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Introduction

The groups F', T, and V' were introduced by Richard Thompson in 1965, and were
first used in [18] to construct other finitely presented groups with unsolvable word
problems. Since then, these groups have appeared naturally in different branches
in mathematics, for example, in homotopy theory [12], dynamical systems [13], and
diagram groups over semi-group presentations [16]. The groups have a collection
of various exotic properties which made them counterexamples to well-known con-
jectures in the study of infinite group theory. For example, T and V are the first
known examples of infinite, finitely presented, simple groups [9], and F is the first
known example of a torsion free group of type F P, and not of type FP [7]. Some
generalizations of these groups are also known. For example, Higman generalized V'
to an infinite family of finitely presented simple groups [17], and Brown extended
this to the infinite families F,, C T,, C V,,, where n is an integer greater than or
equal to 2 (F, = F, T, = T, and V5, = V), and proved that each of the groups is
finitely presented [8].

The group F' has the following presentation:

(A, B|[AB™', A"'BA], [AB™', A2 BA?),

where [z,y] = zyx~'y~!. In fact, it is known that each of the groups F, has the
presentation with n generators and n(n — 1) relators. Although these presentations
help us understand the structures and properties of the groups, they are somewhat
complicated. Hence many different geometric descriptions of the groups have been
used. For example, tree pair diagrams [9], diagrams of Guba and Sapir [16], and
strand diagrams of Belk and Matucci [2] have been used to describe elements for
Thompson’s groups F,. One of the most useful representations is the realization
of them as particular subgroups of PLo(I), where PLo([/) is the group of piecewise
linear orientation-preserving homeomorphisms of the unit interval I = [0, 1] that are
differentiable everywhere except at finitely many real numbers, under the operation
of composition. In fact, F' can be defined as the subgroup of PLo(I) that are differ-
entiable everywhere except at finitely many dyadic rational numbers (i.e., numbers
from Z[1/2]) and such that on the intervals of differentiability the derivatives are
integer powers of 2. Many interesting properties of F' have been clarified using the
interpretation as homeomorphism groups. For example, F' is a finitely presented
torsion free group, does not contain a nonabelian free subgroup [5], and the com-
mutator subgroup of F is an infinite simple group. A comprehensive introduction



is given in [9]. The group F is also one of the most mysterious objects in group
theory. For example, one of the main questions about F' is whether it is amenable.
Incorrect proofs of amenability and non-amenability of F' appear quite often, and
the reason why all these proofs are wrong is that F'is very counter-intuitive. Other
problems about F' are also challenging, and attract many researchers.

Recently, subgroups of F' have been extensively studied. For example, finite
index subgroups of F' are described in [4], and the solvable subgroups of F are
classified in [3] by Bleak. The maximal subgroups and stabilizer subgroups of F are
investigated in [14, 15] by Golan and Sapir. However, the structures of subgroups
of F are far from well-understood, and there are many open questions.

This dissertation contributes to the study of subgroups of Thompson’s group F
(and PLo(7)). The focus of our attention will be subgroups of F which are direct
products of finitely many indecomposable groups. In fact, we provide a criterion for
any two subgroups of PLo(7) which are direct products of finitely many indecom-
posable non-commutative groups to be non-isomorphic. As its application we give a
necessary and sufficient condition for any two subgroups of the R. Thompson group
F that are stabilizers of finite sets of numbers in the interval (0, 1) to be isomorphic,
thus solving a problem by Golan and Sapir. We also show that if two stabilizers are
isomorphic, then they are conjugate inside a certain group G (see Introduction 1.1
in Chapter 1, for details).

In Chapter 2, we consider other finitely presented groups in geometric group
theory. We explicitly construct Schreier coset graphs of solvable Baumslag-Solitar
groups for stabilizers of all points in the real line under a natural action of them on
the real line. As its consequence, we classify the Schreier coset graphs up to isomor-
phism, and obtain a relevance to presentations for the stabilizers (see Introduction
2.1 in Chapter 2, for details).



Chapter 1

Groups of piecewise linear
homeomorphisms

1.1 Introduction

Let PLo(I) be the group of piecewise linear orientation-preserving homeomor-
phisms of the unit interval I = [0, 1] that are differentiable everywhere except at
finitely many real numbers, under the operation of composition. The focus of our
attention will be subgroups of PLo(I) which are direct products of finitely many
indecomposable groups.

Subgroups of PLo(I) have been extensively studied (see [3, 5, 6, 23], for exam-
ples). Among those, Thompson’s group F' is one of the most interesting objects.
Recall that it is defined as the group of piecewise linear homeomorphisms from the
closed unit interval I onto itself that are differentiable everywhere except at finitely
many dyadic rational numbers (i.e., numbers from Z[1/2]) and such that on the
intervals of differentiability the derivatives are integer powers of 2.

One of the most interesting open problems about F' is whether it is amenable. In
[21, 22|, Savchuk constructed the Schreier graph of F' with respect to the stabilizer
Hy of any finite set of real numbers U C (0,1). He proved that all the Schreier
graphs are amenable and also showed that if U consists of a single number, then Hy,
is an infinite index maximal subgroup of F. In [14], Golan and Sapir constructed
other maximal subgroups of infinite index which do not fix any real number in (0, 1).

Golan and Sapir [15] continued the study of the subgroups Hy for arbitrary finite
sets U. Let U = {o,...,a,,} C I, where a; < a;41. The type 7(U) was defined as
the word of length n in the alphabet {1,2,3} as follows: for every i, the ith letter
in 7(U) is 1 if a; is a dyadic rational, 2 if «; is rational but not a dyadic rational,
and 3 if «; is irrational. They showed that Hy is isomorphic to a certain semidirect
product, and also proved that Hy is finitely generated if and only if U does not
contain irrational numbers. Moreover, it was proved that if 7(U) = 7(V) for finite
sets U, V C (0,1), then Hy and Hy are isomorphic (p = ¢ denotes letter-by-letter
equality of words p,q). The proof was completed by realizing the subgroups as
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iterated ascending HNN-extensions. They also noticed that Hy is a direct product
where the factors correspond to subwords of 7(U). They asked [15, Subsection 4.1]
what a necessary and sufficient condition for Hy and Hy to be isomorphic is.

In Chapter 1, we will answer the above question by focusing on the fact that
the stabilizers are direct products of finitely many subgroups (see Theorem 1.1.3
below). In fact, we establish the following result about a unique expression of
a direct product of finitely many non-commutative indecomposable subgroups of
PLo(I). The symmetric group of degree n and the center of a group G are denoted
by S, and Z(G), respectively.

Theorem 1.1.1. Let Hy,...,H,, K1, ..., K,, be non-commutative, indecomposable
subgroups of PLo(I). Suppose that Z(H;) = {1} for each i and Z(K;) = {1} for
each j. Then, T]}_, H; and H;”Zl K; are isomorphic if and only if n = m, and
there exists a permutation o € S, such that H; and Ky are isomorphic for each
ie{l,...,n}.

Since for any subgroup G of PLo([) the center of the quotient group G/Z(G) is
trivial (see Proposition 1.3.4), we obtain the following:

Corollary 1.1.2. Let Hy,...,H,, K1,..., K,, be non-commutative, indecomposable
subgroups of PLo(I). If [[\2, Hi and [[;_, K are isomorphic, then n = m, and
there exists o € S, such that H;/Z(H;) and K, ;)/Z (Ko@) are isomorphic for each
ie{l,...,n}.

We will now recall some definitions about a direct decomposition in group theory.
Let G be a group. A subgroup H of G is called a direct factor of G if there exists
a subgroup K of G such that G = H x K. If there are no proper non-trivial
direct factors of G, then G is said to be indecomposable. A Remak decomposition
of a group G is a decomposition of G as a direct product of finitely many non-
trivial indecomposable subgroups. It is said that a group G satisfies the mazimal
(respectively, minimal) condition on normal subgroups if each non-empty family of
normal subgroups contains at least one maximal (respectively, minimal) element for
the inclusion. A classical result, called the Krull-Remak-Schmidt theorem, states
that if a group G satisfies both the maximal and minimal conditions on normal
subgroups, then its Remak decomposition is unique up to isomorphism of the direct
factors and a permutation of the direct factors. We refer to [20, Sec.3.3] for details.
Obviously, finite groups satisfy both maximal and minimal conditions on normal
subgroups. On the other hand, subgroups of PLo(I) do not satisfy these conditions
in general. For example, the Thompson group F’ satisfies the maximal condition on
normal subgroups, but does not satisfy the minimal condition on normal subgroups
since the lattice of normal subgroups of F' is isomorphic to the lattice of subgroups
of Z? (see, for example, [4]). Hence we cannot apply the Krull-Remak-Schmidt
theorem directly to the subgroups of PLo(I), and so establish the above result (see
Theorem 1.1.1 and Corollary 1.3.8), which is analogous to the Krull-Remak-Schmidt
theorem.



Now we return to the question about stabilizers of F. Every finite subset U
of (0,1) is subdivided into three subsets U = U; U Uy U Us, where U; consists of
numbers from Z[1/2], U, consists of rational numbers not in Z[1/2], and Uj consists
of irrational numbers. Write

Uy UUs={r,...,mn}, 1, <7Tjp
and let 1o =0, 7,1 = 1, and
U ={q € Us|rp < q <Tis1}
For any word wyws € {11,13,33} and j € {0,..., |Us|}, let Apwiws,j =
{i€{0,....n}|7({ri,riz1} UUs) = wi 27wy or 7({ri, rip1} U Usy) = we2lw: }.

By applying the result mentioned above to the case of the stabilizers of F', we obtain
the following;:

Theorem 1.1.3. Let U and V be finite sets of numbers in (0,1). Then the following
statements are equivalent.

(1) Hy and Hy are isomorphic.

(2) |Us| = |Val, and |Avuwiwsil = |Avinws,j|  for each wiwy € {11,13,33} and
each j € {0,...,|Usl}.

We note that if 7(U) = 7(V), then the statement (2) holds. The implication
from (2) to (1) is shown essentially in [15](see Lemma 1.4.3 below). The converse
of this implication is the essential part of our theorem.

We also establish a result about conjugacy of the stabilizers. Golan and Sapir [15]
defined F as a group which consists of possibly infinite tree-diagrams with finitely
many infinite branches, and described that the standard embedding F' — Homeo(/)
extends to an embedding F — Homeo(!). In addition, they proved that if 7(U) =
7(V'), then Hy and Hy are conjugate in the group F. We will introduce a group
G into which F can be naturally embedded, and prove that Hy and Hy (indeed,
their images in G) are conjugate in the group G whenever they are isomorphic (see
Theorem 1.5.8).

1.2 Notation, Terminology, and commutativity in
PLo(TI)

Recall that PLo(7) is the group of piecewise linear orientation-preserving homeo-
morphisms of the unit interval I that are differentiable everywhere except at finitely
many real numbers, under the operation of composition. We basically follow the
notation and terminology used in [5, 6]. Composition and evaluation of functions in
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PLo(7) will be in word order. Namely, for any two elements f, g in PLo(/) and any
tel, tf = f(t) and fg = go f. Here, we will describe a geometric condition under
which two elements of PLo(/) commute, and a geometric condition under which
subgroups of PLo(/) are commutative.

The support of an element f in PLo([I) is the subset supp(f) = {x € I'|xf # z}.
We can easily see that supp(f) is a finite union of disjoint open intervals. Each of
these open intervals will be called an orbital of f. If A is an orbital for f, then
either xf > x for all points z in A or xf < x for all points x in A. We note that if
f € PLo(I) and A is an orbital of f such that xf < x for some (and therefore all)
r € A, then f~! has zf~! > x for all x € A.

Let [f,g9] = fgf 'g~'. The following is a known fact [24, Lemma 2.1], but we
give the proof for the convenience of the reader.

Lemma 1.2.1. Let f, g € PLo(I) where [f,g] = 1. If A is an orbital of f, then
either AN supp(g) =0 or A is also an orbital of g.

Proof. Suppose that ANsupp(g) # 0. Then there exists an orbital B of g such that
ANB # (). Let A = (a,c) and B = (b,d). Without loss of generality, we can assume
that b < a < d < c. Since [f,g] = 1, it follows that [f, "] = 1 for each n € Z. Since
af = a, it follows that ag" = afg"™ = ag™f for each n € Z. Suppose that zg > x
for all points x in B. Since the sequence (ag") converges to d as n increases, by
continuity of f, we see df = d. Thus d = c. Suppose that xg < x for all points x in
B. Then we see that xg~! > x for all z € B. Replacing g in the argument described
above with ¢g~!, we see that d = c.

We take an element e in the open interval (max{a,ag™'},c(= d)). Suppose
that yf < y for all points y in A. Since [f",g] = 1 for each n € Z, it follows
that (ef™)g = egf™ for each n € Z. Since the sequence (ef™) converges to a as n
increases, and by ¢ > eg > a the sequence (egf™) also converges to a, it follows that
ag = a. Thus b = a. Suppose that yf > y for all points y in A. Then we see that
yf~! <y for all y € A. Replacing f in the argument described above with f=!, we
see b = a. Therefore we conclude A = B. O

Let f € PLo(I) and A be an open interval of (0,1) whose two endpoints are
fixed by f. Then define f4 as follows:

fo= xf if x €A,
AT if ©¢ A

Clearly, fa € PLo(I). If A is an orbital of f, then f, is called the bump of f with
supporting interval A. Then, A is also an orbital of f4.
Let f4 be the bump of an element f with supporting interval A and

C(fa) = {ga € PLo(I)| [fa,g] = 1}.

Brin and Squier proved in [6, Theorem 4.18] that C(f,) is the infinite cyclic subgroup
of PLo(I) generated by all roots of f4.



Lemma 1.2.2. Let f,g € PLo(I). Then [f,g] =1 if and only if

(1) supp(f) Nsupp(g) =0, or
(2) There exists an integer k > 1 such that

k

supp(f) Nsupp(g) = |_| C;,

i=1

where C; are common orbitals of both f and g, and for any i there exists
h; € PLo(I) with exactly one orbital C; such that fc,, 9o, € (h;).

Proof. Suppose that [f,g] = 1 and supp(f) Nsupp(g) # 0. It suffices to prove (2).
By Lemma 1.2.1, we see that

k
supp(f) Nsupp(g) = |_| C;,

i=1

where C; are common orbitals of both f and g. Since [fc,, g¢,] = 1, by [6, Theorem
4.18], there exists h; € PLo(I) with exactly one orbital C; such that fe,, gc, € (hi),
which proves (2). The converse implication is immediate, so the details are left to
the reader. O

Let G be a subgroup of PLo(I). The support of G is the set

supp(G) = | supp(g).

gelG

Since supp(G) is an open subset of (0,1), it can be written as a disjoint union of a
countable (possibly finite) collection of open intervals in (0, 1). Each of these open
intervals will be called an orbital of G. We note that the complement set of supp(G)
in I is the set of points fixed by all elements in G.

Definition 1.2.3. Let G < PLo(I). An orbital N of G is called a commutative
orbital of G if for any g € GG, the element gy has the open interval N as an orbital
or gy = 1 in PLo(I). An orbital of G which is not a commutative orbital is called
a non-commutative orbital of G.

For any set S C R we denote by 05 the boundary of S with respect to the
standard topology of R.

Lemma 1.2.4. A subgroup G of PLo(I) is a non-commutative group if and only if
G has a non-commutative orbital.



Proof. Suppose that G has a non-commutative orbital N. Then, by definition, there
exists g € G such that gy does not have N as an orbital and gy # 1. Thus, there
exists an orbital A of gy such that A C N. Take a point x € AN N. Since N
is an orbital of GG, there exist h € GG and an orbital B of h such that x € B C N.
Then, AN B # () and A # B. By Lemma 1.2.2, we see that [g, h] # 1. Thus, G is a
non-commutative group.

Suppose that G is a non-commutative group. Since there exist ¢ and h in G
such that [g, h] # 1, supp(g) Nsupp(h) # 0. By Lemma 1.2.2, (i) there exists a pair
(A, B) of orbitals, where A is an orbital of g and B is an orbital of h, such that
ANB # () and A # B, or (ii) there exists a common orbital C' of both g and h
such that for any r € PLo(I) with exactly one orbital C, go ¢ (r) or he ¢ (r). If
the statement (i) holds, then there exists an orbital N of G such that AU B C N.
Hence, the orbital N is a non-commutative orbital of G.

If the statement (ii) holds, then the non-trivial commutator [gc, he|(€ PLo([))
has slope 1 near each end of C. Thus, there exists an orbital D of [g¢, hc| such that
D C C. Since [g,h] € G and [g, hlc = [g9c, hel, [g, h| has D as an orbital. Since there
exists an orbital NV of G such that D C C' C N, the orbital N is a non-commutative
orbital of G. O

The following is a known fact [3]. Nevertheless, we give the proof for the conve-
nience of the reader.

Proposition 1.2.5. Let G be a commutative subgroup of PLo(I). Then G is a free
abelian group of finite rank or a free abelian group of countably infinite rank.

Proof. Suppose that G is a commutative subgroup of PLo([). By Lemma 1.2.4, all
orbitals of G are commutative. Let supp(G) be the disjoint union of the collection
{N;} of the orbitals of G. Since N; is commutative for each i, there exists f; € G
such that f; has N; as an orbital. Then, since any element g in G commutes with
fi for each 1, it follows that

g€GY<Cfin)(22Z)

{gNi

for each i. Let 7; be a generator of C (fin,) for each i. If the collection {V;} is finite,
then for any g € G we can write g = gn, -+ - gn,. Thus, we see g € (ry,...,r,).
Hence, G is a subgroup of the free abelian group (ry,...,r,) of rank n, so G is a
free abelian group of a rank less than or equal to n.

If the collection {N;} is countable, then for any element g € G there exist
elements sy, ..., s in {r;} such that g € (sq,...,sg) since g has finitely many break
points. Thus, G is a subgroup of the free abelian group ({r;}) of countably infinite
rank. Since GG has infinitely many orbitals, G is also a free abelian group of countably
infinite rank. O

By Proposition 1.2.5, any commutative subgroup of PLo([) is isomorphic to a
subgroup of the direct sum €p,_, Z of copies of integers. where €, , Z is the direct
sum of copies of integers.
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1.3 Decompositions of subgroups of PLo(])

In this section, we will prove that any group which is a direct product of finitely
many non-commutative, indecomposable subgroups of PLo(/) has a unique decom-
position (Theorem 1.3.7).

Let G and H be subgroups of PLo(I). We first consider a necessary and sufficient
condition for any ¢ € G and h € H to commute by extending the argument of
orbitals of elements described in the previous section to that of orbitals of groups.

For a subgroup G of PLo(I) the complement set of supp(G) is denoted by Fix(G).
Note that

Fix(G) = [ Fix(g),

where the set of points fixed by g € G is denoted by Fix(g).

Lemma 1.3.1. Let G and H be subgroups of PLo(I) such that [g,h] = 1 for each
g € G and each h € H. Then the following statements hold.

(1) If N is an orbital of G, then ON C Fix((G, H)).

(2) If N is a non-commutative orbital of G, then hyy = 1 for allh € H. If N is
a commutative orbital of G, then for any h € H the element hy has N as an
orbital or hy = 1.

Proof. Suppose that N is an orbital of G. It suffices to prove that ON C Fix(H).
Let z € ON and h € H. Without loss of generality, we may assume that x is the
larger one of the two elements in ON. Then, there exists a sequence (y,) in N which
converges to x. Since N is an orbital of GG, for each n there exist ¢, € G and an
orbital A, C N of g, such that y, € A,(C supp(g,)). Let z, be an element of
0A, N (yn, z]. Since z,g, = z, and [h, g, = 1, by Lemma 1.2.1, we see z,h = z,.
Since the sequence (z,) converges to z, it follows that zh = z, which proves (1).

Suppose that N is a non-commutative orbital of G. Let € N. Since N is an
orbital of G, there exist g € G and an orbital A C N of g such that z € A. Now, we
claim that there exist ¢ € G and an orbital B of ¢’ such that ANB # (), A # B,
and AU B C N. Indeed, if A # N, then let y € AN N. Since N is an orbital
of G, there exist ¢’ € G and an orbital B of ¢’ such that y ¢ B C N. If A= N,
then 0AN N = (). Since N is non-commutative, by Lemmas 1.2.2 and 1.2.4, there
exists ¢” € G such that [gn, g}/] # 1. From the latter part in the proof of Lemma
1.2.4, there exists an orbital B of an element ¢’ such that AN B # (), A # B and
AU B C N (recall that we can take ¢’ as either ¢” or [g, ¢"]).

Let h € H. Since [g,h] = 1 and [¢/,h] = 1, by Lemma 1.2.1, we see that
0AU OB C Fix(h). Hence ah = a for all a € AU B. In particular, xh = z, thus
hy = 1.

Suppose that N is commutative. Let g € G such that gy has N as an orbital,
and h € H. Since [h,g] = 1, it follows that [hy,gn| = 1. By Lemma 1.2.1, hy has
N as an orbital or hy = 1, which proves (2). O
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The next lemma will be used in Subsection 1.4.2.

Lemma 1.3.2. Let G and H be subgroups of PLo(I). Then [g,h] = 1 for each
g € G and each h € H if and only if

(1) supp(G) Nsupp(H) =0, or

(2) There exists a collection {C;} of common commutative orbitals of both G and
H such that

supp(G) Nsupp(H) = |_| Cs,

and for any i there exists r; € PLo(I) with exactly one orbital C; such that
go,, he, € (r;) for each g € G and each h € H.

Proof. Suppose that [g,h] = 1 for each ¢ € G and each h € H, and supp(G) N
supp(H) # ). Tt suffices to prove (2). Suppose that C' is an orbital of G and there
exists © € C such that xh # z for some h € H. By Lemma 1.3.1, C' is a commutative
orbital of G and he has C' as an orbital. Then, since for any h € H he has C as
an orbital or hg = 1, C is also a commutative orbital of H. Thus, there exists a
collection {C;} of common commutative orbitals of both G and H, and we can write

supp(G) Nsupp(H) = | |

Fix ¢ and let f be an element of G which has C; as an orbital. Since [f, h] = 1 for
each h € H, it follows that
The,|h € H} < C(fe,) = Z.

Hence, the group {h¢, | h € H} is infinite cyclic. In a similar way, the group {g¢, | g €
G'} is also infinite cyclic. Thus, we see that

<{gCi |g € G} U {hCz |h S H}> < 5<sz>a

SO
({gc. 19 € GYU{he,|h € H})
is also infinite cyclic. Let r; be a generator of the group, then we complete the

statement (2). The converse implication is easy to prove, so the details are left to
the reader. Il

Next, we set up the terminology needed to prove Proposition 1.3.4.

Let {A, B} be a set of two non-empty open subintervals of R. We call {A, B} a
chain of intervals if AN B is a proper subinterval of A and of B. We call {A, B}
a nest of intervals if A is a proper subinterval of B, or if B is a proper subinterval
of A. In particular, we call {A, B} a proper nest of intervals if {A, B} is a nest of
intervals and 0ANIB = ().

We call {A, B} a chain of orbitals if {A, B} is a chain of intervals such that A
is an orbital of an element of PLo(I) and B is an orbital of another element. In an
entirely analogous way a nest of orbitals and a proper nest of orbitals are defined.
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Lemma 1.3.3. Let g, h € PLo(I) and [g,h] # 1. If for any orbital A of g and any
orbital B of h such that AN B # (0 and [ga, hp] # 1, the set {A, B} is a proper nest
of orbitals of g and h, then [g,|g,h]] # 1 or [h,|g, h]] # 1. Otherwise, [g,[g,h]] # 1
and [h,[g,h]] # 1.

Proof. Let g and h be elements in PLo(I) and [g,h] # 1. Let A be the set of all
orbitals of g and B be the set of all orbitals of h. Suppose that for any orbital A of
g and any orbital B of h such that AN B # () and [ga, hg| # 1, {A, B} is a proper
nest of orbitals of ¢ and h. Now since [g,h| # 1, there exist A € A and B € B
such that AN B # () and [ga, hg] # 1, and by assumption, {A, B} is a proper nest
of orbitals of g and h. Without loss of generality, we may assume that A = (a,c),
{Bi,...,B,} C Band B; C A for all i. Then, there exists ¢ > 0 such that [g, h] has
slope 1 on [a,a + €] U [c — €,¢]. By Lemma 1.2.2, [g,h]4 # 1, and then, by Lemma
1.2.1, we see [g,[g, h]] # 1.

Suppose that there exist A € A and B € B such that ANB # () and [ga, hp| # 1,
and {A, B} is not a proper nest of orbitals. Then there are three cases: (i) A = B,
(ii) {A, B} is a nest of orbitals with exactly one common endpoint, and (iii) {4, B}
is a chain of orbitals.

(i) Let A= B = (a,c). Since [g,h]a # 1 and there exists € > 0 such that [g, h]
has slope 1 on [a,a+ €] U[c—¢, ¢, by Lemma 1.2.1, it follows that [g, [g, h]] # 1 and
[h, g, h]] # 1.

(ii) Without loss of generality we may assume that A = (a,c), B = (a,d), and
a < d < c. Then there exists € > 0 such that [g, k| has slope 1 on [a, a + €|. Suppose
that xg > x for each x € A. Since dh = d and dg—! € B, it follows that

dg'lg,h) = dg 'ghg 'h™" #dg~".

Hence, [g,h] # 1 on B. Suppose that zg < x for each x € A. Since dg € B,
dgh # dg. Thus, d|g, h] # d. Hence, [g,h] # 1 on B. In both cases, [g, h] has neither
A nor B as orbitals. By Lemma 1.2.1, we see that [g, [g, h]] # 1 and [h, [g, h]] # 1.

(iii) We may assume that A is the leftmost orbital of ¢ such that there exists an
orbital C' of h such that {A, C'} is a chain of orbitals. In addition, we may assume
that B is the leftmost orbital of h such that {A, B} is a chain of orbitals. Without
loss of generality, we may assume that A = (a,¢), B = (b,d),and b<a <d <ec. If
yh >y for all y € B, then a < ah < dh = d, thus ahg™! # ah. Hence

alg,h] = aghg 'h ' = ahg'h™' # a

and, by Lemma 1.2.1, [g, [g, h]] # 1. Now, if there exists an orbital A’ of g on the
left of A such that A’ N B # (), then by the above assumption, {A’, B} is a nest
of orbitals. Thus, bg = b. Since there exists ¢ > 0 such that [g, h] has slope 1 on
[b,b+ €], and alg, h] # a, by Lemma 1.2.1, it follows that [h, [g, h]] # 1.

If yh <y for all y € B, then yh™! > y for all y € B. Thus alg, h~] # a. Since
ah™tg™' # ah™', we see ah™[g,h] # ah™'. Since a < ah™ < dh™! = d, it follows
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that [g,h] # 1 on B. By an argument similar to the above, we see [h,[g, h]] # 1.
Now, assume by contradiction that [g, [g, h]] = 1. Since ah™'[g, h] # ah™!, it follows
that [g,h] # 1 on A. Since g has A as an orbital, by Lemma 1.2.1, the commutator
[g,h] also has A as an orbital. Then, hg=*h~! fixes both a and c¢. Since g4 and
lg, h]4 commute, by Lemma 1.2.2, there exist u € PLo(I) and m,n € Z such that
ga =u™, [g,h]4 = u". Since [g,h]a = ga(hg~'h™')4, it follows that

"M = (hg_lh_l)A.

Since hg 'h~! fixes ah™! and a < ah™! < d, we must have n = m. Then,
(hg7'h ") 4 = 1. On the other hand, since h™'(A) = (ah™',ch™!) is an orbital
of hg7*h™ and h™'(A) N A # 0, we see (hg 'h™')4 # 1, a contradiction. O

The center of a group G is the subset
Z(G)={2€G|zg =gz forall g € G}.
We note that Z(G) is a normal subgroup of G.
Proposition 1.3.4. Let G be a subgroup of PLo(I). Then Z(G/Z(G)) = {1}.

Proof. We may assume that G is non-commutative. Let ¢Z(G) € Z(G/Z(G)) and
h be any element of G. Since ¢Z(G)hZ(G) = hZ(G)gZ(G), it follows that [g,h] €
Z(G). Thus, [z,[g,h]] = 1 for all x € G. By Lemma 1.3.3, we have [¢g,h] = 1.
Hence, g € Z(G), which implies Z(G/Z(G)) = {1}. O

Lemma 1.3.5. Let G, H < PLo(I). Suppose that H is non-commutative and
lg,h] =1 for each g € G and each h € H. Then supp(G) C supp((G, H)).

Proof. Since H is non-commutative, by Lemma 1.2.4, H has a non-commutative
orbital N. Since [g,h] = 1 for each g € G and each h € H, by Lemma 1.3.1, it
follows that N Nsupp(G) = 0 and N C supp((G, H)). O

Recall that a subgroup H of a group G is called a direct factor of G if there
exists a subgroup K of G such that G = H x K. If there are no proper non-trivial
direct factors of G, then G is said to be indecomposable.

Theorem 1.3.6. Let Hy,...,H,, K1,..., K,, be non-commutative, indecomposable
subgroups of PLo(I). Suppose that Z(H;) = {1} for each i and Z(K;) = {1} for
each j. Then, []'_, H; and H;nzl K; are isomorphic if and only if n = m, and
there exists a permutation o € S, such that H; and Ky ;) are isomorphic for each
ie{l,...,n}.

Proof. Let H < PLo(I). Then we know supp(H) C (0,1). First we claim that for
any a,b € I there exists a group H such that supp(H) C (a,b) and H = H. Let
f:(0,1) — (a,b) be an orientation-preserving piecewise linear homeomorphism that
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is differentiable everywhere except at finitely many real numbers. Then for h € H
we define h by

~ Jaf'hf if x € (a,b),
wh_{x if x¢(a,b),

and set H = {h|h € H}. It is easy to check that supp(H) C (a,b) and H = H.
Suppose that [[}_, H; and [[i-, K are isomorphic. By the above, we can assume
that the direct factors of [[;_, H; have disjoint supports, that is, if ¢ # j then

supp(H;) Nsupp(H;) = 0. Similarly, we can assume this for the direct factors of
H;nzl Kj. Let

be an isomorphism. Since

<¢(H1>’ s 7¢(Hn>> = <K17 sy Km>’
it follows that

U supp(¢ U supp(K

First we prove that for any i € {1,... ,n}, supp(¢(H;)) can be written as a
disjoint union of finitely many elements of the set

{supp(K;)|je{1,...,m}}.

Fix k € {1,...,n} and let Ji be the set of all j € {1,...,m} such that ¢(Hj) has
an orbital of K as an orbital. Then it suffices to prove that

supp(¢ = | supp(K
JE€Jk

Let N be an orbital of ¢(Hy). Since

U supp(¢(H;)) = U supp (K

there exists [ € {1,...,m} such that N is contained in some orbital M of K. Since
by Lemma 1.3.1 (1), the endpoints of N are fixed by

(O(H1), - ¢(Hn)) = (K1, o Kom),

it follows that N = M. That is, ¢(Hy) has the orbital M of K as an orbital. Thus
l € Jy and N C supp(K;). Hence we have

supp(¢(Hy)) C | supp(K;).

Jj€Jk
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Now we prove that

supp(¢(Hyg)) D U supp(K;).

Assume by contradiction that there exist [ € J, and an orbital L of K; such that
L ¢ supp(¢(Hy)). Then since by Lemma 1.3.1 (1), the endpoints of any orbital of
¢(Hy) are fixed by

(O(H1), - ¢(Hn)) = (K1, o Kom),

we see that L Nsupp(¢(Hy)) = 0. Since L C supp(K;), there exists p € K; such
that supp(p) N L # (. Then there exist s € Hj, and

te (Hy,. .., Hy1, Hyp, ... H,)
such that p = ¢(s)¢(t), supp(¢(t)) N L # 0. Let
G1 = {m(¢(h))[h € Hy}

and
G2 = {Wl(qb(h)) | h e <H1, - 7Hk:—1aHk+1a .. .,Hn>},

where 7, : [[72, K; — K| is the projection. Then G; < K; for 4 € {1,2}. In addition,
the following statements hold. (i) G; # {1} for each i € {1,2}. (ii) K; = (G1, Go).

(i) Since | € Ji, ¢(Hy) has an orbital O of K; as an orbital. Thus, there exists
u € Hy such that supp(¢(u)) N O # 0. Let ¢(u) = ky - - - kyy, where k; € K. Since
supp(K;) Nsupp(K;) = 0 for each j # [, it follows that m(¢p(u)) = k; # 1. Thus
G1 # {1}. On the other hand, we can write t =t - - - t,,, where t; € H;, i # k. Since
supp(o(t)) N L # 0, there exists ¢ # k such that m(¢(¢;)) # 1. Thus Gy # {1}.

(ii) Let ¢ € K;. There exist h; € H;, 1 < i < n such that ¢ = ¢(hy)--- ¢(hy).
Then for each i there exist ¢; € K; and

r; € <K1, A ,Kl_l, Kl—i—la .. ,Km>

such that ¢(h;) = ¢;r;. Then

q = H(M’i = (HC]@)(HH)

Since K; N (Ky,...,K—1, Ki41,..., Ky) = {1}, it follows that ¢ = [[_, ¢ and
[I;_, 7 = 1. Then,

q= HQZ' = HWZ(¢(hi)) € (G, Go).

Moreover, it is easy to check that [g1, g2] = 1 for each g; € G; and each gs € G,
and Gy NGy C Z(K);) = {1}. Hence K; = G x G5, a contradiction,
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Fix k € {1,...,n}, again. Let § be a bijection from {1,...,n} to itself such that
d(1) = k. For each j € {1,...,n}, we have

<.

supp(p(Hs)), - - - ¢(Hs(j))) U supp(¢(Hsi)))

= U |J supp(K))

i=1 ZGJ(;(Z)

o)

ey Jsgi

Let a; = \ngl Js@y|. Since for any ¢ € {1,...,n}, ¢(Hsu) is non-commutative,
by Lemma 1.3.5, it follows that a;4; > a; + 1 for each 7 € {1,...,n}. Then,
aj—a; > j—1foreach j € {1,...,n}. Since a; > 1, it follows that a; > j for each
j € {1,...,n}. Hence m > n. By considering the inverse ¢!, we obtain n > m.
Thus n = m. Then a; = j. Since a; = 1, there exists [ € {1,...,m = n} such that
supp(¢(Hy)) = supp(K;). Let h € Hy. Then there exist ¢ € K; and

(K, K1, Kty K

such that ¢(h) = ¢r. Since supp(¢(h)) C supp(¢(Hy)) = supp(K;), it follows that
r = 1. Thus ¢(h) = q € K;. Hence ¢(Hy) C K;. By considering ¢!, we see
that there exists j € {1,...,n} such that ¢~!(K;) C H;. Since Hy C ¢ '(K)) C H;,
j = k. Therefore ¢(Hy) = K. Since ¢ is bijective, we complete the proof of Theorem
1.3.6. O

Let G =[]}, H; be the direct product of groups Hj, ..., H,. Then we note that

Z(G) =11;-, Z(H;). It is still not known whether there eX1sts a non-commutative,

indecomposable subgroup of PLo(I) whose center is non-trivial. However, by Propo-
sition 1.3.4 and Theorem 1.3.6, we obtain the following:

Corollary 1.3.7. Let Hy, ..., H,, K1, ..., K,, be non-commutative, indecomposable
subgroups of PLo(I). If [[\_, H; and [[j_, K are isomorphic, then n = m, and
there exists o € S, such that H;/Z(H;) and K,;)/Z (Ko@) are isomorphic for each

ie{l,...,n}.

Recall that a Remak decomposition of a group G is a decomposition of G as a
direct product of finitely many non-trivial indecomposable subgroups. We note that
any commutative subgroup of PLo([]) is isomorphic to a subgroup of the direct sum
P,c; Z of copies of integers. The infinite cyclic group is indecomposable, and every
free abelian group of countably infinite rank is decomposable. If a subgroup G of
PLo(I) has a Remak decomposition, then G may have the form

G=H/x---x H,x7
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up to order of the direct factors, where H; are non-commutative and indecomposable,
and Z7? is the free abelian group of rank p as a direct product of the indecomposable
group Z.

The following corollary helps us understand whether certain subgroups of PLo(7)
described in the following section are non-isomorphic.

Corollary 1.3.8. Let G < PLo(I). Suppose that G has the following Remak de-

compositions
m

G=(]a) xz" =] K)) x z*,
i=1 j=1
where H; and K; are non-commutative, Z(H;) = {1} for each i, and Z(K;) = {1}
for each j. Then, p = q, n=m, and there exists o € S, such that H; and K, are
isomorphic for each i € {1,...,n}.

1.4 Subgroups of F' which have direct decompo-
sitions

1.4.1 Some facts about F'

Recall that the group F is a subgroup of PLo(/) and it is defined as the group
of piecewise linear homeomorphisms from the closed unit interval I onto itself that
are differentiable everywhere except at finitely many dyadic rational numbers (i.e.,
numbers from Z[1/2]) and such that on the intervals of differentiability the deriva-
tives are integer powers of 2. As examples of subgroups of F' which have direct
decompositions, other than the stabilizers of F' to be described in the next subsec-
tion, the centralizers of F' are known. The centralizer of every element in F' is a
direct product of finitely many cyclic groups and groups isomorphic to F' [16, p. 97].
We note that any subgroup of F' which has a direct product decomposition of two
non-trivial subgroups is an infinite index subgroup of F.

It is known [9] that the commutator subgroup [F), F| is simple, and that [F, F]
is the subgroup of all functions with slope 1 both at 0 and 1.

1.4.2 Isomorphism between stabilizers of finite sets

We say that f € F' has closure of support in an interval J if the closure in I of
supp(f) is contained in J. Let F); be the set of all functions from F' with closure
of support in J. Then F; is a subgroup of F'. We note that Fg ) is exactly the
group [F, F|. It is known [15, Lemma 3.1] that for any a,b € I with a < b, F44) is
isomorphic to Flg ).

For any finite subset X of (0, 1), let Hyx be the stabilizer of X in F. That is,

Hx ={f € F|xzf =z for each z € X}.
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Any finite subset Y of I is subdivided into three subsets:
Yi= Y NZ1/2, Y, = Y N (Q\Z[1/2]), and Y; = ¥ N (R\ Q).
Let Y ={ry,...,rn} C I, where r; < rjy; and r1,7r, ¢ Ys. Let
By = Flryr) N Hy\ {ry 70}

The following proposition generalizes [15, Theorem 3.2] slightly in that r; and r,
are any numbers in Y; U Y3. Since it can be proved by an argument similar to the
proof of that theorem, the details are left to the reader.

Proposition 1.4.1. The group By is isomorphic to a semidirect product
By = [F, F]" ! x 72\ {r1ra D1l Yal+{rrn b
Corollary 1.4.2. Let U = {oy,...,a,} C I, where oj < aji1 and aq, o, ¢ Us, and

V =A{B1,...,Bm} C I, where B; < Bjy1 and 1, Bm ¢ Va. If the subgroups By and
By are isomorphic, then n = m and

21U\ {ar, anphi| + |Uz] + {aw, anhi| = 2/(V A A{By, B bl + [Val + [{Br, B b

Proof. The commutator subgroup of By is isomorphic to the direct product of n—1
copies of the simple group [F, F]. Thus, it has 2"~! normal subgroups. Since it
cannot be isomorphic to a direct power of a different number of simple groups, we
have n = m. Since

BU/[Fv F]n_l = BV/[Fv F]m_lﬁ
we see that

721(U\{e1,an )1 [+ Uz [+ {ananh| o Zm(v\{ﬁlyﬂm})l|+|V2|+|{61,5m}1"

which implies

2/(U N\ {ar, anthil + U2] + aw, anhi| = 2/(V A {5, B bl + [Val + [{Br, B}
[l

Let U ={o,...,a,} C I with a; < aj41. The type 7(U) is the word of length
n in the alphabet {1,2,3} as follows: for every i, the ith letter in 7(U) is 1 if o is a
dyadic rational, 2 if «; is rational but not a dyadic rational, and 3 if «; is irrational.
We will use the following lemma.

Lemma 1.4.3 ( [15]). Let U = {ou,...,a,} C I, where a; < a1 and aq, o, ¢ Us,
and V ={p1,...,Bm} C I, where p; < Bj11 and By, Bm ¢ Va. Suppose that T7(U) =
(V) or the word T(U) is equal to (V') read backwards. Then the groups By and
By are isomorphic.
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By Lemma 1.4.3 we will use the notation B,, for the group By if w = 7(U).
Let U be a finite subset of (0,1). Write Uy UUs = {ry,...,r,}, where r; < 7,41,
|Uy UUs| =n. Let 1o =0, 41 = 1, and

Us ={q € Us|rp < q<rgs1} for each k € {0,...,n}.
Then

U2 - |_| U27]€.
k=0
Recall (see [15, subsection 4.2] for details), that

Hy = Biroriyutng X = X Bl v }uUsn -
For any word wyws € {11,13,33} and j € {0,..., |Us|}, let Apwiws,j =
{ie{0,....,n}|7({ri, 11} UUsi) = wi2wq or 7({ry, 111} U Usy) = wo2lw }.
Then we have |Ayyw,,;| > 0, and

|U2|

|_| AU,wlw%j = {0, . ,n}. (E)

J=0 wiw2€{11,13,33}

By Lemma 1.4.3 and the above notation, we can see that

HU = H \(Bw12fw2 X X BW12jw2)'

>
0<j<|Us|wiwa €{11,13,33} AU s |
»WLW2,7

Remark 1.4.4. Let U and V be finite sets of numbers in I such that 7(U) = u127us
and 7(V') = v12%vy, where uyug, v1vy € {11,13,33}. If the groups By, 91y, and By, k.,
are 1somorphic, then by Corollary 1.4.2, 7 =k and uyuy = v1vs.

In order to prove that the factors of Hy are indecomposable, we need a new
definition and a lemma. We give them for subgroups of PLo(/) and then apply
them to the factors of Hy.

Definition 1.4.5. Let G be a subgroup of PLo(I), and M; and M, be orbitals of
G. Let e; € OM; and ey € OM,. We say that {ej,es} is a set of linked endpoints
of My and M, if for any g € G, the following statement holds: g has some orbital
contained in M; sharing the end e; if and only if ¢ also has some orbital contained
in M, sharing the end e;. In particular, we say that e is a linked endpoint of M,
and My if e; = ey = e.

Lemma 1.4.6. Let G and H be subgroups of PLo(I). Suppose that [g,h] = 1 for
each g € G and each h € H. Let My and My be disjoint orbitals of (G, H), My and
M, have a set {e1,es} of linked endpoints for (G, H), and supp(G) D M;. Suppose
also that there exists v € (G, H) such that r has an orbital which shares the end e,
and is properly contained in My. Then supp(G) D My U M.
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Proof. Since M, C supp(G), there exists an orbital IV of G such that M; C N. Since
oM, C Fix((G, H)), it follows that M; = N. Thus M; is an orbital of G. Then
M; Nsupp(H) = (. Indeed, assume by contradiction that M; Nsupp(H) # (. Then
by Lemma 1.3.1, M; is an orbital of H. Thus M is an orbital of both G and H.
Since r € (G, H), there exist s € G and t € H such that r = st. By Lemma 1.3.2,
M is a common commutative orbital of both G and H, a contradiction. Hence
M; Nsupp(H) = (). Since r = st, where s € G, t € H, and supp(t) N M; = 0, s
has an orbital which shares the end e; and is properly contained in M;. Then since
{e1,e2} is a set of linked endpoints, s has an orbital contained in M, sharing the
end ey. Hence supp(G) N My # (). Thus, My is an orbital of G, which completes the
proof. O

Proposition 1.4.7. Let Y = {ry,...,r,} C I, where r1,1, ¢ Q\ Z[1/2], r; < 141
and ro, ... ,rn—1 € Q\ Z[1/2]. Then By is indecomposable, and Z(By) = {1}.

Proof. Assume by contradiction that there exist non-trivial subgroups K and L of
By such that By = K x L. Since K # {1}, there exist k € K and i € {1,...,n—1}
such that supp(k) N (14, 7i+1) # 0. Since

n—1
supp(K) U supp(L) = supp(By) = | J (rj,7j+1)
j=1
and [f,g] = 1 for each f € K and each g € L, by Lemma 1.3.1, K must have the
interval (r;,7;41) as an orbital. We notice that since rq,...,r,_1 € Q\ Z[1/2], all
elements of By are differentiable at those numbers. Thus for each j € {1,...,n —

1}, rj is a linked endpoint of (r;_1,7;) and (rj,r;11). By applying Lemma 1.4.6
repeatedly for K and L, we can see that

n—1

supp(K) = (J (1. 711)

j=1
(we can clearly take an element r as in Lemma 1.4.6. Use both [9, Lemma 4.2] and

the argument in the proof of [22, Proposition 4.1(b)], for example). Similarly, we
see that

n—1

supp(L) = | J (rj, ).

j=1
By Lemma 1.3.2, for any j the interval (r;,r;11) is a common commutative orbital
of both K and L. Hence (rj,7,4+1) is a commutative orbital of (K, L) = By for each
je{l,...,n—1}. By Lemma 1.2.4, By is commutative, a contradiction.

Let g € Z(By)(< By). Since for each j € {1,...,n — 1}, (r;,7j41) is a non-
commutative orbital of By, by Lemma 1.3.1 (2),

9irjrjen) = 1 foreach j € {1,...,n —1}.
Then g = 1. Thus we see that Z(By) = {1}. O
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Theorem 1.4.8. Let U and V' be finite sets of numbers in (0,1). Then the following
statements are equivalent.

(1) Hy and Hy are isomorphic.
(2) |Us| = |Val, and |Avuwiws il = |Avnwsj| for each wiwy € {11,13,33} and
each j € {0,...,|Us|}.
Proof. Suppose that the statement (2) holds. Then
HU = H SBw12jw2 XKoo X Bw12jw2) = HV-

J/
0<j<|Uz|=|V2|,w1w2€{11,13,33}

~-
‘AU7w1w2,j ‘:‘AV,w1w27j|

Suppose that the statement (1) holds. Let
Uy WUz ={ay,...,an}, aj <ajpr, ViUVa={B1,...,Bn}, B < Bj1,

g = 60 = 0, and Opy1 = ﬁm—l—l =1. Set

Ci = B{ai7ai+l}UU2,i and Dj = B{ﬁjvﬁj-ﬂ}uvlj’

where
Uz ={qe U]y <q< a1} and V2,j:{qev2|ﬁj <Q<5j+1}-

Then we see that

Hy =[] Ci and Hy = ][ D;.
i=0 j=0

Let ¢ : Hy — Hy be an isomorphism. By Proposition 1.4.7; all direct factors of Hy;
and Hy are indecomposable, and the center of each factor is trivial. By Theorem
1.3.6,

7’LZ|U1UU3| = |‘/1UVE))| =1m,
and there exists o € 5,41 such that ¢(C;) = D, for each i € {0,...,n}. Then by
Remark 1.4.4, |Us| = |V3|, and

T({v, g1} U Us;) = 7({Boi)s Botiy41} U Varo(a)

or the word 7({c;, a1} UUs;) is equal to 7({fs(:), Bo(i)+1 1Y Vo)) read backwards.
Thus, for any word wywy € {11,13,33} and any j € {0,...,|Us| = |Va|},

i € Aywrwy,; if and only if (i) € Ay ws,j-

Therefore the permutation o satisfies 0(Avuiws,j) = Aviws,; for each wjw, €
{11,13,33} and each j € {0,...,|Us|}, which completes the proof. ]

It is known [6] that the centralizer in PLo(I) of every element of PLo([/) is a
direct product of finitely many cyclic groups and groups isomorphic to PLo(7). Let
C be the family of all centralizers in F' of elements of F', all centralizers in PLo([)
of elements of PLo([), and all stabilizers of finite sets of numbers in F. Note
that PLo(/) is uncountable, indecomposable and centerless. By proposition 1.4.7,
Remark 1.4.4, Theorem 1.4.8, and Corollary 1.3.8, we can easily see whether any
two subgroups in C are non-isomorphic.
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1.5 Conjugacy of stabilizers of finite sets

Let Aut(/) be the group of all bijections from [ = [0, 1] onto itself.

Definition 1.5.1. Let S be the subset of Aut(/) defined as follows. A bijection f
lies in S if there exists a finite set {ry,...,r,} of real numbers such that for any
neighborhood U; of r; for each 7,

(1) f is a piecewise linear homeomorphism on I\ (J, U;),

(2) f is differentiable on I\ (|J;_, U;) everywhere except at finitely many dyadic
rational numbers (and boundaries of U; for each i), and

(3) on the intervals of differentiability, absolute values of the derivatives are integer
powers of 2.

Lemma 1.5.2. The set S is a group under the operation of composition.

Proof. Let f; and f; be elements of S. Let X and Y be finite sets of real numbers in [
for f; and fy, respectively, and XU f; (Y) = {21,..., 2z, }. Let N; be a neighborhood
of z; for each i. Set

L= |J N

Jje{klzeX}

Then f; is a piecewise linear homeomorphism from I\ L onto I\ fi(L) that has
properties (2) and (3). Set

M = U f1(NG).

Then f5 is a piecewise linear homeomorphism from I\ M onto I\ fo(M) that has
properties (2) and (3). That properties (1) and (2) are preserved under composi-
tion and inversion is standard, and property (3) is preserved under composition and
inversion from the chain rule. Hence the bijection f; fy is a piecewise linear homeo-
morphism from I\ |Jj_; N; onto I \ fo(M) that has properties (2) and (3). Hence
fifo € S. We can also check that f;' € S. The identity map from I onto itself is
also the identity element in S. m

Let Homeo(I) be the group of all homeomorphisms from the closed unit interval
I onto itself, under the operation of composition. Let F be the subset of Homeo([)
defined as follows: an element f of Homeo(/) lies in F if there exists a finite set
{r1,...,rp} of real numbers that satisfies the condition that r; € Z[1/2] if and only
if f(r;) € Z[1/2] and such that for any neighborhood U; of r; for each 4, there exists
g € F such that

n

xf = xg for alleI\(UUi).

=1

Then we can check that F is a group.
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Remark 1.5.3. The group F is the image in Homeo(I) of some group, which was
defined in [15] and consists of possibly infinite tree-diagrams with finitely many in-
finite branches, under an embedding.

Let N be the set of all elements in S that are equal to the identity mapping
everywhere except at finitely many real numbers. Then it is easy to check that N
is a normal subgroup of S.

Definition 1.5.4. Define a group G to be the quotient group S/N.

Let p be the quotient map from S to G. Since F' C F C S and all elements in
F are continuous, p induces a natural embedding of F into G.

To prove the later theorem about conjugacy, we need to choose functions which
map certain intervals or numbers in /. In doing so, we apply the following Lemmas
1.5.5 and 1.5.6. Lemma 1.5.5 follows directly from the proof of [9, Lemma 4.2].

Lemma 1.5.5. Let aq, aw, 51, and By be dyadic rational numbers in I, where aqp < am
and B1 < Ba. Then there exists a piecewise linear homeomorphism

f i loa, ag] — [B, Ba]

with o; f = B; that is differentiable everywhere except at finitely many dyadic rational
numbers and such that on the intervals of differentiability the derivatives are integer
powers of 2. In addition, there exists a piecewise linear homeomorphism

g : [on, o] = [B1, Ba]

with ang = P, ang = P that is differentiable everywhere except at finitely many
dyadic rational numbers and such that on the intervals of differentiability, signs of
values of the derivatives are all negative and absolute values of the derivatives are
integer powers of 2.

The next lemma follows immediately from the proof of [15, Lemma 3.1].

Lemma 1.5.6. Let oy, an, 31, and By be real numbers in I, where ay < ag and 31 <
Ba. Let (a1, as) # (0,1), and (B, f2) # (0,1). Then there exists a homeomorphism

f i lon, as] = [By, Ba]

with o; f = B; such that for any neighborhoods Uy, Us of a1 and aw, respectively, f
has properties (1) and (2) in definition 1.5.1, and on the intervals of differentiability
the derivatives are integer powers of 2. In addition, there exists a homeomorphism

f oo, ag] = [B, Ba]

with a1 f = Ba, asf = B1 such that for any neighborhoods Uy, Uy of oy and aso,
respectively, f has properties (1)—=(3) in definition 1.5.1, and on the intervals of
differentiability signs of values of the derivatives are all negative.
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Let o and ap be real numbers in I, where a; < ay. We define the type 7{a1, as}
as the word of length 2 in the alphabet {1,1} as follows: for every i, the ith letter
in 7{ay, as} is 1 if ; is a dyadic rational, 1 if a; is not a dyadic rational.

The next lemma also follows essentially from the proof of [15, Lemma 3.1].

Lemma 1.5.7. Let oy, an, B1, and By be real numbers in I, where aq < ag and B <

Ba. Let (a1, ) # (0,1), and (B1, 52) # (0,1). Suppose that T{ay, a0} = 7{S1, 52}
or the word T{ay,as} is equal to T{B1, B2} Tead backwards. Then there exists an
element f of S such that f maps (o, as) onto (B, B2) homeomorphically, and the

groups p(Fla, ,as)) and p(Fig, g,)) are conjugate by p(f) in G.

The following shows that the isomorphism between Hy and Hy (provided that
the statement (2) in Theorem 1.4.8 holds) is induced by conjugacy in G. Note that
we complete the proof without using Lemma 1.4.3.

Theorem 1.5.8. Let U and V' be two finite sets of numbers in (0,1). Suppose that
the statement (2) in Theorem 1.4.8 holds. Then p(Hy) and p(Hy) are conjugate in

g.

Proof. Suppose that the statement (2) in Theorem 1.4.8 holds, where U and V' are
two finite sets of numbers in (0,1). Then by the two equations of type (E) (in
Subsection 1.4.2) for U and V, respectively, we obtain |U; U Us| = |V} U V3|, and
there exists o € 5,11 such that

i € Nyawyun,; if and only if (7)) € Ay w,,j

for each wywy € {11,13,33} and for each j € {0,...,|Us] = |Va|}, where n =
|U1 U U3| = “/1 U ‘/3| Let

Uy UUs ={ay,...,an}, o < iy, ViU Ve ={b1,..., 0} 55 < Bj+1,
ap=Po =0, and a1 = Bry1 = 1. Set
Ci = Blaaipipuvs,; and Dy = Byg, g, 13013 55
where
Uzi ={q € Uz]a; <q <o}t and Vo; ={q € V2|55 <q <}
Then we have Hy =[], C; and Hy = H?:o D;. Note that for each i,
T({ai, @ip1} UUz:) = 7({Boi)y Botiyr1} U Varo(iy)
or the word 7({c;, a1} UUs) is equal to 7({fo(:), Bo(i)+1 1Y Vae(iy) read backwards.

Set I; = (a4, a;v1) and J; = (B;, Biv1) for each ¢ € {0,...,n}. By Lemma 1.5.7, for
each 7 there exists f; of § such that f; maps I; onto .J,(;) homeomorphically. Then
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define f : I — I as follows. The function f coincides with f; on I; for each 7, and
a; f = B; for each i. Then f lies in §. By Lemma 1.5.7,

n n

p(H) " p(Hu)p(f) = p(H) " p(J ] Cop(f) = T[] p(F) ' p(Co)p(f:)
=0 =0
= Hp(B{ﬁa(i),ﬁa(i)+1}Ufi(U2,i))
=0
= p(H{ﬁi}lgignUf(Uz)>

in G. Then we see that 7(V) = 7({B;}1<i<n U f(Uz2)). Since F is embedded into
G, by [15, Theorem 7.7, p(Hy) and p(Hyg,},.,.uf(vs)) are conjugate in G. Hence,
p(Hy) and p(Hy) are conjugate in G. ]
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Chapter 2

Geometric description of Schreier
graphs of Baumslag-Solitar groups

2.1 Introduction

Let m and n be non-zero integers. The group which has the presentation
(A,B| AB™ = B"A)

is called the Baumslag-Solitar group and denoted by BS(m,n). In 1962, Baumslag
and Solitar [1] introduced these groups and showed that BS(3,2) is a non-Hopfian
group with one defining relation. It is the first example having such property.
Since then these groups have served as a proving ground for many new ideas in
combinatorial and geometric group theory (see [10, 11] for examples).

Schreier coset graphs are generalizations of the Cayley graph of a group G, which
are constructed for each choice of a subgroup of G and a generating set of G. The
detail is given in Section 2.2. In general, given a group G and its subgroup H, it
is difficult to construct the Cayley graph of GG or the Schreier coset graph of all
left cosets of H in G. However once we have the appropriate Cayley or Schreier
graphs, we can use them as discrete models and may learn, from combinatorial
and geometric viewpoints, some properties of the original group or its subgroups.
Recently, in [22, 21|, Savchuk constructed Schreier graphs of Thompson’s group F
from a motivation to study the amenability of the group.

In Chapter 2 we focus on the solvable group BS(1,n) for n > 2. It is known
that BS(1,n) is isomorphic to some subgroup G,, with the generator S,, of the affine
group Aff(R) of the real line R, thus it has the natural action on R (see Section
2.2 for details). For any x € R, we explicitly construct the Schreier coset graph
(BS(1,n)/Stabgsan (z), {A, B}*) for the stabilizer Stabpgg(1n)(x) of z under the
action. First, we show that for any x € R, the Schreier graphs (Orbg, (), S,, z) and
(BS(1,n)/Stabgsan (z), {A, B}*, Stabps, ()) are isomorphic as marked labelled
directed graphs, where Orbg, () is the orbit of 2 under the natural action on R (see
Proposition 2.2.3 below). Hence, in most of this paper we consider the Schreier
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graph (Orbg, (z),S,). Let Z¥ be the set of all infinite words over the finite group
Zy. The following theorem allows us to understand the structure of the Schreier
graphs.

Theorem 2.1.1. Let n > 2 and x be a real number represented by w € Z¥. Then,
there exists a homomorphism h = (f,1,~) : (Orbg, (x),S,) — Ty such that for
every v € Vi, the subgraph h='(v) = (D, D, x {b}*, S,,,al, B|,1|) is isomorphic to
I'z, where h=Y(v) = (f~1(v), ¥ (v), Sn, af, B, 1]).

See Definition 2.3.10 below for I',, and I';. As its consequence, we classify the
Schreier graphs up to isomorphism.

Theorem 2.1.2. Let m,n > 2 with m # n.

(1) For any x,y € R, the Schreier graph (Orbg,, (), Sy) is not isomorphic to the
Schreier graph (Orbg, (y), Sn) as labelled directed graphs.

(2) Forany oy, ay € R\Q, the Schreier graph (Orbg, (a1), Sn, a1) s Sy -isomorphic
to the Schreier graph (Orbg, (aa), Sy, ) as marked labelled directed graphs.

(3) For any q € Q and any a € R\ Q, the Schreier graph (Orbg, (q), Sn) is not
isomorphic to the Schreier graph (Orbg, («), S,) as labelled directed graphs.

(4) Let q1, g2 € Q. Then, the following statements are equivalent.

(a) The Schreier graph (Orbg, (q1), Sy) is isomorphic to the Schreier graph
(Orbg, (g2), Sp) as labelled directed graphs.

(b) OrbGn (ql) = OrbGn (q2) or OrbGn(_ql) = OrbGn <q2)

This result leads to a relevance to presentations for the stabilizers which turn
out to be infinite index subgroups in BS(1,n)(Theorem 2.5.5). Thus we expect that
this idea may give a way to investigate infinite index subgroups in a suitable group.

In Section 2.2, we set up notation and terminology concerning Schreier graphs
and Baumslag-Solitar groups. In Section 2.3, we start to construct Schreier graphs
and give a complete description of Schreier graphs of BS(1,n) with respect to any
real numbers. In Section 2.4, we classify them up to isomorphism. In Section 2.5,
by using the Schreier graphs we determine the group structure of the stabilizers and
obtain a relevance to presentations for the stabilizers of rational numbers.

2.2 Schreier graphs and Baumslag-Solitar groups

A labelled directed graph denoted by (V, E, L, a, 3,1) consists of a nonempty set
V' of vertices, a set E of edges, a set L of labels and three mappings o : £ — V,

f:E—V and [ : E — L. The vertices a(e) and ((e) are called the initial and the
terminal vertices of the edge e, respectively.
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A marked labelled directed graph denoted by (V, E, L,«, 3,1,vp) is a labelled di-
rected graph with a distinguished vertex v, called the marked vertex.

For i € {1,2} let I'; = (V;, E;, Li, oy, i, 1;) be a labelled directed graph. Let
fVi—=>Vo,v: Ey — E,UV, and v : L1 — Ly be maps satisfying the following
statements:

(1) It ¢(e) € By, then ay(¥(e)) = flan(e)), fa((e)) = f(Bi(e)), and la(¢(e)) =
’7([1(6 ) c LQ.

)
(2) It y(e) € V3, then (e) = flaa(e)) = f(Br(e)).

The triple (f,%,~) of maps is called the homomorphism from T'; to I'y. Labelled
directed graphs I'; and I'y are isomorphic if there exists a homomorphism ( f,,7) :
'y = Ty, called an isomorphism, such that both f and ~ are bijections and 9 is a
injection with ¢(E;) = Es. In particular, if Ly = Ly = L and v = 1z, I'; is said to
be L-isomorphic to I's.

For i € {1,2} let I'; be a marked labelled directed graph. I'y is said to be iso-
morphic to I'y if 'y is isomorphic to I'y as labelled directed graphs and the mapping
between vertices preserves the marked vertices.

Let S be a generating set of a group G. The generating set S is symmetric if
S =51

Let G be a group with a symmetric finite generating set S, M be a set and
¢ : G — Aut(M) be a homomorphism, where Aut(M) is the set of all bijections of
M onto itself. The orbit of an element m of M is the set

Orbg(m) = {v(g)(m)|g € G}.

The stabilizer of an element m of M is the subgroup

Staba(m) = {g € G| p(g)(m) =m}.

Definition 2.2.1. Let G be a group with a symmetric finite generating set S, M
be a set and ¢ : G — Aut(M) be a homomorphism. The Schreier graph denoted by
(M, S, ) is a labelled directed graph (M, M x S, S, a, (3, [) such that a(m, s) = m,
l(m,s) = s, and B(m,s) = ¢(s)(m). The Schreier graph with a marked vertex
denoted by (M, S, ¢, mg) is a Schreier graph with a marked vertex mgy € M.

Let G be a group with a symmetric finite generating set S, H be a subgroup of
G and G/H be the set of all left cosets of H in G. The Schreier coset graph denoted
by (G/H,S) is a Schreier graph (G/H, S, py) where oy : G — Aut(G/H) is the
usual left action on G/H.

The composition of maps is from right to left.

Remark 2.2.2. Fori € {1,2} let G; be a group with a symmetric finite generateing
set S;. The Schreier graph (M, S1,¢1) is isomorphic to (Ms, Sa, ps) as labelled
directed graphs if and only if there exist bijections f : My — My and v : S1 — So
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such that ©1(s) = fYpa(v(s))f for all s € Sy. In particular, if S; = Sy = S,
(M, S, p1) is S-isomorphic to (M, S, ps) as labelled directed graphs if and only if
there exists a bijection f : My — My such that @1(s) = f~loo(s)f for all s € S.

The next proposition will help us to describe Schreier graphs explicitly in the
later sections.

Proposition 2.2.3. Let G be a group with a symmetric finite generating set S, M
be a set, o € M, and ¢ : G — Aut(M) be a homomorphism. Then the Schreier
graph (Orbg(xg), S, ¢, xo) with the marked vertex xy is S-isomorphic to the Schreier
coset graph (G/H,S, H) with the marked vertex H = Stabg(xo) as marked labelled

directed graphs.

Proof. Define f : G/H — Orbg(zo) by f(gH) = ¢(g)(xg). Since g7'¢' € H =
Stabg () implies p(g)(zo) = ©(g9')(xg), its map is well-defined. Clearly f is a
bijection. Since

flou(s)(gH)) = f(sgH) = v(s9)(w0) = w(5)0(g)(z0) = @(s)(f(gH)),

we have pg(s) = f~tp(s)f for all s € S, which is the desired conclusion by Remark
2.2.2. ]

Let m and n be nonzero integers. The group with the presentation
(A,B| AB™ = B"A)

is called the Baumslag-Solitar group and it is denoted by BS(m,n). For any n > 2,
BS(1,n) has a geometric representation. That is, we define two affine maps a and b
of the real line R by a(x) = nx and b(x) = x+1 respectively. Let n > 2, S,, = {a,b}*
and G,, = (S,) be the subgroup of the affine group Aff(R). Then there exists the
isomorphism

hn,: BS(1,n) — G,
with h,(A) = a and h,,(B) = b (see [4, p.100]). Thus, BS(1,n) has the natural left

action

on: BS(1,n) —» G, — Aff(R) — Aut(R).
By [4, p.102], we note that

() Gn={9:R—=R|g(x)=n'z+j/n" i,jkecZ}

2.3 Schreier graphs of all real numbers

Let x € R and
¢z : Gy, — Aut(Orbg,, (7))
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be the usual left action. By the isomorphism A, and Proposition 2.2.3, the Schreier
graph (Orbg, (%), Sy, ¢z, x) and the Schreier coset graph

(BS(1,n)/Stabps(im(x), {A, B}i, Stabps(1,n) (7))

with the marked vertexes are isomorphic, so we will consider the Schreier graph
(Orbg, (x), Sp, @) for each z € R. For simplicity of notation, we write g and
(Orbg, (x), S,) instead of ¢,(g) and the Schreier graph (Orbg, (x), Sy, ¢.), respec-
tively.

Remark 2.3.1. For any © € R and any f € Stabg,(x) with f # 1g, bfb~ ¢
Stabg, (z). Thus Stabg, (x) is not a normal subgroup of G,,.

We notice that the Schreier graph (Orbg, («), S,,) for a € R\ Q is S,-isomorphic
to the Cayley graph of BS(1,n) relative to the generators {A, B}* by the above
since the stabilizer Stabpg(n)() is trivial. However in this section we construct
the Schreier graphs (Orbg, (q), S,) for rational numbers ¢ and will compare those
descriptions in the later section (see Theorem 2.4.4). Therefore we employ the
Schreier graph (Orbg, («), S,). We construct the Schreier graph (Orbg, («), S,) by
an arrangement of elements in the orbit Orbg, (). The construction of the Cayley
graph of BS(1,n) = G,, given in [19] depends on the fact that the word problem for
BS(1,n) is solvable.

Let Z, = {0,1,...,n — 1} be the finite group with the additive group structure.
The set of all finite words over Z,, and the set of all infinite words over Z,, are
denoted by Z; and Zy respectively. Let

Zn = Z; \ {e},

where € denotes the empty word. For every word w = wyws ... wy, in Z;, the length
of w, denoted by |w|, is the number k. Note that || is zero.

Definition 2.3.2. An element w of Z¥ is called a rational element in Z¢ if there
exist u € Z; and v € Z,, such that

(1) w=wuv™,
(2) v # t* whenever k > 2 and t € Z,, and
(3) Uy 7 vy Whenever u # e.

Then, we say that the pair (u,v) of words satisfies (A). An element w of Z% which
is not rational is called an irrational element in Zy. Let x € R. Then, there exists
w € Z¢ such that
r—|x] = Zwi/ni,
i>1

where |z] = max{k € Z|k < x}. We say that x is represented by w € Z%. 1t is
easy to see that x is a rational number if and only if it is represented by a rational
element in Z¥.
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Lemma 2.3.3. Let x,2' € Z! and y be an irrational element of Z2 with xy = 2'y.
Then x = 2.

Proof. Without loss of generality, we can assume that |z| < |z/|. By assumption,

Yo' |~ ||+ = Yj

for each 7 > 1. Since y is an irrational element in Z¥, |2/| = |z|. Therefore,
r=2x O

Lemma 2.3.4. Suppose that pairs (x,y) and (2',y') of words satisfy (A). Then

!, /100

xy®>® = 2"y if and only if t = 2’ and y = v/'.

Proof. Suppose that xy*> = x'y/*°. It suffices to show that = 2’ and y = ¢/. First
we show that |z| = |2/|. On the contrary, suppose that |z| < |2’|. For any k > 1,
there exists a unique k € {1,...,|y|} such that Kk = k£ mod |y|. Then

) = (@Y = (@) ) = U0 = Yl ||z
On the other hand,

Y1 = @YV 1u/e) = @Y )11l 1/e) = Gzl ol l/9) = Yie'|—lals

where g = ged(|y/|, ly]). Since ' # €, by the assumption of z’, we see Tl F Ylyps 2
contradiction. Thus |z| = |2/|. Hence we have that x = 2’ and y> = y'*.

Next we show that |y| = |¢/|. On the contrary, suppose that |y| < |¢'|. There
exist @ € Z and 8 > 0 such that |¢'|a + |y|f = ¢g. For any i > 1

100
) i

/oo)‘

(Y"™)irg = Wity latlvs = G ivpyls = G ivps = )i = (y

Since 3> has the period g, ¢’ has the period g < |y| < |¢/|. This contradicts the
assumption of ¢/. Since |y| = |¢/|, we conclude y = y/. O

Lemma 2.3.5. Let x,y € Z/n Suppose that x), =y, and the word y satis-
fies the condition (2) in Definition 2.3.2. Then xy™ = y> if and only if |x| =
0Omod |y| and x = yl=l/Wl,

Proof. Suppose that zy> = y*. It suffices to show that |z| = Omod |y| and z =

ylel/ll Let m > 0 and 1 < r < |y| such that |z| = |y|/m + 7. Then for any i > 1
(Y°) o]+i+o]
(yoo)z—i—\xl
= (
= (

(?Joo)i-i-r = (zyoo)lx\ﬂ#r = (xyoo)lzlﬂ'JrrJrly\m

Y™ )iz
Y= )i
Thus > has the period 7 and (y1...yp)> = ¥ = (y1...%,)>°. Since (¢,y) and

(€,91...y,) satisfy (A), by Lemma 2.3.4, we have |y| = r. Therefore |z| =0 mod |y|.
Moreover, since (zy>); = (y>); for all 1 <14 < |z|, we have x = yl=l/l¥v], O
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Let 0 : Z¥ — Z¢ be the sift map defined by o(wjwows . ..) = wewswy ... Write
o1 = go---0 for each k > 1, where 0¥ is the identity map. We note that
k—1
o (w); = wy_14; for any k,i > 1 and each w € Z¥.

Lemma 2.3.6. Let (x,y) be a pair of words satisfying (A). Then for |x| < j < j,
o9 (xy®) = o7 (zy™) if and only if 7' — j =0 mod |y|.

Proof. For any k > 1, there exists a unique & € {1,...,|y|} such that k = k
mod |y|. Then

U](Z'yoo> = O'Ji‘xl<yoo) = (yj—|z\+1 e y]’—|:n|) O,j’f|z|(yoo)’ and
o (xy™) = o 1 (y).

Thus o7 (xy™) = o/ (xy™) if and only if (yj—jej 41 - - Yyr—pz)) 07 (y>) = 07 7 FI(y).
By Lemma?2.3.5,

(yj—\xH—l .. 'yj/—\x|) O.j’—|w‘(y00) — O-j’—|$|(yoo)

if and only if 7/ —j =0 mod |y|. O
For any v € Z¢ and any t € Z,, set
D,=Z+Y v/n' CR, and Dy =nZ+t+» v;/n' CR.
i>1 i>1

Note that '
0<> wv/n'<land D,=| |DL.

i>1 teX

Lemma 2.3.7. Let y and y' be irrational elements in Z<. Then, the following
statements are equivalent.

(1) D,N Dy #0.
(2) 2121 yz/nl = 2121 yi/nl

B)y=y.
Proof. 1t suffices to show that (2) implies (3). On the contrary, suppose that there
exists @ > 1 such that y; # yl. Let i = min{i | y; # y.}. Then,

Vie/n + D wi/n' =yl o+ > g/l
12>70+1 i>i0+1

Without loss of generality, we can assume that y;, < y; . Since y and y' are irrational
elements,

1/n" < y; /0 = y;, /0 + Z yi/n' = Z yi/n' < 1/n',

1>0+1 i>i0+1

a contradiction. O
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Lemma 2.3.8. Let (x,y) and (2',y") be pairs of words satisfying (A) such that
min{|y|, |y |} > 2 whenever y # y'. Then, the following statements are equivalent.

(1) Dyyoe N Dyrye 7 0.
2) Zizl (wy™)i/n' = ZiZl (z'y'>); /n’
(3) xy™ = a'y".

Proof. Suppose that Y., (zy™)i/n" = 3.5, (¢'y">)i/n’. Tt suffices to prove that
zy™ = 2'y'*. On the contrary, suppose that there exists i > 1 such that (zy>); #
(2'y'*°);. Let ig = min{i | (zy*>°); # (2'y'*);}. Then

(xyw)io/nio+ Z (:Eyoo)i/ni ( 1, 100 ZO/nm_i_ Z 2 /oo

i>i0+1 i>i9+1

Without loss of generality, we can assume that (zy>);, < (2'y'*);,.

If min{|yl|, ||} > 2, orif y =4 € {1,...,n — 2}, then we have

1/n' < (2'y/ )iy /0" = (xy™)io/m + Y (@'y>)i/n' = D (xy™)i/n’ < 1/n",

1>10+1 1>i0+1

a contradiction.
If y=19y =0, then iy < |2/|. Then

1/ni0 < ( /y/oo)m/nio . (my zo/nlo + Z / /oo i _ Z ($yoo)i/ni < 1/ni0,

1>i0+1 1>10+1

a contradiction.
If y=9y"=n—1, then ig < |z|. Then

e e R e LR S (2 e N S T WIS V)

i>i0+1 1>10+1

a contradiction. Therefore zy™ = x'y/*. O

The proof of the following lemma is immediate, so the details are left to the
reader.

Lemma 2.3.9. Letv € Z¢ and t € Z,,. Then,

(a) a(D,) = Df;l(y) aY(Dl) = Dy, o (D,) = Uiez, Deos

(b) V(DY) = D, and b*Y(D,) = D,,.

34



Definition 2.3.10. Let w € Z¥. Set
Vi = {uc?(w)|j > 0,ue€Z}, E,=V,x ({a}UZ,),
and L,, = {a}*. Define a,, : B, = Vi, Buw : By — Vi and 1, : E,, — Ly, by
ay(v,a) = (v, k) = v, Bu(v,a) = o), Bu(v, k) = kv,

lo(v,a) = a and I, (v, k) = a™*

for each v € V,, and each k € Z,,. The labelled directed graph (V,,, Ew, Ly, Qw, Bw, lw)
and the Schreier graph (Z, {£1}, ¢) will be denoted by I',, and I'z respectively, where
¢ : Z — Aut(Z) is the usual action.

Lemma 2.3.11. (1) If w is an irrational element in Z, then

Vo=| [{o?()}u | | {uw}u | | {sto? (w)}.

j>1 u€eZy, J2>1,8€LY A€ L tFwW;

(2) If w =wv*™ is a rational element in Z% as in Definition 2.3.2, then

Vo= || {w)}u | ] {sto? (w)}.

Jul|<j<|u|+]|v| |u|<j<|ul+|v|,sE€Z}, tELn tFw;

Proof. By Lemmas 2.3.4 and 2.3.6, we can easily show (2). Thus we prove (1). Let
J,3' > 1, w,v €Z;, and t,t' € Z, with t # w; and t' # w; . It suffices to show the
following statements:

(a) j = j" whenever ¢/ (w) = o7 (w).
u = u' whenever uw = u'w.
u=1/, t=1*,and j = j' whenever uto’(w) = u't'c’ (w).

(0)

(c) us

(d) o9 (w) # uw.
:

The statements (b) and (d) directly follow from Lemma 2.3.3.
Suppose that uto’ (w) = u't'c? (w) and j < j'. Since o/ (w) = wjy; ... wyo? (w),
by Lemma 2.3.3, we have
UtU)j+1 oWy = u’t’.

Since t' # wj/, we see j = j', thus u = v’ and ¢t = ¢/, which proves (c¢). Similarly, we
can show (a).
If j > 4/, by Lemma 2.3.3,

ut' o7’ (w) = ut'wjrys .. wio? (w) # o (w).
Suppose that j < j’ and o/ (w) = ut'e? (w). Since o/ (w) = wjy1 ... wyo! (w),

Wity ... wypo? (w) = ut'o? (w).
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Hence by Lemma 2.3.3 wjy ... wj; = ut’. Thus wy = t', a contradiction, and (e) is
proved.
Since w; # t, uw; ... w; # u't. By Lemma 2.3.3,

uw = uw . .. wjo? (w) # u'te’ (w),
which proves (f). [
Lemma 2.3.12. Let n > 2 and x € R represented by w € Z¥. Then,

Orbg,, (x) = |_| D,.

Thus it suffices to show that

vEVy
Since
r €D, C U D.,
VeV
by Lemma 2.3.9,
Orbe,(z) ¢ |J | 9(Du) = | D
ge€Gn VEV,, vEVy

Let 7 > 0 and uw € Z;. It suffices to show that
Dua-] C OrbG ( )

We have
Dyoiw) = Z + Z (uo? (w

i>1
Jul

_Z—l—Zul/n + Z wy /! I

1>j+1

Jul

—Z—l—Zu/n + pd Zwl/n —Zwl/n

>1

|ul

= Z (Y Z w4z~ |2)))

_ {bka7|u|b(zli‘ln\u\—iuifzzzlnj_iwi)ajb*hﬂ (z) | k € Z} C Orbg, ().
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Theorem 2.3.13. Let n > 2 and x be a real number represented by w € Z%. Then,
there exists a homomorphism

= <f777/}77) : (OI‘bGn(fL’),Sn) — I-‘w

such that for every v € Vi, the subgraph h=*(v) = (D, D, x {b}*, S, al, B|,1|) is
isomorphic to Tz, where h™'(v) = (f~1(v), v~ (v), Sn, @, B, 1]).

Proof. Tt suffices to find a homomorphism h = (f,v,~) : (Orbg, (x), S,) — Ty, such
that for every v € V,,, the subgraph h~!(v) is isomorphic to I'z. By Lemmas 2.3.11
and 2.3.12, for any y € Orbg, (z), there exists a unique v, € V,, and k € Z,, such
that y € Dﬁy C D,,. Thus, we can define

f : Orbg, (x) = Vi, ¢ : Orbg,(z) X S, = E, UV, and v: S, — Ly,

by f(y) = vy, ¥(y.a) = (f(y),a), ¥(y,a™") = (f( ) k), ¥(y,b) = f(y), ¥(y,07")
fy), v(a) =a, v(a™) =a™t, v(b) = a, and y(b™!) = a1

o

2.4 Classification of Schreier graphs
In this section we classify Schreier graphs described in the previous section.
Lemma 2.4.1. Let v € ZL Fori1>1 set
W, =b"")iq and Z; = b ig

Then, for every k > 1, Wy --- Wy and Zy --- Z1 are nontrivial affine maps with the
slopes n* such that

(Wi W)Y (@)/n) = S (®)ess/n’ and

(Zu Z0)(= 3] /) = = (W

Proof. The proof is by induction on k. The affine map W; has the slope n such that

Wi _(w);/n?) = b= a (Y (v%);/n?) = b= ()1 + D (v%); /)

i>1 i>1 i>2

= (0)1gy/0.

J=1
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Assume the formula holds for £ — 1, we have
(WieWea - Wh) (Y (0™);/n7) = Wi(D_(0™)k-145/n7)
j=1 Jj>1

— ™k (Z(Uoo)k—l—i-j/nj)

Jj=1

= 0 (W) + Y (0 /0

Jj=2
= (V%) kg /0
j>1
and the affine map W, ---W,; has the slope n*. Similarly, we can prove it for
VARERWAR [

Remark 2.4.2. Let z,y € R. By Remark 2.2.2, Schreier graphs (Orbg, (x),S,) and
(Orbg,, (), Sn) are isomorphic if and only if there exist two bijections

f : Orbg, (x) — Orbg, (y) and v : S, — S,
such that v(s)(f(z)) = f(s(z)) for each z € Orbg, (z) and each s € S,,.

Lemma 2.4.3. Let x,y € R. Suppose that the Schreier graph (Orbg, (x), S, ) is
isomorphic to the Schreier graph (Orbg, (y), Sn) by a bijection v : S, — S,,. Then

@)y (@™ (07" = 1k in G,
if and only if
v=1s, or ~(a)=a,y(a ) =a"ty(0b) =b"!, and (b)) =b.

Proof. Let
f : Orbg, (x) — Orbg, (v)

be a bijection as in Remark 2.4.2. For any s € S and any xy € Orbg, (),
Y($)v(s)(f (o)) = f(ss™ (w0)) = f(z0)
by Remark 2.4.2. Since f is a bijection,
¥(5)7(s™") = lorbg, )-

Since v(s)y(s71) is an affine map, v(s)y(s7!) = 1g, thus v(s)™! = y(s7!) € Aff(R).
Suppose that

Y(a)y(D)y(a™t)y(b™")" = 1g and v # 1g,.

Since a(z) = nx and v(b~1) has the n-th power, v(b™1) € {b}*.
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Suppose that y(b=!) = b=, Then ~(b) = b. Since v # 1g,, we have y(a) = a™'.
Then
Y(a)y(®)y(a )y(b)" = a "bab™" # 1z,
a contradiction. Thus y(b™!) = b and ~(b) = b~ L.
If y(a) = a™!, then v(a™!) = a and

Y(a)y(b)y(a™)y(b™)" = a b ab" # 1g,
a contradiction. Hence v(a) = a and y(a™') = a™ . O
Theorem 2.4.4. Let m,n > 2 with m # n.

(1) For any x,y € R, the Schreier graph (Orbg,, (), Sy) is not isomorphic to the
Schreier graph (Orbg, (y), S,) as labelled directed graphs.

(2) Forany oy, ay € R\Q, the Schreier graph (Orbg, (a1), Sn, 1) s Sy -isomorphic
to the Schreier graph (Orbg, (a2), Sy, ) as marked labelled directed graphs.

(3) For any q € Q and any a € R\ Q, the Schreier graph (Orbg, (), S,) is not
isomorphic to the Schreier graph (Orbg, («),Sy) as labelled directed graphs.

(4) Let q1, g2 € Q. Then, the following statements are equivalent.

(a) The Schreier graph (Orbg, (q1), Sy) is isomorphic to the Schreier graph
(Orbg, (q2), Sn) as labelled directed graphs.

(b) Orbg, (q1) = Orbg, (q2) or Orbg,(—q1) = Orbg, (¢2).

Proof. On the contrary, suppose that the Schreier graphs

(Orbg,, (z), Si) and (Orbg, (y), Sk)
are isomorphic by bijections

f : Orbg,, (z) — Orbg, (y) and v : S, — Sy,

as in Remark 2.2.2. We check at once that

Y(a)y()y(a)y(b™)" # 1r € Gy
By Remark 2.2.2,

Ya)y(0)y(a™ )y (b~ )" (f(2)) = flaba™'b""(2)) = f(2)

for each z € Orbg,, (), contradiction, which proves (1). Since Stabg, (o) = 1 for
any a € R\ Q, by Proposition 2.2.3, the statement (2) is proved.

Let g be a rational number represented by uv™ and x € R such that the Schreier
graph (Orbg, (¢), Sy,) is isomorphic to the Schreier graph (Orbg, (z), S,) as labelled
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directed graphs by bijections f : Orbg, (¢9) — Orbg, (z) and v : S, — S, as in

Remark 2.4.2. Let '
Q0 =Y (v%);/n’ € Orbg, (q).

i>1
Since aba='b™"(¢') = ¢ for each ¢’ € Orbg, (q), by Remark 2.4.2, we have
Ya)y(®)y(a )y~ (£(d)) = flaba™"b""(d)) = f(d)-
Hence, v(a)y(b)y(a™1)y(b™1)" = 1g. By Lemma 2.4.3,
v=1s o @) =a @) =a @) =0 andy(b ) =b  (B)

On the other hand, by Lemma 2.4.1, there exists a nontrivial affine map W, --- W =
¢ -+ c1 such that ¢, -+ - ¢1(qo) = qo, where ¢; € {a,b'}. By Remark 2.4.2, we have

() - v(e)(f(g0)) = fler--- (o)) = f(qo)-

(1) If v = 1g,, then the nontrivial affine map ¢y - - - ¢; fixes both ¢y and f(qo).

Hence, f(q0) = qo.
(it) If v(a) = a,v(a™') = a1, v(b) = b7, and v(b~!) = b, then by Lemma 2.4.1,

(k) - v(e)(=q0) = Zpy - Z1(=0) = —4o.

Since the nontrivial affine map ~(cg)---v(c1) fixes both —¢gy and f(qp), we have

—q0 = f(qo)-

We start to prove (3). On the contrary, if x = a € R\ Q, by the above, we see
f(qo) € Q, a contradiction, which proves (3).

Next we prove (4). Suppose that the statement (a) holds, i.e.,q = ¢1, * = g2 € Q
above. If v =15, by (i) above,

Orbg, (¢1) = Orbg, (q0) = Orbg,, (g2).
If v # 1g,, by (i) above,
Orbg, (—q1) = Orbg, (—q0) = Orbg, (¢2),

which proves ().
Suppose that the statement (b) holds. We show that

(Orbg, (q1), Sn) and (Orbg, (¢2), Sn)
are isomorphic. Without loss of generality, we can assume that

OrbGn (_q1> - OrbGn (q2) ‘
Define v : S, — S, by

(@) =a, y(a ) =a™t, y(b) =b"", and y(b7!) = b.
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In addition define f : Orbg,(¢1) — Orbg, (¢2) by

fler---ela)) = () - v(e)(=q),

where ¢; € S,,. By induction on k, we can show that

(cr- - e)lq) + (v(ew) - y(e))(—q) = 0

for each k£ > 1 and each ¢; € S,,. Hence, f is well-defined and an injection. By defi-
nition, f is a surjection satisfying that f(s(z)) = v(s)(f(z)) for each z € Orbg, (¢1)
and each s € S,. By Remark 2.4.2, the Schreier graphs (Orbg,(¢1),S,) and
(Orbg, (g2), Sn) are isomorphic by f and 7. O

Corollary 2.4.5. Let qi, g2 be rational numbers. Then, the following statements
are equivalent.

(a) The Schreier graph (Orbg, (q1),Sn,q1) is isomorphic to the Schreier graph
(Orbg, (g2), Sn, q2) as marked labelled directed graphs.

(b) |Q1’ = |Q2|-

Proof. From the latter part of the proof of Theorem 2.4.4, we can show that (b)
implies (a). Suppose that (Orbg, (¢1), Sn, ¢1) is isomorphic to (Orbg, (¢2), Sn, g2) by
bijections f : Orbg, (¢1) — Orbg, (¢2) with f(q1) = g2 and 7y : S,, — S, as in Remark
2.4.2. Tt suffices to show that |q;| = |go|. Let us represent by uwv™ € Z¥ ¢; € Q. Set

qo = Z(Uoo)j/nj € Orbg, (q1)-

Jj21

Then, there exist dy,...,d; € S, such that (d;---d;)(¢1) = go. From the proof of
Theorem 2.4.4, the map + satisfies (E) in the proof of Theorem 2.4.4, and the map

f satisfies
fla =% 7=
—qo ity #1g,.
Moreover, there exist cq,..., ¢, € S, such that
(k- c1)(q0) = qo and y(cx) - - - v(e1)(f (@) = f(qo)-
Then

(dj--dv) er---e)(d---di)(qr) = 1.
By Remark 2.4.2
Y(dy) ™t (dy) Ty (er) -y le)y(dy) - -y (dn) (g2) = ga.

Thus
Y(ek) -+ yer)(v(dy) - - v(di)(g2) = v(d;) -+ - v(d1)(g2)-



Suppose that v = 1g,. Then,
(cr--c)((dj -+~ di)(g2)) = (dj - di)(qo).

Since the nontrivial affine map ¢, - - - ¢; fixes both

o = (dj -~ d1)(qr) and (d; - - d1)(q2),

it follows that (d;---dy)(q1) = (d; - - - d1)(q2). We conclude that ¢; = ¢o.
Suppose that v # 1g,. By Remark 2.4.2,

v(dj) - v(di)(q2) = (v(dy) - - - (d1))(f(q1))
= J((dj---di)(q1))
= f(qo)
= —4qo
= _(dj"'dl)((h)'

Since the map ~ satisfies (E) in the proof of Theorem 2.4.4, by induction on j, we
can show ¢; = —qo. Il

2.5 Applications

First we determine the group structure of stabilizers for all rational numbers
by using the Schreier graphs described in the previous section. The proof of next
proposition allows us to understand a word stood for a generator as well as the group
structure. We note that the the stabilizer Stab¢, (¢) is an infinite index subgroup of
G, since the orbit Orbg, (¢) is an infinite set.

Proposition 2.5.1. Let n > 2 and q be a rational number represented by uv™ € Z2.
Then, there exists f € AfF(R) such that f(x) = nll(x — q) + q for each x € R, and
Stabg, (q) = (f) = Z.

Proof. For i > 1 set ﬁ//z = b~ ("®)ig. By Lemma 2.4.1 we have

Wit ol - Wiap Wil - Wi (079 (0)) = Wapsog - Wiapr (O (0)i/n)

= Wi+ Wa 3 (0™)i/m)
= > =)/

= Wiy -+ W1 (b7 (g)).

Set
f=b Wt W Wi - Wi Wy - - Whb™ 1
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Then, f is an affine map with the slope nl*! such that f(¢) = ¢. Hence (f) <
Stabgn (q)

Let g € Stabg, (¢). By (*),, there exists i € Z such that g(x) = n'(x — q) +q for
any z € R. If |[u| = 1, f has the slope n, thus g = f*. Hence, we may assume that
|v| > 2. On the contrary, suppose that there exist h € Stabg, (q) \ (f), 0 <r < |v|,
j € Z, and k > 0 such that h(x) = n"z + j/n* and h(q) = ¢. Then, we have

Conk(nr — 1)

There exist m > 0 and 2z = 2129 ...2, € Z with z # (n — 1)" such that

r—1 r—1 r r
1j] = (Z(n— 1)nl> m+;zrmi =n' (m;n;l +Z%> :

=0 i=1

Since

we have

an:m+z(zoo.)i or an——(m—i-l)—i—Z%,

i>1 i>1

whereZ=(n—-1—2)...(n—1—2,) € Z,. Thus, gn* has a repeating part whose
length is the period of z*°. However,

o0\ | k wuv>®);
an — (LqJ + Z %) nkF = (qunk + Z(va)ink_i) + Z %;

i>1 i>1

which contradicts (2) in Definition 2.3.2. O

Next we introduce the definition of being isomorphic in presentations for sub-
groups in order to translate the graphical expression of the Schreier graphs into the
algebraic expression of subgroups. Consequently, we get a relevance to presentations
for the stabilizers from the previous result about the classification of the Schreier
graphs (see Theorem 2.5.5).

For i € {1,2}, let G, be a group with a generating set 7;. Let T, ' = {t"!|t € T;}
and T7" = T, UT; '. We assume that
() teT;NT;" ifand only if t€T;, t*=1.

For i € {1,2} let X; = {x/|t € T;}. Set X; ' = {a;'|t € T;}, where z; ' denotes
a new symbol corresponding to the element z,. We assume that X; N X; ' = () and
that the expression (z;')~! denotes the element z;. For i € {1,2} the free group
with the basis X; is denoted by F'(X;), and for a subset R; of F(X;) the normal

43



closure of the set R; in F(X;) is denoted by ((R;)). Let G; be the group with the
presentation (X;|R;) with respect to the epimorphism v, : F(X;) — G; given by
Vi) = t.

Definition 2.5.2. For i € {1,2}, let H; be a subgroup of G;. The subgroups H;
and H, are isomorphic in presentations (X1|Ry) and (Xs|Ry) respectively if there
exists a bijection v : X — X5 with (2, ) = v(z;) " such that

¥ (W1 (Hy)) = ¥y (Hz) and F(((R1))) = ((Ra)),

where 7 : FI(X;) — F(X3) is defined by

(gl - xl) = (@) (g, )"

for ¢, € {£1}. Then, 7 is an isomorphism and H; = H,. Conversely, if there
exists an isomorphism 7 : F(X;) — F(X3) such that 7(K;) = K, for each K; €
{7 (H;), Kertp;, XF}, then v = 7|X1i satisfies the above condition.

Proposition 2.5.3. Let

Ui = (Gi/H;, T;", H;) and Ty = (F(X;) /o' (H;), X;7, 07 (H)

be Schreier coset graphs fori € {1,2}. Then, the following statements are equivalent.

(a) Ty is isomorphic to T'y as marked labelled directed graphs by a bijection
v TE = T such that v(t=1) = ()~ for every t € T}.

(b) I} is isomorphic to Iy as marked labelled directed graphs by a bijection
v XT = XF with ¥ (x7Y) = ' (x)7! for every x, € X, satisfying the
condition

(B)  1(x4)? = 1a, if and only if s(7'(24))* = 1g,.
Proof. Let p; : G; — Aut(G;/H;) and
;- F(X) = Aut(F(X;)/4;  (H))

be the usual left actions for i € {1,2}. We define ¥, : F(X;)/v; ' (H;) — G;/H; by
Ui(y oy (Hi)) = ¢i(y) Hy. Since y ™'y’ € @7 (H;) is equivalent to ¢i(y)~"i(y') € H,
U, is well-defined and an injection. Since v); is a surjection, ¥, is also a surjection.

Suppose that the statement (a) holds. Let f : G1/H; — G2/H; be a bijection
between vertices such that f(Hy) = Hy and fp1(t) = po(y(t))f for every t € Ty.
Set

fr=91 0 F(X0) /W (Hy) = F(X2) /1y (Hy).
Clearly f' is bijective with f/(;*(Hy)) = ¥y ' (Hy).
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Define 7/ : Xi — X§ by

’YI(ZL'E) _ 7(t) if 7<t) € T2 and € € {:l:l},
YT et ify(t) ¢ Ty and € € {£1}.

v~

Then we have +/(z; ') = +/(2,)~*. To show that 7' is bijective, we define ¢ : X3 —
X by

x ¢, ify7H(t) € T} and € € {+1}.

. Ty ify7Ht) € Ty and e € {£1},
o(x}) =
()

Then
Lo o(xy) i y(t) €Ty and € € {£1},
oy (zf) = e "
o(x Gy-1) ify(t) € To and € € {£1}.

Ery(t) € To, v (v(1) =t € Ti. (1) ¢ To, y ' () ) =171 (y(t7h) =71 ¢ Th
by (). Since v(t7') = y(t)7!, we have v~ !(s7') = 77!(s)~!. Hence we have

/(29) xf ify(t) € Ty and € € {£1},
o (xy) =
TYZ N 2 () ¢ Ty and € € {1},

thus o9/ =1 x¢- The similar argument gives Yo =1 xz- Thus ~'" is a bijection.
Since (¥ (x;)) = v(t) and t? = 1¢, if and only if'y( )2 = 1g,, we have 9 (z;)? =
if and only if ¢5(7/(x;))* = 1g,, which establishes (B).

Since W1 (zy) = ¢1(t) ¥ and Yol (V' (24)) = wa(y(t)) Vs, we have

@y (7 () o () ™ = (7 () ) U5 f U0 ()
= Wy oo ((1)) feor (8) 10y
= \Ijz_lf‘lﬁ
—f

la,

By Remark 2.2.2 we obtain (b).
Suppose that the statement (b) holds. Let

froF(X) /iy (Hy) — F(Xa) /1y (H)

be a bijection between vertices such that f'(¢;(Hy)) = ¢y '(Hy) and f'¢)(z) =
@3(7'(2e)) [’ for every x; € X;. Set

f = \Ifgf/\llfl : Gl/Hl — GQ/HQ.

Clearly f is bijective with f(H;) = Hs.

Define v : T{ — T3 by v(t9) = bo(v/ (%)) for each ¢ € Ty and e € {£1}. First
we show that ~ is well-defined. Suppose that t7' = t*>. If €, = € and t; = to, then
Vo () = ha(7/(232)). If €1 # €2, then t; = t,. Since V(v (24,))? = la, by (B),

a(V (x3})) = a7 (2,7)) = 2 (¥ (253))-
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Thus 7 is well-defined. Then we have v(t~!) = ~(¢)~'. Next we show that v is
bijective. We define p : T55 — T by p(t) = ¥ (y/~*(xf)) for each t € Ty and
e € {£1}. Since 7' satisfies the condition (B),

Vo(2,)? = 1g, if and only if (71 (z))* = 1g,.

Hence p is well-defined. We can easily see that vp = 1T2¢ and py = ].Tli. Hence 7y is
a bijection.

Since Wy (21) = @1 (H)T; and Wogh (v () = @a(1(1) s,

(7)) for(t) ™ = oo (v (8)) U f' U or (1)
= Wy (7 (1)) [0y () 10
= U, 07t

—f.
By Remark 2.2.2 we obtain (a). O

Lemma 2.5.4. Let I'; = (G;/H;, T, H;) be Schreier coset graphs for i € {1,2}.
Then the following statements are equivalent.

(a) Ty is isomorphic to 'y as marked labelled directed graphs by a bijection =y :
T — T5F satisfying the following condition: for any ty, ...ty € Ty and any
€1,...,€ € {£1},

(C) -tk =1q, if and only if (') - -y(tF) = 1g,.

(b) Hy and Hy are isomorphic in presentations (X1|Ry) and (X2|Ry) respectively.
Proof. By Proposition 2.5.3, (a) is equivalent to the following statement.

(a') T is isomorphic to I'y, as marked labelled directed graphs by a bijection 7/ :
XE — X5 such that +/(2;!) = +/(2,)~" for every z; € X, and

(C) u(aiy) -+ hu(aly) = 1, if and only if ¢o(y'(25})) - - - ¥2(y'(27})) = le,.

In addition we note that the following statements are equivalent.

(1) There exists a bijection 7' : Xi* — X3 with v/(z; ) = /()" satisfying the
condition (C”).

(2) There exists a group isomorphism 6 : F(X;) — F(X3) such that 6(X7) = X5
and 0(((11))) = ((12))-

Suppose that the statement (a) holds. By the above, we may suppose that the
statement (a’) holds, and can take 4/ as § in (2), where

v F(Xy) = F(X,)
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given by B
V(g w) = (@) ()™
It suffices to prove that ~/ (7 (Hy)) = 5 '(H,). Let
freF(X0) /oy (H) — F(X2) /vy (Hs)
be a bijection between vertices which preserves marked vertices. Now, we note that
for i € {1,2},
Y (H;) = {I(P)| P is an edge path in T’} from ¢; *(H;) to itself },
where [(P) = l(en) ... l(e1) whenever P =e¢;...e,.
Let I(P) € vy '(H,), where e¢; = (a:'? e xi}wfl(Hl), z)) and P = e;...ep.
Since xy" - - - xy ey (Hr) = Blen) = o1 (Hi), by Remark 2.2.2,

Y (P! (Hz) =7(zgr) - ($t1)f'(¢fl(H1))
(xin TP (Hl))
= f (¥1 ' (H))
= 1y ' (Ha).

Thus we have v (T HH )) C ¢5 ' (Hy). Similarly v/ (@bz (Hs)) C ¥y '(Hy), which
proves 7/ (¢y " (Hy)) = 1y ' (Hy).
Suppose that the statement (b) holds. There exists a bijection v/ : X — Xj
with 7/(2; ') = 7'(2,) 7! such that
Y (7' (H)) = ¢y ' (Ha) and v/(({R1))) = ((Ra)),
which establishes (2). Define

fo F(X0) 9y (Hy) — F(Xa) /1y (Ha)
by _
f'(ger (HL)) =~ (9)vs (Ho).
Since g, 'g1 € vy (H) is equivalent to
V(93" 1) € 7' (i () = 3" (H),

f' is well-defined and an injection. Since 7 is a surjection, f’ is also a surjection.
Since

F'h () (gt (H)) = f'(zgipy ' (Hy))
7/(1}9) ( 2)
= 7/(2)7 (9)5 ' (Ho)
= (¥ (z)) [ (g1 (H)),

we have f'¢)(z;) = ©y(y'(z¢))f" for every x; € X;. Thus I'} is isomorphic to I', as
marked labelled directed graphs by a bijection v : X — X3, which establishes
('), ie., (a). =
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By Lemmas 2.4.3 and 2.5.4, Corollary 2.4.5, (1) in Theorem 2.4.4 and the iso-
morphism h,,, we obtain the following theorem.

Theorem 2.5.5. Let m,n > 2 and q1, ¢o € Q. Then the following statements are
equivalent.

(a) Stabps@m)(q1) and Stabpsa . (g2) are isomorphic in presentations BS(1,m)
and BS(1,n) respectively.

(b) m=n and |q| = |g|.
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