurcations.



verse homoclinic point (or a ‘snap-back repeller’) for the reduced singular
(i.e., 1-D) system and then by perturbing the latter again into the corre-
sponding nonsingular 2-D (but nearly 1-D) system without destroying the
transverse homoclinic point.® Moreover, in analyzing a parametric exam-
ple with a CES production function, the perturbation technique is used to
detect not only horseshoes but also strange attractors (observable chaos) as
well as infinitely many coexisting periodic attractors which are created by

homoclinic bifurcation.

This paper is organized as follows: Section 2 introduces the basic model.
In Section 3 conditions and implications of the existence of transverse ho-
moclinic points are discussed. In Section 4 we consider the complicated dy-
namics of a parametric example with a CES production function. In Section
5 some concluding remarks are given. Proofs of lemmas and propositions

are assembled in the Appendix.

1.2 Basic model

We introduce a 2-D version of a Diamond type OLG model, which is essen-
tially based on that of Farmer (1986). See also Azariadis (1993) for intensive
studies of models of this type and Jullien (1988) for a similar OLG model

with productive capital and money.

We are concerned with a discrete-time OLG economy with productive

6Various strategies to establish the occurrence of chaos in discrete-time 2-D models are
presented by several authors: Jullien (1988) restricts his 2-D OLG model with real money
balances onto a 1-D invariant curve on which chaotic behavior is possible. In Hommes
(1991), a return map technique reduces a 2-D piecewise linear inventory cycle model to
circle maps which exhibit (quasi-)periodic as well as chaotic attractors; in de Vilder (1995),
a similar method is applied to a 2-D OLG model with an investment constraint. Dohtani
et al. (1996) use a 1-D reduction and perturbation method, similar to ours, to prove the
occurrence of topological chaos in a 2-D discrete version of Kaldor type business cycle
model. For a 2-D ‘addiction’ model, Feichtinger et al. (1997) use a 1-D reduction method
to show the existence of horseshoes, and then use a perturbation method to show that the
horseshoes are preserved for nearby 2-D systems.



capital and government intervention. The population is constant over time.
The representative consumer lives for two periods and he supplies his labor
inelastically only in youth. In order to emphasize the role of the production
side, the consumer at period ¢ is assumed to have a simple linearly homoge-
neous Cobb-Douglas utility function with constant weight s € (0,1) on his

consumption in old age:

u(c, cp41) 1= ac};sc;,m, a>0 (1.1)

where ¢; j, ¢ = 1,2, denotes the quantity of consumption by the young and
old at period j, respectively. Given the wage rate at period %, w;, and the
gross real interest rate at the next period, 7,11, utility maximizing behavior

yields the savings function represented by

S(w) = {z €[0,wy]] Ogltakxwu(wt — 24, Te412t) (1.2)

= SWt.

By our choice of the utility function, this savings function is independent of
the interest rate, and the parameter s can be referred to as the savings rate,
i.e., the propensity to save out of wage income in youth.

The representative firm is characterized by a well-behaved production
function f(k;) defined on R}, where k; € Ry stands for the capital-labor
ratio at period t. Using capital and labor, the firm produces a single per-
ishable commodity (e.g. rice) which depreciates totally in one period. We

assume that the production function f satisfies the following:

Condition (A):

(A.1) fis C? on Ry,



(A.2) f(0)=0, f(z) >0, f/(r) >0, and f"(z) <0 forallz >0,

(A3) f/(0)>1, and lim f'(z) =0,

T—+00

(A4) f'(x)=2 & z =1, (normalization)

(A.5) f7(1) < =2,

(A.6) the elasticity of marginal production function 7(z) = — is

strictly increasing with respect to the capital-labor ratio.

Conditions (A.1) through (A.3) are standard in economics. Condition
(A.4) is justified by Condition (A.3). Conditions (A.5) and (A.6) look a bit

unusual. These last two conditions will be discussed later.

Competition implies that the marginal product of each factor is equal to

its factor price (wy or r¢), that is,

re = f'(k) (1.3)
we = f(ke) = ke f' (k). (1.4)

According to Farmer (1986), we will assume that the government follows
a policy maintaining a zero budget deficit at all times. This implies, from

the government budget constraint, that
bt+1 = ’f‘tbt, (15)

where b, € R denotes the debt-labor ratio (i.e., the government debt per

worker) at time ¢. Requiring that the asset market be cleared, we have

kig1 + by = S(’UJt). (1.6)



10

Combining equations (1.3) to (1.6), we obtain a second order difference

equation which characterizes the system

B(ktvktJrl) = fl(kt)B(ktflvkt)v (17)

where
Bkt ki) = s(f (ki) — ke f'(kt)) — kg1 (1.8)

This expression represents the net indebtedness of the government to the
private sector.

Note that b; is negative if B(k;—1, ki) < 0, i.e., if the economywide capital
stock exceeds net private ownership. In this case the government is a net
creditor to the private sector.

Let

9(z) == af'(z), wlx):=flx)—af'(x), and h(z,y):=w(y)—f(y)w(z),
(1.9)

then (1.7) is transformed into
kt+1 - g(k‘t) - Sh(k‘t,h k‘t) =0. (]_]_0)

We see that f(k;) = g(ki) + w(ky). Given the capital-labor ratio k,
w(ky) represents the competitive wage rate or the share of labor in output
per worker f(k;), while g(k;) can be viewed as the share of capital. We will

call this function g the capital-share function.

Setting k; = z; and kiy1 = y;, we obtain a second order difference

equation with one parameter equivalent to (1.7):
(Zet1, Y1) = Fs(ze, 1), (1.11)

where Fy(z,y) = (y,9(y) + sh(z,y)).



11

Suppose now that not only the initial capital-labor ratio, ky € Ry, but
also the initial debt-labor ratio, by € R, are given historically. This pair of
initial states (kg, bp) determines (ko, k1) = (z0, yo) by k1 = sw(ko) — f'(ko)bo-
Because of the nonnegativity of the capital-labor ratio, we have to restrict
ourselves to the set of initial states whose iterates by Fs will never leave the

nonnegative quadrant, i.e.,
X5 = {(z,y) € R |F'(z,y) € R for all n >0}. (1.12)

Hence, for each parameter value s € (0, 1), the difference equation (1.11)

induces a map from X, to itself:

Fy: X; CR — X,. (1.13)

The set of initial states X; might be very small. Nevertheless, as Lemma 2

below indicates, this is not the case at least when the parameter s is small.

Before ending this section, we will give some remarks on steady states
(i.e., fixed points) of (1.11). The set of steady states of (1.11), denoted by
Fix(Fjy), is defined as

Fix(Fy) := {(k*, k*) € R | B(k*,k*)(f'(k*) — 1) = 0}. (1.14)

Since f'(k*) = 1 if and only if £* = 1 by Condition (A.4), the golden rule
steady statep = (1,1) € ]Rﬁ_ is well-defined and independent of the parameter
s. Since B(1,1) = s(f(1) — 1) — 1, the government is a net creditor at the
golden rule steady state whenever the propensity to save is sufficiently small.
In this paper we do not take account of balanced steady states’ satisfying
B(k*, k*) = sw(k*) — k* = 0.

"The autarkic steady state (0, 0) € Fix(F,) may well be very influential for the compli-

cated global dynamics in our model. See de Vilder (1996) for the creation of homoclinic
points to the autarkic steady state.
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1.3 Characterization of global dynamics

3.1 Preliminaries

In this subsection, we briefly discuss some notions and implications of homo-
clinic points and homoclinic bifurcations, which will be used in what follows.
Guckenheimer and Holmes (1983) and Palis and Takens (1991) offer math-
ematical treatments of the subject. For a discussion of these topics in an
economic context, the reader is referred to de Vilder (1995, 1996) and Brock
and Hommes (1997).

For simplicity, we mostly treat here differentiable invertible maps (i.e.
diffeomorphisms), but some similar results are provided even for differen-
tiable noninvertible maps. Let F : R> — R? be a differentiable invertible
map and p € R? be a hyperbolic fixed point for F (i.e., where the Jaco-
bian matrix evaluated at p, D,F, has no eigenvalues with norm 1). If p is
a periodic point of period k, then we may replace F by G = F¥. For a
small neighbourhood U of p, the local stable and unstable manifolds of p are

defined as

Wiep) = {z€U]| lim F*(z) - p},
— 00

Wi.(p) = {zeU]| lim F ") - p},
k— o0

respectively. Even if F' is not invertible, such invariant manifolds do exist.

The global stable and unstable manifolds of p are then defined as

o0

U I/Vloc )

whp) = U F"(Wi),
n=0

respectively. Note that if F' is not invertible, then W#(p) and W*(p) may
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no longer be manifolds in the global sense (see e.g. Palis and Takens 1993
for more information). A point ¢ € W*(p) N W"(p) \ {p} is said to be a
homoclinic point to p. If W*(p) and W"(p) intersect transversely at this
homoclinic point ¢, then we say that ¢ is a transverse homoclinic point to
p, and the orbit of g, O(q) := {F(q)}icz, is called a transverse homoclinic
orbit. If W*(p) and W"(p) intersect tangentially at this homoclinic point g,
then we say that ¢ is a homoclinic tangency. The Homoclinic Point Theo-
rem® assures that a transverse homoclinic orbit to a hyperbolic fixed point
p implies the existence of a horseshoe near the homoclinic orbit. This is
defined as a Cantor set which is invariant under (some iterate of) the map
G = F™ and on which G is topologically equivalent to a shift map with a
countable infinity of periodic orbits, an uncountable infinity of aperiodic or-
bits, topological transitivity, and sensitive dependence on initial conditions.
In addition, horseshoes as well as transverse homoclinic orbits to a hyper-
bolic fixed point (more generally, hyperbolic sets) have a kind of semi-local
structural stability, that is, they are persistent against small perturbations

of the map.

The existence of horseshoes does not imply that a typical trajectory ex-
hibits complicated long-run dynamical behavior, since a horseshoe will not
attract nearby points in the phase space. Topological chaos in the sense of
horseshoes is, therefore, not observable in general.’ To describe the asymp-
totic behavior which can be observed in the long run, we need some notions
concerning ‘attractors’. A compact invariant set A of the map F is called an

attractor if it contains a dense orbit (i.e., F'|A is topologically transitive) and

8See e.g. Smale (1967), Guckenheimer and Holmes (1983), Palis and Takens (1993) for
various versions of this theorem; for noninvertible maps, see e.g. Marotto (1978).

9This does not mean that topological chaos would be empirically insignificant at least
in the short run. In fact, it is very likely to generate long-lasting complicated transient
motion, which will be often sustained under the influence of very small noise. See e.g.
Dohtani et al. (1996) for the effect of noise on a chaotic Kaldor type business cycle model.
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its basin of attraction, i.e., a set of points = such that dist (F"(x),A) — 0
as m — 00, has nonempty interior. An attractor A of the map F' is said to
be strange if F'|A has sensitive dependence on initial conditions. Contrary
to the case of the horseshoe, chaotic dynamics will be observed in the long
run for a large set of initial states if strange attractors are present in the

system.

Now consider a one-parameter family of maps {F), : p € I C R} with a
hyperbolic saddle p = p(i). We say that the family of maps {F},} exhibits

a homoclinic bifurcation, associated with p, at = 0 if

(i) for p <0, W*(p) and W*(p) have no intersection;
(ii) for p =0, W*(p) and W"(p) have a tangency at q # p;
(iii) for p > 0, W*5(p) and W*(p) have a transverse intersection.

Furthermore, if we can choose a u-dependent local coordinate (z,y) near ¢

so that W#(p) is given by y = 0 and W*(p) by
y=az’+by, a#0 and b#0,

then we say that the tangency ¢ is quadratic (a # 0) and unfolds generically
(b # 0). Some results of dynamical systems theory guarantee that for the
families of maps {F},} exhibiting a generically unfolding quadratic homo-
clinic tangency at pu = 0, several interesting dynamical complexities arise

for p-values near p = 0 such as

o creation (or destruction) of horseshoes;

o coexistence of infinitely many periodic attractors or repellers (New-

house 1979);

o existence of strange attractors or repellers for a positive Lebesgue mea-

sure set of p-values (Mora and Viana 1993).
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1.3.1 Chaotic dynamics

In the present section we try to identify a sufficient condition under which
the dynamics of Fs in (1.11) are topologically chaotic in the sense that the
system has a horseshoe. To this end, we will use a perturbation method
(see e.g. Marotto 1979, van Strien 1981, Palis and Takens 1993) to detect a
transverse homoclinic orbit to the golden rule steady state when the system

is 2-D but nearly 1-D.

As a first step, it is convenient to consider the extreme case in which s = 0
in (1.11). This corresponds to a world in which generations do not virtually
overlap because the representative consumer consumes all his income in
youth and nothing in old age. Consequently, all the capital needed for
production is owned by the government, i.e., k; = —b;. In this limiting case,
the two-dimensional map (1.11) collapses, formally, to a singular map from

R% onto the graph of g, i.e., C = {(z,y) € K% |y = g(z), z > 0}, as follows:
Fy:Ry = CCRy; Fo(n,y) = (y,9(), (1.15)

whose dynamics are clearly governed by an equivalent one-dimensional map
g: Ry = Ry. (1.16)

Hence, the system Fy in (1.11) with small s > 0 can be regarded as a
perturbation of Fy in (1.15).

By Condition (A), the following properties of the map g can easily be
checked:

Lemma 1: Under Condition (A), the following statements hold:
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(L1.1) g : Ry = Ry is C';
(L1.2) g(0) =0 and ¢'(0) > 1;
(L1.3) g(1) =1 and g(z) > (<)z as z < (>)1 (z =1 is a fized point);
(L1.4) ¢'(1) < =1 (the fized point x =1 is a repeller);
(L1.5) there exist unique points q and 6 € Ry such that
(L1.5.1) ¢'(8) = 0 with ¢'(z) > (<)0 as z < (>)0 (unimodality),
(L1.5.2) g(q) =1, and
(L1.5.83) 0<qg<0<1<g(®) and 0 < g?(0) < 1.

Assertion (1.4) in Lemma 1 follows from Condition (A.5), and (1.5)
essentially follows from (A.6). From Lemma 1, we see that the graph of
the marginal production function y = f'(z) satisfying Condition (A) must
have two and only two intersections with the hyperbola of y = 1/, at
z =1 and at z = ¢. On the interval [g, 1] the graph of f’ is located above
the hyperbola, and below otherwise. A typical situation with a ‘reversed
sigmoidal’ marginal production function'? is depicted in Fig.1.

It is worth noting that the capital-share function g is not monotone'!
with respect to the capital-labor ratio, whereas both the wage function w
(w'(z) = —xf"(x) > 0 for £ > 0) and the production function f are strictly
increasing (see Fig.2). Nonmonotonicity of the function g requires that
the elasticity of marginal production function n straddles unity because for
z > 0, n(z) = 1 if and only if ¢'(z) = f'(z)(1 — n(z)) = 0. In case that

Condition (A.6) is not satisfied, the function g may have more than one

1OPig.1 and Fig.2. are drawn based on a CES production function satisfying Condition
(A), which will be discussed in Section 4.

"For a similar 2-D OLG model, Jullien (1988) assumed that the function g is nonde-
creasing.
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hump. Moreover, even if neither Condition (A.5) nor (A.6) is satisfied, g

cannot be a monotone function as long as sup,~ n(z) > 1.

insert << Fig.1 >> about here
insert << Fig.2 >> about here

In order to guarantee the existence of bounded and positive-valued equi-
librium paths in terms of the capital-labor ratio {k};>o for a large set of
initial states, it is meaningful to show that, on the strictly positive phase
plane, we can find a compact region M such that the forward orbit of every
initial state in M cannot escape from there. We will then show that Fy has

. . . 2
a trapping region in RY , .

Lemma 2:  Suppose Condition (A) holds. Then there exist a compact
region M C ]R?H_ (p € intM) and a number € > 0 such that for every

s € (0,¢) the following assertions hold:
(L2.1) M is a trapping region for Fy, i.e., Fs(M) C int M,
(L2.2) Fs|M : M — M is a C'-diffeomorphism onto its image,

(L2.3) p is a hyberbolic saddle, i.e., the Jacobian matriz D,F evaluated at p
has two real eigenvalues A1(s) and Aa(s) with |A1(s)] > 1 > |A2(s)] > 0,

(L2.4) p is dissipative, i.e., |det DpFs| = |X1(s)2(s)] < 1.

Of course, for every s € (0,¢), the trapping region M is contained in Xj.
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We first attempt to identify conditions under which Fy has a transverse
homoclinic point to p. To do this, it suffices, using the argument presented
by Marotto (1979), to identify conditions under which the 1-D map g has a
so-called snap-back repeller, introduced by Marotto (1978), for z = 1:

Lemma 3: (Marotto 1979, Lemma 2.2) If g has a snap-back repeller, then

Fo(z,y) = (y,9(y)) has a transverse homoclinic point.

Note that the fixed point z = 1 of g is a hyperbolic repeller, i.e., |¢'(1)| >
1, from (1.4) in Lemma 1. In order to show that the fixed point x =1 of ¢
is a snap-back repeller, it is then sufficient to find a point z € Ry (z # 1)
which has an orbit O(z) = O (2) U O~ (2) satisfying the following:

(S1) O"(2) ={z; € Ry | mp = 2, g™(x9) =1 for somem > 1, and z;41 =
g(xz;) for i >0},

(S2) O (2) ={z—; € Ry |20 =2, zZ_; > 1 as i — oo, and z_; =
g(x_i—1) for >0},

(S3) ¢'(z) # 0 for each 2 € O(z).

In addition to Condition (A), we impose further conditions on g:

Condition (B):
(B.1) ¢*(6) < g,
(B.2) ¢%(z) # x for any = € (0,1),

where 6 and ¢ are unique points with ¢'(#) =0 and g(q) =1 (0 < ¢ < 6 < 1)

as given in Lemma 1.
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Note that the statement of (B.1) can be replaced by ¢3(8) < 1. Condition
(B.2) requires that the map g has no periodic point of period two on the
interval (60, 1).

We can see that, under Conditions (A) and (B), the map ¢ has a snap-
back repeller, which implies that the singular map Fj has a transverse ho-

moclinic point.

Lemma 4: Under Conditions (A) and (B), the map Fy(z,y) = (y,9(y)) in

(1.15) has a transverse homoclinic point to the golden rule steady state p.

This situation is depicted in Fig.3. The stable ‘manifold’ for Fy, W*(p, Fy),
consists of horizontal line segments passing through points which are even-
tually mapped onto the golden rule steady state p. In particular, W*(p, Fy)
contains a horizontal line segment v* = {(z,y) € R2 |z € [¢%(0),g(0)], y =
1} passing through p. Furthermore, the unstable manifold W*(p, Fy) con-
tains an arc on the graph C of g, v* = {(z,y) € C C R% |z € [¢°(0),9(0)], y =
g(x)}, because each point on this arc v* has a backward orbit converging to

p (see the proof of Lemma 4 in the Appendix).
insert << Fig.3 >> about here

By the perturbation argument of invariant manifolds (see e.g. Palis and
Takens 1993, Appendix 1 and Appendix 4), we can perturb the singular
map Fy with a transverse homoclinic point, by making the parameter s
slightly bigger than zero, so that every nearby nonsingular map F; retains
a transverse homoclinic point. Hence, by applying the Homoclinic Point

Theorem, we obtain the following result:
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Proposition 1: Under Conditions (A) and (B), there exists € > 0 such
that for every s € (0,¢e), Fs has a horseshoe Ay C M with p € A, where
M C ]R?Hr is a trapping region for Fs.

1.3.2 Asymptotic behavior near homoclinic orbits

Before proceeding to the next section, we will briefly discuss the asymptotic
behavior for a large set of initial states when homoclinic orbits exist and
the dissipativity of the system is strong. Since M C ]R?F 4 in Proposition 1
is a trapping region containing a horseshoe Ay, every positive orbit of a
point starting in M is indeed bounded and does not leave M. But this fact
does not imply that the asymptotic behavior of every such orbit would be
approximated by Fi|A; because Ag itself is not an attractor even though
it may be a part of such a set. Some points in M might settle down to
periodic attractors. We can, however, show at least that there is an open
set surrounded by the segments of the stable and unstable manifolds of p
such that every point in the set is drawn near the unstable manifold by the
iteration process provided the dissipativity is strong enough,'? i.e., provided
|det DyFs| < 1 for every z € M. More precisely, there is an open set
Us C M (depending on s) such that the w-limit set of each point z € Uk,

w(z) == {y € M |3In; - +o0; Fl'i(x) — y}, is contained in the closure of

the unstable manifold W¥(p) of the golden rule p. This implies that certain

attractors are contained in W¥(p):

Proposition 2: Let Conditions (A) and (B) hold, and let M C R% | be a

compact region as in Proposition 1. Then there is €' > 0 such that for every

127 similar result for a different 2-D OLG model with strong dissipativity has been
shown by de Vilder (1995).
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s € (0,e"), M contains an open set Us with w(x) C W¥(p) for every x € Us.

1.4 Example with CES production function

1.4.1 Horseshoes and homoclinic tangles

In this section we give an example with a CES (Constant Elasticity of
Substitution) production function fz(z) with two parameters: one is the
distribution factor, @ € (0,1), and the other is the substitution factor,
B € (—1,0) U (0,00), which is related to the elasticity of factor substitu-

tion. The CES production function is assumed to be of the following form:

[1—a+ax*ﬂ]7% (1.17)

QIr

fa(z) =

a[(1 - a)af +a]b

)

where the elasticity of substitution is given by (1 4+ 8)~!. The first and

second derivative of fg and the elasticity of f/é are calculated as follows:

fiz) = la+(1-a)f]F

" (1 B a)(l + ﬁ)xﬁ_l
f (IL‘) = - 26+1
’ [a+ (1 — a)zf] Bﬁ
5 = oz g(x) B (1—a)(1+p)z?

ms(x) = M@~ at(1-a)P

One can easily see that if 5 > (a4 1)/(1 — a) > 1 then the production
function fp satisfies Condition (A). The functions gg(z) := zfz(z) and
hg(z,y) := wg(y) — fa(y)ws(z) are then represented by

gs(z) =zl + (1 — a)xﬂ]f%, and (1.18)
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(1= )[y* o+ (1 - a)af] T — 2]
B+1

afa + (1 - a)xﬂ]%[a +(1—a)yf] 7.

hg(z,y) = (1.19)

The point 6 at which gg attains its maximum can be calculated by solving

ns(0) = 1:

|-

a
1=00) = (57 =)
Note that 6(5) € (0,1) whenever § > «/(1 — «) and that 8(8) — 1 as

B — oo.

The dynamics of this economic system can then be characterized by

Fs 5(2,y) = (y, 95(y) + shs(z,y) ). (1.20)

It can be shown that gg satisfies Condition (B) for every sufficiently large
B (see Appendix). According to Proposition 1, we can therefore state the

following proposition:

Proposition 3: Fiz « € (0,1). Then there exists f* > (a+1)/(1— ) such
that, given > p*, Fs 3 in (1.20) has a horseshoe for every s € (0,¢) for

some ¢ = ¢(f) > 0.

Proposition 3 says that if the elasticitiy of substitution between capital
and labor is sufficiently small and the representative consumer consumes
“too much” out of his wage income in youth, then the economic system

given by (1.20) may give rise to topological chaos.

For example, given o = 0.5 fixed, one can numerically derive that
B* = 4.85 is sufficient. So, given § > 4.85, topological chaos occurs for
every sufficiently small s. The parameter s may have to be very small in-

deed for chaos to occur. However, the simulation results illustrate that the
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system Fy g can have a transverse homoclinic point to the golden rule even
for relatively large values of s: Fig.4 illustrates the case of so-called homo-
clinic tangles for the parameter set (o, 3,s) = (0.5,7.5,0.1). These appear
as a result of the infinitely many intersections of the stable and unstable
manifolds of the saddle type golden rule!’® and the resulting wild oscillations

of these manifolds.
insert << Fig.4 >> about here

1.4.2 Homoclinic bifurcations and complicated dynamics

The singular perturbation argument developed in Section 3 to detect horse-
shoes can be extended to establish the occurrence of homoclinic bifurcations
and the resulting complex dynamics for (1.20) (see e.g. van Strien (1981)
for a similar argument). This allows us to find -values' for which F; g
has a quadratic homoclinic tangency which unfolds generically, associated
with the hyperbolic and dissipative saddle golden rule steady state p for
small s. Applying the theorems of Newhouse (1979, Theorem 3) and Mora
and Viana (1993, Theorem A) (see also Palis and Takens 1993) yields the

following proposition:

Proposition 4: Fiz « € (0,1) arbitrarily. Then there exists € > 0 such that
for each s € (0,€) and for some B = B(s), FsB has a quadratic homoclinic

tangency, unfolding generically, associated with the golden rule steady state

BFor o = 1 and B € (3,9), one may easily check that the golden rule steady state

2

p = (1,1) of F, 3 in (1.20) is a hyperbolic saddle if 0 < s < spp = zh7%;, and it
is a hyperbolic attractor if spp < s < sys = ﬁ, where spp denotes the period-
doubling bifurcation point and sys denotes the Neimark-Sacker (or Hopf) bifurcation
point (8 # 5, 7). See Yokoo (1996) for more details about local bifurcations of the golden
rule steady state of this parametric model.

'4Some numerical approximations of homoclinic bifurcation values for model (1.20) can
be found in Yokoo (1997).
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p. Thus the following assertions hold for all § > 0:

(i) Coexistence of Infinitely Many Periodic Attractors: There is a non-
trivial subinterval I C [,@ -4, ,@—1—5] and a dense subset J C I such that
for each B € J, F, g has infinitely many coexisting periodic attractors

of arbitrarily large period (The Newhouse Phenomenon).

(11) Abundance of Strange Attractors: There is a positive Lebesque measure
set of B-values E C [,@ — 6,8 + 8] such that Fyg exhibits a strange
attractor for each 8 € E.

While the occurrence of horseshoes in Proposition 3 does not assure the
observability of chaotic behavior in F 5 in the long run, the second assertion
in Proposition 4 does, even for a measure-theoretically large set of parameter
values. In this sense, the occurrence of observable chaos is one of the typical
dynamical phenomena for system (1.20).

However, the coexistence of infinitely many periodic attractors demon-
strated in the first assertion of Proposition 4 might be a rare phenomenon;
the set of parameter values for which Fy g has infinitely many coexisting
periodic attractors is conjectured to be of measure zero (see Tedeschini-Lalli
and Yorke 1986). Nevertheless, as is known (see e.g. van Strien 1981, Guck-
enheimer and Holmes 1983, chapter 6), Newhouse Phenomena cannot occur
for the singular (i.e., 1-D) map Fj g. This fact implies that, however small
the savings rate s > 0 may be, there will be a big qualitative difference in
the global dynamics between the singular (s = 0) and nonsingular (s > 0)

maps.
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1.4.3 Multiple attractors for a large savings rate: numerical

observation

Even though the infinitely many attractors associated with homoclinic bi-
furcations may hardly occur, the coexistence of a finite number of attractors
is certainly a common feature of nonlinear systems (see e.g. Hommes 1991).
In this subsection, we observe using computer simulations that the system
F g in (1.20) can simultaneously exhibit stationary, periodic, and chaotic at-
tractors for a certain set of parameter values with the savings rate relatively

large's.
Let us fix the parameter values as follows:

a=0.5 =6.5, and s=0.23.

Then at least three coexisting attractors can be observed numerically (see
Fig.5). Plotting a bifurcation diagram'® by computer helps us find these at-
tractors (Fig.6). In fact, from Fig.6 we can see multiple attractors appearing
in an overlapping way around s = 0.23. The first attractor is the attracting
golden rule steady state p = (1,1). Recall that, as mentioned previously
in the footnote, if the savings rate s lies between the period-doubling and

B—3 2 )N

Neimark-Sacker bifurcation points, i.e., if s € (spp,syg) = (m, ) &

(0.156,0.267), then the golden rule p is an attractor. The second is a peri-
odic attractor of period eight. The third is (probably) a strange attractor,
which may be called a “three-piece” strange attractor because it seems to

consist of three isolated pieces.

insert << Fig.5b >> about here

'5Note that the perturbation argument described above is no longer valid here. In fact,
the golden rule stesdy state turns out to be a sink, rather than a dissipative saddle, for
our choice of parameter set.

16The initial points are randomized for every increment of the parameter value s.
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insert << Fig.6 >> about here

Since an attractor will attract all its nearby points, it is interesting to
know by which attractor the initial points randomly given on the phase
plane are attracted; Fig.7 depicts how the basins of attraction of these three
attractors share the phase plane. The boundary of the closure of a basin
is called a basin boundary. One can see that the structure of some basin
boundaries looks very complicated. Such so-called fractal basin boundaries
may arise due to homoclinic or heteroclinic bifurcations to some periodic
points; Brock and Hommes (1997) have presented a computer assisted proof
that in a cobweb model with heterogeneous beliefs, fractal basin boundaries
are created by heteroclinic bifurcation between the stable and unstable man-
ifolds of two different saddles of period four. Fractal basin boundaries may
obstruct the precise prediction of final states for given initial states (see e.g.
McDonald et al. (1985) for more details about these topics). In this sense,
the complexity of basin boundaries provides another type of unpredicability
different from that of chaos, defined as the sensitive dependence on initial

conditions.

insert << Fig.7 >> about here

1.5 Concluding remarks

We have investigated the dynamics of a simple 2-D OLG model with produc-
tion and government intervention. Using a singular perturbation technique,
we have derived conditions under which topological chaos occurs due to
transverse homoclinic orbits to the golden rule steady state when the con-
stant propensity to save is small enough, or in other words, when the 2-D sys-

tem is nearly 1-D. It turns out that a high elasticity of marginal production
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function may lead to strong nonlinearity in the capital-share function, which
is responsible for the chaotic dynamics of (at least) nearly 1-D systems. We
have also given a useful parametric example with a CES production function
which exhibits observable chaos associated with homoclinic bifurcations for
a large set of parameter values. From a methodological viewpoint, there are
several advantages in the perturbation method presented here. This method
allows us to prove the existence of transverse and/or tangential homoclinic
points in 2-D or even much higher-dimensional systems without the use of
a computer,'” provided the systems can be transformed into tractable 1-D.
Furthermore, it may require less specification of function forms or param-
eter values than other computer assisted methods. Of course, we should
also point out that our method, so far, does not take account of the global
dynamics far from nearly 1-D. For instance, geometric structures and gen-
eration mechanisms for fractal basin boundaries as observed by computer
simulations in our OLG model are not well analyzed yet. This will be an

important topic for future research.

1.5.1 Appendix

Proof of Lemma 1: (L1.1): Obvious from (A.1). (L1.2): From (A.3).
(L1.3): From (L1.2) and (A.4). (L1.4): Since ¢'(z) = f'(z) + zf"(x), it
follows from (A.4) and (A.5) that ¢'(1) = 1+ f"(1) < —1. (L1.5): Note first
that ¢'(z) = f'(z)(1 — n(x)). Since (1) =2 and 7(0) = 0, and 7 is strictly
increasing by (A.6), there is a unique point 6 € (0,1) such that n(f) = 1,
implying (L1.5.1). Since g is unimodal with its global maximum at 6 € (0,1)
and g(z) > 0 for all x > 0, it follows that ¢g(0) = 0 < 8 < 1 < g(#) and
0 < g%(9) < 1. Thus there is a unique point ¢ with g(¢) = 1, which proves

7Of course, there may be benefits from combining our reduction and perturbation
method with numerical methods: see e.g. Yokoo (1998) for the occurrence of chaos in an
n-dimensional production OLG model with adaptive expectations.
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(L1.5.2) and (L1.5.3). Q.E.D.

Proof of Lemma 2: (L2.1): First, consider the case when s = 0. Putting
a = g*(#) and b = g(#), we have 0 < a < 1 < b. We prove the case when
a < 0 (the argument for the case when # < a < 1 is similar). Note that
[a,b] is invariant under g, i.e., g([a,b]) = [a,b]. Given gy € (0,a), we can
choose €1 > 0 such that g(b+¢1) > a—¢p. Let I, :==[a —e9,b+¢e1] C Ry 4,
then g(I,) C intI,. Similarly, given & € (g9,a), we can choose €] > e}
such that g(b+€}) > a —¢. Then I, := [a — €(,b + €|] C Ry satisfies
I, C intl, and g(I;) C intl,. Let M C ]R?H_ be a compact rectangle
defined by M := I, x I, then Fy(M) = I, x g(I,) C int I, x int [, = int M.
By definition of M, p = (1,1) € int M. Since h(z,y) is continuous on the
compact set M, we see that, for any sufficiently small s > 0, Fs(M) C int M.

(L2.2): Since h(z,y) is obviously C!' on R% |, Fy(z,y) = (y,9(y)+sh(z,y)) is
C' on R% | . Therefore it is sufficient to show that Fy is injective (one-to-one)
on ]Ri + and that the Jacobian matrix of F§ is nonsingular, i.e., det D, Fs # 0
for z € ]R?H.

Suppose that F; is not injective. Then there exist two distinct points
a = (a1,a2) € R% and b = (b1,b2) € R%, (a # b) such that Fs(ai,a2) =
Fs(by1,b2). This implies that a; = by and h(ai,as) = h(by,b2). Thus
h(a1,b2) = h(by,bs), which implies w(a;) = w(by). But the function w(x)
is strictly increasing, since w'(z) = —zf"(z) > 0 for > 0. Hence a; = by,

which contradicts the hypothesis.

On the other hand, the Jacobian matrix of F§ at every point z = (z,y) €
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]I\”\%r , is given by

0 1

D.F, =
shi(z,y) ¢'(y) + sha(z,y)

. (1.21)

Hence we have det D, Fy = —shy(z,y) = —szf'(y) f"(x) > 0.

(L2.3) and (L2.4): Let Ai(s) and A2(s) with |Ai(s)] > |A2(s)| be the two
eigenvalues of (1.21) at p = (1,1), then lims_,o A (s) = ¢'(1) < —1 and
limg_,0 A2(s) = 0. By continuity of \;(s) (i = 1,2) with respect to s and by
| det D, Fs| = |A1(s)A2(s)| > 0 (s # 0), the claims follow. Q.E.D.

Proof of Lemma 4: According to Lemma 3, it is sufficient to prove that
the 1-D map g has a snap-back repeller for z = 1. By Condition (B.1) and
(1.5.3) in Lemma 1, the ordering 0 < g?() < ¢ < 6 < 1 < g(f) holds. Let
I:=1[g%(0),9(0)], I :== [¢%(0),0], I, := [0, 1], and I5 := [1, g(f)] be intervals
with I = U?_, I;, then g is striclty increasing on I; and g is strictly decreasing

on I, U I3. We claim that

(Cl) every z € I has a backward orbit which is contained in I and converges

to 1, and

(C2) every z € I U I3\ {0,9(f)} has a backward orbit which is contained
in ILbUIs3\ {6,9(0)} and converges to 1.

(C1): since g(I) = I3 and g(I3) = ¢?(Iy) = I U I, it follows that for
every x € I there is a point y € I, with ¢"(z) = y for some 2 > m > 0.
Hence it suffices to verify that every z € I, has a backward orbit for ¢°
which is contained in I, and converges to 1. Condition (B.2), together with
(9®)'(1) = (¢'(1))? > 1 and g*(#) < 6, implies that g?(x) < x holds for every
x € Iy \ {1}. Since g%(z¢) < mg and ¢g2(1) = 1 > =z for every zy € I, \ {1},
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it follows that there is z | € (xg,1) with zo = ¢g*(z_1), and, inductively,
that there is a strictly increasing sequence of points {zg,z_1,z_9,...} C I»
such that ¢?(z_;_1) = x; for i > 0 and z_; — 1 as i — oo. This proves
(Cl). (C2): recall that g is strictly monotone on Iy U I3 and maps 2 onto
Is homeomorphically; then (C2) is obvious from the proof of (C1).

On the other hand, it follows by Condition (B.1) and (1.5.3) in Lemma 1,
that g2(8) < ¢ and ¢g?(1) = 1 > ¢. So there is a point ¢’ € Iy \ {6, 1} such
that ¢?(¢') = ¢. By (C2), ¢’ has a backward orbit O (¢') C L, U I3\
{0,9(0)} satisfying (S2). Since the forward orbit of ¢/, O (¢') = {¢',9(q') €
I3,6%(¢") = q,g°(¢') = 1}, satisfies (S1) and does not contain 6, the so
obtained orbit of ¢/, O(q') = O"(¢') U O~ (¢) satisfies (S1), (S2), and (S3).
Q.E.D.

Proof of Proposition 1: By Lemma 4, some compact parts 'ys/“ of the
stable und unstable manifolds W#/%(p, Fy) have a transverse intersection.
In particular, W*(p, Fy) contains a parabolic arc v* = {(z,y) € R% |z €
[9%(0),9(0)], v = g(x)} and W*(p, Fy) contains a compact horizontal line
segment v* = {(z,y) € R |z € [¢*(0),9(0)], y = 1}. Clearly, v* and y*
have a transverse intersection at (¢q,1) € ]Rﬁ_. By the perturbation argument
of invariant manifolds for noninvertible maps (see Palis and Takens 1993,
Appendix 1 and 4), we see that the compact arc of W%(p, Fy) and the
compact arc consisting of regular points'® of W#(p, Fy) vary continuously
on the map in the C' sense. This means that, for every sufficiently small
s > 0, some compact arcs ﬁ/s/ v sufficiently C'-close to 'ys/ U are contained

in W/ “(p, Fs), respectively. Since transverse intersections are stable in the

!8See Appendix 4 in Palis and Takens (1993). Let K C W*(p) be any compact set.
Then, for some n, F"(K) C W;.(p). We say that the points of K are regular points of
W*(p) if for each © € K, Im(DoF"™) + Trn (o) (Wi.(p)) = R*. So the arc 4° contains only
regular points of W*(p).
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C' sense, 4° and 4" above do have a transverse intersection. Since for all
sufficiently small s > 0, the fixed point p is hyperbolic and the homoclinic
orbit to p, obtained above, is contained in int M by Lemma 2, the map
F; has, by the Homoclinic Point Theorem, a horseshoe Ay C M for each
s € (0,¢), for some e > 0. Q.E.D.

Proof of Proposition 2: Note that det D, Fs = —szf'(y)f"(z). We can
pick a small number § > 0 so that 1 > ¢ - max(, y)enr [2f'(y) f"(x)] > 0. Let
£ > 0 be as in Proposition 1 and let ¢’ = min{e, d}; then for every s € (0,¢’),

M is a trapping region for Fs and Fs|M satisfies the following

O We(p) nW4p) \ {p} # ¢,

0 W"(p) C M, and
O |det Dy Fs| < 1 for every z € MO

We can take a bounded region Us C M whose boundary consists of segments
of W5(p) and W*(p), and now apply Proposition 1 in Appendix 3 in Palis
and Takens (1993)0 Q.E.D.

Proof of Proposition 3 : We know that if 5 > (1 + «)/(1 — «) then f3
satisfies Condition (A). By Proposition 1 in Section 3, all we need is to verify
that the function gg satisfies Condition (B) for every sufficiently large 8. In
what follows, we assume 8 > (1 + «)/(1 — ).

(B.1): We first note that f3(0) = gg(0) = 0 and f54(0) = a~(B+D/B . Since
w(z) = fg(x) — gg(x) is strictly incresing and fz is strictly concave, it
follows that gg(z) < fg(z) < x/aH% for z > 0 and 0 < a'7F < q(p),

where gg(q(8)) = 1 and ¢(8) € (0,0(8)). Since limg_,q ot = a, it is
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sufficient to show that limg g% (0(B)) — 0. Considering that

— —(>1) as [ — oo,

QIr

98(0(B)) =

|

a(l - a)7p7 (1 + 4)'*7

and that limg_,o, gg(x) — 0 holds for each z > 1, we obtain the last claim.
(B.2): Since

ooy (L=a)(1+B)a? A1 — a)zf — a(l + p)]
gﬁ($) - 38+1 )
[+ (1 —a)zf] ™5

it follows that gg has a unique inflection point

a(l +B)

Ha) >0

o5 = (
so that gg(z) > (<)0 as z > (<)6(8) and the critical point 8(3) is
quadratic, i.e., g5(0(8)) # 0.

Let us define a continuous piecewise linear map 1,5 : R — R with two
parameters ¢ > 0 and b > 0 by

_ ) —alz —1) +1=:li(z), forz <1
Yo p(z) == { bz —1)+ 1 =:1ls(x), for z > 1.

By virtue of the uniqueness of the inflection point, one can check that if we

let us define a(8) and b(3) as

gs(0(B)) — 1 ‘}

() = min {lgy (1] | 2572

and
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then 9q)08) (%) = li(z) < gg(z) for z € (0(8),1) and Py p(5)(z) =
la(z) > gg(z) for € (1,95(0(B))). We claim that if a(8)b(5) > 1 then
g%(m) < gz for all z € ((B),1). To see this, note first that for z € (6(5),1),
we have 1/’2(,3),1)(6) (z) = laoli(z) > laogg(x) > g%(x) And note that if
a(B)b(B) > 1 and = < 1, then @bg(ﬂ),b(ﬁ)(flf) —x =lyoly(z) —z = (1 —
a(B)b(B))(1 —z) < 0. Combining these inequalities, we get the claim.

To complete the proof, it is then sufficient to show that a(3)b(5) > 1 for

B large enough. But this follows from the fact that
lim [g5(1)] = lim |a — B(1 — a)| = oo, lim |6(8) — 1| =0,
B—o0 B—o0 B—ro0

Jim lga(0(9) ~ 1] = =, and  Jim |30(9) ~ 1] = 1.

(0] B—o0

Q.E.D.

Proof of Proposition 4: Given «a € (0, 1), let 8 > §*, where * is as given
in Proposition 3. Note first that the unstable manifold W*"(p, Fy ) contains
a compact parabolic arc y*(8) = {(z,y) € R2 |z € [¢(B),1], vy = gs(z)}.
Next, we can observe that there is a sequence of points, depending upon g,

which are eventually mapped to the fixed point z = 1:

Q(B) ={a(B) €10,0(8)] | a(B) = gs(git1(B)) for i €N,

g = q>q> ;¢ —0asi— oo}

Since for every = € (0,1), gg(r) = z/a as f — oo and so the increas-
ing part of the graph of gg converges to the line segment y = z/a as
B — oo, we have ¢;(8) € Q(B) — o as B — oo. On the other hand,
by the proof of Proposition 3, we have g%(B(ﬁ)) — 0 as 8 — 0. Hence, given
B1 > B*, there is k € N with g%l (0(B1)) > qx(P1), and there is By > [ with
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95,(0(82)) < qr(B2). So g3,(0(83)) = qi(B3) for some B3 € (B1,32). Conse-
quently, W*(p, Fy ) contains a horizontal compact line segment v*(3) such
that (i) v*(51) and *(531) have no intersection, (ii) v*(f2) and v*(/52) have
two transverse intersections, and (iii) v*“(f3) and *(f83) have a quadratic
tangency at (8(8s), g5, (0(55))) € B2

By the same perturbation argument used in the proof of Proposition 1,
for every sufficiently small s > 0, the stable and unstable manifolds W*/%(p, F; )
contain arcs 4°/*(f), sufficiently C"-close (r > 1) to v*/%(53). These satisfy
the ‘inevitable tangency’ condition (see Takens 1992 for weakened generic

conditions for real-analytic diffeomorphisms):
(i) ¥°(B1) C W*(p, Fs,p,) and 4*(B1) C W"(p, Fs 5,) have no intersection;

(ii) 4°(B2) C W*(p, Fsp,) and 4*(B2) C W"(p, Fs 3,) have two transverse

intersections.

Hence, for s > 0 small enough, we get a homoclinic bifurcation value g =
B(s) € (B1,B2) at which 4°(B) C W*(p, F, 5) and §*(8) C W"(p, F, ;) have
a homoclinic tangency.

Since Takens’ generic conditions (inevitable tangency, analyticity of the
map, and non-constantness of —log(A1(8))/log(A2(B)) with respect to 3,
where A () and A\o(B) are eigenvalues of D, Fj 3) are satisfied, the homo-
clinic tangency obtained above is quadratic and unfolds generically. Recall
that the fixed point p is hyperbolic and dissipative for every sufficiently
small s > 0 by Lemma 2. Now apply Theorem 3 from Newhouse (1979) for

the first assertion of Proposition 4, and Theorem A from Mora and Viana

(1993) for the second assertion. Q.E.D.
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Fig.1: Nonlinearity in the marginal production function f’.
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Fig.2: Graphs of the functions f, w, and g.
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Fig.3: Transverse homoclinic orbit for the singular map Fp.
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Fig.4: Homoclinic tangles: the wildly winding stable und unstable
manifolds of the golden rule steady state have infinitely many intersections

for (o, 8,5) = (0.5,7.5,0.1).



Fig.5: Three coexisting attractors: attracting golden rule, periodic
attractor of period eight, and three-piece strange attractor coexist

simultaneously for («, 3, s) = (0.5,6.5,0.23).
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Fig.6: Bifurcation diagram: multiple attractors are observed.
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Fig.7: Basins of attraction for three attractors (blue: attracting golden
rule; red: period eight attractor; yellow: strange attractor) and fractal

basin boundaries.



Chapter 2

Complex Dynamics in a Cobweb Model with

Adaptive Production Adjustment

abstract

The present paper! considers a nonlinear cobweb model in which ‘cau-
tious’ suppliers gradually adjust their production amount over time toward
the target level based on the naive expectation formation rule. We show
that for a large set of parameter values the cobweb market exhibits topo-
logical chaos (horseshoes) as well as observable chaos (strange attractors)
associated with the homoclinic orbits. Some numerical simulations are car-
ried out to suggest that the faster suppliers adjust their production and the

more inelastic demand is, the more likely the market behaves chaotically.

!This essay is based on the joint paper with Tamotsu Onozaki and Gernot Sieg, which
is published in the Journal of Economic Behavior and Organization, 2000, with some
modifications. I thank an anonymous referee and the editor of the Journal of Economic
Behavior and Organization for helpful comments.
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2.1 Introduction

Once time is taken into consideration in modelling e.g. agricultural economies,
it is natural to postulate that there is some time lag between the period when
the decision how much to produce is done by the farmer and the period when
the product becomes ready for sale. Consequently, the farmer has to fore-
cast the future price upon which he determines the amount of production.
In the literature, one prevalent way of modelling how the anticipated prices
are formed is the rational (including perfect foresight) or model-consistent
expectations. There is some empirical evidence, however, that the assump-
tion of such model-consistent expectations are not so plausible. To name
a few, Tto (1990) and Hey (1994) test the hypothesis that expectations are
model-consistent and reject it.

As for alternative ways of modelling expectations, some experimental
evidence suggests that agents use past market prices to forecast and follow
rules of thumb. Williams (1987), e.g., shows that the adaptive expectation
hypothesis (including naive forecasts, which are a special case of adaptive
expectations) describes expectations in an experimental double-auction mar-
ket better than the extrapolative one. This result seems consistent with our
intuition on the possible common behavior of the farmer who uses the most
recently received price as his prediction for the next period.

Dynamics of a cobweb market under such naive expectations have been
well documented in the formal cobweb literature. See Kaldor (1934), Leon-
tief (1934) and Ezekiel (1938), among others, for an early stage of the litera-
ture. In models with a normal upward sloping supply curve and a downward
sloping demand curve only three types of simple dynamics are possible: con-
vergence to an equilibrium, two-period cycles or exploding oscillations. If

expectations are not naive but adaptive, price behavior in the model with
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linear supply and demand is also simple [Nerlove (1958)]. In reality, as em-
pirical evidence suggests, the behavior of prices in agricultural markets is
not so simple, whereas many agricultural markets are regulated to stabilize
prices. See for example Finkenstadt (1995) for volatile price movements of
egg, potato and pig in Northern Germany.

JFrom theoretical viewpoints, Artstein (1983), Jensen/Urban (1984),
Lichtenberg/Ujihara (1989) and Day/Hanson (1991) show that complex
price behavior is possible if at least either demand or supply is non-monotonic.
Hommes (1991, 1994), Finkenstidt/ Kuhbier (1992) and Finkenstadt (1995)
find chaotic behavior in normal markets with adaptive expectations when
both supply and demand are monotonic but at least one of them is nonlin-
ear.? This literature assumes that farmers make a best (optimizing) response
given current expectations.

The present paper provides an alternative rule which specifies that farm-
ers adjust partially in the direction of the best current response under naive
expectations, keeping both the demand and supply curves monotonic. Such
adjustment is a behavioral response to uncertainty and adjustment costs. In
order to show that our model exhibits topological and observable chaos, we
exploit some mathematical results concerning homoclinic points. The oc-
currence of topological chaos is proved by applying the classical Homoclinic
Point Theorem which asserts that a transverse homoclinic orbit implies a
horseshoe. Under some differentiability, this result is a little sharper than
that by the Li-Yorke Theorem in regard to continuous maps on interval.
Furthermore, the occurrence of observable chaos (i.e., strange attractors)
for a large set of parameter values is shown, under some minor assump-

tion, with the aid of a recent result concerning the homoclinic bifurcation

*See Lorenz (1993) for a general introduction to complex economic behavior due to
various kind of nonlinearities.
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by Mora/Viana (1993). In this way, we detect chaotic behavior in a theo-
retically large and empirically relevant region of price elasticities of demand
and adjustment speeds. The faster suppliers adjust their production and the

more inelastic the demand is, the more likely the market behaves chaotically.

2.2 The basic model

At period t, a supplier decides his production x4 for period t + 1. As he
knows well, even a production plan that maximizes profits may turn out to
be a disaster in reality. He calculates the profit maximum Z;;; and uses it
as a target of adjustment. The calculation is done subject to the quadratic

%xZ, b > 0 and naive price expectation, which means that his

cost function
price expectation for the next period is equal to the current price p;. The

resulting amount is

Fop1 = %, (2.1)

He has to adjust cautiously since every theoretically advantageous change
may or may not enlarge real profits. Therefore, he is assumed not to produce
Zyy1 immediately but to adjust adaptively his last period’s production in the
direction of Z4y1. This is a simple hedging rule in the uncertain real world

and is expressed as the equation:
Tir1 = T+ o (Tp1 — Tt), (2.2)

where a € (0,1) is the speed of adjustment. This equation, which can be
rationalized by adjustment costs, is one of the earliest ways of incorporating
adaptive processes explicitly into economic models [Nerlove (1958)] and is

often used in econometric studies of macroeconomic behaviors.?

3For a survey of adaptive behavior, see Day (1998).
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In order to bridge the gap between a single supplier and the market
as a whole, we suppose that all n suppliers are homogeneous and behave

identically. Therefore, the aggregate supply X is given by
Xt = NT¢. (23)

We assume the following monotonic inverse demand function with con-

stant price elasticity of 1/5 (8 > 0) :

Pt=—7, (2.4)

where Y; is demand at period ¢ and c is a positive shift parameter, which
can be regarded as the extent of the market.

Finally, price is set so that the market clears at each period:
Y =X (2.5)

Summarizing the model, we substitute (2.1), (2.3), (2.4) and (2.5) into

(2.2) and obtain the one-dimensional, discrete-time dynamical equation:

ocn
Xepi=1—-a) Xy + —. 2.6
41 = (L - )Xy P (2.6)

To make the analysis below easier, let us consider the variable transfor-

mation:
1

b\ "Ti7
Xt = <—> o Zt.
cn

Substituting into (2.6), we get

o
1 =(1—a)z + —. (2.7)
2
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Because the transformation is linear, X; behaves periodically if z; does so,
and X; behaves aperiodically if z; does so, regardless of the number of suppli-
ers n, the slope of marginal cost b and the extent of the market ¢. These pa-

1

rameters change the value of z; into that of X; through the scalar (%) T

Essential parameters for the qualitative behavior of our model are the ad-
justment speed of production « and price elasticity of demand 1/3. In what

follows, we concentrate only on the dynamics of (2.7).

2.3 Analysis of the model

Our model (2.7) can be reformulated by the two-parameter family of maps

foz,ﬁ ‘Ryy 2 Ryyoas
fap@ ==zt 5, (@B €(0,1)x (000,  (28)

which are also expressed as fg or simply f. Note that for any pair (o, 8) €
(0,1) x (0,00), z* =1 is the unique fixed point for f, i.e.,

The first and second derivatives are calculated as

fl(z) = 1—a—;—fﬁ
1
'z = %M 2 € Ryy,

which imply that f is a strictly convex and unimodal function on Ry (see

Fig.1) with its minimum at the critical point

l—«

2= [ ﬁz:o(a,ﬁ) (= 6(8) =0).
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The fixed point is a repeller if

’

f)=1—-a—-—ap < -1,
which is equivalently rewritten as

2 —«

B> (2.9)

*** Insert Fig.1 about here ***

In the following subsections we present two propositions concerning the
complex behavior of our model. The proofs and the related fundamental

notions of symbolic dynamics are given in the appendix.

2.3.1 Existence of horseshoes

First we present a proposition which states that for every sufficiently large 3,
the map f3 exhibits a horseshoe . By a horseshoe we mean here a compact
invariant set on which some iterate of f3 is topologically conjugate to the
one-sided full-shift on two symbols. The existence of a horseshoe is assured
by that of a transverse homoclinic point. We say that a map exhibits topo-
logical chaos either if it has a horseshoe or, alternatively, if the topological
entropy of the map is positive.* Although a map restricted on horseshoes be-
haves in a complicated way, the existence of horseshoes itself does not assure
complex dynamics in the long run; the economic system may eventually set-
tle down to a periodic motion even if horseshoes are present. Nevertheless,

horseshoes may often generate long-lasting complicated transient dynamics,

“See, e.g. Block/Coppel (1992) for details about topological entropy.
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and even small external shocks are likely to give rise to erratic motions of a
system which are otherwise periodic in the long run. Finding horseshoes in
our model is, therefore, not insignificant even from an empirical viewpoint.

Our result is summarized as follows:

Proposition 1: Fiz an « € (0,1) arbitrarily. Then there exists a number

B =PB(a) > E2 such that fs in (2.8) has a horseshoe for each > J.

One of the important features of a horseshoe (more precisely, a hyperbolic
set) is the stability of the associated map against C™ —perturbations (r > 1)
[see e.g. de Melo/van Strien (1993), p.225, Theorem 2.3]. Roughly speaking,
once the economic system described by fz possesses horseshoes, they will

be preserved despite small changes in the underlying economic structure.

2.3.2 Existence of strange attractors

Next we present a proposition which states that, under some generic condi-
tion, our model frequently exhibits observable chaos in the sense of strange
attractors. While horseshoes do not assure complex dynamics in the long
run, strange attractors do assure that we can observe erratic behavior for
some large set of initial conditions. Hence, frequent occurrence of observable
chaos seems to be useful in explaining irregular behavior of economic time
series.

To state our proposition, we first introduce some basic notions.

Definition: A compact invariant set A4 C R for f is called an attrac-
tor if its stable set W*(A) = {z € R : limp0od(f"(2), A) = 0} con-

tains a nonempty interior and f has a dense orbit in A. An attractor A
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is here said to be strange if it contains a dense orbit with positive Lya-
punov exponent, i.e., there is a point z € A for which {f"(2)},>0 = A and

limy, n! ?:1 log|f’(fi*1(z))| > 0.

Strange attractors will appear via homoclinic bifurcation, that is, when
a non-degenerate homoclinic tangency unfolds generically. In other words,
they will appear when the critical point #(8) with f”(6) # 0 which is
contained in a homoclinic orbit to the repeller z* = 1 for some 8 = §*
passes through z* at non-zero speed for some iterate of fg as 3 varies. For-
mally, %fﬁ(@(ﬁ)) # 0 at B = B* for some n with f2.(0(8%)) = 1. See
Mora/Viana(1993) for a full explanation.

The following result shows that our model may exhibit observable chaos

for measure-theoretically large sets of parameter values.

Proposition 2: For any « € (0,1), there is generically a positive measure
set of parameter values of 5, E C Ry, such that for every § € E the map

fs exhibits a strange attractor.

2.4 Numerical simulations of the model

In this section we perform some numerical simulations and show that those
are supported by the theoretical results in the previous section.

First we depict the standard, one-parameter bifurcation plot of (2.8) with
respect to  in Fig.2 and the corresponding topological entropy (TFE) and
Lyapunov exponent (LE) in Fig.3 and 4.5 Intuitively, topological entropy
measures the exponential growth rate of the number of foldings of the graph

of the nth iterate of a map. By definition TE > 0, and if TE > 0 then the

5To calculate topological entropy, we utilized the algorithm presented by
Block/Keesling/Li/Peterson (1989).
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map exhibits topological chaos. From Fig.3 we can observe that topological
chaos occurs in our model for values of 8 larger than Srpso = 3.0008.
Proposition 1 states that our model may exhibit topological chaos when 3
satisfies the condition (2.9). We can confirm this as follows: the value of o
used in the calculation of TF is 0.7 and substituting into 5 = (2 — @) /«a
gives 3 ~ 1.857 < frp>o which is found in Fig.2.5

**% Put Fig.2-4 side by side vertically with the same scale about here ***

The Lyapunov exponent expresses the exponential rate of divergence
between two arbitrarily close orbits as time elapses. If LE > 0 then the
map exhibits observable chaos in the sense that it has strange attractors,
and no stable-periodic orbit has a positive Lyapunov exponent. Values of
such that Lyapunov exponents have a positive sign in Fig.4 correspond to
those of shaded area in Fig.2, and observable chaos occurs for such values
of 3.

As stated in the previous section, the observable motions may be indeed
periodic even if topological chaos is present. Comparing Fig.2 and 3, it
is realized that in the region of TE > 0 there exist windows of periodic
behavior. On the other hand, if there appear periodic motions then LE

< 0. Therefore, we can classify chaos to be present in our model as follows:

LE > 0 : observable chaos,

TE >0 topological chaos { LE <0 : windows (latent chaos).

6§ is exactly the period-doubling bifurcation value at which a single stable fixed point
splits into a stable period-2 cycle.
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In addition, the Schwarzian derivative of f at z is

aB(L+B) [aB(B — 1) +2(1 - a)(2 + B)z1+F]

e =~ 2[(a — 1)22+8 + afz]? ’

and it is negative if (2.9) is satisfied. Therefore, f has at most one periodic
attractor.”

As mentioned above, the essential parameters in our model are o and .
Thus a question arises here: what happens to the above bifurcation plot if
« also varies? To answer this, we draw two kinds of 2-parameter diagrams
after the manner of Gallas/Nusse (1996): one is an iso-period plot and the
other is an observable chaos plot. The former is the union of all iso-period-p
plots for p € [1,p] C N (in this paper p = 64 ). And each iso-period-p plot
is made of the set in the parameter space such that for each element in this
set the trajectory through some fixed initial point zg converges to a stable
period-p cycle. The latter consists of the set in the parameter space such
that for each element in this set the orbit through some fixed initial point x

is observably chaotic in the sense that it has a positive Lyapunov exponent.

*KX Insert Fig.5, 6 about here ***

We consider the region S = {(o,8) |0 < a <1, 0 < <10}. The re-
sulting iso-period plot is shown in Fig.5. In this figure, the green area
exhibits pairs of parameter values for which every trajectory converges to

a unique stable fixed point. The blue area consists of pairs of parameter

"See, e.g. Devaney (1989, pp.69f.).
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values for which every trajectory converges to a period-2 cycle. The light-
blue area corresponds to a period-3 cycle, the yellow area corresponds to a
period-4 cycle, the magenta area corresponds to a period-6 cycle, and the
red area corresponds to a period-8 cycle, etc. We emphasize that the bor-
der between the green area and the blue area is expressed by the equation
B = (2 — @) /«, the upper region of which satisfies (2.9); therefore, the fixed
point of the model is unstable there.

The resulting chaos plot is presented in Fig.6. The black area in this
figure is the set of parameters for which our model exhibits observable chaos
in the sense of a positive Lyapunov exponent. This figure implies that
observable chaos occurs when « and 8 are large. In other words, the faster
suppliers adjust their production and the more inelastic demand is, the more
likely the market behaves chaotically.

Finally it should be stressed that these figures suggest that periodic
behavior and observably chaotic behavior are complementary in the sense
that the union of the colored area in Fig.5 and the black region in Fig.6 is
equal to the whole region of S. But unfortunately, as Gallas/Nusse (1996)

point out, there exists no theoretical result which assures this fact.

2.5 Concluding remarks

We have investigated the dynamics of a nonlinear cobweb model where sup-
pliers adjust cautiously to hedge against the uncertain world. If suppliers
adapt slowly, they may stabilize the market. Adaptive adjustment could
be a reasonable strategy to prevent large price fluctuations. Whether the
cautious behavior stabilizes the market effectively depends on how much
consumers change their demand as price changes.

It is well-known that price elasticities of demand for essential goods like
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food are relatively low. In fact, according to estimates by Pagoulatos/Sorensen
(1989), the majority of U.S. food and tobacco industries has price elasticities
of less than 1/5. In such markets, our model predicts that chaos, observable

or unobservable, will occur even if adjustment is rather cautious.

The main difference between our model and existing ones consists of
the adaptive adjustment hypothesis. Future research is required to better
understand the adaptive behavior of economic agents. Our model is so
simple that we consider it a mere stepping-stone; nevertheless, it shows
that the adaptive adjustment approach is a promising research agenda for

explaining complex economic phenomena.

2.6 Appendix

2.6.1 Some fundamental notions of symbolic dynamics

Let Y9 denote the set of all infinite sequences s = (s1, $2, $3, ...), where s; =0
or 1 for 1 € N. We define a metric on 5 by the function

o |si — ti

d(S,t) :ZT, S, tEEQ

i=1
The metric space (39,d) is then compact, totally disconnected, and per-
fect, i.e., it is a Cantor set. The shift map o : 3y — Yo is defined by
o((s1,82,...)) = (82,83, ...), which is referred to as the one-sided shift on two
symbols.

The shift map o : 39 — 39 has the following properties:
(i) X9 contains a countably infinite set of periodic orbits;
(ii) X3 contains an uncountably infinite set of aperiodic orbits;

(iii) the set of periodic points is dense in o;
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(iv) o : X9 — Xg is topologically mizing, i.e., for every pair of nonempty
open sets U,V C X , there is m > 1 such that oc™(U) NV # ¢ for all

n > m;

(v) o : X9 — 3o is expansive, i.e., there is § > 0 such that for any

s, t € 3g (s #t), there is m > 1 with d(c™(s),0™(t)) > 6.

By definition, topological mixing property implies topological transitivity,
and expansiveness implies sensitive dependence on initial conditions.

Let X and Y be metric spaces, and let f : X — X andg:Y — Y
be continuous maps. The map f is said to be topologically conjugate (or
equivalent) to g if there exists a homeomorphism h : X — Y (one-to-one,

onto, continuous map with continuous inverse) such that
ho f(zx) =goh(x) for every z € X,

i.e., the diagram

x 1. x
a [
YT>Y

commutes. The map f is said to be topologically semi-conjugate to g if there
is an endomorphism A of X onto Y (i.e., continuous map of X onto Y') such

that ho f =go h.

Let us next consider a C'-map f of (an interval of) R into itself. Let
p € R be a repelling hyperbolic fixed point (or repeller) of f, i.e., f(p) =p
and |f'(p)| > 1. Let ¢ € R(q # p) be a point such that f"(p) = ¢ for some
n € N and that there exists a sequence {q_;}3°, with the property that ¢ =
qo, f(g—i—1) =q—i (1 > 0)and g_; — p (i = 00). The sequence HOf(q,p) :=
{q, £ (@), f?(q), -, ["(q) = p} U{q—i}22, is said to be a homoclinic orbit of
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g to p. An element of the homoclinic orbit € HO((g,p) is a homoclinic
point to p. A homoclinic orbit HO¢(q, p) is said to be transverse if f'(z) # 0
for every z € HO(q,p).

Finally we introduce an important theorem which is utilized to prove

proposition 1.

Theorem (Homoclinic Point Theorem for C'-Map on Interval):®
Let f: R— R be a C'-map and p € R be a repelling hyperbolic fized point.
If f has a transverse homoclinic orbit to p, then there exist a number n € N

and a compact set A C R such that

(i) f"(A) =A;
(ii) p € A;

(iii) f™A : A — A is topologically conjugate to the one-sided full-shift on
two symbols o : Yo — 3o, i.€., there is a homeomorphism h: A — Yo

with ho f*"|A =o0o0h.

The set A here is called a horseshoe, and if the map f has such a set,
we say that the map f has a horseshoe. By topological conjugacy, f™|A
inherits complicated dynamical properties of the shift map o|¥y described
above. Furthermore, if f is a continuous map on interval and has a periodic
point of period three, then for some n and some invariant set A for f”, f™|A
is topologically semi-conjugate to o|X2. See Block/Coppel (1991) for more
detail.

8For the proof of this theorem see e.g. Devaney (1989). For another representation of
the theorem using a subshift of finite type on n symbols, see Yokoo (1997).
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2.6.2 Proof of Proposition 1

By the Homoclinic Point Theorem in the previous subsection, it suffices to
show that the map f has a transverse homoclinic orbit. To show this we

have to make some preparations.

Lemma 1: The following statements hold:

(i) 0 < f(0) <1<86;

(ii) there is a unique point q = q() > 0 such that f(q) = 1.
Proof. (i) From (2.9), we get the last inequality. Since f has its global
minimum at €, we get the second inequality (see Fig.1). (ii) Since f(0) < 1
and f(z) > 1 for large =z, there is ¢ > 6 with f(q) = 1. Since f(z) is

strictly increasing on the interval (6, 00), the uniqueness follows (see Fig.1).

Q.E.D.

Let us define a piecewise linear map Lg : R — R by

h(z) = fE(1)(z = 1) + 1, z <1,
Ly(z) ':{ () = (e 1) + 1, 2> 1.

Clearly, L(1) =1 and L™"(z) — 1 (n — oo) for each z € R (see Fig.7).

*¥% Insert Fig.7 about here ***
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Lemma 2: There is a number (1 > (2 — )/« such that for every f > by
and for every z € I := [f3(0),0] there is a unique sequence {z_;}ioy C I

such that zo = z, f(z2—i—1) = z2—; for 1 >0, and z_; — 1 as i — 0.

Proof. Since f3 is one-to-one on the interval [fz(), 8], the conclusion holds
if given sufficiently large 3, fg(z) > li(2) for z € [f5(0),1) and f3(z) < l2(2)
for z € (1,0]. By the strict convexity of f and by the construction of L, it is
sufficient to show that for 8 large enough, the inequality f(0) < I5(6), i.e.,

f5(0(P)) +0(B) <2

holds. This is verified by the fact

) . aff 15+
Jun oe) = i [2] T <
Jim f508)) = Jim [(1 - @)9(5) +ab(5) "]
= 11—«

which completes the proof. Q.E.D.

Lemma 3: There is a number By > (2 — «)/a such that for every B > [

the following inequality holds:

0 < f5(0(8)) <1 <0(8) <a(B) < f5(0(8))-

Proof. By Lemma 1, it suffices to show that for any arbitrarily large £, the

following inequality holds:
q < (). (2.10)

Let us define a function [/ by

(z) =fMez-D+1=1-a—-af)(z—1)+1.
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Again by the strict convexity of f, we obtain

Lo f5(0(8)) < f3(0(B))-

Note that fg(z) > (1 — «)z holds for every z € Ry (see Fig.1), so we have

q(B) <

1—a

To obtain the inequality (2.10), it is therefore sufficient to show

<o f3(0(P))

l—a ™

for any sufficiently large 8. Noting that
Lo f5(0(8) = (1 - a = ap) [(1 = )0(B) + ab(B) ™ — 1] +1,

we get limg_,o [ 0 f3(6(8)) = co. So the lemma follows. Q.E.D.

Proof of Proposition 1. Let § = max{;, 52} and pick § > B arbitrarily.
By Lemma 3, there is a point ¢’ € (f(6),1) such that f(¢’') = ¢. By Lemma
2, there is a sequence {q’_;}°°, C I such that ¢;, = ¢/, f(¢_;_1) = q¢_; (¢ >0),
and ¢’ ; — 1 (i — 00). Hence, together with f2(¢’) = 1, ¢’ is a homoclinic
point to the repeller 1. Clearly, for any homoclinic point z € HO¢(¢',1) =
{d,f(d), f2(d') = 1} U{qd ;},, we have z # 6 and so f'(z) # 0, which
implies that the homoclinic orbit of ¢’ to 1, HOf(¢',1), is transverse. By

the Homoclinic Point Theorem, the statement is proved. Q.E.D.
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2.6.3 Proof of Proposition 2

To find the abundance of strange attractors for the family of maps {fz}3,
we exploit the theorem by Mora/Viana (1993, Theorem C).

Proof of Proposition 2. We show that the (non-degenerate) critical point
6(B) is contained in the homoclinic orbit of the repelling fixed point z* =1
for some sequence of S-values. Note first that the critical point 6 is always
non-degenerate, i.e., f”(6) # 0, since f"(z) > 0 for all z € R, ;.

We can observe that there is a sequence of eventually fixed points de-

pending smoothly on f,

Q(B) =14i(B) : ¢i(B) = f5(gi+1(B)) fori €N, g=q1 <ga < - < qn <-++},

where ¢;(8) — (1 — a)™" < oo as B — oo for every i € N.

Let us fix a € (0,1) arbitrarily and take 8 = 1 as in Lemma 2. Then,
from the observation above, there is ¢;(81) € Q(B1) such that fgl(ﬁ(ﬁl)) <
qi(B1). Since fg(B(ﬁ)) — 00 as f — oo by the proof of Lemma 3, and
¢i(B) = (1—a) % as B — oo, there is #* > B; such that fg(é‘(ﬁ*)) = q(B*),
which implies that the backward orbit of 6(8*) converges to the repelling
fixed point z* = 1 and there is an integer n such that fg.(6(8%)) = 1 and
f5e(0(B*)) # 1 for m < n. Hence, the non-degenerate critical point 0(53)
lies in a homoclinic orbit to the fixed point z* = 1 (homoclinic tangency).
Since % f(z,8) = 0 if and only if z = 1, we may generically assume that
%fg(é‘(ﬁ)) # 0 at § = B*, which implies that, in our case, this homoclinic
tangency unfolds generically. By Theorem C in Mora/Viana(1993), the
statement of Proposition 2 follows. Q.E.D.
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Fig.1: Graph of the map (2.8).
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Fig.2: Bifurcation diagram with respect to § (1.5 < 8 < 4.7) with o = 0.7.
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Fig.3: Topological entropy corresponding to Fig.2 with a = 0.7. A positive

value for topological entropy indicates topological chaos.
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Fig.4: Lyapunov exponent corresponding to Fig.2 with a = 0.7. A positive

value of the Lyapunov exponent indicates observable chaos.
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Fig.5: Iso-period plot for the map (2.8). The green area corresponds to
period-1 cycles (a stable fixed point), the dark blue area to period-2 cycles,
the yellow area to period-4 cycles, and the red area to period-8. The blue

and magenta areas correspond to period-3 and period-6 cycles.
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Fig.6: Observable chaos plot for the map (2.8) The black area is the set of

(c, B) for which the model has a strange attractor.



Fig.7: Graph of the map (2.8) and the piecewise linear map Lg(z).
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Chapter 3

Stability, Chaos and Multiple Attractors: A Single

Agent Makes a Difference

abstract

This paper! provides an example in which a slight behavioral hetero-
geneity may fundamentally change the qualitative properties of a nonlinear
cobweb market with a quadratic cost function and an isoelastic demand
function. We consider two types of producers; cautious adapters and naive
optimizers. In a market of naive optimizers a single cautious adapter sta-
bilizes the otherwise exploding market. In a market of cautious adapters a
single naive optimizer may destabilize the market; without him there exists
at most one periodic attractor in the market but with him there may appear

many (and even infinitely many) coexisting periodic attractors.

!This essay is based on the joint paper with Tamotsu Onozaki and Gernot Sieg, to
appear in the Journal of Economic Dynamics and Control. I would like to thank Atsuro
Sannami for helpful discussions. Thanks also go to two anonymous referees and one of the
editors of the Journal of Economic Dynamics and Control for constructive suggestions to
an earlier version of the paper.
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3.1 Introduction

A producer can choose his own way from the many available techniques to
adjust production capacity and many different types of behavior coexist in
reality. However, monotypic behavior dominates in economic theories. A
representative agent typifies preferences and technologies as well as rational

behavior of the whole society of agents.

One possible argument in favor of simplifying a model by assuming a
‘representative rational agent’ apparatus is that all the different behavior has
already died out and only the representative agent survives [Lucas (1986)].
Evolutionary economics shows, however, that survival probabilities depend
on the environment of agents and the selection mechanism [Axelrod (1984)].

Different types of behavior can survive simultaneously.

Another possible defense of assuming a representative agent is that a ma-
jority of the agents behaves in the same way and their behavior determines
the dynamics of the market. In the stock market, however, a small group
of risky traders could disturb the behavior of stock prices. The type of the
market may determine whether the behavior of a majority determines the
market outcome or whether the outcome depends on a minority of agents.
The ‘representative rational agent’ is a theoretical apparatus that works

with certainty only when all agents behave in the same way.

There are different behavioral techniques available and a dynamical pro-
cess of switching to successful technologies seems to be plausible. How-
ever, even a unique superior technology does not necessarily extinguish all
different types of technologies. At least one producer may sometimes be-
have differently. If the market is still in a phase of transition, this pro-

ducer still uses the ‘old’ technology because he is a late adopter. If we
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are in a steady state, this producer tries a ‘new’ technology to improve
profits. Thus heterogeneity, or diversity, of agents’ behavior is a natural
feature in our daily life, but not in traditional economics. Only recently, dy-
namical economics has considered heterogeneous agents [Gallegati/Kirman
(1999), Delli-Gatti/Gallegati/Kirman (2000), Den-Haan (2001) and Kir-
man/Zimmermann (2001)]. The literature separates three different kinds of
heterogeneity; personal characteristics like preferences or income, the way
expectations are formed, and behavioral rules that agents use due to their

bounded rationality. Some important results are already available.

In a growth model, agents with heterogenous preferences for income are
examined by Cardak (1999); in a periodical economy with progressive tax
system heterogeneity in the rate of impatience is studied by Sarte (1997)
and in an overlapping generation model heterogeneity in income and talent
is analyzed by Chiu (1998). Heterogeneous general preferences in a perfect-
foresight equilibrium of a finance-constrained economy allows Hopf cycles
to be entirely consistent with a wide range of elasticities of substitution

[Barinci (2001)].
Brock/Hommes (1997), Gaunersdorfer (2000) and Goeree/Hommes (2000)

study dynamical models where agents update their expectations according
to an observed measure such as net profits. Bomfin (2001) shows that if
some agents solve their inference problems based on simple forecasting rules
of thumb, there is a significant effect on the aggregate properties of the
economy. In a cobweb model, where two different forecasting procedures
are considered, either one destabilizes the price dynamics if it is uniformly
adopted by all firms; or the price equilibrium becomes locally stable if firms

are heterogeneous, and the two rules are suitably mixed within the popula-

tion [Franke/Nesemann (1999)].
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Day/Huang (1990), Chiarella (1992), Lux (1995) and Lux/Marchesi (2000)
study how heterogeneous behavior of traders generates complex motion of
financial markets. Cooper (1998) considers heterogeneity of agents in a stan-
dard stochastic growth model by assuming that agents react with different

probabilities to current values of relevant state variables.

In the present paper we would like to investigate whether a slight be-
havioral heterogeneity could be a factor that generates complex dynamics
of a market. We consider a nonlinear cobweb market with a quadratic cost
function and an isoelastic demand function. Two types of producers are
considered; ‘naive optimizers’ and ‘cautious adapters’. A naive optimizer
produces the profit-maximizing quantity instantaneously, while a cautious
adapter adjusts his output toward the profit-maximizing quantity as a tar-

get.

We show that a single agent may change the complexity of the market
behavior. If there is no adapter and demand is inelastic enough for the
market to explode, a single adapter can stabilize the market in the sense that
it would not explode, but only by causing chaos. On the other hand, when
there are exclusively adapters, there exists at most one periodic attractor
for the market. If a single optimizer appears, then there may appear many
and even infinitely many coexisting periodic attractors of arbitrarily large

period.

3.2 Model

In this section, we derive a two-dimensional nonlinear cobweb model includ-
ing naive optimizers and cautious adapters from a general, N-dimensional

model including N-types of agents.
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3.2.1 Description of behavior

Before presenting the general model, we start by defining precisely the notion

of ‘naive optimizer’ and ‘cautious adapter’.

Let us consider the market of a perishable commodity with one period
of production. The market is competitive and clears each period.? A ficti-
tious auctioneer therefore sets the price whereas suppliers set the quantities
supplied. A supplier decides in period ¢ the production x4 for period ¢+ 1.
A quadratic cost function ax?/2, a > 0 describes the technology. The ex-
pected profit-maximizing quantity on condition that price expectations are

naive (or static) is
~ _ b
Tt41 = —-
a

If a supplier produces this quantity instantaneously, i.e.

Tit1 = Tyt1, (3.1)

we call him a naive optimizer (or simply, optimizer).

On the other hand, as considered in Onozaki/Sieg/Yokoo (2000), a cau-
tious adapter (or simply, adapter) is not confident that the same price will
prevail in the next period and adjusts his last period’s production z; only
partially in the direction of #;11. Thus his adjustment behavior is described
by

Tip1 = ¢ + a (Tpp1 — @), (3.2)

where a € [0, 1] is the speed of adjustment. A cautious adapter may follow
a rule of thumb when adjusting capacities. Furthermore, risk aversion or
adjustment costs may make a supplier act as an adapter. Furthermore, if

a supplier expects competitors to adjust also their quantities, it is quite

2 A more realistic setup includes adjustment costs of price changes. These adjustment
costs may stabilize the market.
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sensible to adjust only partially. Therefore, 1 — « can be interpreted as the
degree of inertia or the supplier’s level of caution. If a = 1, then Eq.(3.2)
is identical to Eq.(3.1), which means that naive behavior is a special case of

adaptive behavior where oo = 1.

3.2.2 General model

Let us consider a general model where there are N (a positive integer) types
of adapters.® All groups of suppliers share the same cost function considered
above. Production x;;; in period ¢ + 1 of the i-th type of suppliers is
determined by

a;pt .
Tigp1 = (L — og)zip + ; , i=1,2,---,N

where «; € [0,1] is a speed of adjustment of the i-th type of suppliers.
Therefore, the aggregate supply per capita X; in period ¢ is given by

N N
X; = anmlt with n; € [0,1] and an =1
i=1 1=1

where n; is the relative size of the i-th group of suppliers.

We assume an inverse demand function which is isoelastic with a price

elasticity of 1/o :

Equating the aggregate supply and demand, X; = Y;, gives an N -

dimensional discrete-time dynamical system:

bo;
N g
a (Ei:1 nzIzt)

3 Another possible introduction of heterogeneity is to assume that cardinality of types
is a continuum represented as the unit interval [0, 1].

Tigr1 = (1 — @i)mig + i=1,2,--- N.
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Applying a variable transformation,

we obtain the final form:

a;

Zit+1 = (]- - ai)zi,t + ( i = ]-7 27 e 7N' (33)

N ag
Dint nzzzt)

3.2.3 Reduced models

Using the general model (3.3), we can derive a ‘standard’, homogeneous cob-
web model and an adaptive, homogeneous cobweb model [Onozaki/Sieg/Yokoo

(2000)].

Let us assume N =1 and o = 1, which implies that there are exclusively
naive optimizers. Then the model (3.3) reduces to a first-order difference

equation

1
Zt+1 = g, (3.4)

which preserves the properties of the standard cobweb model. The behavior
of Eq.(3.4) depends on price elasticity; if price elasticity is greater than one
(o0 < 1), trajectories generated by Eq.(3.4) converge to a stable fixed point
z* = 1. If price elasticity is equal to one (o = 1), trajectories exhibit period-
2 cycles. However, if price elasticity is less than one (o > 1), trajectories

oscillate and explode to infinity.

Now let us assume N = 1 and « € [0,1), which implies that there are
exclusively cautious adapters. Then the model (3.3) reduces to a first-order

difference equation
o
Zt4+1 = (]_ - Oé)Zt + z—o_. (35)
t
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Some dynamical properties of it are studied by Onozaki/Sieg/Yokoo (2000)
and Onozaki/ Sawada (2001) to show that if o < (2 — a)/«, trajectories
converge to a unique stable fixed point z* = 1. The fixed point undergoes a
period-doubling bifurcation at 0 = (2 —a)/a. If 0 > (2 — @)/« trajectories
may exhibit periodic cycles or chaos. Because (2 — a)/a > 1, the last
inequality implies that o > 1. We can state that adaptive behavior prevents
the unstable market from going to infinity, only by causing periodic cycles

or chaotic behaviors. Adaptive behavior stabilizes the market in this sense.

However, the assumption that all agents behave homogeneously is un-
realistic. To get a better picture of a cobweb market, we concentrate on a
simple type of heterogeneity. We consider a model that is a little more gen-
eral than Eqgs.(3.4) and (3.5) by including both cautious adapters and naive
optimizers. Reducing the N-dimensional model to a two-dimensional model
makes not only analytical treatment but also the graphical depiction much
easier and makes it possible to show the difference between one-dimensional

and two-dimensional model.

It is easy to derive a two-type suppliers model from the general model
(3.3). Let us suppose N = 2, denote an adapter by ¢ = 1 and an optimizer
by ¢ = 2. The relative size ny of the adapters’ group is replaced by m, so
that the relative size of the optimizers’ group is 1 — m . Since an optimizer
produces the profit-maximizing amount immediately, his adjustment speed
ay is obviously unity. Letting 21y = w4 € Ry = {z € R: z > 0} and
z94 = vy € Ryy gives

«

U = (I —a)us + ,
bl ( Jui [mug + (1 — m)vy)?

1
[mug + (1 — m)ug”’

V41

where a € (0, 1) expresses the adjustment speed of adapters.
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3.3 Analysis of the model

The main purpose of this section is to show that heterogeneity in agents’
production adjustment behavior can give rise to qualitatively different peri-

odical features than those of the homogeneous production case.

Eliminating u’s from Eqgs.(3.6) and (3.7), we obtain the following second-

order difference equation:

1 1

0,5 = (1 —=m)vgpr — (1 =m)(1 — @)vy + (1 — a)v, 5 + amugg. (3.8)

Letting
_1
Ty =wv; ° and 1 =y,

Eq.(3.8) can then be transformed into the two-dimensional dynamical system

F:VCR3_+—>Vdeﬁnedby

(@t41,Ye41) = Flze, 1), (3.9)
where
F(z,y) = (y, f (y) + (L —m) h(z,y)) (3.10)
with
fly) = I-a)y+ay™,
hz,y) = (I-e)fy " —27], and
V=Vom = {(z,9) ER,:2>0, y>(1-m)z 7}

In order to indicate the dependence of F' and f on the parameter o and
m, we sometimes write these as Fy ,, and f,. In this section, the parameter

a € (0,1) is assumed to be always arbitrarily fixed in (0, 1).

Note here that unless m = 1, the dynamical system F' : V — V is a
diffeomorphism onto its image Im(F) = F(V) C V. In fact, for m # 1, the
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map F' is injective (i.e., one-to-one) on V and the determinant detDF' of
the Jacobian matrix DF of the map F' is non-zero everywhere on V, that

is, detDF (z,y) = —(1 — m)(1 — a)oz 7! < 0 for any (z,y) € V.

3.3.1 Local stability analysis

The map F,, given by (3.10) has a unique fixed point p = (1, 1), indepen-
dent of parameter values. We examine the stability of the fixed point p. The

Jacobian matrix DF , of F,,, evaluated at p is given by

0 1

DFa,m(p): (l_m)(l_a)a l—a—aU_(l_m)(l_a)U

. (3.11)
The characteristic polynomial P()\) associated with the Jacobian matrix

(3.11) is represented as
P(\) = A2 —trDF,, (p) - A + detDF,,, (p), (3.12)

where trDF,, (p) = 1 — a — aoc — (1 —m)(1l — a)o is the trace of (3.11)
and detDF; p, (p) = —(1 — m)(1 — a)o is the determinant of (3.11). Since
P(0) = detDF, (p) = —(1 —m)(1 — a)o < 0 for m € [0,1] (equality holds
for m =1) and P(1) = a(1 + o) > 0, the Jacobian matrix DF; ,,(p) always
has a non-negative real eigenvalue whose absolute value is less than unity.
Apparently, the fixed point p cannot undergo either a Neimark-Sacker (also
known as Hopf) bifurcation, occurring with a pair of complex eigenvalues
with absolute value 1, or other local bifurcations with eigenvalue 1 such as a
saddle-node bifurcation. The only possible bifurcation is a period-doubling
(also known as flip) bifurcation that occurs when one of the eigenvalues is

—1. The period-doubling bifurcation curve can be given by a simple explicit
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equation?

P(-1)=2-a(l+0)—-2(1 —m)(1 —a)o =0. (3.13)

The fixed point p is called hyperbolic if DF; ,(p) has no eigenvalues with
absolute value of unity, and dissipative if |detDF; ,,(p)] < 1. As is easily
seen, if P(—1) > 0 then p is locally stable, and if P(—1) < 0 then the fixed

point p is a saddle point. To be more precise:

LEMMA 1: If the inequalities

2—« 1
el -mi—a) S A-mi-a (3.14)

hold, then the fized point p is a dissipative hyperbolic saddle.

PROOF: The first inequality is equivalent to P(—1) < 0, which implies that
p is a hyperbolic saddle. The second is just the dissipativity condition:
|det DFy p(p)] = (1 —m)(1l —a)o <1. Q.E.D.

3.3.2 Preparatory arguments

In order to study the heterogeneous cases, i.e., m € (0,1), it is useful to
first examine the homogeneous case where there are only adapters in the
market, i.e., m = 1. In this case, the map F,, given by (3.10) reduces to

the singular (thus non-invertible) map F,; : R?i— T R?i— +, given by
Fa,l (ZE, y) = (ya fa(y))

The map Fj 1 is clearly equivalent to the one-dimensional map f; in the

sense that f, on R, is topologically conjugate to the map Fy; restricted

“This curve is visible as the border between the red area and the orange areas in Fig.6
and 7.
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onto its image Im(F, ;) through the conjugacy ¢(z) = (z, fr(z)). The
dynamics of f, is studied in Onozaki/Sieg/Yokoo (2000) where f, is shown
to be strictly convex and unimodal with its global minimum at

9:0@—):( Qo )f

l-«

That is, f.(6) = 0 and fZ(z) > 0 for every x > 0. Furthermore, the

Schwarzian derivative of f, is given by”

fo) 3 (@)
S fo(z) fx) 2 (f[;(ff)>
ac(l+0)[ac(oc — 1) +2(1 — a)(2 4+ 0)z' 7]
= - 2[(a — 1)a2t + aoa]” )
We see that

Sfe(x) <0 for ¢>1 and =z >0.

Let us denote the global stable (unstable) manifold of the fixed point
p = (1,1) of the map F,,, by W7, (p) (Wg,,(p), respectively). We will
abuse this notation for the singular case when m = 1.

For o large, the unstable manifold W, (p) on the (z,y)-plane is simply

an arc consisting of a compact part of Im(F 1), which is a part of the graph

of f,.

LEMMA 2: Let o* be a o-value such that f2.(0(c*)) = 0(c*) and 6(0) <
f2(0(0)) for o > o* (such o* > (2 — a)/a ezists), then for o > o* and
m = 1, the unstable manifold of the fized point p is given by Wj'i(p) =
{(z,y) + @ € [fo(0), f(0)), y = fo(2)}.

See Onozaki/Sieg/Yokoo (2000), p. 108.
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PROOF: See Appendix.

When o is large, the stable manifold W, (p) on the (z, y)-plane consists
of infinitely many horizontal lines containing y = 1 and y = g;(0) (depending
on o) such that f2(g;) = 1 for some integer n = n(i) indexed by ¢. That is,
§i is a preimage of 1 by the one-dimensional map f. We can see that W', (p)
attains a tangential intersection with a horizontal line y = §J;(o) belonging to
W3 1(p), which then unfolds into two transverse intersections as o increases.
Note here that the map f has two inverses, say f; ! and f}gl giving the
preimages of a point y, one on the left of # and one on the right of @,
respectively. That is, fil(y) = f~Yy)N(0,6] and f}gl(y) = f~Hy)N(H, o).
Thus f~1(1) = 1U fz'(1) with f;'(1) = 1, and so on.

LEMMA 3: For m = 1, there exist horizontal lines {y = gi(0)}i C W3 1(p)
(depending smoothly on o) such that for some o1 = o1(i) and o9 = 03(7)

with o1 < o9:

(P1) W

w.1(p) and y = gi(01) have no intersection;

(P2) W3, 1(p) and y = gi(02) have two transverse homoclinic intersections,

and

(P3) W

sy1(p) and y = gi(om) have a quadratic homoclinic tangency for

some o = 0op(;) € (01,09).

PROOF: See Appendix.

It is worth explaining here in more detail the occurrence of homoclinic
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bifurcations associated with p for m = 1, that is, how the homoclinic points
of p are created for the singular case as the parameter ¢ increases. This will
be helpful in understanding the more complicated situations occurring for

m < 1.

As long as f2(9) < flgl(l), no homoclinic point of the fixed point p
exists, i.e., Wof,l(p) N W;”’l(p) \ {p} = ¢. See Fig.1(a).

As o increases, we can observe that f2(6) increases toward infinity while
frt(1) tends to 1/(1 — a). Thus the first homoclinic point of p appears at
some o-value o1 (> 0*) at which f2(0) = f'(1), or, equivalently, £3(9) =
1. At 0 = oy, the unstable manifold W', (p) and the horizontal line y =
f(0) contained in the stable manifold W, ;(p) has a quadratic homoclinic
tangency at the point (@, f(f)). Besides the homoclinic tangency, there
suddenly appear a lot of other homoclinic points of p at o = og1: W5, 1(p)
now contains in the interval (f(#), f2(0)) infinitely many horizontal lines
y = g; (i.e., 9 € (f(0),f?(0))), each of which intersects the arc ry1,1(P)
transversely in two homoclinic points. Also there appears a sequence of
horizontal lines {y = ¢;}; of W7 ,(p) in the interval (f(0) — ¢, f(0)) for any

e > 0 such that g; — f(#) (j — oo) from below. See Fig.1(b).

Although the homoclinic tangency itself is fragile in the sense that it is
destroyed even by a slight increase in o, such a small increase in o will create

new transverse homoclinic points and can create a new homoclinic tangency

u

of p (say at og; with og; > og1) by making the arc .

(p) tangent to
some other horizontal line y = ¢; of W;Hj,l(p) . See Fig.1(c). At such values
of oprj of homoclinic tangencies, we have f(0) = ¢;, or f™(6) = 1 for some
higher integer n;. As o increases further from ogi up to, say, g2 (> om1)
at which f2(0) = fp' o f'(1) or f4(9) = 1, this process of creating a new

homoclinic tangency will occur infinitely many times.
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ek Fig.1(a)—(c) about here ***

3.3.3 Some implications of homoclinic bifurcation

It has been widely known in economic literature that complex dynamics
can arise via homoclinic bifurcations; see, e.g., Palis/Takens (1993) for a
detailed mathematical treatment of this subject. We will show that the eco-
nomic model given by Eq.(3.9) exhibits a homoclinic bifurcation, that is, the
model has a hyperbolic fixed point of saddle type whose stable and unsta-
ble manifolds have homoclinic tangencies that unfold generically. Roughly
speaking, we mean by the ‘generic unfolding’ of a homoclinic tangency that
as the parameter o varies, the unstable manifold cuts across the stable man-
ifold with ‘non-zero relative speed’ at the point of tangency. As a result, the
system is shown to exhibit complex dynamics such as strange attractors (ob-
servable chaos), infinitely many periodic attractors (due to the persistence
of homoclinic tangencies), creation of horseshoes, and cascades of period-

doubling bifurcations.

Now we will perturb the singular map Fj; into non-singular maps by

making m slightly smaller.

LEMMA 4 (HOMOCLINIC BIFURCATIONS): There exists € € (0,1) such that
for any m € (e,1) and for some 0 = 65 = 6g(m), the map Fs,, m has the

following properties:

(i) the fized point p is a dissipative hyperbolic saddle;

(ii) the stable manifold W3 ..(p) and the unstable manifold W3, . (p)

gH,M

have a quadratic homoclinic tangency that unfolds generically with re-
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spect to o.

PROOF: See Appendix.

The relation between the stable and unstable manifolds of the fixed point
p is depicted in Fig.2 for m (relatively) close to 1 and o big. In Fig.2, the
unstable manifolds W', (p) is shown to have many homoclinic intersections
with the stable manifold W, (p). Although the figure is reminiscent of e.g.,
Fig.1(c) for the singular case of m = 1, there are some differences in the
shapes of the stable and unstable manifolds of p. While the stable manifold
of p for m = 1 consists of infinitely many horizontal lines, they become
connected with each other in some way, by folding, for m < 1 as depicted in
Fig.2. Unlike the case of m = 1, the unstable manifold of p for m < 1 now
tangles in a very complicated way in the presence of transverse homoclinic
orbits (this situation is sometimes referred to as ‘homoclinic tangles’), but it

cannot have self-intersections because the map Fy ,, is injective for m # 1.

kX Fig.2 about here ***

The dynamical complexities stated in the following proposition are due
to homoclinic bifurcations. For complex dynamics due to homoclinic bifur-

cations in an overlapping generations model, see e.g. de Vilder (1996).

ProrosITION 1 (COMPLEX DyNAMICS): Take m € (g,1) and 6 as in

Lemma 4. Let § > 0 be a sufficiently small number and let the interval

I =(6g — 0,6 +0). Then the following holds:
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(i) There exists an interval H C I such that for each o € H, Fy,, has
a horseshoe. That is, there exists an F, ,-invariant set A, on which
F, , has infinitely many saddle-type periodic orbits of arbitrarily large

period;

(ii) There exists a set of o-values E C I with positive Lebesgue measure

such that for each o, F,,, exhibits an Hénon-like strange attractor;

(iii) There exists a sequence {oy} C I with o, — 6 as n — oo such that

for each oy, Fy, m exhibits a period-doubling bifurcation;

(iv) For each k > 1, there exists an interval Ji, C I such that for each
o € Ji, Fom has at least k coexisting periodic attractors. Furthermore,
there exist infinitely many subintervals I, C I and a dense subset
M,, C I, such that for each o € M,,, Fy, has infinitely many periodic

attractors of arbitrarily large period (the Newhouse phenomenon).

PROOF: See, e.g., Palis/Takens (1993, Chapter 2) for (i), Mora/Viana
(1993) or Palis/Takens (1993, Chapter 7) for (ii), Yorke/Alligood (1983) or
Palis/Takens (1993, Chapter 3) for (iii), and Robinson (1983) or Palis/Takens
(1993, Chapter 6) for (iv).

3.3.4 A single heterogeneous agent makes a difference

Once a single agent (to be more precise, a sufficiently small fraction of
agents) of a different type is put into a homogeneous group, what will happen
in the market? We will show that such a single heterogeneous agent may

drastically change the qualitative dynamical feature of a market.

First, we show that in a market of naive optimizers a single cautious

adapter can stabilize the otherwise exploding market. If there is no adapter
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and demand is inelastic enough, the market with optimizers explodes. How-
ever, when a single adapter appears, the market does not explode anymore.
A single adapter can stabilize the market in the sense that the trajectories
do not explode but are trapped into a compact region in the positive quad-

rant.

PROPOSITION 2 (A SINGLE CAUTIOUS ADAPTER MAKES A DIFFERENCE):
(i) For m = 0 and o > 1, the trajectory generated by Eqs. (3.6) and (3.7)
for any initial condition (ug,vo) € K%, ezplodes unless vg = 1. (ii) On the
other hand, for m € (0,1], every trajectory starting from ]R?Hr 18 trapped into

a compact region in ]R%FJF.

PROOF: See Appendix.

Although the trajectories are trapped in a compact region, they may
fluctuate chaotically. Therefore, an independent observer may not judge
such a chaotic market to be ‘stable’. However, a single agent changes the
qualitative behavior of the market from explosion to chaos or periodic cycles.
Furthermore, as numerically shown in the next section (Fig.4), the trapping

region shrinks as the relative size of cautious adapters increases.

Conversely, if a single naive optimizer appears in a market where there
exist exclusively cautious adapters, then there may appear many and even
infinitely many coexisting periodic attractors in the market. Multiplicity of

attractors cannot occur in a market solely occupied by cautious adapters.

PROPOSITION 3 (A SINGLE NAIVE OPTIMIZER MAKES A DIFFERENCE):

(i) For m =1, there exists at most one periodic attractor for the map Fy ;.
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(ii) On the other hand, for any m < 1 sufficiently close to 1 and for any
integer k > 1, there exists an interval Ji of o-values such that for each
o € Ji, Fym has at least k coexisting periodic attractors. Furthermore, for
m < 1 sufficiently close to 1, there exist intervals {I;}2, of o-values and
dense subsets {M; C I;} such that for each o € M;, Fy,, exhibits infinitely

many coexisting periodic attractors of arbitrarily large period.

PROOF: See Appendix.

3.4 Numerical simulations

In this section we present some results of numerical simulations of Eq.(3.9)

mainly to visualize our theoretical results.5

First, we depict a strange attractor of the model for the parameter con-

stellation («, o,m) = (0.1,24,0.97) in Fig.3.

K Fig.3 about here ***

A one-parameter bifurcation diagram with respect to m is depicted in
Fig.4. From PROPOSITION 2 we can state that if there appears one cautious
adapter in an otherwise unstable cobweb market (m = 0 and o > 1) then
the market will not explode anymore but behave chaotically or periodically.
The figure, which is calculated for m > 0.01, illustrates that the trajectories
of the model including cautious adapters is trapped into a range of (0, e!?).

Without cautious adapters the market oscillates and explodes. Furthermore,

5In this section the parameters c, o and m are choosen quite arbitrarily to visualize
our theoretical results.
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it is observed that as the relative size m of cautious adapters increases,
the amplitude of trajectories shrinks. In these senses, adaptive behavior

stabilizes a cobweb market.

K Fig.4 about here ***

A one-parameter bifurcation diagram with respect to o is depicted in
Fig.5. From Eq.(3.13) the fixed point p undergoes a period-doubling bifur-
cation at 6 = (2 — a)/[a+ 2(1 —m)(1 — «)] ~ 12.338, which is shown in the
figure.

K Fig.5 about here ***

Next we turn to two-parameter bifurcation diagrams, i.e., Fig.6 and 7.
Each color in the figures corresponds to period’s number of cycles as dis-
played in the table of Fig.6. The red area exhibits pairs of parameter values
for which trajectories converge to a unique stable fixed point. The orange
area consists of pairs of parameter values for which trajectories converge to
a period-2 cycle. As stated above, between these two areas lies the period-
doubling bifurcation curve given by Eq.(3.13). The mustard-colored area
corresponds to a period-3 cycle, the yellow area corresponds to a period-4
cycle, the emeraldine area corresponds to a period-6 cycle, and the light-blue
area corresponds to a period-8 cycle, etc. The black area corresponds to a
cycle of period-16 up to -64 and the white area corresponds to a cycle of
period-over-65 or an aperiodic (including chaotic) orbit. For almost all the
set of parameters belonging to the white area, our model exhibits observable

chaos in the sense of a positive Lyapunov exponent.
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% Fig.6—7 about here ***

From both figures it is observed that the white area shrinks as the rel-
ative size m of adapters increases, which implies that the set of parameters
generating chaotic behavior of the market shrinks as m increases. This is
the other aspect of the statement that adaptive behavior stabilizes a cob-
web market. Furthermore, by taking notice of a and o we can get the same
observation as in Onozaki/Sieg/Yokoo (2000): The faster the speed of ad-
justment and the less elastic the demand, the more likely the market behaves

chaotically.

Fig.8 exhibits a supplementary result to PROPOSITION 3 that a single
naive optimizer makes a difference. The figure depicts the basins of attrac-
tion for a parameter constellation (o, o, m) = (0.5,6,0.961). Although there
exists at most one periodic attractor for the market without naive optimiz-
ers (m = 1), it is observed that the emergence of a relatively small fraction
of optimizers (m = 0.961) causes two coexisting periodic attractors. The
basins of attraction have a fractal structure as exhibited in the figure, due
to the existence of homoclinic tangles associated with the horseshoes. Any
point (z,y) of the phase space either belongs to one of the two basins or is a
point on the basin boundary. Every trajectory starting from an initial point
that does not belong to the boundary converges to either period-10 (the
black area) or period-18 (the white area) cycles. The coexistence of periodic

attractors is impossible if the market consists only of cautious adapters.

K Fig.8 about here ***
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3.5 Conclusion

We have investigated the dynamics of a nonlinear, two-dimensional cobweb
model which contains two types of heterogeneous agents; cautious adapters
and naive optimizers. Even a single heterogeneous agent may change the
qualitative behavior of the market. If there are exclusively naive optimizers
and demand is inelastic enough for the market to explode, a single adapter
can stabilize the market in the sense that it would not explode, but possibly
by causing chaos. On the other hand, when there are exclusively cautious
adapters, there exists at most one periodic attractor for the market. If
a single naive optimizer appears in such a market, then there may appear
many (and even infinitely many) coexisting periodic attractors of arbitrarily

large period.

Onozaki/Sieg/Yokoo (2000) hypothesis states that in a market with ex-
clusively adaptive agents, low price elasticities and fast adjustment may
cause the market to behave chaotically. In this paper, we extend this hy-
pothesis so as to hold for a market with heterogenous agents. More im-
portantly, however, market behavior is not necessarily determined by the
behavior of a majority of agents but even a single heterogenous agent may
have a profound impact on the qualitative behavior of a market. Therefore,
a statement that the theoretical concept of homogenous agents is an appro-
priate approximation of the reality of coexisting heterogenous agents, which
is common in traditional economic theory, seems questionable. Heterogene-
ity, or diversity, of agents may be the mother of rich dynamics and therefore

possibly the source of stability, oscillation and chaos.
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3.6 Appendix

3.6.1 Proof of Lemma 2

An exercise shows that if (1 — a)/a < 0 < (2 — a)/«a, then 1 < f2(0) < 6
[see Onozaki/Sawada(2001)]. Also, since f2(6) — oo and § — 1 as 0 — oo
[see Lemma 3 in Onozaki/Sieg/Yokoo(2000)], there exists a o-value o* >
(2—a)/a (> 1) as in the statement of the lemma. Let 0 > ¢* be given. Then
we have f(0) <1 <0 < f%(0). Since f([1,0]) = [f(0),1] and f([f(0),1]) =
[1, £2(0)], the set W3 1(p) is proved to be the unstable manifold of p if it is
shown that for any z € (1,0), there exists n = n(z) > 1 such that f2*(z) > 0.
Clearly, it suffices to show that f?(x) > z for any z € (1,60]. If this does
not hold, then there exists ¢ € (1,6] such that f2(q) < ¢. Noting that
df?(1)/dz = (f'(1))2 > 1 and f2(1) = 1, we can assume f2(q) = ¢ without
loss of generality. For simplicity of notation, let g(z) = f%(z). Note that g
is strictly increasing on [1,0] as dg(z)/dz = f'(f(z))f'(z) > 0 for z € [1,0).
Again since dg(1)/dz > 1 and g(1) = 1, there exists r € (1,¢) such that
r < g(r) < g(q) = ¢q. Thus

g9(q) —g(r)
q—r

0< <1

And since g < 0 < g(@), we also have

9(0) —9(a)

1
< -

Therefore, by the mean value theorem, ¢’ attains a (local) minimum at some
c € (1,0), ie., g"(c) = 0 and ¢g"(c) > 0. Remember that if the Schwarzian
derivative of f, Sf, is negative, then S(f o f) = Sg is also negative [cf.
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Singer(1978)]. Since Sf(z) < 0 for z > 0, we then must have

S1*(c) = Sg(c) = *
g
which contradicts ¢'(¢) > 0 and ¢"(¢c) >0. Q.E.D.

3.6.2 Proof of Lemma 3

Let 01 > 0" be given, where o* is as in Lemma 2. We can see that there is an
integer k > 1 such that for k > k, 6(01) < f2,(0(01)) < (;?R(l) = gr(01),
where fg_f means the k-th composite of f;sl (s = R, L) and gi(o) is, by
the implicit function theorem, a smooth function of o > (1 — «)/a with
dj(o)/do > 0. Since f2(6(c)) — oo and Jx(0) — 1/(1 — @)k (0 — o0 ),
there is 02(> o1) such that f2,((02)) > §x(02) > 0(02). This implies that
fo (0(01)) > fg_ll,L(?]k(m)) = §r(o1) (where i (o) is a smooth function of
o) and fo,(0(02)) < f,,'1(Gk(02)) = G(02). Since the horizontal line y =
Jk(0;) obtained above belongs to W3 ,(p) because f(]ﬁj*'l(gjk) = 1 and since
the point (6(c;), fo,;(0(0;))) belongs to Wi 1(p) (j =1, 2) by Lemma 2,
the assertions (P1) and (P2) immediately follow. (P3) follows from (P1)
and (P2) by continuity. Q.E.D.

3.6.3 Proof of Lemma 4

(i): By Lemma 1, if

2_a<0'<—
a (1-m)(1-a)’

then the fixed point p of F,,, is a dissipative hyperbolic saddle. Thus if

o > (2 — a)/a, then for m € (e1,1) where ¢; = ¢1(0) =1 — ,pisa

S
o(l—a)
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dissipative hyperbolic saddle.
(ii): This part is proved if the following is verified:

CrLAM: Let o7 and o2 be as in Lemma 3. Then there exists ¢ € (0,1)
such that for every m € (e, 1), the map Fj ;, has arcs v; ,, C W, . (p) and
Yo.m C Wam(p) satistying the following:

(a') 73'1,’"7, ﬂ’}/gl,m = ¢?
(b) ¥5,.m and 75, n, have two transverse intersections, and

(c) For some oy € (01,02) and 77, , have a quadratic homoclinic

S
) ’)IO'H,m

tangency that unfolds generically with respect to o.

PROOF OF CLAIM: Since o9 > 01 > (2 — a)/«, the fixed point p of the non-
singular map Fj ,, for every o € [01,02] and m € (e;(02),1) is a dissipative
hyperbolic saddle from the result of part (i) above. Thus, by continuous
dependence of the unstable manifold of a hyperbolic fixed point on F ,, in
the C? topology, the map Fy.,, has an arc %, C W, (p) which is C*-close
to W5, (p) (obtained in Lemma 2) for each o € [0, 03] and for m close to 1.
Furthermore, note that each horizontal line {y = ;} C W ,(p) in the proof
of Lemma 3 consists of regular points: for every z € {y = 9;} C R? and for n
such that F'; (z) = p, it holds that Im(DF}' (x))+T,({y = 1}) = R?, that is,
the vectors (H?;llf’(fj_l(gi)), H?Zlf’(fj_l(gi))) and (1,0) span R? because
f7=Y9;) # 6 for j = 1,...,n. Thus by Proposition 1 in Appendix 4 in Palis
and Takens (1993, p.182), the non-singular map Fy ,,, for m sufficiently close

to 1 has an arc v, ,, C W7, (p) which is C?-close to a suitable compact
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line segment of the horizontal line y = ¢;. By stability of transversality
and by Lemma 3, (a) and (b) follow, which are the situation of ‘inevitable
tangency’, a part of Takens’ weakened generic conditions for real-analytic
families of diffeomorphisms [see Takens (1992)]. Evidently, the existence of
oz for which ’yf,H’m and ’yf,‘ﬁ .m have a quadratic homoclinic tangency follows
from (a) and (b). By Takens’ weakened generic conditions, we immediately
have the generic unfolding of the homoclinic tangency: in fact, the ratio
—log(|A2(0)])/ log(|Ai(o)]) of eigenvalues A; and Ag of DFy ,,(p) is clearly
non-constant with respect to 0. This proves (c) and thus (ii) of Lemma 4.

Q.E.D.

3.6.4 Proof of Proposition 2

(i): Since v; = v(_a)t, we have lim sup,_, ., v = oo for vg > 0 and vy # 1. If
vgp =1, then v, =1 for t > 0 and w41 = (1 — @)uy + «, implying u; — 1 as

t — 400 for any wug.

(ii): Suppose first that the (positive) sequence {v;} generated by Egs.(3.6)
and (3.7) is eventually uniformly bounded from above in the sense that
limsup,_, o, vy < ¥ for some 0 < ¥ < oo, independent of (ug,v9) € R% .
In other words, there exist an integer K (depending on vy and ug) and
a uniform v < +oo such that 0 < v, < v for any ¢ > K. If so, then
upr1 = (1 — @)uy + avgpy < (1 — @)uy + aw for t > K. Thus, for t > K,
up < (1—a) Kug +av RI25 71— @) < (1 — ) Kug + 3, which implies
lim sup,_, , u; < 0. Evidently, if v; (and thus also u;) is eventually uniformly
bounded from above, then liminf; ., u; > » and liminf;_, ., v; > v for some
uniform u > 0 and v > 0. The rectangle defined by R = [0, u] x [5,v] C K% |

is then a required compact region.
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Therefore, it suffices to show that {v;} is eventually uniformly bounded

from above. If it does not hold, then, for any ¢ > 0, there exists L =

L(e,up,vg) such that vyi3 > e 1/7

or, equivalently, 0 < mupyo + (1 —

m)vry2 < €, which implies that ur 9 < ¢/m and vp49 < /(1 —m) . Thus

we get
a
1—-—a)u + <
( Jurn [mup41 + (1 —m)vp41])”
1
7 <
[mur1+ (1 = m)vp]
From (3.16) we obtain
< €
u
Rearranging (3.17) gives
1—-ml-
. <mur4+1+ (1 —m)vpiq.
Combining (3.18) and (3.19) we obtain
. {1 - m} - e
U e —
AR € (1—a)(1—m)
From (3.18) and (3.20), it follows that
€ a
- —(1—
=) > up+1 = (1 — a)ur +

= (1 —-a)ur +avp4q
> (1 —a)ur + al(e)
> alAle).

[mur, + (1 —m)vr]”

(3.16)

(3.17)

(3.18)

(3.19)

(3.20)

Hence we obtain € > ma(l — a)A(eg). Since A(e) — 400 as € — 0, we get

a contradiction. This completes the proof. Q.E.D.
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3.6.5 Proof of Proposition 3

(i): Since f, is unimodal and the Schwarzian derivative of f, given by
(3.15) is negative (i.e., Sf,(z) < 0) for c > 1 and z > 0, f, has, by Singer’s
theorem [Singer (1978)], at most one periodic attractor for & > 1, and so
does Fy;. For o € (0,1), the unique fixed point z = 1 of f, has been
shown to be globally attracting [see Onozaki/Sawada(2001)], so the fixed
point p = (1,1) of F;; is also globally attracting.

(ii): See (iv) in Proposition 1. Q.E.D.
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Bifurcation diagram for Eq.(3.9) with respect to (m,a): o =7.0.

Basins of attraction for period-10 (the black area) and period-18 (the
white area) cycles: a = 0.5,0 = 6.0, m = 0.961.
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Fig.1(a): Creation of homoclinic points with respect to o.

A case of no homoclinic point: f2(0) < fz'(1).
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Fig.1(b): Creation of homoclinic points with respect to o.

A case of the first homoclinic tangency: f2(6) = f5'(1).
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Fig.1(c): Creation of homoclinic points with respect to o.

A case after the first homoclinic tangency: f2(0) > fp'(1).
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Fig.2: Relations between the stable and unstable manifolds of the fixed
point p:
a=0.1, c =21.0, m = 0.95.
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Fig.3: Strange attractor for Eq.(3.9): a =0.1, o0 = 24.0, m = 0.97.
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Fig.4: Bifurcation diagram for Eq.(3.9) with respect to m > 0.01:
a=0.1,0=240.
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Fig.5: Bifurcation diagram for Eq.(3.9) with respect to o:
a=0.1, m =0.97.
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Fig.6: Bifurcation diagram for Eq.(3.9) with respect to (m,o): a = 0.6.
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Fig.7: Bifurcation diagram for Eq.(3.9) with respect to (m,«): ¢ = 7.0.
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Fig.8: Basins of attraction for period-10 (the black area) and period-18
(the white area) cycles: a = 0.5, o = 6.0, m = 0.961.



Chapter 4

Threshold Nonlinearities and Asymmetric

Endogenous Business Cycles

abstract

This paper! presents a model of endogenous business cycles in the pres-
ence of knowledge spillovers and a time-to-build restriction. There are two
key assumptions which virtually characterize the model: (i) the payoff to
each firm depends on the aggregate state of knowledge; and (ii) the inno-
vation of a project is time-consuming. Under those assumptions, a simple
structure is shown to be described by a piecewise linear difference equation
with a discontinuity. We show that the resulting dynamics generated by
such a dynamical system leads to an asymmetric periodic cycle of arbitrary
period, which appears to switch repeatedly between different regimes. The
model presents a simple theoretical ground for a dynamical system with

threshold nonlinearities.

!This essay is based on joint works with Junichiro Ishida. See Ishida/Yokoo (2002).
Also see Ishida/Yokoo (2001) for an earlier draft with slightly different settings in the
model.

119
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4.1 Introduction

It is often pointed out that many economic variables, such as GDP, can-
not simply be characterized by a symmetric stochastic process. There is
ample evidence that business cycles are asymmetric in nature. To name a
few, Hamilton (1989), Beaudry and Koop (1993) and McQueen and Thorley
(1993) report that economic booms tend to be more persistent than reces-
sions in the United State. Caner and Hansen (2001) find some evidence
that the unemployment rate is better characterized by a stationary thresh-
old specification. Also, examining international evidence, Hess and Iwata
(1997) and Razzak (2001) find that the nature of business cycles is asym-
metric in many developed countries. Those findings seem to suggest that
modelling economic fluctuations as a symmetric process, either stationary

or nonstationary, potentially trivializes a critical aspect of business cycles.

While many important contributions are made as far as statistical method-
ologies are concerned, not much is explored theoretically for the underlying
mechanism which gives rise to a dynamical system with threshold nonlinear-
ities. The paper intends to fill this gap. We construct a model in which the
resulting dynamics is characterized by a piecewise linear difference equation
with a discontinuity, the type of dynamics which is found routinely, for in-
stance, in the field of neural networks but rarely in the field of economics.
Nevertheless, the dynamics generated by such a dynamical system is poten-
tially important in economics since it leads to an asymmetric periodic cycle
in which two states of the economy alternate each other asymmetrically.
The resulting dynamics thus appears to switch repeatedly between different
regimes, as often modelled in time series econometrics. The model presents
a simple theoretical ground to capture this type of (endogenous) asymmetric

dynamics.
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Two assumptions virtually characterize the model and lead to the emer-
gence of asymmetric dynamics. First, we consider the effect of knowledge
spillovers and assume that firms are more productive when more firms en-
gage in innovations. Second, while each firm can innovate and upgrade
its project, this innovation process is time-consuming in that a firm which
chooses to innovate its project must stay inactive for that period. This
is a sort of time-to-build restriction which eventually amounts to a choice
between instant gratification and future prosperity: each firm must choose
either to adopt a low-quality project immediately or to wait for a while
and adopt a high-quality project in the future. The assumption has certain

generality since this problem is inherent in many economic situations.

Under those assumptions, a simple structure is shown to exhibit perpet-
ual fluctuations between two phases, referred to as the expansion and the
contraction phase. The intuition behind this is fairly simple. It is more
costly for firms to forgo production opportunities when they are more pro-
ductive. When the opportunity cost of forgoing production is sufficiently
high, firms would rather choose not to innovate. The expansion phase, how-
ever, may not be sustainable in the long run. As more firms choose not
to innovate, aggregate output starts to decline and the economy eventually
spirals into the contraction phase. By the same logic, the contraction phase
may not be sustainable in the long run either. In the contraction phase, the
opportunity cost of forgoing production is low, and firms would be willing
to wait and innovate. As more firms choose to innovate, aggregate out-
put indeed starts to rise and the economy eventually moves back into the

expansion phase.

The paper is related in its scope to Benhabib and Rustichini (1991),
Asea and Zak (1999) and Kitagawa and Shibata (2001) which incorpo-



122

rate the time-to-build restriction to generate endogenous cycles. Within
the framework in which any investment requires some gestation period be-
fore it becomes productive, for instance, Kitagawa and Shibata (2001) show
that period-n cycles arise when the gestation period exceeds the agents’
time horizon. It should be pointed out, however, that the underlying mech-
anism behind endogenous cycles in our model is completely different from
theirs. The critical assumption in our model which directly leads to endoge-
nous cycles is that each firm can choose the quality of its project while, in
theirs, there is no variation in the quality of investment and each investment

requires the same gestation period.?

The rest of the paper is organized as follows. The model is briefly out-
lined in section 2, and is analyzed in section 3. The dynamics of the model
is examined and the possibility of endogenous cycles is explored in section

4. Finally, some concluding remarks are made in section 5.

4.2 The Model
4.2.1 Environment

Time is discrete and extends from zero to infinity. We consider an economy
with a continuum of firms, each indexed by i, with unit measure. At the
end of each period, a constant fraction 1 — §, where ¢ € (0,1), of (randomly
chosen) firms disappear and are replaced by new ones. Each firm is risk
neutral and attempts to maximize the discounted sum of expected profits
with v € (0,1) being the subjective discount factor. Define § = ¢ as the

effective discount factor.

’In Kitagawa and Shibata (2001), endogenous cycles arise due to the long gestation of
investment; in our model, they arise due to the tradeoff between the quality of investment
and its opportunity cost.
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In any given period, each firm is either active or inactive and engages in
at most one project at a time. Each project is characterized by its quality,
either high or low, which determines the cost of production. The cost of
production is & if the project is of low quality and zero if it is of high-quality.
Upon entering the market, each new firm has a project at hand which is of
low quality and must decide either to adopt the project as it is or to innovate
it. If a firm decides to adopt (i.e., not to innovate), it immediately becomes
active and produces until it disappears; if a firm decides to innovate, it can
upgrade the project to high quality in the next period while it must stay
inactive for that period.® Let n; € [0,1] denote the number (measure) of

firms which decide to innovate in period .

4.2.2 Production

We assume that knowledge accumulates through innovations. To capture
this, we assume that the productivity of each firm depends on the number
of firms with a high-quality (innovated) project at the beginning of each
period, a type of assumption similar in nature to the one adopted by Durlauf
(1991,1993), Gale (1996) and many others.* Let x; € [0,1] denote the
number of firms with a high-quality project at the beginning of period t.

The law of motion for z; is then given by
Tep1 = 0(@e + ). (4.1)

Each firm is equally productive in any given period. Let (i) denote

the output level of firm 7 in period t. We specify that, when it is active,

3We assume that each firm can innovate its project only once.

‘The nature of complementarities is intertemporal under this setup. Durlauf
(1991,1993) argues that intertemporal complementarities capture the idea of learning-by-
doing. It should be noted, however, that the intertemporal nature of complementarities
is not critical to the results of the model. An important point is that the aggregate level
of innovative activity affects the productivity of each firm in some sense.
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each firm can produce y;(i) = h(z;) through the (normalized) production
function A : [0,1] — [0, 1]. This function h(z) is assumed to be continuous
and strictly increasing in x with h(0) =6 € [0,1) and h(1) = 1.

The payoff to each firm is its profit. Let m(i) denote firm 4’s profit in
period ¢, which is given by h(x;) — k if the firm’s project is of low quality
and h(z;) if it is of high quality. Each new firm chooses whether to adopt

or innovate so as to maximize the discounted sum of expected profits.

4.3 Analysis

It is straightforward to characterize the optimal choice for each new firm. If

a firm chooses to adopt (i.e., not to innovate), the expected gain is

By Bmips(i) = By Yy Boh(wys) — u

2 2 5 (4.2)

If the firm chooses to innovate, on the other hand, the expected gain is

Ep Y Bmiys(i) = By Y Boh(weys). (4.3)
5=0 s=1

The firm thus chooses not to innovate iff

o0 k o0
B> Bh(miys) — 152 & > Bh(zits), (4.4)
s=0 B s=1
which can be written as
k
h(z¢) > 1-3 (4.5)
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The optimal choice for each new firm is thus characterized by a simple

form.?

The production cost k/(1 — ) signifies the value of innovation.
The cost of innovation is the opportunity cost of forgoing a production
opportunity in period ¢. Each new firm chooses to innovate if the value of

innovation exceeds the opportunity cost of forgoing production.

4.4 Dynamics

4.4.1 Threshold Nonlinearity

Since 6 < h(z;) < 1 for any x; € [0, 1], there are three cases to consider

depending upon the value of innovation k/(1 — ():
Case 1: 6(1—p) > k;
Case 2: k>1-—p;

Case 3: (1—-p)<k<1-p5.

In Case 1, it is never profitable to innovate, and each new firm always
chooses not to innovate, that is, n; = 0 for any ¢. By Eq.(4.1), the sequence
{z;} obeys the following dynamic process for any initial conditions zy €
[0, 1]:

Ty = 0y (4.7)

Thus z; tends to the unique steady state 0 as t goes to infinity, implying
that the project of every firm is of low-quality in the end.

5This simple representation of the optimal choice stems from the fact that each in-
novation requires only one gestation period. The model can potentially be much more
complicated if each innovation requires a gestation periods for some arbitrary natural
number a > 1. We do not explore this general case in this paper as it is out of the scope
of this paper.
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In Case 2, on the contrary, each new firm always chooses to innovate,

that is, ny = 1 — 4 for any ¢. The resulting dynamic process is then given by
Ti+1 = (5£Bt + (5(1 - 5) (4:8)

with a unique globally stable steady state § € (0, 1).

In Case 3, the situation is a little more complicated. Note first that for
each k satisfying (1 — 8) < k < 1 — j3, there exists, by the intermediate
value theorem and strict monotonicity of &, a unique point ¢ = c(k) € [0, 1]

such that
k

1-p5)

Note here that the point ¢ = ¢(k) increases continuously with £ € [#(1 —

h(c) =

(4.9)

B), (1 — B)]. Since h is strictly increasing, it follows that z; < ¢ iff h(z;) <
k/(1 — B) and also that ¢ < z; iff /(1 — 8) < h(zy). Therefore, in Case
3, each new firm in period ¢ chooses to innovate if z; < ¢ (i.e., ny =1 — 0)
and chooses not to innovate if ¢ < x; (i.e., ny = 0). Hereafter, we refer to
the point ¢ as the threshold. The law of motion for z; in Case 3 is thus
characterized by the following piecewise linear difference equation with a

discontinuity at the threshold c:

oz +6(1 —0) = fr(zy) ifxy <e

ozt = fr(xy) if ¢ < x4. (4.10)

Tey1 = fzy) = {
We say that the economy is in the contraction phase if z; < ¢ and in the
expansion phase if ¢ < z;. Note that if ¢ =0 (i.e., k = 6(1 — 3)), Eq.(4.10)
collapses to Eq.(4.7) with 0 being the globally attracting steady state. Fur-
thermore, it is easy to show that if 6 < ¢, then z; converges to 0 as t goes to

infinity for any initial condition (.5 See figure 1 for a graphic illustration

8For ¢ < 6, the point ¢ is the unique steady state of Eq.(4.10), that is, f(§) = d. For
¢ = 4, however, f(d§) # 0 due to the discontinuity of f.
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of this argument. In the sequel, we will explore the dynamics generated by

Eq.(4.10) in more detail.

4.4.2 Periodic Cycles

In the absence of a steady state, the dynamics generated by a piecewise linear
difference equation can lead to an asymmetric periodic cycle in which the
expansion and the contraction phase alternate each other asymmetrically.
This type of dynamics has potentially profound implications as it is able
to capture an important feature of business cycles. As already stated, it
is often pointed out that many economic indicators, such as GDP, exhibit
significant asymmetry as if they repeatedly switch between different regimes.
Examining international evidence, for instance, Hess and Iwata (1997) find
that: (i) positive shocks are more persistent than negative socks in the
United States and France; (ii) negative shocks are more persistent than
positive shocks in the United Kingdom and Canada; (iii) there is almost
no asymmetry in persistence in Italy, Japan and West Germany.” Their
findings seem to suggest that there is no consistent asymmetric pattern
of business cycles across countries. Those differences are indeed puzzling
considering that those countries, roughly at the same stage of development,
are supposedly subject to a similar set of stochastic shocks. Our model
suggests that those differences in the asymmetric nature of business cycle
can be reconciled within a very simple framework of endogenous cycle. It
should be noted that the asymmetric nature of business cycle does not need

to rest on inherent properties of stochastic shocks.

In a period-n cycle, x; = x4, for all t and xy # x4 for s =1,2,---,n—

1. Let {p1,p2,---,pn} be a periodic cycle of prime period n for Eq.(4.10):

" Also, see Razzak (2001) who finds significant asymmetry in international GDP fluc-
tuations.
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that is, f*(p1) = p1+s, f(p1) #p1 for s=1,2,--- ,n—1 and f"(p1) = p1.
The complete characterization of the dynamics of the model is clearly
out of the scope of the paper as it is extremely tedious. To illustrate the
gist of the model, therefore, we focus on two polar examples of some ‘simple’
periodic cycle. See Nagumo and Sato (1972) for the computation of a wider

class of periodic cycles.
We first consider the following type of periodic cycle {p1,p2, -, Pn—1,Pn}
such that
p1 <p2 <--- <pp_1 <c<pp, (4.11)

for some natural number n. This type of cycle corresponds to the case of the
United Kingdom and Canada in which negative shocks are more persistent.
To compute p; (if it exists), we simply need to solve f™(p1) = p;. Since

pi<cfori=1,2---,n—1, we have f*(p;) = fRofgfl(pl). It follows that
fro f7 Hp1) = 0"py + 6%(1 = 6"7") =p1.

Solving this for p1, we obtain p; = 62(1 — 6"~ 1)/(1 — 6"). For this to be

consistent, this p; must satisfy the following conditions:

n—2

;) < ¢ and (4.12)

fr(c) < pi. (4.13)

It follows from condition (4.12) that

c > f17%m)

g — 527171

5 +6_6n—1

— 5n—2p1 +4— 5n—1 —

§n — 5n+1 _ 5n71 + )
1—4n

Ly.
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Similarly, it follows from condition (4.13) that

b1
< il
©=73
0 —o"
= 1_5nERn'

Conditions (4.12) and (4.13) are then represented by
Ly, <c< Ry (4.14)

Note that R, — L, = 6"~1(6 — 1)2/(1 — 6") > 0 so that (L, R,] is well-
defined.

Conversely, suppose that condition (4.14) is satisfied. Further, define ¢
such that fJ2(¢) = c. Solving this for ¢, we obtain

c—64+0m1t

c= 5n—2

Then, we can show that the mapping f" restricted to the half interval T' =
[0c, ¢) is well-defined (that is, f™ maps that interval into itself) where f™|T is
linear with a constant slope " € (0, 1) and a (unique) fixed point p; € [dc, ¢).
This indicates that condition (4.14) is a necessary and sufficient condition
for the trajectory of any initial value to converge to a period-n cycle of the
form (4.11). See figure 3 for a graphic illustration of this argument. For
instance, a period-2 cycle appears when

52
149

4]
< —. .
<C_1—|—(5 (4.15)

When c is in this range, a period-2 cycle is globally stable.

Similarly, we also consider another type of periodic cycle such that

5(1 - 0)

ﬁ- (4-16)

Pn<c<pp 1< ---<pa<p1=



130

This type of cycle corresponds to the case of the United States and France in
which positive shocks are more persistent. We do not explore this in detail
as the argument here basically parallels to the one above. A periodic cycle

of this form appears when

sup fr(z) de+6(1=6)>p and (4.17)

r<c

c < fE3(p1) =0""2py. (4.18)

Equivalently, we can restate these conditions as

L, <c< Ry, (4.19)

where

- 0"(1-0) . N1 - 6)

4.4.3 The Expansion Rate

The dynamics of the model can also be characterized from a different per-
spective. To this end, we now convert a sequence generated by f into a 0-1

sequence using the following transformation:

0 ifx<c,
St:].[iﬁt]:{ 1 lfCSIII (421)

We can then denote a periodic sequence in which 1 appears u consecutive

times after 0 appears v consecutive times by {0Y1%}.

According to this definition, a periodic cycle of the form p; < ps < --- <
pn1 < ¢ < p, can be expressed as {0"7'1}. It then directly follows from
above that a periodic sequence {0" '1} appears when L, < ¢ < R,. Note

also that, even if ¢ = L,, the trajectory of any initial value converges to a
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periodic sequence {0"~'1} after a finite number of iterations. This implies
that the condition
Ln <c< Ry, (4.22)

can be regarded as the condition which leads to a periodic sequence {0"'1}.

Similarly, we can show that a periodic sequence {01"~'} appears when

Ln <c< R, (4.23)
Now consider some sequence {z;}°, generated by f for a given cutoff
point ¢ and the corresponding sequence {s;}72,. We now define the ezpan-

sion rate, p(c), as

(4.24)

The expansion rate is analogous to the averaging firing rate for a piecewise
linear neuron model (see e.g. Nagumo and Sato 1972) or to the rotation
number for a homeomorphism on the circle (see e.g. Devaney 1986). In
particular, for a periodic sequence of period n, {s1,s9, -+, s,} (s; € {0,1}),

the expansion rate is given by

number of 1’s in {s1,s92, -+, S}

plc) = - . (4.25)

The expansion rate is well-defined as a sequence starting from any initial
value zy eventually converges to some 0-1 sequence after a finite number of
iterations.® That is, given the parameters of the model, the expansion rate is
uniquely determined independently of the initial condition. This means that
p(c) = 1/n if condition (4.22) holds and p(c) = (n — 1)/n if condition (4.23)

holds. Furthermore, p(c) = 0 if § < ¢. The expansion rate has important

®In case of a period-2 cycle, for instance, there exists no period-2 cycle (= periodic
point of period 2) when p1 = c¢. It is, however, easily verified that, even for p1 = c,
a sequence starting from any initial condition zo becomes {01} after a finite number of
iterations.
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economic implications. First of all, its denominator gives the period of the
cycle. Second, it measures how frequently the economy is in the expansion

phase over the course of one cycle.

To describe intuitively how the expansion rate is related to the threshold
¢, we first explicitly compute the range of ¢ for the expansion rates 1/n and
(n—1)/n. Define p*(c) as the expansion rate for which ¢ is the upper bound.

With some algebra, we obtain

log §
d—c
“(c) = o8 (I__C) 4.26
PO=1 g 5+ 1=2) (4.26)
for0 <e< %6.

)
fOI'l—_'_(SSC<(S,

log (5 + 1;05) —logd

Similarly, define p'(c) as the expansion rate for which c is the lower bound.

With some algebra, we obtain

log 0
- 8 for % <e<d,
log (1—|——1_5 )
I _ 0(0—c) 497
ple)= log(1+1—;6)+log5 ) (4.27)
for0<e< %.

log (1 + 1—;5)

The derivation of p*(c) and p!(c) is placed in appendix. Figure 4 depicts the
graphs of p*(c) and p'(c) with § = 0.8.

In general, we can characterize the expansion rate as a function of ¢ by
generating a Farey sequence in the following manner.’ Suppose that we have
two incommensurable fractions {£, T} where 2 > £. We can then generate

a new fraction from these such that 2%. Note that, since

q q+s s
9See Hardy and Wright (1979) for more detail on the properties of the Farey sequence.

+r r
Q>p >
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p ptr r

we write this as {q, s

}. This process of generating a new fraction is
repeatedly applied to any two neighboring fractions. Starting from F; =
7, 7}, applying this process repeate ields
% ? lying thi tedly yield

10

mo= -

1 {171}7
110

F2 = {_a_a_}a
1271
12110

F3 = {_a_a_a_a_}a
1"3°'2°3"1

Fy, =

14 2 1211
oo {L432258 0182312110,

For instance, if we observe a period-2 cycle (i.e., p(cp) = 1/2) for some
threshold ¢y and a period-5 cycle with p(c;) = 2/5 for some other ¢; (> ¢p),
then we can observe a period-7 cycle with p(ce) = 3/7 for some c2 € (co, 1),
provided that other things are held constant. The function p(c) extended on
[0,1] turns out to be a Cantor function (also known as a devil’s staircase),
that is, a monotone, continuous function with p'(c) = 0 for almost every
¢ (see Nagumo and Sato 1972 for this point). See figure 5 for the devil’s
staircase as a function of the threshold point c. Figure 6 depicts a bifurcation
diagram which shows how periodic patterns change as the threshold point ¢

increases with ¢ fixed.
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4.5 Conclusion

This paper presents a simple model of endogenous business cycles in the
presence of knowledge spillovers and the time-to-build restriction. Under
the maintained assumptions, we show that a simple model is capable of
generating an asymmetric periodic cycle of arbitrary period. As it turns
out, the dynamics of the model is characterized by the expansion rate, which
gives the period of a cycle and the frequency of the economy being in the
expansion phase over the course of one cycle. Despite its simple structure,
the model is able to mimic the asymmetric pattern of business cycles which
is often modelled as a threshold autoregressive model. The presented model
can thus be considered as providing a theoretical ground for a dynamical

system with threshold nonlinearities.

As a final note, it should be pointed out that we deliberately keep the
model as simple as possible in order to deliver the main message in a clear
manner. We therefore regard this model more as a benchmark with several
possible extensions. For instance, we can show that the model exhibits
much more complicated, and possibly chaotic, dynamics even with some
slight modifications (see e.g. the next chapter). It is of some interest to

pursue this possibility in future.

4.6 Appendix

The Derivation of p”(c) and p!(c)

We obtain the upper bound of ¢ for the expansion rates 1/n and (n —1)/n
by solving R, and R, for n. Let n(c) be the solution as a function of c.
We then translate this into the expansion rate to obtain p”(c). Note that

R, = R, = 6/(1 + ) when n = 2. Tt directly follows from the definitions of
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R, and R, that R, is valid when /(1 +§) < ¢ < § and R, is valid when
0 <c<4/(1+6). This leads to

1+4

)
TL(C) f0r0<c< 1_+(5

(4.28)

{L for 2 < ¢ <4,

We can basically follow the same procedure to obtain the lower bound of
c. Solving L,, and L,, yields n(c) as above. By the same token, we can show
from the definitions of L, and L, that L, is valid when §2/(1 +68) < ¢ < §
and Ly, is valid when 0 < ¢ < 62/(1 + §). This leads to

1+0
52

n(c) for0<c< 1+e-

(4.29)

{L for£§c<5,



136

References

Asea P.K., Zak, P.J., 1999. Time-to-build and cycles. Journal of Economic
Dynamic and Control 23, 1155-75.

Beaudry, P., Koop, G., 1993. Do recessions permanently change output?
Journal of Monetary Economics 31, 149-63.

Benhabib J., Rustichini, A., 1991. Vintage capital, investment, and growth.
Journal of Economic Theory 55, 323-39.

Caner, M., Hansen, B.E., 2001. Threshold autoregression with a unit root.

Econometrica 69, 1555-96.

Devaney, R.L., 1989. An Introduction to Chaotic Dynamical Systems, 2nd
ed. Addison-Wesley, Reading.

Durlauf, S.N., 1991. Path dependence in economics: the invisible hand in

the grip of the past. American Economic Review 81, 70-4.

Durlauf, S.N., 1993. Nonergodic economics growth. Review of Economic

Studies 60, 349-66.
Gale, D., 1996. Delay and cycles. Review of Economic Studies 63, 169-98.

Hamilton, J., 1989. A new approach to the economic analysis of nonstation-

ary time series and the business cycle. Econometrica 57, 357-84.

Hardy, G.H., Wright, E.M., 1979. An Introduction to the Theory of Num-

bers. Oxford University Press.

Hess, G., Iwata, S., 1997. Asymmetric persistence in GDP? A deeper look
at depth. Journal of Monetary Economics 40, 535-54.



137

Ishida, J., Yokoo, M., 2001. Payoff externalities, time-to-build and en-
dogenous business cycles. Discussion Paper No.I-41, Department of Eco-

nomics, Okayama University.

Ishida, J., Yokoo, M., 2002. Threshold nonlinearities and asymmetric en-
dogenous business cycles. Staff Paper Series 02-01, Department of Eco-

nomics, Shinshu University.

Kitagawa A., Shibata, A., 2001. Long gestation in an overlapping genera-
tions economy: endogenous cycles and indeterminacy of equilibria. Jour-

nal of Mathematical Economics 35, 99-127.

McQueen, G., Thorley, S., 1993. Asymmetric business cycle turning points.
Journal of Monetary Economics 31, 341-62.

Nagumo, J., Sato, S., 1972. On a response characteristic of a mathematical

neuron model. Kybernetik 10, 155-164.

Razzak, W.A., 2001. Business cycle asymmetries: international evidence.

Review of Economic Dynamics 4, 230-43.



138

List of Figures

Fig.1 The dynamics of the model with a steady state.
Fig.2 The dynamics of the model with a periodic cycle.
Fig.3 The global stability of a periodic cycle.

Fig.4 The range of ¢ for p(c) = 1/n and p(c) = (n — 1)/n.
Fig.5 The expansion rate.

Fig.6 The bifurcation diagram.



139

Figure 1: The dynamics of the model with a steady state
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