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Introduction

The groups F , T , and V were introduced by Richard Thompson in 1965, and were
first used in [18] to construct other finitely presented groups with unsolvable word
problems. Since then, these groups have appeared naturally in different branches
in mathematics, for example, in homotopy theory [12], dynamical systems [13], and
diagram groups over semi-group presentations [16]. The groups have a collection
of various exotic properties which made them counterexamples to well-known con-
jectures in the study of infinite group theory. For example, T and V are the first
known examples of infinite, finitely presented, simple groups [9], and F is the first
known example of a torsion free group of type FP∞ and not of type FP [7]. Some
generalizations of these groups are also known. For example, Higman generalized V
to an infinite family of finitely presented simple groups [17], and Brown extended
this to the infinite families Fn ⊂ Tn ⊂ Vn, where n is an integer greater than or
equal to 2 (F2 = F , T2 = T , and V2 = V ), and proved that each of the groups is
finitely presented [8].

The group F has the following presentation:

〈A,B | [AB−1, A−1BA], [AB−1, A−2BA2]〉,

where [x, y] = xyx−1y−1. In fact, it is known that each of the groups Fn has the
presentation with n generators and n(n− 1) relators. Although these presentations
help us understand the structures and properties of the groups, they are somewhat
complicated. Hence many different geometric descriptions of the groups have been
used. For example, tree pair diagrams [9], diagrams of Guba and Sapir [16], and
strand diagrams of Belk and Matucci [2] have been used to describe elements for
Thompson’s groups Fn. One of the most useful representations is the realization
of them as particular subgroups of PLo(I), where PLo(I) is the group of piecewise
linear orientation-preserving homeomorphisms of the unit interval I = [0, 1] that are
differentiable everywhere except at finitely many real numbers, under the operation
of composition. In fact, F can be defined as the subgroup of PLo(I) that are differ-
entiable everywhere except at finitely many dyadic rational numbers (i.e., numbers
from Z[1/2]) and such that on the intervals of differentiability the derivatives are
integer powers of 2. Many interesting properties of F have been clarified using the
interpretation as homeomorphism groups. For example, F is a finitely presented
torsion free group, does not contain a nonabelian free subgroup [5], and the com-
mutator subgroup of F is an infinite simple group. A comprehensive introduction
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is given in [9]. The group F is also one of the most mysterious objects in group
theory. For example, one of the main questions about F is whether it is amenable.
Incorrect proofs of amenability and non-amenability of F appear quite often, and
the reason why all these proofs are wrong is that F is very counter-intuitive. Other
problems about F are also challenging, and attract many researchers.

Recently, subgroups of F have been extensively studied. For example, finite
index subgroups of F are described in [4], and the solvable subgroups of F are
classified in [3] by Bleak. The maximal subgroups and stabilizer subgroups of F are
investigated in [14, 15] by Golan and Sapir. However, the structures of subgroups
of F are far from well-understood, and there are many open questions.

This dissertation contributes to the study of subgroups of Thompson’s group F
(and PLo(I)). The focus of our attention will be subgroups of F which are direct
products of finitely many indecomposable groups. In fact, we provide a criterion for
any two subgroups of PLo(I) which are direct products of finitely many indecom-
posable non-commutative groups to be non-isomorphic. As its application we give a
necessary and sufficient condition for any two subgroups of the R. Thompson group
F that are stabilizers of finite sets of numbers in the interval (0, 1) to be isomorphic,
thus solving a problem by Golan and Sapir. We also show that if two stabilizers are
isomorphic, then they are conjugate inside a certain group G (see Introduction 1.1
in Chapter 1, for details).

In Chapter 2, we consider other finitely presented groups in geometric group
theory. We explicitly construct Schreier coset graphs of solvable Baumslag-Solitar
groups for stabilizers of all points in the real line under a natural action of them on
the real line. As its consequence, we classify the Schreier coset graphs up to isomor-
phism, and obtain a relevance to presentations for the stabilizers (see Introduction
2.1 in Chapter 2, for details).
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Chapter 1

Groups of piecewise linear
homeomorphisms

1.1 Introduction

Let PLo(I) be the group of piecewise linear orientation-preserving homeomor-
phisms of the unit interval I = [0, 1] that are differentiable everywhere except at
finitely many real numbers, under the operation of composition. The focus of our
attention will be subgroups of PLo(I) which are direct products of finitely many
indecomposable groups.

Subgroups of PLo(I) have been extensively studied (see [3, 5, 6, 23], for exam-
ples). Among those, Thompson’s group F is one of the most interesting objects.
Recall that it is defined as the group of piecewise linear homeomorphisms from the
closed unit interval I onto itself that are differentiable everywhere except at finitely
many dyadic rational numbers (i.e., numbers from Z[1/2]) and such that on the
intervals of differentiability the derivatives are integer powers of 2.

One of the most interesting open problems about F is whether it is amenable. In
[21, 22], Savchuk constructed the Schreier graph of F with respect to the stabilizer
HU of any finite set of real numbers U ⊂ (0, 1). He proved that all the Schreier
graphs are amenable and also showed that if U consists of a single number, then HU

is an infinite index maximal subgroup of F . In [14], Golan and Sapir constructed
other maximal subgroups of infinite index which do not fix any real number in (0, 1).

Golan and Sapir [15] continued the study of the subgroups HU for arbitrary finite
sets U . Let U = {α1, . . . ,αn} ⊂ I, where αj < αj+1. The type τ(U) was defined as
the word of length n in the alphabet {1, 2, 3} as follows: for every i, the ith letter
in τ(U) is 1 if αi is a dyadic rational, 2 if αi is rational but not a dyadic rational,
and 3 if αi is irrational. They showed that HU is isomorphic to a certain semidirect
product, and also proved that HU is finitely generated if and only if U does not
contain irrational numbers. Moreover, it was proved that if τ(U) ≡ τ(V ) for finite
sets U , V ⊂ (0, 1), then HU and HV are isomorphic (p ≡ q denotes letter-by-letter
equality of words p, q). The proof was completed by realizing the subgroups as
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iterated ascending HNN-extensions. They also noticed that HU is a direct product
where the factors correspond to subwords of τ(U). They asked [15, Subsection 4.1]
what a necessary and sufficient condition for HU and HV to be isomorphic is.

In Chapter 1, we will answer the above question by focusing on the fact that
the stabilizers are direct products of finitely many subgroups (see Theorem 1.1.3
below). In fact, we establish the following result about a unique expression of
a direct product of finitely many non-commutative indecomposable subgroups of
PLo(I). The symmetric group of degree n and the center of a group G are denoted
by Sn and Z(G), respectively.

Theorem 1.1.1. Let H1, . . . , Hn, K1, . . . , Km be non-commutative, indecomposable
subgroups of PLo(I). Suppose that Z(Hi) = {1} for each i and Z(Kj) = {1} for
each j. Then,

∏n
i=1 Hi and

∏m
j=1 Kj are isomorphic if and only if n = m, and

there exists a permutation σ ∈ Sn such that Hi and Kσ(i) are isomorphic for each
i ∈ {1, . . . , n}.

Since for any subgroup G of PLo(I) the center of the quotient group G/Z(G) is
trivial (see Proposition 1.3.4), we obtain the following:

Corollary 1.1.2. Let H1, . . . , Hn, K1, . . . , Km be non-commutative, indecomposable
subgroups of PLo(I). If

∏n
i=1 Hi and

∏m
j=1 Kj are isomorphic, then n = m, and

there exists σ ∈ Sn such that Hi/Z(Hi) and Kσ(i)/Z(Kσ(i)) are isomorphic for each
i ∈ {1, . . . , n}.

We will now recall some definitions about a direct decomposition in group theory.
Let G be a group. A subgroup H of G is called a direct factor of G if there exists
a subgroup K of G such that G = H × K. If there are no proper non-trivial
direct factors of G, then G is said to be indecomposable. A Remak decomposition
of a group G is a decomposition of G as a direct product of finitely many non-
trivial indecomposable subgroups. It is said that a group G satisfies the maximal
(respectively, minimal) condition on normal subgroups if each non-empty family of
normal subgroups contains at least one maximal (respectively, minimal) element for
the inclusion. A classical result, called the Krull-Remak-Schmidt theorem, states
that if a group G satisfies both the maximal and minimal conditions on normal
subgroups, then its Remak decomposition is unique up to isomorphism of the direct
factors and a permutation of the direct factors. We refer to [20, Sec.3.3] for details.
Obviously, finite groups satisfy both maximal and minimal conditions on normal
subgroups. On the other hand, subgroups of PLo(I) do not satisfy these conditions
in general. For example, the Thompson group F satisfies the maximal condition on
normal subgroups, but does not satisfy the minimal condition on normal subgroups
since the lattice of normal subgroups of F is isomorphic to the lattice of subgroups
of Z2 (see, for example, [4]). Hence we cannot apply the Krull-Remak-Schmidt
theorem directly to the subgroups of PLo(I), and so establish the above result (see
Theorem 1.1.1 and Corollary 1.3.8), which is analogous to the Krull-Remak-Schmidt
theorem.
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Now we return to the question about stabilizers of F . Every finite subset U
of (0, 1) is subdivided into three subsets U = U1 ( U2 ( U3, where U1 consists of
numbers from Z[1/2], U2 consists of rational numbers not in Z[1/2], and U3 consists
of irrational numbers. Write

U1 ∪ U3 = {r1, . . . , rn}, rj < rj+1

and let r0 = 0, rn+1 = 1, and

U2,k = {q ∈ U2 | rk < q < rk+1}.

For any word w1w2 ∈ {11, 13, 33} and j ∈ {0, . . . , |U2|}, let ΛU,w1w2,j =

{i ∈ {0, . . . , n} | τ({ri, ri+1} ∪ U2,i) ≡ w12
jw2 or τ({ri, ri+1} ∪ U2,i) ≡ w22

jw1}.

By applying the result mentioned above to the case of the stabilizers of F , we obtain
the following:

Theorem 1.1.3. Let U and V be finite sets of numbers in (0, 1). Then the following
statements are equivalent.

(1) HU and HV are isomorphic.

(2) |U2| = |V2|, and |ΛU,w1w2,j| = |ΛV,w1w2,j| for each w1w2 ∈ {11, 13, 33} and
each j ∈ {0, . . . , |U2|}.

We note that if τ(U) ≡ τ(V ), then the statement (2) holds. The implication
from (2) to (1) is shown essentially in [15](see Lemma 1.4.3 below). The converse
of this implication is the essential part of our theorem.

We also establish a result about conjugacy of the stabilizers. Golan and Sapir [15]
defined F as a group which consists of possibly infinite tree-diagrams with finitely
many infinite branches, and described that the standard embedding F → Homeo(I)
extends to an embedding F → Homeo(I). In addition, they proved that if τ(U) ≡
τ(V ), then HU and HV are conjugate in the group F . We will introduce a group
G into which F can be naturally embedded, and prove that HU and HV (indeed,
their images in G) are conjugate in the group G whenever they are isomorphic (see
Theorem 1.5.8).

1.2 Notation, Terminology, and commutativity in
PLo(I)

Recall that PLo(I) is the group of piecewise linear orientation-preserving homeo-
morphisms of the unit interval I that are differentiable everywhere except at finitely
many real numbers, under the operation of composition. We basically follow the
notation and terminology used in [5, 6]. Composition and evaluation of functions in
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PLo(I) will be in word order. Namely, for any two elements f , g in PLo(I) and any
t ∈ I, tf = f(t) and fg = g ◦ f . Here, we will describe a geometric condition under
which two elements of PLo(I) commute, and a geometric condition under which
subgroups of PLo(I) are commutative.

The support of an element f in PLo(I) is the subset supp(f) = {x ∈ I | xf ,= x}.
We can easily see that supp(f) is a finite union of disjoint open intervals. Each of
these open intervals will be called an orbital of f . If A is an orbital for f , then
either xf > x for all points x in A or xf < x for all points x in A. We note that if
f ∈ PLo(I) and A is an orbital of f such that xf < x for some (and therefore all)
x ∈ A, then f−1 has xf−1 > x for all x ∈ A.

Let [f, g] = fgf−1g−1. The following is a known fact [24, Lemma 2.1], but we
give the proof for the convenience of the reader.

Lemma 1.2.1. Let f , g ∈ PLo(I) where [f, g] = 1. If A is an orbital of f , then
either A ∩ supp(g) = ∅ or A is also an orbital of g.

Proof. Suppose that A∩ supp(g) ,= ∅. Then there exists an orbital B of g such that
A∩B ,= ∅. Let A = (a, c) and B = (b, d). Without loss of generality, we can assume
that b ≤ a < d ≤ c. Since [f, g] = 1, it follows that [f, gn] = 1 for each n ∈ Z. Since
af = a, it follows that agn = afgn = agnf for each n ∈ Z. Suppose that xg > x
for all points x in B. Since the sequence (agn) converges to d as n increases, by
continuity of f , we see df = d. Thus d = c. Suppose that xg < x for all points x in
B. Then we see that xg−1 > x for all x ∈ B. Replacing g in the argument described
above with g−1, we see that d = c.

We take an element e in the open interval (max{a, ag−1}, c(= d)). Suppose
that yf < y for all points y in A. Since [fn, g] = 1 for each n ∈ Z, it follows
that (efn)g = egfn for each n ∈ Z. Since the sequence (efn) converges to a as n
increases, and by c > eg > a the sequence (egfn) also converges to a, it follows that
ag = a. Thus b = a. Suppose that yf > y for all points y in A. Then we see that
yf−1 < y for all y ∈ A. Replacing f in the argument described above with f−1, we
see b = a. Therefore we conclude A = B.

Let f ∈ PLo(I) and A be an open interval of (0, 1) whose two endpoints are
fixed by f . Then define fA as follows:

xfA =

{
xf if x ∈ A,

x if x /∈ A.

Clearly, fA ∈ PLo(I). If A is an orbital of f , then fA is called the bump of f with
supporting interval A. Then, A is also an orbital of fA.

Let fA be the bump of an element f with supporting interval A and

C̃(fA) = {gA ∈ PLo(I) | [fA, g] = 1 }.

Brin and Squier proved in [6, Theorem 4.18] that C̃(fA) is the infinite cyclic subgroup
of PLo(I) generated by all roots of fA.
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Lemma 1.2.2. Let f, g ∈ PLo(I). Then [f, g] = 1 if and only if

(1) supp(f) ∩ supp(g) = ∅, or

(2) There exists an integer k ≥ 1 such that

supp(f) ∩ supp(g) =
k⊔

i=1

Ci,

where Ci are common orbitals of both f and g, and for any i there exists
hi ∈ PLo(I) with exactly one orbital Ci such that fCi , gCi ∈ 〈hi〉.

Proof. Suppose that [f, g] = 1 and supp(f) ∩ supp(g) ,= ∅. It suffices to prove (2).
By Lemma 1.2.1, we see that

supp(f) ∩ supp(g) =
k⊔

i=1

Ci,

where Ci are common orbitals of both f and g. Since [fCi , gCi ] = 1, by [6, Theorem
4.18], there exists hi ∈ PLo(I) with exactly one orbital Ci such that fCi , gCi ∈ 〈hi〉,
which proves (2). The converse implication is immediate, so the details are left to
the reader.

Let G be a subgroup of PLo(I). The support of G is the set

supp(G) =
⋃

g∈G

supp(g).

Since supp(G) is an open subset of (0, 1), it can be written as a disjoint union of a
countable (possibly finite) collection of open intervals in (0, 1). Each of these open
intervals will be called an orbital of G. We note that the complement set of supp(G)
in I is the set of points fixed by all elements in G.

Definition 1.2.3. Let G < PLo(I). An orbital N of G is called a commutative
orbital of G if for any g ∈ G, the element gN has the open interval N as an orbital
or gN = 1 in PLo(I). An orbital of G which is not a commutative orbital is called
a non-commutative orbital of G.

For any set S ⊂ R we denote by ∂S the boundary of S with respect to the
standard topology of R.

Lemma 1.2.4. A subgroup G of PLo(I) is a non-commutative group if and only if
G has a non-commutative orbital.
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Proof. Suppose that G has a non-commutative orbital N . Then, by definition, there
exists g ∈ G such that gN does not have N as an orbital and gN ,= 1. Thus, there
exists an orbital A of gN such that A ! N . Take a point x ∈ ∂A ∩ N . Since N
is an orbital of G, there exist h ∈ G and an orbital B of h such that x ∈ B ⊂ N .
Then, A∩B ,= ∅ and A ,= B. By Lemma 1.2.2, we see that [g, h] ,= 1. Thus, G is a
non-commutative group.

Suppose that G is a non-commutative group. Since there exist g and h in G
such that [g, h] ,= 1, supp(g)∩ supp(h) ,= ∅. By Lemma 1.2.2, (i) there exists a pair
(A,B) of orbitals, where A is an orbital of g and B is an orbital of h, such that
A ∩ B ,= ∅ and A ,= B, or (ii) there exists a common orbital C of both g and h
such that for any r ∈ PLo(I) with exactly one orbital C, gC /∈ 〈r〉 or hC /∈ 〈r〉. If
the statement (i) holds, then there exists an orbital N of G such that A ∪ B ⊂ N .
Hence, the orbital N is a non-commutative orbital of G.

If the statement (ii) holds, then the non-trivial commutator [gC , hC ](∈ PLo(I))
has slope 1 near each end of C. Thus, there exists an orbital D of [gC , hC ] such that
D ! C. Since [g, h] ∈ G and [g, h]C = [gC , hC ], [g, h] has D as an orbital. Since there
exists an orbital N of G such that D ! C ⊂ N , the orbital N is a non-commutative
orbital of G.

The following is a known fact [3]. Nevertheless, we give the proof for the conve-
nience of the reader.

Proposition 1.2.5. Let G be a commutative subgroup of PLo(I). Then G is a free
abelian group of finite rank or a free abelian group of countably infinite rank.

Proof. Suppose that G is a commutative subgroup of PLo(I). By Lemma 1.2.4, all
orbitals of G are commutative. Let supp(G) be the disjoint union of the collection
{Ni} of the orbitals of G. Since Ni is commutative for each i, there exists fi ∈ G
such that fi has Ni as an orbital. Then, since any element g in G commutes with
fi for each i, it follows that

{gNi | g ∈ G} < C̃(fiNi)(∼= Z)

for each i. Let ri be a generator of C̃(fiNi) for each i. If the collection {Ni} is finite,
then for any g ∈ G we can write g = gN1 · · · gNn . Thus, we see g ∈ 〈r1, . . . , rn〉.
Hence, G is a subgroup of the free abelian group 〈r1, . . . , rn〉 of rank n, so G is a
free abelian group of a rank less than or equal to n.

If the collection {Ni} is countable, then for any element g ∈ G there exist
elements s1, . . . , sk in {ri} such that g ∈ 〈s1, . . . , sk〉 since g has finitely many break
points. Thus, G is a subgroup of the free abelian group 〈{ri}〉 of countably infinite
rank. Since G has infinitely many orbitals, G is also a free abelian group of countably
infinite rank.

By Proposition 1.2.5, any commutative subgroup of PLo(I) is isomorphic to a
subgroup of the direct sum

⊕
i∈Z Z of copies of integers. where

⊕
i∈Z Z is the direct

sum of copies of integers.
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1.3 Decompositions of subgroups of PLo(I)

In this section, we will prove that any group which is a direct product of finitely
many non-commutative, indecomposable subgroups of PLo(I) has a unique decom-
position (Theorem 1.3.7).

Let G and H be subgroups of PLo(I). We first consider a necessary and sufficient
condition for any g ∈ G and h ∈ H to commute by extending the argument of
orbitals of elements described in the previous section to that of orbitals of groups.

For a subgroup G of PLo(I) the complement set of supp(G) is denoted by Fix(G).
Note that

Fix(G) =
⋂

g∈G

Fix(g),

where the set of points fixed by g ∈ G is denoted by Fix(g).

Lemma 1.3.1. Let G and H be subgroups of PLo(I) such that [g, h] = 1 for each
g ∈ G and each h ∈ H. Then the following statements hold.

(1) If N is an orbital of G, then ∂N ⊂ Fix(〈G,H〉).

(2) If N is a non-commutative orbital of G, then hN = 1 for all h ∈ H. If N is
a commutative orbital of G, then for any h ∈ H the element hN has N as an
orbital or hN = 1.

Proof. Suppose that N is an orbital of G. It suffices to prove that ∂N ⊂ Fix(H).
Let x ∈ ∂N and h ∈ H. Without loss of generality, we may assume that x is the
larger one of the two elements in ∂N . Then, there exists a sequence (yn) in N which
converges to x. Since N is an orbital of G, for each n there exist gn ∈ G and an
orbital An ⊂ N of gn such that yn ∈ An(⊂ supp(gn)). Let zn be an element of
∂An ∩ (yn, x]. Since zngn = zn and [h, gn] = 1, by Lemma 1.2.1, we see znh = zn.
Since the sequence (zn) converges to x, it follows that xh = x, which proves (1).

Suppose that N is a non-commutative orbital of G. Let x ∈ N . Since N is an
orbital of G, there exist g ∈ G and an orbital A ⊂ N of g such that x ∈ A. Now, we
claim that there exist g′ ∈ G and an orbital B of g′ such that A ∩ B ,= ∅, A ,= B,
and A ∪ B ⊂ N . Indeed, if A ,= N , then let y ∈ ∂A ∩ N . Since N is an orbital
of G, there exist g′ ∈ G and an orbital B of g′ such that y ∈ B ⊂ N . If A = N ,
then ∂A ∩ N = ∅. Since N is non-commutative, by Lemmas 1.2.2 and 1.2.4, there
exists g′′ ∈ G such that [gN , g′′N ] ,= 1. From the latter part in the proof of Lemma
1.2.4, there exists an orbital B of an element g′ such that A ∩ B ,= ∅, A ,= B and
A ∪ B ⊂ N (recall that we can take g′ as either g′′ or [g, g′′]).

Let h ∈ H. Since [g, h] = 1 and [g′, h] = 1, by Lemma 1.2.1, we see that
∂A ∪ ∂B ⊂ Fix(h). Hence ah = a for all a ∈ A ∪ B. In particular, xh = x, thus
hN = 1.

Suppose that N is commutative. Let g ∈ G such that gN has N as an orbital,
and h ∈ H. Since [h, g] = 1, it follows that [hN , gN ] = 1. By Lemma 1.2.1, hN has
N as an orbital or hN = 1, which proves (2).
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The next lemma will be used in Subsection 1.4.2.

Lemma 1.3.2. Let G and H be subgroups of PLo(I). Then [g, h] = 1 for each
g ∈ G and each h ∈ H if and only if

(1) supp(G) ∩ supp(H) = ∅, or

(2) There exists a collection {Ci} of common commutative orbitals of both G and
H such that

supp(G) ∩ supp(H) =
⊔

i

Ci,

and for any i there exists ri ∈ PLo(I) with exactly one orbital Ci such that
gCi , hCi ∈ 〈ri〉 for each g ∈ G and each h ∈ H.

Proof. Suppose that [g, h] = 1 for each g ∈ G and each h ∈ H, and supp(G) ∩
supp(H) ,= ∅. It suffices to prove (2). Suppose that C is an orbital of G and there
exists x ∈ C such that xh ,= x for some h ∈ H. By Lemma 1.3.1, C is a commutative
orbital of G and hC has C as an orbital. Then, since for any h ∈ H hC has C as
an orbital or hC = 1, C is also a commutative orbital of H. Thus, there exists a
collection {Ci} of common commutative orbitals of both G and H, and we can write

supp(G) ∩ supp(H) =
⊔

i

Ci.

Fix i and let f be an element of G which has Ci as an orbital. Since [f, h] = 1 for
each h ∈ H, it follows that

{hCi |h ∈ H} < C̃(fCi) ∼= Z.

Hence, the group {hCi |h ∈ H} is infinite cyclic. In a similar way, the group {gCi | g ∈
G} is also infinite cyclic. Thus, we see that

〈{gCi | g ∈ G} ∪ {hCi |h ∈ H}〉 < C̃(fCi),

so
〈{gCi | g ∈ G} ∪ {hCi |h ∈ H}〉

is also infinite cyclic. Let ri be a generator of the group, then we complete the
statement (2). The converse implication is easy to prove, so the details are left to
the reader.

Next, we set up the terminology needed to prove Proposition 1.3.4.
Let {A,B} be a set of two non-empty open subintervals of R. We call {A,B} a

chain of intervals if A ∩ B is a proper subinterval of A and of B. We call {A,B}
a nest of intervals if A is a proper subinterval of B, or if B is a proper subinterval
of A. In particular, we call {A,B} a proper nest of intervals if {A,B} is a nest of
intervals and ∂A ∩ ∂B = ∅.

We call {A,B} a chain of orbitals if {A,B} is a chain of intervals such that A
is an orbital of an element of PLo(I) and B is an orbital of another element. In an
entirely analogous way a nest of orbitals and a proper nest of orbitals are defined.
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Lemma 1.3.3. Let g, h ∈ PLo(I) and [g, h] ,= 1. If for any orbital A of g and any
orbital B of h such that A∩B ,= ∅ and [gA, hB] ,= 1, the set {A,B} is a proper nest
of orbitals of g and h, then [g, [g, h]] ,= 1 or [h, [g, h]] ,= 1. Otherwise, [g, [g, h]] ,= 1
and [h, [g, h]] ,= 1.

Proof. Let g and h be elements in PLo(I) and [g, h] ,= 1. Let A be the set of all
orbitals of g and B be the set of all orbitals of h. Suppose that for any orbital A of
g and any orbital B of h such that A ∩ B ,= ∅ and [gA, hB] ,= 1, {A,B} is a proper
nest of orbitals of g and h. Now since [g, h] ,= 1, there exist A ∈ A and B ∈ B
such that A ∩ B ,= ∅ and [gA, hB] ,= 1, and by assumption, {A,B} is a proper nest
of orbitals of g and h. Without loss of generality, we may assume that A = (a, c),
{B1, . . . , Bn} ⊂ B and Bi ! A for all i. Then, there exists ε > 0 such that [g, h] has
slope 1 on [a, a + ε] ∪ [c − ε, c]. By Lemma 1.2.2, [g, h]A ,= 1, and then, by Lemma
1.2.1, we see [g, [g, h]] ,= 1.

Suppose that there exist A ∈ A and B ∈ B such that A∩B ,= ∅ and [gA, hB] ,= 1,
and {A,B} is not a proper nest of orbitals. Then there are three cases: (i) A = B,
(ii) {A,B} is a nest of orbitals with exactly one common endpoint, and (iii) {A,B}
is a chain of orbitals.

(i) Let A = B = (a, c). Since [g, h]A ,= 1 and there exists ε > 0 such that [g, h]
has slope 1 on [a, a+ ε]∪ [c− ε, c], by Lemma 1.2.1, it follows that [g, [g, h]] ,= 1 and
[h, [g, h]] ,= 1.

(ii) Without loss of generality we may assume that A = (a, c), B = (a, d), and
a < d < c. Then there exists ε > 0 such that [g, h] has slope 1 on [a, a+ ε]. Suppose
that xg > x for each x ∈ A. Since dh = d and dg−1 ∈ B, it follows that

dg−1[g, h] = dg−1ghg−1h−1 ,= dg−1.

Hence, [g, h] ,= 1 on B. Suppose that xg < x for each x ∈ A. Since dg ∈ B,
dgh ,= dg. Thus, d[g, h] ,= d. Hence, [g, h] ,= 1 on B. In both cases, [g, h] has neither
A nor B as orbitals. By Lemma 1.2.1, we see that [g, [g, h]] ,= 1 and [h, [g, h]] ,= 1.

(iii) We may assume that A is the leftmost orbital of g such that there exists an
orbital C of h such that {A,C} is a chain of orbitals. In addition, we may assume
that B is the leftmost orbital of h such that {A,B} is a chain of orbitals. Without
loss of generality, we may assume that A = (a, c), B = (b, d), and b < a < d < c. If
yh > y for all y ∈ B, then a < ah < dh = d, thus ahg−1 ,= ah. Hence

a[g, h] = aghg−1h−1 = ahg−1h−1 ,= a

and, by Lemma 1.2.1, [g, [g, h]] ,= 1. Now, if there exists an orbital A′ of g on the
left of A such that A′ ∩ B ,= ∅, then by the above assumption, {A′, B} is a nest
of orbitals. Thus, bg = b. Since there exists ε > 0 such that [g, h] has slope 1 on
[b, b+ ε], and a[g, h] ,= a, by Lemma 1.2.1, it follows that [h, [g, h]] ,= 1.

If yh < y for all y ∈ B, then yh−1 > y for all y ∈ B. Thus a[g, h−1] ,= a. Since
ah−1g−1 ,= ah−1, we see ah−1[g, h] ,= ah−1. Since a < ah−1 < dh−1 = d, it follows
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that [g, h] ,= 1 on B. By an argument similar to the above, we see [h, [g, h]] ,= 1.
Now, assume by contradiction that [g, [g, h]] = 1. Since ah−1[g, h] ,= ah−1, it follows
that [g, h] ,= 1 on A. Since g has A as an orbital, by Lemma 1.2.1, the commutator
[g, h] also has A as an orbital. Then, hg−1h−1 fixes both a and c. Since gA and
[g, h]A commute, by Lemma 1.2.2, there exist u ∈ PLo(I) and m,n ∈ Z such that
gA = um, [g, h]A = un. Since [g, h]A = gA(hg−1h−1)A, it follows that

un−m = (hg−1h−1)A.

Since hg−1h−1 fixes ah−1 and a < ah−1 < d, we must have n = m. Then,
(hg−1h−1)A = 1. On the other hand, since h−1(A) = (ah−1, ch−1) is an orbital
of hg−1h−1 and h−1(A) ∩ A ,= ∅, we see (hg−1h−1)A ,= 1, a contradiction.

The center of a group G is the subset

Z(G) = {z ∈ G | zg = gz for all g ∈ G}.

We note that Z(G) is a normal subgroup of G.

Proposition 1.3.4. Let G be a subgroup of PLo(I). Then Z(G/Z(G)) = {1}.

Proof. We may assume that G is non-commutative. Let gZ(G) ∈ Z(G/Z(G)) and
h be any element of G. Since gZ(G)hZ(G) = hZ(G)gZ(G), it follows that [g, h] ∈
Z(G). Thus, [x, [g, h]] = 1 for all x ∈ G. By Lemma 1.3.3, we have [g, h] = 1.
Hence, g ∈ Z(G), which implies Z(G/Z(G)) = {1}.

Lemma 1.3.5. Let G, H < PLo(I). Suppose that H is non-commutative and
[g, h] = 1 for each g ∈ G and each h ∈ H. Then supp(G) ! supp(〈G,H〉).

Proof. Since H is non-commutative, by Lemma 1.2.4, H has a non-commutative
orbital N . Since [g, h] = 1 for each g ∈ G and each h ∈ H, by Lemma 1.3.1, it
follows that N ∩ supp(G) = ∅ and N ⊂ supp(〈G,H〉).

Recall that a subgroup H of a group G is called a direct factor of G if there
exists a subgroup K of G such that G = H ×K. If there are no proper non-trivial
direct factors of G, then G is said to be indecomposable.

Theorem 1.3.6. Let H1, . . . , Hn, K1, . . . , Km be non-commutative, indecomposable
subgroups of PLo(I). Suppose that Z(Hi) = {1} for each i and Z(Kj) = {1} for
each j. Then,

∏n
i=1 Hi and

∏m
j=1 Kj are isomorphic if and only if n = m, and

there exists a permutation σ ∈ Sn such that Hi and Kσ(i) are isomorphic for each
i ∈ {1, . . . , n}.

Proof. Let H < PLo(I). Then we know supp(H) ⊂ (0, 1). First we claim that for
any a, b ∈ I there exists a group H̃ such that supp(H̃) ⊂ (a, b) and H̃ ∼= H. Let
f : (0, 1) → (a, b) be an orientation-preserving piecewise linear homeomorphism that
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is differentiable everywhere except at finitely many real numbers. Then for h ∈ H
we define h̃ by

xh̃ =

{
xf−1hf if x ∈ (a, b),

x if x /∈ (a, b),

and set H̃ = {h̃ |h ∈ H}. It is easy to check that supp(H̃) ⊂ (a, b) and H̃ ∼= H.
Suppose that

∏n
i=1 Hi and

∏m
j=1 Kj are isomorphic. By the above, we can assume

that the direct factors of
∏n

i=1 Hi have disjoint supports, that is, if i ,= j then
supp(Hi) ∩ supp(Hj) = ∅. Similarly, we can assume this for the direct factors of∏m

j=1 Kj. Let

φ :
n∏

i=1

Hi →
m∏

j=1

Kj

be an isomorphism. Since

〈φ(H1), . . . ,φ(Hn)〉 = 〈K1, . . . , Km〉,

it follows that
n⋃

i=1

supp(φ(Hi)) =
m⋃

j=1

supp(Kj).

First we prove that for any i ∈ {1, . . . , n}, supp(φ(Hi)) can be written as a
disjoint union of finitely many elements of the set

{supp(Kj) | j ∈ {1, . . . ,m}}.

Fix k ∈ {1, . . . , n} and let Jk be the set of all j ∈ {1, . . . ,m} such that φ(Hk) has
an orbital of Kj as an orbital. Then it suffices to prove that

supp(φ(Hk)) =
⋃

j∈Jk

supp(Kj).

Let N be an orbital of φ(Hk). Since

n⋃

i=1

supp(φ(Hi)) =
m⋃

j=1

supp(Kj),

there exists l ∈ {1, . . . ,m} such that N is contained in some orbital M of Kl. Since
by Lemma 1.3.1 (1), the endpoints of N are fixed by

〈φ(H1), . . . ,φ(Hn)〉 = 〈K1, . . . , Km〉,

it follows that N = M . That is, φ(Hk) has the orbital M of Kl as an orbital. Thus
l ∈ Jk and N ⊂ supp(Kl). Hence we have

supp(φ(Hk)) ⊂
⋃

j∈Jk

supp(Kj).
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Now we prove that

supp(φ(Hk)) ⊃
⋃

j∈Jk

supp(Kj).

Assume by contradiction that there exist l ∈ Jk and an orbital L of Kl such that
L " supp(φ(Hk)). Then since by Lemma 1.3.1 (1), the endpoints of any orbital of
φ(Hk) are fixed by

〈φ(H1), . . . ,φ(Hn)〉 = 〈K1, . . . , Km〉,

we see that L ∩ supp(φ(Hk)) = ∅. Since L ⊂ supp(Kl), there exists p ∈ Kl such
that supp(p) ∩ L ,= ∅. Then there exist s ∈ Hk and

t ∈ 〈H1, . . . , Hk−1, Hk+1, . . . , Hn〉

such that p = φ(s)φ(t), supp(φ(t)) ∩ L ,= ∅. Let

G1 = {πl(φ(h)) |h ∈ Hk}

and
G2 = {πl(φ(h)) |h ∈ 〈H1, . . . , Hk−1, Hk+1, . . . , Hn〉},

where πl :
∏m

j=1 Kj → Kl is the projection. Then Gi < Kl for i ∈ {1, 2}. In addition,
the following statements hold. (i) Gi ,= {1} for each i ∈ {1, 2}. (ii) Kl = 〈G1, G2〉.

(i) Since l ∈ Jk, φ(Hk) has an orbital O of Kl as an orbital. Thus, there exists
u ∈ Hk such that supp(φ(u)) ∩ O ,= ∅. Let φ(u) = k1 · · · km, where kj ∈ Kj. Since
supp(Kl) ∩ supp(Kj) = ∅ for each j ,= l, it follows that πl(φ(u)) = kl ,= 1. Thus
G1 ,= {1}. On the other hand, we can write t = t1 · · · tn, where ti ∈ Hi, i ,= k. Since
supp(φ(t)) ∩ L ,= ∅, there exists i ,= k such that πl(φ(ti)) ,= 1. Thus G2 ,= {1}.

(ii) Let q ∈ Kl. There exist hi ∈ Hi, 1 ≤ i ≤ n such that q = φ(h1) · · ·φ(hn).
Then for each i there exist qi ∈ Kl and

ri ∈ 〈K1, . . . , Kl−1, Kl+1, . . . , Km〉

such that φ(hi) = qiri. Then

q =
n∏

i=1

qiri = (
n∏

i=1

qi)(
n∏

i=1

ri).

Since Kl ∩ 〈K1, . . . , Kl−1, Kl+1, . . . , Km〉 = {1}, it follows that q =
∏n

i=1 qi and∏n
i=1 ri = 1. Then,

q =
n∏

i=1

qi =
n∏

i=1

πl(φ(hi)) ∈ 〈G1, G2〉.

Moreover, it is easy to check that [g1, g2] = 1 for each g1 ∈ G1 and each g2 ∈ G2,
and G1 ∩G2 ⊂ Z(Kl) = {1}. Hence Kl = G1 ×G2, a contradiction.
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Fix k ∈ {1, . . . , n}, again. Let δ be a bijection from {1, . . . , n} to itself such that
δ(1) = k. For each j ∈ {1, . . . , n}, we have

supp〈φ(Hδ(1)), . . . ,φ(Hδ(j))〉 =
j⋃

i=1

supp(φ(Hδ(i)))

=
j⋃

i=1

⋃

l∈Jδ(i)

supp(Kl)

=
⋃

l∈
⋃j

i=1 Jδ(i)

supp(Kl).

Let aj = |
⋃j

i=1 Jδ(i)|. Since for any i ∈ {1, . . . , n}, φ(Hδ(i)) is non-commutative,
by Lemma 1.3.5, it follows that aj+1 ≥ aj + 1 for each j ∈ {1, . . . , n}. Then,
aj − a1 ≥ j − 1 for each j ∈ {1, . . . , n}. Since a1 ≥ 1, it follows that aj ≥ j for each
j ∈ {1, . . . , n}. Hence m ≥ n. By considering the inverse φ−1, we obtain n ≥ m.
Thus n = m. Then aj = j. Since a1 = 1, there exists l ∈ {1, . . . ,m = n} such that
supp(φ(Hk)) = supp(Kl). Let h ∈ Hk. Then there exist q ∈ Kl and

r ∈ 〈K1, . . . , Kl−1, Kl+1, . . . , Km〉

such that φ(h) = qr. Since supp(φ(h)) ⊂ supp(φ(Hk)) = supp(Kl), it follows that
r = 1. Thus φ(h) = q ∈ Kl. Hence φ(Hk) ⊂ Kl. By considering φ−1, we see
that there exists j ∈ {1, . . . , n} such that φ−1(Kl) ⊂ Hj. Since Hk ⊂ φ−1(Kl) ⊂ Hj,
j = k. Therefore φ(Hk) = Kl. Since φ is bijective, we complete the proof of Theorem
1.3.6.

Let G =
∏n

i=1 Hi be the direct product of groups H1, . . . , Hn. Then we note that
Z(G) =

∏n
i=1 Z(Hi). It is still not known whether there exists a non-commutative,

indecomposable subgroup of PLo(I) whose center is non-trivial. However, by Propo-
sition 1.3.4 and Theorem 1.3.6, we obtain the following:

Corollary 1.3.7. Let H1, . . . , Hn, K1, . . . , Km be non-commutative, indecomposable
subgroups of PLo(I). If

∏n
i=1 Hi and

∏m
j=1 Kj are isomorphic, then n = m, and

there exists σ ∈ Sn such that Hi/Z(Hi) and Kσ(i)/Z(Kσ(i)) are isomorphic for each
i ∈ {1, . . . , n}.

Recall that a Remak decomposition of a group G is a decomposition of G as a
direct product of finitely many non-trivial indecomposable subgroups. We note that
any commutative subgroup of PLo(I) is isomorphic to a subgroup of the direct sum⊕

i∈Z Z of copies of integers. The infinite cyclic group is indecomposable, and every
free abelian group of countably infinite rank is decomposable. If a subgroup G of
PLo(I) has a Remak decomposition, then G may have the form

G = H1 × · · ·×Hn × Zp
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up to order of the direct factors, where Hi are non-commutative and indecomposable,
and Zp is the free abelian group of rank p as a direct product of the indecomposable
group Z.

The following corollary helps us understand whether certain subgroups of PLo(I)
described in the following section are non-isomorphic.

Corollary 1.3.8. Let G < PLo(I). Suppose that G has the following Remak de-
compositions

G = (
n∏

i=1

Hi)× Zp = (
m∏

j=1

Kj)× Zq,

where Hi and Kj are non-commutative, Z(Hi) = {1} for each i, and Z(Kj) = {1}
for each j. Then, p = q, n = m, and there exists σ ∈ Sn such that Hi and Kσ(i) are
isomorphic for each i ∈ {1, . . . , n}.

1.4 Subgroups of F which have direct decompo-
sitions

1.4.1 Some facts about F

Recall that the group F is a subgroup of PLo(I) and it is defined as the group
of piecewise linear homeomorphisms from the closed unit interval I onto itself that
are differentiable everywhere except at finitely many dyadic rational numbers (i.e.,
numbers from Z[1/2]) and such that on the intervals of differentiability the deriva-
tives are integer powers of 2. As examples of subgroups of F which have direct
decompositions, other than the stabilizers of F to be described in the next subsec-
tion, the centralizers of F are known. The centralizer of every element in F is a
direct product of finitely many cyclic groups and groups isomorphic to F [16, p. 97].
We note that any subgroup of F which has a direct product decomposition of two
non-trivial subgroups is an infinite index subgroup of F .

It is known [9] that the commutator subgroup [F, F ] is simple, and that [F, F ]
is the subgroup of all functions with slope 1 both at 0+ and 1−.

1.4.2 Isomorphism between stabilizers of finite sets

We say that f ∈ F has closure of support in an interval J if the closure in I of
supp(f) is contained in J . Let FJ be the set of all functions from F with closure
of support in J . Then FJ is a subgroup of F . We note that F(0,1) is exactly the
group [F, F ]. It is known [15, Lemma 3.1] that for any a, b ∈ I with a < b, F(a,b) is
isomorphic to F(0,1).

For any finite subset X of (0, 1), let HX be the stabilizer of X in F . That is,

HX = {f ∈ F | xf = x for each x ∈ X}.
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Any finite subset Y of I is subdivided into three subsets:

Y1 = Y ∩ Z[1/2], Y2 = Y ∩ (Q \ Z[1/2]), and Y3 = Y ∩ (R \Q).

Let Y = {r1, . . . , rn} ⊂ I, where rj < rj+1 and r1, rn /∈ Y2. Let

BY = F[r1,rn] ∩HY \{r1,rn}.

The following proposition generalizes [15, Theorem 3.2] slightly in that r1 and rn
are any numbers in Y1 ∪ Y3. Since it can be proved by an argument similar to the
proof of that theorem, the details are left to the reader.

Proposition 1.4.1. The group BY is isomorphic to a semidirect product

BY
∼= [F, F ]n−1 # Z2|(Y \{r1,rn})1|+|Y2|+|{r1,rn}1|.

Corollary 1.4.2. Let U = {α1, . . . ,αn} ⊂ I, where αj < αj+1 and α1,αn /∈ U2, and
V = {β1, . . . , βm} ⊂ I, where βj < βj+1 and β1, βm /∈ V2. If the subgroups BU and
BV are isomorphic, then n = m and

2|(U \ {α1,αn})1|+ |U2|+ |{α1,αn}1| = 2|(V \ {β1, βm})1|+ |V2|+ |{β1, βm}1|.

Proof. The commutator subgroup of BU is isomorphic to the direct product of n−1
copies of the simple group [F, F ]. Thus, it has 2n−1 normal subgroups. Since it
cannot be isomorphic to a direct power of a different number of simple groups, we
have n = m. Since

BU/[F, F ]n−1 ∼= BV /[F, F ]m−1,

we see that

Z2|(U\{α1,αn})1|+|U2|+|{α1,αn}1| ∼= Z2|(V \{β1,βm})1|+|V2|+|{β1,βm}1|,

which implies

2|(U \ {α1,αn})1|+ |U2|+ |{α1,αn}1| = 2|(V \ {β1, βm})1|+ |V2|+ |{β1, βm}1|.

Let U = {α1, . . . ,αn} ⊂ I with αj < αj+1. The type τ(U) is the word of length
n in the alphabet {1, 2, 3} as follows: for every i, the ith letter in τ(U) is 1 if αi is a
dyadic rational, 2 if αi is rational but not a dyadic rational, and 3 if αi is irrational.
We will use the following lemma.

Lemma 1.4.3 ( [15]). Let U = {α1, . . . ,αn} ⊂ I, where αj < αj+1 and α1,αn /∈ U2,
and V = {β1, . . . , βm} ⊂ I, where βj < βj+1 and β1, βm /∈ V2. Suppose that τ(U) ≡
τ(V ) or the word τ(U) is equal to τ(V ) read backwards. Then the groups BU and
BV are isomorphic.
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By Lemma 1.4.3 we will use the notation Bw for the group BU if w ≡ τ(U).
Let U be a finite subset of (0, 1). Write U1 ∪ U3 = {r1, . . . , rn}, where rj < rj+1,

|U1 ∪ U3| = n. Let r0 = 0, rn+1 = 1, and

U2,k = {q ∈ U2 | rk < q < rk+1} for each k ∈ {0, . . . , n}.

Then

U2 =
n⊔

k=0

U2,k.

Recall (see [15, subsection 4.2] for details), that

HU = B{r0,r1}∪U2,0 × · · ·× B{rn, rn+1}∪U2,n .

For any word w1w2 ∈ {11, 13, 33} and j ∈ {0, . . . , |U2|}, let ΛU,w1w2,j =

{i ∈ {0, . . . , n} | τ({ri, ri+1} ∪ U2,i) ≡ w12
jw2 or τ({ri, ri+1} ∪ U2,i) ≡ w22

jw1}.

Then we have |ΛU,w1w2,j| ≥ 0, and

|U2|⊔

j=0

⊔

w1w2∈{11,13,33}

ΛU,w1w2,j = {0, . . . , n}. (E)

By Lemma 1.4.3 and the above notation, we can see that

HU
∼=

∏

0≤j≤|U2|,w1w2∈{11,13,33}

(Bw12jw2
× · · ·× Bw12jw2

)︸ ︷︷ ︸
|ΛU,w1w2,j |

.

Remark 1.4.4. Let U and V be finite sets of numbers in I such that τ(U) ≡ u12ju2

and τ(V ) ≡ v12kv2, where u1u2, v1v2 ∈ {11, 13, 33}. If the groups Bu12ju2
and Bv12kv2

are isomorphic, then by Corollary 1.4.2, j = k and u1u2 ≡ v1v2.

In order to prove that the factors of HU are indecomposable, we need a new
definition and a lemma. We give them for subgroups of PLo(I) and then apply
them to the factors of HU .

Definition 1.4.5. Let G be a subgroup of PLo(I), and M1 and M2 be orbitals of
G. Let e1 ∈ ∂M1 and e2 ∈ ∂M2. We say that {e1, e2} is a set of linked endpoints
of M1 and M2 if for any g ∈ G, the following statement holds: g has some orbital
contained in M1 sharing the end e1 if and only if g also has some orbital contained
in M2 sharing the end e2. In particular, we say that e is a linked endpoint of M1

and M2 if e1 = e2 = e.

Lemma 1.4.6. Let G and H be subgroups of PLo(I). Suppose that [g, h] = 1 for
each g ∈ G and each h ∈ H. Let M1 and M2 be disjoint orbitals of 〈G,H〉, M1 and
M2 have a set {e1, e2} of linked endpoints for 〈G,H〉, and supp(G) ⊃ M1. Suppose
also that there exists r ∈ 〈G,H〉 such that r has an orbital which shares the end e1
and is properly contained in M1. Then supp(G) ⊃ M1 (M2.
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Proof. Since M1 ⊂ supp(G), there exists an orbital N of G such that M1 ⊂ N . Since
∂M1 ⊂ Fix(〈G,H〉), it follows that M1 = N . Thus M1 is an orbital of G. Then
M1 ∩ supp(H) = ∅. Indeed, assume by contradiction that M1 ∩ supp(H) ,= ∅. Then
by Lemma 1.3.1, M1 is an orbital of H. Thus M1 is an orbital of both G and H.
Since r ∈ 〈G,H〉, there exist s ∈ G and t ∈ H such that r = st. By Lemma 1.3.2,
M1 is a common commutative orbital of both G and H, a contradiction. Hence
M1 ∩ supp(H) = ∅. Since r = st, where s ∈ G, t ∈ H, and supp(t) ∩ M1 = ∅, s
has an orbital which shares the end e1 and is properly contained in M1. Then since
{e1, e2} is a set of linked endpoints, s has an orbital contained in M2 sharing the
end e2. Hence supp(G)∩M2 ,= ∅. Thus, M2 is an orbital of G, which completes the
proof.

Proposition 1.4.7. Let Y = {r1, . . . , rn} ⊂ I, where r1, rn /∈ Q \ Z[1/2], rj < rj+1

and r2, . . . , rn−1 ∈ Q \ Z[1/2]. Then BY is indecomposable, and Z(BY ) = {1}.

Proof. Assume by contradiction that there exist non-trivial subgroups K and L of
BY such that BY = K×L. Since K ,= {1}, there exist k ∈ K and i ∈ {1, . . . , n−1}
such that supp(k) ∩ (ri, ri+1) ,= ∅. Since

supp(K) ∪ supp(L) = supp(BY ) =
n−1⋃

j=1

(rj, rj+1)

and [f, g] = 1 for each f ∈ K and each g ∈ L, by Lemma 1.3.1, K must have the
interval (ri, ri+1) as an orbital. We notice that since r2, . . . , rn−1 ∈ Q \ Z[1/2], all
elements of BY are differentiable at those numbers. Thus for each j ∈ {1, . . . , n −
1}, rj is a linked endpoint of (rj−1, rj) and (rj, rj+1). By applying Lemma 1.4.6
repeatedly for K and L, we can see that

supp(K) =
n−1⋃

j=1

(rj, rj+1)

(we can clearly take an element r as in Lemma 1.4.6. Use both [9, Lemma 4.2] and
the argument in the proof of [22, Proposition 4.1(b)], for example). Similarly, we
see that

supp(L) =
n−1⋃

j=1

(rj, rj+1).

By Lemma 1.3.2, for any j the interval (rj, rj+1) is a common commutative orbital
of both K and L. Hence (rj, rj+1) is a commutative orbital of 〈K,L〉 = BY for each
j ∈ {1, . . . , n− 1}. By Lemma 1.2.4, BY is commutative, a contradiction.

Let g ∈ Z(BY )(< BY ). Since for each j ∈ {1, . . . , n − 1}, (rj, rj+1) is a non-
commutative orbital of BY , by Lemma 1.3.1 (2),

g(rj ,rj+1) = 1 for each j ∈ {1, . . . , n− 1}.

Then g = 1. Thus we see that Z(BY ) = {1}.
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Theorem 1.4.8. Let U and V be finite sets of numbers in (0, 1). Then the following
statements are equivalent.

(1) HU and HV are isomorphic.

(2) |U2| = |V2|, and |ΛU,w1w2,j| = |ΛV,w1w2,j| for each w1w2 ∈ {11, 13, 33} and
each j ∈ {0, . . . , |U2|}.

Proof. Suppose that the statement (2) holds. Then

HU
∼=

∏

0≤j≤|U2|=|V2|,w1w2∈{11,13,33}

(Bw12jw2
× · · ·× Bw12jw2

)︸ ︷︷ ︸
|ΛU,w1w2,j |=|ΛV,w1w2,j |

∼= HV .

Suppose that the statement (1) holds. Let

U1 ∪ U3 = {α1, . . . ,αn}, αj < αj+1, V1 ∪ V3 = {β1, . . . , βm}, βj < βj+1,

α0 = β0 = 0, and αn+1 = βm+1 = 1. Set

Ci = B{αi,αi+1}∪U2,i and Dj = B{βj ,βj+1}∪V2,j ,

where

U2,i = {q ∈ U2 |αi < q < αi+1} and V2,j = {q ∈ V2 | βj < q < βj+1}.
Then we see that

HU =
n∏

i=0

Ci and HV =
m∏

j=0

Dj.

Let φ : HU → HV be an isomorphism. By Proposition 1.4.7, all direct factors of HU

and HV are indecomposable, and the center of each factor is trivial. By Theorem
1.3.6,

n = |U1 ∪ U3| = |V1 ∪ V3| = m,

and there exists σ ∈ Sn+1 such that φ(Ci) = Dσ(i) for each i ∈ {0, . . . , n}. Then by
Remark 1.4.4, |U2| = |V2|, and

τ({αi,αi+1} ∪ U2,i) ≡ τ({βσ(i), βσ(i)+1} ∪ V2,σ(i))

or the word τ({αi,αi+1}∪U2,i) is equal to τ({βσ(i), βσ(i)+1}∪ V2,σ(i)) read backwards.
Thus, for any word w1w2 ∈ {11, 13, 33} and any j ∈ {0, . . . , |U2| = |V2|},

i ∈ ΛU,w1w2,j if and only if σ(i) ∈ ΛV,w1w2,j.

Therefore the permutation σ satisfies σ(ΛU,w1w2,j) = ΛV,w1w2,j for each w1w2 ∈
{11, 13, 33} and each j ∈ {0, . . . , |U2|}, which completes the proof.

It is known [6] that the centralizer in PLo(I) of every element of PLo(I) is a
direct product of finitely many cyclic groups and groups isomorphic to PLo(I). Let
C be the family of all centralizers in F of elements of F , all centralizers in PLo(I)
of elements of PLo(I), and all stabilizers of finite sets of numbers in F . Note
that PLo(I) is uncountable, indecomposable and centerless. By proposition 1.4.7,
Remark 1.4.4, Theorem 1.4.8, and Corollary 1.3.8, we can easily see whether any
two subgroups in C are non-isomorphic.
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1.5 Conjugacy of stabilizers of finite sets

Let Aut(I) be the group of all bijections from I = [0, 1] onto itself.

Definition 1.5.1. Let S be the subset of Aut(I) defined as follows. A bijection f
lies in S if there exists a finite set {r1, . . . , rn} of real numbers such that for any
neighborhood Ui of ri for each i,

(1) f is a piecewise linear homeomorphism on I \ (
⋃n

i=1 Ui),

(2) f is differentiable on I \ (
⋃n

i=1 Ui) everywhere except at finitely many dyadic
rational numbers (and boundaries of Ui for each i), and

(3) on the intervals of differentiability, absolute values of the derivatives are integer
powers of 2.

Lemma 1.5.2. The set S is a group under the operation of composition.

Proof. Let f1 and f2 be elements of S. LetX and Y be finite sets of real numbers in I
for f1 and f2, respectively, and X∪f−1

1 (Y ) = {z1, . . . , zn}. Let Ni be a neighborhood
of zi for each i. Set

L =
⋃

j∈{k|zk∈X}

Nj.

Then f1 is a piecewise linear homeomorphism from I \ L onto I \ f1(L) that has
properties (2) and (3). Set

M =
n⋃

j=1

f1(Nj).

Then f2 is a piecewise linear homeomorphism from I \M onto I \ f2(M) that has
properties (2) and (3). That properties (1) and (2) are preserved under composi-
tion and inversion is standard, and property (3) is preserved under composition and
inversion from the chain rule. Hence the bijection f1f2 is a piecewise linear homeo-
morphism from I \

⋃n
j=1 Nj onto I \ f2(M) that has properties (2) and (3). Hence

f1f2 ∈ S. We can also check that f−1
1 ∈ S. The identity map from I onto itself is

also the identity element in S.

Let Homeo(I) be the group of all homeomorphisms from the closed unit interval
I onto itself, under the operation of composition. Let F be the subset of Homeo(I)
defined as follows: an element f of Homeo(I) lies in F if there exists a finite set
{r1, . . . , rn} of real numbers that satisfies the condition that ri ∈ Z[1/2] if and only
if f(ri) ∈ Z[1/2] and such that for any neighborhood Ui of ri for each i, there exists
g ∈ F such that

xf = xg for all x ∈ I \ (
n⋃

i=1

Ui).

Then we can check that F is a group.
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Remark 1.5.3. The group F is the image in Homeo(I) of some group, which was
defined in [15] and consists of possibly infinite tree-diagrams with finitely many in-
finite branches, under an embedding.

Let N be the set of all elements in S that are equal to the identity mapping
everywhere except at finitely many real numbers. Then it is easy to check that N
is a normal subgroup of S.

Definition 1.5.4. Define a group G to be the quotient group S/N .

Let p be the quotient map from S to G. Since F ⊂ F ⊂ S and all elements in
F are continuous, p induces a natural embedding of F into G.

To prove the later theorem about conjugacy, we need to choose functions which
map certain intervals or numbers in I. In doing so, we apply the following Lemmas
1.5.5 and 1.5.6. Lemma 1.5.5 follows directly from the proof of [9, Lemma 4.2].

Lemma 1.5.5. Let α1,α2, β1, and β2 be dyadic rational numbers in I, where α1 < α2

and β1 < β2. Then there exists a piecewise linear homeomorphism

f : [α1,α2] → [β1, β2]

with αif = βi that is differentiable everywhere except at finitely many dyadic rational
numbers and such that on the intervals of differentiability the derivatives are integer
powers of 2. In addition, there exists a piecewise linear homeomorphism

g : [α1,α2] → [β1, β2]

with α1g = β2, α2g = β1 that is differentiable everywhere except at finitely many
dyadic rational numbers and such that on the intervals of differentiability, signs of
values of the derivatives are all negative and absolute values of the derivatives are
integer powers of 2.

The next lemma follows immediately from the proof of [15, Lemma 3.1].

Lemma 1.5.6. Let α1,α2, β1, and β2 be real numbers in I, where α1 < α2 and β1 <
β2. Let (α1,α2) ,= (0, 1), and (β1, β2) ,= (0, 1). Then there exists a homeomorphism

f : [α1,α2] → [β1, β2]

with αif = βi such that for any neighborhoods U1, U2 of α1 and α2, respectively, f
has properties (1) and (2) in definition 1.5.1, and on the intervals of differentiability
the derivatives are integer powers of 2. In addition, there exists a homeomorphism

f : [α1,α2] → [β1, β2]

with α1f = β2, α2f = β1 such that for any neighborhoods U1, U2 of α1 and α2,
respectively, f has properties (1)–(3) in definition 1.5.1, and on the intervals of
differentiability signs of values of the derivatives are all negative.
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Let α1 and α2 be real numbers in I, where α1 < α2. We define the type τ̃{α1,α2}
as the word of length 2 in the alphabet {1, 1} as follows: for every i, the ith letter
in τ̃{α1,α2} is 1 if αi is a dyadic rational, 1 if αi is not a dyadic rational.

The next lemma also follows essentially from the proof of [15, Lemma 3.1].

Lemma 1.5.7. Let α1,α2, β1, and β2 be real numbers in I, where α1 < α2 and β1 <
β2. Let (α1,α2) ,= (0, 1), and (β1, β2) ,= (0, 1). Suppose that τ̃{α1,α2} ≡ τ̃{β1, β2}
or the word τ̃{α1,α2} is equal to τ̃{β1, β2} read backwards. Then there exists an
element f of S such that f maps (α1,α2) onto (β1, β2) homeomorphically, and the
groups p(F[α1,α2]) and p(F[β1,β2]) are conjugate by p(f) in G.

The following shows that the isomorphism between HU and HV (provided that
the statement (2) in Theorem 1.4.8 holds) is induced by conjugacy in G. Note that
we complete the proof without using Lemma 1.4.3.

Theorem 1.5.8. Let U and V be two finite sets of numbers in (0, 1). Suppose that
the statement (2) in Theorem 1.4.8 holds. Then p(HU) and p(HV ) are conjugate in
G.

Proof. Suppose that the statement (2) in Theorem 1.4.8 holds, where U and V are
two finite sets of numbers in (0, 1). Then by the two equations of type (E) (in
Subsection 1.4.2) for U and V , respectively, we obtain |U1 ∪ U3| = |V1 ∪ V3|, and
there exists σ ∈ Sn+1 such that

i ∈ ΛU,w1w2,j if and only if σ(i) ∈ ΛV,w1w2,j

for each w1w2 ∈ {11, 13, 33} and for each j ∈ {0, . . . , |U2| = |V2|}, where n =
|U1 ∪ U3| = |V1 ∪ V3|. Let

U1 ∪ U3 = {α1, . . . ,αn}, αj < αj+1, V1 ∪ V3 = {β1, . . . , βn}, βj < βj+1,

α0 = β0 = 0, and αn+1 = βn+1 = 1. Set

Ci = B{αi,αi+1}∪U2,i and Dj = B{βj ,βj+1}∪V2,j ,

where

U2,i = {q ∈ U2 |αi < q < αi+1} and V2,j = {q ∈ V2 | βj < q < βj+1}.

Then we have HU =
∏n

i=0 Ci and HV =
∏n

j=0 Dj. Note that for each i,

τ({αi,αi+1} ∪ U2,i) ≡ τ({βσ(i), βσ(i)+1} ∪ V2,σ(i))

or the word τ({αi,αi+1}∪U2,i) is equal to τ({βσ(i), βσ(i)+1}∪ V2,σ(i)) read backwards.
Set Ii = (αi,αi+1) and Ji = (βi, βi+1) for each i ∈ {0, . . . , n}. By Lemma 1.5.7, for
each i there exists fi of S such that fi maps Ii onto Jσ(i) homeomorphically. Then
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define f : I → I as follows. The function f coincides with fi on Ii for each i, and
αif = βi for each i. Then f lies in S. By Lemma 1.5.7,

p(f)−1p(HU)p(f) = p(f)−1p(
n∏

i=0

Ci)p(f) =
n∏

i=0

p(fi)
−1p(Ci)p(fi)

=
n∏

i=0

p(B{βσ(i),βσ(i)+1}∪fi(U2,i))

= p(H{βi}1≤i≤n∪f(U2))

in G. Then we see that τ(V ) ≡ τ({βi}1≤i≤n ∪ f(U2)). Since F is embedded into
G, by [15, Theorem 7.7], p(HV ) and p(H{βi}1≤i≤n∪f(U2)) are conjugate in G. Hence,
p(HU) and p(HV ) are conjugate in G.
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Chapter 2

Geometric description of Schreier
graphs of Baumslag-Solitar groups

2.1 Introduction

Let m and n be non-zero integers. The group which has the presentation

〈A,B | ABm = BnA〉

is called the Baumslag-Solitar group and denoted by BS(m,n). In 1962, Baumslag
and Solitar [1] introduced these groups and showed that BS(3, 2) is a non-Hopfian
group with one defining relation. It is the first example having such property.
Since then these groups have served as a proving ground for many new ideas in
combinatorial and geometric group theory (see [10, 11] for examples).

Schreier coset graphs are generalizations of the Cayley graph of a group G, which
are constructed for each choice of a subgroup of G and a generating set of G. The
detail is given in Section 2.2. In general, given a group G and its subgroup H, it
is difficult to construct the Cayley graph of G or the Schreier coset graph of all
left cosets of H in G. However once we have the appropriate Cayley or Schreier
graphs, we can use them as discrete models and may learn, from combinatorial
and geometric viewpoints, some properties of the original group or its subgroups.
Recently, in [22, 21], Savchuk constructed Schreier graphs of Thompson’s group F
from a motivation to study the amenability of the group.

In Chapter 2 we focus on the solvable group BS(1, n) for n ≥ 2. It is known
that BS(1, n) is isomorphic to some subgroup Gn with the generator Sn of the affine
group Aff(R) of the real line R, thus it has the natural action on R (see Section
2.2 for details). For any x ∈ R, we explicitly construct the Schreier coset graph
(BS(1, n)/StabBS(1,n)(x), {A,B}±) for the stabilizer StabBS(1,n)(x) of x under the
action. First, we show that for any x ∈ R, the Schreier graphs (OrbGn(x), Sn, x) and
(BS(1, n)/StabBS(1,n)(x), {A,B}±, StabBS(1,n)(x)) are isomorphic as marked labelled
directed graphs, where OrbGn(x) is the orbit of x under the natural action on R (see
Proposition 2.2.3 below). Hence, in most of this paper we consider the Schreier
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graph (OrbGn(x), Sn). Let Zω
n be the set of all infinite words over the finite group

Zn. The following theorem allows us to understand the structure of the Schreier
graphs.

Theorem 2.1.1. Let n ≥ 2 and x be a real number represented by w ∈ Zω
n. Then,

there exists a homomorphism h = (f,ψ, γ) : (OrbGn(x), Sn) → Γw such that for
every v ∈ Vw, the subgraph h−1(v) = (Dv, Dv × {b}±, Sn,α|, β|, l|) is isomorphic to
ΓZ, where h−1(v) = (f−1(v),ψ−1(v), Sn,α|, β|, l|).

See Definition 2.3.10 below for Γw and ΓZ. As its consequence, we classify the
Schreier graphs up to isomorphism.

Theorem 2.1.2. Let m,n ≥ 2 with m ,= n.

(1) For any x, y ∈ R, the Schreier graph (OrbGm(x), Sm) is not isomorphic to the
Schreier graph (OrbGn(y), Sn) as labelled directed graphs.

(2) For any α1,α2 ∈ R\Q, the Schreier graph (OrbGn(α1), Sn,α1) is Sn-isomorphic
to the Schreier graph (OrbGn(α2), Sn,α2) as marked labelled directed graphs.

(3) For any q ∈ Q and any α ∈ R \ Q, the Schreier graph (OrbGn(q), Sn) is not
isomorphic to the Schreier graph (OrbGn(α), Sn) as labelled directed graphs.

(4) Let q1, q2 ∈ Q. Then, the following statements are equivalent.

(a) The Schreier graph (OrbGn(q1), Sn) is isomorphic to the Schreier graph
(OrbGn(q2), Sn) as labelled directed graphs.

(b) OrbGn(q1) = OrbGn(q2) or OrbGn(−q1) = OrbGn(q2).

This result leads to a relevance to presentations for the stabilizers which turn
out to be infinite index subgroups in BS(1, n)(Theorem 2.5.5). Thus we expect that
this idea may give a way to investigate infinite index subgroups in a suitable group.

In Section 2.2, we set up notation and terminology concerning Schreier graphs
and Baumslag-Solitar groups. In Section 2.3, we start to construct Schreier graphs
and give a complete description of Schreier graphs of BS(1, n) with respect to any
real numbers. In Section 2.4, we classify them up to isomorphism. In Section 2.5,
by using the Schreier graphs we determine the group structure of the stabilizers and
obtain a relevance to presentations for the stabilizers of rational numbers.

2.2 Schreier graphs and Baumslag-Solitar groups

A labelled directed graph denoted by (V,E, L,α, β, l) consists of a nonempty set
V of vertices, a set E of edges, a set L of labels and three mappings α : E → V ,
β : E → V , and l : E → L. The vertices α(e) and β(e) are called the initial and the
terminal vertices of the edge e, respectively.
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A marked labelled directed graph denoted by (V,E, L,α, β, l, v0) is a labelled di-
rected graph with a distinguished vertex v0 called the marked vertex.

For i ∈ {1, 2} let Γi = (Vi, Ei, Li,αi, βi, li) be a labelled directed graph. Let
f : V1 → V2, ψ : E1 → E2 ( V2 and γ : L1 → L2 be maps satisfying the following
statements:

(1) If ψ(e) ∈ E2, then α2(ψ(e)) = f(α1(e)), β2(ψ(e)) = f(β1(e)), and l2(ψ(e)) =
γ(l1(e)) ∈ L2.

(2) If ψ(e) ∈ V2, then ψ(e) = f(α1(e)) = f(β1(e)).

The triple (f,ψ, γ) of maps is called the homomorphism from Γ1 to Γ2. Labelled
directed graphs Γ1 and Γ2 are isomorphic if there exists a homomorphism (f,ψ, γ) :
Γ1 → Γ2, called an isomorphism, such that both f and γ are bijections and ψ is a
injection with ψ(E1) = E2. In particular, if L1 = L2 = L and γ = 1L, Γ1 is said to
be L-isomorphic to Γ2.

For i ∈ {1, 2} let Γi be a marked labelled directed graph. Γ1 is said to be iso-
morphic to Γ2 if Γ1 is isomorphic to Γ2 as labelled directed graphs and the mapping
between vertices preserves the marked vertices.

Let S be a generating set of a group G. The generating set S is symmetric if
S = S−1.

Let G be a group with a symmetric finite generating set S, M be a set and
ϕ : G → Aut(M) be a homomorphism, where Aut(M) is the set of all bijections of
M onto itself. The orbit of an element m of M is the set

OrbG(m) = {ϕ(g)(m) | g ∈ G}.

The stabilizer of an element m of M is the subgroup

StabG(m) = {g ∈ G |ϕ(g)(m) = m}.

Definition 2.2.1. Let G be a group with a symmetric finite generating set S, M
be a set and ϕ : G → Aut(M) be a homomorphism. The Schreier graph denoted by
(M,S,ϕ) is a labelled directed graph (M,M ×S, S, α, β, l) such that α(m, s) = m,
l(m, s) = s, and β(m, s) = ϕ(s)(m). The Schreier graph with a marked vertex
denoted by (M,S,ϕ,m0) is a Schreier graph with a marked vertex m0 ∈ M .

Let G be a group with a symmetric finite generating set S, H be a subgroup of
G and G/H be the set of all left cosets of H in G. The Schreier coset graph denoted
by (G/H, S) is a Schreier graph (G/H, S,ϕH) where ϕH : G → Aut(G/H) is the
usual left action on G/H.

The composition of maps is from right to left.

Remark 2.2.2. For i ∈ {1, 2} let Gi be a group with a symmetric finite generateing
set Si. The Schreier graph (M1, S1,ϕ1) is isomorphic to (M2, S2,ϕ2) as labelled
directed graphs if and only if there exist bijections f : M1 → M2 and γ : S1 → S2
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such that ϕ1(s) = f−1ϕ2(γ(s))f for all s ∈ S1. In particular, if S1 = S2 = S,
(M1, S,ϕ1) is S-isomorphic to (M2, S,ϕ2) as labelled directed graphs if and only if
there exists a bijection f : M1 → M2 such that ϕ1(s) = f−1ϕ2(s)f for all s ∈ S.

The next proposition will help us to describe Schreier graphs explicitly in the
later sections.

Proposition 2.2.3. Let G be a group with a symmetric finite generating set S, M
be a set, x0 ∈ M , and ϕ : G → Aut(M) be a homomorphism. Then the Schreier
graph (OrbG(x0), S,ϕ, x0) with the marked vertex x0 is S-isomorphic to the Schreier
coset graph (G/H, S,H) with the marked vertex H = StabG(x0) as marked labelled
directed graphs.

Proof. Define f : G/H → OrbG(x0) by f(gH) = ϕ(g)(x0). Since g−1g′ ∈ H =
StabG(x0) implies ϕ(g)(x0) = ϕ(g′)(x0), its map is well-defined. Clearly f is a
bijection. Since

f(ϕH(s)(gH)) = f(sgH) = ϕ(sg)(x0) = ϕ(s)ϕ(g)(x0) = ϕ(s)(f(gH)),

we have ϕH(s) = f−1ϕ(s)f for all s ∈ S, which is the desired conclusion by Remark
2.2.2.

Let m and n be nonzero integers. The group with the presentation

〈A,B | ABm = BnA〉

is called theBaumslag-Solitar group and it is denoted by BS(m,n). For any n ≥ 2,
BS(1, n) has a geometric representation. That is, we define two affine maps a and b
of the real line R by a(x) = nx and b(x) = x+1 respectively. Let n ≥ 2, Sn = {a, b}±
and Gn = 〈Sn〉 be the subgroup of the affine group Aff(R). Then there exists the
isomorphism

hn : BS(1, n) → Gn

with hn(A) = a and hn(B) = b (see [4, p.100]). Thus, BS(1, n) has the natural left
action

ϕn : BS(1, n) → Gn ↪→ Aff(R) ↪→ Aut(R).

By [4, p.102], we note that

(∗)n Gn = {g : R → R | g(x) = nix+ j/nk, i, j, k ∈ Z}.

2.3 Schreier graphs of all real numbers

Let x ∈ R and
φx : Gn → Aut(OrbGn(x))
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be the usual left action. By the isomorphism hn and Proposition 2.2.3, the Schreier
graph (OrbGn(x), Sn,φx, x) and the Schreier coset graph

(BS(1, n)/StabBS(1,n)(x), {A,B}±, StabBS(1,n)(x))

with the marked vertexes are isomorphic, so we will consider the Schreier graph
(OrbGn(x), Sn,φx) for each x ∈ R. For simplicity of notation, we write g and
(OrbGn(x), Sn) instead of φx(g) and the Schreier graph (OrbGn(x), Sn,φx), respec-
tively.

Remark 2.3.1. For any x ∈ R and any f ∈ StabGn(x) with f ,= 1R, bfb−1 /∈
StabGn(x). Thus StabGn(x) is not a normal subgroup of Gn.

We notice that the Schreier graph (OrbGn(α), Sn) for α ∈ R\Q is Sn-isomorphic
to the Cayley graph of BS(1, n) relative to the generators {A,B}± by the above
since the stabilizer StabBS(1,n)(α) is trivial. However in this section we construct
the Schreier graphs (OrbGn(q), Sn) for rational numbers q and will compare those
descriptions in the later section (see Theorem 2.4.4). Therefore we employ the
Schreier graph (OrbGn(α), Sn). We construct the Schreier graph (OrbGn(α), Sn) by
an arrangement of elements in the orbit OrbGn(α). The construction of the Cayley
graph of BS(1, n) ∼= Gn given in [19] depends on the fact that the word problem for
BS(1, n) is solvable.

Let Zn = {0, 1, . . . , n− 1} be the finite group with the additive group structure.
The set of all finite words over Zn and the set of all infinite words over Zn are
denoted by Z∗

n and Zω
n respectively. Let

Z̃n = Z∗
n \ {ε},

where ε denotes the empty word. For every word w = w1w2 . . . wk in Z∗
n, the length

of w, denoted by |w|, is the number k. Note that |ε| is zero.

Definition 2.3.2. An element w of Zω
n is called a rational element in Zω

n if there

exist u ∈ Z∗
n and v ∈ Z̃n such that

(1) w = uv∞,

(2) v ,= tk whenever k ≥ 2 and t ∈ Z̃n, and

(3) u|u| ,= v|v| whenever u ,= ε.

Then, we say that the pair (u, v) of words satisfies (A). An element w of Zω
n which

is not rational is called an irrational element in Zω
n. Let x ∈ R. Then, there exists

w ∈ Zω
n such that

x− 4x5 =
∑

i≥1

wi/n
i,

where 4x5 = max{k ∈ Z | k ≤ x}. We say that x is represented by w ∈ Zω
n. It is

easy to see that x is a rational number if and only if it is represented by a rational
element in Zω

n.
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Lemma 2.3.3. Let x, x′ ∈ Z∗
n and y be an irrational element of Zω

n with xy = x′y.
Then x = x′.

Proof. Without loss of generality, we can assume that |x| ≤ |x′|. By assumption,

y|x′|−|x|+j = yj

for each j ≥ 1. Since y is an irrational element in Zω
n, |x′| = |x|. Therefore,

x = x′.

Lemma 2.3.4. Suppose that pairs (x, y) and (x′, y′) of words satisfy (A). Then
xy∞ = x′y′∞ if and only if x = x′ and y = y′.

Proof. Suppose that xy∞ = x′y′∞. It suffices to show that x = x′ and y = y′. First
we show that |x| = |x′|. On the contrary, suppose that |x| < |x′|. For any k ≥ 1,
there exists a unique k ∈ {1, . . . , |y|} such that k ≡ k mod |y|. Then

x′
|x′| = (x′y′∞)|x′| = (xy∞)|x′| = (y∞)|x′|−|x| = y|x′|−|x|.

On the other hand,

y′|y′| = (x′y′∞)|x′|+|y′|(|y|/g) = (xy∞)|x′|+|y|(|y′|/g) = (y∞)|x′|−|x|+|y|(|y′|/g) = y|x′|−|x|,

where g = gcd(|y′|, |y|). Since x′ ,= ε, by the assumption of x′, we see x′
|x′| ,= y′|y′|, a

contradiction. Thus |x| = |x′|. Hence we have that x = x′ and y∞ = y′∞.
Next we show that |y| = |y′|. On the contrary, suppose that |y| < |y′|. There

exist α ∈ Z and β ≥ 0 such that |y′|α + |y|β = g. For any i ≥ 1

(y′∞)i+g = (y′∞)i+|y′|α+|y|β = (y′∞)i+|y|β = (y∞)i+|y|β = (y∞)i = (y′∞)i.

Since y′∞ has the period g, y′ has the period g ≤ |y| < |y′|. This contradicts the
assumption of y′. Since |y| = |y′|, we conclude y = y′.

Lemma 2.3.5. Let x, y ∈ Z̃n. Suppose that x|x| = y|y| and the word y satis-
fies the condition (2) in Definition 2.3.2. Then xy∞ = y∞ if and only if |x| ≡
0mod |y| and x = y|x|/|y|.

Proof. Suppose that xy∞ = y∞. It suffices to show that |x| ≡ 0mod |y| and x =
y|x|/|y|. Let m ≥ 0 and 1 ≤ r ≤ |y| such that |x| = |y|m+ r. Then for any i ≥ 1

(y∞)i+r = (xy∞)|x|+i+r = (xy∞)|x|+i+r+|y|m = (xy∞)|x|+i+|x|

= (y∞)i+|x|

= (xy∞)i+|x|

= (y∞)i.

Thus y∞ has the period r and (y1 . . . y|y|)∞ = y∞ = (y1 . . . yr)∞. Since (ε, y) and
(ε, y1 . . . yr) satisfy (A), by Lemma 2.3.4, we have |y| = r. Therefore |x| ≡ 0 mod |y|.
Moreover, since (xy∞)i = (y∞)i for all 1 ≤ i ≤ |x|, we have x = y|x|/|y|.
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Let σ : Zω
n → Zω

n be the sift map defined by σ(w1w2w3 . . .) = w2w3w4 . . . Write
σk−1 = σσ · · · σ︸ ︷︷ ︸

k−1

for each k ≥ 1, where σ0 is the identity map. We note that

σk−1(w)i = wk−1+i for any k, i ≥ 1 and each w ∈ Zω
n.

Lemma 2.3.6. Let (x, y) be a pair of words satisfying (A). Then for |x| ≤ j < j′,
σj(xy∞) = σj′(xy∞) if and only if j′ − j ≡ 0 mod |y|.

Proof. For any k ≥ 1, there exists a unique k ∈ {1, . . . , |y|} such that k ≡ k
mod |y|. Then

σj(xy∞) = σj−|x|(y∞) = (yj−|x|+1 . . . yj′−|x|) σ
j′−|x|(y∞), and

σj′(xy∞) = σj′−|x|(y∞).

Thus σj(xy∞) = σj′(xy∞) if and only if (yj−|x|+1 . . . yj′−|x|) σj′−|x|(y∞) = σj′−|x|(y∞).
By Lemma2.3.5,

(yj−|x|+1 . . . yj′−|x|) σ
j′−|x|(y∞) = σj′−|x|(y∞)

if and only if j′ − j ≡ 0 mod |y|.

For any v ∈ Zω
n and any t ∈ Zn, set

Dv = Z+
∑

i≥1

vi/n
i ⊂ R, and Dt

v = nZ+ t+
∑

i≥1

vi/n
i ⊂ R.

Note that
0 ≤

∑

i≥1

vi/n
i ≤ 1 and Dv =

⊔

t∈X

Dt
v.

Lemma 2.3.7. Let y and y′ be irrational elements in Zω
n. Then, the following

statements are equivalent.

(1) Dy ∩Dy′ ,= ∅.

(2)
∑

i≥1 yi/n
i =

∑
i≥1 y

′
i/n

i.

(3) y = y′.

Proof. It suffices to show that (2) implies (3). On the contrary, suppose that there
exists i ≥ 1 such that yi ,= y′i. Let i0 = min{i | yi ,= y′i}. Then,

yi0/n
i0 +

∑

i≥i0+1

yi/n
i = y′i0/n

i0 +
∑

i≥i0+1

y′i/n
i.

Without loss of generality, we can assume that yi0 < y′i0 . Since y and y′ are irrational
elements,

1/ni0 < y′i0/n
i0 − yi0/n

i0 +
∑

i≥i0+1

y′i/n
i =

∑

i≥i0+1

yi/n
i < 1/ni0 ,

a contradiction.
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Lemma 2.3.8. Let (x, y) and (x′, y′) be pairs of words satisfying (A) such that
min{|y|, |y′|} ≥ 2 whenever y ,= y′. Then, the following statements are equivalent.

(1) Dxy∞ ∩Dx′y′∞ ,= ∅.

(2)
∑

i≥1 (xy
∞)i/ni =

∑
i≥1 (x

′y′∞)i/ni.

(3) xy∞ = x′y′∞.

Proof. Suppose that
∑

i≥1 (xy
∞)i/ni =

∑
i≥1 (x

′y′∞)i/ni. It suffices to prove that
xy∞ = x′y′∞. On the contrary, suppose that there exists i ≥ 1 such that (xy∞)i ,=
(x′y′∞)i. Let i0 = min{i | (xy∞)i ,= (x′y′∞)i}. Then

(xy∞)i0/n
i0 +

∑

i≥i0+1

(xy∞)i/n
i = (x′y′∞)i0/n

i0 +
∑

i≥i0+1

(x′y′∞)i/n
i.

Without loss of generality, we can assume that (xy∞)i0 < (x′y′∞)i0 .
If min{|y|, |y′|} ≥ 2, or if y = y′ ∈ {1, . . . , n− 2}, then we have

1/ni0 < (x′y′∞)i0/n
i0 − (xy∞)i0/n

i0 +
∑

i≥i0+1

(x′y′∞)i/n
i =

∑

i≥i0+1

(xy∞)i/n
i < 1/ni0 ,

a contradiction.
If y = y′ = 0, then i0 ≤ |x′|. Then

1/ni0 ≤ (x′y′∞)i0/n
i0 − (xy∞)i0/n

i0 +
∑

i≥i0+1

(x′y′∞)i/n
i =

∑

i≥i0+1

(xy∞)i/n
i < 1/ni0 ,

a contradiction.
If y = y′ = n− 1, then i0 ≤ |x|. Then

1/ni0 < (x′y′∞)i0/n
i0 − (xy∞)i0/n

i0 +
∑

i≥i0+1

(x′y′∞)i/n
i =

∑

i≥i0+1

(xy∞)i/n
i ≤ 1/ni0 ,

a contradiction. Therefore xy∞ = x′y′∞.

The proof of the following lemma is immediate, so the details are left to the
reader.

Lemma 2.3.9. Let v ∈ Zω
n and t ∈ Zn. Then,

(a) a(Dv) = Dv1
σ(v), a

−1(Dt
v) = Dtv, a−1(Dv) =

⊔
t∈Zn

Dtv,

(b) b±1(Dt
v) = Dt±1

v , and b±1(Dv) = Dv.

34



Definition 2.3.10. Let w ∈ Zω
n. Set

Vw = {uσj(w) | j ≥ 0, u ∈ Z∗
n}, Ew = Vw × ({a} ( Zn),

and Lw = {a}±. Define αw : Ew → Vw, βw : Ew → Vw and lw : Ew → Lw by

αw(v, a) = αw(v, k) = v, βw(v, a) = σ(v), βw(v, k) = kv,

lw(v, a) = a and lw(v, k) = a−1

for each v ∈ Vw and each k ∈ Zn. The labelled directed graph (Vw, Ew, Lw,αw, βw, lw)
and the Schreier graph (Z, {±1},φ) will be denoted by Γw and ΓZ respectively, where
φ : Z → Aut(Z) is the usual action.

Lemma 2.3.11. (1) If w is an irrational element in Zω
n, then

Vw =
⊔

j≥1

{σj(w)} (
⊔

u∈Z∗
n

{uw} (
⊔

j≥1,s∈Z∗
n,t∈Zn,t )=wj

{stσj(w)}.

(2) If w = uv∞ is a rational element in Zω
n as in Definition 2.3.2, then

Vw =
⊔

|u|≤j<|u|+|v|

{σj(w)} (
⊔

|u|<j≤|u|+|v|,s∈Z∗
n,t∈Zn,t )=wj

{stσj(w)}.

Proof. By Lemmas 2.3.4 and 2.3.6, we can easily show (2). Thus we prove (1). Let
j, j ′ ≥ 1, u, u′ ∈ Z∗

n, and t, t′ ∈ Zn with t ,= wj and t′ ,= wj′ . It suffices to show the
following statements:

(a) j = j′ whenever σj(w) = σj′(w).
(b) u = u′ whenever uw = u′w.
(c) u = u′, t = t′, and j = j′ whenever utσj(w) = u′t′σj′(w).
(d) σj(w) ,= uw.
(e) σj(w) ,= ut′σj′(w).
(f) uw ,= u′tσj(w).

The statements (b) and (d) directly follow from Lemma 2.3.3.
Suppose that utσj(w) = u′t′σj′(w) and j ≤ j′. Since σj(w) = wj+1 . . . wj′σj′(w),

by Lemma 2.3.3, we have
utwj+1 . . . wj′ = u′t′.

Since t′ ,= wj′ , we see j = j′, thus u = u′ and t = t′, which proves (c). Similarly, we
can show (a).

If j ≥ j′, by Lemma 2.3.3,

ut′σj′(w) = ut′wj′+1 . . . wjσ
j(w) ,= σj(w).

Suppose that j ≤ j′ and σj(w) = ut′σj′(w). Since σj(w) = wj+1 . . . wj′σj′(w),

wj+1 . . . wj′σ
j′(w) = ut′σj′(w).
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Hence by Lemma 2.3.3 wj+1 . . . wj′ = ut′. Thus wj′ = t′, a contradiction, and (e) is
proved.

Since wj ,= t, uw1 . . . wj ,= u′t. By Lemma 2.3.3,

uw = uw1 . . . wjσ
j(w) ,= u′tσj(w),

which proves (f).

Lemma 2.3.12. Let n ≥ 2 and x ∈ R represented by w ∈ Zω
n. Then,

OrbGn(x) =
⊔

v∈Vw

Dv.

Proof. By Lemmas 2.3.7, 2.3.8 and 2.3.11,
⋃

v∈Vw

Dv =
⊔

v∈Vw

Dv.

Thus it suffices to show that

OrbGn(x) =
⋃

v∈Vw

Dv.

Since
x ∈ Dw ⊂

⋃

v∈Vw

Dv,

by Lemma 2.3.9,
OrbGn(x) ⊂

⋃

g∈Gn

⋃

v∈Vw

g(Dv) =
⋃

v∈Vw

Dv.

Let j ≥ 0 and u ∈ Z∗
n. It suffices to show that

Duσj(w) ⊂ OrbGn(x).

We have

Duσj(w) = Z+
∑

i≥1

(uσj(w))i/n
i

= Z+
|u|∑

i=1

ui/n
i +

∑

l≥j+1

wl/n
l−j+|u|

= Z+
|u|∑

i=1

ui/n
i + nj−|u|(

∑

l≥1

wl/n
l −

j∑

l=1

wl/n
l)

= Z+ n−|u|(
|u|∑

i=1

n|u|−iui −
j∑

i=1

nj−iwi + nj(x− 4x5))

= {bka−|u|b(
∑|u|

i=1 n
|u|−iui−

∑j
i=1 n

j−iwi)ajb−*x+(x) | k ∈ Z} ⊂ OrbGn(x).
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Theorem 2.3.13. Let n ≥ 2 and x be a real number represented by w ∈ Zω
n. Then,

there exists a homomorphism

h = (f,ψ, γ) : (OrbGn(x), Sn) → Γw

such that for every v ∈ Vw, the subgraph h−1(v) = (Dv, Dv × {b}±, Sn,α|, β|, l|) is
isomorphic to ΓZ, where h−1(v) = (f−1(v),ψ−1(v), Sn,α|, β|, l|).

Proof. It suffices to find a homomorphism h = (f,ψ, γ) : (OrbGn(x), Sn) → Γw such
that for every v ∈ Vw, the subgraph h−1(v) is isomorphic to ΓZ. By Lemmas 2.3.11
and 2.3.12, for any y ∈ OrbGn(x), there exists a unique vy ∈ Vw and k ∈ Zn such
that y ∈ Dk

vy ⊂ Dvy . Thus, we can define

f : OrbGn(x) → Vw, ψ : OrbGn(x)× Sn → Ew ( Vw and γ : Sn → Lw

by f(y) = vy, ψ(y, a) = (f(y), a), ψ(y, a−1) = (f(y), k), ψ(y, b) = f(y), ψ(y, b−1) =
f(y), γ(a) = a, γ(a−1) = a−1, γ(b) = a, and γ(b−1) = a−1.

2.4 Classification of Schreier graphs

In this section we classify Schreier graphs described in the previous section.

Lemma 2.4.1. Let v ∈ Z̃n. For i ≥ 1 set

Wi = b−(v∞)ia and Zi = b(v
∞)ia.

Then, for every k ≥ 1, Wk · · ·W1 and Zk · · ·Z1 are nontrivial affine maps with the
slopes nk such that

(Wk · · ·W1)(
∑

j≥1

(v∞)j/n
j) =

∑

j≥1

(v∞)k+j/n
j and

(Zk · · ·Z1)(−
∑

j≥1

(v∞)j/n
j) = −

∑

j≥1

(v∞)k+j/n
j.

Proof. The proof is by induction on k. The affine map W1 has the slope n such that

W1(
∑

j≥1

(v∞)j/n
j) = b−(v∞)1 a (

∑

j≥1

(v∞)j/n
j) = b−(v∞)1 ((v∞)1 +

∑

j≥2

(v∞)j/n
j−1)

=
∑

j≥1

(v∞)1+j/n
j.
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Assume the formula holds for k − 1, we have

(WkWk−1 · · ·W1) (
∑

j≥1

(v∞)j/n
j) = Wk(

∑

j≥1

(v∞)k−1+j/n
j)

= b−(v∞)k a (
∑

j≥1

(v∞)k−1+j/n
j)

= b−(v∞)k ((v∞)k +
∑

j≥2

(v∞)k−1+j/n
j−1)

=
∑

j≥1

(v∞)k+j/n
j

and the affine map Wk · · ·W1 has the slope nk. Similarly, we can prove it for
Zk · · ·Z1.

Remark 2.4.2. Let x, y ∈ R. By Remark 2.2.2, Schreier graphs (OrbGn(x), Sn) and
(OrbGn(y), Sn) are isomorphic if and only if there exist two bijections

f : OrbGn(x) → OrbGn(y) and γ : Sn → Sn

such that γ(s)(f(z)) = f(s(z)) for each z ∈ OrbGn(x) and each s ∈ Sn.

Lemma 2.4.3. Let x, y ∈ R. Suppose that the Schreier graph (OrbGn(x), Sn ) is
isomorphic to the Schreier graph (OrbGn(y), Sn ) by a bijection γ : Sn → Sn. Then

γ(a)γ(b)γ(a−1)γ(b−1)n = 1R in Gn

if and only if

γ = 1Sn or γ(a) = a, γ(a−1) = a−1, γ(b) = b−1, and γ(b−1) = b.

Proof. Let
f : OrbGn(x) → OrbGn(y)

be a bijection as in Remark 2.4.2. For any s ∈ S and any x0 ∈ OrbGn(x),

γ(s)γ(s−1)(f(x0)) = f(ss−1(x0)) = f(x0)

by Remark 2.4.2. Since f is a bijection,

γ(s)γ(s−1) = 1OrbGn (y).

Since γ(s)γ(s−1) is an affine map, γ(s)γ(s−1) = 1R, thus γ(s)−1 = γ(s−1) ∈ Aff(R).
Suppose that

γ(a)γ(b)γ(a−1)γ(b−1)n = 1R and γ ,= 1Sn .

Since a(x) = nx and γ(b−1) has the n-th power, γ(b−1) ∈ {b}±.
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Suppose that γ(b−1) = b−1. Then γ(b) = b. Since γ ,= 1Sn , we have γ(a) = a−1.
Then

γ(a)γ(b)γ(a−1)γ(b−1)n = a−1bab−n ,= 1R,

a contradiction. Thus γ(b−1) = b and γ(b) = b−1.
If γ(a) = a−1, then γ(a−1) = a and

γ(a)γ(b)γ(a−1)γ(b−1)n = a−1b−1abn ,= 1R,

a contradiction. Hence γ(a) = a and γ(a−1) = a−1.

Theorem 2.4.4. Let m,n ≥ 2 with m ,= n.

(1) For any x, y ∈ R, the Schreier graph (OrbGm(x), Sm) is not isomorphic to the
Schreier graph (OrbGn(y), Sn) as labelled directed graphs.

(2) For any α1,α2 ∈ R\Q, the Schreier graph (OrbGn(α1), Sn,α1) is Sn-isomorphic
to the Schreier graph (OrbGn(α2), Sn,α2) as marked labelled directed graphs.

(3) For any q ∈ Q and any α ∈ R \ Q, the Schreier graph (OrbGn(q), Sn) is not
isomorphic to the Schreier graph (OrbGn(α), Sn) as labelled directed graphs.

(4) Let q1, q2 ∈ Q. Then, the following statements are equivalent.

(a) The Schreier graph (OrbGn(q1), Sn) is isomorphic to the Schreier graph
(OrbGn(q2), Sn) as labelled directed graphs.

(b) OrbGn(q1) = OrbGn(q2) or OrbGn(−q1) = OrbGn(q2).

Proof. On the contrary, suppose that the Schreier graphs

(OrbGm(x), Sm) and (OrbGn(y), Sn)

are isomorphic by bijections

f : OrbGm(x) → OrbGn(y) and γ : Sm → Sn

as in Remark 2.2.2. We check at once that

γ(a)γ(b)γ(a−1)γ(b−1)m ,= 1R ∈ Gn.

By Remark 2.2.2,

γ(a)γ(b)γ(a−1)γ(b−1)m(f(z)) = f(aba−1b−m(z)) = f(z)

for each z ∈ OrbGm(x), contradiction, which proves (1). Since StabGn(α) = 1 for
any α ∈ R \Q, by Proposition 2.2.3, the statement (2) is proved.

Let q be a rational number represented by uv∞ and x ∈ R such that the Schreier
graph (OrbGn(q), Sn) is isomorphic to the Schreier graph (OrbGn(x), Sn) as labelled
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directed graphs by bijections f : OrbGn(q) → OrbGn(x) and γ : Sn → Sn as in
Remark 2.4.2. Let

q0 =
∑

j≥1

(v∞)j/n
j ∈ OrbGn(q).

Since aba−1b−n(q′) = q′ for each q′ ∈ OrbGn(q), by Remark 2.4.2, we have

γ(a)γ(b)γ(a−1)γ(b−1)n(f(q′)) = f(aba−1b−n(q′)) = f(q′).

Hence, γ(a)γ(b)γ(a−1)γ(b−1)n = 1R. By Lemma 2.4.3,

γ = 1Sn or γ(a) = a, γ(a−1) = a−1, γ(b) = b−1, and γ(b−1) = b. (E)

On the other hand, by Lemma 2.4.1, there exists a nontrivial affine mapW|v| · · ·W1 =
ck · · · c1 such that ck · · · c1(q0) = q0, where ci ∈ {a, b−1}. By Remark 2.4.2, we have

γ(ck) · · · γ(c1)(f(q0)) = f(ck · · · c1(q0)) = f(q0).

(i) If γ = 1Sn , then the nontrivial affine map ck · · · c1 fixes both q0 and f(q0).
Hence, f(q0) = q0.

(ii) If γ(a) = a, γ(a−1) = a−1, γ(b) = b−1, and γ(b−1) = b, then by Lemma 2.4.1,

γ(ck) · · · γ(c1)(−q0) = Z|v| · · ·Z1(−q0) = −q0.

Since the nontrivial affine map γ(ck) · · · γ(c1) fixes both −q0 and f(q0), we have
−q0 = f(q0).

We start to prove (3). On the contrary, if x = α ∈ R \Q, by the above, we see
f(q0) ∈ Q, a contradiction, which proves (3).

Next we prove (4). Suppose that the statement (a) holds, i.e.,q = q1, x = q2 ∈ Q
above. If γ = 1Sn , by (i) above,

OrbGn(q1) = OrbGn(q0) = OrbGn(q2).

If γ ,= 1Sn , by (ii) above,

OrbGn(−q1) = OrbGn(−q0) = OrbGn(q2),

which proves (b).
Suppose that the statement (b) holds. We show that

(OrbGn(q1), Sn) and (OrbGn(q2), Sn)

are isomorphic. Without loss of generality, we can assume that

OrbGn(−q1) = OrbGn(q2).

Define γ : Sn → Sn by

γ(a) = a, γ(a−1) = a−1, γ(b) = b−1, and γ(b−1) = b.
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In addition define f : OrbGn(q1) → OrbGn(q2) by

f(ck · · · c1(q1)) = γ(ck) · · · γ(c1)(−q1),

where ci ∈ Sn. By induction on k, we can show that

(ck · · · c1)(q1) + (γ(ck) · · · γ(c1))(−q1) = 0

for each k ≥ 1 and each ci ∈ Sn. Hence, f is well-defined and an injection. By defi-
nition, f is a surjection satisfying that f(s(z)) = γ(s)(f(z)) for each z ∈ OrbGn(q1)
and each s ∈ Sn. By Remark 2.4.2, the Schreier graphs (OrbGn(q1), Sn) and
(OrbGn(q2), Sn) are isomorphic by f and γ.

Corollary 2.4.5. Let q1, q2 be rational numbers. Then, the following statements
are equivalent.

(a) The Schreier graph (OrbGn(q1), Sn, q1) is isomorphic to the Schreier graph
(OrbGn(q2), Sn, q2) as marked labelled directed graphs.

(b) |q1| = |q2|.

Proof. From the latter part of the proof of Theorem 2.4.4, we can show that (b)
implies (a). Suppose that (OrbGn(q1), Sn, q1) is isomorphic to (OrbGn(q2), Sn, q2) by
bijections f : OrbGn(q1) → OrbGn(q2) with f(q1) = q2 and γ : Sn → Sn as in Remark
2.4.2. It suffices to show that |q1| = |q2|. Let us represent by uv∞ ∈ Zω

n q1 ∈ Q. Set

q0 =
∑

j≥1

(v∞)j/n
j ∈ OrbGn(q1).

Then, there exist d1, . . . , dj ∈ Sn such that (dj · · · d1)(q1) = q0. From the proof of
Theorem 2.4.4, the map γ satisfies (E) in the proof of Theorem 2.4.4, and the map
f satisfies

f(q0) =

{
q0 if γ = 1Sn

−q0 if γ ,= 1Sn .

Moreover, there exist c1, . . . , ck ∈ Sn such that

(ck · · · c1)(q0) = q0 and γ(ck) · · · γ(c1)(f(q0)) = f(q0).

Then
(dj · · · d1)−1(ck · · · c1)(dj · · · d1)(q1) = q1.

By Remark 2.4.2

γ(d1)
−1 · · · γ(dj)−1γ(ck) · · · γ(c1)γ(dj) · · · γ(d1)(q2) = q2.

Thus
γ(ck) · · · γ(c1)(γ(dj) · · · γ(d1)(q2)) = γ(dj) · · · γ(d1)(q2).
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Suppose that γ = 1Sn . Then,

(ck · · · c1)((dj · · · d1)(q2)) = (dj · · · d1)(q2).

Since the nontrivial affine map ck · · · c1 fixes both

q0 = (dj · · · d1)(q1) and (dj · · · d1)(q2),

it follows that (dj · · · d1)(q1) = (dj · · · d1)(q2). We conclude that q1 = q2.
Suppose that γ ,= 1Sn . By Remark 2.4.2,

γ(dj) · · · γ(d1)(q2) = (γ(dj) · · · γ(d1))(f(q1))
= f((dj · · · d1)(q1))
= f(q0)

= −q0
= −(dj · · · d1)(q1).

Since the map γ satisfies (E) in the proof of Theorem 2.4.4, by induction on j, we
can show q1 = −q2.

2.5 Applications

First we determine the group structure of stabilizers for all rational numbers
by using the Schreier graphs described in the previous section. The proof of next
proposition allows us to understand a word stood for a generator as well as the group
structure. We note that the the stabilizer StabGn(q) is an infinite index subgroup of
Gn since the orbit OrbGn(q) is an infinite set.

Proposition 2.5.1. Let n ≥ 2 and q be a rational number represented by uv∞ ∈ Zω
n.

Then, there exists f ∈ Aff(R) such that f(x) = n|v|(x− q) + q for each x ∈ R, and
StabGn(q) = 〈f〉 ∼= Z.

Proof. For i ≥ 1 set W̃i = b−(uv∞)ia. By Lemma 2.4.1 we have

W̃|u|+|v| · · · W̃|u|+1W̃|u| · · · W̃1(b
−*q+(q)) = W̃|u|+|v| · · · W̃|u|+1(

∑

i≥1

(v∞)i/n
i)

= W|v| · · ·W1(
∑

i≥1

(v∞)i/n
i)

=
∑

i≥1

(v∞)i/n
i

= W̃|u| · · · W̃1 (b
−*q+(q)).

Set
f = b*q+W̃−1

1 · · · W̃−1
|u| W̃|u|+|v| · · · W̃|u|+1W̃|u| · · · W̃1b

−*q+.
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Then, f is an affine map with the slope n|v| such that f(q) = q. Hence 〈f〉 <
StabGn(q).

Let g ∈ StabGn(q). By (∗)n, there exists i ∈ Z such that g(x) = ni(x− q)+ q for
any x ∈ R. If |v| = 1, f has the slope n, thus g = f i. Hence, we may assume that
|v| ≥ 2. On the contrary, suppose that there exist h ∈ StabGn(q) \ 〈f〉, 0 < r < |v|,
j ∈ Z, and k ≥ 0 such that h(x) = nrx+ j/nk and h(q) = q. Then, we have

q =
−j

nk(nr − 1)
.

There exist m ≥ 0 and z = z1z2 . . . zr ∈ Z̃n with z ,= (n− 1)r such that

|j| =
(

r−1∑

i=0

(n− 1)ni

)
m+

r−1∑

i=0

zr−in
i = nr

(
m

r∑

i=1

n− 1

ni
+

r∑

i=1

zi
ni

)
.

Since
nr

nr − 1
=
∑

j≥0

(
1

nr

)j

,

we have

qnk = m+
∑

i≥1

(z∞)i
ni

or qnk = −(m+ 1) +
∑

i≥1

(z∞)i
ni

,

where z = (n− 1− z1) . . . (n− 1− zr) ∈ Z̃n. Thus, qnk has a repeating part whose
length is the period of z∞. However,

qnk =

(
4q5+

∑

i≥1

(uv∞)i
ni

)
nk =

(
4q5nk +

k∑

i=1

(uv∞)in
k−i

)
+
∑

i≥1

(uv∞)i+k

ni
,

which contradicts (2) in Definition 2.3.2.

Next we introduce the definition of being isomorphic in presentations for sub-
groups in order to translate the graphical expression of the Schreier graphs into the
algebraic expression of subgroups. Consequently, we get a relevance to presentations
for the stabilizers from the previous result about the classification of the Schreier
graphs (see Theorem 2.5.5).

For i ∈ {1, 2}, let Gi be a group with a generating set Ti. Let T
−1
i = {t−1 | t ∈ Ti}

and T±
i = Ti ∪ T−1

i . We assume that

(∗) t ∈ Ti ∩ T−1
i if and only if t ∈ Ti, t2 = 1.

For i ∈ {1, 2} let Xi = {xt | t ∈ Ti }. Set X−1
i = {x−1

t | t ∈ Ti}, where x−1
t denotes

a new symbol corresponding to the element xt. We assume that Xi ∩X−1
i = ∅ and

that the expression (x−1
t )−1 denotes the element xt. For i ∈ {1, 2} the free group

with the basis Xi is denoted by F (Xi), and for a subset Ri of F (Xi) the normal
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closure of the set Ri in F (Xi) is denoted by 〈〈Ri〉〉. Let Gi be the group with the
presentation 〈Xi |Ri〉 with respect to the epimorphism ψi : F (Xi) → Gi given by
ψi(xt) = t.

Definition 2.5.2. For i ∈ {1, 2}, let Hi be a subgroup of Gi. The subgroups H1

and H2 are isomorphic in presentations 〈X1|R1〉 and 〈X2|R2〉 respectively if there
exists a bijection γ : X±

1 → X±
2 with γ(x−1

t ) = γ(xt)−1 such that

γ̃ (ψ−1
1 (H1)) = ψ−1

2 (H2) and γ̃(〈〈R1〉〉) = 〈〈R2〉〉,

where γ̃ : F (X1) → F (X2) is defined by

γ̃(xε1
t1 · · · x

εk
tk ) = γ(xt1)

ε1 · · · γ(xtk)
εk

for εi ∈ {±1}. Then, γ̃ is an isomorphism and H1
∼= H2. Conversely, if there

exists an isomorphism γ̃ : F (X1) → F (X2) such that γ̃(K1) = K2 for each Ki ∈
{ψ−1

i (Hi),Kerψi, X
±
i }, then γ = γ̃|X±

1
satisfies the above condition.

Proposition 2.5.3. Let

Γi = (Gi/Hi, T
±
i , Hi) and Γ′

i = (F (Xi)/ψ
−1
i (Hi), X

±
i ,ψ

−1
i (Hi))

be Schreier coset graphs for i ∈ {1, 2}. Then, the following statements are equivalent.

(a) Γ1 is isomorphic to Γ2 as marked labelled directed graphs by a bijection
γ : T±

1 → T±
2 such that γ(t−1) = γ(t)−1 for every t ∈ T1.

(b) Γ′
1 is isomorphic to Γ′

2 as marked labelled directed graphs by a bijection
γ′ : X±

1 → X±
2 with γ′(x−1

t ) = γ′(xt)−1 for every xt ∈ X1 satisfying the
condition

(B) ψ1(xt)
2 = 1G1 if and only if ψ2(γ

′(xt))
2 = 1G2 .

Proof. Let ϕi : Gi → Aut(Gi/Hi) and

ϕ′
i : F (Xi) → Aut(F (Xi)/ψ

−1
i (Hi))

be the usual left actions for i ∈ {1, 2}. We define Ψi : F (Xi)/ψ
−1
i (Hi) → Gi/Hi by

Ψi(y ψ
−1
i (Hi)) = ψi(y)Hi. Since y−1y′ ∈ ψ−1

i (Hi) is equivalent to ψi(y)−1ψi(y′) ∈ Hi,
Ψi is well-defined and an injection. Since ψi is a surjection, Ψi is also a surjection.

Suppose that the statement (a) holds. Let f : G1/H1 → G2/H2 be a bijection
between vertices such that f(H1) = H2 and fϕ1(t) = ϕ2(γ(t))f for every t ∈ T1.
Set

f ′ = Ψ−1
2 fΨ1 : F (X1)/ψ

−1
1 (H1) → F (X2)/ψ

−1
2 (H2).

Clearly f ′ is bijective with f ′(ψ−1
1 (H1)) = ψ−1

2 (H2).
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Define γ′ : X±
1 → X±

2 by

γ′(xε
t) =

{
xε
γ(t) if γ(t) ∈ T2 and ε ∈ {±1},

x−ε
γ(t)−1 if γ(t) /∈ T2 and ε ∈ {±1}.

Then we have γ′(x−1
t ) = γ′(xt)−1. To show that γ′ is bijective, we define σ : X±

2 →
X±

1 by

σ(xε
t) =

{
xε
γ−1(t) if γ−1(t) ∈ T1 and ε ∈ {±1},

x−ε
γ−1(t)−1 if γ−1(t) /∈ T1 and ε ∈ {±1}.

Then

σ γ′(xε
t) =

{
σ(xε

γ(t)) if γ(t) ∈ T2 and ε ∈ {±1},
σ(x−ε

γ(t)−1) if γ(t) /∈ T2 and ε ∈ {±1}.

If γ(t) ∈ T2, γ−1(γ(t)) = t ∈ T1. If γ(t) /∈ T2, γ−1(γ(t)−1) = γ−1(γ(t−1)) = t−1 /∈ T1

by (∗). Since γ(t−1) = γ(t)−1, we have γ−1(s−1) = γ−1(s)−1. Hence we have

σ γ′(xε
t) =

{
xε
t if γ(t) ∈ T2 and ε ∈ {±1},

xε
t if γ(t) /∈ T2 and ε ∈ {±1},

thus σ γ′ = 1X±
1
. The similar argument gives γ′σ = 1X±

2
. Thus γ′ is a bijection.

Since ψ2(γ′(xt)) = γ(t) and t2 = 1G1 if and only if γ(t)2 = 1G2 , we have ψ1(xt)2 =
1G1 if and only if ψ2(γ′(xt))2 = 1G2 , which establishes (B).

Since Ψ1ϕ′
1(xt) = ϕ1(t)Ψ1 and Ψ2ϕ′

2(γ
′(xt)) = ϕ2(γ(t))Ψ2, we have

ϕ′
2(γ

′(xt))f
′ϕ′

1(xt)
−1 = ϕ′

2(γ
′(xt))Ψ

−1
2 fΨ1ϕ

′
1(xt)

−1

= Ψ−1
2 ϕ2(γ(t))fϕ1(t)

−1Ψ1

= Ψ−1
2 fΨ1

= f ′.

By Remark 2.2.2 we obtain (b).
Suppose that the statement (b) holds. Let

f ′ : F (X1)/ψ
−1
1 (H1) → F (X2)/ψ

−1
2 (H2)

be a bijection between vertices such that f ′(ψ−1
1 (H1)) = ψ−1

2 (H2) and f ′ϕ′
1(xt) =

ϕ′
2(γ

′(xt))f ′ for every xt ∈ X1. Set

f = Ψ2f
′Ψ−1

1 : G1/H1 → G2/H2.

Clearly f is bijective with f(H1) = H2.
Define γ : T±

1 → T±
2 by γ(tε) = ψ2(γ′(xε

t)) for each t ∈ T1 and ε ∈ {±1}. First
we show that γ is well-defined. Suppose that tε11 = tε22 . If ε1 = ε2 and t1 = t2, then
ψ2(γ′(x

ε1
t1)) = ψ2(γ′(x

ε2
t2)). If ε1 ,= ε2, then t1 = t2. Since ψ2(γ′(xtj))

2 = 1G2 by (B),

ψ2(γ
′(xε1

t1)) = ψ2(γ
′(x−ε1

t1 )) = ψ2(γ
′(xε2

t2)).
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Thus γ is well-defined. Then we have γ(t−1) = γ(t)−1. Next we show that γ is
bijective. We define ρ : T±

2 → T±
1 by ρ(tε) = ψ1(γ′−1(xε

t)) for each t ∈ T2 and
ε ∈ {±1}. Since γ′ satisfies the condition (B),

ψ2(xt)
2 = 1G2 if and only if ψ1(γ

′−1(xt))
2 = 1G1 .

Hence ρ is well-defined. We can easily see that γρ = 1T±
2
and ργ = 1T±

1
. Hence γ is

a bijection.
Since Ψ1ϕ′

1(xt) = ϕ1(t)Ψ1 and Ψ2ϕ′
2(γ

′(xt)) = ϕ2(γ(t))Ψ2,

ϕ2(γ(t))fϕ1(t)
−1 = ϕ2(γ(t))Ψ2f

′Ψ−1
1 ϕ1(t)

−1

= Ψ2ϕ
′
2(γ

′(xt))f
′ϕ′

1(xt)
−1Ψ−1

1

= Ψ2f
′Ψ−1

1

= f.

By Remark 2.2.2 we obtain (a).

Lemma 2.5.4. Let Γi = (Gi/Hi, T
±
i , Hi) be Schreier coset graphs for i ∈ {1, 2}.

Then the following statements are equivalent.

(a) Γ1 is isomorphic to Γ2 as marked labelled directed graphs by a bijection γ :
T±
1 → T±

2 satisfying the following condition: for any t1, . . . , tk ∈ T1 and any
ε1, . . . , εk ∈ {±1},

(C) tε11 · · · tεkk = 1G1 if and only if γ(tε11 ) · · · γ(t
εk
k ) = 1G2 .

(b) H1 and H2 are isomorphic in presentations 〈X1|R1〉 and 〈X2|R2〉 respectively.

Proof. By Proposition 2.5.3, (a) is equivalent to the following statement.

(a′) Γ′
1 is isomorphic to Γ′

2 as marked labelled directed graphs by a bijection γ′ :
X±

1 → X±
2 such that γ′(x−1

t ) = γ′(xt)−1 for every xt ∈ X1 and

(C ′) ψ1(x
ε1
t1) · · ·ψ1(x

εk
tk ) = 1G1 if and only if ψ2(γ

′(xε1
t1)) · · ·ψ2(γ

′(xεk
tk )) = 1G2 .

In addition we note that the following statements are equivalent.

(1) There exists a bijection γ′ : X±
1 → X±

2 with γ′(x−1
t ) = γ′(xt)−1 satisfying the

condition (C ′).

(2) There exists a group isomorphism δ : F (X1) → F (X2) such that δ(X±
1 ) = X±

2

and δ(〈〈R1〉〉) = 〈〈R2〉〉.

Suppose that the statement (a) holds. By the above, we may suppose that the
statement (a′) holds, and can take γ̃′ as δ in (2), where

γ̃′ : F (X1) → F (X2)
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given by
γ̃′(xε1

t1 · · · x
εk
tk ) = γ′(xt1)

ε1 · · · γ′(xtk)
εk .

It suffices to prove that γ̃′ (ψ−1
1 (H1)) = ψ−1

2 (H2). Let

f ′ : F (X1)/ψ
−1
1 (H1) → F (X2)/ψ

−1
2 (H2)

be a bijection between vertices which preserves marked vertices. Now, we note that
for i ∈ {1, 2},

ψ−1
i (Hi) = { l(P ) |P is an edge path in Γ′

i from ψ−1
i (Hi) to itself },

where l(P ) = l(en) . . . l(e1) whenever P = e1 . . . en.
Let l(P ) ∈ ψ−1

1 (H1), where ej = (x
εj−1

tj−1
· · · xε1

t1ψ
−1
1 (H1), x

εj
tj ) and P = e1 . . . en.

Since xεn
tn · · · x

ε1
t1ψ

−1
1 (H1) = β(en) = ψ−1

1 (H1), by Remark 2.2.2,

γ̃′(l(P ))ψ−1
2 (H2) = γ′(xεn

tn ) · · · γ
′(xε1

t1)f
′(ψ−1

1 (H1))

= f ′(xεn
tn · · · x

ε1
t1ψ

−1
1 (H1))

= f ′(ψ−1
1 (H1))

= ψ−1
2 (H2).

Thus we have γ̃′(ψ−1
1 (H1)) ⊂ ψ−1

2 (H2). Similarly γ̃′
−1
(ψ−1

2 (H2)) ⊂ ψ−1
1 (H1), which

proves γ̃′ (ψ−1
1 (H1)) = ψ−1

2 (H2).
Suppose that the statement (b) holds. There exists a bijection γ′ : X±

1 → X±
2

with γ′(x−1
t ) = γ′(xt)−1 such that

γ̃′ (ψ−1
1 (H1)) = ψ−1

2 (H2) and γ̃′(〈〈R1〉〉) = 〈〈R2〉〉,

which establishes (2). Define

f ′ : F (X1)/ψ
−1
1 (H1) → F (X2)/ψ

−1
2 (H2)

by
f ′(gψ−1

1 (H1)) = γ̃′(g)ψ−1
2 (H2).

Since g−1
2 g1 ∈ ψ−1

1 (H1) is equivalent to

γ̃′(g−1
2 g1) ∈ γ̃′(ψ−1

1 (H1)) = ψ−1
2 (H2),

f ′ is well-defined and an injection. Since γ̃′ is a surjection, f ′ is also a surjection.
Since

f ′ϕ′
1(xt)(gψ

−1
1 (H1)) = f ′(xtgψ

−1
1 (H1))

= γ̃′(xtg)ψ
−1
2 (H2)

= γ̃′(xt)γ̃′(g)ψ
−1
2 (H2)

= ϕ′
2(γ

′(xt))f
′(gψ−1

1 (H1)),

we have f ′ϕ′
1(xt) = ϕ′

2(γ
′(xt))f ′ for every xt ∈ X1. Thus Γ′

1 is isomorphic to Γ′
2 as

marked labelled directed graphs by a bijection γ′ : X±
1 → X±

2 , which establishes
(a′), i.e., (a).
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By Lemmas 2.4.3 and 2.5.4, Corollary 2.4.5, (1) in Theorem 2.4.4 and the iso-
morphism hn, we obtain the following theorem.

Theorem 2.5.5. Let m,n ≥ 2 and q1, q2 ∈ Q. Then the following statements are
equivalent.

(a) StabBS(1,m)(q1) and StabBS(1,n)(q2) are isomorphic in presentations BS(1,m)
and BS(1, n) respectively.

(b) m = n and |q1| = |q2|.
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