
Structured Multimodal
Reinforcement Learning for

Playing NetHack

A Thesis Submitted to the Department of Computer Science and Communications
Engineering, the Graduate School of Fundamental Science and Engineering of Waseda

University in Partial Fulfillment of the Requirements for the Degree of Master of Engineering

Submission Date: January 23rd, 2023

Keisuke Izumiya
5121F009-6

Advisor: Assoc. Prof. Edgar Simo-Serra
Research guidance: Research on Computer Graphics

Abstract

Designing autonomous agents that play video games is important and valuable for game design,
balancing, and testing. Video games are also preferable benchmark environments for devel-
oping robust Reinforcement Learning (RL) algorithms that can be applied to other real-world
tasks. In this thesis, we address the modification of RL algorithms for NetHack, a type of video
game. Specifically, we discuss three methods: appropriate inventory handling, appropriate in-
game strings handling, and efficient learning with expert data. Inventory is an unordered set of
items of variable size which is not straightforward to handle in the RL framework. To solve this
problem, we propose a mechanism that uses attention and meta-action to test its effectiveness.
Handling in-game strings in RL requires ingenuity because of the unique vocabulary and the
need to consider the importance of strings. We examine different models for handling in-game
strings and compare their performance. Expert data supports RL and can be provided naturally
in game development, but using a large amount of expert data is impractical. Therefore, we
propose a method to facilitate RL using a small amount of expert data and test its effectiveness.

概要

ビデオゲームをプレイする自律エージェントは，ゲームデザインやゲームバランスの調整，
テストに役立つ重要なものである．また，ビデオゲームは他の実世界のタスクに適用できる
頑健な強化学習アルゴリズムを開発するための好ましいベンチマーク環境である．そこで本
論文では，ビデオゲームの一種である NetHack環境に対して適用する強化学習アルゴリズム
の改良を行う．具体的には，適切なインベントリ処理，適切なゲーム内文字列処理，エキス
パートデータを用いた効率的な学習の三つの方法について議論する．インベントリは順序を
持たないアイテムの集合であり，大きさも可変であることから，強化学習フレームワークで
扱うのは容易でない．この問題を解決するために，注意機構とメタ行動を用いた手法を提案
し，その有効性を検証する．強化学習でゲーム内の文字列を扱う場合，ゲーム特有の語彙や
文字列の重要性を考慮する必要があるため，工夫が必要である．そこで，我々はゲーム内の
文字列を扱うための様々なモデルを検証し，その性能を比較する．熟練者によるデータは強
化学習を助けるものであり，ゲーム開発において自然に用意することが可能だが，大量の
データを用意するのは非現実的な設定である．そこで，少量の熟練者データを用いて強化学
習を促進する方法を提案し，その有効性を検証する．

Acknowledgements

I would like to thank associate professor Simo-Serra and the lab member, especially Kotaro
and Tsunehiko. I would also like to thank all of my friends and family who helped me outside
of my research.

iv

Contents

List of Figures viii

List of Tables x

Chapter 1 Introduction 1
1.1 Contributions . 2
1.2 Publications . 3
1.3 Thesis Overview . 3

Chapter 2 Background 4
2.1 Neural Network . 4

2.1.1 Multilayer Perceptron . 4
2.1.2 Convolutional Neural Network 4
2.1.3 Recurrent Neural Network . 5
2.1.4 Embedding Layer . 5

2.2 Optimization . 5
2.2.1 RMSprop . 6
2.2.2 ADADELTA . 6

2.3 Reinforcement Learning . 6
2.3.1 Goals . 7
2.3.2 Bellman Equation . 8
2.3.3 Reinforcement Learning Algorithms 8

2.4 NetHack . 11
2.5 Libraries . 13
2.6 Related Work . 13

2.6.1 Reinforcement Learning for Games 13
2.6.2 Reinforcement Learning for Roguelikes 15

vi

Chapter 3 Inventory Management with Attention-Based Meta Actions 18
3.1 Background . 18
3.2 Method . 18

3.2.1 Baseline . 18
3.2.2 Action Recursion . 19
3.2.3 Meta Actions . 20
3.2.4 Attention-Based Inventory Feature Extraction 21
3.2.5 Loss Function . 21

3.3 Experiments and Results . 22
3.3.1 Experiment Settings . 22
3.3.2 Results . 23

3.4 Discussion . 23

Chapter 4 In-Game String Handling 30
4.1 Background . 30
4.2 Method . 30

4.2.1 Use of Non-CNN Models . 30
4.2.2 Online Bag-of-Words . 31
4.2.3 Variational Autoencoder . 31

4.3 Experiments and Results . 32
4.3.1 Experiment Settings . 32
4.3.2 Results . 32

4.4 Discussion . 32

Chapter 5 Reinforcement Learning with Expert Data 35
5.1 Background . 35
5.2 Method . 36

5.2.1 Imitation Learning . 36
5.2.2 Reinforcement Learning with Imitation Policy 36

5.3 Experiments and Results . 37
5.3.1 Experiment Settings . 37
5.3.2 Results . 37

5.4 Discussion . 38

Chapter 6 Conclusion 40

vii

List of Figures

2.1 Interaction between the environment and the RL agent. 7
2.2 Conceptual diagram of IMPALA. The left figure shows a learning with single

learner, and the right one shows a learning with multiple learners. This figure
is taken from the paper [11]. 10

2.3 Screenshot of NetHack. 12
2.4 Examples of Atari 2600 games provided in ALE. The left is PITFALL! and

the right is SPACE INVADERS. This figure is taken from the paper [23]. . . . 15
2.5 Schematic diagram of RL process by Agent57. This figure is taken from the

paper [18]. 16
2.6 Screenshot of the environment given by [37]. The player @ and the enemy t

are placed in the corner of a room, with no other enemies or items placed. This
figure is taken from the paper [37]. 17

3.1 Overview of the model. The baseline model is the upper part of the dashed
line, and the entire figure is the proposed model. 19

3.2 Average return during training. The horizontal axis represents the learning
steps, and the vertical axis represents the average return. 24

3.3 A first example of the agent’s policy. The actions that have a high probability
of being taken are shown. The blue box represents the inventory, with the
corresponding �i value shown next to it. 26

3.4 A second example of the agent’s policy. The actions that have a high proba-
bility of being taken are shown. In the last example, the transitions of �v are
shown. 27

4.1 Average return during training. The horizontal axis represents the learning
steps, and the vertical axis represents the average return. The role is Monk. . . 33

viii

5.1 Average return during training. The horizontal axis represents the learning
steps, and the vertical axis represents the average return. The role is Monk. . . 37

ix

List of Tables

2.1 NetHack actions and their descriptions. Actions used in this thesis are shown. 13
2.2 Correspondence between a character and what it represents. 14
2.3 Details of the Status. 14

3.1 Average return in 10 tests. The best results are shown in bold. 24
3.2 The average number of times an agent used an item in an episode. The role

is Monk, and actions not used once are omitted. 28
3.3 Items specified in the “use item” meta action. The role is Monk, and the

maximum number of times the item has been used is three, in descending order
of frequency of use. The numbers in parentheses indicate the average number
of times the item was used in an episode. 28

4.1 Average return in 10 tests. The role is Monk. 33
4.2 Reconstructed message by VAE. The results are shown for 5 times for each

input example. The ”Source” line shows the string in the source code corre-
sponding to the input example. Bolded parts in the output are the parts where
the reconstruction results are wrong. 34

5.1 Average return in 10 tests. The role is Monk. 38
5.2 The average number of times an agent took invalid actions in an episode.

The agent’s policy is initialized randomly. The role is Monk. 38

x

Chapter 1

Introduction

Reinforcement Learning (RL), a branch of machine learning, has a general problem setting and
the advantage of being able to learn without labeling data. Because of these characteristics, RL,
especially Deep Reinforcement Learning (DRL), which combines deep learning and RL, is being
studied in various fields, such as automated driving, advertising optimization, and searching for
the optimal design of machine learning models and parameters. Among these, DRL methods
have shown excellent performance, especially in games such as Atari 2600 [1], Go [2], and
StarCraft II [3]. Designing autonomous agents to play games is important and beneficial for
game design, balancing, and testing. Games are also desirable benchmark environments for
developing robust RL algorithms that can be applied to real-world tasks other than video games.

• They can be fully computer-simulated and provide reliable experimental results.
• The task content, difficulty, and other settings can be changed relatively freely, allowing

experiments to be conducted in various environments.
• The objective of the task is clear, and it is often easy to evaluate the intermediate stages.

However, RL has many problems, and one of the significant problems is its low performance.
Compared to supervised learning, which has achieved a practical level of performance in many
fields, there are only a limited number of fields in which RL can achieve state-of-the-art per-
formance. Even in games, where RL excels, it has not shown sufficient performance for games
with problems that even the most advanced RL methods have not completely overcome, such as
sparse and delayed rewards.

In this thesis, we work on modifying RL algorithms for designing autonomous agents in the
context of NetHack, a type of roguelike game. A roguelike is a role-playing game in which
the player controls a character corresponding to themselves to achieve a goal while overcoming
challenges. Although the definition of roguelike has not been established with certainty, the

1

Berlin Interpretation [4] presented at the International Roguelike Development Conference 2008
listed the following characteristics common to existing roguelike games.

• Most of the game contents, including dungeon structure and item placement, is randomly
generated each time the game starts.

• The player investigates the identity of dungeons and items through gameplay.
• Once you die or complete the game, you have to start over from the beginning.
• There is a wide variety of items, enemies, and multiple strategies to clear the game.
• The game is turn-based and does not require real-time input.
• The game requires the player to manage limited resources and think about utilizing them.
• The player collects resources by fighting a large number of enemies.

From an RL perspective, it is a highly challenging environment with difficulties such as a huge
state space, sparse rewards, and the need for short-term and long-term strategies that current
state-of-the-art deep reinforcement learning methods have yet to exploit fully. NetHack, the
subject of this thesis, is one of the most popular open-source roguelikes and is still being updated
even though it is the first roguelike with a history of over 30 years. NetHack is described in detail
in Section 2.4.

1.1 Contributions
The following are contributions of this thesis.

Inventory Management We proposed a method to properly handle inventories (sets of items)
with permutation-invariant features with neural networks and incorporate them into the
RL framework. The agent performed better than existing methods, indicating that it can
handle items appropriately.

In-Game String Handling We compared several string handling methods that consider the fea-
tures of in-game strings. We show that the string methods do not significantly affect the
learning results.

Reinforcement Learning with Expert Data We proposed an efficient method for RL with a
small amount of expert data. We show that introducing expert data improves the perfor-
mance of the proposed method, and the proposed method performs more human-like and
appropriate behavior.

2

1.2 Publications
The following are the publications related to this thesis.

• K. Izumiya and E. Simo-Serra, “Inventory Management with Attention-Based Meta Ac-
tions,” in Proc. IEEE Conference on Games, Aug. 2021.

• K. Izumiya and E. Simo-Serra, “Item Management Using Attention Mechanism and
Meta Actions in Roguelike Games,” in Proc. Visual Computing, Sep.–Oct. 2021.

1.3 Thesis Overview
The overview of this thesis is as follows:

Chapter 2 We describe the prerequisites and related research for this paper as a whole.
Chapter 3 We describe methods for handling inventory in roguelike games.
Chapter 4 We describe a method for handling strings in roguelike games.
Chapter 5 We describe a method for efficient learning with a small amount of expert data.
Chapter 6 We conclude the paper and discuss prospects.

3

Chapter 2

Background

In this chapter, we provide background knowledge on areas such as neural networks and rein-
forcement learning that will be used throughout this thesis.

2.1 Neural Network
Neural networks model the workings of the human brain and are often used as a model to

represent the function f .xIw/, which is determined by the weights w.

2.1.1 Multilayer Perceptron

A MultiLayer Perceptron (MLP) is a neural network consisting of one or more fully-connected
layers. A fully-connected layer is a layer with weights W and biases b, and the output y is
calculated from the input x by

y D �.W x C b/ (2.1)

where sigma is the activation function. For the activation function � WR ! R, the sigmoid
function & WR 3 x 7! 1=

˚

1C exp.�x/
	

2 .0; 1/ and the ReLU function reluWR 3 x 7!

max.0; x/ 2 Œ0;1/ are often used. Note that when applying the R ! R function to a vector
or matrix, the function is applied element by element. Vectors input to MLP are input to all the
MLP’s fully-connected layers in a chain, and the output from the last layer is the output of the
MLP.

2.1.2 Convolutional Neural Network

A Convolutional Neural Network (CNN) consists of one or more layers for performing con-
volutional operations. For example, a two-dimensional convolutional layer has a kernel W and

4

a bias b and computes the output Y from the input X by

Y Œi; j � D �

X

Œi 0;j 0�2S.i;j /

X Œi; j �W Œi; j �C b

!

: (2.2)

Note that S.i; j / is a square area centered at the position Œi; j �. As in MLP, the input is input to
the convolutional layers in the CNN in a chain, and the output of the last layer is the output of
the CNN.

2.1.3 Recurrent Neural Network

A Recurrent Neural Network (RNN) is a general term for networks that represent the de-
pendence of input sequences. There are several types of RNNs, including simple RNNs and
Long Short-Term Memory (LSTM) [5], but the one used in this paper is a Gated Recurrent Unit
(GRU) [6]. The GRU has six fully-connected layers whose activation functions are identity func-
tions and calculates the hidden state ht at from the input xt and the hidden state ht�1 using the
following equation at time t :

ht D .1 � zt/ˇ nt C zt ˇ ht�1 (2.3)

where

nt D tanh
�

FC1.xt/C r t ˇ FC2.ht�1/
�

; (2.4)
zt D &

�

FC3.xt/C FC4.ht�1/
�

; (2.5)
r t D &

�

FC5.xt/C FC6.ht�1/
�

: (2.6)

Note thatˇ denotes an element-by-element product and FC means the fully-connected layers.

2.1.4 Embedding Layer

The embedding layer converts data x from a finite set X into a fixed-length vector. This layer
has jX j vectors and outputs a vector corresponding to the input x.

2.2 Optimization
Continuous optimization finds parameters w such that the objective function f .w/WRn ! R

is minimized. In machine learning, it is often solved by updating the parameters of each layer
using the error backpropagation method. The optimization methods in this paper all update the
parameter w by

w.iC1/ w.i/ C�w.i/: (2.7)

5

The superscript .i/ represents the parameter generation. �w.i/ depends on the optimization
method and is defined in the subsequent subsections.

2.2.1 RMSprop

�w.i/ in RMSprop [7] is defined by the following equation.

�w.i/ D ��g.i/ ˛

q

v.i/ C �1; (2.8)

g.i/ D
@f .w.i//

@w.i/
; (2.9)

v.i/ D �v.i�1/ C .1 � �/g.i/ ˇ g.i/ (2.10)

where ˛ is the per-element quotient and 1 is a vector whose all elements are 1. The square
root of a vector is an operation that takes the square root of every element. In addition, � is
the learning rate, and �; � are hyperparameters. The smooth exponential average of the updates
up to the present time is kept and multiplied by the inverse of the smooth exponential average,
which suppresses updates for parameters that have been updated significantly.

2.2.2 ADADELTA

�w.i/ in ADADELTA [8] is defined by the following equation.

�w.i/ D �g.i/ ˇ

q

u.i�1/ C �1˛

q

v.i/ C �1; (2.11)

g.i/ D
@f .w.i//

@w.i/
; (2.12)

v.i/ D �v.i�1/ C .1 � �/g.i/ ˇ g.i/; (2.13)

u.i/ D �u.i�1/ C .1 � �/�w.i/ ˇ�w.i/ (2.14)

where � and � are hyperparameters. It has the same characteristics as RMSprop, but the signif-
icant improvement is that the learning rate is no longer needed because w.i/ and �w.i/ have
equal dimensions.

2.3 Reinforcement Learning
Reinforcement Learning (RL) is a type of machine learning that maximizes rewards from the

environment. The interaction between the environment and the agent is often represented using
a Markov Decision Process (MDP). The following characteristics of RL make it difficult.

• The feedback to the agent’s actions is not correct or incorrect but a numerical reward.

6

Environment

Agent

(1) Observe St

(2-b) Send At

(3-c) Send St+1, Rt

(2-a) Decide At

(3-a) Calculate Rt

(3-b) St → St+1

Figure 2.1 Interaction between the environment and the RL agent.

• In some cases, the agent can only observe one part of the environment.
• Rewards may be obtained some time after an appropriate action, or they may be obtained

by multiple pairs of actions.

The interaction between the environment and the agent is as follows.

(1) The agent receives the state St 2 S from the environment.
(2) The agent decides on the action At 2 A to take in the state St 2 S and sends it to the

environment.
(3) The environment changes the state to StC1 and sends the agent a reward Rt 2 R and a

new state StC1.

Note that S represents the state space, and A represents the action space. A schematic diagram
of the interaction is shown in Figure 2.1.

2.3.1 Goals

An agent’s policy � WS�A! Œ0; 1� represents the probability of taking each action in a given
state. The goal of RL is to find the optimal policy �� that maximizes expected G0 under the
policy � :

�� D arg max
�

E� ŒGt �: (2.15)

7

Note that T 2 NC[f1g and 2 Œ0; 1/ are the termination time and discount factor respectively.
Also, Gt is the sum of discounted rewards after time t and is defined as

Gt ´

T
X

�Dt

��tR� : (2.16)

2.3.2 Bellman Equation

The state value function v� WS ! R is defined as the expected value of the sum of discounted
rewards obtained by taking action from state s according to policy � :

v�.s/´ E�

�

Gt j St D s
�

(2.17)

The action-value function q� WS �A! R is defined as the expected value of the sum of the
discounted rewards obtained when a person takes action a in state s and then acts according to
policy � :

q�.s; a/´ E�

�

Gt j St D s; At D a
�

(2.18)

These definitions show that v� and q� can be rewritten in the following recursive form. They
are called the Bellman equation and are the source of parameter updates in RL algorithms. Note
that the policy associated with the action-value function should be greedy, i.e., it should always
take the action that maximizes the action value.

v�.s/ D E�

�

Rt C v�.StC1/ j St D s
�

; (2.19)
q�.s; a/ D E�

�

Rt C max
a

q�.StC1; a/ j St D s; At D a
�

: (2.20)

2.3.3 Reinforcement Learning Algorithms

(Deep) RL algorithms can be broadly classified into 2 types: methods that directly handle poli-
cies and those that do not. The methods that directly handle policies include REINFORCE [9],
Actor-Critic, A3C [10], and IMPALA [11], and most of them improve policies based on the
policy gradient theorem [12]. In addition to policies, most methods also deal with an estimation
function V of state-values to stabilize the learning. For example, in the Actor-Critic method,
the agent has a policy � determined by the parameter � and a state-value estimation function
V determined by the parameter !, and updates the parameters by repeating the following. Note
that r denotes the partial derivative in the subscript variable.

1. In state St , the agent performs action At � �.� j St/ and receives new state StC1 and
reward Rt .

8

2. Calculates the Temporal-Distance (TD) error ı D Rt C V.StC1I!/ � V.St I!/.
3. Updates � by � � C �1ır� ln �.At j St I�/.
4. Updates ! by ! !C �2ır!V.St I!/.

Most of the methods that do not deal with policies directly have the action-value estimation
function Q, that is updated based on the Bellman equation, and policies are represented through
Q. Methods published to date include Q learning [13], DQN [1], Rainbow [14], R2D2 [15],
R2D3 [16], NGU [17], and Agent57 [18]. For example, in Q-learning, the agent has an action-
value estimation function Q determined by the parameter � and updates it by repeating the
following.

1. In state St , the agent performs a random action At with probability � and action At

that maximizes the action-value with probability 1� �, and receives new state StC1 and
reward Rt .

2. Calculates the TD error ı D Rt C maxa Q.StC1; aI!/ �Q.St ; aI!/.
3. Updates � by � � C �1ır�Q.St ; At I�/.

The algorithm used in this thesis is IMPALA, which deals directly with policies and is de-
scribed in detail in Section 2.3.3.

IMPALA
IMPortance-weighted Actor-Learner Architecture (IMPALA) [11] is a off-policy actor-critic

method. That is, the “actor,” an agent that operates in the environment and collects data, and
the “learner,” an agent that updates parameters, are separated, each with a (different) state-value
estimation function and policies. Let � denote the actor’s policy, � the learner’s policy, and V the
state-value estimation function of the learner. Many actor-critic methods, including IMPALA,
collect data in parallel by preparing multiple environments and actors. The purpose of this is
to collect more diverse data more quickly. In particular, IMPALA is designed to use multiple
learners and can scale to thousands of machines. A conceptual diagram of IMPALA is shown
in Figure 2.2.

Although the learner synchronizes its parameters with the actor each time it updates them,
strictly speaking, there is a discrepancy between the actor and learner parameters. IMPALA
uses an algorithm called V-trace to compensate for this discrepancy. The gradient of the error
function for the parameters that define the policy derived from this algorithm is as follows. Here,

9

Figure 2.2 Conceptual diagram of IMPALA. The left figure shows a learning with single
learner, and the right one shows a learning with multiple learners. This figure is taken from
the paper [11].

ˇ; n; �, and c are hyperparameters.

�tr log �.At j St/
˚

Rt C vtC1 � V.St/
	

—

Policy gradient term

Cˇ r
X

a2A

��.a j St/ log �.a j St/

’

Entropy term
(2.21)

where

vt D V.St/C

tCn�1
X

sDt

s�t

s�1
Y

iDt

ci

!

ıs; (2.22)

ıt D �t

˚

Rt C V.StC1/ � V.St/
	

; (2.23)

�t D min
�

�;
�.At j St/

�.At j St/

�

; (2.24)

ct D min
�

c;
�.At j St/

�.At j St/

�

: (2.25)

The gradient of the error function for the parameters that define the state-value estimation
function is as follows.

˚

vt � V.St/
	

rV.St/: (2.26)

10

2.4 NetHack
NetHack is an early roguelike published in 1987. The game’s objective (how to complete the

game) is to explore a procedurally generated dungeon consisting of more than 50 levels using
various items and to find and bring back ”The Amulet of Yendor” that exists deep in the dungeon.
In addition to the features common to roguelikes, NetHack has the following characteristics,
making it an challenging game even for human players.

• The 50 or more level are not a straight path but has many branches, some of which have
nearly 10 levels. The player must go back and forth between these branches to collect the
items necessary to complete the game.

• There are more than 400 different enemies and items and more than 50 different actions.

A list of actions belonging to the action space used in this thesis is shown in Table 2.1.
An example of a NetHack play screen is shown in Figure 2.3. The primary 4 states the player

can observe are message, dungeon, status, and inventory.

Message The events that have occurred, confirmation messages, and expected input are dis-
played. The first figure shows the state immediately after the player has killed the monster
grid bug, so the message “You kill the grid bug!” is displayed. The middle figure shows
the state immediately after the monster gnome picks up a food ration on the floor, so the
message ”The gnome picks up a food ration.” is displayed.

Dungeon The level in which the player is located is displayed. Everything, including enemies
and items, is represented by a single character. Examples of what each character repre-
sents are shown in Table 2.2. Most levels are composed of square rooms and corridors
(top figure), but some are not (middle figure). A black area with nothing displayed indi-
cates that the area has not been explored or that the area has been explored but nothing
was found.

Status The player’s current status, such as strength, HP and role, is displayed. Details of the
status are shown in Table 2.3.

Inventory The letter on the left represents the symbol or alphabet used to specify the item.A
list of items in the player’s possession is displayed (bottom figure). The letter on the left
represents the symbol or alphabet used to specify the item.

11

Message

Player

Enemy

Item

Passage

Stairs

Room

Status

Dungeon

Figure 2.3 Screenshot of NetHack.

12

Table 2.1 NetHack actions and their descriptions. Actions used in this thesis are shown.

Action Description

reading message Reads a message. Other actions are ignored when it needs to be read.
move Moves the player. If there is an enemy in the input direction, attacks it.
upstairs Goes upstairs.
downstairs Goes downstairs.
apply Uses a tool item. Item specification is required.
drop Drops an item. Item specification is required.
eat Eats an item. Item specification is required.
kick Kicks. Direction specification is required.
pickup Picks up an item on the floor.
puton Wears a ring or amulet. Item specification is required.
quaff Drinks a potion. Item specification is required.
read Reads a scroll of a spellbook. Item specification is required.
search Searches for hidden passages, doors, and traps around the player.
takeoff Takes off the player’s armor. Item specification is required.
throw Throws an item. Item and direction specification are required.
wear Wears an armor. Item specification is required.
wield Wields a weapon. Item specification is required.
zap Zaps a wand. Item and direction specification are required.

2.5 Libraries
In this paper, we use PyTorch [19] as a framework for machine learning. We also use Torch-

Beast [20] as an implementation of RL algorithms (IMPALA). In addition, we use the NetHack
Learning Environment (NLE) [21], which conforms to the OpenAI Gym [22] format that pro-
vides APIs for RL environments.

2.6 Related Work
2.6.1 Reinforcement Learning for Games

Modern RL algorithms are often evaluated in benchmark environments such as the Atari 2600
game provided by ALE [23] and various environments provided by the OpenAI Gym [22]. Ex-

13

Table 2.2 Correspondence between a character and what it represents.

Character Description

| - Wall. The player cannot pass through.
Colored | - Opened door. The player can pass through and close it.
Colored + Closed or locked door. Certain items are needed to open a locked door.
. An empty floor. The player can walk.
Corridor. The player can walk.
̀ Boulder. The player cannot pass through, but can push it.
@ Player.
> < Stairs. The player need to go down the stairs to complete the game.
̂ Traps. It is not shown and revealed by triggering it or search action.
_ Altar. It has many useful features.
Alphabet (x) Monster.
Other symbols (! %) Items. The character is determined by its kind.

Table 2.3 Details of the Status.

Agent Player name.
Novice Rank title. Determined by a role and experience level.
St Strength. It affectes the attack power.
Dx Dexterity. It affectes the accuracy rate.
Co Constitution. It affectes the weight that can be carried.
In Intelligence. It affectes the attack power.
Wi Wisdom. It affectes the success rate of spell learning and casting.
Ch Charisma. It affectes the item price.
Neutral Alignment. It affectes some strong items the player can get.
S Score. Increased by defeating enemies or going to deeper levels.
Dlvl Dunveon level. The deeper the player goes, the bigger it gets.
$ Gold coins the player carries.
HP Hit points. If it reaches 0, the player dies. Number in () shows the maximum.
Pw Power. Used for spell casting. Number in () shows the maximum.
AC Armor class. It affectes the defense and avoidance. Lower is better.
Xp Experience. Left shows the level and right shows the points.
Hungry Warnings. Disadvantageous states the player is suffering are shown.

14

Figure 2.4 Examples of Atari 2600 games provided in ALE. The left is PITFALL! and
the right is SPACE INVADERS. This figure is taken from the paper [23].

amples of Atari 2600 games are shown in Figure 2.4. Most of the games on the Atari 2600 are
simple but include some challenging problems for RL, so it is a good benchmarking environ-
ment. For this reason, active RL research has been conducted, and the algorithm named Agent57
have been proposed to exceed human performance in all games included in ALE [18]. Agent57
is a distributed RL method in which the data collected by the actor is stored in a prioritized expe-
rience replay buffer [24], and the learner fetches data from the replay buffer to learn. A diagram
of the learning process is shown in Figure 2.5. Prioritized experience replay [24] is an extension
of experience replay [25]. It is intended to increase sample efficiency by storing data once in a
buffer and fetching data with large loss in priority.

RL has also been applied to popular games such as Go [2], chess [26], and the multiplayer
incomplete information games StarCraft II [3] and Dota 2 [27]. These studies use DRL in com-
bination with Monte Carlo Tree Search (MCTS) [28]. There are also RL studies [29] in the
Minecraft environment [30], [31], a game that uses items in the same way as NetHack.

2.6.2 Reinforcement Learning for Roguelikes

There is also much research on applying RL to roguelikes. Several highly customizable envi-
ronments are available based on Rogue, the ancestor of roguelikes and a more straightforward
game than NetHack [32], [33]. Many RL studies using these environments have targeted dun-
geon exploration (exploring the current level and moving to deeper levels) [32]–[36].

Several environments based on NetHack, which is the target of this thesis, are also pro-
vided [21], [37]. Studies using these environments include learning to combat enemies using
abstracted state and action spaces [37] and using occupancy maps to efficiently discover hidden
doors and passageways, which are essential for dungeon exploration [38]. Another study used

15

Figure 2.5 Schematic diagram of RL process by Agent57. This figure is taken from the paper [18].

Random Network Distillation [39], a explore facilitation method, to tackle tasks such as obtain-
ing in-game scores and collecting money [21]. An example of the environment [37] not used in
this thesis are shown in Figure 2.6. Because the study focused on combat with the enemy, the
environment is simplified, with the player and the enemy placed in the corners of a single room
instead of a real game.

16

Figure 2.6 Screenshot of the environment given by [37]. The player @ and the enemy t
are placed in the corner of a room, with no other enemies or items placed. This figure is taken
from the paper [37].

17

Chapter 3

Inventory Management with
Attention-Based Meta Actions

This chapter describes a method for handling the inventory, which are collections of items.
Inventory has permutation-invariant features, and its size, i.e., the number of items a player pos-
sesses, is variable, so applying an RL algorithm requires some ingenuity. Related publications
are [40] and [41].

3.1 Background
As mentioned in Section 2.6.2, several studies utilize deep reinforcement learning for rogue-

like games. However, most of these studies focus on constructing the environment itself or learn-
ing in particular situations. In particular, items (inventory) exist in most role-playing games,
including roguelikes, and their use is indispensable, but no research deals with them in general
situations.

3.2 Method
3.2.1 Baseline

We use a modified version of the model used in the previous study [21] as a baseline. The
overview of the model is shown in the upper part of the dashed line in Figure 3.1. The primary
game information the model can handle is 3 types of message, dungeon, and status, excluding
inventory, out of the 4 types described in Section 2.4.

Messages are 256 character strings, and features are extracted by embedding the ASCII code of
each character into a fixed-length vector and then feeding it into a 1-dimensional CNN. Although

18

Dungeon

Dungeon
(crop)

Status

Message

CNN

CNN

MLP

CNN

Concat GRU

MLP

MLP

State value
V(s)

Policy
π(a | s)

Action Emb

Item 1
・
・
・

Item N

y1

yN

Attention

h

Emb

Emb

MLP

MLP

Sum

h'

MLP

・
・
・

Emb

Emb

Emb

Emb Embedding

MLP MLP

CNN CNN

Concat

GRU GRU

Sum Summation

Attention Attention

MLP

Concatenate

Figure 3.1 Overview of the model. The baseline model is the upper part of the dashed line,
and the entire figure is the proposed model.

CNN is an outdated method in natural language processing, we use it because it is one of the
simplest models, and message processing is not the focus of this experiment. The dungeon
shape is 21 � 79, and each square has a fixed-length vector with embedded attributes such as
color and type. Dungeon features are extracted using a 2-dimensional CNN. Furthermore, we
extract features from the 9�9 region centered on the agent using a CNN. This has been shown to
be effective in previous studies [42], [43]. The status is a vector consisting of numerical values
such as the player’s strength and attack power, and features are extracted using MLP.

These 3 features are combined and then input to MLP and GRU. The GRU outputs of the
GRUs are regarded as the features of the current state, which are then input to the two MLPs to
output a state-value estimation and a policy.

3.2.2 Action Recursion

We add an embedding layer to the model to incorporate information about the agent’s previous
actions. In this layer, the previous actions taken by the agent are converted into a fixed-length
vector, which is concatenated with the 3 features described above as action features. In this case,
only the previous action is input to this layer because the model incorporates a GRU to retain
information on previous times.

This layer is added based on the observation that humans can determine their current actions
based on the actions they have taken. Action recursion is particularly important in NetHack be-

19

cause specific actions are usually repeated multiple times, or a combination of multiple actions is
used to perform a high-level action. An example of the former is the search for hidden passage-
ways or doors. If there is a hidden passage or door in a square adjacent to an agent, the agent can
find them with a certain probability by taking a search action. Therefore, it is common to repeat
the search action a certain number of times when the agent arrives at a likely location. Examples
of the latter include kicking and using items. The kicking action is triggered by inputting the
kicking direction after the kick action is inputted. Using an item is triggered by specifying the
item to be used after entering the type of action, such as wear, read. Because of these examples,
it is important to input the previous actions taken by the agent into the model.

Theoretically, it should be possible to retain information about actions through the hidden state
of GRUs. However, experimental results show that GRUs alone cannot retain action information
and that direct input of actions to the model is practical. It is also possible to directly incorporate
multiple high-level actions into the action space. However, this is not done because the action
space becomes large, and learning becomes difficult. For example, NetHack has more than 10

types of actions to use items and more than 50 types of items that can be possessed. If these are
handled directly, the action space size is only about 60, but if possible higher-level actions, i.e.,
action/item pairs, are added to the action space, the action space size exceeds 500.

3.2.3 Meta Actions

In general, among all the actions an agent can take, there is a wide range of cases in which only
specific actions are valid. For example, in NetHack, as described in Section 3.2.2, immediately
after an action that uses an item (e.g.read), it is necessary to specify the item to be used. In such a
state, the agent must select an action from a set of valid actions. Therefore, we introduce “meta
actions” representing the entire set of valid actions. There are various possible meta actions,
but we introduce “use item” as a meta action. When an agent selects the “use item” action, it
selects an item according to the probability distribution exp.yi/=

P

i exp.yi/. Note that yi is
the attention score of the i -th item, and the calculation method is described in Section 3.2.4.

Another advantage of introducing meta actions is that a variable number of actions can be
handled. For example, the “use item” action is not easy to handle directly in RL framework be-
cause the number of items an agent possesses is not constant. By using meta actions, the size of
the action space is fixed, making it easier to apply existing algorithms. It also has the advantage
of preventing the action space from becoming too large for the same reasons described in Sec-
tion 3.2.2 and separating standard and meta actions. As an example of treating actions separately,
we propose modifying the design of the loss function. Details are given in Section 3.2.5.

20

3.2.4 Attention-Based Inventory Feature Extraction

Since an inventory is a set of items with no order, handling it properly in a neural network
is not straightforward. We propose a feature extraction method for inventory and each item
using an attention mechanism to express permutation invariance. First, each item is transformed
into a vector xi by the embedding layer and MLP. The embedding operation is performed in
the same way as the embedding of each square in the field. Then, the sum of the vectors of
all items, x D

P

i xi , is input to another MLP, and its output is the inventory feature. Since
the summation is independent of the order of the items, this expresses permutation invariance.
The inventory features are concatenated with the others described above and processed as in the
baseline model.

Let f be the feature of the current state (GRU output), W Q; W K and wV the 3 kinds of
weights that the attention mechanism has, and q and ki the dimension of ki . The score yi of
each item is then computed using the attention mechanism to specify the items to be used, using
the following equation:

yi D
q>ki
p

dK
vi (3.1)

where

q D W Qf ; (3.2)
ki D W Kxi ; (3.3)

vi D w>
V xi : (3.4)

3.2.5 Loss Function

The introduction of item selection based on meta actions and attention mechanisms requires
modifications to the loss function. First, we define the new action space and policies. Let b0

be the “use item” action and bi be the action to use the i -th item. We define the virtual action
space as Av D A[fb0g, the item action space as Ai D fb1; b2; : : :g, and the raw action space
as A

0 D A [Ai. Similarly, we define the virtual policy �vWS �Av ! Œ0; 1�, the item action
policy �iWS �Ai ! Œ0; 1�, and the raw policy � 0WS �A ! Œ0; 1� are defined. These policies

21

satisfy the following for all s 2 S :

� 0.a j s/ D

(

�v.a j s/ for a 2 A;

�v.b0 j s/�i.a j s/ for a 2 Ai;
(3.5)

X

a2Av

�v.a j s/ D
X

a2Ai

�i.a j s/ D
X

a2A0

� 0.a j s/ D 1: (3.6)

The RL algorithm used in this thesis is IMPALA [11]. To apply the proposed method to
IMPALA, we replace all � with � 0 and the entropy term in Equation (2.21) with

r
X

a2Av

��v.a j St/ log �v.a j St/C �r�v.b0 j St/
X

b2Ai

��i.b j St/ log �i.b j St/: (3.7)

Note that � is a hyperparameter, and when � D 1, all actions belonging to A
0 are treated equally

in the entropy calculation, and Equation (3.7) is equal to

r
X

a2A0

�� 0.a j St/ log � 0.a j St/: (3.8)

3.3 Experiments and Results
3.3.1 Experiment Settings

Reward
We use in-game scores as a reward. In-game scores can be earned through various events, such

as raising the experience level of agents, defeating enemies, and acquiring gold coins. Since
many of these events are essential, and the use of items, which is the focus of this study, con-
tributes to the acquisition of scores, we set in-game scores as a reward.

Action Space
We use IMPALA [11] as a RL algorithm and compare the baseline with an extended version

of a previous study conducted using a limited action space [21]. The previous action space was
14 in size, and its components were moving in 8 directions, upstairs and downstairs, reading
messages, eat, search, and kick. In this study, we add 11 actions: apply, drop, pickup, puton,
quaff, read, takeoff, throw, wear, wield and zap, so the action space size is 25. Details of each
action are shown in Table 2.1.

Character
Most of the previous studies have been conducted with the character as mon-hum-neu-mal

(representing role as Monk, race as human, attribute as neutral, and gender as male), but since

22

the game content of NetHack varies greatly depending on the character, especially the role, it is
inappropriate to evaluate with only one type of character. Therefore, in this study, in addition
to mon-hum-neu-mal, we conducted an experiment with 2 characters with very different char-
acteristics. The additional characters are val-dwa-law-fem (Valkyrie, dwarf, lawful, female)
and tou-hum-neu-fem (Tourist, human, neutral, female), and the characteristics of these roles
are as follows.

• Monk: Powerful in the early stages due to its variety of items and high combat power,
but becomes more challenging to conquer from the middle stage onward.

• Valkyrie: They have very few items at the beginning of the game but high combat power.
• Tourist: They have a variety of items, but their combat power is fragile and requires

unique tactics.

Training and Evaluation
In all experiments, learning was performed until a total of 10 billion in actions were taken.

An average of 10 episodes with different seeds was used in the evaluation tests.

3.3.2 Results

The proposed method and existing methods are compared in Figure 3.2 and Table 3.1. The
proposed method outperforms the existing methods by a wide margin. Moreover, it significantly
increases the score, especially for tourists whose fighting power is weak and whose use of items
is essential. Comparison among the 4 types (baseline, no inventory mechanism, no action recur-
sion, and the proposed model) shows that the components in the proposed model contribute to
performance improvement. Furthermore, the in-game change difficulty due to the choice of role
also significantly affects the score. The Monk, which is a powerful role due to its abundance
of items and high combat power in the early stages of the game, has the highest score overall,
followed by the Valkyrie, which is powerful in the early stages, and finally, the Tourist, which
has low combat power.

3.4 Discussion
The agent trained by this method can use the appropriate items in various situations, regardless

of the order of the items. To qualitatively confirm this, examples of agent output are shown in
Figure 3.3 and Figure 3.4. The figure with the black background represents the game state, and

23

Monk

2000

0
0 0.5 1 (x109)

Valkyrie

1000

1000

500

0
0 0.5 1 (x109)

200

0

100

Tourist

0 0.5 (x109)1

[21]

Baseline

w/o Inventory

w/o Action Recursion

Ours

Figure 3.2 Average return during training. The horizontal axis represents the learning
steps, and the vertical axis represents the average return.

Table 3.1 Average return in 10 tests. The best results are shown in bold.

Monk Valkyrie Tourist

[21] 807:1 645:4 42:2

Baseline 1431:2 686:2 56:8

Ours w/o Inventory 1348:4 840:9 191:1

Ours w/o Action Recursion 1500:1 890:5 153:0

Ours 2345.0 906.7 283.7

the right side shows the actions taken by the agent in this state and their probabilities. Numbers
in the figures show the actions with the highest probability of being taken in the action space
Av. In the last figure in Figure 3.4, the probability transitions of the two most probable actions,
search and North until the agent takes 5 consecutive search actions and finds the hidden door,
are shown. The blue box represents the inventory, and the probability of using each item, i.e.
�i, is marked next to it.

In the first example in Figure 3.3, the message at the top of the screen asks the agent which

24

item to eat. In this state, the agent selects an edible item with a high probability, indicating that it
can be used appropriately. In the second example in Figure 3.3, the agent is asked which item to
drink immediately after taking the quaff action. The policy output shows that the latter is chosen.
In the first example in Figure 3.4, the agent is asked in which direction to kick immediately after
taking kick action. The agent specifies the appropriate kicking direction, indicating that it can
“kick” that consists of two actions. The door below the agent is locked, and the agent who does
not have the key can only open the door by kicking. Therefore, kicking is one of the appropriate
actions in this state. The second example in Figure 3.4 is the state immediately after moving to
the left due to the West action. Considering NetHack’s field generation algorithm, there is still
room on the left side of the unexplored field, but there seems to be no way to get to the left side
of the field from the currently observable position. In such a case, it is appropriate to assume
that there is a hidden door somewhere on the left edge of the explored area, and the agent is
acting accordingly. In fact, the agent has found the hidden door by repeating the search action 5

times. Since the search can only search 8 squares around the agent, it is a natural strategy for the
agent to move if it cannot find the hidden door after a certain amount of search. The probability
transition between the search and North actions indicates that this strategy is taken.

Table 3.2 and Table 3.3 show the results of an additional experiment to determine the extent
to which the items were used. The role used in this experiment is a Monk who always has food
and three potions of healing at the beginning of the game. The experimental results indicate
that inventory handling and action recursion mechanisms are necessary to use items properly.
The most frequently taken actions are eat and quaff, which are directly related to an increase
in the survival time of the agent. In NetHack, hunger progresses with actions, and high hunger
decreases the agent’s fighting ability, eventually leading to starvation. Therefore, agents need to
eat food to survive longer and earn higher rewards. Drinking potion of healing helps agents to
survive because it restores their HP. In addition, the proposed model also took the action of read.
Monk starts the game with a random scroll, but if it is a scroll of enchant armor, he is trained to
read it. This strengthens the agent’s defensive and evasive capabilities and thus strengthens his
fighting ability, which is a critical factor.

On the other hand, some actions that use an item are not learned. In NetHack, the agent does
not know the identity of items not in the possession at the beginning of the game. These can only
be revealed by limited actions, such as using the item or a specific type of item. However, some
items can have disadvantageous effects when used or picked up, making their use dangerous.
The tools to reveal themselves are outside the agent’s possession at the beginning of the game.
As a result, it is challenging for the agent to learn to use items outside its possession at the
beginning of the game.

25

0.000

0.040
0.005
0.000

0.378

use item
0.956

West
0.028

NorthEast

0.003

0.000
0.000
0.000
0.000
0.000
0.981
0.009
0.000
0.000
0.000
0.009
0.000

use item
0.986

eat

0.007

quaff
0.002

HP

Player

Enemy
Enemy

0.000
0.000
0.020
0.000
0.000
0.000

0.179

0.378
0.000
0.000
0.000
0.000
0.000
0.000

Figure 3.3 A first example of the agent’s policy. The actions that have a high probability
of being taken are shown. The blue box represents the inventory, with the corresponding �i

value shown next to it.

26

South
0.983

kick

0.011

East
0.004

search

0.957

0.717

0.717

0.679

0.616

North

0.030

0.214

0.219

0.250

0.304

Player

Door

Player

Figure 3.4 A second example of the agent’s policy. The actions that have a high probability
of being taken are shown. In the last example, the transitions of �v are shown.

27

Table 3.2 The average number of times an agent used an item in an episode. The role
is Monk, and actions not used once are omitted.

drop eat quaff read

Baseline 0:0 4:0 1:0 0:2

Ours w/o Inventory 0:0 6:8 2:6 0:0

Ours w/o Action Recursion 0:0 4:0 2:7 0:0

Ours 0:6 6:2 2:7 1:7

Table 3.3 Items specified in the “use item” meta action. The role is Monk, and the
maximum number of times the item has been used is three, in descending order of frequency
of use. The numbers in parentheses indicate the average number of times the item was used
in an episode.

Action Item

drop unlabeled scroll (0:5), Unknown potion (0:1)
eat food ration (3:0), apple (1:5), orange (1:0)
quaff potion of healing (2:7)
read Unknown spellbook (1:3), Unknown scroll (0:2), unlabeled scroll (0:2)

Even models without action recursion or the inventory mechanism may successfully perform
the action to use an item, although not as accurate as the proposed method. As mentioned above,
the action to use an item usually consists of multiple actions, so it seems only possible for a
model with both action recursion and the inventory mechanism to learn such actions. However,
as shown in Figure 3.3, the message often indicate a second required action. Therefore, learning
natural language messages is not easy, but it is possible to learn actions that require multiple
inputs without using action recursion. It is also unnatural for a model without the inventory
mechanism to succeed in using items, but this is due to a property of NetHack. In NetHack,
the items possessed and the alphabet used to specify them at the beginning of the game are
roughly fixed. Therefore, only items the agent has at the beginning of the game can be learned
by “memorizing” the alphabet assigned to them.

Looking at the results by role in Table 3.1, it is shown that the effectiveness of the proposed
method is significant for Monk and Tourist and small for Valkyrie. This is likely because Valkyrie
has difficulty learning to use items, and most of the performance improvement is due to action
recursion. As mentioned above, it is difficult to learn to use items that the agent does not have at
the beginning of the game, so the proposed method is not very effective for Valkyrie, which has

28

only a few items compared to Monk and Tourist, which have many items at the beginning of the
game.

29

Chapter 4

In-Game String Handling

This chapter describes a method for handling in-game strings. Strings that appear in the game
have a difference vocabulary than natural language. They are also used as an adjunct for RL, so
it is required a different approach than ordinary natural language processing methods.

4.1 Background
Character strings displayed in games are often selected from a predefined set of characters or

character strings in the source code, so they generally have a vocabulary specific to the game.
Furthermore, the need to accurately handle character strings is not that great in games, and
image information processing is often more important. For these reasons, state-of-the-art string
processing models such as BERT [44] are not optimal for games because they are much larger
than necessary and retain unnecessary lexical knowledge even when trained models are used.
Therefore, in this study, the model for processing strings is trained simultaneously as RL.

The neural network used to handle messages in Chapter 3 is a simple 1-dimensional CNN,
an outdated method for handling strings. RNNs, which have hidden states and are more natural
models for handling time-series data such as language, and Transformer [45], which uses self-
attention without RNNs, are commonly used.

4.2 Method
4.2.1 Use of Non-CNN Models

Other than CNN, GRU and Transformer are used as lightweight models for training.

30

4.2.2 Online Bag-of-Words

Referring to Online Bag-of-Visual-Words [46], a method used in image recognition tasks, the
following procedure is used for training. First, a set V D fv1; v2; : : : ; vKg of random vectors
vk representing vocabularies is prepared. Note that K is the number of vocabularies. Next,
we prepare two teacher and student models for self-supervised learning. They have a natural
language processing model such as RNN and Transformer to compute features of strings, and the
features computed by teacher are used in RL. The student also has another model G to compute
weights gk from the vocabulary vector vk . This is because the vocabulary is constantly updated
in this method, and using dynamically generated weights is more stable than using the vocabulary
as is. Another advantage is that G consists of a layer normalization [47] and an fully-connected
layers to obtain permutation invariance.

The procedure for self-supervised learning, which is performed in parallel with RL, is as fol-
lows. First, the teacher computes the feature u from the input string s. Then, the correspondence
pk between u and each vocabulary vk is calculated as

pk D
exp

�

�ku � vkk
2=ı

�

PK
k0D1 exp

�

�ku � vk0k2=ı
�
: (4.1)

Note that ı D ı0m, ı0 is a hyperparameter, and m is the exponential smooth average of the
minimum squared error mink ku � vkk

2.
The student computes features Qui from several Qsi cut from a random part of the input string s.

Then, the correspondence qk between Qu, which is the concatenation of all Qui , and each dynamic
weight gk D G.vk/ is calculated by

qk D
exp

�

� Qu>gk

�

PK
k0D1 exp

�

� Qu>gk0

�
(4.2)

with the hyperparameter �.
We define the loss function as the cross entropy loss

K
X

kD1

�pk log qk (4.3)

and minimize it. Also, replace the oldest vector in the vocabulary V with u.

4.2.3 Variational Autoencoder

As mentioned in Section 4.1, fragments of strings appearing in the game can be obtained from
the source code. Using the dummy strings generated from the source code as the dataset, a Vari-

31

ational Autoencoder (VAE) is pre-trained and used as the model for extracting string features.
The specific training method is as follows. First, a list of strings displayed as messages dur-
ing gameplay is obtained from the NetHack source code. At this point, the strings in NetHack,
which is written in C language, may contain format specifiers. Since it is difficult to keep track
of the actual strings included here, the format specifiers are replaced with random strings as an
alternative. The resulting set of strings is used as a dataset and VAE is trained as follows:

1. A string x in the dataset is input to the VAE, and gets � and � 2 that represents the latent
space.

2. Calculates the reconstruction data Ox D � C e ˇ
p

� 2 with the random vector e �

N .0; I/. Note that I means the identity matrix.
3. Updates the parameter in the direction of minimizing the loss function given by the fol-

lowing equation. Note that ˇ is a hyperparameter and d is a dimension of � and � 2. We
can use any function as the reconstruction loss function loss, so we use the cross entropy
error in this study.

loss
�

x; Ox
�

�
ˇ

2

d
X

iD1

�

1C log �2
i � �2

i � �2
i

�

: (4.4)

4.3 Experiments and Results
4.3.1 Experiment Settings

Experiments were conducted with the same settings as in Section 3.3.1. The model other than
the string model was the same used in Chapter 3. We used only Monk for roles.

4.3.2 Results

The comparison of the performance between different string models is shown in Figure 4.1
and Table 4.1. Unfortunately, the online bag-of-words model could not be used due to machine
specs, so the results are omitted.

4.4 Discussion
The performance of the 4 models tested in this study was almost the same. As mentioned in

Section 4.1, string processing is not that important in games, and NetHack, the subject of this
study, is no exception. The stage in NetHack when string processing is necessary (more advan-

32

500

1000

1500

0
0 0.5 1 (x109)

GRU

VAE

CNN

Transformer

Figure 4.1 Average return during training. The horizontal axis represents the learning
steps, and the vertical axis represents the average return. The role is Monk.

Table 4.1 Average return in 10 tests. The role is Monk.

Model Return

CNN 1041:2

GRU 1215:6

Transformer 1084:1

VAE 1294:0

tageous to the game) is the middle stage of the game after the early stages have been overcome.
The agents trained with our method had not yet reached that stage, and thus the string processing
method did not produce a performance difference.

To demonstrate the correct progress of VAE training, we show in Table 4.2 the reconstruction
results when a message that appeared during the expert’s gameplay was input. From this exam-
ple, we can see that VAE correctly learns key strings such as the enemy’s name goblin and role
Barbarian.

33

Table 4.2 Reconstructed message by VAE. The results are shown for 5 times for each input
example. The ”Source” line shows the string in the source code corresponding to the input
example. Bolded parts in the output are the parts where the reconstruction results are wrong.

Input Hello izumiya, welcome to NetHack! You are a chaotic female orcish Barbarian.
Source "%s %s, welcome to NetHack! You are a%s %s %s."

Output

Hello izumiya, welcome to NetHack! You are a chaotic female orcish Barbarian.
Hello izumiya, welcome to NetHack! You are a chaotic female orcish Barbarian.
Hello izumiya, welcome to NetHack! You are a chaotic female orcish Barbarian.
Hello izumiya, welcome to NetHack! You are a chaotic female orcish Barbarian.
Hello izumiya, welcome to NetHack! You are a chaotic female orcish Barbarian.

Input The massive hammer hits! Lightning strikes the black unicorn!
Source "massive hammer hits%s %s%c"

Output

The massive hammer hits! Lightning strikes the black unicornv
The massive hammer hits! Lightning strikes the black unicorne
The massive hammer hits! Lightning strikes the black unicorne
The massive hammer hits! Lightning strikes the black unicorne
The massive hammer hits! Lightning strikes the black unicorne

Input The goblin throws an orcish dagger!
Source "%s %s %s%s%s!"

Output

The goblin throws an orcish daggere
The goblin throws an orcish dagger]
The goblin throws an orcish daggere
The goblin throws an orcish daggemz
The goblin throws an orcish daggerk

34

Chapter 5

Reinforcement Learning with
Expert Data

This chapter describes an efficient RL method using expert data. Although expert data sup-
ports RL, it is often not possible to prepare a large amount of data for tasks that require RL, so
it is necessary to use the expert data efficiently.

5.1 Background
There are several advantages to using expert data from skilled players in RL. First, it facilitates

learning, especially in the early stages of learning. An RL agent starts learning from a state in
which it does not know, so it does not have even the “natural” knowledge that humans naturally
acquire in life. Therefore, they have to learn content that is obvious to humans, which increases
the learning time. The second point is reward-independent action learning. Current RL frame-
works are theoretically designed to capture the relationship between actions and rewards, even
if there is a sufficiently long delay between the action and the reward. However, this is difficult
in reality. Actions that are not immediately rewarded but are important in the long run can be
quickly learned by simply imitating the behavior of a skilled player. These advantages make RL
with expert data important, especially for challenging tasks. There is a limit to the number of
expert data that can be used in game development, which is one of the expected applications of
RL, so it is necessary to use a small amount of data efficiently.

35

5.2 Method
5.2.1 Imitation Learning

Using the expert dataset DE�, we create an imitation policy �E that imitates the expert policy
�E� using supervised learning. However, because the expert policy is probabilistic, we do not
use the general multiclass classification problem setup (corresponding to deterministic policy).
Instead, we use the difference between the policies as the loss function. Specifically, we define
the error function as

E.s;a/�DE�

�

DKL
�

�E�.a j s/; �E.a j s/
��

(5.1)

and minimize it. Note that DKL represents KL divergence.
Since one of the primary purposes of utilizing expert data is to learn “rare” actions, such

data should be preferentially used for training. Therefore, data di 2 DE� is sampled with
probability pi , which is determined by solving the following convex optimization problem so
that all behaviors are used equally for learning.

Maximize Entropy.p1; p2; : : : ; pjDE�j/ (5.2)

s.t.

jDE�j
X

iD1

pi D 1; (5.3)

jDE�j
X

iD1

piNia1
D

jDE�j
X

iD1

piNia2

D

jDE�j
X

iD1

piNia3

D � � �

D

jDE�j
X

iD1

piNiajAj
: (5.4)

Note that A D fa1; a2; :::g and Nia is the number of times action a is taken in the i -th data.

5.2.2 Reinforcement Learning with Imitation Policy

The imitation policy �E got by the method shown in Section 5.2.1 is used for RL. Learning
method is almost same as in Chapter 3, but we add the KL divergence between �E and the agent’s

36

1000

2000

0
0 0.5 1 (x109)

Init πE
w/o penalty

Init πE
w/ penalty

Init random
w/o penalty

Init random
w/ penalty

Figure 5.1 Average return during training. The horizontal axis represents the learning
steps, and the vertical axis represents the average return. The role is Monk.

policy ��

DKL
�

�E.� j St/; ��.� j St/
�

(5.5)

to the reward penalty [48]. That is, we replace Rt in Equation (2.21) and Equation (2.23) with

Rt � ˛DKL.�E.� j St/; ��.� j St// (5.6)

where ˛ is a hyperparameter.

5.3 Experiments and Results
5.3.1 Experiment Settings

Experiments were conducted with the same settings as in Section 3.3.1. We used only Monk
for roles. Expert data was collected for approximately 44;000 steps, of which 20% was used as
the validation dataset and the rest as the training dataset.

5.3.2 Results

Experimental results are shown in Figure 5.1 and Table 5.1 for the following variables:
whether the agent’s policy is initialized randomly or with �E, and whether the reward penalty
described in Section 5.2.2 is imposed during training.

37

Table 5.1 Average return in 10 tests. The role is Monk.

Initialize randomly Initialize with �E

w/o reward penalty 1215:6 16:2

w/ reward penalty 1534:5 18:7

Table 5.2 The average number of times an agent took invalid actions in an episode. The
agent’s policy is initialized randomly. The role is Monk.

Number of invalid actions

w/o reward penalty 113:1

w/ reward penalty 13:5

5.4 Discussion
First, we find that the learning only progresses when the agent’s policy is initialized randomly,

regardless of whether there is a reward penalty. The RL algorithm used in this method is IM-
PALA [11], which deals directly with policy, and the agent acts according to it. Although the
expert’s policy is probabilistic, there are many states in which he takes decisive action. Further-
more, due to the small size of the dataset DE�, some states in which an expert would actually
take a probabilistic action may be definitive in the dataset. Therefore, the learned policy �E may
be more decisive than the original one. If the agent’s policy is initialized with �E, the exploration
will not be sufficiently performed, which is thought to be the reason why the learning does not
proceed.

Next, we see that the reward penalty is effective when the policy are initialized randomly. As
an example, we analyze invalid actions. Invalid actions are actions such as walking toward a wall
or specifying an item that the agent does not have, and these actions are designed to be ignored.
Therefore, while the agent does not receive any reward for taking an invalid action, it also avoids
the agent’s death. For example, in a state where an enemy attack will kill the agent, no matter
what action he takes next, if he takes some action, the value of that action (the expected value
of the future discounted reward sum) will be approximately 0. However, since taking an invalid
action prevents the value of the action from becoming 0 upon the agent’s death, the behavior
was observed in which the agent postpones death by taking a series of invalid actions. Since
experts do not engage in this behavior, we expect they will refrain from taking invalid actions

38

if a reward penalty is introduced to bring them closer to the expert policy. Table 5.2 shows the
number of invalid actions the agent took with and without the reward penalty, with the agent’s
policy initialized randomly. As shown in the table, introducing a reward penalty significantly
reduces the number of invalid actions.

39

Chapter 6

Conclusion

In this thesis, we study the modification of RL in NetHack, a kind of roguelike game. The
specific results are as follows.

• We proposed a method for handling the inventory. It is not straightforward to incorporate
the inventory handling into existing RL frameworks because of their permutation invari-
ant and variable size features. We address these issues by using attention and meta ac-
tions, making it possible to incorporate the inventory into RL frameworks. Experimental
results show that the proposed method improves performance and allows the appropriate
use of items.

• We compared several models for handling in-game strings. In-game strings have a game-
specific vocabulary and are used as auxiliary information in RL, so a different approach
from general natural language processing is needed. We compared results using CNN,
GRU, Transformer, and VAE and found that the performance was almost identical.

• We proposed a method to utilize expert data for RL efficiently. Expert data supports RL,
but it is often difficult to prepare a large amount of data in practice, so it is necessary to
use valid data efficiently. In order to ensure that rare actions can be learned equally well
as other actions, we calculated the proportion of data to be used for learning by solving a
convex optimization problem and then performed RL. Experimental results show that the
proposed method improves performance and significantly reduces the number of invalid
actions the expert does not perform.

Through this thesis, we examine how to utilize features common to games in general, such as
strings and items, as well as the small amount of expert data that can be naturally provided in
game development. As a result, we have laid the foundation for research on RL methods for very
complex environments, such as NetHack, which are challenging to conquer even with the state-

40

of-the-art RL algorithms. The major remaining research issues are speeding up and stabilizing
the learning process. In NetHack, the methods proposed in this thesis and improvements in
RL algorithms have enabled agents to survive the early stages of the game, but there are still
significant obstacles to overcome. To solve this problem, the use of expert data is essential. If
we can extract the maximum amount of prior human knowledge from expert data and provide
it to agents, learning will be faster, and they will be able to learn unusual actions and rewarding
actions with extremely long delays. Thus, more useful utilization of expert data is a primary
goal of future research.

41

Bibliography

[1] V. Mnih, K. Kavukcuoglu, D. Silver, et al., “Playing atari with deep reinforcement learn-
ing,” in NIPS Deep Learning Workshop, 2013.

[2] D. Silver, A. Huang, C. J. Maddison, et al., “Mastering the game of go with deep neural
networks and tree search,” nature, vol. 529, no. 7587, pp. 484–489, 2016.

[3] O. Vinyals, I. Babuschkin, W. M. Czarnecki, et al., “Grandmaster level in starcraft ii using
multi-agent reinforcement learning,” Nature, vol. 575, no. 7782, pp. 350–354, 2019.

[4] International Roguelike Development Conference, Berlin interpretation, Accessed: Jan-
uary 22nd, 2023, 2008. [Online]. Available: http://www.roguebasin.com/index.
php?title=Berlin_Interpretation.

[5] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural Computation,
1997.

[6] K. Cho, B. van Merriënboer, C. Gulcehre, et al., “Learning phrase representations using
RNN encoder–decoder for statistical machine translation,” in Proceedings of the 2014
Conference on Empirical Methods in Natural Language Processing), Doha, Qatar: Asso-
ciation for Computational Linguistics, Oct. 2014, pp. 1724–1734.

[7] T. Tieleman and G. Hinton, Neural networks for machine learning, Accessed: January
22nd, 2023, 2012. [Online]. Available: http://www.cs.toronto.edu/~hinton/
coursera/lecture6/lec6.pdf.

[8] M. D. Zeiler, “Adadelta: An adaptive learning rate method,” arXiv preprint, 2012.
[9] R. J. Williams, “Simple statistical gradient-following algorithms for connectionist rein-

forcement learning,” Mach. Learn., vol. 8, no. 3–4, pp. 229–256, May 1992.
[10] V. Mnih, A. P. Badia, M. Mirza, et al., “Asynchronous methods for deep reinforcement

learning,” in Proceedings of The 33rd International Conference on Machine Learning,
M. F. Balcan and K. Q. Weinberger, Eds., ser. Proceedings of Machine Learning Research,
vol. 48, New York, New York, USA: PMLR, Jun. 2016, pp. 1928–1937.

42

http://www.roguebasin.com/index.php?title=Berlin_Interpretation
http://www.roguebasin.com/index.php?title=Berlin_Interpretation
http://www.cs.toronto.edu/~hinton/coursera/lecture6/lec6.pdf
http://www.cs.toronto.edu/~hinton/coursera/lecture6/lec6.pdf

[11] L. Espeholt, H. Soyer, R. Munos, et al., “IMPALA: Scalable Distributed Deep-RL with
Importance Weighted Actor-Learner Architectures,” 35th International Conference on
Machine Learning, ICML 2018, vol. 4, pp. 2263–2284, 2018.

[12] R. S. Sutton, D. McAllester, S. Singh, and Y. Mansour, “Policy gradient methods for
reinforcement learning with function approximation,” in Advances in Neural Information
Processing Systems, S. Solla, T. Leen, and K. Müller, Eds., vol. 12, MIT Press, 1999.

[13] C. J. C. H. Watkins, “Learning from delayed rewards,” Ph.D. dissertation, 1989.
[14] M. Hessel, J. Modayil, H. van Hasselt, et al., “Rainbow: Combining improvements in deep

reinforcement learning,” Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 32, no. 1, Apr. 2018.

[15] S. Kapturowski, G. Ostrovski, W. Dabney, J. Quan, and R. Munos, “Recurrent experience
replay in distributed reinforcement learning,” in International Conference on Learning
Representations, 2019.

[16] C. Gulcehre, T. L. Paine, B. Shahriari, et al., “Making efficient use of demonstrations to
solve hard exploration problems,” in International Conference on Learning Representa-
tions, 2020.

[17] A. P. Badia, P. Sprechmann, A. Vitvitskyi, et al., “Never give up: Learning directed ex-
ploration strategies,” in International Conference on Learning Representations, 2020.

[18] A. P. Badia, B. Piot, S. Kapturowski, et al., “Agent57: Outperforming the atari human
benchmark,” arXiv preprint, 2020.

[19] A. Paszke, S. Gross, F. Massa, et al., “Pytorch: An imperative style, high-performance
deep learning library,” in Advances in Neural Information Processing Systems 32, H. Wal-
lach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox, and R. Garnett, Eds., Curran
Associates, Inc., 2019, pp. 8024–8035.

[20] H. Küttler, N. Nardelli, T. Lavril, et al., “TorchBeast: A PyTorch Platform for Distributed
RL,” arXiv preprint, 2019.

[21] H. Küttler, N. Nardelli, A. H. Miller, et al., “The NetHack Learning Environment,” in
Proceedings of the Conference on Neural Information Processing Systems, 2020.

[22] G. Brockman, V. Cheung, L. Pettersson, et al., “Openai gym,” arXiv preprint, 2016.
[23] M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling, “The Arcade Learning Envi-

ronment: An evaluation platform for general agents,” Journal of Artificial Intelligence
Research, 2013.

[24] T. Schaul, J. Quan, I. Antonoglou, and D. Silver, “Prioritized experience replay,” in 4th
International Conference on Learning Representations, ICLR 2016 - Conference Track
Proceedings, 2016.

43

[25] L.-J. Lin, “Self-improving reactive agents based on reinforcement learning, planning and
teaching,” Mach. Learn., vol. 8, no. 3–4, pp. 293–321, May 1992.

[26] J. Schrittwieser, I. Antonoglou, T. Hubert, et al., “Mastering atari, go, chess and shogi by
planning with a learned model,” Nature, vol. 588, no. 7839, pp. 604–609, 2020.

[27] C. Berner, G. Brockman, B. Chan, et al., “Dota 2 with large scale deep reinforcement
learning,” arXiv preprint, 2019.

[28] R. Coulom, “Efficient selectivity and backup operators in monte-carlo tree search,” in
International conference on computers and games, Springer, 2006, pp. 72–83.

[29] S. Frazier and M. Riedl, “Improving deep reinforcement learning in minecraft with action
advice,” in Proceedings of the AAAI Conference on Artificial Intelligence and Interactive
Digital Entertainment, vol. 15, 2019, pp. 146–152.

[30] W. H. Guss, C. Codel, K. Hofmann, et al., “The MineRL competition on sample efficient
reinforcement learning using human priors,” NeurIPS Competition Track, 2019.

[31] W. H. Guss, M. Y. Castro, S. Devlin, et al., “Neurips 2020 competition: The MineRL
competition on sample efficient reinforcement learning using human priors,” NeurIPS
Competition Track, 2020.

[32] A. Asperti, C. De Pieri, and G. Pedrini, “Rogueinabox: An environment for roguelike
learning,” International Journal of Computers, vol. 2, 2017.

[33] Y. Kanagawa and T. Kaneko, “Rogue-gym: A new challenge for generalization in rein-
forcement learning,” in 2019 IEEE Conference on Games, 2019, pp. 1–8.

[34] A. Asperti, C. De Pieri, M. Maldini, G. Pedrini, and F. Sovrano, “A modular deep-learning
environment for rogue,” WSEAS Trans. Syst. Control, vol. 12, pp. 362–373, 2017.

[35] A. Asperti, D. Cortesi, and F. Sovrano, “Crawling in rogue’s dungeons with (partitioned)
a3c,” in Machine Learning, Optimization, and Data Science, G. Nicosia, P. Pardalos, G.
Giuffrida, R. Umeton, and V. Sciacca, Eds., Cham: Springer International Publishing,
2019, pp. 264–275, isbn: 978-3-030-13709-0.

[36] A. Asperti, D. Cortesi, C. De Pieri, G. Pedrini, and F. Sovrano, “Crawling in rogue’s
dungeons with deep reinforcement techniques,” IEEE Transactions on Games, vol. 12,
no. 2, pp. 177–186, 2020.

[37] J. Campbell and C. Verbrugge, “Learning combat in NetHack,” in Thirteenth Annual AAAI
Conference on Artificial Intelligence and Interactive Digital Entertainment, Oct. 2017,
pp. 16–22.

[38] J. Campbell and C. Verbrugge, “Exploration in NetHack with secret discovery,” IEEE
Transactions on Games, 2018.

44

[39] Y. Burda, H. Edwards, A. Storkey, and O. Klimov, “Exploration by random network dis-
tillation,” in International Conference on Learning Representations, 2019.

[40] K. Izumiya and E. Simo-Serra, “Inventory management with attention-based meta ac-
tions,” in IEEE Conference on Games, 2021.

[41] K. Izumiya and E. Simo-Serra, “Item management using attention mechanism and meta
actions in roguelike games,” in Visual Computing, 2021.

[42] F. Hill, A. Lampinen, R. Schneider, et al., “Environmental drivers of systematicity and
generalization in a situated agent,” in International Conference on Learning Representa-
tions, 2020.

[43] C. Ye, A. Khalifa, P. Bontrager, and J. Togelius, “Rotation, translation, and cropping for
zero-shot generalization,” in 2020 IEEE Conference on Games, 2020, pp. 57–64.

[44] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of deep bidirec-
tional transformers for language understanding,” in Proceedings of the 2019 Conference
of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short Papers), Minneapolis, Minnesota:
Association for Computational Linguistics, Jun. 2019, pp. 4171–4186.

[45] A. Vaswani, N. Shazeer, N. Parmar, et al., “Attention is all you need,” in Advances in
Neural Information Processing Systems, I. Guyon, U. V. Luxburg, S. Bengio, et al., Eds.,
vol. 30, Curran Associates, Inc., 2017.

[46] S. Gidaris, A. Bursuc, G. Puy, N. Komodakis, M. Cord, and P. Pérez, “Learning represen-
tations by predicting bags of visual words,” in Computer Vision and Pattern Recognition
Conference, 2021.

[47] J. L. Ba, J. R. Kiros, and G. E. Hinton, “Layer normalization,” arXiv preprint, 2016.
[48] Z. Huang, J. Wu, and C. Lv, “Efficient deep reinforcement learning with imitative expert

priors for autonomous driving,” IEEE Transactions on Neural Networks and Learning
Systems, pp. 1–13, 2022.

45

	List of Figures
	List of Tables
	Chapter 1 Introduction
	1.1 Contributions
	1.2 Publications
	1.3 Thesis Overview

	Chapter 2 Background
	2.1 Neural Network
	2.1.1 Multilayer Perceptron
	2.1.2 Convolutional Neural Network
	2.1.3 Recurrent Neural Network
	2.1.4 Embedding Layer

	2.2 Optimization
	2.2.1 RMSprop
	2.2.2 ADADELTA

	2.3 Reinforcement Learning
	2.3.1 Goals
	2.3.2 Bellman Equation
	2.3.3 Reinforcement Learning Algorithms

	2.4 NetHack
	2.5 Libraries
	2.6 Related Work
	2.6.1 Reinforcement Learning for Games
	2.6.2 Reinforcement Learning for Roguelikes

	Chapter 3 Inventory Management with Attention-Based Meta Actions
	3.1 Background
	3.2 Method
	3.2.1 Baseline
	3.2.2 Action Recursion
	3.2.3 Meta Actions
	3.2.4 Attention-Based Inventory Feature Extraction
	3.2.5 Loss Function

	3.3 Experiments and Results
	3.3.1 Experiment Settings
	3.3.2 Results

	3.4 Discussion

	Chapter 4 In-Game String Handling
	4.1 Background
	4.2 Method
	4.2.1 Use of Non-CNN Models
	4.2.2 Online Bag-of-Words
	4.2.3 Variational Autoencoder

	4.3 Experiments and Results
	4.3.1 Experiment Settings
	4.3.2 Results

	4.4 Discussion

	Chapter 5 Reinforcement Learning with Expert Data
	5.1 Background
	5.2 Method
	5.2.1 Imitation Learning
	5.2.2 Reinforcement Learning with Imitation Policy

	5.3 Experiments and Results
	5.3.1 Experiment Settings
	5.3.2 Results

	5.4 Discussion

	Chapter 6 Conclusion

