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Abstract

Deep neural networks (DNNs) have demonstrated remarkable performance in various

fields, including image analysis, speech recognition, and text classification. However,

inner representations in DNNs are indecipherable. This makes it difficult to tune DNN

models, control their training processes, and interpret their outputs. The inner repre-

sentation retains the knowledge learned through the training and determines the network

behaviors. Thus, the investigation of the inner representation is essential to improve the

comprehension of network behaviors.

This thesis investigates the inner representation of DNNs using persistent homology

(PH). The inner representation retains the knowledge learned through the training, which

is represented by the combination of the neurons. Furthermore, PH reveals the combina-

tional effects of multiple neurons in DNNs from the viewpoints of the number and stabil-

ity of holes, which are difficult to capture without using PH. Thus, the comprehension of

network behaviors can be improved through the investigation of the inner representation

of DNNs using PH.

PH is designed to be applied to simplicial complexes in topological spaces. Due to the

difference between network parameters in DNNs and simplicial complexes in topological

spaces, PH cannot be straightforwardly applied to the investigation of DNNs. Conse-

quently, this thesis aims to fulfill the following goals: developing a method to investigate

the inner representation of DNNs using PH, and improving the comprehension of network

behaviors using PH. To achieve these goals, this thesis proposes a construction method

for clique complexes on DNNs (Chapter 2). Moreover, the changes in PH involved in

different network parameters of DNNs are analyzed (Chapter 3). Additionally, this work

proposes two investigation methods using PH to improve the comprehension of their inner

representation of DNNs (Chapters 3 and 4).

In Chapter 2, this thesis proposes a construction method for clique complexes on

DNNs through the introducion of two techniques: normalization and propagation. Fur-

thermore, this thesis mathematically proves the correctness of the construction method.

Additionally, the PH calculation method is formalized for the clique complexes con-
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structed on DNNs. The construction of clique complexes and formalization in PH cal-

culation provide a foundation for studying on the inner representation of DNNs using

PH.

In Chapter 3, this thesis analyzes changes in PH involved in different network param-

eters of DNNs using PH diagrams. PH diagrams enable us to review the number and the

stability of holes that appeared in the clique complexes obtained from trained DNNs. The

analysis reveals that PH changes with the difficulty of the problem for which the DNNs

are trained. This indicates that PH reflects the inner representation of trained DNNs.

In Chapters 4 and 5, two investigation methods of DNNs are proposed for overfitting

detection and network pruning, respectively. The overfitting-detection method enables

us to filter overfitted DNNs without relying on the training data. The network-pruning

method prunes 95% of the edges from DNNs with 12% higher accuracy than a common

baseline of pruning methods in our evaluation settings including dataset, network struc-

ture, and training process. These methods are refined by the investigation of DNNs using

PH. Thus, they demonstrate improvements in the comprehension of network behaviors

using PH.
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Chapter 1

Introduction

1.1 Background and Challenges

Artificial intelligence is utilized in various fields, including image analysis, speech recog-

nition, and text classification, where deep neural networks (DNNs) are essential in learn-

ing from large amounts of data [33, 91]. However, inner representations in DNNs are

indecipherable. This makes it difficult to tune DNN models, control their training pro-

cesses, and interpret their outputs.

This thesis investigates the inner representation of DNNs using topological data anal-

ysis (TDA). TDA employs results from geometry and topology [61, 81], which has pro-

vided new insights in various fields such as neuroscience [12, 17, 62, 75, 87], proteomics

[11, 29, 86], and material science [35, 41]. Persistent homology (PH) [10, 26, 70] is a

prominent method in TDA because of its theoretical foundation, practical computability,

and robustness with small perturbations [61]. These advantages are beneficial for inves-

tigating DNNs. Theoretical foundation and practical computability are fundamental for

extracting knowledge from empirical observations, while robustness is indispensable for

investigating DNNs involving parameter perturbations. Thus, PH is a prominent method

to investigate DNNs for improving the comprehension of network behaviors.

The inner representation of DNNs constitutes network parameters calibrated with net-

work training. The inner representation retains the knowledge learned through the training

and determines the network behaviors. Therefore, the investigation of the inner represen-

tation is essential in improving the comprehension of network behaviors. Meanwhile,

PH is designed to be applied to simplicial complexes in topological spaces. Due to the
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difference between network parameters in DNNs and simplicial complexes in topological

spaces, PH cannot be straightforwardly applied to the investigation of DNNs. Conse-

quently, this thesis aims to fulfill the following goals.

(G1) Developing a method to investigate the inner representation of DNNs using PH

(G2) Improving the comprehension of network behaviors using PH

1.2 Intuition behind Topological Analysis on DNNs

1.2.1 Inner Representation in DNNs and Topological Analysis

DNNs work as knowledge-distilling pipelines [46]. Alternatively, the degree of feature

abstraction increases with the depth of DNN layers, where higher-level features are ob-

tained by combining lower-level features. For example, images of cats are incrementally

abstracted from pixels to diagonal lines and from diagonal lines to ear shapes. Then,

DNNs can detect cats using a combination of the high-level features, such as ear and

body shapes [14]. In this process, the neurons in the DNNs represent the features. Thus,

the combination of the neurons, described by the network parameters, represents the im-

plementation of knowledge retained in DNNs.

PH is a method for computing the topological features of a simplicial complex. One-

dimensional PH counts the number of holes in a simplicial complex. The combination

of the neurons develops holes in the simplicial complex, where the neurons and the con-

nections between the neurons are considered as vertexes and edges in the simplicial com-

plex, respectively. Further, the one-dimensional PH measures the stability of the holes,

which varies depending on the number of vertexes and the distance between the ver-

texes. Then, it can reveal the cooperation among neurons for activating their subsequent

neurons, which is hereafter called combinational effect of neurons. Accordingly, PH re-

veals the combinational effects of multiple neurons in DNNs from the viewpoints of the

number and stability of holes, which are difficult to capture without using PH. Thus, the

comprehension of network behaviors can be improved through the investigation of the

inner representation of DNNs using PH.
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1.2.2 Topological Analysis on Human Brain

Previous studies have demonstrated that PH can be used for comparing and character-

izing human brains. Cassidy et al. employed PH as a tool for comparing human brains

using functional magnetic resonance imaging (fMRI) [12]. Petri et al. demonstrated that

psilocybin affects the homological structure of the brain’s functional patterns [62]. Fur-

thermore, Sizemore et al. employed PH to highlight the crucial features of human brains

from diffusion spectrum imaging (DSI) [75]. However, it is often difficult to quantify

the activation of neurons by fMRIs and DSIs. Hence, PH is more useful in the computer

science, particularly for DNNs because their network structures and the activation of neu-

rons can be described mathematically. In this work, we employed PH to investigate the

process of training a DNN and evaluate its knowledge representation complexities.

1.2.3 Investigation of DNNs using PH

Functional connectivity is an essential concept in neuroscience [20, 44, 71]. It is defined

as the synchronization of spatially remote neurophysiological events [28]. It enables us to

know the collaboration among neurons to achieve brain tasks. Considering the importance

of functional connectivity in neuroscience, this thesis applied the concept of functional

connectivity to DNNs.

To apply the concept to DNNs, this thesis defined relevance values among neurons

based on the contribution to the activation of the following neuron. Furthermore, the

clique complex induces subgraphs comprising synchronized neurons, called simplexes.

This thesis proved that the simplexes forms a simplicial complex on DNNs, which enables

us to study DNNs using PH.

PH investigates simplicial complexes at different resolutions. Edges and faces (1-

and 2-simplexes) appear and disappear depending on the resolution, which develop and

vanish holes on the simplicial complex. The one-dimensional PH investigates the number

and stability of the holes. Thus, PH investigates the sets of synchronized neurons at

different resolutions for revealing the inner representation of DNNs from the standpoint

of functional connectivity.
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1.3 Overview of Contributions

To achieve the goals, this thesis proposes a construction method for clique complexes

on DNNs and analyzes the changes in PH involved in different network parameters of

DNNs. Additionally, this thesis proposes two investigation methods for DNNs using PH

to improve the comprehension of the inner representation of DNNs. Sections 1.3.1–1.3.4

summarize the four contributions ((C1)–(C4)).

1.3.1 Proposal of a Construction Method for Clique Complex to DNNs
(C1)

This thesis develops a construction method for clique complexes on DNNs through the

introduction of two techniques: normalization and propagation. These techniques are in-

spired by the deep Taylor decomposition method, which has been designed to reveal the

influential inputs to the outputs of DNNs. Furthermore, this thesis enhances the method

for investigating the inner representation of DNNs and mathematically proves the correct-

ness of the construction method.

Additionally, the PH calculation method is formalized for the clique complexes con-

structed on DNNs, considering three types of layers: dense, convolutional, and pooling

layers. These layers are prevalent in many DNN applications, such as image analysis,

speech recognition, and text classification. The construction of clique complexes and

formalization in PH calculations provide a foundation for studying on the inner represen-

tation of DNNs using PH.

1.3.2 Analysis on the Changes in PH Involved in Different Network
Parameters of DNNs (C2)

This thesis analyzes the changes in PH involved in different network parameters of DNNs

using PH diagrams. PH diagrams enable us to review the number and the stability of

holes that appeared in the clique complexes obtained from trained DNNs. DNNs are

trained varying the difficulty of the problem. Then, the inner representations are analyzed

using PH. This analysis reveals that PH changes with the problem for which the DNNs

are trained. This indicates that PH reflects the inner representation of trained DNNs.
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To confirm the robustness of DNNs’ investigation using PH, this thesis conducts each

experiment 10 times with 30 different settings. The process is carried out using random

initial values of network weights, resulting in a total of 300 experiments. These experi-

ments reveal that the results obtained from the investigation using PH are robust with the

network’s settings and initial weights.

1.3.3 Proposal of an Overfitting Measurement of DNNs Using PH
(C3)

Overfitting reduces the generalizability of DNNs. Overfitting is generally detected by

comparing the accuracies and losses of the training and validation data, where the valida-

tion data are formed from a portion of the training data. However, detection methods are

ineffective for pretrained networks distributed without the training data. Thus, this work

proposes a method to detect the overfitting of DNNs using the trained network weights

inspired by the dropout technique, which enables us to compare the degrees of overfit-

ting among trained DNNs. The dropout technique has been employed to prevent DNNs

from overfitting, where the neurons in the DNNs are invalidated randomly during their

training. It has been hypothesized that this technique prevents DNNs from overfitting by

restraining co-adaptations among neurons. This hypothesis implies that the overfitting of

DNNs results from co-adaptations among neurons and can be detected by investigating

the inner representation of DNNs. The proposed persistent homology-based overfitting

measure (PHOM) method constructs clique complexes in DNNs using trained network

weights. Moreover, one-dimensional PH investigates co-adaptations among neurons.

In addition, this thesis enhances PHOM to normalized PHOM (NPHOM) to miti-

gate the fluctuation in PHOM caused by the difference in network structures. The pro-

posed methods are applied to convolutional neural networks trained for the classification

problems on the CIFAR-10, street view house number, Tiny ImageNet, and CIFAR-100

datasets. The experimental results demonstrate that PHOM and NPHOM can indicate the

degree of the overfitting of DNNs. Therefore, these methods enable us to filter overfitted

DNNs without requiring the training data.
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Table 1.1: Layout of this thesis

Chapter Description Contribution Challenge
1 Introduction Not applicable
2 Construction of clique complex on DNNs C1 G1
3 Analysis on the changes in PH involved

in different network parameters of DNNs
C2 G1

4 Proposal of overfitting measure of DNNs
using PH

C3 G2

5 Proposal of network pruning method of
DNNs using PH

C4 G2

6 Conclusion Not applicable

1.3.4 Proposal of a Network Pruning Method Using PH (C4)

The consumption of enormous computation resources prevents DNNs from operating on

small computers such as edge sensors and handheld devices. Network pruning (NP),

which removes parameters from trained DNNs, is a prominent method of reducing the re-

source consumption of DNNs. This thesis proposes a PH-based NP method (PHNP). PH

investigates the inner representation of knowledge in DNNs, and PHNP utilizes the in-

vestigation in NP to improve the efficiency of pruning. PHNP prunes DNNs in ascending

order of magnitudes of the combinational effects among neurons, which are calculated

using one-dimensional PH, to prevent the deterioration of the accuracy. PHOM is com-

pared to the global magnitude pruning method (GMP), which is a common baseline for

evaluating pruning methods. The evaluation results show that the classification accuracy

of DNNs pruned by PHNP outperforms that pruned by GMP.

1.4 Layout of This Thesis

Table 1.1 lists the correspondences among chapters, contributions, and challenges. Chap-

ters 2 and 3 contain the contributions of (C1) and (C2), respectively. The contributions of

(C1) and (C2) achieve the challenge of (G1), enabling us to investigate the inner repre-

sentation of DNNs using PH. Furthermore, this thesis provides the contributions of (C3)

and (C4) by proposing two investigation methods for DNNs in Chapters 4 and 5. These

methods are reinforced by the investigation using PH and demonstrate that the contribu-
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tions of (C3) and (C4) achieve the challenge of (G2), meaning that the comprehension of

networks’ behaviors is improved using PH.
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Chapter 2

Construction Method for Clique
Complexes on DNNs

2.1 Introduction

2.1.1 Application Strategy of PH to DNNs

Brain connectivity has been studied using functional connectivity [20, 44, 71], which is

defined as the synchronization of spatially remote neurophysiological events [28]. Syn-

chronization denotes the collaboration among neurons to achieve brain tasks. Therefore,

functional connectivity is essential in studying the mechanism in brains.

This thesis applied the concept of functional connectivity to DNNs. To extract the

synchronized neurons in DNNs, the following three steps were used;

(i) define a relevance between adjacent neurons using deep Taylor decomposition (DTD)

[55];

(ii) introduce normalization and propagation techniques to extend the relevance among

neurons in remote layers;

(iii) induce subgraphs comprising the synchronized neurons using the clique complex.

DTD defines the relevance among adjacent neurons which indicates the degree of the

preceding neuron’s contribution to the activation of the following neuron. Two neurons

with a high relevance value tend to activate simultaneously, indicating that they are syn-

chronized. In the step (ii), the two techniques were introduced to extend the relevance

among neurons in remote layers. Finally, the clique complex induces subgraphs com-

prising synchronized neuron. Various methods have been proposed to construct simplical
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complex on point cloud data, such as Čech, Vietoris-Rips, alpha, and clique complexes.

In these methods, the clique complex is suitable for graph and network analysis [64].

Moreover, it is prominently used in brain-network analysis [18, 44]. Thus, we employed

the clique complex to extract cliques of synchronized neurons from DNNs.

2.1.2 Investigation of DNNs Using PH

PH investigates simplicial complexes at different resolutions. All vertexes in the simpli-

cial complex are isolated when the resolution is set to the maximum. Meanwhile, edges

and faces (1- and 2-simplexes) appear and disappear when the resolution decreases, de-

veloping and vanishing holes in the simplicial complex. The one-dimensional PH inves-

tigates the holes’ number and stability.

The stability of holes varies depending on the number and topological structure of

neurons forming the hole. Since simplexes on DNNs were defined by the sets of syn-

chronized neurons, the holes comprise synchronized neurons. Thus, the neurons in stable

holes can be activated even when some neurons in the holes are inactive. Contrary, the

activation in unstable holes is vulnerable to the inactivation of other neurons. That is, the

stability of holes correlates with the number of neurons supporting the activation. Thus,

PH investigates the sets of synchronized neurons at different resolutions for revealing the

inner representation of DNNs from the standpoint of functional connectivity.

This chapter formalizes the PH calculation method for the clique complexes con-

structed on DNNs, considering three types of layers: dense, convolutional, and pooling

layers. These layers are prevalent in many DNN applications, such as image analysis,

speech recognition, and text classification. The construction of clique complexes and

formalization in PH calculation provides a foundation for studying on the inner represen-

tation of DNNs using PH.

Additionally, this chapter also provides an example of a clique complex on a DNN to

illustrate PH’s calculation. Finally, an algorithm is proposed to identify all simplexes from

the clique complex, which is required for the calculation of PH using public libraries. The

algorithm enables us to utilize the high-performance implementation of public libraries in

calculating the PH of DNNs.
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2.2 Preliminary

The terms of TDA and PH can be understood based on previous studies [23,37,61], while

introductory videos explaining TDA and PH can be found on on-demand video services1.

2.2.1 Persistent Homology

The homology groups of orders zero and one represent the number of connected com-

ponents and holes, respectively. PH is a method for computing the homology groups at

different resolutions. The formal definition of PH is provided in Definitions 1–4.

Definition 1. An abstract simplicial complex is a finite collection of sets K such that

X ∈K and Y ⊆ X implies Y ∈K .

The sets X in K denote its simplices. The dimension of a simplex is dimX = card X−

1, where card X denotes the cardinality of X . The dimension of an abstract simplicial

complex is the maximum dimension of any of its simplices. The vertex set is the set

consisting of all the simplices of dimension 0, while the face of a simplex X is a non-

empty subset Y ⊆ X .

A p-chain c of a simplicial complex K is a formal sum of p-simplices in K , that

is, c = ∑aiXi, where Xi are p-simplices and ai are coefficients. We employ module-2

coefficients, that is, ai are either 0 or 1 and 1+ 1 = 0. The binary arithmetic of two p-

chains c = ∑aiXi and c′ = ∑biXi is defined as c+c′ = ∑(ai+bi)Xi, where the coefficients

are of modulo-2. The p-chain forms a group denoted as Cp.

A boundary operator ∂p is a map from a p-simplex to the sum of its (p−1)-simplices.

Formally, ∂pX = ∑
p
j=0[v0, . . . , v̂ j, . . . ,vp], where [v0, . . . ,vp] is the simplex with vertices,

while the hat indicates that v j is removed. A chain complex is the sequence of chain

groups connected by boundary operators, · · ·
∂p+2−−→ Cp+1

∂p+1−−→ Cp
∂p−→ Cp−1

∂p−1−−→ ·· · . A

p-cycle is a p-chain with an empty boundary forming a group denoted as Zp = ker∂p. A

p-boundary is a p-chain, that is, the image of a (p+1)-chain forming a group denoted as

Bp = im ∂p+1.

1https://www.youtube.com/watch?v=akgU8nRNIp0, https://www.youtube.com/watch?v=

2PSqWBIrn90
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Definition 2. The p-th homology group denoted as Hp(= Zp/Bp) is the p-th cycle group

modulo the p-th boundary group. The p-th Betti number βp is the rank of Hp.

Definition 3. A filtration of the simplicial complex K is a sequence of simplicial complex

such that /0 = K0 ⊆ K1 ⊆ ·· · ⊆ Kn = K .

For every i ≤ j, there is an induced homomorphism in each dimension p, f i, j
p from

Hp(Ki) to Hp(K j). f i, j
p satisfies the condition of f k, j

p ◦ f i,k
p = f i, j

p for all 0≤ i≤ k≤ j ≤ n.

Definition 4. Let /0 = K0 ⊆ K1 ⊆ ·· · ⊆ Kn = K be a filtration. The p-th PH of K is the

pair ({Hp(Ki)}0≤i≤n,{ f i, j
p }0≤i≤ j≤n), where the homomorphism f i, j

p : Hp(Ki)→ Hp(K j)

represents the maps induced by including maps Ki→ K j.

A homology γ ∈Hp(Ki) can be said to be born at Ki if γ /∈ im f i−1,i
p . Furthermore, if γ

is born at Ki, then it dies entering K j if f i, j−1
p (γ) /∈ im f i−1, j−1

p but f i, j
p (γ) ∈ im f i−1, j

p . The

lifetime of γ is represented by the half-open interval [i, j). If f i, j
p (γ) 6= 0 (i ≤ ∀ j ≤ n), γ

can be said to live forever, and its lifetime is the interval [i,∞).

2.2.2 Diagrams

PH is a method to compute the topological features of a space. The zero- and one-

dimensional PHs count the number of connected components and holes, respectively,

whose formal definition can be found in the literature [23]. Fig. 2.1(a) shows points with

oblique lined circles in R2. When the radius of the circles is small, the points are isolated.

We gradually increase the radius of the circles, and then the circles produce the encircled

regions in R2. The appearance of these encircled regions corresponds to the birth of ho-

mologies. We then increase the radius of the circles further, which causes the encircled

regions to disappear. The disappearance of the encircled region corresponds to the death

of homologies.

Fig. 2.1(b) shows the PH diagram of Fig. 2.1(a). Here, the X and Y axes present

the birth and death of the homologies, respectively. The coordinate values on the axes

are determined by the radius of the oblique lined circles. The two points in Fig. 2.1(b)

correspond to the two enlarged regions in Fig. 2.1(a). Note that the small region in Fig.

2.1(a) is less stable than the large region. The stability of the regions is indicated by the
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Figure 2.1: (a) Examples of persistent homology; (b) persistent homology diagram of (a);
(c) barcode diagram of (a).

distance from the diagonal line in Fig. 2.1(b), i.e., the distance from the diagonal line of

the point corresponding to the small region is shorter than that to the large region.

A barcode diagram provides the same information as the PH diagram. The barcode

diagram of Fig. 2.1(a) is shown in Fig. 2.1(c), where the start and end points of the lines

parallel to the X-axis show the birth and death of homologies, respectively. The short

and long lines correspond to the small and large regions, respectively. The stability of the

regions is indicated by the line length. The Y-axis in Fig. 2.1(c) indicates no meaningful

information, which is sometimes used to group the results by the dimension of PH.

The computation of PH involves the explosion of the complexity due to the increase

in the number of vertices. Different methods have been implemented to realize this com-

putation [61], including GUDHI [53], JavaPlex [78], and Dionysus [25, 57].

2.3 Construction of Clique Complexes on DNNs

2.3.1 Dense Layers

We consider a set of neurons as vertices V = {v0, . . . ,vn}, where n+ 1 is the number of

neurons. DNNs are considered as directed graphs with weights wi j, where wi j denotes the

weight between vi and v j; here, wi j is zero if vi and v j are not connected. We set the value

of the relevance of identical neurons to one and the relevance Ri j between the connected

neurons vi and v j as the normalized weight. Formally we set

Ri j =

{
1 (i = j)
w+

i j/∑i,i6= j w+
i j (i 6= j), (2.1)
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where w+
i j denotes the positive part of the weight, i.e. w+

i j = max{0,wi j}. Ri j indicates

the relevance between vi and v j because the input to the j-th neuron is calculated by

∑i aiwi j +b j in DNNs, where ai is the activation of the i-th neuron and b j is the bias [14].

We employed the positive part of the weight and ignored the bias, in a manner similar to

the z+-rule defined in deep Taylor decomposition [55].

To construct clique complexes on DNNs, the relevance was extended to indirectly

connected neurons. For example, when v0 and v2 are connected to a path v0→ v1→ v2,

the relevance between v0 and v2 corresponding to the path is defined as R01R12. The

intuition behind the definition is as follows: R01 and R12 indicate the contributions of

v0 and v1 to the increase in the inputs of v1 and v2, respectively; R01R12 indicates the

contribution of v0 to the increase in the input of v2. Formally we set

R̃i j = max
(vi,vm1 ...,vmk ,v j)∈Li j

Rvivm1
· · ·Rvmk v j , (2.2)

where Li j denotes the set of all possible paths from vi to v j. It is possible to define R̃i j

using multiple paths in Li j. However, the maximum was employed in Eq. (2.2) to improve

computational efficiency.

Masulli et al. constructed a clique complex K(G) on a finite directed weighted graph

G = (V,E) with vertex set V and edge set E with no self-loops and no double edges [54].

They defined the clique complex K(G) as K(G)0 =V and K(G)p = {(vK0 , . . . ,vKp) ; vKi ∈

V,(vKi ,vK j)∈ E for all Ki < K j} (for p≥ 1), where K(G)p denotes the set of p-simplices

on G.

Correspondingly, R̃i j enables the construction of a clique complex and filtration on V .

The neurons were numbered in ascending order from the output to input layers. Hence,

the numbers of neurons in the closer layer to the output layer are smaller than those in

the farther layer, where the distance is indicated by the number of edges from the output

layer. Using this numbering, we set p-simpleces on V as

Kt
p =

{
V (p = 0)
{(vk0 , . . . ,vkp) ; vki ∈V, R̃kik j ≥ t for all ki > k j} (p≥ 1),

(2.3)

where t is a threshold value (0≤ t ≤ 1).

Proposition 1. Let V = (v0, . . . ,vn) be a finite set, and {wi j} (0 ≤ i, j ≤ n) be a set of

real numbers. Let R̃i j (0 ≤ i, j ≤ n) be the relevance defined by Eqs. (2.1) and (2.2)

13



Input tensor Output tensorKernels

Multiply Sum

Multiply Sum

Figure 2.2: Overview of the convolution operation between input tensor and kernels to
obtain output tensor.

using {wi j}. Let Kt
p be the p-simplices defined by Eq. (2.3), where t is a threshold value

(0≤ t ≤ 1). Then, a finite collection of sets Kt =Kt
0∪Kt

1∪·· ·∪Kt
n is an abstract simplicial

complex.

Proof. Let X = {vX0 , . . . ,vXp} be an element of Kt . Then, R̃XiX j is greater than or equal to

t for all Xi > X j. Let Y = {vY0 , . . . ,vYq} be a subset of X . Then, R̃YiY j are greater than or

equal to t for all Yi > Y j. Therefore, X ∈ Kt and Y ⊆ X imply Y ∈ Kt .

Proposition 2. Let (ti)n
i=1 be a monotonically decreasing sequence ranging from 1 to 0.

Then, K0 = /0 and Ki = Kti (1≤ i≤ n) form a filtration of Ktn .

Proof. Ktk
p is included in Ktl

p (1 ≥ tk > tl ≥ 0) from Eq. (2.3). It implies /0 = K0 ⊆ K1 ⊆

·· · ⊆ Kn = Ktn .

2.3.2 Convolution Layers

Eq. (2.1) defines the normalized relevance among neurons in the dense layer using net-

work weights. Notably, for convolution layers, the output tensor is obtained using the

convolution operation between the input tensor and the kernels. Fig. 2.2 provides an

overview of the convolution operation. The input tensor values are multiplied by those in

the kernels’ values, and the multiplication results are added together for the output tensor

values. The kernels associate the input tensor with the output tensor, similar to the net-

work weights in the dense layers. Thus, we define the relevance among neurons using the

kernel weights similar to Eq. (2.1).

14



Formally, the lth convolution layer correlates the input neurons a[l−1] of the size of

(n[l−1]
H ,n[l−1]

W ,n[l−1]
C ) to the output neurons a[l] of the size of (n[l]H ,n[l]W ,n[l]C ) according to

Eqs. (2.4) and (2.5).

a[l] = [conv(a[l−1],K(1)),conv(a[l−1],K(2)), . . . ,conv(a[l−1],K(n[l]C ))] (2.4)

conv(a[l−1],K(n))x,y = ψ
[l](

f [l]

∑
i=1

f [l]

∑
j=1

n[l−1]
C

∑
k=1

K(n)
i, j,ka[l−1]

(x−1)s[l]−p[l]+i,(y−1)s[l]−p[l]+ j,k +b[l]n )

(1≤ x≤ n[l]H ,1≤ y≤ n[l]W ),

(2.5)

where n[l]C is the number of kernels; K(n)(1≤ n≤ n[l]C ) are the kernels with the dimension

( f [l], f [l],n[l−1]
C ); p[l] is the padding; s[l] is the stride; b[l]n (1≤ n≤ n[l]C ) are the bias; and ψ [l]

is the activation function2. From Eqs. (2.4) and (2.5), the output neuron a[l]x,y,z is influenced

by the input neurons a[l−1]
(x−1)s[l]−p[l]+i,(y−1)s[l]−p[l]+ j,k

(1≤ i, j ≤ f [l],1≤ k ≤ n[l−1]
C ) with the

coefficient of K(z)
i, j,k.

We consider the correlation between two neurons a[L]X ,Y,Z and a[l]x,y,z, where X = (x−

1)s[l]− p[l] + i and Y = (y− 1)s[l]− p[l] + j. Then, we obtain two equations i = X −

(x− 1)s[l]− p[l] and j = Y − (y− 1)s[l]− p[l]. Under these considerations, we define the

normalized relevance between two neurons a[L]X ,Y,Z and a[l]x,y,z in convolution layers using

the normalization factor N(z)+ = ∑
f [l]
i=1 ∑

f [l]
j=1 ∑

n[l−1]
C

k=1 K(z)+
i, j,k ,

R(L,X ,Y,Z),(l,x,y,z) =



1 ((L,X ,Y,Z) = (l,x,y,z))
K(z)+

X−(x−1)s[l]+p[l],Y−(y−1)s[l]+p[l],Z
/N(z)+

(L = l−1,1≤ Z ≤ n[l−1]
C ,

1≤ X− (x−1)s[l]+ p[l] ≤ f [l],
1≤ Y − (y−1)s[l]+ p[l] ≤ f [l])

0 (otherwise),

(2.6)

where K+ = max{0,K} is the positive part of K.

2.3.3 Pooling Layers

Pooling layers are important in CNNs because they attempt to downsample the features

of the input. Many functions, e.g., maximum and average functions, are used for the

2We used the notation from https://towardsdatascience.com/

convolutional-neural-networks-mathematics-1beb3e6447c0 with modifications based on
our understanding.
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downsampling, but the input neurons correlate equally with the output neurons in these

functions. Thus, we define the relevance in pooling layers based on the size of the pooling

filter.

Here, using Eq. (2.7), the lth convolution layer correlates the input neurons a[l−1] with

the size of (n[l−1]
H ,n[l−1]

W ,n[l−1]
C ) to the output neurons a[l] of the size of (n[l]H ,n[l]W ,n[l]C ).

a[l]x,y,z = pool(a[l−1])x,y,z = φ((a[l−1]
(x−1)s[l]−p[l]+i,(y−1)s[l]+p[l]+ j,z

)(1≤i, j≤ f [l])), (2.7)

where φ is the pooling function; f [l] is the size of the pooling filter; s[l] is the stride; and

p[l] is the padding1. From Eq. (2.7), we define the normalized relevance between two

neurons a[L]X ,Y,Z and a[l]x,y,z in pooling layers,

R(L,X ,Y,Z),(l,x,y,z) =



1 ((L,X ,Y,Z) = (l,x,y,z))
1/( f [l])2

(L = l−1,Z = z,
1≤ X− (x−1)s[l]+ p[l] ≤ f [l],
1≤ Y − (y−1)s[l]+ p[l] ≤ f [l])

0 (otherwise).

(2.8)

2.3.4 Clique Complexes on DNNs

We consider sequential DNNs in which all neurons only connect with the neurons in the

consecutive layers. Sequential DNNs can be considered a finite directed weighted graph

with no self-loops and double edges, where the neurons and the connections between

them are represented by vertexes and edges, respectively.

Proposition 1 assumes Eqs. (2.1) and (2.2) designed for dense layers. However, the

proof of Proposition 1 does not employ Eqs. (2.1) and (2.2). Then, Proposition 1 is

generalized to Proposition 3, which requires no modification in the proof.

Proposition 3. Let V = (v0, . . . ,vn) be a finite set, and R̃i j (0 ≤ i, j ≤ n) be a set of

real numbers. Let Kt
p be the p-simplices defined by Eq. (2.3), where t is a threshold

value (0 ≤ t ≤ 1). Then, a finite collection of sets Kt = Kt
0∪Kt

1∪ ·· · ∪Kt
n is an abstract

simplicial complex.

We used Eqs. (2.1), (2.6), and (2.8) to define the normalized relevance R in dense,

convolution, and pooling layers, respectively. Additionally, we used Eq. (2.2) to define
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Figure 2.3: (a) Example of DNN with weights; (b–h) simplicial complexes and betti
numbers corresponding to the filtration.

Figure 2.4: (a) Weight matrix of Fig. 2(a); (b,c) barcode and PH diagrams illustrated
using GUDHI library.

R̃ for all layers, which defines a set of real numbers between neurons in CNNs. Thus, an

abstract simplicial complex Kt is defined on CNNs as shown in Proposition 3.

2.3.5 Example of Clique Complex on DNN

Fig. 2.3(a) illustrates a four-layered DNN with an output neuron v0. The values adjacent

to the arrows denote the weight between two neurons, and the weight matrix is presented

in Fig. 2.4(a) where the (i,j) element denotes the weight between the i-th and j-th neurons.

Fig. 2.3(b) illustrates the simplicial complex of Kr=1.0 with Betti number β0 = 9. The

decrease of the Betti number β0 according to the filtration can be observed in Fig. 2.3(c)

to (h). Fig. 2.3(e) illustrates a 2-simplex represented with the gray triangle.

Fig. 2.3(g) and 2.3(h) illustrate the increase of the Betti number β1 corresponding to

the occurrences of the cycle. If the vertices representing the features of input images are
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connected straightforwardly to the output neurons, the knowledge in the DNN is consid-

ered to be simple because it is equivalent to feature detection. In contrast, the increase of

the Betti number β1 indicates that the DNN classifies the input based on the combination

of features. From these viewpoints, we can assume the increase in the Betti number β1

reflects the complexity of knowledge in the DNN. Filtration 10 (Fig. 2.3(i)) has Betti

number β1 = 1. While [0, 2] is a simplex in Filtration 10, it is not included in another

simplex [0,. . .,10] and produces β1 = 1.

The computation of PH involves the explosion of the complexity caused by the in-

crease of vertices, several implementations of which are publicly available [61]. We

employed the GUDHI [9, 53], JavaPlex [78], and Dionysus 2 [25, 57] libraries for the

computation and visualization. These libraries require registering simplexes in each fil-

tration to calculate PH.

Algorithm 1 identifies all simplexes from a vertex s up to the limit of the threshold of

relevance t using the recursive procedure call. All simplexes in each filtration are identi-

fied using this procedure and registered to the libraries. Fig. 2.4(b) and (c) are barcode

and PH diagrams illustrated by the GUDHI library, respectively. The library employed red

and green for indicating zero- and one-dimensional homologies, respectively. The Betti

numbers in Fig. 2.4(b) correspond to the number of the intersections between the bars

and the perpendicular lines to the X-axis (remembering that the lifetime of homologies

is defined by the half-open interval [birth,death)). The GUDHI library illustrates Betti

numbers using color shades in PH diagrams shown in Fig. 2.4(c). PH was calculated

using the Dionysus 2 and JavaPlex libraries, resulting in the same diagrams.

In each layer of DNNs, Algorithm 1 executes the recursive procedure call. When the

DNN comprises L layers with Ni neurons in the ith layer, the maximum number of the

recursive procedure call is ∏
L
i=1 Ni. The recursive procedure call is discontinued when the

relevance value between two neurons reaches the threshold value. However, the compu-

tational complexity of Algorithm 1 can reach O(∏L
i=1 Ni).

The recursive procedure call imposes a high computational overhead. In Chapter 5,

a stack-based algorithm is developed to reduce the computational overhead. Further-

more, in Chapter 4, an algorithm is proposed for enhancing the computation efficiency
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Algorithm 1 Algorithm for obtaining simplexes from a vertex s using a threshold t
procedure GETSIMPLEX(M, s, t) . where M: n×n-matrix, s: array, t: threshold

relevance← 1.0, result← /0, origin← s[0]
for dest = s[0] to s[|s|−1] do . calculate the relevance from s[0] to s[|s|−1].

relevance← relevance×M[origin][dest] . s[|s|−1] is the last element of s.
origin← dest

end for
if relevance≥ t then

result.append(combination(s)) . append all the combinations of the elements
in s.

lastPoint← s[|s|−1]
for i = 0 to n−1 do . check if the last point has connections.

if M[lastPoint][i]> 0 and i 6= lastPoint then
ss←deep copy of s
recResult← getSimplex(M,ss.append(i), t) . recursive call with

extended array.
for e in recResult do

result.append(combination(e)) . append all the combinations of
the elements in e.

end for
end if

end for
end ifreturn unique(result) . return deduplicated array

end procedure

by limiting the number of DNN layers to three. The results obtained using the proposed

algorithms are identical, except for the duplications and the order of outputs.

2.4 Discussion

In this section, the assumptions used in this study are explained and the application of the

topological measurement of DNNs is discussed.

2.4.1 Assumptions

The assumptions of this study include the follows: (1) the knowledge in DNNs can be

investigated from their network weights among neurons and (2) PH reveals the knowledge

complexity of DNNs. The first assumption is acceptable because the weights are the

outcome of the training process. The second assumption is based on the observations from

previous works described in Sec.1.2 [14, 46]. PH reveals the births and deaths of feature

combinations, which are difficult to be captured without using PH. The effectiveness of
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the second assumption can be evaluated from the usability, which changes depending on

the application.

2.4.2 Applications

One of the most important applications of the proposed method is recognizing the qual-

ity of DNN training. In particular, the performance of DNNs can deteriorate for many

reasons, including a shortage of data, overfitting, and improper hyper-parameter set-

ting [5, 77].

In Chapter 3, we provide evaluation results of the proposed method, in which the

excess of the output neurons produces homologies near the dialog line. These results

imply that the shortage of data can be indicated by the PH. Furthermore, we propose an

overfitting measure in Chapter 4 for selecting appropriate DNN architectures, which is

one of the major challenges when utilizing DNNs [30, 59].

2.5 Related Work

Bianchini et al. investigated the upper and lower bounds of network complexity from the

viewpoint of topological concepts [6]. We addressed the inner representations of DNNs

with small perturbations. Our evaluation results revealed that small perturbations such as

the number of output neurons and a variety of input data have significant impact on PH.

Thus, the sensitivity of PH requires a careful investigation for securing comparability.

Rieck et al. investigated the complexity of the inner representation of DNNs using

zero-dimensional PH [69]. Zero-dimensional PH counts the number of connected com-

ponents in DNNs. Fig. 2.3(f) and (g) have β0 = 3 and β0 = 2 corresponding to the

connected components, respectively. In contrast, the Betti number β1 reveals the combi-

nations among neurons illustrated in Fig. 2.3(g), where the neurons one and three col-

laborate to increase the Betti number β1. Thus, we believe that one-dimensional PH can

reveal the combination of neurons and access essential aspects of DNNs that are difficult

to be accessed using other methods.
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2.6 Conclusion

This chapter provided a foundation for studying on the inner representation of DNNs

using PH by proposing a construction method of clique complex and formalizing PH

calculation on DNNs. The normalization and propagation techniques were introduced

for constructing clique complex on DNNs, where mathematical proof was presented to

show the construction method’s correctness. The formalization was achieved in dense,

convolutional, and pooling layers, which are prevalent in many DNN applications. An

example of a clique complex on a DNN was presented to illustrate the PH calculation. An

algorithm was also provided for obtaining simplexes from complexes, which enables us

to utilize the high-performance implementation of public libraries in calculating the PH

of DNNs.
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Chapter 3

Changes in PH Involved in Different
Network Parameters of DNNs

3.1 Introduction

This study assumes that the inner representation of DNNs affects the PHs obtained from

the DNNs. For confirming the assumption, DNNs are developed varying the difficulty

of problems for which the DNNs trained. The difficulty of problems is adjusted by re-

ducing the number of classes that the DNNs learn. DNNs are also developed varying the

number of neurons in the DNNs. The changes of PH are illustrated with PH diagrams for

overviewing the number and stability of homologies in DNNs.

Evaluations are conducted using fully connected networks (FCNs) and networks com-

bining FCNs and convolutional neural networks (CNNs) trained on the MNIST and CIFAR-

10 datasets. Evaluation results demonstrate that the PH of DNNs reflects both the excess

of neurons and problem difficulty, making PH one of the prominent methods for investi-

gating the inner representation of DNNs.

Additionally, the robustness of PH is investigated in this chapter. We conduct each

experiment 10 times with 30 different settings using random initial values of network

weights, resulting in a total of 300 experiments. These experiments reveal that the results

obtained from the investigation using PH are robust with the network’s settings and initial

weights.
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Figure 3.1: DNN for handwritten number recognition.

Table 3.1: Overview of the data sets and network types employed in this study

Data set Content Data size Network type

MNIST handwritten digits 784 (28×28 grayscale) FCN
CIFER-10 photographs 3072 (32×32 color) CNN, FCN

3.2 Changes in PH Involved in Different Network Pa-
rameters

3.2.1 Datasets and Setting of DNNs

The MNIST and CIFAR-10 data sets were employed in the evaluation [42,47]. As shown

in Table 3.1, the contents of the MNIST and CIFAR-10 data sets are 28× 28 grayscale

handwritten digits and 32× 32 color photographs, respectively. The CIFAR-10 data set

comprises the photographs of 10 types of objects such as airplanes, automobiles, birds,

etc. All experiments were conducted using Keras and Tensorflow [1,14], and DNNs were

developed based on the examples in Keras 2.3.0 1.

For the classification of the MNIST data set, we employed an FCN with two hidden

layers of sizes 300 and 100, the ReLU activation function in the hidden layers and 10

output neurons with the sigmoid activation function (Fig. 3.1). The models were traind

for 10 epochs with a batch size of 64, and all models achieved an accuracy of over 97%

on the test data.
1The source code used in the evaluation can be accessed at https://github.com/

satoru-watanabe-aw/DNNtopology.
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For the classification of the CIFAR-10 data set, we employed DNNs consisting of a

CNN and an FCN. The CNN was used to extract features from the photographs, while the

FCN was used to classify the photographs based on the combination of the features. The

proposed method was applied to the FCN since the purpose of this study was to examine

the complexity of the knowledge in DNNs represented in the combination of features.

We employed the CNN from an example network included in Keras 2.3.0 without

modifications. This CNN comprises multiple layers, including two-dimensional convolu-

tion, max pooling, and dropout layers. Two FCNs with sizes of (300, 100, 10) and (512,

512, 10) were used for examining the sensitivity of the proposed method to the network

structures2. The DNNs were trained for 30 epochs with a batch size of 32.

3.2.2 Resolution of Persistent Homology

PH investigates simplicial complexes at different resolutions, which are defined by filtra-

tion. Filtration can be set automatically by libraries [61] that adjust the resolution accord-

ing to the simplicial complexes. However, this adjustment makes it difficult to compare

the PH diagrams among the evaluation results. Thus, we used a fixed resolution in this

study.

From Proposition 2, a filtration of Ktn is defined by a monotonically decreasing se-

quence (ti)n
i=1 ranging from 1 to 0. Here, we employ the sequence (ti)n

i=1(1 ≤ n ≤ 64)

defined as ti = (1−0.1× (l−1))×10−m, where m and l are the quotient and remainder,

respectively, when i is divided by 9. The sequence (ti)n
i=1 defines a filtration /0 = K0 ⊆

Kt1=1.0 ⊆ Kt2=0.9 ⊆ ·· · ⊆ Kt10=1.0−1 ⊆ Kt11=0.09 ⊆ ·· · ⊆ Kt64=1.0−7
. Note that this setting

is consistent throughout this thesis.

2The following network structures are employed: input(3072)–Conv2D(32 filters, 3× 3 kernel, ReLu
activation)–Conv2D(32 filters, 3×3 kernel, ReLu activation)–MaxPooling2D(2×2 pool)–Dropout(dropout
ratio 0.25)–Conv2D(64 filters, 3× 3 kernel, ReLu activation)–Conv2D(64 filters, 3× 3 kernel, ReLu
activation)–MaxPooling2D(2× 2 pool)–Dropout(dropout ratio 0.25)–Flatten–Dense(300 or 512, ReLu
activation)–Dropout(dropout ratio 0.5)–Dense(100 or 512, ReLu activation)–Dense(10, softmax activation).
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3.3 Evaluation Results

3.3.1 MNIST Dataset

Figs. 3.2(a–j) illustrate PH diagrams of the FCNs produced using the Dionysus 2 library,

where the number of input digits used to train the FCN models was varied. In particular,

we extracted the images of the target digits from the MNIST data set and trained FCN

models using the images of digits 0–9 (Fig. 3.2(a)), digits 0–8 (Fig. 3.2(b)), and so on.

The Dionysus 2 library allows to visualize the overlapping quantity of homologies using

different colors as indicated by the legends in Fig. 3.2. The values of birth and death in

the axes on PH diagrams indicate the order of the 64 threshold values defined in Section

2.3. Let m and l are the quotient and remainder when the values of birth and death are

divided by 9, respectively, the threshold values corresponding to the values in the axes on

PH diagrams are (1− 0.1× (l− 1))× 10−m. This correspondence is consistent through

the paper.

The following three observations can be made from Figs. 3.2(a–j): (1) points are

plotted in the belt-like area (birth+5 < death < birth+20) parallel to the dialog line; (2)

some figures have points below the belt-like area; and (3) some figures have points over

the belt-like area.

With respect to observation (2), the number of points below the belt-like area increases

from Fig. 3.2(a) to Fig. 3.2(g) and decreases from Fig. 3.2(h) to Fig. 3.2(j). This pattern

reflects both the excess of the output neurons and problem difficulty. It can be further

observed that the diagrams seem to reflect the degree of confidence of the FCN models,

i.e., the excess of the output neurons reduced the confidence, whereas the simplicity of the

problem increases it. For further investigation, we classified five digits using five output

neurons (Fig. 3.2(k)) and 10 digits using 20 output neurons (Fig. 3.2(l)). In contrast to

Fig. 3.2(f), the points below the belt-like area disappeared in Fig. 3.2(k). The opposite

can be observed in Figs. 3.2(a) and 3.2(l).

Table 3.2 lists the number of points plotted in Fig. 3.2(a–e), 3.2(i), and 3.2(j). We

categorized the points using the representative cycles calculated by the JavaPlex based on

the following two conditions: (c1) the homology includes unused output neurons and (c2)
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Figure 3.2: (a–j) PH diagrams of the FNC models trained to classify handwritten digits
based on a varying number of input digits from 10 to 1; (k) persistent diagram of the FCN
model trained to classify five digits using five output neurons; (l) persistent diagram of
the FCN model trained to classify 10 digits using 20 output neurons

the points are under the belt-like area (death ≤ birth+ 5). While the number of points

that include unused output neurons in Figs. 3.2(i) and 3.2(j) is more than twice of that

in Fig. 3.2(e), these points are not plotted below the belt-like area. The simplicity of the

problem led to no points being plotted under the belt-like area.

3.3.2 CIFAR-10 Dataset

Figs.3.3(a–j) illustrate PH diagrams of the DNN models combining a CNN and an FCN

(300, 100, 10), where the number of classes used to train the models was varied. In
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Table 3.2: Number of points in Figs. 3.2(a–e), 3.2(i), and 3.2(j)

(a) (b) (c) (d) (e) (i) (j)

Total number 16,420 16,399 16,150 16,222 16,133 15,857 15,531
(c1) N/A 1,317 2,034 1,700 2,972 8,226 13,123
(c2) 0 45 26 254 273 0 0
(c1) and (c2) N/A 45 26 254 40 0 0

particular, we extracted photographs of the target classes from the CIFAR-10 data set and

trained the DNN models using the photographs of 10 classes (Fig. 3.3(a)), nine classes

(Fig.3.3(b)), and so on.

As described in Section 3.2, the contents of the CIFAR-10 data set differs from that

of the MNIST data set in terms of the image size, tone, and represented object. Unlike

FCN-based models traind on the MNIST data set, CNNs were employed in addition to

FCNs to classify the CIFAR-10 data set.

Despite these differences, Figs. 3.3 demonstrate similar patterns to those in Figs. 3.2.

In particular, the points under the belt-like area appear only in Figs. 3.3(d–h); Fig. 3.3(k),

where the photographs of five classes are classified using five output neurons, has no

points under the belt-like area, whereas Fig. 3.3(l), where the photographs of 10 classes

are classified using 20 output neurons, has points under the belt-like area.

A further experiment was conducted using the DNN models combining a CNN and an

FCN (512, 512, 10). The results of this experiment are illustrated in Figs. 3.4. A similar

patterns regarding the appearance and disappearance of points under the belt-like area can

be observed from Fig. 3.4; that is, only Figs. 3.4(d–h) and 3.4(l) have the points under the

belt-like area. This result suggests that the observation is robust to not only the network

type and content of data sets but also number of neurons in FCNs.

Two additional observations can be made from Fig. 3.3 and 3.4: (i) the numbers of

points in Figs. 3.4 are larger than those in Figs. 3.3; (ii) the sizes of the areas that points

are plotted in Figs. 3.4 are larger than those in Figs. 3.3. Tables 3.3 and 3.4 list the

numbers of points and sizes of the convex hull of the points plotted in Fig. 3.3(a)–(j) and

3.4(a)–(j), respectively. The numbers of points in Fig. 3.4 are 8.81 to 9.31 times larger

than those in Fig. 3.3. The sizes of the convex hulls in Fig. 3.4 are 1.05 to 2.57 times

larger than those in Fig. 3.3.
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Figure 3.3: (a–j) PH diagrams of the DNNs using the FCN (300, 100, 10) trained to
classify photographs based on a varying number of input classes from 10 to 1; (k) PH
diagram of the DNN using the FCN (300, 100, 10) trained to classify five classes using
five output neurons; (l) PH diagram of the DNN using the FCN (300, 100, 10) trained to
classify 10 classes using 20 output neurons
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Table 3.3: Number of points in Figs.3.3(a–j) and 3.4(a–j)

(A) Fig. 3.3: FCN
(300, 100, 10)

(B) Fig. 3.4: FCN
(512, 512, 10)

(B) / (A)

(a) 16,214 142,768 8.81
(b) 16,278 139,783 8.59
(c) 15,702 142,016 9.04
(d) 15,421 141,027 9.15
(e) 15,274 138,732 9.08
(f) 15,759 136,508 8.66
(g) 14,878 133,503 8.97
(h) 14,348 124,919 8.71
(i) 11,496 106,983 9.31
(j) 15,073 132,775 8.81

The number of points reflects the difference of expressiveness of the FCN (512, 512,

10) and FCN (300, 100, 10). The FCN (512, 512, 10) has more parameters compared

to the FCN (300, 100, 10), which results in the ability of the FCN (512, 512, 10) to

learn knowledge is higher than that of the the FCN (300, 100, 10) and produces many

homologies. As a rough approximation, the FCN (512,512,10) has 512× 512+ 512×

10 of weight parameters, whereas the FCN (300, 100, 10) has 300× 100+ 100× 10 of

them. The ratio 8.62 (= (512× 512+ 512× 10)/(300× 100+ 100× 10)) provides the

explanation for the increase in the values listed in Table 3.3.

The increase in the size of convex hull is smaller than that of the number of points,

which indicates that the FCNs (512, 512, 10) have duplicated homologies approximately

4 to 8 times more often compared to the FCNs (300, 100, 10). It implies that the FCNs

(512, 512, 10) have duplicated homologies with different neurons, which can be achieved

with expressive training to the data set. The interpretation of the PH diagrams requires

further investigation, which we left as a task for future work because the purpose of this

study was only to examine the prominence of the topological measurement of DNNs.

3.4 Robustness on Weight Initialization

We conducted additional experiments by varying the initial values of network weights to

investigate the robustness of the PH diagrams’ transitions described in Subsections 3.3.1

and 4.3. Keras framework starts the training with random initial values of network weights
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Figure 3.4: (a–j) PH diagrams of the DNN using the FCN (512, 512, 10) trained to classify
photographs based on a varying number of input classes from 10 to 1; (k) PH diagram
of DNN using the FCN (512, 512, 10) trained to classify five classes using five output
neurons; (l) PH diagram of DNN using the FCN (512, 512, 10) trained to classify 10
classes using 20 output neurons
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Table 3.4: Size of the convex hull in Figs. 3.3(a–j) and 3.4(a–j)

(A) Fig. 3.3: FCN
(300, 100, 10)

(B) Fig. 3.4: FCN
(512, 512, 10)

(B) / (A)

(a) 445.5 492.5 1.11
(b) 477.0 737.5 1.55
(c) 406.0 881.0 2.17
(d) 710.5 1029.5 1.45
(e) 823.0 959.5 1.17
(f) 836.0 904.8 1.08
(g) 634.5 964.5 1.52
(h) 992.0 1041.5 1.05
(i) 413.5 1061.0 2.57
(j) 232.5 254.0 1.09

[14]. We repeated each experiment 10 times by varying the number of input classes from

10 to 1 with the three network types, MNIST (300,100,100), CIFAR-10 (300,100,100),

and CIFAR-10 (512,512,10), resulting in a total of 300 additional experiments.

Fig. 3.5 shows the minimum, average, and maximum size of convex hulls of the points

in the PH diagrams. The differences between the maximum and minimum values indicate

the degree of vibration of the experiment results. All the three graphs are approximately

convex upward, indicating that the PH diagrams transit the shape in a similar manner to

those described in Subsections 3.3.1 and 4.3, and the transitions are robust on the initial

values of network weights.

In Subsections 3.3.1 and 4.3, we observed the transition of the PH diagrams that the

number of points near the dialog line (death≤ birth+5) changes by varying the number

of input classes. No point near the dialog line appeared when the number of input classes

was set to 10 and 1. Additionally, the number of points near the dialog line increased

and decreased with the decrease in the number of input classes from 10 to 8 and 3 to 1,

respectively.

Table 3.5 lists the minimum, average, and maximum numbers of points near the dialog

line regarding the additional experiments. We observed that no point appeared near the

dialog line when the number of input classes was set to 10 and 1 in all the additional exper-

iments. Additionally, the increase and decrease followed the same trend in the additional

experiments, shown in Table 3.5, meaning that the observations obtained in Subsections
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Figure 3.5: (a)–(c) Size of the convex hull of points in the PH diagrams with MNIST
using the FCN (300,100,10), CIFAR-10 using the FCN (300,100,10),and CIFAR-10
using FCN (512,512,10) by varying the number of input classes, respectively

Table 3.5: Number of points near the dialog line (death≤ birth+5)

Number of
input classes

MNIST CIFAR-10 (300-100) CIFAR-10 (512-512)
min. avg. max. min. avg. max. min. avg. max.

10 0 0 0 0 0 0 0 0 0
9 57 96 132 0 11 59 0 115 234
8 110 150 199 0 33 102 79 273 497
7 141 209 297 0 78 143 278 375 451
6 141 269 348 0 136 284 209 376 571
5 137 332 528 0 142 334 52 380 620
4 111 308 524 48 196 321 13 423 823
3 46 131 207 0 158 365 591 764 909
2 0 0 1 0 36 252 145 581 936
1 0 0 0 0 0 0 0 0 0

3.3.1 and 4.3 are robust on the initial values of network weights.

3.5 Conclusion

We evaluated the changes of PH involved in different network parameters of DNNs. The

evaluation results demonstrated that the one-dimensional PH of DNNs can reflect both

the excess of neurons and problem difficulty, which implies that PH can become one of

the prominent methods for investigating the inner representation of DNNs.

The investigation about the robustness of PH was also conducted in this chapter. Ad-

ditional experiments revealed that the results obtained from the investigation using PH are

robust with the network’s settings and initial weights.
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Chapter 4

Overfitting Measurement of Deep
Neural Networks Using Training
Network Weights

Overfitting reduces the generalizability of deep neural networks (DNNs). Overfitting is

generally detected by comparing the accuracies and losses of the training and validation

data, where the validation data are formed from a portion of the training data; however,

detection methods are ineffective for pretrained networks distributed without the training

data. Thus, in this paper, we propose a method to detect overfitting of DNNs using the

trained network weights inspired by the dropout technique. The dropout technique has

been employed to prevent DNNs from overfitting, where the neurons in the DNNs are

invalidated randomly during their training. It has been hypothesized that this technique

prevents DNNs from overfitting by restraining the co-adaptations among neurons, and

this hypothesis implies that the overfitting of DNNs results from co-adaptations among

neurons and can be detected by investigating the inner representation of DNNs. The pro-

posed persistent homology-based overfitting measure (PHOM) method constructs clique

complexes in DNNs using the trained network weights, and the one-dimensional per-

sistent homology investigates co-adaptations among neurons. In addition, we enhance

PHOM to normalized PHOM (NPHOM) to mitigate fluctuation in PHOM caused by the

difference in network structures. The methods are applied to convolutional neural net-

works trained for the classification problems on the CIFAR-10, street view house number,

Tiny ImageNet, and CIFAR-100 datasets. Experimental results demonstrate that PHOM

and NPHOM can indicate the degree of overfitting of DNNs, which suggests that these
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methods enable us to filter overfitted DNNs without requiring the training data.

4.1 Introduction

Overfitting is defined as “the production of an analysis that corresponds too closely or

exactly to a particular set of data, and may therefore fail to fit additional data or predict

future observations reliably [22].” Overfitting is a major contributor to reduced general-

izability of data analytics methods, including deep neural networks (DNNs).

Overfitting of DNNs is generally detected by comparing the accuracies and losses of

the training and validation data, where a portion of the training data is used to form the

validation data [7]. It is detected by the higher accuracy and lower loss to the training

data compared with those to validation data. However, the detection method is ineffective

for pretrained networks distributed without the associated training data. Due to the large

amount of training data, trained networks are typically distributed without the training

data to reduce the data handling costs.

Srivastava et al. previously proposed a dropout method that prevents DNNs from over-

fitting [77]. In this method, the neurons in the DNNs are invalidated randomly during their

training. They hypothesized that “for each hidden unit, dropout prevents co-adaptation by

making the presence of other hidden units unreliable.” This hypothesis implies that the

overfitting of DNNs is a result of co-adaptations among neurons and can be detected by

investigating the inner representation of DNNs.

In this paper, as an enhancement of our previous work [83], we propose a persis-

tent homology-based overfitting measure (PHOM) that uses trained network weights to

measures the degree of overfitting of DNNs. We investigate the possibility of overfit-

ting detection without relying on the training data. PHOM constructs clique complexes

on trained DNNs using the network weights, kernel weights, and pooling sizes in the

dense, convolution, and pooling layers, respectively. The one-dimensional PH investi-

gates the co-adaptations among neurons from the viewpoint of the number and stability

of synchronized neurons as described in Section 2.1.1 and 2.1.2; thus, PHOM does not re-

quire the training data to detect overfitting. In addition, we extend PHOM to normalized

PHOM (NPHOM) to mitigate fluctuation in PHOM results caused by the difference in
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network structures. The proposed methods are applied to convolutional neural networks

(CNNs) trained for the classification problems in the CIFAR-10, street view house num-

ber (SVHN), Tiny ImageNet, and CIFAR-100 datasets, and we experimentally investigate

the ability of PHOM and NPHOM to separate overfitted DNNs using no training data.

The investigation of this paper shows that the overfitting of DNNs can be detected

via the inspection of the inner representation of trained DNNs. We demonstrate that the

detection can be achieved with the assistance of topological data analysis.

The remainder of this paper is organized as follows. PHOM is proposed in Section

4.2. The experimental setup and results are described in Sections 4.3 and 4.4, respec-

tively. Section 4.5 describes the fundamental analysis of PHOM, and Section 4.6 en-

hances PHOM to NPHOM. Section 4.7 discusses PHOM. Related work is described in

Section 4.8. Finally, conclusions are presented in Section 4.9.

4.2 Persistent Homology-Based Overfitting Measurement

4.2.1 Definition of Overfitting Measure

The overfitting of DNNs is hypothesized as a result of the co-adaptation of neurons, which

induces the synchronization among neurons. The synchronized neurons produce stable

homologies, and the stable homologies are plotted at a distance from the dialog line in the

PH diagram. Thus, it is assumed that the overfitting of DNNs results in the decrease of

points near the dialog line.

To measure the degree of overfitting, we set a belt area in the PH diagram with the

condition of death ≤ birth+ 10. Then, we defined the overfitting measure of DNNs by

the number of points in the belt area. We employed a provisional threshold value of 10,

considering other counting techniques as described in Section 4.7.4.

4.2.2 Computation Algorithm

DNNs can comprise millions of neurons, which makes it difficult to compute the PH of

DNNs. To reduce this difficulty, we consider vertex-induced subgraphs of DNNs. A

vertex-induced subgraph is a subset of the vertices of the graph together with any edges

whose endpoints are present in the subset. Here, we select vertexes from DNNs as fol-
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lows:

(i) select two successive layers from DNNs;

(ii) select input neurons from the first layer;

(iii) select neurons that are connecte to the input neurons.

The sequential nature of DNNs reduces the difficulty of the identification of simplexes

because no vertex in simplexes has branches, as shown in Proposition 1. Based on Propo-

sition 1, we identify all the simplexes in the subgraph using Algorithm 2. Here, there

are two “loop in 1st layer”s to leverage the identification using the sparse matrix library

provided in the SciPy [79].

Proposition 1. Let Kt be an abstract simplicial complex in sequential DNNs as defined

by Eqs. (2.2) and (2.3). Then, all simplexes will have no vertex that is a shared start point

of multiple edges.

Proof. Let v = (v0, . . . ,vp) ∈ Kt is a simplex, and let v0 be a shared start point of multiple

edges. Then, the end points vi and v j belong to the next layer of v0 due to the sequential

nature of the DNN, i.e., R̃i j is undefined because there is no path from vi to v j.

4.3 Evaluation Setup

The CIFAR-10 and SVHN datasets were employed in our evaluations [42, 60]. The

CIFAR-10 and SVHN datasets contain color photographs (32× 32 pixels). The CIFAR-

10 dataset contains images of 10 types of objects, e.g., airplanes, automobiles, and birds,

with 50,000 and 10,000 images for training and testing, respectively. The SVHN dataset

contains images of real-world house numbers obtained from Google Street View images.

Here, we used “format two” in SVHN dataset, which was generated by cropping digits

and resizing the images to a fixed resolution of 32×32 pixels.

Evaluations were conducted using a network with a combination of dense and con-

volutional layers (Fig. 4.1), which was developed based on the examples in Keras 2.3.0.

Here, we varied the dropout rate in the DNNs to consider networks with and without
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Algorithm 2 Algorithm for identifing all simplexes

1: procedure IDFYSIMPLEX({Ri j}, (ti)L
i=1,(N1,N2,N3)) . {Ri j}: N×N matrix

defined in Eqs. (2.2), (2.5), and (2.8); (ti)L
i=1: threshold values; N1,N2,N3: number of

neurons in 1st, 2nd, and 3rd layers, respectively (N = N1 +N2 +N3).
2: for i = 0 to N−1 do
3: simplex[1]←{(vi)} . register 0-simplexes
4: end for
5: for i = N1 +N2 to N−1 do . loop in 3rd layer
6: for j = N1 to N1 +N2−1 do . loop in 2nd layer
7: if Ri j 6= 0 and i 6= j then
8: call setSimplex(Ri j, {(vi,v j)})
9: for k = 0 to N1−1 do . loop in 1st layer

10: if R jk 6= 0 and j 6= k then
11: call setSimplex(R jk, {(v j,vk)})
12: end if
13: end for
14: end if
15: end for
16: for j = 0 to N1−1 do . loop in 1st layer
17: {Mk}N−1

k=0 ←{Rix}N−1
x=0 �{Ry j}N−1

y=0
ᵀ

. � and ᵀ denote Admiral product
and transpose, respectively.

18: for k = 0 to N−1 do
19: if Mk 6= 0 then
20: call setSimplex(Mk, {(vi,v j)})
21: call setSimplex(Mk, {(vi,vk,v j)})
22: end if
23: end for
24: end for
25: end for
26: end procedure
27: procedure SETSIMPLEX(R, e) . R and e are the relevance value and simplex,

respectively.
28: p←min{l;R≥ tl (1≤ l ≤ L)}
29: simplex[p]← e
30: end procedure
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overfitting to the training data. The DNNs were trained with a batch size of 128 and 30

epochs, where 20% of the training data were used as the validation data.

We selected two target layers to apply PHOM, i.e., the 1st and 2nd groups in Fig. 4.1.

For the 1st group, we selected all the neurons in the first dense layer as the input neurons

(Section 4.2.2). For the 2nd group, we selected input neurons with a size of 3× 3× 32

to reduce computation complexity. Here, the size corresponds to the kernel size in the

convolution layer.

We also used the Tiny ImageNet dataset [19] and VGG16 network [74] in our evalua-

tions. Tiny ImageNet dataset contains 64×64 color photographs of 200 types of objects

with 100,000 training and 10,000 validation images. Keras provides a VGG16 network

pretrained on ImageNet, which includes 13 convolutional and three dense layers [32]. We

transferred the convolutional layers and appended two dense layers linking with 1,000

and 200 neurons, respectively (Fig. 4.2). The DNN was fine-tuned for the Tiny ImageNet

dataset with a batch size of 128 and 30 epochs. Here, the network weights are frozen in

the convolutional layers. Fine-tuning with frozen network weights is an efficient practice

in transfer learning [88]. We applied PHOM to the dense layers, which are denoted as the

3rd group in Fig. 4.2. From this group, we selected 512 neurons in the first dense layer as

the input neurons (Section 4.2.2). Note that all the results presented in Section 4.4 can be

reproducible using the publicly available source code1.

4.4 Evaluation Results

4.4.1 CIFAR-10 Dataset

The DNNs were trained varying dropout rate from 0.0 to 0.6 in 0.2 increments. PHOM

was applied to the trained DNNs, and the results are shown in Figs. 4.3, where Figs. 4.3

(a)–(d) show the results of the dropout rates from 0.0, 0.2, 0,4, and 0.6, respectively. The

graphs of Fig. 4.3 (a-1)–(d-1) and (a-2)–(d-2) show the accuracy and loss of the training

and validation data, respectively.

The graphs shown in Figs. 4.3 (a-1) and (a-2) suggest that the DNN overfits of the

1The source code and models used in the evaluation can be accessed at https://github.com/

satoru-watanabe-aw/phom/.
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Figure 4.1: Network structure and layer groups used in the classification of the CIFAR-10
and SVHN datasets.

Figure 4.2: Network structure and layer group used in the classification of the Tiny Ima-
geNet dataset.
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training data, which is indicated by the observations that the accuracy values to the train-

ing data were higher than those of the validation data, whereas the loss values of the

training data were less than those of the validation data. Overfitting of the DNNs was

mitigated by the increase in dropout rate (Figs. 4.3 (a-1)–(d-1) and (a-2)–(d-2)). The

graphs of Figs. (b-1) and (b-2) show that the DNN still overfitted to the training data,

which is indicated by the differences between the measured values of the training and val-

idation data. The DNN with a dropout rate of 0.6 underfitted to the training data, which

is indicated by the graphs in Fig. 4.3 (d-1), where the accuracy values drop by over 10%

from those in Fig. 4.3 (c-1). From the graphs in Fig. 4.3 (a-1)–(d-1) and (a-2)–(d-2), the

DNN with a dropout rate of 0.4 was the best.

The PH diagrams of the 1st and 2nd groups are shown in Figs. 4.3 (a-3)–(d-3) and

(a-4)–(d-4), respectively. The PH diagrams in Section 4.4 were drawn using the Dionysus

library. For the PH diagrams of the 1st group, Fig. 4.3 (a-3) shows no point near the di-

agonal line, where the DNN overfitted to the training data. The number of points near the

diagonal line increased according to the increase of the dropout rate. These observations

imply that the degree of overfitting can be measured by the points near the diagonal line

in the PH diagrams. For counting the number of points near the diagonal line, we defined

a belt area in the PH diagram with the condition of death≤ birth+10. Table 4.1 lists the

number of points in the PH diagrams and that in the belt area, wherein the increase in the

number of points in the belt area is presented explicitly as the rate of dropout increases.

For the PH diagrams of the 2nd group, the changes in Figs. 4.3 (a-4)–(d-4) were

unclear compared to that of the 1st group, which means that Figs. 4.3 (a-4)–(d-4) had

no point adjacent to the diagonal line. However, Table 4.1 shows the changes explicitly,

where the number of points in the belt area increased with the increase of the dropout rate.

Overfitting of the DNNs to the training data is indicated repeatedly by the PH diagrams

for the 2nd group.

4.4.2 SVHN Dataset

We applied PHOM to the trained DNNs and varied the dropout rate from 0.0 to 0.6 in

0.2 increments. The results are shown in Fig. 4.4 similarly to Fig. 4.3. The DNN with
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Figure 4.3: PH diagrams of trained DNNs with CIFAR-10 dataset; Figs. (a-1)–(d-1) show
the accuracy values on the training and validation data; Figs. (a-2)–(d-2) show the loss
values on the training and validation data; Figs. (a-3)–(d-3) show the PH diagrams of the
1st group; Figs. (a-4)–(d-4) show the PH diagrams of the 2nd group.

a dropout rate of 0.0 overfitted to the training data, and the DNN with a dropout rate of

0.6 underfitted to the training data, as shown in Fig. 4.4 (a-1), (a-2), (d-1), and (d-2). The

accuracy in Fig. 4.4 (b-1) is less than that in Fig. 4.4 (c-1), and the loss in Fig. 4.4 (b-2)

is greater than that in Fig. 4.4 (c-2). These results suggest that the DNN with a dropout

rate of 0.4 underfitted to the training data, and the DNN with a dropout rate of 0.2 was the

best.

The PH diagrams of the 1st and 2nd groups are shown in Figs. 4.4 (a-3)–(d-3) and (a-
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Table 4.1: Total number of points in the PH diagrams and number of points in belt area
(death≤ birth+10) for CIFAR-10 dataset.

Dropout
rate

1st group 2nd group
total belt area total belt area

0.0 135,279 0 492,725 63
0.2 104,478 104 475,969 153
0.4 49,319 7,462 484,871 1,584
0.6 12,840 7,590 559,605 4,951

Table 4.2: Total number of points in the PH diagrams and the number of points in belt
area (death≤ birth+10) for SVHN dataset.

Dropout
rate

1st group 2nd group
total belt area total belt area

0.0 120,124 972 510,394 0
0.2 49,683 9,023 504,812 1,601
0.4 26,514 10,898 591,696 3,569
0.6 2,375 1,745 594,779 6,807

4)–(d-4), respectively. For the PH diagrams of the 1st group, the number of points near the

diagonal line followed the same trend in Fig. 4.3. That is, Fig. 4.4 (a-3) has no point near

the diagonal line, where the DNN overfitted to the training data. The number of points

in the belt area increased with the increase of the dropout rate (Figs. 4.4 (a-3)–(d-3) and

Table 4.2).

For the PH diagrams of the 2nd group, the number of points in the belt area increased

with the increase of the dropout rate (Table 4.2). Among the datasets and groups, the

overfitted DNNs produced PH diagrams that had zero or smaller numbers of points in the

belt area, whereas the underfitted DNNs produced PH diagrams that had larger rate of the

number of points in the belt area.

4.4.3 Comparison of CIFAR-10 and SVHN Datasets

As described in Sections 4.4.1 and 4.4.2, the DNN with a dropout rate of 0.2 on the

CIFAR-10 dataset overfitted to the training data, whereas that in the SVHN dataset did

not overfit to the training data. The difference appeared in the number of points in the belt

area with a dropout rate of 0.2. Namely, for the CIFAR-10 dataset, the numbers of points

in the belt area in the 1st and 2nd groups were 104 and 153, respectively. Contrariwise, for

the SVHN dataset, the numbers of points in the belt area in the 1st and 2nd groups were
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Figure 4.4: PH diagrams of trained DNNs with SVHN dataset; Figs. (a-1)–(d-1) show
the accuracy values on the training and validation data; Figs. (a-2)–(d-2) show the loss
values on the training and validation data; Figs. (a-3)–(d-3) show the PH diagrams of the
1st group; Figs. (a-4)–(d-4) show the PH diagrams of the 2nd group.

9,023 and 1,601, respectively. In addition, the points shown in Fig. 4.4 (c-3) are adjacent

to the diagonal line, whereas those in Fig. 4.3 (c-3) are not.

These results imply that the degree of overfitting in DNNs can be measured by the

number of points in the belt area. The correlation between the degree of overfitting and

the number of points should be investigated further, but we set that aside for future work,

because this study focused on investigating the possibilities of overfitting detection using

no training data.
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4.4.4 Comparison of 1st and 2nd Groups

The PH diagrams of the 1st group transited explicitly with the increase of the dropout rate,

which means that both the number and the location of points transited with the increase of

the dropout rate. Contrariwise, those of the 2nd group transited in the location of points,

where the number of points did not decreases with the increased dropout rate.

The DNNs extract features in the convolutional layers (2nd group) and classify the ob-

jects in the fully connected layers (1st group) [14]. The difference between the transitions

of the 1st and 2nd groups could be related to the difference in their functionalities. In other

words, the amount of knowledge learned by the classifiers decreased with the increased

dropout rate in the 1st group. In addition, the number of features learned in the 2nd group

did not change because the number of features was defined intrinsically by the number of

kernels in the DNNs.

4.4.5 Tiny ImageNet Dataset

We trained the DNN by varying the dropout rate from 0.0 to 0.6 in 0.2 increments. The

results are shown in Fig. 4.5, similar to Figs. 4.3 and 4.4. Due to the increased number of

the object classes and the frozen layers in the model training, the accuracy value in Fig.

4.5 is less than those in Figs. 4.3 and 4.4. We found that the DNN with a dropout rate

of 0.0 overfitted to the training data, and the DNN with a dropout rate of 0.6 underfitted

to the training data, as shown in Figs. 4.5 (a-1), (a-2), (d-1), and (d-2). The graphs of

Figs. 4.5 (b-1) and (b-2) indicated that the DNN with a dropout rate of 0.2 overfitted to

the training data. For the DNN with a dropout rate of 0.4, the accuracies and losses on the

training and validation data were almost the same ((c-1) and (c-2)), which suggests that

the DNN was the best.

The PH diagrams for the 3rd group are shown in Figs. 4.5 (a-3)–(d-3). We repeatedly

observed that the number of points near the diagonal line followed the same trend in Figs.

4.3 and 4.4, i.e., Fig. 4.5 (a-3) shows no point near the diagonal line, where the DNN

overfitted to the training data. The total number of points decreased with the increase of

the dropout rate, and the number of points in the belt area increased with it (Figs. 4.5

(a-3)–(d-3) and Table 4.3). We found that a dropout rate of 0.2 mitigated (but did not
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Figure 4.5: PH diagrams of trained DNNs with Tiny ImageNet dataset; Figs. (a-1)–(d-1)
show the accuracy values on the training and validation data; Figs. (a-2)–(d-2) show the
loss values on the training and validation data; Figs. (a-3)–(d-3) show the PH diagrams of
the 3rd group.

eliminate) the degree of overfitting. This was suggested by the small number of points

in the belt area, which was commonly observed with the CIFAR-10 dataset (Table 4.1).

Among the three datasets, the image size, number of classes, and network structure of the

DNNs were unique in the Tiny ImageNet dataset. However, PHOM detected overfitting

of the DNNs to the Tiny ImageNet dataset in a manner similar to the other datasets.
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Table 4.3: Total number of points in the PH diagrams and number of points in belt area
(death≤ birth+10) for Tiny ImageNet dataset.

Dropout rate 3rd group
total belt area

0.0 103,495 0
0.2 75,738 115
0.4 50,311 11,811
0.6 31,377 21,796

4.5 Fundamental Analysis of PHOM

PHOM calculates the PH of a trained DNN using the relevance values among neurons

defined in Eqs. (2.2), (2.5), and (2.8). These values include two types of information, i.e.,

(i) the links among neurons, and (ii) the normalized weights of the links. PHOM reveals

the structure of trained DNNs utilizing information (i) and (ii), though only information

(ii) can be used to uncover the structure to a certain extent. This section investigates the

advantages of utilizing both information (i) and (ii) in PHOM.

4.5.1 Investigation on the 1st and 3rd Groups

Using only the normalized weights of the links, Figs. 4.6 and 4.7 show histograms of

the normalized weights for the 1st and 3rd groups trained on the CIFAR-10 and Tiny

ImageNet datasets, respectively. The 1st and 3rd groups comprise the two dense layers

that link among (512, 512, 10) and (2048, 1000, 200) neurons, respectively. Therefore,

the 1st and 3rd groups have 267,264 (= 512×512+512×10) and 2,248,000 (= 2,048×

1,000+ 1,000× 200) weights, respectively. Figs. 4.6 and 4.7 highlight the relevance

values (excluding zeros).

According to the increase in dropout rate, as shown in Figs. 4.6 (a)–(d) and Figs.

4.7 (a)–(d), we made the following observations: (A) the number of positive weights in

the 2nd layer decreased, and (B) the variance of the weights in the 2nd layer increased.

The numbers of weights in Figs. 4.6 (a) and 4.7 (a) are greater than those in Figs. 4.6

(b)–(d) and Figs. 4.7 (b)–(d), respectively, due to the logarithmic scale of the Y-axis in

Figs. 4.6 and 4.7. The same observations are evident in the 1st group trained on the

SVHN dataset, as summarized in Table 4.4. The neurons connected with output neurons

contribute to the activation of the output neuron. Thus, these observations implied that
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Histogram of weights,
1st group, dropout rate 0.0

Histogram of weights,
1st group, dropout rate 0.2

Histogram of weights,
1st group, dropout rate 0.4

Histogram of weights,
1st group, dropout rate 0.6

Figure 4.6: Histograms of normalized weights in 1st group trained on CIFAR-10 dataset
with different dropout rates (0.0 to 0.6).

the number of neurons contributing to the activation of the output neurons decreased as

the dropout rate increased. Homologies comprising only a few neurons result in unstable

structures, which are plotted near the diagonal line in the PH diagram. Thus, observations

(A) and (B) partially explain the increase in the number of points in the belt area in the

PH diagrams (Table 4.4).

However, these observations do not provide integrated measures which can be applied

to different DNN structures. In other words, the number of positive weights decreased to

2,892 with a dropout rate of 0.6 in the 3rd group; however, this number was even larger

than those obtained with a dropout rate of 0.0 in the 1st group, i.e., 1,871 and 1,064 for the

CIFAR-10 and SVHN datasets, respectively (Table 4.4). Further, the variance of weights

increased from 1.97× 10−5 to 2.92× 10−3 as the dropout rate increased from 0.0 to 0.6

in the 3rd group. However, the variance of weights in the 1st group considerably increased

from 1.35×10−5 to 2.36×10−2 and 8.02×10−5 to 9.77×10−2 in CIFAR-10 and SVHN

datasets, respectively (Table 4.4).

Thus, we could not induce the integrated measure of overfitting in DNNs for the 1st

and 3rd groups using only observations of (A) and (B). In contrast, PHOM indicates the

overfitting of DNNs, regardless of the groups, using the number of points in the belt area.

The advantage of utilizing observations (i) and (ii) in PHOM is a integrated perspective

that is independent of network structure.

4.5.2 Investigation on the 2nd Group

Figs. 4.8 (a)–(d) show the histograms of the normalized weights of the 2nd group trained

with CIFAR-10 dataset with varying the dropout rate from 0.0 to 0.6 in 0.2 increments.
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Histogram of weights,
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a b c d

Figure 4.7: Histograms of normalized weights in 3rd group trained on Tiny ImageNet
dataset with different dropout rates (0.0 to 0.6).

Table 4.4: Number and variance of weights excluding zeros in DNNs trained on CIFAR-
10, SVHN, and Tiny ImageNet datasets for 1st and 3rd groups.

Dataset Network
group

Dropout
rate

Number of weights Variance of weights
1st layer 2nd layer 1st layer 2nd layer

CIFAR-10 1st group

0.0 137,992 1,871 8.49×10−6 1.35×10−5

0.2 136,150 1,163 9.46×10−6 4.60×10−5

0.4 152,619 321 7.51×10−6 1.33×10−3

0.6 159,478 64 6.89×10−6 2.36×10−2

SVHN 1st group

0.0 138,155 1,064 8.40×10−6 8.02×10−5

0.2 136,875 255 8.82×10−6 2.27×10−3

0.4 145,786 121 7.60×10−6 7.10×10−3

0.6 155,115 21 6.49×10−6 9.77×10−2

Tiny
ImageNet 3rd group

0.0 1,047,176 27,074 5.09×10−7 1.97×10−5

0.2 1,025,407 16,204 5.70×10−7 6.32×10−5

0.4 970,559 8,431 6.54×10−7 2.71×10−4

0.6 886,864 2,892 8.01×10−7 2.92×10−3
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Figure 4.8: Histograms of normalized weights in the 2nd group trained with CIFAR-10
dataset with varying the dropout rate from 0.0 to 0.6.

The 2nd group is comprises the two convolution layers that link among (10816, 14400,

7200) neurons. Therefore, the 2nd group has 259,430,400 (= 10,816×14,400+14,400×

7,200) weights. Figs. 4.8 (a)–(d) highlight the relevance values, excluding zeros.

In the 2nd group, we could not obtain the observations of (A) and (B), but we made

an observation of (C): the variance of weights in the 1st layer increased as the dropout

rate increased. Observation (C) was also obtained in the 2nd group trained with SVHN

dataset, as summarized in Table 4.5. Due to the small change shown in Figs. 4.8 (a)–

(d) and Table 4.5, it was difficult to distinguish the overfitted DNNs only relying on (C).

However, PHOM explicitly indicates the overfitting of DNNs: the number of points in the

belt area increased from 63 to 4,951, and 0 to 6,807 in CIFAR-10 and SVHN datasets,

respectively (Tables 4.1 and 4.2)).

In addition, the inconsistency of the observations in the 1st, 2nd, and 3rd groups pre-

vented them from inducing the integrated overfitting measures of DNNs. The inconsis-

tency resulted from the differences in their network structures and layer types. The three

groups had different network structures, and only the 2nd group had a unique layer type

among the three groups. It would be an essential difficulty to induce the integrated over-

fitting measures of DNNs by only relying on (ii). However, PHOM could overcome the

difficulty by utilizing both information (i) and (ii), meaning that PHOM revealed the in-

crease of the number of points in the belt area commonly in 1st–3rd groups as described

Section 4.4.

49



Table 4.5: Number and variance of weights excluding zeros in DNNs trained on CIFAR-
10 and SVHN datasets for the 2nd group.

Dataset Network
group

Dropout
rate

Number of weights Variance of weights
1st layer 2nd layer 1st layer 2nd layer

CIFAR-10 2nd group

0.0 2,582,274 2,085,096 2.42×10−5 8.12×10−6

0.2 2,453,820 2,039,842 2.65×10−5 9.25×10−6

0.4 2,380,529 2,100,432 3.03×10−5 9.85×10−6

0.6 2,524,244 2,497,610 3.26×10−5 7.74×10−6

SVHN 2nd group

0.0 2,546,256 2,227,047 2.48×10−5 7.73×10−6

0.2 2,498,033 2,187,973 2.78×10−5 8.58×10−6

0.4 2,541,696 2,685,200 3.14×10−5 6.43×10−6

0.6 2,505,344 2,671,352 3.58×10−5 6.19×10−6

4.6 Normalization of PHOM

The results of PHOM were compared among the same network structure in Section 4.4.

Here, we investigate PHOM’s ability to compare DNNs with different network structures.

4.6.1 PHOM on Different Network Structure

First, we straightforwardly applied PHOM to neural networks with different network

structures. We varied the number of neurons in the 1st group to {(200, 200, 10), (500,

500, 10), (1000, 1000, 10)} for the classification of CIFAR-10 dataset, where the sets

of three numbers indicate the number of neurons in 1st–3rd layers in the group. And we

also varied the number of neurons in the 3rd group to {(512, 500, 200), (512, 1000, 200),

(512, 2000, 200)} for the classification of the Tiny ImageNet dataset. The networks were

trained using the parameters described in Section 4.3 with a dropout rate from 0.0 to 0.6

in 0.2 increments.

Figs. 4.9 (a) and (b) show the ratio of the number of points in the belt area (death ≤

birth+10) to the total number of points. We found that the difference in network structure

caused fluctuations in the PHOM results, which suggests that PHOM has difficulties when

comparing networks with different structures.

4.6.2 Normalized PHOM

The normalized PHOM (NPHOM) was inspired by network pruning (NP) technology to

mitigate the above mentioned difficulties. NP reduces the number of parameters in net-

works without reducing their performance [49], which shrinks networks and restrains the
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Figure 4.9: Ratio of number of points in the belt area (death ≤ birth+ 10) to that in
total, in 1st and 3rd groups trained for the classification of CIFAR-10 and Tiny ImageNet
datasets, respectively, obtained by varying the network structures and dropout rate from
0.0 to 0.6 calculated with PHOM and NPHOM. The sets of three numbers in the legends
indicate the number of neurons in 1st–3rd layers in the groups.

loss of the knowledge learned by the original network. Magnitude-based NP (MNP) is a

common technique, where neurons are selected from the original networks in descending

order of network weights to preserve influential neurons. Although the strategy of MNP is

uncomplicated, MNP has been shown to be competitive with more complex methods [8].

NPHOM shrinks the network size while remaining influential neurons using a similar

approach to MNP. Algorithm 3 shows the selection procedure, where the inputs comprise

the network weights, target output neurons, and the number of input neurons to be se-

lected. NPHOM calculates the influences of the input neurons with respect to the output

neurons and selects input neurons in descending order of the influences.

Figs. 4.9 (c) and (d) show the ratios of the number of points in the belt area to the

total number of points obtained using NPHOM. Here, the networks of (500, 500, 10)

and (1000, 1000, 10) were reduced to (200, 200, 10) in Fig. 4.9 (c), and the networks

of (512, 1000, 200) and (512, 2000, 200) were reduced to (512, 500, 200) in Fig. 4.9

(d), which are marked as “N” in the legends. These figures show that NPHOM allows us

compare networks of different structures by reducing fluctuation caused by differences in

the network structures.

The difference between the training and validation accuracies is an indicator of the

degree of overfitting, which decreases according to the mitigation of overfitting (Figs.

4.3–4.5). Table 4.6 presents the correlation coefficient between A and B, where A is the

absolute value of the difference between the training and validation data, and B is the ratio

of the number of points in the belt area to the total number of points calculated by PHOM
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and NPHOM. The negative correlation between A and B was strengthened by NPHOM.

Consequently, the correlation coefficients obtained on the CIFAR-10 and Tiny ImageNet

datasets reached−0.64 and−0.89, respectively. This strong negative correlation suggests

that we could select networks that are less overfitted to the training data using NPHOM.

Algorithm 3 Algorithm for selecting influential neurons

1: procedure SELECTNUERON({wi j}, (Ik)
L
k=1,N) . {wi j}: weight

matrix, wi j is the weight between input neuron i and output neuron j; (Ik)
L
k=1: list of

output neurons; N: number of input neurons to be selected.
2: vi j←max(0,wi j) for ∀i, ∀ j ∈ (Ik)

L
k=1 . PHOM uses positive part of the weight

3: vi j← 0 for ∀i, ∀ j /∈ (Ik)
L
k=1 . set 0 when wi j is not related to the output neurons

4: Si← ∑ j vi j . calculate the influence of input neurons
5: (Ok)

N
k=1←{ j;S j is in larger N elements of {Si}} . select input neurons in

descending order of Si
6: return (Ok)

N
k=1

7: end procedure

4.6.3 NPHOM on Additional Dataset

We also used the CIFAR-100 dataset [42] to investigate the effectiveness of PHOM and

NPHOM on different datasets. CIFAR-100 consists of 50,000 training images with the

size of 32×32 color that are classified into 100 types of objects. We trained the 1st and 3rd

groups varying the network size as {(1000, 1000, 100), (2000, 2000, 100), (4000, 4000,

100)} and {(512, 1000, 100), (512, 2000, 100), (512, 4000, 100)} for the classification,

respectively. The networks were trained with a batch size of 128 and 30 epochs, where

20% of the training data were used as validation data.

Figs. 4.10 (a) and (b) show the ratios of the number of points in the belt area to that

in total calculated using PHOM. We repeatedly observed that the difference in network

structures fluctuates the PHOM results. This means that the result of network size of

(4000, 4000, 100) in Fig. 4.10 (a) and that of (512, 4000, 100) in Fig. 4.10 (b) increase

gradually compared with other results. This difference prevents PHOM from comparing

networks with different structures.

Figs. 4.10 (c) and (d) show the ratios of the number of points in the belt area to that in

total calculated using NPHOM. Here, NPHOM aligned the network size to the smallest

size i.e., the networks of size (2000, 2000, 100) and (4000, 4000, 100) in Fig. 4.10 (c)
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Figure 4.10: Ratio of number of points in the belt area (death ≤ birth+ 10) to that in
total, in 1st and 3rd groups trained for the classification of CIFAR-100 datasets obtained
by varying the network structures and dropout rate from 0.0 to 0.6 calculated with PHOM
and NPHOM. The sets of three numbers in the legends indicate the number of neurons in
1st–3rd layers in the groups.

and those of (512, 2000, 100) and (512, 4000, 100) in Fig. 4.10(d) were reduced to

(1000, 1000, 100) and (512, 1000, 100), respectively (marked with “N” in the legends).

The difference in PHOM results were mitigated due to the normalization proposed in

NPHOM. The homologies of the networks N(512, 2000, 100) and N(512, 4000, 100)

with a dropout rate of 0.6 did not appear in the PH diagrams. This phenomenon occurred

occasionally in our investigations when the target network was excessively underfitted to

the training data.

Table 4.6 presents the correlation coefficient between A and B, where A is the absolute

value of the difference between the training and validation data, and B is the ratio of the

number of points in the belt area to the total number of points calculated by PHOM and

NPHOM. Due to the fluctuation caused by the difference in network structures, the corre-

lation efficient of “all sizes” can be less than that of each network. We found that NPHOM

strengthened the negative correlation between A and B, with an exception caused by the

disappearance of homologies in the network of size (512, 2000, 100). The strong negative

correlation and mitigation of fluctuations by NPHOM suggest that NPHOM is essential

in selecting networks that are less overfitted to the training data, even when the networks

have different structures.
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Table 4.6: Correlation coefficient between A and B of the networks trained for the classi-
fication of CIFAR-10, Tiny ImageNet, and CIFAR-100 datasets, where A is the absolute
value of the difference between the training and validation data, and B is the ratio of the
number of points in the belt area to that in total calculated by PHOM and NPHOM.

Dataset Network size Sample points PHOM NPHOM

CIFAR-10

(200, 200, 10) 4 −0.48 −0.48
(500, 500, 10) 4 −0.54 −0.77

(1000, 1000, 10) 4 −0.37 −0.70
all sizes 12 −0.44 −0.64

Tiny
ImageNet

(512, 500, 200) 4 −0.88 −0.88
(512, 1000, 200) 4 −0.78 −0.98
(512, 2000, 200) 4 −0.45 −0.83

all sizes 12 −0.66 −0.89

CIFAR-100

(1000, 1000, 100) 4 −0.90 −0.90
(2000, 2000, 100) 4 −0.80 −0.82
(4000, 4000, 100) 4 −0.79 −0.79

all sizes 12 −0.64 −0.80

CIFAR-100

(512, 1000, 100) 4 −0.98 −0.98
(512, 2000, 100) 4 −0.96 −0.95*

(512, 4000, 100) 4 −0.84 −0.99*

all sizes 12 −0.89 −0.97**

* calculated with three samples due to the missing value
** calculated with ten samples due to the missing values

4.7 Discussion

4.7.1 Intension of Overfitting Measurement Using PH

It has been hypothesized that the dropout technique prevents DNNs from overfitting by

reducing co-adaptation [77]. The hypothesis suggests that overfitting is a result of neu-

ron co-adaptations. We have investigated the number of points in the belt area, which

counts the points near the diagonal line. The results imply that the degree of neuron co-

adaptation, assumed a cause of overfitting in [77], is indicated by the number of points

near the diagonal line.

Fig. 2.1 shows that the points adjacent to each other in R2 produced the homology

mapped near the diagonal line in the PH diagram; whereas, the points that are distant from

each other produced the homology mapped at a distance from the diagonal line. In Section

4.2, the relevance between neurons was defined in proportion as the weight between them,

meaning that the neurons connected with large weights are located “close.” As a result,

the degree of overfitting is indicated by the number of points in the belt area.
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The deep Taylor decomposition (DTD) method reveals the influential inputs to DNN

output. This study investigates the stability of the knowledge retained in DNNs based

on DTD, which is measured by the number of neurons supporting the output. The over-

fitted DNNs had a large number of stable homologies. The result is consistent with the

hypothesis that DNN overfitting is due to the co-adaptations among neurons.

4.7.2 Underfitting Measurement of DNNs

Regarding the 1st and 3rd groups, the total number of points in the PH diagram decreases

as the dropout rate increases. This observation was common throughout this study as

shown in Tables 4.1, 4.2, and 4.3. This implies that the total number of points in the PH

diagram measures the degree of DNNs’ underfittings.

Therefore, when two models have the close number of points near the diagonal line,

the total number of points helps to select the better model, meaning that the less under-

fitted model (better model) has a larger number of points. Otherwise, the better model is

selected based on the balance between the overfitting and underfitting degrees. We set the

investigation of the balance aside as a task for future work.

4.7.3 Plot Area of PH Diagram

The PH diagram varies the shape of the plot area depending on the knowledge retained

in DNNs. Unstable homologies, plotted near the diagonal line, indicate the degree of

overfittings of DNNs, as shown in Figs. 4.3, 4.4, and 4.5. PHOM detects the overfittings

of DNNs using the number of unstable homologies.

Stable homologies, plotted at a distance from the diagonal line, also appear depending

on the degree of overfitting of DNNs in the 1st and 3rd groups. This implies that both

the unstable and stable homologies contribute to improving the general performance of

DNNs. Thus, if the numbers of homologies are close in two models, the model whose

PH diagram has a wider plot area will have better general performance. However, PHOM

employs the number of unstable homologies for detecting overfitting since the change in

the PH diagram for the 2nd group is unclear about the stable homologies as shown in Figs.

4.3 and 4.4.
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4.7.4 Threshold Value Defining Belt Area

For counting the number of unstable homologies, PHOM employed a threshold value

of 10 for defining the belt area (birth+ 10 ≤ death). Furthermore, we considered other

counting techniques using statistical values, such as the center and variance of points.

However, the plot area expands differently in Figs. 4.3, 4.4, and 4.5, meaning that Fig.

4.5 expands the area with the range of 10–25 birth values, which is almost unobserved in

Figs. 4.3 and 4.4. Consequently, PHOM employed a provisional threshold value of 10 for

the detection.

The proper threshold value can change depending on the network structures and train-

ing datasets. We have started the development of a method for searching the proper thresh-

old value using the representative cycle [24]. The representative cycle enables us to know

the neurons included in each homology, which helps to reveal the mechanism that gen-

erates homologies in DNNs. The revelation of the mechanism will derive the method.

Thus, we set the development of the method for searching the proper threshold value as

our future work.

4.8 Related Work

4.8.1 Persistent Homology for Investigating DNNs

PH is a prominent method for investigating DNNs. Rieck et al. proposed a neural per-

sistence that employs the zero-dimensional PH to characterize and monitor the structural

properties of DNNs [69]. The zero-dimensional PH represents the number of connected

components in simplicial complexes. It is closely related to the training progress because

the DNN parameters converge during training, and the convergence of the parameters

results in the convergence of the number of connected components in DNNs.

The one-dimensional PH has also been employed to investigate DNNs [16, 82, 84].

Carneanu et al. estimated the performance gap between training and testing data using the

one-dimensional PH [16]. The one-dimensional PH represents the number of holes on

simplicial complexes, which can reveal the combinational effects among neurons. Thus,

the one-dimensional PH is a prominent method for revealing the co-adaptations among
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neurons in DNNs. Carneanu et al. employed the training data to calculate the PH of

DNNs. Meanwhile, we defined simplicial complexes on DNNs from the trained parame-

ters of DNNs, which enables PHOM to detect the overfitting of DNNs without requiring

training data.

4.8.2 Detection of Overfitting

Beyond the conventional method to detect overfitting, which compares the accuracy and

loss values of training and validation data, the detection of overfitting in DNNs has been

improved in various ways. Werpachowski et al. proposed an error estimation method

that is based on adversarial examples generated from the test data [85]. Groose et al.

eliminated the need for large amounts of labeled data using a local measurement around

a small number of unlabeled test points [31], which suggests that overfitting is a local

characteristic of DNNs.

This concept was pushed further in this study, assuming that overfitting is an intrinsic

characteristic of DNNs without relying on training data. To confirm this assumption, we

investigated the possibility of overfitting detection using no training data. We employed

PH of this investigation because it is a prominent method for investigating the inner rep-

resentation of DNNs.

To the best of our knowledge, previous methods for detecting overfitting of DNNs rely

on the test data. However, the inner representation of DNNs can be investigated using sta-

tistical methods without relying on the test data, such as canonical correlation analysis

(CCA). Singular vector [66] and projection-weighted CCA [56] have been proposed to

apply CCA to deep neural networks by mitigating its sensitivity to parameter perturba-

tions. The authors of [40] introduced centered kernel alignment, which is closely related

to CCA. They provided similarity indexes among trained models, which can be used to

filter overfitted DNNs by distinguishing them from not-overfitted DNNs. However, non-

overfitted DNNs are required for detecting overfitting using the similarity indexes. Con-

trary, PHOM detects overfitted DNNs by investigating the combination among neurons

in a trained DNN. Thus, we believe that the approach in PHOM is efficient for detecting

overfitting without relying on the test data.
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4.9 Conclusion

In this paper, we have proposed the PHOM method to detect overfitted DNNs using no

training data. PHOM constructs clique complexes in DNNs using the trained parameters

of DNNs, and the one-dimensional PH investigates the co-adaptations among neurons.

Thus, PHOM does not require training data to detect overfitting. In addition, we extended

PHOM to normalized PHOM (NPHOM) to mitigate fluctuations in PHOM caused by dif-

ferences in network structures. We applied the proposed methods to DNNs trained for

the classification problems of the CIFAR-10, SVHN, Tiny ImageNet, and CIFAR-100

datasets. The experimental results demonstrated that PHOM and NPHOM can measure

the degree of overfitting to the training data. PHOM demonstrated that the number of

points in the belt area indicates the degree of overfitting in the comparison between two

DNNs with same network structure, meaning that the overfitted DNN has smaller num-

ber of points in the belt area when the total numbers of points are approximately same.

NPHOM enhanced PHOM for applying different network structures. These results im-

plied that the methods could remove the necessity to use training data for filtering over-

fitted DNNs.
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Chapter 5

Deep Neural Network Pruning Using
Persistent Homology

Deep neural networks (DNNs) have improved the performance of artificial intelligence

systems in various fields including image analysis, speech recognition, and text classifi-

cation. However, the consumption of enormous computation resources prevents DNNs

from operating on small computers such as edge sensors and handheld devices. Network

pruning (NP), which removes parameters from trained DNNs, is one of the prominent

methods of reducing the resource consumption of DNNs. Although NP consumes compu-

tation resources, NP can be executed on large computers for developing pruned DNNs for

operating on small computers. In this paper, we propose a novel method of NP, hereafter

referred to as PHNP, using persistent homology (PH). PH investigates the inner represen-

tation of knowledge in DNNs, and PHNP utilizes the investigation in NP to improve the

efficiency of pruning. PHNP prunes DNNs in ascending order of magnitudes of the com-

binational effects among neurons, which are calculated using the one-dimensional PH,

to prevent the deterioration of the accuracy. We compared PHNP with global magnitude

pruning method (GMP), which is one of the common baselines to evaluate pruning meth-

ods. PHNP improves the accuracy of pruned networks in return for the larger computation

resources compared with GMP. Evaluation results show that the classification accuracy of

DNNs pruned by PHNP outperforms that pruned by GMP.
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5.1 Introduction

Deep neural networks (DNNs) play an essential role in artificial intelligence (AI) systems

for improving performance in various fields including image analysis, speech recogni-

tion, and text classification [33, 91]. They improve the performance of AI systems using

knowledge learned from big data, which sometimes surpass human levels. However, they

consume enormous computation resources, which prevents them from operating on small

computers such as edge sensors and handheld devices [63].

Network pruning (NP), which removes parameters from trained DNNs, is one of the

prominent methods for reducing the computation resources required by DNNs. The re-

moval of parameters relieves the computation and memory capacity for operating DNNs.

However, NP deteriorates the performance of DNNs because the performance of DNNs

with a large number of parameters is generally higher than that with a small number of

parameters. To achieve the best balance between performance and efficiency, many tech-

niques have been proposed in previous research [27, 89].

The inner representations of knowledge in DNNs are indecipherable, which makes

the achievement of the balance difficult. The limited comprehension of the inner repre-

sentation causes over- and under- cutting of parameters. Although the number of param-

eters removed from DNNs is not proportional to the amount of knowledge removed from

DNNs, we need to achieve a proportion that balances efficiency and performance despite

the limited comprehension.

In this paper, we propose a novel method of pruning DNNs using persistent homology

(PH). PH reveals the synchronizations among neurons as described in Section 2.1.1 and

2.1.2, which is one of the inner representation of the knowledge retained in DNNs. Then,

the efficiency of NP can be improved by remaining the synchronized neurons selectively.

For applying PH to NP, we constructed clique complexes on trained DNNs and calculated

the one-dimensional PH of DNNs. The one-dimensional PH reveals the combinational

effects of multiple neurons in DNNs at different resolutions. The persistent-homology-

based pruning method (PHNP) prunes DNNs in ascending order of the magnitudes of the

effects for preventing accuracy deterioration. We applied PHNP in DNNs that comprise a
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convolutional neural network (CNN) and a fully connected network (FCN). The accuracy

of PHNP was compared with that of global magnitude pruning method (GMP), which is a

common baseline for evaluating pruning methods and has demonstrated to be competitive

with more complex pruning methods [8]. We explored the ability of PH for investigating

the inner representation of knowledge in DNNs by applying PH to NP.

The reminder of the paper is organized as follows. In Section 5.2, we will explain PH

and propose PHNP. In Section 5.3 and 5.4, we will present the evaluation result comparing

PHNP and GPM and discuss the differences between them. In Section 5.5 and 5.6, we

will explain related work and conclude this paper.

5.2 Neural Network Pruning Using Persistent Homology

PHNP comprise three steps. In the first step, PHNP constructs simplicial complexes on

trained DNNs by considering DNNs as weighted directed graphs. Although PHNP was

developed on the basis of constructing simplicial complexes on DNNs [84], the following

two points differ from this basis: (1) PHNP employs the absolute values of weights of

DNNs, where positive values are used in the previous method described in Chapter 2;

(2) PHNP employs the stack-based algorithm, where the previous method employs the

recursive-call-based algorithm. The algorithm change from recursive-call-based to stack-

based improves the performance, but we confirmed that the results of both algorithms are

essentially the same, namely, the results are identical except for the duplications and the

order of outputs.

In the second step, PHNP calculates the PH of the simplicial complexes using the

computational libraries [25, 61, 78]. To perform the above calculation, it is required to

define the resolution of PH, which is called filtration. We employed the same filtration

setting as in the previous method [84]. We employed Dionysus and JavaPlex libraries for

the computation [25, 57, 78].

In the third step, PHNP prunes the edges of DNNs as following: (i) sort homology by

the sum of birth and death; (ii) select homologies in ascending order of the sum, in which

the number of edges included in the selected homologies achieves the target pruning ratio;

and (iii) set the edge weights not included in the selected homologies to zero. The one-
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dimensional PH investigates the synchronized neurons in DNNs as described in Section

2.1.1 and 2.1.2. And, the filtration of PH is designed in descending order as described

in Section 3.2.2. Thus, PHNP selects the synchronized neurons in descending order of

the relevance values among neurons. In other words, PHNP remains the synchronized

neurons connected with large relevance values. For identifying the edges included in

homologies in (ii), we employed the annotation functionality of JavaPlex, which computes

the representative cycle for each homology [78].

Through (i)–(iii), the weight values of edges included in the selected homologies re-

main the same in the trained DNNs, and the others are set to zero. The sum of birth and

death correlates with the denseness of point. We defined the “closeness” of neurons based

on the weight values in DNNs, and it indicates the magnitudes of the combinational ef-

fects among neurons. Therefore, PHNP prunes DNNs in ascending order of magnitudes

of the combinational effects among neurons.

5.3 Evaluation and Result

5.3.1 Evaluation Setup

The CIFAR-10 data set was employed in the evaluation [42], which is used in the evalu-

ations in network pruning [13, 92]. The contents of the data set are 32 x 32 color images,

which comprises the images of 10 types of objects such as airplanes, automobiles, birds.

It contains 50,000 and 10,000 images for training and testing, respectively. All exper-

iments were conducted using Keras and Tensorflow [1, 14], and DNNs were developed

based on the examples in Keras 2.3.0.

For the classification of the CIFAR-10 data set, we employed DNNs consisting of a

CNN and an FCN, which are developed based on the sample networks of Keras 2.3.0. The

CNN comprises multiple layers, including two-dimensional convolution, max pooling,

and dropout layers. The FCN comprises three layers with sizes of (300, 100, 10)1. The

1The following network structures are employed: input(3072)–Conv2D(32 filters, 3× 3 kernel, ReLu
activation)–Conv2D(32 filters, 3×3 kernel, ReLu activation)–MaxPooling2D(2×2 pool)–Dropout(dropout
ratio 0.2)–Conv2D(64 filters, 3× 3 kernel, ReLu activation)–Conv2D(64 filters, 3× 3 kernel, ReLu
activation)–MaxPooling2D(2×2 pool)–Dropout(dropout ratio 0.2)–Flatten–Dense(300, ReLu activation)–
Dropout(dropout ratio 0.2)–Dense(100, ReLu activation)–Dropout(dropout ratio 0.2)–Dense(10, softmax
activation).
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DNNs were trained for 100 epochs with a batch size of 32.

The CNN was used to extract features from the images, while the FCN was used to

classify the images based on the combination of the features. PHNP was applied to the

FCN since the inner representation of knowledge in DNNs is represented in the combi-

nation of features. For pruning both FCN and CNN, PHNP needs to be integrated with

pruning techniques for CNNs. However, we have set this aside as a task for future work

because this paper explores the ability of PH to investigate of the inner representation of

knowledge in DNNs.

5.3.2 Result

We compared PHNP with GMP, which is a common baseline and has demonstrated to

be competitive with more complex pruning methods [8]. GMP prunes the edges with the

lowest absolute value anywhere in the DNNs.

Table 5.1 shows the object classification accuracies of pruned networks. The pruning

ratio is defined as (m–n)/m, where m and n are the number of edges in original and pruned

FCNs, respectively. The value of m was set to 31,000(= 300×100+100×10), because

we employed the FCN with 300, 100, and 10 neurons in each layer.

The accuracies of both methods deteriorated as edges were removed from DNNs.

However, the accuracy of PHNP was higher than that of GMP in the pruning ratios of

0.8 and 0.9, which indicates that PHNP can remove edges from DNNs efficiently. PHNP

could prune 95% of edges from DNNs with 12% higher accuracy than the DNN pruned by

GMP in our evaluation setting including dataset, network structure, and training process.

It means that PHNP can remove the edges from DNNs with less loss of the knowledge in

the networks.

Fig. 5.1 and 5.2 show the object classification accuracies of DNNs pruned by GMP

and PHNP, respectively. The accuracies of DNNs pruned by GMP deteriorate mainly in

the object classification of dog, mobile, flog, horse, bird, and ship. Contrary, the accura-

cies of DNNs pruned by PHNP deteriorate mainly in the object classification of mobile

and bird. Consequently, the overall accuracies of DNNs pruned by PHNP outperform

those pruned by GMP, as shown in Table 5.1.
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Table 5.1: Accuracies of object classification of pruned networks

Pruning Ratio 0 0.6 0.7 0.8 0.9 0.95

Acc. of GMP 0.77 0.77 0.76 0.74 0.66 0.43
Acc. of PHNP 0.77 0.77 0.74 0.74 0.69 0.56
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Figure 5.1: Accuracies of object classification of DNN pruned by GMP

5.4 Discussion

Fig. 5.1 reveals a shortcoming in GMP; that is, it failed to keep the balance of the knowl-

edge pruned from DNNs. Contrarily, PHNP kept the balance by pruning DNNs based on

the investigation of the inner representation of DNNs. The result thus suggests the fol-

lowing two points. First, PH is useful to investigate the inner representation of DNNs. PH

reveals the births and deaths of the combination of neurons, which are difficult to be cap-

tured without using PH. Second, we will be able to improve pruning methods by leveling

the knowledge pruned from DNNs. The accuracies of mobile and cat declined mainly in

Fig. 5.2. The overall accuracies will be improved by preventing the deterioration of the

two objects classification. The development of the leveling technique in network pruning

using PH remains in future works.

5.5 Related Work

Network pruning has been investigated over three decades [38,58], and its popularity has

increased in this decade owing to the rise of DNNs [8]. To confirm the superiority of

the pruning method, it is required to examine the method in various conditions such as

network structure, size, and data sets. In addition, the broad varieties of proposals of the
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Figure 5.2: Accuracies of object classification of DNN pruned by PHNP

pruning method prevent us from comparing them under equitable conditions. Blalock et

al. proposed ShrinkBench for facilitating the standardized evaluation of pruning methods.

PHNP needs to be evaluated using various conditions for demonstrating superiority to

conventional pruning methods. However, we have set it as future work because the result

demonstrates the ability of PH for investigating the inner representation of DNNs, which

could provide novel insights into the research of PH and DNNs.

5.6 Conclusion

We proposed a novel method (PHNP) to prune DNNs using PH. The inner representation

of knowledge in DNNs is investigated by PH, and PHNP utilizes the investigation in NP.

The one-dimensional PH reveals the combinational effect of multiple neurons in DNNs,

and PHNP prunes DNNs in ascending order of magnitudes of the effect for preventing the

deterioration of accuracy. We compared PHNP with GMP, which is a common baseline

for evaluating pruning methods. The evaluation result showed that PHNP outperforms

GMP by utilizing the analysis of PH. It implies that PH is one of the prominent methods

for investigating the inner representation of knowledge in DNNs.
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Chapter 6

Conclusion

6.1 Achievements

Deep neural networks (DNNs) play an important role in improving the performance of

artificial intelligent systems [33, 91]. DNNs extract knowledge from big data, thereby

eliminating the need to develop custom representations for target applications. The com-

bination of DNNs and big data is a powerful technique to obtain knowledge that can be

used for several applications.

Although the use of trained DNNs leads to obvious performance improvement, inter-

preting the inner representation of trained DNNs is challenging. The uninterpretability

hinders the tuning of DNN models, the control of their training processes, and the inter-

pretation of their outputs. The difficulty is caused from two problems: DNNs contain tens

of millions parameters [2], and the parameters perturb in each training [27]. The large

amount and perturbation of parameters make it difficult to examine and verify the inner

representation of DNNs.

Investigating the inner representation of DNNs requires a data analysis method that

can overcome the aforementioned problems. Given these considerations, we used per-

sistent homology (PH) for the investigation. PH is a data analysis method that has three

advantages: theoretical foundation, practical computability, and robustness with small

perturbations [61]. Furthermore, we adopted a one-dimensional PH for the investigation,

which can reveal the combinational effects among neurons in DNNs.

Functional connectivity is defined as the synchronization of spatially remote neuro-

physiological events [28], which plays an important role in investigating brains. Consid-
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ering the importance of functional connectivity in neuroscience, this thesis applied the

concept of functional connectivity to DNNs. Thus, this thesis contributed to reveal the

fundamental aspects of the inner representation of DNNs by investigating DNNs from the

standpoint of functional connectivity.

PH is designed to investigate simplicial complexes in a topological space. The discor-

dance between simplicial complexes and network parameters in DNNs prevents us from

applying PH to DNNs. Thus, this study aims to achieve the following goals.

(G1) Developing a method to investigate the inner representation of DNNs using PH;

(G2) Improving the comprehension of network behaviors using PH.

The goals and achievements are summarized in Table 6.1. In Chapter 2, a construction

method for clique complexes on DNNs was presented, which defined sets of synchronized

neurons as simplexes for investigating the inner representation of DNNs from the stand

point of functional connectivity. Two techniques were introduced in the construction:

normalization and propagation. The normalization technique enables us to compare the

influences among neurons. Meanwhile, the propagation technique defines the influences

among the neurons connected with multiple edges. In this chapter, the mathematical proof

of the correctness of the construction method was provided. Additionally, the calculation

methods of PH were formalized in dense, convolution, and pooling layers. Finally, an

algorithm was proposed to identify all simplexes in the clique complex constructed on

DNNs. The proposed algorithm enables us to utilize the high-performance implementa-

tion of the computation libraries in PH calculation.

In Chapter 3, the changes in PH were examined while varying the difficulty of the

problem for which DNNs were trained. The difficulty of the problem was adjusted by

varying the number of classes of training data. Further, the number of output neurons

of DNNs was varied. Then, four observations were obtained by counting the number of

unstable homologies, which are plotted near the diagonal line in the PH diagram:

(i) The number of unstable homologies increased with the decrease in the number of

classes, from 10 to 5, under the network setting of 10 output neurons;
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Table 6.1: Summary of goals and achievements of this thesis

Goal Achievement Chapter

G1

- Development of a construction method for clique complexes on DNNs
with mathematical proof of the correctness of the method

- Formalization of the calculation method of PH in dense, convolutional,
and pooling layers

- Proposal of an algorithm to identify simplexes in the clique complex
constructed on DNNs

2

- Confirmation of the reflection in PH corresponding to the difficulty of
the problem for which DNNs are trained

- Confirmation of the robustness of PH regarding the network’s settings
and initial weights of DNNs

3

G2

- Proposal of a PH-based overfitting measure (PHOM) method, which
detects overfitted DNNs using trained network weights

- Verification of the effectiveness of PHOM, which enables us to filter
overfitted DNNs without relying on the training data

4

- Proposal of a PH-based network pruning (PHNP) method, which re-
duces network parameters from DNNs using PH

- Verification of the effectiveness of PHNP, which showed that PHNP
could prune 95% of edges from DNNs with 12% higher accuracy than
the DNN pruned by a common baseline method in our evaluation set-
ting including dataset, network structure, and training process

5
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(ii) The number of unstable homologies decreased with the decrease of the number of

classes, from 5 to 1, under the network setting of 10 output neurons;

(iii) The unstable homologies were disappeared when the number of classes was equal

to 5 under the network setting of 5 output neurons;

(iv) The unstable homologies were appeared when the number of classes was equal to

10 under the network setting of 20 output neurons.

The observations (i)–(iv) indicated that PH reflected the changes in the inner representa-

tion of DNNs. Additionally, we evaluated the robustness of PH investigation by repeat-

ing the experiments using random initial weights with three network structures and two

datasets. The evaluation showed that the observations (i)–(iv) were common in the ex-

periments, thus confirming the robustness of the PH regarding the network settings and

weights of DNNs.

In Chapter 4, a PH-based overfitting measure (PHOM) method was proposed. This

method detects overfitted DNNs using trained network weights. PHOM was inspired

by the dropout technique, which prevents the overfitting of DNNs under the hypothesis

that overfitting is a result of the co-adaptations among neurons. PHOM investigates the

co-adaptations by calculating the ratio of A to B, where A is the number of unstable ho-

mologies, and B is the number of total homologies. PHOM was evaluated by varying the

dropout rate in the DNNs to control the ir overfitting. The following are the observations

of the PHOM method:

(v) The ratio increases according to the mitigation of the overfitting of DNNs;

(vi) Observation (v) is common in dense and convolutional layers.

Observations (v) and (vi) were confirmed with two network structures and four datasets.

Additionally, PHOM was enhanced to normalized PHOM (NPHOM) for reducing the

fluctuation caused by the difference in the network structures. NPHOM enables us to

compare networks with different structures. The effectiveness of NPHOM was verified

using two networks with varying the network structures under three settings. These in-

vestigations revealed that PHOM and NPHOM are effective in filtering overfitted DNNs

without relying on the training dataset; the same was difficult to achieve without using
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PH.

In Chapter 5, a PH-based network pruning (PHNP) method was introduced. This

method reduces network parameters from trained DNNs using PH. Consuming enormous

computation resources prevents DNNs from operating on small computers, such as hand-

held devices. PHNP prunes the edges in DNNs in ascending order of magnitude of the

combinational effects among neurons using PH. Thus, PHNP can reduce the parameters

from DNNs while restraining the loss of knowledge in DNNs. The effectiveness of PHNP

was evaluated by comparing PHNP with the global magnitude pruning (GMP) method,

which is one of the common baselines to evaluate pruning methods. The evaluation re-

vealed that PHNP could prune 95% of the edges from DNNs with 12% higher accuracy

than the DNN pruned by GMP method in our evaluation setting including dataset, network

structure, and training process.

6.2 Related Work

In this thesis, the inner representation in DNNs was investigated by examining the in-

teractions among neurons using PH. Previous works to investigate DNNs using PH were

described in Section 4.8. Furthermore, the inner representation can be examined using

two strategies: model-agnostic and model-specific strategies [50]. This section describes

the related works, categorizing previous works into strategic types.

6.2.1 Model-agnostic Strategy

Model-agnostic strategy investigates the inner representation in DNNs by observing the

sensitivity of the outputs to the inputs. A visualization technique has been introduced

in [90], which reveals the inputs that contribute to activating outputs at any layer in the

DNNs. The authors of [4] proposed a gradient-based method that provides local expla-

nation vectors applicable to any classification method. The vectors help to understand

prediction results for single data instances. The local interpretable model-agnostic expla-

nations (LIME) method was introduced in [67]. LIME interprets the behavior of DNNs

with the superimposition of simple models assuming the locally linearity of DNNs. An-

other model-agnostic interpretation method was introduced in [68], which provides the
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high-precision if-then rules to represent sufficient conditions for explaining an individual

prediction.

The model-agnostic strategy has been improved in many studies [21, 39, 51, 80]. It

provides the local explainability, which reveals the reason for each prediction obtained by

the prediction methods. The model-agnostic strategy has the advantage of few limitations

to the applicable prediction methods due to the independence on the mechanism in the

models. However, the independence property makes it difficult to delineate the inner

representation in the prediction models. Thus, this thesis employed the model-specific

strategy for trained DNNs. As the result, we achieved the detection of overfitted DNNs,

which is difficult to achieve through the model-agnostic strategy.

6.2.2 Model-specific Strategy

Model-specific strategy is applied to a specific family of algorithms [50]. To investigate

the similarity among the representations of DNNs, canonical correlation analysis (CCA)

is used. CCA is a statistical method that measures the associations between two sets of

variables. Singular vector [66] and projection-weighted CCA [56] have been proposed

to apply CCA to DNNs by mitigating its sensitivity to parameter perturbations. The au-

thors of [40] introduced centered kernel alignment (CKA) as a similarity index of DNNs,

which is closely related to the CCA. The CKA can reliably identify the correspondence

among representations in DNNs trained from different initializations. Previous studies

enhanced statistical methods to mitigate the parameter perturbation in DNNs. However,

PH is designed intrinsically to be robust with the parameter perturbation, which makes

PH prominent for investigating the inner representation in DNNs.

Furthermore, network weights in DNNs are calibrated using the error gradient, which

indicates the direction and magnitude for updating the weights to minimize the loss func-

tion [32]. The inner representation of DNNs can be investigated using the calibration tech-

nique. Gradient-based saliency detection methods have been studied [15], which aim to

highlight salient regions in images, texts, and videos. A gradient-based attribution method

was proposed in [73] computing saliency map corresponding to the gradient of the output

neurons. Further, the authors of [45] developed the saliency model that outperforms state-
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of-the-art models by a large margin using a the well-known network developed in [43].

In [3], layer-wise relevance propagation is proposed for understanding classification de-

cisions by the pixel-wise decomposition of nonlinear classifiers. To backpropagate the

activations in the output layer to the input layer of DNNs, the deep Taylor decomposition

(DTC) was proposed [55]. The DTC calculates the relevance among neurons based on

the gradient technique, which was used in this thesis for constructing clique complexes

in DNNs. Additionally, this thesis provides a mathematical proof of the correctness of

the construction and formulas for calculating PH in DNNs. The construction of clique

complexes and the formalization in PH calculation provide a foundation for studying on

the inner representation of DNNs using PH.

6.3 Conclusion and Future Work

This thesis used PH to examine the inner representation in DNNs to improve network

behavior comprehension. Four contributions of (C1)–(C4) helped to realize the two goals

of (G1) and (G2), as described in Section 6.1.

This thesis established an investigation approach for fully connected and convolu-

tional layers in DNNs for the (G1: developing an approach to investigate the inner repre-

sentation of DNNs using PH). However, several deep learning models have been pro-

posed, which can be categorized into generative, discriminative, and hybrid architec-

tures [76]. On the basis of this categorization, this study focused on the discriminative

architecture implemented with fully-connected and convolutional layers. However, the

discriminative architecture can also use recurrent neural networks and long short-time

memory [36]. Furthermore, autoencoders [34] and deep Boltzmann machines [72] can be

used to implement the generative and hybrid architectures. Thus, one of the future works

is to enhance the proposed investigation approach to expand the applicable architectures.

Regarding the (G2: improving the comprehension of network behaviors using PH),

this study applied the proposed investigation approach to the overfitting detection and

DNN network pruning. Furthermore, the investigation of DNNs using PH can be utilized

in other applications, for example, the authors of [93] applied PH to trojan network de-

tection, and PH was used in the performance prediction of DNNs [16]. These studies

72



improved the comprehension of DNNs using the novel insights on DNNs provided by

PH. Therefore, one of the future works is the development of PH’s applications in DNNs.

In the investigation in G2, we observed that the PH diagram occasionally produced a

line on the upper side, as described in Section 3. Although the outlier will represent some

DNN characteristics, the meaning of the outlier remained unrevealed in this study. More-

over, we investigated the change in the PH diagram during the training. We confirmed

that there was no major change in the PH diagram after the conversion of the accuracy

and loss. This change can be examined by adjusting the learning rate. Furthermore, we

attempted to calculate the upper and lower bounds of the number of homologies appeared

in DNNs. However, because of the combination forming the homology, the number of

homologies can be substantial. Hence, proper limitations will be required for estimat-

ing the upper and lower bounds. Therefore, we set the outlier, convergence, and bound

investigations in the PH diagram for future works.

The integration and segregation of the brain network, including small-worldness, hubs,

and modularity, have been investigated using topological data analysis [71]. Previous

studies revealed that Alzheimer’s disease causes the loss of small-worldness in brain net-

works [48, 65], which can be detected using PH [18, 44]. Considering the observation

in human brains, the integration and segregation also play an important role in DNNs.

For example, it is possible that the loss of small-worldness harms the functionality of

DNNs. Thus, the relationship between DNNs’ functionality and network structure is an

interesting future work, in which PH will provide a powerful tool for the investigation.

Moreover, in this study, we had difficulties in computing the PH of DNNs. The

computation approaches of PH have been enhanced both theoretically and practically

[24, 52, 61]. However, the expensive computation restricted the target layers to com-

pute PH in this study. Improvements in the computation approaches will enable a more

comprehensive understanding of DNNs. Therefore, the improvement in the computation

approach of PH was set as one of the future works.
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Appendix B: Row Data of Figures

B.1 Row Data of Figures in Chapter 3

Table B.1 shows the row data of Fig. 3.5.

Table B.1: row data of Figs. 3.5 (a)–(c).

number of
classification objects

size of convex hull
mininum average maximum

(a)
MNIST

10 279 317 389
9 476 635 749
8 474 641 882
7 496 601 757
6 558 695 935
5 575 684 852
4 637 744 932
3 441 652 857
2 327 499 597
1 232 264 388

(b)
CIFAR10 (300–100)

10 282 361 469
9 280 469 714
8 300 575 754
7 486 670 889
6 608 767 1006
5 465 763 900
4 641 836 969
3 383 833 1008
2 417 581 973
1 218 318 430

(c)
CIAFAR10 (512–512)

10 421 491 546
9 460 736 898
8 711 851 954
7 813 913 1029
6 897 949 990
5 888 968 1017
4 837 947 1027
3 978 1031 1081
2 783 1009 1098
1 164 222 298
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B.2 Row Data of Figures in Chapter 4

Tables B.2–B.5 show the row data of Fig. 4.3.

Table B.2: row data of Figs. 4.3 (a-1) and (a-2).

epoch accuracy loss
training validation training validation

CIFAR10
a-1, a-2

1 0.387 0.510 1.691 1.363
2 0.589 0.576 1.160 1.212
3 0.683 0.661 0.906 0.970
4 0.749 0.714 0.716 0.833
5 0.806 0.738 0.559 0.809
6 0.856 0.703 0.417 1.041
7 0.896 0.731 0.295 1.003
8 0.926 0.738 0.214 1.188
9 0.944 0.734 0.164 1.354

10 0.955 0.722 0.135 1.448
11 0.963 0.739 0.112 1.595
12 0.965 0.720 0.109 1.622
13 0.968 0.723 0.103 1.863
14 0.970 0.717 0.099 1.684
15 0.973 0.726 0.085 2.062
16 0.972 0.734 0.092 1.942
17 0.973 0.722 0.088 1.781
18 0.973 0.725 0.091 2.183
19 0.974 0.739 0.086 2.518
20 0.976 0.686 0.081 2.131
21 0.975 0.730 0.088 2.022
22 0.974 0.733 0.090 1.753
23 0.974 0.725 0.090 2.559
24 0.974 0.725 0.093 2.260
25 0.973 0.728 0.096 2.088
26 0.973 0.711 0.094 2.486
27 0.972 0.736 0.105 2.091
28 0.972 0.727 0.099 2.397
29 0.971 0.743 0.109 2.182
30 0.973 0.745 0.099 2.376
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Table B.3: row data of Figs. 4.3 (b-1) and (b-2).

epoch accuracy loss
training validation training validation

CIFAR10
b-1, b-2

1 0.351 0.454 1.778 1.573
2 0.538 0.614 1.300 1.093
3 0.628 0.635 1.061 1.050
4 0.686 0.686 0.901 0.893
5 0.724 0.737 0.791 0.761
6 0.756 0.672 0.703 0.983
7 0.776 0.759 0.644 0.719
8 0.797 0.762 0.586 0.721
9 0.811 0.766 0.544 0.700

10 0.820 0.774 0.519 0.677
11 0.830 0.749 0.496 0.787
12 0.837 0.779 0.477 0.685
13 0.845 0.733 0.453 0.850
14 0.844 0.783 0.456 0.663
15 0.853 0.785 0.435 0.650
16 0.852 0.781 0.437 0.657
17 0.855 0.757 0.432 0.767
18 0.857 0.776 0.434 0.667
19 0.858 0.772 0.425 0.786
20 0.859 0.761 0.424 0.712
21 0.861 0.788 0.422 0.715
22 0.862 0.771 0.416 0.739
23 0.865 0.793 0.414 0.653
24 0.866 0.777 0.411 0.662
25 0.866 0.776 0.412 0.684
26 0.865 0.795 0.411 0.659
27 0.865 0.763 0.411 0.712
28 0.863 0.762 0.418 0.804
29 0.865 0.763 0.411 0.701
30 0.865 0.773 0.415 0.676
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Table B.4: row data of Figs. 4.3 (c-1) and (c-2).

epoch accuracy loss
training validation training validation

CIFAR10
c-1, c-2

1 0.304 0.448 1.888 1.555
2 0.464 0.531 1.486 1.294
3 0.539 0.581 1.300 1.201
4 0.588 0.656 1.172 0.984
5 0.624 0.672 1.077 0.927
6 0.651 0.685 1.003 0.902
7 0.668 0.665 0.952 0.963
8 0.681 0.720 0.919 0.798
9 0.696 0.735 0.890 0.767

10 0.699 0.739 0.875 0.759
11 0.711 0.714 0.848 0.856
12 0.709 0.747 0.846 0.755
13 0.715 0.752 0.838 0.738
14 0.714 0.702 0.839 0.851
15 0.720 0.718 0.830 0.854
16 0.719 0.730 0.834 0.803
17 0.724 0.738 0.819 0.781
18 0.721 0.748 0.825 0.755
19 0.721 0.730 0.815 0.839
20 0.724 0.755 0.820 0.733
21 0.725 0.729 0.823 0.835
22 0.723 0.727 0.827 0.833
23 0.724 0.769 0.816 0.690
24 0.724 0.738 0.823 0.818
25 0.726 0.752 0.826 0.785
26 0.723 0.679 0.822 0.925
27 0.722 0.729 0.822 0.815
28 0.723 0.709 0.824 0.897
29 0.727 0.749 0.820 0.767
30 0.724 0.748 0.824 0.814
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Table B.5: row data of Figs. 4.3 (d-1) and (d-2).

epoch accuracy loss
training validation training validation

CIFAR10
d-1, d-2

1 0.239 0.245 2.019 2.093
2 0.385 0.382 1.674 1.747
3 0.438 0.460 1.543 1.563
4 0.471 0.389 1.466 1.820
5 0.498 0.452 1.413 1.605
6 0.513 0.521 1.378 1.437
7 0.527 0.452 1.339 1.636
8 0.535 0.460 1.318 1.596
9 0.543 0.430 1.298 1.624

10 0.549 0.495 1.290 1.492
11 0.553 0.555 1.275 1.415
12 0.559 0.489 1.266 1.491
13 0.565 0.446 1.256 1.596
14 0.566 0.473 1.257 1.575
15 0.564 0.573 1.256 1.382
16 0.565 0.574 1.253 1.321
17 0.566 0.451 1.254 1.610
18 0.569 0.506 1.251 1.482
19 0.573 0.503 1.239 1.509
20 0.572 0.494 1.245 1.497
21 0.571 0.502 1.244 1.440
22 0.571 0.620 1.249 1.178
23 0.567 0.572 1.252 1.289
24 0.572 0.586 1.249 1.299
25 0.570 0.589 1.250 1.241
26 0.570 0.572 1.248 1.247
27 0.570 0.603 1.251 1.275
28 0.568 0.640 1.253 1.188
29 0.567 0.545 1.258 1.328
30 0.567 0.622 1.257 1.166
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Tables B.6–B.9 show the row data of Fig. 4.4.

Table B.6: row data of Figs. 4.4 (a-1) and (a-2).

epoch accuracy loss
training validation training validation

SVHN
a-1, a-2

1 0.716 0.882 0.871 0.388
2 0.902 0.907 0.328 0.317
3 0.932 0.912 0.233 0.319
4 0.951 0.922 0.171 0.305
5 0.964 0.918 0.126 0.322
6 0.973 0.922 0.092 0.342
7 0.979 0.916 0.072 0.381
8 0.982 0.912 0.061 0.387
9 0.984 0.918 0.054 0.591

10 0.986 0.921 0.049 0.528
11 0.986 0.924 0.047 0.605
12 0.987 0.922 0.046 0.527
13 0.988 0.913 0.041 0.804
14 0.987 0.901 0.047 0.470
15 0.988 0.915 0.043 0.828
16 0.989 0.913 0.043 0.624
17 0.988 0.913 0.044 0.744
18 0.987 0.920 0.047 0.823
19 0.988 0.910 0.047 0.571
20 0.987 0.916 0.049 0.730
21 0.988 0.913 0.045 0.694
22 0.989 0.901 0.046 0.747
23 0.988 0.920 0.044 0.811
24 0.989 0.907 0.045 1.514
25 0.989 0.917 0.045 0.726
26 0.988 0.906 0.047 0.849
27 0.988 0.915 0.051 0.561
28 0.987 0.915 0.052 0.811
29 0.986 0.902 0.054 0.533
30 0.988 0.901 0.054 0.672
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Table B.7: row data of Figs. 4.4 (b-1) and (b-2).

epoch accuracy loss
training validation training validation

SVHN
b-1, b-2

1 0.685 0.862 0.955 0.458
2 0.876 0.903 0.405 0.328
3 0.902 0.916 0.323 0.286
4 0.918 0.921 0.275 0.272
5 0.927 0.922 0.245 0.272
6 0.933 0.926 0.228 0.280
7 0.938 0.928 0.213 0.265
8 0.942 0.930 0.201 0.277
9 0.944 0.928 0.193 0.293

10 0.946 0.929 0.188 0.261
11 0.946 0.932 0.185 0.310
12 0.947 0.924 0.181 0.308
13 0.947 0.931 0.183 0.255
14 0.950 0.924 0.177 0.295
15 0.948 0.932 0.178 0.256
16 0.949 0.920 0.179 0.300
17 0.949 0.919 0.179 0.319
18 0.949 0.931 0.178 0.287
19 0.949 0.930 0.179 0.278
20 0.949 0.928 0.178 0.263
21 0.949 0.930 0.178 0.307
22 0.948 0.934 0.183 0.250
23 0.949 0.934 0.182 0.275
24 0.949 0.937 0.176 0.293
25 0.948 0.930 0.178 0.284
26 0.947 0.931 0.183 0.281
27 0.949 0.929 0.178 0.274
28 0.948 0.933 0.180 0.267
29 0.949 0.930 0.177 0.263
30 0.948 0.931 0.185 0.260
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Table B.8: row data of Figs. 4.4 (c-1) and (c-2).

epoch accuracy loss
training validation training validation

SVHN
c-1, c-2

1 0.575 0.816 1.259 0.610
2 0.819 0.873 0.575 0.433
3 0.858 0.897 0.464 0.346
4 0.874 0.889 0.416 0.372
5 0.883 0.912 0.387 0.310
6 0.889 0.915 0.371 0.340
7 0.890 0.924 0.366 0.283
8 0.894 0.923 0.364 0.314
9 0.896 0.925 0.355 0.279

10 0.896 0.925 0.351 0.295
11 0.898 0.925 0.353 0.268
12 0.898 0.920 0.350 0.339
13 0.900 0.914 0.348 0.347
14 0.900 0.923 0.347 0.289
15 0.898 0.920 0.354 0.321
16 0.898 0.918 0.351 0.351
17 0.899 0.925 0.348 0.273
18 0.897 0.922 0.353 0.278
19 0.900 0.918 0.351 0.330
20 0.897 0.919 0.353 0.296
21 0.896 0.923 0.358 0.282
22 0.898 0.917 0.356 0.307
23 0.896 0.909 0.362 0.370
24 0.893 0.917 0.367 0.306
25 0.894 0.923 0.361 0.290
26 0.895 0.902 0.365 0.413
27 0.895 0.917 0.364 0.288
28 0.896 0.918 0.362 0.302
29 0.892 0.914 0.369 0.331
30 0.892 0.919 0.373 0.316
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Table B.9: row data of Figs. 4.4 (d-1) and (d-2).

epoch accuracy loss
training validation training validation

SVHN
d-1, d-2

1 0.346 0.699 1.847 1.020
2 0.698 0.815 0.943 0.638
3 0.776 0.859 0.720 0.490
4 0.799 0.876 0.653 0.474
5 0.812 0.875 0.617 0.510
6 0.820 0.884 0.597 0.530
7 0.823 0.885 0.592 0.524
8 0.824 0.888 0.592 0.526
9 0.826 0.879 0.593 0.603

10 0.826 0.878 0.589 0.567
11 0.827 0.878 0.590 0.685
12 0.828 0.840 0.591 0.763
13 0.828 0.872 0.587 0.624
14 0.826 0.878 0.593 0.595
15 0.825 0.855 0.595 0.739
16 0.822 0.878 0.610 0.599
17 0.822 0.857 0.611 0.725
18 0.823 0.875 0.611 0.612
19 0.823 0.803 0.609 1.016
20 0.819 0.862 0.616 0.705
21 0.817 0.860 0.625 0.646
22 0.818 0.876 0.625 0.528
23 0.815 0.868 0.632 0.726
24 0.813 0.860 0.639 0.688
25 0.814 0.883 0.634 0.516
26 0.812 0.887 0.651 0.477
27 0.811 0.882 0.646 0.612
28 0.808 0.868 0.651 0.591
29 0.809 0.877 0.651 0.602
30 0.808 0.846 0.656 0.648
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Tables B.10–B.13 show the row data of Fig. 4.5.

Table B.10: row data of Figs. 4.5 (a-1) and (a-2).

epoch accuracy loss
training validation training validation

TinyImageNet
a-1, a-2

1 0.238 0.274 3.421 3.145
2 0.350 0.312 2.759 2.966
3 0.406 0.310 2.479 3.103
4 0.453 0.326 2.246 3.022
5 0.499 0.327 2.030 3.091
6 0.543 0.319 1.825 3.375
7 0.581 0.315 1.639 3.515
8 0.620 0.324 1.461 3.602
9 0.659 0.314 1.297 3.814

10 0.693 0.311 1.146 4.243
11 0.726 0.302 1.008 4.518
12 0.755 0.308 0.891 4.475
13 0.781 0.301 0.785 4.896
14 0.805 0.300 0.690 5.090
15 0.828 0.299 0.603 5.543
16 0.846 0.292 0.532 5.614
17 0.863 0.303 0.470 5.894
18 0.877 0.297 0.417 6.281
19 0.888 0.291 0.373 6.379
20 0.900 0.297 0.331 6.660
21 0.910 0.293 0.297 6.993
22 0.917 0.297 0.270 7.333
23 0.923 0.299 0.249 7.327
24 0.928 0.292 0.230 7.607
25 0.934 0.290 0.210 7.839
26 0.937 0.295 0.199 8.049
27 0.942 0.288 0.186 8.381
28 0.944 0.293 0.178 8.589
29 0.948 0.290 0.166 9.054
30 0.950 0.297 0.156 9.136
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Table B.11: row data of Figs. 4.5 (b-1) and (b-2).

epoch accuracy loss
training validation training validation

TinyImageNet
b-1, b-2

1 0.203 0.275 3.638 3.159
2 0.294 0.301 3.070 3.061
3 0.327 0.309 2.908 3.007
4 0.345 0.316 2.814 2.977
5 0.361 0.323 2.744 3.000
6 0.372 0.315 2.692 3.042
7 0.382 0.314 2.655 3.094
8 0.389 0.312 2.625 3.141
9 0.395 0.309 2.601 3.153

10 0.401 0.319 2.577 3.273
11 0.405 0.306 2.572 3.346
12 0.408 0.302 2.561 3.318
13 0.412 0.299 2.552 3.398
14 0.417 0.295 2.536 3.417
15 0.418 0.301 2.536 3.471
16 0.424 0.296 2.532 3.580
17 0.426 0.288 2.534 3.627
18 0.428 0.282 2.531 3.699
19 0.426 0.287 2.551 3.701
20 0.428 0.284 2.552 3.815
21 0.429 0.276 2.555 3.903
22 0.430 0.281 2.560 3.971
23 0.431 0.280 2.573 3.989
24 0.433 0.267 2.574 4.091
25 0.432 0.273 2.585 4.129
26 0.432 0.264 2.598 4.169
27 0.433 0.270 2.609 4.163
28 0.433 0.260 2.619 4.225
29 0.432 0.263 2.629 4.304
30 0.433 0.265 2.631 4.336
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Table B.12: row data of Figs. 4.5 (c-1) and (c-2).

epoch accuracy loss
training validation training validation

TinyImageNet
c-1, c-2

1 0.154 0.251 3.947 3.301
2 0.232 0.280 3.446 3.179
3 0.247 0.289 3.383 3.158
4 0.251 0.290 3.388 3.171
5 0.252 0.290 3.406 3.185
6 0.252 0.275 3.429 3.275
7 0.250 0.284 3.468 3.233
8 0.245 0.273 3.510 3.334
9 0.245 0.266 3.543 3.378

10 0.240 0.261 3.590 3.400
11 0.238 0.257 3.625 3.444
12 0.237 0.249 3.663 3.435
13 0.233 0.231 3.691 3.517
14 0.227 0.238 3.724 3.525
15 0.226 0.234 3.740 3.532
16 0.222 0.229 3.766 3.576
17 0.220 0.228 3.797 3.599
18 0.220 0.224 3.811 3.610
19 0.219 0.220 3.824 3.606
20 0.213 0.221 3.840 3.607
21 0.216 0.214 3.857 3.677
22 0.214 0.215 3.859 3.612
23 0.213 0.219 3.861 3.647
24 0.211 0.212 3.871 3.658
25 0.210 0.212 3.892 3.661
26 0.209 0.219 3.886 3.661
27 0.206 0.208 3.896 3.641
28 0.205 0.208 3.907 3.690
29 0.207 0.221 3.901 3.633
30 0.205 0.215 3.903 3.656
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Table B.13: row data of Figs. 4.5 (d-1) and (d-2).

epoch accuracy loss
training validation training validation

TinyImageNet
d-1, d-2

1 0.088 0.214 4.436 3.715
2 0.144 0.231 4.007 3.583
3 0.149 0.234 4.025 3.677
4 0.147 0.223 4.090 3.687
5 0.142 0.198 4.167 3.863
6 0.135 0.194 4.242 3.908
7 0.130 0.170 4.312 4.028
8 0.126 0.162 4.367 4.042
9 0.122 0.161 4.409 4.088

10 0.118 0.141 4.439 4.137
11 0.114 0.136 4.476 4.153
12 0.114 0.147 4.487 4.101
13 0.111 0.139 4.510 4.122
14 0.110 0.139 4.501 4.146
15 0.109 0.130 4.510 4.164
16 0.105 0.135 4.534 4.118
17 0.107 0.138 4.535 4.120
18 0.105 0.140 4.545 4.110
19 0.105 0.142 4.544 4.096
20 0.105 0.143 4.547 4.102
21 0.103 0.138 4.557 4.085
22 0.103 0.138 4.575 4.116
23 0.102 0.127 4.578 4.180
24 0.100 0.124 4.594 4.233
25 0.100 0.125 4.622 4.181
26 0.101 0.127 4.620 4.193
27 0.101 0.130 4.628 4.155
28 0.098 0.131 4.644 4.130
29 0.098 0.126 4.651 4.175
30 0.095 0.120 4.678 4.233
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Tables B.14–B.17 show the row data of Fig. 4.6.

Table B.14: row data of Fig. 4.6 (a).

range
frequency

range
frequency

range
frequency

first
layer

second
layer

first
layer

second
layer

first
layer

second
layer

0.00– 132775 134463 0.35– 0 0 0.70– 0 0
0.01– 5211 5386 0.36– 0 0 0.71– 0 0
0.02– 6 13 0.37– 0 0 0.72– 0 0
0.03– 0 1 0.38– 0 0 0.73– 0 0
0.04– 0 0 0.39– 0 0 0.74– 0 0
0.05– 0 0 0.40– 0 0 0.75– 0 0
0.06– 0 0 0.41– 0 0 0.76– 0 0
0.07– 0 0 0.42– 0 0 0.77– 0 0
0.08– 0 0 0.43– 0 0 0.78– 0 0
0.09– 0 0 0.44– 0 0 0.79– 0 0
0.10– 0 0 0.45– 0 0 0.80– 0 0
0.11– 0 0 0.46– 0 0 0.81– 0 0
0.12– 0 0 0.47– 0 0 0.82– 0 0
0.13– 0 0 0.48– 0 0 0.83– 0 0
0.14– 0 0 0.49– 0 0 0.84– 0 0
0.15– 0 0 0.50– 0 0 0.85– 0 0
0.16– 0 0 0.51– 0 0 0.86– 0 0
0.17– 0 0 0.52– 0 0 0.87– 0 0
0.18– 0 0 0.53– 0 0 0.88– 0 0
0.19– 0 0 0.54– 0 0 0.89– 0 0
0.20– 0 0 0.55– 0 0 0.90– 0 0
0.21– 0 0 0.56– 0 0 0.91– 0 0
0.22– 0 0 0.57– 0 0 0.92– 0 0
0.23– 0 0 0.58– 0 0 0.93– 0 0
0.24– 0 0 0.59– 0 0 0.94– 0 0
0.25– 0 0 0.60– 0 0 0.95– 0 0
0.26– 0 0 0.61– 0 0 0.96– 0 0
0.27– 0 0 0.62– 0 0 0.97– 0 0
0.28– 0 0 0.63– 0 0 0.98– 0 0
0.29– 0 0 0.64– 0 0 0.99– 0 0
0.30– 0 0 0.65– 0 0
0.31– 0 0 0.66– 0 0
0.32– 0 0 0.67– 0 0
0.33– 0 0 0.68– 0 0
0.34– 0 0 0.69– 0 0
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Table B.15: row data of Fig. 4.6 (b).

range
frequency

range
frequency

range
frequency

first
layer

second
layer

first
layer

second
layer

first
layer

second
layer

0.00– 129849 130626 0.35– 0 0 0.70– 0 0
0.01– 6267 6574 0.36– 0 0 0.71– 0 0
0.02– 34 101 0.37– 0 0 0.72– 0 0
0.03– 0 9 0.38– 0 0 0.73– 0 0
0.04– 0 2 0.39– 0 0 0.74– 0 0
0.05– 0 1 0.40– 0 0 0.75– 0 0
0.06– 0 0 0.41– 0 0 0.76– 0 0
0.07– 0 0 0.42– 0 0 0.77– 0 0
0.08– 0 0 0.43– 0 0 0.78– 0 0
0.09– 0 0 0.44– 0 0 0.79– 0 0

0.0.10– 0 0 0.45– 0 0 0.80– 0 0
0.11– 0 0 0.46– 0 0 0.81– 0 0
0.12– 0 0 0.47– 0 0 0.82– 0 0
0.13– 0 0 0.48– 0 0 0.83– 0 0
0.14– 0 0 0.49– 0 0 0.84– 0 0
0.15– 0 0 0.50– 0 0 0.85– 0 0
0.16– 0 0 0.51– 0 0 0.86– 0 0
0.17– 0 0 0.52– 0 0 0.87– 0 0
0.18– 0 0 0.53– 0 0 0.88– 0 0
0.19– 0 0 0.54– 0 0 0.89– 0 0
0.20– 0 0 0.55– 0 0 0.90– 0 0
0.21– 0 0 0.56– 0 0 0.91– 0 0
0.22– 0 0 0.57– 0 0 0.92– 0 0
0.23– 0 0 0.58– 0 0 0.93– 0 0
0.24– 0 0 0.59– 0 0 0.94– 0 0
0.25– 0 0 0.60– 0 0 0.95– 0 0
0.26– 0 0 0.61– 0 0 0.96– 0 0
0.27– 0 0 0.62– 0 0 0.97– 0 0
0.28– 0 0 0.63– 0 0 0.98– 0 0
0.29– 0 0 0.64– 0 0 0.99– 0 0
0.30– 0 0 0.65– 0 0
0.31– 0 0 0.66– 0 0
0.32– 0 0 0.67– 0 0
0.33– 0 0 0.68– 0 0
0.34– 0 0 0.69– 0 0
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Table B.16: row data of Fig. 4.6 (c).

range
frequency

range
frequency

range
frequency

first
layer

second
layer

first
layer

second
layer

first
layer

second
layer

0.00– 148489 148586 0.35– 0 0 0.70– 0 0
0.01– 4101 4164 0.36– 0 0 0.71– 0 0
0.02– 29 77 0.37– 0 0 0.72– 0 0
0.03– 0 31 0.38– 0 0 0.73– 0 0
0.04– 0 26 0.39– 0 0 0.74– 0 0
0.05– 0 14 0.40– 0 0 0.75– 0 0
0.06– 0 15 0.41– 0 0 0.76– 0 0
0.07– 0 5 0.42– 0 0 0.77– 0 0
0.08– 0 4 0.43– 0 0 0.78– 0 0
0.09– 0 1 0.44– 0 0 0.79– 0 0
0.10– 0 2 0.45– 0 0 0.80– 0 0
0.11– 0 0 0.46– 0 0 0.81– 0 0
0.12– 0 2 0.47– 0 0 0.82– 0 0
0.13– 0 2 0.48– 0 0 0.83– 0 0
0.14– 0 0 0.49– 0 0 0.84– 0 0
0.15– 0 3 0.50– 0 0 0.85– 0 0
0.16– 0 3 0.51– 0 0 0.86– 0 0
0.17– 0 2 0.52– 0 0 0.87– 0 0
0.18– 0 1 0.53– 0 0 0.88– 0 0
0.19– 0 0 0.54– 0 0 0.89– 0 0
0.20– 0 0 0.55– 0 0 0.90– 0 0
0.21– 0 2 0.56– 0 0 0.91– 0 0
0.22– 0 0 0.57– 0 0 0.92– 0 0
0.23– 0 0 0.58– 0 0 0.93– 0 0
0.24– 0 0 0.59– 0 0 0.94– 0 0
0.25– 0 0 0.60– 0 0 0.95– 0 0
0.26– 0 0 0.61– 0 0 0.96– 0 0
0.27– 0 0 0.62– 0 0 0.97– 0 0
0.28– 0 0 0.63– 0 0 0.98– 0 0
0.29– 0 0 0.64– 0 0 0.99– 0 0
0.30– 0 0 0.65– 0 0
0.31– 0 0 0.66– 0 0
0.32– 0 0 0.67– 0 0
0.33– 0 0 0.68– 0 0
0.34– 0 0 0.69– 0 0
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Table B.17: row data of Fig. 4.6 (d).

range
frequency

range
frequency

range
frequency

first
layer

second
layer

first
layer

second
layer

first
layer

second
layer

0.00– 155913 155915 0.35– 0 0 0.70– 0 0
0.01– 3526 3531 0.36– 0 1 0.71– 0 0
0.02– 39 44 0.37– 0 0 0.72– 0 1
0.03– 0 5 0.38– 0 0 0.73– 0 0
0.04– 0 2 0.39– 0 0 0.74– 0 0
0.05– 0 4 0.40– 0 1 0.75– 0 0
0.06– 0 1 0.41– 0 0 0.76– 0 0
0.07– 0 1 0.42– 0 0 0.77– 0 0
0.08– 0 2 0.43– 0 0 0.78– 0 0
0.09– 0 3 0.44– 0 0 0.79– 0 0
0.10– 0 2 0.45– 0 0 0.80– 0 0
0.11– 0 1 0.46– 0 0 0.81– 0 0
0.12– 0 5 0.47– 0 0 0.82– 0 0
0.13– 0 2 0.48– 0 0 0.83– 0 0
0.14– 0 2 0.49– 0 0 0.84– 0 0
0.15– 0 1 0.50– 0 0 0.85– 0 0
0.16– 0 4 0.51– 0 0 0.86– 0 0
0.17– 0 3 0.52– 0 0 0.87– 0 0
0.18– 0 0 0.53– 0 0 0.88– 0 0
0.19– 0 2 0.54– 0 0 0.89– 0 0
0.20– 0 1 0.55– 0 0 0.90– 0 0
0.21– 0 1 0.56– 0 0 0.91– 0 1
0.22– 0 2 0.57– 0 0 0.92– 0 0
0.23– 0 0 0.58– 0 0 0.93– 0 0
0.24– 0 0 0.59– 0 0 0.94– 0 0
0.25– 0 0 0.60– 0 0 0.95– 0 0
0.26– 0 1 0.61– 0 0 0.96– 0 0
0.27– 0 1 0.62– 0 0 0.97– 0 0
0.28– 0 0 0.63– 0 0 0.98– 0 0
0.29– 0 1 0.64– 0 0 0.99– 0 0
0.30– 0 0 0.65– 0 0
0.31– 0 1 0.66– 0 0
0.32– 0 0 0.67– 0 0
0.33– 0 0 0.68– 0 0
0.34– 0 0 0.69– 0 0
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Tables B.18–B.21 show the row data of Fig. 4.7.

Table B.18: row data of Fig. 4.7 (a).

range
frequency

range
frequency

range
frequency

first
layer

second
layer

first
layer

second
layer

first
layer

second
layer

0.00– 1047176 1065754 0.35– 0 0 0.70– 0 0
0.01– 0 8496 0.36– 0 0 0.71– 0 0
0.02– 0 0 0.37– 0 0 0.72– 0 0
0.03– 0 0 0.38– 0 0 0.73– 0 0
0.04– 0 0 0.39– 0 0 0.74– 0 0
0.05– 0 0 0.40– 0 0 0.75– 0 0
0.06– 0 0 0.41– 0 0 0.76– 0 0
0.07– 0 0 0.42– 0 0 0.77– 0 0
0.08– 0 0 0.43– 0 0 0.78– 0 0
0.09– 0 0 0.44– 0 0 0.79– 0 0
0.10– 0 0 0.45– 0 0 0.80– 0 0
0.11– 0 0 0.46– 0 0 0.81– 0 0
0.12– 0 0 0.47– 0 0 0.82– 0 0
0.13– 0 0 0.48– 0 0 0.83– 0 0
0.14– 0 0 0.49– 0 0 0.84– 0 0
0.15– 0 0 0.50– 0 0 0.85– 0 0
0.16– 0 0 0.51– 0 0 0.86– 0 0
0.17– 0 0 0.52– 0 0 0.87– 0 0
0.18– 0 0 0.53– 0 0 0.88– 0 0
0.19– 0 0 0.54– 0 0 0.89– 0 0
0.20– 0 0 0.55– 0 0 0.90– 0 0
0.21– 0 0 0.56– 0 0 0.91– 0 0
0.22– 0 0 0.57– 0 0 0.92– 0 0
0.23– 0 0 0.58– 0 0 0.93– 0 0
0.24– 0 0 0.59– 0 0 0.94– 0 0
0.25– 0 0 0.60– 0 0 0.95– 0 0
0.26– 0 0 0.61– 0 0 0.96– 0 0
0.27– 0 0 0.62– 0 0 0.97– 0 0
0.28– 0 0 0.63– 0 0 0.98– 0 0
0.29– 0 0 0.64– 0 0 0.99– 0 0
0.30– 0 0 0.65– 0 0
0.31– 0 0 0.66– 0 0
0.32– 0 0 0.67– 0 0
0.33– 0 0 0.68– 0 0
0.34– 0 0 0.69– 0 0
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Table B.19: row data of Fig. 4.7 (b).

range
frequency

range
frequency

range
frequency

first
layer

second
layer

first
layer

second
layer

first
layer

second
layer

0.00– 1025407 1032444 0.35– 0 0 0.70– 0 0
0.01– 0 6007 0.36– 0 0 0.71– 0 0
0.02– 0 2930 0.37– 0 0 0.72– 0 0
0.03– 0 228 0.38– 0 0 0.73– 0 0
0.04– 0 2 0.39– 0 0 0.74– 0 0
0.05– 0 0 0.40– 0 0 0.75– 0 0
0.06– 0 0 0.41– 0 0 0.76– 0 0
0.07– 0 0 0.42– 0 0 0.77– 0 0
0.08– 0 0 0.43– 0 0 0.78– 0 0
0.09– 0 0 0.44– 0 0 0.79– 0 0
0.10– 0 0 0.45– 0 0 0.80– 0 0
0.11– 0 0 0.46– 0 0 0.81– 0 0
0.12– 0 0 0.47– 0 0 0.82– 0 0
0.13– 0 0 0.48– 0 0 0.83– 0 0
0.14– 0 0 0.49– 0 0 0.84– 0 0
0.15– 0 0 0.50– 0 0 0.85– 0 0
0.16– 0 0 0.51– 0 0 0.86– 0 0
0.17– 0 0 0.52– 0 0 0.87– 0 0
0.18– 0 0 0.53– 0 0 0.88– 0 0
0.19– 0 0 0.54– 0 0 0.89– 0 0
0.20– 0 0 0.55– 0 0 0.90– 0 0
0.21– 0 0 0.56– 0 0 0.91– 0 0
0.22– 0 0 0.57– 0 0 0.92– 0 0
0.23– 0 0 0.58– 0 0 0.93– 0 0
0.24– 0 0 0.59– 0 0 0.94– 0 0
0.25– 0 0 0.60– 0 0 0.95– 0 0
0.26– 0 0 0.61– 0 0 0.96– 0 0
0.27– 0 0 0.62– 0 0 0.97– 0 0
0.28– 0 0 0.63– 0 0 0.98– 0 0
0.29– 0 0 0.64– 0 0 0.99– 0 0
0.30– 0 0 0.65– 0 0
0.31– 0 0 0.66– 0 0
0.32– 0 0 0.67– 0 0
0.33– 0 0 0.68– 0 0
0.34– 0 0 0.69– 0 0
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Table B.20: row data of Fig. 4.7 (c).

range
frequency

range
frequency

range
frequency

first
layer

second
layer

first
layer

second
layer

first
layer

second
layer

0.00– 970559 972653 0.35– 0 0 0.70– 0 0
0.01– 0 1871 0.36– 0 0 0.71– 0 0
0.02– 0 1669 0.37– 0 0 0.72– 0 0
0.03– 0 1313 0.38– 0 0 0.73– 0 0
0.04– 0 859 0.39– 0 0 0.74– 0 0
0.05– 0 413 0.40– 0 0 0.75– 0 0
0.06– 0 149 0.41– 0 0 0.76– 0 0
0.07– 0 46 0.42– 0 0 0.77– 0 0
0.08– 0 15 0.43– 0 0 0.78– 0 0
0.09– 0 2 0.44– 0 0 0.79– 0 0
0.10– 0 0 0.45– 0 0 0.80– 0 0
0.11– 0 0 0.46– 0 0 0.81– 0 0
0.12– 0 0 0.47– 0 0 0.82– 0 0
0.13– 0 0 0.48– 0 0 0.83– 0 0
0.14– 0 0 0.49– 0 0 0.84– 0 0
0.15– 0 0 0.50– 0 0 0.85– 0 0
0.16– 0 0 0.51– 0 0 0.86– 0 0
0.17– 0 0 0.52– 0 0 0.87– 0 0
0.18– 0 0 0.53– 0 0 0.88– 0 0
0.19– 0 0 0.54– 0 0 0.89– 0 0
0.20– 0 0 0.55– 0 0 0.90– 0 0
0.21– 0 0 0.56– 0 0 0.91– 0 0
0.22– 0 0 0.57– 0 0 0.92– 0 0
0.23– 0 0 0.58– 0 0 0.93– 0 0
0.24– 0 0 0.59– 0 0 0.94– 0 0
0.25– 0 0 0.60– 0 0 0.95– 0 0
0.26– 0 0 0.61– 0 0 0.96– 0 0
0.27– 0 0 0.62– 0 0 0.97– 0 0
0.28– 0 0 0.63– 0 0 0.98– 0 0
0.29– 0 0 0.64– 0 0 0.99– 0 0
0.30– 0 0 0.65– 0 0
0.31– 0 0 0.66– 0 0
0.32– 0 0 0.67– 0 0
0.33– 0 0 0.68– 0 0
0.34– 0 0 0.69– 0 0
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Table B.21: row data of Fig. 4.7 (d).

range
frequency

range
frequency

range
frequency

first
layer

second
layer

first
layer

second
layer

first
layer

second
layer

0.00– 886863 887118 0.35– 0 1 0.70– 0 0
0.01– 1 291 0.36– 0 0 0.71– 0 0
0.02– 0 255 0.37– 0 0 0.72– 0 0
0.03– 0 218 0.38– 0 0 0.73– 0 0
0.04– 0 241 0.39– 0 1 0.74– 0 0
0.05– 0 217 0.40– 0 0 0.75– 0 0
0.06– 0 206 0.41– 0 1 0.76– 0 0
0.07– 0 192 0.42– 0 0 0.77– 0 0
0.08– 0 172 0.43– 0 0 0.78– 0 0
0.09– 0 153 0.44– 0 0 0.79– 0 0
0.10– 0 124 0.45– 0 0 0.80– 0 0
0.11– 0 109 0.46– 0 0 0.81– 0 0
0.12– 0 88 0.47– 0 0 0.82– 0 0
0.13– 0 76 0.48– 0 0 0.83– 0 0
0.14– 0 52 0.49– 0 0 0.84– 0 0
0.15– 0 55 0.50– 0 0 0.85– 0 0
0.16– 0 45 0.51– 0 0 0.86– 0 0
0.17– 0 24 0.52– 0 0 0.87– 0 0
0.18– 0 28 0.53– 0 0 0.88– 0 0
0.19– 0 25 0.54– 0 0 0.89– 0 0
0.20– 0 13 0.55– 0 0 0.90– 0 0
0.21– 0 9 0.56– 0 0 0.91– 0 0
0.22– 0 8 0.57– 0 0 0.92– 0 0
0.23– 0 6 0.58– 0 0 0.93– 0 0
0.24– 0 6 0.59– 0 0 0.94– 0 0
0.25– 0 7 0.60– 0 0 0.95– 0 0
0.26– 0 5 0.61– 0 0 0.96– 0 0
0.27– 0 2 0.62– 0 0 0.97– 0 0
0.28– 0 1 0.63– 0 0 0.98– 0 0
0.29– 0 1 0.64– 0 0 0.99– 0 0
0.30– 0 2 0.65– 0 0
0.31– 0 1 0.66– 0 0
0.32– 0 1 0.67– 0 0
0.33– 0 1 0.68– 0 0
0.34– 0 1 0.69– 0 0
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Tables B.22–B.25 show the row data of Fig. 4.8.

Table B.22: row data of Fig. 4.8 (a).

range
frequency

range
frequency

range
frequency

first
layer

second
layer

first
layer

second
layer

first
layer

second
layer

0.00– 2079249 4090364 0.35– 0 0 0.70– 0 0
0.01– 462368 536349 0.36– 0 0 0.71– 0 0
0.02– 39424 39424 0.37– 0 0 0.72– 0 0
0.03– 1233 1233 0.38– 0 0 0.73– 0 0
0.04– 0 0 0.39– 0 0 0.74– 0 0
0.05– 0 0 0.40– 0 0 0.75– 0 0
0.06– 0 0 0.41– 0 0 0.76– 0 0
0.07– 0 0 0.42– 0 0 0.77– 0 0
0.08– 0 0 0.43– 0 0 0.78– 0 0
0.09– 0 0 0.44– 0 0 0.79– 0 0
0.10– 0 0 0.45– 0 0 0.80– 0 0
0.11– 0 0 0.46– 0 0 0.81– 0 0
0.12– 0 0 0.47– 0 0 0.82– 0 0
0.13– 0 0 0.48– 0 0 0.83– 0 0
0.14– 0 0 0.49– 0 0 0.84– 0 0
0.15– 0 0 0.50– 0 0 0.85– 0 0
0.16– 0 0 0.51– 0 0 0.86– 0 0
0.17– 0 0 0.52– 0 0 0.87– 0 0
0.18– 0 0 0.53– 0 0 0.88– 0 0
0.19– 0 0 0.54– 0 0 0.89– 0 0
0.20– 0 0 0.55– 0 0 0.90– 0 0
0.21– 0 0 0.56– 0 0 0.91– 0 0
0.22– 0 0 0.57– 0 0 0.92– 0 0
0.23– 0 0 0.58– 0 0 0.93– 0 0
0.24– 0 0 0.59– 0 0 0.94– 0 0
0.25– 0 0 0.60– 0 0 0.95– 0 0
0.26– 0 0 0.61– 0 0 0.96– 0 0
0.27– 0 0 0.62– 0 0 0.97– 0 0
0.28– 0 0 0.63– 0 0 0.98– 0 0
0.29– 0 0 0.64– 0 0 0.99– 0 0
0.30– 0 0 0.65– 0 0
0.31– 0 0 0.66– 0 0
0.32– 0 0 0.67– 0 0
0.33– 0 0 0.68– 0 0
0.34– 0 0 0.69– 0 0
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Table B.23: row data of Fig. 4.8 (b).

range
frequency

range
frequency

range
frequency

first
layer

second
layer

first
layer

second
layer

first
layer

second
layer

0.00– 1923489 3870941 0.35– 0 0 0.70– 0 0
0.01– 478423 570137 0.36– 0 0 0.71– 0 0
0.02– 50144 50820 0.37– 0 0 0.72– 0 0
0.03– 1764 1764 0.38– 0 0 0.73– 0 0
0.04– 0 0 0.39– 0 0 0.74– 0 0
0.05– 0 0 0.40– 0 0 0.75– 0 0
0.06– 0 0 0.41– 0 0 0.76– 0 0
0.07– 0 0 0.42– 0 0 0.77– 0 0
0.08– 0 0 0.43– 0 0 0.78– 0 0
0.09– 0 0 0.44– 0 0 0.79– 0 0
0.10– 0 0 0.45– 0 0 0.80– 0 0
0.11– 0 0 0.46– 0 0 0.81– 0 0
0.12– 0 0 0.47– 0 0 0.82– 0 0
0.13– 0 0 0.48– 0 0 0.83– 0 0
0.14– 0 0 0.49– 0 0 0.84– 0 0
0.15– 0 0 0.50– 0 0 0.85– 0 0
0.16– 0 0 0.51– 0 0 0.86– 0 0
0.17– 0 0 0.52– 0 0 0.87– 0 0
0.18– 0 0 0.53– 0 0 0.88– 0 0
0.19– 0 0 0.54– 0 0 0.89– 0 0
0.20– 0 0 0.55– 0 0 0.90– 0 0
0.21– 0 0 0.56– 0 0 0.91– 0 0
0.22– 0 0 0.57– 0 0 0.92– 0 0
0.23– 0 0 0.58– 0 0 0.93– 0 0
0.24– 0 0 0.59– 0 0 0.94– 0 0
0.25– 0 0 0.60– 0 0 0.95– 0 0
0.26– 0 0 0.61– 0 0 0.96– 0 0
0.27– 0 0 0.62– 0 0 0.97– 0 0
0.28– 0 0 0.63– 0 0 0.98– 0 0
0.29– 0 0 0.64– 0 0 0.99– 0 0
0.30– 0 0 0.65– 0 0
0.31– 0 0 0.66– 0 0
0.32– 0 0 0.67– 0 0
0.33– 0 0 0.68– 0 0
0.34– 0 0 0.69– 0 0
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Table B.24: row data of Fig. 4.8 (c).

range
frequency

range
frequency

range
frequency

first
layer

second
layer

first
layer

second
layer

first
layer

second
layer

0.00– 1843412 3841334 0.35– 0 0 0.70– 0 0
0.01– 469760 570411 0.36– 0 0 0.71– 0 0
0.02– 61771 63630 0.37– 0 0 0.72– 0 0
0.03– 5194 5194 0.38– 0 0 0.73– 0 0
0.04– 196 196 0.39– 0 0 0.74– 0 0
0.05– 196 196 0.40– 0 0 0.75– 0 0
0.06– 0 0 0.41– 0 0 0.76– 0 0
0.07– 0 0 0.42– 0 0 0.77– 0 0
0.08– 0 0 0.43– 0 0 0.78– 0 0
0.09– 0 0 0.44– 0 0 0.79– 0 0
0.10– 0 0 0.45– 0 0 0.80– 0 0
0.11– 0 0 0.46– 0 0 0.81– 0 0
0.12– 0 0 0.47– 0 0 0.82– 0 0
0.13– 0 0 0.48– 0 0 0.83– 0 0
0.14– 0 0 0.49– 0 0 0.84– 0 0
0.15– 0 0 0.50– 0 0 0.85– 0 0
0.16– 0 0 0.51– 0 0 0.86– 0 0
0.17– 0 0 0.52– 0 0 0.87– 0 0
0.18– 0 0 0.53– 0 0 0.88– 0 0
0.19– 0 0 0.54– 0 0 0.89– 0 0
0.20– 0 0 0.55– 0 0 0.90– 0 0
0.21– 0 0 0.56– 0 0 0.91– 0 0
0.22– 0 0 0.57– 0 0 0.92– 0 0
0.23– 0 0 0.58– 0 0 0.93– 0 0
0.24– 0 0 0.59– 0 0 0.94– 0 0
0.25– 0 0 0.60– 0 0 0.95– 0 0
0.26– 0 0 0.61– 0 0 0.96– 0 0
0.27– 0 0 0.62– 0 0 0.97– 0 0
0.28– 0 0 0.63– 0 0 0.98– 0 0
0.29– 0 0 0.64– 0 0 0.99– 0 0
0.30– 0 0 0.65– 0 0
0.31– 0 0 0.66– 0 0
0.32– 0 0 0.67– 0 0
0.33– 0 0 0.68– 0 0
0.34– 0 0 0.69– 0 0
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Table B.25: row data of Fig. 4.8 (d).

range
frequency

range
frequency

range
frequency

first
layer

second
layer

first
layer

second
layer

first
layer

second
layer

0.00– 2018898 4447654 0.35– 0 0 0.70– 0 0
0.01– 425182 490994 0.36– 0 0 0.71– 0 0
0.02– 67854 70558 0.37– 0 0 0.72– 0 0
0.03– 10112 10450 0.38– 0 0 0.73– 0 0
0.04– 1806 1806 0.39– 0 0 0.74– 0 0
0.05– 392 392 0.40– 0 0 0.75– 0 0
0.06– 0 0 0.41– 0 0 0.76– 0 0
0.07– 0 0 0.42– 0 0 0.77– 0 0
0.08– 0 0 0.43– 0 0 0.78– 0 0
0.09– 0 0 0.44– 0 0 0.79– 0 0
0.10– 0 0 0.45– 0 0 0.80– 0 0
0.11– 0 0 0.46– 0 0 0.81– 0 0
0.12– 0 0 0.47– 0 0 0.82– 0 0
0.13– 0 0 0.48– 0 0 0.83– 0 0
0.14– 0 0 0.49– 0 0 0.84– 0 0
0.15– 0 0 0.50– 0 0 0.85– 0 0
0.16– 0 0 0.51– 0 0 0.86– 0 0
0.17– 0 0 0.52– 0 0 0.87– 0 0
0.18– 0 0 0.53– 0 0 0.88– 0 0
0.19– 0 0 0.54– 0 0 0.89– 0 0
0.20– 0 0 0.55– 0 0 0.90– 0 0
0.21– 0 0 0.56– 0 0 0.91– 0 0
0.22– 0 0 0.57– 0 0 0.92– 0 0
0.23– 0 0 0.58– 0 0 0.93– 0 0
0.24– 0 0 0.59– 0 0 0.94– 0 0
0.25– 0 0 0.60– 0 0 0.95– 0 0
0.26– 0 0 0.61– 0 0 0.96– 0 0
0.27– 0 0 0.62– 0 0 0.97– 0 0
0.28– 0 0 0.63– 0 0 0.98– 0 0
0.29– 0 0 0.64– 0 0 0.99– 0 0
0.30– 0 0 0.65– 0 0
0.31– 0 0 0.66– 0 0
0.32– 0 0 0.67– 0 0
0.33– 0 0 0.68– 0 0
0.34– 0 0 0.69– 0 0
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Table B.26 shows the row data of Fig. 4.9.

Table B.26: row data of Fig. 4.9.

dropout ratio
0.0 0.2 0.4 0.6

a
(200,200,10) 0.0006 0.0056 0.0995 0.6988
(500,500,10) 0.0000 0.0002 0.0310 0.5226

(1000,1000,10) 0.0000 0.0000 0.0080 0.578

b
(512,500,200) 0.0263 0.2811 0.6199 0.7317
(512,1000,200) 0.0000 0.0039 0.2080 0.6635
(512,2000,200) 0.0000 0.0000 0.0005 0.4154

c
(200,200,10) 0.0006 0.0056 0.0995 0.6988

N(500,500,10) 0.0032 0.0125 0.2820 0.7320
N(1000,1000,10) 0.0095 0.0690 0.3310 0.6620

d
(512,500,200) 0.0263 0.2811 0.6199 0.7317

N(512,1000,200) 0.0090 0.2558 0.5393 0.7034
N(512,2000,200) 0.0144 0.2396 0.4079 0.7753

Table B.27 shows the row data of Fig. 4.10.

Table B.27: row data of Fig. 4.10.

dropout ratio
0.0 0.2 0.4 0.6

a
(1000,1000,100) 0.3098 0.7946 0.8912 0.9903
(2000,2000,100) 0.1022 0.6751 0.7808 0.7277
(4000,4000,100) 0.0036 0.0560 0.0990 0.5252

b
(512,1000,100) 0.0927 0.8299 0.8897 0.9903
(512,2000,100) 0.0161 0.7109 0.7560 1.0000
(512,4000,100) 0.0006 0.1215 0.4964 0.8951

c
(1000,1000,100) 0.3098 0.7946 0.8912 0.9903

N(2000,2000,100) 0.4284 0.7509 0.8094 0.8028
N(4000,4000,100) 0.3482 0.6380 0.6726 0.7119

d
(512,1000,100) 0.0927 0.8299 0.8897 0.9903

N(512,2000,100) 0.0833 0.8902 0.8824 NA
N(512,4000,100) 0.0737 0.6337 0.8091 NA
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B.3 Row Data of Figures in Chapter 5

Table B.28 shows the row data of Fig. 5.1.

Table B.28: row data of Fig. 5.1.

pruning ratio
0.0 0.6 0.7 0.8 0.9 0.95

all 0.77 0.77 0.76 0.74 0.66 0.43
airplane 0.79 0.79 0.80 0.80 0.63 0.08
mobile 0.90 0.85 0.84 0.77 0.65 0.28
bird 0.57 0.59 0.53 0.43 0.40 0.42
cat 0.57 0.65 0.65 0.66 0.71 0.82
deer 0.72 0.74 0.77 0.78 0.74 0.53
dog 0.77 0.68 0.70 0.70 0.57 0.38
frog 0.85 0.84 0.85 0.88 0.93 0.90
horse 0.87 0.84 0.80 0.72 0.53 0.33
ship 0.81 0.82 0.82 0.80 0.70 0.35
truck 0.86 0.88 0.86 0.85 0.73 0.23

Table B.29 shows the row data of Fig. 5.2.

Table B.29: row data of Fig. 5.2.

pruning ratio
0.0 0.6 0.7 0.8 0.9 0.95

all 0.77 0.77 0.74 0.74 0.69 0.55
airplane 0.79 0.78 0.79 0.79 0.63 0.25
mobile 0.90 0.84 0.70 0.73 0.56 0.44
bird 0.57 0.55 0.43 0.44 0.47 0.60
cat 0.57 0.62 0.59 0.64 0.62 0.65
deer 0.72 0.77 0.73 0.77 0.73 0.58
dog 0.77 0.75 0.79 0.71 0.69 0.37
frog 0.85 0.85 0.87 0.88 0.91 0.94
horse 0.87 0.81 0.79 0.72 0.57 0.33
ship 0.81 0.82 0.82 0.82 0.86 0.69
truck 0.86 0.88 0.91 0.88 0.86 0.70
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