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Abstract

Generative Adversial Networks have shown great performance in image-to-image translation,
but usually it requires the original domain and target domain to be similar to some extent.
When it comes to real human faces to Anime faces translation, however, the existing methods’
performance can look too human-like, or like an anime that has no relationship with the
input. This is because the anime domain is very different from the human face in both
structure and texture. In this thesis, we show that with a fine-tuned generator, we can
generate an anime face corresponding to the input human face by reverse generating on
both domains, and then generating on a concatenated latent.
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Chapter 1

Introduction

With the boom of social media and virtual reality techniques, people are thinking about
how to project themselves into the digital world. We want the avatar to look like us to some
extent, but also keep its potential to be different. There have been games allowing players
to combine elements such as eyes, hair, clothes, and so on to create their own characters.
Also, apps like Tiktok are providing filters to modify users’ faces in a video to template
styles. With the promise of machine learning for image manipulation, however, we expect
the creation of our avatars in a click of a button, given reference to our photos, but with
sufficient diversity. Anime can be a good domain for an avatar’s appearance, whose facial
appearance is human-like, but much more variate in terms of proportions and colors.

The problem of generating an image in the anime domain according to an image in the
real human face domain can fall into the topic of image-to-image translation across domains.
The task is clearly defined when we have paired data in two domains. But it also brings
out the problem of finding the criteria to pair the data in two domains having no clear
relations. For unpaired training, previous studies believe that two domains have relations in
their higher level latent space.

In this thesis, we propose a simple yet effective method for image-to-image translation
based on the fine-tuned StyleGAN generator. In particular, we show that by reverse gen-
eration on a style-transferred real human photo, we partially keep the real human’s facial
appearance but generate images in the target domain. Though having no constraints to ask
for correspondence in the input and output, the front part of fine-tuned generators controls
the contours and poses of a real human, and the latter layers fine-tuned in anime control
the textures. The reverse-generated latent codes make sure that the generator is creating
images with the same higher-level latent code.
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Chapter 2

Literature Review

Existing methods of generating anime corresponding to human faces mainly consist of two
directions: style transfer and image-to-image translation. Methods that implement the first
direction reflect the input images well as style transferring mainly modifies the textures
rather than the structures. The second direction, however, allows the exaggerated anime
shapes but somehow loses the correspondence. We try to combine the advantages of both
categories.

2.1 Image Generation
Generative Adversarial Networks (GAN)[9] may be used in a variety of applications, including
image synthesis, semantic image editing, style transfer and so on. The generated face images
have been greatly improved in terms of resolution, authenticity, and diversity. A GAN
structure includes a generator and a discriminator. The task of a generator is to randomly
generate synthetic data that resembles the real images. While a discriminator’s task is to
distinguish between true and false. Ideally, a discriminator should output high scores for all
real pictures and low scores for all fake pictures.

Although people have been able to use deep learning to forge various real-life images of
good quality before, they have not been able to generate satisfactory anime images. Until
the advent of StyleGAN[12], non-realistic image generation tasks such as anime were also
attained.[2]

StyleGAN[12] implements the GAN structure for the whole pipeline but innovates the
generator compared with previous works. The generator consists of a mapping network f
and a synthesis network g. g takes the style latent w ∈W output from f and the noise n
into stacked layers of AdaIN[10] and progressively processes a random constant vector into
an image.

x
′

i = xi + ni, (2.1)

AdaIN(x
′

i,w) = ws,i
x

′
i − µ(x

′
i)

σ(x
′
i)

+ wb,i. (2.2)
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where each feature map xi is normalized separately, and then scaled and biased using the
corresponding scalar components from style w. [12]

Though the mapping network provides so-called styles, f takes no input of images during
forwarding. It is actually a Multi-layer Perceptron[7] that takes in a random vector z ∈Z
and outputs a vector w ∈W of the same shape. f is used to fit W into any distribution that
the target domain may want, not only Gaussian.

StyleGAN[12] has successfully generated images that people can not tell whether they are
fake or not. And it could be promising to make use of the structure in our anime generation.
But the problem is how to add control into StyleGAN structure to generate images that
satisfy our task, which is 1) the identification as the human image input 2) diversity as in
the anime domain.

Another model named GANs N’Roses [6] also tries to generate the mapping between the
anime domain and the human faces domain. Its effect is as the second column showed in
Figure A.1, Figure A.2, and Figure A.3. This paper’s approach is a multi-modal image-to-
image framework that uses style and content to simply formalize the mapping, in which the
most important step is to understand exactly what the content and the style are. The paper
adopts a specific definition: the content is what varies when the face image is subjected to a
series of data augmentation transformations, while the style is unchanged. Here, data aug-
mentation transformations involve scaling, rotation, cropping, etc. These allow the network
to realize that content is essentially where the face part is in the image, and the style is how
the facial appearance is rendered.

2.2 Style Transfer
The popular work of Gatys et al.[8] firstly introduces the method of style transfer, in which
they separate content and style and show their connections with perceived artistic imagery.
By convolution layers, images are represented with high-level latent code and compared with
images from different domains.

AdaIN[10] later gives out a simple yet effective approach to enable arbitrary style transfer
in real-time. In particular, it introduces Instance Normalization to normalize while keeping
the content of a single image and then inserts style with scale and bias.

StyleGAN[12] implements AdaIN on a large scale and successfully generates images of
humans who don’t exist in the world. A section inside the work named style mixing inven-
tively concatenates styles from two sources and shows that with the mixed styles, the output
has features from both image sources. The paper also claims that the style in shallower
layers tends to control large features such as poses and hairstyles. While that in deeper
layers tend to control delicate features such as eyes and skin details.

Taesung et al.[18] try to explicitly separate the style and content by switching the combi-
nation of the latent code representing them. They break the content by cropping the images
into pieces and introducing a piece-wise discriminator to maintain the style.

FreezeD[16] makes use of the idea of style mixing and extends it to the experiment when
training the model. It fine-tunes the StyleGAN[12] discriminator with the target source.
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Thus the front part of the discriminator can extract information in the FFHQ[13] domain,
and the latter part of the discriminator can extract information in the target domain. By
providing the latent code, FreezeD generates corresponding images across quite unrelated
domains such as human and eagle.

Swapping Autoencoder[17] proposes some swapping strategies for auto-encoding that can
address a range of image transformation problems, including texture swapping. It converts
the input image into latent code, which is divided into structure code and texture code and
merges into a newly generated image by exchanging these two parts. Compared with other
methods using conditional GAN, the framework proposed by this method can be obtained
with one or very small samples during the training phase. Compared with other methods
using latent codes, the code space of this method is learned rather than sampled from a
fixed distribution, which makes the method more flexible. Its effect is as the third and
fourth column showed in Figure A.1, Figure A.2, and Figure A.3.

2.3 Image to Image Translation
The pioneering work of CycleGAN[19] solves the mapping between two domains with un-
paired data and two sets of generators and discriminators in each. This model structure
projects images from two domains back and forth and uses Cycle Consistency Loss[19] to
measure the quality of generation.

TraVelGAN[5], however, points out that Cycle Consistency Loss limits the ability to map
between domains that are too different. Here they borrow the often used idea from Natural
Language Processing that the distance between the meanings of words can be computed
by the calculation between vectors. Thus TraVelGAN[5] adds a model to learn high-level
semantic representations of each image.

U-GAT-IT[14] incorporates a new attention module to pay attention to the differences
between two domains and provides a reference for the mapping generator. It also experiments
on human faces and anime faces and gets state-of-the-art performance.

FreezeG[15] shows that a generator can have a single mapping between a latent space and
images domain and fine-tunes on g in a StyleGAN[12] as Figure 2.1 shows. In FreezeG[15],
a trained g will always generate the same images if input the same latent z. In other words,
the latent space Z and output images’ space X are single mapping. Thus given any real
human images x, we can find its corresponding latent z as the reverse generation process
showed in Figure 2.2. For the process in Figure 2.2, a learnable vector z0 is input into a fixed
g and output a image x

′ . By computing the difference between x and x
′ as Equation 2.3, we

can update gradient on z0 until x and x
′ are almost the same.

L = αLperceptual(x, x
′
) + (1− α)LMSE(x, x

′
). (2.3)

where Lperceptual[11] compares high-level feature differences between images. And LMSE is
the Mean Square Error loss which compares per pixel difference between images. α decides
how much we rely on each loss. This process will be call function rg(x).

4



Figure 2.1: FreezeG[15] pretrains the generator as the left. Then fixes the front blocks and
fine-tune the final blocks on anime dataset as the right.

Input a real human face image x and we get its latent z by reverse generating z = rg(x).
Vice versa, input z into g and we get x = g(z). Moreover, by experiments FreezeG shows
that gfin(z) generate mapping images across domains that look like the human faces input,
because gfin and g share partially the same parameters.

StyleGAN[12] shows that the font blocks of the synthesis network tend to control pose,
general hairstyle, face shape, etc. Because they compute with coarse spatial resolutions.
While the final blocks are more related to smaller scale facial appearances, such as hair
streams, eyes’ status of open/close and etc, because dealing with more delicate resolutions.
This explains why the idea of FreezeG works in cartoon that has salient human features
such as Simpsons, for the fine-tuned synthesis network blocks helps modify the cartoon style
textures, while the front blocks in the synthesis network maintain the input real human
face’s outlines.

Performance for experiments on anime, however, is not as satisfying. The generated
gfin(z) seems no relation with the input image x. Possibly it is because anime varies more in
terms of proportion and size of face features. And the fine-tuned blocks are not able to edit
the outlines.

5



Figure 2.2: Reverse Generation. A learnable vector z0 is input into a fixed g and output an
image x

′ . By computing the difference between x and x
′ as Equation 2.3, we can update

gradient on z0 until x and x
′ are almost the same.

6



Chapter 3

Proposed Method

StyleGAN[12], while has been able to successfully mass-generate fake real-life human images,
as well as many other image domains, is an uncontrolled generator. In other words, we cannot
directly use StyleGAN[12] to complete the correspondence generation from the real-life faces
domain to the anime domain here, although it can generate perfect pictures in the two
domains respectively. FreezeG[15] attempts to use model grafting to establish a connection
between two domains. However, as Figure 3.2 shows, the outputs reflect no facial appearance
from the input. Because there are no constraints for any levels of features.

Based on these problems, we propose a method to generate similar anime face images for
input human face images. This method will use the structure of StyleGAN[12] to generate
and reverse generate on our source domain and target domain, which are human face images
and anime face images, respectively. We believe a mapping between different domains share
the same latent, and through reverse generation to find the latent vector. We will expound
on the method, dubbed Cross Domains Reverse Generation in Section 3.3. Before that,
generation and reverse generation based on StyleGAN[12] and FreezeG[15] will be introduced
as preliminaries.

3.1 Generation
Here generation refers to the process of generating images from a latent vector, into a specific
domain. The structure of our generator is the same as StyleGAN[12], which consists of
a synthesis network and a mapping network. The synthesis network uses a progressive
generation method, which enlarges the resolution two times in width and height per block.
Also, every block inside the generator consists of convolution layers and AdaIN[10] layers,
which will adjust the style of the resolution as the ’style’ and ’noise’ suggest. For the mapping
network, it takes in a random latent vector and outputs a latent vector in the same shape,
as a style to the synthesis network. For the reason to use the mapping network, it is because
we want to shape the style into any distribution that the target domain may want, rather
than being decided by human experience in the input.

The main difference between our work here and styleGAN is that we fine-tune the gen-
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erator of styleGAN. To generate images in the anime domain, there are two ways. First,
we prepare an anime dataset that is as large and diversified as FFHQ[13], and we train as
much time as styleGAN does. The alternative is to fine-tune the final layers of the synthesis
network in the anime domain. It turns out that it takes much less time and the number
of images input to fine-tune than train from scratch. And the result is satisfying enough.
By fine-tuning, we mean fixing blocks of the mapping network and the front blocks of the
synthesis network in a generator, and only training the final blocks of the synthesis network.
In this way, we not only generate anime images at a small cost, but also get a special gener-
ator, whose front part is trained from human face images, and the final part is trained from
anime face images. To generate an anime face that looks like a human face, we suppose
that the contour and main pose of the result are similar to the human face, and the details
and textures should fall into the anime domain. StyleGAN[12] has analyzed and confirmed
that the front parts of a generator control mainly the pose and big facial appearances of an
image, while the final parts control the details. So the fine-tuned generator provides us with
a potential tool to solve the task.

3.2 Reverse Generation
Reverse generation is literately the reverse process of generation, which is given an image
and generate its corresponding latent vector. Specifically, when given a generated human
face image from an FFHQ[13] trained generator, it must have a corresponding latent vector,
for it is needed as an input when generation. Then by fixing the generator, and initiating
a random and learnable latent vector, we can keep generating on this latent, comparing
the output image and the given image, and editing the latent, until the output image is
almost the same as the given image. For the criteria of comparison, we use a combination of
perceptual loss and mean square error loss. Notice that the output will not be exactly the
same as the given image, but without careful observation, it should not be told. Because
the reverse generation process is also a machine learning process, which has a threshold for
epochs and accuracy. Similarly, for a generated anime image from a fine-tuned generator,
we can reverse generate a latent vector for it by fixing the fine-tuned generator.

When given an image not generated, we can also use reverse generation to find its latent.
Because we are supposing that our generator is perfect enough to generate all images in the
human faces domain. So it is in the anime domain.

3.3 Cross Domain Reverse Generation
In this section, we propose the main point of this thesis. Beforehand we have mentioned
reverse generating a real human face x with a synthesis network g trained on the real human
face dataset FFHQ[13]. Similarly we can reverse generate a real human face x with a fin-
tuned synthesis network gfin, as shown in Figure 3.1, though the result must not be the
same as x, because gfin generate images in anime domain. But under the measurement of

8



combined loss of Perceptual Loss and Mean Square Error Loss, we can get the ’closest’ latent
z
′
= rgfin(x) for a real human face image in the anime face domain. The examples of reverse

generation are shown in Figure 4.10 and Figure 4.9
Perceptual loss plays a very important role in the process of cross-domain reverse genera-

tion. Compared to other loss functions, such as MSE, perceptual loss measures the difference
between averages rather than the absolute difference between each pixel. Thus the function
is often used to compare high-level differences, like content and style discrepancies, between
images. Also, this allows us to evaluate whether two images are similar, rather than whether
they are identical. It is very important in a cross-domain generation because we hope that
the generated anime characters are similar to the input real people, and we also know that
similar anime characters and real people cannot be exactly the same.

It is worth noting that we use both perceptual loss and MSE loss in the design of the
loss function, in which the latter is to control some necessary details, such as we want anime
characters to have eyes where human eyes are. To trade-off between detail consistency and
similarity, we conduct some experiments on the weighting of perceptual loss and MSE loss
and choose the best combination.

After reverse generation, we obtain the latent code and generate anime images from it.
Compared with other works, we do not impose explicit constraints on the output image and
the input image. In other words, we did not require any degree of correspondence between
images of two domains when training the generator. They are independent networks, training
with different datasets respectively. This method is out on the idea that a mapping between
two different domains should share the same latent at a higher semantic level.

Finally, we experiment with doing some edit on x for it to be more easily reverse generated
by rgfin(x). Reducing the fine-tuned layers in gfin will generate images x

′ with more bolder
contours, and closer to the style of paintings. And it turns out that reverse generation rgfin(x)
gives better anime effect.

9



Figure 3.1: Reverse Generation across domains and concatenate the latent vectors to provide
for the fine-tuned generator.

Figure 3.2: Output examples from FreezeG[15]. The first row is the input human face images.
And the second is the output, every column respectively.
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Chapter 4

Experimental Results

In this chapter, we will first show the best result. And then according to the order of image
processing, fine-tuning, reverse generation, and generation, we show the results of different
hyper parameters’ combinations.

4.1 Best results

4.1.1 Purpose
Here we recall that the input of our task is a real human face image, and the output should
be an image in the anime domain that can tell having the same identification as the input.
All the results here will be the same five people as input. For more examples please check
the appendix B from Figure B.1 to Figure B.6.

4.1.2 Procedure
We firstly have an FFHQ[13] pre-trained model g. Then we fine-tune its last final 4 blocks
with an anime dataset [1] obtained from Kaggle, which is a website organizing machine
learning related competitions. Then we get gfin4, in which 4 represents for 4 blocks fine-
tuned. By reverse generation on real human images x with g we get the latent z. And we
only use the final block of gfin4 together with all the blocks except for the last in g to form a
new generator gfin4use1. We go through z into gfin4use1 and get x′ . Finally we reverse generate
x

′ with gfin4.

4.1.3 Results
Figure 4.1 shows our best results. The first row is the input human faces images, and the
second row is the corresponding output, each column respectively.

11



Figure 4.1: The first row is the input images. And the second is the generated corresponding
images with our method in the anime domain.

4.1.4 Consideration
The poses and facial appearances are basically kept. And different inputs get output in
different styles randomly. The features of anime such as big eyes and sharp chins are drawn.
However, some details like eyeglasses are missing. From Figure B.1 to Figure B.6 in Appendix
B we can observe that for some human examples, the reverse generation does well, such as
women with long hair and big eyes. For children also. It can be explained by the majority
of long hair female and feminine characters in the dataset.

Moreover, we see that some salient colors in the input could affect the color of the whole
image in the output from Appendix B. And the contours of the anime faces’ hair are usually
not clear, which should be improved with extra constraints.

4.2 Image Processing

4.2.1 Purpose
We use an anime dataset [1] consisting of 60k+ images obtained from Kaggle. Most of them
are of sizes around 60x60. To use a dataset as input for training, we need to resize all the
images to the same size. Meanwhile, for face generation, a unified field of view is necessary,
which means that the face should be put into a similar position with a similar size in an
image.

4.2.2 Procedure
We use a super-resolution model called CARN Model[4] to do super-resolution for original
images of too small size. Compared with resizing tools from torchvision library, CARN

12



Figure 4.2: Input images of different sizes, with low resolution

Figure 4.3: The left side image is resized to 256x256 with torch vision and resampled with
LANCZOS. The right image is super resoluted with CARN Model[4].

Model [4] gets a better performance, which uses the structure of ResNet to compensate for
the missing information during progressive enlargement and is good for practical use. Then
we crop and resize all the images into a size of 256x256.

4.2.3 Results
Figure 4.2 are the samples of the original dataset, which are of different sizes and too small
to be used for training a model with 256x256 output. Figure 4.3 shows the comparison
between different methods of re-sampling.

4.3 Fine-tune

4.3.1 Purpose
Fine-tuning with a pre-trained model, we can use relatively less input and fewer computation
resources. For a pre-trained model, we use the official version [3] from Nvidia.
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4.3.2 Procedure
For the hyper-parameters, steps are 50000, batch size 8, and learning rate 0.002. The
environment is Pytorch 1.4.0. On three Tesla V100, it takes around 13 hours to fine-tune.
Here we show the results of fine-tuning with different numbers of blocks.

4.3.3 Results
As Figure 4.4,Figure 4.5,Figure 4.6,Figure 4.7,and Figure 4.8 show, fine-tuning different
number of blocks give different artifact. Too few blocks, in particular, fail to generate fine
result, because the capacity of learning is limited.

4.4 Reverse generate

4.4.1 Purpose
By reverse generation, we can get the latent vector with the shape 1x512 of an image. Within
the same domain, the reverse generation can be perfect as Figure 4.9.

4.4.2 Procedure
With a generator g trained on human face images dataset FFHQ[13], we fix the parameters
in g and input a random learnable latent z into it. We get images output as x

′
= g(z). By

comparing x
′ with x through perceptual loss and mean square error, we update the gradient

on z, until x and x
′ look almost the same. Figure 4.9 show x on the left and x

′ on the right,
with perceptual loss 0.1103 and mean square error 0.0193. Note that x

′ is for confirmation.
The output of this process is z. For training details, learning rate = 0.1, steps = 1000.

4.4.3 Results
With a generator gfin fine-tuned on an anime dataset, we also experiment with reverse gen-
erating on real human images. Here x

′
= gfin(z) looks wired as Figure 4.10 shows. It is

reasonable because an image in the anime domain cannot be the same as an image in real
human images domain, in terms of perceptual loss and mean square error. However, it is
still worthwhile because x

′ is the closest mapping for x in an anime domain.

4.5 Use a different number of fine-tuned blocks

4.5.1 Purpose
We fine-tune a generator g with its final 4 blocks to get gfin4, and experiment with generating
images with fewer blocks fine-tuned.
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4.5.2 Procedure
To be specific, there are 7 blocks in a generator’s synthesis network. Let’s dub it gfin4use4 for
using the fisrt 3 blocks from g and the final 4 blocks from gfin4. Similarly, gfin4use3 is for using
the first 4 blocks from g and the final 3 blocks from gfin4.

4.5.3 Results
As Figure 4.11 shows, the less the fine-tuned blocks are used, the more alike the output will
be to the input.

4.6 Concatenate latent to generate

4.6.1 Purpose
With a guess that parameters in g should work well with z reverse generated by g, and
parameters in fine-tuned blocks in gfin should work well with z reverse generated by gfin, we
give different blocks in gfin with different z and check the images generated.

4.6.2 Procedure
Let gfin4 be dubbed for fine-tuning g with its final 4 blocks. z1 for x being reverse generated
by g, and z2 for x being reverse generated by gfin4. We then give z1 to first 3 blocks in gfin4,
z2 to final 4 blocks in gfin4, and generate.

4.6.3 Results
As Figure 4.12 shows, this method works when the number of fine-tuned layers is enough.
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Figure 4.4: Pre-trained model’s output. Pre-trained with dataset FFHQ[13] for 55k steps,
using the other settings same as in StyleGAN[12].

16



Figure 4.5: Output from gfin1, which is g fine-tuned with its final block on anime dataset.
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Figure 4.6: Output from gfin2, which is g fine-tuned with its final two blocks on the anime
dataset.
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Figure 4.7: Output from gfin3, which is g fine-tuned with its final three blocks on the anime
dataset.
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Figure 4.8: Output from gfin4, which is g fine-tuned with its final four blocks on the anime
dataset.
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Figure 4.9: On the left is the input image. On the right is the image generated from a latent
vector, which is reverse generated with g.

Figure 4.10: On the left is the input image. On the right is the image generated from a
latent vector, which is reverse generated with gfin4.
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Figure 4.11: From left to right is the original image, the image generate on z by gfin4use1, by
gfin4use2 and gfin4use3

Figure 4.12: From left to right is the original image, concate latent for gfin4, for gfin3, and for
gfin2
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Chapter 5

Conclusion

This thesis explores a method based on forward and reverse generation to create anime
images similar to input real-life human faces images. Compared with traditional generation
methods, the method proposed in this paper does not impose direct constraints on the
generated images. Instead, it requires the image correspondence of the two domains in
latent space. This high-level constraint makes the generated images both anime-style and
similar to the input images.

In this thesis, various combinations of generation methods and hyper-parameters have
been experimented with, such as fine-tuning different layers and epochs, assigning different
weights to the loss function, and so on. The results of these experiments vary widely,
indicating that even similar methods may produce large differences in the results under the
framework of deep learning. Thus in the process of generation, it is important to keep the
consistency of implementation details to obtain the same artifact.
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Appendix A

Comparison with Other Works

In Figure A.1, Figure A.2 and Figure A.3 we compare the results of our method with other
works. From left to right, the first column is the input. The second from Guns’ N Roses[6],
the third and fourth from Swapping Autoencoder[17], and the fifth from our method.

The results are not cherry-picked. It can be seen that different methods have their
advantages. Some give good details in the anime domain such as the light in the eye and the
hair streams but lack diversity. Some are really good identifications of the input, but not in
the anime domain, for which the shape and size of facial appearance almost no changes to
the input human faces.
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Figure A.1: Comparison with other works, part I. From left to right, the first column is
the input. The second from Guns’ N Roses[6], the third and fourth from Swapping Autoen-
coder[17], and the fifth from our method.
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Figure A.2: Comparison with other works, part II. From left to right, the first column
is the input. The second from Guns’ N Roses[6], the third and fourth from Swapping
Autoencoder[17], and the fifth from our method.
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Figure A.3: Comparison with other works, part III. From left to right, the first column
is the input. The second from Guns’ N Roses[6], the third and fourth from Swapping
Autoencoder[17], and the fifth from our method.
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Appendix B

More examples

More examples of my generation are listed from Figure B.1 to Figure B.6. Every three
images in a column is a group. In the first row is the input images. Second row the images
after style transfer. The third row is our output with reverse generation.

• Environment of implementation:
python3 tensorflow-gpu==1.14.0 scipy==1.3.3
requests==2.22.0 Pillow==6.2.1 h5py==2.9.0
imageio==2.9.0 imageio-ffmpeg==0.4.2 tqdm==4.49.0
torch==1.4.0 torchvision==0.5.0 pandas numpy
pillow==6.2.1 opencv-python scikit-learn
matplotlib seaborn jupyterlab
ninja lmdb wandb.

• The code and implementation of this project can be found in github
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Figure B.1: Final examples part I. Every three images in a column is a group. In the first
row is the input images. Second row the images after style transfer. The third row is our
output with reverse generation.
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Figure B.2: Final examples part II. Every three images in a column is a group. In the first
row is the input images. Second row the images after style transfer. The third row is our
output with reverse generation.
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Figure B.3: Final examples part III. Every three images in a column is a group. In the first
row is the input images. Second row the images after style transfer. The third row is our
output with reverse generation.
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Figure B.4: Final examples part IV. Every three images in a column is a group. In the first
row is the input images. Second row the images after style transfer. The third row is our
output with reverse generation.
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Figure B.5: Final examples V. Every three images in a column is a group. In the first row
is the input images. Second row the images after style transfer. The third row is our output
with reverse generation.
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Figure B.6: Final examples VI. Every three images in a column is a group. In the first row
is the input images. Second row the images after style transfer. The third row is our output
with reverse generation.
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