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Abstract

This study is a global path planning and local trajectory planning that execute while rescue robots and

first responders search for survivors and perform complex missions in a disaster area. The research

theme is to conduct rescue in the disaster area and transport using automatic vehicles to a safe area.

In this situation, it is assumed that a server for the global path planning is connected in real-time with

a camera sensor of a UAV. The path planning method uses grid-based global path planning based on a

map taken from the UAV. Before planning the path based on the map from the UAV, the composition

of the study varies depending on whether static or dynamic obstacles.

Firstly, a diagonal node expansion algorithm in static obstacle areas is needed to reduce expanded

nodes better than Dijkstra and A* algorithms. The less total number of expanded nodes leads to faster

calculation time in the grid-based global path planning methods. Thus, it is required to increase the

searching speed of nodes searched by Lidar and Radar sensors. Also, path smoothing to reduce zig-

zag issues in the path is important. The zig-zag issues occur during path planning, and influence the

robot’s movement. Additionally, simulations for dynamic obstacles are carried out to help understand

the grid-based path planning method for the next idea.

Secondly, a grid-based global path planning method for dynamic obstacle areas named Auto-splitting

D* lite algorithm is considered. Most of the research focus on this part to limit the environment of

the grid-based global path planning method to improve the performance of existing algorithms by

dividing a wide map. To divide the wide map, a clustering method is applied, and it is influenced to

improve calculation speed. In a dynamic obstacle environment, a method reduces the expanded node

when observation information is updated, rather than the existing expanded node being reduced by one

search. Also, the calculation speed of the path is significantly slower depending on the distribution

of obstacles on the wide map. Additionally, a new evaluation method is proposed to replace time

complexity with other methods to evaluate the performance of algorithms. The evaluation method of

each algorithm using the order and dominant value of Big-O notation attempts to solve the difficulty

of evaluating in an environment where there is no reference algorithm.

Thirdly, a local trajectory planning method in dynamic obstacle environments is considered. In this

part, we focus on the local trajectory planning using autonomous vehicles as well as mobile robots

applied in a complex environment. Using the reference path by the Auto-splitting D* lite algorithm,

an easy method to calculate various trajectory candidates is introduced. Along with the planned path
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of the global path planning method, the trajectory method for lane changes on roads considering other

vehicles’ trajectories in complex environments is considered. Also, an improvement in calculation

time and accuracy is tried by selecting one of the different trajectories generated according to the

behavioral form. An explanation of each chapter for the above three topics is written as follows.

Chapter 1 describes the background and purpose of the study, then the reasons and circumstances for

the necessity of the path planning and trajectory planning of the rescue robot and the autonomous

vehicle are described.

Chapter 2 introduces related work classified into six categories according to the path planning topic.

The six path planning categories consisted of (1) Sampling-based algorithms, (2) Grid-based algo-

rithms, (3) Bio-inspired algorithms, (4) Neural network algorithms, (5) Mathematic model-based

algorithms, and (6) Multi-fusion based algorithms. This research mainly focuses on a grid-based

global path planning method based on A* and D* lite algorithms and is combined with a local tra-

jectory planning method. Therefore, the final trajectories of robots and vehicles are generated using a

Frenet frame conversion. Thus, the final path and trajectories take the form of the multi-fusion based

algorithm mainly focused on the Grid-based algorithm.

Chapter 3 describes a grid-based global path planning method in static obstacle areas. We propose

a Diagonal node expansion algorithm, which expands only diagonal nodes of eight peripheral nodes

of a selected current node. Also, we introduce a modified Shoemake scheme to quickly smooth zig-

zag paths resulting from existing zig-zag issues and further extended diagonal nodes in this chapter.

The Diagonal node expansion algorithm reduces the expanded nodes and the calculation time. If

the size of a map and information are large, the calculation time will be reduced compared with an

original grid-based path. This algorithm will help find the shortest and safest path for the rescue

robots and the first responders. The Diagonal node expansion algorithm reduces the calculation time

of global path planning in the static known area was reduced by 45% (51[grid]×51[grid]) to 49%

(1601[grid]×1601[grid]) in a real map (125[m]×125[m]).

Chapter 4 describes a grid-based global path planning method in the dynamic obstacle environments

with a wide map. To reduce the expanded nodes of the global path on the wide map, a splitting D*

lite algorithm is proposed to split the map in advance so that the expanded nodes are ignored if the

obstacle node information is updated from other areas of the split map, which is not the current area

of the selected map. Then, we introduce an Auto-splitting D* lite algorithm with an auto-clustering
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method so that a split map of the same size can generate expanded nodes with uniform clustering

points. Also, we introduce an expected value of re-planned node (ERPN) method that quantifies

the performance using the expected value in which the expanded node occurs. The proposed Auto-

splitting D* lite algorithm solves the issue of the unnecessary areas by the traditional D* lite algorithm

and alleviates the over-calculation issue of dynamic path planners in a large area. The Auto-splitting

D* lite algorithm removes the nodes of unnecessary areas when a new path is updated in 58% of a city

map (1.2[km]×1.2[km]) and 46% of a rural map (400[m]×400[m]) compared with the traditional D*

lite algorithm.

Chapter 5 describes a local trajectory planning method using the Auto-splitting D* lite algorithm.

The local trajectory planning methods in a complex environment are mainly discussed. This chapter

introduces a method to convert the Auto-splitting D*lite into a reference path of the Frenet Frame, and

to use the reference path as an axis of the Frenet Frame coordinate. By transforming the coordinate

system, the Frenet Frame trajectory planning method is applied for selecting one of several sets of

vehicle trajectories to avoid actual obstacles using a reference path containing information such as a

velocity. Additionally, Kalman filter is applied to increase location accuracy. The final trajectories

showed 8% improvement on the x-axis and 42% improvement on the y-axis when Kalman filter is

used compared with the Frenet Frame trajectory planning (2.4[km]×2.4[km], 400[grid]×400[grid]

map). In the experimental scenario, the y-axis shows that the vehicle’s lateral movement improves.

Finally, Chapter 6 summarizes the research conclusion and addresses future work. To sum up, this

dissertation proposed two global path planning algorithms for the static and dynamic environment.

Also, one local trajectory planning application method is introduced to link with the dynamic partially

known global path planning.
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Chapter 1

Introduction

1.1 Background

Since 2020, various disaster situations such as fires, landslides, earthquakes, and tsunamis have oc-

curred due to climate change and the activity of the Pacific Fire Ring. As a countermeasure, research

is focused on rescue robots and autonomous vehicles for disaster area assistants, which help people

evacuate. Especially, fires are caused by hydrological disasters, meteorological disasters, and clima-

tological disasters, and the disaster cases increased 400% during 30 years in Fig. 1.1. This rapid

increase also has a great impact on the growth of the market for disasters. Therefore, this research

introduces global path planning methods for rescue robots, and local trajectory planning methods for

patient transport after rescue is completed using rescue robots and autonomous vehicles.

Section 1.1 discusses the necessity for research on global path planning methods and local trajec-

tory planning methods for robots and vehicles to perform rescue efficiently. Since fires, landslides,

and earthquakes occur over a wide range, the shortest path plan for quick movement is necessary. To

quickly perform a task on terrain that has changed due to a disaster situation, the global map to be

required quickly updated the map, at least in a dynamic partially known obstacle environment. Also,

the local trajectory is changed to control the robot’s movement in the updated area on the map. Since

the disaster situation severely damaged the city, it is considered to reduce the calculation time and

1
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improve the accuracy of the local trajectory planning for path planning tasks on a wide and complex

map.

Fig. 1.1 Disaster Status

Fig. 1.2 Disaster Recovery System
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Fig. 1.3 Research Summary
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Chapter 1. Introduction

Fig. 1.3 represents the research summary. As shown in the figure, the research targets are to de-

velop global path planning methods and local trajectory planning methods for mobile robots and au-

tonomous vehicles. Also, the research flows for path planning and trajectory planning are represented

from 1) to 4). There is an updated point where the map is partially updated near the construction site,

then a new global path is planned and local trajectories are generated. While generating the global

path, the local trajectory planning is performed in a dynamic environment that oversees the move-

ments and lane changes on roads of autonomous vehicles. Therefore, the research environment is

possibly divided into (a) a wide map for search and safety (b) a partially known environment for rec-

ognizing sudden changes in the situation, and (c) a dynamic environment for realizing local trajectory

planning in real-time. The research proposes new global path planning and local trajectory planning

for each environment. Also, the research for path smoothing with evaluation methods is included.

1.2 Research Target

Section 1.2 describes research targets. As explained in Section 1.1 (background), the research focuses

is on the global path planning and local trajectory planning. This research finds the shortest path and

calculation time of the grid-based global path planning among global path planning algorithms. The

local trajectory planning to be done later is also a research goal of fast calculation speed. However, the

difference is that it additionally aims for high accuracy considering position estimation. Therefore,

the flow of the research is a) Since optimal path planning is required on a wide map, the research is

conducted in order of static known based on the grid-based path planning method. b) To solve the

detailed issues of the proposing idea, we add a clustering method in the static environment part with

path smoothing. Then, the dynamic environment part research is focused on. c) Finally, an accurate

and fast trajectory planning method is applied with the planned path from the previous global path

planning method.
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Fig. 1.4 Research Target
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Research necessities, issues, and ideas are shown in Figure 1.4 with divided into focus 1, focus 2,

and focus 3.

In the focus 1, the first detailed focus is a research on the reduction of an expanded node, which

is a common issue in grid-based global path planning methods in static known such as Dijkstra,

A* [1]. It aims to reduce the total number of expanded nodes that are common issues in the grid-based

global path planning methods. Therefore, a faster path planning method is achieved by increasing the

searching speed of nodes detected by Lidar and Radar sensors. The first issue can be divided into

two categories depending on the environment. The first category would be the grid-based global

path planning method in the known area, which has an issue being the calculation time of A* based

algorithms increases depending on offered information and map size. The other category would be

the grid-based global path planning methods in partially known areas, which have a longer calculation

time than A* based algorithms.

The second detailed focus is a research of the path smoothing to reduce zig-zag issues of the path.

It aims to improve safety by reducing the zig-zag issues during the proposed global path planning

method. In this part, many path smoothing methods are discussed. Mainly, spline curves, interpo-

lations, and composite methods are traditional ways to smooth the zig-zag issue on grid-based path

planning methods. B-spline [2], cubic spline [3], [4] and etc. are classes of spline curves [5]. The

classes mentioned above are difficult to make the desired curve because each control point is hard

to decide. LERP (Linear interpolation) [6], SLERP (Spherical linear interpolation), Bézier inter-

polation, polynomial interpolation, etc. [7] are classes of interpolation curves. These methods are

suitable for fitting curves, but calculation time is long on a higher order. When the interpolations and

the spline functions are used together, it is called spline interpolation. Convolution spherical spline

interpolation, Cubic spline interpolation, and many other spline interpolations are typically used [8].

Composite methods are combined with other approaches. For example, Shoemake’s scheme [9] using

SLERP in Bézier curve on four-dimensional space is one of the well-used path smoothing methods.

The four-dimensional space using quaternion is easy to be converted into 2D and 3D spaces. In

addition, calculation time is shorter than the other path smoothing method.

Therefore, to solve each detailed issue in the focus 1, the following ideas (idea 1 and idea 2) are
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introduced in this study. (a) To propose a diagonal path planning, which applies to all grid-based

algorithms using Euclidian distance and expands only four of the eight adjacent nodes of the selected

current node. (b) To apply a modified Shoemake’s scheme to quickly smooth the existing zig-zag

issues and the zig-zag path resulting from further extending diagonal nodes. Moreover, the basic

area is static, but there is an additional explanation for the dynamic area. This iss written to help

explain the dynamic area in the next focus. In the dynamic area, the calculation time of D* lite based

algorithms [10], [11] is increased depending on the information and map size same as static area.

In the focus 2, three detailed research focus is described. The first detailed focus is to improve

the performance of the existing algorithms by dividing the wide map by limiting the environment of

the grid-based global path planning algorithm to the dynamic partially known area. In a dynamic

and partially known environment, a method to reduce the expanded nodes when updating observation

information is more important than reducing the existing expanded nodes in a single search. To clarify,

this means that unnecessary areas with expanded nodes exist in D* based path planning methods.

The second detailed focus is to improve computational speed. We conduct a study applying a clus-

tering method that uniformly divides maps according to the distribution of obstacles. On a wide map,

the calculation speed of the path is significantly slower depending on the distribution of obstacles.

This is because the following issues exist in the existing clustering algorithm. First, the calculation

time to determine the k-value is long in k-means clustering-based algorithms. Also, the calculation

time is longer than the centroid searching (repeated calculation) in mean-shift clustering-based.

The third detailed focus is an alternative study of time complexity to evaluate the performance of

algorithms. The path planning algorithms, which use a heuristic search, have a time complexity of tree

search based on the node, but it is interpreted in a time complexity based on a grid map because the

time complexity used for performance evaluation varies with the heuristic and branching factor (child

node). It means the time complexity varies depending on the heuristics and branching factor. Also,

most heuristic search algorithms apply the sorting methods (ex: Binary heap, quick sorting) when it

used in n×n maps, but the time complexity also varies depending on the sorting method. Simply,

the evaluation method of each algorithm using the order and dominant value of Big-O notation has

difficulty of evaluating in an environment where there is no reference algorithm.
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To solve each detailed issue in focus 2, the following three ideas are introduced in this study. (a)

To reduce the expanded nodes of the global path on the wide map, a splitting D* lite algorithm is

proposed to split the map in advance so that the expanded nodes are ignored if the obstacle node

information is updated from other areas of the split map, which is not the current area of the selected

map. (b) An auto-splitting D*lite with an auto-clustering method is proposed so that a split map of the

same size can create expanded nodes with uniform clustering points. (c) To propose a Number for the

Expected value of Replanned Node (ERPN) method that quantifies the performance of the algorithm

using the expected value of the probability principle in which the expanded node occurs.

In the focus 3, one detailed research focus is described, and one idea is introduced. The detailed

focus is the local trajectory planning for usage in mobile robots, autonomous vehicles on roads, and

complex environments targeted after applying the global path planning methods. A method of se-

lecting lane changes and avoiding obstacles in urban areas and complex environments is considered

along with the planned global path planning. There is a critical issue with traditional Cartesian frame

trajectory planning methods. The Cartesian frame trajectory planning method has the advantage of

easy application because it has the same coordination as the global path planning method. However,

the Cartesian frame trajectory planning method has disadvantages in selecting one of several sets of

vehicle trajectories to avoid actual obstacles using a reference path. In particular, to make several

trajectories suitable for the situation based on the reference path, it is necessary to create a trajectory

in consideration of speed and acceleration. At this time, if the Cartesian frame is used, the equation is

complex. Therefore, the idea to solve issues is to use the reference path as an axis of the Frenet Frame

coordinate. By transforming the coordinate system, the Frenet Frame trajectory planning method is

applied for selecting one of several sets of vehicle trajectories to avoid actual obstacles using a refer-

ence path containing information such as a velocity. Additionally, Kalman filter is applied to increase

location accuracy.
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Chapter 2

Related Work

2.1 Introduction of Path Plnanning Algorithms

In section 2.1, several path planning methods are introduced according to the type and method of the

robot. Related work on disaster-rescuing robots and autonomous driving are being studied. Mobile

robots equipped with robot modules, such as robot arms, fire suppression modules, cutter-feller mod-

ules for breakthroughs, etc., for various missions are introduced. Specifically, path planning methods

are required by wheel-based robots, and control methods are included in various robot modules. In

this case, path planning methods focusing on shortest path planning, path smoothing, and trajectory

planning are often used in combination. Representative research is listed as follows.

• Howe & Howe’s Thermite RS-T3, RS2-T2 (a mobile robot with 2,500 gallons of water and fire

suppression foam and robot arms for missions) [12]

• Shar Robotics’s Barrakuda and Bulkhead [13]

• Zebro (firefighting robots using cluster algorithms) of Robotics Without Borders (disaster robot

advocacy group) [14].

Autonomous vehicles and humanoid rescue robots belong to other categories, many of them re-

quire sensors restrictions, but the same algorithms are applied. Since autonomous vehicles need to
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recognize their surroundings at high speed and require an enormous amount of data, the current re-

search trend is to plan paths with cameras. In addition, there are many studies on camera-oriented

path planning methods because humanoid rescue robots also perform missions based on human mo-

tifs, despite the fact that their moving speed is not fast. In other words, sampling-based algorithms

and neural network-based behavioral trajectory planning algorithms are widely used on autonomous

vehicles and humanoid-type rescue robots. Representative research is listed as follows.

• Autonomous vehicles of Tesla

• Atlas of Boston dynamics (a representative humanoid rescue robot) [15].

Many path planning methods are classified according to their features, and the pros and cons of

the selected algorithms for this study is described in Section 2.1. It was reprocessed by referring

to Sara Abdallaoui’s algorithm classification [16]. The classifications of this study were conducted

focusing on key points among the references, and further details are described in the research aims

section of each chapter.

Fig. 2.1 Categorization of Sampling based Algorithms

Fig. 2.1 is a simple introduction of sampling-based algorithms. Sampling-based algorithms can

be divided into active and passive ones. It is decided by whether a planned path is generated from

10



Chapter 2. Related Work

connecting the points that are randomly extracted from state space. The representative algorithms of

an active sampling-based algorithm are RRT [17], BIT conventional [18] and MPC algorithms, which

are shown in the figure. The representative processing procedure of an active algorithm is to select

many paths to achieve the best possible path. The passive algorithm refers to an algorithm that gen-

erates only one path from the start point to the target point, such as PRM [19], 3D Voronoi [20], and

APF [21] algorithms, which is usually used in combination with a searching algorithm that selects

the best path among all possible paths. A well-known study for the sampling-based algorithm is the

Google Waymo Project, which uses Lidar and image-based sensors to implement global and local

trajectory planning by applying RRT*, RRT* smart-based algorithms, and deep learning technologies

that solve static issues of RRT, which the path is planned based on sampling points. In this study, as

explained in Chapter 2, sampling-based algorithm is excluded by the following environmental condi-

tions of the shortest path.

Fig. 2.2 Categorization of Grid based Algorithms

Fig. 2.2 is a simple introduction of grid-based algorithms. The grid-based algorithms focus on

searching for the shortest path, unlike the sampling-based algorithm. These methods find the shortest

path by exploring among a set of cells in the map, where information sensing and processing pro-

cedures are already executed. The grid-based algorithms are categorized into 1. grid search and 2.

graph search in the field of autonomous driving. Both the categorized parts are possible to be ap-
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plied with the same algorithm, but there are differences in the application method. A grid search step

is mapping the environment to a set of cells, and each cell indicates the presence or absence of an

obstacle at the corresponding location. Therefore, this approach is mapping low-speed image data,

which is not suitable for high-speed driving if the mapping time is taken into account. This method

is called grid-based algorithm or grid search. On the other hand, graph search includes the process

of discretizing a map into a graph. Unlike nodes in a certain grid, various shapes such as tree shapes

and geometric shapes can be used during the discretization process. The same algorithm is used as

a node in terms of algorithms, which is a little more suitable for high-speed driving but shows lower

accuracy than grid search. This study uses the grid search method, which is easy to apply because

the goal of this research is to improve the performance of existing algorithms with a multi-fusion

algorithm searching for the shortest distance path with a global path planning method and a local

trajectory planning method. Therefore, the associated algorithm is unified as the grid-based algo-

rithm, not the node-based algorithm after this chapter. Some well-known representative research on

grid-based algorithms is listed as follows.

• Dijkstra example - [22]

• A* example / LPA* example - [23]

• D* example - [24]

• D* lite example - [20]

• Theta*/Lazy Theta* - [25].
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Fig. 2.3 Categorization of Bio-inspired Algorithms

Fig. 2.3 is a simple introduction of the bio-inspired algorithms. Bio-inspired algorithms usually

search for shortest paths with stochastic approaches. In particular, they are characterized by solv-

ing the nonlinear problem of ’NP’, and the time complexity of these kinds of algorithms is usually

high. This research excludes the bio-inspired algorithms due to their high time complexity, which

is necessary to be considered while widening the map. Some well-known representative research on

bio-inspired algorithms is listed as follows.

• GA based example - [26]

• PSO,CMOPSO example - [27], [28]

• ACO example - [29]

• SPLA example - [30], [31]

• , MA example - [32]
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Fig. 2.4 Categorization of Neural Network Algorithms

Fig. 2.4 is a simple introduction of neural network-based algorithms. As a field that is currently

in the spotlight, neural network algorithms can be processed in all fields such as path planning, local

trajectory planning, and motion planning. It has many strengths in the trajectory planning part, which

learns sensor data to maintain lane change, lane-keeping, and speed. The execution time in the global

path planning and trajectory planning is also fast, but physical costs and enormous time are required

for learning. One of the best self-driving systems developed by Tesla currently uses a sampling-based

algorithm with only eight image cameras but operates with more than 5,000 people in the training

team to train numerous camera information. For this reason, this research excludes studies on the

subject of neural network algorithms, but the method of applying its basic principles is considered for

future research. Some well-known representative research on the neural network algorithms is listed

below.

• Deep reinforcement Learning - [33], [34], [35], [36]

• Bayesian neural network - [37]

• Artificial neural network - [38]

• Fuzzy decision Function - [39]
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Fig. 2.5 Categorization of Mathematic Model based Algorithms

Fig. 2.5 is a simple introduction of the mathematical model-based algorithms. The mathematical

model-based algorithms can be divided into two subcategories: linear algorithms and optimal con-

trol. It is usually based on kinematic interpretations and geometric approaches. Obtaining optimal

solutions using cost functions is a feature of mathematical model-based algorithms. The mathematic

model-based algorithms are also included in a traditional vehicle control method, which determines

the speed and acceleration of a vehicle by calculating all complex situations and sizing them by vari-

able. The mathematic model-based algorithm is used only for control methods and is excluded from

this research because most of the research uses global path planning and local trajectory planning.

Some well-known representative research of the mathematic model-based algorithms is listed as fol-

lows.

• MIL, BIP - [40]

• Flatness based - [20]

• Discrete Optimization - [41]
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Fig. 2.6 Categorization of Multi-fusion based Algorithms

Fig. 2.6 is a simple introduction of the multi-fusion-based algorithms. Currently, most of the

studies are multi-fusion-based algorithms. In most cases, the multi-fusion-based algorithms can be

applied quickly to static and dynamic environments at the same time with high performance. Con-

sidering the research objectives and environment, the subject of this research would be using the

grid-based global path planning method and the Frenet-base local trajectory planning method, which

can also be viewed as a Multi-fusion based algorithm. To sum up, the proposed algorithm in this

research is a multi-fusion-based algorithm based on the grid-based algorithms with the Frenet frame

local trajectory planning methods.

2.2 Research Flow

As explained in the related research, this research is about the path planning methods based on A*

and D* lite algorithms for the grid-based global path planning methods. The trajectory of the final

autonomous vehicles for patient transport are generated using the Frenet frame conversion method.

Therefore, the final trajectory is in the form of multi-fusion-based algorithm combined with the grid-

based algorithm with trajectory planning using the frame conversion. Most of the related work in

this paper are focused on the new development of the grid-based algorithm. The algorithms proposed

in Chapters 3 through 5 are introduced according to the obstacle environment. Especially, the first

section of each chapter represents deatil reasearch aims. These sections are introduce advantages and

disadvantages for the grid-based algorithms with the detailed issues depending on the environment of

maps and obstacles, and explain the detailed research aims to be addressed from the issue. The flow
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of overall research is shown in the figure 2.7.

Fig. 2.7 Research Flow
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A brief summary of each chapter is as follows. The grid-based global path planning methods in

the static known obstacle areas are described in Chapter 3. We propose a diagonal node expansion

algorithm, which is applicable to all grid-based algorithms using the euclidian distance and expands

only four of the eight peripheral nodes of the selected current node. Also, we introduce a modified

Shoemake’s scheme to quickly smooth zig-zag paths resulting from existing zig-zag issues and further

extend diagonal nodes in this chapter. The diagonal node expansion algorithm reduces the expanded

nodes and the calculation time. If the size of a map and information is large, the calculation time will

be reduced compared with an original grid-based path. This algorithm will help find the shortest and

safest path for the rescue robots and the first responders The main environment is explained in the

static area, but before entering Chapter 4, the diagonal node expansion in the dynamic area is also

described for the rescue robots. However, a more suitable algorithm for rescue robot in dynmaic area

is introduced in Chapter 4. In Chapter 4, we describe the grid-based global path planning method in

the dynamic and partially known environment.To reduce the expanded nodes of the global path on the

wide map, a splitting D* lite algorithm is proposed to split the map in advance so that the expanded

node is ignored if the obstacle node information is updated from other areas of the split map, which

is not the current area of the selected map. Then, an auto-splitting D*lite with an auto-clustering

method is introduced so that a split map of the same size can generate an expanded node with uniform

clustering points. Also, an expected value of replanned node (ERPN) method that quantifies the

performance of an algorithm is considered. The expected value using the probability principle is

applied, in which the expanded node occurs. In Chapter 5, local trajectory planning methods in

dynamic partially known environment are described. The local trajectory planning methods that are

used in a complex environment are mainly discussed. The way to produce faster and more accurate

results than the existing local trajectory planning methods in the dynamic partially known obstacle

area is focused in this chapter. Along with the planned global path, a method of selecting lane changes

and avoiding obstacles in urban areas and complex environments is simulated. This chapter introduces

a method to convert the Auto-splitting D*lite into a reference path of the Frenet Frame, and to use

the reference path as an axis of the Frenet Frame coordinate. By transforming the coordinate system,

the Frenet Frame trajectory planning method is applied for selecting one of several sets of vehicle

trajectories to avoid actual obstacles using a reference path containing information such as a velocity.
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Diagonal Grid-based Global Path Planning

for Static Obstacle Environment

3.1 Research Aims

The main targets in this chapter are the path planning and the path smoothing methods for the first

responders and rescue robots to assist rescue in static known area. The first responders need the

shortest and fast path planning. Therefore, a static obstacles environment based path planning is

considered. On the other hand, the rescue robots cannot react rapidly to changing areas such as

radical fire, explosion, and collapse. Therefore, a dynamic obstacles environment based path planning

is one of the solutions to handle this dynamic situation. These path planning are possible to divide

into the static known environment and the dynamic partially known environment [20]. In this study,

we will introduce how to shorten the calculation time of the path for two grid-based path planning

algorithms represented by these two environments. The grid-based path is finding the smallest cost

algorithm, so the proposed path planning has the shortest distance of the path, and faster calculation

for a large area. Also, the proposed path planning is a solution for safety using a weighted procedure.

It mainly describes static obstacle path planning for first responders, and additionly D*lite algorithm

is introduced for the rescue robot.
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Fig. 3.1 Research Aims (Chapter 3)

One of the common issues of path planning methods in a known environment is the long calcu-

lation time. The following algorithms are typical: A* algorithm [42] is a representative in the static

known obstacles environment search with a stationary start, stationary goal, and stationary obstacles

in two-dimension (2D). GAA* algorithm [43] is an adaptive searching algorithm in the static known

obstacles environment and it uses stationary start, stationary goal, and movable obstacles in 2D. It

implements forward and backward steps similar to D* lite. Wang et al. [44], [45] discuss research

on path planning for the first responder with a stationary start, movable goal, and movable obstacles

using A* algorithm. Delmerico and Jefferey [46] apply the A* and rescue robot in a static known

obstacles environment with a stationary start, stationary goal, and stationary obstacles. Especially,

they use A* with a three-dimension (3D) map environment, but path planning is in 2D environment.

The drawback that including from A* to Delmerico et al. is that calculation time increases depend-

ing on given information and map size. One of the common issues of path planning algorithms in a

dynamic partially known obstacles environment is also a long calculation time. Some typical algo-

rithms and their conditions are provided below briefly. Most of grid-based path planning algorithms
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under the dynamic partially known obstacles condition are related to D* algorithm [10] and D* lite

algorithm [11]. The calculation time of these algorithms is longer than A* because the recalculation

procedure on every new environment updating is needed. D* lite is a faster and optimized version

of LPA* (Lifelong plan A*) [47]. It has a stationary start, stationary goal, and movable obstacles.

Especially, movable obstacles are recognized as a new updating target in every recalculation proce-

dure. MTD* lite (Moving Target D*) [48] focuses on stationary start, but it has a movable goal in a

dynamic partially known obstacles environment. It also has movable but uncertain obstacles in 2D

situation. Field D* [49] focuses on nodes connection and faster calculation on an interline node in

a dynamic partially known obstacles environment. It assumes stationary start, stationary goal, and

movable obstacles in 2D. 3D Field D* [50] is developed in 3D dynamic partially known obstacles

environment. It assumes stationary start, stationary goal, and movable as well as uncertain obstacles

in 3D. Disadvantages of those algorithms including from D* lite to 3D field D* have the same issue

as the A*, that is the calculation time is longer. To solve the common issues of previous research for

path planning, this study proposes a diagonal node exapnsion algrorithm in the static known obstacles

environment for first responders and the dynamic partially known obstacles environment for rescue

robots. Most of the algorithm introductions are described in the static known obstacle area. The

diagonal node expansion algorithm in the static known obstacles environment is based on A* algo-

rithm. The diagonal node expansion algorithm in the dynamic partially known obstacles environment

is based on D* lite algorithm. Both proposed algorithms decrease the path calculation time for solving

common issues of previous research. In summary, this research has two improvement points in the

path planning method and the path smoothing method part to reduce the calculation time. On the path

planning method part, the diagonal node expansion algorithm is applied for reducing calculation time

in the static known obstacles area for the first responders and the dynamic partially known obstacle

area for the rescue robots. On the path smoothing part, a modified Shoemake’s scheme is applied to

solve the zig-zag issue on 3D space. Later in this chapter, the static known obstacles environment is

simply named known evironment, and the dynamic partially known obstacles environment is simply

named partially known evironment.
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3.2 Diagonal Node Expansion Algorithm and Path Smoothing

Method

3.2.1 Diagonal Node Expansion

Diagonal node expansion algorithm is an algorithm that aims at reducing the calculation time for

the elimination of a node in a conventional grid-based algorithms. The related work stated that the

grid-based algorithm is based on A* and D* lite depending on the environment. The two algorithms

have the same structure and shape of an enclosed node, so the node elimination process is equally

applicable except node expansion and operation. The approximate idea for the node elimination is as

follows: The left side of 3.2 shows open-nodes of the original A* and D* lite. The right side of 3.2

shows open-nodes and disable nodes of the diagonal node expansion algorithm.

The operating principles of A* are as follows before applying the node elimination process and

the diagonal node: for every node n encountered during the search, A* maintains three values. First,

g-value is defined as g(n), which is infinity initially and has the length of the shortest discovered path

from the start node to node n. Second, h-value is defined as h(n) := H
(
n,ngoal

)
, which estimates

the distance from a goal node to node n. Finally, f -value is defined as f (n) := g(n)+ h(n), which

estimates the distance from the start node via node n to the goal node. For the algorithm to find the

actual shortest path, the heuristic function h(n) must be admissible, because h(n) never overestimates

an actual cost to get the nearest goal node. This algorithm maintains two sets OPEN and CLOSED:

the OPEN set saves all the nodes that can be detected but not accessible yet; the CLOSED set saves

the nodes already visited. The heuristic function h(n) is sorted in the OPEN set according to the

result of f (n), which selects the minimum cost for each node to access. The result of f (n) finds the

relatively shortest way to the destination.
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Fig. 3.2 Comparision of Neighbour Node

3.2.1.1 Diagonal A* Path Planning

The diagonal A* consists of the elimination of the node and the brief modification of the procedure

in the traditional A*. Following steps describe the procedure of diagonal A* illustrated in 3.3: Step

1: All nodes require the states that are not visited, and initialize OPEN set and CLOSED set. Step 2:

Start node need to put on the list of OPEN set. The current node is the node with the lowest f -cost in

OPEN set with calculating the f -cost of all nodes. Step 3: Remove the current node from OPEN set

and add a current node to CLOSED set. Step 4: Check whether the current node is a target node. Step

5: Move to a next state that is not visited diagonal neighbor nodes with the smallest f -cost and repeat

the above steps, which checks diagonal neighbors and mark visited state. Step 6: If the diagonal

neighbor nodes are not traversable or are in CLOSED set, skip to the next smallest f -cost neighbor.

Step 7: If the new path to a neighbor is shorter or the neighbor node is not in OPEN set, update the

f -cost of neighbor and add the neighbor to OPEN set.
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Fig. 3.3 Flowchart of A* Algorithm

Fig. 3.4 Cost Map of A* Algorithm
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From Step 1 to Step 7, all procedures of the diagonal A* with the cost information of f (n), g(n),

and h(n) are illustrated in 3.3 as an example. Especially, the heuristic function h(n) in the diagonal

A* uses a Manhattan distance, because the expanded nodes in OPEN set using a Euclidian distance

are bigger than the Manhattan distance. As shown in 3.5, the black nodes represent both ends, and

the gray nodes are the expanded nodes in the OPEN set. Simply, allowable grid movements are

possible to summarize: (a) any directions (b) eight directions (c) four cross-line directions (d) four

diagonal-line directions (Node elimination is not allowed to cross-line directions)

(a) (b)

(c) (d)

Fig. 3.5 Various Distance for Heuristic Fuction

One more combination might make the assumption, which is diagonal distance and diagonal node.

This combination perform the same as (d), but calculation time is longer because a procedure of the

heuristic function is slightly increased. Therefore, the Manhattan distance is used in this diagonal A*

algorithm. All this procedure for path planning in a known environment has the purpose of reducing

calculation time. And then, the first responder is quickly reached to the target position using the

diagonal A*. This expanded node has a profound effect on calculation time. Discussion for time

complexity depended on the expanded node is on the last part of this study.
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3.2.1.2 Diagonal D* lite Path Planning

This section is an additional dynamic part of this chapter. It shows that the first responder as well as

the Diagonal node expansion algorithm is available in dynamic environments when the rescue robot

moves. However, a more suitable algorithm for rescue robot in dynmaic area is introduced in Chapter

4. A diagonal D* lite path planning is based on an original D* lite path planning, and the original

D* lite is an upgraded version of LPA*, which can adapt to change in the path planning without

recalculating the entire search. D* lite is one of most popular goal-directed navigation algorithms

and widely used in partially known environment. It is adaption of LPA*, which is an incremental

derivation of A*. It determines the same paths as D* algorithm and moves the agent the same way

but it is algorithmically different. Therefore, the diagonal D* lite also determines how to efficiently

update the shortest path under changing edge costs using diagonal nodes with the Manhattan distance.

The efficiency is achieved by only updating the values that need to be updated to find the shortest path

as same as the D* lite.
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Fig. 3.6 Flowchart of Traditional D* lite
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Unlike the diagonal A*, there are largely three differences as shown by the red text in 3.6. Most of

these differences are in line with the D* lite. First, there are two estimates of the start distance g′(n)

for each node. The g(n) in the diagonal D* lite is the same as the diagonal A*, but one more rhs(n)

value is included called as a right-hand side or look-ahead value based on the g-values. Therefore,

g′(n) is selected g(n) or rhs(n) depends on the consistency. The rhs(n) is defined in Eq. 3.1, and a

different feature compared to the LPA* is finding the shortest path from a goal node to a start node by

minimizing rhs value.

D* lite maintains an estimate g(n) of the start distance g′(n) of each vertex n, analogous to the

g-values of an A* search. D* lite carries them forward from search to search. D* lite also maintains a

second kind of estimate of the start distances; the rhs-values one-step-lookahead values based on the

g-values and thus potential better informed than the g-values. g-values and rhs-values should always

satisfy the following equation.

rhs(n) :=

 0 if n = ngoal

minn′∈ succ (n) (c(n,n′)+g(n′)) : otherwise
(3.1)

Second, another difference between the diagonal A* and the diagonal D* lite is a key modi-

fier, which is k() value. The key modifier is a value used to sort the OPEN set, and the sort-

ing method of the OPEN set uses a heap reordering [51]. The key modifier k() are defined as

k(n) := [min(g(n),rhs(n) + h(n));min(g(n),rhs(n)]. The key modifiers are updated when an en-

vironment changes with the new amount of a rescue robot has traveled. The third difference be-

tween the diagonal A* and diagonal D* lite is the existence of consistency. This consistency is

based on M.Likhachev and S.Koenig [10], [11], and a brief description is re-written as follows: Two-

states are depending on the relationship between g(n) and rhs(n): Locally consistent is defined as

g(n) = rhs(n); locally inconsistent is defined as g(n) ̸= rhs(n). Especially, the inconsistent fall into

two categories, which called over-consistent and under-consistent: Locally over-consistent is defined

as g(n) > rhs(n); locally under-consistent is defined as g(n) < rhs(n). The following flow-chart of

3.6 can be configured using the three differences described above and the diagonal A* algorithm

described the previous chapter. In a note of caution, the computed shortest path procedure in 3.6
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is the same as the diagonal A*, but always execute the inconsistent states with the diagonal node.

The inconsistent states contain all the previous locally inconsistent nodes as well as the new nodes,

which are recently made inconsistent states by the changes. This algorithm is constantly checking

for environment changes in the grid node with the OPEN set, which is never reset. Briefly, the de-

tail operations have differences to the diagonal A*, but node selection has the same behavior. Until

this section, the diagonal node expansion algorithms are applied in the known environment and par-

tially known environment. However, the diagonal node expansion algorithm occurs “zig-zag” issue.

Therefore, a mitigation method to solve the zig-zag issue is described in the next section, then an

appropriate application method is explained.

3.2.2 Path Smoothing in 3D Environment

Path planner of this research focuses on 3D space. The 3D space is more convenient to predict

intuitive distance when the first responder is going to the goal point. It is useful for the first responder

and rescue robot when the 3D environment is used to find evacuated people. In addition, nowadays

real-time 3D map building is possible because of applications for drones such as Drone Deploy [52],

Pix4D [53] mapper. As developing the technique related to the drone, path smoothing in the 3D

environment after path planning becomes important. Especially, path smoothing has a characteristic

to change the node-based path to a smooth path. After path smoothing is applied, the disadvantage of

the node-based algorithm is solved to reduce the slow calculation time on a large map. In other words,

path planning and path smoothing execute on a small grid map, then the result of path smoothing has

the possibility to convert a bigger size of the map in order to make a smooth path.
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Fig. 3.7 Zig-zag Issues after Diagonal Node Expansion Algorithm

3.7 shows the zig-zag issue of 3D map in this research. To solve the zig-zag issue after diagonal

node expansion algorithm, one of the composite methods is described below.

3.2.2.1 Path Smoothing using Modified Shoemake’s Scheme

The combination of a composite method proposed in this study is Shoemake’s scheme using LERP

called as the modified Shoemake’s scheme. As mentioned in the related work, many methods are

considered to apply path smoothing to solve a zig-zag issue from the diagonal node expansion as path

smoother using variety splines, Interpolation path smoother (IPS), and combinations of curvatures

[54], [55], [56], [57]. The Shoemake’s scheme is based on a quaternion space and rotation. Original

Shoemake’s scheme generates the smooth path to link several points such as zig-zag issue using

SLERP (Spherical Linear Interpolation) and Bézier curve in the quaternion space. Instead of SLERP,

a LERP (Linear Interpolation) function is applied because fast calculation time is a top priority in

this research. An advantage to apply the modified Shoemake’s scheme is easy converting to rotation

matrices in the quaternion space. Especially, Euler angles are needed to show an animation of the
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path using 2D on a 3D map, and the quaternion space is easily converted from the Euler angles to

the quaternion conversion. The following description shows the relation between quaternion and

rotation [58], [59]. A Hamilton algebra (quaternion algebra) is defined as Eq. 3.2.

H= {t + xi+ y j+ zk | t,x,y,z ∈ R} (3.2)

Here, i, j, and k are the three imaginary units, and it was defined by Hamilton [60] as Eq. 3.3.

i2 = j2 = k2 = i jk =−1 (3.3)

The product of two imaginary units satisfies these fundamental rules as Eq. 3.4.

i j = k jk = i ki = j

ik =− j jk =−k k j =−i
(3.4)

A quaternion qn is denoted in Eq. 3.5.

qn = tn +(i, j,k)⃗qn, qn ∈H, n ∈ N (n : an index number)

tn ∈ R, q⃗n ∈ R3
(3.5)

where, tn is a real number of the real part and q⃗n is a real number of the imaginary part for the

quaternion, respectively.

q⃗n =


xn

yn

zn

 ∈ R3 (3.6)

These sets of multiplication of quaternion product are satisfied as Eq. 3.7 when n =1 and 2.
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q⃗1⃗q2 ≜ (−1) (⃗q1 × q⃗2)+ q⃗1 × q⃗2

q1q2 ≜ t1t2(−1) (⃗q1 × q⃗2)+(i, j,k)(t1⃗q2 + t2⃗q1 +(⃗q1 × q⃗2))
(3.7)

An inverse element can be constructed for every quaternion number as Eq. 3.8, and a norm of a

quaternion is given by Eq. 3.9.

∀qn ∈H : q−1
n = tn − (i, j,k)⃗qn (3.8)

∥qn∥=
√

qnq−1
n (3.9)

To illustrate a quaternion, the next procedures need how the space of rotation is constructed.

Every rotation in a three-dimensional space is realized from the rotation by angle and axis. The set of

possible rotations by any angle S(a) is defined as Eq. 3.10, and a unit hypersphere is defined as Eq.

3.11, which is extended four-dimensional rotations.

S(a);a ̸= 0 [◦] (3.10)

S3 = {qn ∈H : |qn|= 1} (3.11)

As an example, consider a vector v⃗,

v⃗ ∈ R3 (3.12)

The vector v⃗ is represented as

v = (i, j,k)⃗v (3.13)
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Then, the rotation of v⃗′ is realized by using a quaternion q as

v⃗′ = Rot(⃗v) = qvq−1 (3.14)

An example of 3D expressions on quaternion(4D) shows in 3.8 .

Fig. 3.8 Principle of Quaternion Space Conversion

After the rotation, the line connection is needed to show the computed path between two points to

illustrate LERP. Eq. 3.15 represents the definition of LERP.

LERP(p0, p1; t)≜ (1− t)p1 + t p1

p0 : start point , p1 : end point

t ∈ [0,1]

(3.15)

Finally, an animated smooth curve represents when several quaternion qn is used and linked to all

the procedures as Eq. 3.16.
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LERP(qn,qn+1; t) = (1− t)qn + tqn+1 (3.16)

Follwing scheme is the modified Shoemake’s scheme. After applying the modified Shoemake’s

scheme, the referenced path, which is the diagonal path having zig-zag issues, are animated a new

smoothing path in real-time for the first responders and rescue robots.

Modified Shoemake’s Scheme:

• 1. To work exclusively in H , it needs to convert the original data into a quaternion qn.

• 2. To design a unit quaternion rn, convert a rotation matrix into rn.

• 3. To perform the rotation(conversion), calculate qn+1 = rnqnr−1
n .

• 4. Repeat for any other rotation rn
n+1,r

n
n+2 , etc.

• 5. If the procedure is stopped after the first rotation, calculate the in-between via LERP(qn,qn+1; t)=

(1− t)qn + tqn+1 with t ∈ [0,1] , yielding the numbers qn,qn+t1,qn+t2, · · · ,qn+1 along a smooth

curve.

• 6. Afterward, link a set of quaternion numbers along the path while rotating.

3.2.2.2 Bounded Curvature Procedure

To show the animated path, a 2D map is converted to 3D and reconstructed on a 3D map using

a simulation tool called Unity-3D. Therefore, the path is shown as 2D on the surface of the 3D

map. The modified Shoemake’s scheme is converted to a program function, which has procedures

as the Modified Shoemake’s scheme. The scheme is applied to 4 steps called as “Bounded curvature

procedure” in this study. Notations of the bounded curvature are shown in 3.9 and procedures are

shown in 3.10.
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Fig. 3.9 Notations of Bounded Curvature Procedure

Step 1 of 3.10 shows how to load the reference path. The start point and the endpoint are the same

as the calculated diagonal path. Step 2 shows how to set a turning distance and movement speed.

Step 3 shows how to calculate an animated path using the modified Shoemake’s scheme. Finally, the

animation curve will be illustrated after all frame of the quaternion points using LERP is linked. For

guidance, depending on turning distance and turning boundary, the animated path will be smoother. It

needs a user-setting parameter about turning distance and movement speed in the simulation. Detail

settings are described in Chapter 4.
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(a)

(b)

(c)

(d)

Fig. 3.10 4-steps of Bounded Curvature Procedure

3.11 is a top view of a test map and the path planning result in a known area. In all subsequent

scenarios, the test map also used a 720×720[pixel], and the drone was recording 150[m] above. The

distance of the x-y axis is 125[m]. However, the y-axis over 40 (40 between 50) was cut off in the

figure. The calculation time of each path smoothing is represented in Table 3.1. The diagonal A*
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with Shoemake’s scheme using LERP, SLERP, and Bézier curve are tested followed by the bounded

curvature procedure as 3.10. There are very small differences in calculation time as 0.1 [ms] orders

after the path smoothing is applied. It may seem like a small difference, but the size of the map is

101×101[grid], which is relatively small. However, the wider difference will be observed if the map

is larger. Therefore, path smoothing should have as small influence as on the path planning algorithm.

Fig. 3.11 Path Smoothing after Diagonal A* Path Planning

Table 3.1 Path Calculation Time of Different Curvature

Algorithms Calculation time

A* 35[ms]

Diagonal A* 18 [ms]

Diagonal A*+LERP 18.1 [ms]

Diagonal A*+SLERP 18.1 [ms]

Diagonal A*+ Bézier curve 18.3 [ms]
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3.2.2.3 Time Complexity Analysis

The calculation time of the node-based path planning algorithms mentioned above is based on the ex-

pansion of the nodes collected on the open and closed list by the non-descending order. Therefore, the

data structure is more important than the algorithm structure [61]. Most of the searching algorithm’s

typical approach is to use a binary heap as the data structure. This research also uses the binary heap

in the known and partially known path planning, both cases. The two algorithms have the same data

structure using the binary heap, so a Big-O notation [62] for time complexity is the same. Based on

the Big-O notation, the time complexity of A* is O(n log(n)), where n is a total number of nodes in

the map in the best case.

However, the diagonal node expansion algorithm’s best cases are represented by 0.5 node-expansion,

and it is influenced by the total number of data amounts. The number of basic operations of the whole

algorithm can be expressed as:

c(n) = kpre + kmain + kpost

kmain = 0.5 ·O(n log(n))
(3.17)

where, n is the number of nodes in the map, kpre is a constant number of basic operations before

entering the main loop, kpost is a constant number of basic operations after the main while-loop.

kmain is 0.5 ·O(n log(n)). It can be written that the computational complexity of the diagonal node

expansion algorithm is expressed as: O(n log(n)) type, and the dominant is 0.5. If the whole c(n)

maintains the characteristic of O(n log(n)), the kpost should be a constant value. This point is why this

research is used the Shomeake’s scheme for path smoothing in the quaternion space. The kpost is an

additional procedure that can quickly solve zig-zag issues in the path that occurs after diagonal node

expansion algorithm is applied. The focusing of the kpost is on reprocessing and stability of the path

shape.

If the time complexity of each procedure is shown, kpre has a time complexity of O(1), because

it is a setting value. The kpost has O(n) time complexity because it includes the re-processing of the

data of path smoothing. The weight also has a time complexity of O(n) in the same meaning.
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Fig. 3.12 Theoratical Time Complexity of A* and D* based Algorithms

3.2 shows the diagonal node expansion algorithm and path smoothing methods reduce the number

of expanded nodes and calculation time. The expanded node of the proposed diagonal node expansion

algorithm is reduced by 40% compared with the original path. However, the calculation time of

the diagonal A* reduced almost 45% and the diagonal D* lite reduced 40%. There is a difference

between the decreased rate of the number of expanded nodes and the calculation time. The reason

for the difference will be described in the next simulation. The last factor is the path length, and the

proposed algorithm with path smoothing which has longer paths are more safe and smooth.
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Fig. 3.13 Path Planning Simulation of Known Enviornment

Fig. 3.14 Real Time Complexity of A* and Diagonal A* algorithms
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To compare the precise performance for the expanded node and calculation time of the algorithms,

the condition of the two different environments adjusts the same as possible. For the precise compari-

son, speed is set to a constant speed, and the turning boundary is set to a larger boundary for perfectly

removing the zig-zag. The turning distance is 5[grid] and the current speed is 10[grid]. 3.13 shows

the same path in the known and partially known environment because an updated path in the partially

known area is not influenced by the planned path. The weighted procedure is excluded for an accurate

comparison of algorithms. The number of expanded nodes and calculation times are shown in 3.3.

The diagonal A* with path smoothing is reducing the number of expanded nodes and the calculation

time 51% and 45% less compared with the original A*. Also, the total expanded node and total cal-

culation time of the D* lite are reduced by 32% and 31%. The decreased ratio between the number

of expanded nodes and the calculation times are not much because of less influencing factor. Thus,

under the same conditions when the influencing factor is not presented, the diagonal node expansion

algorithm shows a performance improvement of 50% in the known environment, but a performance

improvement of 30% or more in the partially known environment.
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Table 3.3 Expanded Node and Cacluation Time Comparision (Traditional vs Diagonal)

Algorithms Expanded node and calculation time

Known

Eenvironment

A*

Number of Open nodes: 169

Number of Closed nodes: 1958

Number of Expanded nodes: 2127

Calculation time: 18 [ms]

Diagonal A*

+ Smoothing

Number of Open nodes: 101

Number of Closed nodes: 986

Number of Expanded nodes: 1087 (51% less)

Calculation time: 10 [ms] (45% less)

Partially known

environment

D* lite

Number of Open nodes: 592

Number of Closed nodes: 9332

Number of Expanded nodes: 9924

First calculation: 28 [ms]

Recalculation after fire 1: 36 [ms]

Recalculation after fire 2: 39 [ms]

Total: 103 [ms]

Diagonal D* lite

+ Smoothing

Number of Open nodes: 408

Number of Closed nodes: 6439

Number of Expanded nodes: 6847 (32% less)

First calculation: 22 [ms]

Recalculation after fire 1: 25 [ms]

Recalculation after fire 2: 25 [ms]

Total: 72 [ms] (31% less)

Also, the proposed path smoothing using the modified Shoemake’s scheme, which has bounded

curvature procedure, is successfully applied to the diagonal node expansion algorithm and it does not
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influence the total calculation time of the diagonal node expansion algorithm. The smoothed path is

better than the original path, and it solves the zig-zag issues.

3.4 shows the experiment results of time complexity depends on the map size. The scenario is

the same as 3.2 and compared following the time complexity. The number of expanded nodes always

has the same number regardless of the many trials of simulations. However, the performance of the

calculation time is reduced by 45% to 50% in all circumstances. If the diagonal node expansion

algorithm is applied, the expanded nodes have 40% reduction rate if the grid distance is small. But

as the map is larger, it shows 30%. There is a reason that the two rates are not the same. The rate of

calculation time reduction is possible to increase even if the rate of expanded nodes is decreased. The

reason is path changes because of the small size of the node. The path becomes closer to obstacles

due to the property of the algorithm that finds the smallest cost because of decreasing the size of a

node. The decreased rated of the expanded node is begin to starting from 201×201[grid]. Therefore,

even if the total number of nodes is reduced by 50%, the number of expanded nodes is reduced by

30%. It means the whole procedure including map searching is around 45% between 50% including

error.

However, the time complexity performance comparison of algorithms uses node expansion rather

than computational time because of the wide error boundary. In addition, the path smoothing and

weighted procedure (kpre and kpost) have not much calculation increment even if the map is larger.

The rate of increment is theoretically O(n), so the kpre and kpost are experimentally satisfied to have

a fast time as possible with a small number of increment rates. 3.14 shows the real simulation of the

time complexity. The A* shows O(nlog(n)) and the diagonal A* shows 0.6 ·O(n log(n)) until the

number of grid n is 201, and after it shows 0.7 ·O(n log(n)). An average dominant is 0.7 compared

with the A*. As the map is larger, it is difficult to construct a completely same proportion of paths,

obstacles, etc., so it can be confirmed 10% between 20% of the error compared with the best case of

theoretical time complexity comparison.
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Chapter 3. Diagonal Grid-based Global Path Planning for Static Obstacle Environment

3.3 Simulations

3.3.1 Target Descriptiuon

A target is introduced to show the effectiveness of the proposed method. The target consists of three

parts as UAV, server, and object as shown in 3.15. There are similar systems [63], [64], network

structure, and applications [65], [66].

Fig. 3.15 Simulation Target

The three-step of 3.15 is described below:

• Step 1: UAV records the images and sends them to a server.

• Step 2: Server executes the image processing using YOLOv3 algorithm, map reconstruction,

and path planning.
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• Step 3: Objects (first responders and rescue robots) are executed using the animated path from

the server.

Step 1 and Step 3 are the main contents of data processing and communication between devices.

The description of step 2 is as follows: all image data are given from a UAV after data collection,

then the YOLOv3 algorithm finds the fire area and building area. The advantages of the YOLOv3

algorithm [67] are fast speed on real-time images, which has high frames per second (Fps), compared

with any other training methods [68]. In a real situation, the images from the UAV send 30[Fps]

images to a server, but in this study, simulation is carried out using referencing images for testing.

However, making a pre-trained model should be preceded and implemented on the server before it

finds the fire area and building area. After making the pre-trained model, the server is finding the fire

area and building area using the YOLOv3 algorithm from current recording images. Then, a 3D map

is reconstructed from a 2D map. Additionally, Unity-3D can be replaced with 3D Geographic Infor-

mation System (GIS) data. The diagonal node expansion algorithm and path smoothing procedure are

used after reconstructing the 3D map. Finally, the first responders and the rescue robots are following

the planned path using a receiver. From this target, two scenarios are selected to show advantages and

differences compared with the traditional algorithm and diagonal node expansion algorithm.

3.3.2 YOLOv3 Implementation

An overview of implemented the YOLOv3 including a pre-trained model is shown in 3.16.
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Fig. 3.16 Flow of YOLOv3 Application

To make a pre-trained model using the YOLOv3, UAV collects every 300 pictures depends on

height in 100[m], 150[m], and 200[m]. before making each pre-trained model and these models are

already implemented in the server. The 900 pictures have features as similar as possible since it does

not have differences between the pre-trained model and input data. Similar to the building area, a pre-

trained model of the fire area uses 200 real fire images. Fully 300 times training epochs take about

5[hours] for fire area detection and 12[hours] for building area detection by each height. Recording

images from UAVs are given to input, then the YOLO network is running and finds bounding boxes

and classes. After generating the pre-trained model, the specification of the fire area model result is

shown in 3.5, and the specification of the building area model result is shown in 3.6. Especially, the

building area detection at 150[m] is selected because the object recognition error rate is smaller than

the others.
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Table 3.5 Training Model Result of Fire Area

List YOLOv3 Detector

Fire point detected 416

Error point detected 12

Object Recognition error rate 2.9%

Bounding boxes location accuracy 75.6%

Table 3.6 Training Model Result of Building Area

YOLOv3 detection

under UAVs height

100m 150m 200m

Building point detected 2014 2019 2621

Error point detected 301 136 313

Object recognition error rate 14.9% 6.8% 11.9%

Bounding boxes location accuracy 72.5% 74.2% 76.7%

Note)

Object recognition error rate = Detected error point
Detected object recognition point [%]

Bounding boxes location accuracy = 100− Inaccurate bounding boxes generated
Detected bounding boxes [%]

For object recognition, a specific hardware list is used as follows. CPU: i7-7700HQ, GPU: GTX

1060, GPU Memory: 6GB. YOLOv3 uses Tensor Flow in Python. Additional GUI uses PyCharm.

GUI information is composed of building areas and fire areas. Especially, the building areas are

separated depending on size by large, medium, and small.
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3.3.3 Scenario for Different Path Depends on Known and Partially Known

Environment

A scenario shows path differences between the known environment and a partially known environ-

ment. This scenario assumes that first responders and rescue robots are going to a goal position

where people to be relieved, but fire is spreading to a wide area. The first responders and the rescue

robots are starting from the wide-road, and they save the trapped person in the goal position using

the road. The strategy to select the wider road for saving the person is a top priority. Therefore, the

first responders make the rescue strategy using the information of map and known path to find the

evacuated people. The rescue robots are assumed to assist the first responders. 3.17 shows the known

environment and 3.18 shows the partially known environment. The map information in the known

environment consists of a stationary start, stationary goal, stationary fire area, and stationary building

area. The partially known environment consists of a stationary start, stationary goal, sudden fire area,

and movable building area (on the fire situation). The yellow rectangles show the detected fire area,

and the green colors show the detected building area from YOLOv3 object detection. Small (under

400[m2]), medium (around 400-600[m2]) and large size (around over 600[m2]) of the building are

represented by yellow, blue, and red rectangles, respectively.
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(a)

(b)

Fig. 3.17 Scenario to Known Area Path Planning
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A sudden fire area appears after meeting every trigger in the partially known environment, but

the planned path is blocked when the sudden fire areas are appearing. It means the moving of rescue

robot is considered as possibly react radical area changing such as the sudden fire area, flame, and

explosion cases. Important parameters of the simulation and parameters of the bounded curvature

procedure are as follows: 720×720[pixel] images are divided into 51×51[grid]. 1[grid] distance is

2.45[m] in a real situation where the drone is around 150[m]’s height. Turning distance d is 2[grid]

boundary. Therefore, 2[grid] is 4.9[m] for the turning distance. The 2[grid] boundary is enough for

turning that close to human’s turning boundary when they are running. It is the same boundary and

speed for the normal moving of the rescue robot. The current speed c is the 1-2[grid] random speed

movement per 1[sec]. The 1-2[grid] random speed movement per 1[sec] is around 9-18[km] per hour.

And the speed is close to the average speed of human’s running speed. This setting value makes the

path more realistic the same as the movement of the first responders and rescue robots. Also, the

turning distance influenced to path smoothing then looks more smoothly visualize if turning distance

is large.
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(a)

(b)

Fig. 3.18 Scenario to Partially Known Area Path Planning
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As shown in 3.17(environment of known area), the first responder is following the planned path

such as 3.19-(a). Similar in 3.18(environment of partially known area), the rescue robot has also

followed the path such as 3.19-(b), but the path in the partially known area is updated when the

rescue robot meets every trigger. The start position of both cases has the same start position and goal

position. The center of map is (0,0), start position is (5,24) and goal position is (-18, -17).
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(a)

(b)

Fig. 3.19 Simulation Result. (a) Known area , (b) Partially known area
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3.19 represents a simulation result of two different environments. The (a) is the known area and

following the path without any change of environment from the start position to the goal position.

The A* shows the shortest distance [(a) - 1) red], so the total path length is shorter and arrival time

is fast. But it is likely to pass through dangerous areas. The diagonal A* with path smoothing [(a) –

2) blue] has a significantly smooth path and the smaller calculation time. Also, the zig-zag issue can

be seen as being little solved by path smoothing. The path of the diagonal A* with path smoothing

and weighted procedure [(a) -3) yellow] have a longer path than the diagonal A*, but it ensures fast

calculation speed and high safety. Same as (a), (b) is the partially known area and following the

path with two-time environment changes. The partially known paths are confirmed the planned path

changes.

Fig. 3.20 Simulation for Higher Speed Parameters

Especially, the turning point(red) of [(b) -3) yellow] is a different position because of the high

weight. Finally, 3.20 shows the first responder and rescue robot maintain a higher speed and large

boundary of turning ability (turning distance). The above situation is assumed at a higher speed
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to compare with section 4.3. In this case, the simulation solved the zig-zag issues more perfectly

compared with the path, which has a random speed and small turning distance. In real situations, the

sensor value will be the input parameter of turning distance and current speed.

3.4 Conclusion

In this study, the diagonal node expansion algorithm was introduced in a known environment search-

ing and partially known environment searching. The A* based path planning was applied in a known

environment and the D* lite based path planning was applied in a partially known environment to path

plan safely for the first responders and gave the path information to the rescue robot. The diagonal

node expansion algorithm reduced the expanded node and calculation time at least 30% depending

on information quantity in the grid node. Especially, 40% is reduced the number of expanded node

in static environment by using the diagonal node expansion algorithm for target scenario(Real map

size: 125[m]×125[m], Grid: 51[grid]×51[grid]). If the size of the map or information is large, the

calculation time will be reduced even more compared with an original node-based path. This method

will help to find the shortest and safest path for the first responder and rescue robot. After the path

planning, the modified Shoemake’s scheme and bounded curvature procedure were applied for path

smoothing on the 3D environment. This proposed method was removed zig-zag issue after the di-

agonal node expansion algorithm applied on the 3D environment with less expanded node and fast

calculation, especially in a partially known area. If new information is updated on the map, path plan-

ning and path smoothing should be re-planed. The proposed path smoothing method did not influence

too much of calculation time. Also, the weighted procedure was possible to apply for safety. These

additional procedures which are path smoothing and the weighted procedure had small calculation

time. If the map is larger, the smaller calculation time of the additional procedure had advantages of

total calculation time. Finally, the number of expanded nodes and calculation time of the proposed

diagonal node expansiona algorithm and path smoothing were reduced compared with the time of

the original node-based path planning, and then the path was changed to the safe path for the first

responder.
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Chapter 4

Auto-Splitting D* lite Global Path Planning

for Dynamic Partially Known Area

4.1 Research Aims

In this study, the research target is to design a global path planning method for rescue robots in a

large disaster area. The environments are generally dynamic and partially known areas, which is

why global path planning is adopted. The global path planning method is capable of giving more

information in the dynamic and partially known area than static and known area. Furthermore, this

information increases the survival rate of those people in danger. It means that the path planning

method requires a shorter path and a faster execution time. The shorter path can decrease the arrival

time to the destination. Also, the faster execution time for updating the path improves the performance

of the algorithm when the environment is dynamic.
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Fig. 4.1 Research Aims (Chapter 4)

Fig. 4.2 shows the flow of the research. Most of the algorithms are processed on the server. The

server sends the information of the planned path based on the robot’s current location along with the

obstacle information provided by the UAVs to the rescue robot. Then, the robot follows the global

planned path with an implemented automatic control system. this study consists of five parts to show

the effectiveness of a proposed global path planning method.
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Fig. 4.2 Flow of Research Overview (Robots are composed in the order of data flow in Fig. 4.1, and
this research focuses on 2. Global path planning method. A typical example of 1. Object detection is
the use of a You Only Look Once (YOLO) algorithm.

Previous research on the global path planning methods in the dynamic and partially known area

for large areas is described below. The common target of the algorithms is to achieve a shorter path

and a faster execution time. The dynamic global path planning methods are divided into several rep-

resentative categories based on the characteristics of the algorithm. Grid-based algorithms, typically

D* and D*lite algorithms, have an advantage in dynamic environments due to their fast performance.

Nevertheless, their performance decreases significantly as a map grows in size [10,11,49,69]. In order

to maintain fast computational performance, methods to reduce expanded nodes have been proposed

in several ways. A typical method is a weighted method [70, 71]. However, the weighted methods

can sometimes perform worse than the traditional algorithms [72]. In many situations, there is a gen-

eral trend where a higher weight in the weighted cost method leads to a faster search. Nevertheless,

there are also circumstances where a higher weight leads to a slower search. The weighted search is

60



Chapter 4. Auto-Splitting D* lite Global Path Planning for Dynamic Partially Known Area

fast if there is a strong correlation between the estimated cost of getting to a goal node from current

node and the number of nodes between current node and the nearest goal measured in edge count. In

general, the weighted cost reduces the number of expanded nodes, but in situations where the costs

are too highly weighted, the number of expanded nodes cannot be reduced due to the reason that the

map becomes similar to a free-cost map. Hence, the performance will be the same or even worse than

the traditional algorithm. Therefore, it is necessary that the grid-based algorithms require to reduce

expanded nodes in other ways. Sampling-based algorithms, typically RRT and RRT* algorithms, are

less capable of performing tasks in dynamic environments, but have better performance as the map

grows in size [73–76]. The traditional approaches such as the potential fields and their related algo-

rithms are not suitable for the dynamic and partially known environment, and the execution time is

not fast enough [77–81]. Discrete optimization algorithms such as particle swarm optimization are

used in both global and local path planning methods. Nonetheless, most algorithms can only deal with

static obstacles. Their performance for moving obstacles is not sufficient enough to perform dynamic

path planning in the large area [82–84]. Now, the current trend is to use sampling-based algorithms

along with discrete optimization algorithms, and the machine learning method with the grid-based

algorithm. [85–87] However, as the calculation performance of various chipsets has increased rapidly

due to the development of the semiconductor industry, the research aimed at fast global path planning

in large areas is actively underway. Consequently, the grid-based global path planning methods are

being considered again to obtain high speed in the dynamic and partially known area. The grid-based

global path planning methods work well for the dynamic and partially known areas, yet large dimen-

sion area processing is always the weak point. Especially, unnecessary dynamic areas exist in D*

based algorithms [88–91].

To reduce the unnecessary areas, which means unnecessarily expanded nodes, of the D* based

algorithm, this research proposes a way to pre-split a map using an Auto-Splitting D* lite algorithm

denoted as AS-D* lite. The AS-D* lite algorithm uses an automatic clustering algorithm that cal-

culates the optimal map segmentation automatically using the information of the obstacle’s location.

On the other hand, how to split an area automatically is just as important as removing unneces-

sary nodes for path planning. For splitting the map automatically, an automatic-clustering method is

commonly used. The automatic-clustering methods are divided into different types such as centroid-
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based, connectivity-based, and density-based. The centroid-based automatic clustering is appropriate

for determining the number of clusters for unlabeled data [92, 93]. The connectivity-based automatic

clustering is suitable for hierarchical clustering [94, 95]. The density-based automatic clustering ap-

plies autonomous machine learning techniques and is widely used for finding clusters of any arbitrary

shape, not only spheres [96, 97]. However, the centroid-clustering method is considered for splitting

the maps through the path planning conditions, which are large disaster areas including dynamic and

partially known, to achieve a fully automatic splitting method with a shorter calculation time. Nev-

ertheless, there are some issues in the previous centroid-based automatic clustering methods with the

grid-based global path planning methods for the dynamic environments. The centroid-based auto-

matic clustering methods usually require a long processing time. This is a common issue that occurs

in these algorithms. A k-means clustering and a mean-shift clustering-based algorithms are typical

centroid-based algorithms. The k-means clustering-based algorithm takes a long time to determine the

k-value. This means that the grid-based path planning method takes a long time to achieve an optimal

effect by classifying a map based on the obstacles in the map [98]. The mean-shift clustering-based

algorithms also have similar issues such as the repeated calculations. The repeated calculation car-

ried out to find a center point rather than the k-value [99, 100]. To shorten the processing time for

determining the k-value comparing with the other methods, a gap statistics is applied to find an opti-

mal k-value, which is a splitting number, for the k-means algorithms. Moreover, a Voronoi algorithm

is combined with the k-means algorithm to draw a segmented map automatically with the optimal

k-value.

To sum up, Section 4.1 describes the current issues of previous global path planning methods

in the dynamic and partially known area. Also, auto-clustering methods are summarized to select

a better method to apply with the proposed global path planning method, which are solutions to

the current issues. Section 4.2 describes details of the proposed algorithm, and the performance is

analyzed through a time complexity method in special cases. Section 4.3 shows the simulation of

special cases, algorithm performances, large city map simulations and large rural map simulations.

Section 4.4 describes the conclusions of this study.
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4.2 Auto-Splitting D* lite

4.2.1 Auto-Splitting Method for Auto-Clustering and Drawing

As explained in the Section 4.1, it is necessary to pre-divide a map to eliminate unnecessary areas

when planning the path with the D* based algorithm on the large map. Accordingly, the automatic

clustering method is used as a way to separate the map in this study. However, the previous centroid-

based automatic clustering methods require a long processing time [98,101]. Especially, the k-means

clustering-based algorithm takes a long time to determine the k-value optimally. Therefore, the gap

statistics is used to obtain the optimal k-value, which is the splitting number, for the k-means al-

gorithms to achieve a shorter processing time comparing with all the other methods. The Voronoi

diagram is combined with the k-means algorithm to draw a splitting map automatically with the opti-

mal k-value.

Fig. 4.3 Overview of Auto-spltting Method

Fig. 4.3 shows the overall flow for the auto-splitting method. The auto-splitting method proceeds

in the following steps:
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Input: node-based map with obstacle-nodes.

Step 1. Select the k-value by the gap statistic.

Step 2. Divide the map by the k-means clustering algorithm with the Voronoi diagram.

Output: a split map for path planning.

The information of the map retrieved by a drone is used as the input, and the grid map is generated

according to the location of the obstacles. With the information collected, the optimal k-value can be

found by the gap statistics. The details are described in Subsection 4.2.1.1. Then, the map is split by

the line

4.2.1.1 Gap Statistics

The gap statistics method is applied for selecting the k-value before the k-means algorithm splits the

map. There are other automatic k-means clustering methods such as combining a Silhouette coef-

ficient [102] with the k-means algorithm. However, most of the previous methods require a long

calculation time to determine the k-value [98, 101]. Furthermore, determining the k-value with learn-

ing algorithms for complete automation tends to make the proceeding time longer [103]. Centroid

clustering methods such as mean-shift clustering-based methods also require longer calculation time

because of the centroid finding issue, which means repeated calculations.

The selected method based on the gap statistics is discussed by Tibshirani et al. [104] for estimat-

ing the number of clusters in a set of data. In this study, the gap statistics is used to find an optimal

k-value for the k-means algorithm with rapid calculation in the pre-processing step. It should be noted

that the first step in the Auto-Splitting D* lite (AS-D* lite) algorithm is operated under a static envi-

ronment. This method shows a faster processing time than the k-means with the Silhouette method,

which has been frequently used.
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List of Symbols in Gap statistics

n Number of node (x-axis)

m Number of node (y-axis)

N Total number of obstacle node

(x,y) Position of each node

G Set of ground nodes

O Set of obstacle nodes

R Set of randomized obstacle nodes

oi(x,y) Element of obstacle nodes

(x′,y′) Randomized position of each nodes

rd
i (x

′,y′) Element of randomized obstacle nodes

M Sample size determination

Z Z score

EBM Error bound for the mean

Wk Within-cluster sum of squares

using obstacle nodes

W ∗
kb Within-cluster sum of squares

using randomized nodes

sdk Standard deviation

sk Simulation error

Let us consider an n[node]×m[node] map having a total of N obstacle nodes. The ground node

is represented as G = {(x,y)|x = 1,2, . . . ,n,y = 1,2, . . . ,m}. A set of obstacle nodes O is a subset,

which belongs to the set of ground nodes G. The obstacle nodes O is denoted as O = {oi(x,y)|i =

1,2, . . . ,N}. Also, let us consider a set of randomized obstacle nodes R having a total of B patterns,

which is represented as R = {rd
i (x

′,y′)|i = 1,2, . . . ,N,d = 1,2, . . . ,B}. The gap statistics is used to

determine an optimal k-value compared to each pattern. The position of random obstacle nodes are

represented as (x′,y′) by randomizing function rand(). The random obstacle nodes are limited based

on the obstacle nodes as given by
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
m
x

in(oi(x,y))< rd
i (x

′,y′)< m
x

ax(oi(x,y))

m
y

in(oi(x,y))< rd
i (x

′,y′)< m
y

ax(oi(x,y))
(4.1)

The number of total patterns B is recommended to simplify the calculation process using a func-

tion f loor() with the sample size determination M as given by

M ∆
=

(
Zσ

EBM/2

)2

(4.2)

f loor(M) = max{B ∈ Integer|B ≤ M} (4.3)

Where Z is a standard z-score, and EBM is the error bound for a population mean. For the calculation

example, if a randomized data set is assumed to follow N(0,1) when the desired confidence interval

is 90%, then the z-score is 1.645. When the desired margin of error is ±0.5%, then the EBM is 1. In

this situation, the confidence interval is 90%±0.5%, then the value of f loor(M) is f loor(10.82)=10

from equation (4.2). Other distributions, such as a uniform distribution, are possible to apply for the

confidence interval. Depends on the distribution, the standard deviation changes the B value.
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(a) (b)

(c) (d)

Fig. 4.4 Procedure of Gap Statistics. (a) Detecting the postion of obstacle nodes, (b) Generating the
location of the random node based on the position of the obstacle nodes, (c) Calculating within-cluster
sum of squres, (d) Calculating the Gap(k) and using method to select k-value

The gap statistics Gap(k) for k-value is defined as

Gap(k) ∆
= (

1
B
)

B

∑
b=1

log(W ∗
kb)− log(Wk) (4.4)

Where Wk is calculated by the obstacle nodes, and W ∗
kb is calculated by the randomized nodes in the

map, respectively. The standard deviation sdk is calculated by

67



Chapter 4. Auto-Splitting D* lite Global Path Planning for Dynamic Partially Known Area

sdk =

( 1
B

) B

∑
b=1

{
log(W ∗

kb)−
(

1
B

) B

∑
b=1

log(W ∗
kb)

}2
 1

2

(4.5)

The simulation error sk is calculated by the standard deviation sdk and the value B such as

sk = sdk
√

(1+1/B) (4.6)

The optimal k-value is the smallest k-value which satisfies the equation:

Gap(k)≥ Gap(k+1)− sk+1 (4.7)

Fig. 4.4 shows the working principle of the gap statistics. From Fig. 4.4 (d), the best k-value is

indicated as k = 3. The gap statistics is applied for selecting the best k-value before using the k-means

clustering algorithm combined with the Voronoi diagram to split a large map.

4.2.1.2 Combined k-means Clustering with Voronoi Diagram

The k-means clustering algorithm is combined with a Voronoi diagram for splitting the large map,

and determines the splitting line automatically. Also, the auto-splitting method needs to initialize

the positions of the cluster centers and the initial k-value. The k-means algorithm is not faster than

heuristic algorithms. However, the AS-D* lite determines an optimal k-value more conveniently than

the heuristic algorithms [101, 105]. The AS-D* lite is briefly represented in three steps as follows:

Step 1. Input every cluster center from the k-means clustering.

Step 2. Draw the Voronoi diagram based on the cluster centers.

Step 3. Draw the splitting line after the Voronoi diagram is finished.
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List of Symbols in k-means with Voronoi

CR Set of cluster regions

G Set of ground nodes

Os Sub set elements of obstacle nodes

in each cluster center

N Total number of obstacle node

Ns Total number of elements belong to Os

d js Distance between obstacle nodes

and cluster centers

os
j(x,y) Position of obstacle nodes

cs(x,y) Position of each cluster center

cs Set of cluster center

ds Distance between ground node

and cluster centers

Wk Within-cluster sum of squares

using obstacle nodes

The k-means clustering is a method for separating data into k sets, and is applied for partitioning

obstacles into k regions on a two-dimensional map. Then, the map is partitioned into k regions,

which is the same as the k-value used in the k-means clustering algorithm. The map is composed of

obstacle nodes and ground nodes. The position data of obstacle nodes needs to be collected from the

map, and an initial k-value needs to set before applying the k-means clustering method. Then, the

two-dimensional coordinate of each obstacle node in the map is stored. The initial k-value is set as

kinitial ≥ 2.

Also, the initial k-value represents the lower limit of an expected number of clusters. The Voronoi

diagram is applied to classify each ground node in the map to one of the cluster regions. The large

map is divided into k cluster regions, and the nodes which have the same distance to two different

regions are defined as the splitting lines.

69



Chapter 4. Auto-Splitting D* lite Global Path Planning for Dynamic Partially Known Area

The cluster regions are represented as CR, and each cluster region is represented as

CR = {CRs|s = 1,2, . . . ,k}, where G =
⋃k

s=1CRs. Each cluster center is denoted as cs(x,y) in the

clusrter region CRs. The obstacle nodes in each cluster region are represented as Os = {os
j| j =

1,2, . . . ,Ns}, for example {os
1,o

s
2, . . . ,o

s
Ns
} in CRs. Therefore, the Os has the total of Ns obstacle

nodes. The total number of obstacle nodes is equal to the sum of the number of nodes in each cluster

region N = ∑
k
s=1 Ns. To draw the Voronoi diagram, a distance d js between obstacle nodes os

j(x,y) and

cluster centers cs(x,y) in the cluster region CRs are defined as

d js = |os
j(x,y)− cs(x,y)|2 (4.8)

A value of the within-cluster sum of squares Wk for each cluster region CRs is defined as

Wk =
k

∑
s=1

1
2Ns

∑
os

j,cs∈CRs

d js (4.9)

The initial position of each cluster center is set randomly. A final position of each cluster center

is set by

argmin
cs

Wk (4.10)
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Fig. 4.5 Splitting Map by k-means with Voronoi Diagram. Step 1: Make the randomized area to
find the k-means clustering ; Step 2: Find the best k-value ; Step 3: Input c1,c2,c3 from the k-means
clustering ; Step 4: Divide the cluster region CR using the distance between os

j(x,y) and cs(x,y) ; Step
5: Calculate and draw the Voronoi diagram using equation (4.12)

According to the position of cluster centers, the map can be divided into a few regions using the

gap statistics method. To divide the splitting line of each separate region, the Voronoi diagram is

applied. The Voronoi diagram is a data structure investigated extensively in the domain of compu-

tational geometry. Originally, the Voronoi diagram characterizes the regions of proximity for a set

of sites in a plane where the distance is defined by the Euclidean distance [101]. In this study, the

Voronoi diagram is applied for grouping every point into the nearest cluster region.

For the Voronoi diagram, the ground nodes and the cluster center of the map selected by the

k-means algorithm are required. The distance between a ground node (x,y) and the cluster center

cs(x,y) in the cluster regions CRs are defined as

ds = |(x,y)− cs(x,y)|2 (4.11)
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Then, the regions are divided by the splitting lines based on the condition given as

ds = ds′, cs ̸= cs′ (4.12)

After applying the k-means clustering algorithm with the Voronoi diagram, the large map can be

split into k regions with splitting lines shown on the map. An example of the k-means clustering

combined with the Voronoi diagram splitting a map is shown in Fig. 4.5.

4.2.2 Auto-Splitting D* lite

The issues of the D* based algorithms containing unnecessary areas are mentioned in the previous

sections. To reduce the unnecessary areas of the D* based algorithms, this study proposes a way to

pre-split the map using the AS-D* lite. The AS-D*lite adopts an automatic clustering algorithm that

automatically calculates the optimal map segmentation based on the location information of obstacles.

(a) (b)

Fig. 4.6 Unnecessary Dynamic Areas. (a) Expanded area in traditional D* lite, (b) Unnecessary area
while dynamic path planning runs
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Fig. 4.7 Flow Chart of Auto-Splitting D* lite
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The unnecessary areas are defined as the areas that are not required for the path planning method

when calculating from a current node to a target node. Let us have a close look at Fig. 4.6, it can

be seen that C6, C7, C8, D6, D7, D8, G2, G3, and G4 are the unnecessary areas. To reduce these

unnecessary areas, the method of generating the splitting map in advance when calculating the path

is described in Fig. 4.7. It is represented in three steps as follows:

Step 1. Plan the shortest path in an initial map state. (static path planning)

Step 2. Split the large map using the auto-splitting method. (auto-splitting method)

Step 3. Update the path if the map changes in the splitting area where the robot exist. (dynamic path

planning to avoid moving obstacle) Else, keep the path. (dynamic path planning to reduce

unnecessary areas)

(a) (b) (c)

(d) (e) (f)

Fig. 4.8 Re-planned Nodes by Traditional D* lite. (a) Planned path (S-I-II-III-G), (b) Dyamic osbtacle
block the path (II-III-G), (c) New path generated (IV-V-VI-G), (d) Dyamic osbtacle escape the path,
(e) New path generated (VII-G), (f) Find the goal (G)

Fig. 4.8 shows an example of re-planned nodes by traditional D* lite, while Fig. 4.9 shows the

re-planned nodes by the AS-D*lite accordingly. Circle with slashed-area in Fig. 4.8 (a) represents a
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current position, Node with slashed-area represents a goal node (D5), and Circle with checked-flag

(D3) represents the moving obstacle (D3→ C4 → B5), respectively. Also, Black nodes represent the

obstacle nodes (C1, C2, and C3), White nodes represent the movable nodes, and Gray nodes represent

the planned nodes, respectively.

(a) (b)

(c) (d)

Fig. 4.9 Re-planned Nodes by Auto-Splitting D* lite. (a) Planned path (S-I-II-III-G), (b) Dyamic
osbtacle block the path (II-III-G), (c) Unnecessary node reducement (III-G), (d) Moved to next area

As shown in Fig. 4.9 (a), the rescue robot(A1) is in area 1 and moving to the goal(D5). At this

point, the planned path is A1, B2, B3, C4, and D5, and the moving obstacle(D5) appears in the area

2. Fig. 4.9 (b) shows the second step of the rescue robot(B2), and it remains in the area 1 and is

moving to the goal(D5). The remaining planned path at this step is B2, B3, C4, and D5. The moving

obstacle(C4) is currently moving in the area 2 and moves to the planned path B3, C4, and D5, but the
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AS-D* lite algorithm does not re-plan the path because the rescue robot and the moving obstacle are

not existing in the same area. Fig. 4.9 (c) shows the third step of the rescue robot(B3), and it still

remains in the area 1 and is moving to the goal(D5). The remaining planned path is C4 and D5. The

moving obstacle(B3) is now in the area 1, but it is not blocking the path. Therefore, the algorithm

does not re-plan the path. Fig. 4.9 (d) shows the fourth step of the rescue robot(C4). The rescue

robot enters the area 2 and is moving to the goal(D5). The only remaining node of the planned path

is D5. Now, the moving obstacle has disappeared. The goal and planned path remained in the same

area. The AS-D* lite shows a significant difference in the total number of re-planned nodes(RPN)

comparing to the traditional D* lite. Here, RPN is defined as the number of re-planned nodes. Then,

the 7 re-planned nodes(RPN) are generated in the traditional D* lite in total, but only 3 re-planned

nodes(RPN) are generated in the AS-D* lite in the case of Fig. 4.8 and Fig. 4.9.

4.2.3 Analysis of Auto-Splitting D* lite

The proposed AS-D* lite is an algorithm that removes unnecessary areas with the auto-clustered

methods based on the obstacles’ locations. Therefore, theoretical analysis such as the time complexity

of the AS-D*lite is discussed. In general, it is difficult to calculate the time complexity of the AS-D*

lite algorithm. First, the auto clustering algorithm re-calculates when the static map updates globally.

However, the re-plans whenever the dynamic obstacle changes. Secondly, the number of obstacle

nodes is a unit for the auto-clustering, but the number of grids n in a map is another unit for the

time complexity in path planning. Therefore, an expected value for the number of re-planned nodes

E(RPN) is newly defined to represent as the calculation time that varies according to the map size and

k-value. E(RPN) is introduced to analyze the traditional D* lite and the AS-D* lite using the total

number of re-planned nodes (RPN) as shown in Fig.4.10.
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(a) (b)

Fig. 4.10 Number of Re-planned Node(RPN) in n× n Nodes. (a) Re-planned nodes of Traditional
D* lite until step i = n−1, (b) Re-planned nodes of AS-D* lite until step i′ = m−1 (m represents the
number of the planned nodes in region k)

In Fig.4.10, S node represents a start node (xn,yn), G node represents a goal node (x1,y1), Gray

nodes represents planned path nodes and Black circle represents an obstacle node. Especially, the ob-

stacle node that positioned in planned path node means the obstacle blocks the planned path. Contin-

uously, X marks represent re-planned node r, and Dashed lines represent k-region (1,2, . . . , j, . . . ,k)

which is the same number of k-value. Finally, i(i = 0,1,2, . . . ,n− 1) is the number of step for trad-
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tional D* lite, and i′ is for AS-D* lite.

For the traditional D* lite:

Let us consider a square map of n[node]×n[node], a start node (xn,yn) and a goal node (x1,y1)

in the map. Also, a robot moves from the start node to the goal-node along the planned path nodes

as (xn,yn),(xn−1,yn−1),(xn−2,yn−2), . . . ,(x1,y1). The robot moves one node in every step. Assume a

random obstacle node with U(1,n2) appears anywhere on the map.

List of Symbols for E(RPN) - Traditional D* lite

r Number of the re-planned node

i Number of steps. (i = 0,1,2, . . . ,n−1)

T Event of the planned path being re-planned

if the random obstacle appears

on any planned path node that blocks the path.

Tn Event T happens from (xn,yn) to (x1,y1)

R(Tn) Number of the re-planned node

when Tn occurs

P(Tn) Probability of a re-planned path generated

If the robot is moving on the planned path and the random obstacle appears on any planned path

node that blocks the path, then the traditional D* lite generates r(r = n,n−1, . . . ,1) re-planned nodes.

The location of the robot (xn,yn) changes to the (xn−1,yn−1). After one step, the previous node (xn,yn)

is deleted from the planned path nodes. When the robot doesn’t have any movement, then the number

of step is i = 0; when the robot moves from (xn,yn) to (xn−1,yn−1), the number of step is i = 1; and

the maximum number of steps represents as i = n−1. For the traditional D* lite, the expected value

for the number of the re-planned nodes E(RPN) is represented as
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E (RPN) =
n−1

∑
i=0

P(Tn−i)R(Tn−i)

=
n−1

∑
i=0

1
n2 (n− i)2

(4.13)

Table 4.1 Procedure of E(RPN) in Traditional D* lite

Tn (xn,yn) to (x1,y1)

R(Tn) n

P(Tn)
n
n2

E(Tn)
n
n2 ·n

Tn−i (xn−i,yn−i) to (x1,y1)

R(Tn−i) n− i

P(Tn−i)
n−i
n2

E(Tn−i)
n−i
n2 ·n− i

T1 (x1,y1) to (x1,y1)

R(T1) 1

P(T1)
1
n2

E(T1)
1
n2 ·1

Table 4.1 shows the outlines of the entire process for computing E(RPN) in the Traditional D*lite.

For the Auto-Splitting D* lite:

Let us consider the square map which is split into k regions by the AS-D* lite algorithm. Also,

assume each k-region (1,2, . . . , j, . . . ,k) contains the same number of planned path nodes n/k (nat-

ural number). Here, k is a number of regions split by the k-value, and j( j = k,k− 1, . . . ,1) are any

area among the regions automatically split by k. Then, the planned path nodes starting from k region
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through j region to the final region 1 are represented as

(
x nk

k
, y nk

k

)
,
(

x nk
k −1, y nk

k −1

)
,
(

x nk
k −2, y nk

k −2

)
,

· · · ,
(

x nk
k −( n

k−1), y nk
k −( n

k−1)

)
, · · · ,

(
x n j

k
, y n j

k

)
,
(

x n j
k −1, y n j

k −1

)
,
(

x n j
k −2, y n j

k −2

)
,

· · · ,
(

x n j
k −( n

k−1), y n j
k −( n

k−1)

)
,

· · · ,(x1, y1)

List of Symbols for E(RPN) - AS-D* lite

r Number of the re-planned node

in each region

m Number of the planned nodes in region k

i′ Number of steps in each region.

(i′ = 0,1,2, . . . ,m−1)

A Event of the planned path being re-planned

if the random obstacle appears

on any planned path node that blocks the path

Akm Event A happens from

(xkm,ykm) to (x1,y1) in region k

R(Akm) Number of the re-planned node

when Akm occurs

P(Akm) Probability of a re-planned path generated

If the robot is moving on the planned path in the region j, and the random obstacle appears on any

planned-path node that blocks the path in the region j, then the AS-D* lite generates the number of

re-planned nodes r(r = n,n−1, . . . ,1). The node of the robot (xkm,ykm) changes to the (xkm−1,ykm−1)

in the region k. After one step, the previous node (xkm,ykm) is deleted from planned path nodes. For

the AS-D* lite, the expected value for the number of the re-planned nodes E(RPN) is represented as
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E (RPN) =
m−1

∑
i′=0

k

∑
j=1

P(Akm−i′)R(Akm−i′)

=
m−1

∑
i′=0

k

∑
j=1

1
n2

(
m− i′

)(
jm− i′

) (4.14)

Table 4.2 shows the outlines of the entire process for computing E(RPN) in the AS-D*lite. Not

only area j but also area k should be calculated and added. The E(RPN) in different map size

n for equations (4.13) and (4.14) are shown in Fig. 4.11. The x-axis shows the size of the map

(n[node]×n[node]) and the y-axis shows the expected value for the number of the re-planned nodes

E(RPN).

Table 4.2 Procedure of E(RPN) in AS-D* lite

Akm First node to last node in region k

R(Akm) n

P(Akm)
n/k
n2

E(Akm)
n/k
n2 ·n

Akm−i′ i′ step of node to last node in region k

R(Akm−i′)
(nk)

k − i′

P(Akm−i′)
(n/k)−i′

n2

E(Akm−i′)
(n/k)−i′

n2 · (nk
k − i′)

A11 Last node to last node in region k

R(A11) 1

P(A11)
1
n2

E(A11)
1
n2 ·1
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Fig. 4.11 E(RPN) in Different Map Sizes n for Equations (4.13) and (4.14)

The calculation time of the grid-based path planning methods is based on the expansion of the

nodes collected on the open and closed list by the non-descending order. Therefore, the data structure

and input arrays are more important than the structure of the algorithm. The time complexity is as

follows if we focus on one-dimensional node movement. D* lite algorithms run like an A* algorithms,

so the time complexity of the first iteration is O(n) (where n is the total number of nodes in graphs)

in the worst case. For the path updates, the number of obstacles that have been updated can be much

more than A* in the worst case. However, this research takes place on a two-dimensional map rather

than a one-dimensional graph. Accordingly, the time complexity increases to O(n2), and this is also

the reason why the binary heap sorting O(nlog(n)) is basically used to reduce the time complexity.

Most of the searching algorithm’s typical approach is to use a binary heap if the structure is the same

as this research [106]. This research also uses the binary heap, so a Big-O notation for time complexity

is the same. Based on the Big-O notation, the time complexity of D* lite is O(nlog(n)), where n is

the total number of the nodes in the map in the best case. However, the AS-D* lite algorithm’s best

cases are represented by 1/k node-expansion, and it is influenced by the total amount of the data. The

number of basic operations of the whole algorithm can be expressed as:

Ttotal = Tpre + Tmain + Tpost

Tmain = 1/kO(nlog(n))
(4.15)
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where, n is the number of nodes in the map; Tpre is a constant number of basic operations before

entering the main loop; Tpre is a constant number of basic operations after the main while-loop. Tmain

is 1/kO(nlog(n)). It can be written that the time complexity of the AS-D* lite algorithm is expressed

as O(nlog(n)) in worst cases, and the dominant is 1/k compared to traditional D* lite theoretically.

The time complexity of heuristic search algorithms such as BFS (Breadth-first search), Dijkstra’s, and

A* changes depending on the sorting methods [107,108]. So it is better to compare the expected value

for the number of re-planned nodes and the average update nodes in different map sizes as shown in

Fig. 4.12 and Fig.4.13. The details are described in the simulation section.

To analyze the time complexity of the preprocessing part Tpre of the map segmentation, it is neces-

sary to understand the theoretical time complexity of the k-means clustering and the time complexity

of other methods comparable to the k-means. The k-means based clustering methods such as the

k-means, a k-modes [109], and a k-medoids [110] are compared, and the density-based mean-shift

algorithm [111] is compared as follows.

To analyze the time complexity of the k-means based algorithm according to this study, a few

variables c, k, and i need to be introduced beforehand. The c variable represents the number of

obstacle nodes in the k-means based algorithm. Note that we used the commonly expressed n variable

in the Tmain part, while the number of bobstacle c is used instead of n variable in the Tpre part. As

the size of the map increases, the number of obstacles also increases, so variable c is adjusted. k

represents the number of regions and is fixed to analyze the time complexity according to the size of

the map. i is the iterations until convergence, and it is set with the maximum iterations in this study.

As an important condition, k << c and i << c are required.

Firstly, the k-means-based clustering methods have O(cki) time complexity. In this study, the k-

means has aims to partition the number of obstacles c into k regions in which each obstacle belongs to

the regions with the nearest mean (cluster centers or cluster centroid). The increment of obstacles can

be interpreted in the same way as the map size increase. For accurate analysis with other algorithms,

an increase in the c value is focused, k=10 is fixed, and the maximum iterations are set to 100.

Therefore, it is predictable that the time complexity increases with c.

Secondly, the k-modes-based clustering also have O(cki) time complexity. The k-modes is an

83



Chapter 4. Auto-Splitting D* lite Global Path Planning for Dynamic Partially Known Area

extended method of the k-means but using the nearest modes (most frequent value) instead of the

nearest mean. Using the nearest modes in the k-modes has advantages to categorical data types.

Compared with k-mean, the information of obstacle’s position is assumed as categorical data. All the

values of c,k and i are the same as the k-means.

Thirdly, a representative algorithm of the k-medoids-based clustering called PAM (Partitioning

around medoids) has O(ik(c − k)2) time complexity [112]. In contrast to the k-means clustering

algorithms, the k-medoids clustering algorithms choose actual data points as centers (medoids or

exemplars). Thereby allows for greater interpretability of the cluster centers than in the k-means

algorithms, where the center of a cluster is not necessarily one of the input data points. All the

remaining medoids (c− k) aimed to find the set of medoids that has the minimum cost function. The

loop would be k for looping through all the medoids (c−k). Then it will be (c−k) to loop through all

the non-medoid data points. Then (c− k) again for choosing the random medoid. Therefore, the k-

medoids have O(ik(c− k)2) time complexity if the iteration is i. The analysis focuses on the increase

in c value, k=10 is fixed same as the other methods. However, the maximum iterations are set to 10

because of the slow convergence.

Finally, the mean-shift-based clustering methods have O(c2i) time complexity. The mean-shift

clustering algorithm is a mode-seeking algorithm. The mean-shift is a hill-climbing algorithm that

involves shifting kernels iteratively to a higher density region until convergence. Therefore, a band-

width of the kernel is used to simulate random samples. It means, instead of c, the bandwidth would

increase when the map size changes. At every iteration, the kernel is shifted to the centroid or the

mean of the points within it. In the case of mean-shift algorithms, the time complexity can be ex-

pressed in the same way as the k-means algorithms, but due to the characteristic of the mean-shift

algorithms, c increases only when the bandwidth of the kernel increases. Therefore, the bandwidth of

the kernel is adjusted in this study. The bandwidth according to the map size is as follows: 20×20-

1.8, 40×40-3.6, 60×60-5.4, 80×80-7.2, 100×100-9, 120×120-10.8, 140×140-12.6, 160×160-14.4,

180×180-16.2, 200×200-18.
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Fig. 4.12 Real-Time Performance (Tpre)

Fig.4.12 shows the simulation of real-time performance for the Tpre. Random obstacles are set to

25% of the map. Therefore, c is 0.25n2, but the mean-shift uses the bandwidth. The important point is

that even if c is 0.25n2, the actual c and n should not be substituted. Since this represents the order in

the time complexity, Tmain and Tpre are separated. The result shows that the changes in the calculation

time are almost the same as the theoretical time complexity. In terms of performance, the k-modes

algorithms are the fastest, and the k-medoids algorithms are judged to be difficult to use. In terms of

the scalability of the algorithm, the k-means algorithm has the best balance. Therefore, the k-means

algorithm is selected. The k-modes algorithm is also possible to be selected due to its advantages for

data types with categorical variables.

In this section, the reason for the algorithm selection is explained through time complexity analysis

in various situations of Tmain and Tpre. In addition to the clustering algorithm, Tpre includes a method

for determining the k value and separating the map. Since calculations are added according to the

time complexity of these clustering algorithms, the order follows the higher order of the clustering

algorithm. The real-time performance for the entire Tpre is shown in Section 4.1. Auto-splitting

method for Auto-clustering and drawing.
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4.3 Simulations

4.3.1 Auto-Splitting Method for Auto-Clustering and Drawing

Simulation for the AS-D*lite algorithm is carried out in the Unity 3D environment. Simulation PC

has a performance of CPU: i7-7700HQ, GPU: GTX 1060, RAM: 16GB. In the AS-D*lite, the auto-

clustering methods are able to segment the maps automatically. The ways to determine the k-value are

compared with the auto-clustering methods such as the Silhouette coefficient and the gap statistics.

All algorithms are applied with the Voronoi diagram. The simulation condition of the gap statics and

the Silhouette coefficient is given at 40,000 nodes, which will be the same as the city map simulation

shown later.

Table 4.3 Calculation Time of Auto Clustering Method

Map size k-means mean-shift k-modes k-medoids

20×20 0.0014 0.0015 0.0011 0.1419

40×40 0.0049 0.0075 0.0027 1.9937

60×60 0.0128 0.0176 0.0060 9.7364

80×80 0.0184 0.0290 0.0085 31.2622

100×100 0.0303 0.0537 0.0131 77.6559

120×120 0.0453 0.0958 0.0192 162.7345

140×140 0.0927 0.1467 0.0259 296.2298

160×160 0.0870 0.1949 0.0311 509.5957

180×180 0.0994 0.2408 0.0427 798.9193

200×200 0.1115 0.3558 0.0534 1227.0020
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Table 4.4 Calculation Time of Auto-splitting Method(combinations)

Method Calculation time

Silhouette coefficient approach with k-means 11.47[s]

Gap statistics approach with k-means 2.50[s]

Theoretically, the calculation time itself is not large if excluding the clustering part, but the total

calculation process takes a long time in the simulation due to the reason that graphical expressions

are used in the map. As shown in Table 4.3, the gap statistics are running with the k-means algorithm,

so the time complexity is the same. However, the Silhouette coefficient has higher order than the time

complexity of the k-means algorithm. Therefore, it takes more time to calculate. From Table 4.3 to

Table 4.4, the k-means and k-modes algorithms have the lowest time complexity. The k-means algo-

rithms use the nearest mean and have advantages for numerical variables. The k-modes algotirhms use

the nearest modes (most frequent) and have advantages for categorical variables. Both k-means based

clustering algorithms are fast for larger maps. We decide to apply the k-means algorithm because

of the scalability it has. Moreover, there is not much significant difference between the calculation

pseed of k-modes algorithms and k-means algorithms when the the gap statistics are applied. When

the gap statistics is applied, the k-value can be determined about 80% faster than the other traditional

methods. The algorithm that determines the k-value only works once until the background map is

completely changed. Moreover, this simulation focuses on the preprocessing part, so only the calcu-

lation time is analyzed as shown in Table 4.4. The performance of the AS-D*lite is evaluated using

the expected value for the number of the re-planned nodes E(RPN).
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4.3.2 Auto-Splitting D* lite

4.3.2.1 Simulation for Special Case of Auto-Splitting D* lite

Fig. 4.13 E(RPN) in Different Map Sizes n.

The following simulations are a validation test using E(RPN). Performance of the traditional D*

lite and the AS-D* lite under the condition of k=2,3, and 4 is compared with each other. The total

re-planned nodes for each case n are calculated. The special case of the AS-D* lite assuming each

k-region (1,2, . . . , j, . . . ,k) has the same number of planned-path nodes as m = n/k (natural number)

described in Section 4.3.1. The simulation conditions are set to satisfy the natural numbers as follows:

50×50 is replaced by 51×51 or 52×52 when k=3 or 4, respectively; 40×40 is replaced by 42×42

when k=3; 30×30 is replaced by 32×32 when k=4; 20×20 is replaced by 21×21 when k=3; 10×10

is replaced by 12×12 when k=3 and 4. All simulations are conducted 5,000 times under the same

conditions as shown in Fig. 4.11 to validate the expected value for the number of the re-planned nodes

E(RPN).
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Fig. 4.14 Average Updated Node in Different Map Sizes

Fig. 4.13 shows E(RPN) in different map sizes using simulations. The overall error rate is around

10% comparing to Fig. 4.11. Fig. 4.14 shows the average updated nodes in different map sizes. The

updated node contains 8 surrounded nodes of the current node. Also, the updated nodes are possible

to overlap with each other if the re-planned paths are created multiple times. Unlike E(RPN), the

average number of updated nodes is re-calculated when any value in the open-list of the D* lite

algorithms changes [11].

4.3.2.2 Simulation for Different Ratio of Random Obstacles

Fig. 4.15 shows simulation results with different amounts of the obstacles in the same map size. The

simulation shows the difference in the reduction rate of the updated nodes resulting from the change

in the value for the number of regions k in a map of 2,500[node] for 3 cases: random static obstacles,

two random dynamic obstacles, and a random start position. In particular, the random static obstacles

refer to the density of obstacles on the map. The density for 25% of obstacles on the map is set to

represent as a rural area, and 50% of obstacles on the map are set to represent as a city area. Each

simulation is repeated 500 times, where region k=1 shows the traditional D* lite and region k ≥ 2

shows the AS-D* lite.
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(k=1 : Traditional D* lite, k ≥ 2 : AS-D* lite)

Fig. 4.15 Number of Expanded Node and Updated Node for Different Ratio of Random Obstacles

Black lines represent the simulations in an environment with 50% of static obstacles, and Red

lines represent the simulations in an environment with 25% of static obstacles. Solid lines show the

expanded node, and Dotted lines show the updated node. As shown in Fig. 4.15, the updated node

and the expanded node are reduced by 50%, when the density of the random obstacle is reduced by

50%. Also, large sizes of the map are simulated to show the efficiency of the AS-D* lite.

4.3.2.3 Simulation for Different Map Sizes

Fig. 4.16 shows a simulation in the map of different sizes with the same proportion of random

obstacles. The maps of 2,500[node], 5,000[node], and 10,000[node] are compared to each other as

shown in Fig. 4.17. The random static obstacles are set at 25% for all three maps, but the number

of random dynamic obstacles is set at 2, 4, and 8 for the three maps, respectively. Each simulation

is repeated 500 times. The k-value is set from 1 to 32 for showing the difference in the number of

expanded nodes and the updated node.
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(k=1 : Traditional D* lite, k ≥ 2 : AS-D* lite)

Fig. 4.16 Number of Expanded Node and Updated Node for Different Map Sizes

(a) (b) (c)

Fig. 4.17 Node Number of Test Map Size. (a) 2,500 [node], (b) Approximately 5,000 [node] (exactly
5,041 [node]), (c) 10,000 [node]

The overall result can be seen that the performance of the AS-D*lite algorithm is better as the

map size increases. The results of the AS-D*lite algorithm shows that number of region k=7 or 8

is automatically selected on 2,500[node], k=4 on 5,000[node], and k=5 or 6 on 10,000[node]. The

k-value varies greatly depending on the random obstacle of the reference data set.
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4.3.2.4 City Map Simulation with Fire (Scenario 1)

Fig. 4.18 Scenario 1 of Rescue Robot Path Planning in Large City Map

This simulation is carried out on a city map for a larger environment near Kokura Castle in Ki-

takyushu, Japan. Image data of 2048×2048[pixel] taken at a height of 1[km] is selected. The actual

map has an axial distance of 1.2[km] and a map size of 40,000[node] is constructed. The size of each

node is 6[m]×6[m]. The size of one node was calculated based on the area of the two-lane road in

Japan. The width of the lane on the Japanese road is a general two-lane road which is commonly

seen, and it is approximately 3.0[m] wide per lane, 3.25[m] on the main road and 3.5–3.75[m] on the

highway. The minimum possible range of global path planning was set. Also, it is possible with a

smaller node size on a larger map.
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(a)

(b)

Fig. 4.19 Path Planning in City Map. (a) Auto-splitting map (k=11 is automatically generated), (b)
Planned path
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Simulations of scenario 1 are shown in Fig. 4.18. Red spot is a starting point and Green is a goal

point. Assuming that a fire or disaster occurred around the goal point, three dense groups move to

two main escape points. At this point, group 1 is following the escape path (1); group 2 and group 3

are following the escape path (2). The rescue robot is finding the shortest path to the goal. The group

1 is escaping through a bridge, so the rescue robot re-calculates another path for dynamic obstacles.

For the robot, the components of groups 1, 2, and 3 become dynamic obstacles. Fig. 4.19 (a) shows

how the AS-D*lite splits the map. As a result, the k-value is selected as k=11 or 12. Compared to the

traditional D*lite algorithm, the proposed AS-D*lite algorithm shows 18% reduction of the expanded

nodes and 58% reduction of the updated nodes simulated in the city map case. The reduction of the

expanded nodes means the reduction of unnecessary nodes, and the reduction of updated nodes means

the reduction of re-planned nodes in the AS-D*lite algorithm. Fig. 4.19 (b) indicates a path of the

robot according to the scenario. Unlike the ideal environment, the number of updated nodes and ratio

of expanded nodes does not decrease as much as the ideal environment because of the high ratio of

obstacles and non-uniform obstacle density in the actual environment. The number of updated nodes

is possible to be reduced by 1/k in the theoretical best case.

4.3.2.5 Rural Map Simulation with Landslide (Scenario 2)

Second simulation is carried out on a rural map for a larger environment near Nishimuro District in

Wakayama-city, Japan. Image data of 2048×2048[pixel] taken at the height of 0.5[km] is selected.

The actual map has an axial distance of 0.4[km], and a map size of 40,000[node] is constructed.

The size of each node is 1[m]×1[m]. Unlike the dynamic global path planning of the city map, the

surrounding terrains are also dangerous in the case of landslides. Therefore, most of the environments

(mountains, buildings, and rivers) except for roads are set as obstacles in this case. Each obstacle is

given a base weight of 1, and each non-obstacle is given a base weight of 0. Moreover, the weight

is separated into five different levels according to the potential danger each environment may cause.

Fig. 4.20 (b) demonstrates how the different levels are given to every area on the map. Level 1 to level

5 represent from the most dangerous to the least dangerous. Level 1 stands for adding 50% of the

base weight, whereas level 5 stands for adding 10% of the base weight. This weight doesn’t exceed
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1.5 times compare to the existing cost of the obstacle. Also, there are fields adjacent to landslides or

lower ground which is also possible to be given a weight. Theoretically, the cost of obstacle nodes

in traditional D*lite is infinite and is set by the user. However, since infinity cannot be used in actual

applications, it was necessary to properly adjust the cost.

The scenario for rural maps is as follows:

Step 1. A rescue robot executes dynamic global path planning from the start position to the goal.

Step 2. A landslide occurs while the rescue robot is moving, blocking road 1 and road 2 at the same

time.
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(a)

(b)

Fig. 4.20 Rescue Robot Path Planning in Rural Map. (a) Scenario 2 of rescue robot path planning in
rural map, (b) Example of landslide alarm mapping
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(a)

(b)

Fig. 4.21 Path Planning in Rural Map. (a) Auto-splitting map (k=9 or 10 is automatically generated),
(b) Planned path
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Simulations of scenario 2 are shown in Fig. 4.20 (a). The red spot is the starting point, and

the green spot is the goal point. Assuming that landslides occurred on the mountain, the blue areas

moved in the direction of the arrow and blocked the road. The rescue robot initially plans to travel in

the shortest distance to get to the goal point, but primarily changes the path due to the influence of the

landslide. The robot has encountered a landslide once again while moving on the first modified path,

so it changed to the second modified path and arrived at the goal point. Fig. 4.21 (a) shows how the

AS-D*lite splits the map. As a result, the k-value is selected as k=9 or 10. Compared to the traditional

D*lite algorithm, the proposed AS-D*lite algorithm shows 11% reduction of the expanded nodes and

46% reduction of the updated nodes simulated in the rural map case. Fig. 4.21 (b) indicates the path

of the robot according to the scenario. This simulation result shows that adding weight increases the

calculation time compared to the city map due to the reason that every node is given a different level

of weight. In this situation, field nodes with small costs are treated as obstacles, the number of the

expanded nodes and updated nodes are reduced. Therefore, the calculation time is increased compare

to the city map cases as described in section 2, which the weighted method can sometimes lead to a

slower search. In this case, although the calculation time is increased compared to the city map, it

still performs better than traditional methods.

4.4 Conclusion

In this study, the AS-D* lite algorithm was proposed to perform a dynamic and collision-free path

planning task. Two important issues were considered and solved by path planning methods and auto-

clustering methods. The first issue was the unnecessary area of the D* based algorithm. The proposed

AS-D* lite algorithm has solved the issue of the unnecessary area by ceasing the unnecessary calcula-

tion of the traditional D* lite, and alleviated the over-calculation issue of dynamic path planners in the

partially known and large area. Furthermore, the path planning method was faster with the AS-D* lite

algorithms when the environment was large and dynamic. The second issue was the slow processing

time for determining the k-value and the way to determine the k-value automatically. To shorten the

processing time for determining the k-value, the gap statistics method was applied to find the optimal

k-value. Moreover, the Voronoi diagram was combined with the k-means algorithm to draw a seg-
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mented map automatically. In particular, the E(RPN) was introduced for representing the efficiency

of the AS-D* lite algorithm according to the number of split maps and the size of different maps.

The E(RPN) is possible to be applied in various grid-based algorithms which operate in dynamic and

partially known areas. To sum up, the unneecessary areas with expanded nodes exist in D* lite based

path is reduced by the AS-D* lite about 58% on the city map and 46% on the rural map. This results

are updated node, which is all node counted number after re-planning.
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Chapter 5

Frenet Frame Trajectory Planning by

Auto-splitting D* lite

5.1 Research Aims

Until Chapter 4, global path planning was described by classifying it into known, partially known,

static, and dynamic according to the environment. In Chapter 5, we aim to plan the trajectory of

real robots and vehicles using the path of the proposed global path planning, Auto-splitting D*lite

(Dynamic Partially Known). In this research, two targets for path planning and trajectory planning are

mainly focused to assist fully autonomous robots and vehicles. The first target is to make dynamic and

global path planning based on a grid map for the autonomous vehicles in the large road networks. The

second target is to combine the dynamic and global path planning with the local trajectory planning for

changing road lanes. Combining a partially known global path planning with dynamic local trajectory

planning for fully autonomous vehicles in a large road network will lead to more accurate and faster

than other trajectory planning. Since Auto-splitting D*lite is described in detail in chapter 4, most of

the descriptions are the Frenet frame trajectory planning with the proposed global path planning and

the Kalman filtering to estimate final Frenet frame trajectory.
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Fig. 5.1 Research Aims (Chapter 5)

5.2 Auto-Splitting D* lite Algorithm with Frenet Frame

5.2.1 Frenet Frame Trajectory Planning

The advantages and disadvantages of the difference between the Cartesian frame and the Frenet frame

described in related work is briefly as follows. The Cartesian frame is easy to interact with other global

path planning algorithms, but it has a slow calculation time because of the many curvature parameters.

5.3 shows the differences between the Cartesian frame and the Frenet frame.

The Cartesian frame is usually called a World Frame W which is the inertial frame in 2D space.

The most common coordinate is the rectangle coordinate (x−y). The Frenet Frame F is a coordinate

built on the curve. In 2D space, it is composed of four components: a point (⃗r) on the curve, tangential

vector (⃗tr) , distance to the reference point (d), normal vector (n⃗r) . In the rectangle coordinate, the

curve can be expressed with f (x,y) = 0. If we introduce an intermediate parameter t, the curve can
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Fig. 5.2 Cartesian Frame-[Sourced by GithubPost]

Fig. 5.3 Frenet Frame-[Sourced by GithubPost]
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be expressed with x(t) and y(t). Given the Frenet frame, we can choose arc length s of the curve as

the intermediate parameter. Givne that, any point in the 2D space can also be paramterized in the

Frenet Frame after deciding the parameter, then the vehicle trajectory is formulated in the following

equation.

x⃗(s(t) ,d (t)) = r⃗ (s(t))+d(⃗nrs(t))) (5.1)

Fig. 5.4 Parameterizations of Frenet Frame

In this study, the reference path is changed from AS-D*lite to Quintic polynomial, and the param-

eters used for Frenet Frame transformation in Cartesian coordinate are

[x,y,θ ,κ,v,a]↔
[
s, ṡ, s̈,d,d′,d′′] (5.2)

AS-D*lite is converted into a Frenet Frame using the kinetic polynomial, with the differential

operations of s being ṡ and the differential operations of d being d′. The coordinate transformation
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is performed by the following 12 formulas. Here, a small x represents the time point of the current

reference path.

• xx = xr −dsin(θr)

• yx = yr +dcos(θr)

• vx =

√
[ṡ(1−κrd)]

2 +(ṡd′)2

• ax = s̈ 1−κrd
cos(θx−θr)

+ d′2

cos(θx−θr)

[
d′
(

kx
1−κrd

cos(θx−θr)
−κr

)
− (κ ′

rd +κrd′)
]

• θx = arctan
(

d′

1−κrd

)
+θr ∈ [−π,π]

• κx =
(
(d′′+(κ ′

rd +κ ′
rd) tan(θx −θr))

cos2(θx−θr)
1−κrd + kr

)
cos(θx−θr)

1−κrd

• s = sr

• ṡ = vxcos(θx−θr)
1−κrd

• s̈ =
axcos(θx−θr)−ṡ

[
d′
(

κ
1−κrd

cos(θx−θr)
−κr

)
− (κ ′

rd+κrd′)
]

1−κrd

• d =

√
(xx − xr)

2 +(yx − yr)
2sign((xx − xr)cos(θr)− (yx − yr)sin(θr))

• d′ = (1−κrd) tan(θx −θr)

• d′′ =−(κ ′
rd +κrd′) tan(θx −θr)+

(1−κrd)
cos2(θx−θr)

(
1−κrd

cos(θx−θr)
κx −κr

)

5.2.2 Apply Auto-Splitting D* lite Algorithm with Frenet Frame

After the understanding of frenet frame, a brief explanation of the procedure of the Frenet frame

trajectory planning is as follows:

Step 1. Qunitic Polynomial Trajectory Generation.

Step 2. Trajectory check.

Step 3. Optimal trajectory selection
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In step 1, the local trajectory planning is represented with a quintic polynomial. A unique quintic

polynomial is represented in the Eq. 5.1. Notations of each parameter are described: ts is the initial

time of a target vehicle; te is the end time of the target vehicle; the initial state for the target vehicle

position, velocity, and acceleration at time t represents [ f (ts) ḟ (ts) f̈ (ts)]; the end state for the

target vehicle position, velocity, and acceleration at time t represents[ f (te) ḟ (te) f̈ (te)]. Then the

trajectory between ts and te can be determined by solving this equation.



1 ts ts2 ts3 ts4 ts5

0 1 2ts 3ts2 4ts3 5ts4

0 0 2 6ts 12ts2 20ts3

1 te te2 te3 te4 te5

0 1 2te 3te2 4te3 5te4

0 0 2 6te 12te2 20te3





a0

a1

a2

a3

a4

a5


=



f (ts)

ḟ (ts)

f̈ (ts)

f (te)

ḟ (te)

f̈ (te)


(5.3)

Fig. 5.5 Offset Patterns of Frenet Frame Trajectory- [Sourced by Keisuke Yoneda]

Various patterns using Quintic Polynomial are generated in the following way.

[
d1,d′

1,d′′
1,∆ Td

]
(5.4)

[ṡ1 +∆ṡ, s̈1,∆ Ts] (5.5)
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s(t) = b0 +b1t +b2t2 +b3t3 +b4t4 +b5t5 (5.6)

d (t) = a0 +a1t +a2t2 +a3t3 +a4t4 +a5t5 (5.7)

In step 2, the Frenet frame trajectory planning checks the velocity limitation, acceleration limi-

tation, and curvature limitations. According to the limitation, several quintic polynomial trajectories

will be produced. In step 3, the optimal trajectory selection is using a cost estimation function. The

total cost of trajectories is represented as Jtot = Js + Jd . The cost of lateral trajectories Jd and the cost

of longitudinal trajectories Js are calculated based on the Eq. 5.1 and many outer conditions. Also,

weight parameters are recommended in traditional Frenet frame trajectory planning. A trajectory with

a minimum cost is the final local trajectory.

Fig. 5.6 Example of Lateral Trajectory Generation

The lateral trajectory can be calculated. Multiple end states can be obtained by sampling different

lateral positions and times, then a cluster of trajectories is received. In this scenario, the lane width

is 3.6m, light blue vehicle is the sampled position, dark blue vehicle is the current position. Sample

these positions in the future 8 seconds, we can get a cluster of trajectories at this time, which is shown

in Fig. 5.6. Due to the different end-state positions and times of sampling, different trajectory curves

are obtained, and their comfort and duration are different. The generated trajectory will cover all

situations when the sampling is dense enough.
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Fig. 5.7 Example of Longitudinal Trajectory Generation

According to different end states, a series of longitudinal trajectories can also be generated, which

is shown in Fig. 5.7. Longitudinal trajectory planning usually needs to face four kinds of maneuvers,

which are merging, following, velocity keeping and stopping. These four maneuvers all need to

sample the final state, but the constraints are different. In the previous section, the coordinate of

vehicles is represented as (s,d) in the Frenet frame. The s represents the distance along the reference

line with AS-D* lite and the d represents the offset from the reference line respectively. In the present

chapter, detailed formulas and methods are omitted because the detailed strategies of the trajectory

planning of the detailed Frenet frame follow the strategies of the representative Frenet frame trajectory

algorithm. However, the solution to the issues caused by applying the Frenet frame coordinate system,

which is the key point of this chapter, is described in the next chapter.
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5.2.3 Frenet Frame Trajectory planning with Kalman Filter

Fig. 5.8 Structure of Frenet frame with AS-D* lite.

The local trajectory planning follows the path of the global path planning. Therefore, the reference

path is the global path, and then the coordinate system is changed to a Frenet frame such as 5.4.

The Frenet frame still has lower accuracy for localization even if the Frenet frame trajectory

planning is realized the fast dynamic local trajectory planning. Thus, the main purpose of a proposed

idea using the Frenet frame trajectory planning with the Kalman filter is to improve performance by

increasing the accuracy of localization of target vehicles and surrounding vehicles.5.8 shows how the

local trajectory planning is combined with the global path planning. After that, the coordinate system

is converted once again to improve the accuracy between the target vehicles and the other vehicles
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using the Kalman filter. We designed the prediction part is used for the state of other vehicles. A

state vector is defined as X = [x y vx vy]
T ; prior estimation state of other vehicles is X−; posterior

estimation state of other vehicles is X+; state-transition matrix represents Fk; process noise matrix is

Qk; observation noise matrix is Rk; observation matrix is Hk; Kalman gain matrix is Kk

P−
k = FkPk−1

+FT
k +Qk (5.8)

X̂−(k) =



x(k)

y(k)

vx(k)

vy(k)


=



1 0 ∆t 0

0 1 0 ∆t

0 0 1 0

0 0 0 1





x(k−1)

y(k−1)

vx(k−1)

vy(k−1)


(5.9)

Kk = P−
k HT

k

(
HkP−

k H⊤
k +Rk

)−1
(5.10)

X̂+(k) = FkX̂−(k−1)+Kk
(
Zk −HkFkX̂−(k)

)
(5.11)

P+
k = (1−KkHk)P−

k (5.12)

The Kalman filter predicts the positional state of another vehicle running around the target vehicle.

The Kalman filter reduces the error that occurs when the Frenet frame trajectory planning selects an

optimal trajectory which is enabling safe and accurate local trajectory planning. In here, a process

noise is assumed N(0,1), Velocity noise v = N(0,0.5). Then, the zk = HkXk + v and H is assumed

H =

1 0 0 0

0 1 0 0

.
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5.3 Simulations

5.3.1 Simulation of Global Path Planning

Simulation is divided into two parts: global and local. This simulation is carried out on a city map

for a larger environment near Fukuoka city in Japan. 4096×4096[pixel] taken at a height of 3[km]

is selected. The actual map has an axial distance of 2.4[km] and a map size of 160,000[node] is

constructed. The size of each node is 6[m]×6[m]. The size of one node was calculated based on the

area of the two-lane road in Japan. The width of the lane on the Japanese road is a general two-lane

road which is commonly seen, and it is approximately 3.0[m] wide per lane, 3.25[m] on the main

road, and 3.5 – 3.75[m] on the highway. Red spot is a starting point and Green is a goal point. The

simulation scenario is shown in 5.9 and a final path with the divided map is shown in 5.10. As shown

in 5.10, the k-value is selected as k=9 when using the AS-D* lite in global path planning. Compared

to the traditional D*lite algorithm, the proposed AS-D*lite algorithm shows 25% reduction of the

expanded nodes and 42% reduction of the updated nodes simulated in the city map case.
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Fig. 5.9 Simulation Scenario

In addition, the path was changed while the vehicle was moving with planning a new path even

if a part of the map was updated. The data of the planned path is designed to be sent for local path

planning in real-time.
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Fig. 5.10 Global Path Planning using AS-D* lite

5.3.2 Simulation of Local Trajectory Planning

The second simulation is the local trajectory planning part. The simulation shows a short trajectory

of 10-20[m] in the peripheral radius of the target vehicle by Frenet frame trajectory planning using

location data after global path planning (reference data). In the scenario, two nearby vehicles were

set to change their course in front of the traveling direction of the target vehicle on a two-lane road.

First, the target vehicle is following the global path using the AS-D* lite path. Then, vehicle 1 is

interrupting the trajectory from lane 2 to lane 1. This point is named collision point 1 and vehicle 2 is

escaping the trajectory from Lane 2 to Lane 1. This point is named collision point 2.
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Fig. 5.11 Local Trajectory Planning using Frenet Frame

5.11 is the trajectory of the applied Frenet frame trajectory planning, and 5.1 is a comparison of

accuracy. There is a significant difference in the local trajectory planning accuracy. The calculation

time was almost the same in this case, because the simulation environment was simple.

Table 5.1 Local Trajectory Planning Accuracy

Local Trajectory Planning Average error (x-axis) Average error(y-axis)

Cartesian frame
Kalman filter -0.87 [m/s] -36.76 [m/s]
Kalman filter (X) -1.08 [m/s] -36.75 [m/s]

Frenet frame
Kalman filter -0.73 [m/s] 0.24 [m/s]
Kalman filter (X) -0.79 [m/s] 0.41 [m/s]

5.4 Conclusions

Two issues are introduced in this chapter. The first issue is that it is difficult to compute the number

of candidate paths created when planning a local trajectory as a reference path for existing AS-D*lite

as Cartesian frames. After re-creating the Local path in the Frenet frame, the offset path of various
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paths was finally regenerated. One path selected from this set of paths is called the trajectory, and it is

confirmed that easily determined by the s and d values of the Frenet Frame. Additionally, the second

issues for the localization is attempted to reduce the error of the d value determined by the velocity

factor by finally applying the Kalman filter. Accordingly, it was confirmed that the error in the vehicle

traveling direction was reduced by 8% and the error in the vehicle rotating direction was reduced by

42%. Finally, the proposed AS-D* lite solved the slow global path planning issues in the large road

networks. Also, the Frenet frame with Kalman filter algorithm was realized the actual movement

trajectory for the dynamic local environment, and had high localization accuracy compared to the

existing methods.
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Conclusion

This study proposed several solutions with a method for solving the issues of the existing global path

planning methods and three studies focus on solving the problems of local trajectory planning. The

first research focus is to propose a new algorithm to solve the problem of global path planning in

a static environment, solving problems of the existing algorithms. As an idea for this, we searched

for the peripheral nodes of the current node searching in the grid map, and we proposed a diagonal

path planning method that forcibly extends only four diagonal nodes instead of eight surrounding

nodes. The resulting zig-zag problem reduced the smoothing time as well as the expansion speed of

the node by converting the path smoothing algorithm into a quaternion space and smoothing. The

algorithm used for the quaternion transformation was applied by modifying Shoemake’s scheme, and

finally the calculation time of global path planning in the static known area was reduced by 45% in

the 51[grid]×51[grid] to 49% in the 1601[grid]×1601[grid].

The second research focus is to reduce expanded nodes in dynamic and partially known environ-

ments, especially in large maps. Many unnecessary node extensions occur, especially when the map

is wide in the dynamic areas, and the proposed method to solve this issue is the Auto-splitting D*lite.

The proposed algorithm operates only in a split map to reduce the expanded node in a wide map so

that the expanded node is not re-generated even if the observation information outside the split map

is updated, and an auto-clustering method with the same size is applied. As a result, it was confirmed

that the calculation time decreased at a rate close to the number of divided maps, even in a dynamic

115



Chapter 6. Conclusion

environment. To prove such computational reduction rates, we also propose the Number for the

Expected value of replanned node (ERPN) method that quantifies the performance of the algorithm

using the expected value of the probability principle from which the expanded node occurs. Then,

the proposed Auto-splitting D* lite algorithm solves the issue of the unnecessary area by ceasing the

unnecessary calculation of the traditional D* lite methods and alleviating the over-calculation issue of

dynamic path planners in a large area. The Auto-splitting D* lite removes nodes of the unnecessary

area when a new path is updated (Updated node) in 58% on the city map and 46% on the rural map.

The third research focus was the application of local trajectory planning in a more complex dy-

namic and partially known environment. The main issue is the difficulty of generating candidate paths

(Sets of path) in the Cartesian frame when planning a local trajectory as a reference path for existing

AS-D*lite as Cartesian frames. After re-creating the Local path in the Frenet frame, the offset path of

various paths was finally regenerated. One path selected from this set of paths is called the trajectory,

and it is confirmed that easily determined by the s and d values of the Frenet Frame. Additionally,

the second issue for the localization is attempted to reduce the error of the d value determined by the

velocity factor by finally applying the Kalman filter. Accordingly, it was confirmed that the error in

the vehicle traveling direction was reduced by 8% and the error in the vehicle rotating direction was

reduced by 42%. Finally, the proposed AS-D* lite solved the slow global path planning issues in the

large road networks. Also, the Frenet frame with the Kalman filter algorithm was realized the actual

movement trajectory for the dynamic local environment.
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