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Chapter 1

Introduction

This chapter provides a brief introduction of the economic ideas dealt in this

thesis, namely revealed preference theory and limited consideration. In par-

ticular, revealed preference theory is a method used in all of the subsequent

chapters, while limited consideration is a subfield of bounded rationality that

we deal with in Chapters 2 and 3.

1.1 Revealed preference theory

In standard economic theory, it is a common method to construct a model

based on some hypotheses, and analyze the model under some suitable as-

sumptions. For such economic analyses to be plausible, we must be sure that

the hypotheses and assumptions that the analysis is based on are plausible.

Put otherwise, in order to conduct an economic analysis on some observed

economic phenomenon, we must clarify that the underlying hypotheses/as-

sumptions of the economic model do not contradict with the observed phe-

nomenon. Revealed preference theory is a field that aims to provide tests to

check whether specific economic hypotheses/assumptions do not contradict
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observed data. The structures of an economic model that are used in such

tests are called testable implications or observable restrictions of the model.

Revealed preference theory has been extensively studied subsequent to

Samuelson (1938) and Houthakker (1950), where they showed a set of neces-

sary and sufficient conditions that a demand function must satisfy if a deci-

sion maker (henceforth DM) is a utility maximizer. This result was further

studied by Afriat (1967) and Varian (1982), where they gave necessary and

sufficient conditions that a finite set of price-consumption data must obey

if the consumer is maximizing her utility. While Afriat (1967) and Varian

(1982) focused on consumption theory on the Eucledean consumption space,

Richter (1966) considers observable restrictions of optimizing behavior on

abstract consumption spaces. Since this thesis assumes a finite set of alter-

natives to be the grand set of alternatives, the revealed preference analyses

in this thesis will follow that of Richter (1966).

Here we show the observable restrictions of preference maximizing be-

havior on a finite consumption space. Let X be a finite set of alternatives,

and ą be a connected, asymmetric, and transitive preference of a decision

maker (henceforth, DM), which we refer to as a strict preference. Typically,

a choice function is observed: letting D Ď 2XzH be an arbitrary collection of

nonempty feasible sets, for every feasible set A P D, fpAq P A is the chosen

alternative from A.12 If a DM obeys the rational choice model, then for every

subset A P D, she maximizes her strict preference on A. Therefore, we can

define a (strict) direct revealed preference relation ąR, such that x2 ąR x1 if

there exists a feasible set A P D with fpAq “ x2, x1 P A, and x1 ‰ x2. In
1In Chapter 2, we assume that a finite number of pairs of choice and feasible set are

observed. This is just a different way to express a choice function defined as above.
2Throughout this thesis, we abuse notation and abbreviate the braces, and write 2XzH

instead of 2XztHu. Similar abbreviation of braces will be used whenever there is no fear
of confusion.
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words, alternative x2 is revealed to be preferred to x1 if there is a feasible

set where x2 is chosen when x1 is available. If the DM is rational, then her

direct revealed preference ąR must be a subset of her true preference ą, and

thus ąR must be acyclic. In fact, acyclicity of the direct revealed preference,

namely the Strong Axiom of Revealed Preference (SARP) is not only a neces-

sary condition, but also a sufficient condition for an observed choice function

to be consistent with the rational choice model.

1.2 Limited consideration

While the rational choice model can easily be tested using SARP, it is widely

known that observed choice data commonly violates SARP. In order to deal

with such seemingly irrational behavior, various theories of bounded ratio-

nality have been proposed. Amongst others, in Chapters 2 and 3 of this

thesis, we adopt the behavioral assumption of limited consideration. Under

limited consideration, consciously or unconsciously, a DM excludes some fea-

sible alternatives from consideration. In particular, it is assumed that a DM

has a strict preference ą, but when facing a feasible set A, she takes into

consideration only a subset of what is available: ΓpAq Ď A. Then, the DM

chooses the ą-best alternative within ΓpAq rather than the feasible set A

itself. This subset ΓpAq is called the consideration set of feasible set A, and

the mapping Γ : 2XzH Ñ 2XzH is referred to as a consideration mapping.

Various models of limited consideration have been proposed, and the models

differ depending on restrictions casted on the consideration mapping. For

example, the limited attention model in Masatlioglu, Nakajima, and Ozbay

(2012) assumes that Γ is an attention filter, which requires that removal of

an ignored alternative does not change the consideration set; and the over-

whelming choice model in Lleras, Masatlioglu, Nakajima, and Ozbay (2017)
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assumes that Γ is a competition filter, which requires that an alternative

considered in a larger set must be considered in a smaller set.

In fact, other important theories of non-standard decision making are

closely related to the limited consideration models introduced above. Under

the rational shortlisting method by Manzini and Mariotti (2007), the transi-

tive rational shortlisting method by Au and Kawai (2011), the categorize-then-

choose model by Manzini and Mariotti (2012), and the rationalization model

by Cherepanov, Feddersen, and Sandroni (2013), given a feasible set, a DM

makes a shortlist prior to making a final decision. The profile of shortlists

created under the rational shortlisting method, the categorize-then-choose

model, and the rationalization model is in fact a competition filter, and that

under the transitive rational shortlisting method is an attention filter and

competition filter. In this sense, these models can be regarded as special

cases of limited consideration.

1.3 Organization of the thesis

In this thesis, we focus on expositions of choice models based on non-exhaustive

choice data, which means that the observed choice data is a choice function

whose domain is merely a subset of all conceivable feasible sets, or a finite

set of pairs of choice a feasible sets.

Chapter 2 develops a revealed preference analysis for limited consider-

ation models. A revealed preference test is given for the decision model

obeying two well-established hypotheses on a decision maker’s consideration:

the attention filter property and competition filter property. We also pro-

vide a test for a two-step decision model, namely the (transitive) rational

shortlist method. We conduct simulations to compare the relative strength

of observable restrictions across leading models, where we find drastic dif-
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ferences in Bronars’ indices of models. This chapter is based on Inoue and

Shirai (Forthcoming).3

Chapter 3 is based on Inoue (2020a), which puts forward a behavioral

framework where a decision maker makes choices at multiple time periods,

while she may not be aware of all available alternatives at all times. This

framework inherits the main idea of the theory of limited consideration, and

adds to it an assumption that a decision maker’s consideration grows over

time. In particular, it is required that she takes into consideration any al-

ternative that she chose in the past. We refer to this property as growing

consideration. Revealed preference tests, as well as conditions under which

we can robustly infer the decision maker’s preference, consideration, and

non-consideration are given. Following a revealed preference analysis of a

baseline framework of decision making under growing consideration, we deal

with special cases where the decision maker’s consideration is a competition

filter/attention filter.

In Chapter 4, we develop revealed preference analysis of an individual

choice model where a DM is a weak preference maximizer, under the assump-

tion that a choice function, rather than a choice correspondence, is observed.

In particular, we provide a revealed preference test for such model, and then

provide conditions under which we can surely say whether some alternative

is indifferent/weakly preferred/strictly preferred to another, solely from the

information on the choice function. Furthermore, interpreting a choice corre-

spondence as sets of potential candidates of alternatives that could be chosen

from each feasible set, we analyze which alternatives must be, or cannot be a

member of the choice correspondence: sharp lower and upper bounds of this
3The author’s contribution to this paper is as follows. Firstly, the main idea and the

setup of the model was proposed by the author. Also, the simulation in Section 2.3 was
conducted by the author. Finally, the proofs of the theorems were done in tandem with
the co-author, Dr. Koji Shirai.
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underlying choice correspondence are given. As an assumption on observabil-

ity of data, we assume that the choice function is defined on a non-exhaustive

domain, so our results are applicable to data analysis even when only a lim-

ited data set is available. Chapter 4 is based on Inoue (2020b).

Following concluding remarks in Chapter 5, basic mathematical concepts

regarding binary relations and extension theorems are given in the Mathe-

matical Appendix in Chapter 6.
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Chapter 2

On the observable restrictions

of limited consideration

models: theory and application

In the literature of decision theory, limited consideration models have been

motivated by evidence that a decision maker (DM) does not consider all

(physically) available alternatives. Amongst others, Masatlioglu, Nakajima,

and Ozbay (2012) and Lleras, Masatlioglu, Nakajima, and Ozbay (2017) for-

mulate choice models in which a DM’s consideration set has specific restric-

tions called, respectively, attention filter (AF) and competition filter (CF)

properties. In the former, the removal of unrecognized alternatives does not

change the consideration set, while the latter requires that any alternative

considered in a larger set must be considered in a smaller set as long as it

is available. It is known that a CF is derived from various two-step deci-

sion models, including those by Manzini and Mariotti (2007), Au and Kawai

(2011), Manzini and Mariotti (2012), and Cherepanov, Feddersen, and San-

droni (2013), while Au and Kawai (2011) also implies an AF.
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These models have clean and interpretable axiomatizations in terms of an

exhaustive choice function, which specifies choices over all logically possible

subsets of alternatives. In this chapter, we are interested in the problem of

testing these models when we observe choices from some but not all subsets

of alternatives. In the case of AF, this has been done by De Clippel and

Rozen (2021), whereas the case of CF is essentially done by Dean, Kibris,

and Masatlioglu (2017).1 The primary objective of this chapter is to provide

tests for important cases that are not covered by these two papers.2

We formulate a test for checking models where the consideration set

has both AF and CF structures, which we call a competitive attention fil-

ter (CAF). In fact, there are many plausible scenarios that satisfy both AF

and CF properties.3 It should be noted that even if a data set is consistent

with AF and CF separately, there is no guarantee that it is consistent with

CAF. We also provide a revealed preference test for the rational shortlisting

(RS) method proposed by Manzini and Mariotti (2007), which is a special

case of the CF model. In this model, a DM makes a shortlist of alternatives

that are undominated in terms of some acyclic binary relation, and then

maximizes her preference within this shortlist. We also test the important

special case of the RS model formulated by Au and Kawai (2011). In Au and

Kawai’s variation, the binary relation deciding shortlists is supposed to be
1Dean, Kibris, and Masatlioglu (2017) provides a revealed preference test for a status

quo bias model where a DM’s consideration set is a CF that depends on the status quo.
It can be easily adjusted to a general test for a CF from limited data. Note also that the
first version of De Clippel and Rozen (2021) dates back to 2012, and, to the best of the
author’s knowledge, it is the first paper to provide a revealed preference analysis of limited
consideration models when the data are incomplete.

2In this thesis, we concentrate on deterministic choice models. Stochastic choice mod-
els with limited consideration have been also studied in the literature; see for example,
Manzini and Mariotti (2014) and Brady and Rehbeck (2016). A recent paper by Allen and
Rehbeck (Forthcoming) deals with a revealed preference analysis on a stochastic choice
model that can comprehend a certain type of stochastic consideration models as a special
case.

3See Section 2.1 for examples.
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asymmetric and transitive, so we call this decision procedure the transitive

rational shortlisting (TRS) method. Note that the TRS model also satisfies

AF, and hence it is a special case of the CAF model.

The basic idea of our tests can be summarized as follows. To explain

a data set by a certain limited consideration model, we need to elicit the

information concerning a DM’s consideration sets obeying relevant structures

as well as that of her preference. Unlike the standard rational choice model,

a data set collected from a limited consideration model can contain revealed

preference cycles (i.e., the Strong Axiom of Revealed Preference is violated).

As long as the DM’s preference is a strict preference, each cycle must contain

at least one revealed preference relation that has the opposite direction to the

true preference.4 Such a reversal contains some information concerning the

DM’s consideration sets, since not choosing a preferred alternative implies

that it is not considered. Then, each restriction on the DM’s consideration

sets, such as CAF or (T)RS, would in turn impose some restriction on how

cycles are broken. Then the precise restriction for each model works as a

revealed preference test.

Our revealed preference tests have a similar mathematical structure to

the test for AF in De Clippel and Rozen (2021), which the authors call acyclic

satisfiability. As shown in their paper, this class of problems is in general

computationally challenging, and our tests also share that computational

issue. Nevertheless, the features of our tests allow us to employ a computing
4While we concentrate on models where a DM has a strict preference, one may also

consider a more general case. Indeed, in Cherepanov, Feddersen, and Sandroni (2013),
Manzini and Mariotti (2012), and even Manzini and Mariotti (2007), a DM’s preference is
just assumed to be asymmetric (Cherepanov, Feddersen, and Sandroni (2013) also contain
the case of a strict preference). Testing models with a non-standard preference from
limited data is largely open, but a recent working paper by De Clippel and Rozen (2018)
deals with such a case (the paper is available at https://www.brown.edu/Departments/
Economics/Faculty/Kareen_Rozen/catrat_v67.pdf).
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method called backtracking, which is an efficient search method in dealing

with combinatorial problems.5

Having developed tools for testing different limited consideration models,

we apply them to investigate the empirical restrictiveness of these models.

Specifically, we test AF, CF, CAF, and (T)RS models. It is obvious that

limited consideration models are relatively permissive compared to the ratio-

nal choice model, and there are several subclass/superclass relations within

limited consideration models (e.g., CAF is obviously stronger than both of

AF and CF). Following Bronars (1987), we generate random choices and ap-

ply our tests to see the fraction of data that are consistent with each model.

In our simulation, we stick to an environment with 20 sets of alternatives,

each of which contains 2 – 8 alternatives out of 10 alternatives. Choices

are generated by using the uniform distribution over each set of alternatives

following Bronars (1987). We find that the strengths of observable restric-

tions are strikingly different across models. In fact, AF is very hard to reject

with the average pass rate of random data exceeding 99%, and CF is also

permissive with the average pass rate exceeding 60%. However, CAF is far

more restrictive with the average pass rate being less than 4%. The rational

shortlist models also have strong testing power: the average pass rate of RS

is less than 3% and that of TRS is less than 0.1%.

Organization of this chapter: In Section 2.1, we briefly review limited

consideration models dealt with in this chapter. The theoretical heart of this

chapter lies in Section 2.2: we firstly provide a basic idea of our approach

in testing limited consideration models in Section 2.2.1, and then provide

revealed preference tests for CAF and (T)RS respectively in Sections 2.2.2
5Classical textbook examples where backtracking is used are the eight queens puzzle,

crossword puzzles, and sudoku.
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and 2.2.3. In Section 2.2.4, we briefly refer to the test for AF and CF that

are shown in the existing papers. In Section 2.3, we apply our tests to

simulation data. The substantial parts of the proofs of main theorems are

given in Appendix I, and the computation procedure using backtracking is

explained in Appendix II.

2.1 Limited consideration models

Consider an individual decision problem where X is a finite set of alterna-

tives, and ą is a connected, asymmetric, and transitive preference of a DM,

which we refer to as a strict preference. If a DM obeys the rational choice

model, then for every subset A Ď X, she maximizes her strict preference on

A. On the other hand, in limited consideration models, either consciously

or unconsciously, a DM makes a shortlist of alternatives, and then she max-

imizes her preference on that shortlist. That is, there exists a consideration

mapping Γ : 2XzH Ñ 2XzH such that ΓpAq Ď A for every A P 2XzH, and a

DM maximizes her strict preference on ΓpAq, rather than A itself. Given a

consideration mapping Γ, ΓpAq is referred to as a consideration set on A. We

call a pair of strict preference and consideration mapping pą,Γq as a limited

consideration model.

While various types of Γ are considered in the literature, we focus on

consideration mappings obeying the following two properties that are inves-

tigated by Masatlioglu, Nakajima, and Ozbay (2012) and Lleras, Masatlioglu,

Nakajima, and Ozbay (2017). We say that Γ is an attention filter (AF), if

for every A Ď X and x P A,

x R ΓpAq ùñ ΓpAzxq “ ΓpAq. (2.1)
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In words, Γ is an AF, if the consideration set is not affected when unrec-

ognized alternatives are removed. On the other hand, we say that Γ is a

competition filter (CF), if for every A1 Ď A2 and x P A1,

x R ΓpA1
q ùñ x R ΓpA2

q. (2.2)

That is, when Γ is a CF, if an alternative is not recognized in a smaller set,

then it cannot be recognized in a larger set. When Γ satisfies both (2.1)

and (2.2), we say that Γ is a competitive attention filter (CAF).6 When Γ

is an AF, a limited consideration model pą,Γq is referred to as the AF-

model. Similarly, we say that pą,Γq is the CF-model (CAF-model), when Γ

is a CF (CAF). Many real-world examples can be described by a CAF. For

example, a DM pays attention to: (a) n-most advertised commodities; (b)

all commodities of a specific brand, and if there are none available, then all

commodities of another specific brand; or (c) n-top candidates in each field

in job markets, then all of them derive CAF.

As an important special case of the CF-model, we also deal with the

rational shortlist method proposed by Manzini and Mariotti (2007). There,

for each set A Ď X, a consideration set is defined such that

ΓpAq “ tx P A : Ex1
P A such that x1 ą1 xu, (2.3)

for some acyclic relation ą1, to which we refer as a consideration relation.

That is, a DM only picks up undominated alternatives with respect to her

consideration relation. We refer to a consideration mapping Γ defined as
6We realize that these notions are also considered in many other papers, with being

referred to as different names. We basically follow the terminologies in Masatlioglu, Naka-
jima, and Ozbay (2012) and Lleras, Masatlioglu, Nakajima, and Ozbay (2017). A survey
by Moulin (1985) contains many theoretical results concerning these restrictions.
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(2.3) as a rational shortlist (RS). Au and Kawai (2011) deals with the special

case where ą1 is asymmetric and transitive, and we call Γ as a transitive

rational shortlist (TRS) in that case. It is straightforward to check that an

RS is a special case of a CF and that a TRS is a special case of a CAF. For

example, amongst three examples of CAFs in the preceding paragraph, only

(b) can be described as a TRS. Moreover, one can also confirm that an RS

is a TRS if and only if it obeys AF-property.7

Note also that, in the original setting of Manzini and Mariotti (2007), a

DM’s preference ą is just asymmetric, while in this thesis we consider the

case where ą is a strict preference as in Au and Kawai (2011).

2.2 Revealed preference tests

In this section, we provide a tool for testing limited consideration models

based on a data set in the form of O “ tpat, AtqutPT ; where T “ t1, 2, ..., T u

is the set of indices of observations, At Ď X is the set of (physically) available

alternatives at observation t, and at P At is the chosen alternative at t P T .

Thus, for each observation point t P T , we observe a DM’s choice and a set At,

while a consideration set ΓpAtq is not observable. Throughout this chapter,

As ‰ At is assumed for every s ‰ t. It should be stressed that following De

Clippel and Rozen (2021), we allow the case where an economist can observe

a DM’s choice behavior only on some subsets of X, rather than observing an

entire choice function.

Given a data set as above, we would like to find a pair of strict preference

and consideration mapping pą,Γq such that for each t P T , the observed

choice at is the ą-best alternative within ΓpAtq and that Γ obeys a specific
7This connection can be easily shown by using the results in the earlier papers by Sen

(1971) and Schwartz (1976).
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restriction introduced in the preceding section (AF, CF, CAF and (T)RS).

Definition 1. A data set O “ tpat, AtqutPT is rationalizable by a limited

consideration model pą,Γq, if for every t P T , at P ΓpAtq and at ą x for

every x P ΓpAtqzat. In particular, if O is rationalizable by the M-model (M

“ AF, CF, CAF, (T)RS), then we say that O is M-rationalizable.8

Note that when we say that O is M-rationalizable, Γ is required to obey

M on the entire domain 2XzH, rather than just on the observed subsets.

Amongst five types of restrictions raised in the preceding section, tests for

the AF-model and the CF-model are known in the literature: De Clippel and

Rozen (2021) formulates a test for M “ AF, and a test for M “ CF can be

easily derived from Theorem 5 in Dean, Kibris, and Masatlioglu (2017) (see

Section 2.2.4 for more details). Our contribution is to formulate revealed

preference tests for the CAF-model and the (T)RS-model. Note that as we

later show in an example, even if a data set is AF-rationalizable and CF-

rationalizable, it may not be CAF-rationalizable, and hence, a test for the

CAF-model must be independently derived. In Section 2.2.1, we provide the

general idea for testing, and then proceed to a test for each specific model in

Sections 2.2.2 and 2.2.3.

2.2.1 A common starting point of tests

Given a data set O “ tpat, AtqutPT , define the (strict) direct revealed pref-

erence relation ąR such that x2 ąR x1, if x2 “ at for some t P T , x2 ‰ x1,

and x1 P At. It is well known that a data set is consistent with the rational

choice model, if and only if ąR is acyclic, or the Strong Axiom of Revealed
8It is clear that any data set is rationalizable by some pą,Γq without any restriction

on the shape of Γ. Indeed, we could just let ΓpAtq “ tatu for every t P T , which does not
work in general once some M (“ AF, CF, CAF, (T)RS) is imposed.
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Preference (SARP) is satisfied. Put otherwise, if a data set O obeys SARP,

then we can find a strict preference ą such that pą,Γq rationalizes O with Γ

being the identity mapping. Since the identity mapping obeys all conditions

concerning Γ referred to in this thesis, testing limited consideration models

becomes substantial when O contains revealed preference cycles.

A revealed preference cycle is formally defined as a set of pairs C “

tpxk, xk`1quKk“1 with xk ąR xk`1 for every k “ 1, 2, . . . , K, and x1 “ xK`1.

We refer to each pxk, xk`1q as an arc of a cycle. In what follows, we only

consider cycles that do not contain other cycles inside. For example, while

one may construct a cycle like x ąR y ąR z ąR y ąR x, we don’t count it as

a cycle. In the subsequent argument, such a cycle is automatically treated if

we deal with two “independent” cylces x ąR y ąR x and y ąR z ąR y. In

addition, if a cycle is constructed by rotating elements of another cycle (e.g.,

y ąR z ąR x ąR y is constructed by rotating x ąR y ąR z ąR x), we regard

it as the same cycle with the original cycle.

Now, consider a data set O “ tpat, AtqutPT that has revealed preference

cycles, and suppose that it is collected from a DM obeying some limited

consideration model pą,Γq. Since a DM has a strict preference ą, for each

cycle, there exists at least one arc pxk, xk`1q for which xk`1 ą xk. When there

are Q revealed preference cycles, from each q-th cycle, pick up one of those

arcs cq to make a profile of arcs D “ pc1, c2, ..., cQq P ˆ
Q
q“1Cq.9 Note that,

since each ci is an ordered pair of components in X, D can be also regarded

as a set of ordered pairs, or a binary relation on X. We interpret D as such

whenever it is convenient. If a profile of arcs D is determined as above,

it is effectively a part of a DM’s strict preference ą in that px1, x2q P D

implies x2 ą x1. Hence, D must be acyclic if it is regarded as a binary
9As stated in the preceding paragraph, we only consider “independent” cycles. Since

X is finite, there are at most finitely many such cycles.
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relation. In addition, the set of arcs D also has some connection with a

DM’s consideration mapping Γ as follows. For each t P T , define

Bt
D “ tx P A

t : pat, xq P Du. (2.4)

Then, every x P Bt
D is available at At and preferred to at, which implies

that x R ΓpAtq. Put otherwise, ΓpAtq Ď AtzBt
D holds for every t P T . We

summarize the above observation as a fact for future references.

Fact 1. Suppose that a data set O “ tpat, AtqutPT is rationalizable by some

limited consideration model and has Q revealed preference cycles. Then, there

exists an acyclic selection of arcs from cycles D “ pc1, c2, ..., cQq P ˆ
Q
q“1Cq

such that ΓpAtq Ď AtzBt
D for every t P T , where Bt

D “ tx P A
t : pat, xq P Du.

Note that the above fact is derived without using any specific property

M, and hence it is shared by any limited consideration model. On the other

hand, in testing a model, we do not have a priori information concerning

pą,Γq. Hence, given a data set with revealed preference cycles, we have to

make a “guess” of a profile of arcs D that is acyclic. By Fact 1, once D is

specified, that in turn specifies for each t P T , a set of robustly unconsidered

alternatives Bt
D. Thus, at least D has to be chosen such that at R Bt

D. In

addition, depending on the structure of a family of observed subsets, the fact

that ΓpAtq Ď AtzBt
D for every t P T may conflict with some structure M

on Γ. Put otherwise, whenever M is specified, we have to find D that does

not cause any contradiction with it. This is a common structure of revealed

preference tests in this chapter: we need to check the existence of D that

can be reconciled with observed choices and a restriction on consideration

in issue. Then, a crucial step, which we elaborate in the next subsection, is

finding a condition that D must satisfy in relation to each specific M. Before
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proceeding to it, the example below may help to see the argument up to this

point.

Example 1. Let X “ tx1, x2, x3u and consider a data set of three observa-

tions as follows, where for each t P T , the chosen alternative is underlined:

A1
“ tx1, x2u, A2

“ tx1, x2, x3u, A3
“ tx1, x3u.

This data set contains cycles C1 : x1 ąR x2 ąR x1 and C2 : x1 ąR x2 ąR

x3 ąR x1. As a possible selection of arcs, pick up x1 ąR x2 from both

cycles; that is, D “ tpx1, x2qu, which is obviously acyclic as a binary relation.

Then, B1
D “ tx2u and Bt

D “ H for t “ 2, 3. By Fact 1, this implies that

ΓpA1q Ď tx1u, and hence ΓpA1q “ tx1u. However, this selection D cannot

be a “correct” guess of a DM’s preference when one would like to rationalize

her choices by the CF-model: x2 R ΓpA1q and A1 Ď A2 implies x2 R ΓpA2q

when x2 is selected from A2. This shows that some restriction is imposed by

the model in selecting arcs from the cycles.

2.2.2 Testing CAF-model

Here, we establish a revealed preference test for the CAF-model. Suppose

that a data set O with Q revealed preference cycles is CAF-rationalizable.

To derive a characterization, by using the fact that Γ is a CAF, we strengthen

Fact 1 step by step. In what follows, another expression of the definition of an

AF in (2.1) is useful: for every A,A1 Ď X, ΓpAq Ď A1 Ď A ùñ ΓpA1q “ ΓpAq.

Fact 2. Suppose that a data set O “ tpat, AtqutPT is CAF-rationalizable.

Then, there exists an acyclic selection of arcs from cycles D “ pc1, c2, ..., cQq P
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ˆ
Q
q“1Cq such that for every s, t P T ,

pAs
zBs

Dq Ď At
ùñ ΓpAt

q Ď At
zBs

D. (2.5)

Proof. Take any D for which ΓpAtq Ď AtzBt
D for every t P T , which exists

by Fact 1. Note that when pAszBs
Dq Ď At holds, we have ΓpAsq Ď AszBs

D Ď

pAsXAtq Ď As. Then, since Γ is an AF, ΓpAsq “ ΓpAsXAtq must hold, and

hence, x P Bs
D ùñ x R ΓpAs XAtq. Since Γ is also a CF and pAs XAtq Ď At,

we have x R ΓpAtq. This shows that ΓpAtq Ď AtzBs
D.

The above can be further extended as follows.

Fact 3. Suppose that a data set O “ tpat, AtqutPT is CAF-rationalizable.

Then, there exists an acyclic selection of arcs from cycles D “ pc1, c2, ..., cQq P

ˆ
Q
q“1Cq such that for every r, s, t P T ,

rpAr
Y As

qzpBr
D YBs

Dqs Ď At
ùñ ΓpAt

q Ď At
zpBr

D YBs
Dq. (2.6)

Proof. Again, consider D obeying the property referred to in Fact 1. Then,

both ΓpArq Ď ArzBr
D and ΓpAsq Ď AszBs

D hold. Since Γ is a CF, it holds that

x P Br
D ùñ x R ΓpAr Y Asq and x P Bs

D ùñ x R ΓpAr Y Asq, which implies

ΓpAr Y Asq Ď rpAr Y AsqzpBr
D YBs

Dqs. Since rpAr Y AsqzpBr
D YBs

Dqs Ď At

is assumed, we have rpAr YAsqzpBr
DYBs

Dqs Ď rA
tXpAr YAsqs Ď pAr YAsq.

By the fact that Γ is an AF, it holds that ΓpAtXpArYAsqq “ ΓpArYAsq Ď

rpAr Y AsqzpBr
D YBs

Dqs. Finally, combining rAt X pAr Y Asqs Ď At and Γ

being a CF, we have x P pBr
D YBs

Dq ùñ x R ΓpAtq as desired.

By an inductive argument, ultimately we can extend (2.6) for any subset

of indices τ Ď T such that
`
Ť

rPτ A
r
H
Ť

rPτ B
r
D

˘

Ď At. That is:
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Fact 4. Suppose that a data set O “ tpat, AtqutPT is CAF-rationalizable.

Then, there exists an acyclic selection of arcs from cycles D “ pc1, c2, ..., cQq P

ˆ
Q
q“1Cq such that for every τ Ď T ,

˜

ď

rPτ

Ar
I

ď

rPτ

Br
D

¸

Ď At
ùñ ΓpAt

q Ď At
z
ď

rPτ

Br
D. (2.7)

The condition in Fact 4 depends on Γ, which is not observed by an econo-

metrician, and hence we cannot directly check the existence of D obeying

(2.7) from a data set. Nevertheless, we can convert it to a condition in terms

of choices, which are observed in a data set. Indeed, Fact 4 implies that,

when O is CAF-rationalizable, there must exist an acyclic section of arcs

from cycles D such that
´

Ť

rPτ A
r
I

Ť

rPτ B
r
D

¯

Ď At ùñ at R
Ť

rPτ B
r
D. The

right hand side follows, since at P ΓpAtq must hold for every t P T .

CAF-condition: Suppose that a data set O “ tpat, AtqutPT contains Q re-

vealed preference cycles. A selection of arcs from cycles D “ pc1, c2, . . . , cQq P

ˆ
Q
q“1Cq obeys the CAF-condition, if for every t P T and any set of indices

τ Ď T ,

˜

ď

rPτ

Ar
I

ď

rPτ

Br
D

¸

Ď At
ùñ at R

ď

rPτ

Br
D. (2.8)

The existence of a selection of arcs obeying the above can be checked once

a data set is given, and it is necessary for a data set to be CAF-rationalizable.

More substantially, if we can find such an acyclic selection of arcs, then a

data set is CAF-rationalizable. That is, CAF-rationalizability is tested by

checking the existence of an acyclic selection of arcs from cycles obeying
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CAF-condition.

Theorem 1. A data set O “ tpat, AtqutPT is CAF-rationalizable, if and

only if there exists an acyclic selection of arcs from cycles that obeys the

CAF-condition.

Remark. As seen from the statement, testing CAF-rationalizability is equiv-

alent to testing the existence of acyclic binary relations obeying a certain

restriction. A test of this type is referred to as a test of acyclic satisfiability

by De Clippel and Rozen (2021), whose test for AF-rationalizability also has

that structure. In general, checking acyclic satisfiability is computationally

hard and requires special computational techniques. In our application, we

employ backtracking, which is explained in detail in Appendix II.

Two examples are in order. We firstly look at the example in the preceding

subsection. Concerning that example, we have raised a selection of arcs

that is inconsistent with the CF-model (and hence, inconsistent with the

CAF-model), but the data set is CAF-rationalizable, since there is another

selection of arcs that obeys CAF-condition. On the other hand, the second

example is not CAF-rationalizable, even though it is both AF-rationalizable

and CF-rationalizable separetely.

Example 1 (continued). Reconsider the data set as follows:

A1
“ tx1, x2u, A2

“ tx1, x2, x3u, A3
“ tx1, x3u,

which contains two revealed preference cycles C1 : x1 ąR x2 ąR x1 and

C2 : x1 ąR x2 ąR x3 ąR x1. Choose x2 ąR x1 from C1 and x3 ąR x1

from C2 so that D “ tpx2, x1q, px3, x1qu, which is obviously acyclic as a
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binary relation. For each t “ 1, 2, 3, the corresponding Bt
D is calculated as

B1
D “ H, B2

D “ tx1u, and B3
D “ tx1u. For t “ 1, only τ “ t1u satisfies

the LHS of (2.8), and a1 “ x1 R B1
D is satisfied. For t “ 2, any τ Ď T

satisfies the LHS of (2.8). As shown in the proof of Theorem 1 in Appendix

I, it suffices to confirm (2.8) for the maximal subset obeying the LHS of it,

which is τ “ t1, 2, 3u in this case. It is clear that a2 “ x2 R
Ť3

r“1B
r
D.

For t “ 3, only τ “ t3u satisfies the LHS of (2.8), and a3 “ x3 R B3
D

holds. Thus, D “ tpx2, x1q, px3, x1qu obeys CAF-condition, and Theorem 1

ensures that this data set is CAF-rationalizable. For example, letting pą,Γq

be such that x1 ą x2 ą x3, Γptx1, x2uq “ tx1, x2u, Γptx2, x3uq “ tx2, x3u,

Γptx1, x3uq “ tx3u, and Γptx1, x2, x3uq “ tx2, x3u, then it is easy to check

that it is a CAF-model that rationalizes the data.

Example 2. Let X “ tx1, x2, x3u and consider the following observations:

A1
“ tx1, x2u, A2

“ tx1, x2, x3u, A3
“ tx2, x3u,

where chosen alternatives are underlined. This data set is not CAF-rationalizable.

This data set contains two revealed preference cycles, namely C1 : x1 ąR

x2 ąR x1; C2 : x2 ąR x3 ąR x2. We firstly claim that any selection of arcs

containing px1, x2q cannot satisfy CAF-condition. Let D be a selection of

arcs from cycles containing px1, x2q. Then, x2 P B
1
D, and hence A1zB1

D Ď A2

and a2 “ x2 P B1
D. This is a violation of (2.8), and hence such a selection

D cannot satisfy CAF-condition. Therefore, from C1, the arc px2, x1q must

be selected. Then, consider a selection of arcs D “ ppx2, x1q, px2, x3qq. This

derives B2
D “ tx1, x3u, and we have A2zB2

D “ tx2u Ď A1 and a1 “ x1 P B
2
D,

which is a violation of (2.8). Thus, from C2, the arc px3, x2q must be se-

lected, and D “ ppx2, x1q, px3, x2qq is the only one remaining possibility. This
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selection derives B3
D “ tx2u and A3zB3

D “ tx3u Ď A2. However, since

a2 “ x2 P B
3
D, this D also violates CAF-condition.

On the other hand, this data set can be rationalized respectively by the

AF-model and the CF-model (not both simultaneously). Let pą,Γq be such

that x3 ą x1 ą x2 and Γptx1, x2uq “ tx1, x2u, Γptx2, x3uq “ tx2, x3u,

Γptx1, x3uq “ tx1, x3u, and Γptx1, x2, x3uq “ tx2u. Then, Γ is a CF, while

it is not an AF (the removal of x1 from tx1, x2, x3u changes consideration).

It is straightforward that the data set here is generated from this pą,Γq.

Similarly, a data set is rationalizable by the AF-model pą,Γq as follows:

x2 ą x1 ą x3 and Γptx1, x2uq “ tx1u, Γptx2, x3uq “ tx3u, Γptx1, x3uq “ tx3u

and Γptx1, x2, x3uq “ tx1, x2, x3u. Indeed, at tx1, x2, x3u, every alternative is

considered, and hence the requirement of an AF is trivially satisfied. It is

also easy to see that this Γ is not a CF.

2.2.3 Testing (T)RS-model

We turn to the case of the (T)RS-model. Based on the nature of the model,

we can extend Fact 1 as follows. Suppose that O “ tpat, AtqutPT contains

Q revealed preference cycles and is (T)RS-rationalizable. Then, a DM has

two binary relations ą1 and ą, where the former is acyclic (asymmetric and

transitive) consideration relation and the latter is a strict preference, and the

consideration mapping Γ is defined as (2.3). Then, Fact 1 implies that there

exists an acyclic selection of arcs from cycles D “ pc1, c2, . . . , cQq such that

the corresponding tBt
DutPT satisfies ΓpAtq Ď AtzBt

D for every t P T . Since a

DM obeys the (T)RS-model, for every x1 P Bt
D, there exists some x2 P Atzx1

such that x2 ą1 x1. This in turn implies that x1 is not considered as long as

x2 is available, and hence, x1 ąR x2 is impossible.

Given the discussion above, we can define a binary relation Ź on X such
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that x2 Ź x1 if x1 P Bt
D for some t P T , x2 P Atzx1, and x1 čR x2. Since we

start from a data set consistent with the (T)RS-model, for every x1 P Bt
D,

there exists at least one x2 P Atzx1 with x2 Ź x1 for which x2 ą1 x1 actually

holds. Loosely speaking, Ź can be seen as a broad guess of the consideration

relation ą1. In addition, the acyclicity of ą1 requires that we can always

find a selection Ź1 Ď Ź that is acyclic, and for every t P T and x1 P Bt
D,

there exists some x2 P Atzx1 with x2 Ź1 x1. Furthermore, if the consideration

relation ą1 is assumed to be transitive, a selection Ź1 has to be chosen so

that

for every x1 P Bt
D and z1, ..., zk, x2

Ź
1 z1 Ź1

¨ ¨ ¨ Ź
1 zk Ź1 x1

ùñ x1 čR x2.

(2.9)

Now, Ź1 is a “correct” guess of the consideration relation, and if transitivity

is imposed, the above implies that x2 ą1 x1. Hence, if x1 ąR x2 were to hold,

then it leads to a contradiction that x1 is deleted from a consideration set

from which it is actually chosen. In fact, this observation is summarized in

the conditions below, and plays a key role to characterize a data set that is

rationalizable by the (T)RS-model.

(T)RS-condition: Suppose that a data set O “ tpat, AtqutPT contains Q

revealed preference cycles. An acyclic selection of arcs from cycles D “

pc1, c2, . . . , cQq P ˆ
Q
q“1Cq obeys the RS-condition, if for the corresponding

tBt
DutPT , there exists an acyclic selection Ź1 of Ź, where for every t P T ,

for every x1
P Bt

D, there exists x2
P At with x2

Ź
1 x1. (2.10)

When Ź1 can be chosen so that (2.9) is also satisfied, we say that D obeys

the TRS-condition.
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Theorem 2. A data set O “ tpat, AtqutPT is (T)RS-rationalizable, if and

only if there exists an acyclic selection of arcs from cycles obeying the (T)RS-

condition.

Remark 1. As seen from the statement, testing the (T)RS-model also

involves tests of acyclic satisfiability. De Clippel and Rozen (2021) showed

that testing the RS-model is NP-hard, even though they did not provide a

revealed preference test for that model. Backtracking is also useful for testing

the (T)RS-model, as we discuss in Appendix II.

Remark 2. As referred to in Section 2.1, the original verion of the RS-

model in Manzini and Mariotti (2007) requires that a DM’s preference is

just asymmetric, rather than a strict preference. Our theorem above (and

simulation in Section 2.3) does not cover this general case.

The following examples show how we can test the (T)RS-model using

Theorem 2. The first example is consistent with the TRS-model, while the

second is not even rationalized by the RS-model. In addition, the latter shows

that the RS-model has a strictly stronger observable restriction than the CF-

model. Similarly, one can construct an example that is CAF-rationalizable,

but not TRS-rationalizable.

Example 1 (continued). Reconsider the data set as follows:

A1
“ tx1, x2u, A2

“ tx1, x2, x3u, A3
“ tx1, x3u,

which contains two revealed preference cycles C1 : x1 ąR x2 ąR x1 and

C2 : x1 ąR x2 ąR x3 ąR x1. We claim that this data set is TRS-rationalizable,

by using D “ tpx2, x1q, px3, x1qu. As shown in the preceding subsection, this

derives B1
D “ H, B2

D “ tx1u, and B3
D “ tx1u. In this case, only one relation
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is determined by Ź, which is x3 Ź x1. This flows from the fact that x1 P B
2
D,

x3 P A2 and x1 čR x3 (x2 Ż x3, since x1 ąR x2). The same relation can be

also derived from t “ 3. Obviously, we can adopt Ź itself as an asymmetric

and transitive selection Ź1 obeying (2.10), and hence, this data set is TRS-

rationalizable.

Example 2 (continued). Reconsider the data set consisting of the following

observations:

A1
“ tx1, x2u, A2

“ tx1, x2, x3u, A3
“ tx2, x3u,

where chosen alternatives are underlined. While this data set is CF-rationalizable

as shown in the previous subsection, it is not RS-rationalizable. We firstly

claim that any selection of arcs containing px1, x2q or px3, x2q cannot satisfy

RS-condition. Whenever px1, x2q is contained in D, we have x2 P B
1
D. Mean-

while, since there is no x P A1 such that x2 čR x, it is impossible to define

Ź so that x2 is dominated by an alternative in A1, which violates (2.10). A

parallel logic shows that px3, x2q cannot be an arc selected from C2. Hence

D “ ppx2, x1q, px2, x3qq is the only remaining possibility. However, in this

case, B2
D “ tx1, x3u, and thus x1 Ź x3 and x3 Ź x1 hold, and there does not

exist an acyclic selection of Ź that obeys (2.10).

2.2.4 Tests for an AF-model and a CF-model

Here, we briefly refer to tests for the AF-model and the CF-model, which

are known in the literature: De Clippel and Rozen (2021) establish the for-

mer, while the latter can be derived from Theorem 5 in Dean, Kibris, and

Masatlioglu (2017) (we prove the latter in Appendix I).

Theorem A. A data set O “ tpat, AtqutPT is AF-rationalizable, if and only
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if there exists an acyclic binary relation ą˚ such that for every s, t P T with

as, at P As X At and as ‰ at,

Dx P As
zAt such that as ą˚ x or Dx P At

zAs such that at ą˚ x. (2.11)

Theorem B. A data set O “ tpat, AtqutPT is CF-rationalizable, if and only

if the following binary relation ąCF is acyclic: for x2 ‰ x1,

x2 ąCF x1, if for some s, t P T , x2
“ as, x1

“ at and tx2, x1
u Ď As

Ď At.

(2.12)

As seen from the above, tests for the AF-model and the CF-model have

quite different structures. The test for the CF-model stated in Theorem B

has a “conventional” form of revealed preference tests in that it only requires

testing acyclicity of a binary relation determined from a data set. On the

other hand, Theorem A has a similar structure with tests in Theorems 1

and 2, in that one has to check the existence of an acyclic binary relation

with specific properties. Note also that these models can be also tested by

using our approach of finding out a profile of arcs from cycles with certain

properties.10

2.3 Simulation

Given the theorems in the preceding section, we can now test the AF, CF,

CAF and (T)RS-models on a data set O “ tpat, AtqutPT . In this section, we

apply the tests for these models to randomly generated data sets to com-
10See the earlier working paper version of this chapter for those results (available at

https://ideas.repec.org/p/kgu/wpaper/176-2.html).
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pare the relative strength of observable restrictions across models.11 Since

the power of each test depends on the structure of a family of the sets of

alternatives, we randomly generate sets of alternatives as well as the choices

over them. This can be regarded as a version of Bronars’ test in the context

of limited consideration models, and one can measure the strength of the

observable restrictions of each model by using its pass rate.12 We apply our

tests to random choices obtained by the uniform distribution to approximate

the proportion of choices that are model-consistent among all logically pos-

sible choices. If this value is very close to 1, then the model in question is

very hard to refute, or its observable restrictions are weak. The detail of our

data generating procedure is as follows.

Random generation of sets of alternatives. In this simulation, we

use data sets with |X| “ 10, |T | “ 20, min |At| “ 2, and max |At| “ 8,

and randomly generate 100 profiles of sets of alternatives An :“ tAt
nutPT for

n “ 1, . . . , 100. For each n, we firstly specify the size of each At
n following

a uniform distribution over the set of natural numbers t2, . . . , 8u, and then

choose |At
n| elements from X following a uniform distribution over X. We

also require that As
n ‰ At

n for s ‰ t.

Choices by the uniform distribution. For each profile of sets An “

tAt
nutPT , a profile of choices tati,nutPT is generated for i “ 1, . . . , 100 using

the uniform distribution. Consequently, we obtain a random choice data set

Oi,n “ tpati,n, A
t
nqutPT for i “ 1, . . . , 100 and n “ 1, . . . , 100, to which we

apply revealed preference tests for AF, CF, CAF, (T)RS, and SARP.

11In the earlier working paper version of this chapter mentioned in footnote 10, we also
carry out an experiment concerning these models.

12Bronars (1987) deals with the revealed preference test of classical consumer theory.
There, the fail rate of the General Axiom of Revealed Preference (GARP) on randomly
generated consumption bundles on randomly generated budgets is calculated.
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Tests SARP AF CF CAF RS TRS
Pass rates 0.0000 0.9927 0.6298 0.0396 0.0259 0.0006

Table 2.1: Average pass rates.

Table 2.1 shows the average pass rates of tests, where the average is taken

over 100 different profiles of the sets of alternatives.13 It shows that the AF-

model is extremely permissive, letting more than 99% of the random data

sets pass the test, and the CF-model is also quite permissive. On the other

hand, we can say that observable restrictions of the CAF and the (T)RS-

models are reasonably strong. What is striking is that, while more than 60%

of all data sets pass both tests for the AF-model and the CF-model, the pass

rate of the CAF-model is significantly lower (lower than 4%). Similarly, the

difference between the RS-model and the TRS-model is also huge, which is

again due to AF-property (recall that the TRS-model is the RS-model with

AF-property). Thus, although the hypothesis of Γ being an AF is very hard

to reject by itself, combining it with some other restrictions could strengthen

observable restrictions drastically.

2.4 Appendix I: Proofs

Proof of Theorem 1

We construct a pair of consideration mapping and strict preference that ra-

tionalizes O based on an acyclic selection of arcs from cycles D (and the

corresponding tBt
DutPT ) obeying CAF-condition. To define Γ, we need the

13While the pass rate of SARP is zero, there exist choice patterns consistent with it in
theory — none of them turns up in our samples.
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following set of indices for every A Ď X:

τpAq “ max

#

τ Ď T :
ď

rPτ

Ar
I

ď

rPτ

Br
D Ď A

+

. (2.13)

Then, by using τpAq, define Γ such that

ΓpAq “ A
I

ď

rPτpAq

Br
D. (2.14)

Obviously, in order for the above definition to be well-defined, τpAq must be

uniquely determined for every A Ď X, which is actually the case. To see this,

suppose to the contrary: there exist τ1pAq ‰ τ2pAq that obey (2.13). Then,

we have
´

Ť

rPτ1pAq
Arz

Ť

rPτ1pAq
Br

D

¯

Ď A and
´

Ť

rPτ2pAq
Arz

Ť

rPτ2pAq
Br

D

¯

Ď

A, which implies that

»

–

ď

rPτ1pAqYτ2pAq

Ar
I

¨

˝

ď

rPτ1pAq

Br
D Y

ď

rPτ2pAq

Br
D

˛

‚

fi

fl Ď A.

Obviously, this can be rewritten as

¨

˝

ď

rPτ1pAqYτ2pAq

Ar
I

ď

rPτ1pAqYτ2pAq

Br
D

˛

‚ Ď A.

By defining τpAq “ τ1pAq Y τ2pAq, we have τpAq Ľ τipAq for i “ 1, 2, which

contradicts the maximality of τ1pAq and τ2pAq.

Given that Γ defined as (2.14) is well-defined, we move on to show that

Γ is both AF and CF. Consider any A1, A2 Ď X with A1 Ď A2, and x P A1

such that x R ΓpA1q. This means that x P
Ť

rPτpA1q
Br

D. Since τp¨q is clearly

monotonic, it follows that τpA1q Ď τpA2q, and hence, x P
Ť

rPτpA2q
Br

D. This

assures that x R ΓpA2q, which shows that Γ is CF. To see AF, take any

34



A Ď X and any x P A with x R ΓpAq. This means that x P
Ť

rPτpAq
Br

D,

which in turn implies

¨

˝

ď

rPτpAq

Ar
I

ď

rPτpAq

Br
D

˛

‚ Ď Azx. (2.15)

The maximality and uniqueness of τp¨q, combined with (2.15), imply τpAq Ď

τpAzxq. On the other hand, the monotonicity of τp¨q implies τpAzxq Ď τpAq.

Hence we have τpAq “ τpAzxq. Then, ΓpAzxq “ pAzxqz
Ť

rPτpAzxq
Br

D “

Az
Ť

rPτpAq
Br

D “ ΓpAq, which shows that Γ is AF.

Let ą˚ be a binary relation such that x2 ą˚ x1, if x2 “ at, x1 P ΓpAtq,

and x2 ‰ x1. We show that ą˚ is acyclic, and thus extendable to a strict

preference. By way of contradiction, suppose that there exists a cycle x1 ą˚

x2 ą˚ ¨ ¨ ¨ ą˚ xL ą˚ x1, which clearly implies x1 ąR x2 ąR ¨ ¨ ¨ ąR xL ąR x1.

Then, there exists an arc px`, x``1q contained in D. Since x` “ at and

x``1 P At hold for some t P T , this means that x``1 P Bt
D for such an

observation t. It is easy to check from the definition of Γ that t P τpAtq,

and hence, x``1 R ΓpAtq Ď AtzBt
D. However, then, it holds that x` č˚ x``1,

which is a contradiction.

Finally, let us show that at P ΓpAtq for every t P T , which follows imme-

diately from CAF-condition. Indeed, for every t P T , we have

¨

˝

ď

rPτpAtq

Ar
H

ď

rPτpAtq

Br
D

˛

‚ Ď At,

and then, CAF-condition requires at R
Ť

rPτpAtq
Br

D, which in turn ensures

at P ΓpAq for every t P T . Since ą˚ is acyclic, it is extendable to a strict

preference ą on X using Szpilrajn’s theorem. Then this ą and Γ defined as

(2.14) combined together is a CAF-model that rationalizes O. l
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Proof of Theorem 2

The proofs for RS-model and TRS-model are almost identical, so we provide

the proofs of them jointly. Since the necessity parts of them have been already

discussed, we prove the sufficiency parts of them based on an acyclic selection

of arcs from cycles obeying (T)RS-condition. Using an acyclic selection Ź1

of Ź, define Γ as

ΓpAq “ tx P A : Ex1
P A such that x1

Ź
1 xu. (2.16)

Note that the selection Ź1 is acyclic, so we use it as a consideration relation

for RS-model. If we can find Ź1 so that it obeys (2.9) in addition to (2.10),

then we use the transitive closure of it, say, Ź2 as a consideration relation and

define Γ by using it instead of Ź1. This Ź2 works as a consideration relation

for TRS-model. Note further that ΓpAtq Ď AtzBt
D holds, by the definition of

Ź1 (or Ź2) and the construction of Γ. The remaining substantial parts of the

proof are to show that at P ΓpAtq for every t P T , and the binary relation ą˚

defined as x2 ą˚ x1 if x2 “ at, x1 P ΓpAtq, and x2 ‰ x1 is acyclic.

To prove that ą˚ is acyclic, suppose to the contrary, i.e., there is a cycle:

x1 ą˚ x2 ą˚ ¨ ¨ ¨ ą˚ xL ą˚ x1. Since we have ą˚ĎąR, this cycle implies

x1 ąR x2 ąR ¨ ¨ ¨ ąR xL ąR x1. Then, it must be the case that there exists

an arc px`, x``1q contained in D, and we have x``1 P Bt
D for every t P T with

x` “ at and x``1 P At. By (T)RS-condition, there exists some x P At such

that xŹ1 pŹ2qx``1, which in turn implies x``1 R ΓpAtq. Then it is impossible

to have x` “ at ą˚ x``1, and we conclude that ą˚ is acyclic.

To see that at P ΓpAtq for every t P T , by way of contradiction, suppose

that for some t P T , at R ΓpAtq. This means that there exists x P Atzat such

that xŹ1 at, which in turn implies xŹ at. However, this is not possible, since
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xŹat requires at čR x, while we have at ąR x. When D obeys TRS-condition

and Γ is defined as the set of maximal elements with respect to Ź2, at R ΓpAtq

implies the existence of some x P Atzat such that x Ź2 at. However, this is

also impossible, since xŹ2 at implies the existence of a sequence z1, z2, ..., zk

such that x Ź1 z1 Ź1 ¨ ¨ ¨ Ź1 zk Ź1 at, and by TRS-condition, at čR x, which

contradicts the assumption that x P At. The rest of the proof is to extend the

transitive closure of ą˚ to a strict preference by using Szpilrajn’s theorem.

Then it can easily be seen that the data set is rationalized by a (T)RS-model

pą,Γq. l

Proof of Theorem B

Let ą˚ be a linear extension of ąCF, and define Γ such that

ΓpAq “

«˜

ď

t:AtĄA

tatu

¸

X A

ff

Y tx P A : y ą˚ x for all y P Azxu. (2.17)

Then ΓpAq ‰ H for every A Ď X, and at P ΓpAtq for all t P T . Moreover,

by definition of ąCF, at is the best alternative in ΓpAtq in terms of ą˚.

The remaining issue is whether the above defined Γ is a CF, which can be

confirmed as follows. Let x̄ P A1 Ď A2, and let x̄ P ΓpA2q. If x̄ P tx P

A2 : y ą˚ x for all y P A2zxu, then x̄ is the worst alternative (w.r.t. ą˚)

in a larger set A2, and hence it must be also the worst alternative in A1. If

x̄ P rp
Ť

t:AtĄA2tatuq X A2s, then it is obvious that x̄ P rp
Ť

t:AtĄA1tatuq X A1s

also holds. In both cases, it holds that x̄ P ΓpA1q, which implies that Γ is a

CF. l
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2.5 Appendix II: Backtracking

The revealed preference tests for CAF-model and (T)RS-model involve com-

binatorial calculations, and applying them to actual data may be computa-

tionally challenging. However, the tests become manageable with the help

of a simple but powerful method called backtracking.14 Here we illustrate

how this method is adopted to our revealed preference tests, after a brief

introduction of this method. Note that the method here is also applicable

to Theorem A by De Clippel and Rozen (2021), and we actually employ the

algorithm here in our data analysis.

To get the basic idea of backtracking, consider a problem where we have

to select cq from some set Cq for every q “ 1, 2, ..., Q, so that the resulting

selection pc1, c2, . . . , cQq obeys some constraint MQ. While there are
śQ

q“1 |Cq|

logically possible trials that we must check, the backtracking procedure may

lead us to a solution with much fewer trials, especially when MQ has the cut-

off property defined below. For every sQ ă Q, let us refer to pc1, c2, . . . , c sQq

as a partial selection in the sense that cq is not yet determined for q P t sQ`

1, . . . , Qu. Then, we say that MQ has the cut-off property if: (I) for every
sQ ă Q, there exists a constraint M

sQ, which is a length- sQ-modified version of

MQ; and (II) partial selection pc1
1, c

1
2, . . . , c

1
sQ
q violating M

sQ implies violation

of M
sQ`1 for any partial selection pc1

1, c
1
2, . . . , c

1
sQ
, c

sQ`1q. Given the cut-off

property, if some partial selection pc1
1, c

1
2, . . . , c

1
sQ
q violates M

sQ, then there is

no need to waste time on searching for subsequent components c
sQ`1, . . . , cQ,

since there is no chance of any selection pc1
1, c

1
2, . . . , c

1
sQ
, c

sQ`1, . . . , cQq satisfying

MQ. In fact, this feature is at the heart of backtracking, and allows us to

adopt a component-by-component search for a desired selection.
14Some foundational references of the backtracking method are Walker (1960), Davis,

Logemann and Loveland (1962), and Golomb and Baumert (1965).
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Given below is a basic algorithm of the backtracking method. We consider

a case where Cq is finite for every q, so with no loss of generality, we assume

that sets Cq are a sets of integers.

Basic backtracking algorithm. Given sets pCqqQq“1 and constraints pMqq
Q
q“1,

this algorithm yields a selection pc1, c2, . . . , cQq that satisfies MQ, or H

(meaning that MQ cannot be satisfied).

1. [Initialize.] Set sQÐ 0.

2. [Enter level sQ ` 1.] (Now pc1, . . . , c sQq obeys M
sQ.) Set sQ Ð sQ ` 1.

Then set c
sQ Ð min C

sQ.

3. [Test pc1, . . . , c sQq.] If pc1, . . . , c sQq obeys M
sQ, go to 6.

4. [Try again.] If c
sQ ‰ max C

sQ, set c
sQ to the next larger element of C

sQ,

and go to 3.

5. [Backtrack.] Set c
sQ Ð min C

sQ and sQÐ sQ´ 1. If sQ “ 0, return H and

stop. Otherwise, go to 4.

6. [Terminate.] If sQ “ Q, return pc1, . . . , c sQq and stop. Otherwise, go to

2.

The big picture of this algorithm is as follows. The process initially starts

from considering a singleton selection pc1q and sees whether M1 is satisfied.

If there is no such element in C1, then we can immediately conclude that there

is no chance of finding a selection pc1, c2, . . . , cQq obeying MQ. If we find a

successful partial selection pc1, c2, . . . , c sQ´1q and reach the sQ-th level, we set

c
sQ to be the minimum element in C

sQ, and test whether pc1, c2, . . . , c sQq obeys

M
sQ. If M

sQ is satisfied, then we proceed to the p sQ ` 1q-th level. If not, we

redefine c
sQ to be the next larger element of C

sQ and check M
sQ. If we cannot
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find any c
sQ P C sQ such that pc1, c2, . . . , c sQq obeys M

sQ, then we go back to the

p sQ´1q-th level and update c
sQ´1. This search algorithm terminates when we

succeed in finding some pc1, c2, . . . , cQq obeying MQ, or it is determined that

any (partial) selection with c1 “ maxC1 cannot be successful.

We now show that the backtracking method is applicable to our revealed

preference tests as follows. Suppose that a data set O “ tpat, AtqutPT has Q

revealed preference cycles. For each q “ 1, 2, ..., Q, let Cq be the q-th revealed

preference cycle. Then, for every M P tCAF, RS, TRSu, if we set MQ as

the joint of acyclicity and M-condition, the revealed preference test for M-

model is equivalent to the existence problem of a selection of arcs from cycles

D “ pc1, c2, ..., cQq obeying constraint MQ. We claim that the above defined

MQ obeys the cut-off property for every M P tCAF, RS, TRSu.

Condition (I): We define M
sQ for every sQ ď Q as follows. Given a partial

selection of arcs DQ̄ “ pc1, c2, . . . , c sQq, note that D
sQ can be regarded as

a binary relation. Therefore, acyclicity is a well-defined constraint. Now

we define a partial sequence version of M-condition, to which we refer as

M
sQ-condition as follows. Similar to (2.4), we can define for every t P T ,

Bt
sQ “ tx P A

t : pat, xq P D
sQu. (2.18)

We say that a partial selection of arcs from cycles D
sQ “ pc1, c2, ..., c sQq obeys

M
sQ-condition, if the corresponding tBt

sQ
utPT satisfies the restriction in M-

condition; specifically, D
sQ obeys CAF

sQ-condition, if it holds that for every

t P T and any set of indices τ Ď T ,

˜

ď

rPτ

Ar
H

ď

rPτ

Br
sQ

¸

Ď At
ùñ at R

ď

rPτ

Br
sQ. (2.19)
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Similar terminology is used for other models as well. With this M
sQ-condition,

we let M
sQ be the joint of acyclicity and M

sQ-condition, which is clearly a

well-defined constraint.

Condition (II): We show that if a partial selection of arcs from cycles

D
sQ “ pc1, c2, ..., c sQq does not satisfy M

sQ for some sQ ă Q, then D
sQ`1 “

pc1, c2, ..., c sQ, c sQ`1q cannot satisfy M
sQ`1 for any c

sQ`1 P C
sQ`1. It is obvious,

if D
sQ is cyclic, then D

sQ`1 cannot be acyclic. Therefore, the substantial part

is M
sQ-condition. However, this follows straightforwardly by taking a look

at our revealed preference conditions and the construction of Bt-sets, which

is shown below.

Fact 5. If a partial selection of arcs from cycles D
sQ “ pc1, c2, ..., c sQq fails

M
sQ-condition, then partial selection of arcs from cycles D

sQ`1 “ pc1, c2, ..., c sQ, c sQ`1q

fails M
sQ`1-condition.

Proof. Note that the selection of arcs from cycles 1, 2, . . . , sQ are the same

in D
sQ and D

sQ`1. Hence, it follows from (2.18) that Bt
sQ
Ď Bt

sQ`1
for every

t P T . By the structure of M
sQ-condition and M

sQ`1-condition, we can

see the following: whenever we have “larger” Bt-sets, (i) the LHS of CAF-

condition is more permissive and (ii) Ź is stronger and thus more difficult to

find an acyclic (asymmetric and transitive) selection of it in (T)RS-condition.

Both (i) and (ii) imply that D
sQ`1 fails M

sQ`1-condition whenever D
sQ fails

M
sQ-condition.

Example 3. Let X “ tx1, x2, x3, x4, x5, x6u and consider a data set of six

observations as follows, where for each t P T , the chosen alternative is
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underlined:

A1
“ tx1, x2, x4u, A2

“ tx1, x2u, A3
“ tx3, x4, x6u,

A4
“ tx3, x4u, A5

“ tx2, x5, x6u, A6
“ tx5, x6u.

Let us walk through the backtracking algorithm, and see how we determine

that the data set is not rationalizable by an RS-model. Note that the data set

has four cycles (we order the cycles and the arcs in them as below):

1. C1 “ tpx1, x2q, px2, x1qu,

2. C2 “ tpx3, x4q, px4, x3qu,

3. C3 “ tpx5, x6q, px6, x5qu,

4. C4 “ tpx1, x4q, px4, x3q, px3, x6q, px6, x5q, px5, x2q, px2, x1qu.

For every sQ P t1, 2, 3, 4u, let us denote by M
sQ the joint of acyclicity and

RS
sQ-condition. Following our backtracking procedure, we first set sQ “ 1

and set c1 “ px1, x2q, which is the first arc of the first cycle. Since single

element selection ppx1, x2qq obeys M1, we proceed to the second cycle by set-

ting sQ “ 2. Here we set c2 “ px3, x4q and check whether ppx1, x2q, px3, x4qq

obeys M2, which is affirmative. Then we go to the third cycle by setting
sQ “ 3 and set c3 “ px5, x6q. In fact, this partial selection of arcs from cy-

cles ppx1, x2q, px3, x4q, px5, x6qq fails to satisfy M3, specifically RS3-condition.

In this case, we keep sQ “ 3, and update c3 to the next arc in C3, and

set c3 “ px6, x5q. Then, we test whether this updated selection of arcs

ppx1, x2q, px3, x4q, px6, x5qq obeys M3, which is negative. At this point, we

can determine that it is impossible to find a selection pc1, c2, c3, c4q obeying

RS-condition and acyclicity as long as px1, x2q, px3, x4q are selected from C1, C2
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sQ (partial) selection M
sQ

1 ppx1, x2qq PASS
2 ppx1, x2q, px3, x4qq PASS
3 ppx1, x2q, px3, x4q, px5, x6qq FAIL
3 ppx1, x2q, px3, x4q, px6, x5qq FAIL
2 ppx1, x2q, px4, x3qq FAIL
1 ppx2, x1qq FAIL
0 H STOP

Table 2.2: Backtracking procedure applied to Example 2 for testing RS-
model.

respectively. Thus we backtrack sQ to 2, and update c2 to px4, x3q. Looking

at ppx1, x2q, px4, x3qq, it fails M2. Since there is no chance of success unless

px1, x2q is discarded from the selection, we rewind sQ to 1, and update c1 to

px2, x1q. Then we check whether ppx2, x1qq obeys M1, which is negative. Then
sQ is set to 0 and the algorithm terminates, which means that the data set is

not rationalizable by RS-model.

Remark 1: One advantage of the backtracking approach is that we may

be able to determine, at an early stage of the process of search, that a data

set fails the test. Due to this feature, calculation time does depend on how

we order the cycles. We suggest that the cycles are sorted so that shorter

cycles come first: whenever q1 ă q2, q1-th cycle is weakly shorter than q2-th

cycle. The cycles in Example 2 are sorted in this way. Whenever this takes

too much calculation time, it seems natural to list “problematic” cycles first.

Problematic cycles are those such that a (partial) selection of arcs from cycles

fails when adding an arc at that cycle. This may allow us to determine that

a data set fails the test at an early stage of the backtracking process (and we

actually adopt this type of strategy).

Remark 2: Backtracking can be applied to De Clippel and Rozen (2021)’s
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AF-test as well. Recall that their test requires the existence of an acyclic

binary relation ą˚ such that, for every s, t P T , with as, at P As X At and

as ‰ at,

Dx P As
zAt : as ą˚ x or Dx P At

zAs : at ą˚ x.

Suppose there are Q ą 0 pairs of observations ps, tq such that as, at P AsXAt

and as ‰ at. It can be seen that backtracking is applicable to De Clippel and

Rozen’s test, by letting MQ be acyclicity, and for q-th pair ps, tq, defining

Cq “
 

px2, x1
q : rx2

“ as and x1
P As

zAt
s or rx2

“ at and x1
P At

zAs
s
(

.
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Chapter 3

Growing consideration

This chapter puts forward a behavioral framework where a decision maker

(DM) makes choices at multiple time periods, while she may not be aware of

all available alternatives at all times. This framework inherits the main idea

of the theory of limited consideration, and adds to it an assumption that the

DM’s consideration grows over time. In particular, it is required that she

takes into consideration any alternative that she chose in the past. We refer

to this property as growing consideration. Revealed preference tests, as well

as conditions under which we can robustly infer the decision maker’s pref-

erence, consideration, and non-consideration are given. Following a revealed

preference analysis of a baseline framework of decision making under growing

consideration, we deal with special cases where the DM’s consideration is a

competition filter/attention filter.

Let X be the grand set of alternatives, which we assume to be finite. The

rational choice model assumes that a DM maximizes her strict preference ą,

given any feasible set A Ď X. In this framework, it is typically assumed that

an economist observes a choice function f of the DM: letting D Ď 2XzH be

an arbitrary collection of nonempty feasible sets, for every feasible set A P D,
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fpAq P A is the chosen alternative from A. It is well known that a choice

function is consistent with the rational choice model, if and only if it obeys

the Strong Axiom of Revealed Preference (SARP). However, it is reported

in a number of experimental studies that violation of SARP is commonly

observed. In order to deal with such seemingly irrational behavior, various

theories of bounded rationality have been proposed. Amongst others, in this

chapter as well as Chapter 2, we adopt the behavioral assumption of limited

consideration.

Here, we supplement this limited consideration framework by adding

“time” into it: we put forward a framework where a DM makes decisions

at multiple time periods, while she may not take into consideration all avail-

able alternatives at all times. In particular, we assume that a DM has a

time-invariant strict preference ą, and letting T “ t1, 2, . . . , T u be a set of

time periods, for every time period t P T , there exists a consideration map-

ping Γt : 2
XzH Ñ 2XzH. Then, given any feasible set A at time period t,

the DM chooses the ą-best alternative within ΓtpAq. In addition, we assume

that the DM’s consideration depends on past choices. Specifically, we assume

that any alternative chosen in a past period must be considered. We refer

to this property as growing consideration. For example, any commodity that

the DM consumed in the past should be familiar to her and thus be easier

to spot, or particular websites show what choices she made previously, so it

is an assumption that reflects everyday decision making.

We formalize the framework of decision making under growing consider-

ation, and provide a necessary and sufficient condition for a DM’s choices to

be consistent with it. Furthermore, we derive conditions under which we can

robustly infer the DM’s preference, consideration, and non-consideration,

provided that observed choices are in line with the growing consideration
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framework. By conditions for robust inference, we mean conditions under

which we can surely say that (i) some alternative is preferred to another; (ii)

some alternative is considered at some feasible set and time period; and (iii)

some alternative is not considered at some set and period. Such inferences

are useful from the viewpoint of welfare analysis, since we cannot pin down a

DM’s preference or consideration even when choices are consistent with the

growing consideration framework. For example, under this framework, an al-

ternative x2 being chosen over x1 does not directly imply that x2 is preferred

to x1: we must also take into account the possibility that x1 is preferred to x2,

but x1 is overlooked. Thus, inferring the DM’s preference/(non-)consideration

is a non-trivial exercise. In this chapter, following a revealed preference anal-

ysis of a baseline framework of decision making under growing consideration,

we deal with special cases where we require that consideration mapping Γt

is a competition filter/attention filter for every time period t.

A paper closely related to this chapter is Ferreira and Gravel (2017), in

which they explicitly analyze a situation where choices are observed across

multiple time periods. They provide revealed preference tests for choice mod-

els with (i) changing preference; (ii) preference formation by trial and error;

and (iii) endogenous status-quo bias. One difference between Ferreira and

Gravel (2017) and our analyses, apart from the models analyzed, is the struc-

ture of the data set assumed to be observed. While Ferreira and Gravel (2017)

assume that a choice from only one feasible set is observed for every time

period, we adopt a more general assumption and deal with the case where

a choice function is observed for each time period. Other related papers are

Bernheim and Rangel (2007, 2009) and Salant and Rubinstein (2008): the

framework we put forward have some similarity with theirs. These papers

analyze a situation where each feasible set is supplemented with an addi-
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tional condition, which is referred to as an ancillary condition by the former

and as a frame by the latter. Such conditions represent either “some charac-

teristic of the choice environment that is consequently irrelevant to outside

observer” or “how alternatives are framed”. In principle, “time of choice” can

be regarded as such a condition, and in fact Bernheim and Rangel give it as

an example of an ancillary condition.1 In this regard, our framework can be

seen as a special case of the framework dealt with in these papers. However,

there are substantial differences that distinguish our framework from those

of Bernheim and Rangel (2007, 2009) and Salant and Rubinstein (2008).

Firstly, the limited consideration/growing consideration assumption is a fea-

ture not covered by Bernheim and Rangel (2007, 2009) or Salant and Rubin-

stein (2008).2 Secondly, as a technical issue, Bernheim and Rangel/Salant

and Rubinstein assume that for every ancillary condition/frame, a choice

function (or correspondence) defined on an exhaustive domain is observed,

while we assume that the choice function observed for each time period is

defined on an arbitrary collection of feasible sets.3 Therefore, results derived

by Bernheim and Rangel/Salant and Rubinstein are not directly applicable

to our context. Furthermore, Bernheim and Rangel (2007, 2009) propose a

conservative criterion under which welfare judgements can be made, but we

show that our results regarding robust inference of preference may lead to

completely opposite welfare implications.
1Salant and Rubinstein, in their paper, do not refer to time as a frame.
2In fact, Salant and Rubinstein (2008) deal with a specific type of limited consideration,

where they apply the “number of alternatives that the DM can pay attention to” as the
frame. Such a behavioral assumption is different from the limited consideration that
we consider. Moreover, if we attempt to illustrate our framework in terms of Salant
and Rubinstein (2008), we must apply both “time of choice” and “structure of limited
consideration” as the frame. Such a case is not considered by Salant and Rubinstein
(2008).

3By an exhaustive domain of a choice function, we mean that the choice function is
defined on all nonempty subsets of X, i.e., f : 2XzH Ñ X.
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Organization of this Chapter: In Section 3.1, we formalize the framework

of decision making under growing consideration, and define the concepts of

rationalizability and robust inference of preference/(non-)consideration. Sec-

tion 3.2 is devoted to an analysis of observable restrictions of decision making

under growing consideration. In particular, we provide a revealed preference

test in Section 3.2.1, and then derive conditions for robust inference of pref-

erence/(non-)consideration in Section 3.2.2. In Section 3.3, we analyze a

special case of growing consideration, where we require that consideration

mapping of each time period is a competition filter. A revealed preference

test for decision making under growing consideration with attention filters is

given in Appendix.

3.1 Preliminaries

Let X be a finite set, and consider a choice framework where a DM makes

choices over multiple time periods. We assume that the DM has a time-

invariant, connected, transitive, and asymmetric preference ą, which we refer

to as a strict preference. In addition, we assume that the DM exhibits limited

consideration. Letting T “ t1, 2, . . . , T u be the set of time periods, for every

period t P T , there is a consideration mapping Γt : 2
XzH Ñ 2XzH such that

ΓtpAq Ď A for every A Ď X. Then, given any feasible set A Ď X and period

t P T , the DM chooses the ą-best alternative within ΓtpAq. Regarding the

structure of DM’s consideration, assume that alternatives chosen in past pe-

riods must be considered. We refer to this property as growing consideration.

A DM’s choices at time period t P T are summarized in a choice function

ft. In particular, for every t P T , let Dt Ď 2XzH be the collection of feasible

sets observed at period t. The profile of choice functions pftqtPT is such that

ft : Dt Ñ X and ftpAq P A for every A P Dt at every t P T , where ftpAq is
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the alternative chosen by the DM from feasible set A at time period t. Let

us abuse terminology and refer to pftqtPT simply as a “choice function” when

there is no fear of confusion. Then, growing consideration is formally defined

as below:

Definition 2. Given a profile of choice functions pftqtPT , a profile of consid-

eration mappings pΓtqtPT obeys growing consideration, if alternatives chosen

in the past are included in consideration sets. That is, for every t1 P T ,

A1 Ď X, and x P A1,

x P Γt1pA1
q if there exist t ă t1 and A P Dt such that x “ ftpAq. (3.1)

We refer to a pair of strict preference and profile of consideration mappings

xą, pΓtqtPT y as a growing consideration model, or in short a GC-model, when-

ever pΓtqtPT obeys growing consideration.

In this chapter, we derive a necessary and sufficient condition that a

profile of choice functions pftqtPT must obey, in order for it to be rationalizable

by a GC-model. A formal definition of rationalizability is as follows:

Definition 3. A profile of choice functions pftqtPT is rationalizable by a

growing consideration model (GC-rationalizable), if there exists a growing

consideration model xą, pΓtqtPT y such that, for every t1 P T and A1 P Dt1,

ft1pA1q is the ą-best alternative within Γt1pA1q. In this case, we say that such

a GC-model xą, pΓtqtPT y rationalizes pftqtPT .

When choices are GC-rationalizable, an alternative x2 chosen over x1 does

not necessarily imply that the DM prefers x2 to x1: it may be the case that

x1 is preferred to x2, but x1 was overlooked. Moreover, the GC-model that

rationalizes choices is not uniquely determined in general. Nevertheless, it is
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possible to pin down the relative ranking between particular alternatives, or

robustly infer that some alternative is considered/ignored at some feasible

set and time period. These conditions are derived in Section 3.2.2 (and in

Section 3.3.2 for growing consideration with competition filters). Henceforth,

for notational simplicity, let us use the expression pt, Aq when dealing with

feasible set A at time period t.

Definition 4. Let pftqtPT be rationalizable by a growing consideration model.

Then:

• x2 is robustly preferred to x1 if x2 ą x1 holds under every GC-model

xą, pΓtqtPT y that rationalizes pftqtPT ;

• x1 is robustly considered at pt1, A1q if x1 P Γt1pA1q holds under every

GC-model xą, pΓtqtPT y that rationalizes pftqtPT ;

• x1 is robustly not considered at pt1, A1q if x1 R Γt1pA1q holds under every

GC-model xą, pΓtqtPT y that rationalizes pftqtPT .

In what follows, we derive observable restrictions of decision making under

growing consideration, namely conditions for rationalizability and robust in-

ference. A baseline framework, where no intra-temporal restriction is casted

on pΓtqtPT , is dealt with first, followed by a case where we require Γt to be

a competition filter for every t P T . In Appendix, we provide a revealed

preference test for decision making under growing consideration, where each

Γt is an attention filter.

3.2 Observable restrictions of growing consideration

In this section, we derive observable restrictions of a baseline framework

of decision making under growing consideration, where we cast no intra-
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temporal restriction on consideration mappings pΓtqtPT . It is worth noting

that when T “ 1, which corresponds to the standard limited consideration

framework with no “time,” rationalizability becomes vacuous without any

restriction on the structure of Γ. Given a choice function f , we can sim-

ply set ΓpAq “ tfpAqu for every A P D, and set ΓpAq Ď A arbitrarily for

A R D. Then, any strict preference ą accompanied with this consideration

mapping Γ would rationalize the choice function. When T ě 2, testing for

rationalizability would have a bite, which is shown below.

3.2.1 Test for GC-rationalizability

Suppose that choice function pftqtPT is generated by a DM obeying a growing

consideration model xą, pΓtqtPT y. Fixing any t ě 2 and A P Dt, whenever

there exist t1 ă t and A1 P Dt1 with ft1pA1q P A, it follows by growing

consideration that ft1pA1q P ΓtpAq. This motivates us to define a binary

relation Pt for every period t ě 2 as follows: x2Ptx
1 if there exists A P Dt

such that x2 “ ftpAq, and

there exist t1
ă t and A1

P Dt1 such that x1
“ ft1pA1

q P Azx2. (3.2)

Note that whenever x2Ptx
1 holds, then we have x2 ą x1. Now let us define

a binary relation P as a union of all Pt’s, i.e., P “
ŤT

t“2 Pt. Then under

growing consideration, x2Px1 implies x2 ą x1, and therefore, acyclicity of

P is a necessary condition for pftqtPT to be GC-rationalizable.4 In fact, the

opposite direction is true as well.

Proposition 1. A profile of choice functions pftqtPT is rationalizable by a
4A binary relation P is acyclic, if for any x1, x2, . . . , xK P X, x1Px2P ¨ ¨ ¨PxK´1PxK

implies not xKPx1.
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growing consideration model if and only if binary relation P is acyclic.

Proof. We show sufficiency here by constructing a GC-model that rational-

izes pftqtPT . Since binary relation P is acyclic, by Szpilrajn’s Theorem, there

exists a connected, asymmetric, and transitive extension of P , which we de-

note by ą. We define consideration mapping Γt for every t P T as follows:

if A P Dt, ΓtpAq “tftpAqu Y tx P A : ftpAq ą xu; (3.3)

if A R Dt, ΓtpAq “tx P A : x “ ft1pA1
q, DA1

P Dt1 , Dt1
ă tu

Y tx P A : y ą x, @y P Azxu. (3.4)

Note that ΓtpAq ‰ H for every pt, Aq, and ftpAq P ΓtpAq for every A P Dt at

every t P T . Thus pΓtqtPT is a well-defined profile of consideration mappings,

and it is clear by construction that ftpAq is the ą-best alternative within

ΓtpAq for every A P Dt at every t P T . It remains to show that pΓtqtPT

obeys growing consideration. Fix any t ě 2 and A Ď X, and take any

x1 P A such that x1 “ ft1pA1q for some t1 ă t and A1 P Dt1 . If A P Dt, then

we have either ftpAq “ x1 or ftpAqPtx
1, and the latter case in turn implies

ftpAq ą x1. In both cases, by (3.3), we have x1 P ΓtpAq. If A R Dt, then it

follows immediately from (3.4) that x1 P ΓtpAq. Summarizing, we conclude

that xą, pΓtqtPT y is a GC-model that rationalizes pftqtPT .

Example 4. We give here a profile of choice functions that is not GC-

rationalizable. Let X “ tx1, x2, x3, x4u, T “ t1, 2u, and consider pf1, f2q

summarized in Table 3.1. Since x2 is chosen at t “ 2 from tx1, x2, x3u,

and x1 is an alternative chosen in the past (t “ 1), it follows that x2Px1.

Similarly, we have x1Px2. Since binary relation P has a cycle, pftqtPT is

not GC-rationalizable. Indeed, if we attempt to find a preference and profile

of consideration mappings that constitute a choice-rationalizing GC-model, it
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A P D1 tx1, x2u tx1, x2, x3u

f1pAq x1 x2

A P D2 tx1, x2, x3u tx1, x2, x3, x4u

f2pAq x2 x1

Table 3.1: Choice function pftqtPT of Example 4.

must be the case that x1, x2 are considered at t “ 2 at both tx1, x2, x3u and

tx1, x2, x3, x4u. Then, since x2 and x1 are chosen alternatives at t “ 2 from

tx1, x2, x3u and tx1, x2, x3, x4u respectively, it must follow that x2 is strictly

preferred to x1 and vice versa, which is impossible.

3.2.2 Robust inference

Even when a profile of choice functions pftqtPT is GC-rationalizable, the GC-

model that rationalizes it is not uniquely determined in general. Nevertheless,

there are cases where we can robustly infer the DM’s preference, consider-

ation, and non-consideration. Here we derive conditions under which such

inferences can be made. Let us denote by P TC the transitive closure of P .5

Henceforth, we use superscript “TC” to denote the transitive closure of any

binary relation.

Proposition 2. Suppose that a profile of choice functions pftqtPT is ratio-

nalizable by a growing consideration model. Then:

1. x2 is robustly preferred to x1 if and only if x2P TCx1;

2. x1 P A1 is robustly considered at pt1, A1q if and only if
5We have x2PTCx1, if there exist z0, z1, . . . , zK P X such that x2 “ z0, x1 “ zK , and

zk´1Pzk for every k P t1, 2, . . . ,Ku.
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(a) x1 “ ft1pA1q, or

(b) there exist t2 ă t1 and A2 P Dt2 such that x1 “ ft2pA2q;

3. x1 P A1 is robustly not considered at pt1, A1q if and only if x1P TCft1pA1q.6

Proof. We first show 1. Since sufficiency of 1 is clear, we prove necessity by

showing the contrapositive. Suppose that x2P TCx1 does not hold. Then, it is

known that there exists an extension ą of P TC such that (i) ą is connected,

asymmetric, and transitive; and (ii) x1 ą x2.Defining pΓtqtPT as (3.3) and

(3.4), we have a GC-model xą, pΓtqtPT y with x1 ą x2 that rationalizes pftqtPT .

To show sufficiency of 2, take any GC-model xą, pΓtqtPT y that rational-

izes pftqtPT . Whenever (a) or (b) holds, x1 P Γt1pA1q follows, by definition

of consideration mappings in the case of (a), and by definition of growing

consideration in the case of (b). We prove necessity of 2 by showing the

contrapositive. Suppose that neither (a) nor (b) holds. Letting ą be a con-

nected, transitive, and asymmetric extension of P , define pΓtqtPT as follows:

for every pt, Aq ‰ pt1, A1q,

if A P Dt, ΓtpAq “tftpAqu Y tx P A : x “ ft2pA2
q, DA2

P Dt2 , Dt2
ă tu;

if A R Dt, ΓtpAq “tx P A : x “ ft2pA2
q, DA2

P Dt2 , Dt2
ă tu

Y tx P A : y ą x, @y P Azxu;

and for pt1, A1q,

if A1
P Dt1 , Γt1pA1

q “tft1pA1
qu Y tx P A1

zx1 : x “ ft2pA2
q, DA2

P Dt2 , Dt2
ă t1

u;

if A1
R Dt1 , Γt1pA1

q “tx P A1
zx1 : x “ ft2pA2

q, DA2
P Dt2 , Dt2

ă t1
u

Y tx P A1
zx1 : y ą x, @y P A1

ztx, x1
uu.

6Note that 2-(a) and 3 have a bite only if A1 P Dt1 .
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A P D1 tx1, x2u tx1, x3u tx1, x3, x4u

f1pAq x2 x3 x1

A P D2 tx1, x2u tx2, x3u

f2pAq x1 x2

Table 3.2: Choice function pftqtPT of Example 5.

Then, for every A P Dt at every t P T , ftpAq is the ą-best alternative within

ΓtpAq, since ftpAqPtx holds for every x P ΓtpAqzftpAq. By construction

of pΓtqtPT , growing consideration holds, and we have x1 R Γt1pA1q. Thus,

xą, pΓtqtPT y is a GC-model that rationalizes pftqtPT , while x1 is not considered

at pt1, A1q.

To show sufficiency of 3, take any GC-model xą, pΓtqtPT y that rationalizes

pftqtPT , and suppose that x1P TCft1pA1q. It follows from 1 that x1P TCft1pA1q

implies x1 ą ft1pA1q. Meanwhile, since xą, pΓtqtPT y rationalizes pftqtPT , ft1pA1q

is the ą-best element in Γt1pA1q. Hence x1 R Γt1pA1q follows. We prove

necessity of 3 by showing the contrapositive. Suppose that x1P TCft1pA1q

does not hold. Then there exists an extension ą of P TC such that (i) ą is

connected, asymmetric, and transitive; and (ii) ft1pA1q ą x1. Defining pΓtqtPT

as (3.3) and (3.4), we have a GC-model xą, pΓtqtPT y that rationalizes pftqtPT
with x1 P Γt1pA1q.

Below we give an example of a choice function that is GC-rationalizable,

and demonstrate how robust inference can be conducted.

Example 5. Let X “ tx1, x2, x3, x4u and T “ t1, 2u, and consider choice

function pftqtPT summarized in Table 3.2. We first show that pftqtPT is GC-

rationalizable. By definition of binary relation P , it follows that x1Px2

and x2Px3. Since P is acyclic, pftqtPT is GC-rationalizable. Regarding
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robust inference, it follows that x1 is robustly preferred to x2, x2 is robustly

preferred to x3, and x1 is robustly preferred to x3, i.e., we can surely say that

x1 ą x2 ą x3. Looking at 2-(a) of Proposition 2, we see that, for example, x2

is robustly considered at pt1 “ 1, A1 “ tx1, x2uq. Focusing on 2-(b), first note

that x1, x2, x3 are chosen at t “ 1. Therefore, for i P t1, 2, 3u, xi is robustly

considered at A Ď X at t “ 2 whenever xi P A. Finally, since x1P
TCx3 and

x3 “ f1px1, x3q, x1 is robustly not considered at pt1 “ 1, A1 “ tx1, x3uq.

3.3 Growing consideration with competition filters

In this section, we derive observable restrictions of decision making under

growing consideration, where we cast an intra-temporal restriction on con-

sideration mapping of each time period. In particular, for every time period

t P T , we require Γt to be a competition filter (CF), which is defined as follows:

for every A1 Ď A2 and x P A1, x P ΓpA2q implies x P ΓpA1q; that is, an alterna-

tive considered at a larger feasible set must be considered at a smaller feasible

set.7 We first provide a necessary and sufficient condition under which pftqtPT
is rationalizable by a growing consideration with competition filters, i.e., Γt

is a CF for every t P T . We refer to such a GC-model xą, pΓtqtPT y as a

growing consideration model with CF, or in short a GC(CF)-model, and re-

fer to rationalizability by such a model as GC(CF)-rationalizability. Then,

we derive conditions for robust inference of preference/(non-)consideration,

provided that pftqtPT is GC(CF)-rationalizable.
7Note that the expression of CF given here is equivalent to (2.2). For details of CF,

see Section 2.1 in Chapter 2.
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3.3.1 Test for GC(CF)-rationalizability

Suppose that choice function pftqtPT is generated by a DM obeying a growing

consideration model xą, pΓtqtPT y with CF. We derive observable implications

of decision making under growing consideration with CF, by inferring the

DM’s consideration and preference from the choice function pftqtPT . To begin

with, consider period t “ 1. For distinct alternatives x1, x2 P X, x2 ą x1

can be inferred by the following logic: if there exist A,A1 P Dt such that

x2 “ ftpAq,

x1, x2
P A Ď A1, and x1

“ ftpA
1
q, (3.5)

then, since Γt is a CF, we must have x1 P ΓtpAq, which in turn implies

ftpAq “ x2 ą x1. This motivates us to define a binary relation Q1 as follows:

for distinct alternatives x1, x2 P X, x2Q1x
1 if there exist A,A1 P D1 such

that x2 “ f1pAq, and (3.5) holds for t “ 1. Now fix any period t ě 2 and

any A Ď X. We can infer x1 P ΓtpAq for some x1 P A, if (i) there exists

A1 Ě A such that x1 “ ftpA
1q; or (ii) there exist t1 ă t and A1 P Dt1 with

x1 “ ft1pA1q. Then let us define binary relation Qt as follows: for distinct

x1, x2 P X, x2Qtx
1 if there exists A P Dt such that x2 “ ftpAq and (a) there

exists A1 P Dt that obeys (3.5), or (b) there exist t1 ă t and A1 P Dt1 as in

(3.2). Note that letting Q “
Ť

tPT Qt, x2Qx1 implies x2 ą x1. Thus, binary

relation Q is acyclic under growing consideration with CF. In fact, acyclicity

of Q is not only necessary but also sufficient for rationalizability.

Proposition 3. A profile of choice functions pftqtPT is rationalizable by a

growing consideration model with CF, if and only if binary relation Q is

acyclic.
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Proof. We show sufficiency here. Let ą be a connected, asymmetric, and

transitive extension of Q, and define consideration mapping pΓtqtPT as follows:

for every t P T and every A Ď X,

ΓtpAq “tx P A : x “ ftpA
2
q, DA2

Ě Au

Y tx P A : x “ ft2pA2
q, DA2

P Dt2 , Dt2
ă tu (3.6)

Y tx P A : y ą x, @y P Azxu.

Note that ΓtpAq ‰ H for every pt, Aq, and ftpAq P ΓtpAq for every t and

A P Dt, so pΓtqtPT is a well-defined profile of consideration mappings. More-

over, it follows immediately from construction that pΓtqtPT obeys growing

consideration. Now fix any t P T and A P Dt, and take any x P ΓtpAqzftpAq.

This means that (i) there exists A2 Ą A such that x “ ftpA
2q; (ii) there

exist t2 ă t and A2 P Dt2 such that x “ ft2pA2q; or (iii) x is the ą-worst

alternative in A. In cases (i) and (ii), we have ftpAqQtx, which in turn im-

plies ftpAq ą x; and in case (iii) we have ftpAq ą x. This shows that ftpAq

is the ą-best alternative within ΓtpAq for every A P Dt at every t P T . It

remains to show that for every t P T , Γt is a CF. Fix any A,A1 Ď X such

that A Ď A1, and take any x P ΓtpA
1q XA. Note that x P ΓtpA

1q implies: (a)

there exists A2 Ě A1 with x “ ftpA
2q; (b) there exist t2 ă t and A2 P Dt2

with x “ ft2pA2q; or (c) x is the ą-worst alternative within A1. Taking a

look at (3.6), we have x P ΓtpAq in all of these cases.

Example 5 (continued). We show that pftqtPT in Table 3.2 is not GC(CF)-

rationalizable. Note that we have x1Qx2Qx3Qx1: x1Q2x2 because x1 is chosen

from tx1, x2u at t “ 2 and x2 is a chosen alternative at t “ 1; x2Q2x3

holds following an analogous logic; and x3Q1x1 holds because, at t “ 1,
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x1, x3 P tx1, x3u Ă tx1, x3, x4u, x1 is chosen from tx1, x3, x4u, and x3 is

chosen from tx1, x3u. Since Q has a cycle, pftqtPT is not rationalizable by a

GC(CF)-model.

3.3.2 Robust inference

Suppose that a profile of choice functions pftqtPT is GC(CF)-rationalizable.

As stated before, the GC(CF)-model that rationalizes pftqtPT is not uniquely

determined in general. Nevertheless, it is possible to make inference regarding

the DM’s preference and consideration, which is shown in the proposition

below.

Proposition 4. Suppose that a profile of choice functions pftqtPT is ratio-

nalizable by a growing consideration with CF. Then:

1. x2 is robustly preferred to x1 if and only if x2QTCx1;

2. x1 P A1 is robustly considered at pt1, A1q if and only if

(a) there exists A2 Ě A1 such that x1 “ ft1pA2q, or

(b) there exist t2 ă t1 and A2 P Dt2 such that x1 “ ft2pA2q;

3. x1 P A1 is robustly not considered at pt1, A1q if and only if x1QTCft1pA2q

for some A2 such that x1 P A2 Ď A1.8

Proof. To show sufficiency of 1, take any GC(CF)-model xą, pΓtqtPT y that

rationalizes pftqtPT , and suppose x2QTCx1. In fact, it suffices to show that

x2Qx1 implies x2 ą x1. Whenever we have x2Qx1, one of the following holds:

(i) there exist t P T and A,A1 P Dt such that x1, x2 P A Ă A1, x2 “ ftpAq,

and x1 “ ftpA
1q; or (ii) there exist t, t1 with t1 ă t and A P Dt, A

1 P Dt1 such
8Note that QTC is the transitive closure of Q.
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that x2 “ ftpAq, x1 “ ft1pA1q, and x1 P A. In both cases, we have x1 P ΓtpAq,

which in turn implies x2 ą x1. We prove necessity of 1 by showing the

contrapositive. Suppose that x2QTCx1 does not hold. Then there exists and

extension ą of QTC such that (i) ą is connected, asymmetric, and transitive;

and (ii) x1 ą x2. Defining pΓtqtPT as (3.6), xą, pΓtqtPT y is a GC(CF)-model

that rationalizes pftqtPT , while x1 ą x2 holds.

To show sufficiency of 2, take any GC(CF)-model xą, pΓtqtPT y that ratio-

nalizes pftqtPT . If (a) holds, then since Γt is a CF, we must have x1 P Γt1pA1q;

and if (b) holds, then by growing consideration we must have x1 P Γt1pA1q.

We prove necessity of 2 by showing the contrapositive. Suppose that neither

(a) nor (b) holds. Then let ą be a connected, asymmetric, and transitive

extension of QTC and define pΓtqtPT as follows:

ΓtpAq “tx P A : x “ ftpA
2
q, DA2

Ě Au

Y tx P A : x “ ft2pA2
q, DA2

P Dt2 , Dt2
ă tu

Y tx P Azx1 : y ą x, @y P Aztx, x1
uu.

This is identical to (3.6), apart from the final part. Following the proof of

Proposition 3, under the assumption that neither (a) nor (b) holds, we have

a GC(CF)-model xą, pΓtqtPT y that rationalizes pftqtPT , while x1 R Γt1pA1q.

To show sufficiency of 3, take any GC(CF)-model xą, pΓtqtPT y that ratio-

nalizes pftqtPT . By robust inference of preference in 1, x1QTCft1pA2q implies

x1 ą ft1pA2q, which means that x1 R Γt1pA2q holds. Then, since A2 Ď A1, and

since Γt1 is a CF, it follows that x1 R Γt1pA1q. Necessity of 3 is proved by

showing the contrapositive. Suppose that x1QTCft1pA2q holds for no A2 P Dt1

with x1 P A2 Ď A1. Now define a binary relation Q̃ as follows: for distinct

elements x, y P X, xQ̃y if (i) xQTCy or (ii) y “ x1 and  rx1QTCxs. This

61



binary relation ranks x1 as low as possible, as long as it does not contradict

QTC .

Lemma 1. Binary relation Q̃ is acyclic.

Proof of Lemma 1. Suppose by way of contradiction that Q̃ has a cycle.

Since QTC is acyclic (or asymmetric) and transitive, this cycle must involve

x1. Furthermore, it must be in the form: x1QTCxQ̃x1, and xQ̃x1 must be

defined via (ii) in the construction of Q̃. However, this is impossible when

x1QTCx, which shows that Q̃ is acyclic. Lemma 1, Q.E.D.

Now let ą be a connected, asymmetric, and transitive extension of Q̃,

and define pΓtqtPT as (3.6).9 Note that, following the proof of Proposition 3,

xą, pΓtqtPT y is a GC(CF)-model that rationalizes pftqtPT . Additionally, define

pΓ̃tqtPT so that Γ̃t “ Γt for every t ‰ t1, and for t1:

Γ̃t1pAq “

$

’

&

’

%

Γt1pAq Y tx1u if x1 P A Ď A1,

Γt1pAq otherwise.

By construction, we have x1 P Γ̃t1pA1q. It remains to show that xą, pΓ̃tqtPT y

is a GC(CF)-model that rationalizes pftqtPT : that is, pΓ̃tqtPT obeys growing

consideration; Γ̃t is a CF for every t P T ; and ftpAq is the ą-best alternative

in Γ̃tpAq for every A P Dt at every t P T . Note that pΓtqtPT obeys growing

consideration, and since ΓtpAq Ď Γ̃tpAq for every pt, Aq, pΓ̃tqtPT obeys growing

consideration as well. Since Γt is a CF for every t, and Γ̃t “ Γt for every

t ‰ t1, it follows that Γ̃t is a CF for every t ‰ t1. Now focusing on period

t1, take any A,A2 Ď X such that A Ď A2 and any x P Γ̃t1pA2q X A. If

x P Γt1pA2q, then since Γt1 is a CF, we have x P Γt1pAq, and thus x P Γ̃t1pAq.
9Since QTC Ď Q̃, ą is an extension of QTC as well.
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A P D1 tx1, x2u tx1, x2, x3u tx1, x2, x4u

f1pAq x1 x3 x2

A P D2 tx2, x3u

f2pAq x2

Table 3.3: Choice function pftqtPT of Example 6.

If x R Γt1pA2q, this means that x “ x1 and x1 P A Ď A2 Ď A1. Then, by

construction of Γ̃t1 , it follows that x P Γ̃t1pAq. Finally, we show that ftpAq

is the ą-best alternative in Γ̃tpAq for every A P Dt at every t P T . We

already know that this holds at every t ‰ t1, so fix period t1, and consider

any A P Dt1 and any x P Γ̃t1pAqzft1pAq. If x P Γt1pAq, then ft1pAq ą x follows.

If x R Γt1pAq, this means that x “ x1 and x1 P A Ď A1. By assumption,

we have  rx1QTCft1pAqs, and thus ft1pAqQ̃x1 holds, which in turn implies

ft1pAq ą x. Summarizing, xą, pΓ̃tqtPT y is a GC(CF)-model that rationalizes

pftqtPT , while x1 P Γ̃t1pA1q.

The following example gives a choice function pftqtPT that is GC(CF)-

rationalizable, and we demonstrate how robust inference can be conducted.

Example 6. Let X “ tx1, x2, x3, x4u and T “ t1, 2u, and consider a

choice function pftqtPT in Table 3.3. We first show that pftqtPT is GC(CF)-

rationalizable. It follows that x1Qx2 and x2Qx3: we have x1Q1x2 by (3.5);

and x2Q2x3 since x2 is chosen from tx2, x3u at t “ 2 and x3 is a cho-

sen alternative at t “ 1. Since Q is acyclic, pftqtPT is rationalizable by a

GC(CF)-model. Regarding robust inference, we see that x1 is robustly pre-

ferred to x2, x2 is robustly preferred to x3, and x1 is robustly preferred to x3.

Therefore, we can surely say that x1 ą x2 ą x3. Moreover, x2 is robustly con-

sidered at pt1 “ 1, A1 “ tx1, x2uq following 2-(a) in Proposition 4, and x2, x3
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A P D1 tx1, x2u tx1, x3u tx2, x3u tx1, x2, x3u

f1pAq x2 x3 x2 x2

A P D2 tx1, x2u tx1, x3u tx2, x3u tx1, x2, x3u

f2pAq x1 x3 x2 x2

Table 3.4: Choice function pftqtPT of Example 7.

are robustly considered at pt1 “ 2, A1 “ tx2, x3uq following 2-(b). Finally,

since xiQ
TCx3 for i P t1, 2u, it holds that x1, x2 are robustly not considered

at pt1 “ 1, A1 “ tx1, x2, x3uq.

We show below an example where our robust inference of preference and

the welfare criterion by Bernheim and Rangel (2007, 2009) lead to oppo-

site welfare implications. The welfare criterion proposed by Bernheim and

Rangel, which is referred to as an unambiguous choice relation, ranks al-

ternative x2 over x1, if x1 is never chosen when x2 is available. Note that

the choice function of Example 7 is defined on an exhaustive domain, so the

discussion regarding Bernheim and Rangel’s unambiguous choice relation is

well-defined.

Example 7. Let X “ tx1, x2, x3u and T “ t1, 2u, and consider a choice func-

tion pftqtPT in Table 3.4. Note that we have x1Qx2Qx3. Since Q is acyclic,

pftqtPT is GC(CF)-rationalizable, and applying Proposition 4, we can robustly

infer that x1 is preferred to x3. On the other hand, the unambiguous choice

relation by Bernheim and Rangel concludes that x3 is welfare-improving over

x1, since x1 is never chosen when x3 is available.
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3.4 Appendix: Growing consideration with attention

filters

Here we derive a revealed preference test for decision making under growing

consideration, where we require consideration mapping Γt to be an attention

filter (henceforth, AF) for every t P T . Let us refer to such a GC-model

xą, pΓtqtPT y as a growing consideration model with AF, or in short a GC(AF)-

model. Recall that Γ is an AF, if for every A Ď X and x P A, x R ΓpAq implies

ΓpAq “ ΓpAzxq. An equivalent expression of an AF is: for every A1, A2 Ď X,

ΓpA2q Ď A1 Ď A2 implies ΓpA1q “ ΓpA2q. In words, an AF requires that

removal of an ignored alternative does not alter the DM’s consideration: if

she ignores alternative x at set A, then the set Azx should be treated in the

same way as A. A revealed preference characterization, as well as conditions

for robust inference, for limited consideration model with AF (i.e., the limited

attention model) are given by Masatlioglu, Nakajima, and Ozbay (2012).

However, their approach is not directly applicable to ours, since they assume

that the choice function is defined on an exhaustive domain.

A revealed preference test under the assumption that a choice function

is defined on a non-exhaustive domain is given by De Clippel and Rozen

(2021).10 They derive a restriction that any limited-attention-consistent

preference relation must obey, and then express a revealed preference test

in terms of existence of a binary relation obeying that restriction. Here, we

derive a revealed preference test for decision making under growing consid-

eration with AF à la De Clippel and Rozen (2021). It is worth noting that
10Under the non-exhaustive domain assumption, a revealed preference test for the over-

whelming choice model is essentially given by Dean, Kibris, and Masatlioglu (2017), and
tests for a limited consideration model with both AF and CF and the (transitive) rational
shortlisting method are given by Inoue and Shirai (Forthcoming).
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the revealed preference test for the limited attention model provided by De

Clippel and Rozen (2021) may be computationally challenging, since the test

requires combinatorial search.11 Moreover, under the non-exhaustive domain

assumption on the observed data set, conditions for robust inference are yet

to be discovered. This is partly due to sparsity of data, which makes it rela-

tively difficult to make deterministic statements regarding behavior. In fact,

the reason why their revealed preference test requires combinatorial search

is because it is not possible to pin down a DM’s consideration in general.

Since robust inference under the limited consideration model with AF is a

challenge even in the static case, here we focus on showing that there exists

a revealed preference test for growing consideration with AF, and postpone

the issue of robust inference for future research.

Now let us derive a revealed preference test for decision making under

growing consideration with AF. Suppose that choice function pftqtPT is gen-

erated by a DM obeying a GC(AF)-model xą, pΓtqtPT y. To see observable

restrictions of AF, take any t P T , and suppose that there exist feasible sets

A1, A2 P Dt such that

ftpA
1
q, ftpA

2
q P A1

X A2 and ftpA
1
q ‰ ftpA

2
q. (3.7)

In this case, it must follow that

ry P ΓtpA
1
q for some y P A1

zA2
s or rz P ΓtpA

2
q for some z P A2

zA1
s. (3.8)

To see this, suppose not. Then, we have ΓtpA
1q Ď pA1 X A2q Ď A1 and

11Nevertheless, De Clippel and Rozen (2021) propose a tractable method to conduct
their revealed preference test, provided that the data set is not too “large”: the test can
be conducted by a method called enumeration.
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ΓtpA
2q Ď pA1 X A2q Ď A2. Since Γt is an AF, it must follow that ΓtpA

1q “

ΓtpA
1 X A2q “ ΓtpA

2q. However, this contradicts ftpA
1q ‰ ftpA

2q. Whenever

(3.8) holds, this means that [ftpA1q ą y for some y P A1zA2] or [ftpA2q ą z

for some z P A2zA1]. Therefore, any binary relation P that reflects the DM’s

preference must obey the following: for every t P T and every A1, A2 P Dt

such that (3.7) hold,

rftpA
1
qPy for some y P A1

zA2
s or rftpA2

qPz for some z P A2
zA1
s. (3.9)

In addition to this, there are observable restrictions of growing considera-

tion. Any binary relation P that reflects the DM’s preference must obey the

following: for distinct x1, x2 P X, x2Px1 if there exist t1, t2 P T with t1 ă t2,

and A1 P Dt1 , A2 P Dt2 such that

ft1pA1
q “ x1, ft2pA2

q “ x2, and x1
P A2. (3.10)

Summarizing, we have a condition for rationalizablity by a growing consider-

ation model with AF. Lemmas used in the proof of the following proposition

are proved at the end of the Appendix.

Proposition 5. A profile of choice functions pftqtPT is rationalizable by a

GC(AF)-model, if and only if there exists an acyclic binary relation P that

obeys (3.9) and (3.10).

Proof. Since necessity in shown in the discussion preceding this proposition,

we show sufficiency here by constructing a preference and profile of consid-

eration mappings that constitute a GC(AF)-model that rationalizes pftqtPT .

The proofs of the lemmas used here are given after this proof is complete.

Let ą be a connected, asymmetric, and transitive extension of P . Then, for
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every t P T , define consideration mapping Γt as follows:

if A P Dt, ΓtpAq “ tftpAqu Y tx P A : ftpAq ą xu; (3.11)

if A R Dt, ΓtpAq “

$

’

&

’

%

ΓtpA
2q if ΓtpA

2q Ď A Ď A2, DA2 P Dt;

A otherwise.
(3.12)

Lemma 2. Consideration mapping Γt is well-defined for every t P T .

Given that pΓtqtPT is a well-defined profile of consideration mappings, it

remains to show that (i) ftpAq is the ą-best alternative within ΓtpAq for every

A P Dt at every t P T ; (ii) pΓtqtPT obeys growing consideration; and (iii) Γt

is an AF for every t P T . By constriction of pΓtqtPT , it follows immediately

that ftpAq is the ą-best alternative within ΓtpAq for every A P Dt at every

t P T .

We proceed to show that pΓtqtPT obeys growing consideration. Take any

t ě 2, A Ď X, and any x1 P A such that x1 “ ft1pA1q for some t1 ă t and

A1 P Dt1 . There are three cases to deal with in showing that x1 P ΓtpAq.

If A P Dt, then it must be the case that ftpAqPx1 or ftpAq “ x1, and by

(3.11), they both imply x1 P ΓtpAq. Now consider the case where A R Dt

and ΓtpA
2q Ď A Ď A2 for some A2 P Dt. Note that we have x1 P ΓtpA

2q, as

shown right above. Then, by construction of Γt, x1 P ΓtpAq follows. Finally,

if A R Dt and ΓtpA
2q Ď A Ď A2 for no A2 P Dt, then since ΓtpAq “ A, we

have x1 P ΓtpAq. Summarizing, pΓtqtPT obeys growing consideration.

As the final step of the proof, we show that Γt is an AF for every t P T .

Fix any t P T and A Ď X such that x1 P A and x1 R ΓtpAq hold. Denoting

A1 “ Azx1, it suffices to show that ΓtpA
1q “ ΓtpAq. Note that x1 R ΓtpAq

implies either (a) A P Dt or (b) A R Dt and ΓtpA
2q Ď A Ď A2 for some

A2 P Dt, which are the two cases that we must deal with.
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Case (a): A P Dt. Note that x1 R ΓtpAq means that x1 ą ftpAq and that

ΓtpAq Ď A1 Ď A. Therefore, if A1 R Dt, then by (3.12), it follows that

ΓtpA
1q “ ΓtpAq. When A1 P Dt, we shall apply the following lemma.

Lemma 3. Suppose that B,B1 P Dt obeys ΓtpBq Ď B1 Ď B. Then ftpB
1q “

ftpBq, and moreover, we have ΓtpB
1q “ ΓtpBq.

Then, since A,A1 P Dt and ΓtpAq Ď A1 Ď A, it follows that ΓtpA
1q “ ΓtpAq.

Case (b): A R Dt and ΓtpA
2q Ď A Ď A2 for some A2 P Dt. In this case, ΓtpAq “

ΓtpA
2q holds. Since x1 R ΓtpAq, we have x1 R ΓtpA

2q as well. This in turn im-

plies ΓtpA
2q Ď A1 Ď A2. Then, note that ΓtpA

2q “ ΓtpA
1q holds: this follows

from Lemma 3 if A1 P Dt; and from (3.12) if A1 R Dt. Hemce, ΓtpA
1q “ ΓtpAq

holds.

Proof of Lemma 2

Fixing any t P T , the substantial case that we must consider is when there

exists A R Dt such that for some A1, A2 P Dt, rΓtpA
1q Ď A Ď A1s and

rΓtpA
2q Ď A Ď A2s hold. In this case, it suffices to show that ΓtpA

1q “ ΓtpA
2q.

Note that we have ΓtpA
1q Ď pA1 X A2q and ΓtpA

2q Ď pA1 X A2q. Then by

construction of Γt, it follows that [y ą ftpA
1q for every y P A1zA2] and

[z ą ftpA
2q for every z P A2zA1]. This in turn implies that [ftpA1qPy for

no y P A1zA2] and [ftpA2qPz for no z P A2zA1]. Since P obeys (3.9), it

must be the case that ftpA
1q “ ftpA

2q “: x2. Then, ΓtpA
1q Ď A means that

ΓtpA
1q “ tx2uYtx P A : x2 ą xu. Analogously, we have ΓtpA

2q “ tx2uYtx P

A : x2 ą xu, and thus it follows that ΓtpA
1q “ ΓtpA

2q. l
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Proof of Lemma 3

Firstly, to see that ftpB
1q “ ftpBq, suppose to the contrary. Note that we

have ftpBq, ftpB
1q P pB XB1q and B1zB “ H. Moreover, ΓtpBq Ď B1 implies

that

x ą ftpBq for every x P BzB1. (3.13)

This in turn implies that ftpBqPx holds for no x P BzB1. However, this

contradicts that P obeys (3.9), and thus we conclude ftpB1q “ ftpBq. Letting

x2 :“ ftpB
1q “ ftpBq, since (3.13) holds, it follows that ΓtpBq “ tx

2u Y tx P

B : x2 ą xu “ tx2u Y tx P B1 : x2 ą xu “ ΓtpB
1q. l
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Chapter 4

Rationalizing choice functions

with a weak preference

This chapter develops revealed preference analysis of an individual choice

model where a decision maker (DM) is a weak preference maximizer, under

the assumption that a choice function, rather than a choice correspondence,

is observed. In particular, we provide a revealed preference test for such

model, and then provide conditions under which we can surely say whether

some alternative is indifferent/weakly preferred/strictly preferred to another,

solely from the information of the choice function. Furthermore, interpreting

a choice correspondence as sets of potential candidates of alternatives that

could be chosen from each feasible set, we analyze which alternatives must

be, or cannot be a member of the choice correspondence: sharp lower and

upper bounds of this underlying choice correspondence are given. As an

assumption on observability of data, we assume that the choice function is

defined on a non-exhaustive domain, so our results are applicable to data

analysis even when only a limited data set is available.

In this chapter, we consider a fully-rational DM, but relax the classical
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model in two intuitive aspects. Firstly, we relax the common assumption

that the DM has a strict preference, and consider a DM who has a weak

preference. In the case where a DM has a weak preference, it is typically

assumed in the literature that an economist observes the DM’s choice corre-

spondence. Letting X be a finite set of alternatives, and letting D Ď 2XzH,

a choice function is a mapping F : D Ñ 2XzH. Given feasible set A P D,

F pAq is interpreted as the set of alternatives that could have been chosen

from A. However, it is practically not possible to observe multiple choices

simultaneously. Hence as a second departure from standard theory, we relax

this “full-observation” assumption, and assume that only a choice function f

is observed. Therefore, we consider a fully-rational DM with a weak prefer-

ence, who chooses one of her most preferred alternatives from each feasible

set. In particular, in this chapter we provide a necessary and sufficient con-

dition under which a choice function f is consistent with a DM maximizing

her weak preference: i.e., we can find a weak preference Á such that for every

feasible set A P D, fpAq Á x for every x P A.

In fact, without any additional constraint on the weak preference, a choice

function is trivially consistent with weak preference maximizing behavior:

any choice function is a result of maximizing behavior of a DM who is in-

different between all alternatives in X. Therefore, we restrict our attention

to non-degenerate weak preferences, ones where there exist x1, x2 P X with

x2 ą x1. Then, given a choice function that is consistent with weak prefer-

ence maximization, we go one step further and provide conditions for welfare

analysis. In particular, we provide conditions under which we can surely say

that some alternative is indifferent/weakly preferred/strictly preferred to an-

other, solely from the information given in the choice function. Moreover, we

provide sharp lower and upper bounds of the “underlying” choice correspon-
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dence, namely, alternatives that could have been chosen from each feasible

set. This allows us to make extrapolation over out-of-sample feasible sets.

Taking into account the practicality of our results, we assume that the

domain of choice function f is not necessarily exhaustive: we allow D, the

domain of f , to be a strict subset of 2XzH. There is a growing literature in

choice theory that adopts this limited data assumption, which allows us to

carry out empirical applications. Some papers that adopt this limited data

assumption are Inoue and Shirai (Forthcoming) and De Clippel and Rozen

(2021).

Organization of this chapter: In Section 4.1, we introduce our model

and the concept of rationalizability. A necessary and sufficient condition

for rationalizability is given in Section 4.1.2. Then, Section 4.2 is devoted

to discussions regarding robust inference of DM’s preference and underlying

choice correspondence. In particular, in Section 4.2.1, we derive necessary

and sufficient conditions under which we can surely say that some alternative

is indifferent/weakly preferred/strictly preferred to another; and in Section

4.2.2 sharp lower and upper bounds of the underlying choice correspondence

are given. We conclude the chapter by showing in Section 4.3 how our model

relates with some of the models in the literature akin to ours. Proofs are

contained in Appendix.

4.1 The model and rationalization condition

4.1.1 Preliminaries

Let X be a finite set of alternatives, and let D Ď 2XzH be a collection of

feasible sets. A weak preference, denoted by Á, is a connected, reflexive, and

transitive binary relation on X, and a strict preference is a connected, asym-
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metric, and transitive binary relation on X. A choice function is a mapping

f : D Ñ X with fpAq P A for every A P D: that is, fpAq is the chosen

alternative from feasible set A. It is common in the literature that a choice

function is associated with a DM maximizing a strict preference, while in

models where DMs with weak preferences are considered, choice correspon-

dences are assumed to be observed. In this chapter, we adopt a natural

assumption that a DM has a weak preference, and the observationally prac-

tical assumption that an economist can observe only one choice made from

each feasible set. Put otherwise, given any feasible set, while the DM’s most

preferred alternatives is a set in general, i.e., the DM has a choice corre-

spondence, only a part of the underlying choice correspondence is observed.

Given this assumption, we shall first address the following question: under

what condition on f is it possible to interpret f as a result of weak preference

maximizing behavior? A formal definition of this issue is given below.

Definition 5. A choice function f is rationalizable by a weak preference

(or weak preference rationalizable), if there exists a connected, reflexive,

and transitive binary relation Á on X such that for every A P D, fpAq Á

x for every x P A.

It is worth noting that rationalizability of a choice function is vacuous if

we cast no further restriction on weak preferences that rationalize f . That

is, any choice function is rationalizable by a weak preference such that all

the alternatives in X are indifferent. Therefore, in this chapter, we assume

in addition that a DM has a non-degenerate weak preference, meaning that

there exists a pair of alternatives where one alternative is strictly preferred

to the other.

Definition 6. A weak preference Á is non-degenerate if there exist x1, x2 P X

with x2 ą x1.
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Throughout this chapter, when we use the term “weak preference,” let us

implicitly assume that the weak preference is non-degenerate unless otherwise

stated.

4.1.2 Rationalization condition

Here we derive a necessary and sufficient condition for f to be rationalizable

by a weak preference. It is worth noting that there are two papers that refer

to this issue. Nishimura, Ok, and Quah (2017) provide a general condition

which is applicable to this model, and De Clippel and Rozen (2021) state that

this issue is solvable by applying the enumeration procedure (see Nishimura,

Ok, and Quah (2017) and De Clippel and Rozen (2021) for details). How-

ever, for completeness of the thesis, we explicitly derive a revealed preference

condition here as well.

To begin with, let us assume that choice function f is generated by a DM

maximizing her weak preference Á. Then it is natural to define a revealed

preference relation R on X such that x2Rx1 if there exists A P D with x2 “

fpAq and x1 P A. Note that whenever x2Rx1 holds, x2 Á x1 holds as well.

Now let RTC be the transitive closure of R, and define binary relation I

as follows: x2Ix1 if (i) x2RTCx1 and x1RTCx2; or (ii) x1 “ x2. Then note

that binary relation I is an equivalence relation (reflexive, symmetric, and

transitive), and it provides equivalence classes of X. Let us denote by X{I

the collection of equivalent classes with respect to I, and assume that X is

partitioned into K P N equivalent classes: X{I “ tE1, . . . , EKu. Then, since

we have x2 „ x1 for every x1, x2 P Ek and every k P t1, . . . , Ku, and since the

DM’s weak preference is non-degenerate, it must be the case that K ě 2. In

fact, this simple condition is not only necessary, but also sufficient for the

rationalizability of a choice function by a weak preference.
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A tx1, x2, x3, x4u tx1, x2, x3u tx1, x2u

fpAq x2 x1 x2

Table 4.1: Choice function of Example 8.

Proposition 6. A choice function f is rationalizable by a weak preference,

if and only if the equivalence classes of X with respect to binary relation I

has more than or equal to 2 elements.

Below we give an example of a choice function that is weak preference

rationalizable, and show how we can test whether f is rationalizable or not.

Choice functions in Examples 10 and 11 are ones that are not rationalizable

by a weak preference.

Example 8. Let X “ tx1, x2, x3, x4u and consider choice function f as

in Table 4.1. We show that f is weak preference rationalizable. Note that

fpx1, x2, x3, x4q “ x2 implies x2Rx1, x2Rx2, x2Rx3, x2Rx4; fpx1, x2, x3q “ x1

implies x1Rx1, x1Rx2, x1Rx3; and fpx1, x2q “ x2 implies x2Rx1, x2Rx2.

Then, I “ tpx1, x1q, px1, x2q, px2, x1q, px2, x2q, px3, x3q, px4, x4qu, so we have

X{I “ ttx1, x2u, tx3u, tx4uu. Since |X{I| “ 3 ě 2, f is weak preference

rationalizable. One example of a weak preference that rationalizes f is x1 „

x2 ą x3 ą x4.

4.2 Making robust inference

In this section, we consider how we can make robust inference about the DM’s

preference and underlying choice correspondence, given a choice function that

is weak preference rationalizable. In particular, we derive conditions under

which we can surely determine the relative preference ranking between two

specific alternatives, using only the information of the choice function. In
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addition, we derive sharp lower and upper bounds of the underlying choice

correspondence, which is the set of alternatives that the DM could have

chosen. Since the bounds of choice correspondence are derived not only for

sets in D, but also for unobserved feasible sets, this allows extrapolation on

what the DM may choose from feasible sets outside of the observed data set.

Throughout this section, we assume that the choice function is rationalizable

by a weak preference.

4.2.1 Robust inference of preference

Here we analyze how we can infer the DM’s preference from a choice function.

Even when a choice function is rationalizable by a weak preference, such weak

preference is not uniquely determined in general. Meanwhile, it may still be

possible to pin down the relative ranking between two alternatives. Below, we

introduce the concept of robust inference of preference, and provide necessary

and sufficient conditions for such robust inference.

Definition 7. Let choice function f be rationalizble by a weak preference.

Then for x1, x2 P X, say that:

• x2 and x1 are robustly indifferent, if x2 „ x1 holds under every weak

preference Á that rationalizes f , and denote this by x2 „r x1;

• x2 is robustly weakly preferred to x1, if x2 Á x1 holds under every weak

preference Á that rationalizes f , and denote this by x2 Ár x1;

• x2 is robustly strictly preferred to x1, if x2 ą x1 holds under every weak

preference Á that rationalizes f , and denote this by x2 ąr x1.1
1In the case of robust inference of strict preference, it is implicitly assumed that x1 ‰ x2.
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A tx1, x2, x3, x4u tx1, x3, x4u tx1, x2, x5u tx2, x5u

fpAq x1 x3 x2 x5

Table 4.2: Choice function of Example 9.

The proposition below gives necessary and sufficient conditions for robust

inference of preference. Intuitively, x2 „r x1 if and only if x1, x2 are in the

same equivalence class; x2 Ár x1 holds if and only if x2 is in a “weakly

superior” equivalence class than that of x1; and x2 ąr x1 holds if and only if

any Á that rationalizes f with x1 Á x2 becomes degenerate.

Proposition 7. Let choice function f be rationalizable by a weak preference.

Then:

1. x1 and x2 are robustly indifferent, if and only if x1RTCx2 and x2RTCx1;

2. x2 is robustly weakly preferred to x1, if and only if x2RTCx1;

3. x2 is robustly strictly preferred to x1, if and only if x2RTCxRTCx1 holds

for every x P X.

In the following examples we show how robust inference of preference is

done.

Example 8 (continued). In this example, since x1Rx2 and x2Rx1, it

follows that x1 „
r x2. Similarly, for i P t1, 2u and j P t3, 4u, we have

xiR
TCxj, so xi Ár xj follows. Therefore, while there are multiple weak

preferences that rationalize f , any one of them must obey x1 „ x2 and

x1, x2 Á x3, x4.

Example 9. Let X “ tx1, x2, x3, x4, x5u and consider choice function f as in

Table 4.2. Note that we have X{I “ ttx1, x2, x3, x5u, tx4uu, where x2RTCx4
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for every x2 P tx1, x2, x3, x5u. Note that for every x2 P tx1, x2, x3, x5u, we

have x2RTCxRTCx4 for every x P X. Therefore, it must be the case that

x2 ąr x4 for every x2 P tx1, x2, x3, x5u. In fact, the weak preference that

rationalizes f is uniquely determined: x1 „ x2 „ x3 „ x5 ą x4.

4.2.2 Inference of underlying choice correspondence

In many papers, a weak preference is commonly associated with a choice

correspondence. Given any feasible set A, a choice correspondence F pAq is

the set of maximum alternatives with respect to the DM’s weak preference

Á: F pAq “ tx1 P A : x1 Á x for every x P Au. In this chapter, we make a

more practical assumption, and assume that the economist only has access to

a choice function f . Here, for every feasible set A, fpAq can be interpreted

as one alternative of the “underlying” choice correspondence F pAq, where

F pAq is the set of alternatives that can potentially be chosen by the DM.

Then, a natural question would be: can we make any inference about the

underlying choice correspondence F , when we observe only a choice function

f? In this section, this question is addressed, and provide sharp lower and

upper bounds of the underlying choice correspondence.

Consider any observed choice function f that is rationalizable by a weak

preference. Given a feasible set A1 Ď X, let us infer what alternatives

must/must not be in F pA1q. First we consider what alternatives must be

included in F pA1q, in other words, we consider the lower bound. Using the

results of Proposition 7, it is certain that if x1 is robustly weakly preferred to

every other alternative in A1, then x1 must be a member of F pA1q. This holds

because under any Á that rationalizes f , x1 Á x holds for every x P A1. In

fact, this simple condition characterizes the lower bound for the underlying

choice correspondence.
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Lemma 4. Let f be rationalizable by a weak preference. Then, given any Á

that rationalizes f and any A1 Ď X, x1 P A1 must be in F pA1q if any only if

x1 Ár x for every x P A1. Moreover, defining for every A1 Ď X the set LpA1q

as below, LpA1q is the greatest lower bound of F pA1q:

LpA1
q “ tx1

P A1 : x1 Ár x for every x P A1
u. (4.1)

Deriving upper bound of F pA1q is a bit more elaborate. In doing this, we

focus on the alternatives that cannot be a member of F pA1q. First consider

an alternative x1 P A1 where there exists x2 P A1 such that x2 is robustly

strictly preferred to x1. Then, under any Á that rationalizes f , we have

x2 ą x1, and thus x1 can never be in F pA1q. There is another case where x1

cannot be a member of F pA1q. Note that x1 P F pA1q would mean that x1 is

weakly preferred to x for every x P A1. If setting x1 Á x for every x P A1

inevitably results in a degenerate Á, it is not possible for x1 to be a member

of F pA1q. The discussion above is summarized in the lemma below.

Lemma 5. Let f be rationalizable by a weak preference. Then, given any Á

that rationalizes f and any A1 Ď X, x1 P A1 cannot be in F pA1q if and only

if 1 and/or 2 below holds,

1. there exists x2 P A1 with x2 ąr x1,

2. (a) x2RTCx1 for every x2 P A1, and

(b) X “
Ť

x2PA1tx P X : x2RTCxRTCx1u.

Moreover, defining for every A1 Ď X the set UpA1q as below, UpA1q is the

least upper bound of F pA1q:

UpA1
q “ A1

ztx1
P A1 : x1 obeys 1 or 2 above u. (4.2)
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Summarizing the lemmas above, we have the lower and upper bounds of

the underlying choice correspondence.

Proposition 8. Let f be rationalizable by a weak preference. Then for any

Á that rationalizes f , and for every A Ď X, we have

LpAq Ď F pAq Ď UpAq, (4.3)

where LpAq and UpAq are defined as (4.1) and (4.2) respectively.

Note that Proposition 8 gives a lower and upper bound of the potentially

chosen alternatives for all conceivable feasible sets A Ď X, rather than feasi-

ble sets from which choices are observed (A P D). Hence this result allows us

to make predictions on what the DM may choose when confronting an out-

of-sample feasible set. This may be useful in practice, since it is realistically

not possible (in many cases) to observe choices from all conceivable feasible

sets.

Example 8 (continued). Here we show how inference of the underlying

choice correspondence can be made. Let us focus on feasible set tx1, x2, x3, x4u.

Then we have Lpx1, x2, x3, x4q “ tx1, x2u and Upx1, x2, x3, x4q “ tx1, x2, x3, x4u.

Therefore, we can infer that tx1, x2u Ď F px1, x2, x3, x4q Ď tx1, x2, x3, x4u.

4.3 Relation with existing models

In this section, we relate the observable restrictions of our model with exist-

ing choice models. First we see how our model relates with standard rational

choice models, and then compare observable restrictions of some closely re-

lated non-standard choice models.
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4.3.1 Relation with standard rational choice models

Here we take a look at the observable restrictions of our model and standard

rational choice models. It is well known that a choice function is consistent

with maximization of a strict preference, if and only if it obeys the Strong

Axiom of Revealed Preference (SARP), while a choice correspondence is con-

sistent with maximization of a weak preference, if and only if it obeys the

Congruence Axiom (CA). The formal definition of CA is:

Congruence Axiom: A choice correspondence F : D Ñ 2XzH obeys the

Congruence Axiom (CA), if for every A P D and x1, x2 P A, x1 P F pAq and

x2RTCx1 imply x2 P F pAq.2

First of all, note that a strict preference is a special case of a weak pref-

erence, so whenever a choice function obeys SARP, it is rationalizable by

a weak preference, i.e., SARP implies weak preference rationalizability. On

the other hand, f can be weak preference rationalizable even when there is

a cycle with respect to ąR, so the other direction does not hold.3

Note that CA is a condition on a choice correspondence, so it is not pos-

sible to directly compare with weak preference rationalizability. In fact, the

only case where a choice correspondence F that obeys CA is weak preference

rationalizable is when F turns out to be “single-valued,” i.e., |F pAq| “ 1 for

every A P D. However, in this case, CA boils down to SARP. Meanwhile,

it is possible to see how the underlying choice correspondence of f relates

with CA. Suppose that choice function f is rationalizable by a weak pref-

erence Á. Then we have a choice correspondence F such that F pAq is the
2See Richter (1966) for details of both the strong axiom of revealed preference and the

congruence axiom.
3Choice functions in Examples 8 and 9 are weak preference rationalizable, but violate

SARP.
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set of Á-maximum alternatives for every A P D. This choice correspondence

obviously satisfies CA. On the other hand, suppose that some choice corre-

spondence obeys CA. Then F pAq is the set of Á-maximum alternatives for

every A P D, for some weak preference Á. Then, defining a choice func-

tion f so that fpAq P F pAq for every A P D, this choice function is weak

preference rationalizable. Therefore, it seems plausible to regard weak pref-

erence rationalizability as a counterpart of CA, under the assumption that

there is limitation of observability of choices: we cannot observe multiple

simultaneous choices from a given feasible set.

4.3.2 Relation with some non-standard choice models

Here we show how our model relates with some non-standard choice models in

the literature. In particular, we show that the limited consideration models

and weak preference rationalizability are observationally independent, and

we give an example of a choice function that is r-rationalizable (with r “ 2)

but not weak preference rationalizable.

To begin with, let us go through a brief summary of the models we deal

with in this section. As introduced in Chapter 2, limited consideration mod-

els assume that some feasible alternatives are a priori excluded from DM’s

consideration, due to limitation of recognition capacity. That is, given a fea-

sible set A P D, a DM maximizes her strict preference on her consideration

set ΓpAq Ď A. Various limited consideration models differ depending on

the structure of consideration mapping Γ : 2XzH Ñ 2XzH, a mapping that

specifies consideration set for each feasible set A Ď X. Two well-established

properties on the consideration mapping are the attention filter (AF) and

competition filter (CF): we refer to a limited consideration model where Γ is
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A tx1, x2, x3u tx1, x2u tx2, x3u

fpAq x1 x2 x3

Table 4.3: Choice function of Example 10.

an AF as an AF-model, and one where Γ is a CF as a CF-model.4

In fact, the rational shortlisting method in Manzini and Mariotti (2007),

categorize-then-choose model in Manzini and Mariotti (2012), and the ratio-

nalization model in Cherepanov, Feddersen, and Sandroni (2013) are special

cases of the CF-model, and the transitive rational shortlisting method in Au

and Kawai (2011) is a special case of both AF and CF-models. Therefore,

showing observational independence between AF and CF-models and weak

preference rationalizability shows that weak preference rationalizability is ob-

servationally independent from many important bounded rationality models.

It is shown in Example 10 that consistency with AF and CF-models does not

imply weak preference rationalizability, and Examples 8 and 9 respectively

show that weak preference rationalizability does not imply consistency with

CF or AF-models. Thus, while limited consideration is a plausible model to

explain cyclical choices, rationalizing cyclical choices with a weak preference

may be a good alternative explanation of seemingly irrational behavior.

Example 10. Let X “ tx1, x2, x3u and consider choice function f as in

Table 4.3. We first show that f is not rationalizable by a weak preference.

It holds that xiIxj for i, j P t1, 2, 3u, and thus X{I “ ttx1, x2, x3uu. Since

|X{I| “ 1, f is not weak preference rationalizable. Now see that the preference

x2 ą x1 ą x3 and consideration mapping Γ as in Table 4.4 are consistent with

both AF and CF-models. Therefore, choice function f is not rationalizable

by a weak preference, but is rationalizable by AF and CF-models.
4See Chapter 2 for details of limited consideration models.
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A tx1, x2, x3u tx1, x2u tx1, x3u tx2, x3u

ΓpAq tx1, x3u tx1, x2u tx1, x3u tx3u

Table 4.4: Consideration mapping Γ for Example 10.

Example 8 (continued). We show that f is not consistent with the CF-

model (recall that it is weak preference rationalizable). Note that under the

CF-model, it must be the case that x1 is strictly preferred to x2, and x2 is

strictly preferred to x1.5 Thus there is no strict preference that can rationalize

f , so f is not consistent with the CF-model.

Example 9 (continued). We show that f is not consistent with the AF-

model (recall that it is weak preference rationalizable). Note that under the

AF-model, it must be the case that x1 is strictly preferred to x2, and x2 is

strictly preferred to x1.6 Thus there is no strict preference that can rationalize

f , so f is not consistent with the AF-model.

Another model that is closely related to ours, is the r-rationality model in

Barberà and Neme (2016). In this model, it is assumed that a DM has a strict

preference, and given feasible set A, a DM chooses one of her r-best alterna-

tives (r P N) within A, which is similar to our setting where we assume that an

economist observes one of her most preferred alternatives within A. Note that

any choice function is r-rationalizble when r “ |X|, and r-rationalizability

boils down to the rational choice model when r “ 1. While it is obvious
5Recall that the definition of Γ being a CF is as follows: for every A1 Ă A2 and x P A1,

x P ΓpA2q implies x P ΓpA1q. Thus it follows that x2 is considered at tx1, x2, x3u, which in
turn implies x1 is strictly preferred to x2. Similarly, provided f follows the CF-model, it
must be the case that x1 attracts attention at tx1, x2, x3, x4u, which in turn implies that
x2 is strictly preferred to x1.

6An expression of Γ being an AF that is equivalent to (2.1) is the following: fpAq ‰

fpAzxq implies x P ΓpAq. Taking a look at this, it follows from that x2 attracts attention
at tx1, x2, x3, x4u, which in turn implies x1 is strictly preferred to x2. Similarly, provided
f follows the AF-model, it must be the case that x1 attracts attention at tx1, x2, x5u,
which in turn implies that x2 is strictly preferred to x1.
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that weak preference rationalizability implies |X|-rationalizability, and that

1-rationalizability implies weak preference rationalizability, there is no logi-

cal inclusion between weak preference rationality and r-rationalizability when

1 ă r ă |X|. Example 11, which is an example presented in Barberà and

Neme (2016), gives a choice function that is 2-rationalizable but not weak

preference rationalizable. This means that weak preference rationalizability

can be more restrictive than the most restrictive case of r-rationalizability

(when r ą 1).

As a technical difference, it is worth noting that Barberà and Neme

(2016) assume that choices are observed on an exhaustive domain, namely

D “ 2XzH. Therefore, when an economist only has access to a choice func-

tion defined on D Ĺ 2XzH, it is not possible to test r-rationalizability. On

the other hand, weak preference rationalizability can be tested regardless

of the domain of the choice function, which is when an economist observes

choices made on only some subsets of X. This is in line with the obser-

vational assumption adopted in this chapter, which is that the economist

cannot “fully” observe the DM’s choices: only one of the alternatives that

could have been chosen is observed, and only some of the logically possible

feasible sets are observed.

Example 11. Let X “ tx1, x2, x3, x4, x5u and consider choice function f

defined on 2XzH as below:

• for A P 2XzH such that |A| “ 2,

– if A “ tx1, x5u, fpAq “ x5,

– otherwise, fpxi, xjq “ xi, where i ă j,

• for A P 2XzH such that |A| “ 3,
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– if x3 P A, then fpAq “ x3,

– if x4 P A and x3 R A, then fpAq “ x4,

– fpx1, x2, x5q “ x2,

• for A P 2XzH such that |A| “ 4,

fpx1, x2, x3, x4q “ x4, fpx1, x2, x3, x5q “ x3, fpx1, x2, x4, x5q “ x4,

fpx1, x3, x4, x5q “ x4, fpx2, x3, x4, x5q “ x3,

• fpXq “ x3.

We first show that f is 2-rationalizable. Consider strict preference x4 ą

x3 ą x2 ą x1 ą x5. Then, at every feasible set A P 2XzH, fpAq is either

her favorite, or 2nd favorite alternative, and thus f is 2-rationalizable by

preference ą. To show that f is not weak preference rationalizable, it suffices

to see choices on A where |A| “ 2: we have x1Rx2Rx3Rx4Rx5Rx1, which

implies that X{I “ ttx1, x2, x3, x4, x5uu. Since |X{I| “ 1, f is not weak

preference rationalizable.

4.4 Appendix

Proof of Proposition 6

Since necessity is already proved above, here we show that the other direction

holds as well. Proofs of the lemmas used here are given after the proof of

this proposition is complete. Suppose that X{I “ tE1, . . . , EKu with K ě 2.

Let us define a binary relation Ź on X{I as follows: Ej Ź Ek if there exist

x2 P Ej and x1 P Ek with x2RTCx1 and not x1RTCx2. For future reference,

let us present the following lemma.
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Lemma 6. EjŹEk, x
2 P Ej, and x1 P Ek implies x2RTCx1 and not x1RTCx2.

Using this binary relation Ź, let us define binary relations P and I as follows:

• x2Px1 if there exist j, k such that x2 P Ej, x
1 P Ek, and Ej Ź Ek,

• x2Ix1 if there exist k such that x1, x2 P Ek.

Then, define binary relation R to be the union of I and P , i.e., R “ I YP .

This means that I and P are the symmetric and asymmetric components of

R respectively. Note that by definition of R and Lemma 6, x2Rx1 implies

x2RTCx1.

Lemma 7. Binary relation R is consistent, that is, for every x1, . . . , xL P X,

x1Rx2R ¨ ¨ ¨RxL
ùñ not xLPx1. (4.4)

Since binary relation R is consistent, by Suzumura’s Extension Theorem,

there exists a connected, reflexive, and transitive extension of R, which we

denote by Á. Under this extension, x2Px1 implies x2 ą x1, so this binary

relation is non-degenerate. Now take any A P D. Note that we have fpAqRx

for every x P A, so fpAq Á x holds for every x P A. Thus, Á rationalizes

choice function f . This completes the proof of Proposition 6. l

Proof of Lemma 6

By definition of Ź, Ej Ź Ek means that there exist yj P Ej and yk P Ek

such that yjRTCyk and not ykRTCyj. Meanwhile, x2, yj P Ej means that

x2RTCyj and yjRTCx2, and x1, yk P Ek means that x1RTCyk and ykRTCx1.

Since binary relation RTC is transitive, x2RTCx1 follows. If we assume by

way of contradiction that x1RTCx2, then transitivity of RTC implies that

ykRTCyj, which is a contradiction. l
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Proof of Lemma 7

Note that by Lemma 6, we have x1RTCxL. By definition of P , we have

x2Px1 if and only if there exist E 1, E2 P X{I with x1 P E 1, x2 P E2, and

E2 Ź E 1, which in turn implies x2RTCx1 and not x1RTCx2. Hence, since we

have x1RTCxL, it is impossible to have xLPx1. l

Proof of Proposition 7

Note that the proofs of the lemmas used here are given after the proof of

this proposition is complete. First we prove sufficiency of 1. Take any weak

preference Á that rationalizes f . Then, for every A P D, it must be the

case that fpAq Á x for every x P A, so whenever x2Rx1, then x2 Á x1

holds. Therefore, x1RTCx2 and x2RTCx1 imply x1 Á x2 and x2 Á x1, which in

turn imply x1 „ x2. Necessity of 1 is proved by showing the contrapositive.

Suppose that “x1RTCx2 and x2RTCx1” does not hold. There are two essential

cases to consider: (i) x2RTCx1 but not x1RTCx2; and (ii) x1, x2 are not related

through R. Under case (i), we can follow the proof of Proposition 6, and we

have a weak preference Á that rationalizes f with x2 ą x1. Under case (ii),

we have x1 P E 1, x2 P E2 such that E 1, E2 P X{I are not related through

Ź.7 Let us define binary relation Ź1 on X{I such that Ź1 “ ŹY tpE2, E 1qu,

and parallel to the proof of Proposition 6, define binary relations P 1, I 1 on

X using Ź1.

Lemma 8. Binary relation R1 “ I 1 Y P 1 is consistent.

Then, there is a completion of R1, namely Á, that rationalizes f with x2 ą x1.

In both cases (i) and (ii), we have the desired result.
7Recall that binary relation Ź is defined in the proof of Proposition 6.
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To prove sufficiency of 2, first suppose that x2RTCx1 holds: i.e., there exist

y1, y2, . . . , yL P X such that x2 “ y1Ry2R ¨ ¨ ¨RyL “ x1. This in turn means

that for every ` P t1, . . . , L ´ 1u, there exists A P D such that y` “ fpAq

and y``1 P A. Then, for any Á that rationalizes f , it must be the case that

y` Á y``1 for every `. By transitivity of Á, we have x2 Á x1. Necessity of 2 is

proved by showing the contrapositive. Suppose that x2RTCx1 does not hold.

This means that there exist E 1, E2 P X{I with x1 P E 1, x2 P E2, and E 1 ‰ E2.

There are two cases that we must consider: (i) E 1, E2 are not related through

Ź; and (ii) E 1 ŹTC E2.8 For case (i), apply the proof of necessity of 1, and

for case (ii), apply the proof in Proposition 6. In either case, we have Á that

rationalizes f with x1 ą x2.

To prove sufficiency of 3, suppose that x2RTCxRTCx1 holds for every

x P X. By results in 2, under any non-degenerate weak preference Á that

rationalizes f , it must be the case that x2 Á x Á x1 holds for every x P

X. Now suppose by way of contradiction that x2 „ x1 holds. Then, by

assumption, it follows that y1 „ y2 for every y1, y2 P X, which contradicts

that Á is non-degenerate.

Proof of necessity of 3 will be done by showing the contrapositive. As

in the previous cases, we construct a non-degenerate weak preference Á that

rationalizes f with x1 Á x2, when X ‰ tx : x2RTCxRTCx1u. There are two

major cases that we consider.

Case I: x2RTCx1 does not hold. Within this case, if x1RTCx2, then by results

in 2, we have x1 Ár x2, and x1 Á x2 holds under any Á that rationalizes f .

If x1, x2 are unrelated via R, then again applying the logic in the proof on

necessity of 2, we have Á that rationalizes f with x1 ą x2. This completes

the proof for case I.
8Note that ŹTC is the transitive closure of Ź.
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Case II: x2RTCx1, but there exists x P X that does not exhibit x2RTCxRTCx1.

Prior to presenting a proof for this case, let us partition X into the following

three sets:

Y “ tx P X : x2RTCxRTCx1
u,

Y1 “ tx P X : xRTCx1 does not holdu,

Y2 “ tx P X : xRTCx1 holds, but x2RTCx does not holdu.

Note that in this case, x1, x2 P Y and Y1 Y Y2 ‰ H. There are two subcases

that we consider: (II-i) Y1 ‰ H; and (II-ii) Y2 ‰ H.

In case (II-i), take any ȳ P Y1 such that ȳ P Ē for some Ē P X{I, where

Ē is minimal with respect to Ź, i.e., Ē ŹTC E for no E P X{I. Such an Ē

exists because X, and thus X{I, is finite. Now define binary relations P , I1

and I2 as follows: y2Py1 if y2 P XzĒ and y1 P Ē; y2I1y
1 if y1, y2 P XzĒ; and

y2I2y
1 if y1, y2 P Ē. Then, let I “ I1 Y I2 and R “ I Y P .

Lemma 9. Binary relations I and P are symmetric and asymmetric com-

ponents of R respectively, and R is consistent.

Then there is a connected, reflexive, and transitive extension Á of R, and

the following lemma shows that this weak preference rationalizes f .

Lemma 10. The weak preference Á is non-degenerate, and fpAq Á x holds

for every x P A and every A P D.

Finally, since x1, x2 P XzĒ, x2Ix1 holds by construction of I. This implies

that we have x2 „ x1, which completes the proof for case (II-i).

In case (II-ii), take any ȳ P Y2 such that ȳ P Ē for some Ē P X{I, where

Ē is maximal with respect to Ź, i.e., E ŹTC Ē for no E P X{I. Now define

binary relations P , I1 and I2 as follows: y2Py1 if y2 P Ē and y1 P XzĒ;
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y2I1y
1 if y1, y2 P XzĒ; and y2I2y

1 if y1, y2 P Ē. Then, let I “ I1 Y I2 and

R “ I Y P .

Lemma 11. Binary relations I and P are symmetric and asymmetric com-

ponents of R respectively, and R is consistent.

Then there is a connected, reflexive, and transitive extension Á of R, and

the following lemma shows that this weak preference rationalizes f .

Lemma 12. The weak preference Á is non-degenerate, and fpAq Á x holds

for every x P A and every A P D.

Finally, since x1, x2 P XzĒ, x2Ix1 holds by construction of I. This implies

that we have x2 „ x1, which completes the proof for case (II-ii). l

Proof of Lemma 8

Take any x1, x2, . . . , xL P X such that x1R1x2R1 ¨ ¨ ¨R1xL. If there is no `

such that x` P E2, x``1 P E 1, then applying the exact same logic in the proof

of Lemma 7, xLP 1x1 cannot hold. The substantial case to consider is when

there exist ` such that x` P E2, x``1 P E 1, which implies x`P 1x``1. In fact,

such ` is unique, i.e., there cannot be m ‰ ` such that xm, x` P E2 and

xm`1, x``1 P E 1.9 Thus we have x1R1x2R1 ¨ ¨ ¨R1x`P 1x``1R1 ¨ ¨ ¨R1xL, which

implies x1RTCx`P 1x``1RTCxL, where x1 R E 1 and xL R E2. Suppose by way

of contradiction that xLP 1x1. This means that xLRTCx1 must follow, which

in turn implies that x``1RTCx`, a contradiction. l

9Suppose to the contrary that such m exists:
x1R1x2R1 ¨ ¨ ¨R1x`P 1x``1R1 ¨ ¨ ¨R1xmP 1xm`1R1 ¨ ¨ ¨R1xL. Then x``1RTCxm must
follow, which contradicts that E1, E2 are not related via Ź.
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Proof of Lemma 9

By construction, it is obvious that I is symmetric and that P is asymmetric.

Now we show that it is not possible to have x1Rx2R ¨ ¨ ¨RxL and xLPx1

simultaneously. Note that xLPx1 means that xL P XzĒ, and x1 P Ē. Then

it follows by definition of I that x1, . . . , xL P Ē, which is a contradiction. l

Proof of Lemma 10

Since y2 ą y1 holds for y2 P XzĒ and y1 P Ē, Á is non-degenerate. Now take

any A P D. To show that fpAq Á x for every x P A, it suffices to show that

fpAqRx for every x P A Note that this holds whenever there does not exist

x P A with xPfpAq. Suppose by way of contradiction that xPfpAq holds for

some x P A. This means that x P XzĒ and fpAq P Ē. Meanwhile, we have

fpAqRx, so it follows that Ē Ź Epxq, where Epxq is the equivalence class of

x. This contradicts that Ē is chosen to be minimal with respect to Ź. l

Proof of Lemma 11

By construction, it is obvious that I is symmetric and that P is asymmetric.

Now we show that it is not possible to have x1Rx2R ¨ ¨ ¨RxL and xLPx1

simultaneously. Note that xLPx1 means that xL P Ē and x1 P XzĒ, and then

it follows by definition of I that x1, . . . , xL P XzĒ, which is a contradiction.

l

Proof of Lemma 12

Since y2 ą y1 holds for y2 P Ē and y1 P XzĒ, Á is non-degenerate. Now take

any A P D. To show that fpAq Á x for every x P A, it suffices to show that
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fpAqRx for every x P A. Note that this holds whenever there does not exist

x P A with xPfpAq. Suppose by way of contradiction that xPfpAq holds for

some x P A. This means that x P Ē and fpAq P XzĒ. Meanwhile, we have

fpAqRx, so it follows that EpfpAqq Ź Ē, where EpfpAqq is the equivalence

class of fpAq. This contradicts that Ē is chosen to be maximal with respect

to Ź. l

Proof of Lemma 4

Take any A1 Ď X, and suppose that for x1 P A1, we have x1 Ár x for every

x P A1. This means that x1 Á x for every x P A1, under any Á that rationalizes

f . Therefore, x1 P F pA1q must hold for every Á that rationalizes f . Now we

prove necessity by showing the contrapositive. Suppose that there exists

x2 P A1 such that x1 Ár x2 does not hold. Applying Proposition 7, this

means that there exists Á that rationalizes f with x2 ą x1. Under this Á,

we do not have x1 P F pA1q. l

Proof of Lemma 5

Take any A1 Ď X, and suppose first that 1 holds: there exists x2 P A1 with

x2 ąr x1. Then for every Á that rationalizes f , we have x2 ą x1. This in

turn means x1 R F pA1q for every Á that rationalizes f . Suppose that 2 holds:

(a) x2RTCx1 for every x2 P A1; and (b) X “
Ť

x2PA1tx P X : x2RTCxRTCx1u.

Take any Á that rationalizes f , and suppose by way of contradiction that

x1 P F pA1q. This means that x1 Á x2 for every x2 P A1. Meanwhile, x2RTCx1

for every x2 P A1 means that x2 Á x1 for every x2 P A1. Moreover, 2-(b)

means that for every x P X, there exists x2 P A1 such that x2 Á x Á x1.

Summarizing, we have y2 „ y1 for every y1, y2 P X, which contradicts that Á

is non-degenerate.
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Necessity is proved through showing the contrapositive. Suppose that

both 1 and 2 fail to hold. Then there are two cases to consider: case I is

when 1 and 2-(a) fail; and case II is when 1 and 2-(b) fail. Here, for any

x P X, let us denote by Epxq the equivalence class that x belongs to.

Case I: 1 and 2-(a) fail. In this case, there exists x2 P A1 such that x2RTCx1

does not hold. Then, we have Epx1q ŹTC Epx2q, or Epx1q, Epx2q are not

related via Ź. Let Ē “ tx P X : Epx2q “ Epxq or Epx2q ŹTC Epxqu. Note

that fpA1q R Ē.10 Now define binary relations P , I1, I2 as follows: y2Py1 if

y2 P XzĒ and y1 P Ē; y2I1y
1 if y1, y2 P XzĒ; and y2I2y

1 if y1, y2 P Ē. Then

let I “ I1 Y I2 and R “ I Y P . By construction of I and P , it is not

possible to have x1Rx2R ¨ ¨ ¨RxL and xLPx1 simultaneously: xLPx1 means

that xL P XzĒ and x1 P Ē, and then x1, . . . , xL P Ē must hold, which in

turn implies that xLPx1 is not possible. Thus R is consistent, and there is

a connected, reflexive, and transitive extension Á of R. Since y2 ą y1 holds

for y2 P XzĒ and y1 P Ē, Á is non-degenerate. Now take any A P D. Since

fpAqRx for every x P A, we have EpfpAqq “ Epxq or EpfpAqq ŹTC Epxq.

This implies that it is not possible to have x P A X pXzĒq and fpAq P Ē,

and thus xPfpAq never holds for any x P A. Therefore, we have fpAq Á x

for every x P A. By construction of R, we have x1Rx for every x P A1, so

x1 Á x holds for every x P A1.11 This results in x1 P F pA1q.

Case II: 1 and 2-(b) fail; 2-(a) holds. In this case, there exists x̄ R
Ť

x2PA1tx P

X : x2RTCxRTCx1u. Note that we have x̄ R
Ť

x2PA1 Epx2q, which in turn

implies that Epx̄q X r
Ť

x2PA1 Epx2qs “ H.12

10Otherwise, since fpA1qRx1, we have x2RTCx1, which is a contradiction.
11Note that x1 R Ē, so for every x P A1, we have x1Px or x1I1x.
12Otherwise, we have some x2 P A1 with x2RTC x̄ and x̄RTCx2, which in turn implies

that x2RTC x̄RTCx2RTCx1. Thus x2RTC x̄RTCx1, which contradicts x̄ R
Ť

x2PA1 tx P X :
x2RTCxRTCx1u.
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Fact 6. One of the following holds:

(i). there exists x̄ R
Ť

x2PA1tx P X : x2RTCxRTCx1u such that E ŹTC Epx̄q

for no E P X{I;

(ii). there exists x̄ R
Ť

x2PA1tx P X : x2RTCxRTCx1u such that Epx̄q ŹTC E

for no E P X{I.

Proof of Fact 6. Take any Ē P X{I such that EŹTC Ē holds for no E P X{I.

Finiteness of X and rationalizability of f assures the existence of such Ē.

If such Ē exhibits Ē X r
Ť

x2PA1 Epx2qs “ H, then (i) holds. Otherwise,

E ŹTC Ē for no E P X{I would imply Ē Ď
Ť

x2PA1 Epx2q, meaning that for

any Ē P X{I that is Ź-maximal, there exists x2 P A1 such that Ē “ Epx2q.

To show that (ii) must hold in this case, suppose to the contrary that (ii) fails:

for every Ē such that ĒŹTC E for no E P X{I, we have Ē Ď
Ť

x2PA1 Epx2q.13

This means that for every Ē P X{I that is Ź-minimal, there exists x2 P A1

such that Ē “ Epx2q. Then, for every E P X{I, it follows that “there exists

x̂ P A1 such that Epx̂q “ E or Epx̂q ŹTC E” and “there exists x̃ P A1 such

that Epx̃q “ E or E ŹTC Epx̃q.” This in turn implies that x̄ P
Ť

x2PA1tx P

X : x2RTCxRTCx1u for every x̄ P X, contradicting the assumption that 2-(b)

fails. Fact 6, Q.E.D.

Now suppose that (i) in Fact 6 holds, and take any x̄ as stated there.

Then define binary relations P , I1, and I2 as follows: y2Py1 if y2 P Epx̄q and

y1 P XzEpx̄q; y2I1y
1 if y1, y2 P XzEpx̄q; and y2I2y

1 if y1, y2 P Epx̄q. Now

let I “ I1 Y I2 and R “ I Y P . By construction of I and P , it is not

possible to have x1Rx2R ¨ ¨ ¨RxL and xLPx1 simultaneously: xLPx1 means

that xL P Epx̄q and x1 P XzEpx̄q, and then x1, . . . , xL P XzEpx̄q must hold,

which in turn implies that xLPx1 is not possible. Thus R is consistent, and
13Note that this is an equivalent statement to the failure of (ii).
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there is a connected, reflexive, and transitive extension Á of R. Since y2 ą y1

holds for y2 P Epx̄q and y1 P XzEpx̄q, Á is non-degenerate. Now take any

A P D. Since it is not possible to have fpAq R Epx̄q and x P A X Epx̄q,

xPfpAq never holds for any x P A. Therefore, we have fpAq Á x for every

x P A. By construction of R, we have x1Rx for every x P A1, so x1 Á x holds

for every x P A1. This results in x1 P F pA1q.

Suppose that (ii) in Fact 6 holds, and take any x̄ as stated there. Then

define binary relations P , I1, and I2 as follows: y2Py1 if y2 P XzEpx̄q and

y1 P Epx̄q; y2I1y
1 if y1, y2 P XzEpx̄q; and y2I2y

1 if y1, y2 P Epx̄q. Now

let I “ I1 Y I2 and R “ I Y P . By construction of I and P , it is not

possible to have x1Rx2R ¨ ¨ ¨RxL and xLPx1 simultaneously: xLPx1 means

that xL P XzEpx̄q and x1 P Epx̄q, and then x1, . . . , xL P Epx̄q must hold,

which in turn implies that xLPx1 is not possible. Thus R is consistent, and

there is a connected, reflexive, and transitive extension Á of R. Since y2 ą y1

holds for y2 P XzEpx̄q and y1 P Epx̄q, Á is non-degenerate. Now take any

A P D. Since it is not possible to have fpAq P Epx̄q and x P A X rXzEpx̄qs,

xPfpAq never holds for any x P A. Therefore, we have fpAq Á x for every

x P A. By construction of R, we have x1Rx for every x P A1, so x1 Á x holds

for every x P A1. This results in x1 P F pA1q. l
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Chapter 5

Concluding remarks

In this thesis, we have explored observable implications of various limited con-

sideration models, observable implications of decision-making models with

growing consideration, and observable implications of a weak-preference max-

imizing behavior when a choice function is observed. This chapter, which of-

fers concluding remarks, summarizes the results derived in this thesis, as well

as features of our analyses and some issues that are open for future research.

Dealing with cyclical choices

Providing a model that rationalizes cyclical choices is important because it

is common to observe such behavior. All of the models we analyzed in thesis

are motivated to provide an alternative explanation when the rational choice

model cannot be used to explain the observed choices. In particular, limited

consideration models, which are dealt with in Chapters 2 and 3, allow choices

to be cyclic by assuming that a decision maker (DM) may overlook some

alternatives that are available. Furthermore, in Chapter 3, we put forward a

framework that adopts the behavioral assumption of limited consideration,

and adds to it an assumption that the DM pays attention to alternatives
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chosen in the past. In fact, the model dealt in Chapter 3 is different from the

models in the other chapters, in that we assume that an economist observes

the DM’s choices over multiple time periods.

Chapter 4 deals with cyclical choices from a different viewpoint. Unlike

the other chapters, it is assumed that a DM is fully rational, and that the DM

maximizes a weak preference rather than a strict preference. In addition, it

is assumed that an economist can observe, from each feasible set, only one of

her most preferred alternatives. Under this framework, there may be revealed

preference cycles that consists of indifferent alternatives.

Applicability to actual choice data

In all three chapters (Chapters 2, 3, and 4), we adopt a realistic observational

assumption that choices are observed from only some of conceivable feasible

sets. This assumption is important for the following reasons. Considering

Chapters 2 and 3, limited consideration models were created because DMs

commonly exhibit irrational behavior in reality. Thus, revealed preference

tests to check whether a DM’s behavior is in line with these models should be

applicable under a realistic assumption on the DM’s choices. As for Chapter

4, we adopted a realistic assumption that only a choice function is observed,

that is, it is not realistically possible to observe multiple choices made simul-

taneously. Therefore, it is natural to accept a realistic assumption that the

choice function of the DM is defined on a non-exhaustive domain.

Since all our revealed preference tests, and the robust inference results

that follow, are constructed under this observational assumption, all of the

results are practically applicable to actual choice data.1 This is partially why
1If we require an exhaustive choice function to be observed, choices must be observed

from 1,013 feasible sets, which is not very realistic.
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it was possible to conduct a simulation in Chapter 2. In fact, it is not difficult

to run a similar simulation for the results in Chapters 3 and 4, which we

postpone as an interesting future research. Furthermore, it is also possible to

conduct an experiment to collect actual choice data. In fact, Dr. Koji Shirai

and the author conducted an experiment at Waseda University and gathered

choice data of 113 subjects. The experimental data was used to compute

Selten’s indices of each limited consideration model. The author decided to

omit the experimental analysis from this thesis, since it was omitted from

the published version of Inoue and Shirai (Forthcoming). This experimental

choice data can be directly used to compute Selten’s index of weak-preference

rationalizability as well. An experiment for growing consideration model may

be a bit more troublesome, since we must gather choice data of subjects over

multiple time periods.

Robust inference and extrapolation

In Chapters 3 and 4, we provided robust inference conditions for prefer-

ence/(non-)consideration and indifference/weak preference/strict preference

respectively. Being able to robustly infer a DM’s behavior is meaningful,

since it is not generally possible to pin down the DM’s preference (or con-

sideration) even when her behavior is rationalizable by a specific model. A

case where this information may be useful, is when an economist wants to

make welfare assessments between multiple alternatives. Being able to pin

down that a specific alternative is preferred to another, will be convenient in

saying that one is more welfare-improving than another.

The robust inference of consideration/non-consideration in Chapter 3 al-

lows us to pin-down what alternative was considered/ignored at some specific

time and feasible set. This feasible set does not necessarily have to be a set
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from which a choice is observed. The upper and lower bounds of the under-

lying choice correspondence in Chapter4 tells us what alternatives are (not)

candidates to be chosen from some feasible set. This feasible set need not

be observed as well. That is, these robust inference results allow us to make

extrapolation upon feasible sets that are yet to be observed, which may be

profitable in analyzing a DM’s behavior.

It is worth noting that the assumption of growing consideration in Chap-

ter 3 is a very general one, and other plausible cases of “growing considera-

tion.” For example, we may consider a more general case of growing consider-

ation where a DM pays attention to alternatives that were chosen in the last

several time periods as opposed to all of the past periods. Instead, we may

think of a more restrictive case where a DM pays attention to all alternatives

that she considered in the past.2 These cases are interesting variations that

are open for future research. In the latter case, since the restriction of the

model is stronger, sharper results of robust inference and extrapolation can

be expected.

The requirement on the weak preference in Chapter 4, namely non-

degeneracy, is a very general requirement as well, and still conditions of

robust inference existed. Thus, by casting more mathematical structure in

the consumption space, and casting stronger assumptions on a DM’s pref-

erence (e.g., non-satiation, continuity, etc.), would lead to stronger results

of robust inference, and sharper lower and upper bounds of the underly-

ing choice correspondence. This case is another interesting extension of the

results derived in this thesis.

2In the general case of growing consideration where we cast no intra-temporal as-
sumption on consideration mapping, this case boils down to the same result as growing
consideration assumption that we adopted in this thesis.
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Chapter 6

Mathematical Appendix

Here we provide some mathematical concepts that are used throughout this

thesis. In particular, we list some properties of binary relations, then intro-

duce two extension theorems that are essential in understanding the proofs

of the theorems/propositions presented in this thesis.1

Let X be a non-empty arbitrary set, and let R Ď X ˆ X be a binary

relation on X. In this thesis, we often abbreviate px2, x1q P R as x2Rx1.

A binary relation R is connected, if for every distinct x1, x2 P X, we have

x1Rx2 or x2Rx1. We say that R is reflexive, if for every x P X, we have

xRx; R is symmetric, if for every x1, x2 P X, x2Rx1 implies x1Rx2; and R

is asymmetric, if for every x1, x2 P X, x2Rx1 implies that x1Rx2 does not

hold. The asymmetric part P of binary relation R, is defined as the set

P “ tpx2, x1q P XˆX : x2Rx1 and not x1Rx2u. Similarly, the symmetric part

I of binary relation R, is defined as I “ tpx2, x1q P XˆX : x2Rx1 and x1Rx2u.

Say that binary relation R is transitive, if for every x, x1, x2 P X, x2Rx1 and

x1Rx imply x2Rx. The transitive closure of binary relation R, which we
1A comprehensive summary of extension theorems are given in Andrikopoulos (2009).

For details of Suzumura’s Extension Theorem, see Suzumura (1976).
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denote by RTC , is defined as the smallest transitive relation that contains R:

i.e., for every x1, x2 P X with x2RTCx1, there exist z0, z1, . . . , zK P X such

that x2 “ z0, x1 “ zK , and zk´1Rzk for k “ 1, . . . , K. Binary relation RTC

is transitive by definition, and it follows that R Ď RTC .

Now, we introduce two properties of binary relations that are directly

required in the extension theorems. A binary relation R is acyclic, if for

every x1, x2, . . . , xK P X, x1Rx2R ¨ ¨ ¨RxK implies not xKRx1. We say that

R is consistent, if for every x1, x2, . . . , xK P X, x1Rx2R ¨ ¨ ¨RxK implies not

xKPx1. Acyclicity and consistency are two very similar properties, but the

former is a stronger property than the latter. For example, a weak preference

Á defined on X, which we assume to be connected, reflexive, and transitive,

is consistent, but not acyclic: there may be a cycle x1 Á x2 Á ¨ ¨ ¨ Á xK Á x1,

which implies that alternatives x1x2, . . . , xK are all indifferent. Meanwhile, it

cannot be the case that xk is strictly preferred to xk`1 is such a cycle, which

means that consistency is satisfied. A strict preference ą on X, which is

assumed to be connected, asymmetric, and transitive, is acyclic: x1 ą x2 ą

¨ ¨ ¨ ą xK implies that xK ą x1 does not hold.

Given below are two important extension theorems that are used in the

proofs of our theorems/propositions. A binary relation R̄ is an extension of a

binary relation R, if x2Rx1 implies x2R̄x1 and x2Px1 implies x2P̄ x1, where P̄

is the asymmetric part of R̄. The first extension theorem, namely Szpilrajn’s

Extension Theorem, is used in Chapters 2 and 3, where we assume that a

DM has a strict preference.

Szpilrajn’s Extension Theorem. Every acyclic binary relation R has

an extension R̄ that is connected, asymmetric, and transitive. Moreover, if

x1, x2 are non-comparable with respect to R, there is a connected, asymmetric,

and transitive extension R̄1 with x1R̄1x
2 and a connected, asymmetric, and
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transitive extension R̄2 with x2R̄2x
1.

A common method used in revealed preference analyses of a choice model

where a DM has a strict preference, is to (i) construct a binary relation

based on observed choices and the structure of the model, (ii) show that it is

acyclic, and (iii) regard the connected, asymmetric, and transitive extension

of it, which is assured by Szpilrajn’s Extension Theorem, as the DM’s strict

preference.

The extension theorem below, is used in Chapter 4, where we assume

that a DM has a weak preference.

Suzumura’s Extension Theorem. A binary relation R has an extension

R̄ that is connected, reflexive, and transitive, if and only if R is consistent.

Moreover, if x1, x2 are non-comparable with respect to R, there is a connected,

reflexive, and transitive extension R̄1 with x1R̄1x
2 and a connected, reflexive,

and transitive extension R̄2 with x2R̄2x
1.

Parallel to the case of strict preference, it is common to use Suzumura’s

Extension Theorem when conducting revealed preference analyses of choice

model where a DM has a weak preference. In particular, in the proofs in

Chapter 4, we (i) construct binary relations based on the DM’s choices, (ii)

show that the binary relation is acyclic, and (iii) regard the extension of it

as DM’s weak preference.
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